
A Scheme for the Generation of Strong ICMetrics
based Session Key Pairs for Secure Embedded System

Applications

Ruhma Tahir, Huosheng Hu, Dongbing Gu,
Klaus McDonald-Maier

School of Computer Science and Electronic Engineering
University of Essex

Colchester, United Kingdom
rtahir@essex.ac.uk, hhu@essex.ac.uk, dgu@essex.ac.uk,

kdm@essex.ac.uk

Gareth Howells

School of Engineering and Digital Arts
University of Kent

Canterbury, United Kingdom
W.G.J.Howells@kent.ac.uk

Abstract— This paper presents a scheme for the generation of
strong session based ICMetrics key pairs for security critical
embedded system applications. ICMetrics generates the security
attributes of the sensor node based on measurable hardware and
software characteristics of the integrated circuit. In the proposed
scheme a random session ID is assigned by a trusted party to
each participating network entity, which remains valid for a
communication session. Our work is based on the design of a key
derivation function that uses an ICMetrics secret key and a
session token assigned by the trusted party to derive strong
cryptographic key pairs for each entity. These session tokens also
serve the purpose of identification/authentication between the
trusted parties and the respective nodes in each network. The
main strength of our proposed scheme rests on the randomness
feature incorporated via the random session ID’s, which makes
the generated strong private/public key pair highly resistant
against exhaustive search and rainbow table attacks. Our
proposed approach makes use of key stretching using random
session tokens via SHA-2 and performs multiple itertions of the
proposed key derivation function to generate strong high entropy
session key pairs of sufficient length. The randomness of the
assigned ID’s and the session based communication hinders the
attacker’s ability to launch various sorts of cryptanalytic attacks,
thereby making the generated keys very high in entropy. The
randomness feature has also been very carefully tuned according
to the construction principles of ICMetrics, so that it doesn’t
affect the original ICMetrics data. The second part of the
proposed scheme generates a corresponding public session key by
computing the Hermite Normal Form of the high entropy private
session key.

Keywords- ICMetrics (Integrated Circuit Metrics), rainbow
table attacks, brute force attacks, Hermite Normal Form (HNF),
key derivation function, session keys, key stretching.

I. INTRODUCTION
Increasing number of embedded systems with increasing
complexity are present in all aspects of our lives; with their
use in single user applications to large scale processes.
Embedded system devices are often networked via wireless
communication links to perform useful tasks [1-2]. However
the wireless nature of the communication channel between the

embedded devices makes them vulnerable to attacks by
adversaries [3-4]. Therefore embedded systems security is a
key aspect of embedded systems design and is currently a
major area of research. ICMetrics (Integrated Circuit metrics)
is a key technology that has been developed in connection
with the requirement of security in embedded system
applications [8]. ICMetrics makes use of system level
characteristics to provide identification to the system [9]. It
generates the secret key from measurable hardware/ software
characteristics and specifications of the device. The stable
ICMetrics key that is derived from hardware and software
characteristics of a device provide a very strong link between
the device and the cryptographic key; thereby enabling device
verification with a very high degree of assurance [8].

A number in its raw form cannot serve as a useful key for
cryptographic operations; since the raw keying material might
be too short or have low entropy, which might lead it to be
easily guessed by an attacker [16]. Therefore the generated
cryptographic keys must possess certain properties, i.e.
sufficient key entropy and length, before they can qualify to be
kept as a key for secure cryptographic operations. The goal of
our proposed scheme is to propose a key generation
mechanism based on an ICMetrics basis number that generates
high entropy public/private key pair having sufficient levels of
security. This paper presents an SHA-2 based key derivation
method for the generation of strong session based
public/private key pairs from ICMetric data. As mentioned
above, the design of the key derivation function forming a part
of our scheme is based on an ICMetrics secret key and a
random session token. The random session tokens for each
entity are generated by trusted parties corresponding to their
particular networks. These session tokens are based on random
ID’s that are assigned by trusted party higher up in the
hierarchy from the requesting node. The effect of a random
session token is to create a large set of possible keys
associated with a particular raw ICMetrics key and the
iterations lead to a significant increase in number of rounds
performed by the attacker to derive the key. These session key
pairs are generated in every session and are valid for a single

The authors gratefully acknowledge the support of the UK Engineering
and Physical Sciences Research Council under grant EP/K004638/1 and the
EU Interreg IV A 2 Mers Seas Zeeën Cross-border Cooperation Programme –
SYSIASS project: Autonomous and Intelligent Healthcare System (project’s
website http://www.sysiass.eu/).

communication session. The proposed session based strong
ICMetrics public/private key pair generation mechanism has
the following features that address the keying issues in secure
embedded system applications:

1. To safeguard against issues related to key compromise, the
proposed architecture is based on the use of ICMetrics
values for key pair generation [17]. ICMetrics generates
keys based on the hardware/software characteristics and
specification of the device which provides an effective
means to address the issues related to the secrecy of key.
Our scheme intends to bind a cryptographic key with the
device’s ICMetrics information.

2. As stated above, each node in the network (entity/trusted
party) is assigned a random ID that remains valid during a
communication session and a completely new random ID is
assigned for subsequent communication sessions. The
trusted party makes use of this random session ID to
generate a session token that helps safeguard against
various sorts of cryptanalytic attacks. This random session
token also serves to identify/ authenticate the participating
entities.

3. In our scheme the high entropy session key pairs are
formed by combining the ICMetrics generated basis
number with the session token generated by the Trusted
Party. Both of these secret values are combined through a
SHA-2 based key derivation function.

4. The main challenge with the ICMetrics generated basis
number is the entropy and length of the generated secret
value. So our proposed design generates a high entropy key
of sufficient length using SHA-2 based key derivation
function with the session token and ICMetrics basis number
as input. We iterate through multiple rounds of the SHA-2
based hash function to stretch the secret value to the
required length, thereby also generating a key with high
entropy that is resistant against brute force and rainbow
table attacks.

5. Lastly, our scheme generates a public key corresponding to
the generated high entropy private key by computing the
Hermite Normal Form of the private key [6]. The Hermite
Normal Form is particularly suitable for public key
generation since its unique, non-reversible and doesn’t
require any random values for operations.

The remainder of this paper is organized as follows; in
section 2 we discuss characteristics of a strong cryptographic
key and how weak keys pose a threat to security of
applications. Section 3 discusses the ICMetrics technology
and its features elaborating on how ICMetrics could be a
viable solution, but at the same time the weak secret key
generated by ICMetrics feature values could pose a huge
threat to security of the application. Section 4 introduces the
security primitives on which the design of our proposed
architecture rests. Section 5 explains the network topology for
our proposed design. The design of our proposed framework
for the generation of strong high entropy keys is presented in
Section 6. Section 7 presents the analysis of its security. The
conclusion and future work is presented in section 8.

II. STRONG CRYPTOGRAPHIC KEYS AND ICMETRICS

A. Strong Cryptographic Keys
The security of sensitive applications mainly depends on the
proper generation and protection of its cryptographic keys,
since the underlying encryption/decryption algorithms are
usually published and globally known. Therefore there are
inherent risks if proper keying materials and key management
are not used for secure operations; this can result in
compromise of encryption keys that will seriously affect the
integrity, confidentiality, and availability of communications.
Without appropriate generation and handling of keys, they
could be easily guessed, modified, or substituted by
unauthorized personnel who could then intercept sensitive
communications. Also, since embedded systems have
typically limitations in terms of power, memory and
processing power [1]; there is a need to make a sensible choice
of cryptographic mechanisms for key generation, and to keep
the length of key sizes according to individual applications
[2], so that the employed solutions prove to be suitable for
embedded system applications.

As stated above, the generated cryptographic keys must also
have certain properties to qualify as a key to be used for
secure operations, since any number in its raw form cannot
serve as a key for cryptographic operations. A longer
cryptographic key is more secure, since it makes it harder for
the adversary to break the encrypted text [16]. Weak and low
entropy keys are likely to being easily cracked by an
adversary, therefore it is essential to have keys with high
entropy, thereby making key secure against attacks by an
adversary during their lifecycle [19]. Although strong
cryptographic functions provide data privacy and protection,
without secure keys the integrity and confidentiality of an
application is still at risk.

A major threat in security applications having weak / low
entropy keys is the launch of a brute force / exhaustive search
attack [15]. A brute force attack is a very common
methodology adopted by adversaries to break cryptosystems
with strong cryptographic operations but weak keys; whereby
instead of finding weaknesses in the encryption system, the
attacker tries to crack the cryptographic key used for
performing the cryptographic operations. The attacker tries
each possible key combination to find the correct key that has
been employed for carrying out the cryptographic operations.
From an attacker’s perspective, longer keys are harder to
break compared to shorter keys, since the resources required
to launch a brute force attack grow exponentially with an
increase in key size [19].

B. ICMetrics
Traditionally cryptographic algorithms have always relied on
the use of stored keys for functioning of the network. However
the use of stored keys to enable secure communication is
threatened by the fact that, if the key used to encrypt the data
is compromised, it will result in loss of data that is encrypted
using the compromised key.

ICMetrics (Integrated Circuit Metrics) makes use of system
level characteristics to provide identification to the system
[12]. It generates encryption keys from measurable properties
of a given hardware device such as its hardware/software
characteristics and the specification of the node; similar to the
way biometrics extracts human features. ICMetrics computes
the required metrics on those hardware and software
characteristics that are difficult for the attacker to deduce [11].
These metrics / features are not static but vary in a depending
on the system and its interaction with its environment. For
example, the address and value from the data transactions of a
processor; its program address; and metrics for the
effectiveness of the program and data caches derived from
performance counters, etc [12].

After each ICMetric key generation stage the produced
ICMetric key [13] is temporary and exists only locally, and the
reproduction of the ICMetric key once again takes place from
measurable characteristics of the integrated circuit [10]. The
ICMetric key is generated each time it is requested for
identification or encryption functions. It consists of measuring
the system features, applying the normalisation maps and
combining the various feature values to generate a basis
number for identifying the system. The individual feature
values are be combined using two possible feature
combination techniques; each generating a different sized key
of varying stability [8]. The feature addition-combination
technique generates a stable but small basis number by adding
individual feature values, while the feature concatenation-
combination technique generates a long but less stable basis
number by concatenating individual feature values. The
resultant basis number is used for the subsequent derivation of
the key required for the actual encryption process.
Modifications to either the software executing on a given
device, or to its hardware, will cause variations of the feature
measurable characteristics and therefore the derived basis
value. This in turn will mean that the system has been
tampered and will not be able to take part in future operations
[5].

In terms of issues related to key compromise of a device,
ICMetrics proves to be breakthrough technology, thereby
generating keys for secure identification of the device.
However the ICMetrics generated keys can be weak, since they
maybe short and of low entropy; and could infact pose a severe
threat to the security of the system. Since a stable ICMetrics
generated basis number is small in size with low entropy, it
makes the underlying device open to attacks such as brute force
and exhaustive search attacks. These attacks can in turn
completely compromise the security of the application and
even lose the essence/advantage of ICMetrics. The proposed
scheme intends to resolve the issue of weak keys by generating
strong keys with high entropy length, thereby making
ICMetrics a very viable option for secure systems.

III. SECURITY PRIMITIVES
All security applications require proper generation and

maintenance of keys during their lifecycle. The security of an
application also depends on the strength of the cryptographic
key. In the following section we briefly describe the various

security primitives that we have employed in our proposed
scheme for the generation of strong key pairs based on
ICMetrics:

A. Key Generation and Public Key Cryptography
Key generation is one of the most sensitive cryptographic

functions, since the security of the entire application depends
on the proper generation of keys. Keys are normally generated
using random number generators (RNG) or pseudorandom
number generators (PRNG). Cryptographic keys that form a
part of symmetric key schemes have a single secret key that is
shared between communicating parties and is used for all
encryption/ decryption operations. However a major drawback
of symmetric keys is the severity of cryptanalytic attacks.
Cryptographic keys that form part of asymmetric key schemes
have two parts; a private key and a corresponding public key.
A public key can be publically distributed whereas a private
key has to be kept secret. The public key is used by other
parties to send messages securely to the person that generated
the key pair while a private key is used to decrypt messages.
Furthermore, with the help of trusted third party, all the
interaction can be carried out in a secure and confidential
manner [26].

B. Key Derivation Function
A Key Derivation Function (KDF) is a special

transformation function that can bring a number in raw form to
a form that can be securely used as a key for secure operations
[16-17]. This transformation on the raw number will safeguard
the key against brute force attacks and exhaustive search
attacks[14]. This function is essential in all security
applications and generates keys with high entropy that can be
safely used in security critical applications. The key derivation
function, takes the raw password and a random salt as input,
and applies multiple iterations of a function H (such as hash or
block cipher); to generate keys with high entropy. The random
salt value in the KDF hinders the attacker’s ability to construct
rainbow tables, thereby protecting the system against pre-
computed hashing attack/rainbow table attacks. The salting is
required as the lack of it could allow an attacker to work out
how many times a password hash occurred to reveal the
original password.

C. Key Stretching
Key stretching is a method to hinder an attacker’s ability to

reproduce a key derivation function [19]. Key stretching makes
use of iterated hashing to generate keys of a particular length
with high entropy. Key stretching strengthens the key against
brute force attacks by increasing key length and entropy
thereby making it infeasible to launch brute force attacks.
Although key derivation functions and key stretching give a
sense of similarity, since they are both based on hash
generation functions to generate high entropy keys [18].
However their design principles are significantly different,
since key stretching tends to derive long keys by concatenating
the output of each hash function iteration while Key Derivation
Functions (KDF) iteratively hash the same input key to
produce high entropy key.

D. Hash Function
A hash function [20] is a deterministic function that takes an
arbitrary length bit string as input and outputs a fixed length
bit string called a hash value. A hash transformation H,
applied on an arbitrary sized input and mapped to a fixed
length output ‘n’ is denoted by:

H: { 0, 1 }* � { 0, 1 }n;

For a function to qualify as a hash function it should typically
possess the following properties:

• H should be pre-image resistant; such that given a hash
value ‘h’ it is computationally infeasible to find m.

• H should be collision resistant; it must be computationally
infeasible to find two different inputs that hash to the same
value.

• The hash function H should be publically known and the
hash value H(m) of an input m can be found efficiently.

The length of generated hash value depends on the hash
function [21]. The well-known hash algorithms include MD5,
SHA1, SHA2 etc.; each having variants of differing hash
value lengths for an input block [20-21].

E. SHA-2
SHA-2 [19] is a set collision resistant cryptographic hash

functions proposed by the National Security Agency (NSA). It
is the second in Secure Hash Algorithm (SHA) series designed
by the NSA. SHA-2 is a stronger hash function due to its
security properties from its predecessor SHA-1 [20]; and is the
standard adopted in many security applications and protocols
such as TLS, IPSec, etc. SHA-2 has four hash variants,
namely SHA-224, SHA-256, SHA-384 and SHA-512, each
having varying sized digests. SHA-224 outputs a 224 bits
digest, computing on block sizes of 512 bits in each of the 64
rounds of the hash computation operation. SHA-256 outputs a
256 bits digest, working with 512 bit blocks in each of the 64
rounds of hash computation operation. SHA-384 and SHA-
512 both work with block sizes of 1024 bits in each of the 80
rounds while giving digest sizes of 384 bits and 512 bits
respectively [24].

F. Hermite Normal Form
In our research, the public key for the generated high entropy
private key is generated based on Hermite Normal Form
(HNF) of the high entropy private key due to the uniqueness
of the HNF. Every matrix has a unique corresponding Hermite
Normal Form ‘H’ and can be bought into its corresponding
Hermite Normal Form by a sequence of elementary column
operations.

A non-singular square matrix ‘H’ is said to be in Hermite
Normal Form (HNF) if it has the following properties[6][7]:

• hij = 0 for i < j (i.e., H is lower triangular);
• 0 � hij < hii for i>j (i.e., H is non-negative and each row

has a unique maximum entry, which is on the main
diagonal).

IV. NETWORK TOPOLOGY
Our proposed scheme is an idea for networked environments
and all entities/ devices forming part of the network have trust
in a Trusted Third Party (TTP), and similarly all TTP’s trust
the Master TTP (MTTP) as shown in Fig. 1. The MTTP is
controlled by the user and is responsible for controlling all
TTP’s in the network, whereas TTP’s are responsible for
controlling their own localized networks i.e. the individual
entities. Trusted Third Party (TTP) enables entities that never
had contact before to interact securely and confidentially. For
the proposed scheme we make the following assumptions:

• The communication links between the MTTP, TTP and
entities are all unprotected. Therefore the data being
transmitted over the communication channel should be
protected.

• The ICMetrics data of each device is only stored in the
device for the duration of the session.

Authentication between all the participating entities takes
place based on traditional authentication protocols [22-27] and
is not the focus of this paper.

Fig. 1. Network Topology for Proposed Architecture

V. THE PROPOSED SECURITY FRAMEWORK
Our proposed security framework details a scheme that

generates strong session key pairs based on ICMetrics basis
number. The proposed scheme is an idea to improve the
security of ICMetrics keys by generating high entropy
ICMetrics keys that are resilient against brute force and
rainbow table attacks. The following section details the steps
involved for the generation of strong public/ private session
key pairs based on ICMetrics:

A. Key Setup
Each device that is part of the network generates an ICMetrics
basis number based on the extracted feature values. The basis
number is formed by the addition of individual feature values
to generate a short (35 bits) but stable basis number and hence
serve as a secret key. The key setup algorithm generates the
master private key for the Master Trusted Party (MTTP),
Trusted Third Party (TTP) and all other entities that form a
part of the network. The ICMetrics generated basis number of
the MTTP and the TTP serves as its master private key.

Master Private Key of Master TTP ‘MMPrt’ = Basis Number
using ICMetrics of Device

Master Private Key of TTP ‘MPrt’ = Basis Number using
ICMetrics of Device

Similarly all entities with identities ID1, ID2, …, IDn also
generate their its master private key’s MPr1,MPr2,…, MPrn
respectively based on their ICMetrics basis number and hence
use their master private key for further operations as shown in
fig. 2.

Fig. 2. Functional Diagram of Proposed Design

B. Generation of High Entropy Private Key for Master TTP
This algorithm is responsible for generating a high entropy
private key for the MTTP which it can use for further
operations. The high entropy private key for the MTTP is
generated based on its own master private key ‘MMPrt’ and a
128 bit random number. Both of these are combined to
generate high entropy private key ’EMPrt’ for MTTP, that it
uses to communicate to the TTP’s and for secure onward
operation, as shown in Fig. 3.

Fig. 3. High Entropy Key Generation at MTTP

Both the 128 bit random number and MMPrt are combined via
SHA-2, as shown in Table 1. The purpose of the SHA-2 based
key stretching and derivation algorithm is to combine and thus
stretch the key, so that it qualifies for use in secure operations.
The 128 bit random number serves as a salt value for the key
derivation function and safeguards against rainbow table
attacks. By adding a salt value to the MMPRt, the possibility
of using pre-computed hashes for attacks is reduced.

Table 1. Proposed Key Derivation and Stretching Algorithm for MTTP’s Key

X0 = SHA-2(MMPrt, 128 bit random value)

For s = 1 to n

Xi = SHA-2(MMPrt, Xs-1)

X0 = X0 || Xi

High Entropy Private Key ‘EMPrt’ = X0

As stated above, SHA-2 is used for the purpose of key

stretching and derivation using a random salt, since it will both
bring an increase the entropy and length of the key and at the
same time safeguard against rainbow table attacks. SHA-2
based key stretching and derivation algorithm takes the
ICMetrics generated basis number and a random 128 bit salt
as input and after performing multiple iterations of SHA-2
rounds, it produces a longer stretched high entropy key that is
safe from pre-computed hashing attacks. Now the generated
key ‘X0’ is broken into blocks of equal size according to the
required key length; starting from the right and appending
zeros to the left most block to make its size compatible with
rest of the blocks.

Then finally all blocks are XORed to generate the required
sized key, which gives the final high entropy private key for
the entity IDi. Exclusive Ors add an extra layer of protection
but the actual security derives from the iterations of the
hashing function and the salt value.

C. Generation of High Entropy Public Key for Master TTP
Subsequently, public key is computed from the high entropy
private key ‘EMPrt’ using the following:

Public Key of MTTP ‘EMPbt’= Hermite-Normal-Form (High
Entropy Private Key of MTTP ‘EMPrt’)

The MTTP has a high entropy public/private key pair
generated that it uses for secure onward operations with other
TTP’s in the network.

D. Generation of Partial Private Key for the TTPi
This algorithm is run by the MTTP in which it generates a
partial key for each TTP. The identity ’IDTi’ of a TTP is
randomly generated by the MTTP at a network join request.
The size of this random identity information associated with a
device can range from anything between 48-128 bits in length,
by setting a trade-off between the required security and the
resources available.

1. IDti = 128 bits Random Number
2. Compute Qti = SHA-2 (IDti)
3. Output partial private key ‘PPti’=(EMPrt)x(Qti)

The generated partial private key ‘PPti’ generated by the
MTTP is sent to entity TTPi. The process of supplying partial
private keys takes place confidentially and authentically, the
MTTP ensures that the partial private keys are delivered
securely to the TTP. The partial key sent by the MTTP is used

by the TTP for the generation of its high entropy private key.
The MTTP removes the partial key from its memory once it
has been communicated to the TTP. In future, whenever the
entity requests the MTTP for a partial key, the MTTP
generates a new random value for the TTP which can serve as
its ‘IDti’ and uses it for the generation of a new partial key for
the TTPi. The generation of partial key based on a new
random ID every time a request is made, helps safeguard from
pre-computed dictionary attacks on the keys.

E. Generation of High Entropy Private Key at each TTP
The TTP with identity IDti, combines both the MTTP
generated partial private key ‘PPti’ and its own master private
key ‘MPrti’ to generate high entropy private key ’EPrti’ for
IDti, that can be used for secure onward operation, as shown
in Fig. 4.

Fig. 4. High Entropy Key Generation at each TTP

Both PPti and MPrti are combined via SHA-2, as shown in
Table 2. The purpose of the SHA-2 based key stretching and
derivation algorithm is to combine and thus stretch the key, so
that it qualifies for use in secure operations.

Table 2. Proposed Key Derivation and Stretching Algorithm for TTP’s
Private Key

X0 = SHA-2(MPrti, PPti)

For s = 1 to n

Xi = SHA-2(MPrti, Xs-1)

X0 = X0 || Xi

High Entropy Private Key ‘EPrti’ = X0

A new partial private key for a session based on a random

IDti, prevents rainbow table attacks. As above, we propose the
use of SHA-2 for the purpose of key stretching and derivation
since they will both bring an increase in the key length as well
as increase the entropy of the key, while safeguarding from
rainbow table attacks. The SHA-2 based key stretching and
derivation algorithm takes the ICMetrics generated basis
number along with a new partial key as input and after
performing multiple iterations of SHA-2 rounds, it produces a
longer stretched high entropy key, which is highly resistant
against rainbow table attacks.

Now the generated key ‘X0’ is broken into blocks of equal
size according to the required key length; starting from the
right and appending zeros to the left most block in order to
make its size compatible with rest of the blocks. Then finally
all blocks are XORed to generate the required sized key,
which gives the final high entropy private key for the entity
IDi thereby adding an extra layer of protection.

F. Generation of High Entropy Public Key for TTP
This step involves the TTP computing its corresponding
public key from the high entropy private key ‘EPrt’ using:

Public Key of TTP ‘EPbt’= Hermite-Normal-Form (High
Entropy Private Key of TTP ‘MPrt’)

Finally the TTP has a high entropy public/private key pair
generated that it can use for onward operations/
communication with other entities in the network. Once these
key pairs have been used for the required purpose, they are
removed from the memory. If the high entropy key pair is
required in future it is regenerated based on ICMetrics values
of the device.

G. Generation of Partial Private Key for Entity Ei
This algorithm is run by the TTP in which it generates a
partial key for an entity that requests the TTP to form part of
the network. The identity ’IDi’ of an entity is randomly
generated by the TTP at a network join request. The size of
this random identity information associated with a device can
range from anything between 48 bits to 128 bits is length, by
setting a trade-off between the required level of security and
the resources available.

1. IDi = 128 bits Random Number
2. Compute Qi = SHA-2 (IDi)
3. Output partial private key ‘PPi’=(EPrt)x(Qi)

The generated partial private key ‘PPi’ generated by the TTP
is sent to entity IDi. This process of supplying partial private
keys takes place confidentially and authentically. The partial
key sent by the TTP is used by the entity for the generation of
its high entropy private key. The TTP removes the partial key
from its memory once it has been communicated to the entity.
In future, whenever the entity requests the TTP for a partial
key, the TTP generates a new random value for the entity
which can serve as its ‘IDi’ for operations. The generation of
partial key based on a new random ID every time a request is
made, helps safeguard from pre-computed dictionary attacks
on the keys.

H. Generation of High Entropy Private Key at each Entity
The user with identity IDi, combines both the TTP partial
private key ‘PPi’ and its own master private key ‘MPri’ to
generate high entropy private key ’EPri’ for IDi, that can be
used for secure operation, as shown in Fig. 5.

Fig. 5. High Entropy Key Generation at each Participating Entity

Both PPi and MPri are combined via SHA-2, as shown in
Table 3. The SHA-2 based key stretching and derivation
algorithm takes the ICMetrics generated basis number and a
newly generated partial key as input and after performing
multiple iterations of SHA-2 rounds, it produces a longer
stretched high entropy key, that is secure against rainbow table
attacks.

Table 3. Proposed Key Derivation and Stretching Algorithm for Entity’s
Private Key

X0 = SHA-2(MPri, PPi)

For s = 1 to n

Xi = SHA-2(MPri, Xs-1)

X0 = X0 || Xi

High Entropy Private Key ‘EPri’ = X0

Now the generated key ‘X0’ is broken into blocks of equal
size according to the required key length; starting from the
right and appending zeros to the left most block to make its
size compatible with rest of the blocks. Then finally all blocks
are XORed to generate the required sized key, which gives the
final high entropy private key for the entity IDi.

I. Generation of High Entropy Public Key at each Entity
The public key is computed from the high entropy private key
‘EPri’ using:

Public Key of IDi ‘EPbi’= Hermite Normal Form(High
Entropy Private Key of IDi ‘EPrt’)

Finally the entity IDi now has a high entropy public/private
key pair generated that it uses for secure onward operations/
communication with other entities in the network.

VI. SECURITY ANALYSIS
In the proposed scheme we have combined the security
advantages of the ICMetrics secret key, random session tokens
and security properties of SHA-2 based key derivation
function for the generation of strong session based private key.
The security of our scheme is based on a session token issued
by the trusted party and the ICMetrics basis number of the
device fed to the SHA-2 based key derivation function. These

input values are rehashed the required number of times to
produce a strong session based public/private key pair. To
safeguard the generated strong key from various cryptanalytic
attacks, such as brute force or rainbow table attacks; the ID of
each node is randomly generated and remains valid only for
the duration of the session. This random session ID is used in
the generation of session token and is used for further key
derivation operations. The session token also serves to
authenticate/identify each participating node, thereby assuring
the origin of information; since only entities that have been
assigned session tokens from their respective trusted parties
can communicate with other entities in the network. To
regenerate the public/private key pair during a particular
session, the generating entity must have the knowledge of both
the session token and secret basis number. Knowing only one
of them does not allow the generation of key pairs. This
safeguards the network from attackers, since only
authenticated entities that have been issued a partial secret by
the TTP can form part of network. The SHA-2 based key
stretching and derivation operation on the ICMetrics secret
key, as previously indicated results in a longer and high
entropy private key that helps safeguards against brute
force/rainbow table attacks.

The second phase of our scheme generates a corresponding
strong public key by computing the HNF. The corresponding
public key of a generated strong private key is generated by
computing the HNF of the private key. The Hermite Normal
Form of a number is unique and non-reversible, therefore it
proves to be a very good choice for the computation of the
corresponding public key. Each participating entity’s public
key is made available to other entities by transmitting it along
with messages or by placing it in a public directory. But no
further security is applied to the protection of A's public key.
This idea helps preserve the security properties of ICMetrics
generated keys and at the same time generates high entropy
key pairs for use in future operations.

VII. CONCLUSION AND FUTURE WORK
A framework for generation of strong high entropy session
key pairs of sufficient length for ICMetrics secret key is
introduced in this paper. The proposed scheme effectively
combines the functionalities of ICMetric keys coupled with
session tokens from the trusted third party, thereby providing
authentication and identification of the device. In this paper,
we have designed a password-based key derivation function,
in which we employ SHA-2 for stretching the ICMetrics key
using session token from the TTP, to generate a high entropy
ICMetrics private key. Random session token’s make the
generated key is strongly resistant to brute force and rainbow
table attacks. The high entropy public key corresponding to
the high entropy key is computed by calculating the Hermite
Normal Form of the high entropy private key. The proposed
scheme has been very carefully tuned with the underlying
requirements of ICMetrics, while making use of random
values to safeguard against cryptanalytic attacks.

In future we plan to evaluate our scheme through
experiments and analysis, thus benchmarking the results

against existing key generation schemes. We are confident that
our scheme will be a viable solution for secure generation of
strong high entropy key pairs. We also plan to design a
protocol for secure communication based on the generated
high entropy key pairs.

REFERENCES
[1] I. Ryu, “Issues and Challenges in Developing Embedded Software for

Information Appliances and Telecommunication Terminals”,
Proceedings of the ACM SIGPLAN 1999, LCTES’99, Vol. 34, Issue7,
July 1999, pp. 104-120.

[2] P. Koopman, “Embedded System Design Issues- The Rest of the Story”,
Proc. of Intl. Conference on Computer Design, Austin, 7-9 October,
1996, pp. 115-121.

[3] P. Koopman, "Design Constraints on Embedded Real Time Control
Systems", Conf. on Sys. Design and Network Architecture, May 8-10,
1990, pp. 71-77.

[4] L. Khelladi, Y. Challal, A. Bouabdallah, N. Badache, “On Security
Issues in Embedded Systems: Challenges and Solutions”, International
Journal of Information and Computer Security 2008, Vol. 2, No.2, pp.
140-174.

[5] R. Tahir, K. D. McDonald Maier, “Improving Resilience against Node
Capture Attacks in Wireless Sensor Networks using ICMetrics”, IEEE
Conference on Emerging Security Technologies, Portugal, September 5-
7, 2012.

[6] C. Henri, “A Course in Computational Algebraic Number Theory”,
Graduate Texts in Mathematics, Berlin, New York.

[7] G. Shmonin, “Hermite normal form: Computation and applications”,
http://disopt.epfl.ch/webdav/site/disopt/shared/IntPoints2009, Feb. 24,
2009.

[8] E. Papoutsis, W. G. J. Howells, A. B. T. Hopkins, and K. D. McDonald-
Maier, “Integrating Multi-Modal Circuit Features within an Efficient
Encryption System”, Third International Symposium on Information
Assurance and Security, IEEE Computer Society Washington, DC,
USA, 2007, pp. 83-88.

[9] E. Papoutsis, W. G. J. Howells, A. B. T. Hopkins, and K. D. McDonald-
Maier, "Ensuring Secure Healthcare Communications via ICmetric
based Encryption on unseen Devices", Symposium on Bio-inspired,
Learning and Intelligent Systems for Security, Edinburgh, 20-21 Aug.
2009, pp. 113-117.

[10] E. Papoutsis, W. G. J. Howells, A. B. T. Hopkins, and K. D. McDonald-
Maier, "Integrating Feature Values for Key Generation in an ICmetric
System," in IEEE NASA/ESA Conference on Adaptive Hardware and
Systems (AHS-2009) San Francisco, California, 2009, pp. 82-88

[11] G. O. Karame, S. Capkun, U. Maurer , “Privacy-Preserving Outsourcing
of Brute-Force Key Searches”, Proceedings of the 3rd ACM workshop
on Cloud Computing Security, New York, USA, 2011, pp.101-112.

[12] F. F. Yao, Y. L. Yin, “Design and Analysis of Password-Based Key
Derivation Functions”, IEEE Transactions on Information Theory, Vol
51(9), pp. 3292-3297.

[13] R. Tahir, K. D. McDonald Maier, “An ICMetrics based Lightweight
Security Architecture using Lattice Signcryption”, IEEE Conference on
Emerging Security Technologies, Portugal, September 5-7, 2012.

[14] B. Kaliski, “PKCS #5: Password-Based Cryptography Speci�cation
Version 2.0”, RFC 2898, Sept. 2000.

[15] C. Adams, G. Kramer, S. Mister and R. Zuccherato, “On the Security of
Key Derivation Functions”, Conf. on Industrial Simulation, Spain, pp.
134-145.

[16] J. Kelsey, B. Schneier, C. Hall, and D. Wagner, “Secure Applications of
Low-Entropy Keys”, Information Security Workshop (ISW 1997),
Japan, pp. 121-134.

[17] NIST's Policy on Hash Functions, National Institute on Standards and
Technology Computer Security Resource Center, March 29, 2009.

[18] C. Paar, J. Pelzl, “Hash Functions-Understanding Cryptography, A
Textbook for Students and Practitioners", Springer, 2009.

[19] X. Wang, Y. L. Yin, and H. Yu, “Finding Collisions in the Full SHA-1”,
25th Annual International Cryptology Conference, Santa Barbara,
California, USA, August 14-18, 2005, pp. 17-36.

[20] B. Schneier, "Schneier on Security: Cryptanalysis of SHA-1",
Schneier.com.

[21] “Secure Hash Standard (SHS)”, FIPS PUB 180-3, October 2008,
http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf.

[22] A. A. Pirzada, C. McDonald, “Kerberos Assisted Authentication in
Mobile Ad hoc Networks” Proceedings of the 27th conference on
Australasian Computer Science, Australia, Vol 26, pp. 41-46.

[23] J. Clark, J. Jacob, “A Survey of Authentication Protocol Literature:
Version 1.0 17”, November 1997.

[24] J. T. Kohl, B.C. Neuman, “The Kerberos Network Authentication
Service”, RFC1510, 1993.

[25] D. Harkins, D. Carrel, “The Internet Key Exchange (IKE)”, RFC2409,
1998.

[26] B. Schneier, “Applied Cryptography: Protocols, Algorithm, and Source
Code in C”, John Wiley & Sons, Inc., 1996.

[27] X. Li, J. Han, Z. Sun, “Design Principles and Security of Authentication
Protocols with Trusted Third Party”, AUUG 2004, Australia, pp. 103-
107.

