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Abstract

This paper puts forward an integrated optimisation model that combines three distinct problems,
namely the Berth Allocation Problem, the Quay Crane Assignment Problem, and the Quay Crane
Scheduling problem, which have to be solved to carry out these seaside operations in container ports.
Each one of these problems is complex to solve in its own right. However, solving them individually
leads almost surely to sub-optimal solutions. Hence the need to solve them in a combined form. The
problem is formulated as a mixed-integer programming model with the objective being to minimise
the tardiness of vessels. Experimental results show that relatively small instances of the proposed
model can be solved exactly using CPLEX.

1 Introduction

Container terminals are important assets in many modern economies. They constitute important means
of distributing goods made overseas to domestic markets in other countries. They are expensive to build,
and difficult to operate. We describe here some of the main problems which are faced daily by decision
makers in container ports.

Container ports consist of a seaside component and a landside component. Seaside operations lead to
three problems:

1. the Berth Allocation Problem (BAP),

2. the Quay Crane Assignment Problem (QCAP),

3. the Quay Crane Scheduling Problem (QCSP).

The landside operations include yard planning, yard crane assignment, and container storage planning
among other things. In this paper, the seaside problems listed above, will be discussed. Each one is a
complex optimization problem in its own right. However, solving these problems individually without
consideration of the others may lead to overall suboptimal solutions. For this reason we will investigate
the triple integrated problem. An overview of these three problems individually and integrated pairwise
can be found in the paper of Bierwirth and Meisel [2].

Operations at container terminals are usually sequenced as follows. The first operation is the berth
allocation which allocates a berthing time and a berthing position to every vessel arriving at the port. The
main objective of this operation is to minimise the handling time, i.e. load or unload the containers into
and from a vessel, depending on the distance between the berthing position and the desired berthing.
The desired berthing is the berthing position which has the minimum distance between the berthing
position and the pre-allocated yard stowage in the port, where the containers will be stored until they
are transferred to other vessels, trains or vehicles which will take them to their next destinations. The
decision makers in the container terminal try to find the best position for every vessel to minimize
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movement cost. Also, they try to find the optimal berthing time for each vessel arriving to the port. The
second operation, leading to QCAP, tries to determine the optimum number of quay cranes to allocate
to every vessel so that the throughput of the cranes is maximized or, equivalently, their idle time is
minimised. Equivalently, the handling time of vessels will be minimized, as a result the quay cranes will
finish processing each vessel in optimal time (due time). The decision maker in this type of situation
focuses on determining the most suitable number of quay cranes for each vessel. The last operation,
leading to QCSP, investigates what is the optimum order in which to carry out tasks in order to minimize
the finishing time of processing vessels. When the quay crane performs a task quickly, there is a chance
to move to another task on the same vessel or on other vessels. In fact, there are no studies, to our
knowledge, that allow quay cranes that have finished their work on a given ship, to move from that ship
to another even if the vessel they are leaving is still being processed. More specifically, our model allows
the number of quay cranes assigned to a vessel to change during the handling of the vessel.

This paper is organised as follows: Section 2 is a literature review. The problem description will be
discussed in Section 3. The proposed mathematical model will be given in Section 4. Section 5 records
computational experience on 25 instances. Section 6 is the conclusion and future work.

2 Literature Review

There is, to our knowledge, no previous investigation of the three problems listed above combined into a
single model. There is however a lot of work on some individual problems and the pairwise combination
of these and others. We will review this literature briefly in the following.

2.1 The Berth Allocation Problem

Imai et al. [9] addressed the problem of determining dynamically berth allocation. They developed a
heuristic based on the Lagrangian relaxation of the original problem. Nishimura et al. [22] addressed
the dynamic BAP and developed a heuristic method based on the genetic algorithm to solve it. Golias
et al. [7] formulated the discrete and dynamic BAP as a multi-objective combinatorial optimization
problem. They divided the vessels into groups of vessels each one of which has a different priority from
that of other groups. A genetic algorithm based heuristic is then developed to solve it. The heuristic
provided a complete set of solutions that enable terminal operators to evaluate various berth scheduling
policies and select the schedule that improves operations and customer satisfaction. Cheong et al. [4]
solved BAP using multi-objective optimization in order to minimize concurrently the three objectives of
makespan, waiting time, and degree of deviation from a predetermined priority schedule. These three
objectives represent the interests of both port and ship operators. Unlike most existing approaches
using single objective representation, a multi-objective evolutionary algorithm (MOEA) [17, 34] that
incorporates the concept of Pareto optimality is proposed for solving the multi-objective BAP. Ting et
al. [31] studied the discrete dynamic BAP and suggested a mixed integer programming model with
dynamic arrival times. They proposed a particle swarm optimization heuristic to solve it. Lee [13]
proposed a neighborhood-search based heuristic to determinate the berthing time and space for each
incoming vessel at the continuous berth stretch. In their model, they considered the First-Come-First-
Served rule, clearance distance between vessels, and the possibility of vessel shifting. Also, the number of
practical considerations was included in this search which is obtained from the port of Kaohsiung. Tong
[32] proposed an optimization model for a dynamic berth allocation with discrete layout. The genetic
algorithm to determine the berthing time and berthing position at a container terminal was applied. The
service priority for each vessel was considered.

2.2 The Quay Crane Scheduling Problem

Kim and Park [11] studied QCSP. They formulated it as a mixed integer programming problem and
solved it with Branch-and-Bound (B&B) combined with a heuristic search algorithm, known as the
Greedy Randomized Adaptive Search Procedure (GRASP), to overcome the difficulties of B&B alone.
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Moccia [20] formulated QCSP as a vehicle routing problem with additional constraints like the precedence
relationships between tasks. CPLEX was used to solve small scale instances and Branch-and-Cut to
solve large scale instances. Sammarra et al. [29] proposed a Tabu Search heuristic for QCSP in order to
minimize the completion time of loading and unloading containers into and from vessels. They considered
precedence and non-simultaneity between tasks. Also, they observed that QCSP can be decomposed into
a routing problem and a scheduling problem. Lee et al. [12] presented a mixed integer programming
model and proved that QCSP is NP-complete. They proposed a genetic algorithm to obtain near optimal
solutions. Bierwirth and Meisel [1] noticed that the constraints for interference among the quay cranes
still need correction for this reason they revised the previous mathematical models. Chung and Choy
[5] proposed a modified genetic algorithm to solve QCSP. In this paper, they used Kim and Park’s
model. The results were compared with the existing algorithms. The comparison demonstrated that
the proposed algorithm is as good as many existing algorithms. Kaveshgar et al. [10] used a genetic
algorithm for solving QCSP. Their algorithm improves the efficiency of genetic algorithm search by using
an initial solution based on the S-LOAD rule and by reducing the number of genes in the chromosomes
to minimize search time. Nguyen et al. [21] suggested two representations based on the genetic algorithm
and the genetic programming for QCSP. The genetic algorithm uses permutation to decide the priority
of the tasks, whereas the genetic programming procedure relies on a priority function to calculate the
priority of tasks.

2.3 The Berth Allocation and Quay Crane Assignment Problems (BACAP)

Meisel and Bierwirth [18] integrated BAP, and QCAP into BACAP. The proposed problem is formulated
taking into account some of the real issues faced by the decision maker in the port such as the decrease of
marginal productivity of quay cranes assignment to a vessel and the increase in handling time if vessels are
not berthed at their desired position at container terminal. In additional to the mathematical model, the
authors submitted two meta-heuristic approaches squeaky wheel optimization (SWO), and tabu search
(TS). Cheong et al [3] described the benefit of multi-objective optimization on BACAP. The BACAP
involves the simultaneous optimization of two highly-coupled container terminal operations. Optimization
results show that the multi-objective optimization approach offers the port manager flexibility in selecting
a desirable solution for implementation. Liang et al [15] introduced the dynamic quay crane assignment
(QCDA) in berth allocation planning problem (BAP) and formulate a multi-objective mathematical
model considering each berth for container ship with and the number of Quay Cranes Move. In order to
solve this QCDA in BAP problem they proposed a multi-objective hybrid Genetic Algorithm approach
with a priority-based encoding method. Yang et al. [33] proposed an approach to solve BACAP as a
simultaneous solution of BAP, and QCAP. The mathematical model was formulated by integrating the
constraints for BAP of Guan [8] and the constraints for QCAP of Legato [14]. The objective function for
this model is the two objective functions for the two previous models of BAP and QCAP. Evolutionary
algorithm with nested loops was developed to find the solution for the combined problem.

2.4 The Quay Crane Assignment and Scheduling Problems (QCASP)

Daganzo [6], and Peterkofsky[23] first discussed the combine of QCAP, and QCSP by assignment the
number of quay cranes for a set of vessels. In both of these studies, the authors assumed that there is
just one task in each bay and did not consider the interference between quay ceanes. Also, they noticed
that BAP should be integrated with QCAP, and QCSP. Tavakkoli et al. [30] studied QCASP. In this
paper, they formulated a mix integer program to determinate the optimal number of quay cranes for
every vessel that will arrive at the terminal and at the same time finding the optimal sequence of the
tasks which need to handle on the vessel. Also, a genetic algorithm is proposed to solve the large scale
for this type of problem.
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2.5 The Berth Allocation, Quay Crane Assignment, and Quay Crane Schedul-
ing Problems (BACASP)

Liu et al. [16] studied the seaside operations and introduced a mixed integer linear programming in order
to minimize the maximum relative tardiness of vessel departures. The plausible idea which presented
by Liu was that instead of assuming a function relationship between the processing time of a vessel and
the number of quay cranes assigned to it, the authors introduced a series of parameters pvj which means
the handling time of vessel j when v quay cranes were assigned to it. However, the integration model
proposed need further improvement since in the Berth-level model, the berthing times are revised in this
model whereas the berthing positions are taken from the tentative berth plan. Meisel et al. [19] proposed
a three-phase integration framework using preprocessing and feedback mechanisms. Phase I estimate
productivity rates of quay cranes from the vessel stowage plan. In the phase II, by using Meisel’s model
[18] the berth allocation problem and quay crane assignment problem will be solved depending on the
productivity rates of quay cranes. Phase III will schedule the tasks for each vessel. To adjust the solution
for BAP, QCAP, and QCSP a feedback loop will be needed. Based on this framework, seaside planning
problems for 40 vessels are solvable on a high level of detail within practical computation time.

3 Problem description

The berth allocation problem attempts to find the best time for berthing and the best position for mooring
the vessels that arrive at the container terminal. This is an important problem that attracted a lot of
attention. After berth allocation is solved, QCAP is the follow up challenge. The number of quay cranes
that will be assigned to every vessel is very important. If the number of quay cranes assigned to a vessel
is low, the vessel will spend more time in port. This tardiness has a knock on affect on the operators of
this vessel and at the same time on the container terminal, because other vessels will wait to get dealt
with. The opposite case is when the number of quay cranes assigned to a vessel is more than what is
needed. This leads to high handling costs for this vessel. The other problem which follows immediately
is that of finding the sequence in which tasks on each vessel are carried out. Choosing the best sequence
to perform all the tasks on each vessel is a very important operation which helps minimize the finishing
time of every vessel.

All these problems have been solved either individually or by integrating them pairwise. The results
obtained for these problems might be optimal. However, the decision maker cannot separate these
problems; individual optimal solutions do not guarantee overall optimality. The diagram below shows the
relationship between the berth allocation, quay crane assignment, and quay crane scheduling problems.
There are some conditions to be considered when solving these three problems simultaneously. The
outputs of the berth allocation are the berthing time Tv and the berthing position Pv. These outputs of
berth allocation will be used as input to the quay cranes assignment problem to determine the number
of quay cranes for each vessel. The starting time of the qth quay crane on the vessel v Sqv should be
greater than or equal to the berthing time Tv. The starting time of quay crane Sqv should be greater
than or equal to that of the ready crane rq which means the earliest available time of the quay crane. The
starting time of quay crane Sqvj should be greater than or equal the completion time of the quay crane
Cqvi before moving to other vessels. For this reason the quay crane assignment depends on the output
of quay crane scheduling and berth allocation. Finally, after determining the number of quay cranes for
each vessel, the quay crane scheduling problem will arise to choose the best sequence of the tasks that
will be performed by quay cranes which are assigned to it. Also the time to process the vessel Fvj should
be greater than or equal to the finishing time Fvi. The berthing position which will be allocated to the
new arriving vessel should be empty. As a result, the berth plan depends on the output of quay crane
scheduling.
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Berth Allocation Problem

Quay Crane Assignment

Quay Crane Scheduling Problem

Sqv ≥ rq Fvi

No. of QCs

Tv, PvSqv ≥ Tv

Sqvj ≥ Cqvi

.

Figure 1: Illustration of the relationship among the three problems

4 Mathematical formulation

This section describes a mixed integer programming model for the continuous and dynamic berth alloca-
tion, quay cranes assignment, and quay crane scheduling problems which have been traditionally solved
as individual problems. The main aim of this model is to solve these three problems as a one aggregated
problem. The suggested mathematical model tries to find the best location and the optimal time for
berthing for each vessel that arrives at the container terminal. When the vessel is moored at its preferred
position, the distance to transfer the containers from the vessel to the stowage will be minimized and the
port will save time to process other vessels and the cost that might be paid to the operator of the vessel
if this vessel departs the terminal after the expected time of its departure (due time). Another benefit of
this model is to assign enough quay cranes to each vessel. The handling time of the vessel will be longer
if an insufficient number of quay cranes is assigned. There are two reasons that prevent us from assigning
too many quay cranes to vessel. The first is the cost of building quay cranes which is very expensive;
the second is the quay crane constraints i.e. there is a limited number of quay cranes at any time. This
model also finds the optimal sequence to perform every task on the vessel; this is the so called quay crane
scheduling problem.

4.1 Assumptions

1. Each vessel is divided longitudinally into bays; all bays have the same length. Thus, the length of
vessels is in number of bays.

2. The safety distance between each pair of adjacent quay cranes depends on the width of a bay.

3. Each segment of the continuous wharf can handle one vessel at a time.

4. Once a quay crane starts processing a task, it can leave only after it has finished the task.

5. Any vessel can be processed in any space of the wharf depending on the arrival time and the
available terminal.
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6. Quay cranes are on the same rail and thus they cannot cross over each other.

7. Some tasks must be performed before others and there are tasks that cannot be performed simul-
taneously.

4.2 Indices

Q Number of quay cranes (q, qi, qj = 1, 2, ....Q).
V Number of vessels (v, vi, vj = 1, 2, ..., V ).
Bv Number of tasks on vessel v (b, bi, bj = 1, 2, ..., Bv).

4.3 Parameters

pvb Time required to perform task b on vessel v.
lvb Location of task b on vessel v expressed by the ship bay number on vessel v.
rq Earliest available time of the q-th quay crane.
lq0 Initial location of quay crane q which is relative to the ship-bay number.
lqT Final location of quay crane q which is relative to the ship-bay number.
tqvbibj Travel time of the qth quay crane from the location (lvbi) of task bi to the location (lvbj ) of task

bj on the same vessel v. tqvb0bj Represents the travel time from the initial position (lvq ) of the qth quay

crane to the location (lvbj ) of the task bj on vessel v. In addition, tqvbjbBv+1
represents the travel time from

location (lvbj )of task bj to the final destination (lvq ) of qth quay crane on vessel v.
av Estimated arrival time for vessel v.
dv Requested departure time for vessel v.
P̂v Preferred berth position of vessel v. It is determined by the position of yard storage areas
allocated to vessel v. P̂v reflects that the berth position has the shortest distance to the allocated yard
storage areas for vessel v.
Uv Distance cost for vessel v. If vessel v moors at P̂v, the transportation cost is the lowest based
on the distance cost due to the vessel mooring at a place with deviation in distance.
Lv Length of the vessel v.
W Length of the wharf.
Hq Variable cost of using the qth quay crane.
Wv Tardiness cost of vessel v per-unit time.
Rv Earliness incoming of vessel v per-unit time.
Ψ Set of pairs of tasks that cannot be performed simultaneously. When tasks bi and bj cannot
be performed simultaneously, then ((bi, bj) ∈ {Ψ}).
Φ Set of ordered pairs of tasks for which there is a precedence relationship. When task bi must
precede task bj , then we have ((bi, bj) ∈ {Φ}).
M Arbitrary large positive number.

4.4 Binary decision variables

Xqv
bibj

=

{
1 if the qth quay crane performed task bj immediately after performing task bi on vessel v.

0 otherwise

Tasks b0 and bBv+1 are considered as the dummy initial and final states of each quay crane, respectively.
Thus, when task bj is the first task of the q-th quay crane then Xqv

b0bj
= 1. In addition, when task bj is

the last task of the qth quay crane then Xqv
bjbBv+1

= 1.
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Zvbibj =

{
1 if task bj starts later than the finish of task bi on vessel v.

0 otherwise.

Y qvivj =

{
1 if the qth quay crane is assigned to vessel vj right after finishing its tasks on vessel vi.

0 otherwise.

δvivj =

{
1 if the processing of vessel vj starts later than the finish time of vessel vi.

0 otherwise.

σvivj =

{
1 if the vessel vj is located below the vessel vi in the berth (wharf).

0 otherwise.

α
vivj
bibj

=

{
1 if the task bj on vessel vj is located below the task bi on vessel vi.

0 otherwise.

β
vivj
bibj

=

{
1 if the task bj on vessel vj starts later than the finish of task bi on vessel vi.

0 otherwise.

4.5 Continuous decision variables

Tv Berthing time of vessel v.
Pv Berthing position of vessel v.
Av Tardiness of vessel v.
Ev Earliness of vessel v.
Cqv Completion time of qth on vessel v.
Fv Finishing time of vessel v.
Dv
bi

Completion time of task bi on vessel v.

Sqv Starting time of qth on vessel v.

4.6 The mathematical model

minZ =

Q∑
q=1

HqCq +

V∑
v=1

WvAv −
V∑
v=1

RvEv +

V∑
v=1

Uv|Pv − P̂v| (1)

s.t

dv − Fv = Ev −Av ∀v (2)

Fvi ≤ Tvj +M(1− δvivj ) ∀vi, vj ; vi 6= vj (3)

Pvi + Lvi ≤ Pvj +M(1− σvivj ) ∀vi, vj ; vi 6= vj (4)

σvivj + σvjvi + δvivj + δvjvi ≥ 1 ∀vi, vj ; vi 6= vj (5)

av ≤ Tv ∀v (6)

Pv + Lv ≤W ∀v (7)

V∑
vj=1

Y qv0vj = 1 ∀q (8)

V∑
vi=1

Y qvi(V+1) = 1 ∀q (9)

V+1∑
vj=1

Y qvvj −
V∑

vj=0

Y qvjv = 0 ∀v, q (10)
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V∑
vi=0

Q∑
q=1

Y qviv ≥ 1 ∀v (11)

Sqv ≥ rq −M(1− Y qv0v) ∀v, q (12)

Sqv ≥ Tv −M(1−
V+1∑
vj=1

Y qvvj ) ∀v, q (13)

Sqvj ≥ Cqvi −M(1− Y qvivj ) ∀vi, vj ; vi 6= vj ; q (14)

Bv∑
bj=1

Xqv
b0bj

=

V∑
vi=0

Y qviv ∀v, q (15)

Bv∑
bj=1

Xqv
bjbBv+1

=

V∑
vi=0

Y qviv ∀v, q (16)

Bv+1∑
bj=1

Xqv
bbj
−

Bv∑
bj=0

Xqv
bjb

= 0 ∀b, v, q (17)

Q∑
q=1

Bv∑
bi=0

Xqv
bib

= 1 ∀b, v (18)

Bv∑
bi=0

Bv+1∑
bj=1

Xqv
bibj
≤M

V∑
vi=0

Y qviv ∀v, q (19)

Dv
bi + tqvbibj + pvbj −D

v
bj ≤M(1−Xqv

bibj
) ∀bi, bj ; bi 6= bj , v, q (20)

Sqv + tqvb0bj + pvbj −D
v
bj ≤M(1−Xqv

b0bj
) ∀bj , v, q (21)

Dv
bj − Cqv ≤M(1−Xqv

bjbBv+1
) ∀bj , v, q (22)

Cqv − Fv ≤M(1−
V+1∑
vj=1

Y qvvj ) ∀v, q (23)

Dv
bi + pvbj ≤ D

v
bj ∀(bi, bj) ∈ Φv; bj 6= bi;∀v (24)

Dv
bi −D

v
bj + pvbj ≤M(1− Zvbibj ) ∀bi, bj ; bi 6= bj ;∀v (25)

Zvbibj + Zvbjbi = 1 ∀(bi, bj) ∈ Ψv; bj 6= bi;∀v (26)

Q∑
θ=0

Bv∑
κ=0

Xθv
κbj −

Q∑
θ=0

Bv∑
κ=0

Xθv
κbi ≤M(Zvbibj + Zvbjbi) ∀bi, bj ; bi 6= bj ; lbi < lbj ;∀v, q (27)

Pvi + lvbi ≤ Pvj + lvbj +M(1− αvivjbibj
) ∀bi, bj , vi, vj ; vj 6= vi (28)

Dvi
bi
−Dvj

bj
+ p

vj
bj
≤M(1− βvivjbibj

) ∀bi, bj , vi, vj ; vj 6= vi (29)

β
vivj
bibj

+ β
vjvi
bjbi

+ α
vivj
bibj
≥

Bv∑
κ=0

Xqivi
κbj

+

Bv∑
κ=0

X
qjvj
κbi
− 1 ∀bi, bj , vi, vj , qi, qj ; vj 6= vi; qi < qj (30)

Xqv
bibj

, Zvbibj , Y
q
vivj , δvivj , σvivj , α

vivj
bibj

, β
vivj
bibj
∈ {0, 1} (31)

Cqv, Fv, D
v
bj , Pv, Tv ≥ 0 (32)

In the objective function (1), the first term
∑Q
q=1HqCq represents the cost of using quay cranes. The

second term
∑V
v=1WvAv represents the tardiness cost if the departure time of the vessel is greater than

its due time. The third term
∑V
v=1RvEv represents the earliness incoming if the finishing time of vessel

less than the due time. The last term
∑V
v=1 Uv|Pv − P̂v| represents the cost if the vessel moored at an
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undesired berthing position. Constraint (2) determines if the vessel has earliness or tardiness depending
on the difference between the due time of the vessel and the finishing time of this vessel.

The constraints (3-7) represent the conditions for berth allocation. Wherever, constraint (3) define
δvivj such that δvivj = 0 or 1 if the finishing time of vessel i less than or equal the berthing time of vessel
j; 0 if the finishing time of vessel i greater than the berthing time of vessel j. The figures below illustrate
how the value of δvivj is computed:

Figure 2: Illustration of no time overlap between two vessels

The value of δvivj in the Fig.2 equal 0 or 1 because Fvi ≤ Tvj . Whereas, the value of δvjvi in the same
figure equal 0 because Fvj > Tvi . The value of δvivj in the Fig.3 equal 0 because Fvi > Tvj and the value

Figure 3: Illustration of time overlap between two vessels

of δvjvi in the same figure also equal 0 because Fvj > Tvi . That is mean there is an overlap in the time
between these two vessels. Constraint (4) define σvivj such that σvivj = 0 or 1 if the berthing position
of vessel i plus the length of vessel i less than or equal the berthing position of vessel j; 0 if the berthing
position of vessel i plus the length of vessel i greater than the berthing position of vessel j. The figures
below illustrate how the value of σvivj is computed:
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Figure 4: Illustration of no location overlap between two vessels

The value of σvivj in the Fig.4 equal 0 or 1 because Pvi + Lvi ≤ Pvj . Whereas, the value of σvjvi
in the same figure equal 0 because Pvj + Lvj ≥ Pvi . The value of σvivj in the Fig.5 equal 0 because

Figure 5: Illustration of location overlap between two vessels

Pvi +Lvi > Pvj and the value of σvjvi in the same figure equal 0 because Pvj +Lvj ≥ Pvi . That is mean
there is an overlap in the location between these two vessels. Constraint (5) ensures that the overlaps
among vessels do not exist in the two dimensional (time and location) depending on the value of δvivj
and σvivj .

Constraint (6) guarantees that vessels cannot moor before their arrivals. Constraint (7) implies that
the berthing position plus the length of the vessel cannot exceed the range of the wharf.

The constraints (8-11) represent the main conditions for quay crane assignment. Constraint (8) and
(9) respectively select the first and the last ships for each quay crane. Constraint (10) guarantees that
ships are processed in a well-defined sequence. Constraint (11) guarantees each vessel is handled at least
one quay crane.

The constraints (12-14) determine the starting time of quay cranes. Constraint (12) defines the
starting time of the earliest vessel that is to be done by the qth quay crane which should be after the
ready time of the qth quay crane. Note that the vessel vo is a fake vessel. Constraint (13) states that
the starting time of qth quay crane on vessel v is no earlier than its berthing time if the qth quay crane
is assigned to the vessel. Constraint (14) ensures that the starting time of qth quay crane on vessel vj
should be no earlier than finishing time of its vessel predecessor vi.
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Constraint (15 ) ensures that if a quay crane is allocated to a vessel, then it will start its processing
from one task on that vessel. Constraint (16 ) ensures that if a quay crane is allocated to a vessel, then
it will finish its processing from one task on that vessel. Constraint (17) shows a flow balance ensuring
that tasks are performed in a well-defined sequence on every single vessel. Constraint (18) ensures that
every task on each vessel must be completed by exactly one quay crane. Constraint (19) ensures that if a
quay crane is not assigned to a vessel, the tasks on this vessel will not be performed by this quay crane.
Constraint (20) simultaneously determines the completion time for each task. Constraint (21) defines the
quay crane operation starting time. The completion time of each quay crane is computed by constraint
(22). Constraint (23) determines the finishing time of each vessel.

When required, constraint (24) forces task i to be completed before task j for all the tasks which are
in the set Φ. Constraint (25) defines Zvij such that Zvij = 1 when the operation of task j on vessel v
starts after the operation for task i is completed; and 0 otherwise. Constraint (26) ensures that the pair
of tasks that are members of the set Ψ will not be handled simultaneously.

Constraint (27), enforces interference avoidance among quay cranes. Suppose that tasks i and j are
performed simultaneously and li < lj . This means that Zvij + Zvji = 0. Note that both quay cranes and
tasks are sorted in an increasing order of their relative location in the direction of increasing ship-bay
numbers. Suppose furthermore that, for q1 < q2, quay crane q1 performs tasks j and quay crane q2
performs task i. Then, interference between quay cranes q1 and q2 results. However, in such a case,∑q1
θ=1

∑Nv
κ=0X

θv
κj −

∑q1
θ=1

∑Nv
κ=0X

θv
κi = 1, it cannot be allowed because of constraint (27), and then we

have Zvij + Zvji = 0.

Constraint (28) defines α
vivj
bibj

such that α
vivj
bibj

= 0 or 1 if the berthing position of vessel vi plus the
location of task bi on that vessel less than or equal the berthing position of vessel vj plus the location
of task bj on that vessel; 0 if the berthing position of vessel vi plus the location of task bi on that vessel
greater than the berthing position of vessel vj plus the location of task bj on that vessel. The figures
below illustrate how the value of δvivj is computed:

Figure 6: Illustration of no location overlap between two vessels

The value of α
vivj
bibj

in the Fig.6 equal 0 or 1 because Pvi + lvbi ≤ Pvj + lvbj . The value of α
vivj
bibj

in the
Fig.7 equal 0 because Pvi + lvbi > Pvj + lvbj . That is mean there is overlap in the position between these
two tasks on these two vessels.
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Figure 7: Illustration of location overlap between two vessels

Constraint (29) define β
vivj
bibj

such that β
vivj
bibj

= 0 or 1 if the finishing time of task bi on vessel vi plus
the processing time of task bj on vessel vj less than or equal the finishing time of task bj on vessel vj ; 0 if
the finishing time of task bi on vessel vi plus the processing time of task bj on vessel vj greater than the
finishing time of task bj on vessel vj . The figures below illustrate how the value of β

vivj
bibj

is computed: The

Figure 8: Illustration of no time overlap between two vessels

value of β
vivj
bibj

in the Fig.8 equal 0 or 1 because Dvi
bi

+ p
vj
bj
≤ Dvj

bj
. Whereas, the value of β

vjvi
bjbi

in the same

figure equal 0 because D
vj
bj

+ pvibi > Dvi
bi

. The value of β
vivj
bibj

in the Fig.9 equal 0 because Dvi
bi

+ p
vj
bj
> D

vj
bj

and the value of β
vjvi
bjbi

in the same figure equal 0 because D
vj
bj

+ pvibi > Dvi
bi

. That is mean there is overlap

in the time between these two tasks on these two vessels. Constraint (30) prevents the interference among
the quay cranes and the vessels depending on the value of β

vivj
bibj

and α
vivj
bibj

.
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Figure 9: Illustration of time overlap between two vessels

5 Computational experiments

Numerical results have been obtained using CPLEX to solve instances of the suggested model which
integrates Berth Allocation, Quay Crane Assignment, and Quay Crane Scheduling. 25 instances were
randomly generated. They are described in Table 1. All experiments were carried out on a PC with Intel
Core 2, 2.40 GHz CPU and 4 GByte RAM running Windows 7 operating system. CPLEX is limited to
relatively small instances since large ones require astronomical CPU time. Unfortunately, such instances
arise when considering large numbers of vessels, quay cranes, and task. Alternative approaches to solve
practical instances of the model are being considered, [25, 27, 28, 24, 26].

Problem No.Vessels No.QCs No.Tasks No.Constraints No.Variables No.Int.Variables CPLEX(h:m:s)
1 2 2 2 128 94 70 less than 1s
2 2 2 3 180 118 91 less than 1s
3 2 2 4 240 142 112 less than 1s
4 2 3 2 204 148 122 00.00.04
5 2 3 3 294 184 155 00.00.07
6 2 3 4 402 220 188 00.00.09
7 2 4 2 308 222 194 00.01.25
8 2 4 3 450 274 243 00.06.12
9 2 4 4 624 326 292 00.06.52
10 2 5 2 440 316 286 00.37.20
11 2 5 3 648 388 355 01.39.56
12 2 5 4 906 460 424 17.08.30
13 3 2 2 241 177 140 00.00.05
14 3 2 3 345 216 174 00.00.07
15 3 2 4 473 255 208 00.00.21
16 3 3 2 400 288 248 00.04.17
17 3 3 3 591 345 300 00.27.54
18 3 3 4 836 402 352 01.06.11
19 3 4 2 619 441 398 01.41.31
20 4 2 2 388 284 234 00.00.37
21 4 2 3 562 340 283 00.01.43
22 4 2 4 784 396 332 00.04.29
23 4 3 2 660 472 418 05.12.23
24 5 2 2 569 415 352 00.53.04
25 6 2 2 784 570 494 01.41.36

Table 1: Test problems solved by CPLEX in the experimental investigation
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6 Conclusion

This paper describes an integrated mathematical model to simultaneously solve the seaside problems
BAP, QCAP, and QCSP, that arise at container terminals. This approach is desirable because solving
them individually and even when combined pairwise, may lead to suboptimal solutions. The problem
is formulated as a mixed-integer programming model and then solved using B&B as implemented in
CPLEX 12.6. Although the main contribution of this paper is this single extended model, the model
itself has features which are not commonly represented in existing models. Our model is dynamic in that
it copes with different ship arrival times. Quay crane interference avoidance is explicitly represented as
constraints 27 when the quay cranes operate on the same vessel and as constraints 30 when quay cranes
are on different vessels. Another advantage of this model is that it allows a quay crane that has become
idle (finished its work) to move from its current vessel to another even if overall the current vessel to
which it has been allocated is still being processed. Travel times of a quay crane between two holds on
the same ship and between two holds on different vessels have also been considered.

We have experimented on relatively limited size cases with only few vessels, quay cranes and tasks.
However, as can be seen, instances of the model grow to large sizes with hundreds of constraints and integer
variables. This means that exact solution is computationally expensive. For instance, Problem 12 in Table
1, which involves two vessels, five quay cranes and four tasks, requires over 17 hours of CPU time using
CPLEX. This problem may arise in a small provincial terminal port. Truly practical instances are beyond
CPLEX, running on a PC. It is possible to reduce that time using simple parallelisation. However, brute
force won’t be enough on real-world instances of the model. For this reason, we are looking at enhancing
the solution capability of the CPLEX B&B solver by using for instance combinatorial Benders’ cuts,
as well as alternative solution approaches such as evolutionary approaches and other Nature-inspired
algorithms, [25, 27, 28, 24, 26].
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