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Abstract  

 Human activities, such as species introductions, are dramatically and rapidly altering natural 

ecological processes, and often result in novel selection regimes. To date, we still have a limited 

understanding of the extent to which such anthropogenic selection may be driving contemporary 

phenotypic change in natural populations. Here we test whether the introduction of the piscivorous Nile 

perch, Lates niloticus, into East Africa’s Lake Victoria and nearby lakes coincided with morphological 

change in one resilient native prey species, the cyprinid fish Rastrineobola argentea. Drawing on prior 

eco-morphological research, we predicted that this novel predator would select for increased allocation 

to the caudal region in R. argentea to enhance burst-swimming performance, and hence escape ability. 

To test this prediction, we compared body morphology of R. argentea across space (nine Ugandan lakes 

differing in Nile perch invasion history) and through time (before and after establishment of Nile perch 

in Lake Victoria). Spatial comparisons of contemporary populations only partially supported our 

predictions, with R. argentea from some invaded lakes having larger caudal regions and smaller heads 

compared to R. argentea from uninvaded lakes. There was no clear evidence of predator-associated 

change in body shape over time in Lake Victoria. We conclude that R. argentea have not responded to 

the presence of Nile perch with consistent morphological changes, and that other factors are driving 

observed patterns of body shape variation in R. argentea. 

 

Keywords: contemporary evolution, predation, eco-morphology, geometric morphometrics, 
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Introduction 

 Human activities such as species introductions, habitat modification, ecosystem fragmentation, 

overharvesting, and climate change can lead to marked shifts in selection regimes that may in turn lead 

to rapid phenotypic changes in resilient organisms (Palumbi, 2001; Stockwell et al., 2003; Hendry et al., 

2008). Understanding the magnitude, nature, and predictability of phenotypic change in response to 

anthropogenic perturbations can provide insights into basic evolutionary processes, and is also critically 

important for informing long-term conservation policies. 

 Human-mediated predator introductions are pervasive, particularly in freshwaters (Strayer, 

2010), where the widespread stocking of predatory fish has had negative ecological consequences for 

native fishes in many regions (Chapman et al., 1996; Whittier et al., 1997; Findlay et al., 2000; Correa & 

Hendry, 2012). Predator introductions also provide a series of natural experiments that are well-suited 

to exploring in what ways (and how quickly) novel predators can drive phenotypic change in 

evolutionarily naïve prey. In natural contexts, predation represents an important agent of divergent 

selection, which can drive intraspecific divergence in morphology (e.g., Nosil & Crespi, 2006), life history 

(e.g., Reznick & Endler, 1982) and behavior (e.g., Magurran et al., 1992). Novel predation from 

introduced species may also drive phenotypic changes in prey taxa, but few empirical examples exist to 

date (Mooney & Cleland, 2001; Strauss et al., 2006; Carroll et al., 2007). For instance, Daphnia melanica 

in alpine lakes in California showed both plastic and genetic declines in age and size at maturity after the 

introduction of non-native salmonids (Fisk et al., 2007; Latta et al., 2007). Introduced fish predators 

might select for a suite of adaptations in their prey, including traits that decrease the probability of 

detection (e.g., crypsis), capture (e.g., improved escape ability), and/or successful handling (e.g., 
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defensive armor) (Langerhans, 2006). 

 Escape ability is of particular interest because the biomechanics of fast-start swimming in fishes 

has been studied extensively, and the links between phenotype (morphology), performance 

(acceleration during fast-starts) and fitness (survival probability) are well-established (Webb, 1977, 

1982; Weihs, 1989; Domenici & Blake, 1997; Walker, 1997; Blake, 2004; Walker et al., 2005; Langerhans, 

2009b; Langerhans & Reznick, 2010). Based on the large body of work linking morphology to locomotor 

performance in fishes, Langerhans and colleagues (Langerhans et al., 2004; Langerhans, 2010) presented 

a general ecomorphological paradigm for the evolution of body form in aquatic vertebrates in response 

to predation. Specifically, they proposed that most fish face a trade-off between selection favoring 

steady-swimming abilities (e.g., cruising) in the absence of predation and selection favoring unsteady-

swimming abilities (e.g., fast-starts, turning) in the presence of predation—two swimming modes 

optimized by different morphologies. Steady-swimming performance is generally enhanced by a 

streamlined body shape, i.e. a fusiform shape with the greatest depth near the anterior and the body 

tapering off near the caudal region. Conversely, burst-swimming performance is maximized by having a 

deeper mid-body/caudal region and a smaller head/anterior region. These general predictions have now 

been tested and supported in several species, including threespine stickleback (Taylor & McPhail, 1986; 

Walker, 1997; Walker & Bell, 2000) and the live-bearing poeciliids Brachyrhaphis rhabdophora, 

Gambusia affinis, G. hubbsi, and Poecilia reticulata (Langerhans & Dewitt, 2004; Langerhans et al., 2004, 

2007b; Langerhans & Reznick, 2010). 

 Here we test these ecomorphological predictions in an East-African cyprinid fish, Rastrineobola 

argentea, which is endemic to the Lake Victoria basin of East Africa. In the 1950s and 1960s, a large 

piscivore, the Nile perch (Lates niloticus), was introduced into Lake Victoria and neighbouring lakes to 

compensate for declining native fisheries, and also, in the case of Lake Victoria, to boost sport fishing 
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(Balirwa et al., 2003; Pringle, 2005). The Nile perch population exploded in the mid-1980s, forming the 

basis for a highly productive and lucrative export-oriented fishery. The Nile perch boom coincided with 

the extinction or extirpation of roughly 40% of Lake Victoria’s 400+ endemic haplochromine cichlids, 

likely due to a combination of overfishing, eutrophication, and intense predation from the Nile perch 

(Kaufman & Module, 1992; Balirwa et al., 2003; Chapman et al., 2008). Once its preferred prey base (the 

haplochromines) had been depleted, the Nile perch began feeding on alternative prey including R. 

argentea. While R. argentea has always had native predators in the Lake Victoria basin (see below), the 

high densities of Nile perch observed in most invaded lakes, combined with the occurrence of R. 

argentea in Nile perch stomach contents, suggest that Nile perch introduction resulted in increased 

mortality rates for R. argentea (Hughes, 1986; Ogutu-Ohwayo, 1990, 1993, 2004; Schofield & Chapman, 

1999; Katunzi et al., 2006). Despite this novel predator, R. argentea increased dramatically in abundance 

during the 1980s and 90s (Wanink, 1999; Tumwebaze et al., 2007) and now supports the most 

important commercial fishery (by mass) in Lake Victoria (Mkumbo et al., 2007; NaFIRRI, 2008). It also 

plays a major role in the food-web of Lake Victoria (accounting for approximately 60% of the fish 

biomass of the lake, NaFIRRI, 2008), and is critical for human food security in the region.  

 This system can provide several novel and important insights into (i) the role of predation in 

shaping the body form of prey fishes and (ii) the extent to which rapid phenotypic changes occur 

following anthropogenic perturbations and their potential to contribute to the resilience of species of 

socio-economic importance. With respect to the former, most examples of predator-induced body 

shape evolution to date are from live-bearing fishes (Family Poeciliidae) from the Neotropics. Thus, 

observed convergent responses to predation could partially reflect shared evolutionary histories or 

constraints in this group of fishes, with some distantly related fishes perhaps responding in alternative 

ways (Langerhans et al., 2004). To more broadly test this ecomorphological paradigm, we need to 

examine phylogenetically and geographically distinct taxa. With respect to the latter question, R. 
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argentea is one of the few native fishes from Lake Victoria that has managed to thrive alongside the 

introduced Nile perch, and its apparent resilience may partially reflect adaptive phenotypic change. 

Rastrineobola argentea has undergone rapid life-history changes since the 1960s (Wanink, 1998; Sharpe 

et al., 2012) that are consistent with an adaptive response to increased mortality (from both Nile perch 

predation and fishing pressure). Testing whether any changes in morphology have also occurred will 

shed further light on R. argentea’s persistence within this highly anthropogenically-disturbed ecosystem, 

and help inform management of this important fishery, and the ecosystem as a whole.  

 We tested for morphological divergence in R. argentea in response to predation from the 

introduced Nile perch using two approaches. First, we compared body shape of contemporary 

populations from nine Ugandan lakes that differ in their history of Nile perch invasion. Second, using 

museum specimens, we compared body shape of R. argentea from before versus after the 

establishment of Nile perch in Lake Victoria. We predicted that in Nile perch-free contexts (uninvaded 

lakes, and Lake Victoria pre-Nile perch establishment), R. argentea would have more streamlined 

bodies, reflecting selection for steady-swimming abilities. In the absence of predation, steady-swimming 

should be particularly important for R. argentea, as it is a pelagic species that forages over long 

distances in the open waters of lakes (Kaufman & Ochumba, 1993). Conversely, in contexts with Nile 

perch (invaded lakes, and Lake Victoria post-Nile perch establishment), R. argentea should have deeper 

caudal regions and smaller heads, reflecting selection for increased fast-start escape ability.  

Methods 

Study Sites 

 Our study focused on nine lakes located in the Lake Victoria basin in Uganda, East Africa (Fig. 1, 

Table 1), which together with the Upper Nile River, account for R. argentea’s known distribution in 

Uganda, and are described in detail in our previous work (Sharpe et al., 2012). The lakes differed in their 
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Nile perch invasion history, with three being uninvaded, four having established Nile perch populations, 

and two (Bisina and Nawampasa) having experienced a transient Nile perch presence. Lake Bisina was 

stocked with Nile perch in the early 1970s and sustained a Nile perch fishery for a time (Mbabazi, 2004). 

However, the Nile perch population has since collapsed, and repeated surveys in 2001-2003 (Mbabazi, 

2004) and 2009-2010 (Sharpe & Chapman, unpl. data) did not uncover any Nile perch in the lake. Lake 

Nawampasa was free of Nile perch until 1998, when extensive flooding due to El Niño appeared to 

facilitate dispersal of Nile perch individuals into the lake (Wandera, S.B., unpl. data). It is not known 

whether these individuals have managed to persist, although our sampling in 2009 and 2010 did not 

uncover any Nile perch (Sharpe & Chapman, unpl. data). Dispersal of R. argentea between these lakes is 

likely low or absent because the dense hypoxic swamps surrounding these lakes should act as a 

significant dispersal barrier for the hypoxia-sensitive R. argentea (Wanink et al., 2001). Thus, we 

consider these lakes to provide independent replicates of R. argentea’s response to Nile perch 

introduction. 

 While Nile perch likely represents the most important predator on R. argentea in the Lake 

Victoria basin, several native catfishes (Clarias gariepinus, Schilbe intermedius, and Synodontis victoriae) 

are known to feed on R. argentea to some degree (Mbabazi, 2004). Known avian predators include the 

pied kingfisher Ceryle rudis, the great cormorant Phalacrocorax carbo lucidus, and the long-tailed 

cormorant Phalacrocorax africanus (Wanink & Goudswaard, 1994; Wanink, 1996). 

Data on the distribution and diet of these potential native predators are very scarce; however, the 

available evidence does not suggest that mortality from these other sources differs systematically 

between lakes with or without Nile perch (Table S1). 

 We collected the following environmental data at each lake: water depth (m), water 

transparency (Secchi depth, m), water temperature (°C) and dissolved oxygen concentration (mg/L) 
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measured with a Polaris dissolved oxygen meter. These data were collected at three replicate sites in 

the pelagic zone of each lake, both in the morning and in the afternoon. Although all fish were collected 

in 2010, environmental measurements were repeated over multiple years (2008, 2009, and 2010) for 

some lakes, and were averaged over time in these cases. We estimated lake surface area (km2) from 

satellite images downloaded from Google Earth. Although all of these parameters varied across 

individual lakes (Table S1), there were no consistent or significant differences between invasion 

categories for any of the environmental variables quantified (lake area: F2,7 = 2.11, p = 0.192, lake depth: 

F2,7 = 1.34, p = 0.323, Secchi depth: F2,7 = 1.35, p = 0.319, temperature: F2,7 = 0.12, p=0.893, dissolved 

oxygen: F2,7 = 0.22, p=0.812). 

Fish collections 

 Rastrineobola argentea were collected from the nine lakes described above during the dry 

season (May-June) in 2010 (Table 1). Fish were captured with a 5 mm-mesh lampara net (the local 

commercial fishing gear), which was operated as a surface seine in the pelagic zone of each lake. In two 

lakes, this method of fishing was unsuccessful, so R. argentea were collected using other gears (a 5-mm 

mesh beach seine in Lake Kayanja, and a 5-mm mesh pelagic trawl in Lake Victoria). We retained 

approximately 30 individuals per lake (randomly selected from the largest quartile), which were 

euthanized with clove oil and immediately preserved in 10% formalin for morphological analyses.  

 For the temporal analysis, we used a combination of preserved museum specimens and 

collections made by our team over the past decade (Table 2). Museum specimens were photographed, 

with permission, from collections at the Biodiversity Museum of the National Fisheries Resources 

Research Institute (NaFIRRI) in Jinja, Uganda, and included R. argentea from 1966, 1974, 1997, and 

2003. Nile perch were introduced into Lake Victoria sometime in the early 1960s, but did not begin 

appearing regularly in catches until the early 1980s, hence we consider 1966 and 1974 to largely reflect 
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pre-invasion conditions. Our team collected R. argentea from Lake Victoria in 2010, as described above. 

All specimens were preserved in 10% formalin. For the most part, historical specimens originated from 

the Northern waters of Lake Victoria – exact locations are given in Table 2. 

Morphological Analyses 

 Variation in the overall body shape of R. argentea was examined using geometric 

morphometrics, a powerful approach that uses information from spatial coordinates (landmarks) to 

describe, visualize, and analyze shape variation (Rohlf & Marcus, 1993; Adams et al., 2004; Zelditch et 

al., 2004). Preserved R. argentea were photographed in the laboratory using a Canon Powershot digital 

camera. We digitized 12 homologous landmarks on the lateral body profile of images (Fig. 2) using 

TPSDig software (Rohlf, 2006). Landmarks comprised: (1) most anterior point of the premaxilla, (2) 

indentation at the posterodorsal end of the head, (3) anterior insertion point of the dorsal fin, (4) 

posterior insertion point of the dorsal fin, (5) dorsal insertion point of the caudal fin, (6) ventral insertion 

point of the caudal fin, (7) posterior-most point where the anal fin meets the body, (8) anterior insertion 

point of the anal fin, (9) insertion point of the pelvic fin, (10) dorsal insertion point of the pectoral fin, 

(11) intersection of the operculum and body profile, and (12) centre of the eye orbit. 

Photographs were landmarked by two individuals (E. Low-Decarie and D. Sharpe), but all landmarks 

were individually doubled-checked by D. Sharpe before analyses were conducted. To quantify any 

potential inter-observer bias, we randomly selected 20 photos for digitization by both observers. 

Repeatability was estimated as the intraclass correlation coefficient, i.e. the proportion of the total 

variation due to among (rather than within) individual variation (Lessels & Boag, 1987). Repeatability 

was generally high: 0.99 for centroid size, 0.85 for landmarks (mean for all 24 superimposed landmark 

coordinates), 0.94 for caudal area, and 0.97 for total area, all p < 0.01. 
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 Landmark configurations were scaled to a common size, rotated, and aligned using generalized 

Procustes analysis (Rohlf & Slice, 1990) in TPSRelw (Rohlf, 2010). We used TPSRelw to save relative warp 

scores for each fish, which represent principal components of geometric shape variation and were used 

as dependent variables in subsequent analyses. TPSRelw was also used to calculate centroid size – a 

metric of body size commonly employed in geometric morphometrics, which is the square root of the 

sum of the squared distances from each landmark to the centroid of the landmark configuration. In 

addition to these geometric morphometrics analyses that explored changes in overall body shape, we 

also calculated lateral caudal peduncle area from the scaled landmark coordinates, using a minimum 

convex polygon drawn between landmarks 4, 5, 6, and 7 (shaded area on Fig. 2), and total body area, in 

R (R Development Core Team 2012). 

 For all contemporary specimens, we measured standard length (mm) and total wet body mass 

(mg). Both variables were highly correlated with centroid size (standard length: r = 0.99, p < 0.001, 

weight: r = 0.96, p < 0.001), and so centroid size was used as the body size covariate in all geometric 

morphometric analyses. Relative body condition (K) was quantified to assess how much variation in 

overall body shape might be due to variation in condition. For example, heavier, more well-fed 

individuals would be expected to be deeper-bodied than starved individuals, irrespective of predator 

regime. Following Le Cren (1951), K was calculated as: K = wi/a*slib, where wi is the weight of individual i 

(in mg), sli is the standard length of individual i (in mm), and a and b are parameters derived from a 

linear regression of log-transformed weight vs. log-transformed length for all individuals in the data-set 

(a is the back-transformed intercept (0.009), and b is the slope from the linear regression (3.09)). 

 After the photographs had been taken, we dissected each fish to check for intestinal macro-

parasites, which can distend the abdomens of infected individuals and so potentially distort overall body 

shape. We also determined the sex and maturity status of each fish, using a seven-point scale previously 
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developed for R. argentea (Wandera, unpl data, Sharpe et al., 2012) 

 We were not able to dissect the museum specimens, but we did measure standard length (in 

mm) for each fish, which we then used to estimate maturity, based on previously-published values for 

length at 50% maturity (L50) for R. argentea from Lake Victoria over this same time period (Sharpe et al., 

2012). Using this approach, 9 individuals (out of 179) fell below the L50 threshold for the year in 

question, and were therefore assumed to be immature. We ran the analysis both including and 

excluding these putatively immature individuals, and the results were unaffected, so we present results 

only from the first analysis including all individuals. Sex was also unknown for the museum specimens, 

so we could not explicitly consider this factor in our analysis. If there was a strong and consistent 

temporal trend in the sex ratio of our samples, this could introduce a systematic bias – however, we 

consider this to be unlikely. 

Statistical Analysis 

 To test for variation in body morphology of R. argentea associated with the Nile perch 

introduction, we performed separate multivariate analyses for the spatial and temporal datasets. First, 

to test for differences in body shape across lakes with varying Nile-perch introduction histories, we 

performed a mixed-model multivariate analysis of covariance (MANCOVA) with the 20 relative warps as 

dependent variables, Nile perch regime and sex as main effects, lake nested within Nile perch regime as 

a random effect, and body condition and centroid size as covariates. Statistical significance was 

determined using an F test based on Wilks’s λ for all terms except Nile perch regime, which used an F 

test employing restricted maximum likelihood and the Kenward-Roger degrees of freedom adjustment  

(Kenward & Roger, 1997, 2009), which allowed us to use lake as the unit of replication, effectively 

treating lake as a random effect (Wesner et al., 2011; Hassell et al., 2012; Riesch et al., 2013). To test for 

differences in body shape through time, we used a MANCOVA with year as a main effect and centroid 
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size as a covariate (sex and body condition were not included in this model because these data were not 

available for museum specimens). All P values in this model were determined using an F test based on 

Wilks’s Λ. An initial analysis of the historical data (not shown) suggested that there were consistent 

differences in body shape between R. argentea collected from inshore versus offshore habitats, so we 

subsequently performed separate MANCOVAs for each habitat. In all models, we tested for 

heterogeneity of slopes across Nile perch categories (or years), and removed any non-significant terms 

and interactions from our final model. Multivariate effect size in these analyses was quantified using 

Wilks’s partial η2 (Langerhans & Dewitt, 2004). 

 We took a three-pronged approached to evaluate the magnitude, consistency, and nature of 

possible morphological differences between Nile perch regimes. First, we examined the nature of body 

shape variation associated with our factors of interest (Nile perch or year) by performing a PCA on the 

sums of squares and cross-products matrix of those terms from the MANCOVA, following Langerhans 

(2009). This allowed us to derive an eigenvector of divergence (d) for each term of interest, i.e. a vector 

describing the linear combination of dependent variables that best discriminate between Nile perch 

regimes/years in Euclidean space. This approach is preferable to traditional canonical variate analysis 

(CVA) which, when applied in the context of geometric morphometrics, has been shown to distort 

multivariate space (Klingenberg & Monteiro, 2005; Mitteroecker & Bookstein, 2011). To visualize shape 

variation along divergence vectors (d), we generated thin-plate spline deformation grids using TPSRegr 

(Rohlf, 2009). Second, we performed a discriminant function analysis (DFA) using leave-one-out cross-

validation to determine how well individuals could be assigned to Nile perch regimes or years based on 

their morphology (relative warps and centroid size). Third, we calculated pairwise Procrustes distances 

between sample means to evaluate the overall magnitude of shape differences. Procrustes distances are 

the square root of the sum of squared differences between homologous landmarks when configurations 

in Procrustes superimpostion (Zelditch et al., 2004), and were calculated in tpsSmall (Rohlf, 2003). 
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 Finally, we tested for variation in caudal peduncle area across lakes/years. For the spatial 

analysis, we ran a nested ANCOVA, with lake nested as a random effect within Nile perch regime and 

total body area as a covariate. For the temporal analysis, inshore and offshore populations were 

analyzed using separate ANCOVAs with year as a main effect and total body area as a covariate. All 

continuous variables were log-transformed to meet the assumption of normality. In each model, we first 

tested for heterogeneity of slopes and removed the interaction term between total body area and 

year/lake if not significant. All statistical analyses were done in R, except for the MANCOVAs, which 

were done using JMP (v. 5.1.2, © 2004, SAS). The data underlying our analyses have been archived and 

are publicly available from the Dryad Digital Repository (http://datadryad.org/, 

doi:10.5061/dryad.g61d1). 

Results 

Spatial: body shape variation across lakes 

 MANCOVA revealed that the body shape of contemporary R. argentea was influenced by 

multiple factors, including Nile perch regime, centroid size, condition, sex, and the interaction between 

centroid size and condition (Table 3). The interactions Nile perch × centroid size, sex × condition, and 

Nile perch × condition were not significant and were therefore removed from the final model.  

 The greatest amount of partial variance was explained by Nile perch regime (Table 3). This 

indicated that when controlling for the effects of allometry, condition, and sex, body shape varied 

among lakes with different histories of Nile perch introduction. Visualization of the Nile perch 

divergence vector (dNP) indicated that R. argentea from invaded lakes tended to have smaller heads, 

larger caudal peduncles, shorter anal fins, ventrally-displaced pectoral fins, and more upturned mouths 

relative to R. argentea from uninvaded lakes (Fig. 3A, 4A, Fig. 5). The most heavily-invaded lakes 

(Victoria and Kyoga) displayed the most extreme phenotypes, while lakes Nabugabo and Meito 
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(invaded), Bisina and Nawampasa (uninvaded), and Omuno (uninvaded) all had overlapping, 

intermediate phenotypes (Fig. 5). 

 We also uncovered effects of multivariate allometry, condition, and sex, with the latter two 

variables exhibiting the greatest importance (Table 3). Fish with higher centroid sizes (i.e., larger 

individuals) tended to have smaller heads with more upturned mouths (Fig. S1A). Body condition varied 

significantly across lakes (F8, 261 = 19.64, p < 0.001), being greatest in the uninvaded lakes Kayanja and 

Omuno, and lowest in the transiently-invaded lakes Bisina and Nawampasa (Fig. S2). Fish with higher 

condition factors (i.e., “fatter” individuals) tended to have shorter caudal peduncles, larger abdomens, 

and deeper, more robust bodies (Fig. S1B). Females tended to have shorter anal fins and deeper bodies 

relative to males (Fig S1C). There was a weak interaction between centroid size and condition, involving 

changes in the shape of the head and the depth of the abdomen (not shown). 

 The DFA showed that R. argentea were correctly classified into the appropriate Nile perch 

category most of the time (77% correctly assigned for invaded lakes, 69% for uninvaded lakes, and 87% 

for transiently invaded lakes, n = 268, Wilks’ λ = 0.258, p < 0.0001). Median Procrustes distances 

between pairs of lakes within Nile perch regimes were 0.033 (uninvaded lakes), 0.015 (transiently-

invaded lakes), and 0.031 (invaded lakes). The median distance between Nile perch regimes was 0.027 

(Table S2).  

 Caudal peduncle area was positively associated with total body area (F1,260 = 457.04, p < 0.0001), 

and slopes were homogeneous across Nile perch categories. Although there was a trend for fish from 

some invaded lakes to have larger caudal peduncles than fish from some uninvaded lakes (Fig. 6), caudal 

peduncle area did not vary significantly with Nile perch regime overall (F2,6 = 0.508, p = 0.63). 

 Our dissections indicated that the majority of photographed specimens (83%) were sexually 

mature and free of intestinal macro-parasites (94%). Excluding immature or parasitized individuals from 
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the geometric morphometric analysis did not alter our results (not shown). Across all lakes, linear 

regressions showed that mean body shape (dNP) was not significantly related to lake area (R2 = 0.19, p = 

0.133, df = 7), lake depth (R2 = 0.16, p = 0.156, df = 7), Secchi depth (R2 = 0.00, p = 0.748, df = 7), 

temperature (R2 = 0.01, p = 0.326, df = 7), or dissolved oxygen concentration (R2 = 0.00, p = 0.361, df = 

7). 

Temporal: body shape variation through time 

 The body shape of inshore R. argentea differed across years (MANCOVA: 1966 vs. 2003, F20,40 = 

5.78, p < 0.0001). Centroid size and the interaction between centroid size and year were not significant 

(p > 0.05), and were therefore removed from the final model. Contemporary (post-Nile perch) R. 

argentea from inshore habitats tended to have longer anal fins, deeper caudal peduncles (at the 

insertion points of the caudal fin), shorter dorsal fins, deeper mid-bodies, and ventrally-displaced 

pectoral fins relative to historical (pre-Nile perch) R. argentea (Fig. 3B, 4B). There was also a 

considerable degree of lateral tail bending in these specimens, likely due to preservation effects. The 

DFA correctly assigned inshore R. argentea to the year of collection at a high rate (1966: 80%, 2003: 

87%, F = 283.9, p < 0.0001). The median Procrustes distance between 1966 and 2003 inshore samples 

was 0.019. Caudal area was positively related to total body area for inshore R. argentea, and slopes 

were homogeneous across years (Table S4). Controlling for body size, caudal area was significantly 

smaller in 2003 than in 1966 (F1,56 = 466.0, p < 0.001; Fig. 8). 

 In offshore habitats, the body shape of R. argentea was influenced by year, centroid size, and 

the interaction between the two (Table 4). Centroid size declined consistently throughout the time-

series (F1, 114 = 474.8, p < 0.001), and explained the greatest amount of partial variance in our MANCOVA 

(Table 4). Variation in centroid size was associated with changes in mid-body depth and head size and 

shape (Fig. S3A). There was substantial allometry in shape. Five of the first 10 RWs (which cumulatively 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

explained 94% of the total variation in body shape) were significantly correlated with centroid size. 

However, of these same 10 RWs, in only one case (RW4) did allometry differ significantly across years. 

The relationship between RW4 and centroid size was positive for two years (1997 and 2010) and 

negative for two years (1974, 2003, Fig. S4), resulting in divergent effects of size across years (Fig. S3B). 

 After accounting for this allometry, body shape still varied significantly across years (MANCOVA: 

F60,272.33 = 2.14, p < 0.001, Fig. 3C, 4C). However, there was no clear morphological trajectory through 

time, with populations from the beginning (1974) and end of the time-series (2010) overlapping along 

dYR1.off (Fig. 7). Much of the variation was driven by the 1997 population, which had a very upturned 

mouth and robust body. The DFA correctly assigned offshore R. argentea to the year of collection at a 

high rate (1974: 100%, 1997: 82%, 2003 (offshore): 94%, 2010: 83%, overall correct classification rate: 

90%, Wilks’ λ = 0.010, p < 0.0001). The median Procrustes distance between years pre- vs. post- Nile 

perch introduction for offshore samples was 0.024 (Table S3). 

 Our univariate analysis showed that, for offshore populations, caudal peduncle area varied 

significantly across years and with total body area (Table S4). Relative caudal area increased significantly 

in 1997, and then declined again in subsequent years (Fig. 8). 

Discussion: 

 We tested the hypothesis that predators can drive rapid and predictable morphological change 

in natural prey populations, using replicate introductions of the predatory Nile perch in the Lake Victoria 

basin as a natural experiment. To test this hypothesis, we used two complimentary approaches: 

examining body shape variation across space (invaded vs. uninvaded lakes), and through time (before 

vs. after the establishment of Nile perch in Lake Victoria). We predicted that populations of R. argentea 

that co-occurred with Nile perch would exhibit morphologies associated with burst-swimming 

performance—specifically an increase in the relative area of the caudal region and a decrease in head 
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size.  

Variation in body shape across lakes 

 Nile perch regime explained the greatest amount of variation in body shape among R. argentea 

populations, independent of variation attributable to body size, condition, and sex. Mostly notably, our 

multivariate analysis of body shape suggested an increase in the size of the caudal peduncle and a 

decrease in head size in R. argentea in lakes with Nile perch. This shift in allocation towards the caudal 

region is consistent with our a priori ecomorphological predictions, and closely parallels predator-

associated morphological changes documented in poeciliid fishes (Langerhans & Dewitt, 2004; 

Langerhans et al., 2004, 2007b). However, the magnitude of body shape variation observed in R. 

argentea in our study was much less pronounced than that documented previously (median Procrustes 

distance of 0.027 between Nile perch regimes, vs. 0.030-0.046 between predator regimes in Gambusia 

spp. (Langerhans et al., 2007b; Langerhans, 2009a; Langerhans & Makowicz, 2009)). Furthermore, when 

caudal peduncle area was analyzed separately, there was no significant effect of Nile perch regime. 

Overall, our data do not provide consistent or unambiguous support for the prediction that Nile perch 

predation has driven functionally-significant morphological divergence in R. argentea across invaded 

versus invaded lakes. 

Variation in body shape in Lake Victoria through time 

 Morphological variation in Lake Victoria through time was much more subtle overall than the 

variation across lakes. In inshore populations, the only detectable morphological changes were an 

apparent increase in the depth of the caudal peduncle at the insertion points of the caudal fin and an 

increase in the length of the anal fin. These trait changes may be functionally important, given that the 

area of both the caudal and anal fins are known to strongly influence thrust and fast-start performance 

(Webb, 1977). However, relative caudal peduncle area declined significantly over time – in contrast to 
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our predictions. 

 Offshore populations were highly variable through time, but there was no evidence of net 

morphological change over the time-series. Year-to-year variability in body shape could reflect plastic 

variation in response to ecological factors that have fluctuated over time, such as population density, 

food availability, water quality, and predator pressure. The latter (temporal variation in Nile perch 

predation pressure) may be particularly important and may not have been adequately captured by our 

categorization of pre- vs. post-Nile perch periods. This is because the diet of Nile perch has been 

dynamic, varying with the phase of the invasion and the relative abundance of its apparently preferred 

prey base, the haplochromine cichlids. In general, the proportion of R. argentea in Nile perch stomach 

contents peaked between the late 1980s and mid 1990s (Ogutu-Ohwayo, 1990, 1993; Schofield & 

Chapman, 1999) and then declined after 2000, coincident with heavy fishing on Nile perch and 

haplochromine resurgence (Chapman et al., 2003; Paterson & Chapman, 2009; Hanna, 2014; Nkalubo et 

al., 2014). Thus, R. argentea collected from Victoria in 1997 (which were most divergent morphologically 

and had larger caudal peduncles) corresponded with a time of peak Nile perch predation; whereas 

specimens collected in 2003 and 2010 (which grouped more closely with pre-Nile perch specimens) 

corresponded with a period of reduced predator pressure from Nile perch. Interestingly, a similar 

pattern of fluctuating morphological change was observed in a recent study of six species of 

haplochromine cichlids from Lake Victoria (van Rijssel & Witte, 2012). 

Other potential factors 

 In addition to the potential influence of Nile perch predation, morphological variation in R. 

argentea across space and time may also reflect the influence of other factors not explicitly included in 

our models. Fish body shape is known to vary with a number of physical and ecological variables, 

including water flow (Langerhans, 2008), dissolved oxygen (Langerhans et al., 2007a), temperature (e.g., 
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Marcil et al., 2006), relative littoral area (Walker, 1997), and diet/habitat use (e.g., Sharpe et al., 2008). 

 Dissolved oxygen, temperature, surface area and water depth did not vary significantly across 

invasion categories. Moreover, these variables exhibited no evidence of association with body 

morphology, so these are unlikely explanations for the observed patterns of spatial variation in body 

shape. However, there have been substantial changes in water quality over time. Rapid human 

population growth in the catchment over the past century has led to the eutrophication of Lake Victoria, 

and an increase in the severity and frequency of hypolimnetic hypoxia (Hecky et al., 2010). Low-oxygen 

stress can lead to pleotrophic changes in morphology, such as an increase in head size in order to 

accommodate larger gills (e.g., Crispo & Chapman, 2010). However, the observed morphological 

variation in R. argentea over time did not fit this pattern, as head size did not increase over time. 

 Diet and habitat use have been shown to influence body morphology in a number of fishes. A 

commonly-observed polymorphism in lacustrine fishes is that benthic or littoral-dwelling fish that feed 

on benthic macro-invertebrates in structurally-complex habitats tend to be deeper-bodied than pelagic-

dwelling fish that feed on zooplankton in open habitats (Malmquist et al., 1992; Schluter & McPhail, 

1992; Robinson et al., 1993; Robinson & Wilson, 1994; Svanbäck & Eklöv, 2002). Feeding mode may also 

influence the orientation of the mouth in fishes: an upturned/dorsally-oriented mouth is often 

correlated with feeding on emerging aquatic insects (Watson & Balon, 1984; Wikramanayake, 1990; 

Hugueny & Pouilly, 1999).  

 The diet of R. argentea varies considerably across lakes; however there are no consistent 

differences in diet between invaded versus uninvaded lakes (Sharpe & Chapman, 2014), and no 

evidence of an association between diet and multivariate body shape (correlation between proportion 

of zooplankton in the diet and dNP: r = 0.51, p = 0.20, df = 6, Sharpe, 2012). Through time, the diet of R. 

argentea in Lake Victoria has shifted from a specialized zooplankton diet in the 1960s to a broader 
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contemporary diet that includes insect larvae as well as emerging aquatic insects (Sharpe & Chapman, 

2014). However, R. argentea from later years that included insects in their diet did not have more 

upturned mouths than R. argentea from earlier years, which were zooplankton specialists. Overall, it 

seems unlikely that diet is a major driver of the body shape variation observed across lakes or through 

time; although our study was not specifically designed to test this question. 

Why no evidence of predator-induced morphological change? 

 Despite several decades of moderate to high levels of predation from the introduced Nile perch, 

R. argentea did not unequivocally show the morphological changes often observed in prey fish that co-

occur with piscivores. There are several potential explanations for this apparent lack of adaptation to a 

novel stressor. First, there may be a lack of heritable variation in body shape in R. argentea for selection 

to act upon. Body shape has been shown to have a genetic basis in some fishes (e.g., Langerhans et al., 

2004; Sharpe et al., 2008); however, its heritability in R. argentea is unknown. Second, although R. 

argentea have a short generation time (0.3-0.9 years, Wanink 1998), too little time may have elapsed 

since the Nile perch introduction for detectable morphological changes to have accumulated. This seems 

unlikely; however, given evidence for rapid phenotypic change in this same population over the same 

time period for life history traits (Sharpe et al., 2012). Third, some fishes are capable of very rapid, 

phenotypically-plastic changes in body shape in response to the presence of predators, including for 

example Crucian carp (Brönmark & Pettersson, 1994) and juvenile perch and roach (Eklöv & Jonsson, 

2007). However, R. argentea may lack the capacity to produce such inducible defenses, which are 

presumably costly to maintain. Fourth, R. argentea may be responding to Nile perch predation primarily 

through other means. For instance, shifts in life history strategies (Sharpe et al., 2012) and/or the 

adoption of anti-predator behaviours could also improve survival in the face of Nile perch predation, 

and thus weaken selection on morphology. Many prey fish reduce activity levels, use shelters more 
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frequently, and/or shift to more complex habitats in the presence of piscivores (Werner et al., 1983; 

Rahel & Stein, 1988). Schooling is another common anti-predator behaviour in fish (Magurran, 1990a) 

that has been shown to be adaptive and heritable in several taxa (e.g., in Trinidadian guppies, Poecilia 

reticulata (Seghers, 1974; Huizinga et al., 2009) and European minnow, Phoxinus phoxinus (Magurran, 

1990b). R. argentea is a pelagic schooling species (Kaufman & Ochumba, 1993; Tumwebaze et al., 2007), 

and so may have responded behaviourally to the Nile perch introduction by forming larger and more 

cohesive schools and/or schooling more frequently. This might potentially select for increased steady-

swimming performance, and thus more streamlined bodies - the opposite of our eco-morphological 

predictions for increased burst-swimming performance. More generally, eco-morphological predictions 

that hold for prey fish in small streams or ponds may not apply to pelagic species in large lakes, and a 

focus on solely morphological traits may be too narrow to capture important behavioural components 

of an anti-predator response. Testing for divergence in schooling tendency and other types of anti-

predator behaviour (e.g., changes in diel activity patterns or habitat use) between contemporary 

populations of R. argentea that do or do not co-occur with Nile perch would be an interesting avenue 

for future work. 

Conclusions 

 As human impacts on the natural world intensify, evolutionary biologists have become 

increasingly interested in understanding the extent to which adaptation may be able to buffer natural 

populations against anthropogenic stressors. Rastrineobola argentea provide a particularly interesting 

case study for understanding human-induced phenotypic change and for exploring what classes of traits 

might respond most readily to novel selective regimes. We have previously shown that R. argentea has 

undergone rapid changes in trophic ecology (Sharpe & Chapman, 2014) and life history traits (Sharpe et 

al., 2012) in response to the Nile perch introduction and fishing pressure. In contrast, in our current 
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study, we found little clear evidence for predator-induced morphological change in R. argentea.  

 Aside from a handful of examples (the thickening of shells of marine molluscs in response to the 

introduced green crab (Vermeij, 1982); body shape changes in yellow perch in response to the re-

colonization of previously extirpated piscivores (Lippert et al., 2007)) – to-date there are few 

documented cases of adaptive morphological responses in native prey to introduced predators (Strauss 

et al., 2006). With freshwater introductions increasing at an accelerating rate (Hall & Mills, 2000), 

understanding the likelihood and nature of adaptation in native prey is critical for their conservation. 
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Lake Nile perch n Standard length (mm)

Kayanja Absent 30 37.23 ± 0.59

Omuno Absent 30 50.77 ± 0.45

Gigati Absent 30 47.40 ± 0.48

Bisina Transient (1970s – 1990s?) 30 37.90 ± 0.49

Nawampasa Transient (1998 - Present) 28 39.93 ± 0.41

Meito Established 30 40.40 ± 0.27

Nabugabo Established (1960 - present) 30 44.03 ± 0.37

Kyoga Established (1955 - present) 31 45.13 ± 0.74

Victoria Established (1950s/1960s - present) 29 41.17 ± 0.35

 

Table 1 Summary of populations included in the spatial analysis of body shape. Lakes Bisina and 

Nawampasa are special cases, because Nile perch were introduced, but seem to have failed to establish 

(see text for details). Sample sizes (n) and the mean (± SE) standard length of each population of R. 

argentea included in the geometric morphometric analysis are indicated. 
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Year Nile perch n Standard length Collectors Location 

1966 Rare 30 55.29 ± 0.77 NaFIRRI Napoleon Gulf (Inshore)

1974 Rare 33 65.86 ± 0.50 NaFIRRI Lake Victoria (Offshore)

1997 Established 22 48.73 ± 0.75 NaFIRRI Buvuma Channel (Offshore)

2003in Established 31 44.27 ± 0.62 NaFIRRI Napoleon Gulf (Inshore)

2003off Established 34 50.68 ± 0.51 NaFIRRI Nkata (Offshore) 

2010 Established 29 41.17 ± 0.35 Sharpe et al. Buvuma Channel (Offshore)

 

Table 2 Summary of populations included in the historical analysis of body shape. Nile perch were 

introduced into Lake Victoria sometime in the early 1960s, but did not begin appearing regularly in 

catches until the early 1980s. Sample sizes (n) refer to the number of individuals included in the final 

analysis. Standard lengths are given as means ± SE. NaFIRRI refers to the National Fisheries Resources 

Research Institute of Uganda. The precise location for the 1974 sample was not recorded; however, 

consultation with NaFIRRI scientists indicated that this sample almost certainly came from offshore 

waters and not the Napoleon Gulf (Wandera, S.B. pers. comm.). 
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Factor df F p Partial variance

Nile perch 38, 2769 5.18 <0.0001 48.46

Centroid size (CS) 20, 236 4.22 <0.0001 26.34

Condition 20, 236 6.46 <0.0001 35.38

Sex 20, 236 5.78 <0.0001 32.89

Condition X CS 20, 236 2.33 0.0014 16.50

Table 3. Mixed-model nested multivariate analysis of covariance (MANCOVA) examining variation in 

body shape of R. argentea (relative warps) across Nile perch regimes. Partial variance was estimated 

based on Wilks’s partial η2. Note that the interactions Nile perch × centroid size, sex × condition, and 

Nile perch × condition were non-significant and so were all removed from the final model. 

 

 

 

 

 

 

 

 

 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Factor df F p Partial variance

Year 60, 272.33 2.14 <0.0001 31.88

Centroid Size 20, 91 2.2 0.01 32.67

Year X CS 60, 272.33 1.37 0.05 23.06

 

Table 4. Multivariate analysis of covariance (MANCOVA) examining variation in body shape of R. 

argentea between years in offshore populations from Lake Victoria. Partial variance was estimated 

based on Wilks’s partial η2.  

 

Figure legends 

Fig. 1 Map of study sites. Panel A shows the location of the Lake Victoria basin within the African 

continent. Panel B shows the Ugandan portion of Lake Victoria, and Panel C shows an enlargement of 

the Kyoga drainage. The lakes that we sampled included three lakes with no history of Nile perch 

invasion (Kayanja, Gigati and Omuno), two lakes which experienced a transient Nile perch presence 

(Bisina and Nawampasa), and four lakes with established Nile perch populations (Kyoga, Meito, 

Nabugabo and Victoria).  

Fig. 2 Landmarks used to quantify body shape variation (see text for details). The caudal peduncle is 

shaded. 

Fig. 3 Variation in overall body morphology of R. argentea: across lakes (dNP, panel A), through time for 

inshore populations (dYR.IN, panel B), and through time for offshore populations (dYR.OFF, panel C). Body 

shape variation has been illustrated using thin-plate spline transformation grids, which have been 
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magnified by 3 in panels B and C to better illustrate the variation along these divergence vectors. The 

caudal peduncle has been highlighted. A body outline and the median fins have been sketched in as a 

visual aid. 

Fig. 4 Landmark vectors illustrating variation in overall body morphology of R. argentea: across lakes 

(dNP, panel A), through time for inshore populations (dYR.IN, panel B), and through time for offshore 

populations (dYR.OFF, panel C). The vectors convey the direction and relative magnitude of change at each 

landmark, and the arrows indicate changes in the direction of the population indicated in the title. 

Vector lengths been magnified by 3 to better illustrate the variation along the divergence vectors; and a 

body outline has been sketched in as a visual aid. 

Fig. 5 Mean scores (± 2 SE) along the Nile perch divergence vector (dNP) for lakes where Nile perch were 

absent (white), transient (grey) or present (black). Lakes are abbreviated as follows: BIS (Bisina), OMU 

(Omuno), GIG (Gigati), NAW (Nawampasa), BIS (Bisina), MET (Meito), NAB (Nabugabo), KYO (Kyoga), VIC 

(Victoria). 

Fig. 6 Relative caudal peduncle area (ratio of caudal peduncle area to total body area) of R. argentea 

across lakes where Nile perch were absent (white), transient (grey), or present (black). Data shown are 

means ± 2 SE. Lakes are abbreviated as in Fig. 5. 

Fig. 7 Variation in overall body morphology of R. argentea over time in Lake Victoria, for offshore 

habitats only. Data are plotted along the divergence vector for the year effect from MANCOVA analyzing 

offshore populations only (dYR.OFF). Data shown are means ± 2 SE for each population. 

Fig. 8 Relative caudal peduncle area (ratio of caudal peduncle area to total body area) of R. argentea 

R. argentea for years pre- (open symbols) and post-Nile perch (filled symbols). Data shown are means ± 

2 SE.  
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Fig 3 
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Fig. 4 
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Fig. 5 
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Fig. 6 
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Fig. 7 
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Fig. 8 
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