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Phosphoregulation of Ire1 RNase splicing activity
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Ire1 is activated in response to accumulation of misfolded proteins within the endoplasmic

reticulum as part of the unfolded protein response (UPR). It is a unique enzyme, possessing

both kinase and RNase activity that is required for specific splicing of Xbp1 mRNA leading to

UPR activation. How phosphorylation impacts on the Ire1 splicing activity is unclear. In this

study, we isolate distinct phosphorylated species of Ire1 and assess their effects on RNase

splicing both in vitro and in vivo. We find that phosphorylation within the kinase activation

loop significantly increases RNase splicing in vitro. Correspondingly, mutants of Ire1 that

cannot be phosphorylated on the activation loop show decreased specific Xbp1 and

promiscuous RNase splicing activity relative to wild-type Ire1 in cells. These data couple the

kinase phosphorylation reaction to the activation state of the RNase, suggesting that phos-

phorylation of the activation loop is an important step in Ire1-mediated UPR activation.
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T
he endoplasmic reticulum (ER) is the site of synthesis,
modification and folding for membrane proteins and
secretory proteins destined for other cellular compart-

ments and the extracellular space. Upon ER stress, the influx of
nascent polypeptides overwhelms the capacity of the ER to
correctly fold and maintain protein tertiary structure, and, as a
result, a complex cell signalling system termed the Unfolded
Protein Response (UPR) is activated to maintain homeostasis.
The UPR elicits a varied response, which includes transcriptional
upregulation of chaperones, general cell translation attenuation,
activation of ER-associated degradation (ERAD) and an increase
in ER size. If the imbalance is not rectified, then the UPR switches
from being prosurvival to instigating an apoptotic response1,2.

Ire1 is one of three sensor proteins that initiates and ultimately
dictates the outcome of the response in humans. Ire1 consists of a
luminal domain, a single pass transmembrane segment and a
cytoplasmic domain that is further subdivided into an autopho-
sphorylating kinase domain and an endoribonuclease (RNase)
domain.

Upon activation, the luminal domains of Ire1 dimerize/
oligomerize; this positions the cytoplasmic kinase domains in
close proximity to each other in a face-to-face orientation,
which allows autophosphorylation to occur3. On the basis of
yeast structures, Ire1 reorientates to form a back-to-back
rearrangement, which may form higher oligomeric structures,
and is thought to be important to achieve the RNase splicing
competent state4,5.

In budding yeast, RNase domain splices a 252-nucleotide
segment specific to HAC1 mRNA in a spliceosome-independent
manner. The 30 untranslated region of HAC1 contains a targeting
sequence, which may be required for mRNA recruitment to the
oligomerized Ire1 active state. By contrast, in the human system,
unspliced Xbp1 contains a C-terminal signal sequence that
recruits the ribosome-nascent mRNA chain to the ER membrane
to undergo splicing by Ire1 (refs 1,6). Ire1 splices a shorter
26-nucleotide sequence from Xbp1 mRNA. This causes a
translational frameshift, which results in the expression of a
potent transcriptional activator that upregulates expression of
UPR target genes2,7,8.

UPR has been implicated in many diseased states, notably
cancer. Interestingly, Ire1 has recently emerged as a new
target for therapeutic intervention in multiple myeloma (MM),
a cancer resulting from malignant transformation of
plasma cells. Xbp1, besides its role in UPR, acts as a
checkpoint control in plasma cell differentiation, and mis-
regulation can cause uncontrollable proliferation leading
to MM9–11. We have previously demonstrated that
inhibiting the human Ire1 kinase reaction with a specific
kinase inhibitor sunitinib resulted in loss of Xbp1 splicing in
MM cell lines3.

Mechanistic understanding of how phosphorylation and ligand
binding affect the RNase activity of Ire1 is of crucial importance
for therapeutic interventions. Recently, phosphomimetic mutants
of yeast Ire1 were seen to undergo sustained splicing, indicating
that dephosphorylation of Ire1 is an important step in RNase
deactivation12. However, a separate study suggested that the
phosphoryl transfer reaction is important for deactivation rather
than activation of RNase13, which supports a previous work
suggesting that the kinase inhibitor 1NM-PP1 activated RNase
splicing thereby circumventing the requirement for
phosphorylation1,14. This contrasts with early experimental
work showing mutation of catalytic residues in the kinase
domain disrupting RNase function15 and more recently
inhibition of kinase activity leading to loss of splicing in vivo
3,15,16. Furthermore, sunitinib has also been shown to be a potent
inhibitor of closely related RNase L and PKR; these proteins are

involved in antiviral innate immune responses and share
significant sequence homology with Ire1 kinase17.

In an attempt to clarify the role of phosphorylation and ligand
binding upon the RNase splicing activity of Ire1, we identify and
map, using mass spectrometry analysis, specific phosphorylation
sites by purifying distinct phosphorylated Ire1 populations from
proteins expressed in the eukaryotic insect cell system. The
isolation of differentially phosphorylated species allows us to
assay the effects of specific phosphorylations upon the RNase
splicing activity. We show that phosphorylations upon the
activation loop increase the enzymatic rate of splicing manyfold
above that of the dephosphorylated protein in vitro, whereas
linker region and RNase domain phosphorylations have little/no
impact upon splicing. Trans-autophosphorylation of depho-
sphorylated Ire1 in vitro leads to phosphorylation of two specific
residues in the kinase activation loop. C-terminal Ire1 expressed
in insect cells exhibits further phosphorylations that occur on the
Linker and RNase domain. Furthermore, we show that mutations
of activation loop phosphorylation sites result in loss of splicing
and a reduction in RIDD activity relative to wild-type Ire1 in
cells. This work indicates the importance of the kinase auto-
transphosphorylation reaction in activating the RNase domain to
achieve the splicing active state, thereby coupling the two
reactions together. Phosphorylation of kinase activation loop is
an important and necessary step for achieving the activated Ire1
RNase splicing state in which splicing of Xbp1 is enhanced,
leading to subsequent activation of UPR signal. This study will
help to clarify our understanding of Ire1-phosphoregulated
RNase splicing and provide valuable insights for cancer
therapeutic targeting of Ire1.

Results
Identification of phosphorylation sites. A cytoplasmic portion
of human Ire1 (547–977) encompassing the kinase and endor-
ibonuclease domains was expressed in insect cells. We have
previously detailed our purification protocol for obtaining
homogenous samples of dephosphorylated protein3. In the
present protein purification, we omitted the incubation with
lambda phosphatase and performed the monoQ anion exchange
step with a very shallow gradient (Fig. 1a,b). From this
purification step we were able to isolate several different
peaks, which we sent for mass spectrometry analysis,
where proteins were treated with trypsin digestion. The
resultant peptide fragments were subjected to tandem mass
spectrometry using MALDI-TOF/TOF and then ESI
QTOF instruments (Supplementary Figs 1A–D and 2A,B and
Supplementary Table 1). Several peptides exhibited modifications
consistent with being phosphorylated. Using the ESI QTOF setup,
we were able to map the sites of certain phosphorylations.
To further reinforce our data, we analysed the molecular mass
of the different phosphorylated protein samples using the
MALDI-TOF/TOF setup (Supplementary Fig. 3). Using both
trypsin-digested analysis and molecular mass spectrometry of
protein peak samples, coupled with the fact that this is an
established technique for purifying phosphorylated proteins,
particularly kinases18,19, we were fully confident of the
phosphorylated protein assignments. The order of peaks that
eluted off from the monoQ column roughly correlated with
increasing number of phosphorylations upon Ire1. The first peak
(Fig. 1a,b), which was also the largest peak, relates to purified Ire1
protein being in a dephoshorylated state, interestingly, suggesting
that Ire1 protein is being kept in a ‘ground dephosphorylated
state’ by various phosphatases consistent with other kinase
regulatory mechanisms. The next peak (PK2) (Fig. 1a,b) indicated
purified protein being phosphorylated at two sites ser551 and
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ser562 in the linker region; we refer to this as L-phos. Peak 3
(PK3) contained five phosphorylations at ser724, ser726, and
L-phos, with a weak/low signal for thr973 phosphorylation. PK4
indicates Ire1 protein phosphorylated at ser724, ser726, ser729
and L-phos, and, again as with PK3, weak/low levels of thr973
phosphorylation were detected. The sites of phosphorylations fall
into three particular areas, phosphorylation in the linker region
(L-phos), kinase activation loop phosphorylations and thr973
phosphorylation positioned within the C-terminal RNase domain
(Fig. 1c). The isolation of differentially phosphorylated Ire1
subspecies allows us to assay the effects of specific
phosphorylations upon Ire1 RNA splicing activity; however,
initially it is also necessary to understand the effects of ligand
binding upon the splicing reaction.

Ligand binding has minimal effect on RNase activity in vitro.
To assay the effects of phosphorylations and ligand binding upon
RNase splicing activity, we made use of fluorescence resonance
energy transfer (FRET)—quenched mini Xbp1 RNA substrate
probe (Fig. 2a), which when cleaved by Ire1 emits fluorescence
at 590 nm (cy3) wavelength20. Initially, just taking the
dephosphorylated protein, we incubated varying concentrations

of substrate probe and measured the fluorescence emitted over a
period of time (Fig. 2b). The resultant reaction data were of very
high quality and the reactions fitted excellently with Michaelis–
Menton enzyme kinetics. By using the initial rates of each
reaction at varying concentrations of the probe, we were able to
successfully measure the substrate turnover (Kcat) and the
catalytic enzyme efficiency (Kcat/Km) (Table 1). We performed
the same analysis for both dephosphorylated proteins in the
presence of a non-hydrolysable ATP mimic AMP-PNP and ADP
(Fig. 2c). We found that the Kcat values for both the
dephosphorylated and the AMP-PNP bound cofactors were
almost identical at 0.118 and 0.144 s� 1; this was also reflected in
the kcat/Km, which gives a measure of the efficiency of the enzyme,
at 3.21� 104 and 2.63� 104 M� 1 s� 1, respectively. For
dephoshorylated protein in the presence of ADP, the Kcat and
Kcat/Km were only slightly higher at 0.295 s� 1 and 4.61� 104

M� 1s� 1, suggesting that the bound ADP may assist in a
conformation conducive for the RNase cleavage reaction.
Previously reported data in the field suggested that the presence
of nucleotide can induce RNase activity; if this were the case, then
AMP-PNP would also have an inducing effect, which in our data
it does not and is instead clearly identical to the basal level
splicing of dephosphorylated protein without any ligand,
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Figure 1 | Identification of phosphorylation sites. Chromatogram showing the elution profile of human Ire1 protein (547–977) expressed in insect

cells and passed through a monoQ anion exchange column. The four peaks indicated distinct phosphorylated species of Ire1, and their sites of

phosphorylation were identified by mass spectrometry (see Supplementary Figs 1,2, Supplementary Table 1). (b) Ire1 protein (547–977) samples

from the four distinct peaks isolated by anion exchange were visualized by SDS-PAGE (top panel) and by western blot using a generic human Ire1

antibody (bottom panel). (c) The position of phospho sites relative to each other and mapped onto the X-ray structure of human Ire1

autophosphorylation complex (3P23).
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suggesting that just the mere presence of nucleotide is not enough
to induce significant splicing. However, on comparison of the
dephosphorylated Ire1 rates of reaction with those of the
phosphorylated Ire1 protein (see below PK3 and PK4), the
values between dephosphorylated, ADP and AMP-PNP bound
protein showed insignificant differences.

Activation loop phosphorylation increases RNase activity. The
purification and isolation of the differentially phosphorylated Ire1
enabled us to measure the effects of specific phosphorylations

upon the RNase activity (Fig. 3a–e). PK2 contains doubly phos-
phorylated protein in the linker region at ser551 and ser562.
Analysis of the initial rate curve for PK2-phosphorylated Ire1
(Fig. 3a,e and Table 1) gave a Kcat/Km value of 5.11� 104 M� 1

s� 1. This value is only slightly higher than that of depho-
sphorylated Ire1 protein with ADP binding, suggesting that
phosphorylations within the linker region do not have much of
an effect on the catalytic efficiency of Ire1 splicing reactions,
which is not that surprising as it is quite a distance away from the
RNase and indeed kinase active sites.

PK3 contains Ire1 protein, which is phosphorylated on L-phos,
and three further sites, ser724 and ser726 on the activation loop
of the kinase domain and low levels of pthr973 in the RNase
domain. Using the FRET assay, we obtained a Kcat value of
7.37 s� 1 and Kcat/Km of 3.02� 105 M� 1 s� 1 (Fig. 3b,e and
Table 1). These values represent a huge increase over the
dephosphorylated protein or indeed any of the previous samples
tested. The substrate turnover (Kcat) was over 60-fold higher than
that for the dephosphorylated protein and at least 24-fold higher
than that for dephosphorylated Ire1 with ADP bound. These
increases were also mirrored in the Kcat/Km values with PK3 Ire1
being an order of magnitude higher than that of depho-
sphorylated protein. The difference between PK2 and PK3 is
essentially of the two phosphorylations, ser724, ser726 (with low
level thr973 detected), on the activation loop. These two
phosphorylations are responsible for the greatest increase in
enzyme RNase activity, even more so than that of PK3 to PK4
(see below PK4). The phosphorylations no doubt have an effect
on the conformation of the activation loop and possibly lock it
into a position different from that of the dephosphorylated
protein. These movements would transmit down to the RNase
domain thus allowing it to adopt a conformation, which is more
conducive for splicing to occur.

PK4 Ire1 differs from PK3 protein by having one additional
phosphorylation positioned on the activation loop at ser729.
Using the FRET assay, we obtained the Kcat value of 12.7 s� 1 and
Kcat/Km value of 1.26� 106 M� 1 s� 1 (Fig. 3c,e and Table 1).
This represents an increase of more than 105-fold in substrate
turnover compared with dephoshorylated protein and almost
double that of PK3 Ire1. Again, this is reflected in the catalytic
efficiency of Kcat/Km, which is almost 40-fold higher than that
of dephosphorylated protein and over 4-fold higher than that
of PK3 Ire1. Although the enzymatic rate values for PK4 are
the highest for all samples tested, the greatest increase
between samples is that of PK2 to PK3 and is attributable to
pS274 and pS726.

It is clear from the enzymatic rate analysis that the
phosphorylations on the activation loop enhance the RNase
splicing activity of Ire1 manyfold above that of the depho-
sphorylated protein; in the case where all three of the activation
loop residues, ser724, ser726 and ser729, are phosphorylated, the
substrate turnover is over 100-fold higher than that of the
dephosphorylated protein. This unambiguously links the phos-
phorylations upon the activation loop to enhanced RNase splicing
of Ire1. The phosphorylations upon the linker region and the
RNase domain do not seem to effect the splicing reaction.
Similarly, the addition of nucleotide ADP and AMP-PNP to
dephosphorylated protein seems to have a minimal effect upon
the splicing reaction when compared with activation loop
phosphorylations. It would be interesting to see how the binding
of ligands to the distinct phosphorylated species effects the RNase
activity. To test this point, we incubated both ADP and AMP-
PNP to the different Ire1 peaks and observed the enzymatic
activity (Supplementary Fig. 4A–C). We see that, in the presence
of ADP and AMP-PMP, the enzymatic reaction is largely reduced
when compared with that of phosphorylated protein without
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RNase splicing. (a) Fret-quenched RNA Xbp1 substrate probe was tagged
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ligand. This indicates that ADP and AMP-PMP, rather than
having an activating effect upon splicing, reduce the rate of
reaction significantly. Ligand binding possibly causes the glycine-
rich loop to close over the ligand-bound active site, locking the
kinase domain in a ‘closed’ conformation, with a subsequent
conformational change transmitted to RNase domain and
negatively effecting the splicing activity.

In vitro Ire1 is re-phosphorylated on ser724 and ser726. The
distinct phosphorylated populations of Ire1 purified from
insect cells, which contain phosphatases, indicate that they are

biologically relevant. It would be interesting to investigate which
of these phosphorylations occur solely due to Ire1 kinase auto-
transphosphorylation reaction. To test this point, we incubated
dephosphorylated protein in the presence of ATP and then
subjected the protein to trypsin digestion and subsequent mass
spectrometry analysis. The mass spectrometry analysis indicated
the presence of two phosphorylations at ser724 and ser726 on the
activation loop of the kinase domain. We then tested the substrate
turnover and catalytic efficiency by using the FRET probe assay
(Fig. 3d,e and Table 1). The Kcat and Kcat/Km values for the
in vitro re-phosphorylated Ire1 wwere 6.79 s� 1 and 4.2�
105 M� 1 s� 1, respectively. These values match very closely with

Table 1 | Enzymatic rates of RNase splicing; the kinetic parameters of various dephosphorylated and phosphorylated
states of Ire1.

Vmax (lM s� 1) Km (M) Kcat (s� 1) Kcat/Km (M� 1 s� 1) (Kcat)sample/(Kcat)dephos (Kcat/Km)sample/(Kcat/Km)dephos

dephos Peak 1 0.024 3.68� 10�6 0.118 3.21� 104 1.0 1.0
dephosþADP 0.059 6.40� 10�6 0.295 4.61� 104 2.5 1.4
dephosþAMP-PNP 0.029 5.48� 10� 6 0.144 2.63� 104 1.2 0.8
dephosþATP (in vitro
re-phos)

1.36 1.62� 10� 5 6.79 4.20� 105 57.5 13.0

Peak 2 0.28 2.78� 10� 5 1.42 5.11� 104 12.0
k� 5

1.6

Peak 3 1.47 2.44� 10� 5 7.37 3.02� 105 62.4
k� 2

9.4

Peak 4 2.5 9.95� 10�6 12.5 1.26� 106 105.9 39.2
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Figure 3 | Distinct phosphorylations significantly increase RNase splicing. (a–d) Fluorescence time course experiments measuring splicing of

FRET probe by differently phosphorylated species of Ire1 protein at increasing concentrations of substrate probe. (a) Profile of PK 2 Ire1 protein.

(b) Profile of in vitro ATP re-phosphorylated Ire1 that was initially dephosphorylated. (c) Profile of PK 3 Ire1 protein. (d) Profile of PK 4 Ire1 protein.

(e) A plot of the initial rates derived from each fluorescence time course splicing profile in a–d at varying substrate concentrations to give an overall

initial rate curve for that particular protein peak sample from which we obtain the kinetic parameters listed in Table 1. PK 4 Ire1 sample (red) displays

the steepest initial rate curve profile, and this is reflected in its kinetic rates Km and Kcat (see Table 1). PK 3 human Ire1 protein sample (black) purified

from insect cells with distinct phosphorylations on ser724 and ser726 within the activation loop and with extra L-phos and pT973 gives a very similar

initial rate profile to dephosphoshorylated protein that has been re-phosphorylated by incubating with ATP in vitro and exhibiting phosphorylations on

Ser724 and Ser726 on activation loop only. PK 2 Ire1 protein sample (grey) containing only L-phos modification shows a very slow initial rate curve profile.
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those of PK3 Ire1, which was also phosphorylated on ser724 and
ser726 of the activation loop with further phosphorylations on
L-phos and Thr973, but as L-phos and pThr973 do not contribute
significantly to the splicing reaction, we would expect that PK3
and re-phosphorylated protein to have similar values for their
enzymatic rates, which is indeed the case. This further supports
the notion that L-phos and pThr973 do not contribute greatly to
splicing reaction kinetics, and the major factor in the increase in
RNase activity is due to phosphorylation of activation loop resi-
dues ser724, ser726 and ser729 with the greatest contribution
from ser724 and ser726.

Activation loop mutant reduces RNase splicing in
cells. It is clear that activation loop phosphorylations have a
significant effect upon the RNase activity in vitro. We wanted to
investigate the effects of mutating specific phosphorylations on
RNase splicing in vivo. To address this point, we co-transfected
HT1080 cells with plasmids expressing Ire1 phosphorylation
mutations (Fig. 4a–c, Supplementary Fig. 5), identified from our
mass spectrometry data, and measured splicing by RT–PCR
analysis. Initially, we mutated each phosphorylation site to assay
the effect of that specific phosphorylation upon splicing and then
used the double and triple mutations to mimic sets of phos-
phorylations such as L-phos (S551A, S562A), in vitro re-phos-
phorylated activation loop (S724A, S726A) and full activation
loop phosphorylations (S724A, S726A, S729A) to establish their
effects. Using 50 mM tunicamycin to induce ER stress, we mea-
sured the total level of splicing for each mutant and compared it
with both wild-type Ire1 and empty vector control. After 2 h, the
most drastic effect by a single-amino-acid mutation on splicing
was observed with activation loop mutants, S724A, S726A, S729A
and, in particular, S726A (Fig. 4a–c), which displayed a 50%
reduction in splicing when compared to wild type. This is in
agreement with the in vitro splicing activity where the biggest
effect was seen with PK3, which contains both S724 and S726.
The linker region mutations S551A and S562A seem to have very
little effect upon splicing; this is further confirmed by the double
linker region mutation S551A/S562A, which also did not exhibit
significant loss of splicing compared with activation loop muta-
tions. The T973A mutation displayed a slight inhibition of spli-
cing of around 85% of wild type, which was more than L-phos
double mutant, but again when compared with the activation
loop mutants it becomes less significant. The phosphorylation on
residues pS724 and pS726, which is present in PK3 and in in vitro
re-phosphorylated Ire1, was seen from our FRET assay to have
the largest increase in activity (Table 1) corresponding to a
fivefold jump from PK2 to PK3, whereas PK3 to PK4 represented
a twofold increase in terms of Kcat values. It is therefore
straightforward to predict that the double-mutant S724A/S726A
would have a drastic effect and indeed this was the case with
splicing in vivo reduced to 38%, recapitulating the results
obtained in vitro. Interestingly, the triple activation loop mutant
S724A, S726A, S729A seems to be inhibiting to a similar level as
that of the double-mutant S724A, S726A. This indicates that there
maybe a basal level of splicing, which is not directly influenced by
phosphorylation, and that mutation of S724A and S726A is suf-
ficient to reach this basal level in vivo.

Therefore, these data clearly indicate that mutation of
activation loop phosphorylation sites upon Ire1 in HT1080 cells
significantly reduces RNase splicing, consistent with the in vitro
FRET splicing data.

Activation loop mutant reduces splicing in Ire1� /� cells. To
further emphasize the importance of the activation
loop phosphorylations, we conducted a splicing time course

experiment using Ire1� /� MEF cells in mild ER stress condi-
tions of 0.5mM tunicamycin with triple activation loop mutant
S724A, S726A, S729A and wild-type Ire1 and observed the fold
change in splicing compared with empty vector by qRT–PCR
analysis (Fig. 5a). We see at each time point a reduced level of
splicing for the triple activation loop mutant as compared with
wild type. At 2 h, the mutant level of splicing is comparable to
empty vector splicing but increases twofold above empty vector
before dropping back after 18 h. The wild type displays sig-
nificantly more splicing at each time point with an almost 3.5-fold
increase at 6 h before dropping back at 18 h. Moreover, the
splicing for wild type fluctuates more than the mutant. This result
clearly shows that mutation of active site phosphorylations
reduces splicing in mild ER stress conditions in Ire1� /� cells
and is consistent with both the HT1080 cell line and in vitro
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splicing data. Furthermore, fluctuations in wild-type splicing
suggest that wild-type Ire1 may be able to adapt its splicing
requirements better than mutant protein, again suggesting that
active site phophorylations have a role in regulating splicing
output. To investigate the effects of activation loop phosphor-
ylation mutant upon expressed protein levels, we performed a
western blot analysis for spliced Xbp1 from Ire1� /� cells at
varying time points. (Fig. 5b, and Supplementary Fig. 6). We
clearly see a difference between wild-type and mutant samples for
spliced Xbp1 protein expression levels at all time points tested
using mild ER stress, with the largest difference in protein levels
occurring at a 4-h time point. The difference in spliced Xbp1

expression levels between triple mutant and wild type becomes
much less pronounced during the course of the experiment,
suggesting that the rate of activation is compromised more
severely in the mutant protein during early stages of ER stress.

Taken together, the experiments conducted both in HT1080
and Ire1� /� cells reinforce the notion that activation loop
phosphorylations are coupled to RNase activity as evidenced by
both reduced mRNA splicing and reduced sXbp1 protein
expression levels.

Activation loop phosphorylation mutant reduces RIDD activ-
ity. To understand whether active site phosphorylations have an
impact upon RIDD, we measured the relative mRNA levels of
RIDD target genes21 in Ire1� /� cells that have been transfected
either with wild-type Ire1 or with triple activation loop mutants
using qRT–PCR. After 6 h of treatment with tunicamycin, we
observed that five out of the six RIDD genes had lower mRNA
levels in wild-type Ire1 samples as compared with mutant
samples with Scara3, Pdgfrb and Hgsnat displaying almost 20%
reduction in wild type compared with mutant (Fig. 5c). This
suggests that RIDD activity is higher in wild-type than in mutant
samples consistent with the notion that Ire1 active site
phosphorylation mutants reduce RNase activity. Thus, mutation
of Ire1 activation loop phosphorylations reduces Ire1’s RIDD
activity and suggests that phosphorylation may have a regulatory
role in RIDD activity.

Discussion
In this study, we identify specific phosphorylations upon Ire1 that
fall into three regions; linker, activation loop and RNase domain.
We show that activation loop phosphorylations are important for
achieving high levels of splicing in vitro and that mutation of
activation loop phosphorylations retards splicing both in HT1080
and in Ire1� /� cells. Moreover, we show that these activation
loop phosphorylations have an effect on Ire1’s RIDD activity.
Thus, the data clearly link the phosphorylation events on ser724,
ser726 and ser729 within the activation loop to enhanced RNase
splicing and imply that kinase activation loop phosphorylations
are an important and necessary step to achieve the activated Ire1
RNase state leading to enhanced Xbp1 splicing and subsequent
UPR activation.

The precise mechanism of how phosphorylations activate the
RNA splicing inferred from this study, and in analogy to other
kinases22, is most likely based on conformational changes that
take place within the protein. In general kinase biology22, the
phosphorylation event causes movements within the active site
that are transmitted to the rest of the protein, manifesting in gross
movements of C-lobe relative to N-lobe. In a similar manner, it is
most likely that Ire1 activation loop phosphorylation leads to
subtle movements within the kinase active site that are
transmitted to the RNase active site by conformational
movements via the C-lobe of the kinase domain. These
conformational changes would induce the binding of RNA
substrate in a more efficient manner leading to increased splicing.

Interestingly, we see effects on splicing activity that are
consistent between both in vitro and in vivo systems; however,
the scale varies. This is most likely due to different rate limiting
steps. The rate limiting step in vitro may be the conformational
changes relating to association and dissociation of the RNA
substrate, whereas in vivo the RNase domain may require other
protein or cellular factors to regulate such events. This may cause
differences between observations in vitro and in vivo, and such
effects cannot be ruled out in this study.

To obtain the differently phosphorylated Ire1 protein for our
in vitro analysis, we have made use of eukaryotic insect expression
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system that can authentically process post-translational modifica-
tions, in part, due to the presence of phosphatases, and that
allows us to isolate distinct phosphorylated species. The ability to
purify these distinct populations suggests that they are in a
biologically relevant state. Interestingly, we see no further
phosphorylation species above those seen in PK4 and no evidence
of hyperphosphorylation similar to that seen in yeast Ire1
expressed in E.coli. A likely explanation for this is that yeast Ire1
has an extra loop insertion rich in ser and thr residues compared
with the human sequence, which could be the site for extra
hyperphosphorylations; alternatively, a recent report suggests a
non-physiological role for hyperphosphorylation for proteins
expressed in E.coli23.

Although the role of activation loop phosphorylations ser724,
ser726 and ser729 is clearly linked to enhanced splicing, the
remaining phosphorylations, notably the linker region (L-phos)
and RNase domain thr973, have minimal impact on splicing. In
the case of L-phos, it is too far way from the kinase or RNase
active site to cause an effect. It has be suggested that maybe
L-phos has a role in increasing the oligomeric state of Ire1;
however, we see no biophysical evidence that any phosphorylated
species exists higher than that of a dimer (Prischi et al. in
preparation), and even if it did increase the oligomeric state we
see no increase in enzymatic rates. Similarly, L-phos could cause
the break-up of a dimer, but again this is unlikely as we see no
corresponding loss in enzymatic rate when compared with
dephosphorylated protein. Interestingly, when we allow the auto-
transphosphorylation reaction to occur with dephosphorylated
protein in vitro, we only measure ser724 and ser726

phosphorylation. The mechanism of activation loop phosphor-
ylation whether in vitro or in cells can easily be rationalized by the
human Ire1 crystal structure, which captures the autopho-
sphorylation event and shows the ordered region of the activation
loop protruding outward towards the kinase active site of the
opposite monomer. However, there must be some cellular factor
causing the phosphorylation of ser729, linker region and thr973,
possibly another phosphorylating kinase. For ser729, the
phosphorylation of which causes an increase in splicing, this
could act as another level of regulatory control whereby initial
cleavage of Xbp1 causes a tempered response to unfolded protein,
but then Ire1 has another ‘gear’ so as to amplify the response.
Very low levels of thr973 phosphorylation were detected and only
when the Ire1 protein had already achieved high degree of
phosphorylation (PK3, PK4). thr973 does not have an impact
directly on the splicing activity in vitro, but has a small noticeable
effect in vivo. Its position within the RNase binding domain
suggests that it may be able to influence the reaction in other
ways. It is tempting to speculate that this phosphorylation and the
phophorylations on the linker region could act as recruitment
factors for Traf2 binding and initiate apoptosis (Fig. 6a,b).
Interestingly, there is now accumulating evidence to suggest that
there are a number of factors that can influence the duration and
amplitude of Ire1 signalling via a protein-signalling platform
termed UPRosome24,25. One such example is the regulation by
the BAX-BAK protein complex, which influences Ire1 signalling
by helping to alleviate stress in the first instance, but if the stress
signal is not relived then this complex switches to outputting an
apoptotic response24. It may be that phosphorylations are a key

P 
P 

P 
P 

λ-phosphatase

Phosphatase

         Auto
phosphorylation

Phosphatase

P 

a

b

P P 
P 

P 
P 

P 
P 

PP

P P P P 
P P 

P
P

P
P 

PP

PPPP
PP

R
ID

D
?

? 

? 

In vitro dephosphorylated Ire1, re-phosphorylated with ATP

Dephosphorylated Ire1
‘ground state’

Trans-autophosphorylation
complex-bound ATP 

Activation loop phosphorylation
ser724 ser726 activates RNase

Autophosphorylation

Human Ire1 (expressed in insect cells) phosphorylation model

Dephos Ire1
‘ground state’

Trans-autophoshorylation
complex-bound ATP 

Kinaseactivation loop
phosphorylation

activates RNase splicing 

Heterokinase
phosphorylation forming
distinct phospho species 

Heterophosphorylation
may trigger recruitment
of unknown cofactors 

Traf 2 ? 
Heterokinase

phosphorylation

Figure 6 | Model of phosphoregulated Ire1 activation. (a) In vitro dephosphorylated Ire1, re-phoshorylated with ATP. Depicts the situation when purified

dephosphorylated human Ire1 protein (PK1) is auto re-phosphorylated in vitro with incubation of ATP only. Initially, the dephosphorylated protein exists in a

ground state and forms a face-to-face dimer. Upon addition of ATP, trans-phosphorylation occurs on positions ser724 and ser726 of the activation loop,

which causes conformation changes within the kinase domain that translate to the RNase domain resulting in activation of RNase such that splicing

turnover is enhanced over 60-fold higher than that of the ‘ground state’. Ire1 then probably reorientates to form a back-to-back arrangement. (b)

Recombinant human Ire1 expressed in insect cell model. Initially, Ire1 is dephosphorylated and in the ‘ground state’ where it forms the trans-

autophosphorylation face-to-face dimer. Upon addition of ATP, autophosphorylation occurs on the activation loop resulting in pSer724, pSer726. Another

factor may cause phosphorylation at other sites within the linker region and RNase domain. Phosphatases within eukaryotic cells keep phosphorylated Ire1

in a biologically relevant state. The order of phosphorylation is not known, but the final phosphorylation on the activation loop pSer729 results in activated

RNase splicing such that the turnover is enhanced at least 100-fold above ground state. Phosphorylations within the RNase domain and linker region have

no/little direct impact on splicing but may be recruiting factors for other process such as RIDD or Traf2; this part of the model is highlighted with dashed

lines to indicate that it is speculative. At this stage, Ire1 probably reorientates to form a back-to-back arrangement.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms4554

8 NATURE COMMUNICATIONS | 5:3554 | DOI: 10.1038/ncomms4554 | www.nature.com/naturecommunications

& 2014 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


component of initiating interactions with cofactors that constitute
the UPRosome, and hence the importance of the present study is
in trying to shed light on this interesting type of regulation.

It is clear that phosphorylation has an important role in
regulating Ire1 activity and what is understood from this study is
the impact that specific phosphorylations have on RNase splicing
and RIDD activity and the requirement of kinase loop
phosphorylations to achieve the activated Ire1 RNase splicing
state for UPR signal activation.

Methods
Expression and purification of phosphorylated Ire1 species. The C-terminal
domain of human Ire1a (residues 547–977) was expressed in sf9 insect cells using
the Bac-to-Bac method after a 3-day-growth at 27 �C (ref. 3). The cell pellet was
lysed by sonication in 50 mM Hepes, pH 7.5, 300 mM NaCl, 10% glycerol,
supplemented with protease inhibitors and centrifuged to remove cell debris and
insoluble material at 16,000 g for 60 min. The supernatant was then passed through
a batch/gravity column containing 15 ml of talon resin (Clontech), and protein was
eluted off with 300 mM imidazole in a total volume of 50 ml3. Sample was treated
with Rhinovirus 3C protease (PreScission protease, Amersham Biosciences, 300 ml
at 2 mg ml� 1) to remove his-tag. To obtain distinct Ire1 phosphorylated species,
the lambda phosphatase incubation step was omitted3 and sample was passed
through Mono-Q column with a shallower gradient (80–300 mM NaCl over 30
column volumes). The eluted phosphorylated peaks were separated and further
purified by size exclusion chromatography on a Superdex200 column
(GE Healthcare) in a 25 mM Hepes pH 7.5 buffer, containing 150 mM NaCl, 5 mM
DTT and 5% glycerol.

In vitro autophosphorylation. Ire1 autophosphorylation was achieved by incu-
bation for at least 2 h of 50 mM PK1/dephosphorylated Ire1 with 2 mM ATP
(Sigma), 5 mM MgCl2, at room temperature in a 25 mM HEPES, pH 7.5, con-
taining 150 mM NaCl, 5 mM DTT and 5% glycerol. The presence of autopho-
sphorylation was confirmed by mass spectrometry and western blot using a
pSer724 phospho-specific antibody.

In vitro RNase splicing assay. Ire1a RNase activity was measured by incubation
of 0.2 mM purified protein with increasing concentrations (0–50 mM) of quenched
single-strand RNA probe (50- Cy3-GACGUCCACAUCCUGGUCC-BHQ2 -30 IDT
DNA Technologies, Leuven, Belgium) at 30 �C in a 384-well low-volume non-
binding plate (Greiner Bio-One Ltd, Gloucestershire, UK) with a final reaction
volume of 20 ml. Ire1a reaction buffer (25 mM HEPES pH 7.5, 150 mM NaCl,
5 mM DTT, 5% glycerol) was used for all RNase activity measurements. Whether
in presence of ATP or ADP or AMP-PNP (Sigma) the same protocol of the
autophosphorylation was used (incubation of 50 mM protein for at least 2 h with
2 mM nucleotide and 5 mM MgCl2). Time-dependent fluorescence was measured
on a POLARstar Omega plate reader (BMG LABTECH GmbH, Germany) using an
excitation filter of 550 nm and emission filter of 590 nm. Initial rates were mea-
sured using MARS Data Analysis Software V2.41 (BMG LABTECH GmbH, Ger-
many). Initial rates were plotted with a Michaelis and Menten model using PRISM
6 (GraphPad Software, La Jolla California USA, www.graphpad.com).

Cell culture and in vivo Xbp1 mRNA splicing assays. Human Fibrosarcoma
HT1080 cells were cultured in Dulbecco’s Modified Eagle Medium supplemented
with 10% Fetal Bovine Serum, 2 mM L-Glutamine, 50U Penicillin per 50 mg
Streptomycin per ml. A day before transfection, 300,000 cells per well (2 ml) were
plated on a six-well plate. Wells were transfected with 2 mg of DNA mixed with
Fugene 6 reagent (Promega) in a 1:3ratio.2 mg of total DNA per well were prepared
by mixing equimolar ratio (1:1) of Wild-Type/Mutants IRE1a (Adgene pcDNA3
plasmid) and Adgene’s pEGFP-C3 (transfection efficiency indicator). After 24 h,
IRE1a- expressing cells in each well were induced by 0.5 mM Tunicamycin dis-
solved in DMSO (0.5% v/v) and harvested after 2, 4 and 6 h. The total RNA was
extracted from the cells by using RNeasy Plus Mini Kit (Qiagen), and were DNAse
I treated (1U/10 ml RNA) and reverse transcribed to cDNA by SuperScript III First-
Strand Synthesis SuperMix (by random hexamers). The spliced (228 bp) and
unspliced (254 bp) Xbp1 cDNA fragments were amplified by PCR (Phusion Flash
High Fidelity PCR Master Mix-Thermo Scientific) using 68 �C as an annealing
temperature and following set of primers: foward primer: 50-CCTGGTTGCTGAA
GAGGAGG-30 and reverse primer: 50-CCATGGGGAGATGTTCTGGAG-30 . PCR
products were run on 3% agarose gel stained with Gel Red dye (Biotium) in 1�
TBE buffer. All samples were made in triplicate and subjected to densitometry
measurements by Phoretix gel analysis software (TotalLab). Splicing percentage
values are shown as an average value of three measurements±s.d. The same
experiments were performed in Ire1� /� cells. Ire1� /� MEFs (kindly provided
by Professor David Ron) were grown in Dulbecco’s Modified Eagle Medium (high
glucose) supplemented with 10% Fetal Bovine Serum, 2 mM L-glutamine, 1� non-
essential amino-acid solution, 50 mM 2-Mercaptoethanol and 50U Penicillin per
50mg Streptomycin per ml. A total of 500,000 cells were plated 24 h before

transfection, then transfected with 2 mg DNA (equimolar mixture of plasmidsþ
pEGFP-C3) in ratio 1:6 with Fugene 6 reagent (Promega). After 48 h (peak of
IRE1a expression), cells were induced with 5 mM tunicamycin and harvested,
respectively, after 2, 4 and 6 h. Further stages of experiment were performed as
described previously.

Quantitative RT–PCR. MEF Ire1� /� retrotranscribed cDNA was used in tri-
plicate for quantitative real-time PCR analysis using the SYBR Green reagent
system (Applied Biosystems) and an ABI 7500 (Applied Biosystems). Relative
quantities of amplified cDNAs were then determined using SDS v 1.4 software and
normalized to GAPDH.

Western blot analysis. Induced MEFs in each well of asix-well plate containing
IRE1a� /� cell monolayer were lysed in RIPA buffer, scraped and agitated for
15 min at 4 �C. After that cell extracts were incubated on ice for 30 min and centri-
fuged for 10 min at 10,000 g. Collected supernatants were mixed with Leammli
buffer and run on 4–12% precast Bis-Tris gels (Invitrogen). Gels were transferred to
nitrocellulose membrane (Invitrogen’s iBlot) and blocked in PBSþ 0.05% Tween-20
and 5% Marvel Dried Milk. Primary antibody was added to blocking buffer (PBS,
Tween-20, 2.5% milk powder) in concentration of 1:200 for antispliced human
Xbp1s (Biolegend) and 1:2,000 for antihuman GAPDH FL-335 (Santa Cruz
Biotechnology)(Full image western blot of sXbp1 over time in Ire1� /� cells is
presented in Supplementary Fig. 7). After a 1 h incubation at room temperature,
membranes were washed three times in PBSþ 0.05% Tween-20 and incubated with
secondary antibody (anti rabbit, GE Healthcare) diluted (1:2,000) in 2.5% milk
blocking buffer (1 h, room temperature). Followed by another three washes, blots
were visualized by Millipore Luminata Crescendo Western HRP substrate and
developed on Amersham Hyperfilm ECL (GE Healthcare).

Statistical methods. All experiments were performed in triplicate unless other-
wise stated.

Mass spectrometry.
MS MALDI TOF. Mass spectrometry. In preparation for mass spectrometry, the
desired protein band was excised, lyophilized and digested with trypsin
(E.C.3.4.21.4, Promega) overnight. Peptides were extracted from gel pieces, and
nanoLC was performed on an Ultimate 3000 using a PepMap 100 75 mm� 15-cm-
fused silica C18 analytical column (LC Packings, Dionex, Sunnyvale, CA), coupled
to a Probot for fraction collection and matrix addition with a-Cyano-4-hydro-
xycinnamic acid acid as the matrix. A gradient of 2–60% ACN in 0.1% TFA was
delivered over 36 min at a flow rate of 0.300 nl min� 1. MALDI TOF/TOF-MS was
performed using an Applied Biosystems 4800 mass spectrometer (Foster City, CA.)
in the positive reflectron mode with delayed extraction. MS precursor acquisition
was followed by interpretation and data-dependent MS/MS acquisition with the
CID on. Data interpretation was configured to select a maximum of 10 precursor
ions per fraction with a minimum signal-to-noise ratio of 50. The data were
processed using GPS Explorer (Applied Biosystems, CA) against the Swiss-Prot
database. Search parameters were enzyme¼ trypsin; fixed modifications¼
carboxymethyl (C); variable modifications¼ oxidation (M); mass tolerance±100
p.p.m.; fragment mass tolerance¼ 0.3 Da; maximum missed cleavages¼ 1; mass
values¼monoisotopic. Phosphorlyated peptides were assigned manually on
inspection of the data.

Mass analysis of intact protein. Samples were desalted by adsorption to Milli-
pore C4 Ziptip, washed with 5%(v/v) acetic acid and eluted to the sample slide with
2 ml of CHCA matrix (10 mg ml� 1 alphacyano-4-hydroxycinnamic acid in 50%
acetonitrile/water conatining 0.1%trifluroacetic acid). After drying at room tem-
perature, samples were analysed in a Waters MaldiMicro MX mass spectrometer
operating in linear mode with a 10 Hz UV laser, power 130, pulse voltage 850 V,
ion extraction delay time 2,000 ns with external calibration using multiple charge
states of bovine trypsinogen and its dimer. Spectra were displayed as the average of
B1,000 laser shots each. Data processing was performed by using Waters Mas-
sLynx software.

ESI QTOF. Sample processing. For intact molecular mass determination,
samples were button dialysed (Hapton Research, Aliso Viejo, CA, USA) overnight
into 50 mM ammonium acetate, pH 6.9. For phosphorylation site analysis, samples
were separated by 1D SDS-PAGE. The phosphoprotein band was excised for
proteolytic digestion with trypsin followed by phosphopeptide enrichment by TiO2

chromatography. In brief, 2.5 mg of each protein was mixed 1:1:1 (v/v/v) with 3�
Tris sample buffer and 150 mM DTT and heated at 95 �C for 5 min. Samples were
cooled, centrifuged and loaded onto 15% Tris-glycine gels. A constant voltage of
200 V was applied for 1.5 h (running buffer 1� SDS tris/glycine). The gels were
rinsed with distilled water (5 min) and then stained with InstantBlue Coomassie
stain (Expedeon Hartson, UK) overnight. Phopshoprotein gel bands were excised
and chopped into small pieces (B1 mm3 ) and destained in 30% ethanol at 70 �C
for 30 min with shaking. This was repeated with fresh ethanol solution until all
coomassie stain was removed. The gel was then covered with 25 mM ammonium
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bicarbonate/50% acetonitrile and vortexed for 10 min. The gel slices were then
covered with 100% acetonitrile and left for 5 min with vortexing before the
supernatant was discarded and replaced with a fresh aliquot of acetonitrile.
Acetonitrile was removed, and the gel pieces were completely dried under vacuum
centrifugation for 30 min. Once dry, the gel slices were cooled on ice and then
covered with ice cold trypsin solution (20 ng ml� 1 in 25 mM ammonium
bicarbonate) and left on ice for 30 min to rehydrate. Excess trypsin solution was
removed, and the gel slices were covered with a minimal amount of 25 mM
ammonium bicarbonate. After briefly vortexing and centrifuging, the gel slices were
incubated at 37 �C with shaking for 18 h. The resulting digest was vortexed,
centrifuged and 50ml water was added. Following vortexing for 10 min, the
supernatant was recovered and added to an eppendorf containing 5 ml acetonitrile/
water/formic acid (60/35/5; v/v). Fifty microlitres of acetonitrile/water/formic acid
(60/35/5; v/v) was added to the gel slices and vortexed for an additional 10 min.
The supernatant was pooled with the previous wash, and one additional wash of
the gel slices was performed. The pooled washes containing the peptides were dried
by vacuum centrifugation. For phosphopeptide enrichment by TiO2 affinity
chromatography, the tryptic digests were reconstituted in 25 ml loading buffer (1 M
glycolic acid (Sigma Aldrich, UK) in 80% acetonitrile/5% TFA). A TiO2 micro-
column was prepared by plugging the constricted end of a 200 ml GELoader pipette
tip with a C8 disc. TiO2 beads (GL Sciences, Japan) were suspended in 100%
acetonitrile and packed to column length of 3 mm by the application of gentle air
pressure. The column was flushed with 50 ml of 50% acetonitrile and equilibrated
with 20 ml of loading buffer. The peptide solution was then passed through the
column and the flow-through collected. The column was washed with 5 ml of
loading buffer followed by 30 ml of washing buffer (80% acetonitrile/1% TFA) ,and
the eluates were pooled with the flow-through. Bound peptides were eluted from
the column with 50ml elution buffer (0.5% ammonia solution) followed by 1 ml of
30% acetonitrile. All fractions were lyophilized to complete dryness and stored at
� 20 �C until ready for MS analysis.

Enriched samples were reconstituted in 10 ml water and desalted using ZipTip
C18 tips (Millipore UK Ltd, Watford, UK) into 50% acetonitrile and analysed by
Z-spray nanoelectrospray ionization MS using a quadrupole-IMS-orthogonal time-
of-flight MS (Synapt HDMS, Waters UK Ltd., Manchester, UK) using gold/
palladium-coated nanospray tips. The MS was operated in positive TOF mode
using a capillary voltage of 1.5 kV, cone voltage of 20 V, nanoelectrospray nitrogen
gas pressure of 0.1 bar, backing pressure of 2.47 mbar and collision energy of
15–25 V in the trap. The source and desolvation temperatures were set at 80 and
150 �C, respectively. During TOF-MS acquisition, Argon was used as the buffer gas,
at a pressure of 4.0� 10� 3 mbar in the trap and transfer. Mass calibration was
performed by a separate injection of sodium iodide at a concentration of 2 mgml� 1.
Data processing was performed using the MassLynx v4.1 suite of software supplied
with the mass spectrometer.
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