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Abstract

Transcription factors (TFs) are proteins that bind to specific sites on the DNA and regulate gene activity. Identifying where
TF molecules bind and how much time they spend on their target sites is key to understanding transcriptional regulation. It
is usually assumed that the free energy of binding of a TF to the DNA (the affinity of the site) is highly correlated to the
amount of time the TF remains bound (the occupancy of the site). However, knowing the binding energy is not sufficient to
infer actual binding site occupancy. This mismatch between the occupancy predicted by the affinity and the observed
occupancy may be caused by various factors, such as TF abundance, competition between TFs or the arrangement of the
sites on the DNA. We investigated the relationship between the affinity of a TF for a set of binding sites and their occupancy.
In particular, we considered the case of the transcription factor lac repressor (lacI) in E.coli, and performed stochastic
simulations of the TF dynamics on the DNA for various combinations of lacI abundance and competing TFs that contribute
to macromolecular crowding. We also investigated the relationship of site occupancy and the information content of
position weight matrices (PWMs) used to represent binding sites. Our results showed that for medium and high affinity sites,
TF competition does not play a significant role for genomic occupancy except in cases when the abundance of the TF is
significantly increased, or when the PWM displays relatively low information content. Nevertheless, for medium and low
affinity sites, an increase in TF abundance (for both cognate and non-cognate molecules) leads to an increase in occupancy
at several sites.
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Introduction

A powerful key to understanding transcriptional regulation is

the amount of time a regulatory binding site is occupied by a

cognate transcription factor (TF). In particular, this ‘occupancy’

measure can be used to infer relative amounts of transcription of

the target gene, and is therefore a more powerful comparative tool

than simple sequence searches for ‘preferred binding sites’.

Transcription factors have specific affinities for each site on the

DNA (computed from the binding energy between the TF protein

and the DNA molecule at the target site) and it is often naı̈vely

assumed that this affinity is sufficient to predict the actual

occupancy of TFs bound to the DNA [1]. However, recent

studies have demonstrated that affinity alone is not always

sufficient to accurately predict TF occupancy [2].

Previous studies have shown that TF abundance can account

for the correlation between the normalised affinity and normalised

occupancy (‘‘normalised’’ here refers to setting the maximum

observed values to 1) [3–8], in the sense that increasing TF

abundance increases the number of occupied sites and that those

additional sites are of decreasing affinity. This result was explained

by the fact that, once the high affinity sites get close to saturation,

TF molecules will spend more time bound to lower affinity sites.

However, in those studies the spatial organisation of sites on the

DNA was disregarded. Such an assumption should predict

occupancy for in vitro experiments such as SELEX or PBM [9],

(where there are only short DNA sequences and one TF species),

whilst in in vivo studies, could lead to biased predictions.

A popular approach to estimate occupancy is the statistical

thermodynamics framework. This method computes the proba-

bility that, at equilibrium, one encounters a specific configuration

of TF molecules on the DNA [10–13]. A number of studies

consider a uniform affinity landscape for TFs or other DNA-

binding proteins and focus on the occupancy of a single site (or a

few sites) in the context of a genome with otherwise constant

affinity [10–13]. However, TFs display a distribution of affinities to

the DNA [5,14] and, thus, the assumption of a uniform landscape

becomes restrictive (and can lead to biases in the results). Wasson

and Hartemink [15] considered non-uniform affinity landscapes

and investigated the relationship between the abundance of DNA-

binding proteins and their occupancy using a statistical thermo-

dynamics model. Their results confirmed that, when increasing TF

abundance, low affinity sites display higher occupancy than that

which would be predicted by affinity alone. Furthermore, the

addition of other DNA-binding proteins (histones in their case)

leads to an overall reduction in occupancy of the TFs of interest.

Similarly, Kaplan et al. [2] applied a combination of a hidden

Markov model and a thermodynamic framework and discovered

that TF competition does not influence the observed occupancy

significantly (at least in the case of their system). Nevertheless, they
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considered only the competition between various TF species and

did not alter the abundance of their TFs of interest (they used the

actual TF abundance that was experimentally measured).

The main assumption of the statistical thermodynamic frame-

work is that the system reaches equilibrium and the transient time

(the time to reach equilibrium) is negligible [1]. Nevertheless, there

is still no proof that, in the case of the TF search process,

equilibrium exists or is reached fast enough to not affect the

average behaviour. We use a stochastic simulation of the process

by which a TF ‘searches’ for it’s regulatory binding site by first

binding non-specifically to the DNA and then performing a one-

dimensional random walk before eventually unbinding. This

combination of binding/unbinding to/from the DNA and one-

dimensional random walk is known as a facilitated diffusion mechanism

[16] and it is evident that such a process is taking place inside the

cell [17,18]. The physical advantage of facilitated diffusion over a

purely three-dimensional diffusion or a purely one-dimensional

random walk is a more rapid target site location (see [19] for

review). Simulating facilitated diffusion can overcome some of the

limitations of the statistical thermodynamics model by allowing

‘exact’ in silico measurement of the average occupancy of TF

binding sites under various parametrisations of the cellular state

(e.g. concentrations of DNA binding proteins), some of which will

give rise to deviations from the predictions offered by the statistical

thermodynamics model. For example, Chu et al., [20], demon-

strate such deviations when they model TFs as having non-

uniform affinity landscapes.

Here, we used a stochastic simulator that models the facilitated

diffusion mechanism and studied the properties of a complete

continuous DNA sequence (from the genome of E.coli K-12 [21])

being bound by both a cognate TF species (lacI in our case) and a

non-cognate TF species (aimed to model the presence of other

proteins on the DNA which contribute to crowding on the DNA)

[22,23]. This scenario mimics the behaviour of TF molecules in a

live cell performing facilitated diffusion in the search for their

target sites. The TF molecules will not only compete with other

molecules bound to the DNA for sites, but during the one-

dimensional random walk on the DNA, they will slide or hop to

nearby sites [24] and also bypass other bound molecules [25,26]

which act as obstacles and create boundary effects [1].

Our results confirm that the addition of non-cognate TFs

reduces the absolute occupancy of cognate TF binding sites, while

their relative occupancy is influenced at relatively few (in the order

of tens) low and medium affinity sites, and is unaffected at high

affinity sites. That is, for low affinity (‘‘non-specific’’) and medium

affinity sites, the addition of non-cognate TFs leads to significant

differences between the predicted relative occupancy based on

affinity (which we call affinity derived occupancy, or ADO) and

the relative occupancy measured by stochastic simulation (which

we call simulation derived occupancy, or SDO) at several sites,

whilst for high affinity sites this relative binding pattern is

unaffected. While the mismatch associated with low affinity sites

should have little or no influence on gene regulation (unless the

cognate TF molecules change conformation when bound to a

functional high affinity site [27]), this may provide an explanation

for the noise structure in actual genomic profiles of TF occupancy

(e.g. ChIP data).

We further found that differences between ADO and SDO at

medium and high affinity sites can arise if the cognate TF

abundance is significantly increased or if the information content

of the PWM is low. However, for normal bacterial TF abundances

(usually in the range of 10{100 copies [28]), PWM information

content [28,29] and DNA sizes (e.g., 4:6 Mbp [21]), the

differences between the SDO and ADO are negligible and

binding energies are good indicators of occupancy. Nevertheless,

in the case of eukaryotic systems, their high TF abundances (w104

copies [30]), their lower information content motifs [28], and the

amount of accessible DNA suggest that significant differences

between ADO and SDO are likely to occur. Nevertheless, this

increase in occupancy generated by the high abundance of

cognate TFs can be reduced, to a certain degree, by a high

abundance of non-cognate TF molecules in the system.

Results

In [23], we found that, under certain conditions, the occupancy

in the simulations cannot always be predicted based on the affinity.

To systematically assess the source of the mismatch between

affinity derived occupancy (ADO) and simulation derived occu-

pancy (SDO), we considered the case of a bacterial TF (lacI) with

biologically plausible parameters and investigated the relationship

between affinity and occupancy. Figure 1 contains scatter plots of

the SDO vs. ADO at individual sites (at 1 bp resolution) for

various crowding levels on the DNA, and various lacI abundances.

To eliminate weak sites which will not facilitate the formation of a

strong complex with lacI, we recorded only sites with high affinity

E
j
lacI§EO1

lacI|0:7. We chose this threshold to select the top 0:5%
of sites based on the distribution of binding energies, but the value

of the threshold can be selected to match any distribution of

binding energies.

Figure 1 (A) shows that for 1 lacI molecule, there is an excellent

agreement between ADO and SDO even in the case of crowding

on the DNA. The mean ratio of SDO to ADO for 1 lacl molecule

with 26% crowding is 0:966, within a 95% confidence interval

(0:825,1:120). This suggests that, even in the case of leaky gene

expression (1 or a few TF molecules), the TF is able to regulate a

gene within a cell cycle and the percentage of time the site is

occupied is not affected by crowding.

Usually, bacterial TFs number between 10 and 100 copies per

cell [28]. In this case, as well as in the case of 1 lacI molecule, the

addition of non-cognate TFs does not appear to introduce a

significant difference between ADO and SDO.

Finally, a few bacterial TFs are known to exist in high copy

numbers (e.g. the copy number of CRP is &1000 [31]) and

Figure 1 (A) confirms that, in the case of highly abundant bacterial

TFs, the ADO diverges from the SDO. In particular, we observed

a two-fold increase in SDO, compared to ADO; see Table 1. This

indicates that certain sites (for example O2, the second strongest

site of lacI) will display a higher degree of occupancy than that

predicted by affinity.

Next, we considered the effect of increased crowding of the

DNA by non-cognates on the relationship between ADO and

SDO. Figure 1 (B) shows that increasing the crowding level has a

negligible effect on this relationship and that ADO is a good

approximator of SDO at all levels of non-cognate crowding when

10 lacI molecules are modelled; see also Table 2.

Altogether, non-cognate binding proteins do not affect the

occupancy of medium and high affinity sites, in the sense that the

SDO of medium and high affinity sites is accurately approximated

by the ADO. However, by significantly increasing the abundance

of cognate TFs, ADO ceases to be a good approximator of the

SDO of medium and high affinity sites. Thus, only cognate

abundance influences the occupancy of medium and high affinity

sites, while non-cognate TFs have only limited effect.

The results shown in Figure 1, use normalised measures of

occupancy (ADO and SDO), which are the relative values with

respect to the highest rate of occupancy at the strongest site. When

analysing the absolute values for occupancy, Wasson and

The Effects of TF Competition on Genomic Occupancy
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Hartemink [15] observed that the addition of non-specific DNA

binding proteins (nucleosomes in their studies) will reduce the

absolute occupancy of cognate TFs. Figure S4 shows that the

absolute value of the SDO increases when the lacI abundance is

increased and slightly decreases when the non-cognate abundance

is increased, supporting the results from [15].

Non-specific sites
Figure 1 considers only sites with an affinity above a specific

threshold. Besides providing more clarity, the rationale for this

restriction was twofold: First, there is no clear evidence for the

biological relevance of extreme low affinity sites, and second, we

are only interested in amounts of occupancy that would be

detectable in a biochemical assay (i.e. extreme low affinity binding

events are likely not detectable), as the theoretical explanation of

observed binding profiles is one of the goals of our research.

Figure 2 shows heatmaps representing the number of sites

where the ratio between SDO and ADO is higher than a factor

SDO/ADO wd. For example, when dw1, the graph considers

the sites where occupancy predicted from affinity underestimates

the occupancy observed in the simulations. Interestingly, we did

not find any sites where the SDO is lower than the ADO (which

we call ‘false negative’ sites), under the various combinations of

lacI abundances and crowding levels on the DNA (data not

shown).

However, we found sites where SDO w ADO and we call these

sites ‘false positives’. For lacI abundances within [1,100] copies -

Figures 2(A-C) - there are tens of sites where the SDO is higher by

at least 50% compared to the ADO (d§1:5). These sites appear

only for high levels of crowding (at least 42%) and their number is

increased by increasing the crowding. This means that by

increasing the crowding on the DNA, the number of sites where

SDO is higher than ADO also increases. We also investigated if

there is a particular affinity of the sites where the SDO exceeds

ADO and found that these sites are usually distributed amongst

the medium and non-specific sites; see Figure S6.

When we looked for larger differences between SDO and ADO

we saw that by increasing d we observed fewer false positive sites.

In particular, for ½1,100� copies of lacI, there is no site where the

occupancy in the simulations is higher by 150% (i.e. d§2:5) than

the value predicted by the affinity. This supports the conclusion

from the previous section that the occupancy we observed in the

simulations does not significantly deviate from that predicted

based on the affinity.

In the case of 1000 copies of lacI, the results differ. Specifically,

there appears to be two regimes, namely: (i) for dƒ2 and (ii) for

dw2. In the first of these (d[½1:5,2:0�), increasing the number of

non-cognate molecules reduces the number of sites where the

SDO/ADO vd. In other words, in this regime, increased

crowding on the DNA has the opposite effect than that for lower

lacI copy numbers (see above): it reduces the number of false

positive sites. In the case of 1000 copies of lacI, the mean SDO/

ADO ratio is dr&2 (whilst when lacI abundance ƒ 100 copies it is

approximately 1) and by adding non-cognates the number of

bound cognate molecules at sites whose SDO/ADO ƒdr is

reduced (see Figure S6). In turn the mean SDO/ADO ratio will be

reduced which in turn explains why the number of false positive

sites decreases. In the latter case (d[(2:0,2:5�), we observe a similar

Figure 1. ADO and SDO for various abundances of lacI and crowding on the DNA. We considered the case of the lac repressor TF and
100 Kbp of DNA, which contains the O1 site. Each system was simulated for Tl~3000 s (which is the average cell cycle time of E.coli [31,45]) and, for
each set of parameters, we considered X~40 independent simulations. We considered only the sites that have the binding energy at least 70% of
the highest value (the strongest 437 sites). (A) Five different lacI copy numbers: (i) 1, (ii) 10, (iii) 100, (iv) 1000 and (v) 10000. We assumed the case of
3|104 copies of non-cognate TFs, which leads to 26% of the DNA being covered. (B) Five different non-cognate copy numbers: (i) 0, (ii) 1|104 , (iii)
3|104 , (iv) 5|104 and (v) 7|104, and 10 copies of lacI.
doi:10.1371/journal.pone.0073714.g001

Table 1. Confidence intervals around change in ratio SDO/
ADO with 26% crowding.

mean 0.966 1.0811 1.090 1.950 9.782

lacI copies1 10 100 1000 10000

1 (0.108,0.123) (0.117,0.131) (0.973,0.955) (8.680,8.950)

10 (0.006,0.012) (0.860,0.877) (8.570,8.830)

100 (0.851,0.868) (8.560,8.820)

1000 (7.700,7.970)

95% t-test confidence interval for the difference in mean ratio SDO/ADO
between abundances of lacI transcription factor. For example, moving from 1

lacI copy to 1000 copies sees the confidence interval at (0:880,0:909) - in other
words the mean ratio has shifted by nearly 1. This is reflected in the raw mean
values for 1 copy and 1000 copies of 1:066 and 1:960 respectively.
doi:10.1371/journal.pone.0073714.t001
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PLOS ONE | www.plosone.org 3 September 2013 | Volume 8 | Issue 9 | e73714



effect as for lower abundances of lacI, namely that increasing the

crowding on the DNA increases the number of bound cognate

molecules at sites where SDO/ADOwdr.

Considerations on eukaryotic cells
Eukaryotes typically have 3|104 TF copies per cell [30], with

some abundances being is high as 3|106 copies per cell [30]. This

higher abundance of TFs comapred to prokaryotes appears to

reflect that eukaryotic genomes are much longer, giving much

Table 2. Effect of crowding on ratio SDO/ADO for 10 lacI molecules.

% of covered DNA 0% 9% 26% 42% 55%

mean 1.010 0.968 1.081 0.993 1.066

confidence interval (0.008, 0.012) (20.035,20.030) (20.076,20.080) (20.011,20.005) (0.059,0.067)

The table shows the mean SDO/ADO ratio for different levels of crowding. Confidence intervals are from a 95% t-test and show shift in mean ratio from 0% crowding
level.
doi:10.1371/journal.pone.0073714.t002

Figure 2. Significant deviations between ADO and SDO. In this heatmap, we did not consider any affinity cut-off and plotted the number of
sites where the ratio between SDO and ADO exceeds d for a range of values of d[½1:5,2:5�. There are four cases: (A) 1 lacI molecule, (B) 10 lacI
molecules, (C) 100 lacI molecules and (D) 1000 lacI molecules.
doi:10.1371/journal.pone.0073714.g002

The Effects of TF Competition on Genomic Occupancy
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greater space in which TFs can bind [2]. However, at any one

time large parts of eukaryotic genome are packed into dense

chromatin, and are thus inaccessible to TF binding. For example,

in the D. melanogaster embryo, on average only 4:1 Mbp of the

euchromatic genome of 118 Mbp is accessible during each early

developmental stage [32]. This means that, in such eukaryotic

cells, we have accessible DNA that is similar in length to that

considered in this study (the E.coli genome is approximately

4:6 Mbp), but with TFs in much greater abundance. This begs the

question of whether the relationship between occupancy and

affinity that we observe when simulating the prokayrotic case (lacI

around the O1 site) is still true in the context of eukaryotic systems

with TFs that have *104 copies or more.

It is clear from Figure 1 that increasing the abundance of

cognate TFs up to 104, increases the number of medium affinity

sites that display significantly higher occupancy; see also Table 1.

This observation remains true for different levels of crowding on

the DNA as introduced by the presence of non-cognate TFs (no

crowding, low crowding and medium crowding (data not shown)).

Furthermore, at such high levels of cognate abundance almost all

sites display a much higher occupancy than that predicted from

their affinity. For example, the occupancy of the second strongest

site of lacI (O2) becomes approximately equal to that of the

strongest one (O1), although there is a large difference in affinity

between the two sites. This observation suggests that high TF

abundance makes strong and weak sites less distinguishable, which

would hinder a quantitative readout for the regulation of gene

expression in the cell.

Above, we considered occupancy and affinity at single

nucleotide resolution. Figure 3 shows a theoretical TF binding

profile over a locus of the E.coli genome as calculated using GRiP,

demonstrating the progressive effect on occupancy of increasing

TF abundance. (The theoretical profiles are generated using a

method described by Kaplan et al. [2] for modelling ChIP-seq

profiles; see File S1). Each chart plots the ADO and SDO, and

shows that for low copy numbers (½10,100� copies per cell), the

profile of the ADO (filled region) matches the profile of SDO (solid

line) with high accuracy for the cases of no crowding on the DNA

(0 non-cognate molecules) and medium crowding on the DNA

(3|104 non-cognate molecules). This would imply that, in

bacterial cells (i.e. when TF abundance is relatively low), the

binding of TFs to their target sites is not affected by competition

with other molecules, and occupancy is predominantly a factor of,

and is accurately modeled by, affinity. However, when TFs are

highly abundant (½103,104� copies per cell), as is common in

eukaryotic systems, the level of affinity is not the sole determinant

of occupancy on the DNA. In other words, the amount of time

spent bound is determined not just by the encoded information in

the DNA (nucleotide composition of binding sites) and DNA

accessibility, but by the abundance of TFs in the system (mainly

cognate TF abundance, but small effects from non-cognates were

observed).

Finally, bacterial TFs have PWMs with higher information

content compared to the eukaryotic TFs [28,29], (e.g., for lacI,

IlacI~16:9 bits. Average information content: bacteria,

I&23 bits; yeast, I&13:8 bits; multicellular eukaryotes,

I&12:1 bits). To investigate the influence of information content

on the number of highly occupied sites observed in the

simulations, we removed positions from the end of the lacI motif

and performed the simulations at various abundances of lacI on

naked DNA (i.e. no non-cognate TF molecules). In total, we

considered six cases, which resulted in the information content of

the reduced lacI motif being: (i) IlacI1
~15:8, (ii) IlacI2

~14:7, (iii)
IlacI3

12:7, (iv) IlacI4
~10:7, (v) IlacI5

~8:7 and (vi) IlacI6
~7:7; see

Figure S7 and Figure S8. Figure 4 shows that, by selecting an

arbitrary threshold (certain percent of the highest value of SDO),

the number of sites with SDO higher than the threshold increases

both as the abundance of lacI increases (compare the values on

each row in Figure 4), and as the information content of the motif

decreases (compare the values on each column in Figure 4). Note

that the former (the dependence of the SDO on the TF

abundance) was already shown in Figure 1 and Figure 3. Hence,

in eukaryotic systems, we can expect a two fold increase in the

number of sites with high SDO from both the greater TF

abundance [30] and from the likely lower information content of

the average eukaryotic PWM [28].

Note that by removing certain positions from the end of the lacI

motif, we reduced the information content in a biased way and this

can lead to small variations in the occupancy, particularly, in the

case when there are a few sites that display high occupancy.

Nevertheless, this approach to change the information content

does not influence the general result: that TFs with lower

information content motifs display a more dramatic change in

the number of highly occupied sites compared to TFs with higher

information content motifs.

Discussion

Transcription factors perform a combination of three-dimen-

sional diffusion and one-dimensional random walk on the DNA

when they search for their target sites. Inherently, this mechanism

leads to the binding of TFs not only to their target sites, but also to

other, lower affinity sites on the DNA. In this context, it becomes

important to understand the relationship between affinity (how

strongly a TF binds to a site on the DNA) and occupancy (the

residence time of a TF on a site).

Often it is assumed that the relative occupancy of a TF

measured experimentally (say, in a ChIP assay) is indicative of the

relative affinity, and many studies infer a TF’s affinity by de novo

motif analysis based on the most highly occupied sites (those

showing the strongest ChIP enrichment). This assumption is

flawed when there is divergence between occupancy and affinity

for these highly occupied sites. Although this approximation

proved to have good accuracy in the inference of position weight

matrices in many cases (e.g. [33]), there are also examples where

the method seems to fail (e.g. [34]). These cases refer to situations

where false positive prediction (sites that have low affinity but

display high occupancy) or false negative prediction (sites that have

high affinity but display low occupancy) could have influenced the

success of the study.

Our results indicate that by adding non-cognate TFs, the

absolute occupancy of binding sites by cognate TF molecules is

reduced (see File S1). The reduction in the absolute value of the

occupancy is a consequence of the competition of TFs for the

limited amount of DNA. Wasson and Hartemink [15] observed

the same effect, although they used a different approach (a

statistical thermodynamics model) to estimate the occupancy.

However, in their study, they did not look at the occupancy

relative to the highest value (the quantitative readout of binding

events).

We found that the abundance of non-cognate TFs has a limited

effect on the normalised occupancy of low, medium and high

affinity sites; see Figure 1 (B) and Figure 2. Nevertheless, there are

several sites (in the order of tens), where the addition of non-

cognate TFs leads to significant deviations of the observed

occupancy derived from simulation (SDO) from that derived from

affinity (ADO). This result is supported by recent experimental

evidence, where the authors showed that lac repressor occupancy

The Effects of TF Competition on Genomic Occupancy
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increases at lower sites (far away from the O1 site), when the

crowding in the cell increases (and, thus, the crowding on the

DNA increases as well) [35].

Bacterial TFs are expressed at low copy numbers (between 10
and 100) [28] and they have only a few strong sites that are highly

specific [28,29]. This suggests that, in the case of bacterial gene

regulation, affinity controls the relative occupancy of the specific

sites (acting as a local fine tuning mechanism), while the crowding

level on the DNA controls the global occupancy of the sites (acting

as a global regulator).

We also investigated under which conditions the normalised

occupancy of the medium and high affinity sites is affected. Our

results confirmed that for TFs with 103{104 copies per cell and

approximately 4 Mbp of available DNA, the occupancy is higher

than that predicted by affinity, irrespective of the abundance of

non-cognate TFs. Eukaryotic systems have TFs with high

abundance (on average 3|104 copies per cell) [30] and although

they have much larger genomes, only a small proportion of this is

accessible to TFs (e.g., &4 Mbp in early developmental stages of

D. melanogaster) [32]. This suggests that the rate of false positive

binding events (higher occupancy than predicted by affinity) is

significant in eukaryotic cells; see Figure 3. Note that our model is

applicable only to TFs residing in the nucleoplasm and, thus, when

we mention TF abundance in eukaryotic systems we refer to

nuclear abundance of TFs [36].

The dependence of genomic occupancy of TFs on TF

abundance is qualitatively similar to the results presented in

previous analytical studies, which showed that, by increasing the

abundance of TFs, high affinity sites reach saturation and,

consequently, lower affinity sites will display a higher occupancy

[3–8]. This means that the spatial organisation of sites on the DNA

has only a limited effect on the genomic occupancy of TFs.

Nevertheless, the quantitative differences between the SDO and

these analytical solutions need systematic investigation and will be

left for further research.

Kaplan et al. [2] investigated the relationship between exper-

imentally measured occupancy (from ChIP-seq experiments) and

that predicted using a hidden Markov model, and found that the

highest correlation between the two was on average *0:7. To

achieve this correlation they assumed real TF abundances that

were previously measured in D. melanogaster nuclei [36], but they

did not adapt the abundances of TFs to the size of the analysed

DNA segment. In [37], we showed that, when the number of

bound TF molecules is not changed in such a subsystem (a

simulated entity smaller than the genome), the correlation

coefficient between the occupancy of the full system, and the

Figure 3. SDO and ADO landscape for various cognate and non-cognate abundances. We considered the case of the lac repressor TF and
100 Kbp of DNA, which contains the O1 site. In each chart the solid grey line is the SDO at one of four levels of lacI abundance, and the filled green
region is the ADO. The SDO shown is calculated with 0 non-cognate molecules; calculations for 10% and 26% non-cognate abundance show no
visible deviation from the 0 non-cognate case (hence not shown). The SDO was calculated at four lacI abundances: (A) 10, (B) 100, (C) 1000 and (D)
10000 molecules. Each system was simulated for Tl~3000 s and for each set of parameters we consider X~40 independent simulations. We
considered only the sites that have the binding energy at least 70% of the highest value (the strongest 437 sites). We converted the single nucleotide
resolution into expected ChIP-seq profiles as proposed in [2]; see File S1.
doi:10.1371/journal.pone.0073714.g003
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occupancy of the subsystems, can be as low as 0:4. This result is

also shown in Figures 1 and 3, which confirm that an increase in

cognate TF copy number can lead to a reduction in the correlation

between occupancy and affinity landscape. Thus, one method to

increase the correlation between the predicted and observed

occupancy consists of adapting the abundance levels of the TFs

with one of the methods presented in [37].

In addition, this higher number of highly occupied sites is also

influenced by the information content of the motif. In Figure 4, we

showed that, by reducing the information content, the number of

sites with high SDO increases, but also that the effects of the

increase in TF abundance on the highly occupied sites is more

dramatic. In other words, by increasing the abundance of a TF

with a PWM with lower information content, we observed a larger

increase in the number of highly occupied sites compared to the

case of a TF with a PWM with higher information content;

compare different rows in Figure 4. This suggests that, in the case

of eukaryotic systems (which have TFs with lower information

content PWMs [28] and higher abundances [30]), the effects of TF

abundance on the number of ‘false positive’ sites is more severe

than in the case of bacterial cells.

Our approach to reduce the information content (by removing

positions from the end of the lacI motif) is prone to introduce

biases in the results, in particular, at high abundance of the TF

and low number of highly occupied sites; see Figure 4 (B). A

different approach to reduce the information content could be to

add non-specific sites uniformly when constructing the PWM, but

we anticipate this would lead to similar results, namely: in the case

of lower information content motifs, a change in the abundance of

TF has more drastic effects on the number of highly occupied sites,

compared to the case of higher information content motifs.

Nevertheless, the details of this application of a different approach

to reduce the information content needs to be left for further

research as it is beyond the scope of this manuscript.

Finally, we found that the increase in occupancy caused by the

addition of cognate molecules can be reduced by adding non-

cognate molecules. Figure 2 (D) shows that while, in the case of

empty DNA, most of the sites display an occupancy in the

simulations that is higher by at least 100% than that predicted

from affinity; in the case of high crowding on the DNA, only

several hundred sites display such a difference between SDO and

ADO. However, this difference is still large, in the order of 70%.

Materials and Methods

We use GRiP [22] to simulate facilitated diffusion of DNA-

binding proteins around the DNA, which allows parametrisation

with affinity data and measures site occupancy. Briefly, GRiP

performs event driven stochastic simulations [38,39] of all

molecules in the cell which are explicitly represented. Molecules

perform both a three-dimensional diffusion in the cytoplasm

(nucleoplasm in the case of eukaryotic cells) and a one-dimensional

random walk on the DNA. The three-dimensional diffusion is

modelled implicitly by simulating the Chemical Master Equation.

This approach was shown to display negligible error if fast

rebinding to the DNA is also modelled [40], and, in GRiP, fast

rebinding is modelled through a hopping mechanism of TFs on

the DNA. In addition, the model implements steric hindrance, in

the sense that any base pair cannot be covered by two TFs

simultaneously [41]. The complete set of parameters for the model

were previously presented in [23] and can be found in Table S1 in

File S1.

In this study, we consider the case of lac repressor (lacI) TF in

E.coli, with an association rate to the DNA of kassoc
lacI ~2400 s{1

Figure 4. The relationship between information content of the PWM motif and the abundance of TF. This heatmap represents the
number of sites that display an occupancy in the simulation that is higher than the following thresholds: (A) 0:25:max SDOð Þ, (B) 0:50:max SDOð Þ
and (C) 0:75:max SDOð Þ. There were no non-cognate TFs in these cases and occupancy was calculated at abundances of lacI
[f1,10,100,1000,10000g. Information content of the lacI motif was reduced by successively removing the rightmost column of the PWM (see
Figure S7 and Figure S8). In general the number of high occupancy sites is increased by both increased lacI abundance (compare the values on each
row) and reduced information content (compare the values on each column). In (B) at the highest lacI abundance, there are several cases where the
number of highly occupied sites decreases with reducing the information content (from 16 to 8) contrary to the pattern at other abundances and/or
thresholds. This can be explained by the fact that, in order to reduce the information content, we removed certain base pairs from the lacI motif,
which can introduce biases in the affinity landscape. These biases can lead to small deviations from the expected results, particularly in the cases
where there are few sites and the TF has high abundance. For example, in the case of the 10000 copies of lacI with the full motif, there are sites that
display an occupancy of 0:6:max SDOð Þ, while, in the case of 10000 copies of lacI with information content 14:7, those sites will display an occupancy
of 0:4:max SDOð Þ.
doi:10.1371/journal.pone.0073714.g004
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[37] and a specificity as modelled by the PWM in Figure 5 and in

Table S2 in File S1.

In addition to lacI, the system explicitly represents non-cognate

molecules in order to model macromolecular crowding. Each non-

cognate molecule covers 46 bp of DNA and is allowed to perform

the facilitated diffusion mechanism in a similar way to cognate

molecules [23]. We consider five levels of crowding, namely: (i) 0%

(TF0
nc~0), (ii) 9% (TF0:09

nc ~104 and kassoc
nc ~2000 s{1), (iii) 26%

(TF0:26
nc ~3|104 and kassoc

nc ~2571 s{1), (iv) 42% (TF 0:42
nc ~5|

104 and kassoc
nc ~3600 s{1) and (v) 55% (TF0:55

nc ~7|104 and

kassoc
nc ~6000 s{1). Note that, with the exception of the first case

(no crowding on the DNA), all cases display crowding which is

within biologically plausible values (10% to 50% [42]).

Before proceeding to investigate the relationship between

affinity derived occupancy (ADO) and simulation derived occu-

pancy (SDO), we first need to describe the methods used to

estimate these parameters. ADO is computed using the average

time a TF molecule spends bound at a certain position on the

DNA as derived from an approximation of the binding energy

(which is itself calculated from PWM score); see equation (3) in

[23]. Briefly, the affinity derived occupancy of a TF bound at the

jth nucleotide on the DNA is given by

t
j
lacI~t0

lacI exp 1
KBT

{E
j
lacI

� �h i
ð1Þ

where t0
lacI is the average waiting time when bound at O1 site,

E
j
lacI is the binding energy at position j (which is equal to

E
j
lacI~{wlacI j , where wlacI j is the lacI PWM score at the jth

nucleotide), KB is the Boltzmann constant and T the temperature.

In [37], we computed t0
lacI~1:18e{06.

All ADO vs SDO plots consider natural logarithm values that

are normalised to the maximum ADO or SDO, respectively. For

example, in the case of affinity predicted occupancy, we plot:

ln
t
j
lacI

max
i
fti

lacI
g

 !
ð2Þ

While ADO is computed directly from the PWM (a priori to the

simulations) the SDO (simulation derived occupancy) is based on

the results of our stochastic simulations. There are several ways in

which the SDO can be estimated and in the following section we

compare these approaches to justify our choice.

Measuring the occupancy
There are three methods to estimate the observed occupancy,

namely:

1. Ensemble average - Perform a set of X stochastic simulations with

identical parameters, each running for a time interval Ts

(chosen as adequate to reach a stationary behaviour) and

record the position of each molecule at the end of the

simulation. Using these X sets of positions, measure the

occupancy by computing the average amount of time the TF

spends at each position [2]. [Note: this is effectively the result

obtained from a ChIP experiment: the mean behaviour within

an ensemble of cells.]

2. Time average - Observe a single system for a much longer time

interval Tl and compute the occupancy as the average amount

of time the TF spends at each position [23]. The time average

can take less time to compute and, consequently, is an

appealing method to estimate occupancy. In live cells, the

activity state of a gene is related to the proportion of time the

regulatory region is occupied and, thus, the time average may

be a better indicator for biological relevance than ensemble

average [19]. Nevertheless, if one wants to replicate the result

of ChIP experiments, then the ensemble average is more

appropriate.

3. Hybrid average - Perform a set of X stochastic simulations for a

long time interval Tl . For each simulation calculate the time

average occupancy and then perform an ensemble average

over all time averages. At the population level, there is an

ensemble average over the behaviour of all cells, thus the

hybrid average is a good indicator of the occupancy when

investigating gene regulation at population level.

The ergodic theorem assumes that the time average for long

time intervals equals the ensemble average. However, the

ergodicity assumption breaks down in certain cases (e.g. the time

average differs from the ensemble average in multi-stable systems

[43]). Thus, we need to investigate under what conditions the

ergodicity assumptions break down within our system.

Figure 6 (A) confirms that the time average, hybrid average and

ensemble average measures for SDO produce similar results. In

this case, the system consists of a DNA molecule and one lacI TF

and zero non-cognates. In addition, one can observe that all

measures for SDO display negligible differences from ADO.

By increasing the copy number of the TF, the ensemble average

and time average diverge. Figure 6 (B) models 20 lacI molecules

and zero non-cognates, and it is clear that in some cases the time

average values (red crosses) diverge from their associated ensemble

average values (blue circles) and hybrid average values (green

Figure 5. lacI sequence logo. The canonical lacI motif as generated from the three known high affinity sites [37].
doi:10.1371/journal.pone.0073714.g005

(1)

(2)
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triangles). The more dramatic effect, however, is the significant

deviation of SDO from ADO for all three measures. This shows

that for significantly increased TF copy number, whilst the

ergodicity assumption has begun to break down, the differences

introduced are insignificant compared to the increased SDO

observed at a large number of sites.

The case of increased crowding on the DNA, as modelled by the

addition of non-cognate TFs, is shown in Figure 6 (C). Here the

cognate abundance is kept fixed to one molecule, while 20 non-

cognates are modelled. The figure shows that a significant increase

in the number of non-cognates has a negligble effect on all three

measures of SDO.

Table 3 shows that in the case of naked DNA and one molecule

of lacI, the three measurements for SDO (ensemble, time and

hybrid averages) have approximately the same mean. However,

molecular crowding on the DNA leads to deviations between

ensemble and hybrid averages. In particular, in the case of high

abundance of cognate TFs - 20 molecules of lacI - we observed a

mean increase of *33% in the hybrid average compared to the

ensemble average, while in the case of high abundance of non-

cognate TFs - 20 non-cognate molecules - we observed a decrease

of *14% in the hybrid average compared to the ensemble

average. In addition, in Figure S1 in the we show that, when the

simulation time is increased, the mean ratio of hybrid and

ensemble averages tends to 1 and the deviations from the mean

are reduced.

Due to the fact that we are interested in genomic occupancy of

TFs that are involved in the regulation of transcription and that, in

particular, we are interested in cell population results, we use the

hybrid average in all subsequent calculations within this manu-

script. Nevertheless, it should be noted that using any of the three

methods will lead to similar results.

System size reduction
Our results are obtained by simulating TF occupancy on the

100 Kbp of the E.coli K-12 genome [21] (the DNA locus [300000,

400000]), roughly centered around the O1 site (the most strongly

bound site for lacI). In [37], we proposed two models that are

required to adapt the parameters of the subsystem, namely: (i)
copy number model and (ii) association rate model. The former is

Figure 6. Comparison between the ensemble, time and hybrid averages of SDO in a crowded environment. We considered 1 Kbp of
DNA, which contains the O1 site (the strongest known binding site for lacI, which is located at position 365,547{365,567 on the E.coli K-12 genome)
and: (A) 1 lac repressor molecule and 0 non-cognate molecules, (B) 20 lac repressor molecules and 0 non-cognate molecules and (C) 1 lac repressor
molecule and 20 non-cognate molecules. We plotted the sites that have a binding energy at least 30% of the highest value (577 strongest sites). (A)
The ensemble average is computed from X~2|106 independent simulations [blue circles]; the time average is computed by running the
simulations for Tl~3000 s [red crosses]; and the hybrid average is computed by running X~40 independent simulations for Tl~3000 s [green
triangles]. (B) The ensemble average is computed from X~1|105 independent simulations [blue circles]; the time average is computed by running
the simulations for Tl~150 s [red crosses]; and the hybrid average is computed by running X~40 independent simulations for Tl~150 s [green
triangles]. (C) The ensemble average is computed from X~2|106 independent simulations [blue circles]; the time average is computed by running
the simulations for Tl~3000 s [red crosses]; and the hybrid averageis computed by running X~40 independent simulations for Tl~3000 s [green
triangles]. Table 3 shows that the three measures for SDO appear to have the same mean.
doi:10.1371/journal.pone.0073714.g006

Table 3. Mean and t-test p-values of ln (time=ensemble) and ln (hybrid=ensemble) averages of SDO for three levels of crowding.

1 lacI, 0 non-cognates 20 lacI, 0 non-cognates 1 lacI, 20 non-cognates

mean p.value mean p.value mean p.value

In(time / ensemble) 20.0132 0.1687 20.0148 0.1546 0.0788 2.65e213

In (hybrid / ensemble) 0.0221 0.0212 0.0112 0.2800 20.1513 2.21e251

The table shows the effect of crowding for different measures of occupancy. The three measures are time average, ensemble average and hybrid average. The system
model is as in Figure 4. The natural logarithm ratios of (time/ensemble) and (hybrid/ensemble) show significant deviations from zero as measured by a standard one-
sample t-test in the case of 1 lacI and 20 non-cognates. This demonstrates that the ergodic theorem does not hold for this level of crowding as measured by the model.
doi:10.1371/journal.pone.0073714.t003
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easier to implement, but can be applied only to highly abundant

TFs, while the latter requires an extra set of simulations, but can

be applied to TFs with any abundance. Due to the fact that non-

cognate TFs are highly abundant in our system, we applied the

copy number model to simulate the non-cognate TFs. This leads

to the association rate between non-cognate TFs and DNA being

unaffected, but the abundances of non-cognate TFs changing to:

(i) TF 0
nc~0 for 0% crowding, (ii) TF 0:09

nc ~216 for 9% crowding,

(iii) TF0:26
nc ~647 for 26% crowding, (iv) TF0:42

nc ~1078 for 42%

crowding and (v) TF0:55
nc ~1509 for 55% crowding. Note that, in

this manuscript, crowding refers to the percentage of the simulated

DNA covered by DNA-binding proteins.

For lacI, we considered four abundances, namely: 1, 10, 100,

1000. Due to the lower copy number, we used the association rate

approach to adjust the parameters of the full system to the

subsystem. This leads to the copy number of lacI being unaffected,

but its association rate changing from kassoc
lacI ~2400 s{1 [37] to the

values listed in Table 4. Figure S2 represents the proportion of

time spent on the DNA (which is required when computing the

association rate) and also confirmed that our system size reduction

method leads to a system behaviour that deviates only negligibly

from the behaviour of the full system (Figure S3 and Figure S5).

Considerations on the model
Our model uses the PWM score to calculate the binding energy,

which has been shown to be a good approximation [4,14].

However, Maerkl and Quake [44] showed that the PWM can

underestimate the binding energy; discussed in [19]. In fact, we

found that the occupancy at the O1 site is underestimated by our

approach; see Figure S4. One solution to overcome this, consists of

shifting the PWM scores to capture the low affinity sites and

increasing the affinity at the known high affinity target sites. This

assumes a priori knowledge of the target sites and cannot lead to

generalisable results. Thus, in this manuscript we assume that the

binding energy is well predicted by the PWM score, but we

acknowledge that our results are not an exact representation of the

lacI DNA binding system.

Furthermore, our model also discards cooperativity between

TFs (modelled by either direct TF-TF interactions or DNA

mediated cooperativity) as well as DNA looping. These are known

mechanisms that influence the TF binding to DNA, at least in

prokaryotic systems [11,12]. Interestingly, these mechanisms affect

the facilitated diffusion of TFs [20] and could also explain the fact

that the experimentally measured occupancy at the O1 site is

higher than the occupancy estimated only by the PWM derived

binding energy. The rationale behind our assumptions (i.e. not

including in the model TF cooperativity and DNA looping) is that

we intended to investigate the contribution that the competition

between TFs (for limited space on the DNA) has on the genomic

occupancy of TFs and whether binding energy (predicted by

PWM alone in our case) is the only determinant of the genomic

occupancy of TFs.

Finally, the ensemble average is computed as the occupancy

over the E.coli cell cycle (3000 s), which is then averaged over 40
replicates. We need to investigate whether the mean occupancy is

significantly affected by the transient behaviour of the system or

whether we simulate long enough to average out the transient

behaviour. Figure S9 shows that by increasing the simulation time,

the variability of the occupancy is reduced, while the mean

occupancy over the 40 replicates remains the same for a

simulation time of at least 3000 s. This indicates that our choice

of 40 replicates, each simulated for 3000 s captures the

equilibrium behaviour.

Supporting Information

Figure S1 Comparing the time average to the ensem-
ble average for various abundances of cognate and
non-cognate molecules. The system consists of 1 Kbp of

DNA which contains the O1 site. There are three cases with

respect to the numbers of TFs: (i) 1 lacI molecule and 0 non-

cognates, (ii) 20 lacI molecules and 0 non-cognates and (iii) 1
lacI molecules and 20 non-cognates. In addition, we considered

three values for the simulation time when computing the time

and hybrid averages: (i) Tl~100 s, (ii) Tl~3000 s and (iii)

Tl~10000 s. (A), (B) and (C) the boxplots represent the mean of

the logarithm of the ratio between the time average and the

ensemble average over 40 replicates. A value of 0 indicates that

the time average is equal to the ensemble average. (D), (E) and

(F ) the boxplots represent the standard deviation of the

logarithm of the ratio between the time average and the

ensemble average over 40 replicates. The sites that have a

binding energy lower than 30% of the highest value (423) sites

were removed. By increasing the simulation time, both the mean

and the standard deviation of the logarithm of the ratio between

the time average and the ensemble average tend to 0, showing

that a longer simulation time leads to smaller differences

between time and ensemble averages.

(EPS)

Figure S2 The percentage of time the lacI molecules
spend bound to the DNA in the full system, when the
crowding on the DNA is altered by changing the
abundance and association rate of non-cognate TFs.
We performed a set of 20 simulations of the full system each

lasting: (i) 3 s for 1 lacI, (ii) 2 s for 10 lacI, (iii) 1 s for 100 lacI and

(iv) 1 s for 1000 lacI. The shaded area indicates values that are

biologically plausible. The dashed line represents the experimen-

tally measured value of the percent of time lacI stays bound to the

DNA [17].

(EPS)

Figure S3 One dimensional statistics for various levels
of non-cognate TFs. We performed a set of X~40 simulations

of the 100 Kbp subsystem each lasting Tl~3000 s, using the

parameters presented in the Materials and Methods section and the

parameters from Table S1 in File S1.

(EPS)

Figure S4 ADO and SDO for various abundances of lacI
and crowding on the DNA. This is the same as Figure 1, except

that the SDO was not normalised to the occupancy of the O1 site,

but to the length of the simulation. (C) is the same as (A) but

Table 4. The association rate of lacI in the 100 Kbp
subsystem for various crowding levels on the DNA.

covered DNA k
2assoc

21lacI s{1 k
2assoc

210lacI s{1 k
2assoc

2100lacI s{1 k
2assoc

21000lacI s{1

0% 4.19 4.04 4.11 4.19

9% 4.58 4.63 4.67 4.74

26% 6.11 6.10 6.19 6.32

42% 8.63 8.67 8.73 8.88

55% 13.15 13.05 13.06 13.26

The over bar is used to denote the corresponding parameters in the subsystem.
doi:10.1371/journal.pone.0073714.t004
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plotted on the normal scale, while (D) is the same as (B) but plotted

on the normal scale.

(EPS)

Figure S5 The average number of bound molecules for
various crowding levels and various lacI abundances.
We performed a set of X~40 simulations of the 100 Kbp
subsystem each lasting Tl~3000 s, using the parameters present-

ed in the Materials and Methods section and the parameters from

Table S1 in File S1.

(EPS)

Figure S6 Significant deviations between ADO and
SDO. We considered the case of the lac repressor TF and

100 Kbp of DNA, which contains the O1 site. Each system was

simulated for Tl~3000 s and, for each set of parameters, we

considered X~40 independent simulations. We considered only

the sites that have the binding energy at least 70% of the highest

value (the strongest 437 sites). Furthermore, we considered only

sites where the occupancy in the simulations is at least 2:1 times

higher than that predicted by the affinity. The number in the

parentheses in the legend represents the total number of sites that

display an SDO at least 2:1 times higher than the ADO for each

particular case. In each panel, the abundance of lacI is kept

constant and the crowding on the DNA is increased from 0% to

55%. The level of crowding on the DNA (implemented through

the abundance of non-cognate TF) influences the number of sites

that display significant differences between occupancy and affinity.

We considered four cases with respect to the number of lacI

molecules: (A) 1, (B) 10, (C) 100 and (D) 1000.

(EPS)

Figure S7 Lower information content lacI motifs. The

information content of the reduced motifs is: (i) IlacI1
~15:8 bits,

(ii) IlacI2
~14:7 bits, (iii) IlacI3

12:7 bits, (iv) IlacI4
~10:7 bits, (v)

IlacI5
~8:7 bits and (vi) IlacI6

~7:7 bits; see Figure S8.

(EPS)

Figure S8 Information content of the reduced lacI
motifs. Information content of the reduced lacI motifs.

(EPS)

Figure S9 Behaviour of the time average occupancy for
various abundances of cognate and non-cognate mole-
cules. The system consists of 1 Kbp of DNA which contains the

O1 site. There are three cases with respect to the amounts of TFs:

(i) 1 lacI molecule and 0 non-cognates, (ii) 20 lacI molecules and 0
non-cognates and (iii) 1 lacI molecules and 20 non-cognates. In

addition, we considered three values for the simulation time when

computing the time average: (i) Tl~100 s, (ii) Tl~3000 s and (iii)

Tl~10000 s. (A), (B) and (C), the boxplots represent the mean

over the 1 Kbp DNA of the logarithm of the time average over 40
replicates. (D), (E) and (F ), the boxplots represent the standard

deviation of the logarithm of the time average over 40 replicates.

The sites that have a binding energy lower than 30% of the highest

value (423) sites were removed. By increasing the simulation time,

the variability of both moments reduce in the cases of 0 non-

cognates; an effect not seen in the case of 20 non-cognates.

(EPS)

File S1 This file contains Table S1 and Table S2. Table S1, TF

species default parameters. Table S2. lacI PWM.

(PDF)
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