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Abstract—Growth codes are a subclass of Rateless codes
that have found interesting applications in data dissemination
problems. Compared to other Rateless and conventional channel
codes, Growth codes show improved intermediate performance
which is particularly useful in applications where performance
increases with the number of decoded data units. In this paper,
we provide a generic analytical framework for studying the
asymptotic performance of Growth codes in different settings.
Our analysis based on Wormald method applies to any class of
Rateless codes that does not include a precoding step. We evaluate
the decoding probability model for short codeblocks and validate
our findings by experiments. We then exploit the decoding
probability model in an illustrative application of Growth codes
to error resilient video transmission. The video transmission
problem is cast as a joint source and channel rate allocation
problem that is shown to be convex with respect to the channel
rate. This application permits to highlight the main advantage
of Growth codes that is improved performance (hence distortion
in video) in the intermediate loss region.

Index Terms—Rateless Codes, Growth Codes, data dissemina-
tion, error resilient, video streaming.

I. I NTRODUCTION

Rateless codes [1] have been proposed as an efficient
method to design decentralized data dissemination systems
without employing expensive routing protocols as they do not
require any source coordination. This becomes feasible due
to the rateless property that allows on-the-fly generation of
arbitrary numbers of packets. The most successful Rateless
codes are certainly the Raptor codes [2] that are based on LT
codes [3]. Raptor codes perform close to maximum distance
separable (MDS) codes and only require slightly more symbols
than the number of source symbols for successful recovery.
These appealing properties, combined with linear encoding
and decoding times, have conducted the Raptor codes to be
adopted by recent communication protocols like3GPP [4] and
DVB-H [5].

In practice, Rateless codes need a feedback channel for
transmitting a termination message from sinks to sources in
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order to notify that the data decoding is successful. Unfortu-
nately, in many scenarios a feedback channel is not available.
Thus, the transmission rate should be predetermined by taking
into account the network conditions. However, the channel
conditions vary dynamically, may deteriorate fast and become
rapidly different from the predicted ones. This leads to inaccu-
rate estimation of the transmitted rate, and thus to inefficient
exploitation of the network resources with possibly decoding
failures. If the decoder receives an insufficient number of
packets for forming a full rank decoding matrix, common
Rateless codes have unfortunately poor recovery properties;
they are characterized by on-off performance, which means
that the transmitted data can be either fully recovered or
not at all. Partial decoding is possible, but in general it is
limited. Growth codes [6] have been proposed to enhance
the intermediate performance of Rateless codes. They permit
recovery of more data than conventional codes when the
available data is insufficient for complete message recovery.
The improved intermediate performance of Growth codes has
attracted the attention of the data communication community,
especially for the transmission of unequal importance data
streams as proposed in [7].

In this paper, we propose a new and complete decoding
performance analysis for Growth codes based on the Wormald
method [8] that is typically used for the analysis of graph
stochastic processes. Contrarily to previous studies, thepro-
posed method for characterizing the decoding performance of
Growth codes is generic and valid for various codeblocks1

size and accurately predicts the decoding probability for both
intermediate and high reception rates (when more symbols
than the number of source symbols have been received). It
therefore provides a more generic performance analysis than
asymptotic performance bounds with arbitrary long blocks
such as those derived in [9]. An accurate performance anal-
ysis of small and medium blocksize is very important in
the design of data communication systems and our novel
performance analysis shows that the decoding performance
of Growth codes can be approximated by an exponential
model. We apply our analysis in an illustrative example in
video communications. We combine our model with the video
distortion model proposed in [10] and cast a joint source and
channel rate allocation problem for optimized error resilient
transmission. This problem is shown to be convex and the
optimal source and channel rate can be determined by methods

1In this paper, the term codeblock is used to denote a group of packets that
are encoded together by a channel code.
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such as dynamic programming and Lagrangian optimization.
Our design comes close to the concepts of [11], [12] where
unequal error protection Rateless codes have been designed
specifically for streaming. We however here concentrate on the
intermediate of the channel codes, which is one of the main
advantages of Growth codes. We show that these codes provide
an interesting solution for error resilient video streaming
with graceful degradation of quality when channel conditions
deteriorate.

The paper is organized as follows. In Section II, we present
the general principles of Rateless codes focusing especially
on Growth codes. We analyze Growth codes recovery per-
formance using the Wormald method, discuss the expected
Growth codes behavior and provide a model for the symbol
recovery probability in Section III. In Section IV, we cast
an optimization problem for determining the optimal source
and channel rate allocation in an illustrative example of video
transmission. Finally, conclusions are drawn in Section V.

II. RATELESS CODES

A. General structure

Data dissemination systems usually employ Reed Solomon
(RS) codes [13] to cope with packet erasures on communica-
tion channels. RS codes can recover the transmitted data only
when the received set of packets is equal to the number of
source symbolsk. However, the application of RS codes is
limited by their decoding complexity that grows quadratically
with the block size. Rateless codes solve this problem in
applications with complexity or delay constraints as they offer
linear encoding times. Linear decoding times can be further
achieved when the degree distribution is carefully designed
and decoding is performed by means of belief propagation.
These codes however incur a small performance penaltyǫ
and require slightly more packets than the number of source
packetsk for decoding, (i.e., the minimal number of packets
for decoding is(1+ ǫ) ·k). The decoding probability increases
with the number of received packets since the probability to
form a full rank system of packets at decoder increases with
the number of packets. Rateless codes generally do not have a
pre-determined code rate and they generate as many symbols
as needed by each client for successful decoding. This permits
better exploitation of the available network resources as sys-
tems employing Rateless codes can easily cope with network
dynamics; inaccurate estimation of the channel conditionsdo
not directly lead to over-protecting or under-protecting the
source data as in rate-optimized codes.

In more details, the Rateless encoded symbols are generated
by combining (XOR-ing) source packets selected uniformly
at random. The number of combined packets (the degree of
the corresponding codeword) is determined by the degree
distribution functionΩ(x) =

∑dmax

i=1 Ωi ·x
i, whereΩi denotes

the probability of generating a symbol with degreei (a symbol
that is the result of XOR-ingi data symbols). The parameter
dmax is the maximum allowable symbol’s degree which cannot
exceed the number of source symbols. Ifxi stands for theith
source packet andyj is thejth transmitted symbol respectively,

we can write

yj =

dj
∑

l=1

⊕

xl,

wheredj is the degree of thejth symbol and
∑⊕

is the bit-
wise XOR operation. Rateless codes have an implicit structure
as the decision about the number of packets to be combined for
the generation of theyj is made by samplingΩ(x); the identity
of the combined packets is selected uniformly at random. Due
to the implicit structure of Rateless codes a small header called
“ESI ” is appended to each packet. It conveys information to
the decoder about the packets that have been combined for the
generation of encoded packets. The ESI is usually the seed of
a pseudorandom generator used for generating the encoded
packet. Please note that the terms “packet” and “symbol” are
used interchangeably throughout the analysis.

Next, we focus on Growth codes that are a particular
class of Rateless codes with advanced intermediate decoding
performance and sustained performance at high rates. Such
characteristics are particularly interesting for transmission of
time-constrained data that can benefit from partial decoding.

B. Growth codes

Popular Rateless codes such as LT codes and Raptor codes
have small overheads and permit decoding from a set of
symbols than is slightly larger than the set of source packets.
These codes have however poor intermediate performance
when the number of symbols is not sufficient for perfect
decoding. On the other hand, Growth codes [6] offer better
intermediate performance as partial recovery is possible,but
are characterized by a larger overheadǫ than LT or Raptor
codes.

We give now more details about the design of Growth
codes. The encoding procedure of Growth codes is similar
to that of LT codes. Symbols are generated according to a
degree distribution functionΩ(x). The design ofΩ(x) is quite
intuitive, i.e., when few packets have arrived to a client, it is
better to receive packets of degree one that permit immediate
decoding. Instantaneous decodability of packets of degreeone
however decreases with the number of received packets like
in the coupons collector problem [14]. Indeed, the probability
that a packet is a duplicate increases with the number of
received packets with degree one [6].

Based on this intuition, the degree of the encoded symbols
progressively increases until sinks are able to recover the
transmitted data content. The Growth codes degree distribution
is thus given as

Ω(k) : Ω∗

i = max

(

0,min

(

Ki −Ki−1

k
,
k −Ki−1

k

))

(1)

where the parameterKi is computed by the following recur-
sive relation [6] for thekth transmitted symbol:

Kj = Kj−1 +

Rj−1
∑

i=Rj−1

(

k
j

)

(

i
j−1

)

(k − i)
(2)
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with Rj =
jk−1
j+1 andK1 =

R1−1
∑

i=0

k

k − i
. In order to recoverRj

symbols, the receiver has to getKj symbols in expectation.
The Growth codes decoding probability as a function of the
number of received packetsk is determined by

Pr,d(k) =















(k−r+1)
k

, d = 1
(k−r+1)(r−1

d−1)
(kd)

, d = 2, . . . , r

0, d > r

(3)

It corresponds to the probability of decoding a symbol of
degreed when r symbols have been already decoded. The
Growth codes, encoding procedure, can be summarized as
follows

Procedure 1Growth Codes encoding
1: Choose randomly the degreed of the LT encoded symbol

by samplingΩ(d).
2: Choose uniformlyd distinct symbols.
3: Combine the symbols by XOR operations

On the client side, two algorithms can be used for Growth
codes decoding namely the Decoder-S and the Decoder-D [6].
The Decoder-D ignores the packets that are not immediately
useful,i.e., the packets whose distance to the recovered packets
is larger than one, while Decoder-S stores in a list all received
packets even if they are not immediately useful and checks
the list of packets as the decoding process progresses. Al-
though Decoder-D has slightly inferior decoding performance
compared to that of Decoder-S, it is preferable for low-cost
receivers performing on-the-fly decoding. In our analysis,we
restrict our attention only to the Decoder-D that is summarized
in Procedure 2.

Procedure 2Growth Codes decoding: Decoder-D algorithm
1: if a symboly with d = 1 arrives at clientthen
2: Insert the symboly in D.
3: end if
4: while D 6= Ø do
5: Select a symbolx from D.
6: if x /∈ L and dist(x,L) = 1 then
7: XOR x with the symbols∈ L that used to generate

the symbolx.
8: Insert the recovered symbol inL.
9: if in the meanwhile a new instantaneous decodable

symboly arrives at clientthen
10: Insert the symboly in D.
11: end if
12: end if
13: end while

In the decoding algorithm,D is the ripple of the Growth
codes,L is a list that contains the decoded symbols and
dist(x,L) = 1 means that the symbol is instantaneously
decodable,i.e., an original source symbol can be recovered.
Upon receiving a packet, the client examines whether the
packet is instantaneously decodable and is not already inL.

When it is true, the packet is decoded and then inserted inL,
otherwise the packet is deleted. This procedure continues as
long as the source is decoded orD is empty.

III. A NALYSIS OF GROWTH CODES PERFORMANCE

A. Wormald method

The Wormald method [15] is an analytical tool that is used
to study the expected behavior of stochastic processes. It is
based on the idea that a system stays close to the expected
behavior [8] after a series of random steps, with very high
probability. Such a behavior can further be determined by a
set of differential equations.

Let us consider a graph random processG(t). The process
starts with graphG(0) from which edges are repeatedly
removed according to a probabilistic rule that is known a
priori. This removal procedure results in a probabilistic set
of sequencesG(0), G(1), . . . , G(t), whereG(t) denotes the
t-th graph in that process. When no edge can be removed
from G(t), the process becomes stationary. Thus, we have
G(t+ 1) = G(t) and this is the final graph of this stochastic
process. Usually this happens for larget (t → ∞). For many
systems the above procedure however terminates after a finite
number of steps,i.e., at time t = Td; this forms a family of
graphsG(0), G(1), . . . , G(Td). The Wormald method studies
the behavior of such a sequence of processes.

Since Decoder-D algorithm for Growth codes decoding is
described by a stochastic process (i.e., Markov process), the
Wormald method can be used for the analysis of its perfor-
mance. In particular, the residual Tanner graphG(t) during
decoding is characterized by a set of pairs(Vi(t), Ci(t)),
where Vi(t) and Ci(t) denote the total number of edges
connected with variable nodes and respectively check nodes
of degreei at timet. In the Growth Codes analysis, the graph
actually containsk variable nodes wherek is equal to the
number of source symbols.

Next, we discuss the appropriateness of using Wormald
theorem to characterize the decoding performance of Growth
codes. We start by giving the conditions that Growth codes
decoding should fulfill in order to use the Wormald method.
Then, we use this method to describe the evolution of the
decoding process.

B. Wormald theorem

In this section, we describe the Wormald theorem and
present the conditions that have to be satisfied to apply the
Wormald method [16]. It should be noted that the Wormald
theorem can also be used for analyzing other Rateless codes,
as long as their encoding does not include any precoding step.

Let us consider thatG(t) has a state space{0, . . . , θ}d, d ∈
N and a probability spaceS. Consider a sequence
{Gm(t)}m>1 of a Markov random process whereGm

i (t) is
the i-th component ofGm(t). Denote a subsetΓ ⊂ R

d+1

containing the vectors[0, g1, . . . , gd] such that,

P

(

G
(m)
i (t = 0)

m
= gi

)

> 0, ∀i ∈ [1, d],m > 1 (4)
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Let fi be functions fromRd+1 to R
d, satisfying the follow-

ing conditions:
1) For t < m, there exists a constantcmi such that,

∣

∣

∣
G

(m)
i (t+ 1)−G

(m)
i (t)

∣

∣

∣
≤ cmi , 1 ≤ i ≤ d (5)

2) For t < m and∀i ∈ [1, d[,

E

[

G
(m)
i (t+ 1)−G

(m)
i (t)|G(m)(t)

]

, fi

(

t

m
,
G

(m)
1 (t)

m
. . . ,

G
(m)
d (t)

m

)

(6)

3) fi, ∀i ≤ d is Lipschitz continuous function on the inter-
section ofΓ with the half space{(t, g1, . . . , gd) : t ≥ 0},
i.e., if x, y ∈ R

d+1 belong to this intersection, then there
exists a Lipschitz constantζ such that,

|fi(x)− fi(y)| ≤ ζ
d+1
∑

j=1

|xj − yj| (7)

The above conditions are respectively the boundedness,
the trend and the Lipschitz conditions. The boundedness
condition implies that the function is bounded. The trend
condition imposes that we can describe the process with a
time series without any knowledge of the serial correlation
betweenGm(t). Finally, the Lipschitz condition means that
the functionsfi are not steep and bounded byζ. Under these
conditions, the following holds true:

1) For the vector[t, g1, g2, . . . , gd] ∈ Γ, the system of
differential equations

∂gi
∂τ

= fi (τ, g1, . . . , gd) , 0 ≤ i ≤ d (8)

has a unique solution forgi(τ) : R → R in Γ with the
initial condition gi(0) = xi, 1 ≤ i ≤ d.

2) There exists a strictly positive constantδ such that

P

(∣

∣

∣

∣

∣

G
(m)
i (t)

m
− gi

(

t

m

)

∣

∣

∣

∣

∣

≥ δm−
1
6

)

<
dm

2
3

e
m

1
3

2

(9)

for 0 ≤ t ≤ mτmax and for eachi. The termgi is
the unique solution obtained by solving Eq. (8) with the

initial conditionsgi(0) = E

[

G
(m)
i (t=0)

m

]

andτmax = τm

is the supremum of thoseτ to which the solution can
be extended, under some boundedness criteria [8], [15].

In other words, Eq. (9) states that, whenm is big enough,
each realization of the processG(m)

i (t) is close to the (unique)
solution of Eq. (8), with high probability. This permits us to
use a set of differential equations to describe the decoding
process. A formal proof of the applicability of the Wormald
theorem on the Decoder-D algorithm can be further found in
[15].

C. Expected Growth Codes behavior

We have seen above that a set of differential equations can
describe the expected decoding performance as the decoding
procedure evolves. In particular, the Decoder-D algorithm
proceeds as long as it can find check nodes of degree one

to process, otherwise the decoding halts. At each decoding
step a check node with degree one is randomly chosen to
be eliminated. The outgoing edge of the selected node is
connected with one of the

∑

j Vj(t) variable nodes, while the
total number of edgesE(t) in the (residual) graphGt is equal
to
∑

j jVj(t). Thus, the probability that an edge is connected

to a variable node of degreei is iVi(t)∑
j jVj(t)

.

The expected decrease in the number of variable nodes with
degreei at time t is then expressed as,

E [Vi(t+ 1)− Vi(t)|V (t), E(t)] = −
iVi(t)

∑

j jVj(t)
(10)

Similarly to the variable nodes, we can determine the
expected decrement in check nodes degree. When an edge of
a check node of degree one is removed, the number of check
nodes of degree one is reduced by one. If the removed edge
is connected to a check node of degreei + 1, the residual
degree changes fromi + 1 to i with probability (i+1)Ci+1(t)∑

j jCj(t)
.

Therefore, in expectation,−1+
∑

j j2Vj(t)
∑

j Vj(t)
edges are removed.

The expected decrease of check nodes with degreei is
written as,

E [Ci(t+ 1)− Ci(t)|V (t), E(t)] ≈

i [Ci+1(t)− Ci(t)]
∑

j jVj(t)

∑

j j(j − 1)Vj(t)
∑

j jVj(t)
, i ≥ 2 (11)

The examined node is removed from the set of check nodes
of degree one, and the expected decrease in degree is given
as

E [C1(t+ 1)− C1(t)|V (t), E(t)] ≈

− 1 +
[C2(t)− C1(t)]
∑

j jVj(t)

∑

j j(j − 1)Vj(t)
∑

j jVj(t)
(12)

Since we assume that the process stays close to its expected
behavior, as the decoding algorithm corresponds to a stochastic
process, we can drop the expectation and writevi(τ) ≈

Vi(t)
nV ′(1)

andci(τ) ≈
Ci(t)
nV ′(1) , whereτ , t

nV ′(1) denotes the normalized
time. V (t) is the degree distribution function of the variable
nodes andV (1)

′

is the average degree ofV (t). Formally,
ci (or vi) describes the fraction of check nodes (or variable
nodes) connected toi edges. Then, we make the following
approximations

Vi(t+ δt)− Vi(t)

δt
≈

∂vi(τ)

∂t
(13)

and
Ci(t+ δt)− Ci(t)

δt
≈

∂ci(τ)

∂t
(14)

We can now express the differential equations involving
variable and check nodes degree distributions, which govern
the behavior of the decoder:
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Fig. 1. Temporal evolution of the fractionci(t) of check nodes of degreei for various reception ratesη: (a) η = 0.5, (b) η = 0.75, (c) η = 1.0, and (d)
η = 1.5.

∂vi(t)

∂t
= −i

vi(t)
∑dmax

v

j=1 jvj(t)
, (15)

∂ci(t)

∂t
= [ci+1(t)− ci(t)]

i
∑dmax

c

j j(j − 1)cj(t)
∑dmax

c

j=1 jcj(t)
, (16)

∂c1(t)

∂t
= −1 + [c2(t)− c1(t)]

∑dmax
c

j j(j − 1)cj(t)
∑dmax

c

j=1 jcj(t)
(17)

The parametersdmax
c and dmax

v are the maximum degrees
of the check and variable nodes respectively; we typically set
them to a very large value (theoretically infinity). Eq. (15)
shows the expected decrease in the number of variable nodes
of degreei. Eq. (16), which is valid∀i, i ≥ 2, and Eq. (17)
describe the residual degree changes fromi+ 1 to i when an
edge connected with a check node of degreei+1 is removed.
The first term (−1) in Eq. (17) is due to the removal of an
edge from the check node of degree one.

The solution of these differential equations with appro-
priate initial conditions describe the evolution of the degree
distribution in the check and variable nodes. For Growth
codes, we have that the initial check nodes distribution of
the check nodes isΩ(d) in Eq. (1). Then, in the limit of
large number of source packetsk, the variable nodes follow a
Poisson distribution [17], since the source symbols are selected
uniformly at random during the encoding process.

A closed form solution to these equations is non-trivial

to determine. However, we can solve them numerically. For
verifying our analysis we examine the degree evolution of
the nodes during decoding with a Decoder-D algorithm. We
choose the receiving symbol rateη (normalized to the source
rate) in the range[0, 1.5] (i.e., for η < 1 we have interme-
diate performance). The evolution of various degree edges
at different η values is shown in Fig. 1 where the number
k of source packets is set to 1000. The fraction of variable
nodes of degree0 corresponds to the recovery probability
Pd, i.e., Pd = v0. The evolution is in accordance with the
results presented in [6]. From Fig. 1, it becomes obvious
that the number of nodes with degree zero increases with the
decoding time, but it reaches a stationary point that determines
the performance limit of the codes. We can also observe that
the performance improves with the symbol rate. Furthermore,
our model based on Wormald method closely matches the
simulation results in [6], which are derived specifically for
moderate codeblocks such ask = 1000. Our method is
however more generic and applies to different settings. For
example, the proposed analysis method is appropriate for large
codeblocks and medium size codeblocks,i.e., k < 1000 while
other analysis works [9] can be used exclusively for large
codeblocksk > 10000. Interestingly, the presented analysis
method is valid for anyη value. In contrary to our method,
the work in [9] can be applied only in the intermediate range.
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D. Recovery probability

The above analysis can be used to characterize the decoding
procedure and derive the symbol decoding probability for the
Decoder-D. We thus define the symbol recovery probability
as Pd = v0 (v0 stands for the probability of recovering a
symbol, its degree is zero). The probabilityPd is depicted in
Fig. 2 for various code ratesη. The dotted line represents the
symbol recovery performance for Growth codes derived by the
Wormald method, the dashed-doted line represents the results
of the experimental evaluation fork = 1000 and the dashed
line describes the recovery performance of an “ideal” code that
is able to recover a new source symbol with every received
Growth encoded symbol. The “ideal” code is presented for the
sake of the completeness, since such code does not exist in
practice. From the Fig. 2, we can infer that, for large receiving
symbol rates (η > 1.5), Growth codes can decode the full
message asPd reaches one.

To the best of our knowledge, no closed formula exists for
the symbol decoding probability in the Decoder-D algorithm,
which is valid for any arbitrary check nodes degree distribu-
tion; it is quite difficult to derive such an analytical model
from the differential equations (15)-(17). By observing Fig.
2, we however note that an exponential model is a good fit.
Thus, the symbol decoding probability can be approximated
as

Pd(η) ≈ 1− λe−µη2

(18)

where η = r/k is the coderate andr denotes the number
of received symbols. Similarly, we define the probability of
symbol decoding failure as

Pl(η) = λe−µη2

. (19)

The values ofµ andλ depend on the underlying degree dis-
tribution function and not on the code length. This is expected
as our model based on Wormald method also depends only
on the degree distribution of the employed codes. We found
through experimentation that for Growth codesλ = 0.926854
and µ = 1.39361. The evaluation of the model of Eq. (18)
is depicted with the continuous line in Fig. 2 fork = 1000.
Since our model is a function of theη value and not of the
code lengthk, we can use it to characterize the performance
of Growth codes of various codeblocks. We see from Fig. 2
that our model agrees with the experimental evaluation.

IV. ERROR-RESILIENT V IDEO STREAMING

The analysis of the Growth Codes performance is important
for the optimization of error resilient video communications
where the good intermediate performance of the Growth codes
can be very beneficial. Video is indeed a signal that may
tolerate some losses and still offer a decent rendering quality.
In particular, the above permits to select appropriate source
and channel rates for optimized communications on rate-
constrained lossy channels. The efficiency of video transmis-
sion systems is measured with respect to the video quality
at the clients. This quality typically depends on the encoded
video at sources and on the effect of losses during transmission
that are respectively driven by the source and channel rates. In
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Fig. 2. Symbol recovery probability of Growth codes. The continuous curve
is Pd(η) = 1 − λe−µη2

(η denotes the reception rate), the dotted line
corresponds to the growth code performance derived by Wormald method,
the dashed-doted line represents the results of the experimental evaluation,
and the dashed line the ideal intermediate performance (it corresponds to the
performance of an “ideal” code that is able to recover with every received
Growth symbol a new source symbol). The codeblock sizek is equal to 1000.

the following, we quantify the end-to-end performance of an
illustrative video application using Growth codes in orderto
highlight the benefits of good intermediate performance. Note
that a similar analysis can be done for LT codes, which also fit
with the representation used in the Wormald analysis above.

A. Illustrative video model

Video compression is first applied to an image sequence in
order to reduce the transmission rate. However, compression
renders video data sensitive to packet losses. Therefore, the
compressed video data should be protected to avoid rapid
quality degradation in case of packet losses. Typically, this is
achieved by forward error correction coding (FEC) schemes.

The overall distortion for communication scenarios where
channel codes are used for FEC depends on the efficiency
of the employed source compression scheme and the channel
codes. Whereas the source coding distortionDs decreases with
increasing source rateR, the channel coding distortionDc

increases with lesser redundancy. Several distortion models
are proposed in the literature [10], [18]. Considering hierar-
chically structured compression schemes such as MPEG, an
analytical expression has been found in [10] for the end-to-
end distortionD, where the distortion depends on the MPEG
coding parameters and the average recovery probability of the
deployed FEC codes.

The source distortion can be written as

Ds(R) = αR−β (20)

whereR is the source bit rate,α > 0 andβ > 0 are parameters
that depend on the source encoder and on the video content.

The distortion, in case of loss, takes into account error
propagation, error patterns and error concealment. Therefore,
it reads

DL(R) = b

(

1 +
R

2aNsLp

)

Pl(η) (21)
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Fig. 3. Illustration of the PSNR (in dB) for the Foreman CIF sequence
encoded at different rates (Rs) for various decoding failure probabilitiesPl(n)
using the model of Eq. (27).

where Ns is the average number of video slices2 per sec-
ond and Lp is the packet size (in bytes) of the trans-
mitted video data. The parametera indicates the type of
video loss/distortion pattern that depends on the packetiza-
tion scheme;b is a constant related to the spatio-temporal
complexity of the sequence and error concealment scheme.
Finally, Pl(η) is the average residual packet loss probability
after FEC decoding andη = r/k is a redundancy factor with
r being the number of channel symbols andk the number of
source symbols. We propose to use this end-to-end distortion
model in our illustrative example of optimized Growth Codes
video transmission scheme, where we replace the packet loss
probability Pl(η) by the one obtained in the performance
analysis of Section III.

B. Optimal joint source and channel coding

Since the video quality depends on the source and channel
distortions, it depends on the source bit rateR. Thus, the
optimal value ofR that minimizes the end-to-end distortion
functionD(R) can be determined by

R⋆ = argmin
R

D(R) (22)

s.t. (1 + ǫ)R ≤ B

where

D(R) = (1− Pl(η))Ds(R) + Pl(η)Dc(R) (23)

= Ds(R) + Pl(η) (Dc(R)−Ds(R))

= Ds(R) +DL(R)

andDc(R) denotes the concealment distortion (i.e., the aver-
age distortion between original macroblocks and the concealed
marcoblocks at the receiver in case of loss) [10] andDL(R) =

2Each slice consists of several macroblocks, which are the basic encoding
unit of H.264/AVC and other block-based video compression schemes.

Pl(η) (Dc(R)−Ds(R)) the average distortion between a loss-
lessly and lossily transmitted versions, as defined in [10].
Trivially, for lossless transmission,Dc(R) is equal to zero.
Here, the parameterPl(η) is a constant where the affordable
loss rate is determined by the video application constraints.
The parameterB in Eq. (23) stands for the channel capacity,
whose constraint takes into accounti.e., the amount of added
channel redundancy (i.e.,ǫ) for achieving a given symbol
decoding failure ratePl. The value ofǫ can be computed from
Eq. (19) by settingη = 1+ǫ. We further assume that there is no
estimate forπ, the actual channel packet loss rate. Obviously,
when an estimate forπ is available, other Rateless codes such
as LT codes would be a better solution, as they characterized
by smaller overhead valueǫ than Growth codes. Growth codes
are however interesting in a setup where the actual channel loss
rate is unknown, and where the application can benefit from
improved intermediate performance.

Now, taking into account Eqs. (20) and (21), we can write
Eq. (23) as

D(R) = αR−β + b

(

1 +
R

2aNsLp

)

Pl(η) (24)

Then, the source and channel rate optimization problem of
Eq. (23) is rewritten as

R⋆ = argmin
R

[

αR−β + b

(

1 +
R

2aNsLp

)

Pl(η)

]

. (25)

Before determining the optimal source coding rateR⋆, we
first prove thatD(R) is convex.

Lemma 1: The end-to-end distortion functionD(R) is con-
vex.

Proof: In order to prove the convexity ofD(R) is convex,
we compute the first derivative ofD(R) with respect to the
rateR.

∂

∂R
D(R) =

∂

∂R

[

αR−β + b

(

1 +
R

2aNsLp

)

Pl(η)

]

=
bPl(η)

2aNsLp

− αβR−(1+β)

Therefore, the stationary pointR⋆ that satisfies∂
∂R

D(R) =
0 is,

R⋆ =

(

2aαβNsLp

bPl(η)

)
1

1+β

(26)

We now have to prove that the second derivative∂2

∂R2D(R)

at R⋆ =
(

2aαβNsLp

bPl(η)

)
1

1+β

is non-negative.
Thus,

∂2

∂R2
D(R) = αβ (1 + β) (R⋆)−(2+β)

= αβ (1 + β)

(

bPl(η)

2aαβNsLp

)

2+β
1+β

,

which is clearly positive sinceα, β > 0. Hence,D(R) is
convex and a unique minimum exists for a fixedPl(η).

Therefore, we can conclude the following. When(1 +
ǫ)R⋆ ≥ B, the optimal rateR⋆ is computed by Eq. (26);
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Fig. 4. Comparison of the proposed optimized Growth codes (GC) with
ideal Rateless codes (ideal RC) and LT codes “R-Soliton” fortransmission
of Foreman CIF sequence with respect to variousη values. The distortion is
given in terms of PSNR.

otherwise,R⋆ = B
1+ǫ

. This is due to the fact that the plane
(1 + ǫ)R−B intersectsD(R) at R = B

1+ǫ
.

Hence, we have that the minimum distortionD⋆ is given
by,

D⋆ = α(R⋆)β + b

(

1 +
R⋆

2aNsLp

)

λe−µη2

(27)

where the optimal rate is equal to

R⋆ =

(

2aαβNsLp

bλe−µη2

)
1

1+β

. (28)

The distortion for video transmission under different packet
recovery probabilities, when Growth codes are used for error
protection and the model parameters of [10] are adopted
is shown in Fig. 3. We investigate the distortion in both
intermediate region0 ≤ η < 1 and full recovery regionη ≥ 1.
From Fig. 3, we can see thatD(R) is strictly convex.

C. Evaluation of rateless video distortion

We are interested in the average distortion performance
when a certain number of coded packets reach the receiver. No
synchronization between the servers and receivers is assumed,
which means that some packets may be received multiple
times.

Distortion comparisons in terms of PSNR are illustrated
in Fig. 4 when theD(R) convex hull does not intersects
with the plane(1 + ǫ)R−B, i.e., there is enough bandwidth
to accommodate the transmission of the video encoded at
rate computed by Eq. (26). The source coding parameters
are chosen based on the model in [10]. The proposed rate
optimal Growth codes are denoted as GC in Fig. 4. The
optimal source rate value is calculated by Eq. (26). The
proposed scheme is compared with an ideal Rateless code,
which can recover as many source symbols as the received
coded symbols,i.e., it recoversηN source symbols whenηN
coded packets are received in the intermediate region (i.e.,
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Fig. 5. Evaluation of the proposed scheme for transmission of the Foreman
CIF sequence over different values of loss rate and different acceptable packet
error ratesPl when channel capacityB is 15 Mbps.

0 ≤ η < 1) and fully recovers the source whenη ≥ 1.
Clearly, the performance of the ideal code serves as an upper
limit of the performance of any channel code. From Fig. 4,
we note that when the proposed rate optimal Growth codes are
used, the overall distortion follows a smooth waterfall curve.
In the intermediate region, the rate optimal Growth codes offer
comparable distortion performance to ideal Rateless codes. We
also compare with LT codes (denoted as “R-Solition”). The
optimal source rate is computed by Eq. (26) using our model
(Eq. (19)) with parameter valuesλ = 5 · 108 andµ = −20
for calculating the decoding failure probability. The large
distortion gap between Growth codes and LT codes (denoted
as “R-Soliton”) in intermediate region is also obvious from
Fig. 4. This is expected as the Robust soliton distribution has
a small percentage of degree one symbols and it is designed
for full recovery. In the full recovery area, the performance of
LT codes improves rapidly withη value and approaches the
performance of ideal Rateless codes. Hence, we can conclude
the full advantage of Growth codes is expressed with a source
coder such as a video coder whose utility increases with the
decoded data.

For the sake of completeness, we provide comparisons
for channel mismatch conditions,i.e., when the rate of GC
is optimized for a set of acceptable decoding failure rates
(5, 10, 15, 20)% ( these values are considered when the optimal
source rates are calculated), but in practice the channel condi-
tions are different than those considered during optimization.
Specifically, the source rate is optimized assuming that the
channel is free of packet losses, however in practice the
actual loss rate varies in the range of[0, 30]%. The results
are presented in Fig. 5 for transmission of the Foreman CIF
sequence and channel capacityB = 15 Mbps. From the
results, we can observe that the acceptable decoding failure
rate plays important role on the robustness of the method.
When the acceptable loss rate is 15% or 20%, the optimal
source rate is significantly lower than the capacityB. Hence,
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Fig. 6. Decoding packet failure probability for different acceptable packet
error ratesPl when channel capacityB is 15 Mbps. Various loss rates are
examined.

our scheme is characterized by higherη values and our method
is more resilient to variations of the loss rate, since the packet
decoding failure rate is not affected significantly. This is
verified by Fig. 6 where we can see that the packet failure
probability changes smoothly. However, when the acceptable
loss rate is low, the optimal source rate is rather high and
the scheme is optimized for lowerη values. In such case the
symbol decoding rate is affected significantly by the increased
loss rate. This is due to the fact the actualη value is smaller
than the theoretical optimal because of the channel losses.
Therefore, the video transmission becomes more fragile to
error changes. It is worth noting that when the acceptable
failure rate is 5%, the packet decoding failure rate changes
from 5% to 22%.

V. CONCLUSIONS

In this paper, we have analyzed the performance of Growth
codes using the Wormald method and derived generic bounds
that fully characterize the decoding process. We find that an
exponential model can nicely describe the decoding perfor-
mance. In contrary to other schemes in the literature, the
proposed analysis framework is appropriate for medium sized
codeblocks and not only to large sized codeblocks. It is general
and appropriate for analyzing any other Rateless code that does
not include a precoding step. We proposed an illustrative video
streaming application to demonstrate the benefits of the good
intermediate performance of Growth codes. We have casted a
joint source and channel rate allocation problem whose convex
objective function permits to select of the good intermediate
performance of Growth codes. Our illustrative experiments
show that Growth codes offer good intermediate performance
that are useful for video applications whose quality mono-
tonically grows with the number of packets. Finally, Growth
codes are pretty robust to inaccurate estimations of the channel
status, which is very interesting in the design of practical
streaming applications.
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