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Abstract

Bayesian finite mixture modelling is a flexible parametric modelling approach

for classification and density fitting. Many application areas require distinguish-

ing a signal from a noise component. In practice, it is often difficult to justify

a specific distribution for the signal component, therefore the signal distribution

is usually further modelled via a mixture of distributions. However, modelling

the signal as a mixture of distributions is computationally challenging due to the

difficulties in justifying the exact number of components to be used and due to

the label switching problem. This paper proposes the use of a non-parametric

distribution to model the signal component. We consider the case of discrete

data and show how this new methodology leads to more accurate parameter es-

timation and smaller classification error. Moreover, it does not incur the label

switching problem. We show an application of the method to data generated by

ChIP-sequencing experiments.

Keywords: Bayesian; Gibbs sampler; Label switching; Mixture model

1 Introduction and motivation

Finite mixture modelling can be used to describe data obtained from different popula-

tions. The density of a typical mixture distribution can be written as
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f(x) =
K∑
k=1

πkfk(x;θk),
∑
k

πk = 1 (1)

whereK is the number of components, πk is the weight of component k and fk(x;θk)

is the density of component k, with parameters θk. By relaxing distributional assump-

tions, a mixture model provides a convenient semi-parametric framework for mod-

elling distributions of unknown shape. For example, it is used for model-based density

estimation, since any distribution can be approximated by a mixture of elementary

components.

In the last two decades, many new methodologies have been proposed for the

Bayesian analysis of finite mixture models, such as Diebolt and Robert (1994), West

(1997), Richardson and Green (1997), Stephens (2000a), McLachlan and Peel (2004)

and Nobile et al. (2007). Although the existing literature has shown that finite mixture

models can be inferred in a simple and effective way in a Bayesian estimation frame-

work, persistent challenges still exist in the diagnostic of Markov Chain Monte Carlo

(MCMC) convergence due to the following aspects.

The first aspect is the label switching problem, which is caused by the multi-

modality of the likelihood function. Many methods exist on how to tackle the label

switching problem, for example, there are methods that impose identifiability con-

straints (Diebolt and Robert, 1994; Richardson and Green, 1997; McLachlan and Peel,

2004) and others that are based on relabelling algorithms (Celeux, 1998; Stephens,

2000b; Rodriguez and Walker, 2014; Celeux et al., 2000). For a review and comparison

of these methods see, for example, Jasra et al. (2005) and Sperrin et al. (2010). One

problem common to the existing methods for dealing with the label switching problem

is that they usually require heavy computational costs, which make them unsuitable

for large data sets and models with a large number of components. Another drawback

of these methods is that they focus on mixture models where all components have the

same type of distributions and focus on dealing with the invariance of the likelihood

with respect to the permutation of the component labels. When the mixture compo-

nents have different types of distributions, such as a mixture of Poisson and Negative
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binomial distributions, label switching problems will still occur, since the likelihood

function may still have multi-modes, but the existing methods for dealing with this

problem may not be suitable anymore.

The second aspect is the identification of the number of components, K. Many

authors have devised different methodologies for estimating the number of components

in a Bayesian finite mixture models, for example reversible jump MCMC (Richardson

and Green, 1997) and Birth and Death MCMC (Stephens, 2000a; Nobile et al., 2007).

Another approach to deal with the unknown number of components is to use a mix-

ture of Dirichlet processes (Antoniak, 1974; Escobar and West, 1995), which allows an

infinite number of components.

The challenges mentioned above limit the applicability of mixture models in the

areas involving large data sets and a large number of components. This motivates our

study, as we discuss in detail in the following subsection.

1.1 Motivation of the study

In practice, we are often only interested in classifying the observations into two classes.

For example, in the analysis of ChIP-Sequencing (ChIP-Seq) data, we are interested

in whether a region of the genome is bound by the protein in question or not (Bao

et al., 2014). For such ChIP-Seq (discrete) data, although there are only two possible

classes, it is inappropriate to use a mixture of two known parametric distributions (e.g.

Poisson or Negative Binomial distributions). This is because such data sets usually

have long tails and the tails may show multi-modal patterns.

In this paper, we use for illustration the ChIP-Seq data generated by Ramos et al.

(2010) for identifying the genomic regions bound by the histone acetyltransferases p300.

For each region in the genome, the data report the number of bound fragments that

align to that region. A higher value means that the corresponding region is most likely

to be bound by the protein in question. Table 1 provides the summary statistics for

the data set, where we consider only the data for 1000bp windows along chromosome

21 (Bao et al., 2013). Figure 1 shows a histogram of the count data. The left plot
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Sample size min max Mean Variance

33916 0 282 2.24 18.70

Table 1: Summary statistics of the ChIP-seq data of Ramos et al. (2010) for one experiment
on the protein p300 on chromosome21.

shows that the data set has a very long tail. If we zoom in the tail of the distribution

(right plot), we see possible multi-modal patterns, suggesting that the distribution of

the data is likely to consist of several component distributions. The interest however

is that of classifying each region into two possibly states: bound or not bound by the

protein in question.
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Figure 1: Distribution of ChIP-seq data for one experiment (left), with zoom on the tail
(right).

The above situation has been observed also for other ChIP-seq experiments, where a

two-component parametric mixture model appears to be too restrictive for the analysis

of these data. An alternative approach is to use K components, with K > 2. In the

context of ChIP-seq data analysis, this is considered by Kuan et al. (2011), who allow

the signal distribution to be a mixture of two negative binomial distributions (i.e. K =

3). However, it is very challenging to justify what the true value of K is. Although the

reversible jump Markov chain Monte Carlo method (Green, 1995) is readily available,

the justification of reversible-jump MCMC convergence is non-trivial and it requires

heavy computational costs. Another challenge of using K components is that it is non-

trivial to determine what the component distributions are. For instance, all components

may be chosen as Poisson distributions, or only some components are chosen as Poisson

distributions and the others are chosen as Negative Binomial distributions. Finally,
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since we are only interested in predicting two classes, using a mixture distribution with

K components seems unnecessary. The above arguments and the motivating example

have led us to consider a two-component mixture model for discrete observations, with

one parametric distribution and one nonparametric distribution.

There are some existing non-Bayesian methods based on EM-type algorithms, which

can deal with a two component mixture model with one parametric component and one

non-parametric component. However those methods cannot be applied to our study.

For example, Song et al. (2010) proposed a mixture model for sequential clustering

of observations. It requires that the component with known location parameter. The

classification algorithm relies on this center parameter. However, in our study the lo-

cation parameter for the noise component is unknown. Xiang et al. (2014) extended

the method and does not require the location parameter to be known, but the asymp-

totic results were not available for the full model as the identifiability problem was

not justified there. We therefore focus on the Bayesian approach in this paper, where

large sample properties for the estimates are not our concern since simulation from

the posterior distribution is generally the main task in Bayesian analysis. The chal-

lenge of Bayesian analysis for mixture models is the label switching problem and the

determination of the number of components K.

1.2 The contribution and structure of the paper

The advantage of this new method is that it bypasses the challenges involved in the

K-component mixture models, such as the label switching problem and the determi-

nation of the unknown parameter K. The new method can still distinguish whether

an observation is signal or noise, which is the main research interest in the studies that

we consider, and it can do so with higher accuracy than a mixture of two parametric

distributions, since it is expected to fit the data better.

The rest of this paper is organised as follows. Section 2 is devoted to developing

the mixture models and estimation methodologies. Section 3 gives detailed simulation

studies, which show that our method is more reliable than existing methods in terms

5



of better parameter estimation and smaller classification error. The data analysis is

provided in Section 4 and a discussion is given in Section 5.

2 The new methodology

Suppose that discrete observations x1, · · · , xn are sampled from a mixture of distri-

butions with two components, where one component is the noise distribution and the

other component is a signal distribution. We simply use the following density to model

the data,

f(x) = π1f1(x;θ1) + π2f2(x;θ2) (2)

where f1 is the parametric distribution for the noise, f2 is the signal distribution and

π1 and π2 are the corresponding mixture proportions, respectively.

Let zi, (i = 1, .., n) be an indicator or latent variable associated with each observa-

tion xi, i.e. zi = k (k = 1, 2) means that the observation xi is from component k. The

complete likelihood function for (θ1,θ2) given the full data is

l(θ1,θ2|x, z) ∝
n∏

i=1

{
[π1f1(xi;θ1)]

I[zi=1] [π2f2(xi;θ2)]
I[zi=2]

}
. (3)

The noise distribution f1 is usually simpler to determine. For example in ChIP-Seq

studies, a Poisson distribution is a natural choice for the noise since a genomic region

not bound by the protein in question but tagged is a rare event. In cases where small

window sizes are considered for the regions, zero-inflated Poisson distributions have

been found to fit the noise distribution very well as they account for large number

of zeros (Bao et al., 2014). In contrast to this, the signal distribution can present

complicated patterns. As explained in Section 1, it may be difficult to find a suitable

parametric distribution model for f2. On the other hand, if f2 is further modelled by

a mixture distribution, it may not be easy to deal with the label switching problem, to

determine the number of mixture components and to determine the component distri-
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butions. Since we are only interested in distinguishing the signal and the noise, it is not

necessary to identify how many components the signal distribution is formed of and

what these component distributions are. We therefore consider to use a nonparametric

model for the second component.

As the data are discrete, we can denote with x(1), · · · , x(L) the L distinct values of

the observations x1, · · · , xn. Define

f ∗
2 (x(j)) = pj,

L∑
j=1

pj = 1 (4)

where pjs (j = 1, · · · , L) are the unknown parameters. pj can be interpreted as the

probability of x = x(j) given that x is drawn from the signal component. This can

be viewed as a nonparametric distribution. Under this model, the distribution of x is

given by

f(x) = π1f1(x;θ1) + π2

L∑
j=1

f ∗
2 (x)I[x = x(j)]. (5)

Based on the distribution (4), we have the following likelihood function given (xi, zi)

(i = 1, · · · , n),

l(θ1,p,π|x,z) ∝
n∏

i=1

[π1f1(xi;θ1)]
I[zi=1]

[
π2

L∑
j=1

pjI[xi = x(j)]

]I[zi=2]


= πn1
1 πn2

2

n∏
i=1

[f1(xi;θ1)]
I[zi=1] ·

L∏
j=1

p
∑n

i=1 I[zi=2,xi=x(j)]

j

where nk =
∑

i I[zi = k], k = 1, 2.

If we choose uniform priors for π and p and denote the prior for θ1 as g0(θ1), we

have that π, p and θ1 are independent under the posterior distributions. In particular,

the posterior distribution of π is given by the Beta distribution

g(π|x, z) ∝ πn1
1 πn2

2 := Beta (π;n1 + 1, n2 + 1), (6)
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the posterior of p by the Dirichlet distribution

g(p|x, z) ∝
L∏

j=1

p
∑n

i=1 I[zi=2,xi=x(j)]

j (7)

:= Dirichlet (p; 1 +
n∑

i=1

I[zi = 2, xi = x(j)]),

and the posterior for θ1 by

g(θ1|x,z) ∝
n∏

i=1

[f1(xi;θ1)]
I[zi=1] g0(θ1). (8)

We also have that the posterior probability of zi given x,π,p and θ1 is

P (zi = 1|x,π,p,θ1) ∝ π1f1(xi;θ1)

P (zi = 2|x,π,p,θ1) ∝ π2

L∑
j=1

pjI[xi = x(j)]. (9)

Based on all the above posterior distributions, we can use the Gibbs sampler to

draw realisations from the posterior distribution and carry out a Bayesian Monte Carlo

analysis. To implement the Gibbs sampler, we need to update the unknown parameters

and the latent variable z by sampling from the conditional posterior distributions in

(6), (7), (8) and (9). This leads to the algorithm:

Initialization, select, z(0),π(0), p(0) and θ
(0)
1 ;

Set m = 1 ;
repeat

for i = 1 to n do
Update zi with probability (9)

end
Update θ1 from the posterior in (8) ;
Update π from the posterior in (6);
Update p from the posterior in (7);
m = m+ 1

until enough MCMC steps have been simulated;
Algorithm 1: The Gibbs sampler.
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2.1 The interpretation of the model

The second component in (5) can be viewed as a nonparametric component, since we

allocate a probability to each x(j). The probabilities pj can be viewed as the empirical

probabilities estimated via a sampling approach. It is easy to interpret the idea of this

nonparametric component in the following way. If the Poisson component has λ = 5,

say, then the probability that an observation with value 30 comes from the Poisson

(noise) component will be very small (about e−13). If the empirical distribution (the

signal distribution) tells that P (X = 30) ≈ 0.00001, then we should indeed classify

the observation 30 into the signal component, provided that the component proportion

values (π1 and π2) are in a similar scale. That means regardless of what the signal

distribution is, we can always classify observations into either signal or noise.

The posterior predictive distribution of the new model also has a reasonable inter-

pretation, which is actually linked with the Dirichlet process distribution. If we assume

that the latent variable z is known, then the posterior predictive distribution is given

by

fpre(y|x,z)

=

∫
θ1,p,π

(
π1f1(y;θ1) + π2

L∑
j=1

pjI[y = x(j)]

)
l(θ1,p,π|x, z)g0(θ1)

c
dθ1dpdπ

where c, depending on x,z, is the normalising constant for the full posterior distribu-

tion. We can further write the posterior predictive distribution as

fpre(y|x,z) =

∝ E(π1)

∫
θ1

f1(y;θ1)

(
n∏

i=1

[f(xi;θ1)]
I[zi=1]

)
g0(θ1)dθ1

+E(π2)

∫
p

(
L∑

j=1

pjI[y = x(j)]

)
L∏

j=1

p
∑n

i=1 I[zi=2,xi=x(j)]

j dp

:= E(π1) · E1(f1(y;θ1)) + E(π2) ·
L∑

j=1

I[y = x(j)]E2(pj)
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where E(π1) and E(π2) are the posterior expectation of π, E1(f1(y;θ1)) is a posterior

expectation conditional on all observations allocated to the first component (zi = 1)

and E2(pj) is the posterior expectation for p conditional on all observations allocated

to the second component (zi = 2).

Based on (7) we know that

E2(pj) =
1 +

∑
i I[zi = 2, xi = x(j)]

L+
∑

i I[zi = 2]

and based on (6) we know that

E(πk) =
nk + 1

n+ 2
, k = 1, 2.

Then with simple calculations we further have

fpre(y|x, z) ∝
n1 + 1

n+ 2
· E1(f1(y;θ1)) +

n2 + 1

n+ 2
· 1 +

∑
i I[zi = 2, xi = y]

L+ n2

(10)

which has a very close connection with the posterior predictive distribution for Dirichlet

process distributions in Ferguson (1973).

Suppose that a random sample X1, · · · , Xn is from a probability space (R,B) with

a random probability measure P, which is a Dirichlet process with a base measure

parameter α. Then Ferguson (1973) showed that the conditional distribution of P

given X1, · · · , Xn is still a Dirichlet process with parameter α +
∑

i δXi
, where δu

denotes the measure giving mass one to the point u. Based on this result, Ferguson

(1973) derived the posterior predictive distribution for a new variable Y from P, as

Ppre(·|X1, · · · , Xn) =
α(R)

α(R) + n
· α(·)
α(R)

+

(
1− α(R)

α(R) + n

)
α(·) +

∑
i δXi

(·)
α(R) + n

(11)

which is a mixture of the prior belief α and the empirical distribution. Comparing

(10) and (11) we can see that the posterior predictive distribution of our model is

a mixture of the parametric predictive distribution E1(f1(y;θ1)) conditional on all
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observations allocated in the first component, and the empirical distribution conditional

on all observations allocated in the second component.

Therefore, under our modelling framework and given all observations xi with its

classification indicator zi, a new observation can be viewed as from a random probabil-

ity measure P, which is a Dirichlet process with a base measure parameter proportional

to E1(f1(y;θ1)). Ferguson (1973) uses the base measure parameter α as the prior in-

formation and the predictive distribution converges to the empirical distribution as the

sample size n → ∞. In our study, the base measure parameter can be viewed as the

information for the first component. The latent variable zi determines the proportion

of samples in each component and it can be sampled via the proposed Gibbs sampler

algorithm. If we fix all zi = 2, our model degenerates to Ferguson’s Bayesian nonpara-

metric analysis, which cannot deal with classification since the target distribution is

estimated via a nonparametric distribution.

3 Simulation studies

3.1 Scenario 1

To verify the validity of our methodology, we simulate a data set of n = 500 observations

from a mixture of a Poisson distribution and a Negative Binomial distribution. The

true model is

f(x) = π1Poi(x;λ) + π2NB(x; r, v), (12)

where λ is the mean of the Poisson distribution, r is the nonnegative dispersion pa-

rameter and v is the probability parameter for the Negative Binomial distribution. We

choose different values of the true parameters in order to study the performance of our

proposed method under different situations. We consider three cases, (a) the means

of the two components are far apart, (b) the means of the two components are very

close and (c) the means of the two components are neither too close nor too far apart.

We choose π1 = 0.8, i.e. having a larger proportion for the noise component, to reflect

our real ChIP-seq data. We also consider the case where the signal and noise have the
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Figure 2: Trace plots for π1 and for λ, with different starting values. The true parameter
values are π1 = 0.8, λ = 2, r = 15 and ν = 0.4.

same component weights, π1 = π2 = 0.5.

The simulation studies are based on 20,000 iterations with 10,000 burn-in iterations,

repeated for 100 times. Different starting values for the Gibbs sampler are chosen to

justify the convergence of the Markov chains. From Figure 2 we can see that 20,000

steps are enough to guarantee the convergence for the Markov chains. We also choose

different prior distributions to study the sensitivity of our model to the prior used. The

results provided in the supplementary material demonstrate that the method is robust

to different priors.

Table 2 shows the posterior means of the parameters of the proposed model under

a number of different cases. We can see that the estimates are very good when the

two components are clearly separated (Set 1 case). But for Set 2 and Set 3, there

is some bias in the estimate of π1. This is because for Set 2 and Set 3, the two

component means are very close and many observations from the signal (having larger

mean values than the noise) are treated as a sample from the noise component, leading

to an inflated estimate of π1. This kind of bias occurs in all analyses based on mixture

models when the component densities are very close, i.e. the two components are not

easily identifiable. For the purpose of comparison, we calculate the misclassification

12



True value True π1 = 0.8 True π1 = 0.5

λ r v E(λ) E(π1) Error E(λ) E(π1) Error

Set 1a 6 10 0.3 5.9271 0.7547 0.08 6.3299 0.4207 0.13
(5.6054,6.2460) (0.6895,0.8092) (5.7362,6.9172) (0.3362,0.4922)

10 20 0.2 9.6081 0.7489 0.05 9.8108 0.4061 0.08
(8.9084,10.1492) (0.6723,0.8114) (9.0310,10.3848) (0.3322,0.4665)

2 15 0.4 1.8425 0.7722 0.05 1.9963 0.4171 0.08
(1.6765,2.0060) (0.7136,0.8202) (1.7091,2.2801) (0.3355,0.4828)

Set 2b 2 5 0.6 2.0375 0.9300 0.20 2.3493 0.8285 0.44
(1.8412,2.2088) (0.8344,0.9823) (2.0519,2.6615) (0.7175,0.9115)

4 2 0.4 3.6699 0.8019 0.31 3.2550 0.7131 0.47
(3.1780,4.0766) (0.6320,0.9201) (2.5142,3.9011) (0.5582,0.8262)

6 5 0.5 5.6248 0.8854 0.24 5.3592 0.7631 0.48
(5.2943,5.9334) (0.7899,0.9552) (4.6386,5.9127) (0.6155,0.8681)

Set 3c 1 7 0.6 1.0527 0.8276 0.14 1.2148 0.5316 0.24
(0.8823,1.2257) (0.7379,0.8961) (0.8289,1.9641) (0.3769,0.6317)

2.5 6 0.5 2.7537 0.8969 0.18 3.0378 0.7282 0.36
(2.5479,2.9584) (0.8171,0.9479) (2.6840,3.4131) (0.6246,0.8061)

3 5 0.4 3.2014 0.8828 0.16 3.7587 0.7137 0.36
(2.9778,3.4199) (0.8151,0.9313) (3.3226,4.2288) (0.6093,0.7937)

Table 2: Simulation results (posterior means, classification error and 95% credible intervals)
where the true model is (12).

aComponent means are far apart
bComponent means are close
cComponents means are neither too close nor too far apart

rate (the ratio of the number of wrongly classified observations over the total number

of observations). We can see that Set 1 has much smaller misclassification rate than

other sets (Sets 2 and 3).

From Figure 2 we can see that label switching does not occur. In fact we did not

find any label switching in the trace plots based on all simulations in Table 2. Note that

if we use a mixture model with a Poisson component and a NB component (the true

underlying model) to analyse the data, the label switching problem still exists although

the two components are different. This is shown in Figure 3, which is the simulation

results for a mixture with two components: one Poisson component with a small mean

value 2 and a negative binomial component with a larger mean value around 22.5. We

can see from the trace plots that in this case the MCMC chain manages to estimate

λ and π1 close to their true values, 2 and 0.8 respectively. However, the algorithm
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Figure 3: MCMC trace plots for λ, π1, r and v by using a mixture of Poisson and NB
distributions; the true model is (12) with λ = 2, π1 = 0.8, r = 15 and v = 0.4.

sometimes returns estimates of λ around 20 and very small estimates of π1, meaning

that the Poisson distribution is used to model observations with large values but the NB

distribution is used to model observations with small values. Such a label switching is

due to the multi-modality property of the likelihood and makes it impossible to draw

conclusions from the MCMC chains without some form of relabelling. However, all

existing methods cannot deal with such label switching problems since they require

the component distributions to be of the same type. Here we cannot simply relabel

a Poisson parameter say λ = 20 to the pair of NB parameters (r, v). For simplicity

of presentation we did not provide any results (such as posterior means and credible

intervals) based on a mixture of Poisson and NB distribution here, since those results

are severely biased.

3.2 Scenario 2

We now consider a more general mixture distribution with five-components, where

the noise component is a Poisson distribution and the signal components are Negative

Binomial distributions. The sample size is also chosen as n = 500. The aim here is

to show that our methodology outperforms the fully parametric mixture model, under
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general mixture distributions, in terms of estimation and classification. The true model

for this simulation is given by

f(x) = π1Poi(x;λ) +
5∑

k=2

πkNB(x; rk, vk). (13)

We chose different values for the parameters λ, rk and vk in order to compare our

method with existing methods under different settings.

First we choose the set of true parameters (Set 1) as λ = 1, π1 = 0.6, π2 = · · · =

π5 = 0.1, r = (3, 5, 8, 10) and v = (0.3, 0.5, 0.7, 0.8). This choice of r and v for the

NB components gives the corresponding component means as (7, 5, 3.43, 2.5). Such a

choice means that the Poisson component has the smallest mean, but the means of all

components are not too far away. This would cause some identifiability problems for

the Poisson component and other NB components if we use traditional Gibbs sampling

methods. Indeed this is confirmed by Figure 4 where the MCMC trace plots for π1

and λ clearly show the occurrence of the label switching problem. This issue severely

distorts the posterior estimates, see Table 3. For example the posterior mean for λ is

1.9227 (the true value is 1) and the posterior mean for π1 is 0.3101 (the true value is

0.6). On the contrary, if we use the new method, the estimates for λ and π1 are 1.352

and 0.749, respectively, which are closer to the true values. For simplicity we did not

provide the estimates for r and v since the main aim here is classification and under

the new model r and v are not involved.

To justify the classification performance of the new method, one may use the poste-

rior probability distribution for z as the classification criteria. The posterior probability

of zi = 1 is given by,

gi = P (zi = 1|x,θ) := π1f1(xi;θ1)

π1f1(xi;θ1) + π2

∑L
j=1 pjI[xi = x(j)]

. (14)

If gi is less than a threshold, say ρ, the value xi will be classified into class 2. Based

on this idea, false discovery rate (FDR) is commonly used to justify the performance

of a classifier and was for example used by (Bao et al., 2013) in the context of mixture

15



Figure 4: MCMC trace plots for λ, π1 by using the true model, a mixture of a Poisson and
four NB distributions; the true parameter values are λ = 1, r1 = 3, r2 = 5, r3 = 8, r4 = 10
and v1 = 0.3, v2 = 0.5, v3 = 0.7, v4 = 0.8, π1 = 0.6, π2 = · · · = π5 = 0.1.

models. It is defined as

FDR =
#{false positive discovery}

#{declared positive}

=
#{false positive discovery}∑

i I[gi < ρ]
.

We fixed the FDR at level 0.01 and find the threshold ρ and further calculate the

false non-discovery rate (FNDR) based on the existing method and our new proposed

method. The FNDR is defined as

FNDR =
#{false negative discovery}

#{declared negative}

The FNDR values are shown on the last column of Table 3. The new method has

smaller FNDR.

Model True value Posterior mean FNDR

λ π1 r1 r2 r3 r4 v1 v2 v3 v4 E(λ) E(π1)

(i) 1 0.6 3 5 8 10 0.3 0.5 0.7 0.8 1.3516 0.7488 0.078
(1.0855,1.6115) (0.6385,0.8260)

(ii) 1 0.6 3 5 8 10 0.3 0.5 0.7 0.8 1.9227 0.3101 0.406
(0.6301,3.6701) (0.0368,0.7504)

Table 3: Parameter Set 1. (i) the new method; (ii) existing mixture model, the true mixture
model of five components is used. FDR is controlled at level 0.01.

Note that, for the results in Table 3, we run the Gibbs sampler for 20,000 steps with

10,000 steps as burn-in iterations. For both methods, we choose a Gamma(2, 1) prior
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distribution for λ and a uniform prior distribution for π. For the new method we choose

uniform priors for p, whereas for the Poisson-NB mixture we choose a Gamma(20, 1)

prior for the elements of r and a uniform distribution for the elements in v. Fur-

thermore, for the parametric mixture, we use a Metropolis-Within-Gibbs sampler to

simulate from the posterior distributions, given the difficulty in simulating the param-

eters r and v for NB distributions.

In a second simulation, we choose the set of true parameters (Set 2) as λ = 5,

π1 = 0.6, π2 = · · · = π5 = 0.1, r = (5, 7, 10, 14) and v = (0.4, 0.6, 0.8, 0.9). This

choice of r and v for the NB components gives the corresponding component means as

(7.5, 4.67, 2.5, 1.56). Such a choice still gives very close means for each component, but

now the Poisson component does not have the smallest mean. The posterior estimates

based on the traditional parametric mixture model is still very poor and our method

returns a smaller FNDR (see Table 4).

Model True value Posterior mean FNDR

λ π1 r1 r2 r3 r4 v1 v2 v3 v4 E(λ) E(π1)

(i) 5 0.6 5 7 10 14 0.4 0.6 0.8 0.9 4.5530 0.8010 0.24
(4.1507,4.9451) (0.6720,0.8930)

(ii) 5 0.6 5 7 10 14 0.4 0.6 0.8 0.9 4.1706 0.4278 0.52
(0.6884,5.7709) (0.0082,0.8059)

Table 4: Parameter Set 2. (i) the new method; (ii) existing mixture model, the true mixture
model of five components is used. FDR is controlled at level 0.01.

In the final simulation, we choose the set of true parameters (Set 3) as λ = 6,

π1 = 0.6, π2 = · · · = π5 = 0.1, r = (8, 12, 30, 40) and v = (0.3, 0.3, 0.4, 0.3). This

choice of r and v for the NB components gives the corresponding component means

as (18.7, 28, 45, 93.3). Such a choice will give very different component means with

the Poisson component having the smallest mean. This situation is similar to the real

ChIP-seq data, in the sense that there is a long tail and the noise component has

the smallest mean value. From Table 5 we can see that our method gives posterior

mean estimates for λ and π1 with smaller bias and shorter credible intervals than

the parametric mixture approach. Once again, the larger bias and variation in the
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Figure 5: MCMC trace plots for λ, π1 by using the true model, a mixture of a Poisson and
four NB distributions; the true parameter values are λ = 6, r1 = 8, r2 = 12, r3 = 30, r4 = 40
and v1 = 0.3, v2 = 0.3, v3 = 0.4, v4 = 0.3, π1 = 0.6, π2 = · · · = π5 = 0.1.

estimates given by the existing methods is due to the label switching problem, see

Figure 5. However, for this scenario, since the signal and noise are far apart, the new

method did not gain an advantage in terms of FNDR, when controlling the FDR at

level 0.01.

Model True value Posterior mean FNDR

λ π1 r1 r2 r3 r4 v1 v2 v3 v4 E(λ) E(π1)

(i) 6 0.6 8 12 30 40 0.3 0.3 0.4 0.3 5.7662 0.5799 0.10
(5.4113,6.1190) (0.5227,0.6325)

(ii) 6 0.6 8 12 30 40 0.3 0.3 0.4 0.3 5.8718 0.5372 0.03
(5.0773,6.5490) (0.0548,0.6376)

Table 5: Parameter Set 3. (i) the new method; (ii) existing mixture model, the true mixture
model of five components is used. FDR is controlled at level 0.01.

4 Data analysis

4.1 ChIP-seq data

As described in Section 1.1, we now show the applicability of the new method to

ChIP-seq data. In ChIP-seq technology, the DNA is sheared into smaller fragments,

typically 200 - 1000 base pairs (bp) long beforehand, this facilitates throughput se-

quencing. The dataset considered in this analysis is p300T301.1000bp dataset from

the R package enRich, which is size-selected into 1000 base pairs (See Bao et al. (2013)

for a description of the ChIP-seq technology and this particular dataset). The aim of

the analysis is to detect the regions in the genome bound by the histone acetyltrans-

ferases p300, so it is a natural two-mixture problem with a background and a signal
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component. Several methods for the analysis of ChIP-seq data assume a parametric

signal distribution mixed with a parametric background distribution. For example,

Kuan et al. (2011) propose a mixture of Negative Binomial distributions; Qin et al.

(2010) adopt a generalized Poisson distribution for the signal and Bao et al. (2014)

propose a zero-inflated Poisson/NB for noise and a NB for the signal. This paper con-

siders a non-parametric model for the signal distribution, so that the variability in the

signal can properly be accounted for.

Based on the posterior distribution, the posterior classification probability in (14)

can be computed to predict a region is enriched or not. The region i will be classified

as an enriched region if gi < ρ. The threshold value ρ is determined by controlling the

false discovery rate at a predefined level (Bao et al., 2014) say 0.001. The expected

false discovery rate corresponding to the threshold value ρ is given by

0.001 = F̂DR =

∑
i∈enriched region(gi)∑

i I[gi < ρ]
.

Figure 6 shows a Venn diagram of the regions detected as enriched by p300 using the

model proposed in this paper, compared with a mixture of two Poisson distributions

and a mixture of two NB distributions, at 0.1% false discovery rate. For the Poisson and

NB mixtures we use the implementation in the enRich R package. Our method detects

more enriched regions than the existing methods at the same false discovery rate. We

use ChromHMM (Ernst and Manolis, 2010) to validate the enriched regions identified

by the methods. Figure 7 shows the results based on ChromHMM with 3 chromatin

states. The top plots give the emission probabilities for the different analyses, that

is the probability of the observed enrichment given each of the three possible states.

These plots show that two of the three states explain most of the enrichment pattern

in the identified lists. The bottom plot give the relative fold enrichment for several

annotations. These plots show how these two states are mostly enriched with TSSs,

active and weak promoters, and weak enhancers. Furthermore, the plots show how

the second state, which is mainly identified by our method, reflects a larger degree of
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Figure 6: Number of enriched regions identified by the proposed model, Poisson-Poisson
mixture model and NB-NB mixture model on chromosome21 at the 0.1% FDR.

enrichment of active and weak promoters. Therefore, we can conclude that by using

the proposed method, more regions are found at the same FDR, and that these regions

are generally of the same quality as those found by the existing methods.

5 Discussion

This paper developed a mixture model with a parametric component and a nonpara-

metric component for modelling noise and signal, respectively. We showed several

advantages to using a nonparametric component. Firstly, we neither need to specify

the distributions for the signal component nor to consider how many components there

are. Secondly, the method does not incur the label switching problem. Results on

simulated data verify the validity of the approach and show a better performance of

the method compared to fully parametric finite mixture distributions under general

cases.

In our analysis the second mixture component is modelled as a nonparametric dis-

tribution, which actually involves L unknown parameters, the probabilities for distinct

observations values in the enriched region. Therefore, if L is very large, the compu-

tational cost could be heavy. For the data set analyzed in this paper, the value of L

is not too large, in the scale of 100, therefore the method is efficient. But if L is up
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to several thousands, the method may not be practical. In the context of ChIP-seq

data, one solution for this is to consider smaller windows for genome regions. This

will automatically reduce the value of L. However, when smaller windows for genome

regions are considered, true enriched regions could easily cross two or more adjacent

windows. In this case, the spatial dependencies between neighboring windows along

the genome should be taken into account. Furthermore, for smaller fragments window

size of 200bp, it is generally expected that greater part of the genome is not enriched

with excess zeros in the output of ChIP-seq experiment, which form part of the noise

component. Therefore, zero-inflated models (e.g. zero-inflated Poisson) or models with

greater variance (e.g. negative binomial) are better choices for the noise component

combine with more elaborate models with Markov property, such as HMMs or Markov

random fields should be considered in this case such as the methods developed in Spy-

rou et al. (2009) and Bao et al. (2014). We are currently working on an extension of

the methodology proposed in this paper to account for Markov dependencies.

The proposed method is only valid for discrete data sets, thus a possible extension

is to develop methods able to deal with continuous data sets. In this case, a continuous

distribution would be chosen for the noise component f1(x). However, new methods

would need to be developed for the nonparametric component, since the posterior (9)

of zi in Algorithm 1 will not be valid anymore. This is left as a future research work.
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