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Abstract— This paper presents a scheme for the generation of 
strong session based ICMetrics key pairs for security critical 
embedded system applications. ICMetrics generates the security 
attributes of the sensor node based on measurable hardware and 
software characteristics of the integrated circuit. In the proposed 
scheme a random session ID is assigned by a trusted party to 
each participating network entity, which remains valid for a 
communication session. Our work is based on the design of a key 
derivation function that uses an ICMetrics secret key and a 
session token assigned by the trusted party to derive strong 
cryptographic key pairs for each entity. These session tokens also 
serve the purpose of identification/authentication between the 
trusted parties and the respective nodes in each network. The 
main strength of our proposed scheme rests on the randomness 
feature incorporated via the random session ID’s, which makes 
the generated strong private/public key pair highly resistant 
against exhaustive search and rainbow table attacks. Our 
proposed approach makes use of key stretching using random 
session tokens via SHA-2 and performs multiple itertions of the 
proposed key derivation function to generate strong high entropy 
session key pairs of sufficient length. The randomness of the 
assigned ID’s and the session based communication hinders the 
attacker’s ability to launch various sorts of cryptanalytic attacks, 
thereby making the generated keys very high in entropy. The 
randomness feature has also been very carefully tuned according 
to the construction principles of ICMetrics, so that it doesn’t 
affect the original ICMetrics data. The second part of the 
proposed scheme generates a corresponding public session key by 
computing the Hermite Normal Form of the high entropy private 
session key. 

Keywords- ICMetrics (Integrated Circuit Metrics), rainbow 
table attacks, brute force attacks, Hermite Normal Form (HNF), 
key derivation function, session keys, key stretching. 

I.  INTRODUCTION 
Increasing number of embedded systems with increasing 
complexity are present in all aspects of our lives; with their 
use in single user applications to large scale processes. 
Embedded system devices are often networked via wireless 
communication links to perform useful tasks [1-2]. However 
the wireless nature of the communication channel between the 

embedded devices makes them vulnerable to attacks by 
adversaries [3-4]. Therefore embedded systems security is a 
key aspect of embedded systems design and is currently a 
major area of research. ICMetrics (Integrated Circuit metrics) 
is a key technology that has been developed in connection 
with the requirement of security in embedded system 
applications [8]. ICMetrics makes use of system level 
characteristics to provide identification to the system [9]. It 
generates the secret key from measurable hardware/ software 
characteristics and specifications of the device. The stable 
ICMetrics key that is derived from hardware and software 
characteristics of a device provide a very strong link between 
the device and the cryptographic key; thereby enabling device 
verification with a very high degree of assurance [8].  

A number in its raw form cannot serve as a useful key for 
cryptographic operations; since the raw keying material might 
be too short or have low entropy, which might lead it to be 
easily guessed by an attacker [16]. Therefore the generated 
cryptographic keys must possess certain properties, i.e. 
sufficient key entropy and length, before they can qualify to be 
kept as a key for secure cryptographic operations. The goal of 
our proposed scheme is to propose a key generation 
mechanism based on an ICMetrics basis number that generates 
high entropy public/private key pair having sufficient levels of 
security. This paper presents an SHA-2 based key derivation 
method for the generation of strong session based 
public/private key pairs from ICMetric data. As mentioned 
above, the design of the key derivation function forming a part 
of our scheme is based on an ICMetrics secret key and a 
random session token. The random session tokens for each 
entity are generated by trusted parties corresponding to their 
particular networks. These session tokens are based on random 
ID’s that are assigned by trusted party higher up in the 
hierarchy from the requesting node. The effect of a random 
session token is to create a large set of possible keys 
associated with a particular raw ICMetrics key and the 
iterations lead to a significant increase in number of rounds 
performed by the attacker to derive the key. These session key 
pairs are generated in every session and are valid for a single 
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communication session. The proposed session based strong 
ICMetrics public/private key pair generation mechanism has 
the following features that address the keying issues in secure 
embedded system applications: 

1. To safeguard against issues related to key compromise, the 
proposed architecture is based on the use of ICMetrics 
values for key pair generation [17]. ICMetrics generates 
keys based on the hardware/software characteristics and 
specification of the device which provides an effective 
means to address the issues related to the secrecy of key. 
Our scheme intends to bind a cryptographic key with the 
device’s ICMetrics information.  

2. As stated above, each node in the network (entity/trusted 
party) is assigned a random ID that remains valid during a 
communication session and a completely new random ID is 
assigned for subsequent communication sessions. The 
trusted party makes use of this random session ID to 
generate a session token that helps safeguard against 
various sorts of cryptanalytic attacks. This random session 
token also serves to identify/ authenticate the participating 
entities. 

3. In our scheme the high entropy session key pairs are 
formed by combining the ICMetrics generated basis 
number with the session token generated by the Trusted 
Party. Both of these secret values are combined through a 
SHA-2 based key derivation function. 

4. The main challenge with the ICMetrics generated basis 
number is the entropy and length of the generated secret 
value. So our proposed design generates a high entropy key 
of sufficient length using SHA-2 based key derivation 
function with the session token and ICMetrics basis number 
as input. We iterate through multiple rounds of the SHA-2 
based hash function to stretch the secret value to the 
required length, thereby also generating a key with high 
entropy that is resistant against brute force and rainbow 
table attacks. 

5. Lastly, our scheme generates a public key corresponding to 
the generated high entropy private key by computing the 
Hermite Normal Form of the private key [6]. The Hermite 
Normal Form is particularly suitable for public key 
generation since its unique, non-reversible and doesn’t 
require any random values for operations. 

The remainder of this paper is organized as follows; in 
section 2 we discuss characteristics of a strong cryptographic 
key and how weak keys pose a threat to security of 
applications. Section 3 discusses the ICMetrics technology 
and its features elaborating on how ICMetrics could be a 
viable solution, but at the same time the weak secret key 
generated by ICMetrics feature values could pose a huge 
threat to security of the application. Section 4 introduces the 
security primitives on which the design of our proposed 
architecture rests. Section 5 explains the network topology for 
our proposed design. The design of our proposed framework 
for the generation of strong high entropy keys is presented in 
Section 6. Section 7 presents the analysis of its security. The 
conclusion and future work is presented in section 8.  

II. STRONG CRYPTOGRAPHIC KEYS AND ICMETRICS 

A. Strong Cryptographic Keys 
The security of sensitive applications mainly depends on the 
proper generation and protection of its cryptographic keys, 
since the underlying encryption/decryption algorithms are 
usually published and globally known. Therefore there are 
inherent risks if proper keying materials and key management 
are not used for secure operations; this can result in 
compromise of encryption keys that will seriously affect the 
integrity, confidentiality, and availability of communications. 
Without appropriate generation and handling of keys, they 
could be easily guessed, modified, or substituted by 
unauthorized personnel who could then intercept sensitive 
communications. Also, since embedded systems have 
typically limitations in terms of power, memory and 
processing power [1]; there is a need to make a sensible choice 
of cryptographic mechanisms for key generation, and to keep 
the length of key sizes according to individual applications 
[2], so that the employed solutions prove to be suitable for 
embedded system applications. 

As stated above, the generated cryptographic keys must also 
have certain properties to qualify as a key to be used for 
secure operations, since any number in its raw form cannot 
serve as a key for cryptographic operations. A longer 
cryptographic key is more secure, since it makes it harder for 
the adversary to break the encrypted text [16]. Weak and low 
entropy keys are likely to being easily cracked by an 
adversary, therefore it is essential to have keys with high 
entropy, thereby making key secure against attacks by an 
adversary during their lifecycle [19]. Although strong 
cryptographic functions provide data privacy and protection, 
without secure keys the integrity and confidentiality of an 
application is still at risk.  

A major threat in security applications having weak / low 
entropy keys is the launch of a brute force / exhaustive search 
attack [15]. A brute force attack is a very common 
methodology adopted by adversaries to break cryptosystems 
with strong cryptographic operations but weak keys; whereby 
instead of finding weaknesses in the encryption system, the 
attacker tries to crack the cryptographic key used for 
performing the cryptographic operations. The attacker tries 
each possible key combination to find the correct key that has 
been employed for carrying out the cryptographic operations. 
From an attacker’s perspective, longer keys are harder to 
break compared to shorter keys, since the resources required 
to launch a brute force attack grow exponentially with an 
increase in key size [19]. 

B. ICMetrics 
Traditionally cryptographic algorithms have always relied on 
the use of stored keys for functioning of the network. However 
the use of stored keys to enable secure communication is 
threatened by the fact that, if the key used to encrypt the data 
is compromised, it will result in loss of data that is encrypted 
using the compromised key.  



ICMetrics (Integrated Circuit Metrics) makes use of system 
level characteristics to provide identification to the system 
[12]. It generates encryption keys from measurable properties 
of a given hardware device such as its hardware/software 
characteristics and the specification of the node; similar to the 
way biometrics extracts human features. ICMetrics computes 
the required metrics on those hardware and software 
characteristics that are difficult for the attacker to deduce [11]. 
These metrics / features are not static but vary in a depending 
on the system and its interaction with its environment. For 
example, the address and value from the data transactions of a 
processor; its program address; and metrics for the 
effectiveness of the program and data caches derived from 
performance counters, etc [12].  

After each ICMetric key generation stage the produced 
ICMetric key [13] is temporary and exists only locally, and the 
reproduction of the ICMetric key once again takes place from 
measurable characteristics of the integrated circuit [10]. The 
ICMetric key is generated each time it is requested for 
identification or encryption functions. It consists of measuring 
the system features, applying the normalisation maps and 
combining the various feature values to generate a basis 
number for identifying the system. The individual feature 
values are be combined using two possible feature 
combination techniques; each generating a different sized key 
of varying stability [8]. The feature addition-combination 
technique generates a stable but small basis number by adding 
individual feature values, while the feature concatenation-
combination technique generates a long but less stable basis 
number by concatenating individual feature values. The 
resultant basis number is used for the subsequent derivation of 
the key required for the actual encryption process. 
Modifications to either the software executing on a given 
device, or to its hardware, will cause variations of the feature 
measurable characteristics and therefore the derived basis 
value. This in turn will mean that the system has been 
tampered and will not be able to take part in future operations 
[5].  

In terms of issues related to key compromise of a device, 
ICMetrics proves to be breakthrough technology, thereby 
generating keys for secure identification of the device. 
However the ICMetrics generated keys can be weak, since they 
maybe short and of low entropy; and could infact pose a severe 
threat to the security of the system. Since a stable ICMetrics 
generated basis number is small in size with low entropy, it 
makes the underlying device open to attacks such as brute force 
and exhaustive search attacks. These attacks can in turn 
completely compromise the security of the application and 
even lose the essence/advantage of ICMetrics. The proposed 
scheme intends to resolve the issue of weak keys by generating 
strong keys with high entropy length, thereby making 
ICMetrics a very viable option for secure systems. 

III. SECURITY PRIMITIVES 
All security applications require proper generation and 

maintenance of keys during their lifecycle. The security of an 
application also depends on the strength of the cryptographic 
key. In the following section we briefly describe the various 

security primitives that we have employed in our proposed 
scheme for the generation of strong key pairs based on 
ICMetrics: 

A. Key Generation and Public Key Cryptography 
Key generation is one of the most sensitive cryptographic 

functions, since the security of the entire application depends 
on the proper generation of keys. Keys are normally generated 
using random number generators (RNG) or pseudorandom 
number generators (PRNG). Cryptographic keys that form a 
part of symmetric key schemes have a single secret key that is 
shared between communicating parties and is used for all 
encryption/ decryption operations. However a major drawback 
of symmetric keys is the severity of cryptanalytic attacks. 
Cryptographic keys that form part of asymmetric key schemes 
have two parts; a private key and a corresponding public key. 
A public key can be publically distributed whereas a private 
key has to be kept secret. The public key is used by other 
parties to send messages securely to the person that generated 
the key pair while a private key is used to decrypt messages. 
Furthermore, with the help of trusted third party, all the 
interaction can be carried out in a secure and confidential 
manner [26]. 

B. Key Derivation Function 
A Key Derivation Function (KDF) is a special 

transformation function that can bring a number in raw form to 
a form that can be securely used as a key for secure operations 
[16-17]. This transformation on the raw number will safeguard 
the key against brute force attacks and exhaustive search 
attacks[14]. This function is essential in all security 
applications and generates keys with high entropy that can be 
safely used in security critical applications. The key derivation 
function, takes the raw password and a random salt as input, 
and applies multiple iterations of a function H (such as hash or 
block cipher); to generate keys with high entropy. The random 
salt value in the KDF hinders the attacker’s ability to construct 
rainbow tables, thereby protecting the system against pre-
computed hashing attack/rainbow table attacks. The salting is 
required as the lack of it could allow an attacker to work out 
how many times a password hash occurred to reveal the 
original password. 

C. Key Stretching 
Key stretching is a method to hinder an attacker’s ability to 

reproduce a key derivation function [19]. Key stretching makes 
use of iterated hashing to generate keys of a particular length 
with high entropy. Key stretching strengthens the key against 
brute force attacks by increasing key length and entropy 
thereby making it infeasible to launch brute force attacks. 
Although key derivation functions and key stretching give a 
sense of similarity, since they are both based on hash 
generation functions to generate high entropy keys [18]. 
However their design principles are significantly different, 
since key stretching tends to derive long keys by concatenating 
the output of each hash function iteration while Key Derivation 
Functions (KDF) iteratively hash the same input key to 
produce high entropy key. 



D. Hash Function 
A hash function [20] is a deterministic function that takes an 
arbitrary length bit string as input and outputs a fixed length 
bit string called a hash value. A hash transformation H, 
applied on an arbitrary sized input and mapped to a fixed 
length output ‘n’ is denoted by: 

H: { 0, 1 }* � { 0, 1 }n; 

For a function to qualify as a hash function it should typically 
possess the following properties: 

• H should be pre-image resistant; such that given a hash 
value ‘h’ it is computationally infeasible to find m. 

• H should be collision resistant; it must be computationally 
infeasible to find two different inputs that hash to the same 
value. 

• The hash function H should be publically known and the 
hash value H(m) of an input m can be found efficiently. 

The length of generated hash value depends on the hash 
function [21]. The well-known hash algorithms include MD5, 
SHA1, SHA2 etc.; each having variants of differing hash 
value lengths for an input block [20-21]. 

E. SHA-2 
SHA-2 [19] is a set collision resistant cryptographic hash 

functions proposed by the National Security Agency (NSA). It 
is the second in Secure Hash Algorithm (SHA) series designed 
by the NSA. SHA-2 is a stronger hash function due to its 
security properties from its predecessor SHA-1 [20]; and is the 
standard adopted in many security applications and protocols 
such as TLS, IPSec, etc. SHA-2 has four hash variants, 
namely SHA-224, SHA-256, SHA-384 and SHA-512, each 
having varying sized digests. SHA-224 outputs a 224 bits 
digest, computing on block sizes of 512 bits in each of the 64 
rounds of the hash computation operation. SHA-256 outputs a 
256 bits digest, working with 512 bit blocks in each of the 64 
rounds of hash computation operation. SHA-384 and SHA-
512 both work with block sizes of 1024 bits in each of the 80 
rounds while giving digest sizes of 384 bits and 512 bits 
respectively [24]. 

F. Hermite Normal Form 
In our research, the public key for the generated high entropy 
private key is generated based on Hermite Normal Form 
(HNF) of the high entropy private key due to the uniqueness 
of the HNF. Every matrix has a unique corresponding Hermite 
Normal Form ‘H’ and can be bought into its corresponding 
Hermite Normal Form by a sequence of elementary column 
operations.  

A non-singular square matrix ‘H’ is said to be in Hermite 
Normal Form (HNF) if it has the following properties[6][7]: 

• hij = 0 for i < j (i.e., H is lower triangular); 
• 0 � hij < hii for i>j (i.e., H is non-negative and each row 

has a unique maximum entry, which is on the main 
diagonal). 

IV. NETWORK TOPOLOGY 
Our proposed scheme is an idea for networked environments 
and all entities/ devices forming part of the network have trust 
in a Trusted Third Party (TTP), and similarly all TTP’s trust 
the Master TTP (MTTP) as shown in Fig. 1. The MTTP is 
controlled by the user and is responsible for controlling all 
TTP’s in the network, whereas TTP’s are responsible for 
controlling their own localized networks i.e. the individual 
entities. Trusted Third Party (TTP) enables entities that never 
had contact before to interact securely and confidentially. For 
the proposed scheme we make the following assumptions: 

• The communication links between the MTTP, TTP and 
entities are all unprotected. Therefore the data being 
transmitted over the communication channel should be 
protected. 

• The ICMetrics data of each device is only stored in the 
device for the duration of the session. 

Authentication between all the participating entities takes 
place based on traditional authentication protocols [22-27] and 
is not the focus of this paper. 

 
Fig. 1. Network Topology for Proposed Architecture 

V. THE PROPOSED SECURITY FRAMEWORK 
Our proposed security framework details a scheme that 

generates strong session key pairs based on ICMetrics basis 
number. The proposed scheme is an idea to improve the 
security of ICMetrics keys by generating high entropy 
ICMetrics keys that are resilient against brute force and 
rainbow table attacks. The following section details the steps 
involved for the generation of strong public/ private session 
key pairs based on ICMetrics: 

A. Key Setup 
Each device that is part of the network generates an ICMetrics 
basis number based on the extracted feature values. The basis 
number is formed by the addition of individual feature values 
to generate a short (35 bits) but stable basis number and hence 
serve as a secret key. The key setup algorithm generates the 
master private key for the Master Trusted Party (MTTP), 
Trusted Third Party (TTP) and all other entities that form a 
part of the network. The ICMetrics generated basis number of 
the MTTP and the TTP serves as its master private key. 

Master Private Key of Master TTP ‘MMPrt’ = Basis Number 
using ICMetrics of Device 



Master Private Key of TTP ‘MPrt’ = Basis Number using 
ICMetrics of Device 

Similarly all entities with identities ID1, ID2, …, IDn also 
generate their its master private key’s MPr1,MPr2,…, MPrn 
respectively based on their ICMetrics basis number and hence 
use their master private key for further operations as shown in 
fig. 2. 

Fig. 2. Functional Diagram of Proposed Design 

B. Generation of High Entropy Private Key for Master TTP 
This algorithm is responsible for generating a high entropy 
private key for the MTTP which it can use for further 
operations. The high entropy private key for the MTTP is 
generated based on its own master private key ‘MMPrt’ and a 
128 bit random number. Both of these are combined to 
generate high entropy private key ’EMPrt’ for MTTP, that it 
uses to communicate to the TTP’s and for secure onward 
operation, as shown in Fig. 3. 

 
Fig. 3. High Entropy Key Generation at MTTP 

Both the 128 bit random number and MMPrt are combined via 
SHA-2, as shown in Table 1. The purpose of the SHA-2 based 
key stretching and derivation algorithm is to combine and thus 
stretch the key, so that it qualifies for use in secure operations. 
The 128 bit random number serves as a salt value for the key 
derivation function and safeguards against rainbow table 
attacks. By adding a salt value to the MMPRt, the possibility 
of using pre-computed hashes for attacks is reduced. 

Table 1. Proposed Key Derivation and Stretching Algorithm for MTTP’s Key 

 

X0 = SHA-2(MMPrt, 128 bit random value) 

For s = 1 to n  

Xi = SHA-2(MMPrt, Xs-1) 

X0 = X0 || Xi  

High Entropy Private Key ‘EMPrt’ = X0 

 
As stated above, SHA-2 is used for the purpose of key 

stretching and derivation using a random salt, since it will both 
bring an increase the entropy and length of the key and at the 
same time safeguard against rainbow table attacks. SHA-2 
based key stretching and derivation algorithm takes the 
ICMetrics generated basis number and a random 128 bit salt 
as input and after performing multiple iterations of SHA-2 
rounds, it produces a longer stretched high entropy key that is 
safe from pre-computed hashing attacks. Now the generated 
key ‘X0’ is broken into blocks of equal size according to the 
required key length; starting from the right and appending 
zeros to the left most block to make its size compatible with 
rest of the blocks.  

Then finally all blocks are XORed to generate the required 
sized key, which gives the final high entropy private key for 
the entity IDi. Exclusive Ors add an extra layer of protection 
but the actual security derives from the iterations of the 
hashing function and the salt value. 

C. Generation of High Entropy Public Key for Master TTP 
Subsequently, public key is computed from the high entropy 
private key ‘EMPrt’ using the following: 

Public Key of MTTP ‘EMPbt’= Hermite-Normal-Form (High 
Entropy Private Key of MTTP ‘EMPrt’) 

The MTTP has a high entropy public/private key pair 
generated that it uses for secure onward operations with other 
TTP’s in the network. 

D. Generation of Partial Private Key for the TTPi 
This algorithm is run by the MTTP in which it generates a 
partial key for each TTP. The identity ’IDTi’ of a TTP is 
randomly generated by the MTTP at a network join request. 
The size of this random identity information associated with a 
device can range from anything between 48-128 bits in length, 
by setting a trade-off between the required security and the 
resources available.  

1. IDti = 128 bits Random Number 
2. Compute Qti = SHA-2 (IDti) 
3. Output partial private key ‘PPti’=(EMPrt)x(Qti)  

The generated partial private key ‘PPti’ generated by the 
MTTP is sent to entity TTPi. The process of supplying partial 
private keys takes place confidentially and authentically, the 
MTTP ensures that the partial private keys are delivered 
securely to the TTP. The partial key sent by the MTTP is used 



by the TTP for the generation of its high entropy private key. 
The MTTP removes the partial key from its memory once it 
has been communicated to the TTP. In future, whenever the 
entity requests the MTTP for a partial key, the MTTP 
generates a new random value for the TTP which can serve as 
its ‘IDti’ and uses it for the generation of a new partial key for 
the TTPi. The generation of partial key based on a new 
random ID every time a request is made, helps safeguard from 
pre-computed dictionary attacks on the keys. 

E. Generation of High Entropy Private Key at each TTP 
The TTP with identity IDti, combines both the MTTP 
generated partial private key ‘PPti’ and its own master private 
key ‘MPrti’ to generate high entropy private key ’EPrti’ for 
IDti, that can be used for secure onward operation, as shown 
in Fig. 4. 

 
Fig. 4. High Entropy Key Generation at each TTP 

Both PPti and MPrti are combined via SHA-2, as shown in 
Table 2. The purpose of the SHA-2 based key stretching and 
derivation algorithm is to combine and thus stretch the key, so 
that it qualifies for use in secure operations.  

Table 2. Proposed Key Derivation and Stretching Algorithm for TTP’s 
Private Key 

 

X0 = SHA-2(MPrti, PPti) 

For s = 1 to n  

Xi = SHA-2(MPrti, Xs-1) 

X0 = X0 || Xi  

High Entropy Private Key ‘EPrti’ = X0 

 
A new partial private key for a session based on a random 

IDti, prevents rainbow table attacks. As above, we propose the 
use of SHA-2 for the purpose of key stretching and derivation 
since they will both bring an increase in the key length as well 
as increase the entropy of the key, while safeguarding from 
rainbow table attacks. The SHA-2 based key stretching and 
derivation algorithm takes the ICMetrics generated basis 
number along with a new partial key as input and after 
performing multiple iterations of SHA-2 rounds, it produces a 
longer stretched high entropy key, which is highly resistant 
against rainbow table attacks.  

Now the generated key ‘X0’ is broken into blocks of equal 
size according to the required key length; starting from the 
right and appending zeros to the left most block in order to 
make its size compatible with rest of the blocks. Then finally 
all blocks are XORed to generate the required sized key, 
which gives the final high entropy private key for the entity 
IDi thereby adding an extra layer of protection. 

F. Generation of High Entropy Public Key for TTP 
This step involves the TTP computing its corresponding 
public key from the high entropy private key ‘EPrt’ using: 

Public Key of TTP ‘EPbt’= Hermite-Normal-Form (High 
Entropy Private Key of TTP ‘MPrt’) 

Finally the TTP has a high entropy public/private key pair 
generated that it can use for onward operations/ 
communication with other entities in the network. Once these 
key pairs have been used for the required purpose, they are 
removed from the memory. If the high entropy key pair is 
required in future it is regenerated based on ICMetrics values 
of the device. 

G. Generation of Partial Private Key for Entity Ei 
This algorithm is run by the TTP in which it generates a 
partial key for an entity that requests the TTP to form part of 
the network. The identity ’IDi’ of an entity is randomly 
generated by the TTP at a network join request. The size of 
this random identity information associated with a device can 
range from anything between 48 bits to 128 bits is length, by 
setting a trade-off between the required level of security and 
the resources available.  

1. IDi = 128 bits Random Number 
2. Compute Qi = SHA-2 (IDi) 
3. Output partial private key ‘PPi’=(EPrt)x(Qi)  

The generated partial private key ‘PPi’ generated by the TTP 
is sent to entity IDi. This process of supplying partial private 
keys takes place confidentially and authentically. The partial 
key sent by the TTP is used by the entity for the generation of 
its high entropy private key. The TTP removes the partial key 
from its memory once it has been communicated to the entity. 
In future, whenever the entity requests the TTP for a partial 
key, the TTP generates a new random value for the entity 
which can serve as its ‘IDi’ for operations. The generation of 
partial key based on a new random ID every time a request is 
made, helps safeguard from pre-computed dictionary attacks 
on the keys. 

H. Generation of High Entropy Private Key at each Entity 
The user with identity IDi, combines both the TTP partial 
private key ‘PPi’ and its own master private key ‘MPri’ to 
generate high entropy private key ’EPri’ for IDi, that can be 
used for secure operation, as shown in Fig. 5. 



 
Fig. 5. High Entropy Key Generation at each Participating Entity 

Both PPi and MPri are combined via SHA-2, as shown in 
Table 3. The SHA-2 based key stretching and derivation 
algorithm takes the ICMetrics generated basis number and a 
newly generated partial key as input and after performing 
multiple iterations of SHA-2 rounds, it produces a longer 
stretched high entropy key, that is secure against rainbow table 
attacks.  

Table 3. Proposed Key Derivation and Stretching Algorithm for Entity’s 
Private Key 

 

X0 = SHA-2(MPri, PPi) 

For s = 1 to n  

Xi = SHA-2(MPri, Xs-1) 

X0 = X0 || Xi  

High Entropy Private Key ‘EPri’ = X0 

 

Now the generated key ‘X0’ is broken into blocks of equal 
size according to the required key length; starting from the 
right and appending zeros to the left most block to make its 
size compatible with rest of the blocks. Then finally all blocks 
are XORed to generate the required sized key, which gives the 
final high entropy private key for the entity IDi. 

I. Generation of High Entropy Public Key at each Entity 
The public key is computed from the high entropy private key 
‘EPri’ using: 

Public Key of IDi ‘EPbi’= Hermite Normal Form(High 
Entropy Private Key of IDi ‘EPrt’) 

Finally the entity IDi now has a high entropy public/private 
key pair generated that it uses for secure onward operations/ 
communication with other entities in the network. 

VI. SECURITY ANALYSIS 
In the proposed scheme we have combined the security 
advantages of the ICMetrics secret key, random session tokens 
and security properties of SHA-2 based key derivation 
function for the generation of strong session based private key. 
The security of our scheme is based on a session token issued 
by the trusted party and the ICMetrics basis number of the 
device fed to the SHA-2 based key derivation function. These 

input values are rehashed the required number of times to 
produce a strong session based public/private key pair. To 
safeguard the generated strong key from various cryptanalytic 
attacks, such as brute force or rainbow table attacks; the ID of 
each node is randomly generated and remains valid only for 
the duration of the session. This random session ID is used in 
the generation of session token and is used for further key 
derivation operations. The session token also serves to 
authenticate/identify each participating node, thereby assuring 
the origin of information; since only entities that have been 
assigned session tokens from their respective trusted parties 
can communicate with other entities in the network. To 
regenerate the public/private key pair during a particular 
session, the generating entity must have the knowledge of both 
the session token and secret basis number. Knowing only one 
of them does not allow the generation of key pairs. This 
safeguards the network from attackers, since only 
authenticated entities that have been issued a partial secret by 
the TTP can form part of network. The SHA-2 based key 
stretching and derivation operation on the ICMetrics secret 
key, as previously indicated results in a longer and high 
entropy private key that helps safeguards against brute 
force/rainbow table attacks.  

The second phase of our scheme generates a corresponding 
strong public key by computing the HNF. The corresponding 
public key of a generated strong private key is generated by 
computing the HNF of the private key. The Hermite Normal 
Form of a number is unique and non-reversible, therefore it 
proves to be a very good choice for the computation of the 
corresponding public key. Each participating entity’s public 
key is made available to other entities by transmitting it along 
with messages or by placing it in a public directory. But no 
further security is applied to the protection of A's public key. 
This idea helps preserve the security properties of ICMetrics 
generated keys and at the same time generates high entropy 
key pairs for use in future operations. 

VII. CONCLUSION AND FUTURE WORK 
A framework for generation of strong high entropy session 
key pairs of sufficient length for ICMetrics secret key is 
introduced in this paper. The proposed scheme effectively 
combines the functionalities of ICMetric keys coupled with 
session tokens from the trusted third party, thereby providing 
authentication and identification of the device. In this paper, 
we have designed a password-based key derivation function, 
in which we employ SHA-2 for stretching the ICMetrics key 
using session token from the TTP, to generate a high entropy 
ICMetrics private key. Random session token’s make the 
generated key is strongly resistant to brute force and rainbow 
table attacks. The high entropy public key corresponding to 
the high entropy key is computed by calculating the Hermite 
Normal Form of the high entropy private key. The proposed 
scheme has been very carefully tuned with the underlying 
requirements of ICMetrics, while making use of random 
values to safeguard against cryptanalytic attacks.  

In future we plan to evaluate our scheme through 
experiments and analysis, thus benchmarking the results 



against existing key generation schemes. We are confident that 
our scheme will be a viable solution for secure generation of 
strong high entropy key pairs. We also plan to design a 
protocol for secure communication based on the generated 
high entropy key pairs. 
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