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Wireless sensor networks (WSNs) have limited energy and transmission capacity, so data compression techniques have extensive
applications. A sensor node with multiple sensing units is called a multimodal or multivariate node. For multivariate stream on
a sensor node, some data streams are elected as the base functions according to the correlation coefficient matrix, and the other
streams from the same node can be expressed in relation to one of these base functions using linear regression. By designing
an incremental algorithm for computing regression coefficients, a multivariate data compression scheme based on self-adaptive
regression with infinite norm error bound for WSNs is proposed. According to error bounds and compression incomes, the self-
adaption means that the proposed algorithms make decisions automatically to transmit raw data or regression coefficients, and
to select the number of data involved in regression. The algorithms in the scheme can simultaneously explore the temporal and
multivariate correlations among the sensory data. Theoretically and experimentally, it is concluded that the proposed algorithms
can effectively exploit the correlations on the same sensor node and achieve significant reduction in data transmission. Furthermore,
the algorithms perform consistently well even when multivariate stream data correlations are less obvious or non-stationary.

1. Introduction

Wireless sensor networks (WSNs) can monitor, sense, and
collect the data of various environments ormonitored objects
in an area. And the data are eventually sent to the target users
[1].WSNs have wide range of potential applications including
home area and smart grid [2]. Each sensor node in WSN has
limited battery power supply, and the used batteries are hard
to recharge and replace. It is infeasible that a large number
of nodes directly transmit the collected raw data to the base
station or sink due to limited bandwidth and battery capacity.
Wireless communication consumes most of the power. The
literature [3] shows that the power consumed by transmitting
the 1-bit data over a 100-meter distance can support to execute
3000 CPU instructions.The literature [4] also points out that
the power consumption of the data transmission is much
higher than that of data processing. Transmitting a 1-bit data

via radiomedium is at least 480 times the power consumption
used for executing one “addition” operation. Approximately,
70% of the total power is consumed in data transmission.
How to effectively reduce the amount of data within theWSN
in order to extend the network lifetime is an important issue.
Sensor energy can be saved viamechanisms at different layers
of the WSN protocol stack [5–8], such as energy efficient
routing [9] and battery saving media access control [10],
where there are plenty of existing work. L. Zhang and Y.
Zhang [11] presented an energy-efficient packet forwarding
protocol in wireless sensor networks, considering channel
awareness and geographic information. The perspective of
this paper is from the application layer by introducing
effective data compression.

Sensor nodes use the data sensing units to collect raw
data and then transmit the data processed through the
data processing units to reduce the amount of data to be
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transmitted. Generally, there are two types of processing
methods [12]: data aggregation and data approximation.
Aggregate functions process the sampled data using some
forms of simple statistics such as maximum, minimum, and
average. It is an effective mean to reduce the volume of data.
However, it just provides simple coarse statistical information
while potentially hiding some interesting local varieties of
the data. Data approximation can be regarded as a model-
based data processing method. When data feeds exhibit a
large degree of redundancy, approximation is a less intrusive
form of data reduction in which the underlying data feed is
replaced by an approximate signal tailored to the application
needs. It is only required to transmit the parameters of the
distributed model built for the sensor data collected from
WSN. Thereby, the amount of transmitted data is greatly
reduced, resulting in network energy being saved, and thus
the network lifetime is being prolonged. In terms of the
way they are applied, there are four major categories for
data approximation: probabilistic model [13, 14], time series
analysis model [15–17], data mining model [18], and data
compression model [19–24].

The paper is based on the following three facts which also
show the application scenario. (1) Multivariate correlation
exists. With the development of the wireless communica-
tion and microelectronics technology, wireless sensor node
equipped with several sensing units has become popular.
Such node can simultaneously monitor several types of data,
such as sound intensity, acceleration, temperature, humidity,
light intensity, and video, in which certain correlation uni-
versally exists. In this paper, the data collected by different
sensing units in the same sensor node are referred to as
multivariate data or multiattribute data, and the correlation
among these different data type is called multivariate cor-
relation or multiattribute correlation. (2) Spatial correlation
does not exist. Most distributed compression algorithms are
based on the assumption that nodes have spatial correlations
with other nodes. This introduces large implementation cost.
In real life, people often hope to use as small number of
sensor nodes to monitor as wide an area as possible in
order to reduce investment cost. As a result, these nodes are
placed far away from each other, leading to no or little of
unstable spatial correlation. In this case, it is a better choice
that the algorithm is designed to run independently on each
node. (3) Error is bounded. Influencing by noise, node failure,
unreliable wireless communication, power constraints, and
other factors, it exists certain error in acquisition, processing,
and transmission processes of sensor data. The sensor data
has a certain degree of uncertainty. If the user does not
need very accurate results, by sacrificing the data precision,
he can achieve the purpose of reducing the data amount
of communication. Our study is devoted to minimize the
volume of the transmitted data in the error bound predefined
by the user.

The major contribution of the paper lies in the following
aspects. This paper designs the algorithms considering the
temporal and multivariate correlations of the data and also
taking into account the casewhen themultivariate correlation
is unstable, but without considering the spatial correlation of
the data. Our algorithms run in each sensor node collecting a

number of data streams. This paper proposes a self-adaptive
regression-based multivariate data compression algorithm
with error bound (denoted as AR-MWCEB) and implements
it in C. According to the predetermined error bounds,
AR-MWCEB makes decision automatically to transmit raw
data or regression coefficients and to select the number of
data involved in each regression. The results of simulation
experiments show that the algorithm can reduce the amount
of transmitted data and has better real-time performance
than the benchmark algorithms.

The rest of the paper is organized as follows. Section 2
describes the related work, which is followed by the intro-
duction of some preliminary knowledge and the problem
formulation in Section 3. Section 4 presents the proposed
compression scheme, base selection algorithm, and incre-
mental calculation of regression coefficient. A self-adaptive
regression-based multivariate data compression algorithm
with error bound is detailed in Section 5. After the pre-
sentation of the intensive simulation results and perfor-
mance analysis in Section 6, the paper is concluded in
Section 7.

2. Related Work

Multivariate streamsmeasured fromone sensor node are cor-
related.The same is often true in other domain. Deligiannakis
et al. [12] pointed out that the scatter diagram with indexes
of industry and insurance from the New York stock market
as the 𝑥-axis and 𝑦-axis coordinates, respectively, appears to
be an approximated straight line. Each original time series
is not linear, but he proposed a SBR algorithm using the
base signal as an independent variable and the regression
model to piecewise approximate other series. The values of
the base signal are extracted from the real measurements
and maintained dynamically as data changes. When the
multivariate correlation measured by a sensor node is larger,
this algorithm is better. But SBR algorithm does not consider
the problem of error bound, and it just compresses data in
the maximum degree under satisfying the condition of data
compression. It may lead to two problems: (1) the algorithm is
terminated before the errormargin reaches its predetermined
requirement; (2) the data is still continuously compressed
when the error has met the requirement.

For the data generated by the single sensor node, the
RACE algorithm [19] proposes a Haar wavelet compression
algorithm with adaptive bit rate. It can output CBR (constant
bit rate) or LBR (limited bit rate) streams by selecting the
significant wavelet coefficients based on a threshold. RACE
runs on a single node. In spite of reducing the transmission
of redundant data by eliminating the temporal correlation, it
does not consider the spatial correlation among neighboring
nodes ormultiattribute correlation in the same node. Ciancio
et al. [20] study a distributed wavelet compression algorithm,
which exchanges information among neighboring nodes and
distributes the discovered spatial correlation of the sensor
network data before the data are transmitted to the sink node.
Although the algorithm has greatly reduced the transmission
of redundant data, however, information exchange among
nodes would result in some cost, such as power consumption
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and network delay, which needs further quantitative analysis
in theory.

The literature [21] designs a new algorithm based onmul-
tiattribute correlation. The algorithm can effectively reduce
spatial, temporal, and multivariate correlations, but there are
two problems limiting its performance. (1) All the raw data
of each node in a cluster must be sent directly to the cluster
head and must be processed in the cluster head. The data
with different attributes but from different nodes are not
differentiated, but rather they are abstracted into a column of
the processed datamatrix. (2) Before sending data, the cluster
head must call data preprocessing algorithm to analyze and
find out the attribute pairs between which the correlation
is large. In this processing, the estimated attribute data are
fitted using the least squaremethod. Our previous algorithms
proposed in [22] run independently in each of the sensor
nodes, and no collaboration exists between nodes. It uses
the single data stream wavelet compression algorithm with
error bound (SWCEB) to do wavelet decomposition to the
maximum level resulting in full elimination of the temporal
correlation of the data to satisfy the error bound in the
coefficient selection. Meanwhile, it eliminates multiattribute
correlations and uses the regression-based multiple data
streams wavelet compression algorithm with error bound
(MWCEB), inwhich the regression intervals are continuously
bisected if needed to ensure that the error is bounded. The
binary partition is arbitrary, so this paper will try to self-
adaptively determine the number of data involved in each
regression calculation.

It is worth mentioning that both multiple data streams
(the data streams collected by a cluster head from all other
nodes in the cluster) [23] and multiattribute data stream
(the data streams collected by the single sensor node having
multiple sensing units) can be effectively compressed by
our proposed AR-MWCEB scheme. Furthermore, after the
multiple data streams being processed by the cluster head,
its spatial correlation is reduced, and after the multiattribute
data stream is being processed in the multimodal node, its
multivariate correlation is also reduced.This paper focuses on
reducing the multivariate correlation of multiattribute data
stream, but the result can also improve the performance of
DLRDG [23].

Sadler andMartonosi [24] propose a lossless compression
algorithm for sensor nodes in WSNs, called S-LZW. They
discuss some design problems in detail about implemen-
tation, adaptability improvement, customizing compression
techniques, and so on. Research on lossless data compression
in WSNs is still in its early stage with very few published
papers.

3. Preliminaries and Problem Statement

Manymonitoring data collected by sensor nodes such as tem-
perature, humidity, light, and vibration always slightly varies
within a continuous time, and most of successive data are the
same or similar. When these successive data are decomposed
by wavelet transform, the majority of the energy is con-
centrated in the low-frequency coefficients. High-frequency
coefficients are 0 or close to 0. Even if the monitored object

changes abnormally, which causes unusual fluctuations of
sensor data, the multiresolution characteristic of the wavelet
transform can ease the impact of these unusual fluctuations
on the overall data. It maintains values of some detail
components as approximately 0. Compressing (discarding)
the detail components with value 0 does not affect the data
reconstruction; compressing the nonzero detail components
would affect the data accuracy. The more detail components
are compressed, the higher the compression ratio of the data
is, but the larger the caused data error is. Therefore, under
the premise of guarantee of error bound, detail components
should be compressed maximally.

The distributed wavelet compression algorithm for the
sensor networks is designed to complete the task by multiple
nodes together. In this algorithm, the wavelet transform is
calculated dispersedly in each node, and the wavelet coeffi-
cients are also dispersed at each node. Thereby, the amount
of calculation for each node is small. The performance of
using two-level wavelet transform is slightly better than that
of using single-level transform, because the second level of
the wavelet transform can better eliminate the correlation, in
spite of increasing the additional energy consumption and
time delay. Communication overhead and time delay are
increased constantly with increasing the level of wavelet
decomposition; thus, the distributed compression algorithm
cannot always rely on increasing the wavelet decomposition
level to improve its performance. Our algorithm runs inde-
pendently on each sensor node, there is no collaboration
among nodes; therefore, wavelet transform can decomposes
the data with the maximum level to eliminate the temporal
correlation of enough data.

Garofalakis and Gibbons [25] firstly proposed a wavelet-
based compression technique with error guarantees of data
reconstruction by introducing probabilistic wavelet synopses.
Based on the error tree from the literatures [25, 26], a single-
attribute data wavelet compression algorithm with error
bound named SWCEB is proposed by us in the literature
[22]. It includes four steps: wavelet decomposition, coefficient
selection, quantization, and entropy coding. In the step
of coefficient selection, it guarantees to satisfy the error
bound. And it eliminates the temporal correlation in a single
data stream through Haar wavelet transform. Furthermore,
literature [22] proposes a multiattribute data compression
algorithm with error bound named MWCEB, which is based
on regression and divided into three steps:

(i) selecting some attributes as the base attributes accord-
ing to the correlation coefficient matrix of multiat-
tribute sampling data;

(ii) using SWCEB algorithm to compress the base attrib-
utes data;

(iii) describing other nonbase attributes data by linear
regression coefficients of one of the base attributes.

MWCEB algorithm can guarantee the satisfaction of error
bound by increasing the number of base attributes. However,
in the worst case, it degenerates into the SWCEB algo-
rithm without taking advantage of multiattribute correlation.
Another way to reduce error for MWCEB algorithm is
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to reduce the number of data involved in the regression
calculation, that is, to carry out piecewise linear regression.
As MWCEB algorithm arbitrarily divides the regression
intervals equally without considering the data correlation, its
processing parameters required manual intervention, and its
regression performance is not ideal.

Within the framework of the above processing procedure,
this paper tries to self-adaptively determine the number
of data involved in the regression calculation each time to
guarantee that the error is bounded. If successive data is a
dramatic change, it is difficult to use a linear regressionmodel
to describe the nonbase attribute. Thus, the self-adaptive
piecewise linear regression which automatically determines
the data number involved in the regression calculation each
time or direct transmission of the raw sampling data is
selected automatically.

Assuming the data buffer size of a sensor node is M,
the collected data is denoted as 𝑠[0], . . . , 𝑠[𝑀 − 1], and the
reconstructed approximation data is 𝑠

∗

[0], . . . , 𝑠
∗

[𝑀 − 1].
Dealing with multiattribute data, it usually uses normalized
infinite norm error.

Definition 1 (normalization of the sampling data). 𝑠[𝑖] is
normalized to norm(𝑠[𝑖]) = (𝑠[𝑖] − 𝑠min)/(𝑠max − 𝑠min), where
𝑠max and 𝑠min are the maximum and minimum values of the
sampling data collected in a period, respectively. Obviously,
the value of norm(𝑠[𝑖]) is located in [0, 1]. When dealing with
multiattribute data, the normalization of sampling data can
prevent the attribute with small amplitude being concealed
by the ones with large amplitude.

Definition 2 (normalization error). 𝑒norm
𝑖

= | norm(𝑠[𝑖]) −

norm(𝑠
∗

[𝑖])|.

Definition 3 (∞-norm average error). ‖𝑒‖
∞

= max
0≤𝑖<𝑀

|𝑠[𝑖] − 𝑠
∗

[𝑖]|. ∞-norm average error bound guarantees the
error bound of each reconstructed data and the correspond-
ing sampling data. The normalized infinite norm average
error is defined as ‖𝑒‖norm

∞

= (max
0≤𝑖<𝑀

|𝑠[𝑖] − 𝑠
∗

[𝑖]|)/(𝑠max −

𝑠min).

Definition 4 (the correlation coefficient matrix). 𝑀 times
samples 𝑥

𝑖
, 𝑖 = 0 ⋅ ⋅ ⋅𝑀 − 1 of an attribute can be recognized

as𝑀 times experiments of a discrete random variableX. The
relationship between the attributes X and Y can be measured
by the correlation coefficient, which is defined as follows:

𝑟
𝑥𝑦

=

Cov (𝑋, 𝑌)
√𝐷 (𝑋)√𝐷 (𝑌)

=

∑
𝑀−1

𝑖=0
[(𝑥
𝑖
− 𝐸 (𝑋)) (𝑦

𝑖
− 𝐸 (𝑌))]

√∑
𝑀−1

𝑖=0
(𝑥
𝑖
− 𝐸 (𝑋))

2

√∑
𝑀−1

𝑖=0
(𝑦
𝑖
− 𝐸 (𝑌))

2

,

(1)

where 𝐸(𝑋) = ∑
𝑖
𝑝
𝑖
𝑥
𝑖
= (1/𝑀)∑

𝑀−1

𝑖=0
𝑥
𝑖
. If X and Y are

positive (negative) correlations, 𝑟 is positive (negative); when
𝑟 = 1(−1), their relationship is complete positive (negative)
correlation, and all the data points lie on the regression
line. The more scattered the data points are, the smaller the
absolute value of 𝑟 is, and the lower the correlation is. If

each node can collect𝑁 attributes, the correlation coefficient
matrix 𝑅 with the size 𝑁 × 𝑁 is defined to express the
relationship among all attributes, in which the element of the
jth column in the ith row represents correlation coefficient
between the ith and the jth attributes.

Definition 5 (the best correlation of attribute 𝑋
𝑗
for the

base attributes set). Suppose that 𝑁 attributes streams 𝑋
0
,

𝑋
1
, . . ., 𝑋

𝑁−1
have some correlations, and that they have

been classified into the base attributes set BaseSet and the
candidate attributes set CandSet, where the index used in
both sets represents the corresponding stream. The best
correlation between the element𝑋

𝑗
in CandSet and all of the

elements in BaseSet is defined as follows:

𝑏𝑒𝑠𝑡𝑓𝑖𝑡
𝑗
= max
𝑖

(

󵄨
󵄨
󵄨
󵄨
󵄨
𝑟
𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
) , 𝑖 ∈ 𝐵𝑎𝑠𝑒𝑆𝑒𝑡. (2)

Then, an element 𝑋
𝑗
in CandSet can be represented by

regression coefficients of using the element 𝑋
𝑖
(recorded

in variable 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛
𝑗
) in BaseSet, in the condition that the

absolute value of the correlation coefficient between these two
elements is the largest. If the error is too large, the element
would move to BaseSet. Obviously, the best correlation of the
elements in the base attributes set is 1.

Definition 6 (the expected income of adding candidate
attribute 𝑋

𝑗
to the base attributes set). The 𝑁 attributes are

divided into the base attributes set BaseSet and the candidate
attributes set CandSet. If attribute𝑋

𝑗
is added to BaseSet, the

expected income is defined as:

𝑖𝑛𝑐𝑜𝑚𝑒
𝑗
= ∑

𝑘

(

󵄨
󵄨
󵄨
󵄨
󵄨
𝑟
𝑗𝑘

󵄨
󵄨
󵄨
󵄨
󵄨
− 𝑏𝑒𝑠𝑡𝑓𝑖𝑡

𝑘
) ,

𝑘 ∈ {𝑘 ∈ 𝐶𝑎𝑛𝑑𝑆𝑒𝑡 ∧

󵄨
󵄨
󵄨
󵄨
󵄨
𝑟
𝑗𝑘

󵄨
󵄨
󵄨
󵄨
󵄨
> 𝑏𝑒𝑠𝑡𝑓𝑖𝑡

𝑘
} .

(3)

Initially,CandSet contains𝑁 attributes, and BaseSet is empty.
After summing the absolute value of the elements in the
correlation coefficientmatrix row by row, choose the attribute
corresponding to the maximum sum and add it to BaseSet
as a base. Then, according to error bound, decide if you will
continue to look for other bases. In the process of each base
selection, add the𝑋

𝑗
from CandSet with the largest expected

income to BaseSet; at the same time, update 𝑏𝑒𝑠𝑡𝑓𝑖𝑡
𝑖
of

the remaining attribute 𝑋
𝑖
in CandSet, and correspondingly

update 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛
𝑖
to express that we regress the𝑋

𝑖
in CandSet

on the𝑋
𝑗
in BaseSet.

4. Base Selection and Coefficient Incremental
Calculation for Regression

4.1. Base Selection and Linear Regression. Suppose that a
sensor node has 𝑁 sensing units, and the collected attribute
is𝐴
𝑗
, 𝑗 = 1, 2, . . . , 𝑁. The overall operation of the regression-

based compression scheme is as follows.

Step 1. Using our base selection algorithm proposed in [22],
classify all attributes into several groups 𝐺

𝑖
, 𝑖 = 1, 2, . . . , 𝐾,

according to their correlation coefficient matrix. ⋃𝐾
𝑖=1

𝐺
𝑖
=
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(1) typedef struct {
(2) double sum x;
(3) double sum xx;
(4) double sum xy;
(5) double sum y;
(6) }COEFF;
(7) COEFF coeff, firsthalf coeff, ∗pcoeff;

Algorithm 1

⋃
𝑁

𝑗=1
𝐴
𝑗
and for all 𝑖 ̸= 𝑗, 𝐺

𝑖
⋂𝐺
𝑗
= 0. The attributes with

large correlation are located in the same group. Definitions
5 and 6 in Section 3 have implicitly described our base
selection method. The base selection algorithm can also be
implemented by consulting the𝐾-Means and other clustering
algorithms.

Each group𝐺
𝑖
, 𝑖 = 1, 2, . . . , 𝐾, has only one base attribute,

and other attributes in the same group are represented by the
base and linear regression coefficients. For the convenience of
description, denote the selected base in a group as attribute
𝑋 and a nonbase attribute located in the same group with
attribute X as attribute 𝑌. The attribute 𝑌 can be represented
by several regression coefficient pairs generated by linear
regression.

Step 2. Run the SWCEB algorithm on 𝑀 sampling data of
the base attribute 𝑋. After wavelet decomposition, set some
wavelet coefficients to 0 in the case of error bound. The local
reconstructed data bywavelet transform is directly used as the
base signal𝑋 of the regression. As a result, it avoids to spread
the base reconstruction error to other nonbase attributes,
and the reconstructed base signal is more regular and more
suitable for use as a base than the original one.

Step 3. Regress the nonbase attributes on the base attribute
from the group in which the nonbase attributes locate,
and transmit the calculated regression coefficients. The raw
data of the nonbase attributes is no longer required to be
transmitted.

The implementation of Step 3 is analyzed below in details.
When the estimation of nonbase attribute 𝑌 is 𝑌̃ = 𝑎𝑋 + 𝑏,
find the regression coefficients 𝑎 and 𝑏 so that ||𝑌 − 𝑌̃||

2

is minimum; namely, minimize the objective function 𝑄 =

∑
𝑖
(𝑦
𝑖
− 𝑎𝑥
𝑖
− 𝑏)
2. When

𝜕𝑄

𝜕𝑎

= 0,

𝜕𝑄

𝜕𝑏

= 0 (4)

solve the linear equations with two unknowns

∑

𝑖

(𝑦
𝑖
− 𝑎𝑥
𝑖
− 𝑏) (−𝑥

𝑖
) = 0,

∑

𝑖

(𝑦
𝑖
− 𝑎𝑥
𝑖
− 𝑏) (−1) = 0,

(5)

to find 𝑎, 𝑏.

Then,

𝑎 =

𝑀 ∗ ∑
𝑀

𝑖=1
(𝑥
𝑖
∗ 𝑦
𝑖
) − ∑
𝑀

𝑖=1
𝑥
𝑖
∗ ∑
𝑀

𝑖=1
𝑦
𝑖

𝑀∗∑
𝑀

𝑖=1
𝑥
2

𝑖
− (∑
𝑀

𝑖=1
𝑥
𝑖
)

2

,

𝑏 =

∑
𝑀

𝑖=1
𝑦
𝑖
− 𝑎 ∗ ∑

𝑀

𝑖=1
𝑥
𝑖

𝑀

.

(6)

In this way, a candidate attribute can be represented by a pair
of regression coefficients. The base attribute is compressed
by Haar wavelet in Step 2, and the number of data being
processed each time is some power of 2. It is worth noting that
the more the number of data is involved in each regression,
the bigger the regression error is. According to the number
𝑀 of the processed data each time, our proposed MWCEB
algorithm employs the piecewise linear regression with the
equal number of data (obviously, this will lead to a large
error), and simply transmits the regression coefficients 𝑎 and
𝑏. If 𝑀 = 2, then the regression would not cause any com-
pression; furthermore, in order to achieve the convenience of
wavelet compression of the selected base, the number of data
is also preferable to be as some power of 2, so the number of
processed data in each time should be 4 at least.

4.2. Incremental Calculation for Regression. Now, we will
introduce how to use self-adaptive regression to make
decisions automatically to transmit raw data or regression
coefficients, and how to automatically obtain the number of
the data involved in each regression calculation. The number
of data in each regression is set to some power of 2 for
convenience. If the regression results satisfy the error bound,
the start number start and the count number length of the
data participating in the regression should be transmitted, as
well as the regression coefficients 𝑎 and 𝑏. If 𝑙𝑒𝑛𝑔𝑡ℎ = 4, then
the regression would not cause any compression, so length
should be greater than or equal to 8. If the regression results
of 8 (or some power of 2 greater than 8) data satisfy the error
bound, only 4 data on representation of regression results
need to be transmitted; Otherwise, the raw sampling data is
directly transmitted. In order to obtain the best compression
performance, length is doubled constantly until find the
maximum number of regressed data in the condition of error
bound.

Through analyzing the equations of calculating the
regression coefficients 𝑎 and 𝑏, it is found that the regression
coefficients can be incrementally calculated. Define a data
structure as in Algorithm 1.
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(1) Function AuxCalc (int start , int length COEFF ∗pcoeff )
(2) input: the sampling data of related attributes X[start ⋅ ⋅ ⋅ start+length-1], Y[start ⋅ ⋅ ⋅ start+length-1]
(3) output: coeff
(4) begin
(5) pcoeff ->sum x=0;
(6) pcoeff ->sum xx=0;
(7) pcoeff ->sum xy=0;
(8) pcoeff ->sum y=0;
(9) for i=start to start+length-1 {
(10) pcoeff ->sum x += X[i];
(11) pcoeff ->sum xx += X[i]∗X[i];
(12) pcoeff ->sum xy += X[i]∗Y[i];
(13) pcoeff ->sum y += Y[i]; }

(14) end

Algorithm 2: The AuxCalc function.

(1) Function IncRegress (int start , int length , double eps , double ∗a , double ∗b , int ∗cnterr )
(2) input: the predefined regression error bound eps; the sampling data of related attributes X[start ⋅ ⋅ ⋅ start+length-1],

Y[start.. start+length-1]
(3) output: the regression coefficients a and b; the number errcnt of data exceeding the error bound
(4) begin
(5) if length==8 then
(6) AuxCalc (start, length,&coeff );
(7) else{
(8) AuxCalc (start+ length/2, length/2,&coeff ); // length/2 data does not need to be summed once again
(9) coeff+= firsthalf coeff ; }
(10) firsthalf coeff= coeff ;
(11) ∗a= (length ∗coeff.sum xy - coeff.sum x∗coeff.sum y)/(length ∗coeff.sum xx - coeff.sum x∗coeff.sum x);
(12) ∗b= (coeff.sum y - ∗a∗coeff.sum x)/length; // recursive form of (6)
(13) ∗cnterr = 0;
(14) doublemax y=−32768,min y = 32767;
(15) for i=0 toM-1{
(16) if max y < Y[i] thenmax y= Y[i];
(17) if min y > Y[i] thenmin y=Y[i]; }
(18) for i=start to start+length-1{
(19) if fabs(∗a ∗X[i]+ ∗b-Y[i])> eps ∗(max y -min y) then (∗cnterr)++; }

(20) end

Algorithm 3: The IncRegress function.

The AuxCalc is an auxiliary function used by the incre-
mental regression, which is implemented as in Algorithm 2.

When the regression results satisfy the error bound
condition, the number of regressed data length is doubled
repeatedly for exploring the maximum length. Known by
analysis of (6), when length is increased to 2 times of the
raw one, the calculated coeff in the previous regression
calculation can still be effectively used. Therefore, they can
be saved as a static variable or global variable firsthalf coeff
for the use in the next regression calculation. In addition,
assignment operators for the variables of COEFF type can
be implemented by the addition and assignment of each
corresponding fields.

The incremental calculation function of regression coef-
ficients is described as in Algorithm 3.

5. A Self-Adaptive Regression-Based
Multivariate Data Compression Algorithm
with Error Bound

5.1. The Proposed Algorithm. The proposed self-adaptive
regression-based multivariate data wavelet compression
scheme with error bound is abbreviated to AR-MWCEB. Its
basic idea is as follows. (1) Calculate the regression error
of the first 8 being processed data in the buffer of a sensor
node. (2) If the calculated regression error does not satisfy the
predefined error bound, transmit directly these 8 raw data,
or else, and recalculate the regression error after doubling the
number of regressed data until that the maximum number of
the regressed data with satisfaction of the predefined error
bound is found in order to obtain the best compression
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(1) Function AdapRegressCompress (double eps , int start , int size )
(2) input: the predefined regression error bound eps denoted by the average error of normalized infinite norm;

the sampling data of related attributes X[0 ⋅ ⋅ ⋅M–1], Y[0 ⋅ ⋅ ⋅M–1],M is the number of buffer data in a sensor node;
initially start is 0 and size isM.

(3) output: the compression representation of non-base attribute Y, in the receiving end which can be used to
reconstruct the raw sampling data satisfied the predefined regression error bound

(4) begin
(5) double a, b, old a, old b;
(6) int counterror;
(7) loop:
(8) int startpos= start;
(9) int count= 8;
(10) while (startpos+ count <= start+ size) do{
(11) IncRegress (startpos, count, eps, &a, &b, &counterror);
(12) if (counterror> 0) then{
(13) if (count==8) then{
(14) Directly transmit the eight raw data Y[startpos ⋅ ⋅ ⋅ startpos+7] to the receiving sensor node;
(15) startpos += 8; }

(16) else{
(17) Transmit the 4-tuples (old a, old b, startpos, count/2) for regression representation of count/2 data;
(18) //the approximation of Y[startpos.. startpos+count/2-1] can be reconstructed by the 4-tuples

in the receiving end
(19) startpos += count/2;
(20) count=8; }

(21) }

(22) else {

(23) count ∗= 2;
(24) old a= a;
(25) old b= b; }

(26) } //end while
(27) if (startpos!=M) then {

(28) Transmit the 4-tuples (old a, old b, startpos, count/2) for regression representation of count/2 data;
(29) start= startpos+ count/2;
(30) size=M - start;
(31) if (size) then AdapRegressCompress (eps, start, size);
(32) //The above statement can also been expressed as: if (size) then goto loop;
(33) } //end if
(34) end

Algorithm 4: The AR-MWCEB algorithm.

performance. In this case, it only needs to transmit 4 data that
described the regression process to represent one segment of
the raw sampling data of the nonbase attribute. (3) repeat the
above process starting from the first unprocessed data to the
last one.

Assuming that the number of the regressed data is 𝑙

and the error bound is satisfied, but the error bound is
not satisfied when it is 2 ∗ 𝑙. Comprehensively considering
the convenience of calculation, the computation complexity,
the storage capacity, and so forth, the regression with 𝑙 +

1 to 2 ∗ 𝑙 − 1 data is not been explored calculation.
The new segment to be processed directly starts from 𝑙 +

1 after transmitting the regression representation of the 𝑙

data.
The compression algorithmbased on self-adaptive regres-

sion is described as in Algorithm 4.

5.2. Properties of the Algorithm

Property 1. After transmitting the part of the data each time,
the number of the remaining data shall be a multiple of 8.

Proof. We assume that the size 𝑀 of the data buffer in a
sensor node is some power of 2. This assumption accords
with the actual situation of the memory hardware, and it is
also convenient for making wavelet transform on the base
attribute in Step 2 of Section 4.2. The total number of data of
each attribute in a buffer is usually some power of 2 andmore
than 210. Set it to 23∗2𝑥; namely, it is 8𝑋, where𝑋 is a natural
number. Algorithm 3 either directly transmits 8 raw data or
transmits 4 tuples to represent 8 (or 8 multiplying by some
power of 2) raw data; that is, the number of processed raw
data each time is also a multiple of 8, denoted as 8𝑌, where 𝑌
is a natural number.Therefore, 8(𝑋−𝑌) raw data are left after
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Figure 1: Illustration of data segments involved in regression.

processing a part of the data each time; that is, the number of
remaining data in the buffer must be a multiple of 8.

Property 2. AdapRegressCompress algorithm complying
with the aforementioned process is correct.

Proof. When the condition of the while loop in line 10 of
AdapRegressCompress algorithm is true, the codes within
the loop body are executed. However, only one of three cases
can be executed in each loop. The three cases are (1) if the
conditions in both line 12 and line 13 are true, the block
statement from lines 14 to 15 will be executed; (2) if the
condition in line 12 is true but the condition in line 13 is false,
the block statement from lines 17 to 20 will be executed; (3) if
the condition in line 12 is false, the block statement from lines
23 to 25 will be executed.

The values of variables start and size are kept unchanged
in the process of repeatedly executing the loop body. For
each loop, if some data are transmitted, then the increment of
variable startpos is 8 at least; if no data are transmitted, then
the value of variable count is doubled. Thus, the while loop
must be terminated after finite loops. Next, analyze the states
of terminating the while loop by the three cases, respectively.

(1) If the while loop is terminated after execution of line
15. The number of remaining data is a multiple of 8
according to Property 1. After executing statement 15,
only 8 data are processed. Now, the loop condition
is no longer satisfied; it has shown that only 8 data
are left before this loop, and this loop happens to deal
with all data. At this time, startpos equals to 𝑀. The
algorithm ends.

(2) If the while loop is terminated after execution of
line 20. Denote startpos, count as startpos1, count1
and startpos2, and count2 before and after this loop,
respectively. Because count1 ̸= 8, then count1 16. So
startpos1 + count1 = startpos1 + count1/2 +count1/2 =

startpos2+ count1/2 startpos2+ 8 = startpos2+ count2.
As the condition startpos1 + count1 ≤start + size is
true when statement 17 is executed, then startpos2 +
count2 ≤start + size, and this loop must be executed
once after executing statement 20; that is, the while
loop cannot be terminated by the second case.

(3) If the while loop is terminated after execution of line
25. Lines 27 to 33 deal with the third case. At this time,
the first count/2 data can be represented by regression
model, and only 4 tuples need to be transmitted.With
the statement 29 and 30, the starting position and
the number of the remaining data are calculated. If
there are still some remainder data unprocessed, the
above process can be repeated by the goto statement
in line 32. Amore intuitive expression is to recursively
invoke this algorithm, namely, the statement 31.

5.3. Complexity Analysis of the Algorithm. The body of
AdapRegressCompress algorithm mainly includes a while
loop. In addition to thewhile loop, statement 11 and statement
31 are the two most time-consuming operations. Similar to
the extreme cases of the three terminations of the while loop
in previous correctness analysis, the average performance
of AdapRegressCompress falls into the range among these
extreme cases.

(1) When the linear correlation between the 𝑀 data and
the data of the base attribute is small, 8 raw data must be
transmitted each time resulting in no compression. Each raw
data is just used one time (i.e., in statement 11) according to
AuxCalc. The time complexity is the least. The while loop
from statements 10 to 26 must be executed𝑀/8 cycles before
termination, and statements 27 to 33 will not be carried out.

(2) Set𝑀 = 2
𝑚+3 to represent the raw data is divided into

2
𝑚 segments, each containing 8 data. As shown in Figure 1(a),
when 8 data satisfy the error bound, but 16 data do not in
each regression, the compressed data size is half of the raw
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one. In Figure 1, 8 segments are given for illustrations, and
the horizontal line in each row represents the interval of
the raw data involved in regression before transmitting data
each time. The first cycle of the while loop uses the first
segment with the conclusion that the regression error bound
is satisfied. Then the second cycle is followed to be executed
after doubling the regression interval to 16 data. Now, the
processed 16 data do not satisfy the error bound, and then
transmit the representation of the first 8 data with regression
coefficients. However, statement 11 has to be executed on 8
data in the second segment again. Except that the 8 data in
the first segment are just passed to AuxCalc one time for
calculation, all the remaining 𝑀 − 8 are required to be used
twice by AuxCalc, whose time complexity is the largest. The
while loop from statements 10 to 26must be executed𝑀/4−1

cycles before termination, and statements 27 to 33 will not be
done.

As shown in Figure 1(b), when calculation with the first
half part of the processed data in each time satisfies the error
bound, but with the whole data does not, its compression
performance is better than that of the left subgraph. The
number of data used by AuxCalc is 8 ∗ 2

𝑚

+ 8 ∗ 2
𝑚−1

+

⋅ ⋅ ⋅ + 8 = 2𝑀 − 8, the same as the case of the left subgraph.
The while loop from statements 10 to 26 must be executed
(𝑚 + 1) + (𝑚) + ⋅ ⋅ ⋅ + 1 = 𝑚(𝑚 + 1)/2 cycles to be terminated,
and statements 27 to 33 will not be done.

(3) When all the𝑀 data are satisfied the regression error
bound, the compression performance is best. Each data is
simply used once in AuxCalc, its time complexity is the
smallest. The while loop with statements 10 to 26 must be
executed 𝑚 + 1 = log

2
𝑀 − 2 cycles to be terminated, and

statements 27 to 33 need to be done once, while the condition
in statement 31 is not satisfied.

6. Experiments

The used dataset is provided by Samuel Madden et al.
(http://db.csail.mit.edu/labdata/labdata.html), containing
more than 2.30 million data collected by 54 Mica2Dot nodes
at the same time. Each Mica2Dot node collects four kinds
of attribute data: temperature, humidity, light intensity, and
voltage, denoted as attributes no. 0, no. 1, no. 2, and no. 3,
respectively.

Each real number such as sampling data, wavelet coeffi-
cient, regression coefficient, which is stored in Micaz nodes,
needs 2 bytes for storage. 2 bytes are enough for storing an
integer such as start number start and the count number
length of data.The number of samples in a sensor node buffer
is usually no more than 4𝐾 in order to prevent too long
time delay; thus the variable start and length can be totally
stored by 3 bytes. The proposed algorithms are implemented
by using VC++ 6.0 on a PC.

Data compression performance can be measured with
space savings rate, defined as the reduced data amount by
compression to the raw data amount. Suppose that a node’s
buffer can store 𝑀 times sampling data, it may send raw
data directly or run regression calculation several times for
the sake of bounded error. The processed part of data in
each linear regression is called a segment. In the following

experiments, the normalized error bound for the selected
base attribute is set to 0.01, the normalized error bound for
the temperature (attribute no. 0) is 0.07; that for the voltage
(attribute no. 3) is 0.19.

6.1. Stationary Multivariate Correlation. The correlation
degree of the attributes in the experimental dataset can be
learned by calculating their correlation coefficient matrix. It
can be seen from the experimental results that the multi-
variate correlation decreases with the increase in the number
of sampling data in a buffer. However, if the samples in
a buffer are too few, the proposed algorithm cannot take
full advantage of the temporal and multivariate correlations.
When the data used for the base selection is the same as the
being transmitted ones, the multivariate correlation can be
recognized as being stationary.

The used dataset consists of the initial 1𝐾, 2𝐾, and 4𝐾

times sampling data, and they are grouped by the proposed
base selection algorithm [22]. Two extreme cases are not
studied here: the error is too large (the attribute no. 1 is
selected as the base; attributes no. 0, no. 2, and no. 3 are
represented by some regression coefficients); the multivariate
correlation is invalid (all the four attributes no. 0, no. 1,
no. 2, and no. 3 are as base; the algorithm degenerates into
transmitting directly each attribute independently with no
multivariate compression). The remaining two cases are (1)
attributes no. 0 and no. 3 take attribute no. 1 as the base signal,
while attribute no. 2 is a single base signal. (2) Attribute no. 3
takes attribute no. 0 as the base signal, while both attributes
no. 1 and no. 2 are single base signals.

For the above case 1, set 𝐺
1
= {𝑛𝑜 0, 𝑛𝑜 3, 𝑛𝑜 1 (base)},

𝐺
2
= {𝑛𝑜 2 (base)}. As attribute no. 2 (light intensity) is a

single base signal, it just needs to execute SWCEB algorithm
on it, the same as attribute no. 1 (humidity) is. The higher
space savings rate can be obtained with the used data asmany
as possible under the satisfaction of the error bound. Here,
the compression performance of the AR-MWCEB algorithm
is discussed with different volume of sampling data in a node
buffer and both nonbase attributes no. 0 and no. 3 taking
attribute no. 1 as the base signal. The experimental results are
shown in Figures 2 and 3.

The experimental results have showed that (1) the space
savings rate of the AR-MWCEB algorithm is improved with
the increase of the normalized error bound. When the
normalized error is 0.191, the space savings rate of RACE
algorithm is only 87.5% [19]. For the same error bound, the
space savings rate of RACE algorithm is always less than
that of AR-MWCEB algorithm. (2) To obtain higher space
savings rate, PMC-MEAN algorithm [27] should accumulate
the processed data in each time as many as possible without
exceeding the buffer size of a node. With the number of the
samples increasing,multivariate correlationwill beweakened
so that the absolute error bound increases. However, the AR-
MWCEB algorithmdetermines self-adaptively the number of
data involved in the regression by the error bound, and then it
can search regression segments in a bigger interval to achieve
better compression performance. (3) With respect to the
amplitude of attribute no. 3, it has many large high-frequency
noises; thus the compression performance is not good for the
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Figure 2: Compressing no. 0 attribute data based on no. 1 using AR-
MWCEB.
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Figure 3: Compressing no. 3 attribute data based on no. 1 using AR-
MWCEB.

case of small error bound. (4) When the predefined error
bound is small, MWCEB may degenerate into the SWCEB
without taking advantage ofmultivariate correlation, andAR-
MWCEB solves this problem.

Figure 4 shows the comparison of the reconstructed
temperature data with the raw sampling ones, where 𝑀 =

2048.The AR-MWCEB algorithm has self-adaptively divided
these experimental data into 13 segments for regression and
the 16 data from the 1521th to the 1536th raw data for direct
transmission leading to a space savings rate of 96.9971%.
Figure 5 shows the comparison of the reconstructed voltage
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Figure 4: Reconstruction by adaptive regression (no. 0 based on no.
1).
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Figure 5: Reconstruction by adaptive regression (no. 3 based on no.
1).

data with the raw sampling ones, where 𝑀 = 4096. The
AR-MWCEB algorithm has self-adaptively partitioned these
experimental data into 10 segments for regression and the
3841th-3856th 16 data for direct transmission resulting in a
space savings rate of 98.7549%.

6.2. NonstationaryMultivariate Correlation. When the corre-
lation coefficient matrix varies with time, each attribute may
be reallocated into a group and may act as a new role by
using the base selection algorithm in terms of new correlation
coefficient matrix every once in a while. In literature [21],
before sending data each time, the cluster head had to call
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Table 1: AR-MWCEB’s performances on compression of no. 0 attribute data.

Size of data buffer (M) 1 2 3 4 5 6 7 8 Average space savings
1K 86.1328% 80.4199% 89.3555% 85.7910% 95.8008% 95.7031% 95.4590% 83.3008% 88.9954%
2K 96.9971% 91.2598% 96.7285% 90.7471% 93.9331%
4K 94.1284% 95.6055% 94.8670%

Table 2: AR-MWCEB’s performances on compression of no. 3 attribute data.

Size of data buffer (M) 1 2 3 4 5 6 7 8 Average space savings
1K 75.0488% 49.3652% 71.0938% 87.6953% 96.8262% 96.3867% 84.3262% 83.6426% 80.5481%
2K 97.1680% 82.2510% 99.3164% 93.5791% 93.0786%
4K 98.7549% 98.6084% 98.6817%

preprocessing algorithm to analyze and find the attributes
with large correlations, so the overhead was large. This
problem also occurred in our previous proposed MWCEB
algorithm [22]. But the AR-MWCEB algorithm has been
greatly improved by using the base selection algorithm to
obtain the information about correlations between attributes.
It can avoid considering the change of the correlation coef-
ficient matrix and can regroup the attributes in a long time
interval. Although the number of the samples involved in
regression calculation is automatically determined to ensure
that the error is bounded, the time-varying multivariate
correlation may lead to worse compression performance.
When the data used for the base selection is not the same as
the being transmitted ones, the multivariate correlation can
be recognized as being nonstationary.

Equally dividing the first 8𝐾 times samples of the dataset
into 8 segments and calculating the corresponding 8 cor-
relation coefficient matrixes, it is easy to find that these
matrices change over time. Next experiments are conducted
on transmission of the first 8𝐾 times sampling data, where
the base selection is based on the beginning 1𝐾 sampling
data, and attributes no. 0 and no. 3 are determined to take
attribute no. 1 as the base signal by the correlation analysis.
The attribute correlation is no longer analyzed in a long time.
The compression performances of AR-MWCEB algorithm
at different time are analyzed when 𝑀 is 1𝐾, 2𝐾, and 4𝐾,
respectively, and are listed in Tables 1 and 2. The used
normalized error bound for the temperature (attribute no. 0)
is 0.07; the normalized error bound of the voltage (attribute
no. 3) is 0.19.

The experiments have shown that (1) since the attribute
correlation is reduced with the increase ofM, MWCEB algo-
rithm can only divide the sampling data into equal segments,
while AR-MWCEB algorithm can self-adaptively segment
the data resulting in a smaller error. (2) The attributes are
grouped and located roles by the data firstly filling the
node buffer. Although the correlation coefficient matrix may
change with time, the compression performance of AR-
MWCEB algorithm is slightly impacted by the time-varying
multivariate correlation. (3)The compression performance is
also affected by the distribution of the sampling data. The
amplitudes of attribute no. 0 change greatly, and it has few
high-frequency noises. For attribute no. 3, its amplitudes

change slightly, but it has many large high-frequency noises.
Thus, the default error bound for attribute no. 0 is set to a low
value, while for attribute no. 3 it is of a larger value.

7. Conclusions

Aiming at effectively compressing the sampling data from
the sensor networks node, between which the spatial corre-
lation is nonexistent or nonstationary, this paper proposed
a self-adaptive regression-based multivariate data compres-
sion scheme with error bound. The algorithms can run
independently on each node. Determined by the predefined
error bound and compression income, our algorithms can
automatically select to transmit the raw data or the regression
coefficients and explore the optimal number of the data
involved in each regression. The compression performances
of the proposed algorithms are also effective when multivari-
ate correlations are reduced or nonstationary. The proposed
algorithm is applicable for processing linearmultivariate data
by researching on using the linear relationship between base
and nonbase attributes to represent the compressed results of
nonbase attributes.

It is worthy of further research as to how to use a less
complicated method to represent the nonlinearity between
the base and nonbase attributes. In addition, for the model-
based data collection inWSN, how to construct a model with
dynamic evolution over time is also going to be our future
work.

Acknowledgments

The work in this paper was partly funded by UK EPSRC
ProjectDANCER (EP/K002643/1), EUFP7ProjectMONICA
(GA-2011-295222), the Science and Technology Planning
Project of Hunan Province of China (Grant no. 2011SK3081),
the Scientific Research Fund of Hunan Provincial Education
Department (Grant no. 12B003), and the National Natural
Science Foundation of China (Grant no. 61202439).

References

[1] R. V. Kulkarni, A. Förster, and G. K. Venayagamoorthy, “Com-
putational intelligence in wireless sensor networks: a survey,”



12 International Journal of Distributed Sensor Networks

IEEE Communications Surveys and Tutorials, vol. 13, no. 1, pp.
68–96, 2011.

[2] Y. Zhang, R. Yu, S. Xie, W. Yao, Y. Xiao, andM. Guizani, “Home
M2M networks: architectures, standards, and QoS improve-
ment,” IEEE Communications Magazine, vol. 49, no. 4, pp. 44–
52, 2011.

[3] G. J. Pottie and W. J. Kaiser, “Wireless integrated network
sensors,” Communications of the ACM, vol. 43, no. 5, pp. 51–58,
2000.

[4] N. Kimura and S. Latifi, “A survey on data compression in
wireless sensor networks,” in Proceedings of the International
Conference on Information Technology: Coding and Computing
(ITCC ’05), pp. 8–13, April 2005.

[5] C. X. Wang, D. Yuan, H. H. Chen, and W. Xu, “An improved
deterministic SoS channel simulator for multiple uncorrelated
Ravleigh fading channels,” IEEE Transactions on Wireless Com-
munications, vol. 7, no. 9, pp. 3307–3311, 2008.

[6] X. Cheng, C. X. Wang, H. Wang et al., “Cooperative MIMO
channelmodeling andmulti-link spatial correlation properties,”
IEEE Journal on Selected Areas in Communications, vol. 30, no.
2, pp. 388–396, 2012.

[7] C. X.Wang, X. Hong, H.H. Chen, and J.Thompson, “On capac-
ity of cognitive radio networks with average interference power
constraints,” IEEE Transactions on Wireless Communications,
vol. 8, no. 4, pp. 1620–1625, 2009.

[8] Q. Ni and C. Zarakovitis, “Nash bargaining game theoretic
scheduling for joint channel and power allocation in cognitive
radio system,” IEEE Journal on Selected Areas in Communica-
tions, vol. 30, no. 1, pp. 70–81, 2012.

[9] S. Bai, W. Y. Zhang, G. L. Xue, J. Tang, and C. G.Wang, “DEAR:
delay-bounded energy-constrained adaptive routing in wireless
sensor networks,” in Proceedings of the 31st Annual IEEE Inter-
national Conference on Computer Communications (INFOCOM
’12), pp. 1593–1601, 2012.

[10] J. Kabara andM. Calle, “MAC protocols used by wireless sensor
networks and a general method of performance evaluation,”
International Journal of Distributed Sensor Networks, vol. 2012,
Article ID 834784, 11 pages, 2012.

[11] L. Zhang and Y. Zhang, “Energy-efficient cross-layer protocol
of channel-aware geographic-informed forwarding in wireless
sensor networks,” IEEE Transactions on Vehicular Technology,
vol. 58, no. 6, pp. 3041–3052, 2009.

[12] A. Deligiannakis, Y. Kotidis, andN. Roussopoulos, “Dissemina-
tion of compressed historical information in sensor networks,”
VLDB Journal, vol. 16, no. 4, pp. 439–461, 2007.

[13] B. Kanagal and A. Deshpande, “Online filtering, smoothing and
probabilistic modeling of streaming data,” in Proceedings of the
IEEE 24th International Conference on Data Engineering (ICDE
’08), pp. 1160–1169, April 2008.

[14] F. Kazemeyni, E. B. Johnsen, O. Owe, and I. Balasingham,
“MULE-basedwireless sensor networks: probabilisticmodeling
and quantitative analysis,” in Proceedings of the 10th Interna-
tional Conference on Integrated Formal Methods, vol. 7321 of
Lecture Notes in Computer Science, pp. 143–157, 2012.

[15] H. Najafi, F. Lahouti, and M. Shiva, “AR modeling for temporal
extension of correlated sensor network data,” in Proceedings of
the International Conference on Software, Telecommunications
andComputer Networks (SoftCOM ’06), pp. 117–120, October
2006.

[16] D. Tulone and S. Madden, “PAQ: time series forecasting for
approximate query answering in sensor networks,” in Proceed-
ings of the 3rd European Workshop for Wireless Sensor Networks

(EWSN ’06), vol. 3868 of Lecture Notes in Computer Science, pp.
21–37, 2006.

[17] Y. L. Borgne and G. Bontempi, “Time series prediction for
energy-efficient wireless sensors: applications to environmental
monitoring and video games,” in Proceedings of the 4th Interna-
tional ICST Conference on Sensor Systems and Software (S-Cube
’12), vol. 102, pp. 63–72, Lakshmi Narain College of Technology,
2012.

[18] Y. L. Borgne and G. Bontempi, “Unsupervised and supervised
compression with principal component analysis in wireless
sensor networks,” in Proceedings of 1st International Workshop
on Knowledge Discovery from Sensor Data (SensorKDD ’07), pp.
55–79, 2007.

[19] H. Chen, J. Li, and P. Mohapatra, “RACE: time series compres-
sion with rate adaptivity and error bound for sensor networks,”
in Proceedings of the IEEE International Conference on Mobile
Ad-Hoc and Sensor Systems, pp. 124–133, October 2004.

[20] A. Ciancio, S. Pattem, A. Ortega, and B. Krishnamachari, “Ene-
rgy-efficient data representation and routing for wireless sensor
networks based on a distributed wavelet compression algo-
rithm,” in Proceedings of the 5th International Conference on
Information Processing in Sensor Networks (IPSN ’06), pp. 309–
316, April 2006.

[21] T. J. Zhu, Y. P. Lin, S. W. Zhou, and X. L. Xu, “Adaptive
multiple-modalities data compression algorithm using wavelet
for wireless sensor networks,” Journal on Communications, vol.
30, no. 3, pp. 48–53, 2009 (Chinese).

[22] J. M. Zhang, Y. P. Lin, S. W. Zhou, and J. C. Ouyang, “Haar
wavelet data compression algorithm with error bound for wire-
less sensor networks,” Journal of Software, vol. 21, no. 6, pp.
1364–1377, 2010.

[23] X. Song, C. R. Wang, J. Gao, and X. Hu, “DLRDG: distributed
linear regression-based hierarchical data gathering framework
in wireless sensor network,” Neural Computing and Applica-
tions, 15 pages, 2012.

[24] C. M. Sadler and M. Martonosi, “Data compression algorithms
for energy-constrained devices in delay tolerant networks,” in
Proceedings of the 4th International Conference on Embedded
Networked Sensor Systems (SenSys ’06), pp. 265–278, November
2006.

[25] M. Garofalakis and P. B. Gibbons, “Wavelet synopses with error
guarantees,” in Proceedings of the ACM SIGMOD International
Conference on Managment of Data (SIGMOD ’02), pp. 476–487,
June 2002.

[26] M. Garofalakis and A. Kumar, “Deterministic wavelet thresh-
olding for maximum-error metrics,” in Proceedings of the 23rd
ACM SIGMOD—SIGACT—SIGART Symposium on Principles
of Database Systems (PODS ’04), pp. 166–176, June 2004.

[27] I. Lazaridis and S. Mehrotra, “Capturing sensor-generated time
series with quality guarantees,” in Proceedings of the 19th Inter-
national Conference on Data Ingineering, pp. 429–440, March
2003.



Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation 
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mechanical 
Engineering

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed 
 Sensor Networks

International Journal of

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive  
Electronic Components

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Antennas and
Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and 
 Observation

International Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation 
http://www.hindawi.com

Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014


