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Artificial Life XII:
The 12" International Conference on the
Synthesis and Simulation of Living Systems

This is the proceeding for the Artificial Life XII Conference (http://www.alifel2.org/), hosted by
the Center for Fundamental Living Technology (FLinT) (http://www.sdu.dk/£f1lint /) at University
of Southern Denmark, Odense, August 19-23, 2010. Twenty three years ago in September 1987, the first
Artificial Life Workshop was held at Los Alamos National Laboratory and the subsequent Alife workshops
and conferences have been hosted in the US eight times (Los Alamos 1987, Santa Fe 1990 & 1992, MIT 1994,
UCLA 1998, Reed 2000, Boston 2004), Japan once (Nara 1996), Australia once (Sydney 2002), England once
(Southampton 2008) and now in Denmark (Odense 2010).

What is different about Alife XII?

You may have noticed that we have switched sequence of the concepts “Simulation” and “Synthesis” in
the title of the conference to emphasize some changes within our community. First of all, the Alife XII
submissions consist of a significantly higher fraction of wet Alife papers than at any earlier Alife conference.
It is a pleasure to see how the communities from wet and soft Alife are increasingly engaging with each
other. These submissions are also congruent with a clearer view in the broader scientific community on how
we might create life either from scratch or through top-down design [1, 2, 3]. This trend is also reflected by
a number of recent international collaborations across the top-down and the bottom-up communities, often
sponsored under the title of synthetic biology.!

Living processes have been implemented and studied for many years in soft Alife systems (living processes
implemented on computers), but the emergence of replicating programs from noisy computational environ-
ments remain an open issue. Significant progress has also been made for life-like robotics systems, for
example through the development of polymorphic robots, where e.g. simple self-assembly, self-replication
as well as complex collective behavior now have been obtained [4, 5].

In general, we see more integration between wet, hard, soft, and mixed living systems both within the
Alife community and across the broader scientific and technological landscapes. This is in part captured
by the definition of emerging living technology which comprises all technological applications of living and
life-like processes at all levels [6].

As the Alife community inches closer to an understanding of life as a physical process by constructing
living processes, we are also increasingly assessing the technological implications of the ability to engineer
systems, whose power is based on the core features of life: robustness, adaptation, self-repair, self-assembly,
and self-replication, centralized and distributed intelligence, and evolution [7].

In the coming years, we will likely see an accelerated movement towards more life-like, living, and in-
telligent processes as well as their integration across many technologies to form new biology-technology

'E.g., the European Science Foundation sponsored synthetics biology workshop on “Streamlined and synthetic
genomes”, November 16-17, 2009, Valencia, Spain. The Los Alamos National Laboratory sponsored synthetic biol-
ogy workshop, June 28-29, 2010, Los Alamos NM, USA.
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ecologies, that also include human institutions. If implemented appropriately, these new systems, technolo-
gies, and organizations could become more in tune with the needs of human society and the natural dynamics
of the biosphere.

These developments are emerging from a knowledge convergence between a variety of sciences and
technologies which we, within the Alife community, may group into (i) wet carbon-chemistry-based sys-
tems, (ii) computational and robotics based, ICT (information and communications technology) systems, and
(iii) human organizations and institutions dominated by culture and human nature.

As part of the Alife XII program, we have scheduled a session “Looking backwards, looking forwards”
to address the scientific questions related to these developments. Ten years have passed since the last Alife
community status report [8, 9, 10], and we hope that this conference program can contribute to updating the
critical open Alife questions. The day after the conclusion of the Alife XII conference, we have a one-day
workshop for a similar discussion focused on the technological implications of Alife. Part of this discussion
will be open to the public [11].

We should also emphasize that after 23 years, a hallmark for Alife community is still its scientific breath
and inclusiveness. The Alife conferences clearly continue to act as a Big Tent, where scientists from many
different disciplines and domains meet to present results and exchange ideas. This unique community feature
has historically made the Alife community highly innovative, however it also makes peer review difficult
as scientific methods vary dramatically across the many domains and disciplines. This breath also causes
problems when papers need to be categorized into sessions as most papers in this volume could fit under
several of the conference themes.

Background for Alife XII

For Alife XII 156 out of well over than 200 contributions (papers and abstracts) were accepted in the peer
review process. These papers and abstracts represent authors from 34 countries and they consist of 152 (= 156
presentations - 4 plenary talks) contributed talks in four, and at times five, parallel sessions. All contributions
have 15 minutes for their presentation and five minutes for discussion. The contributed plenary talks have 40
minutes. Alife XII also has a vibrant Poster Session, which is a crucial component of the Conference.

In addition to the peer reviewed presentations, Alife XII has six Satellite Events, which are proposed and
organized by individuals and groups from the community. Traditionally, these workshops add an important
dimension to the Alife meetings due to their free format and often more exploratory topic selection. Often,
radically new ideas are presented in these workshops or tutorials on specific topics and explored in more
details than regular peer reviewed presentations allow.

In order to assemble the Alife XII conference program, we have harvested as much domain and expert
knowledge as reasonably possible. This process started well before the first call for papers with a call for
contributed themes, where we consulted the invited Scientific Advisory Committee (SAC) for advice. The
Organizing Committee (OC) solicited the SAC, which effort we are deeply indebted for. The Alife XII SAC
consists of:

Chris Adami Pascale Ehrenfreund ~ Andrés Moya
Martyn Amos Takashi Ikegami Ole Mouritsen
Wolfgang Banzhaf Martin N. Jacobi Peter Nielsen
Mark Bedau David Krakauer Norman Packard
Jim Boncella Doron Lancet Rolf Pfeifer
Liaohai Chen Kristian Lindgren Vitor Dos Santos
Greg Chirikjian Jerzy Maselko Andrew Shreve
David Deamer John McCaskill Ricard Solé
Peter Dittrich Chris Melhuish Richard Vaughan

The SAC together with the OC proposed a variety of conference themes and the SAC also took part in the
multiple conference announcements.
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Upon submission, authors were asked to attribute their submission to several of these conference themes.
In response to these preliminary assignments, the original themes were slightly revised to more closely match
the accepted contributions. A group of 18 track organizers were asked to vote for the contributions potentially
pertaining to their themes, and to suggest coherent sessions based on these submissions. This voting was
performed using online spreadsheets (Google documents). The Pareto front of the track organizer votes
identified few areas of strong overlap — mainly in the area of wet artificial life. For these areas, the session
assignment was done jointly by the responsible track organizers. At this stage 113 out of the 152 contributions
could be assigned to the unique highest bidder. The remaining 39 submissions with conflicting votes were
then assigned in a way that lead to the most consistent sessions. In only five cases, we overruled the bare
votes in favor of coherent session themes. However, it should be noted that many contributions fit well within
several of these themes due to the interdisciplinary character of the Alife community.

This collective intelligence process resulted in the following themes (with theme organizer names):

Chemical Self-Assembly and Complexity (Jerzy Maselko)
Origin of Life (Mark Dorr & Bruce Damer)

Bottom-up Synthetic Cells (Pierre-Alain Monnard)

Systems Biology (Luis Delaye)

Biological and Chemical Information Processing and Production (John McCaskill)
Artificial Chemistries (Wolfgang Banzhaf)

Minimal Cognition and Physical Intelligence (Martin Hanczyc)
Evolutionary Dynamics (Chris Adami)

Theoretical and Computational Frameworks (Peter Dittrich)
Complex Networks (Carlos Gershensen & Mikhail Prokopenko)
Ecology (Seth Bullock)

Collective Intelligence (Johan Bollen)

Emergent Engineering (Norman Packard)

Intelligence and Learning (Takashi Ikegami)

Robots (Kasper Stgy)

Socio-Technical Systems (Kristian Lindgren)

Philosophy (Mark Bedau)

We have tried to organize the sequence of conference topics from lower to higher levels of organization with
a variety of methods themes sandwiched in between.

Four keynote presentations — by Christian de Duve, Tetsuya Yomo, John McCaskill, and Serge Kernbach —
provide overarching perspectives on the origins of life, artificial cells, the connection between biochemistry
and computational hardware and software as well as robotics, covering the classical wet, soft, and hard arti-
ficial life research areas. In addition to the invited keynote presentations, Alife XII also features contributed
plenary talks. Reviewers, theme organizers and the organizing committee jointly suggested candidates for
these presentations. Four plenary, contributed presentations were picked by the organizers to ensure an over-
all balanced conference program. Unfortunately, many other papers deserving to be highlighted as plenary
talks could not be accommodated.

The review process was conducted and coordinated utilizing the distributed online tool EasyChair
(http://www.easychair.org/), which the organizers can recommend for reviewing many confer-
ence paper and abstract submissions. We should stress that the assembly of the conference program would
have been impossible without the fantastic work of the 135 Alife XII submission reviewers. The OC is deeply
indebted to all of them and they are separately acknowledged on the next pages.

It is our belief that the resulting review process and conference program — a true child of bottom-up collec-
tive intelligence — benefited significantly from the participation of the many domain experts. It would have
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been very difficult to assemble a theme-based program using a traditional top-down approach. The bottom-
up process ensures a program organization, that reflects the highly diverse current activities within the Alife
community. The disadvantage of this collective intelligence based program assembly process is that more
time and effort is spend by more people.

We, the Alife XII OC, sincerely hope you will find these proceedings both useful and inspirational and that
you will enjoy the conference.

Harold Fellermann (Alife XII co-chair)

Mark Dorr

Martin Hanczyc

Lone Ladegaard Laursen (Alife XII administrative chair)
Sarah Maurer

Daniel Merkle (Alife XII EasyChair chair)

Pierre-Alain Monnard

Kasper Stgy

Steen Rasmussen (Alife XII chair)

August 2010, Odense, Denmark.
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Self-Assembly and Self-Construction
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Extended Abstract

The spontaneous increase of complexity in nature from the formation of elements, followed by the formation of
compounds, both inorganic and organic, leading to the emergence of life -- from a single cell to multi-cellular
organisms -- and the later formation of communities followed by the emergence of new technologies where complex
structures are created by a humans is probably the most important property of matter.

One common property of self-construction is the formation of new entities. The formation of elements and chemical
compounds are relatively well studied, so the next step is to study the transition from non-living to living matter.
This requires formation of complex structures on a scale that begins with nanometers and increases. Most of this is
done by “self-assembly,” defined as a process that must be completed without external assistance and must include
stochastic aggregation of pre-existing components. The formation of more complex structures inside cells and in
multi-cellular systems requires a more complex mechanism. Here, the formation of structures requires a complex
network of physical and chemical processes that are precisely organized in space and time -- the parts are constantly
produced in hierarchy. The stochastic process of movement is replaced by the controlled movement of different
parts (components) using different forces and different routes. This process can be seen in the formation of magnets
in magnetic bacteria; functioning of xylem and phloem in biological plants; veins, arteries and the lymphatic system
in animals; as well as tubes and pumps in industrial plants.

This complex spatio-temporal organization of chemical and physical processes that goes beyond the simple process
of self-assembly can also be observed in chemical systems. The construction of complex forms is controlled by the
complex network of chemical reactions. These chemical and physical processes may start in a defined place in
space and time and be finished in another. This will be discussed in the case of precipitation pattern formation in
simple, even two component inorganic systems like, Cu®* - PO,*, A" silicate, Cu®* - C,0,%, Pb®* - chlorite —
thiourea, and Fe?* - silicate.

Most of these structures are grown from a chemical seed that is immerged in a chemical solution. The initial study
of this seed theory is based on studies of cellular automata and numerical studies of multi-cellular chemical systems
development, which will also be presented.

The biological organism evolves forming structures of unbelievable complexity and precision in its construction
process and in the functions of its controlling systems.

The emergence of man follows as the next important step in the self-construction of the universe. It has allowed the
emergence of new construction technologies that have increased the number of constructed systems and their
properties. As predicted by Leonardo da Vinci, we now have the capacity to create technology:

“Where nature finishes producing its species, the man begins with natural things to make with the aid

of this nature an infinite number of species.”
-Leonardo da Vinci (1452-1519)

A final important step for discussion regards the construction of computers, allowing for the mathematical modeling
and, further, the construction of virtual universes.
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Abstract

The notion of autocatalysis actually covers a large variety of
mechanistic realisations of chemical systems. From the most
general definition of autocatalysis, that is a process in which
a chemical compound is able to catalyze its own formation,
several different systems can be described. We detail the dif-
ferent categories of autocatalyses, and compare them on the
basis of their mechanistic, kinetic, and dynamic properties. It
is proposed that the key signature of autocatalysis is its kinetic
pattern expressed in a mathematical form. It will be shown
how such a pattern can be generated by different systems of
chemical reactions.

Introduction

The notion of “autocatalysis” was introduced by Ostwald in
1890 for describing reactions showing a rate acceleration as
a function of time. It is for example the case of esters hydrol-
ysis, that is at the same time acid catalyzed and producing an
organic acid (Laidler, 1986). Defined as a chemical reaction
that is catalyzed by its own products, it has quickly been de-
scribed on the basis of a characteristic differential equation
(Ostwald, 1902, 1912). Typically used to describe complex be-
haviors of chemical systems, like oscillatory patterns (Lotka,
1910), it has immediately appeared to be essential for the
description of biological systems: growth of individual living
beings (Robertson, 1908), population evolution (Lotka, 1920)
or gene evolution (Muller, 1922).

Extending this concept from a chemical description to a
more open context was initially carefully described as an
analogy, sometime qualified by the more general notion of
“autocatakinesis” (Lotka, 1925; Witzemann, 1933). However,
this eventually leads to an overgeneralization of the term
of autocatalysis, tending to be assimilated to the notion of
“positive feedback”, for example in economy (Malcai et al.,
2002).

The notion of autocatalysis is now actively being used for
describing self-organizing systems, namely in the field of
emergence of life. Autocatalytic processes are the core of the
mechanisms leading to the symmetry breaking of chemical
compounds towards homochirality (Frank, 1953; Plasson
et al., 2007), and could be identified in several experimental

systems (Kondepudi et al., 1990; Soai et al., 1995). However,
how such autocatalytic processes shall manifest is still under
heavy debate (Plasson, 2008; Blackmond, 2009).

The purpose of this article is thus to clarify the meaning of
chemical autocatalysis and this effort will be undertaken by
covering these following points:

e What is autocatalysis for a chemical system? On the basis
of the general description of autocatalysis as a process al-
lowing a chemical compound to enhance the rate of its own
formation, it is defined by a kinetic signature, expressed in
a mathematical form.

e How can an autocatalytic process be realized? As many
mechanisms can reduce to the same macroscopic kinetic
laws exhibiting autocatalysis, the focus is put on several
mechanistic realisations of autocatalytic processes, on the
basis of simple models further illustrated by concrete chem-
ical examples.

e How can autocatalysis be observed and characterized? The
focus is put on the dynamic properties, showing that this
observable is the direct consequence of the kinetic pattern,
rather than the underlying mechanism.

e What is the role of autocatalysis? Embedded in non-
equilibrium reaction network, the competition between
autocatalytic processes allows the onset of chemical se-
lection, that is the existence of bifurcation phenomena
allowing the extinction of some compounds in favor of
others.

Autocatalysis: a Practical Definition
A Kinetic Signature

From its origin, the notion of autocatalysis has focused on
the kinetic pattern of the chemical evolution (Ostwald, 1902).
The general definition of autocatalysis as a chemical process
in which one of the products catalyzes its own formation can
be mathematically generalized as:

dl‘i
dt

=k(X)-2i+f(X), k>0;n>0; k]>|[f] (I)
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Mechanistic: nX — mX

Source of AC Strict AC mechanism

Kinetic:
Definition of AC

e Linear scale:
Dynamlc’ n>0 convex (rate acceleration)

Observation of AC n=0 concave (non-autocatalytic)

Autoinductive mechanism Other mechanisms?

dx i
dt

=k-al + f(X)

Logarithmic scale: Inverse scale:
n>1 convex (over-exponential) n>2 concave (over-hyperbolic)
n<1 concave (sub-exponential) n<2 convex (sub-hyperbolic)

—_
O
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o

Figure 1: Classification of the concepts of autocatalysis (AC) depending on their descriptions (mechanistic, kinetic, and dynamic).
The graphs represents the time evolution of a non-autocatalytic reaction (red), and of autocatalytic reaction of order 1/2 (green),

1 (blue), 3/2 (dotted red), 2 (dotted green), and 3 (dotted blue).

The term k(X)) - 2} describes the autocatalytic process it-
self, while f(X) describes the sum of all other contributions
coming from the rest of the chemical system.

We have an effective practical definition of the concept
of autocatalysis, based on a precise mathematical formula-
tion. The causes of this kinetic signature can be investigated,
searching what mechanism is responsible for the autocat-
alytic term. This leads to the discovery of a series of different
kinds of autocatalysis processes, and their respective effect,
describing what observable behavior is generated by the au-
tocatalytic term (see Fig. 1).

Potential vs Effective Autocatalysis

This kinetic definition is purely structural. As a matter of fact,
a system may contain potential autocatalysis i.e. an autocat-
alytic core exists in the reaction network. However, in the
absence of some specific conditions necessary for this auto-
catalysis to be effective, the potential autocatalysis may be
hidden by other kinetic effects, thus turns out not to manifest
its behavior in practice.

Possibly, in Eq. (1), the term f(X) may simply overwhelm
the autocatalytic process. This is typically the case when an
autocatalysis is present together with the non-catalyzed ver-
sion of the same reaction, that may not be negligible in all
conditions. Imagine the simple example of a system simul-
taneously containing a direct autocatalysis A + B — 2B,
concurrent with the non autocatalytic reaction A — B. The
autocatalytic process follows a bimolecular kinetics, and will
be more efficient in a concentrated than in a diluted solution.
The dynamic profile of the reaction is thus sigmoidal for
high initial concentration of A, but no more for low initial

le-3;

ol of of
300 600 10 2 4000 8000

(a) Non-autocatalytic  (b) Autocatalytic ~ (c) Undamped AC

Figure 2: (a-b): First order autocatalytic process (I'; = 102
M.s~!) in presence of a non-autocatalytic reaction (I'y =
10=2 M.s™!) of spontaneous transformation of A into B
(Ka=1M, K = 102 M). (a) Diluted (¢, = 1072 M). (b)
Concentrated (ap = 1 M). (¢) Undamped autocatalysis (Indi-
rect autocatalysis, described in Fig. 4(b), Ty = 0.1 M.s™1)

concentration (see Fig. 2(a-b)).

It can also be seen that the term k(X ) may also vary dur-
ing the reaction process. In a simple autocatalytic process as
describe above, k is proportional to the concentration in A,
and is thus more important at the beginning of the reaction
(thus an initial exponential increase of the product B) that
at the end (thus a damping of the autocatalysis) resulting in
a global sigmoidal evolution. In systems were the influence
of A on k is weaker, as detailed further, an undamped auto-
catalysis will be observed characterized by an exponential
variation until the very end (see Fig. 2(c)).

Mechanistic Distinctions

How can this kinetic pattern be realized? Let us now de-
tail several types of mechanisms. They can all be reduced,
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in some conditions, to the autocatalysis kinetic pattern of
Eq. (1). All of them will be equally defined in the paper as
autocatalytic, while this status may have been disputed in the
past on account of the distinct chemical realisations. In the
following, we emphasize the major mechanistic pattern to
eventually be reduced to an equivalent kinetic autocatalysis,
and discuss where their difference comes from.

Template Autocatalysis

The simplest autocatalysis is obtained by the X — 2X pat-
tern. It can be represented by:

k1
A+B —— B+B 2
k_1

The corresponding network is given in Fig. 3(a). It can further
be decomposed through the introduction of an intermediate
compound C":

Iy

A+ B C 3)

Iy

C B+B “)

The corresponding network is given in Fig. 3(b).
The first mechanism entails the following kinetic evolu-
tion:

b=—a = kiab—k_1b? 5)

This can be expressed as a chemical flux ¢, by relying on
the Mikulecky formalism (Peusner et al., 1985; Mikulecky,
2001; Plasson and Bersini, 2009):

o = T1(VuVp —VE)=T1Ve(Va—-Vs) (6)
a

- % 7

Va K @)

V — L (8)
B = Kg

I'n = k-KsKp=k -K3} )

Formally there is a linear flux ¢ of transformation of A into
B, coupled to a circular flux of same intensity from B back to
B (see Fig. 3(a-b)). In presence of an intermediate compound,
the equations becomes:

o1 = T1(VaVe —Ve) (10)

0o = Day(Ve—V3) (11)

Under the hypothesis that C'is an unstable intermediate,
(i.e. Ko < Kp, K4), the variation of C' can be neglected

compared to the variations of A and B (quasi steady-state
approximation, hereafter QSSA), so that:

Y1 = P2 12)
2 (13)
T, )
— VaVp =V, 14
= ¢ F1+F2( AVe = V3) (14)

The system is strictly equivalent to the direct autocatalysis,
with an apparent rate I'1 'y /(T'y + I'z). With these two sys-
tems, we are in presence of the perfect kinetic signature of
an autocatalytic system i.e. following a sigmoidal evolution
(see Fig. 4(a)). This equivalence is guaranteed as long as the
compound C' remains unstable. When it is not the case, the
dimeric intermediate C' hardly liberates the final compound
B, which gives rise to an autocatalytic process of order 1/2
rather than 1 (von Kiedrowski, 1993; Wills et al., 1998).

Template autocatalysis requires a direct association be-
tween the reactants and the products. This is typically the case
of DNA replication, one double strand molecule giving birth
to two identical double strand molecules, thanks to the very
selective association of complementary nucleotides along
each strand. More simple examples can be found in some
biological mechanisms that requires autocatalytic processes,
for example for the generation of chemical oscillation induc-
ing circadian rhytmicity in cells. The system described by
Mehra et al. (2006) is based on a non equilibrium system of
association/dissociation of proteins forming a large chemical
cycle [C — AC — AC* - ABC* — BC* — C* — (],
maintained by a flux of ATP consumption, one cycle con-
suming and freeing A and B. The oscillations are gener-
ated by coupling this chemical flux to an autocatalytic pro-
cess of phosphorylation obeying to the reaction scheme:
A+ C+ AC* — 2AC* (Wang and Wu, 2002).

Network Autocatalysis

The direct mechanism of template autocatalysis just seen is
conceptually the simplest framework. It may actually not be
the most representative class of autocatalysis, as a similar
kinetic signature can appear as resulting from a complex
reaction network.

Indirect Autocatalysis: The autocatalytic effect may be
only indirect when reactant and products never directly inter-
act:

ry
A+D C (15)
Iy
C B+ FE (16)
s
E B 17)
Iy
B D (18)

There is no direct A/B coupling, nor direct 2B formation,
but the presence of a dimeric compound C'. The network de-
composition of this system (see Fig. 3(c)) implies once again
a linear flux of transformation of A into B, linked to a large
cycle of reaction transforming B back to B. Nevertheless,
this system is still reducible to an X — 2.X pattern.
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(a) Direct autocatalysis  (b) Direct autocatalysis with
intermediate

e C%&  Ex

A
©) €
@
® lq)+s
E B

(c) Indirect autocatalysis (d) Autoinductive autocatal-
ysis

(e) Iwamura et al. (2004) sys-(f) Collective autocatalysis
tem

Figure 3: Reaction network of different autocatalytic pro-
cesses of spontaneous transformation of A into B (a-d), of
A + X into AX (e), and of A; into B; (f). The indicated
fluxes correspond to what is observed within the QSSA.

The QSSA for compounds C, D, E allows to express the
reaction flux as:
I'hI'y
p = FlVA+F4VAVB € (19)
€ express the back-reactions fluxes, and can be neglected as
long as I's is large enough. If it is not the case, the autocat-
alytic effect is destroyed.

When I'; < Ty, the system can behave like a simple
autocatalytic system, with ¢ o< a - b before the reaction com-
pletion, implying a progressive damping of the exponential
growth as long as A is consumed. When I'; > T'y, the flux
is ¢ o b: the profile remains exponential up to the reaction
completion, with no damping due to A consumption (see
Fig. 4(b)).

Network autocatalysis is probably the most common kind
of mechanisms. A typical biochemical example is the pres-
ence of autocatalysis in glycolysis (Ashkenazi and Othmer,
1977; Nielsen et al., 1997). In this system, there is a net
balance following the X — 2X pattern. ATP must be con-

1F =01
=3e-4
M=0.1
0.1}
10-9 c
J 0.01
0 T 1le7 %0 4000 8000
(a) Direct autocatalysis with in- (b) Indirect autocatalysis
termediate
[ r=1
=100 1
Mn=0.1
0.1
le-2
0.01t ;
) A ) 4 (unseeded)
0 1e5 le Te5 Ted

(c) Autoinductive autocatalysis (d) Collective autocatalysis

Figure 4: Time evolution of compound concentrations for dif-
ferent autocatalytic processes of spontaneous transformation
of Ainto B (K4 = 1and K = 100) in a logarithmic scale
for concentrations (a-c), or logarithmic scales for both time
and concentrations (d). K and concentrations are in M, times
ins,and I in M.s™!. (a): Fig. 3(b), 1 = 1,y = 1074,
Ke = 0.01; (b): Fig. 3(c), 'y =Ty, =T3 =Ty, =10
(except the values indicated on the graph), Ko = Kp =
Kg =0.01; (c): Fig. 3(d), I's =T's = 100, K¢ = Kg =1,
Kpg- =10; (d): Fig. 3(f), I'; =100, = 1.

sumed to initiate the degradation of glucose, but much more
molecules of ATP are produced during the whole process.
While these systems are effectively autocatalytic, there is
obviously no possible “templating” effect of one molecule of
ATP to generate another one.

Collective Autocatalysis: More general systems, reminis-
cent of the Eigen’s hypercycles (Eigen and Schuster, 1977),
are responsible of even more indirect autocatalysis. No com-
pound influence its own formation rate, but rather influences
the formation of other compounds, which in turn influence
other reactions, in such a way that the whole set of compounds
collectively catalyzes its own formation.

A simple framework can be built from the association of
several systems of transformation A; — B;, each B; catalyz-
ing the next reaction (see Fig. 3(f)):

T;
Aij+B,.1 =—— B;+ DB (20)
i=1{1,2,3,4}
with Bs = By to close the cycle of reactions. There are four

independent systems, only connected by catalytic activities.
If the system is totally symmetric, then all b; are equal, and
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all a; are equal, so that the rates become:

o = TVe(Va—Vg) (22)

This leads to a collective autocatalysis with all compounds
present. They mutually favor their formation, which results
in an exponential growth of each compound (see Fig. 4(d)
dotted curve).

With symmetrical initial conditions (i.e. identical for the
four systems), the system strictly behaves autocatalytically.
If the symmetry is broken, e.g. by seeding only one of the
B;, the system acts with delays. The evolution laws are sub-
exponential, of increasing order: At the very beginning of
the reaction, considering that A; do not significantly change
and that B; are in low concentration, we obtain ¢; oc t*~ 1. If
seeding with By, the compound 2 evolves in ¢2. Its impact
on compound 3 induces an evolution in #3. In its turn, the
impact of compound 3 on compound 4 induces an evolution
in t4. The compound 1 at first remains constant, and it is
only following a given delay that it gets catalyzed by B, (see
Fig. 4(d)).

This system is actually not characterized by a direct cyclic
flux, but by a cycle of fluxes influencing each other and re-
sulting in a cooperative collective effect:

(A1 4+ Az + A3+ Ay) + (B1 + Ba + B3 + By)

(23)
—  2(B1+ By + B3+ By)

The simultaneous presence of all different compounds is
needed to observe a first order autocatalytic effect. Given
asymmetric initial conditions, a transitory evolution of lower
order is first observed, until the formation of the full set of
compounds.

A typical example of collective autocatalysis is observed
for the replication of viroids (Flores et al., 2004). Each oppo-
site strand of cyclic RNAs can catalyze the formation of the
other one, leading to the global growth of the viroid RNA in
the infected cell.

Template vs Network Autocatalysis: Nevertheless, all
these systems can still be reduced to a X — 2X pattern.
This is characterized by a linear flux coupled to a loop flux,
i.e. for each molecule (or set of molecules) A transformed
into B, one B is transformed and goes back to B, following
a more or less complex pathways. They can be considered
as mechanistically equivalent: a seemingly direct autocatal-
ysis may really be an indirect autocatalysis once its precise
mechanism is known, decomposing the global reaction into
several elementary reactions.

Practically, autocatalysis will be considered to be direct (or
template) when a dimeric complex of the product is formed
(i.e. allowing the “imprint” of the product onto the reactant).
If such template complex is never formed, we preferentially
speak of network autocatalysis, in which the X — 2X pat-
tern only results from the reaction balance.

Autoinductive Autocatalysis

Some reactions are not characterized by an X — 2X pattern,
but still exhibit a mechanism for the enhancement of the
reaction rate through the products. This is typically the case
for systems where the products increase the reactivity of
the reaction catalyst rather than directly influencing their
reaction production itself. These systems still possess the
kinetic signature of Eq. (1), but are sometime referred as
“autoinductive” instead of “autocatalytic” (Blackmond, 2009).

Let us take a simple reaction network of a tranformation
A — B catalyzed by a compound that can exist under two
forms E/E*, E* being the more stable one. These two forms
of the catalyst interact differently with the product B (see
Fig. 3(d)):

Iy

A+ FE C (24)
Iy

C B+ FE (25)
I's

C B+ E* (26)

There is no dimeric compound in the system, even indirectly
formed.

Provided the catalyst, present in C, E/, E*, is in low total
concentration, the QSSA implies the presence of two fluxes:
the transformation of A into B catalyzed by E of intensity
, and the transformation of E* into E catalyzed by B of
intensity €, with ¢ > . This decomposition gives:

aVaVg
= 2AYE sy, 27
@ BV + 7 B 27
with a = §(T'; + T2), 8 = Ta — Fl%i, vy = ‘l;ﬁn and
§ =41
Ve

The autoinduction is kinetically equivalent to the indirect
autocatalysis mechanism:

e When 'y > T ££, the flux tends to ¢ = 4V — §Vp:
the system is non-autocatalytic.

o When I’y ~ ' 22, the flux tends to o = 2V4Vp — §Va:
the system is simply autocatalytic.

e WhenI's <« Fl% , the flux tends to ¢ = %VB — 6Vpg:
the system presents an undamped autocatalysis.

Following the kinetic analysis, the behavior is similar to
the time evolution of autocatalytic systems (See Fig. 4(c)).
The behavioral equivalence of these two systems (kinetically
equivalent but mechanistically very different) will be investi-
gated in more details in the next section.

The mechanism of Iwamura et al. (2004) is an autoinduc-
tive autocatalysis, with a slightly more complex mechanism
(see Fig. 3(e)). The core principle is areaction A+ X — AX,
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catalyzed by P, the product AX catalyzing the first catalytic
step P+ A — PA. This chemical system can be decomposed
into two different fluxes A + X — AX, one coupled to a
catalytic cycle [P —- PA —- PAX — P|AX — P], and
one coupled to a catalytic cycle [PA — PAX — P|AX —
P A]. The first one contains the slow reaction of A on P, and
corresponds to a slow flux €. The second one only contains
fast reactions, and corresponds to a fast flux ¢. These two
fluxes can be shown to be related by:

£ = aVa+AVax (28)
« and 3 being constants depending on the kinetic parameters
of the system. This implies an increase of the effective rate
production ¢ as a function of the concentration in product.

Network vs Autoinductive Autocatalysis: Autoinductive
autocatalysis is mechanistically different from network or
template autocatalysis. The balance equation is rather of
the form A + aB — (1 + «)B, with @ < 1. The linear
transformation A — B is only weakly coupled to the cycle of
B back to itself, this latter one being subject to a much lower
flux than the linear flux. However, autoinduction is kinetically
and dynamically equivalent to network autocatalysis, leading
to the same kind of differential equation, and thus of behavior.
It can be noted that the undamped exponential profile due to a
flux only proportional to the products and not to the reactant is
not characteristic of autoinductive processes (Iwamura et al.,
2004) but can also be explained by network autocatalytic
mechanisms, when the consumption of the reactant is not
limiting the kinetic of the network.

Embedded Autocatalyses

Autocatalysis is not so important per se but as a way of giving
birth to rich non-linear behaviors like bifurcation, multistabil-
ity or chemical oscillations. It becomes capital to study the
interaction of autocatalytic mechanisms and their ability to
generate such behaviors when embedded in a larger chemical
network.

Dynamical Distinctions

Different behaviors depending on the order n of the auto-
catalysis can be observed in biochemical competitive sys-
tems. They are classically studied in population evolution
(Szathmary, 1991; Nowak, 2006) and described as “survival
of the all” in the case of 0 < n < 1 (characterized by the co-
existence of all compounds), as “survival of the fittest” in the
case of n = 1 (when the only stable solution retains the fittest
compound or the most "reproductible”) and as “survival of
the first” in the case of n > 1 (when the final solution just
retains the product initially present in the highest concentra-
tion).

The case 0 < n < 1 is the least interesting, as it hardly
leads to a clear selectionnist process. However, real mech-
anism that seems to possess a first order autocatalysis may

actually present a lower autocatalytic order. This is typically
the case for direct template autocatalysis, in which the order
falls to 1/2 on account of the high stability of the dimeric
intermediate—which is actually a necessary condition for
the selectivity of template replication (von Kiedrowski, 1986,
1993; Wills et al., 1998). This turns out to be a fundamental
problem for understanding the emergence of the first replica-
tive molecules (Szathmdary and Gladkih, 1989; Lifson and
Lifson, 1999; Scheuring and Szathmaéry, 2001).

More complex mechanisms may lead to higher orders,
typically by the formation of dimeric autocatalysts (Wagner
and Ashkenasy, 2009). This is the case of the Soai reaction
whose high sensitivity to initial conditions may potentially
be explained by the formation of trimeric (Gridnev et al.,
2003) or even hexameric complexes (Schiaffino and Ercolani,
2008).

Comparative Efficiency of Direct and
Autoinductive Autocatalyses

Bifurcations appear when installing two autocatalytic pro-
cesses in competition, placing them in a non-equilibrium
open-flow system, both being fed by the same incoming com-
pound and with cross-inhibition between them:

— A (incoming flux) (29)

A= B (Direct AC) (30)

A= B (Autoinduced AC) a3n

B; + By — (P) (cross inhibition) (32)
By — (outgoing flux) (33)

By — (outgoing flux) (34)

In the case of total symmetry between B, and Bs, with the
same direct autocatalystic mechanism, this system would
correspond to the classical Frank model for the emergence of
homochirality (Frank, 1953), leading to a the same probability
to end up with either B or Bs.

The kinetic equivalence between template autocatalysis
and autoinductive autocatalysis can be shown by making
these two mechanisms to compete, replacing Eq. (30) and
(31) by the corresponding mechanism. Kinetic parameters
have first been normalized so that both reaction leads to the
same kinetic behavior (sigmoidal evolution, half-reaction at
10° s), and then multiplied by respectively a and 3 parame-
ters in order to tune the respective velocity of each mecha-
nism. The result is actually quite symmetrical between the
two processes and only the fastest product is maintained in
the system: By when o« > (3, and By when a < [ (see
Fig. 5(a)).

This selection is independent of the relative stability of By
and B,, but is only possible for kinetics that are well adapted
to the global influx of matter. For slow kinetics, there is a
flush of the system, and no B1 nor Bs compound can be main-
tained. For fast kinetics, the system is close to equilibrium,
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Concentrations (M)

(a) Sharp bifurcation depending on the rela-
tive values of v and 3 for moderate reactivi-

ties.
By =By #0 104
A=0
102
1
102
104 102 102 10—

(b) Different zones of behaviors: majority of
A for o, 8 < 1, majority of B; for o > f3,
majority of Bs for a < 3, and coexistence
of By and Bs for o, > 1.

Figure 5: Competition between template and autoinduc-
tive autocatalysis, generating respectively B; and By com-
pounds from the same A compound. Incoming flux of A,
and outgoing fluxes of By and By, 107°> M.s™!. K4 = 1,
Kp, = K, = 100. Direct autocatalysis: I'yc = 1072 @,
I've = 1075 - a. Autoinduction, according to Fig. 3(d):
F1:B,Fg:F3:100~6,KC:KE:1;KE* = 10.

the compounds B; and By being both present in proportion
to their respective stability (see Fig. 5(b)). Such result is well
known for open flow Frank systems (Cruz et al., 2008).

From Autocatalytic Processes towards
Autocatalytic Sets

These competitive systems are able to dynamically maintain
a set of components, to the detriment of others. The notion of
autocatalytic set (requiring the system to be materially closed
and self-maintained by a crossing energetical flux) is rather
popular in the artificial life literature and relies much more
on the cooperation between autocatalytic mechanisms than
on the competition that has just been detailed here. It implies
a notion of closure of the system and of self maintenance
of the whole network (Kauffman, 1986; Hordijk and Steel,
2004; Benko et al., 2009). Confusion among these different
phenomena can be pinpointed in the literature (Blackmond,
2009), when the failure of autoinductive sets to be maintained

do not originate from a difference of behavior between auto-
catalytic and autoinductive mechanisms, but from a defect in
the closure of the system.

Conclusion

Important distinctions need to be done between mechanistic
and dynamic aspects of autocatalysis. The same mechanisms
can produce different dynamics, while identical dynamics
can originate from different mechanisms. But all these differ-
ent autocatalytic processes are able to generate autocatalytic
kinetics, that may constitute a pathways towards the onset
of “self-sustaining autocatalytic sets”, as a chemical attractor
in non-equilibrium networks. However, the problem of the
evolvability of such systems must be kept in mind (Vasas
etal., 2010). If a system evolves towards a stable attractor, no
evolution turns out to be possible. There is the necessity of
“open-ended” evolution (Ruiz-Mirazo, 2007) i.e. the possibil-
ity of a dynamic set not only to maintain itself (i.e. a strictly
autocatalytic system) but act as a “general autocatalytic set”,
redounding upon the concept originally introduced by Muller
(1922) for the autocatalytic power linked to mutability of
genes. Insights can be gained by a deeper and renewed study
of the evolution of prions as a simple mechanism of mutable
autocatalytic systems (Li et al., 2010).
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Extended Abstract

It has been suggested by a number of theoreticians that cellularity is a precondition for a living system. Over the years many
researchers have sought to synthesize structures morphologically resembling cells under prebiotic conditions. These structures may
be vesicular or contain no lipid and are perhaps best termed “cell-like structures” than “proto-cells” or “cells”. Conversely, likely
prebiotic organic amphiphiles such as fatty acids only produce micelles or vesicles under select conditions: high ionic strength and
divalent cations often inhibit the self-assembly of cell-like structures assembled from lipid amphiphiles such as vesicles.

Hydrogen cyanide (HCN) is a ubiquitous compound in young circumstellar disks (Carr & Najita, 2008) and cometary comae
(Irvine et al., 1997), and is readily produced in simulations of prebiotic atmospheric chemistry (Miller, 1957). During investigations
of the chemistry of self-condensation of aqueous HCN in the presence of aldehydes we have discovered cell-like spherical and
filamentous structures of extremely homogeneous size distribution which are produced robustly from these simple reactions (Figure
1). While there is some precedent for these structures (see for example Labadie et al., 1968; Kenyon & Nissenbaum, 1976), the
chemical and morphological structure of these and their interactions with amphiphilic species have been investigated in
considerably more detail here. These are potentially important as scaffolds for cellular development on the primitive Earth, and
may have implications for life-detection on other planets and in the geological record.

Figure 1. Spherical and filamentous structures formed from the reaction of aqueous HCN and aldehydes.
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Extended Abstract
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Figure1: (i) Activation of RNA with imidazole. (ii)) RNA condensation r eactions.

Cellular life relies on a collection of linear polyméesnong them DNA, RNA, proteins) to perform the functions necgds its
survival. It seems likely that catalytic and informatiopalymers played essential roles in the emergence of thdivirg entities,
precursors of contemporary cells. Thus, their detection on other plabethes might hint at either emerging, or extant, or past life
in these environments.

A non-enzymatic synthesis of such polymeric materialb@r precursors likely had to rely on a supply of monomesoblisd at

low concentrations in an agueous medium. An aqueous environment represeatdardle to the synthesis of long polymers as it
tends to inhibit polymerization due to entropic effects andrfatoe reverse reaction (decomposition by hydrolysisyvas
therefore proposed that polymerization could occur in a digtiaro- or nanostructured environment that would permit a local
increase in the monomer concentration, reduce water activity atedtamonomers and polymers from hydrolysis. Several types of
micro- or nanostructured environments, among them mineral ssifffjcéattices of organic molecules, such as amphiphile bilayer
structures [2], and the eutectic phase in water-ice [3, 4, add 2002Q0B Chem. Biodiv] have been proposed to promote RNA
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and peptide formation. This last environment might be of particular innest space exploration has established that water exists
on Mars, Europa, Enceladus and comets, mostly as ice. Ice depositsafavealexisted on the early Earth.

When an aqueous solution is cooled below its freezing point, but above thecqgdittiitwo aqueous phases co-exist and form the
eutectic phase system: a solid (the ice crystals magerefwater) and a liquid phase containing most solutes. Thefrolater
likely extends beyond that of a simple chemical liquid medium sheeurfaces of ice crystals could act as a substraténiah w
other reactants can attach and/or become aligned.

The emergence of a polymer-based genetic or/and catalytengyas it for example the “RNA World hypothesis” staigially
requires the synthesis of monomers followed by three nonyeriiry processes: polymerization of monomers; elongation of
existing polymers with monomers or short oligomers; andaa&iidin of existing polymers in a template-directed fashion.llidea
these processes should take place efficiently, using simpée ime$ as catalysts. However, in a dilute solution, even whierg u
activated monomers, these chemical processes occur very skaatlgli

We have been exploring the plausibility of chemical reactionsh sis non-enzymatic nucleotide condensations forming RNA,
under cold environmental conditions and found that the polymerization of RifAifnidazole-activated ribonucleotides (s. Fig. 1)
can proceed efficiently in the eutectic phase in water-ilcenwmetal ions are available as catalysts [4]. Startorg fmonomer
mixtures, polymers up to 30 monomeric units in length can be yefadihed [5]. Longer polymers can be obtained by adding
freshly activated monomers or short oligomers to a solutiver several freeze-thawing cycles. Depending on their sequences
oligomers can be elongated using monomers to obtain up to a 45umirerfmore, the decomposition of the longer chains
remained low. By using activated short oligomers, even longer polymers &@miee [6].

Studying template-directed RNA polymerization under these conditiemsliscovered that the initial elongation rates depended on
the complementarity of the monomers with the templating nbakees. That means that the polymerization rates for @il fo
nucleobases pairing with their corresponding Watson-Crick nucleabee higher than in cases where hydrogen bond based
pairing is not favoured [7]- this was even the found for low tddirig uridine monomers [7, 8]. The presence of templates further
allows the synthesis of long complementary strands [9]. Thomplage-directed elongation of RNA in the eutectic phase of the
water-ice system seems possible.

Recently, Miller’s group [10, 11] in San Diego further established that diblt#ions of ammonium cyanide maintained frozen at -
78 °C could promote the synthesis of nucleobases, although with iathgields. The catalytic activity of a ligase wasoals
detected in the eutectic phase [12].

All the observations on the promotion of synthetic reactiortbe eutectic phase in water-ice suggest that the cold aritiith
transient thawing periods could have allowed the formation of RNA monamersr Earth and possibly on other planets.
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Extended Abstract

Complex-systems research has received a lot of attention in mathematics, physics, and biology, but until not too long ago was
significantly underdeveloped in chemistry. Recently, it has been realized that while cell biochemistry is a natural model for studying
functional networks, rationally designed self-organized synthetic networks might also provide useful models for understanding and
exploitation of complex systems' behavior [1]. Thus, several relatively complex networks were studied, and it was found possible to
predict and analyze their connectivity and global topology [2]. Moreover, the networks could also be manipulated in various ways to
show that just like the cellular networks, their rewiring following changes in the environmental conditions is substantial, and that
they can carry out chemical transformations via various complex pathways, such as the Boolean logic operations [3,4].

An important family of the studied non-enzymatic systems uses template directed autocatalysis and cross catalysis as a means of
wiring the network components and controlling their dynamics and replication. As such, these networks have also received
considerable attention with respect to possible scenarios in the origins of life and early molecular evolution. Several approaches
have been taken to manipulate the systems studied so far, based on chemical changes that can affect the replication efficiency. The
ability to test and control the response of non-enzymatic networks to external signals might increase significantly their utility and
applicability. Such triggering can be used to shift the self-organization states away from equilibrium and thus may provide temporal
control over the progress of the chemical (replication) reactions and the entire network topology. To the best of our knowledge, this
challenge has not yet been met. We will describe in this presentation the use of light as an external trigger for quantitative control of
peptide tertiary structures and consequently as a tool for controlling peptide based self-replication, thereby affecting replication-
dependent processes in small molecular networks and facilitating selective and programmable product formation via the AND
Boolean function.
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Abstract

“Epigenetic Tracking” is an evo-devo method to generate ar-
bitrary 2d or 3d shapes; as such, it belongs to the field of
“artificial embryology”. In silico experiments have proved
the effectiveness of the method in devo-evolving any kind of
shape, of any complexity (in terms of number of cells, num-
ber of colours, etc.); being shape complexity a metaphor for
organismal complexity, such simulations established its po-
tential to generate the complexity typical of biological sys-
tems. Furthermore, it has also been shown how the underly-
ing model of development is able to produce the artificial ver-
sion of key biological phenomena such as embryogenesis, the
presence of “‘junk DNA”, the phenomenon of ageing and the
process of carcinogenesis. In this paper the model is enriched
by adding computational capabilities to cells (besides spatial
position and colour); the cells endowed with such properties
constitute the nodes of an artificial “metabolic network”, able
to exchange signals and to process the equivalent of chemical
substances. The potential of the extended model is evaluated
in a computer simulation aimed at “devo co-evolving” shape
and metabolism for an artificial organ.

Introduction

The previous work in the field of Artificial Embryology
(see (Stanley and Miikkulainen, 2003) for a comprehen-
sive review) can be divided into two broad categories: the
grammatical approach and the cell chemistry approach. In
the grammatical approach development is guided by sets of
grammatical rewrite rules; context-free or context-sensitive
grammars, instruction trees or directed graphs can be used;
L-systems were first introduced by Lindenmayer (Linden-
mayer, 1968) to describe the complex fractal patterns ob-
served in the structure of trees. The cell chemistry approach
draws inspiration from the early work of Turing (Turing,
1952), who introduced reaction and diffusion equations to
explain the striped patterns observed in nature (e.g. shells
and animals’ fur); this approach attempts to simulating cell
biology at a deeper level, going inside cells and reconstruct-
ing the dynamics of chemical reactions and the networks of
chemical signals exchanged between cells. Notable exam-
ples of grammatical embryogenies are (Gruau et al., 1996),
(De Garis, 1999) and (Hornby and Pollack, 2002); among

cell chemistry embryogenies, we recall (Kauffman, 1969)
and, more recently, (Miller and Banzhaf, 2003), (Joachim-
czak and Wrobel, 2008) and (Doursat, 2008).

“Epigenetic Tracking” the name of an embryogeny ap-
plied to morphogenesis, i.e. the task of generating arbi-
trary 2d or 3d shapes, described in (Fontana, 2008). From
this initial work, two lines of research are possible. One
tries to make use of the method as a general-purpose tool
to solving real-world problems; the second line of research
tries to bridge the gap between the model and real biol-
ogy. This second line was pursued in (Fontana, 2009) (a
work that explored the model’s biological implications) and
will be continued in this paper, whose aim is to enrich
the model with metabolic-like capabilities, besides morpho-
genetic ones. The rest of this paper is organised as follows:
section 2 highlights the main features of the model of de-
velopment in its previous version and the relevant evo-devo
method, section 3 describes the model extension, section 4
delves into the details of the simulation performed, section
5 discusses the biological correlates and section 6 draws the
conclusions.

Epigenetic Tracking highlights

Shapes are composed of cells deployed on a grid; develop-
ment starts with a cell (zygote) placed in the middle of the
grid and unfolds in N age steps, counted by the variable “Age
Step” (AS), which is shared by all cells and can be consid-
ered the “global clock” of the organism. Cells belong to two
distinct categories: “normal” cells, which make up the bulk
of the shape and “driver” cells, which are much fewer in
number (typical value is one driver each 100 normal cells)
and are evenly distributed in the shape volume. Driver cells
have a Genome (an array of “instructions”, composed of a
left part and a right part) and a variable called cellular epi-
genetic type (CET, an array of integers). While the Genome
is identical for all driver cells, the CET value is different
in each driver cell; in this way, it can be used by different
driver cells as a “key” to activate different instructions in the
Genome. The CET value represents the source of differen-
tiation during development, allowing driver cells to behave
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Figure 1: Example of development in three steps (AS=0,1,2)
driven by five instructions: a proliferation triggered in step 1
on driver cell labelled with A, three proliferations triggered
in step 2 on driver cells labelled with D, E and F and an
apoptosis triggered in step 2 on driver cell labelled with G.
Internal view on the left, external view on the right.

differently despite sharing the same Genome. A shape can
be “viewed” in two ways: in “external view” cells are shown
with their colours; in “internal view” colours represent cell
properties: blue is used for normal cells alive, orange for
normal cells just (i.e. in the current age step) created, grey
for cells that have just died, yellow for driver cells (regard-
less of when they have been created).

An instruction’s left part is composed of the following el-
ements: an activation flag (AF), indicating whether the in-
struction is active or not; a variable called XET, of the same
type as CET; a variable called XS, of the same type as AS.
At each step, for each instruction and for each driver cell, the
algorithm tests if the instruction’s XET matches the driver’s
CET and if the instruction’s XS matches AS. In practise, XS
behaves like a timer, which makes the instruction activation
wait until the clock reaches a certain value. If a match oc-

Figure 2: Example of development coded in a Genome com-
posed of 360 instructions, evolved in 16000 generations; the
shape represents an artificial brain, composed of 200.000
cells. In the upper part, the development sequence; in the
lower part, some snapshots of the final phenotype taken from
different angles.

curs, it triggers the execution of the instruction’s right part,
which codes for three things: event type, shape and colour.
Instructions give rise to two “types’ of events: “proliferation
instructions” cause the matching driver cell (called “mother
cell”) to proliferate in the volume around it (called “change
volume”), “apoptosis instructions” cause cells in the change
volume to be deleted from the grid; the parameter ’shape’
specifies the shape of the change volume, in which the pro-
liferation/apoptosis events occur, choosing from a number
of basic shapes called “shaping primitives”; in case of pro-
liferation, the parameter ’colour’ specifies the colour of the
new cells.

Always in case of proliferation, both normal cells and
driver cells are created: normal cells fill the change volume,
driver cells are “sprinkled” uniformly in the change volume.
To each new driver cell a new, previously unseen and unique
CET value is assigned (consider for example proliferation
triggered on A in figure 1), obtained by starting from the
mother’s CET value (the array [0,0,0] in the figure, labelled
with A) and adding 1 to the value held in the ith array posi-
tion at each new assignment (i is the current value of the
AS counter); with reference to the figure, the new driver
cells are assigned the values [0,1,0],[0,2,0],[0,3,0], ... , la-
belled with B,C,D, etc. (please note that labels are just used
in the figures for visualisation purposes, but all operations
are made on the underlying arrays). In practise a prolifer-
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ation event does two things: first creates new normal cells
and sends them down a differentiation path (represented by
the colour); then creates other driver cells, one of which can
become the centre of another event of proliferation or apop-
tosis, if in the Genome an instruction appears, whose XET
matches such value. Figure 1 reports an example of devel-
opment hand-coded.

The model of development described, coupled with
a standard evolutionary technique, becomes an evo-devo
method to generate arbitrarily shaped 2d or 3d cellular sets.
The method evolves a population of Genomes that guide the
development of the shape starting from a zygote initially
present on the grid, for a number of generations; at each
generation development is let unfold for each Genome and,
at the end of it, adherence of the shape to the target shape is
employed as fitness measure. In silico experiments (exam-
ple in figure 2) have proved the effectiveness of the method
in devo-evolving any kind of shape, of any complexity (in
terms e.g. of number of cells, number of colours, etc.); be-
ing shape complexity a metaphor for organismal complex-
ity, such simulations established the method’s potential to
generate the complexity typical of biological systems. The
effectiveness of the method is, in our opinion, to be recon-
ducted to the presence of a homogeneous distribution of
driver cells, which keeps the shape “plastic” throughout de-
velopment and allows artificial evolution to exploit physics
to meet its ends.

Our model displays some similarities with L-systems;
both models have productions that replace existing symbols
with other symbols: the key difference lies in the mechanism
for generating new symbols. In L-systems the new symbols
have to be listed explicitly, in our model the number of new
symbols is proportional to the size of the change volume,
while the symbols themselves (the CET values) are created
through an automatic procedure, which never changes and
therefore is not encoded in the Genome: this feature al-
lows a more compact representation of the productions in
the Genome. Another important difference is that L-systems
draw the symbols from a finite alphabet, while in the case of
Epigenetic Tracking the alphabet is virtually unbounded and
this “unboundedness” paves the way for open-ended evolu-
tion. CA-based models of development also have a cell state
variable and again the key difference resides in the mech-
anism of assignment: while in CA-based models the value
of the cell state is determined by the states of neighbouring
cells, in our model it is assigned to cells as they are created
(during a proliferation event); of course this is not the only
difference: in CA models there is no distinction between
normal and driver cells, etc.

In the current model version each cell can be considered
as composed of two modules: 1) a “Morphogenetic Mod-
ule”, comprising all cellular variables related to morphol-
ogy, such as spatial position and colour and 2) a “Change
Module”, consisting of the list of change instructions and

CHANGE MODULE CHANGE GENOME
LEFT PART RIGHT PART R. PART
MORPHOG HERTﬂa'El:II:LL.T_
AF | XS | XET | EVT | SHP | cOL it | oo
I T[T I
IE' INFLUENCES — ~~ INFLUENCES
MORPHOG. MOD. METABOL. MODULE

MOBPHOGENETIC MODULE " METABOLIC NODULE
—> OO

~Ea
—> [T
METABOLIC GENOME

CREATES/DELETES CELLS
DEFINES POSITION AND COLOUR

Figure 3: The old version of the model, dedicated to mor-
phogenesis (on grey background); the new version of the
model adds a part dealing with metabolic computation (on
white background). Genetic elements are coloured in yel-
low; epigenetic elements are coloured in pink.

the CET (see left part of figure 3, on grey background); the
Change Module’s instructions code for changes affecting the
Morphogenetic Module. Each module is in turn composed
of “genetic” variables (unchanged during development and
identical in all cells) and “epigenetic” variables (of genetic
nature, but changed during development and potentially dif-
ferent in each cell). According to this definition, the Change
Module is made up of a single block of genetic memory (the
Genome, which will now be renamed “Change Genome”)
and an epigenetic variable (the CET). Besides possessing
properties such as position and colour, cells do not perform
any function; the present model has nonetheless served the
purpose of modelling morphogenesis, a process by which
an organism’s external appearance -characterised by physi-
cal properties such as shape and colour- is created.

On the other hand, we know that real cells, besides
having a position in space and a colour, are sophisticated
micro-machines that carry out complicated chemical reac-
tions, taking certain molecules as inputs and producing other
molecules as outputs; the sum of these reactions, which rep-
resents the bulk of the cellular function, is referred to as
the cell metabolism. Pancreatic cells, for instance, produce,
among others, the hormones insulin, glucagon, and somato-
statin; liver cells take in and degrade insulin, glycogen and
hemoglobin and produce cholesterol and triglycerides, etc.
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Figure 4: Metabolic computation in a cell. Operators are
organised in layers: layer k converts the substance concen-
tration array intsbc(s)(k) into intsbe(s)(k+1); each operator
has an associated flag indicating the operator’s activation
state; the exchange of substances between the interior and
the exterior of the cell is mediated by the arrays filterin and
filterout.

The cellular metabolic machine is realised through the com-
bined action of many simple “processors”, each of which is
dedicated to processing only few chemical subtances; such
processors are implemented by genes that are turned on in
the relevant cell. Different cell types have different patterns
of gene activation, which allow cells to perform different
specialised jobs; genes are by default active: the selective
de-activation of specific genes is achieved primarily through
a process called methylation, which prevents their transcrip-
tion and their use in the gene network. The remainder of the
paper will be dedicated to enriching the model with the in-
gredients necessary to realise the equivalent of a metabolic
network.

Extended Model

The key innovation of the extended model (see figure 3) is
the presence of a module, called “Metabolic Module”, dedi-
cated to carrying out the equivalent of metabolic operations.
The elements responsible for such operations, called “oper-
ators”, are arranged in layers and are grouped in a second
Genome, called “Metabolic Genome”; to each operator a bi-
nary flag is associated, indicating the activation state; two
other arrays, called filterin and filterout, are present, dedi-
cated to managing the exchange of subtances of the cell with
the external environment. The Change Genome present in

0.60.2]00(02]|02(00|0.7|0.2
| intsbe(s)(k)—
1. FIELD
ACTIVATION
STATE (ON/OFF)
2JFIEYD 3. FIELD 4. FIELD
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Figure 5: Details of a single layer k operator. The first
field indicates the operator’s activation state; the second
field specifies which substances are to be loaded from
intsbc(s)(k); the third field specifies the weights and the
fourth field defines which susbtance is to be “influenced”
in intsbc(s)(k+1).

the previous model version is still present in the new version
in an extended form, in which the instructions’ right parts,
besides defining the events of proliferation and apoptosis
and the shape and colour of the cells created, add some spec-
ifications relevant to changes affecting the cell metabolic dy-
namics.

Figure 4 gives a representation of the functioning of the
Metabolic Module. As we said, the Metabolic Module is
composed of a number of operators, each associated to a
“layer number”, so that the whole set of operators has the
structure of a strictly-layered network. Each operator has
a flag that indicates whether the operator is active or not:
if not active, it is excluded from the computation. The
operands are the equivalent of chemical substances and are
grouped in two arrays called intsbc and extsbe (“internal”
and “external” “substance concentrations’), whose values
are real numbers comprised in the [0,1] interval representing
substance concentrations; more precisely intsbc(s)(k) and
extsbe(s)(k) are the concentrations relevant to substance s,
to be processed by layer k operators. The arrays intsbc and
extsbe represent the chemical mix present inside the cell and
the chemical micro-environment present around the cell re-
spectively.

The first processing step consists in copying the content
of extsbc into intsbc; this copy operation is mediated by the
array filterin, implementing a filter that allows only certain

Proc. of the Alife XII Conference, Odense, Denmark, 2010

19



INPUT CELL

"OUTPUT CELL

Figure 6: Each driver cell is assigned a number, depend-
ing on the distance from the input cell and the output cell
(cells farther from the input and closer to the output have a
higher number), so that the whole of driver cells make up
a layered network; in the figure cells having different num-
bers are marked with different colours; arrows indicate the
direction of the computation flow.

types of chemical substances to enter the cell: in practise
intsbc(s)(0) is copied from extsbe(s) only if filterin(s)=1,
otherwise (if filterin(s)=0) intsbc(s)(0) is initialised to zero.
The computation is carried out one layer at a time; the ini-
tial state of intsbc (initialised from extsbc) is intsbc(s)(0); it
is processed by layer O operators and the resulting array is
intsbc(s)(1); subsequently intsbe(s)(1) is processed by layer
1 operators and the resulting array is intsbc(s)(2). This pro-
cedure is repeated K times (K=3 in our experiments), until
the final state of the operand array intsbc(s)(3) is reached. At
the end of the cycle, the content of intsbc “exits” the cell and
is added to the extsbc of all other cells; the value intsbc(s)(3)
to be added is multiplied by two factors: the first factor (fil-
terout(s)) is a value that can be equal to -1 or +1; the second
factor is a real number comprised in the [0,1] interval that
depends on the distance between the cell and the other cell
in whose extsbc the cell’s intsbc is being copied. The func-
tion of filterout is analogous to that of filterin, only the set
of possible values is different: (0,1) for filterin and (-1,1) for
filterout.

The execution of an operation (performed by a single op-
erator) is shown in figure 5. Each operator has four fields.
The first field is a binary flag indicating whether the opera-
tor is active or not; the second field is an array of N integers
(N=2 in our experiments), where the ith integer xp(i) repre-

sents the position of the ith input substance in the intsbc ar-
ray; the third field is an array of N+1 float, being the ith float
wht(i) the “weight” to be multiplied by the value contained
in the ith position of the intsbc array; the products specified
are summed together and then added to the (N+1)th weight
(called “threshold”); the fourth field (yp) is an integer repre-
senting the position of the intsbc array to which the opera-
tor’s output value (yv) is added. The operation implemented
is described by the following equations (it is the classical
nonlinear weighted sum neuron-like function; o is the sig-
moid function):

yu = U(Z(wht(i) x intsbe(xp(i)(k))) + threshold)
intsbe(yp)(k + 1) = intsbe(yp) (k) + yv

For computational reasons the metabolic process has been
so far implemented in driver cells only. In order to provide
the shape with a direction for the computation flow, an in-
put cell and an output cell are defined (actually, since the
positions of driver cells are not known at the beginning of
the experiment, two points in space are given and the two
driver cells closest to such points are taken as input and out-
put cell). Then, each driver cell is assigned a number which
depends on its distance from the input cell and the output cell
(cells farther from the input and closer to the output have a
higher number -see figure 6). The initialisation of the input
cell’s extsbc with a set of input values triggers the start of the
computation, which is executed for all number 1 cells, then
for all number 2 cells etc., until the output cell is reached.
The computation is repeated E times, where E is the num-
ber of examples (each example is made up by a set of input
values and a set of target output values).

The Metabolic Module described provides cells with a
computational tool able to carry out the equivalent of a
metabolic process. So far, nevertheless, the set of operators
(coded by the metabolic Genome) is identical for all cells;
this leads to a biologically unrealistic behaviour, in which all
cells carry out the very same computation and differences in
the outputs are only determined by differences in the inputs.
This is in contrast to what happens in biological organisms,
where cells belonging to different organs have gene regula-
tory networks specialised to perform the metabolic reactions
required by the organ’s function in the body, despite the fact
that all cells are endowed with the same set of genes. This
specialisation is achieved through the selective inactivation
of individual genes that, through multiple chemical mech-
anisms, are excluded from the network; the introduction in
our model of the equivalent of such specialisation will re-
quire an extension to the right part of change instructions.

The extended right part is shown in the north-east quad-
rant of figure 3, on white background. The old right part
(north-west quadrant, grey background) contains the code
that specifies as usual the type of event (proliferation or
apoptosis) and, in case of proliferation, the shape and colour
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of the cells created. Besides position and colour, each cell
has now also a set of operators each with an associated bi-
nary flag indicating its activation state; when a new cell is
created during a proliferation event, the array of activation
states is inherited from the mother cell. The first new right
part field is a a P-dimensional binary array, called “operator
activation changes” (“O.A. CHG” in the figure), specifying
the P operator activation flags which have to be changed (0’s
are turned into 1’s and 1’s are turned into 0’s); in this way
the new cells end up having a set of active operators different
from that of the mother, creating the potential for metabolic
specialisation. Similarly, also the arrays filterin and filterout
are inherited from the mother during proliferation and the
second new field, called “filter changes” (“FILT CHG” in the
figure) specifies the changes affecting such arrays. In other
words, the new right part block contains the code that speci-
fies the epigenetic part of the Metabolic Module, which can
become different in every cell and which, together with the
genetic part (equal in all cells), determines cell behaviour.

We end this section by showing how the Metabolic Mod-
ule is integrated in the overall model of development. In
the extended model age steps can be divided into a “change
phase” and an “expression phase”. In the change phase, the
couple of variables (CET,AS) triggers the activation of pro-
liferation and apoptosis instructions on a number of driver
cells; as a consequence, some new cells are created and some
existing cells are deleted from the grid. The newly created
cells are given a position in space and a colour which are
based on the position of the mother and the morphogenetic
portion of the instructions’ right parts; the daughter cells are
also provided with a set of operators, a relevant set of acti-
vation states and filter arrays, all inherited from the mother.
The code contained in the metabolic right part brings some
changes to the activation pattern of the operators and to
the filters, allowing specialisation to take place: this ends
the change phase. In the expression phase the metabolic
network carries out the cell’s specialised metabolic func-
tion, processing input substances and producing output sub-
stances. These two phases can be thought of to correspond
roughly to the mitosis’ phase and the interphase of the cell
cycle (the main difference being that in our model the cycle
is syncronised for all cells, while in real cells it is not).

Simulation

The extended model of development has been tested with the
same criterion used to test the previous version of the model,
i.e. we have tested the model’s susceptibility to produce a
target result in combination with a standard evolutionary al-
gorithm; in other words, we have tested the model’s evolv-
ability. In previous simulations concerned only with mor-
phogenesis, we adopted a fitness function formula initially
proposed by H. de Garis (De Garis, 1999):

sfit = (ins — outs)/des

Figure 7: Morphogenesis of the artificial stomach. The up-
per part of the figure shows the development sequence, the
lower part some snapshots of the final shape taken from dif-
ferent angles. Shape made up of 20.000 cells, genome com-
posed of 300 instructions, evolved in 30000 generations.

where ins is the number of cells of the evolved shape falling
inside the target shape, outs is the number of cells of the
evolved shape falling outside the target shape, des is to-
tal number of cells of the target shape; for coloured target
shapes, also the adherence to colours is taken into account
(i.e. in order to add 1 to the ins count, a given cell must fall
inside the target shape and its colour must be equal to that of
the target cell in the same position).

To allow for the evolution of the metabolic part, a second
fitness function has been introduced, defined through the fol-
lowing procedure. We define E examples, each composed
of a set of input concentration values and a set of output
target concentration values, indicated with tgtin(e)(s) and
tgtout(e)(s). For each example, the extsbc of the input cell
is initialised with the tgtin values; then the computation is
carried out for all cells as described in the previous section,
until the output cell is reached: let actout(e)(s) be the value
of the output cell’s extsbc relevant to the eth example and
to the sth substance type. The computation is repeated for
the total number of examples foreseen; the metabolic fitness
function is defined as the sum of the differences between
the target output and the actual output across all examples
and substance types (normalised dividing by the number of
terms):

mfit = Z(abs(actout(e) (s) — tgtout(e)(s)))/(E - S)

The overall fitness is then calculated as a weighted average
of the shape fitness and the metabolic fitness (in the simula-
tions performed coel=coe2=0.5):

fit = coel - sfit + coe2 - mfit
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CELL| OPERATORS o | SUBSTANCES

# [0[1]/2[3[4[5[6[7[8[9]10]11][12[13[14[15 [e [ 1] 23] 457167
ACTIV. STAI 0 [1]0[1[1[1[1[1[1[1[1]@[1[1]0]1]1 INPUT 40 .20 .00] .10 .10 .80 | .60 | .00
ACTIV. ST, 11111 1[1[1[8[1[1[1[1][1]1][1 TARGET @ |.70|.20| .00 | .30 | .30 | .50 | .00 | .70
ACTIV. STA 11[1[1]1[1[e]e]e[1[1[1[1][1][1][1 OUTPUT .50 .02 .12 | .29 | .00 | .00 | . .68
ACTIV. STA 11(1[e1[1[1[1[1[1[1[1[1[1][0]6 ABS (TGT-ACT) .20 .18 .12 .81 | .30 .50 . .02
ACTIV. STA 4 (1(1(1]e[1[1][@[1[1[1[1[0][1[1][1][1 INPUT .90 | .00 | .50 | .80 | .00 | .00 | . ]
ACTIV. STA 5 (1111 [1[1{1[1][@[1[1[1[1[1][1][1 TARGET 1 | .20|.50| .00 |.10| .90 | .00 | .00 | .00
ACTIV. STA 6 (1(1(1(1[1[1]@]0]0[1[1[1][1[1][1][1 OUTPUT .29| .18 | .18 | .16 | .00 | . ) .01
ACTIV. STA 7 (1]@[1[1[1][1[1[1[@[1[1[0[1][1[1]1 ABS (TGT-ACT) .09 .32 .18 | .06 [Lo0) . . .01
ACTIV. STA 8 (11 [1(1[1[1][@[1[1[1[1]1][0]0]1][1 INPUT .20 | .10 | .00 | .20 | .40 | . . 2
ACTIV. STA 9 (11 (1(1[1[1[@[1[1[1][1[1][0]0]1][1 TARGET 2 | .00|.00| .60| .00 | .00 .60 .00 .20
ACTIV. STA 10 [1[1 (18110 [1[1[1[1][@[1[1]1]1 OUTPUT .34 .11 .19 .29 .00 . . .19
ACTIV. STA M1 (11111 [1[1[1[e[1[1[1[1[1][1][1 ABS (TGT-ACT) .34 1] .41 .29 .00 . . .01
ACTIV. STA 12 (11 (1[04 [1][0[1[1[1[1[1[1[1][1][1 INPUT .50 | .40 | .30 | .60 | .80 | . . .90
ACTIV. STA 13 (11111 [1[1[1[@[1[1[1[1[1][1][1 TARGET 3 |.10| .40 | .20 | .00 | .30 | .10 | .50 | .40
ACTIV. STA 14 [1(1[1[1(1[1]@]0]0[1[1[1[1[1][1][1 OUTPUT .15 .40 | .19 | .99 | .00 | .00 | .00 | .42
ACTIV. ST 15 (11101 [1]el1[1[1][1[1][1[1][1]1 ABS (TGT-ACT) 85| .00 .91| .09 .30 | .10 | .50 | .02
ACTIV. STA 16 (101 [1[1[1({1[1[0[1[1[01[1]1]1 INPUT 80| .00 | .70 | .00 | .00 | .30 .00 | .40
ACTIV. STA 17 (11011111 [1]e[1][1[e[1[1][1][1 TARGET 4 | 60| .10| .80 | .50 | .90 | .70 | .00 | .00
ACTIV. STA 18 [1(1[1[1[1[1{1[1[0[1[1[1[1[1]1]1 OUTPUT .62|.19| .14 | .09| .00 | .00 | . .85
ACTIV. STA 1(1[1[el1[1]{e1[1[1[1[1[1[1]1]1 ABS (TGT-ACT) 02| .09 .66 | .41 90 .70 . .85
ACTIV. STA 20 (1111 [1[1]e]1[1][1[1[1[e]0]1]1 INPUT 30| .60| .00 | .70| .50 | .70 .16 | .80
ACTIV. STA 21 (1111116111 [1][1[e]e]1]1 TARGET 5 | .90 | .00| .00 | .80 | .00 | .60 | .00 | .90
ACTIV. STA 22 (11101 [1[01[1[1[1[1]1]1][1]1 OUTPUT 12 . .04 | .73 . .00 | . .99
ACTIV. STA 23 (11111111 [el1[1[1[1]1[1]1 ABS (TGT-ACT) 78] . 04 .07 . .00 . .89
ACTIV. STA 24 (11101 (10111111111 INPUT .00 | . .60 | .30 . .50 | . .20
ACTIV. STA 25 (1(1(1/@[1[1[@[1[1[1[1[1[1[1[1[1 TARGET 6 |.70| .20 .60 | .30 | .50 | .00 | .50 | .20
ACTIV. STA 26 (1(1(1(@[1[1[1[1[1[1[1[1[1[1]0]® OUTPUT .46 | .22 | .18 .09 | .00 . .00 | .17
ACTIV. STA 27 (1111111181 [1[1[1[1[1]1 ABS (TGT-ACT) .24 .02 .42 .21 ] .50 . .50 .03
ACTIV. STA 28 [1[1[1[1[1[1|@[1(1][1[1[1[8]0[1]1 INPUT 10| .70 | .90 .60 | .10 . .90 | .00
ACTIV. ST, 29 [1(1[1]0[1[1|@[1[1[1[1[1[1[1[1]1 TARGET 7 | .50 .30 | .40 | .90 | .16 | .00 | .10 | .00
ACTIV. STA 30 [1(1(1]0[1[1|@[1(1[1[1]6[1[1[1]1 OUTPUT .49 .30 | .17 | .09 | .00 | .60 | .00 | .
ACTIV. STA 31 [1(1(1]e[1[1|@[1(1[1[1]6[1[1[1]1 ABS (TGT-ACT) .01 .00 .23 .81 .16 .00 | .10 .
ACTIV. STA 32 [1(1(1]0[1[1|@[1[1[1[1[1[1[1[1]1 INPUT .90 | .00 .70 .10 | .40 | .80 | .60 | .
ACTIV. STA 33 [1(1(1]0[1[1|@[1[1][1[1[1[1[1[1]1 TARGET 8 |.40| .80 | .00| .00 | .00 .80 | .00 .30
ACTIV. STA 34 (1(1(1]0[1[1]0[1[1][1[1[1[1[1[1]1 OUTPUT .34 .19 .19 .09 | . .00 | . .26
ACTIV. STA 35 [1(@[1[1[1[1[1][1[0][1[1]0[1[1[1]1 ABS (TGT-ACT) .66 | .61 .19 .09 .80 04
ACTIV. STA 36 [1(1(1][1[1[1]@][1(1][1[1[1[0]0[1]1 INPUT .40 | .20 | .00 | .50 | . .60 | . .30
ACTIV. STA 37 [(1(1(1]@[1[1]@[1(1][1[1][8][1[1[1]1 TARGET 9 |.e0|.00|.10| .70 | .20 .00 | .60 | .70
ACTIV. STA 38 (10111 [1[1[1]@[1[1[el1[1][1[1 OUTPUT .34 .01| .10 | .65 | .00 | .00 | .00 | .69
ACTIV. STAI 39 (1(e[11[1[1[11]e[1[1[el1[1[1[1 ABS (TGT-ACT) .34 .01 .00 .05 .20 | .00 | .60 .01

Figure 8: Operator activation states of the first 40 cells. As
can be noted, there are sets of cells (those created in the same
proliferation event) sharing the same pattern of operator ac-
tivations (and the same filters).

In the following the values of some key parameters of the
algorithm. The target shape is an artificial stomach com-
posed of some 20.000 cells. The linear “driver to normal ra-
tio” used in proliferation events is 4, meaning that one driver
cell is created every 4 normal cells for each dimension (in
three dimensions the ratio is thus 43 = 64). As far as the
metabolic part is concerned, the number of substances is 8§,
the number of operators is 16 and the number of examples
is 10. In this experiment only one input cell and one out-
put cell are foreseen: the driver cell closest to a predefined
“input position” is defined as the input cell (analogously for
the output cell). The genetic population is composed of 500
individuals (represented as strings of quaternary digits), un-
dergoing elitism selection; GA parameters are 50% single
point crossover, mutation rate of 0.1% per digit.

Simulation results are shown in figures 7-9. Figure 7
shows the development sequence of the artificial stomach
from the single cell stage to its final shape and some snap-
shots taken from different angles; circles indicate the posi-
tions of the input and output cells. Figure 8 shows the op-
erator activation state for the first 40 cells (for reasons of

Figure 9: Target-output comparison. The figure shows, for
each example, input value, target value, actual output value
and the absolute difference between target and output value.

space); figure 9 shows the comparison of the target and ac-
tual values of the extsbc array for all examples. As can be
seen, results are good both for the morphogenesis part and
for the metabolic part; the final value of the shape fitness is
0.82, the final value of the metabolic fitness is 0.80; the total
number of driver cells that make up the metabolic network
is 848.

Biological correlates

In biology, the term epigenetics refers to changes in pheno-
type or gene expression caused by mechanisms other than
changes in the DNA sequence. These changes may remain
through cell divisions for the remainder of the cell’s life and
may also last for multiple generations. One way that epi-
genetic influences are implemented is through the remod-
elling of chromatin and one way chromatin remodelling is
accomplished is through the addition of methyl groups to
the DNA. DNA methylation in vertebrates typically occurs
at CpG sites (cytosine-phosphate-guanine sites) and results
in the conversion of the cytosine to 5-methylcytosine, catal-
ysed by the enzyme DNA methyltransferase. The bulk of
mammalian DNA has about 40% of CpG sites methylated
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but there are certain areas, known as CpG islands -which
are GC rich- where none are methylated: these are associ-
ated with the promoters of a high percentage of mammalian
genes, including all ubiquitously expressed genes (in gen-
eral there is an inverse relationship between CpG methyla-
tion and transcriptional activity).

If we stick to the definition of epigenetic cellular ele-
ments given in section 2 (variables of genetic nature changed
during development and potentially not identical in differ-
ent cells), the CET value (already present in the previous
version of the model) qualifies as an epigenetic element.
In the extended model two new epigenetic memories have
been introduced: the operator activation states and the I/O
substance filters. These two new memories have their bio-
logical counterparts in the DNA methylation marks and in
the various “channels” present on the cell membrane (which
mediate inside-outside cellular communication) respectively
while, at the current level of knowledge, the CET has no bi-
ological equivalent. As far as the genetic part is concerned,
in the new version of the model two Genomes are present:
the Change Genome and the Metabolic Genome. This dis-
tinction appears to have no correspondence in nature, where
a single Genome seems to be present, more similar to the
Metabolic Genome in structure (genes are akin to metabolic
operators). On the other hand, we can imagine to decom-
pose the specifications contained in the change instructions
into smaller units equivalent to operators, thus reconducting
Change and Metabolic Genomes into a unitary representa-
tional framework: this will be a matter for future work.

The addition of computational capabilities to cells rep-
resents a significant step on the way to reducing the gap
between Epigenetic Tracking and real biological systems.
According to current knowledge, in multicellular organisms
the behaviour of a single cell is determined by three factors:
i) the genome; ii) the epigenome; iii) the influence of the
chemical microenvironment surrounding the cell, created by
all chemical signals generated by other cells. Cell behaviour
can be further divided into a change (or “mitotic”) part and
an expression (or “interphasic’) part; while the previous ver-
sion of the model covered essentially only the change part,
with genetic and epigenetic mechanisms, the extended ver-
sion covers also the expression part, still with genetic and
epigenetic mechanisms. The next logical step is represented
by the addition of the cellular microenvironment as yet an-
other determinant of cell behaviour.

Conclusions and future research

In the present paper the model of development called Epi-
genetic Tracking has been extended by adding to artificial
cells computational capabilities (besides physical attributes
-position and colour); cells endowed with such capabilities
constitute the equivalent of a metabolic network. The ex-
tended model has been applied to the problem of devo co-
evolving both the shape and the metabolic network of an

artificial organ (the stomach): the successful result of the
simulation have been presented and discussed. Future re-
search along this line is aimed at further reducing the gap be-
tween the model and real biological systems; in this respect,
a key ingredient to be added to the model is represented
by the influence of the surrounding chemical microenviron-
ment, other than genetic and epigenetic factors, as another
determinant of cell behaviour. I thank Perry for helping me
reviewing the paper.
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Abstract

We have developed an artificial chemistry that allows self-
maintaining molecular systems to mutate and exhibit innova-
tive behaviour. The molecular species in the chemistry are
defined by strings of symbols that specify both the binding
affinity and the reaction. We define a replicase molecule that
can copy any other molecule that binds at a particular re-
gion on the replicase. Molecules are copied on a symbol-
by-symbol basis. Occasional mis-copying of an individual
symbol forms our mutation scheme. This paper describes the
characteristics of the resulting evolutionary system. We ran
1,000 open-ended trials and observed an unexpectedly wide
range of emergent phenomena, with many parallels to biolog-
ical systems. We report these phenomena in qualitative terms,
and give details of one of the most interesting among them:
the emergence of co-dependent replicase hypercycles.

Introduction

Early-earth molecular systems are of interest due to their
relatively simple replication mechanisms, gene multiplic-
ity, and the blurring of the genotype-phenotype boundary.
The simplicity of these systems make them a good target for
models of chemical evolution. We have been working on an
artificial chemistry called Stringmol [4, 3], which combines
a stochastic chemistry, variable binding rates and a simple
sequence-based programming language.

Stringmol is a rich intra-cellular RNA-world analogue in
which there is no distinction between molecular template
and molecular machine. We have recently been experiment-
ing with a unimolecular system, where the molecule is ca-
pable of self-copying. We call this molecule a replicase.
The sequence of symbols that specify a particular molecu-
lar species can be interpreted both as a template (a sequence
of symbols) and as a program, which can be executed to
carry out the reaction between molecules. If two molecules
bind to each other by having a sufficiently “strong” match
in their sequences, a handshaking process determines where
the program that specifies the reaction starts. In our repli-
case example, this handshaking determines which molecule
is copied and which molecule carries out the copying. In
earlier work [5] we found that the function of simple molec-

WWW.yccsa.org

ular simulations is heavily influenced by bind affinity be-
tween molecules, so it is important that the representation
of the molecules allows bind affinity to be specified on the
genome.

String- or tape-based evolutionary simulations have been
reported frequently in the literature, and there are many par-
allels between biology and computer science in the area.
Turing machines make use of a tape and read-write heads
[13]. They preceded von Neumann’s self-reproducing au-
tomata [15]. Both of these architectures have interdepen-
dence of data and program, and use self-copying as key
demonstrators of the function of the system. These are very
simple state machines, with only a loose analogue to the con-
cept of the organism. More recently, Ray’s Tierra [11] and
the AVIDA architecture [7] have expanded on the paradigm
of organism-as-tape, with interesting emergent phenomena
that mirror biology. A less well-known but related theme is
that of expressing the organism as a container for a large set
of strings, each of which contribute to the metabolism (and
hence fitness) of the organism. Examples include Laing’s
kinematic machines from the 1970s [8], Hofstader’s Ty-
pogenetics [6, 14], and Suzuki’s string rewriting system
[10]. The concept of mutation is realised only in Tierra and
AVIDA. These two systems have a single tape per individ-
ual, mirroring the function of DNA in the organism. We be-
lieve that string systems have the potential to encode more
than the genome of the system - the phenotypic machin-
ery of gene expression can also be encoded on string-like
agents and so lead to the evolution of effective machinery
for genome organisation.

This paper concerns our early experiments with mutation
in our replicase system. We believe that there should only
be one form of “spontaneous” mutation in the system, and
that this should occur when a symbol is copied from one se-
quence to another. We call this process “mutation-on-copy”.
In biology, mutation-on-copy certainly happens, especially
when resources are running low; i.e. while the cell is under
stress [16]. We believe that other forms of genome change
should be effected by mechanisms intrinsic to the chemi-
cal model. For example it should be possible to construct
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a transposon in the Stringmol language, which would allow
macromutations whilst itself being a candidate for genomic
control. Biological genomes are highly organised, and are
responsible for their own expression. In other words, the
phenotype includes the genotype-reading structures, and is
completely encoded in the genotype. In yet other words, the
genotype in its purest form is a sequence of symbols, and
this encodes everything else that is manufactured in the cell,
including the machinery for curating the genotype. We have
preserved this property in our Stringmol model, and detail
here a control experiment that attempts to determine the ef-
fects of single point mutations on such a system.

What might be expected of a single-container system that
contains mutating molecular replicators? Our experiments
confirm the prediction that a series of stable states would
emerge, with eventual collapse of the system due to emer-
gent selfish parasites. However, the observed range of re-
active behaviour and the interesting dynamics were not ex-
pected to occur so rapidly in such a simple system. Ana-
logues of parasitism, hypercycles, random drift, gene repres-
sion and co-evolution are reported. Unlike real biology, we
are in a position to fully examine the system, and can detail
the key events that led to the observed dynamics.

In an RNA-world analogue, such as the chemistry we
present here, a molecule can act as both template and ma-
chine. Initially, two identical molecules come together,
with one acting as the machine which makes a copy of
the other. Mutants that are better templates subsequently
sweep through the population, replacing the initial molec-
ular species. More interestingly, we repeatedly observe the
emergence of a molecular species that does not self-replicate
but drives evolution to a state where the system is dominated
for a long period by two co-dependent replicase species that
are not self-maintaining. This is a catalytic hypercycle as
defined by Eigen [2, fig.7].

It is interesting to consider the role of the container in
these experiments. Many explanations for the origin of
life include the use of membranes to keep the molecular
template in close association with the machinery it speci-
fies [9, 1], allowing selective advantage to operate on the
machine-template complex as an entity. In early living sys-
tems, where mutation was rampant and much less tightly
controlled, we observe that containers have a more time-
critical role of preventing the rampant spread of emergent
pathogens.

System overview

We give here a brief overview of our molecular system,
which is described fully in [3] and [4]. A summary of the
container metabolism is presented below, followed by a de-
scription and discussion of molecular structure. We pay par-
ticular attention to the role of sequence alignments and the
mutation scheme in our chemistry.

Metabolism

A simulation can be considered as a set of reacting
molecules whose movements inside a container are gov-
erned by a stochastic mixing function. All molecules are
subject to decay (spontaneous destruction), which places a
requirement upon the system to act in order to maintain it-
self in the face of entropy. Should molecules come suffi-
ciently close to one another, then they can bind and react.
The system has a clock. At each time step, all the molecules
in the system are processed. Actions only occur if energy
is available. Energy is consumed via binding and executing
each instruction in a reaction. The likelihood of binding and
the nature of the reaction is encoded in the string of each
molecule in the encounter. Binding and reacting have an en-
ergy cost. At one particular time step, we specify that 25 en-
ergy units are available. Selection of which events consume
the energy is stochastic. The balance between energy avail-
ability and the decay rate of the molecule maintains a pop-
ulation of around 350 molecules. We currently specify that
only two molecules can ever participate in a single reaction,
and that raw materials for the assembly of new molecules are
available in saturation. These assumptions will be addressed
in future work.

Molecular representation

Our molecular representation is a string of symbols. Each
unique string is considered to be a unique molecular species.
There are 33 symbols, most of which are non-functional.
Maximum string length is 2000 symbols (to accommodate
longer molecules with richer functionality), so there ex-
ists n = ng(io 337 ~ 103937 potential molecular species.
An important feature of the molecular representation is that
it allows the possibility of several complementary subse-
quence alignments. Complementary alignments are neces-
sary in order to prevent two identical molecules from bind-
ing to each other perfectly. Alignments have two key roles:
firstly, they specify binding regions on molecules such that
the more precise the alignment, the stronger the binding
affinity; secondly they specify program flow in the func-
tional region, commonly acting as placemarkers in “goto”
statements. An important property of the representation
is that the location of functional and binding regions is
solely specified by the subsequences themselves, and dif-
ferent molecular species can bind at different sites on the
sequence, so triggering different functions of the molecule.
The sequence of the molecule is used to determine how
likely a bind between molecules is via a process of Smith-
Waterman alignment [12] of complementary symbols. Once
a bind occurs, the sequence is treated like a program, com-
mencing at the beginning of whichever aligned subsequence
is furthest from the beginning of the string. There are 7
functional symbols, shown as non-alphabetical characters
§7, >0 e =’ ‘%% and ‘). Stringmol uses func-
tional symbols to specify the manipulation of a set of point-
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Figure 1: The seed replicase. The top line indicates the
regions of the sequence. The sequence itself is shown in
the centre box. Complementary alignments are indicated by
black connecting lines at the bottom of the figure

ers which indicate positions on the molecular strings, and
the symbols that the pointers index.

Mutation Scheme

One of the functional symbols is the copy operator ‘=". This
operator reads the symbol at the read pointer, and writes
a copy of that symbol at the write pointer. To implement
mutation-on-copy, we specify that a copy operation occa-
sionally writes a different symbol to that being read with a
probability p, = 0.00001. More rarely still, insertion of an
extra random symbol, or deletion of the symbol, take place
with a much smaller probability p; = p,/(10n), where n is
the number of different symbol codes.

Experimental framework

We ran 1,000 simulations of a replicase environment under
the mutation scheme described above. The goal was to eval-
uate whether the system would be robust to mutation, and if
so, what effects it had on the molecular ecosystem. Each of
the 1,000 trials had the potential to run indefinitely and only
terminated when there were no molecules remaining in the
system. This occurs when the replication mechanism deteri-
orates in some way so that the replicating molecules cannot
copy themselves sufficiently quickly to counter the process
of decay. In particular, we sought to identify emergent be-
haviours in the system that were not part of the original spec-
ification and arose by mutation.

The “seed replicase”

Here we describe the molecule used as the seed for the trial.
It is one of many possible replicase molecules and is shown
in figure 1. There are several features to note:

1. Two binding regions. Two are needed to allow a replicase
to bind to a copy of itself because binding is complemen-
tary: a symbol is a perfect match to a different symbol in
the set.

2. A junk region. Mutations here have no effect on the bind-
ing or reaction-program, allowing us to explore the effects
of neutral mutation drift.

3. A functional region. This program specifies that the re-
action involves creating a copy of the partner molecule in
the reaction.

The seed replicase is 65 instructions long. The reactions
takes 240 time steps to construct a new replicase molecule.
All of the template codes in the seed replicase are more than
one mutation away from a function code. Alignments in the
functional region specify program flow. The two binding
sites in our seed molecule do not align perfectly, which en-
ables us to evaluate the evolutionary pressure on binding.

Analysis

As part of our evaluation, we developed several ways of rep-
resenting the simulation data. Each molecule has a sequence
of symbols. A particular sequence of symbols denotes a par-
ticular molecular species, which has an associated species
number. The seed replicase is always species number 1.
When a mutation occurs, a molecule with a novel sequence
is generated, and this is assigned a new species number. In
this way, we can record all new molecular species as they
arise. We must also record the dynamics that ensue. Occa-
sionally a new species increases in number and rises to dom-
inance of the system, driving the previous dominant species
to extinction. This is known in biology as a sweep event.
We can capture these events by monitoring when the species
number of the most abundant species changes (examples are
shown in figure 4). We can record the reactions that exist
between all species present in a system at any one time (see
figure 6). Finally, we can record the ancestry of a molec-
ular species: a new molecule is the product of a reaction
between two other molecules, which belong to either one or
two species types (see figure 7). These figures are described
in more detail later.

With these tools to hand, we are able to demonstrate that
our system is capable of producing innovative behaviour
even from very simple starting conditions and with no ex-
ternal selection pressure. Essentially, the molecular commu-
nity acts as a co-evolutionary system, in which the fitness of
a particular molecular species is largely determined by the
cohort of molecular species with which it shares the con-
tainer. To demonstrate this, we present results on three lev-
els. The first level gives summary observations and statistics
from the 1,000 trials. Secondly, we offer a qualitative analy-
sis of these trials, in which a range of emergent phenomena
are qualitatively described. The third analysis gives details
of a single trial with emergent phenomena and shows how
a series of single-point mutations change the seed replicase
system to a mutually-dependent “hypercycle” in which two
molecular species cannot self-maintain, but maintain a pop-
ulation by copying each other.

General observations

The mutation rate delivers a mean time of 18,700 time steps
for the creation of new molecular species. The majority of
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these new mutations are not “fixed” in the population and go
extinct very quickly. Occasionally a new species arises that
has some advantage over the current dominant species.

None of the 1,000 trials self-maintains indefinitely. The
nature of extinction follows a uniform pattern as described
below, but the timing of the extinction varies. Figure 2
shows the distribution of time to extinction for the molec-
ular populations. The modal extinction time is 750000 time
steps. In this time an average of 40 new species are pro-
duced.

Mutations occasionally produce molecules that rapidly
multiply to become the dominant species in the system via
the phenomenon of invasion when rare. We use the term
epoch to describe the period over which a particular molec-
ular species is dominant in the system; sweep describes a
change in epoch. A histogram of the number of epochs per
trial is shown in figure 3. The long tail on the histogram is
a caused by runs where periods with co-dominant species
that should be labelled as a single epoch are recorded by the
analysis as a high number of very short epochs due to small
fluctuations in abundance of the two species. This definition
of the epoch is not particularly useful in situations where
two species are co-dominant, but this behaviour was not pre-
dicted. Epochs for a single trial can be seen in figure 4.

A classification of emergent phenomena

In this section we give brief descriptions of the key phe-
nomena we have observed in the 1,000 trials. These were
identified by visual inspection of the plots of changes in the
populations of molecular species, e.g. figures 4 and 5.

Extinction

All trials end when no molecules exist in the system. This
occurs when there is a catastrophic decline in replicating
molecules. The common cause of this is when a new ‘para-
sitic’ molecule arises that is 1) incapable of replicating itself,
and 2) copied by the incumbent replicase at a higher rate
than the replicase. Note that in order to be copied, a para-
site must bind to the replicase sufficiently frequently. This
tends to make the system more robust to molecular “junk”
and explains why some of the trials continued for so long. A
characteristic spike may be observed at the end of each run,
which shows this new parasitic molecule as it rapidly in-
creases and then declines when the last replicase molecules
decay. Occasionally a parasite begins to overrun the repli-
case population, but it is unable to bind to a new replicase
mutant that is created as the parasitic molecule is increasing.
This is rare, occurring in only two of the trials.

Dynamics

Characteristic sweep. The majority of sweeps in our sys-
tem take a constant form, as shown in figure 4. These are the
the main cause of epoch change, and take less than 50,000
time steps for a new mutant to drive the previous dominant
species to extinction.

Drift. Drift is observed when a neutral mutation of a dom-
inant individual builds in numbers due to a random walk.
Drift is common, occurring in 92 trials. It is plausible that
sub-populations and slow sweeps (described below) are both
commonly caused by drift. Species exhibiting drift tend to
have mutations in the junk region, but can also show muta-
tions in binding regions that do not change the bind affinity.

Sub-populations. These are species which persist in the
community in fairly large numbers (more than 50 molecules
of approximately 350 in the system). These are very com-
mon, occurring in nearly all runs. These sub-populations are
nearly always wiped out when a new epoch begins, demon-
strating the biological phenomenon of selective sweeps. En-
during Sub-Populations, that persist across more than one
epoch, occur in 26 trials. This indicates that sub-populations
tend to depend on some property of the dominant species in
the system, essentially acting as non-lethal parasites. Co-
dependence between dominant and sub-populations cannot
be determined by examination of population numbers alone.
In 2 trials we observed a sweep in a subpopulation whilst the
dominant population remained stable.

Slow sweeps. A sweep can occasionally take much longer
than the 50,000 time steps of a typical sweep. These are
called “slow sweeps” and may be due to drift alone. An
example can be seen in one of the hypercycle partners in
figure 4 at around ¢ = 2,600, 000. Slow sweeps occurred in
52 trials.
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Figure 5: Dominant species in run 277. The short replicase (species 31) emerges at t = 748, 199 and forms a hypercycle (H) at

t = 5,750, 000.

Rapid sweep sequences. Occasionally a mutant causes a
“cascade” of new molecules by triggering a sequence of new
unseen molecules that quickly dominate the population. The
most common mechanism for this is a mutation that gives
rise to a series of molecules that bind to a replicase such that
less than their entire sequence is copied. This occurs in 31
trials.

Complex behaviour

Emergent hypercycles. A hypercycle occurs when an en-
during sub-population increases in number until it becomes
co-dominant with a dominant species. The species forming
the enduring sub-population is not self-maintaining, but acts
as a copier for the dominant species. The dominant species
then repeatedly loses self-self affinity until it loses the ability
to self-maintain altogether. The hypercycle occurs when the
ability of the dominant population to self-maintain is lost,
and the two species become co-dependent. This occurs in
8 trials. Hypercycles end with a sweep, but occasionally
one of the partner molecules is still able to maintain a sub-
population. A series of sweeps ensues, in which the sub-
population declines slightly following each sweep. This oc-

curs in 6 trials.

Spontaneous hypercycles. are the same as the emergent
hypercycle, but forms from species that both arise in the im-
mediately preceding epoch. The mechanism is under inves-
tigation. This occurs in 15 trials.

Multispecies hypercycles. occur in 14 trials, when there
appears to be a mutual dependence among more than two
chemical species, as shown in figure 4.

Detailed evaluation of a single trial

We present here details of one of the more interesting
sequences of mutation that leads to a hypercycle of co-
dependent molecular species. This was observed in trial 277
(figure 5), but hypercycles of one form or another occurred
in 30 trials.

We classify this trial as an “emergent hypercycle”. At
t = 748,199 one of the eventual partners (species 31) is
first produced via a mutation. This molecule exists as a sub-
population for around 5, 750, 000 time-steps before forming
one partner in a co-dominant pair of molecular species. The
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Figure 6: Reactions in the hypercycle. Molecules are repre-
sented by grey bars. Binding sites are shown as white boxes,
with active binds shown above and passive binds shown be-
low the molecule. Bind alignments are shown as black lines
between molecules. Dashed lines show the product of the
reaction (where one occurs).

partnership runs for approximately 3 million time steps be-
fore a parasitic molecule emerges to end the trial.

The molecular species in a hypercycle

The two molecular species (31 and 259) in the hypercycle
are shown in figure 6. The bindings that occur between them
are shown as black lines. The assignment of roles in the
reaction (i.e. whether the molecule is passive (acts as the
template) or active (acts as the program) occurs with equal
probability for both molecules, meaning that for 50% of the
time species 31 is produced and for the other 50% of the time
species 259 is produced. Also note that species 31 is shorter
than species 259 - it has lost one of the binding regions re-
quired for the reaction-program to initialise such that a copy
of the replicase is created. This means it tends to be copied
more quickly. Neither molecule is able to self-copy.

This phenomenon was neither foreseen in the original de-
sign nor expected to form without further design effort. It is
particularly surprising that both partners in our hypercycle
have no ability to self-copy. How could this have happened,
and what is the evolutionary advantage of it?

Origin of the short partner

We need to explain how species 31, that is missing a key
functional component, can rise to co-dominance in our sys-
tem. We can trace the ancestry of the molecular species,
and examine the reaction networks at key stages in any trial
(figure 7). A white box indicates that a new species is syn-
thesised de novo in the reaction, whereas a grey box indi-
cates that the new species arises by modification of one of
the reactants. Replicase molecules should act as catalysts,
remaining unchanged when they emerge from a reaction.
We can conclude that there is something in the reaction with
molecules of species 29 that has produced species 30, which
then reacts with species 9 to form species 31. The single

110614

i

215934

l

746357

l

747195

'

748199

Figure 7: Ancestry of species 31. Numbers on the left in-
dicate the time of reaction. Black arrows indicate the active
partner. Grey arrows indicate the passive partner

point mutation of species 9 to create species 29 is shown
below by a vertical line:

009 OBEQBX...LHHHRLUEUOBLROORES$BLUBO"B>CS$=2?>$$BLUBO% }OYHOB
|
029 OBEQBX...LHHHRLUEUOBLROORES$BLUBP "B>C$=2?>$$BLUBO% }OYHOB

The subsequence $BLUBO has mutated to $BLUBP. The
$ symbol is a code for “seek”, and (in this situation) po-
sitions the molecule’s flow pointer at the end of the best
complementary alignment for the sequence BLUBO, which
is the sequence OYHOB. With the mutation in species 29,
the alignment spans only the first four letters of $BLUBO,
so the copy of the molecule is constructed one symbol in
from the end of the molecule. When the construction is
complete, the newly-created string must be cleaved from the
active molecule’s sequence. The pointers are arranged to
achieve this via a second “seek” command with the same
target (OYHOB). However, since the target has been over-
written in the original molecule, the seek command posi-
tions the pointer at the end of the newly copied molecule
instead. The “cleave” command is applied to the far end of
the string and is thus ineffective. The reaction-program ter-
minates, and the new molecule (species 31) is created from
most of a molecule of species 29 with a copy of species 9
pasted over the penultimate symbol.

In this manner, the reaction between species 29 and 9 cre-
ates species 30, which is nearly twice as long as the seed
replicase, as shown in figure 8. Note there is only ever a
single molecule of species 29, which is immediately trans-
formed into species 30 when it reacts with a molecule from
species 9. When species 9 binds to species 31, the bind
site is shifted to a new position, as shown in figure 8. This
changes the action of the replicase program such that the
first 14 characters of the string are not copied. In this way,
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030 OBEQBXUUUDYGRHBBOSEOLHHHRLUEUOBLROORESBLUBP “B>C$=?>$$BLUBO% } OYHOOBEQBXUUUDYGRHBBOSEOLHHHRLUEUOBLROORES$SBLUBO "B>C$=?>$$BLUBO% } OYHOB
Bind site:
009 OBEQBXUUUDYGRHBBOSEOLHHHRLUEUOBLROORE$BLUBO "B>C$=?>$$BLUBO% } OYHOB
Product: | -1
031 BBOSEOLHHHRLUEUOBLROORE$BLUBO "B>C$=2?>$$BLUBO% } OYHOB

Figure 8: Origin of species 31

the single instance of species 30 can create many molecules
of species 31 until it decays. Species 31 is then copied by
dominant species in the system in 50% of reactions with it.
Note that this cascade of reactions all occurs as a result of
the single-point mutation on species 9.

Evolutionary pressure towards a hypercycle

Having established how a shorter molecule can arise via
single-point mutations, we need to investigate how the
molecule persists in the system, and what evolutionary pres-
sure there is towards the formation of a hypercycle. It is
important to note that in our replicase system a molecule
that ensures it will always act as the template in a reaction
is likely to sweep the population, as it will increase in num-
bers whenever it binds to another molecule. This is often
achieved by reducing the bind probability for self-self reac-
tions: as long as a bind is sufficiently likely, all the energy
available in the system can be consumed. Binds stronger
than this critical value have no advantage, whereas increas-
ing any bias towards becoming the template in a reaction is
clearly advantageous. For single-replicase systems, this is
straightforward to understand, but with the introduction of
species 31, the dynamics get more interesting.

Once present in the system, species 31 becomes a re-
source for other molecules. In all of the reactions with
species 31, the chances of acting as a template are 50-50
(since the position of the alignment is the same on each
string). This means that new species that bind to 31 can
use it as a resource for increasing their number, even though
half the time they will be exploited by species 31 to main-
tain its own population. Through a series of sweeps, each
new dominant species binds increasingly strongly to species
31, thus flushing the previous incumbent from the system.
Any new species that binds /ess strongly to species 31 than
the previous dominant species is unsuccessful: it loses in the
competition to exploit a valuable resource. Once bind affin-
ity to species 31 is maximised, the old strategy of weaken-
ing self-self binds to guarantee template status in a reaction
takes over again.

These processes are illustrated in figure 9, which plots
binding rates for new dominant species in trial 277. The
plots show the changes in bind probabilities with each suc-
cessive sweep of the population as illustrated in figure 5. The
line labelled “Bind to self” shows the probability of self-self
binding for each new dominant species. The line labelled
“Bind to 31” shows the bind probability between the new
dominant species and species 31. There are three phases.

1.0

Bind pmobability

00 02 04 06 08
Il

1000 2000 3000 4000 5000

time steps (1,000)

Figure 9: Change in binding rates as a precursor to hypercy-
cle emergence

The first phase shows a decrease in self-binding probability
between successive dominant species. We then see a sec-
ond phase in which new species have an increasing affinity
for binding to molecule 31. Once this is maximised, the
third phase begins, in which successive dominant species
sacrifice their self-bind probability to ensure they act as tem-
plates when reacting with the previous dominant species. In
this way, dependence upon species 31 increases, until self-
replication disappears altogether, and a hypercycle emerges.

The single-point mutations between dominant species are
shown in figure 10. It shows that all mutations that confer
an advantage occur in the binding regions of the molecule.
Phases 1 and 3 of the run show changes in the second bind
region, whereas phase 2 shows mutations in the first bind re-
gion. This corresponds with the change in phase noted for
figure 9. The functional region of the molecule, which occu-
pies the last half of the string, is preserved throughout. This
is far from a random walk: the critical function of the repli-
case is preserved throughout, whilst a continual turnover of
the binding site sequences illustrates the evolutionary pres-
sure on the molecular species to act as a template for the
molecule that the replicase builds.

Conclusions

We have presented an evaluation of the effect of mutation on
an open-ended chemical system. The richness of behaviour
we have shown is striking; indeed it was unexpectedly rich
given that the only form of mutation is single-point. The
need for such richness in complex systems was one of our
main considerations during the design of this system. In ad-
dition, our chemistry reveals something of the dynamics of
replicase systems that is very difficult to observe in biology.
The decrease in binding affinity was not predicted, and the
mechanism by which the hypercycle emerged was the result
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003 : OBEQBXUUUDY GRHEBOREOLHHHRLUEUGBLROORESBLUBO B>C$=?>$$ BLUBO® } OYHOB

009 } OBEQBXUUUDYGRHEBOS EOLHHHRLUEUGELROORESBLUBO B >C$=>$$BLUBO% } OYHOB

H [ :
o 038 { OBEQBXUUUDYGRHEBOS EOLHHIRLUEUGELROORESBLUBO B>C$=?>$$BLUBO% } OYHOB
046 } OBEQBXUUUDYGRHEBOS EOLHHIRLUDUGELROORESBLUBO B>C$=2>$$ BLUBO% } OYHOB

057 & JUUDY! DS EOLHHIRLUDVOBLROORESBLUBO”B>C$="?>$$BLUBO% } OYHOB

: [ ] :
087 : OBEQBXUUUEY GRHBBOS EOLHHIRLUDVOBLROORESBLUBOB>C§="2>$$ BLUBO® | OYHOB
i@ i
092 : OBFQBXUUUEY GRHBBOS EOLHHIRLUDVOBLROORESBLUBOB>C$=2>$$ BLUBO® | OYHOB
112 } OBFQBXUUUEYHRHBBOS EOLHHIRLUDVOELROORESBLUBO*B>CS=7>$$ BLUBO* } OYHOB

129 { OBFRBXUUUEYHRHEBOS EOLHHIRLUDVOELROORESBLUBO B >C$=?>$$BLUBO% } OYHOB

135 § OBFRBYUUUEYHRHRBOS! E}OLHHIRLUDVOfBLROOREsBLUBO"B>C$= ?>$$BLUBO% } OYHOB
143 é OBFRBYUUUEYHRHE BOREOLHHIRLUDVO?BLROORESBLUBO"B>C$= 2>$$BLUBO% | OYHOB
156 é OBFRBYUUUEYHRHE BOREOLHHIgd'UDVéBLROORESBLUBO"B>C$= 2>$$BLUBO% | OYHOB
189 . OBFRBYUUUEYHRHE BORBOL:'. IRMUDVOEBLROORE$BLUBO"B>C$= ?>$$BLUBO% }OYHOB

9 210 : OBFRBYUUUEYHRHEBOREOLGI IRMTDVOBLROORESBLUBO B>C$=?>$$ BLUBO® }OYHOB

H L]
259 ! OBFRBYUUUEYHRHEBOREOLGI I SMTDVOBLROORESBLUBO B>C$=?>$$BLUBO® }OYHOB

Figure 10: Mutations for the dominant species in run 277.
Bind sites are indicated with dashed lines.

of a macromutation that was not “designed in” to the system.

Our replicase molecules are “imperfect replicators”: they
have a small chance of making an error when copying any-
thing that binds to a certain region on the molecule. The
imperfections in the copy process are not currently encoded
on the genome; they are preset in the microcode of the
copy instruction and thus unavailable for manipulation on
the genome. In future work, we could represent the copy
instruction at a finer level of granularity and use template
codes to specify the accuracy of each sub operation, possi-
bly including some cost for an increased accuracy of copy.
We observed macro-mutations arising as a result of single-
point changes that delivered emergent phenomena due to the
wide heritable range of the system.

Finally, we must emphasise that these trials form a con-
trol experiment in which the effects of single-point mutation
were evaluated. Future work will examine the effects of run-
ning a “population” of these trials, such that when a popula-
tion of molecules collapses in an individual container, it can
be replenished by a neighbour. This gives us a full model
of early life, in which replicating templates and machinery
self-maintain within membrane-bounded containers that can
be replenished by neighbours.
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Extended Abstract

We report several recent extensions of Swarm Chemistry (Sayama 2008; Sayama 2009), an artificial chemistry model that
uses kinetically interacting particle swarms as chemical reactants. Major modifications we newly implemented in the
Swarm Chemistry model are as follows:

1. There are now two categories of particles, active (moving and interacting kinetically) and passive (remaining still and
inactive). An active particle holds a recipe of the swarm (i.e., a list of kinetic parameter sets) in it (Fig. 1(a)).

2. Arecipe is transmitted from an active particle to a passive particle when they collide, making the latter active (Fig. 1(b)).

3. The activated particle differentiates randomly into a type specified by one of the kinetic parameter sets in the recipe
given to it (Fig. 1(c)).

4. Active particles randomly re-differentiate with small probability.

It has been demonstrated that these model extensions enable morphogenetic processes starting with a single particle con-
taining a recipe (zygote) that grows into a fully developed self-organizing swarm pattern by “eating” other passive par-
ticles as raw materials through local recipe transmission (Sayama 2010). In addition, the stochastic re-differentiation
introduced above (4) naturally achieves self-repair capability of swarms with simple open-loop linear control mechanisms
(Sayama 2010).

Moreover, to demonstrate that macro-level ecological/evolutionary dynamics of self-organizing swarm patterns can arise
out of micro-level processes embedded in particle interactions, we further introduced minimal mechanisms for variation
and competition of recipes when they are transmitted between particles. Specifically, we implemented the following
mechanisms to the model:

5. A recipe is transmitted between active particles of different types when they collide (inheritance). The direction of
recipe transmission is determined by a competition function that picks one of the two colliding particles as a source
(and the other as a target) of transmission based on their properties (selection) (Fig. 1(d)).

6. The recipe can mutate when transmitted (as well as spontaneously at other times) with small probability (variation)
(Fig. 1(e)).

With these additional mechanisms, the Swarm Chemistry world has become capable of producing fully autonomous eco-

logical and evolutionary behaviors of self-organized “super-organisms” made of a number of swarming particles. With a

finite amount of resources (i.e., fixed number of particles) provided in a closed environment, we have observed behaviors

of those macroscopic patterns that could be interpreted in ecological/evolutionary terms, such as reproduction, chasing,

and predation, all emerging out of local interactions among individual particles (Fig. 1(f)).

We have tested a couple of different principles for the competition function, e.g.:
(1) The faster (or slower) particle wins (i.e., becomes the source).

(ii) The particle that hit the other one from behind wins.
(iii) The particle surrounded by more of the same type wins.

Each condition produced unique, distinct evolutionary dynamics. The most recent findings obtained from those different
conditions are presented and discussed comparatively.
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(a) (d)
. 67*(216.35,11.75,7.7,0.83,0.97,97.31,0.02, 0.38)
97 * (226.76.3.11. 9.61,0.15, 0.88, 43.35, 0.44. 1.0) 29 * (254.64,7.28, 7.0, 0.95, 0.11, 22.41, 0.43, 0.31)
38 % (57.47,9.99, 35.18,0.15,0.37,30.96,0.05, 0.31) 13%(105.4,3.55,5.24,0.34,0.18,23.53,0.39,0.24)
56* (15.25,13.58,3.82,0.3,0.8,39.51,0.43,0.65)
31%(113.21,18.25,38.21,0.62, 0.46, 15.78,0.49, 0.61)
97 * (226.76,3.11,9.61, 0.15, 0.88, 43.35,0.44, 1.0
(b) 38 *(57.47,9.99,35.18,0.15,0.37,30.96, 0.05, 0.31)
56%(15.25,13.58,3.82,0.3,0.8,39.51,0.43,0.65)
07 (226.76,3.11,9.61,0.15, 0.88, 43.35,0.44, 1.0) 31%(113.21,18.25,38.21,0.62, 0.46, 15.78, 0.49, 0.61)
38* (57.47,9.99, 35.18,0.15, 0.37, 30.96, 0.05, 0.31)
56* (15.25,13.58,3.82,0.3,0.8,39.51,0.43, 0.65)
31%(113.21,18.25,38.21,0.62,0.46, 15.78,0.49, 0.61)
competition Y\ > winner: S
. function .
97 * (22676, 3.11. 9.61, 0.15, 0.8, 43.35, 0.44, 1.0)
38%(57.47,9.99,35.18,0.15, 037, 30.96,0.05, 0.31)
e 56* (15.25, 13.58,3.82,0.3,0.8,39.51,0.43,0.65)
31%(113.21,18.25,38.21,0.62, 0.46, 15.78,0.49, 0.61)
(e
67*(216.35,11.75,7.7,0.83,0.97,97.31,0.02, 0.38)
29 * (254.64,7.28, 7.0, 0.95, 0.11, 22.41, 0.43, 0.31)
(C) 13 % (105.4,3.55,5.24,0.34,0.18,23.53,0.39, 0.24)
V 97 *(226.76,3.11,9.61,0.15,0.88, 43.35,0.44, 1.0)
38 % (57.47,9.99, 35.18,0.15,0.37,30.96,0.05, 0.31)
56 * (15.25,13.58, 3.82, 0.3, 0.8, 39.51,0.43,0.65
31%(113.21,18.25,38.21,0.62, 0.46, 15.78,0.49, 0.61)
75 % (216.35,11.75,7.7,0.83,0.97,97.31,0.02, 0.38)
[ . 29 * (254.64,7.28,7.0,0.95,0.11, 28.56, 0.43, 0.31)
13 * (105.4,3.55,5.24,0.34, 0.18,23.53,0.39,0.24)
L 4
(D I ] e I

Figure 1: How particle interactions work in the revised Swarm Chemistry. (a) There are two categories of particles, active
(blue) and passive (gray). An active particle holds a recipe of the swarm in it. (b) A recipe is transmitted from an active
particle to a passive particle when they collide, making the latter active. (c) The activated particle differentiates randomly
into a type specified by one of the kinetic parameter sets in the recipe given to it. (d) A recipe is transmitted between active
particles of different types when they collide (inheritance). The direction of recipe transmission is determined by a competition
function that picks one of the two colliding particles as a source (and the other as a target) of transmission based on their
properties (selection). (e) The recipe can mutate when transmitted with small probability (variation). (f) Examples of ecologies
of self-organizing patterns spontaneously formed in the Swarm Chemistry world (made of 10000 particles each).
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Abstract

The RNA world hypothesis and the hydrothermal origin of life
hypothesis are contradictory to maintain life-like systems for
these two hypotheses to be compatible by the following two
main reasons. First RNA molecules are too labile and second
the biologically important interactions would not be effective at
high temperatures. The assumption can be applied to the
protein-based life-like systems. We have continuously
investigated the stability and the chemical evolution of RNA-
and protein-based life-like systems by using our hydrothermal-
monitoring techniques. According to these data, it has been
found that two viewpoints are essential to discuss the
temperature limit of RNA and/or protein-based life-like
systems on the primitive earth. First, the accumulation of
biomolecules should be determined by both the formation and
degradation rates. Second, the reaction rates of the primitive
life-like systems should be evaluated from the viewpoint of
enzymatic reaction rates.

Introduction

The RNA world hypothesis has some drawbacks despite being
supported by empirical data such as chemical evolution
experiments using RNA and in vitro selection technique
generating artificial ribozymes (Lohrmann and Orgel, 1980;
Gilbert, 1986; Joyce et al., 1987; Sawai et al., 1989; Ellington
& Szostak, 1990; Ferris and Ertem, 1992; Terfort and von
Kiedrowski, 1992; Kawamura and Ferris, 1994). That is to
say, the hypothesis that life originated near hydrothermal vent
environments (the hydrothermal origin of life hypothesis)
appears to be inconsistent with the RNA world hypothesis.
The hydrothermal origin of life hypothesis was proposed
based on the continuous investigations of thermophilic
organisms (Corliss et al., 1981; Baross and Hoffman, 1985)
and phylogenetic analysis of present organisms. The last
common ancestor (LCA) is considered to have been a
thermophilic organism (Pace, 1991; Forterre, 1994) although
this is still disputed (Miller and Bada, 1988; Galtier et al.,
1999).

It has been frequently concluded that RNA molecules are
too labile under hydrothermal vent conditions for these two
hypotheses to be compatible. Furthermore, biologically
important weak interactions such as hydrophobic interactions
and hydrogen bonding are weaker at higher temperatures.
However, the most of simulation experiments have been
carried out at low temperatures. In addition, there have been

no practical techniques for the investigations of chemical
evolution of RNA under hydrothermal conditions. These
situations can be applied to the case that the protein-based
life-like systems, such as GADV protein hypothesis (Ikehara,
2005), since the half-lives of proteins under hydrothermal
environments are much shorter than the geological time scale;
the formation of protein-like molecules has been examined
under simulated hydrothermal vent conditions (Holm, 1992;
Marshall, 1994; Imai et al., 1999; Kawamura et al., 2005).

Naturally, it is difficult to determine the temperature at
which life originated while it is estimated that life on Earth
originated 4600 to 3500 million years ago (Mojzsis et al.,
1996). Frequent meteorite impacts could have raised the
Earth’s temperature significantly (Maher and Stevenson,
1988). Alternatively, some evidence suggests that the
primitive ocean was frozen since the solar luminosity at that
time was relatively less than at present (Sagan and Mullen,
1972). Thus, the temperature of the primitive ocean in which
life originated remains speculative (Walker, 1985; Kasting
and Ackerman, 1986).

Thus, investigations are required to evaluate the RNA-
and/or protein-based life-like systems at different
temperatures although the chemical evolution of RNA has
been mainly studied at low temperatures. We have
continuously studied the stability and prebiotic formation of
RNA and protein-like molecules at high temperatures by
using our monitoring methods of hydrothermal reactions. The
systematic analyses of these data would provide insight into
the possibility of a life-like system under hydrothermal
conditions.

Conclusively, it has been found that the following
viewpoints are essential to discuss the temperature limit of
RNA and/or protein-based life-like systems on the primitive
earth and to determine whether biomolecules are sufficiently
stable or not under hydrothermal conditions.

View I: The accumulation of biomolecules should be
evaluated under the thermodynamically open system, so that
the accumulation of biomolecules should be determined by
both the formation and degradation rates. Our experimental
data suggested that the formation of RNA would be possible
once the elongation of RNA starts from oligonucleotides
longer than dimer at very high temperatures.

View II: The rate of the primitive reactions within the
primitive life-like systems should be evaluated from the
viewpoint of enzymatic reaction rates. Based on the
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comparison between the reaction rates with and without
enzyme, much higher temperature limit, such as 300 °C, can
be assumed for the emergence of a life-like system.

Chemical Evolution of Biopoymers under
Hydrothermal Conditions

Monitoring methods of hydrothermal reactions

While hydrothermal reactions were normally investigated
using batch reactors, it was difficult to monitor hydrothermal
reactions within the millisecond to second time scale. To
monitor such rapid reactions, the flow systems monitoring of
hydrothermal reactions are becoming practical techniques
(Kawamura, 2000; 2002). We have invented a real-time and in
situ monitoring method of hydrothermal reactions using a
micro-flow reactor system assembled with fused-silica
capillary tubing, which enables the monitoring
reactions at 0.002 - 200 s at 400 °C at 50 MPa. For in
situ monitoring of hydrothermal reactions, an optical window
on the fused-silica capillary and a UV-visible detector are
connected with high temperature-resistant optical fibers; it
enables monitoring of 200 — 900 nm at 0.08 — 3.2 s at 400 °C.

data
integrator Uv-
visible
detector
campe
high injector A

pressure

pum hydrothermal back
water reactor pressure
reservoir controller
@ fused- l
silica °ﬁg2:’| c%o"ng
capillary at

Figure 1. Hydrothermal flow reactor system using fused-
silica capillary tubing. This system enables real-time
monitoring and in situ UV-visible monitoring.

RNA- and protein-based life-like system

Discovery of ribozyme suggested that RNA-like molecules
had a central role in the first life on earth. The plausible
information flow in a life-like system consisting of RNA
molecules is shown in Figure 1, where RNA molecules
preserve both information and enzymatic activities. RNA
world hypothesis is supported by chemical evolution
experiments using RNA formation models (Lohrmann and
Orgel, 1980; Joyce et al., 1987; Sawai et al., 1989; Ferris and
Ertem, 1992; Terfort and von Kiedrowski, 1992). Activated
nucleotide monomers (5’-phosphorimidazolide of nucleoside)
were synthesized in the laboratory as model activated
prebiotic nucleotide monomers that might also be formed
under primitive Earth conditions and could produce RNA
oligonucleotides (Lohrmann and Orgel, 1973). This technique
has been successfully applied to the formation of RNA in the
presence of polynucleotide template, metal catalyst, and clay
mineral catalyst. On the other hand, the fact that in vitro

selections can produce several ribozymes and aptamers
support the speculation that different functional RNA could
have spontaneously formed on primitive earth (Ellington and
Szostak, 1990; Tuerk and Gold, 1990) although the same
molecular machinery, which is used in the modern in vitro
selection techniques, was not present on primitive Earth.

Naturally, proteins are important for the emergence of life-
like systems while it is generally considered that proteins
could not preserve biological information as RNA and DNA
preserve information on the basis of Watson-Crick base-pair
formation. In addition, simulation experiments on primitive
Earth imply that the formation of protein-like molecules
would be easier than that of RNA on the primitive Earth
although it is indeed difficult to determine which formation of
RNA or proteins is more difficult. The reason that the
formation of proteins is frequently regarded to be easier than
that of RNA may be due to the fact that the formation of RNA
monomers consists of three steps of nucleotide bases,
nucleoside, and nucleotides while amino acids are directly
formed from primitive gas mixture using different energy
sources.

Recently, GADV protein hypothesis has been proposed on
the basis of analyses of the relationship between the structures
of water-soluble granular proteins and nucleotide base
compositions of genes regarding present organisms (Ikehara
2005). Conclusively, this hypothesis suggests that glycine (G),
alanine (A), aspartic acids (D), and valine (V) could have
been the most primitive protein, which could have formed a
simpler transcription systems. The importance of the
combination of G, A, D, V has been sometime pointed out
from different viewpoints (Eigen et al., 1981). In addition, the
difficulty that proteins would not readily preserve genetic
information might be solved by assuming that the information

catalysis

S

replication

RNA system

catalysis

Sl

pseudo-replication

GADV protein system

Figure 2. Prebiotic information flow for life-like systems
consisting of RNA molecules and proteins.
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could have been preserved on the basis of pseudo-replication
mechanism. A possible information flow is illustrated in
Figure 2, where GADV proteins could behave similarly to
those assumed for an RNA based life-like system.

Naturally, this protein-based origin-of-life hypothesis
should be evaluated from the viewpoint of hydrothermal
origin of life hypothesis.

Prebiotic formations and stabilities of RNA and
proteins under hydrothermal conditions

While simulation experiments for the formation of RNA
oligomers on the primitive earth conditions have been
extensively investigated using the phosphorimidazolides of
nucleotide monomers (Lohrmann and Orgel, 1980; Joyce et
al.,, 1987; Sawai et al., 1989; Ferris and Ertem, 1992), the
most of studies were carried out at 25 °C. Thus, we have
investigated kinetic analyses of prebiotic formation models of
RNA using the activated nucleotide monomers or water-
soluble carbodiimide as a condensation reagent at
temperatures up to 100 °C. We successfully analyzed the
following models (Figure 3), (1) the template-directed
formation of oligoguanylate on a polycytidylic acid template
(TD reaction) (Kawamura and Umehara, 2001), (2) the
cyclization of oligonucleotides (CY reaction) (Kawamura et
al., 2003), (3) the oligocytidylate formation in the presence of
Pb** (ME reaction) (Kawamura and Maeda, 2007), and (4) the
oligocytidylate formation in the presence of montmorillonite
clay (CL reaction) (Kawamura and Maeda, 2008). The
formations of oligonucleotides using these model reactions are
basically difficult at high temperatures. Based on these
empirical data, it was generalized that the reactions are
expressed by the scheme shown in Figure 4.

The accumulation of oligonucleotides is determined by the
relative magnitude of the processes. The kinetic analyses of
the 4 types of RNA formation models suggested that the low
efficiency of oligonucleotide formation at high temperatures is
mainly due to the weak association between an activated
nucleotide monomer and an elongating oligonucleotide since
hydrogen bonding and hydrophobic interaction decrease with
increasing temperature. This trend was observed for all the 4
types different prebiotic reactions. For the cases of TD, ME,

I Template-directed reaction | | Metal-catalyzed reaction I

Clay-catalyzed reaction
el ol

Figure 3. RNA formation models with and without activated
nucleotide monomers.

and CL reactions, it is generally found that the association
between an activated monomer and a monomer (or another
activated monomer) for the formation of dimer becomes weak
and the relative rate of the formation of dimer decreases
notably as comparing to trimer and tetramer formations. On
the contrary, for the cyclization of a linear oligonucleotide the
association of 3’- and 5’-terminals is much easier since it is an
innermolecular reaction. Thus, the rate constants of
cyclization do not decrease notably as comparing to those of
cleavage of phosphodiester bonding; naturally the cyclization
of oligonucleotides would be disadvantageous for the
formation of long oligonucleotides. According to these data, it
was implied that the oligonucleotides could have formed at
high temperatures if the association between the activated
nucleotide monomer and the elongation oligonucleotide is
facilitated by additives, such as, protein like-molecules,
mineral surfaces, metal ions.

On the other hand, it has been shown that the formation of
protein-like molecules is possible under different conditions.
Thermal condensations of amino acids mixtures including Asp
and Glu have been frequently investigated as a formation
model of protein-like molecules on the simulated dry surface
model of primitive Earth (Fox and Harada, 1958). The
formation of peptides was investigated in the presence and
absence of condensation reagent while the investigations of
peptide formation have been relatively weak as comparing to
the formation of RNA (Ferris, et al., 1996).

The formation of protein-like molecules is also possible
even under the hydrothermal conditions in the absence of
condensation reagent while the efficiency is lower than that of
the dry model (Imai et al, 1999). Actually, the formation of
proteins from amino acids under hydrothermal conditions is
not so easy, where the yield of oligopeptides formation is
typically 0.1 — 1 %. One reason is that the dehydration of
amino acids is principally difficult in aqueous solution. In
addition, the cyclization of dipeptide to form diketopiperazine
inhibits the further elongation of oligopeptides. Furthermore,
the condensation reagent would facilitate the formation of
oligopeptides while suitable prebiotic condensation reagents
have not been yet discovered for the oligopeptide formation
under hydrothermal conditions (Kawamura et al., 2009a).
Based on our investigation of a condensation reagent for the
formation of oligopeptides, it was found that the condensation

activated associate -
2-mer monomer formation associate
I
o0 -0 — 000
N
interactions
associate phosphodiester 3-mer

bond formation
—_—

3-mer phosphodiester monomers

”. bond cleavage ‘_'_ ‘_'_ ’

Figure 4. Generalized reaction model for the formation of
prebiotic RNA molecules.
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reagent is immediately destroyed under hydrothermal
conditions.

By using the hydrothermal flow reactor, we have
discovered two possible pathways, which enhance the
elongation of oligopeptide. First, the elongation of
oligoalanine readily proceeds within 10 — 30 sec at 250 — 330
°C if its starts from 4-mer oligoalanine and longer (Kawamura
et al., 2005). The efficiency of the formation of oligoalanine
reaches to 10 %. Second, one-step formation of oligopeptides
including 20 amino acids unit from Asp and Glu is possible
within 3 min at 275 °C (Kawamura and Shimahashi, 2008).
However, it is generally true that the oligopeptides are not
basically stable at high temperatures so the oligopeptides
could not survive even if hydrothermal vent systems facilitate
the formation of oligopeptides. Thus, it has been frequently
proposed that oligopeptides could have accumulated in the
surrounding cool ocean once the peptides are evacuated from
the hydrothermal vent (Imai et al., 1999).

We have carried out kinetic investigations of the
degradation of nucleotide bases, nucleosides, nucleotides,
oligonucleotides, polynucleotides, amino acids, peptides, and
proteins. The fastest process for the degradation of nucleotides
as RNA monomers is the cleavage of triphosphate of
nucleotides (Kawamura, 2000). Besides, the fastest process
for the degradation of amino acids is racemization (Kawamura
and Yukioka, 2001). The cleavage of phosphoester bonding is
approximately 10000 times faster than that of racemization of
amino acids. Moreover, the cleavage of phosphodiester
bonding of RNA is approximately 100 times faster than that
of peptide bonding (Kawamura, 2003a, 2003b; Kawamura et
al., 2005). These facts indicate that the RNA and nucleoside
monomers are less stable as comparing to proteins and amino
acids. However, it should be noted that these reactions
proceed within much shorter time scale than the geological
time scale. For instance, the ribonuclease loses the catalytic
activity within 30 s at 275 °C (Kawamura et al., 2009b). This
fact suggests the importance how to judge the stability of
these biomolecules.

Table 1. Half-life calculated by the real-time monitoring of
hydrothermal degradation for biomolecules.

half-life / s Temperature / °C
100 200 300
oligo17 4500 3.08 0.0268
C’'pG 12900 28.8 0.542
C*pG 14100 37.4 0.789
dCdG 572000 45.7 0.0981
ATP 1290 0.37 0.00187
ADP 6830 1.61 0.0070
AMP 83500 8.65 0.022
adenosine 1610000 86.9 0.145
alanine 15900000 3380 13.7

Values of half-life were obtained from the previous investigations
(Kawamura, 2000, 2003a, 2003b, Kawamura and Yukioka, 2001).

Interactions of biopolymers under hydrothermal
conditions

Biologically important interactions, such as hydrogen
bonding, hydrophobic interactions, m—x stacking, would

decrease with increasing temperatures. However, it was
normally difficult to analyze such interactions by using
conventional techniques. Thus, we have attempted to measure
such weak interactions of RNA and proteins using our in situ
UV-visible monitoring system for hydrothermal reactions
(Kawamura and Nagayoshi, 2007; Kawamura et al., 2010).
Our accumulated data support quantitatively the assumption
that the weak interactions, such as hydrogen bonding,
hydrophobic interaction, m—m stacking, becomes weak.

It was confirmed that double-stranded DNA is readily
denatured to single-stranded DNA at temperature lower than
100°C by using our system (Kawamura and Nagayoshi, 2007).
However, at higher temperatures it was found that single-
stranded DNA form aggregate at higher temperatures up to
around 200 °C, where the solubility of DNA becomes low
especially in the presence of Mg%. At higher temperatures,
single-stranded DNA 1is cleaved so the solubility increases.
This fact suggests that the solubility of DNA is an important
factor to determine the limit temperature for life-like systems.

On the other hand, the interactions between proteins and
chromogenic reagents were investigated using the in situ UV-
visible monitoring system (Kawamura et al., 2010). Among a
few kinds of proteins, the interaction of bovine serum albumin
(BSA) with a water-soluble porphyrin (TPPS) was possible to
investigate up to 150 °C. The association constant between
BSA and TPPS at 100 °C was ca. 100 times smaller than that
at 25 °C. However, the interaction of TPPS with pyridine
bases is not so reduced within this temperature range, where
the association constants decrease only 2 — 6 times. Thus, we
concluded that the decrease of the association constant of
BSA with TPPS is due to the conformational change or
denaturation of BSA at high temperatures. That is to say, BSA
is a modern enzyme so that this is not suitable to interact with
substrates at high temperatures, where denaturation occurs.
Thus, it is important to investigate the interactions of prebiotic
protein-like molecules with defferent substrates.

Temperature Limits of Primitive Life-life
Systems

Viewpoints to determine whether prebiotic molecules
are sufficiently stable

The viewpoints to determine whether biopolymers are stable
or not have been briefly discussed regarding the RNA world
in the previous publications (Kawamura, 2004). It is assumed
that the conditions necessary for the emergence of a life-like
system consisting of RNA and/or proteins are as follows: (1) a
sufficient amounts of biomolecules are accumulated, (2)
biological information is replicated, (3) a set of chemical
assemblies controlling the rate of the reactions (primitive
enzymes) exists within the system, and (4) the compartment
of these chemicals would be necessary in a cell or a single
unit. In modern organisms, for instance, RNA molecules are
synthesized by RNA polymerases and degraded by
ribonucleases. Similarly, in the RNA world, both the
formation and degradation of RNA molecules had to be
controlled by primitive enzyme-like molecules. Naturally, this
principle should be applied to the case of life-like systems
based on proteins or protein-like molecules. That is to say, the
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accumulation of protein-like molecules would be controlled in
the presence of primitive ribosome with a set of primitive
enzymes, such as aminoacyl tRNA synthetase and primitive
protease-like molecules. Thus, the following two views should
be applied to examine the possibility of the accumulation of
biopolymers. The term to express the restriction conditions
was called as “Scale” in the previous paper for the purpose
that we will find a way to determine quantitatively such scales
on the basis of the reaction rate. The term “View” is used in
the present paper.

\
\:“
enzyme 1
'
non-enzyme ,/'/

"
] enzyme

biopolymers

Figure 5. Accumulation of biopolymers kinetically
controlled by the formation and degradation rates in the
presence and absence of prebiotic enzymes.

View I:  The accumulation of prebiotic biopolymers
should be evaluated from the viewpoint of kinetics of the
accumulation of prebiotic polymers. As mentioned above, the
accumulation of biopolymers in a cell is determined by the
formation + inflow and the degradation + outflow. This is
illustrated as shown in Figure 5. Here, for simplification the
sum of formation and inflow is called as formation and that of
degradation and outflow is called as degradation. If the
hydrothermal origin-of-life hypothesis is correct, the relative
rates of biopolymer formation and degradation should
determine the accumulation of the biopolymers under
hydrothermal vent conditions as well as under mild
conditions. If such primitive enzymes had existed on primitive
Earth, the accumulation would had been possible without
considering a pathway for surviving of biopolymers in the
surrounding cool ocean for the biopolymers formed in the
hydrothermal vent system.

View II: Since enzymes control reactions in modern
organisms the rate of reactions in primitive life-like systems
should be evaluated from the standpoint of possible primitive
enzymatic reaction rates. The importance of the fact that
enzymatic reaction rates are generally much greater than the
uncatalyzed reaction rates has been addressed (Radzicka &
Wolfenden, 1995). It is no doubt that enzymes are essential
for controlling biological reactions in living systems. Based
on this viewpoint, the comparison of the reaction rates with
and without prebiotic enzymes should be essential for the
evaluation of primitive life-like systems.

Possibility of RNA- and protein-based life-like
systems at high temperatures

On View I, our data regarding the prebiotic formation of
oligonucleotides show that the phosphodiester bond formation
could be faster than that of the decomposition even at high
temperature as mentioned above. Thus, these reaction models
indicate that the oligonucleotides could have formed at high
temperatures. As mentioned above, a strong association
between the activated monomer and the elongating oligomer
is required for the formation of the phosphodiester bond on
the basis of the model shown in Figure 4. While we could
have not detected prebiotic additives to facilitate the
association, it is anticipated that the acceleration of
phosphodiester bond formation with a strong association
would be possible. Actually, chemical assemblies to enhance
the association should exist at least up to 110-120 °C in
modern hyperthermophilic organisms (Stetter, 1982; Kashefi
and Lovley, 2003). Presumably, potential prebiotic catalysts,
such as protein-like molecules, clay minerals, and metal ions,
could have facilitated the association of the monomer and the
elongating oligomers for RNA based life-like systems. In
addition, the supply of a sufficient concentration of the
activated monomers that would be formed from bases, ribose,
inorganic phosphate, and imidazole should be taken into
account. View I is also applied for the accumulation of these
resources for RNA molecules although the experimental
evaluation would be difficult for simulating consecutive
chemical evolution through these resources.

Table 2. Limit temperatures where the rate of oligonucleotide
formation is faster than that of degradation.

Reactions Limit temperature (°C)
TD reaction 309
CY reaction 382
CL reaction 162

Calculations were performed on the basis of our previous
investigations (Kawamura and Umehara, 2001; Kawamura et
al., 2003; Kawamura and Maeda, 2008).

The temperatures where the formation of RNA becomes
comparable to that of degradation of RNA were calculated on
the basis of our previous data as shown in Table 2, where it is
dependent on the type of prebiotic reaction models. The
temperatures for CY reaction and TD reaction are somewhat
higher than those of CL reaction. This value was not obtained
for ME reaction. This is probably correlation with the yield of
the phosphodiester bond formation, where the yields
regarding TD and CY reactions are greater than those for CL
and ME reactions. The association between two moieties to
form phosphodiester bonding in CY is much easier than other
reactions because it is innermolecular association. The
association for TD reaction is efficient than that for CL and
ME reactions. This finding suggests that the formation rate of
RNA would be faster than the degradation rate of RNA even
under hydrothermal conditions. The magnitude of the
temperatures for these models is consistent with the efficiency
of the phosphodiester bond formation of these reaction
models.

For the case of protein-based life-like systems, several
condensation reagents would facilitate the peptide bonding
formation. However, there has been no data regarding

Proc. of the Alife XII Conference, Odense, Denmark, 2010

41



temperature dependence of the primitive formation rates of
proteins from amino acids in the presence of condensation
regents or by using activated amino acids.

On View II, enzymes control biological reactions in
modern organisms. However, it is noted that the reactions can
proceed even at very slow rates without enzymes as
background reactions in organisms. The importance of this
principle has been pointed out, where the ratio (keu/knon) Of the
enzymatic reaction rate (k) to the background reaction rate
(kaon) Tepresents the catalytic ability of the enzyme (Radzicka
and Wolfenden, 1995; Kawamura, 2004). This fact indicates
that the strong specificity of an enzyme to a substrate is due to
the reduction of the activation energy for the enzymatic
reaction. Thus, the specificity of enzyme 1is strongly
dependent on the temperature since the background reaction
rate increases with increasing temperature. Here, it is still
difficult to compare the background rates of the reactions
catalyzed by modern enzymes with that of primitive enzymes
because the catalytic rate enhancement of primitive enzymes
is unknown. The comparison of background reaction rates
with modern enzymatic reaction rates was examined for
thermophilic reactions in the previous study. In the present
study, a continuous investigation on the basis of this concept
has been carried out. The relationship between the enzymatic
reactions and background reactions is illustrated in Figure 6.

In addition, there is a trend, which would be found even in
biochemical text books, the magnitudes of the rate constants
(k.ap) of reactions catal;/zed by several enzymes are relatively
narrow range of 107 — 10° s' while the uncatalyzed
background rate constants (,,,) are in the range of 10" - 10°
s (Radzicka and Wolfenden, 1995). We showed a similar
relationship for the cases of ribonucleases and a RNA
polymerase (Kawamura, 2004). Furthermore, we have
examined the rate constants compiled from literature sources
for several thermophilic enzymes (Kawamura, 2004), which
was possible to incorporate the rate constants that were within
the same range of other enzymatic rate constants. In addition,
the rate constants (k) of thermophilic enzymes do not largely
differ from those of enzymes from mesophiles. According to
this analysis, there is a general trend that the reaction rates
with modern enzymes including thermophilic enzymes are in
a relatively narrow range compared to the range of the
background reaction rates. Conclusively, the enzymatic rate
constants including mesophiles and thermophiles are shown in
a trapezoid at the top-left corner and the uncatalyzed
background rate constants are shown in a large trapezoid at
the bottom (Figure 6).

The difference between the reaction rate with and without
primitive enzymes should have been necessary for the
accumulation of biopolymers. This principle would provide a
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Figure 6. Comparison of the reaction rate with enzymes and without enzymes regarding prebiotic reactions.
The horizontal axis indicates inverse values of temperature (T'l) and the vertical axis indicates logarithmic
values of reaction rates. The numbers show the reaction rates determined by our studies. 1: ATP hydrolysis, 2:
C'pG cleavage, 3: racemization of alanine, 4: 4-mer formation by TD reaction, 5: cyclization of
d(pGCGCG)C, 6: CL 4-mer formation by reaction, 7: 3-mer formation by ME reaction. Top-right corner
(green circle) would indicate the limit temperature and enzymatic reaction rate regarding the origin of life.
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temperature limit for the primitive life-like system, where
primitive enzymes could facilitate the target reactions with
faster rates than the background reactions; this had to be
chemically possible at the limit temperature. Besides, it is
known that a fastest process in aqueous solution is proton
transfer so that the enzymatic reaction could not be faster than
the proton transfer process in aqueous medium. The proton
transfer rates are plotted over the upper limit of enzymatic
reaction rates. In addition, the interaction of a candidate
biopolymer of primitive enzyme with a primitive substrate
would decrease with increasing temperature.

This implies a weak specificity and an enhancement of the
primitive enzymatic reaction. Naturally, there is no basis to
determine how much difference between k., and k,,, should
have been essential for the primitive enzymes to construct a
most primitive life-like system. Nevertheless, even a small
difference between primitive enzymatic rates and background
rates could be considered as candidates for a primitive enzyme
activity. The large difference between the enzymatic rates and
the background rates even at very high temperatures at the
top-right corner (green circle) is impressive, where the
background reaction rates merge to the extrapolation of
modern enzymatic reaction rates. This might reflect that the
evolution of enzymatic activities would have synchronized
with the decrease of temperature.

By the way, the associate formation for elongating
biopolymers would be facilitated by different additives while
the assumption is now being evaluated. In addition, the
compartment of chemicals for a life-like system would be also
very important if we assume that the life-like system could
have survived wunder hydrothermal conditions. In a
compartment, that is, a cell, several advantageous are
expected for the emergence of life-like systems (Figure 7).
Chemical reactants could be concentrated so that the
interactions among prebiotic chemicals would be enhanced. In
addition, the stabilities of biomolecules would be facilitated
by the associate formation with concentrated additives.

To evaluate the possibility of spontaneous formation of
enzymatic activities in protein-like molecules, we have
investigated kinetics of primitive enzymatic functions of
protein-like molecules mainly focusing to the formation and
degradation of RNA molecules; the protein-like molecules
were prepared by the simulation reactions of amino acids
condensation under dry conditions and hydrothermal
conditions (Kawamura et al, 2004). However, no notable

inflow

catalysis : «——",
replication :
Figure 7. Compartment of biopolymers is important to

facilitate the interactions between biomolecules, which
would result efficient accumulation of biopolymers.

enzymatic activities have been detected so far within such
randomly formed peptide-like molecules although a series of
catalytic activities have been observed during the
investigations of proteinoids (Fox, 1986). Less activity of
protein-like molecules might suggest that enzymatic functions
would have started from a very small catalytic effect and
specificity at the initial stage.

Conclusions

This paper proposes the viewpoints to evaluate whether
biopolymers, RNA and proteins, are compatible with
primitive hydrothermal vent conditions. On View I, the
relative magnitudes of the rates of degradation and formation
of RNA were evaluated. The TD, CY, and CL reactions
showed the fairly high temperatures where the rate of RNA
formation could be greater than the rate of degradation.
Naturally, chemical assemblies would have been required to
facilitate the association to form biopolymers. On View II, the
stabilities of biopolymes were evaluated based on the
comparison between non-enzymatic and enzymatic reaction
rates. The evaluation suggests that a life-like system
consisting of RNA and/or proteins is possible at fairly high
temperatures above 100 °C.

In addition, the interactions and three-dimensional folding
of biopolymers are important factor to determine the limit
temperatures for life-like systems. From this viewpoint, the
interactions between molecules would provide a limit
temperature as well as View [ and View II. Furthermore, the
solubility of biopolymers is also important factor to determine
the limit temperature for a life-like system. To evaluate the
assumptions shown in the present paper, the experimental data
on the kinetic accumulation of biopolymers, the primitive
replication of RNA (possibly pseudo-replication by GADV
proteins) and the primitive enzymatic functions under
hydrothermal conditions should be explored in the future.
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Abstract

How can informational replicators (Zachar and Szathmary
2010) such as template replicators, arise from non-
informational autocatalysts (Szathmary and Maynard Smith
1997; Szathmary 2000)? Variants of an informational replicator
have a high probability of being autocatalytic, thus allowing
potentially unlimited heritable variants to be replicated, for
example, mutants of a DNA sequence have this property.
Variants of non-informational replicators such as
glycolaldehyde in the Formose cycle are not in general
autocatalytic; therefore, there is little capacity for hereditary
variation (Szathmary 2006). This paper asks; what are the
necessary and sufficient conditions for an increase in the
probability that a variant of an autocatalyst will itself be
capable of autocatalysis? Given some well-defined
assumptions, serial dilution in a rich generative chemistry such
as that found in the Miller experiment should result in the
emergence of informational replicators, i.e. autocatalysts whose
variants have a high probability of themselves being capable of
autocatalysis.

Introduction

A reactor such as that of Millar’s famous experiment (Miller
1953) contains reactions that are simple autocatalytic cycles
(and probably more complex kinds of autocatalytic structure,
e.g. reflexive autocatalytic sets (Farmer, Kauffman et al.
1986; Kauffman 1986)). An example of a simple
autocatalytic cycle is the Formose reaction (Fernando, Santos
et al. 2005), see Figure 1. It is known that this autocatalytic
cycle is notoriously subject to side-reactions, the reaction of
molecules external to the cycle with the intermediates of the
cycle to produce new molecules. Some of these new
molecules will themselves be autocatalytic with some
probability p that we assume is a property of the parental
autocatalytic cycle. The same fate of side-reactions befalls
these newly produced autocatalysts.

Real chemistry is very complicated, but it is possible to get
some idea of the dynamics of a growing chemical network of
reactions by using simplified artificial chemistries. A typical
abstraction is to use linear binary strings as molecules and
allow ligation and cleavage reactions between these strings.
This paper will use an even simpler artificial chemistry where
a chemical is described by only two parameters. What is the
motivation for this? In simulations carried out previously
using a artificial chemistry (Fernando and Rowe 2007;
Fernando and Rowe 2008) it was observed that the probability

of an autocatalytic molecule producing another autocatalytic
molecule in a side-reaction decreased with the size of the
molecule. This is an inevitable consequence in a random
chemistry of linear strings because longer strings are less
likely to produce two copies of one reactant by chance, than
are shorter strings, given random rearrangement of the
monomers of in a bimolecular rearrangement reaction (the
type used in the simulation). The reality for real organic
molecules is of course much more complicated. Some classes
of autocatalytic molecule will inevitably be more likely to
produce autocatalysts than others (i.e. have different p values).
The complexity of the chemical models that would be needed
to determine these probabilities for various classes of
molecule are bewildering and possibly beyond that which is
currently feasible. Therefore, a model is presented that
abstracts certain properties of this generative chemical
process. The model assumes simply that an autocatalyst can
be described by a small number of parameters. Firstly, a
probability p that a side-reaction to the autocatalytic cycle
produces an autocatalyst. Secondly, a structural parameter p
that describes the mean of a lognormal distributed set of
values from which is drawn the probability p’ that an
autocatalyst produced by a side-reaction will be capable of
itself producing autocatalysts, see Figure 1. Thirdly, for some
variants of the model it is assumed that each autocatalyst has
some observable property f f is drawn randomly for each
autocatalyst from a normal distribution with mean 0 and s.d. =
1. In the models, there is no correlation between f of a parent
and f of an offspring molecule. This f'is intended to be some
function that may contribute to fitness at a higher level.

(a)
formaldehyde

o+

glycolaldehyde
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Figure 1 (Top) The molecule glycolaldehyde is autocatalytic
using Formaldehyde as food, and making copies of itself, and
growing in concentration exponentially. (Bottom) The
intermediates of the glycolaldehyde autocatalytic cycle can
undergo side-reactions with other species (red) to produce
autocatalysts with a low probability p. Let these new
autocatalysts have a probability p’ of producing autocatalysts
themselves by side-reactions. In the model, a structure
parameter of the parental autocatalyst p determines
stochastically the actual value of p’ that an offspring
autocatalyst will have.

Methods

A reactor is initialized with one core autocatalyst that has p
drawn from a lognormal distribution with mean p = ¢’ This
is a small value, e.g. 0.001. The production of novel
autocatalysts is simulated using a discrete time simulation. At
each time-step, each existing autocatalyst has a probability p
of producing another autocatalyst. If it does produce an
autocatalyst, then this new autocatalyst has its p’ value
assigned by choosing a random number from the lognormal
distribution defined by the p value of the “parent”
autocatalyst. The new autocatalyst then has its p’ value
defined based on the original p value of its parent. The
crucial question in any realistic chemistry is whether there is a
correlation between the p value of a parental autocatalyst and
the p’ value of the autocatalyst produced from it. In other
words, is the probability of producing an autocatalyst in a
side-reaction a heritable parameter; is p heretable? It is
clearly the case that there is no such simple correlation for all
classes of molecule, although for some molecules there clearly
is, for example, polymer template replicators. Such molecules
have a very high probability that a variant will also be capable
of replication. Several functions that relate the heretability p
of parent and heritability p’ of offspring are examined in this
paper. The simplest function assumes correlated p values
where the p'= N()rm(lyo‘)ﬁp, where Norm is a Gaussian
random number with mean 1 and standard deviationg. An
uncorrelated function is one in which p =™ where
rand(-10,-9.5) is a uniform random number between -10 and -
9.5, the typical values evolved in the previous experiments
when p was an evolvable parameter.

The reactor produces autocatalysts for a fixed time period T
after which M random samples (containing autocatalysts) are
taken from the reactor. Each autocatalyst has some probability
q of being chosen for each sample, and let this value be fixed
throughout a simulation. Let the chance of choosing an
autocatalyst be low, e.g. 5%. In reality this probability g will
depend on abundance, but here we have no model of chemical
kinetics. Also, we do not allow the number of autocatalysts
chosen to exceed some maximum C e.g. 50. The sample will
also inevitably contain many non-autocatalytic molecular
species that are not modeled here.

One of the M samples are chosen based on maximizing the
linear sum of f'values of the autocatalyst species present in the
reactor. Another valid option is just to choose a random
sample. Both options are modeled here. The chosen sample

then is used to reinitialize a new reactor. All autocatalysts not
present in this sample are discarded. This is the serial dilution
phase of the experiment.

Results

Correlated p

Figure 2 shows the results obtained for a run in which
selection is for highest summed /. The initial value of p = e
g =0.05 C =50, M= 10. In the function p'= Norm(l,a)ﬁp,
o = 0.001, i.e. there are small correlated changes to the
potential to produce autocatalysts (P1 in the diagram).

Max Probability of Autocatalysis Max Potential for Autocatalysis

Events/10000 Events/10000
0 6 80 10 120 140 0 4 6 0 100 120 140

Number of Autocatalysts

3500

xxxxx

1500

1000

Events/10000
W0 60 0 100 120 140

Figure 2. 28 serial dilutions, with selection for highest f
sample. (Top Left) Maximum p value obtained. (Top Right)
Maximum p value obtained. (Bottom) Total number of
autocatalysts in the reactor.
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Figure 3. 34 serial dilutions, with random selection of a
compartment. (Top Left) Maximum p value obtained. (Top
Right) Maximum p value obtained. (Bottom) Number of
autocatalysts.

After 28 serial dilutions of the system, the maximum value of
p has increased significantly, and more autocatalysts are
being produced in each round of network growth. Random
compartment selection has a similar effect, see Figure 3.
Selection for the compartment with the largest number of
autocatalysts also has a similar effect (not shown). Next we
consider the effect of making p a non-heritable structural
parameter.

Uncorrelated p
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Figure 4. With uncorrelated p, there is no improvement in
autocatalysts over many serial dilutions. Selection is for the
compartment with the largest number of autocatalysts.

Figure 4 shows the behaviour with an entirely uncorrelated
potential for autocatalysis between successive autocatalysts
p. =e %9 The probability p no longer tends to higher
values because whilst a parental catalyst may occasionally
produce an offspring with high p, this offspring has no
tendency to itself produce offspring with high p. There exist

autocatalysts in the population that do have high values of p,

but the mean value of p does not increase, as can be seen in
the plot of mean p in Figure 4.

These results suggest that if the structural variability
parameter p is not capable of being inherited, then there will
be no tendency for the population of autocatalysts to tend
towards becoming informational replicators.

Conclusions

The simple but fundamental principle demonstrated above is
an example of the evolution of evolvability (Conrad 1990;
Clune, Misevic et al. 2008; Parter, Kashtan et al. 2008),
namely, that natural selection can act to select variants that are
not of immediate benefit to the individual replicator, but
confer improved variability properties, i.e. increase the chance
that offspring will be fit. If there is variation (within
generation differences) in variability (the capacity to produce
variants during propogation) then there can be selection for
variability properties that are beneficial to the lineage. This
has been called lineage selection (Aboitiz 1991), and second
order selection (Tenaillon, Taddei et al. 2001). Mark
Toussaint has formalized the process of structuring
phenotypic exploration distributions (Toussaint 2003) due to
non-trivial neutrality, i.e. the capacity for the same phenotype
p to be due to different genotypes p. If some genotypes p
tend to produce better variations in the phenotype p then those
genotypes can be selected for. In this model it is shown that
the capacity for non-trivial heritable neutral variation of p can
allow increasing p.

The question remains, in chemistry, is there ever a
circumstance in which p could be heritable within a lineage
of autocatalysts? A conservative answer is sometimes yes,
sometimes no. However, in this situation, the network
dynamics would exhibit a tendency to select for that class of
autocatalyst that did exhibit heredity of p.

It is therefore proposed that experimentally it would be a
matter of acute interest to take a rich generative chemistry
such as that of Miller capable of producing a combinatorial
explosion of polymers, and to take samples from the reactor
once it had had a chance to generate this molecular diversity.
These samples (selecting for the sample with the highest
number of autocatalysts if possible) would be used to
inoculate a new reactor. This cycle would be repeated for as
many generations as possible. Each epoch should permit the
generation of a new set of autocatalysts. This simple model
predicts that such a protocol should be capable of generating
informational replicators.

There are several simplifying assumptions of this model that
must be examined. First we have ignored the fact that mass is
finite. This means that exploration of the autocatalytic
network may become limited if the mass of the reactor is used
up producing non-autocatalytic molecules. Secondly we have
completely ignored the existence of cross-catalytic
interactions which may produce reflexive autocatalytic
structures that can act as informational units. However,
reflexive structures are only an intermediate step in what must
eventually be selection for heretable p in the origin of
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microevolution from macroevolution. An interesting addition
to the model would be to allow species to be both
autocatalytic and cross-catalytic with some probability. The
interactions of the reactor would be described by a replication
matrix. Adding a new species would involve producing a new
row and column in this matrix. In addition to this matrix, each
species would be described by structural parameters that
determined the entries in the new row and column of the
replication matrix for species that were produced in side
reactions with it. Thirdly, the form of the structural parameter
p (acting as a mean of a lognormal distribution to produce p’)
is somewhat arbitrary. A much more realistic method of
describing the structural tendency for autocatalysis would be
desirable.

Recent work by Ben Davis’s group in Oxford has succeeded
in enclosing a Formose cycle metabolism within lipid
compartments. They are able to select for those compartments
with certain chemical compositions (Gardner, Winzer et al.
2009). This paper is of some significance to them. If they
were to simply choose small samples of each compartment
and continue to test each sample for distinct autocatalytics, we
predict that over many generations, one should find a greater
diversity of independent autocatalysts.
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Abstract

The chemoton model of cells posits three sub-systems:
metabolism, compartmentalization and information (Ganti,
2003). This paper describes a specific model for the evolution
of a reproducing system with rudimentary versions of these
three inter-dependent sub-systems. This is based on the initial
emergence and reproduction of autocatalytic networks in
hydrothermal micro-compartments containing iron sulfide. The
driving force for life is catalysis of the dissipation of the
intrinsic redox gradient of the planet (Russell and Kanik, 2010).
The initial proto-metabolism was based on positive feedback
loops associated with in situ carbon fixation in which the initial
proto-metabolites modified the catalytic capacity and mobility
of metal-based catalysts, especially iron-sulfur centres. A
number of selection mechanisms, including catalytic efficiency
and specificity, hydrolytic stability and selective solubilization,
are proposed as key determinants for autocatalytic reproduction
exploited in proto-metabolic evolution. This evolutionary
process leads from autocatalytic networks within pre-existing
compartments to discrete, reproducing, mobile vesicular
protocells with the capacity to use soluble sugar phosphates and
hence the opportunity to develop nucleic acids. Fidelity of
information transfer in the reproduction of these increasingly
complex autocatalytic networks is a key selection pressure in
prebiological evolution that eventually leads to the selection of
nucleic acids as a digital information sub-system and hence the
emergence of fully functional chemotons capable of Darwinian
evolution.

Introduction

Chemoton sub-systems and evolutionary pathways

Living cells are autocatalytic entities that harness redox
energy via the selective catalysis of biochemical
transformations. The complexity of cells requires that they
emerged from evolutionary processes that predate life: a form
of prebiological evolution (Szathmary, 2007). The simplest
model for cells is the chemoton model which regards them as
fluid automata (G4nti, 2003). Chemoton theory proposes that
living cells are comprised of three essential interconnected
sub-systems associated with metabolism,
compartmentalization and information. A metabolic sub-
system is required to provide the building blocks and chemical
energy for life. Compartmentalization is required for
evolution to act on discrete competing entities. Finally, an
information sub-system allows the evolution of levels of
complexity that are a distinctive feature of life.

A theory of the origin of life based on the chemoton, or
related, model must explain a clear pathway to the co-
existence of these three interdependent sub-systems.
(Szathmary, 2007). Simultaneous creation of an entity with all
three sub-systems in place is exceedingly improbable (Dyson,
1999); it is more likely that cells arose via a pathway
involving accretion of one or two sub-system(s) by a simpler
system. There are competing perspectives based on the
assumed timing of events. What comes first: compartments,
information and/or metabolism? The two main competing
hypotheses both assume compartmentalization as an early
feature, either via the self-assembly of lipids (Deamer, et al.,
2006), or via surface adsorption (Wichtershduser, 1988).
They differ in the initially associated sub-system: information-
first or metabolism first.

The closest synthetic models we have of partial chemotons
are protocells based on lipid-encapsulated RNA molecules
(Hanczyc, et al. 2003; Luisi, et al. 2006). These build on the
demonstration of directed evolution in in vitro RNA systems
(Kacian, et al. 1972) and the success of the RNA world
hypothesis in exploring the dual ability of RNA molecules to
act as both catalysts and stores of hereditary information
(Gesteland, et al. 2006). However, an RNA world depends on
the continued availability of complex raw materials, including
sources of chemically activated nucleotides for
polymerization, and of turnover of these materials in
reproduction to allow selection of functional macromolecular
structures. A significant challenge for this model is to
understand the energy flux that created and sustained an RNA
world; in particular the underpinning functional metabolism
that harnessed redox energy for the evolution of the system
and which provided the basis for contemporary biochemistry.
In this model it is often assumed that metabolism emerges to
replace spent pre-existing metabolites. This model for the
engineering of metabolic pathways backwards to alternate
starting materials is originally due to Horowitz (1945) but is
out of step with recent insights into the evolution of
biochemical metabolism (Zhang, et al., 2009) and unlikely to
be the complete story.

The competing viewpoint is that the first steps to life were
based on compartmentalized proto-metabolism  that
subsequently developed an information sub-system.
Wichtershduser, Russell, de Duve, Morowitz and others have
developed models of this type in which proto-metabolic
reactions are catalyzed and organized on iron sulfide surfaces
(Wiéchtershauser, 1988; Russell and Hall, 1997; de Duve,
1991; Trefil, et al. 2009).
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A major challenge for models which base life on
reproducing networks of catalysts, such as those envisaged in
the GARD model (Shenhav, et al. 2007), is the limited
evolvability of such systems (Vasas, et al. 2010). This paper
presents a model that links metabolism-first and RNA models.
It is proposed that self-organizing autocatalytic cycles did
indeed provide the initial metabolic foundations that underpin
a modified version of an RNA world, but that the latter
emerged in response to the demands for fidelity of
information reproduction. A prebiological (non-Darwinian)
evolutionary account is presented that provides a series of
specific chemical and physical selection mechanisms for the
early stage development of a three sub-system RNA world
chemoton.

Proto-metabolism in Pre-existing
Compartments

Why and how did life emerge? Life depends on a continuous
input of energy that can fuel redox chemistry. This theory for
the origin of core metabolism, as a foundation for life, follows
the hypothesis of Russell and Kanik (2010) in proposing that
life emerged to exploit the intrinsic redox gradient of the earth
that has existed since its origin. When the earth formed, an
electron-rich core was physically segregated from a weakly
oxidizing atmosphere containing carbon dioxide, nitrogen and
other electron acceptors. By this model, life emerged in pores
(Russell and Hall, 2006) within hydrothermal mineral deposits
where there is a mixing of these otherwise segregated zones of
the planet.

It is proposed that the critical features of this environment
for the emergence of life are: (i) a continuous input of redox
energy; (ii) a kinetic barrier to the dissipation of the intrinsic
redox gradient; (iii) the availability of catalysts in a mixing
zone that can speed dissipation of the gradient, but where
initial catalysts are inefficient and capable of increased
efficiency by diversification to networks of more specific
catalysts; and (iv) protection against significant external
shocks (e.g. protection against irradiation, variations in pH,
ionic strength etc) to facilitate protocell evolution by allowing
the reproduction of catalytic networks as discrete entities. This
environment provides an evolutionary opportunity for the
emergence of networks of catalysts of increasing complexity
and is necessary, but not sufficient, for life. There is a limit to
the complexity of simple catalytic cycles associated with
limits to fidelity of reproduction (Vasas, et al. 2010). It is
proposed that life, as we know it, emerges if and when a
digital information sub-system evolves that transcends the
information limits of simple chemical networks and allows
open-ended Darwinian evolution with natural selection.

Iron sulfur species and the early evolution of catalytic
centres. Following the patchwork model of evolution of
biochemical catalysts (Jensen, 1976), the best starting point
for evolution is the availability of generic, but inefficient
catalysts that are capable of evolving increased specificity and
efficiency (Szathmary, 2007). One key issue for self-
organising autocatalytic networks, highlighted by Orgel
(2000), is the need for a series of catalysts that mediate all the
processes of the network. Iron-sulfur based species (Beinert,

et al., 1997) are well placed to fill this role since they are
capable of catalyzing a diverse range of both redox and acid-
base chemistry. Much of this chemistry is utilized in
contemporary core metabolism via iron-sulfur clusters that
resemble iron sulfide mineral structures (Figure 1) (Rickard
and Luther III, 2007). Iron-sulfur clusters occur naturally in
aqueous systems (Rozan, et al. 2000). Biochemical clusters of
this kind mediate the following processes: (i) bioenergetic
electron-transfer processes (e.g. Xia, et al. 1997; Cheng, et al.
2006) (ii) other metabolic redox chemistry, e.g. carbon
fixation (Ragsdale, 1991), nitrogen fixation (Einsle, et al.
2002), reversible hydrogen formation (Nicolet, et al. 2000)
and organic radical chemistry (Berkovich, et al., 2004; Nicolet
and Drennan, 2004); and (iii) a diverse range of acid-base
chemistry, including hydration-dehydration chemistry, e.g.
aconitase, serine dehydratase and related enzymes (Flint and
Allen, 1996).
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Figure 1: Iron sulfur minerals and catalytic biochemical
clusters. 1 mackinawite sub-structure 2: [2Fe,2S] electron-
transfer cluster; 3: greigite sub-structure; 4: [4Fe,4S] electron-
transfer cluster; 5: acid-base catalyst (aconitase with citrate
bound); 6: radical generating cluster (with S-
adenosylmethionine bound, R = adenosyl); 7: model for Ni-
substituted greigite; 8: carbon fixing cluster of ACS.

The specific catalytic properties of iron-sulfur dependent
enzymes is controlled by the composition of the metal-sulfur
cluster and the details of the coordinating ligands (Figure 1).
For example, iron-sulfur clusters completely coordinated by
sulfur ligands (2 and 4) act as specific electron-transfer
proteins in which the redox potential is moderated by cluster
size and details (Rao and Holm, 2004). Clusters, such as the
[4Fe,4S] cluster in aconitase (5), with one non-sulfur
coordination site can undergo active metal and ligand
exchange chemistry. Ligands, such as carboxylates,
transiently bound to such clusters can undergo reactions
involving acid-base catalysis (Flint and Allen, 1996). When
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bound to an iron-sulfur cluster the amino acid derivative S-
adenosylmethionine is a source of organic radicals (6). Iron
sulfide minerals contain other metal ions (7) (Russell and
Hall, 2006). The presence of adjacent metals ions, e.g. nickel,
cobalt and molybdenum, provides new distinctive catalytic
chemistry that can exploit the electron-transfer chemistry of
iron sulfides. For example, nickel, iron sulfur clusters are
utilized in a number of enzymes, including both key enzymes
of the Wood-Ljungdahl carbon fixation pathway, CO
dehydrogenase and acetyl-CoA synthase (8) (Volbeda, A. and
Fontecilla-Camps, 2005); likewise, molybdenum, iron sulfur
clusters are utilized in nitrogenase (Einsle, et al. 2002).

The ability to modify and control specific catalytic
activities via coordination chemistry provides the potential for
the evolution of catalysts of diversified specificity and activity
in an emerging division of (proto-metabolic) labour.

Prebiotic Wood-Ljungdahl carbon fixation: the first step.

(i) CO, CO;
CHy-THF CODH

'

CH5-Co'-CFeSP  + CO (i) CHsSH +CO

N\ J
ACS I/Hscm Fe,Ni,S | —HSCH,
0 0
Hac)J\SCoA HgC)J\SCHa

Figure 2: Overview of (i) Wood-Ljungdahl carbon fixation
pathway and (ii) biomimetic geochemical analogue.

The shortest and simplest known route to biological carbon
fixation is the Wood-Ljungdahl pathway (Figure 2) in which
carbon dioxide is reduced to carbon monoxide at an iron,
nickel sulfur centre of CO dehydrogenase (CODH). The
carbon monoxide is then transferred directly to acetyl CoA
synthase (ACS), another iron, nickel and sulfur-dependent
enzyme, where it carbonylates a methyl-nickel species. The
resulting acetyl nickel intermediate is intercepted by the thiol
coenzyme A to produce acetyl CoA (Grahame, 2003; Hegg,
2004; Russell and Martin, 2004). The methyl group is
delivered to this system by a cobalt corrinoid iron sulfur
protein (CFeSP) (Svetlitchnaia, et al., 2006). In this carbon
fixation pathway the key manipulations of carbon species are
mediated by nickel and cobalt centres with adjacent iron-
sulfur clusters supplying electrons. In geochemical systems
the initially deposited iron monosulfide is nanoparticulate
mackinawite, which adsorbs divalent metal ions (Wolthers, et
al., 2003) such as nickel and cobalt. Huber and
Waichtershéuser (1997) have shown that inorganic iron, nickel
sulfide catalyses a simple analogue of acetyl CoA synthase
chemistry in water, converting methanethiol to methyl
thioacetate (Figure 2). The product thioester is hydrolysed
under the reaction conditions to acetate which provides a
strong overall thermodynamic driving force (Shock, 1992).

This simple geochemistry immediately provides a positive
feedback mechanism that can underpin the generation of more
complex catalytic networks. Carbon fixation involves the

reductive formation of organic compounds and the
concomitant oxidation of the iron sulfide. Mackinawite is a
two dimensional semi-conductor with a layered structure
(Rickard and Luther III, 2007). Surface oxidation processes,
e.g. at a catalytically active nickel centre, will draw electrons
from the iron sulfide. Oxidation of mackinawite produces
greigite and other pyrrhotite iron sulfide minerals (Lennie, et
al. 1997). Mackinawite oxidation is inefficient in the absence
of suitable additives and it is known that redox-active organic
compounds can facilitate such transformations (Rickard, et al.,
2001).

4FeS > Fe3S4
(mackinawite) (greigite)

Mackinawite and greigite are both based on a close-packed
sulfide lattice (Rickard and Luther III, 2007). In mackinawite
the iron is in a tetragonal environment. In the transition to
greigite some of the iron centres become octahedral. It is
expected that this change will diversify the chemistry and
catalytic properties of the iron sulfide local to the site of
oxidation. In support of this view, Mike Russell has pointed
out that mackinawite bears some resemblance to [2Fe,2S]
clusters found in some simple electron transfer proteins,
whereas greigite contains a sub-unit analogous to the [4Fe,4S]
clusters found in many iron, sulfur dependent enzymes,
including the key Wood Ljungdahl enzymes (Figure 1)
(Russell and Hall, 2006).

Furthermore, interconversion of the two minerals involves
a relocation of iron ions (Equation 1); these will presumably
migrate to the surface. Organic compounds produced by the
carbon fixation chemistry that are ligands will bind to the
surface metal ions, including the newly exposed iron centres,
modifying their chemistry. The generation of new catalytic
centres which increase the overall activity with respect to
carbon fixation will act as a positive feedback loop where the
flux of oxidized carbon and reducing power, e.g.
geochemically generated hydrogen, will be differentially
turned over by catalytically active microporous domains
within the hydrothermal rocks that contain both ligands and
diverse catalytic metal centres.

Subsequent known iron-sulfur mediated transformations,
can produce a suite of core proto-metabolites - ligands that
can bind to and modify the catalytic chemistry of iron sulfur
centres (Figure 3). Reductive carboxylation of thioesters from
carbon fixation can produce o-keto acids, e.g. pyruvate
(Cody, et al. 2000). These chelating ligands can undergo
further chemistry once bound. Reductive amination of bound
a-keto acids, using ammonia from the reductive fixation of
nitrogen (Dorr, et al., 2003) and/or nitrate (Blochl, et al.
1992), can then give rise to o-amino acids via reductive
amination (Huber and Wichtershduser, 2003). Utilization of
related substrates will produce a core of simple proto-
metabolites which are selected on the basis of their being
ligands for iron that modify the catalytic chemistry of exposed
iron sites and hence the catalytic turnover of the emerging
family of proto-metabolites. A family of diversified catalytic
centres, with complementary activity, provides the basis for
networks that are more productive than individual catalysts. In
a porous hydrothermal mound a diverse variety of potential
microenvironments will be evaluated as potential sources of
autocatalytic networks. Individual pores with distinctive

+ Fe(ll) + 2e (Equation 1)
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mineral chemistry can develop distinctive chemical variants in
an early form of compartmentalized proto-metabolism.
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Figure 3: Generation of core proto-metabolites within an iron
sulfide system. Binding of representative proto-metabolites to
iron-sulfur centres is illustrated in the box.

The first oligomers and molecular evolution. Complex
macromolecules are a key feature of biochemistry. All
biological macromolecules are condensation polymers,
created by dehydration of monomeric building blocks. In
water, condensation polymers are unstable with respect to
hydrolysis. These condensation polymers require biochemical
energy, usually equated with ATP or related polyphosphates,
for their synthesis. ATP is the archetypal water-compatible
dehydrating agent (Westheimer, 1987).

A critical feature of the prebiotic Wood-Ljungdahl
chemistry is that it generates thioesters as obligate
intermediates. Thioesters are the other major class of water-
compatible biochemical dehydrating agents and their
intermediacy in carbon fixation chemistry provides
dehydrating power that makes condensation polymers
accessible. Since this chemistry was quickly associated with a
growing pool of a-amino acids, oligopeptides were among the
early oligomeric compounds (Figure 3). It has been shown
that amides can be formed from amino acids in water using
the intrinsic dehydrating power of prebiotic Wood-Ljungdahl
catalysis (Huber and Wdéchtershduser, 1998). Such
oligopeptides are also ligands that are able to bind to iron-
sulfur and other metal species and thereby modify the
catalytic activity of the system by controlling coordination
spheres. The production of condensation oligomers provides
an explicit molecular selection mechanism. Since
condensation oligomers are unstable with respect to
hydrolysis in water, such condensation polymers only
accumulate if they are generated faster than the rate at which
they “die” via hydrolysis. Oligopeptides that facilitate the
overall catalytic potential of the system will facilitate the
production of further oligopeptides; condensation oligomers
that participate in this feedback loop will be selected. Families
of related oligopeptide-metal centres will emerge that can
harness the chemistry of metal-sulfide clusters found in
aqueous systems (Rozan, et al. 2000) and mediate distinct
classes of chemical transformation with rudimentary

specificity (e.g. acid-base chemistry vs redox chemistry).
There will be some structural and metal-binding selectivity in
these ligands, but they will lack the ordering and hence
specificity available from contemporary enzymes.

Mobile Autocatalytic Networks

Solubility and prebiological evolution. The solubility of
chemicals associated with catalytically active hydrothermal
pores will play a critical role in the chemistry that evolves and
in the reproduction of that chemistry. Solid minerals and
bound ligands are retained within a finite location of a
hydrothermal environment. Such a location has a finite
lifetime for active chemistry until the supplies of raw
materials are exhausted. A permanently localized autocatalytic
network will eventually ‘die’ from starvation generating a
selection pressure for mobility. Chemical products of
autocatalytic networks will be leached from the system by
solubilization. This is both a purifying mechanism and a
seeding or reproduction mechanism. Chemicals, individually,
or en masse, that are lost but not replaced are removed from
the system as waste. However mobile components that seed
neighbouring sites with autocatalytic chemistry are potentially
a selectable means of reproduction.

As proposed by Mike Russell (2006), if the emerging
autocatalytic  networks develop in  pores  within
hydrothermally deposited minerals, these discrete cavities
provide an initial rudimentary compartmentalization
mechanism. They prevent the free loss of soluble proto-
metabolites allowing solution metabolism to emerge.
Furthermore, proto-metabolites can accumulate in these pores
by a hydrothermal concentration mechanism (Baaske et al.,
2007; Budin, et al., 2009).

Iron encapsulation, phosphates and homeostasis. A
significant challenge for the development of complex soluble
chemistry within a specific pore of a hydrothermal deposit is
the presence of high levels of free multivalent metal ions,
including iron. Highly charged cations encourage precipitation
of counter anions, notably phosphates. This facilitates
localization of chemicals and surface catalysis but
compromises the development of soluble metabolism,
especially one that incorporates phosphate species (Pratt,
2006). It presents a fundamental challenge to the development
of an RNA world within a hydrothermal environment.

Cells avoid this precipitation problem via a combination of
encapsulation and exclusion of multi-valent metal ions. For
example, essentially all iron within living cells is encapsulated
within proteins. Calcium ions cannot be readily encapsulated
because of their dynamic coordination chemistry and so they
are actively pumped out of cells whereupon they form
extracellular precipitates, e.g. calcium carbonate exoskeletons
and bone. These extracellular deposits provide a homeostatic
backdrop to the chemistry of cells (e.g. bone acts as a
reservoir of calcium and phosphate) (Fratusto da Silva and
Williams, 2001).

In biochemistry, iron is commonly encapsulated within
oligopeptides either as iron mineral clusters or as porphyrin
complexes. Both oligopeptides and porphyrins (Eschenmoser,
1988) are oligomers derivable from amino acid building
blocks which are, in principle, accessible from plausible

Proc. of the Alife XII Conference, Odense, Denmark, 2010

52



prebiotic catalysis within the hydrothermal autocatalytic
system. Templated synthesis (Costisor and Linert, 2004) of
these oligomers on iron centres will provide selective routes to
both classes of ligand which can sequester free iron ions
within the system by competitive coordination chemistry.
Oligomeric ligands will tailor the catalytic chemistry of iron
sulfur catalytic centres by controlling the nature of the ligand
coordination sphere. They will also control free metal ion
levels and thereby allow partial solubilization of polyanionic
species from pore surfaces.

In the presence of significant concentrations of free iron
ions, inorganic phosphates precipitate, providing a
concentration mechanism for this otherwise scarce resource.
Surface-catalysed phosphoryl transfer from acetyl phosphate,
available from acetyl thioesters (Weber, 1981), generates
pyrophosphate that accumulates under these conditions (de
Zwart, et al., 2004) and becomes a second source of
dehydrating power in water (Baltscheffsky, 1997) once it can
be solubilized. Iron(II) phosphates are sparingly soluble salts
(Pratt, 2006); organic phosphates have significantly higher
solubility than inorganic phosphates and, when the quantities
of iron present are limiting, these are selectively desorbed into
solution. For example, under conditions where there is
competition for iron, phosphate and pyrophosphate are
selectively precipitated in the presence of glycerol phosphates
leaving the latter free in solution (Pratt, et al., 2009). Thus a
selection mechanism for the utilization of soluble organo-
phosphates, e.g. sugar phosphates, arises. As surface-bound
inorganic phosphates react with organic species generated by
proto-metabolism they selectively desorb into solution and
become integrated with the thioester and amino acid based
catalytic networks. Precipitated sparingly soluble iron
phosphate, iron pyrophosphate and iron sulfide, provide a
homeostatic backdrop to the emerging proto-metabolic
networks, with concentrations adjusting as catalysis consumes
proto-metabolites. This backdrop became an essential feature
in the subsequent development of an RNA world.

Reproduction, mobility and selection. As individual pores
evolve soluble proto-metabolic networks, some of the
materials are washed to neighbouring pores where they can
seed new autocatalytic networks: ligands can carry metal ions
and influence the coordination chemistry, and hence catalytic
activity, of metal sites; phosphates and other key proto-
metabolites can be relocated. Productive autocatalytic
networks will be more successful in seeding neighbouring
pores. For simple catalytic networks this provides a selectable
form of reproduction based on catalytic efficiency. However,
the amount of proto-metabolic information that can be
relocated in this piecemeal fashion is very limited in scope
and so only simple autocatalytic networks can reproduce by
this mechanism. Autocatalytic networks that develop the
capability of relocating populations of catalytically active
chemicals to neighbouring pores can reproduce more
effectively and evolve to more complex systems.

There will be a range of solubilities amongst the
components of the emerging autocatalytic networks: both the
proto-metabolites and the oligopeptide-encapsulated metal
catalysts. Amphipathic molecules that arise, such as some of
the oligopeptide complexes and any fatty acids present, will
aggregate to form higher order structures including micelles

and vesicles (Deamer, et al. 2006). Hydrothermal
concentration mechanisms will facilitate the generation of
such structures (Budin, et al., 2009). The resulting micelles
and vesicles will be heterogeneous aggregates of chemicals
that will be relocated to neighbouring pores en masse. This
will act as a selection mechanism for reproducing more
complex networks. More sophisticated and productive
networks will be relocated to new environments in which they
will have access to renewed chemical feedstocks.

A stochastic corrector model of metabolic reproduction.
Lipopeptide encapsulation allows relocation of multiple
catalysts and proto-metabolites as envisaged by autocatalytic
network theories, e.g. the GARD model (Shenhav et al.,
2007). Individual components will be distributed between
lipopeptide vesicles in a stochastic manner. As long as a
representative sample of the constituents of the autocatalytic
network are present then the catalytic cycles in the vesicle will
be fully active. Such vesicles can relocate, grow and divide
(Szostak, et al., 2001) in the buffered environment of the
hydrothermal pores. Omission of any critical species will lead
to compromised networks that will reproduce more slowly, if
at all, and fail to compete with fully functional networks. This
situation is analogous to the stochastic corrector model
developed by Szathmary to describe the group selection of
populations of replicators in an RNA world scenario
(Szathmary and Demeter, 1987; Grey, et al. 1995). An
analogous stochastic corrector model for catalysts (Figure 4)
leads to the selection of functional reproducing networks of
metabolic information (Shenhav, et al., 2007).

Figure 4: A stochastic corrector model of metabolic
reproduction. Only vesicles containing representative
populations of catalysts can grow and divide efficiently.

Early vesicular structures would be loose dynamic
associations. These allow exchange of material with the
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environment so new feedstocks can be taken up. Furthermore,
discrete vesicles can fuse on contact allowing deficient
vesicles to regenerate fully functioning autocatalytic networks
and for growing vesicles to generate new combinations of
metabolic processes via symbiotic events.

Two significant features limit the complexity of such
systems: the statistical distribution of molecules provides a
limit to the number of discrete components that can be
reliably distributed during growth and division cycles; in
addition the accuracy of metabolic turnover is limited by the
lack of precision in the ordering of monomers in oligomer-
based catalysts where specificity arises from simple chemical
selectivity, rather than the degree of control that can be
exerted by macromolecular catalysts (enzymes and
ribozymes) of well-defined sequences. Such autocatalytic
systems can develop general classes of proto-metabolic
function involving the presence or absence of particular
processes; however, as Szathmary and colleagues have shown
(Vasas, et al. 2010), these systems are not capable of open-
ended Darwinian evolution where incremental variants can be
selected and maintained in populations of competing entities.
Nevertheless, the proto-metabolic history is likely to vary
from one set of hydrothermal pores to another with the
resulting autocatalytic networks being a function of the
particular local geochemistry.

The Chemoton: Reproduction Fidelity and the
Analogue-to-Digital Information Transition

Digital molecular information. Fidelity of the reproduction
of biochemical information is a critical selection pressure for
the development of complex organisms. Eigen’s work has
highlighted the critical role of error threshold limits in the
reproduction of biochemical information in simple replicator
systems (Eigen and Schuster, 1977). The fundamental
discovery needed for the generation of digital information, in
the form of well-defined macromolecular sequence
information, was the generation of oligomers capable of
carrying information but whose physical properties are
approximately independent of composition. Benner (2004) has
noted the importance of linear poly-ionic oligomers, built
from monomeric units of similar size, structure and identical
charges, in providing the requisite properties for genetic
molecules. The ability of phosphate to link two units and
retain a negative charge is critical to the structure and function
of nucleic acids (Westheimer, 1987).

Some proto-metabolic networks provided a range of
features that facilitated the development of RNA-based coding
systems. They provided access to metallo-oligopeptide
catalysts that generated both organic molecules and
dehydrating power in water. They also manipulated phosphate
precipitation equilibria, by encapsulating free divalent metal
ions thereby allowing release of solubilized organo-phosphate
species from precipitated stores. The ability of phosphate to
channel sugar chemistry to useful metabolites (Muller, et al.
1990; Eschenmoser and Loewenthal, 1992) could then be
exploited opening the way to nucleotide derivatives (Powner,
et al. 2009). Once phosphate precipitation equilibria were
made freely reversible by cation binding, pyrophosphate from
autocatalytic iron-sulfur networks became a more general

source of activated phosphate species (Baltscheffsky, 1997). It
was also possible to exploit reversible surface binding of
oligomeric sugar phosphate species, including
oligonucleotides (Hatton and Rickard, 2008) to allow
templated oligomer synthesis (Joshi, et al. 2007).

Once sugar phosphate derivatives, including rudimentary
nucleotide analogues, became available to proto-metabolism
their oligomerization was subject to the same molecular
selection processes that refined the properties of simple
oligopeptides. Oligomeric derivatives that provided useful
catalytic activity enhanced the productivity of the protocells
and were produced faster than they hydrolysed. They were
initially selected on this basis. In this way mixed proto-
metabolic networks arose in which catalysis was carried out
by both oligopeptide complexes and oligonucleotide
derivatives  (White, 1976). The oligopeptide and
oligonucleotide systems interfaced via simple amino-acylated
nucleotide derivatives. Amino acids linked as esters to
nucleotides could undergo a version of templated amide
formation, facilitated by base-stacking of the nucleotide
component. This provided a rudimentary precursor to
translation.

Once catalytically useful oligomeric nucleotide derivatives
emerged a second property was selected: namely the
replication mechanisms associated with access to precise
ordering of monomer units inherent in nucleic acid structures
(Sievers and von Kiedrowski, 1994). This provided the basis
for DNA replication. The co-evolution of translation occurred
via increasingly precise versions of templated oligopeptide
synthesis (Hsiao, et al. 2009). This was the final technology
needed for the creation of replicators with a proto-metabolism
built on an inter-dependent combination of iron sulfur
catalysis, oligopeptides and oligonucleotides.

The continuing action of evolution, with replication fidelity
as a key selection pressure (Eigen and Schuster 1977, 1978a
and 1978b), set the stage for the emergence of a modified
version of the RNA world (Gesteland, et al. 2006; Koonin and
Martin, 2005) in which oligopeptide- and oligonucleotide-
derived catalysts co-existed within reproducing vesicles. In
these systems the oligonucleotides developed a unique
function as a repository for precise replicable sequence
information: open-ended Darwinian evolution had emerged.
This was harnessed as the basis for coding oligopeptides of
reproducible sequence via the refinement of translation. The
resulting enhancement in the catalytic specificity of
oligopeptides provided ever more efficient variants on
metabolism. The same opportunities and evolutionary driving
forces led to protocell membranes becoming more rigid
barriers to the outside world once precise transport
mechanisms became available via protein evolution. The
resulting entities were the first true chemotons having the
irreducible complexity associated with living cells.

Concluding remarks

The model presented here provides a plausible account of a
combination of specific prebiological processes that explain
the early steps by which a functional chemoton, with three
interdependent sub-systems, can emerge. By this account life
is not inevitable, but requires an ordered sequence of proto-
metabolic innovations. Porous hydrothermal mineral mounds
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provided an exceedingly large number of discrete
geochemical environments that allowed parallel testing of vast
numbers of chemical systems. Complex chemotons arose as a
result of a series of molecular selection processes occurring
within these environments. This model is potentially testable
e.g. via combinatorial microfluidic technology (Kreutz, et al.
2010) with screening of diverse chemical systems for
proposed proto-metabolic innovations.

It is proposed that the creation and selection of metabolic
diversity occurred via simple chemical and physical steps.
Initially selection was based on catalytic efficiencies of
networks that emerged in specific pre-existing mineral
micropore compartments. Encapsulation of metal species by
organic ligands provided more active and specific catalysts
and also allowed the development of a soluble proto-
metabolism incorporating sugar phosphates. Systems that
evolved the capacity to relocate en masse in lipopeptide
vesicles, before their access to chemical feedstocks ends,
selectively propagated. Protocells emerged with autocatalytic
networks that included catalysts based on both oligopeptides
and oligonucleotides which could then evolve complex
oligonucleotide structures via molecular evolution. These first
chemotons were the forerunners of an RNA world that
evolved by open-ended Darwinian evolution.
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Abstract

We developed a simulation tool for investigating the eviolut

of early metabolism, allowing us to speculate on the forma-
tion of metabolic pathways from catalyzed chemical reastio
and development of characteristic properties. Our model co
sists of a protocellular entity with a simple RNA-based ge-
netic system and an evolving metabolism of catalytically ac
tive ribozymes that manipulate a rich underlying chemistry
Ensuring an almost open-ended and fairly realistic sinmnat

is crucial for understanding the first steps in metabolic-evo
lution. We show here how our simulation tool can be help-
ful in arguing for or against hypotheses on the evolution of
metabolic pathways. We demonstrate that seemingly mutu-
ally exclusive hypotheses may well be compatible when we
take into account that different processes dominate difiter
phases in the evolution of a metabolic system. Our results
suggest that forward evolution shapes metabolic network in
the very early steps of evolution. In later and more com-
plex stages, enzyme recruitment supersedes forward evolu-
tion, keeping a core set of pathways from the early phase.

I ntroduction

Understanding the evolutionary mechanisms of complex bi-
ological systems is an intriguing and important task of cur-
rent research in biology as well as artificial life. The for-

mation of metabolic pathways from chemical reactions has

evolution of biological networks (Pfeiffer et al., 2005).eW
have recently proposed a computational framework for the
evolution of metabolism (Flamm et al., 2010), modeling all
its significant components in a realistic way. In this report
we discuss first results from several simulation runs.

In the next section we recapitulate four scenarios of evolu-
tion that are of particular interest to understand the faiona
of metabolic pathways and assessing our own results. This
will be followed by a brief introduction to our computatidna
model that we use in this study. Then we will present some
general results from a series of simulation runs and investi
gate some of the findings in more detail on two examples.
We conclude with a short discussion on the comparison of
our results with existing pathway evolution hypotheses.

Scenarios of Evolution

In this section, we elucidate four relevant hypotheses on
the evolution of metabolism in general and formation of
metabolic pathways in specific. For more a more detailed
discussion of the theories of pathway evolution we refer to
the reviews by Caetano-Anollés et al. (2009) and Schmidt
et al. (2003) discussing further theories of pathway evolu-
tion.

been discussed for decades and several hypotheses hav%ackward Evolution

been proposed since the 1940s. Research on theFJiM

barrel fold architecture (Copley and Bork, 2000) shows that Backward (or retrograde) evolution was one of the first the-
the evolution of modern metabolism is mainly driven by ories for the evolution of metabolic pathways, proposed by
enzyme recruitment, as suggested by the patchwork model Horowitz (1945). It assumes that an organism is able to
(Ycas, 1974; Jensen, 1976)). Nevertheless, many aspectsmake use of certain molecules from the environment. How-
of the evolutionary machinery are still not well understood ever, individuals that can produce these beneficial modscul

In particular, the first steps in early metabolism evade ob- by themselves gain an advantage in selection in the case of
servation by conventional approaches. Studies on hypothe- depletion of the “food source”. Therefore, new chemical
ses of pathway evolution (Caetano-Anollés et al., 2009 Mo reactions are added that produce beneficial molecules from
rowitz, 1999) suggest that metabolism has evolved in differ precursors that are abundant in the environment or that are
ent phases and only traces or “shadows” are still observable produced in turn by the organism’s metabolism. As a con-
from the events in the very distant past. Thus, there is a need sequence, one should observe more ancient enzymes down-
for realistic models of early metabolism that considertalli  stream in present-day metabolic pathways. Towards the en-
components and scales. Simulation approaches have shownrry point of the pathway, younger and younger going en-
to be useful in finding and challenging explanations for the zymes should be found (see Figure 1(a)).
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Figure 1: Hypotheses about the formation and evolution dabwlic pathways. (a) Backward evolution, (b) Forward atioh,
(c) Patchwork model, (d) Shell hypothesis. Colored squeepgesent enzymes, gray circles are metabolites. Colardemg
for enzymes stand for their age, red being older and blugghginnger enzymes.

Forward Evolution

Forward evolution could be seen as an extension or coun-

terpart of the backward evolution hypothesis, reversimgg th
direction of pathway evolution. Granick (1957), and later
Cordon (1990), argue for a pathway evolution in forward
direction, requiring that the intermediates are already be
eficial to the organism. This is in particular plausible for

M odel

The computational model, summarized schematically in
Figure 2, is composed of a genetic and a metabolic sub-
system. The genetic subsystem is implemented as a cyclic
RNA genome. A special sequence motif indicates the
start of genes which are of constant length. The RNA se-
quence corresponding to the “coding sequence” of a gene

catabolic pathways, where the organism can extract more is folded into the (secondary) structure using Yienna
energy by breaking food molecules downs to simpler and RNA Package (Hofacker et al., 1994) (Step A in Figure 2).
simpler end products. Older enzymes are then expected to  During chemical reactions bond formation/breaking is
be upstream in the pathway, with younger enzymes appear- confined to a small subset of atoms of the reacting

ing further downstream (see Figure 1(b)).

Patchwork M odel

molecules. A cyclic graph abstraction, called the imaginar
transition state (ITS) (Fujita, 1986), can be used to captur
the changes in the reactive center (Hendrickson, 1997). Fur

The patchwork model (Ycas, 1974; Jensen, 1976) explains thermore, over 90% of all known organic reactions can be

the formation of pathways by recruiting enzymes from exist-

classified by their ITS (Hendrickson and Miller, 1990) and

ing pathways. The recruited enzymes may change their reac- organized in a hierarchical structure (Herges, 1994). Se-

tion chemistry and metabolic function in the new pathways
and specialize later trough evolution. This introductidn o
new catalytic activities lead to a selective advantage koo
ing at the constitution of a pathway formed by enzyme re-
cruitment, we should observe a mosaic-like picture of older

guence and structure features of the folded RNA gene prod-
ucts are mapped into the classification tree of organic re-
actions for functional assignment of the catalytic set§Ste
B in Figure 2). Thus we have implemented an evolvable
sequence-to-function map (Ullrich and Flamm, 2009), al-

and younger enzymes mixed throughout the pathway (see lowing the metabolic organization to escape from the con-

Figure 1(c)).

Shell Hypothesis

The shell hypothesis was proposed by Morowitz (1999). It
argues for the case of the reductive citric acid cycle that in
the beginning an auto-catalytic core is formed from which
new catalytic activities and pathways could be recruitedl an
fed. Thus a metabolic shell would form around this core.
Enzymesin the core would likely be less prone to mutational

fines of the chemical space set by the initial conditions of
the simulation.

The metabolic subsystem is built upon a graph-based arti-
ficial chemistry (Benko et al., 2003) endowed with a built-i
thermodynamics. To generate the metabolic reaction net-
work, induced by the catalytic set (chemical reactions de-
coded from the genome) on the set of metabolites (chemical
molecules of interest from user input), a rule-based st®cha
tic simulation is performed, where the likelihood of a reac-

changes because they are essential for the organism. Thustion being chosen depends on its reaction rate (Faulon and
one should still be able to observe a core of ancient enzymes Sault, 2001). Reaction rates are calculated “on the fly” from

(see Figure 1(d)).

the chemical graphs of the reactants.
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Figure 2: Scheme of the simulation system. (A) Decoding &iARgenes to catalytic molecules; (B) Assignment of cdtaly
functions to “ribozymes”, through mapping from structumall sequential information of the RNA molecule to a reaciigo
in the hierarchy (Hendrickson, 1997); (C) Construction stodhastic simulation of the metabolic network; (D) Metiabblux
analysis and fitness evaluation; (E) Application of genedigation operators.

To identify the elementary flux modes, i.e., extreme path- tions, selection criteria, and simulation time (numberexrfig
ways (Gagneur and Klamt, 2004), of the resulting reaction erations and stochastic simulation steps).
network, a metabolic flux analysis is performed. (Step D in
Figure 2). The fitness of an organism is computed as the Quantitative Analysis
maximum of the (linear) yield function (e.g. biomass pro- ) S ) o
duction) over all extreme pathways. Finally, genetic varia 10 9ain some quantitative insights into the general princi-
tion operators are applied to the genome (Step E in Figure 2). Ples of metabolic evolution we performed a series of simu-
For a detailed discussion of the various steps of the compu- lation runs to investigate certain measures that give argct
tational model we refer the reader to Flamm et al. (2010). of the evolutionary constitution of the metabolic networks
throughout the evolution process.

In a previous study (Ullrich and Flamm, 2008), we al-
ready showed that our metabolic networks evolved certain
In this section we use the computational model described properties such as a scale-free node degree distributn an
above to simulate the evolution of metabolic networks and the existence of hub-metabolites. An investigation of tiie e
analyze the change of its structure and components over sev-zyme connectivity suggested that enzymes from early stages
eral generations. All simulation runs performed for this show a higher connectivity than those from later stages.
paper were initialized with the full set of chemical reac- Here, we confirm these findings with a much larger sam-
tions to chose from, the same configurations for genome ple of 100 simulation runs starting from the same set of
length (5000 bases), and the same TATA-box constitution initial metabolites (cyclobutadiene, ethenol, phthalic a
(“UAUA") and fixed gene length (100 bases). They differ hydride, methylbutadiene, and cyclohexa-1,3-diene).- Fig
in initial conditions, population size, environmental don ure 3(a) shows a clear trend for enzymes from the first gen-

Simulations and Results
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Figure 3: Average relative connectivity of (a) enzymes drchfetabolites introduced in the same generation, for 10@1ge
tions. The height of the bars shows the fraction of the oVeminections that are accounted by enzymes/metabolies dr
particular generation. All values are averages over 100Qlsition runs. Input molecules are not considered in théss@tthey
account for nearly 50 percent of metabolite connectivity.

erations to be responsible for the major part of connections these definitions, we compute the set of extreme pathways
in the metabolic network. On the one hand, this can be ex- for every generation and all cells. For each pathway we then
plained simply due to the fact that enzymes that enter the determine the percentage of forward and backward links and
system earlier have more time to form connections. On pathways, for both reactions and metabolites.

the other hand, this observation could also indicate thaten  For this study, we performed 100 runs with a popu-

zymes with higher and higher specificity evolve in the later |ation size of 100 cells running for 100 generations and
stages. It could be anticipated, that enzymes with all speci performing 100 network expansion (stochastic simulation)
ficities still appear in later generations but Only SpeCiﬁ€ e Steps per generation’ the input molecules were Cyc|obuta_
zymes catalyzing few reactions are taken to the next genera- dgiene, ethenol, phthalic anhydride, methylbutadiene, and
tion, while multi-functional enzymes are discarded beeaus cyclohexa-1,3-diene. In Figure 4 we see the change from
they would change the structure of the network too rigor- generation to generation in the constitution of the metabol
ously. Considering the connectivities of metabolites (see networks regarding our measures of forward/backward links
Figure 3(b)), we still find the highly connected nodes inthe and pathways. Considering the reactions of the networks,
early steps, especially if we consider environment metabo- gne can see that in the first generations, the networks con-
|iteS that are alWa.yS abundant Wh|Ch account for about 50 sist main'y of links and pathways Conforming to the forward
percent of connectivity. However, there is constant preduc  eyolution scenario. However, in later generations we ob-
tion of metabolites potentially becoming highly connected  serve a much more mixed mosaic like picture arguing in fa-

In order to find arguments for some of the evolution hy- vor of the patchwork model. This trend becomes even more
potheses, we study the occurrence time (age) of reactions evident from the metabolite’s point of view: almost all path
and metabolites along pathways. It is of particular interes ways consist of forward and backward links in equal num-
to determine in which direction (downwards — with the flow bers. Another observation from the reaction’s point of view
of mass, or upwards — against mass-flow) pathways are form is that most forward pathways from the early stages remain
by addition of chemical reactions that recruit or producg ne  even in the last stages, which could mean that they form a
metabolites. We will use the term forward (backward) link core of pathways that are not subject to evolutionary change
if, in a pair of reactions in a pathway, the successor is evolu This supports the shell hypothesis. So far, our simulagen r
tionary older (younger). In the same vein, a forward (back- sults do not provide any support for the backward evolution
ward) link between metabolites refers to a situation in Wwhic  scenario. However, so far we have not simulated an environ-
the products of a reaction are evolutionarily older (youhge  mentwith temporary depletion of “food” metabolites, which
than the educts. Accordingly, we define forward (backward) is one of the major assumption of this theory. A future study
pathways as pathways in which there is at least one forward considering this impact of variations in resource abundanc
(backward) link and no backward (forward) link. Given might bring new insights on this matter.
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For the first 100 generations, we show the number o§link

and pathways that conform to the forward and backward elenlgicenarios, respectively. Links are pairs of (a) consezu
reactions or (b) consecutive metabolites along a pathwagatAway is identified as “forward-evolved” if at least oneitsf
links is forward and none backward. In the first generatitimesnetwork consists predominantly of forward (reactiamyd and
pathways. After about 20 generations, the relative aburelahforward pathways decreases drastically but quicldghes a

persistent plateau value.

Example

In the following we illustrate some of our findings from
the previous study in more detail for an example simula-
tion. We use data from a simple simulation run, starting
with only two input molecules and developing only few en-
zymes, for the visualization of an evolutionary time series
(see Figure 5) an animation of the network evolution (see
Additional Files) and the reaction- and metabolite-|ifiedi

and younger ones following more downstream. The colored
bar next to the interval graph shows the pattern of the re-
lation between age and position of reactions and metabo-
lites for our example simulation run. The other three bars
show the patterns for backward, forward evolution and the
patchwork model, respectively. The forward evolution pat-
tern comes closest to the simulated pattern.This illussrat
again the speculation from the general analysis that in the
early phase of metabolic evolution, forward evolution seem

overviews (see Figure 6). The genome, and hence the setto be dominant. However, for metabolites we do not see
of enzymes, is chosen at random in the beginning. The two a clear relation between the position along pathways or the
input molecules of this simulation are cyclic and sequéntia network and their first appearance in the system. Similar to
glucose. The simulation run is kept to 100 generations. We the general results, a much more mixed picture is observed
focus again on the evolutionary constitution of the metabol  for the metabolites. Therefore, no clear explanation can be
network, i.e. investigating the relation between the oecur made for the metabolite constitution.

rence time (age) of chemical reactions and their position in

the network (downstream vs upstream) to draw conclusions  Another, more complex, setting is used in a simulation
about one of the evolution scenarios being at work. The four run in which we investigate the evolutionary history of the
shapshots in Figure 5 showing the metabolic network in dif- involved genes/enzymes, depicted in the catalytic functio
ferent stages are aligned to a union graph over all genera- genealogy for all generations (Figure 7). The simulation
tions (Rohrschneider et al., tted). Thus, we can see that in takes the same five input molecules from the above gen-
the first steps the reactions upward in the network are added. eral study, but with a higher mutation and duplication rate
The pathways are formed further in this forward direction. and runs for a total of 2000 generations. Our simulation
Looking at the last generation, basically all pathways from frameworks allows us to study the divergence and conver-
source to sink follow the forward evolution scenario. This gence of catalytic functions (Almonacid et al., 2010) since
observation is further supported by the interval graphflora we can record the genealogy of each gene (reaction cata-
chemical reactions in Figure 6. The reactions are here or- lyst) throughout a simulation run, and we can utilize the ITS
dered according to their position in the graph. There is a classification of the catalyzed reaction as a representafio
clear trend of older reactions being on the top (upstream) the enzymatic function. Divergence of function is caused by
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Figure 5: A series of simulated metabolic networks afterl@) (b) 30, (c) 66, and (d) 100 generations. Colored squares
represent chemical reactions, gray circles representholitss. Metabolites involved in a reaction are connected in the
network graph. The size of the nodes and the width of the edgesde for the number of extreme pathways in which the
respective object is involved. The coloring for the reatsi@ncode their age, where red stands for older (occurrereariy

generation) and blue for newer (later generation) reastion
(a) (b)

Figure 6: Life-time diagram for reactions and metabolités). Life-time of reactions, (b) union network graph over O
generations, (c) life-time of metabolites. The reactiond metabolites (rows) in the life-time diagrams are poséib corre-
sponding to their position in the union network graph, i.eaations/metabolites close to the source metabolitesharpper
positions, reactions/metabolites close to the sink mditalsare placed at the bottom. The rows have colored erifribg
corresponding reaction/metabolite was present at a ngg&ieration (columns 1-100). We use the same coloring selasm
above, older reactions/metabolites are red, newer blue.cotored bars show the age distribution of reactions in #teork
in the same order as in the lifetime overview. The first baregeents our results, following the pattern for backwardwian,
forward evolution and the patchwork model.

%
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4230404140 gene duplication followed by sequence mutations, creating
20402040 functionally different but structurally related catalysCon-
vergence of function happens when catalysts from genealog-

204040
4240204040

302040 ically unrelated genes independently accumulate mutstion
W 424040 resulting in the catalysis of the same reaction (or class of
— 3141404021 reactions). In Figure 7 convergence events are marked by
21424020 circles. A small selection of divergence events, which are
zij;jjjfm very frequent in our simulations, are marked by broken cir-
214141404140 cles. Furthermore, the analysis of the functional traoisgi
2141414020 on the basis of the ITS graphs reveals that catalysts can alte
402130 their substrate specificity by small changes of the context o
21414040 the graph rewrite rule, i.e. the necessary preconditiothi®r
- o applicability of the graph transformation rule.
- 214040
412020 Conclusions
332404040 We have introduced a simulation tool that models the early
424130 evolution of metabolism in a quite realistic setting and-pro
-i—‘ 4140402140 vides many tools for the detailed investigation of metaboli
4240402140 evolution. Using both simple example and a series of more
Ljijij?omo complex simulation runs, the evolution of the components
4020304040 on the small scale (metabolites, enzymes) as well as on sys-
21404040 tems (pathways, networks) was investigated. The simula-
- r4°3040 tions allow to discriminate between different scenarias fo
- 414020 the evolution of metabolic pathways. Based on the observa-
T e tions from this study, we argue that the different evolution
13130 ary hypotheses can be reconciled, in that they act in differ-
402040 ent phases of evolution, i.e. in different scenarios we Inigh
( 21424040 observe another strategy at work. Here, we suggest that for-
202040 ward evolution dominates in the earliest steps and is then su
o perseded by a phase of enzyme recruitment, however, leav-
I 15140 ing behind a trace in form of a core set of forward evolved
213140 pathways.
414141 To further test these hypotheses, we intend to simulate
414040 a number of different scenarios with changing parameters
P (mutation rate, duplication rate, “food” metabolite deple
312040 tion), define other goals for the organisms (production of

2140304140 one specific metabolite, biomass or energy) and increase the
complexity of the simulation runs (length and number of in-

) ) ) put molecules).

Figure 7: Genealo_gy of catalytic functions and gene dosage ~ Apeit our simulation environmentis still a drastic simpli

over 2000 generations. Each row represents an observed Catsjeation of chemistry, it is realistic enough to investigtite

alytic function. Black horizontal lines indicate time inte evolution of early metabolism. Computer simulations like

vals in WhiCh genes coding for that catalyti_c function Were s one are likely to provide new insights about the gen-

presentin the genome ((_)'2(_)0: from left to right). The th'_Ck' eral evolutionary mechanisms governing biological system

ness of the black lines indicates the number genes with a j, particular in regimes that are not readily observabler Ou

given function.. Thin verticz?\l red lines indicate ppints wie approach of a realistic, yet computationally feasible, tod
the accumulation of mutations caused a transitions between appears to be a promising step in this direction.

catalytic functions. If the number of genes copies in a func-
tion class increases without a transition from another gene
then the increase is due to a gene duplication. A new gene
can be created in the genome through the fortuitous for- This work has been funded by the Volkswagen Stiftung un-
mation of a TATA-box. Conversely, a gene can vanish if der grant 1/82 719 and by the Vienna Science and Tech-
its TATA-box is destroyed by mutation. On the left of the nology Fund (WWTF) MAOQ7-30, and the COST-Action
chart a numerical encoding of the graph transformations per CM0703 “Systems Chemistry”.

formed by the “enzyme” is plotted.
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Additional Files

An animated movie of an example network evolution
simulation, can be found hetattp://www.bioinf.
uni-leipzig.de/“alexander/animation.avi

References

Almonacid, D. E., Yera, E. R., Mitchell, J. B., and Babbitt,
(2010). Quantitative comparison of catalytic mechanisnts a
overall reactions in convergently evolved enzymes: ingplic
tions for classification of enzyme functionPLoS Comput
Biol, 6(3):1000700.

Benko, G., Flamm, C., and Stadler, P. F. (2003). A grapletasy
model of chemistryJ Chem Inf Comput Sci, 43:1085-93.

Caetano-Anollés, G., Yafremava, L. S., Gee, H., Caetanoli@s,
D., Kim, H. S., and Mittenthal, J. E. (2009). The origin and
evolution of modern metabolismlnter J Biochem & Cell
Biol, 41:285-297.

Copley, R. R. and Bork, P. (2000). Homology amofig)s-
barrels: implications for the evolution of metabolic patys.
J Mol Biol, 303:627-641.

Cordon, F. (1990)Tratado evolucionista de biologa. Aguilar Edi-
ciones, Madrid, Spain.

Faulon, J.-L. and Sault, A. G. (2001). Stochastic generafor
chemical structure. 3. Reaction network generatid@hem
Inf Comput i, 41:894-908.

Flamm, C., Ullrich, A., Ekker, H., Mann, M., Hogerl, D.,
Rohrschneider, M., Sauer, S., Scheuermann, G., Klemm,
K., Hofacker, I. L., and Stadler, P. F. (2010). Evolution of
metabolic networks: A computational framework. Syst.
Chem. in press.

Fujita, S. (1986). Description of organic reactions basethtagi-
nary transition structures. 1. introduction of new consept
Chem. Inf. Comput. i, 26:205-212.

Gagneur, J. and Klamt, S. (2004). Computation of elementary
modes: a unifying framework and the new binary approach.
BMC Bioinformatics, 5.

Granick, S. (1957). Speculations on the origins and evaudif
photosynthesisAnn NY Acad Sci, 69:292—-308.

Hendrickson, J. B. (1997). Comprehensive system for dleasi
tion and nomenclature of organic reactiod€hem Inf Com-
put i, 37:852-860.

Hendrickson, J. B. and Miller, T. M. (1990). Reaction indexfor
reaction databases. Chem. Inf. Comput. ci., 30:403—408.

Herges, R. (1994). Coarctate transition states: The disgaf a
reaction principle.J Chem Inf Comput ci, 34:91-102.

Hofacker, I. L., Fontana, W., F, S. P., Bonhoeffer, S., Tackk,
and Schuster, P. (1994). Fast folding and comparison of RNA
secondary structure#lh. Chem., 125:167-188.

Horowitz, N. H. (1945). On the evolution of biochemical dyat
ses.Proc Natl Acad Sci USA, 31:153-157.

Jensen, R. A. (1976). Enzyme recruitment in evolution of new
function. Annu Rev Microbiol, 30:409-425.

Morowitz, H. J. (1999). A theory of biochemical organizatjo
metabolic pathways, and evolutioGomplexity, 4:39-53.

Pfeiffer, T., Soyer, O. S., and Bonhoeffer, S. (2005). Thawgion
of connectivity in metabolic network$LoSBiol, 3:2228.

Rohrschneider, M., Ullrich, A., Kerren, A., Stadler, P. Bnd
Scheuermann, G. (2010 (submitted)). Visual network anal-
ysis of dynamic metabolic pathways. manuscript submitted
for publication.

Schmidt, S., Sunyaev, S., Bork, P., and Dandekar, T. (2003).
Metabolites: a helping hand for pathway evolutioiPends
Biochem. <ci., 28:336—-341.

Ullrich, A. and Flamm, C. (2008). Functional evolution
of ribozyme-catalyzed metabolisms in a graph-based toy-
universe. In Istrail, S., editoRroceedings of the 6th Inter-
national Conference on Computational Methodes in Systems
Biology (CSMB), volume 5307 of_ect. Notes Bioinf., pages
28-43.

Ullrich, A. and Flamm, C. (2009). A sequence-to-functionpma
for ribozyme-catalyzed metabolisms. HBCAL, volume
5777/5778 ol ect. Notes Comp. <ci.

Ycas, M. (1974). On earlier states of the biochemical systdm
Theor Biol, 44:145-160.

Proc. of the Alife XII Conference, Odense, Denmark, 2010

64



Dynamical Stability of Autocatalytic Sets

Rudolf M. Fuchslid?, Alessandro Filisetti Roberto Serral,
Marco Villani>!, Davide DeLucrezig and Irene Poti!

I European Centre for Living Technology
Calle del Clero 2940, 30124 Venice, Italy
2 Dipartimento di Scienze Sociali, Cognitive e Quantitati@iversita di Modena e Reggio Emilia,
via Allegri 9, 42100 Reggio Emilia, Italy
3 Artificial Intelligence Lab Univ. Ziirich
Andreasstr. 15, CH-8050 Zurich, Switzerland
4 Dipartimento di Statistica, Universita Ca’ Foscari,
San Giobbe - Cannaregio 873, 30121 Venezia, Italy

Abstract

Theoretical investigations of autocatalytic sets rendle¢he
occurrence of self-sustaining sets of molecules to be arigene
property of random reaction networks. This stands in some
contrast to the experimental difficulty to actually find such
systems. In this work, we argue that the usual approach,
which is based on the study of static properties of reaction
graphs has to be complemented with a dynamic perspective
in order to avoid overestimation of the probability of gedi
autocatalytic sets. Especially under the, from the expamim

tal point of view, important flow reactor conditions, it istno
sufficient just to have a pathway generating a given type of
molecules. The respective process has also to happen with a
sufficient rate in order to compensate the outflow. Reaction
rates are therefore of crucial importance. Furthermore; pr
cesses such as cleavage are on one hand advantageous for the
system, because they enhance the molecular variability and
therefore the potential for catalysis. On the other harai\cl

age may also act in an inhibiting manner by the destruction
of vital components: therefore, an optimal balance between
ligation and cleavage has to be found. If energy is included a
a limiting resource, the concentration profiles of the compo
nents of autocatalytic sets are altered in a manner thaerend

a certain range for the energy supply rate as optimal for the
realization of robust autocatalytic sets.

The results presented are based on a theoretical model and ob
tained by numerical integration of systems of ODE. This lim-
its the number of involved molecular species which implies
that the quantitative findings of this work may have no direct
relevance for experimental situations, whereas the quiatt
insights in the dynamics of the systems under consideration
may generalize to systems of truly combinatorial size.

Keywords: Autocatalytic sets, autocatalytic metabolisn,
gin of life.

I ntroduction

In recent years, autocatalytic sets (ACS) Calvin (1956);
Eigen (1971) have attracted interest from many different re
search directions. Probably most prominent are thereby in-
vestigations concerning the origin of life, but ACS proved t
be a concept also of value e.g. for the study of transitions
in general (non-chemical) systems of interacting proauncti
processes including the generation of knowledge, see Hanel
et al. (2005).

Informally, the fundamental question with respect to
chemical reaction networks is whether or not a given set
of different, potentially catalytic molecules immersedoin
a suitable environment (most often some type of flow reac-
tor) and provided with a sufficient supply of food or building
blocks is able of maintaining the concentration of its mem-
bers via mutual catalysis. The conditions under which such a
self-maintaining or autocatalytic set can be expected to ap
pear with sufficiently high probability are then those to be
mimicked in an experiment e.g. concerned with the emer-
gence of protolife.

Based on different models of catalytic networks, there is
broad literature on the detection of ACS, see Letelier et al.
(2006); Mossel and Steel (2005); Hordijk and Steel (2004).
In Hordijk and Steel (2004) a polynomial-time algorithm
for the detection of an important class of ACS has been
presented. Hordijk and Steel applied this algorithm to a
model by Kauffman (1986). By analyzing large numbers
of randomly chosen networks, they corroborated a conclu-
sion which Kauffman derived from combinatorial reason-
ing, namely that in sufficiently diverse populations of po-
tentially catalytic chain molecules, an ACS will be present
almost with certainty. Thereby, ACS will form independent
of how sparse catalytic activity is distributed in the com-
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binatorial variety of molecules, as long as this variety is vestigation of the influence of stochastic fluctuations an th
big enough (usually limited by a maximal sequence length). emergence and dynamics of ACS, this paper is concerned

Stated differently, given a certain variety of potentiaiit- with the study of the influence of various parameters on the
alytic molecules, there is always a threshold for the prdbab  observability of stationary ACS.

ity of catalytic activity such that above that threshold, \C The paper is organized as follows: In the second section,
can be expected to emerge with high probability. we discuss two different approaches for the definition of an

ACS (or to be precise, the general and a more restrictive
definition, the latter termed “autocatalytic metabolismaiid
motivate the choice being taken for the investigationsis th
work. In the third section, we briefly review the original
model by Kauffman (1986) and present our implementation
as a system of coupled ODEs. In the section reporting re-
sults, we show that the presence of a stationary ACS depends
hecritically on the choice of parameters. We further study a
derivative of the original model that takes energy consider
tions into account, means the different reactions compete f

a, with a constant rate renewed, energy resource. We close
with a discussion of the relevance of our results for experi-

Despite some criticism (see Lifson (1997) and for a dis-
cussion of Lifson’s arguments, see Steel (2000)) and the fac
that more detailled models of catalysis may modify some
results presented in Kauffman (1986), the main conclusions
seem to generalize in one or the other form to a broad variety
of models. The obvious question to ask then is, why ACS
are not regularly discovered in the laboratory. In Filisett
et al. (2010), three possible answers were discussed. T
first one (sometimes preferred by experimentalists) claims
that the simplifications used in the formulation of the mod-
els on one hand make them tractable by analytical and/or
computational means but on the other hand renders them
unrealistic. The second answer (favored by some theorists) Mental setups.
says that the basic statements derived from simplified mod- .
els are also valid if the details of the physical and chemical Autocatalytic Sets
world were considered, but that the threshold necessary for We compare two different approaches for the analysis of au-
the emergence of ACS never has been reached. Finally, thetocatalytic sets. The first approach is especially appabgri
third position (and also the one advocated in Filisetti et al for the study of reaction graphs and thoroughly discussed
(2010) and in this work) highlights the fact that in investig and formalized in Hordijk and Steel (2004). The second
tions purely based on the properties of reaction graphs, dy- one, discussed in Bagley and Farmer (1991) takes into ac-
namical and stochastic aspects are not considered. For somecount the dynamics of the system but is less formal. Bagley
models, this is not necessary because their dynamics is basi and Farmer define an “autocatalytic metabolism” (ACM) as
cally (atleast piecewise) determined by linear operatogs, a coupled set of reactions which lead to permanent concen-
Jain and Krishna (2001). But for most models (which are trations that are significantly departing from the values on
based on general reaction graphs), graph-theoretical-meth would obtain without catalysis. As they point out, this def-
ods may identify ACS which are only transient; this in the inition is to some extent problematic, because what one re-
sense that the chemical dynamics eventually leads to a col- gards as significant may depend on the experimental means.
lapse of the ACS. This holds especially under flow reactor However, we will use a similar approach, because only those
conditions, where e.g. a catalyst needs not only to be pro- systems delivering a measurable deviation (both with r@spe
duced via some reaction path, but also at a sufficient rate in to quantities as well as time) from some equilibrium distri-
order to compensate for loss by outflow. Graph-theoretical bution are of experimental interest. In order to highligte t
means are able to identify whether or not a reaction path is difference between the two approaches, we briefly review
present in a given network but not wether the dynamics es- the graph theoretical definition used by Hordijk and Steel
tablishes a non-trivial stationary ACS (In fact, one should and show that an ACS identified with their method needs
speak of ACS exhibiting stationary or limit cycle behavior, not necessarily to be observable.
but in practice one observes most models to yield almost  In Hordijk and Steel (2004) the main focus is laid on
exclusively stationary solutions. For a discussion, sge e. so called “reflexively autocatalytic anH-generated reac-
Stadler et al. (1993)). In an experiment, however, it may tion systems (RAF)”, whereby' denotes a set of “food”-
be difficult to observe transient ACS, first because they may molecules which are provided by the environment. For
only be active during a very short period of time and sec- investigations concerned with the catalytic formation of
ond because their emergence may be highly susceptible to chain moleculest’ most often contains monomeric building
initial conditions. In contrast, stationary ACS which are blocks or a set of short oligomers. Informally, the concept
able to produce a permanent deviation of some molecular of a RAF covers those sets of reaction systéirfer which
concentrations from those one expects to result from the in- it holds that a) each reaction i is catalyzed by a molecule
flow and some non-catalytic background reactions offer a being part ofR and b) all reactants can be generated from a
higher potential for being observable in a reproducibleiman food setF’ by iterative applications of the reactionsi In
ner, as pointed out by Bagley and Farmer (1991). Whereas order to formalize the notion of a RAF in a rigorous man-
in Filisetti et al. (2010) the emphasis has been put on the in- ner, a number of definitions are required. We don’t repeat

Proc. of the Alife XII Conference, Odense, Denmark, 2010 66



them here, but refer to the original work by Hordijk and Steel
(2004)).

A RAF can be regarded as, once present, a potentially
self-sustaining reaction system that in principle proguce
all the catalysts and intermediates it needs for its reac-
tions. It is only potentially self-sustaining, becauseawc
sary molecules need not only to be produced but being pro-
duced with sufficient rates. Note further that the definition
of a RAF does not require the system to emerge, given the
molecules inF’ are supplied (In fact, the elementsidieed
not to be catalysts at all).

As shown in Hordijk and Steel (2004), there exists a
polynomial-time algorithm for the detection of RAFs, given
a system of catalytic reactions. That such a RAF is only
potentially self-sustaining is demonstrated by a (congyet
artificial) reaction system given as follows (with respeeti
catalyst and reaction rate above the arrows):

d,k

a+e—c
c,k

b+e—d

d,k
c—e+e
1)

With F = {a, b}, this system qualifies as a RAF (possibly
being part of some bigger catalytic reaction system). It is
possible (not shown here) to add further reactions reptesen
ing the renewal of resources and outflow, the former taking
place with unit rate, the latter with ratg. Settingk = 1
anda(0) = b(0) = ¢(0) = d(0) = ¢(0) = 1, the behavior

of the system then depends critically on the sizé of As
illustrated in Fig. 1, the system attains a stationary dtate

kq = 0.1 and collapses fok; = 0.5. This observation is

of importance insofar that it shows that one tends to overes-
timate the probability for the observation of experimelgtal
relevant ACM if one relies on static, graph theoretical meth
ods yielding probabilities for the occurrence of ACS. Con-
sequently, in what follows we employ dynamic reaction ki-
netics in order to decide whether a reaction system contains

k=0.1 k=05
4 lgE R
2 //’ ************* _10 40 60 80 100
0 . . . . : -20 ~
- 20 40 60 80 100 _3p
-40
-4 -50

Figure 1: Time evolution of the system given by eqgs. 1 for
two different values of the outflow rate parametgr Shown
are the logarithms of the concentration«f) (continuous
line) andd(t) (dashed line) as a function of time.

TheBasic Mode

In Kauffman (1986), the properties of sets of potentialli ca
alytic di-block copolymers were investigated. Thereby, it
was assumed

e Polymers consist of two different types of monomers
andB.

e There are two types of catalyzed reactions, namely liga-
tion and cleavage.

e The probability for a polymerP, to catalyze a ligation

P+ P e, P, P, or a cleavage’, P, Le, P+ Pis
given by a probability-.

as a subsystem an ACM in the sense of Bagley and Farmer e The numbep; represents the density of the polynier

(1991).
The Mode

A fundamental model for the study of the emergence of ACS
has been proposed in Kauffman (1986); we will briefly re-
view this approach and its main conclusions and present our
own implementation which is used for the construction of a
set of ODEs. These ODEs are solved numerically for var-
ious parameter settings in order to identify the relative im
portance of different reaction mechanisms. Thereby, we are
interested in parameter combinations that exhibit nonatri
optima for the probability of the existence of an ACM, espe-
cially if these parameters offers the potential of being-con
trollable in an experimental setting.

This setting, basically a random reaction system, doesn't
make any specific “helpful” assumptions supporting the
emergence or existence of an ACM, and nevertheless, strong
evidence was given that such a system should eventually
contain an ACM, given only a sufficiently large variety of
different polymers being included in the system (In case of
block polymers, this can be achieved simply by allowing se-
quences of length up to a critical.).

Several implementations of random graph models using
ODEs have been studied, see e.g. Farmer et al. (1986);
Bagley and Farmer (1991). In this work, the dynamics of
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the system is given by:

dp;
dt

koutpi (2)

+ Z k.j7k7LL(j7 k.1, m)Pkapm

Jrk,m

- Z ki gL L(i, 4, k, m)pipipm

jikm

- Z kjiLL(j, 1, k, m)p;pipm

jikm

+/€C Z O(’Lv.]a kvm)pkpm

Jik,m

+/€C Z O(]alakvm)pkpm

Jsk,m

- kc Z O(]a kvzvm)pzpm

Jsk,m

= ki in —

Thereby,p; represents the density of a polymer with se-
guenceP; composed of two types of monomets B. The
rate of influxk; ;, is set to one for the monomers B and
zero for all other sequences. Outflow is determined by the
rate k.., and the kinetic rates of ligation and cleavage are
denoted byk; ; 1 and k¢ respectively. The arrays and

happens by the contact of two monomers, one out of each
sequence. The chance that those are the ones that are able
of mutual ligation because they mark the end and the start
of the respective sequences is inversely proportionalo th
respective length of the sequences.

The system then contaid*! — 2 variables. This means,
taking into account the non-catalycity of the monomerg, tha
there are(2/+1 — 2)2(2L+1 — 4) potential ligation reac-
tions and(2-+1 — 4) S, 24(1 — 1) possible cleavage pro-
cesses. As it turned out, already valueslof= 6 deliver
systems of sufficient combinatorial variety in order to ex-
hibit interesting dynamical effects. In all simulationse w
setVi : p;(0) = 1 as initial condition; this with the idea

to give a potential ACM in a random graph sufficiently fa-
vorable starting conditions. Following Bagley and Farmer
(1991), a random reaction graph qualifies as containing an
ACM, if the concentration of at least one non-monomeric
species is above a threshdldafter a time interval longer
than10t, with ¢; = —log(T") / kot denoting the typical de-
cay time forT. As will be shown (and has already been
discussed by Bagley and Farmer), the decision whether a re-
action system contains an ACM is surprisingly insensitive t
the choice ofl’. The numerical solutions were obtained by
internal routines of the software package Matheméfital

C represent the random graphs, chosen at the beginning of and a sample of solutions was verified with a standard adap-

each run: This means that C' are arrays representing fixed
random reaction networks, which, once set, remain constant
Using the symbolp for sequence concatenation, it holds:

P, P, # P,
LG g ko) = PEAD g
lwith prob. r, P, @ Pj =P
and
P, ® P, # P,
Clirg,kym) =40 PEAD g
lwith prob. r¢ P @ P; = Py

The indexm represents the dependence on the catatyst
In all calculations subsequently shown, several additiona
assumptions have been made:

1. The monomersl, B must not act as catalysts; this in or-
der to enhance chemical plausibility.

2. There is a maximal sequence lendth Ligations may

well produce longer sequences, but those are assumed to

fall out by precipitation. This is physically plausible and
keeps the system tractable.

3. In order to capture steric effects, the ligation rage ;.
is length dependent. ShalP;| denote the length oF;,
we setk; ; . = kr/(|P;||P;|) for some constarit;,. The
idea behind this (crude) approximation is that in a well-

tive fourth-order Runge-Kutta solver.

The Modée with Explicit Consideration of Energy

Most of the investigations dealing with ACM don’t take into
account energy considerations, or more generally, the ex-
plicit competition for some limited resource other than the
supplied monomers. As will be discussed in the result sec-
tion, such an external limitation need not to be disadvanta-
geous for the system, but may even help to stabilize it. We
consider energy in a relatively simple manner. The ligation
and cleavage terms in eqs. 2 are multiplied with the concen-
tratione(¢) of some energy resource. Thereby, the energy re-
source is used up and permanently renewed by inflow with
a ratekr. The dynamics of the additional variabi€¢t) is
given by:

de
— =kg — kou 5
dt E t€ (5)
— Y kig L L(pi, sy Phs D )PiDsPme
i,5,k,m

—kc Y C(pipj, Prs Dm)PrPme-
i,5,k,m
Results

In this section, we study the dependence of the dynamics
of the models presented in the preceding section. Some
of the parameters remain fixed for all simulatiors;,;, =

stirred reactor, the collision frequency of two sequences 0.02, k1, = ko = 1. Furthermore, each data point represent-
is assumed to be independent of the length. The collision ing an average value has been computed using at least 20,
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prob. ACM
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logr
09

Figure 2: Probability for observing an ACM in a random
reaction graph as a function of the catalytic reaction prob-
ability r;, = r¢ = r for different values of the maximal
sequence length = 2,3,4,5,6,8. Starting fromL = 8,
graphs representing decreasing length exhibitincreasiing
ues for the transition value of

but most often more than 50 samples. As a convention, log-
arithms are always taken to the basaNhiskers, if shown,
denote first and third quartiles.

The Fundamental Transition

As postulated in Kauffman (1986), for sufficiently large-val
ues of the probabilities for catalytic reactions and r¢
given in eqs. 3 and 4, the reaction graph should contain
an ACM with high probability. In fig. 2, this transition

is clearly observable and becomes sharper for longer se-
guences. Interestingly, the transition curves, givingoitod-
ability of observing at least one non-monomeric sequence
with a concentration above the threshold valuleok identi-
cally the same fof” in the range froml0~'2 to 102, which
means that if there is an ACM, at least one of its compo-
nents will be present with a significant concentration. Fig.

size of ACM
120
100
80

60

40

20

logr
09

Figure 3: Average size of ACM (number of non-monomeric
components bigger thah = 10~ aftert = 10°) as a func-
tion of » and for sequence length = 3,4, 5,6 (bottom to
top). Shown are the median values for the size of the ACM,
the whiskers denoting the first and third quartile. Above the
transition value of-, the system tends to be maximally di-
verse (A maximal sequence lengthimplies2(L + 1) — 4
non-monomeric sequences).

needs to be sufficiently powerful in order to compensate the
outflow. And in fact, in fig. 4, a clear optimum feg; can

be observed, given a fixed, = 0.01 andL = 6. Notably,

in our simulation, this optimum perfectly justifies the orig
inal choice ofr; = r¢ by Kauffman. The choice afy, in

the transition region is motivated by first taking into acebu
that a system may be based only on ligation but not solely
on cleavage (at least with monomeric input). A small value
for r1 will most probably not yield an ACM. A large value

is also not of big interest: A system with lots of ligation re-
actions already produces most sequences and does not profit
from a further broadening of the sequence variety by cleav-
age. The transition region in fig. 2 is the domain in which
an optimization of-¢ will take the most effect.

3 shows the average size of the ACM, means the average Agdain, itis emphasized that the curve shown does not de-

number of components with concentration values above a
thresholdl’ = 10~6 after an integration time= 10° for se-
guences of maximal length = 3,4,5,6. We observe that
above the transition value of the system becomes maxi-
mally diverse. This may be of relevance in an evolutionary
context.

The Role of Cleavage

Given a certain fixed probability for ligation;,, one may
ask for the corresponding optimal valuef. It is clear

pend on the detection threshdlg though the average num-
ber of concentrations above the threshold does, see figs. 5
and 6. Note that whereas the curve in fig. 4 refers to the
whole sample and shows the ratio of those reaction systems
containing an ACM, the data in figs. 5 and6 give the average
size of the ACM, provided there is one. Consequently, data
points at the lower and higher end of the scale are of less
statistical weight (and relevance) than those in the middle

The Role of Energy

that cleavage has some beneficial aspects for the appearanc€ontrolling the influx of energy (or, to be chemically more

of an ACM, because cleavage tends to enlarge the variety accurate, the influx of molecular energy carriers) is a pa-
of sequences. However, cleavage may as well destroy vital rameter easy to control in an experiment, therefore its-influ
parts of an ACM. This is relevant especially under flow reac- ence is of interest. It is clear that below a certain thresh-
tor conditions, where the generation of a specific sequence old of the influx ratekg the generation of non-monomeric
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Figure 4: Probability for observing an ACM in a reaction
graph with maximal sequence length= 6 andr;, = 0.01

as a function of-o. The detection threshold is setTo=
10~% (continuous line) and@ = 10~2 (dashed line).
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Figure 5: Average size of ACM fof. = 6 andr; = 0.01

as a function ofr¢. The detection threshold is given by
T = 10~5. Shown are the median values for the size of the
ACM and the whiskers denote the first and third quartile.
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Figure 6: Same as fig. 5, but wilfi = 102,
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log k
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Figure 7: Probability for observing an ACM in a random
reaction system witl. = 6,7, = rc = 0.01 as a function
of the rate of energy influkg.

sequences is not anymore powerful enough to compensate
for the outflux. This can be seen in fig. 7. Given suit-
able system parameters, ACM are easy to observe at higher
values ofkg. Interestingly, the average size of the ACM
for a large threshold” shows a maximum for intermedi-
ate values ok, see fig. 8 (giving the average number of
concentrations abovE = 10~%) and more prominently for

T = 1072 in fig. 9. A possible explanation for this phe-
nomenon is that the plenty abundance of energy alllows the
generation of more or less all possible sequences, as sug-
gested by the results shown in fig. 3. A more fierce compe-
tition for energy, however, may lead to the eventual extinc-
tion of some side branches of an ACM and consequently a
boost of its “core” components. This externally controlled
focussing is of relevance, because in more realistic saenar
with larger sequence lengths, the relative concentratibns
core components may be much lower than in the (numeri-
cally tractable) model systems presented in this work. Con-
sequently, stochastic fluctuations play a more importdet ro
and a mechanism strengthening the “backbone” of an ACM
at the expense of some side reactions increases the robust-
ness of the system which is of evolutionary and experimen-
tal importance (the consideration made here applies also to
the scenario discussed in fig. 6). Studying stochastic isffec

in ACM with longer sequences requires, however, a patrticle
based approach. For a detailed discussion, see Filisetti et
(2010).

Summary and Discussion

We have shown the importance of the dynamics of a reac-
tion system for answering the question whether it contains
an autocatalytic metabolism. Many algorithms are based on
the analysis of combinatorial properties of random graphs.
Thereby, they are not considering that, especially in the si

uation of a flow reactor, there must not only be a pathway
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Figure 8: Average size of the observed ACM in a random
reaction system witl. = 6,7, = rc = 0.01 as a function

of the rate of energy influkg and for a detection threshold
T =105,
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Figure 9: Average size of the observed ACM in a random
reaction system witl. = 6,7, = r¢ = 0.01 as a function

of the rate of energy influkg and for a detection threshold
T =102

for the production of a given molecule but its production has
in addition to happen at a rate that compensates for the loss
by outflow. Studying the kinetic behavior of random reac-
tion systems reveals the importance of a proper balancing of
the probabilities for different types of reactions: We isve
tigated cleavage and found that taking into account dynam-
ics, cleavage does not only enlarge the variety of polymer
species (which is desirable from the perspective of obtain-
ing an ACM) but may also destroy components relevant for
the system with a rate that cannot be compensated by their
respective generation processes. We also investigated the
role of energy consumption and found that the introduction
of energy as a limiting factor strongly influences the concen
tration profile of the ACM. It turned out that whereas a large
supply of energy leads to a broad variability of sequences,
intermediate values seem to favor ACM with less, but, with
respect to concentration also in absolute terms, more pro-
nounced components. This means that such intermeidate
values render ACM that are less susceptible to fluctuations,
which is of relevance in the context of evlutionary processe

We investigated systems with rather short sequences,
mostly with a maximal sequence length bf = 6. The
numerical values for the catalytic probabilities andr¢
need then to be of a size which is chemically not realistic.
We claim that our results are of worth because whereas the
quantitative features of the shown results heavily depend o
L, the qualitative ones don’t. Even more, data (partially not
shown) suggests that the discussed effects become more pro-
nounced with increasing. According investigations need
then to be performed in a particle based manner, see Hilisett
et al. (2010). Another interesting perspective is pregentl
vestigated by Del.ucrezia and coworkers. In their approach,
the “monomers” are replaced by pre-prepared strands con-
sisting of some ten amino acids. A sequence consisting of a
combinatorial assembly of these strands may have a higher
probability of exhibiting catalytic properties. Howevéne
model presented in this paper is then only a “coarse-gréined
approximation to the dynamics, because cleavage may well
happen within one of the original monomeric strands.

Our choice of the initial conditions, namely to set the con-
centrations of all sequences to one at the start is certainly
unrealistic and motivated by our focus on stability consid-
erations. The discovery that the energy supply influences
the concentration profile opens the perspective of “iteedti
emergence. A very limited set of initially provided compo-
nents may establish a first, still frail ACM which produces as
side products some further, possibly catalytic componrents
low concentrations. A only temporal increase of the energy
supply may enable the system to reach a new basin of at-
traction by a short-term increase of cleaving activity whic
in turn produce a passing wider variety of sequences at suf-
ficient concentration in order to take effect, but without-ha
ing to cope with the long-term presence of enhanced cleav-
age. We will address this scenario in a subsequent work fo-
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cussed on issues of emergence, also considering aspects ofilisetti, A., Serra, R., Carletti, T., Villani, M., and Rpl. (2008).
stabilization against molecular parasites achieved bijapa Synchronization phenomena in protocell modBisphysical
organization with Filisetti et al. (2008) or without Fiitins Reviews and Letters, 3(1/2):325-342.

and McCaskill (2001); Fuchslin et al. (2004) explicit com-  Fijisetti, A., Serra, R., Villani, M., Fuchslin, R. M., Pieard, N.,

partmentalization. Kauffman, S. A., and Poli, I. (2010). A stochastic model of
The problem Of dec|d|ng Whether or not a g|ven reac- autocatalytic reaction networks. submitted to ECCS10.
tion system contains an ACM may one remind to a simi-  gicpglin, R. M., Altmeyer, S., and McCaskill, J. (2004). ofiv
lar problem in systems biology, namely the determination tionary stabilization of generous replicases by complex fo
of possible fluxes in a only partially known metabolic net- mation. Europ. Phys J. B, 38(1):103-110.
worksVarma an_d Palsson (1994); Orth ?t al. (2010). In flux Fuchslin, R. M. and McCaskill, J. S. (2001). Evolutionaslfs
balance analysis, one basically determines the set of poten organization of cell-free genetic codingroceedings of the
tial solutions for the fluxes, given that a) the stoichiomet- National Academy of Science USA, 98(16):9185-9190.

ric matrix and a vector containing fluxes forms an under-

determined linear system and b) some (in practice usually Hane;’iti'?)'r‘l 'fna‘#zrr:‘d%”rh Sc'a?é'l ";‘igdnl?v‘\*/g:ﬁ;' SH ggalo“r’géeﬂ?gf‘g tra

linear) constraints have to be observed. Flux balance anal- 72:036117. d il ’

ysis provides a highly successful and efficient tool for e.g.

the optimization of only partially known networks (By us- ~ Hordijk, W. and Steel, M. (2004). Detecting autocataly8elf-

ing linear programming). The problem we address in this ifest}?;"g?ofets |£1207r?ignl|c2|6rfactlon systedosrnal of The-

work is, however, different. The networks are completely O, ££LASLTABL

known and therefore, the flux balance equation are fully de- Jain, S. and Krishna, S. (2001). A model for the emergence of

termined, which means that searching a stationary solution cooperation, interdependence, and structure in evolvitg n

requires solving a non-linear system. \évg(rg)slsiré)fgid;ngsof the National Academy of Science USA,
Taking into account dynamics shows that first, one of the ' '

reasons for the fact that spontaneously formed autocitalyt Kauffman, S. (1986). Autocatalytic sets of proteindournal of

systems have not or only rarely been observed in the lab- Theoretical Biology, 119:1-24.

oratory may not only be due to lack of catalytic activity. | etelier, J.-C., Soto-Andrade, J., Abarzua, F. G., Corisivden,
As a matter of fact, it could even be caused by too much A., and Cardenas, M. L. (2006). Organizational invariance
catalysis, if cleavage is too frequent. Second, and proba- and metabolic closure: Analysis in terms of (m;r) systems.
bly more important, we need to shift our attention from fo- Journal of Theoretical Biology, 238:949-961.

cussing solely on catalysis (and respective probabiiteea Lifson, S. (1997). On the crucial stages in the origin of aatien
picture in which kinetics plays an important role too. Even matter.J. Molecular Evolution, 44:1-8.

if we had reaction system in which in principle an ACM
could produce measyrable sianals. it Onlp doeps if the kineti Mossel, E. and Steel, M. (2005). Random biochemical netsiork
uld produ u 9 ! y ! : the probability of self-sustaining autocatalysidournal of

parameters are suitably chosen. Some of these parameters,  Theoretical Biology, 233:327—-336.
such as e.g. outflux rates, can easily be manipulated in an

experiment and should be in the focus of future work. Orth, J. D., Thiele, 1., and Palsson, B. O. (2010). What is flux
P balance analysis®ature Biotechnology, 28:245-248.
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Abstract

The Evolution Grid, or EvoGrid is a computer simulatio
framework for distributed artificial chemistry (AC) sugting
computational origins of life (COoL) research. Theo&vid
consists of a number of small experiments running omt sho
time scales pruned by aggressive tree-branching ssarch
supported by random parametric re-seeding and tempac#t
tracking. The EvoGrid is designed to converge upba
observation of “cameo” simulations of key pre-biaticsimple
biological structures or behaviors. These cameo stinnkcan
then inform and feed larger AC simulations operating over
biologically relevant time scales. In addition, fr@mework is
designed to plug into a heterogeneous set of engargging
from high fidelity molecular dynamics (MD) to moresatact
AC techniques on the same set of data. The EvoGsd a
provides shared web-based simulation management service
and uniform, open standards for execution, storagk data
analysis. We conclude by describing the first prototype
implementation of the EvoGrid, early results, nexpstand
open questions in this and other COoL endeavors.

I ntroduction

In their seminal paper Open Problems in Atrtificiafe
(Bedau et al., 2000) the authors set a challengkersecond
open problem to “achieve the transition to lifeaim artificial
chemistry in silico” (p. 364) while also identifying that
“[bletter algorithms and understanding may well elecate
progress... [and] combinations of... simulations... wobkl
more powerful than any single simulation approaggh”367-
68). The authors also point out that while the tdignedium
is very different from molecular biology, it “hasmsiderable
scope to vary the type of ‘physics’ underlying gvelutionary
process” and that this would permit us to “unloble tfull
potential of evolution in digital media” (p. 369).

All of this potential awaits further progress in eth
computational challenges of high fidelity (i.e. a@te and
predictive) artificial chemistries. Current statetioe-art
artificial chemistries (AC) (Dittrich, et al., 20Pincluding
molecular dynamics (MD) projects utilize large cafized
general-purpose computer clusters or, more receptispose
built hardware, such as Anton, an MD supercomp{8aaw,

et al., 2009). Simulating tens of thousands of atdon days
to weeks on a commodity cluster will produce a nembf
nanoseconds of real-time equivalent chemistry. rOip&d
software running on Anton promises millisecondseaf-time
equivalent ACs in weeks of computation (Shaw, £t24108).

To meet these challenges, proposals to unify affatb larger
computational origins of life (COoL) endeavors haween
brought forth. Shenhav and Lancet (2004) propodizing

the Graded Autocatalysis Replication Domain (GARD)
statistical chemistry framework (Segre and Landf99,
2000). These authors have developed a hybrid scheme
merging MD with stochastic chemistry. In GARD mashort

MD computations would be conducted to compute rate
parameters or constraints for subsequent stochastic
simulations. Thus, a federation of simulations aedvices
was conceived which would also involve interplaythwin

vitro experiments. It is this vision for unifying effertin
COol that has inspired our own work to build a feamork

for distributing and searching a large number ofalém
chemistry simulation experiments.

As stated by Shenhav and Lancet, “the prebiotiéemitould
best be characterized by a dense network of weakaitions
among relatively small molecules” (p. 182). Simingtsuch a
soup represents yet another scale of complexityrzkythe
targets set by even the builders of Anton. While th
simulating of the full pathway to lifen silico seems like a
journey of a thousand miles, the first few steps ba taken
and may become less daunting when helped alongime s
innovative algorithmic and architectural short cuts

A fundamental property of large scale (in time diora and
population of objects) simulations is that for tmest part
they use a homogeneous approach to optimize cotiguta
On the opposite end of the spectrum we proposert@iarge
number of small simulations. Such an approach wonld
theory support a heterogeneous network of simulatio
techniques which vary physics, levels of abstractind could
even employ selection methods and replication cults
inspired by the process of evolution. This is thmpraach
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taken by the authors in developing the EvolutiondQor
EvoGrid), to be discussed next.

EvoGrid Search Function

The basic concept behind the EvoGrid is what wetearaing
cameo simulationsCameo simulations are comprised of no
more than a few hundred or thousand particles septeng
atoms and small molecules running over short ticades and
in multiple instances. The existence of those m#a is
governed by a search tree function which permitgtians of
initial conditions and the branching of multiplearplliel
simulations. Variation of parameters and branclirggunder
control of an analysis step which looks for intéres
structures or behaviors within each cameo simuidtiame
Frames deemed less interesting may be terminateak g0
permit other branches to be explored to a greatmne This
approach is inspired by the class of genetic algms (GA)
combined with hill climbing algorithms widely useih
Artificial Intelligence (Russell and Norvig, 2003).is a form
of importance sampling (Kalos and Whitlock, 200&)d its
relationship to Maxwell's Demon requires carefulusmy
(Maruyama et al., 2009).
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Figure 1: lllustration of the hill climbing search dremethod
employed by the EvoGrid

Figure 1 illustrates this method for a Control (Which
depicts a typical linear time sequence simulatiod &est (B)
which depicts the arising of simulation brancheshis case

due to selection for the phenomenon of more densely

interconnected points. This illustration depicts otluer
optimization called temporal back-tracking. If thienulation

states of each frame can be stored through tines, @hfailed
branch may be rolled back to the point at whichefiasting”
frames were still occurring. With a random seedliadp a
new branch is started. This branch may yield a dexp
phenomenon forgone in the failed branch. In thempta
illustrated abstractly by C, that phenomenon mighta ring
structure, as shown in the frame with the checkkmiarthis
way, improbable occurrences may be guided acrdieysaf
highly probable failure.

Genes of Emergence

Efforts to bridge nonliving and living matter anc\wetlop
protocells from scratch (Rasmussen et al., 2008)rely on
bottom-up self assembly with commensurate selfrargdion
of classes of molecules. The development of repeatself
assembly experiment® silico (Rajagopalan, 2001) could
serve as an important aid ito vitro protocell research. Self
assembly in simulation may be purposefully desiginéal the
experiment or may be an emergent phenomenon disebve
by a directed search through multiple trial simolas. The
initial conditions for a simulation could be equit® the
coding sequences of a genetic algorithm (GA), ahd t
simulation outputs seen as its expressed phenotfpe.
EvoGrid's search for self-assembly and other phesramin
cameo simulations is therefore a search for whatight
term “genes of emergence” (GoE).

GoEs may be derived from within many different typeaf
simulation, not just in the computationally interesiMD
world. More abstract simulation modalities may gishorter
pathways to the production of important emergemnomena
than through computationally complex ACs (Barbaetal.,
2009). One could then see that the EvoGrid reptesan
“discovery system” operating on a continuum of tégbes
which might include: the execution of simulation dntes
that code for abstract universes yielding intengstesults, to
be then swapped out for a simple AC within whichwiauld
hope to reproduce the results, and finally, cagyime GoEs
one step further into high fidelity MD, then whiatould
inform validation through full scale vitro experimentation.

%1
=

B

m
d A B
S Sz

A T B
Sc

Figure 2: lllustration of the concept of cameo sirtiales feeding a
larger composite simulation.
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Figure 2 graphically illustrates the first two stagof this
continuum. In the first stage, hill-climbing searftinctions
(represented here as trees) process through a nainbmall
cameo AC simulations. The end-point simulationsovah
here as S1, S2 and S3, each meet some criterigef@rating
a structure or behavior of relevance to a largenmmusite
simulation Sc. In the second stage, Sc is conguiom a
mixture of content from each of the "feeder" cameo
simulations and is driven by an amalgamation of the
individual simulation experimental parameters A,aBd C.
The hope is that this amalgamation in simulationr8oning
with a much larger content store and over bioldbica
significant time scales, would generate a rich orixt of
phenomena, such as the formation of membranes gene
of replicators, or the observation of autocatalytaction
pathways. It is this enriched simulation environmesich
could be the basis for more ambitious computationigin of
life endeavors. In another twist, an interestingnmdmenon
observed in Sc could be captured, its parameteds|@al
contents extracted and cameo simulations run teactexize
and fine tune the phenomenon more closely, enabliregher
ratchet in the emergent power of the larger sinat

EvoGrid Design and Operation

Simulation Manager Simulation Cluster
Web Server ChemoGrid Marshal
(Apache)
Database
(MysaL) ”_* GROMAGS >
parameler GROMACS
File
Storage
Intial Analysis Server
ChemoGrid Analysis
Daemon
histry N Data Format Legend
Chmatn History JSON
EvoGrid ] Analysis 4
Simulaton Modules Parameters JSON
Generator statistics Statisties JSON
— Score JSON
Analysis Client GROMACS Forma
scores BOINC Client MRl
~
Bl [ | | ChemoGrid
Analysis
Modules

Figure 3: High level design and data flow of the ExdG

As depicted in Figure 3, the modular design of BveGrid
encapsulates an MD simulation engine, in this case
GROMACS (Van der Spoel, 2005), which we found teeha
good performance and was suitable to run as a iplug-
component. GROMACS could be swapped out for other
suitable simulation systems or the EvoGrid woulghpsrt
these systems running in parallel on the same skttaThis
architecture is designed to meet the challengedpbgdedau

et al. (2000) in which combinations of differentnsilation
approaches might be a pathway to significant psxgre

Simulation Management Simulation Servers

Simulation Options

HTTP Transport

Density (Pressure) -
Atom type ratios - Simulator

Total atom count

Inter-atom forces
Analyis Servers

Length of simulation run

Simulation Snapshots
Simulation Statistics ™ =i

Position
Analyis
Bonds formed per second

Y

Velocity

Bonds destroyed per second e
Average particle speed

Max Molecular Length

Avg Molecular Length

Totals of molecules of particular formation

L

Simulation Scores
Total Bonds created
Total Bonds destroyed
Avg Bonds created per second
Max Molecular Length
Avg Molecular Length
Avg Bonds destroyed per second
Plateu-ness

. Analysis Clients

— Analyis

Figure 4: Lower level sequencing of data types thinahe EvoGrid

Other abstracted components depicted include arlygina
Server and an Analysis Client. Both of these corepts
process inputs and outputs to the Simulation Clustang the
compact JSON format. The Simulation Manager runniiag
HTTP/Web services sequences the simulation of dred t
analysis of individual frames (Figure 4). MD simiidas
typically have heavy compute loads in executing tinge-
steps for each force interaction of artificial atonin the
EvoGrid, tens of thousands of frames are beinggrecand
replicated through new branches. This generatebyss of
stored states for analysis. This could eventuallyfor a fully
distributed simulation network, such as provided the
BOINC network (Anderson, 2004). BOINC supports many
computationally intensive scientific applicationsuch as
Folding@home (Pande et al., 2003). However, attitns we
are relying on the centralized analysis server.

EvoGrid Prototype Runs and Results

A prototype of the EvoGrid architecture was built 2009.
Frames of 1,000 simulated atoms were run for 1,00
steps within the GROMACS module with a uniform hieath
applied.

Initial conditions for GROMACS were:
« Density in particles per Angstrom: 0.01 - 0.1
e Temperature in Kelvin: 200 — 300, used for initial
velocity and temperature bath
e Bond outer threshold in Angstrom: 0.1 - 1.0, dis&n
used for bond creation

The atoms ranged between three and ten randombrafed
types. All their parameters (mass, charge, forderaation
with other types, radius and volume) were seledteth a
uniformly distributed random range.

Forces between atom types included:

Pre-computed components of the Lennard-Jones force

function:
e 6
o« cl2

0.0-0.1
0.0 - 0.00001
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Covalently bonded (pre-computed components of
harmonic bond force function):

e rA 00-20
« krA 0.0-20
e B 00-20
« kB 0.0-20

As an initial test case on a single instance of GRCS
when a bond was created, the Lennard-Jones foroesdw
cease applying, and no new forces were applieds Was
done to minimize real world constraints prior toing access
to a computer cluster supporting covalent bond adatmns.
The main focus of this prototype was to be ablaeki the
architecture, not faithfully simulate the chemistry

The position and velocity data was dumped evenplf@les
and a naive bonding applied to all atoms or atorteocute or
molecule-molecule objects. After a thousand of éhéismps,
this collected history was processed by the armlgsrver.
Table 1 represents the scoring for frame number2D44 the
final frame in our trial run. The analysis was sptto look for
the formation of “larger” virtual molecules, whicim our
simplistic interpretation meant a simple count lvé greatest
number of bonds between any two atoms. Employingti&lo
Carlo methodologies, the maximum search score ezhah
the trial was a simple sum of the entries in Tdble

Measured values Final simulation scores

Average molecular size 2.2303
Maximum average molecular size 4.47307
Average maximum molecular size 9.355

Maximum individual molecular size 17

Final maximum search score 33.0584

Table 1: Scoring produced by prototype analysis sefoe final
simulation frame

25

20

1 r— _____

Sl LT

Figure 5: Scoring of experiments in “control” mode (@am
regeneration with no search tree function)

Figure 5 shows the “control” case (A) from figuréniwhich
a random initial frame is simply run with a randgrskeded
restarting of GROMACS for a duration of one thousan
internal simulation steps (atom-atom interactiongjh a
thousand state dumps without the search functiptieap As
we can see, while there were some highly scoradesa(red
line), there is no maintained trend. Please not the

the missing lines indicate cases where our softwareeigeed

impossible simulation configurations and the execuiwvas
halted. This illustrated an area for improvementhofv we
were operating the GROMACS engine.

45

40

0

Figure 6: “Test” run showing trend toward higher “fitaesitilizing
the search tree function

In Figure 6, the “test” case (B) from Figure 1 applthe

search function, which clearly takes the initiatligh value

produced by the same starting frame generatedhécantrol

case and improves on it over time. The strengtthefsearch
function is that subsequently generated frames taadn

climb to a higher score-generating capacity (“f#si® over

randomly generated control case frames. The sdarction

will restart with lower performing simulations ifllathe

potentially better options are exhausted. As saefigure 6,

this causes a period where the evaluated simuldiinass

(blue line) remains less than the best observedd# (orange
line). In this manner, the search function is ofiegaas a
Stochastic Hill Climbing algorithm in that the sgst has the
ability to find its way out of traps set by locahrima.

EvoGrid Next Steps: Questionsfor the
Computational Originsof Life

This very preliminary work poses far more questidhan
provides answers. However, as an early exemplar of
computational origins of life (COoL) endeavors, #eoGrid
prototype and its proposed development path coerdesas a
roadmap to more fully functional platforms of thaure. This
roadmap also summons some broader issues, whidit beg
considered a good start to a list open problems in
computational origins of life

The greatest limitation in the EvoGrid prototypeoisr use of
a naive model of chemistry including the abstrastnef our
atom types, bond formation and the resulting “molac
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structures”.

Bonds are formed by simple proximity

calculations using the positions, velocities argeotdata for
objects exported from GROMACS. This situation may b
improved by using the MOPAC7 library (Stewart, 2p08
employed by GROMACS for covalent bond formation #mel
representation of other molecular affinities such those
produced by electrostatic and van der Waals forces:

1.

Related to this first limitation is the need tolgeyond
the initial proof of concept prototype which is
restricted to abstract atoms assembling into médscu
Our next steps must involve molecules assemblitgg in
larger structures that have the potential to exhibi
properties of evolution. When this capability is
prepared, a “real” set of experiments for testihg t
capabilities of the EvoGrid architecture should be
attempted. Some proposed experiments include
support for MD or coarse-grained simulation of dipi
bilayer assembly reproducing the work of Fellerman
(2009) using LAMMPS (Plimpton, 1995). Another
good early test case would be to reproduce a diexpli
version of the groundbreaking experimental work by
Bartel and Szostak (1993) in the isolation of new
ribozymes from a large pool of random sequences.

The storage of frame states will be implementethén
near future. Temporal back-tracking is now being
improved which will enhance the selective power of
the search tree function. In addition, the commutin
resources of CALIT2 at the University of Califorraa
San Diego have been offered to the project, giviag
critical storage and multiprocessor clusters fer rilext
testing of the framework. A full work-up of compugj
and storage resources required by this architecture
operating at different levels of simulation would bf
value. Axes on a plot of EvoGrid computational
complexity might include: number of particles and
types of interactions handled for volume and time
frame simulated, and desired level of fidelity to
chemistry.

Another significant test of this concept would be t
integration of simulation platforms other than
GROMACS within the EvoGrid architecture to
support heterogeneous simulations. For example,
numerous engines, along the continuum of artificial
chemistries from the highly abstract to the highly
faithful to chemistry, are candidates to be integga

In no particular order, candidate platforms aree Th
Organic Builder (Hutton, 2009), Avida (Adami and
Brown, 1994), GARD (Segre and Lancet, 1999),
NAMD (Philips et al., 2005), Desmond from Shaw et
al (2008), and possible tie-ins to GPU-based harelwa
platforms (Anderson, 2008).

Bedau et al (2000) call for creating frameworks for
synthesizing dynamical hierarchies at all scaldsee T
heterogeneous nature of EvoGrid simulations would
allow for coarse-graining procedures to focus
simulation from lower levels to higher ones, saving
computing resources by shutting off the less @itic

more detailed simulations below. An example of this
would be to switch to coarse grained simulatioraof
entire lipid vesicle, ceasing simulation of indival
vesicle wall molecules. Conversely, fine grained
simulations could be turned on for locally impottan
details, such as diffusion of molecules throughcles
membranes. As exciting as this all sounds, a decade
the world of 3D simulation platforms has taught the
authors of this paper that interfacing differerftware
engines and representations of simulation space is
extremely difficult. Running the same simulation
space at multiple scales employing multiscale msysi
(e.g. from MD to dissipative particle dynamics, and
beyond to smooth particle hydrodynamics) is also a
very challenging problem that awaits future researc

A general theory of so-called cameo simulationgeee
to be developed to understand the minimum number of
interacting objects and physical simulation prapert
required in these simulations for the emergence of
“interesting” phenomena pertinent to life’'s buildgin
blocks. Our hypothesis that the GoEs in cameo
simulations would apply to larger simulations also
needs to be tested in the context of more ambitious
COol efforts capable of supporting artificial eviidun
thereby giving credence to the “Evo” in EvoGrid.

The EvoGrid cannot escape the meta-problem of all
designed simulation environments: if we set up and
simulate a system acting in the ways we accept as
probable, then that system is much less likelyctoira
improbable and potentially informative ways, as
results are always constrained by the abstractmas
assumptions used. Another way of stating this very
central conundrum is that as long as we do not know
how chemical molecules might be able to exhibit
emergence of important characteristics such as
replication we will not be able to design the fiee
functions to actually select for these moleculetheir
precursors. The fitness-function generation probiem
as yet unsolved. However, the EvoGrid framework is
being built to: 1) allow each potential experimente
to code in their own definition of fitness, accuating
knowledge applicable to the problem in an iterative
fashion; and 2) support a more exotic solution in
which the search functions themselves ‘evolve’ or
‘emerge’ alongside the simulation being searched.
Actually building the second option would first tece

a much more extensive treatment from the field of
information theory.

There are the deeper considerations that reachtback
Langton who coined the term “artificial life” (Latan,
1986) and envisaged an investigatiorifef as it could

be COoL systems need not be constrained to models
of the emergence of life on Earth. More abstract
simulations may shine a light dife as it might beout

in the universe (Gordon and Hoover, 2007), as & too
for use in the search for extraterrestrial intelfige
(SETI) (Damer, 2010), or as technogenesisvithin
computing or robotic worlds.
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8. A critic of theories of chemical evolution, cosmgit
Sir Fred Hoyle used the statement about a readly-to-
747 aircraft being assembled by a tornado passing
through a junk yard of parts (Hoyle 1984) to ridecu
the idea of spontaneous generation of life atrigir
This idea today fuels creationist claims for irreidhle
complexity as one of their strongest argumentster
existence of a Creator. Like it or not, this flavoir
debate will find its way to practitioners of COoL
efforts. Gordon (2008), Damer (2008) and Barbalet
and Daigle (2008) take this theme head on within a
compendium of dialogues between creationists and
scientists.

9. A corollary to Gordon’s prediction (Gordon, 2008, p
359) that Alife enthusiasts have an opportunity to
solve the “Origin of Artificial Life” problem well
before the chemists will solve the “Origin of Life”
problem, is the very question of “what defines
something as being life?”. In the case ofiarsilico
genesisve would ask “when will we know something
is artificially alive?” Given latitude to speculasdout
these grand questions from such lofty heights of
ignorance, it will be no surprise if emerging COoL
endeavors attract a wide and vocal variety of cdeve
and critics alike.

10. In the end the key question must be asked is: aftwh

relevance is digital simulation to real chemistny o

biology? Any given computational system might be

able to show fascinating emergent phenomena but
such discoveries might well stay trappadsilico and
never transition over to inform experimentatiam
vitro. This would indeed be a shame and as such
should motivate builders of systems like the EvdGri
to keep their eye on the ultimate prize: the transf
concepts developed digitally into chemical

experimentation. The inevitable marrying of these t

media will produce one of the most powerful new

tools for science and technology in thé' Zentury.

Conclusion

A hybrid synthesis has been proposed between Iscgée
high fidelity molecular dynamics simulations andtdbuted
cameo simulations acting as an aggressive discasyetem
for thegenes of emergender some of life’s building blocks.
The EvoGrid is a framework under construction tgpsrt
such distributed cameo simulations. Early resulamf a
prototype implementation indicate that our searge twith
temporal back-tracking optimization is performings a
predicted as a stochastic hill climbing system. BwGrid
software architecture has been shown to operateessiully
with a large number of small, naive chemical sirtiokes run
with the support of an industry standard MD engidisting
of the current system’s shortcomings and a roadiorafuture

applicable to the emerging field of computationagios of
life (COoL) which is dedicated to “achieve the s#ion to
life in an artificial chemistryn silico” (Bedau, et al. 2000).
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Extended Abstract

How can a system become better adapted over time without natural selection? Although some argue for ‘organismic’
properties such as robustness and self-sustaining regulation in non-evolved systems [1,5,11], others insist that natural
selection is the only source of true adaptation [3]. We suggest that understanding how adaptation can occur without natural
selection remains a fundamental open question for the Artificial Life community. For example, the origin of life, the origin of
evolution, and the origin of new units of selection in the major evolutionary transitions/biological dynamical hierarchies, all
seem to imply an adaptive process, or at least a non-arbitrary organisational process, that precedes the onset of natural
selection proper (at each level of organisation).

In recent work we have been developing a number of inter-related concepts that approach this question from
different angles [2,6,7,8,9,10,12,13,14,15]. In a general sense, it is known that a complex dynamical system can self-organise
in a manner that reflects structure in external perturbations. But more specifically, we find that when variables in the system
have a bi-modal distribution of decay constants (some fast and many slow), slow variables spontaneously act in a manner
functionally equivalent to the weights of a neural network undergoing Hebbian learning, thereby modulating the behaviour of
the fast variables such that the resultant internalised structure takes the form of an associative memory [4]. The proximal
cause of these changes is merely that such a configuration is less resistant to, and hence less affected by, the perturbations to
the system (c.f. homeostasis). But the system-scale consequences of this structuring is that such a system can ‘recall’,
‘recognise’ or ‘classify’ stimuli and, given appropriate structure in the perturbations, generalise to previously unseen stimuli,
in just the same manner as a trained neural network [4].

This provides a framework to connect the concepts of a dynamical system merely ‘doing what it does naturally’ at
one scale of explanation with interpretation as an adaptive system at another. In particular, in the joint phase space of both
fast and slow variables the system merely decreases in energy, as one would expect from any purely mechanistic explanation.
But induced structure in the slow variables improves the ability to dissipate energy from the fast state variables. Thus with
respect to the fast system variables only, systems organised in this manner do not merely minimise system energy but get
better at minimising energy over time. When the external environment of the system corresponds to an optimisation problem,
the system thus improves its ability to solve that problem over time. It is in this sense that we can understand the system, not
just as self-organised, but adapted. We present an abstract model and simulation of this process and discuss how it relates to a
number of different domains: the evolution of evolvability in gene regulation networks [12], the evolution of new units of
selection [10] via symbiosis [15] and 'social niche construction' [8,9], games on adaptive networks [2], distributed
optimisation in multi-agent complex adaptive systems [13,14] and multi-scale optimisation algorithms [6,7].
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Abstract

We use Artificial Chemistries (ACs) as a way of addressing
problems in Artificial Life (ALife) and evolution, by consid-
ering Eigen’s paradox — small replicators with poor fidelity
can not encode sufficient information to build a replicator
with improved fidelity. We describe three AC case studies
for different periods in the early evolution of the earth. From
these, we discuss more general properties that are useful for
ACs to possess for evolution, and compare our properties to
those described by other authors.

We do not present a resolution of Eigen’s paradox; rather we
demonstrate a way of thinking about AC in the context of
early evolution. Eigen’s paradox is one key issue in this pe-
riod. We use ACs as a model paradigm and from these we
extract relevant properties that can be considered separately
from the specific ACs that informed them; these properties
can be used to inform design and analysis of future ACs.

Introduction

Artificial Chemistries (ACs) are a useful basis for experi-
ments in Artificial life and evolution. Approaches to ACs
in this area tend to emulate the ‘central dogma’ of biology,
whereby information is encoded on macromolecules analo-
gous to DNA, RNA, and proteins. This is a difficult mod-
elling challenge due to the size of the molecules relative to
their atomic constituents, and the complexity of the inter-
actions between them. An alternative to this approach is to
seek ACs that more closely resemble models of the early
evolution of life on earth which do not have such a con-
strained linear flow of information. These stages may be
easier to model due to their relative simplicity, and from
these models, a set of properties can be derived that allow
better models of the macromolecules of the central dogma
of biology to be constructed. However, this pathway is not
well understood in paleobiology and is therefore difficult to
emulate. Recent work in paleobiology suggests that there
were many different modes of evolution before the central
dogma of biology became prevalent [25]. These modes ex-
ploit a more vague distinction between template (genotype-
carrying) molecules and machine (phenotype) molecules. In
this paper, we report work on ACs carried out separately by
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the three authors, that collectively emulate this period in the
history of life.

One of the key problems an AC must handle is that any
route from pre-biotic chemistry to the central dogma of bi-
ology must resolve Eigen’s paradox [5]. This is Manfred
Eigen’s observation of the following cycle:

e Low-fidelity replicators are only able to preserve small
genomes reliably.

e Small genomes limit the power of the phenotypes they
express.

e So a small genome cannot encode a phenotype which con-
tains a high-fidelity replicating mechanism

In essence, the poor copy fidelity of early genotypes could
not encode the phenotype sufficiently accurately to preserve
any improvements in copy fidelity.

We do not attempt to resolve Eigen’s paradox here. In-
stead, we used the paradox as a challenge for AC design.
This allows us to set ACs in a context and discuss their
properties relative to this context. We argue for Goldberg’s
‘piecewise engineering’ approach in the first instance [12]
and take the view that a ‘one size fits all’ approach to AC
design is not the most efficient way of approaching diffi-
cult problems. These problems are characterised by a sys-
tem (such as chemistry, in the case of Eigen’s paradox) that
changes how it behaves as it develops through time. Be-
fore the resolution of Eigen’s paradox, replicators were con-
strained in their size and therefore in their functionality;
once the paradox has been resolved, this ceiling is lifted
which allows for further evolution and adaptation, eventu-
ally leading to the central dogma of biology that we recog-
nise today.

ACs can be used to produce Artificial Life (ALife) sys-
tems in which evolutionary features (such as reproduction
or mutation) are not explicitly defined a priori. Instead, they
are emergent properties of the system and as such are implic-
itly embedded:— they can be changed by the ALife system,
rather than having to be pre-specified by a designer.
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We investigate this by considering three different ACs
which can represent the chemistry that existed before, after
and during Eigen’s paradox (figure 1). These chemistries
come from recent work by the authors, developing ACs
for three challenges: the origin of life [10]; the evolu-
tion of evolvability (meta-evolution) [21]; and as the ba-
sis for a self-maintaining genetic algorithm [16]. Note that
the emphasis in these works is placed heavily on replica-
tion processes and do not consider the role of the container
in the context of resolving Eigen’s paradox. None of our
chemistries currently model a cell membrane within the
chemistry itself (but our chemistries do occupy a set volume
and thus at least have the abstract concept of a container)
although the emergence of membranes is linked to the emer-
gence of replicators in models of the early earth. After de-
scribing these three chemistries, we discuss the properties
they possess, how these relate to properties considered inter-
esting by other authors [24] and how they relate to Eigen’s
paradox.

Finding a single chemistry to span these phases is much
harder than finding different chemistries modelling each sit-
uation appropriately. The goal of our work in these three
areas is to derive a new set of desired properties, to aid us in
designing a series of ACs that together form an innovative
artificial evolutionary platform. We are interested in finding
which properties of ACs contribute to evolution and evolv-
ability in general. Focusing on Eigen’s paradox as an exam-
ple of evolvability is a way in which we can tease out these
properties.

The Context of Eigen’s Paradox

A time-line of the beginnings of evolution on the early earth
is shown in figure 1. This period is interesting to ALife re-
searchers because it resolved Eigen’s paradox [22], a key
problem in evolution. The period begins with the ‘late heavy
bombardment’ of the earth by debris from space as the so-
lar system formed — only after this was the planet thought
to be stable enough for life to prosper. Then come the well-
known phases in the development of life on this planet, from
the pre-biotic chemical ‘soup’ to the emergence of the cen-
tral dogma of biology. The graphic in the middle of figure
1 illustrates the inheritance of genetic strategies over this
period. Essentially, many different evolutionary strategies
are prevalent, until the central dogma sweeps the planet as
shown by the shaded region at the bottom of the graphic.
Eigen’s paradox is resolved before the emergence of repli-
cator molecules that precede the central dogma of biology.
The three chemistries forming the basis of the current con-
tribution are shown to the right of the graphic in figure 1.
These are described below.

From the perspective of the central dogma, Eigen’s para-
dox is insoluble. It is not possible to construct a long geno-
type for an accurate copying phenotype from the basis of a
short genotype that encodes an inaccurately-copying pheno-

Late heavy bombardment

Pre-biotic soup

Time

Inorganic catalysts
Polymerization

Organic catalysts
Eigen's paradox ___
First replicators

Increasing fitness

"RNA World"

DNA & protein
Y Central dogma

Figure 1: Timeline of the beginning of evolving systems.
Events leading to the central dogma of biology are shown
on the left. The resolution of Eigen’s paradox is required for
the emergence of competent replicators. The central graphic
shows the myriad different evolutionary processes that are
thought to have been prevalent before the central dogma.
The three Artificial chemistries are shown on the right of
the figure.

type. And yet, the central dogma is common to all known
life. Potential resolutions to Eigen’s paradox are:

1. Stochastic processes throughout the planet over a billion
years could ensure that, even though on average a short
sequence does not copy well, given enough sequences,
some might work well enough for long enough to encode
a faithful genotype-copying arrangement.

2. Environment: there may have been local isolated envi-

ronments where fidelity was higher and denaturation was
reduced. If a long & accurate replicator could have arisen
there, it could have spread to other locations; e.g. the pres-
ence of inorganic compounds such as clay crystals, could
have aided replication [2].

3. The assumption that short sequences imply low fidelity

is false. It may have been possible to construct some effi-
cient copier from a short genome in some ‘lost’ chemistry.
Alternatively, some collective property of the system does
the job of forming an accurate template before the arrival
of specialised template-carrying molecules.

Our chemistries explore the third possibility for resolution
of the paradox. ACs for ALife could be used to find evolu-
tionary mechanisms simpler than the central dogma of biol-
ogy — this forms the central design objective of our ACs.
It involves seeking simpler molecular machinery than DNA,
RNA and protein, which will be easier to simulate compu-
tationally. However, by discarding the central dogma of bi-
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ology, we have lost the ability to design replicators by look-
ing at biology and attempting to copy what we see because
these primitive replicators no longer exist on the Earth. We
are faced with the task of designing from scratch an AC that
can support recognisable evolution.

The paradox is related to ACs in two ways. Firstly, if we
have an AC that cannot resolve this paradox, then the AC has
a (small) maximum genome size that it can not overcome. If
we want genomes larger than this size, then we must ex-
plicitly add in high-fidelity replicators. Secondly, the ACs
may foster new theories about how Eigen’s paradox can be
resolved. We can design ACs to test these new theories.

Implementations

We now present a brief overview of the three chemistries ref-
erenced in figure 1. In its most basic form, an AC is defined
as[4]:

o A set of molecules (both those present at a point in time
and all possible molecules)

e Reactions that describe transformations between sets of
molecules

e An algorithm which determines how the reactions are ap-
plied to the set of molecules present

A number of different ACs have been developed from this
basis, without much consensus on which approach is ‘best’.
However, there have been a number of different properties
and characteristics proposed as interesting features or re-
quirements. ACs have also been applied in various other
contexts [23, 20], but the power of ACs is limited if evolu-
tionary processes are not implicit in the representation.

Our approach is to decompose the problem into three
phases: emergence of self-replicators (AC1); evolution of
evolvability (AC2); stable but primitive evolutionary system
(AC3).

AC1: Emergence of Replicators

AC1 is an analogue of the pre-biotic soup in which early
replicators emerged. It is designed as an source of open-
ended chemical novelty and innovation, in which replicating
molecular species may be initially formed. In this phase,
replicators do not yet exist and therefore other processes and
structures, such as autocatalytic sets [19] and hypercycles
[6, 7, 8], are the focus of investigation.

One of the problems investigating the earliest phase of
evolution is that there cannot be an assumption of a pre-
existing replicating structure — it must be initially formed
from other reactions. In order to achieve this, the chemistry
must spontaneously generate sufficient novelty in order to
describe templates and the molecular machinery to replicate
them.

To implement an AC for this phase, we have developed a
novel molecular representation classification, which we call

a) b)

Meta-meta-
evolutionary algorithm
Meta-evolutionary
algorithm

changes

Evolutionary
algorithm

changes

Figure 2: a) Naive meta-evolution suffers from the problem
of how many meta-levels to use. b) Having the evolutionary
algorithm as an emergent property of the organisms solves
this problem. Evolution itself can choose how many levels
of evolutionary algorithm to encode within the organism.

Evolutionary
algorithm

changes

.................. produces

“sub-symbolic”. Rather than reactants and products of re-
actions being defined in advance, they are determined by
bonding criteria applied to bonding properties of the molec-
ular species present; the bonding properties are themselves a
emergent property of each atoms collection of sub-symbolic
components. This means that for any molecule (either cre-
ated within the system or provided by external input) all of
its interactions can be generated dynamically.

Rather than try to specify a single AC that can achieve the
emergence we seek, we have designed a framework within
which many ACs can exist (RBN-World [10]). To find in-
dividual ACs that may achieve the goal of emergent replica-
tors within this design space, we have developed a series of
tests for desirable low-level properties. These form a set of
‘stepping stones’ that lead towards self-replicating systems.
[9]

At the end of this phase, we anticipate a collection of
molecules that form an autocatalytic set — production of
every member of the set is catalysed by at least one member
of the set. Taken as a cooperative collective, this forms a
proto-organism capable of growth and replication.

AC2: Meta-Evolution

AC2 overlaps with AC1. AC2 is a meta-evolution phase
in which speed and fidelity of replications increases as a
loosely-replicating proto-entity becomes more capable of
maintaining both its own fidelity and the fidelity of a larger
reaction network [21]. The proto-entity will gradually
evolve robust replication until it is widespread and preva-
lent.

AC2 implements an analogue of a traditional genetic algo-
rithm (GA) in the same medium as the organisms themselves
(figure 2). This requires the organisms and algorithm to be
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implemented in a single representation, which a sufficiently
rich AC can provide. We have identified the following re-
quirements of an AC for meta-evolution:

o template molecule(s) that encode enzymes, including in-
directly encoding the reactions that they can perform.

o translation enzymes that “read” the template molecule and
construct the enzymes that are coded for.

e replication enzymes that can copy templates with some
stochastic error so that mutations can occur.

We will encode initial examples of all of the above into
template molecules within the system. This will allow meta-
evolution to happen, because mutations occurring on the
template molecule can cause the EA to change.

One part of evolving the EA is evolving the concept of
mutation. We enable evolution of mutation because mu-
tations can occur due to inexact copying of the template
(mutation-on-copy). The replication enzymes are encoded
on the template, and so the process of replication (and thus
the process of mutation) can evolve under its own control.

The replication machines in this AC contain complex in-
ternal structure, and replication is a multi-step, character-by-
character process. To replicate a template molecule, each
character is replicated in turn by the following sequence of
steps:

1. The next character from the template is read;

2. The replicator makes an internal representation of the next
character;

3. Raw materials are picked up from the environment;

4. The raw materials are used to write the next character to
the copy;

5. The replicator moves on to the next character on the tem-
plate and the copy.

Because the copying process involves many steps, there are
many ways in which is can go wrong. This means that many
different types of mutation are possible, and also many dif-
ferent ways in which the replicator can evolve.

The replicators emerging from ACI1 can be seen in AC2
as primitive and unstable with have low fidelity (high muta-
tion). These will undergo metaevolution within AC2 to be-
come the stable replicators of AC 3 exhibiting high fidelity
(low mutation).

In relation to Eigen’s paradox, this AC has a representa-
tion of replicating chemicals that can evolve their own copy-
ing fidelity. Therefore changes in the template and/or copy
fidelity can be recorded over time and different conditions.
This will enable examination of the conditions under which
Eigen’s paradox is resolvable and if it is inevitable.

AC3: “RNA world”

AC3 represents molecules that can copy with relatively high
accuracy, even though there is not necessarily a distinction
between template and machine.

AC 3 is called Stringmol . The Stringmol chemistry was
developed to emulate molecular systems in such a man-
ner that the binding and reactions between molecules could
be varied using evolutionary approaches. In a nutshell, a
molecule consists of a sequence along with a set of flags and
pointers that allow the sequence to be executed as a program.
Further details are available in [16] and [14]

There are two key features of the Stringmol system. The
first is the binding scheme, which specifies the probability
of two molecules joining together and creating a reaction.
The second is the mutation-reaction scheme, which specifies
how reactions occur under an environment of mutation, and
determines what the products of the reaction are. Thus we
have rules that handle the alignment of two strings of sym-
bols (bound pair of molecules), and interprets the strings as
a program and a data repository simultaneously.

Experiments with mutation in the Stringmol system have
shown that a wide variety of phenomena can occur with no
extenally-applied evolutionary pressure. In particular, we
see the spontaneous emergence of autocatalytic sets from a
basic replicase system [15].

Properties of Artificial Chemistries

It is useful to consider ACs in the light of the properties of
AlLife listed in [1]. ACs offer a route to generating “life”
from the non-living by: A.2, exploring the transition to
life in silico; A.3, discovering novel living organisations;
A4, determining how rules and symbols are generated from
physical dynamics. Once a ‘living” AC is constructed, then
investigation can proceed, to: B.6, determine what is in-
evitable in open-ended evolution; B.7, explore evolution-
ary transitions (e.g. Eigen’s paradox); B.8, provide the base
layer of a hierarchical dynamical system; B.10, form the
currency of an information processing theory for evolving
systems. These ALife properties drive the properties of the
underlying chemistry. One classification of desirable prop-
erties of an AC by Suzuki et al was published in [24] and
is reproduced for convenience in table 1 alongside our sum-
marised interpretations. We divide those ten properties into
three groups: molecule & reaction properties, membrane
properties and mutation properties.

New properties

Each of the three authors of this paper has independently de-
veloped ACs analogous to different stages in early evolution.
We use these three ‘case study’ ACs to think about desirable
properties of ACs in general.

In addition to the properties in table 1, there are some
further properties we perceive to be desirable in an AC:
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No. Property ‘ Interpretation

1. The symbols or symbol ingredients be conserved (or quasi-conserved) | Conservation of Mass
in each elementary reaction, at least with the aid of a higher-level man- "z
ager. %’ 2

2. Anunlimited amount of information be coded in a symbol or a sequence | Molecules composed of 8 §
of symbols. atoms & bonds EO ;

3. Particular symbols that specify and activate reactions be present. Catalysis

4. The translation relation from genotypes to phenotypes be specified as a | Phenotypic gene expression
phenotypic function.

5. The information space be able to be partitioned by semi-permeable | Cells ©
membranes, creating cellular compartments in the space. §

6. The number of symbols in a cell can be freely changed by symbol trans- | Variable cell volume / con- @
portation, or at least can be changed by a modification in the breeding | centration §
operation.

7. Cellular compartments mingle with each other by some random pro- | Cell movement
cess.

8. In-cell or between-cell signals be transmitted in the manner of symbol | Diffusion through mem-
transportation. branes

10. Symbols be selectively transferred to specific target positions by partic- | Membrane pores & pumps
ular activator symbols (strongly selective), or at least selectively trans-
ferred by symbol interaction rules (weakly selective).
g

9. There be a possibility of symbols being changed or rearranged by some | Spontaneous Mutation §

random process. =

Table 1: The list of desirable AC properties from [24]. On the left is the original description, on the right is our summarised
interpretation. NB: we classify property 10 as a membrane property along with 5-8 rather than a genome property with 9.

11. Novelty & innovation This is a property desired in
evolutionary systems, and AC design should reflect this. If
a new molecule is introduced to the chemistry, it should be
able to interact with the other molecules present without re-
quiring the AC to be changed. Furthermore, the AC should
be able to generate novel molecules itself to allow innovative
genetic architectures to emerge. This is related to Suzuki’s
properties #2: Atoms and bonds and #3: Catalysis, but rather
than defining the function of molecules a priori, the possi-
bility of novelty should be a general property of the molecu-
lar design. It is clear that ACs require this property in order
to resolve Eigen’s paradox, since without novelty there can
be no transition between replicating systems. One can de-
tect this property in absolute terms by asking whether it is
possible to add a new molecular species to the system. If
it is possible, one should then ask how easy it is to do so,
and how easy it is for the system to generate new molecular
species.

12. Range of Scales  Although we do not think that all evo-
lutionary phases should be supported by a single chemistry,
we do think that chemistries should exhibit a wide range
of scales — both spatially and temporally. Much of biol-
ogy relies on reactions that proceed much slower than oth-

ers, spanning several orders of magnitude in some cases. A
large range of sizes of molecules are also present — from
small metabolites consisting of a handful to atoms, to huge
enzyme complexes with tens of thousands. Without such
diversity, an AC would have limited scope for evolutionary
exploration and therefore be restricted in terms of its poten-
tial behaviours and solutions to encountered problems.

A large range of spatio-temporal scales would also al-
low for smoother evolutionary slope climbing by gradual
improvements once a solution has been found, for example
with a faster rate or greater stability. Scale need not be mea-
sured in terms of size alone. Multi-scale representations are
useful, because they offer a route to increase the efficiency
of the system.

13. Dynamic environment History is littered with cases
where an environmental change triggered an evolutionary
breakthrough (punctuated equilibria [13]). There is also
evidence that variation maintained by different environ-
ments can provide useful raw material for evolution, such as
around deep-sea geothermal vents [11]. These dynamic en-
vironments can occur on many different scales; real-world
biology varies from day/night cycles, to changing seasons
and ice ages on a temporal scale and varies from micro-
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environments between soil particles, through regional varia-
tions to continents (which themselves change over geologi-
cal timescales). In order to utilise some of these dynamics,
an AC should have parameters that can be varied (over time,
space or both) to created different environments — analogous
to temperature, pressure, pH, or other similar characteristics.

Dynamic environments allows a system to fully explore
a chemistry, particularly if the rate of mutation varies. If
the system can resolve Eigen’s paradox locally within one
environment, it can improve there and then spread to other
environments — even if it could not evolve in those other
environments directly.

14. Redundancy & degeneracy Successful evolutionary
systems often contain neutral mutation. In an AC, this can
be characterised by redundancy — multiple molecules that
participate in equivalent reactions. However, neutral mu-
tation is rarely completely neutral; it may have small side-
effects. Degeneracy in an AC captures this by allowing two
molecules to be equivalent for some reactions, but not for
others.

In relation to Eigen’s Paradox, redundancy and/or degen-
eracy can help by allowing multiple molecules to fulfil the
same roles in the system. If one or more of these are lost
through mutation, then the others may be able to partially
or fully compensate. Techniques for measuring redundancy
and degeneracy should be applicable to the AC, and give a
feel for the expressive power of the system.

15. Emergent complex properties The reactions a molec-
ular species participates in should be based on its struc-
ture, with similar molecules participating in similar reac-
tions. However, there should be variation in this mapping
such that while similar molecules in general have similar
interactions, some similar molecules have very different in-
teractions. This will allow an evolutionary landscape where
gradual change generally occurs, yet there are some large
changes in some regions. Combined with appropriate evolu-
tionary pressures, this will lead to an efficient evolutionary
engine.

16. Unified molecular representation There should be
no ‘special privileges’ for template molecules — the prop-
erty of holding genetic instructions should be an emergent
property of the AC. This does not mean they have to be
constructed from the same materials as other aspects of the
chemistry, only that they should obey the same constraints
and rules. In addition, if explicit membranes are used, they
should also be represented without ‘special privileges’.

The advantage of a unified molecular representation is
that any part of the system can potentially interact with
by any other part. This allows wider-ranging evolutionary
changes and potentially highly innovative solutions to meta-
evolutionary problems. It also means that the ‘best” imple-
mentation of template molecules (or membranes) does not

need to be hard-wired into the system beforehand — the sys-
tem can be bootstrapped with an implementation that works
and go on to optimise this itself.

17. Stochasticity Deterministic interactions between
agents are a potential barrier to novel behaviour, and
stochasticity can help smooth evolutionary changes by
sampling the search space of possible alternatives. This
leads to more efficient evolution when there are a large
number of possible improvements.

18. Emergent mutation rates The replication mecha-
nisms should enable the rate of error-on-copy to be modi-
fied. This allows the evolution of evolvability. A system
that can reduce its own mutation rate in this manner can re-
solve Eigen’s paradox by allowing larger templates to mu-
tate less and so be more stable. But since the mechanism
of genotype-encoding is changeable, the rate at which error
accumulates cannot be set as an individual system-level pa-
rameter. Rather, the manifestation of error emerges from the
reaction mechanism of the AC.

Mapping properties to three chemistries

Our three chemistries conform to the new properties listed in
the previous section, thought no one chemistry contains all
of them, but do not conform to some of the properties listed
[24]. Below we show where our chemistries fit into Suzuki’s
and our own framework and the implications of those design
decisions.

AC 1: Emergence of Replicators This AC analogue has
a number of key properties within it. AC 1 implements #1:
conservation of mass and #2: atoms and bonds of Suzuki’s
properties. Properties #3: catalysis and #4: phenotypic gene
expression are deliberately not implemented in advance but
are sought as emergent properties of the system. Our new
property #11: novelty & innovation is the most important for
this problem as we rely on novelty in order for replicators to
emerge. Property #16: unified molecular representation is
also key as we do not define what molecules fulfil which
functions of the evolution of the system. #15: Emergent
complex properties is another property that this systems is
designed to exhibit, and is fundamental for the problem we
are attempting to address.

Some properties we deliberately do not attempt to include
in this AC. #18: Emergent mutation and Suzuki’s #9: spon-
taneous mutation are not applicable to this phase, as there
is not an explicit genome to be mutated; mutation-on-copy
may appear as an emergent phenomenon however.

AC 2: Meta-Evolution The purpose of this AC is to inves-
tigate a rich mutation scheme, in particular #18: emergent
mutation This is done by an enzyme-driven copying pro-
cess with both #14: redundancy and degeneracy and #17:
stochastic properties. This AC will display the emergent
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complex property of meta-evolution when the copying ma-
chine is both encoded on the template being copied (which
requires a #16: unified molecular representation) and situ-
ated in a #13: dynamic environment to provide a changing
evolutionary pressure.

Relating this to Suzuki’s properties, exploring #9: sponta-
neous mutation is also part of the purpose of this chemistry.
In order for there to be a template to copy, this chemistry
must satisfy #2: atoms and bonds. To be able to encode
enzymes, we must satisfy #3: catalysis. The translation ma-
chines described above satisfy #4: phenotypic expression as
they are both encoded and represented within the chemistry.
To make evolution happen, this chemistry will enforce #1:
conservation of mass through the atomic structures, which
imposes additional restrictions upon the potential evolution-
ary solutions. As with AC 1 above, this chemistry is not
especially concerned with membranes, and so properties #6,
#7, #8 and #10 are not applicable to this chemistry. How-
ever, property #5: containers is satisfied in that membranes
are implemented as simple containers, but their only func-
tion is to keep enzymes close to the templates they are acting
on. There is no direct cell-cell interaction.

AC 3: “RNA world” Relating this AC to the the molec-
ular and mutation-reaction properties described in table 1
[24] indicates that #1: conservation of mass, #2: atoms and
bonds, #3: catalysis, and #4: phenotypic gene expression are
all applicable to Stringmol . The mutation-reaction frame-
work is more complicated however. In Stringmol mutation
only occurs as new molecules are constructed, not sponta-
neously as specified by Suzuki et al. Mutations occur during
the selective copy of symbols during a reaction of a partic-
ular type. This mimics biology more closely and can poten-
tially be built into the AC to implement the meta-evolution
described in AC 2.

Although this deviates from Suzuki et al.’s specification,
mutation still occurs and it’s rate can be controlled in a sim-
ilar manner to the ‘spontaneous’ mutation in described (a
‘cosmic ray rate’). Stringmol system allows reliable replica-
tion to be specified, but has a set mutation rate that allows
adaptation to occur. These are the conditions in an ‘RNA-
world” which the Stringmol system was designed to emu-
late, and which has the capability to produce innovative re-
sponses.

Turning to the remainder of our new properties, #14: Re-
dundancy & degeneracy are properties of this system, as
well as #17: stochasticity due to the variable binding affini-
ties. There is also the possibility for #11: novelty & inno-
vation in terms of novel sequences with novel behaviours.
Interestingly, the baseline mutation scheme allows a richer
suite of macro-mutations to arise, with dramatic changes
in the inter-molecular dynamics of the replication process.
Stringmol therefore possesses our new property #18: Emer-
gent mutation rates.

Conclusion

AC designs have to trade off between being rich enough to
exhibit interesting behaviours and being simple enough to
be computationally tractable. To address this, we develop
abstractions with two goals: 1, to make the rich behaviour
computationally tractable, and 2, to discover which proper-
ties underlie the richness. When using ACs to address evo-
Iutionary problems, the goals become further complicated.
For example, in real chemistry the problems and solutions
regarding survival of the organism have changed over time
— the first forms of life were very different to modern popu-
lations of multi-cellular organisms. We use Eigen’s paradox
as an example of applying ACs to a evolutionary problem.
We are not aiming to provide a resolution of Eigen’s para-
dox: we provide a way of thinking about problems in which
the properties and behaviours of the chemistry change over
time (before, during and after the paradox).

In this work we have not looked at properties involving
membranes and other spatial characteristics (#5: cells with
membranes, #6: variable cell volume / concentration, #7:
cell movement, #8: diffusion through membranes, and #10:
membrane pores & pumps from Suzuki et al.). This is be-
cause these properties are predominantly under the control
of the ‘kinetics’ used for any particular implementation of an
AC. In our experiences, the kinetics component of the model
can often be interchanged between different ACs depending
on the features under investigation and available computa-
tional resources. For example, previous work on membranes
in an AC [17, 18, 3], whilst clearly demonstrating interest-
ing behaviours, poses computational challenges when used
for investigations of evolution and novelty.

By considering specific ACs for three phases of evolution
in the context of Eigen’s paradox, we have concentrated on
the properties needed for each phase. In all of these ACs,
sub-symbolic atomic representations are useful because they
preclude the need to create a set of reaction rules whenever
a novel molecular species is produced, and so provide an
appropriate platform for evolution to discover and preserve
novel solutions which confer some benefit on the system.
Effectively, using the sub-symbolic representation provides
many properties for ‘free’; #1: conservation of mass, #2:
atoms and bonds and #3: catalysis from Suzuki’s proper-
ties as well as #11: novelty & innovation and #16: unified
molecular representation from our additional properties.

We have presented eight new properties in addition to the
ten given in [24]. We have used Eigen’s paradox as a context
to map these properties onto our ACs to demonstrate how
they can be used in the design and evaluation process. The
resulting set of principles can be used for the design of a
more generally applicable set of ACs.
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Extended Abstract

Toll-like receptors (TLRs) offer the first line of host defense by recognizing the danger signals of pathogen and by
inducing intracellular signaling that culminate in pathogen specific innate immune responses. We have been studying the early
events that occur upon engagement of TLRs in cells. These events include protein phosphorylation and protein-protein
interactions’. Intracellular protein interactions mediated by adapter proteins in the host are critical for generating an innate immune
response. We have studied these interactions in both the cellular context, and by using isolated proteins. To minimize the
complexity of working with cells, we are now developing a bottom-up approach to recreate the initial signaling that is triggered by
TLRs, by generating protein assemblies in vitro. This will make it possible to directly and cleanly understand the prototypical
signaling cascades involved in the ability of the host to detect pathogen components and mount an appropriate response. Although
we are still very far from rationally assembling and understanding all of the design principles under which biological networks
operate, tools of synthetic biology and computation developed by us and others offer the prospect of design and manufacture of
networks with reportable and predictable properties.

To investigate the nature and specificity of interactions taking place in the host, we are using both cell-based and cell-free
approaches. Cutting-edge reporter technologies help us design and analyze these systems. The split-luciferase protein technology
can report various protein interactions in a high-throughput format 2. The split-green fluorescence protein (GFP) technology, has
allowed us to study protein folding and aggregations of protein domains **, and is available in a multi-color format. Finally, the
novel, triple-split GFP technology developed in the Waldo laboratory at LANL allows us to investigate specificities of protein-
protein interactions by flow cytometry and imaging. Homology-based® and docking-typed® modeling approaches have allowed us to
develop protein oligomer structures, and identify and validate critical interfaces that play a role these interactions. Finally, we are
building predictive models of TLR signaling events and attempting to understand the design principles of cellular regulatory
systems’®. In summary, synergisms between experimental and theoretical approaches will allow us to develop artificial signal
transduction systems that mimic the early steps of pathogen recognition by the host innate immune system. Such systems will allow
us to understand, manipulate, and control early steps that play a role in pathogen detection.
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Abstract

There are deep underlying similarities between Rosen’s
(M,R) systems as a definition of life and the RAF sets (Re-
flexive Autocatalytic systems generated by a Food source) in-
troduced by Hordijk and Steel as a way of analyzing autocat-
alytic sets of reactions. Using RAF concepts we have system-
atically explored the set of possible small idealized metabolic
networks, searching for instances of (M,R) systems. This
exhaustive search has shown that the central requirement of
Rosen’s framework, unicity of ®, becomes harder and harder
to obtain as the network grows in size. In addition, we give
an expression for operators f, ® and /3 in terms of RAF sets.

Introduction

Metabolic closure is easy to introduce informally but rather
difficult to define. Although it is crucial for understanding
living organization it was neglected until late in the 20th cen-
tury. The rebirth of the scientific study of biological organi-
zation can be traced back to the 30-year period from 1958 to
1987, which saw the publication of several distinct perspec-
tives on closure, including (M,R) systems (Rosen, 1958), the
chemoton (Génti, 1975), hypercycles (Eigen and Schuster,
1977), autopoiesis (Maturana and Varela, 1980), autocat-
alytic sets (Kauffman, 1986), and the first Artificial Life con-
ference in Los Alamos in 1987 (organized by Christopher
Langton). There was, however, an almost complete lack of
cross-fertilization between the different schools of thought,
with each theory developed with almost no reference to any
of the others (Letelier et al., 2006; Cornish-Bowden et al.,
2007; Cardenas et al., 2010). The most extreme case of iso-
lation is represented by Robert Rosen (1934-1998), who in-
troduced the concept of (M,R) systems early in his career
to represent biological metabolic networks. His isolation
was aggravated by the intricate nature of his writings, in
which biological ideas were mixed with abstract mathemat-
ics. Furthermore, he expressed his mathematical ideas in
non-standard notations and without any effort to help the
reader by giving examples or offering many needed clari-
fications.

In recent years, we have undertaken a systematic attempt
to understand and explain the core notions of Rosen’s the-

ory (Letelier et al., 2006). We have (a) clarified the re-
lationship between (M,R) systems and autopoiesis (Lete-
lier et al., 2003); (b) reframed Rosen’s original formula-
tion in terms of biochemical networks, with the introduction
of the notion of “organizational invariance” for understand-
ing Rosen’s elusive mathematical operators (such as his 3);
(c) made a clear distinction between (M,R) systems in gen-
eral and (M, R) systems with organizational invariance, a no-
tion that is only implicit in Rosen’s writing (he confusingly
called these “replicative” (M,R) systems); (d) given mathe-
matical and biological examples of simple idealized systems
that can be understood within Rosen’s intellectual frame-
work; (e) clarified how these notions can be used to explore
the origin of living systems and how they should be used in
the context of what has come to be called “systems biology”.
Finally, we have also shown how our formulation of (M,R)
systems can shed light on the problem of the computability
of living systems (Cérdenas et al., 2010). This short sum-
mary is intended simply to underline how fruitful Rosen’s
view of metabolic closure has become, and to explain why
we feel that the boundaries of our knowledge can be pushed
to qualitatively new grounds by continuing the exploration
of his ideas.

The systematic absence of examples (whether mathemat-
ical or biological) from Rosen’s work has always been prob-
lematical, especially of simple examples that can serve as
heuristic devices for enhancing theoretical research. In this
paper we address the two points outlined above by pointing
out the close relationship between (M,R) systems and a re-
cent theory of living organization based on what have been
called RAF sets. We show how many examples of simple
(M,R) systems can be found by a computer algorithm con-
structed on the model of RAF sets. We discuss how the tech-
nical tools originating in RAF sets can be used to enhance
the research of (M,R) systems, and specifically we address
the problem of the nature and unicity of Rosen’s @ in the
context of RAF sets.
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(M,R) systems

Rosen’s original formulation of (M,R) systems (Rosen,
1958), relied on a view of metabolism as a graph, and on
a very abstract view of enzymes as functions (in the mathe-
matical sense). The metaphor of metabolism as a graph, new
in 1958, has subsequently been adopted by many people,
without attribution to Rosen. The view of enzymes as func-
tions has not attracted a wide following as Rosen’s formu-
lation seems unnecessarily abstract, without bringing prac-
tical or theoretical benefits. He used this approach in order
to be able to use category theory for framing his important
intuition about metabolic closure. Although this demanding
mathematical approach has some advantages, as described
in our previous work, we shall not use it here as the funda-
mental ideas exposed by Rosen can be explained using set
theory, and thereby become accessible to mainstream biolo-
gists.

Our analysis of (M,R) systems, together with our exam-
ples, shows that the crucial aspect to understand organiza-
tional invariance is to understand the nature of the equation

() =1

Here ® represents the aspect of biological organization that
relates how catalysts are produced by the system. This equa-
tion seems to imply that a living system is organized in such
a way that knowing b (right-hand side of biochemical equa-
tions) should be enough to unambiguously assign the cata-
lysts (represented by f) to the reactions in the network.
Rosen, moreover, requires that there be only way to carry
out this assignment, i.e., that there is only one mapping ®
such that ®(b) = f, a demanding assumption indeed. In
other words, that we can reverse the procedure that gives f
back from ®. The reverse procedure is Rosen’s /3, so that

p(f) =2

Mathematically, S is just the inverse of the “evaluation at
b” operator that evaluates every function at b. Biologically,
B represents the mechanisms that specify how the process
of creating catalysts is maintained over time, i.e., organiza-
tional invariance.

To clarify these notions, we created a small metabolic net-
work where they can be embodied in actual molecules that
implement the functions ® and 3 (Letelier et al., 2006).

RAF sets

We now give a brief introduction to the work of Hordijk and
Steel (2004), who constructed a formal framework to study
autocatalytic systems. Their main aim appears to have been
to expand Kauffman’s formalism about autocatalytic sets
(Kauffman, 1993), to respond the criticisms that arose out
of Kauffman’s assumptions. At the same time, their analysis
developed interesting algorithms that handle this expanded

Figure 1: (M,R) system described by a catalytic reaction
graph. Gray squares represent reactions and circles denote
metabolites and enzymes. The black arrows represent chem-
ical transformations while gray dashed arrows indicate cat-
alyzations. This small network also contains a RAF set gen-
erated by the food set (S, T, U).

framework. As a result, they have produced a powerful ap-
proach that can be used to analyze a wide variety of systems,
and here we shall describe how it applies to (M,R) systems.
Their formalism depends on the following two sets: X, the
set of molecules involved in metabolism as metabolites, cat-
alysts or external input material (termed food in the formal-
ism), and %, the set of reactions that defines the metabolic
network.

Each reaction r is represented as a tuple (A, B), where
A,Bc X, An B = @, A are the reactants and B the prod-
ucts of reaction r. This formalism is similar to Rosen’s
treatment of enzymes as transformations between two sets
of molecules.

Further, to formalize the notion of catalysis, a specific set
C (called the set of “catalyzations” by Hordijk and Steel),
is introduced. Each catalyzation c is a tuple (x,r), where
x € X is the catalyst and r € Z is the reaction catalyzed
by z. The similarity with Rosen (1958) is evident, as any
given catalyzation ¢ = (x,r) can be rewritten as ¢ = (z,r) =
(z,(A,B)) = (A,z,B), making transparent the fact that
molecule x catalyzes the reaction A - B.

With the set of catalyzations defined, Mossel and Steel
(2005) introduced a function +y that helps to simplify formu-
lae in later sections:

7C(A,T):{ lifdz e A: (z,7) e C,

0 otherwise

)

Additionally, a specific subset of X containing every
molecule that is used but not produced by the metabolism
is denoted F' and it represents the food molecules.

Thus a catalytic reaction system over a food source F' is
composed by a triplet . = (X, %, C) that defines the uni-
verse of molecules (X), the reactions occurring among these
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molecules (#) and the identity of the catalyst involved in
each reaction (C') (see Figure 1). The following additional
functions are defined: p(r) = A and w(r) = B, which re-
turn the reactants and the products of any given reaction 7,
respectively. With the help of these elementary functions
the same notion can be extended to a set of reactions %'
as p(Z') = Upeg p(1), where Z' ¢ Z. This definition
captures the conglomerate of molecules that participate as
reactants for a set of reactions. A similar definition holds
for ("), the products of a subset of reactions. With these
ideas, we can define the closure of a subset X’ ¢ X relative
to Z' € Z (clg: (X)) as the set of reachable molecules that
can be synthesized by starting from X’ and applying all the
reactions in %’ until no new molecule types appear. Then,
a non-empty reaction subset Z’ of Z is a reflexively auto-
catalytic network over F if p(%Z') ¢ clg (F') and for each
reZ ,v(p(Z"Yur(Z'"),r) = 1. In other words every cata-
lyst must be produced by a reaction in the same system or be
part of the food set. This definition allows many reflexively
autocatalytic networks in a catalytic reaction system. The
network is F'-generated if every reactant is either produced
by the system or incorporated as a food item (i.e. formally
p(Z) c Fun(Z)). A network that is reflexively autocat-
alytic and F'-generated is called a RAF set (see Figure 1).

RAF sets can be understood informally as an interdepen-
dent set of biochemical reactions where all of the metabo-
lites are produced by the collection of reactions %’. The
advantage of this formalism is that it is precise enough to be
coded in well defined algorithms that check whether a given
reaction subset ' ¢ Z is a RAF set over some food set F'.
We have implemented these algorithms, and we have created
a simple framework in Lisp and Python, allowing us to carry
out qualitative and quantitative analyses of (M,R) systems in
terms of RAF formalism. Before discussing this, however,
we need to show the extent to which RAF sets and (M,R)
systems are equivalent.

RAF sets and (M,R) systems

Are (M,R) systems RAF sets? The original definition of an
(M,R) system (Rosen, 1958) explicitly requires every cata-
lyst (M in his original symbols) must be produced by the
metabolism (R sub-systems are responsible for this task).
This condition shows that (M,R) systems must be reflexively
autocatalytic (RA) sets. Although, this does not necessarily
imply that a RA set is an (M,R) system, because metabolic
closure requires that no catalyst is given in the food set. In
other words, a RA set is not in general an (M,R) system, but
it may become one if all the catalysts in C' are produced by
the system and are not part of the food set F'.

As (M,R) systems must be open to the flow of matter in or-
der to satisfy thermodynamic requirements, their molecules
derive ultimately from a food source, and they are, obvi-
ously, F'-generated in the terminology of RAF sets. So
(M,R) systems without organizational invariance are a sub-

set of RAF sets, as are (M, R) systems with organizational in-
variance. The latter must, however, have additional features
(in the context of RAF) to explain the unusual properties of
operators ¢ and .

Algorithmic search for simple metabolic (M,R)
systems

In this section we explore the probability of occurrence of an
(M,R) system with a unique assignment of catalysts. For this
purpose we characterized all the possible graphs describing
a system consisting of a number # F’ of initial molecules and
# synthesis reactions between any two molecules in the
system. More specifically, we analyzed systems that con-
formed with the requirement of being (M,R) systems, that
is, we did not allow any catalyst to be food, nor a reactant
nor a product in the reaction it catalyzed.

Attention must be paid to avoid having two apparently
distinct reaction networks exhibiting the same topological
structure. The mathematical term for this is graph isomor-
phism (see Figure 3). Two graphs are said to be isomorphic
when they can be transformed into each other by a simple
relabeling of their vertices. Isomorphic metabolisms can be
grouped under an equivalence class.

Thus, for a given pair (#F, #%) we enumerate the num-
ber of all possible different equivalence classes of reaction
networks. Next, for each one of these reaction networks, we
generated the set of all possible assignments for the catalysts
complying with the restrictions stated previously. But again,
by the argument of relabeling, the set of assignments can be

TN
/
| (#F#R) |

/
A,

.’.‘S\\ .

Figure 2: Diagram representing an example for the proce-
dure to compute results from table 1. In the first step, the
equivalence classes (3 in this example) are estimated for a
given (#F,#Z); in the second step, all possible catalysts
assignments for each equivalence class are calculated.
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Figure 3: Three automatically generated RAF sets illustrating equivalence class and multiple catalyst assignments. Systems
(a) and (b) have the same topological structure, i.e. there is an isomorphism from one to the other. Although this might not be
obvious at first sight, a simple procedure of node relabeling transforms the reaction pathway in (a) to the one in (b). In spite of
that, the systems differ in their catalyst assignments, i.e., even with the additional rules imposed by (M,R) systems, it is possible
to make different choices when assigning the catalysts. System (c) has the same number of elements in the food set and the
same number of reactions, but it belongs to another equivalence class.

also divided into equivalence classes (see Figure 2). Table 1
shows for (#F, #%) the number of metabolic equivalence
classes and the interquartile range! of the number of assign-
ments. It can be seen that the number of possible assign-
ments grows steeply with the number of reactions, so that it
becomes more and more difficult to have a unique ®(b) = f
(Letelier et al., 2006).

There are some cases in which the range includes the crit-
ical value 1, which implies organizational invariance. Al-
though, if we increase the number of food elements and
leave the number of reactions unchanged, the generated re-
action networks become shallower, and so we can consider
the complexity of the network to be reduced and therefore
the degrees of freedom of the assignation process are also re-
duced. In principle we could separate the trivial cases from
those in which the unicity of the assignment reflects organi-
zational invariance.

Rosen’s triad in RAF formalism

The RAF formalism is not only useful for exploring the land-
scape of possible (M,R) systems, but it can also help to clar-
ify some core concepts of (M,R) systems, namely Rosen’s
triad: f, ® and 3.

To explore the potential of the RAF formalism, we ana-
lyze the old problem in the theory of (M,R) systems of how

'This refers to the range in which data falls after removing
lower and upper 25%, thus giving a notion of the amplitude of the
mean values

to treat molecules as functions. Consider the following bio-
chemical reaction:

M
X+y —W+2

According to Rosen, this is the manifestation of the follow-
ing function:

MeMap(X xY,W x Z)
M:XxY ->WxZ

(,y) > (w,2)

The input elements are derived from the cartesian set X x Y
that contains all the molecular types that, because of their
structural similarities, can be used by the enzyme M as sub-
strates. Our RAF-derived formalism extends the domain of
function M to the whole set of molecules as follows: M is
a function that, when given a set of molecules with the re-
actants, e.g. (..., 2,...,y,...), returns a set containing ele-
ments w and z. But if the original input set lacks elements x
or y, we have M (input set) = @. Interestingly, with this for-
malism any molecule in the network (z € X) can be treated
as a function operating on any subset (X’ ¢ X) as follows:

#(X") = 7(r,) provided that p(r,) € X’

where r, stands for the reaction that z catalyzes. If z cat-
alyzes more than one reaction?, then the above definition can

This multifunctionality seems to be necessary for (M,R) sys-
tems (Letelier et al., 2006).
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Number of Number of reactions
food molecules 3 | 4 | 5
2 4 22|19 1224 | 136 144-216
3 10 1-4 | 72 12-31 | 685 216-324
4 8 1-6 |75 136 | 933 204-432
5 2 1-11|37 134 | 577 1-432
6 1 1-1 | 11 1-1 212 1-1

Table 1: Number of metabolic equivalence classes and the interquartile range of the number of their possible assignments. The
number of equivalence classes increases dramatically with the number of reactions.

be generalized to:

2(X') ={z;: zjen(r) | (z,r)eCA

p(r)c X'y ()

Note that defining 2 only requires the set of reactions each
molecule catalyzes, not the whole reaction network. This
means that every molecule-as-a-function definition depends
only on local information.

In our earlier work, the following small metabolism was
used as a testbed for exploring concepts related to (M,R) sys-
tems.

s+T 2% g7 3)
s+U Y qu (4)
sT+U 2% sTU (5)

Then, treating every molecule as a function we have:

SU(S,T) = {ST}
STU(S,U,T) = {SU}
U(S,T,U,ST,STU) = @

The last equation means that molecule U cannot transform
the given mixture, because U is not a catalyst in the given
metabolism. That said, we shall now analyze how concepts
like f, ® and /3 can be expressed with these ideas.

Metabolism: f

One of the basic equations in Rosen’s model is f(a) = b,
in which a represents the input materials (food set) needed
by the organism to produce the complete set of metabo-
lites and enzymes (b), i.e., every molecule reachable by the
metabolism. Therefore, the function f is related to the no-
tion of closure (clg:(X')). To be able to define f in our
terms, let us define function expand.

expand x (X')=X"u | z;(X")
zieX

(6)

Moreover, let us define how a molecule set (X') can be
applied to another molecule set (Y).

{

Thus, we use a molecular set as a function (distinguished
from regular molecular set by a “semi-arrow’’) by repeatedly
applying expand until no further additions occur. With these
two last definitions, for any given catalytic reaction system
L=(X,%,C), f(a) can be defined as:

X'(¥') =
Y if expandx:(Y') =Y, )

X'(expandy,(Y")) otherwise

f(a) = catalysts(C)(a) =b (8)

where catalysts is a function that returns every catalyst in
the given catalyzation set C' (catalysts(C) = {x : (z,r) €
C'}). The function catalysts is not required, as non-catalyst
molecules do not modify the result. But it is used here as
Rosen’s formalism considers only catalysts as the core com-
ponents of the metabolism.

Replacement: ¢

The formulation of ® under RAF sets is more elaborate
as we need to generate a function that using b as an in-
put returns function f. The basic idea is to create mathe-
matical objects that somehow keep track of which catalysts
are produced and how these are created as a result of the
metabolism. To begin we introduce operator Op. This oper-
ator returns the subset of molecules X”’ ¢ X' that can act as
catalysts upon the molecules in X’ (the given molecule set).

Op(X')={zeX :2(X') + 2}

Then, for any given catalytic reaction system L
(X,2,C) over a food source F', ®(b) will be defined as

®(b) = Op(clz(b) UF) = f' ©)

where clg(b) is the closure of b relative to the reaction set #
as defined above. Therefore, ® returns the catalyst set that
are reachable from b as a function (f’), because the “semi-
arrow” over the expression transforms the resulting set into
a function. Thus, f’ is operationally equivalent to function

f.
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Organizational invariance: 5

Finally, it remains to define £, which should take the
metabolism f as input and give us the replacement system &.
The function 3 receives a hypothetical metabolism f in the
form of a function, thus our first step will be to find which
catalysts can be related to that function f’. For that purpose,
let us define the function v that given a molecular set b and
a function f’, returns every reaction catalyzed by molecules
in b, which produces part of the result of f’ applied to F.

v(b, f',F) ={r:y(buF,r)=1}

By using a new function u, we filter out those reactions
that cannot take place given the molecule set of interest (b U
F).

/j,(b,f’,F):{rEl/(b,f’,F):
p(r)cbuF} (10)

This equation gives the reactions that are related to f”,
therefore J can be defined. For simplicity we shall define it
as applied to a molecular set b.

B(f")(b) = Op(clyp, 5,7y (D) UF) (1D

This formula is similar to that of ®, the main difference be-
ing that it uses function y to obtain % instead of using Z
directly. In this way [ returns a function that, used in an
(M,R) system, would relate unequivocally to ®.

Conclusion

A formidable challenge for using (M,R) systems as a frame-
work for modeling biological systems has been the lack of
operational definitions for the important functions f, ® and
3. Here we have presented various definitions for those
functions that can be used for any catalytic reaction system.

An important unresolved matter is to make explicit how
Rosen’s equations can be fulfilled using concepts and def-
initions imported from RAF sets. Suppose that a given
molecule set X and reaction set R compose an (M,R) sys-
tem, how can that be proved using RAF-derived functions?
First, let us distinguish a particular subset a of X, which
contains every molecule that is not a product or a catalyst
for any reaction. Then, we can write:

fla)=b

This signifies “let the molecular system evolve until no fur-
ther novelty can be produced”. Now, we should expect that
using the produced molecules as function will have the same
effect as using f. In our terms, that means:

®(b)(a) = b

This has the important consequence that f becomes equiva-
lent (operationally) to ®(b) in this molecular system.

B, as introduced here, does not explain Rosen’s basic re-
sult (B(f) = ®, which means that ¢ is uniquely determined
by f). The definition of 4 and all associated formulae cannot
explain Rosen’s result, they merely serve as formal language
that could help us to operate on modern metabolic data using
Rosen’s viewpoint.

Since the beginning of the 21st century there has been a
resurgence of interest in the work of Robert Rosen, but it is
not easy to understand and it is not apparent how to advance
in a theory full of powerful but often obscure ideas (Lete-
lier et al., 2006). Many attempts have been made to find
the route to be followed in developing the theory (Wolken-
hauer and Hofmeyr, 2007). Here we apply another formal-
ism (RAF sets) that could be useful for clarifying the nature
and properties of the operators f, ® and 3.

Finally, we have the caveat that living systems are not
mere “soups of letters”, and their complex properties are due
to more than some combinatorics among molecules. It is ap-
parent that to advance in our understanding of living organ-
isms, it will be necessary to include further considerations
into our current theory. These could be geometrical, ther-
modynamical, topological, or even merely historical, that
is, relative to how life has come into existence, and later
evolved here on Earth.

The RAF formalism may usher in an era in which the the-
ory of (M,R) systems will demand reasoning tools that begin
to resemble category theory more and more... Rosen would
be amused!
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Abstract

“Epigenetic Tracking” is the name of a model of cellular de-
velopment that, coupled with an evolutionary technique, be-
comes an evo-devo method to generate arbitrary 2d or 3d
shapes. The method evolves instructions contained in the
genome inside cells, which guide the development of an ar-
tificial zygote into a mature phenotype: as such it belongs to
the field of “artificial embryology”, or “computational devel-
opment”. In silico experiments have proved its effectiveness
in developing shapes of any kind and complexity, establishing
its potential to generate the complexity typical of biological
systems. Furthermore, it has also been shown how the under-
lying model of development is able to produce the artificial
version of key biological phenomena such as embryogenesis,
“junk DNA”, and ageing. In this paper we show how mal-
functions in the model lead to a phenomenon that can be con-
sidered the artificial equivalent of the process of carcinogen-
esis, which is explored through a simulation and analysed for
two categories of tumours, teratomas and all other tumours, a
distinction that emerges naturally from the framework.

Introduction

The previous work in the field of Artificial Embryology can
be divided into two broad categories: the grammatical ap-
proach and the cell chemistry approach. In the grammat-
ical approach development is guided by sets of grammat-
ical rewrite rules; context-free or context-sensitive gram-
mars, instruction trees or directed graphs (in place of actual
grammars) can be used. L-systems were first introduced by
Lindenmayer (Lindenmayer, 1968) to describe the complex
fractal patterns observed in the structure of trees. The cell
chemistry approach draws inspiration from the early work
of Turing (Turing, 1952), who introduced reaction and dif-
fusion equations to explain the striped patterns observed in
nature (e.g. shells and animals’ fur). This approach attempts
to simulate cell biology at a deeper level, going inside cells
and reconstructing the dynamics of chemical reactions and
the networks of chemical signals exchanged between cells.
Notable examples of grammatical embryogenies are (Lin-
denmayer, 1968) and (Gruau et al., 1996); among cell chem-
istry embryogenies, we recall (Kauffman, 1969) and (Bon-
gard and Pfeifer, 2001).

“Epigenetic Tracking” (E.T.), first described in (Fontana,
2008), is the name of a model of cellular development that,
coupled with an evolutionary technique, becomes an evo-
devo method to generate arbitrary 2d or 3d shapes. The
method evolves instructions contained in the genome inside
cells, which guide the development of an artificial zygote
into a mature phenotype; in silico experiments have proved
its effectiveness in developing shapes of any kind and com-
plexity (e.g. number of cells, number of colours, etc.), es-
tablishig its potential to generate the complexity typical of
biological systems. Furthermore, it has also been shown
how the underlying model of development is able to pro-
duce the artificial version of key biological phenomena such
as embryogenesis, the presence of “junk DNA” and the phe-
nomenon of ageing. The objective of this document is to
use E.T. to explore another key topic in biology: the process
of carcinogenesis. The rest of this document is organised
as follows: section 2 provides a concise description of the
model, section 3 gives a brief overview of the biological im-
plications already analysed in previous work and outlines the
main facts about carcinogenesis, sections 4 and 5 deal with
artificial carcinogenesis, section 6 discusses the results and
section 7 draws the conclusions.

The Model of Development

Shapes are composed of cells deployed on a grid; develop-
ment starts with a cell (zygote) placed in the middle of the
grid and unfolds in N age steps, counted by the variable “Age
Step” (AS), which is shared by all cells and can be consid-
ered the “global clock” of the organism. Cells belong to two
distinct categories: “normal” cells, which make up the bulk
of the shape and “driver” cells, which are much fewer in
number (typical value is one driver each 100 normal cells)
and are evenly distributed in the shape volume. Driver cells
have a Genome (an array of “instructions”, composed of a
left part and a right part) and a variable called cellular epi-
genetic type (CET, an array of integers). While the Genome
is identical for all driver cells, the CET value is different
in each driver cell; in this way, it can be used by different
driver cells as a “key” to activate different instructions in the
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Figure 1: Example of development in three steps (AS=0,1,2)
driven by five instructions: a proliferation triggered in step 1
on driver cell labelled with A, three proliferations triggered
in step 2 on driver cells labelled with D, E and F and an
apoptosis triggered in step 2 on driver cell labelled with G.
Internal view on the left, external view on the right.

PHENOTYPE - EXT. VIEW

=

=

=]
|

Genome. The CET value represents the source of differen-
tiation during development, allowing driver cells to behave
differently despite sharing the same Genome. A shape can
be “viewed” in two ways: in “external view” cells are shown
with their colours; in “internal view” colours represent cell
properties: blue is used for normal cells alive, orange for
normal cells just (i.e. in the current age step) created, grey
for cells that have just died, yellow for driver cells (regard-
less of when they have been created).

An instruction’s left part is composed of the following el-
ements: an activation flag (AF), indicating whether the in-
struction is active or not; a variable called XET, of the same
type as CET; a variable called XS, of the same type as AS.
At each step, for each instruction and for each driver cell, the
algorithm tests if the instruction’s XET matches the driver’s
CET and if the instruction’s XS matches AS. In practise, XS
behaves like a timer, which makes the instruction activation
wait until the clock reaches a certain value. If a match oc-

Figure 2: Development of an artificial human embryo of
200000 cells from a single cell (circled in yellow), gener-
ated with a Genome composed of 300 instructions, evolved
in 40000 generations.

curs, it triggers the execution of the instruction’s right part,
which codes for three things: event type, shape and colour.
Instructions give rise to two “types’ of events: “proliferation
instructions” cause the matching driver cell (called “mother
cell”) to proliferate in the volume around it (called “change
volume”), “apoptosis instructions” cause cells in the change
volume to be deleted from the grid; the parameter ’shape’
specifies the shape of the change volume, in which the pro-
liferation/apoptosis events occur, choosing from a number
of basic shapes called “shaping primitives”; in case of pro-
liferation, the parameter "colour’ specifies the colour of the
new cells.

Always in case of proliferation, both normal cells and
driver cells are created: normal cells fill the change vol-
ume, driver cells are “sprinkled” uniformly in the change
volume. To each new driver cell a new, previously unseen
and unique CET value is assigned, obtained by starting from
the mother’s CET value (the array [0,0,0] in the figure, la-
belled with A) and adding 1 to the value held in the ith array
position at each new assignment (i is the current value of
the AS counter); with reference to the figure, the new driver
cells are assigned the values [0,1,0],[0,2,0],[0,3,0], ... , la-
belled with B,C,D, etc. (please note that labels are just used
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in the figures for visualisation purposes, but all operations
are made on the underlying arrays). In practise a prolifer-
ation event does two things: first creates new normal cells
and sends them down a differentiation path (represented by
the colour); then creates other driver cells, one of which can
become the centre of another event of proliferation or apop-
tosis, if in the Genome an instruction appears, whose XET
matches such value. This mechanism constitutes the “core”
of the machine: a CET value produces a change event, which
in turn produces other CET values, some of which produce
other change events and so on, in an indefinitely sustainable
way. Figure 1 reports a simple hand-coded example of de-
velopment.

It may happen that the change volume is not empty; in this
case the most realistic and physically plausible behaviour
would be one in which the newly created cells push the ex-
isting cells outwards, which in turn would push other cells
located in more external positions and so forth, until the
moved cells find empty positions to settle without having to
displace other cells. Since this approach has the drawback
of involving the movement of most cells of the shape, be-
ing thus computationally demanding, a different solution has
been undertaken. It consists of a procedure called “remove-
redeploy” that, as the name implies, removes cells present
in the volume before proliferatio, stores them in a temporary
buffer and redeploys them back onto the grid after prolif-
eration has occurred. The remred procedure plays the role
of “physics”, i.e. the set of rules by which cells are moved
around and find their final position in the shape; based on
our experience, the choice of the particular physics imple-
mented has little impact on the effectiveness of the method,
as long as physics behave predictably and consistently, as
we all expect. This thanks to the distribution of driver cells
throughout the shape, that enables the model of development
to bend any kind of physics to its goals, keeping the shape
plastic during development.

The model of development described, coupled with
a standard evolutionary technique, becomes an evo-devo
method to generate arbitrarily shaped 2d or 3d cellular sets.
The method evolves a population of Genomes that guide the
development of the shape starting from a small number of
zygotes (usually one) initially present on the grid, for a num-
ber of generations; at each generation development is let un-
fold for each Genome and, at the end of it, adherence of
the shape to the target shape is employed as fitness mea-
sure. In silico experiments have proved the effectiveness of
the method in devo-evolving any kind of shape, of any com-
plexity (in terms e.g. of number of cells, number of colours,
etc.); figure 2 shows the development of an artificial human
embryo, produced by a Genome composed of 300 instruc-
tions, evolved in 40.000 generations.

The effectiveness of the method is to be reconducted to
four features of the model of development. The first key fea-
ture is the distinction between normal cells and driver cells;

the latter represent the backbone of the developing shape and
make it possible to steer development acting on a small sub-
set of cells. The second feature is the implementation of
the change events of proliferation and apoptosis in such a
way that they create/delete many cells at once (instead of
one). This increases the power of the single change event
and allows a reduction of the number of change instructions
needed to generate a given shape, speeding up the morpho-
genetic process. The third feature is the explicit presence
of an epigenetic memory, i.e. a cell variable (the CET, only
present in driver cells) that takes different values in differ-
ent cells and represents the source of differentiation during
development, leading different cells at different times to ex-
ecuting different portions of the Genome. The fourth fea-
ture is the mechanism of assignment of the CET values on
the newly generated driver cells during a proliferation event,
which ensures that each new driver cell is assigned a new,
previously unseen CET value; the CET value represents the
link by which these driver cells in subsequent steps can be
picked up by the Genome and given other instructions to be
executed.

Biological Implications

Embryogenesis. The interpretation of Epigenetic Track-
ing as a model of morphogenesis and cell differentiation is
straightforward (the process of natural morphogenesis corre-
sponds to the process of artificial morphogenesis, in which
different cells types are represented by different colours);
in this perspective, driver cells take the role of embryonic
stem cells and have also much in common with the concept
of Spemann’s organiser. The Genome corresponds to the
natural genome, while the cell epigenetic type (CET) corre-
sponds to cellular epigenetic memory, representing in both
the natural and the artificial world the portion of informa-
tion which is different from cell to cell and, as such, con-
stitutes the key ingredient necessary for cellular differenti-
ation. A key difference is that, while embryonic stem cells
are thought to be present only in the embryo, driver cells
are present, evenly distributed throughout the body, for the
entire duration of the organism’s life.

Junk DNA. In molecular biology “junk DNA” is a collec-
tive label for the portions of the DNA sequence of a genome
for which no function has been identified. In E.T., at any mo-
ment in the course of evolution, the set of driver cells/CET
values generated during an individual’s development can be
divided into i) driver cells that activate an instruction dur-
ing development and ii) driver cells that do not activate any
instruction during development; in the same way the indi-
vidual’s Genome is composed by 1) instructions that become
active during development and by ii) instructions that do not
become active during development. By analogy with real
genomes, elements in the two categories labelled with ii) can
be defined as “junk” driver cells and “junk” instructions re-
spectively. The presence of junk information in both the set
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of driver cells and the Genome was shown to be inescapably
connected to the core of the Epigenetic Tracking machine, a
requirement essential to its evolvability.

Ageing. As we said, at the end of an individual’s devel-
opment many junk driver cells are present, as well as many
junk instructions; such stock of junk represents a reservoir of
events that can potentially be triggered after the moment of
fitness evaluation (in what can be called the period of “arti-
ficial ageing”). Since these events occur after fitness evalua-
tion, they are by definition not affecting the fitness value; for
this reason they will tend to have a random nature and their
overall effect on the phenotype is more likely to be detri-
mental than beneficial: they can be thought of as a random
noise superimposed on the phenotype created by the instruc-
tions subject to evolutionary pressure. In this perspective,
the presence of a big stock of junk mediates both a species’s
evolvability and its susceptibility to ageing, which appear to
be two sides (one good and one bad) of the same coin.

Carcinogenesis is the process by which normal cells are
transformed into cancer cells. The standard theory of car-
cinogenesis states that carcinogenesis is a multi-step process
that can take place in any cell, driven by damage (muta-
tions) to genes (onco-genes and tumour-suppressor genes)
that normally regulate cell proliferation, which in turn up-
sets the normal balance between cell proliferation and cell
death and results in uncontrolled cell division and tumour
formation. A few cancer-related genes, such as p53, do seem
to be mutated in the majority of tumours, but many other
cancer genes are changed in only a small fraction of cancer
types, a minority of patients, or a subset of cells within a tu-
mour; moreover, some of the most commonly altered cancer
genes have inconsistent effects; for instance the oncogenes
c-fosand c-erbb3 are strangely less active in tumours than
they are in nearby normal tissues; the tumour suppressor
gene rb was recently shown to be hyperactive -not disabled-
in some colon cancers (Gibbs, 2003). In conclusion, the at-
tempt to reconduct tumour formation to a subset of mutated
genes, consistently found in all tumours, has so far been un-
successful.

A more recent theory differentiates from the standard the-
ory in tracing back the origin, the maintenance and the
spread of a tumour to a relatively small subpopulation of
cells called cancer stem cells (CSCs), whereas the bulk of
the tumour would actually be composed of non-tumorigenic
cells that, deprived of the cancer stem cells, would quickly
shrink and disappear. CSCs possess characteristics associ-
ated with normal stem cells, specifically the ability to give
rise to all cell types found in a particular cancer sample;
CSCs may generate tumours through the stem cell processes
of self-renewal and differentiation into multiple cell types.
The implications of this hypothesis for therapy cannot be
overstated: conventional chemotherapies kill differentiated
or differentiating cells, which form the bulk of the tumor
but are unable to generate new cells; a population of CSCs,

which gave rise to it, could remain untouched and cause a
relapse of the disease.

Mathematical models of cancer -see (Wodarz and Ko-
marova, 2006) for a comprehensive review- have found ap-
plication in three major areas: i) modelling in the context of
epidemiology and other statistical data; ii) mechanistic mod-
elling of avascular and vascular tumour growth (including
physical properties of biological tissues); iii) modelling of
cancer initiation and progression; basic mathematical tools
used are ordinary differential equations, partial differential
equations, stochatic processes, cellular automata and agent-
based models. To our knowledge, most mathematical mod-
els stick to the standard theory, are based on differential
equations and have the primary objective of explaining the
dynamics of tumour growth, i.e. they try to answer to “how
fast” tumours grow; our approach, instead, seeks to explain
the mechanism of tumour formation from the very begin-
ning.

Artificial Carcinogenesis I: Teratomas

In this section we will analyse a possibile malfunction of the
model of cellular growth described in section 2 and we will
show how such malfunction gives origin to a phenomenon
that can be considered the artificial equivalent of carcino-
genesis, with reference to a particular kind of tumour called
teratoma. In the Epigenetic Tracking framework, a certain
body part of an artificial organism is generated by a single
driver cell that, once activated, proliferates, generating other
driver cells, some of which in turn get activated, proliferat-
ing and generating other driver cells etc. (the same holds
true for the entire organism). This process presupposes that
each driver cell, at the moment of activation, find itself in
the right position: only in this case is the cascade of events
capable, along with physics, of generating the relevant body
part. This delicate mechanism can be perturbed by both ge-
netic mutations (affecting the Genome) and epigenetic alter-
ations (affecting a driver cell’s CET value). We will now
focus our attention on a case characterised by an epigenetic
mutation that, at step AS(J), turns the CET value (J) of a
certain driver cell C(J), positioned at point P(J), into another
CET value (K); if CET value K is not generated during nor-
mal development, or if it is generated but never activated,
nothing happens.

If, on the contrary, CET value K does get activated dur-
ing normal development to produce a certain body part -say
at step AS(K), when cell C(K) finds itself at point P(K)- as
a result of the mutation the cascade of events destined to
give rise to such body part will start from both point P(K) at
step AS(K) -right place and moment- and point P(J) at step
AS(J) -ectopic place, wrong moment-. Being activated in the
wrong place and moment, cell C(J) is not surrounded by the
right micro-environment: as a result, the cascade of events
originating from C(J) will only manage to mimic the devel-
opment of the relevant body part in a grotesque fashion. Fig-
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Figure 3: Example of artificial teratoma. In step 2 the driver
cell bearing the CET value D is hit by an epigenetic muta-
tion, that turns D into E. As a result, the cell starts behav-
ing like the one bearing CET value E, triggering an arrow-
shaped fuchsia proliferation, generating CET values, that
can in turn trigger other proliferations, etc.

ure 4 provides a hand-coded example of artificial teratoma,
occurring to the shape whose development is shown in fig-
ure 1: in step 1 a mutation turns CET value D into CET
value E: as a result, the same arrow-shaped fuchsia struc-
ture produced in the north-east part of the shape by CET
value E is also produced in the north-west part, in place of
the rectangle-shaped light blue structure produced by D (see
figure 1); if some of the CET values produced by the pro-
liferation originated from E trigger in turn other poliferation
events, such events will occur both in the north-east and in
the north-west part of the shape. The outcome of this sce-
nario is an uncontrolled proliferation with a self-sustaining
nature of limited duration (after a given number of steps,
both sequences halt, as development does not go on forever).

A possible biological counterpart of this scenario is ter-
atoma, a tumour with tissue or organ components resem-
bling normal derivatives of all three germ layers. The tissues
of a teratoma, although normal in themselves, may be quite

Figure 4: On the right: simulation of an artificial teratoma.
In step 6 the CET value belonging to the driver cell circled
in red is turned into the CET value of the zygote: as a con-
sequence the development of the whole embryo starts over
from the point indicated, producing a shapeless mass of cells
in the neck region, composed of differentiated cells. On the
left the normal development sequence for comparison.

different from surrounding tissues, and may be highly inap-
propriate, even grotesque: teratomas have been reported to
contain hair, teeth, bone and very rarely more complex or-
gans such as eyeball, torso, and hand; usually, however, a
teratoma does not contain organs but rather tissues normally
found in organs such as the brain, liver, and lung. Teratomas
are thought to be present at birth, but small ones often are
only discovered much later in life. Fetus in fetu is a rare
form of teratoma that resembles a malformed fetus (it may
appear to contain complete organ systems, even major body
parts such as torso or limbs).

Figure 4 shows a simulation of an artificial teratoma, oc-
curring to the artificial embryo shown in figure 2. In step
6, the CET value (J) of the driver cell marked with the cir-
cle (C(J)) is mutated into the CET value of the zygote (K)
(hence AS(J)=6 and AS(K)=1); as a result, the development
of the whole embryo starts over again from cell C(J): the cell
proliferates, generating other CET values some of which, as
occurred in normal development, trigger other proliferation
events and so on. But, since in this case the zygote and all
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Figure 5: Ageing-related proliferation in a driver cell (the
event is triggered during the ageing period). After step 2
the CET values generated do not trigger further events and
the proliferation halts. The effects contribute to the ageing
phenotype.

other CET values cascaded from it are in ectopic positions
and are surrounded by wrong environments, while the dif-
ferent cell types (represented by different colours) continue
to be created, the interactions with other cells -mediated by
physics- prevent them from being arranged in the correct
patterns; instead, an amorphous mass of differentiated cells
is produced. The kind of epigenetic mutation reported in
this simulation is only one among endless possibilities; an-
other possible path leading to an (artificial) teratoma is the
following: the CET value belonging to a driver cell of the
developing (artificial) liver is turned into the CET value of a
driver cell which in normal development is a precursor of the
(artificial) hand; as a result, the mutated driver cell will try
to generate the hand, etc. It is quite natural to hypothesise
a direct link between the size of a teratoma and the depth
of the tree of CET values at which the mutation occurs (the
closer the latter is to the level of the zygote, the bigger the
tumour).

Figure 6: The “face”. On the left the period of development
(steps 0-5): the shape grows from a single cell to the mature
phenotype in step 5, fitness is evaluated; on the right the
period of ageing (steps 6-11): the picture quality deteriores
steadily under the action of random instructions.

Artificial Carcinogenesis II: Other Tumours

As recalled in section 3, at the end of an individual’s devel-
opment many junk driver cells are present, as well as many
junk instructions; such stock of junk represents a reservoir
of events that can potentially be triggered after the moment
of fitness evaluation, in the artificial ageing period. Since
these events occur after fitness evaluation, they are by def-
inition not affecting the fitness value; for this reason they
will tend to have a random nature and their effects on the
overall individual’s fitness are more likely to be detrimental
than beneficial: they can be thought of as a random noise
superimposed on the phenotype created by the instructions
subject to evolutionary pressure. An example is reported in
figure 5: driver cell bearing CET value A triggers the activa-
tion of a proliferation instruction at step 64 (beyond fitness
evaluation); at the subsequent step another proliferation is
triggered on the driver cell bearing CET value E. Such ran-
dom events represent indeed the essence of artificial ageing.

A simulation of artificial ageing is reported in figure 6
for a bi-dimensional “face” shape (picture of 100x100 size
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Figure 7: Tumorigenic proliferation in a driver cell. A dam-
age is the CET generating mechanism has the effect of re-
placing CET values B and D with additional copies of A,
which in turn trigger another proliferation in the subsequent
steps. The amount of purple cells expands without limit.

with 16 grey shades); the left part shows steps 0-5, belong-
ing to the period of development: the shape grows from the
single cell stage to the mature phenotype in step 5, when
fitness is evaluated; the right sequence refers to the period
of ageing (steps 6-11), characterised by the accumulation
of random events (of the type of that of figure 5), whose
global effect causes a progressive deterioration of the qual-
ity of the image. In nature the moment of fitness evaluation
can be thought to coincide with the moment of reproduction,
even though, actually, an individual’s fitness depends also on
characteristics manifesting themselves after reproduction, as
also those can affect the survival chances of its progeny; in
other words the effect of changes on the fitness tends to de-
crease as the age of their appearance increases, rather than
going abruptly to zero right after reproduction.

Now, the stage for a dangerous scenario is set if a fault
arises in one of such “ageing” driver cells, affecting the
mechanism used by the cell to generate new CET values dur-
ing a proliferation event. Within this scenario many variants

are conceivable (this mechanism can be damaged in many
ways): in one possible variant the damage can be such that
the CET value A (the mother’s) appears among the CET val-
ues of the daughter cells, in one or more copies. Figure 7
shows the effect of such a damage on the same event of fig-
ure 5: CET values B and D have been replaced with CET
value A: in this context the mother cell and its epigenetically
identical progeny are stuck to execute the same proliferation
instruction, leading to a situation in which the amount of
purple cells tends to increase without limit. Along with the
purple cells, also cells of a different type (in this case the red
cells) may be present, leading to a heterogenous mix of cell

types.

Discussion

The process of carcinogenesis is traditionally divided into
three phases: initiation, promotion and progression. Initi-
ation is linked to chemicals or physical stimuli that induce
permanent alterations to DNA; a single exposure appears to
be sufficient for the establishment of the initiated phenotype
which, once in place, is irreversible. An initiated cell is sus-
ceptible to the effects of promoters; these compounds favour
the proliferation of the cell, giving rise to a large number of
daughter cells containing the mutation created by the initia-
tor (if the cell has not been previously initiated promoters
have no effect). The third stage, progression, refers to the
stepwise transformation of a benign tumour into a malignant
one (this framework is based on skin cancer studies, but it is
thought to be valid for most tumour types).

As we said, the attempt to trace back carcinogenesis to a
subset of mutated genes (oncogenes and tumour-suppressor
-TS- genes) consistently found in all tumours, has so far
been unsuccessful. Nevertheless, most tumours are undeni-
ably correlated with specific patterns of mutations, affecting
specific genes involved in cell-cycle regulation and cellu-
lar differentiation; individual genes are mutated in percent-
ages that are tumour-specific, e.g. the rb gene is mutated
in 50% of colorectal cancers, in 30% of adenocarcinomas,
etc.: these correlations represent evidence a theory of car-
cinogenesis should seek to explain. According to current
knowledge, TS genes are thought to act as checkpoints at
some cell-cycle key moments, when they can stop the cy-
cle upon detection of damages to DNA; oncogenes, on the
other hand, are genes implicated in the cascade of chem-
ical signals that drive the cell towards mitosis. While the
supposed role of oncogenes appears to be realistic, the role
of TS genes as “guardians of the genome” is, in our opinion,
less firmly grounded; moreover, if they played this role, they
should be mutated in 100% of cancers.

The hypothesis we wish to put forward here is that the
cellular equipment dedicated to the generation of new CET
values, which in our model is embedded in the cell struc-
ture, in real cells is implemented by means of TS genes; in
other words, the CET values would be determined by the
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interplay of the product of TS genes. In the light of this hy-
pothesis, it is not surprising to find that the set of TS genes
is tissue-specific, as it is the set of CET values dedicated to
the differentiation of different tissues (the set of CET values
needed to induce the differentiation of skin progenitor cells
is different from the set of CET values needed to induce the
differentiation of gut progenitor cells, for instance). This
would explain why the set of mutated TS genes is different
in different tumours, a fact that the “genome guardian” hy-
pothesis is unable to account for. In the E.T. framework, the
damage to the CET generation mechanism corresponds to
initiation, a situation in which the number of CET values in
the progeny which are equal to the CET value of the mother
is altered.

The subsequent phase of promotion sets in once the con-
ditions required for proliferation are met (if the cell does not
proliferate, the effects of the damage to the CET generating
mechanism do not become apparent, even if present). The
progression phase corresponds to the drive towards the ma-
lignant phenotype, caused by mutations occurring to onco-
genes (not included in the model’s current version), which
confer additional powers to the already transformed cells,
e.g. the capacity to infiltrate tissues and to produce metas-
tases. The presence in tumours of cells having different de-
grees of differentiation is a well documented phenomenon,
coherent with the cancer stem cell theory and more diffi-
cult to explain with the standard theory (that postulates that
tumour cells are clones of the cell originally affected by a
number of mutations); this is a fact that, as we have seen, is
easily accounted for by our model.

The proposed theory provides also a quite straightforward
explanation for another well-known fact about cancer: the
prevalence increasing with the age. The temporal patterns
of ageing and cancer appear indeed to be perfectly superim-
posed: cancer is a rare occurrence in the young and becomes
more and more common as the age progresses. This fact is
easily accounted for by our theory, which hypothesises that
the same events triggered in the artificial ageing period can
contribute to the ageing phenomenon (if the CET generating
machinery is intact) or give rise to a tumour (if the CET gen-
erating machinery is damaged). This can also explain the
long latency observed between the exposure to mutagenic
chemicals (e.g. tobacco smoke) and the manifestation of the
tumour (e.g. lung cancer). As a matter of fact, even if the
damage to the driver cell’s CET generating mechanism oc-
curs early in life, for its effects to become manifest we need
to wait until a proliferation event is triggered on the relevant
cell: if the instruction’s timer is set to 60 years of age, the
tumour will not appear until that moment.

According to the theory proposed, tumours originate from
the artificial equivalent of embryonic stem cells, which in
our model are present throughout the body for the entire
life of the organism; a similar phenomenon could also origi-
nate from the artificial equivalent of adult stem cells, which

at present are not included in the model. In such “adult
driver cells” the CET value of the mother would normally
be present in the progeny (to guarantee the renewal of the
stem pool), in such an amount to keep the system in equilib-
rium (the renewal of progenitor driver cells -the equivalent
of those having CET value A- would be counterbalanced by
the disapperance of as many driver cells that differentiate to
perform their specialised job in the body). In a patholog-
ical scenario, a damage to the CET generation mechanism
would be such that the amount of new “A cells” outweighs
the amount of differentiating cells, leading to a situation in
which “A cells” become prevalent. In conclusion, we can
say that our model of development is able to provide an ex-
planation for some basic evidence relevant to tumours and
fits well with the cancer stem cell theory.

Conclusions

In the present work the model of cellular development called
Epigenetic Tracking has been employed to explore carcino-
genesis; in this context, we have been able to show how mal-
functions of model can produce the artificial counterpart of
the process of carcinogenesis, broken down into two broad
categories: one containing just a single tumour type called
teratoma and one with all other tumours. In previous works
it was shown how the model is able to produce the artifi-
cial version of key biological phenomena such as junk DNA
and ageing; the addition of carcinogenesis to the repertoire
of cellular behaviours strengthens the susceptibility of the
model to be used as a universal model of cellular develop-
ment, that can be succesfully employed as a tool to exploring
a wide range of biological phenomena.
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Abstract

Simpler biological systems should be easier to understand and engineer. One way to achieve biological simplicity is through genome
minimization. Here we have looked for genomic islands in the fresh water cyanobacterium Synechococcus elongatus PCC 7942 that
could be used as targets for deletion for genome minimization. By using a combination of methods we have identified 184 genes that
have been horizontally transferred into the genome of S. elongatus plus 127 ORFans (Figure 1). These genes have a combination of:
a) unusual G+C content; b) unusual phylogenetic similarity; and/or ¢) a small number of a highly iterated palindrome 1 (HIP1) motif
plus an unusual codon usage. We have also corroborated the existence of the largest genomic island by its lack of coverage among
metagenomic sequences from a fresh water microbialite. Interestingly, most genes coding for proteins with a diguanylate cyclase
domain are predicted to be xenologous, suggesting a role for horizontal gene transfer in the evolution of sensory systems in this
cyanobacteria. In parallel we have identified 1401 highly conserved genes that might be essential for cell survival and should not be
deleted. These two datasets (variable and conserved genes) comprises ~11.8% and 53.6% of annotated genes in S. elongatus. Our
results set a guide to non-essential genes in S. elongatus PCC 7942 indicating a path towards the engineering of a simpler
photoautotrophic cell.

Figure 1. Conserved and variable regions in the genome of S. elongatus PCC 7942. Outer circle. Red: variable genes; green:
conserved genes; gray: other. Inner circle. Regions of atypical tri-nucleotide composition are shown in purple.
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Abstract

The hierarchical organisation of biological systems plays a
crucial role in the pattern formation of gene expression result-
ing from the morphogenetic processes. Being able to repro-
duce the systems dynamics at different levels of such a hier-
archy might be very useful for studying such a complex phe-
nomenon of self-organisation. In this paper we propose the
adoption of the agent-based model as an approach capable of
capture multi-level dynamics. We then realise an agent-based
model of Drosophila Melanogaster morphogenesis demon-
strating its capability of reproducing the expression pattern
of the embryo.

Introduction

Developmental biology is an interesting branch of life sci-
ence that studies the process by which organisms develop,
focussing on the genetic control of cell growth, differen-
tiation and movement. A main problem in developmental
biology is understanding the mechanisms that make the pro-
cess of vertebrates’ embryo regionalisation so robust, mak-
ing it possible that from one cell (the zygote) the organism
evolves acquiring the same morphologies each time. This
phenomenon involves at the same time the dynamics of —
at least — two levels, including both cell-to-cell communica-
tion and intracellular phenomena: they work together, and
influence each other in the formation of complex and elab-
orate patterns that are peculiar to the individual phenotype.
This happens according to the principles of downward and
upward causation, where the behaviour of the parts (down)
is determined by the behaviour of the whole (up), and the
emergent behaviour of the whole is determined by the be-
haviour of the parts (Uhrmacher et al., 2005).

Modelling embryo- and morphogenesis presents big chal-
lenges: (i) there is lack of biological understanding of how
intracellular networks affect multicellular development and
of rigourous methods for simplifying the correspondent bio-
logical complexity: this makes the definition of the model
a very hard task; (ii) there is a significant lack of multi-
level models of vertebrate development that capture spatial
and temporal cell differentiation and the consequent hetero-
geneity in these four dimensions; (iii) on the computational

framework side, there is the need of tools able to integrate
and simulate dynamics at different hierarchical levels and
spatial and temporal scales.

A central challenge in the field of developmental biol-
ogy is to understand how mechanisms at intracellular and
cellular level of the biological hierarchy interact to produce
higher level phenomena, such as precise and robust patterns
of gene expressions which clearly appear in the first stages of
morphogenesis and develop later into different organs. How
does local interaction among cells and inside cells give rise
to the emergent self-organised patterns that are observable
at the system level?

The above issues have already been addressed with differ-
ent approaches, including mathematical and computational
ones. Mathematical models, on the one side, are contin-
uous, and use differential equations—in particular, partial
differential equations describing how the concentration of
molecules varies in time and space. A main example is the
reaction-diffusion model developed by Turing, 1952 and ap-
plied to the Drosophila Melanogaster (Drosophila in short)
development by Perkins et al., 2006. The main drawback of
mathematical models is the inability of building multi-level
models that could reproduce dynamics at different levels.

Computational models, on the other side, are discrete,
and model individual entities of the system—cells, proteins,
genes. The agent-based approach is an example of such a
kind of models. Agent-based modelling (ABM) is a com-
putational approach that can be used to explicitly model a
set of entities with a complex internal behaviour and which
interact with the others and with the environment generating
an emergent behaviour representing the system dynamics.
Some work has already been done which applies ABM in
morphogenesis-like scenarios: a good review is proposed in
Thorne et al., 2008. Most of these models generate artificial
pattern — French and Japanese flags (Beurier et al., 2006) —
realising bio-inspired models of multicellular development
in order to obtain predefined spatial structures. At the best
of our knowledge, however, few results have been obtained
till now in the application of ABM for analysing real phe-
nomena of morphogenesis.
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In order to get the benefits of both approaches, hybrid
frameworks has been developed. For instance, COMPU-
CELL 3D (Cickovski et al., 2005) combines discrete meth-
ods based on cellular-automata to model cell interactions
and continuous model based on reaction-diffusion equation
to model chemical diffusion. COMPUCELL 3D looks like
a very promising framework whose main limitation is rep-
resented by the lack of a suitable model for cell internal
behaviour—gene regulatory network in particular.

In this paper we present an agent-based model of the
Drosophila embryo development, reproducing the gene reg-
ulatory network that causes the early (stripes-like) regionali-
sation of gene expression in the anteroposterior axis (Yamins
and Nagpal, 2008; Perkins et al., 2006). The embryo is
modelled as a set of agents, where each agent is a cell.
Our approach allows the gene-regulatory network to be di-
rectly modelled as the internal behaviour of an agent, whose
state reproduces the gene expression level and dynamically
changes according to functions that implement the interac-
tions among genes. It also allows the cell interacting ca-
pability mediated by morphogens to be modelled as the ex-
change of messages among agents that absorb and secrete —
from and towards the environment — the molecules that are
then able to diffuse over the environment.

The remainder of this paper is organised as follows: The
role of hierarchy in the spatial self-organisation of gene
expression during morphogenesis is first highlighted along
with the main biochemical mechanisms taking place in this
phenomenon. The agent-based approach is then presented
with the modelling abstractions it provides. The third part
describes the biological principles of Drosophila embryo de-
velopment, while the fourth part reports the ABM we have
developed and implemented. Simulation results are then dis-
cussed, followed by concluding remarks.

The Role of Hierarchy in Morphogenesis

Complex systems in general exhibit a hierarchical organisa-
tion that divide the system into levels composed by many
interacting elements whose behaviour is not rigid, and is
instead self-organised according to a continuous feedback
between levels. Hierarchy has therefore a crucial role in
the static and dynamic characteristics of the systems them-
selves. These properties are highly dependent by the prin-
ciples of downward and upward causation, where the be-
haviour of the parts (down) is determined by the behaviour
of the whole (up), and the emergent behaviour of the whole
is determined by the behaviour of the part (Uhrmacher et al.,
2005). An example is given by biological systems: an out-
standing property of all life is the tendency to form multi-
levelled structures of systems within systems. Each of these
forms a whole with respect to its parts, while at the same
time being a part of a larger whole. Biological systems
have different level of hierarchical organisation — (/) se-
quences; (2) molecules; (3) pathways (such as metabolic

or signalling); (4) networks, collections of cross-interacting
pathways; (5) cells; (6) tissues; (7) organs — and the constant
interplay among these levels gives rise to their observed be-
haviour and structure. This interplay extends from the events
that happen very slowly on a global scale right down to
the most rapid events observed on a microscopic scale. A
unique molecular event, like a mutation occurring in partic-
ularly fortuitous circumstances, can be amplified to the ex-
tent that it changes the course of evolution. In addition, all
processes at the lower level of this hierarchy are restrained
by and act in conformity to the laws of the higher level.

In this contest, an emblematic process is morphogenesis,
which takes place at the beginning of the animal life and is
responsible for the formation of the animal structure. Mor-
phogenesis phenomena includes both cell-to-cell communi-
cation and intracellular dynamics: they work together, and
influence each other in the formation of complex and elabo-
rate patterns that are peculiar to the individual phenotype.

The biology of development

Animal life begins with the fertilisation of one egg. Dur-
ing the development, this cell undergoes mitotic division and
cellular differentiation to produce many different cells. Each
cell of an organism normally owns an identical genome; the
differentiation among cells is then not due to different ge-
netic information, but to a diverse gene expression in each
cell. The set of genes expressed in a cell controls cell pro-
liferation, specialisation, interactions and movement, and it
hence corresponds to a specific cell behaviour and role in the
entire embryo development.

One possible way for creating cells diversity during em-
bryogenesis is to expose them to different environmental
conditions, normally generated by signals from other cells,
either by cell-to-cell contact, or mediated by cues that travel
in the environment.

On the side of intracellular dynamics, signalling pathways
and gene regulatory networks are the means to achieve cells
diversity. Signalling pathways are the ways through which
an external signal is converted into an information travelling
inside the cell and, in most of the cases, affecting the expres-
sion of one or more target genes. The signalling pathways
are activated as a consequence of the binding between (i) a
cue in the environment and a receptor in the cell membrane,
or (ii) two membrane proteins belonging to different cells.
The binding causes the activation of the downstream pro-
teins until a transcription factor that activates or inhibits the
expression of target genes.

During embryo-morphogenesis few pathways are active.
They work either as mutual inhibitors, or as mutual en-
hancers. The idea is that there are regions where the mu-
tual enhancers are active and interact giving rise to positive
feedbacks. Pathways active in different regions work prob-
ably as mutual inhibitors. There are then boundary regions
where we can observe a gradient of activity of the different
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sets of pathways, due to the inhibitory effect of the pathways
belonging to neighbour regions.

The Agent-based Approach

In literature, agent-based systems — in particular Multi-
Agent Systems (MAS) — are considered as an effective
paradigm for modelling, understanding, and engineering
complex systems, providing a basic set of high level abstrac-
tions that make be possible to directly capture and represent
the main aspects of such complex systems, such as interac-
tion, multiplicity and decentralisation of control, openness
and dynamism (Michel et al., 2009; Merelli et al., 2007;
Kliigl et al., 2002). A MAS can be characterised by three
key abstractions: agents, societies and environment. Agents
are the basic active components of the systems, executing
pro-actively and autonomously. Societies are formed by set
of agents that interact and communicate with each other, ex-
ploiting and affecting the environment where they are sit-
vated. Such an environment plays a fundamental role, as a
context enabling, mediating and constraining agent activities
(Weyns et al., 2007).

By adopting an agent-based approach, biological systems
can be modelled as a set of interacting autonomous com-
ponents — i.e., as a set of agents —, whereas their chemical
environment can be modelled by suitable agent environment
abstractions, enabling and mediating agent interactions. In
particular, MAS provide a direct way to model: (i) the in-
dividual structures and behaviours of different entities of
the biological system as different agents (heterogeneity); (ii)
the heterogeneous — in space and time — environment struc-
ture and its dynamics; (ii) the local interactions between
biological entities/agents (locality) and their environment.
An agent-based simulation means executing the MAS and
studying its evolution through time, in particular: (i) ob-
serving individual and environment evolution; (ii) observing
global system properties as emergent properties from agent-
environment and inter-agent local interaction; (iii) perform-
ing in-silico experiments. The approach is ideal then for
studying the systemic and emergent properties that charac-
terise a biological system, which are meant to be reproduced
in virtuo. In the context of biological system, agent-based
models can therefore account for individual cell biochemi-
cal mechanisms — gene regulatory network, protein synthe-
sis, secretion and absorption, mitosis and so on — as well as
the extracellular matrix dynamic — diffusion of morphogens,
degradation and so on — and their dynamic influences on cell
behaviour.

The Drosophila Melanogaster Embryo
Development
One of the best example of pattern formation during mor-

phogenesis is given by the patterning along the anteropos-
terior axis of the fruit fly Drosophila Melanogaster. In this

section we briefly propose a model for the pattern forma-
tion in the embryo. We reproduce the interaction among
pathways inside the cell, that is responsible for its stabili-
sation into a specific genetic expression, and the cell-to-cell
interactions mediated by cues, i.e., transcription factors that
enhance or inhibit the original cell activity and cause the for-
mation of regions of cells with similar activity.

Biological background

The egg of Drosophila is about 0.5 mm long and 0.15 mm
in diameter. It is already polarised by differently localised
mRNA molecules which are called maternal effects The
early nuclear divisions are synchronous and fast (about every
8 minutes): the first nine divisions generate a set of nuclei,
most of which move from the middle of the egg towards the
surface, where they form a monolayer called syncytial blas-
toderm. After other four nuclear divisions, plasma mem-
branes grow to enclose each nucleus, converting the syn-
cytial blastoderm into a cellular blastoderm consisting of
about 6000 separate cells.

Up to the cellular blastoderm stage, development depends
largely — although not exclusively — on maternal mRNAs
and proteins that are deposited in the egg before fertilisation.
After cellularisation, cell division continues asynchronously
and at a slower rate, and the transcription increases dramati-
cally. Once cellularisation is completed the gene expression
regionalisation is already observable.

The building blocks of anterior-posterior axis patterning
are laid out during egg formation thanks to the maternal ef-
fects. Bicoid and caudal are the maternal effect genes that
are most important for patterning of anterior parts of the
embryo in this early stage. They are transcription factors
that drive the expression of gap gemnes such as hunchback
(Hb), Kriippel (Kr), knirps (Kni) and giant (Gt), as shown
in the diagram of Fig. 1; there, tailess (TIl) also appears as
gap genes whose regulation we do not represent here. Gap
genes together with maternal factors then regulate the ex-
pression of downstream targets, such as the pair-rule and
segment polarity genes. The segmentation genes specify 14
parasegments that are closely related to the final anatomical
segments (Alberts et al., 2002; Gilbert, 2006).

Methods

Our model consists of a set of agents that represent the cells,
as well as of a grid-like environment representing the extra-
cellular matrix. Agent internal behaviour reproduces the
gene regulatory network of the cell, while agent interaction
with the environment models the process of cell-to-cell com-
munication mediated by the signalling molecules secreted in
and absorbed by the extra-cellular matrix. Our model aims
at reproducing the expression pattern of the gap genes, be-
fore the pair-rule genes are activated.
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Figure 1: Gene regulatory network as in Perkins et al., 2006;
Gursky et al., 2004

Model of the cell

We model different cell processes: secretion-absorption dif-
fusion of chemicals from and towards the environment, cell
growth and cell internal dynamics—gene regulatory net-
work in particular.

Chemical diffusion Until cleavage cycle 13, there are
no cell membranes surrounding cell cytoplasm and nu-
cleus, and the transport of material mainly interests the nu-
clear membrane, and involves also cell membranes once
they grow. We do not distinguish between the syncytial
blastoderm and the cellular blastoderm stages, and model
the process of molecule secretion and absorption as facili-
tated diffusion—the literature lacks of information about the
transport mechanisms of such transcription factors and about
the rate of diffusion.

Gene regulatory network Gene transcription begins with
the binding at the gene promoter of one or more transcrip-
tion factors. Gene transcription might also be repressed once
transcription factors bind to other control regions called si-
lencers. This activation/inhibition is stochastic (Kaern et al.,
2005) and highly depends on the concentration of transcrip-
tion factors. For those genes whose transcription is regu-
lated by a set of other gene products we define a probability
of transcription as a sum of positive and negative contribu-
tions from the concentration of enhancers and silencers, re-
spectively. The probability of transcription of hunckback,
according to the graph of Fig. 1, is then calculated as:

P, = f([Bicoid]) + f([Hunchback]) + f([Tailess])
—f([Knirps]) — f([Kruppel))

where f is a linear function with the proportionality constant
representing the strength of interaction. Then if P, > 0 the
protein is synthesised, otherwise the gene remains silent.

No distinction has been done in the model between ante-
rior (a) and posterior (p) hunckback and giant, whose dif-
ferent expression only deals with the spatial distribution of
maternal products.

Mitosis According to Fig. 2 where we show how the num-
ber of cells varies in the first four hours of embryo devel-
opment — until the cleavage cycle 14, temporal class 8 — we
computed the rate of division as a function of time: cell di-
vision is fast and synchronous until cleavage cycle 9, then
slows down and becomes asynchronous. The rate of division
is constant in the first hours of development (9.05 min~1),
then decreases until a low value (0.2 min~"), as it appears
in Figure 3.

Number of cells

1 2}4/ s6|7]|8]|9[10] 11] 12 13 14A-2  14A-4 14A-6 14A-8
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Figure 2: Number of cells varying from one to 6000 in the
first 14 cleavage cycles
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Figure 3: Rate of division in the first 14 cleavage cycles

Model of the environment

The 3D-tapered structure of the embryo, as in Figure 4, is
modelled as a 2D-section of the embryo along the antero-
posterior axis (c¢) under the assumption that the dynamics
along the other two axis, a and b, does not influence what
happens along the ¢ axis. The space scale is 1:3.33 accord-
ing to the real dimension of the embryo where the antero-
posterior axis is almost three times the dorso-ventral one
a. Space is not continuous but grid like, and each location
might be occupied both by a set of morphogenes and by a
cell.

The environment has its own dynamics, which mainly
consists in the diffusion of morphogenes from region with
bigger concentration to region with lower concentration,
according to the Fick’s low that the diffusive flux is pro-

Proc. of the Alife XII Conference, Odense, Denmark, 2010

113



w

Figure 4: 3D-structure of real embryo

portional to the local concentration gradient (Smith and
Hashemi, 2005). This law is used in its discretised form.

Model implementation and simulation procedure

The model is implemented on top of Repast Simphony!, an
open-source, agent-based modelling and simulation toolkit.
It provides all the abstraction for directly modelling the
agent behaviour and the environment. It implements a multi-
threaded discrete event scheduler. In our simulations a time
step corresponds to 4 seconds of the real system simulated.
This is the smallest time-interval allowing for a good com-
promise between precision in the observation of the system
dynamic and simulation execution time.

Simulations are executed from the cleavage cycle 11,
when the zygotic expression begins. We used the experi-
mental data available online in the FlyEx database?. The
data contains quantitative wild-type concentration profiles
for the protein products of the seven genes — Bcd, Cad, Hb,
Kr, Kni, Gt, Tll — during cleavage cycles 11 up to 14A,
which constitutes the blastoderm stage of Drosophila de-
velopment. These data are used to validate the model dy-
namic. Expression data from cleavage cycle 11 are used as
initial condition—see Fig. 6. The concentration of proteins
are unitless, ranging from O to 255, at space point x, ranging
from 0 to 100 % of embryo length.

Model parameters are: (i) diffusion constants of morpho-
genes motion; (ii) rates of gene interactions; (iii) rates of
protein synthesis. Few data are available in literature for
inferring the diffusion constants. We took inspiration from
the work of Gregor et al., 2007 that calculates the diffusion
rate for Bicoid and we imposed the value for all the mor-
phogenes at 0.3 um?/sec. The rates of gene interactions
and of protein synthesis are determined through a process
of automatic parameter tuning. The task is defined as an
optimisation problem over the parameter space. The opti-
misation makes use of metaheuristics — particle swarm op-
timisation — to find a parameter configuration such that the
simulated system has a behaviour comparable with the real
one (Montagna and Roli, 2009). We supported the automatic

'http://repast.sourceforge.net/index.html

http://flyex.ams.sunysb.edu/flyex/index. jsp

parameter tuning with a process of model refinement which
slightly changed the topology of gene regulatory network,
adding some edges that we found necessary for obtaining
the real behaviour. An argumentation about the final model
is provided in the Discussion.

Kr

kni

0 10 20 30 40 50 60 70 80 90 100 A-F

Figure 5: Qualitative results

Simulation results

Qualitative results charted in the 2D-grid are shown in Fig. 5
(top) for expression of hb, kni, gt, Kr at the eighth time step
of cleavage cycle 14A. The image shows for each cell of the
embryo the genes with higher expression. It clearly displays
the formation of a precise spatial pattern along the A-P axis
but it does not give any information about gene expression
level. Experimental data are also provided in Fig. 5 (bot-

Proc. of the Alife XII Conference, Odense, Denmark, 2010

114



200

cad

<0

Gene expression level

0 10 20 30 40 50 60 70 80 920 100
A-P posn. (%EL)

Figure 6: Experimental data at cleavage cycle 11 of genes with non-zero concentration: maternal genes Bcd, Cad, Tll and the
gap gene Hb
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Figure 7: Quantitative simulation results for the four gap genes hb, kni, gt, Kr at a simulation time equivalent to the eighth time
step of cleavage cycle 14A (top) and the corresponding experimental data (bottom)

tom) with 2D-Atlas reconstructing the expression level of formed. The weight in sec™! of each node is then reported
the four genes in A-P sections of the embryo. More pre- in Fig. 9.

cise information about simulation behaviour are given with

the quantitative results provided in Fig. 7. A comparison Bicoid Caudal Tailless  Bicoid Caudal Tailless Bicoid Caudal Tailless
shows that the expression pattern of genes Hb, Kni, Gt and 1 1 1 l l 1 q l l 1

Kr nicely fit the spatial distribution shown in the experimen-

tal data: Hb is expressed in the left pole until about 45% r ”:::::sz — ks g ”P"O”;::":*‘ J

of embryo length, while it does not appear on the right as

it should between about 85% and 95%; Kni is correctly ex-
pressed on the extreme left and between 65% and 75% but
it is slightly over-expressed on the right; Gt is reproduced
in the correct regions but over-expressed in the extreme left
and slightly under-expressed between 20% and 30%; finally,
Kr properly appears between 40% and 60%.

Discussion Bicoid Caudal yjl|ags Bicoid Caudal gjjjess Bicoid Caudal Tjesc

Through the model refinement we found the network

- . . Figure 8: Gene regulatory network
showed in Fig. 8 where some more interactions are per-
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BICOID | CAUDAL | TAILLESS | HUNCHBACK | KNIRPS | KRUPPEL | GIANT

HUNCHBACK  0.0071 0.0018 0.0065 0.0400 -0.0080 -0.003 -
KNIRPS 0.077 0.0096 -0.0140 -0.0060 0.0700 -0.0055 | -0.0037
KRUPPEL 0.0045 0.0123 -0.0240 -0.0002 -0.0073 0.0640  -0.0057
GIANT 0.0042 0.0124 -0040 -0.0032 -0.0030 | -0.0096 0.0360

Figure 9: Rate of gene interactions

Bced and Cad are activators of the gap genes. As maternal
factor their central role is in fact to input the wave of zygotic
expression. In particular, given the spatial distribution of
their expression, Bced is responsible for the activations on the
left side of the embryo, while Cad in the opposite side. 71l
enhances Hb expression while inhibits the expression of all
the others as in the previous model. The interactions among
gap genes are slightly different. As before Hb and Kni on
one side and Gt and Kr on the other side inhibits one each
other, and from the parameters found we infer that these are
the strongest inhibitions among gap genes; Hb then weakly
inhibits Kr and vice-versa, as well as Gt versus Kni. New
weak edges have been found between Kni versus Gt, and Kr
versus Kni.

As far as we know, there are no evidences in biological
literature that already support the above results. It might be
a starting point for new laboratory experiments.

Conclusion

The process of spatial organisation resulting from the mor-
phogenesis process is demonstrated to be highly-dependent
by the interplay between the dynamics at different levels of
the biological systems hierarchical organisation. In mod-
elling and simulating the phenomena of morphogenesis it
might be appropriate to reproduce such a hierarchy. In this
work we have described the application of ABM as an ap-
proach capable of supporting multi-level dynamics.

We studied the phenomenon of pattern formation during
Drosophila embryo development, modelling the interactions
between maternal factors and gap genes that originate the
early regionalisation of the embryo. The possibility to model
both the reactions taking place inside the cells that regulate
the gene expressions, and the molecules diffusion that me-
diates the cell-to-cell communication, makes it possible the
reproduction of the interplay between the two levels in order
to verify its fundamental role in the spatial self-organisation
characteristic of such a phenomenon.

The results presented show the formation of a precise spa-
tial pattern which have been successfully compared with ob-
servations acquired from the real embryo gene expressions.

Future work will be firstly devoted to extending the model
with the introduction of new phenomena on the side of both
intracellular dynamics and cell-to-cell interaction. Gene reg-
ulatory network will be enlarged with other sets of genes
which are downstream to gap genes such as the pair rule
genes, even-skipped as first, whose expression gives rise at

the characteristic segments of Drosophila embryo. Mecha-
nisms regulating cell movements will then be added — cell
adhesion and chemotaxis in particular — as soon as they are
known to play a crucial role in cell sorting during morpho-
genesis.

Finally. we are planning to exploit the predictive power
of the model analysing embryos that are not wild type, for
instance performing in-silico Knock-Out experiments.
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Abstract

Artificial embryogeny aims at developing a complete organ-
ism starting from a unique cell. Nowadays many algorithms
exist to synthesize artificial creature shapes or behaviours.
With the purpose of shape and high-level behaviour joint evo-
lution, one of the key aspects is the synthesis of positional
information. Such pieces of information, called morphogens,
are in many developmental models embedded in the environ-
ment and interactions are made through simple protein recep-
tors. In this paper, we propose a new and original approach to
solve the morphogen-positioning problem. We use a hydro-
dynamic model to replace the classical spreading algorithm.
Mechanical constraints (the cell shape) and a dynamic activ-
ity are integrated. Thanks to this improvement, the cell be-
haviour can affect the spreading algorithm: cells can apply
forces on the hydrodynamic environment to create substrate
flows. Through experiments, this paper shows the way to de-
velop complex shapes using this kind of simulator and pro-
poses how to extend the simulation in a 3-D world in which
physical laws are taken into account.

Introduction

Literature offers many developmental models able to de-
velop several kinds of creatures starting from a single cell
(Stanley and Miikkulainen, 2003). Many goals motivate
that kind of research work: to develop a particular shape,
to evolve a high-level behaviour, etc. or, at a higher level,
to understand living systems by the use of such models to
simulate their mechanisms. Nowadays, a complete research
field axis is about shape development from a single cell. One
of the major problems of this work is morphogen position-
ing. Morphogens are often used as positional information
to lead cells in their development. In nature, positional in-
formation is a key aspect in morphogenesis, embryogene-
sis, organogenesis and in behaviour synthesis at last. Evolv-
able mechanisms should be used in developmental models to
spread their positional information in the environment. This
could allow the emergence of a complex structure and/or be-
haviour. Keeping this goal in mind, we choose to embed
morphogen positioning in cellular activity thanks to a hy-
drodynamic simulator which cells are able to interact with.
Our previous work proposed a developmental model,
named Cell20rgan (Cussat-Blanc et al., 2008), based on a

strong simplification of mechanisms used by living systems.
The developmental model is a chemical simulator where
organisms have to develop a metabolism, may have self-
repairing capacities and have to perform user-defined func-
tions. In this paper, we show the plug of a hydrodynamic
engine with the developmental model in order to solve one
of its main limitations: manual morphogen positioning. In
comparison to a classical spreading algorithm, widely used
in developmental models in literature, the use of a hydro-
dynamic engine allows more possibilities. Organisms will
have the ability to create fluid flows, to move substrates or
structures to organize the environment at their convenience.
Gastrulation stage of vertebrate embryos can be simulated
with this kind of system. In this early development stage,
morphogens are positioned thanks to a physical invagination
that induces many flows in the environment, as explained by
some physicists’ theories such as (Fleury, 2009).

In our bio inspired approach, the use of a hydrodynamic
engine has sense looking at the early development stage.
Gastrulation stage is seen as the first step of the morpho-
genetic process. During this step, high dynamic is observed
in the embryo. Undifferentiated cells migrate and the egg
membrane invaginates itself. Hydrodynamic forces are gen-
erated with a combination of these mechanisms. These
forces are constraints for the different actors of the system.
The consequence is the positioning of a kind of “mechani-
cal gradients”, in other words growth lines take place thanks
to the created mechanical constraints. These developmental
axis could be seen as an embryogenic pre-pattern. This latter
is, as the example of vertebrates, four members positioned in
pairs on the anterior and posterior zones of the organism.

This paper is organised as follows. Section 2 gives the re-
lated works on artificial development and morphogen posi-
tioning. Section 3 summarizes the model Cell20rgan. Sec-
tion 4 details the hydrodynamic layer we add to the model
in order to set up morphogens in the environment. Section 5
presents some results we obtain thanks to this new layer. We
first develop simple shapes like diamonds or rectangles and
a mushroom-shaped creature. We then develop more com-
plex shapes. We conclude these experimentations by hav-
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ing a discussion on the practicality of such a morphogenesis
process to generate bigger creatures that could populate a 3-
D world based on newtonian dynamics. Finally, we expose
several options to improve this work.

Related works

Over the past few years, more and more models concern-
ing artificial development have been produced. A common
method for developing digital organisms is to use Artificial
Regulatory Networks (ARN). Banzhaf was one of the first
to design such a model (Banzhaf, 2003). In his work, the
beginning of each gene, before the coding itself, is marked
by a starting pattern named “promoter”. This promoter is
composed of enhancer and inhibitor sites that allow the gene
activations and inhibitions regulation. Another different ap-
proach is based on Random Boolean Networks (RBN) first
presented by Kauffman (Kauffman, 1969) and re-used by
Dellaert (Dellaert and Beer, 1994). An RBN is a network in
which each node has a boolean state: activate or inactivate.
The nodes are interconnected by boolean functions, repre-
sented by edges in the net. The cell function is determined
during genome interpretation.

Several models dealing with shape generation have re-
cently been designed (de Garis, 1999; Kumar and Bentley,
2003; Stewart et al., 2005; Chavoya and Duthen, 2008; Kn-
abe et al., 2008; Joachimczak and Wroébel, 2009). Most
of them use artificial regulatory network and morphogens
to drive the development. With the latter approach, mor-
phogens positioning in the environment is one of the main
difficulties. In order to produce user-defined shapes as a
French flag - that is one of the main benchmarks, a pre-
cise morphogen positioning is crucial. Two main meth-
ods exist to solve this problem: on the one hand, cells
can produce morphogens by themselves that are spread in
the environment with a simple spreading algorithm (Stewart
et al., 2005; Knabe et al., 2008; Joachimczak and Wrdbel,
2009) and, on the other hand, environment can contain built-
in fixed morphogens (Chavoya and Duthen, 2008). Var-
ious shapes are produced, with or without cell differenti-
ation. The well-known French flag problem was solved
by Chavoya and Duthen, Knabe and recently in 3-D by
Joachimczak. This problem shows the model differentiation
capacity during multiple colour shifts.

Eggenberger was one of the first to propose a model that
takes a leaf out of gastrulation (Hotz, 2003). In his work,
both physics engine and artificial regulatory network (ARN)
are used. The ARN controls cells behaviour whereas a
physics engine allows to apply local constraints. Physical
interactions could be observed between the cells and be-
tween the cells and the environment. Nevertheless, the sub-
strate spread is made by cellular activity but is not influ-
enced by the mechanical activity, that is to say movements
made by cells do not spread any morphogen. Some biologi-
cal theories about embryonic development bring out that hy-

drodynamic morphogen movements seem to be the basics
of organogenesis (organ positioning the early embryo) and
an explanation of most living being symmetric morphology
(Cartwright et al., 2009; Fleury, 2009). To study the possi-
ble benefits of the morphogen flow creation in environments,
we proposed to use a hydrodynamic layer whose activity is
directly influenced by forces applied by cells.

This paper proposes a new morphogen positioning ap-
proach. More bio-inspired than biologically acceptable, we
use a hydrodynamic engine to produce morphogen flows in
the environment. Special cells have the ability to expulse
morphogens with a given force whereas others will use the
positional information to produce a defined shaped creature.
Because our research axis is more focussed on creature de-
velopment for virtual reality application than on cell mech-
anism realistic simulation, this bio-inspired approach is suf-
ficient. Moreover, this kind of method could be used for
future modular robots that could have the ability to expulse
a substrate.

The next section presents our developmental model. It
is based on action optimisation networks and on an action
selection system inspired by classifier rule sets. It has been
presented in details in (Cussat-Blanc et al., 2008).

Summary of Cell20rgan

We choose to implement the environment as a 2-D toric grid.
This choice allows a significant decrease in the simulation
complexity keeping a sufficient degree of freedom thus re-
ducing the simulation computation time.

The environment contains several kinds of substrates.
They spread within the grid, minimizing the variation of sub-
strate quantities between two neighbouring points. These
substrates can spread on the grid at several speeds and can
interact with other substrates. Interactions between sub-
strates can be viewed as a great simplification of a chemical
reaction: using different substrates, the transformation will
create new substrates, emitting or consuming energy. For-
mally, this chemical reaction can be written as follows:

!/ ! / /
a181+a282+...4an S, — a181+asss+... a8, (Oenergy)

where s; represents substrates, a; € N and a; e NGt e
1..n, 7 € 1..m are stoichiometric coefficients of the reaction
and 6 € R the quantity of energy produced (if positive) or
consumed (if negative) during the reaction. For example,
the reaction 24 + B — C (450) produces one unit of C
substrate from two units of A substrate and one of B’s. The
reaction also produces 50 units of energy.

To reduce the complexity, the environment contains a list
of available substrate transformations. Only cells can trigger
substrate transformations.

Cells

Cells act in the environment, more precisely on the environ-
ment’s spreading grid. Each cell contains sensors and has
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different abilities (or actions). An action selection system
allows the cell to select the best action to perform at any
moment of the simulation. Finally, a representation of an
ARN is available inside the cell to allow specialization dur-
ing division.

Each cell contains different density sensors positioned at
each cell corner. Sensors allow the cell to measure the
amounts of substrates available its Von Neumann neighbour-
hood. The list of available sensors and their position in the
cell are described by the genetic code.

To interact with the environment, cells can perform dif-
ferent actions: perform a substrate transformation, absorb or
reject substrates in the environment, divide (see later), wait,
die, etc. This list is not exhaustive. The addition of an action
is simplified by model implementation. As with sensors, not
all actions are available for the cell: the genetic code will
give the available action list.

Cells contain an action selection system. A system based
on a set of rules is inspired by classifier systems. It uses data
given by sensors to select the best action to perform. Each
rule is composed of three parts: (1) The precondition de-
scribes when the action can be triggered. A list of substrate
density intervals describes the neighbourhood in which ac-
tion must be triggered. (2) The action gives the action that
must be performed if the corresponding precondition is re-
spected. (3) The priority allows the selection of only one
action if more than one can be performed. The higher the
coefficient, the more probable the rule selection.

Division is a particular action performable if the next three
conditions are respected. First, the cell must have at least
one free neighbour to create the new cell. Secondly, the cell
must have enough vital energy to perform the division. The
vital energy level needed is defined during the environment
specification. Finally, during the environment modelling, a
condition list can be added.

Action optimisation

A new cell created after division is totally independent and
interacts with the environment. During a division, the cell
can optimize a group of actions. In nature, this specialisation
seems to be mainly carried out by a gene regulatory network
(GRN). In our model, we imagine a mechanism that plays
the role of an artificial GRN. Each action has an efficiency
coefficient that is linked to the action optimisation level: the
higher the coefficient, the lower the vital energy cost. More-
over, if the coefficient is null, the action is not yet available
for the cell. Finally, the sum of efficiency coefficients re-
mains constant during the simulation. In other words, if an
action is optimised by increasing its efficiency coefficient
during a division, another (or a group of) efficiency coeffi-
cient has to be decreased. A network represents the transfer
rule during a division stage. In this network, weighed nodes
represent cell actions with their efficiency coefficients and
weighed edges representing efficiency coefficient quantities

that will be transferred during the division. Efficiency coef-
ficient variations during division stage allow cell specialisa-
tion over divisions.

Creature’s genome

To find the best-adapted creature to a specific problem, we
use a genetic algorithm. Each creature is tested in its envi-
ronment. This latter returns the fitness at the end of the sim-
ulation. Each creature is coded with a genome composed of
three different chromosomes: the list of available actions,
an encoding of the action selection system and an encoding
of the optimisation network.

Because of the complexity of developed creatures, the ge-
netic algorithm had to be improved. First, we have decided
to parallelise it on a computation grid. We used a middle-
ware, named ProActive, that allows a total abstraction of
grid infrastructure (Caromel et al., 2006). We applied a Mas-
ter/Worker algorithm to parallelise our genetic algorithm.
This algorithm is well suited to artificial evolution because
the creature genome is small and the fitness computing cost
is very important. Because of the small size of the genome,
the network bottleneck induced by a Master/Worker archi-
tecture deployed on a computational grid will not heavily
increase the computation time. Moreover, because the Mas-
ter/Worker algorithm preserves the properties of a classical
genetic algorithm, the number of generations needed by the
algorithm to converge and the final solution quality are ex-
actly the same with or without parallelisation.

A second optimisation of our genetic algorithm consists in
leading the algorithm in its search. In our experimentation,
the fitness function can be broken up with sub-objectives
to describe the different evolution stages of the creature.
This approach, commonly named incremental evolution, has
been used in different domains such as behaviour simula-
tion (Kodjabachian and Meyer, 1998; Mouret and Doncieux,
2008) or genetic programming (Walker, 2004). Authors
generally conclude that global computation time is the same
in comparison to a classical fitness but this algorithm gives
more adapted solutions. In our problem, we generally break
the fitness up in the three following stages: metabolism that
is the lowest level function needed by the creature, cell birth
quantity during the simulation shows the capacity of the or-
ganism to develop itself in the environment and global fit-
ness that gives the efficiency of the organism to solve the
problem (can also be broken up into sub-objectives).

Example of generated creatures

Different creatures have been generated using this model.
For example, we develop a harvester, a creature able to col-
lect a maximum of substrate scattered all over the environ-
ment and to transform it into division material and waste.
The creature has to reject the waste because of each cell
limited substrate capacity. Another creature is the transfer
system. Presented in (Cussat-Blanc et al., 2008), this crea-
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ture is able to move substrate from one point to another.
This creature is interesting because it has to alternate its be-
haviour between performing its function and developing its
metabolism to survive. Finally, different morphologies, such
as a starfish, a jellyfish or any user-designed shape, have
been obtained (Cussat-Blanc et al., 2008). Once again, the
organism must develop its metabolism to be able to sustain
its activity.

All generated creatures have a common property: they
are able to repair themselves in case of injury (Cussat-Blanc
et al.,, 2009). This feature is an inherent property of the
model. It shows the phenotype plasticity of produced crea-
tures.

The last model’s interesting feature is organ cooperation
capacity to produce bigger structures. We have developed
organs separately and built an organism composed of these
organs that has a higher-level purpose. We create for exam-
ple a self-feeding structure composed of four organs: two
transfer systems and two producer-consumers.

Concerning the morphology development, one limitation
of the model is the necessity to position morphogens by hand
in the environment. In order to solve this problem, we pro-
pose a hydrodynamic layer that allows morphogen flow cre-
ation by cells. The organism has to make a morphogenetic
blueprint of the shape in the environment before it develops
itself by following division information. The next section
details the hydrodynamic model we use and its set up op-
tions. The integration to the developmental model is also
detailed.

Hydrodynamic layer

This simulator manages hydrodynamic substrate interac-
tions of our model. Its main aim is to propose a method
inspired by the gastrulation of some living beings to posi-
tion morphogens. This early stage of the organism develop-
ment allows the morphogen positioning of the embryo in its
immediat environment. It then allows the development of
its organs. By the use of a hydrodynamic simulator in our
model, we can produce the apparition of flows in the envi-
ronment that correspond to flows created by the organism
when it performs its actions (division, substrate absorption
or rejection in particular). Thus, cells can for example ex-
pulse a substrate to be positioned in the environment in a
specific direction and with a specific strength.

Hydrodynamic model

Because of the computation cost induced by the hydrody-
namic simulator complexity, we use a method that reduces
the resource usage of the hydrodynamic layer on our sim-
ulation but keeps enough realism and degree of freedom.
We base our work on Jos Stam’s solver (Stam, 2003). This
model is mainly used for image processing. This quite sim-
ple approach is interesting because its ability to solve Navier
and Strokes’ equations has been proved.

P9

(a) (b)

Figure 1: (a) Relative positioning of the chemical (red bold
lines) and hydrodynamic (blue thin lines) environment. (b)
Velocity vectors (red bold arrow) allow the spreading of few
substrates on the other side of the cellular membrane.

In this model, the environment is a grid on which fluids
particles are moving following speed vectors. Particles here
represent our substrates. Our simulated cells are impassable
obstacles. When a particle hits a cell membrane, the speed
vector that corresponds to the collision point is modified in
order to redirect the particle along the cell edge. In a first
step, to simplify the simulation, all substrates will be spread
separately, that is to say independently of one another. In
other words, substrate flow interactions are not simulated
with model. In our experimentation of morphogen position-
ing, this limitation has been overtaken bringing together all
morphogens in a unique substrate and then breaking it up in
the developmental model into several morphogens.

To ripen border conditions, the hydrodynamic simulator
grid size has been doubled in comparison with the chemi-
cal simulator grid. Indeed, the smaller the grid subdivision,
the more precise the border condition computation. In other
words, fluid flows will be more precisely described. Because
the grid subdivision strongly increases the computation cost,
the hydrodynamic grid has only been subdivided by two in
comparison to the chemical grid. The algorithm has also
been adapted to take into consideration the inter-cell spread-
ing allowed by our previous spreading algorithm. Because
obstacles represented by cells are stuck together, no fluid
flow is possible between cells. In our model, the organism’s
external speed vectors are able to modify the organism’s in-
ternal speed vector in order to create internal flows. Figure
1 is a scheme of the subdivision grid and force applications
in the environment.

The non-conservation material quantity is one of the main
limitations of this model. Indeed, during the simulation, the
hydrodynamic engine can generate a small loss of material.
Such a loss could be unacceptable for the developmental
model on little quantities or on application linked with real
data such as real cell simulation. The main aim of the hydro-
dynamic engine is to spread morphogens in the environment
in order to develop a shaped creature. Such a loss of ma-
terial could generate a non-desired growth of the organism.
However, several methods exist to fix the problem. The first
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one consists in the implementation of an energy conserva-
tion law, which equilibrates the substrate leaks due to equa-
tion reductions. A proportional distribution of lost material
on the entire grid has been preferred because the energy con-
servation method is expensive in computation resources and
will be difficult to apply to our simulator.

The number of adjustable parameters is another strength
of this model. Many properties are implied in fluid move-
ments. The first parameter is the viscosity coefficient. This
coefficient is used to describe the fluid movement. the higher
the coefficient, the easier the outflow on its support. The
second parameter of the model is the substrate density. This
latter represents the capacity of the substrate to be spread
during its spread. The higher the coefficient, the higher the
links between substrates particles. Finally, the last parame-
ter on which the user should act is the intensity of the force
applied on the environment. The higher the force intensity,
the bigger the induced activity.

The integration in our cellular simulation is simple: the
hydrodynamic engine totally replaces the traditional spread-
ing algorithm previously used to spread substrates. Cells
interact with the environment, in particular by absorbing or
rejecting substrates. Without a hydrodynamic layer, their
actions could not create the fluid flows due to molecular
movement. Now, the hydrodynamic engine can simulate this
kind of phenomenon. Expulsion strength with a particular
direction can be given to the cell. According to hydrody-
namic forces, cells can position now a substrate everywhere
in its environment. Cells can also create flows to produce
global movement in the environment. Substrate absorption
can create suctions in the same way. Lastly, as defined in the
developmental model Cell20rgan, during a division stage,
future cell position must be empty before the daughter cell
creation. In other words, substrates in the mother cell neigh-
bourhood must be spread in the close environment in order
to clean up the space to the daughter cell. The addition of a
hydrodynamic engine instead of a classical spreading algo-
rithm induces the creation of multiple complex flows (vortex
in particular) near the division that can modify the behaviour
of close cells.

Preliminary results of such an engine use with our devel-
opmental model has been presented in (Cussat-Blanc et al.,
2010). Through several experimentations, we showed the
capacity of this kind of model to create hydrodynamic flows
by using a cell that rejects substrates in a chosen direction.
We also showed the possibility to lead the flow with the use
of other cells, these latter acting as obstacles in the environ-
ment. Finally, we showed a possible extension of the model
Cell20rgan in a physical world through the experimentation
of a muscular joint.

In this paper, the previously presented hydrodynamic en-
gine is used to position morphogens in the environment. A
cell able to reject morphogens in the environment by giving
them a defined force is used to create a pattern that an organ-

ism endowed with a shape generation genome will follow.
Thanks to this method, we develop several shapes presented
in the next section.

Experiments
Experimental conditions

To provide comparable results, the environment composition
is the same in all next experiments. In order to develop sev-
eral shaped creatures, several hydrodynamic engine param-
eters (viscosity, expulsion force and density) and initial cell
possibilities are tested. We first present the used environ-
ment and cell capacities, which are always the same in next
experimentations. The results of these experimentations are
then presented.

The environment is composed of 5 substrates: energetic
substrate W that provides energy to cell by chemical reac-
tion W — Energy (30), morphogen substrates NE, NW,
SE, SW that provide division information to cells. Whereas
W can spread and is massively present in the environment
to develop an easy and efficient metabolism (the latter is not
the main goal of the experiments), few morphogens are po-
sitioned in the environment to be only expulsed by cells.

Two kinds of cells are available in the environment.

Pusher cells have two actions: reject morphogen in the
environment and wait for a signal. Because the cells’
genome is very simple, it is hand-coded: cells can reject
morphogens while they have units into their membranes;
when they have no more substrate, they wait indefinitely.

Development cells can follow morphogens to develop a
shaped-creature. The used genome has been evolved by
a genetic algorithm and is detailed in (Cussat-Blanc et al.,
2008). To summarize its functioning, cells have to manage
their metabolisms provided by the energetic substrate W and
their development functions (follow morphogens to produce
a shape). A good genome has been found by a genetic algo-
rithm and can produce any desired shape if morphogens are
correctly positioned in the environment.

The rest of this section presents three experiments: sim-
ple shapes development, the development of a mushroom-
like shaped creature and a four-armed creature. The aim
is to study the impact of the hydrodynamic engine pa-
rameter modifications on the developed shapes. Videos
of all these experiments are available on the website
http://www.irit.fr/~Sylvain.Cussat-Blanc.

Simple shapes

The aim of this first experiment is to give a range of possible
shapes that can be produced by the model and to evaluate the

Viscosity Density Force

1078 <Vi<107®® | 1< De<10° | 30 < Fo < 50

Table 1: Parameter acceptable value ranges
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(d) Vi=10~18, De=10, Fo=45

(c) Vi=10—%, De=10, Fo=50

Figure 2: Influence of viscosity (Vi), density (De) and ex-
pulsion force (Fo) on developed shapes. On the left, hydro-
dynamic world where cells (in green) are obtacles and mor-
phogen densities are represented with a gradient from white
to red. On the right, the chemical world where cells (in red)
are developping by following morphogens.

acceptable range of each parameter. In a first step, we em-
pirically modify the parameters to develop as many shapes
as possible. The parameter ranges are presented in table 1.
Figure 2 shows examples of produced shapes. As ex-
pected, parameter variations allow the development of dif-
ferent shape sizes (width) and statures (height). It is interest-
ing to notice that figure 2(a) shows the capacity of the model
to develop a square, a common problem of the literature
(first step of the French flag problem). A high-density value
(De = 100000) has been used here to keep morphogens
grouped and make the production of such a shape possible.
With a low-density value, we develop the mushroom-
shaped creature presented in figure 3. As previously intro-

Hydrodynamic world Chemical world
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Figure 3: Development of a mushroom with morphogens
positioning: a high fluid viscosity allows the cap formation.

duced, the density parameter configures the stickiness force
between substrates. The result is the development of a mush-
room “cap” on the top of the shape, due to the vortex forma-
tion along the “stalk” that creates depressions. This accu-
mulation produces two big vortexes of substrates on the top
that produce the “cap”.

Cell configuration influence on morphogen flows

Modifying the initial cell configuration in the environment
strongly influences the produced shape. Because cells are
considered as obstacles in the hydrodynamic world, when a
morphogen flow hits one of them, it is automatically divided
in two flows that interfere. In these experiments, medium
values of viscosity, density and expulsion forces are used.
Depending on the cell position and the hydrodynamic engine
parameters, many shapes can be obtained. Figure 4 presents
some examples of initial configurations influences. Some
interesting shapes appear in this figure: a kind of body en-
dowed of tow tentacles in figure 4(a), an stomach-like shape
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(c) Vi=10~22, De=10, Fo=50

Figure 4: Influence of viscosity (Vi), density (De), expulsion
force (Fo) and initial configuration on developed shapes (ini-
tial cells are highlighted in the chemical world).

on figure 4(b) and two wings on figure 4(c). This kind of
shapes can be mixed to produce a complex creature and al-
low to jiggle in a simulated physical world. We will present
an idea of such an improvement later in this paper.

The four-armed creature

In order to produce a bigger creature that could move and
act in a physical world, we develop a creature endowed with
four arms. Based on the same environment as before, we
modify the pusher cell to give it the possibility to expulse
substrates in the four cardinal directions (up, down, left and
right) in order to produce four morphogen flows in the envi-
ronment. According to previous results, we choose the hy-
drodynamic parameters to produce rectangular sets of cells
that will represent the arms. The initial configuration is also
based on a simple shape development: a 4-direction pusher
cell is set in the centre of the environment and four devel-
opment cells are positioned on its diagonals, all around the
pusher cell. Figure 5 shows the development of this four-
armed creature.

Artificial creatures, with a morphology such as the four-
armed creature previously presented, could be endowed with
locomotive abilities in a simulated physical world. We al-

Hydrodynamic world Chemical world
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Figure 5: Development of a four-armed creature

ready develop a physics engine that we plug in our model.
This simulator, presented in details in (Cussat-Blanc et al.,
2010), is linked to the chemical environment (Cell20rgan)
and allows the simulation in a 3-D physical world of these
developed organisms. We already showed the movement
of a “muscular joint” where two “bones” rotate around a
“kneecap” thanks to a “muscular fibre”. All these compo-
nents are produced by the developmental model and then
linked in the physical world. Muscular fibre cells are able to
change their shapes in order to produce a global movement.
This kind of mechanism could be applied to the four-armed
creature: each cell could be able to rotate around each other
in order to produce a global movement of such a structure.
With the intention of realising this behaviour, a high-level
controller (neural network, classifier system, etc.) must be
added to the cell to manage the rotation.

Conclusion

In this paper, we have presented the last features added to our
developmental model. We have plugged a hydrodynamic en-
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gine to automatically position morphogens in the environ-
ment. This first stage prepares the environment by position-
ing morphogens in the environment. A creature can then
develop its morphology by following division information.
Thanks to this add-on, we develop various shapes, simple or
more complex. The hydrodynamic model we choose for a
simulation allows us an interesting parameterisation of fluid
properties: whereas most models are hard to tune, Stam’s
model allows a simple modification of viscosity, density and
forces applied to substrates. We show that several morpholo-
gies can be obtained.

This work can be improved in many ways. First, it could
be interesting to evolve the presented parameter set with an
evolutionary algorithm. The use of such a research algo-
rithm could help us to produce user-defined morphologies
just by giving a fitness function that describes the shape of
the creature (that is a common problem in literature).

To produce more complex creatures, we imagine a cell
differentiation inspired from nature: in real living systems,
after a given number of divisions, embryonic stem cells can
produce differentiated cells (neurons, epithelial cells, etc.).
The mechanism could be used in our model to produce ro-
tations or morphology modifications in creatures: a pusher
cell produces an initial morphogenetic pattern. Developing
cells have a given division credit to produce a shape. When
this credit is depleted, the developing cell turns into a pusher
cell that produces a new morphogenetic pattern. Surround-
ing developing cells continue the shape development follow-
ing the previously produced pattern and so on. A gram-
mar based on L-Systems could give the division credit and
pusher parameters (expulsion force and direction) and could
be evolved by an evolutionary algorithm in order to produce
complex creature morphologies.

Lastly, as presented at the end of the previous section,
creatures must also be simulated in a 3-D physical world to
produce high-level moves. This feature will bring us closer
to our goal: producing a creature from a single cell able to
move in a 3-D environment.
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Abstract

Evolutionary adaptation is the process that increases the fit of
a population to the fitness landscape it inhabits. As a con-
sequence, evolutionary dynamics is shaped, constrained, and
channeled, by that fitness landscape. Much work has been ex-
pended to understand the evolutionary dynamics of adapting
populations, but much less is known about the structure of
the landscapes. Here, we study the global and local structure
of complex fitness landscapes of interacting loci that describe
protein folds or sets of interacting genes forming pathways
or modules. We find that in these landscapes, high peaks are
more likely to be found near other high peaks, corroborat-
ing Kauffman’s “Massif Central” hypothesis. We study the
clusters of peaks as a function of the ruggedness of the land-
scape and find that this clustering allows peaks to form inter-
connected networks. These networks undergo a percolation
phase transition as a function of minimum peak height, which
indicates that evolutionary trajectories that take no more than
two mutations to shift from peak to peak can span the entire
genetic space. These networks have implications for evolu-
tion in rugged landscapes, allowing adaptation to proceed af-
ter a local fitness peak has been ascended.

Introduction

The structure of the fitness landscapes that populations find
themselves in determines to a large extent how those popu-
lations will evolve. In introducing the concept of an adaptive
fitness landscape, Sewall Wright (1932) sought to illustrate
the idea that some combinations of characters will give rise
to very high fitness (peaks) while some others do not (val-
leys), and to study the processes that allow a population to
shift from peak to peak. Evolution in simple smooth land-
scapes (where each site or locus contributes independently to
fitness) is trivial, because the ascent of a single fitness peak
is largely deterministic (Tsimring et al., 1996; Kessler et al.,
1997). At the other extreme lie “random” landscapes (Der-
rida and Peliti, 1991; Flyvbjerg and Lautrup, 1992), which
are characterized by an absence of any fitness correlations
between genotypes, and whose dynamics can likewise be
solved using statistical approaches. In between these two ex-
tremes lie fitness landscapes that are neither smooth nor ran-
dom, where mutations at different loci interact in complex

patterns, giving rise to variedly rugged and highly epistatic
landscapes (Whitlock et al., 1995; Burch and Chao, 1999;
Phillips et al., 2000; Beerenwinkel et al., 2007; Phillips,
2008). Experiments with bacteria and viruses (Elena and
Lenski, 2003) have revealed that real fitness landscapes are
of this nature: they are neither smooth nor random, and con-
sist of a large number of fitness peaks.

Unfortunately, while experiments with bacteria and
viruses have taught us a lot about evolutionary dynamics,
they can only probe very limited regions of the fitness land-
scape, confined to the genotype space surrounding those of
living organisms. In artificial landscapes we are not con-
strained by generation time or the specific genotypic space
that organisms happen to occupy, but can place organisms
anywhere in the fitness landscape, thus enabling us to exam-
ine the statistical properties of fitness landscapes.

If realistic fitness landscapes are neither smooth (a sin-
gle peak) nor random (very many randomly placed peaks in
the landscape), what is the structure of complex landscapes
in “peak space”? Are most peaks confined to one region
of genotype space, leaving other areas empty? Are peaks
clustered or are they evenly distributed? One hypothesis
about the structure of fitness landscapes was proposed by
Kauffman (1993), who posited that peaks are not evenly dis-
tributed, but that high peaks are correlated in space, forming
a Massif Central, and presented numerical evidence support-
ing this view. According to this observation, the best place
to look for a high fitness peak is near another high fitness
peak. A corollary to this hypothesis is that large basins with
no peaks surrounds the central massif. If fitness peaks are
indeed distributed in this manner, it would have profound
implications for the traversability of the landscape, and for
evolvability in general (Altenberg and Wagner, 1996).

Here we strive to study this question in much more de-
tail, by analyzing all the peaks in a landscape in which the
ruggedness can be tuned from smooth to random. In par-
ticular, we would like to know whether the highest peaks
form clusters of connected walks that can percolate, i.e.,
form connected clusters that span the entire fitness land-
scape. Such clusters are very different from the neutral net-
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works studied elsewhere (van Nimwegen et al., 1999; Wilke,
2001), and we briefly argue that peak networks may be more
important for evolvability.

NK Landscape

Kauffman’s NK model (Kauffman and Levin, 1987, see also
Altenberg, 1997) has been used extensively to study evolu-
tion because it is a computationally tractable model of V bi-
nary interacting loci where the ruggedness of the landscape
can be tuned by varying K, the number of loci that each
locus interacts with. Typically N is of the order of 10-30,
but larger sets can be studied if a complete enumeration of
genotypes is not necessary. If K = 0, the smooth landscape
limit is reached, because if loci do not interact, then there
is a single peak in the landscape that can be reached by op-
timizing each locus independently. If K = N — 1, on the
other hand, the model reproduces the random energy model
of Derrida (Derrida and Peliti, 1991). The N loci are usually
thought of as occupying sites on a circular genome, while the
interactions occur between adjacent sites (see Fig. 1), but the
identity of the interactors are immaterial and the results do
not depend on their physical location on the genome. The
example genome in Fig. 1 shows the interactions between
loci in an N = 20 and K = 2 model, where the width
and darkness of the lines reflects the strength of the epistatic
interactions between sites for the global peak of that land-
scape.

While clearly the NK model should not be thought of as
describing the genome of whole organisms, the model has
been used extensively to study the evolution of a smaller set
of sites, such as the residues in a protein (Macken and Perel-
son, 1989; Perelson and Macken, 1995; Hayashi et al., 2006;
Carneiro and Hartl, 2010) or the set of interacting genes cod-
ing for a pathway or a module (Kauffman and Weinberger,
1989; Sole et al., 2003; Yukilevich et al., 2008; @stman
et al., 2010).

In the original NK model, the fitness contribution of each
locus is calculated as the arithmetic mean of the fitness con-
tributions of each locus w(x;), which itself is a function of
the value of the bit at that locus (1’ if the gene is expressed,
’0’ if it is silent) and the allele of the K genes it interacts
with. This fitness landscape is constructed by obtaining uni-
formly distributed independent random numbers for all the
possible combinations of the K + 1 sites (2% 1 numbers for
each locus), so that the fitness contribution for any combina-
tions of alleles can simply be found by looking up that value
in the table. Here, we modify this model slightly, by replac-
ing the customary arithmetic mean by the geometric one, so
that the fitness of genotype & = (z1, ..., z) is given by

N 1/N
W (%) = (Hw(m)) : §))
i=1

This modification better captures the nature of real genetic

Figure 1: Genome and epistatic interactions between sites
for the peak genotype of an N = 20 and K = 2 model.
While all sites within a “radius” of two interact (light grey),
the strength of interaction can be very different depending
on the actual landscape that was formed. Here, the strength
of epistatic interactions was calculated by performing all
single-site and pairwise knockouts on the global peak geno-
type, and calculating the deviation of independence using a
standard method (Bonhoeffer et al., 2004; Elena and Lenski,
1997; Bstman et al., 2010).

interactions (see, e.g., St Onge et al., 2007), and it makes
it possible to introduce lethal mutations by setting one or
more numbers in the fitness lookup-table to zero. Taking the
geometric mean skews the distribution of genotype fitness
to the left, resulting in a mean of about 0.4, rather than the
value of 0.5 when using the arithmetic mean (see Fig. 2). Of
course the logarithm of W (&) reduces to the usual arithmetic
mean of the log-transformed fitnesses.

In the NK model we can easily compute the fitness of all
genotypes as long as N and K are not too large, and we
can also identify fitness peaks as those genotypes whose N
one-mutation neighbors all have lower fitness. Increasing K
creates landscapes that are increasingly rugged, containing
more and higher peaks with deeper valleys in between. The
waiting time to new mutations becomes a determining fac-
tor in how much the population can evolve before it risks
becoming stuck on a peak of suboptimal fitness. Visualizing
natural fitness landscapes is difficult since it requires prob-
ing genotype-space by measuring the fitness of organisms
whose genomes are fully sequenced. Even worse, natural
fitness landscapes are rarely static, making such an endeavor
even more futile. In computational models all genotypes can
sometimes be enumerated, and we can thus learn about the
global properties of the fitness landscape. This exciting pos-
sibility is muted by the fact that we cannot easily visualize
high-dimensional spaces, and we are forced to resorting to
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statistical methods to probe the landscape.

How Peaks Cluster

In Fig. 2 we show the fitness distribution of all genotypes
of an N = 20, K = 4 landscape (this distribution is virtu-
ally identical for different realizations of landscapes with the
same N and K). Of those 22° genotypes, less than 0.07%
are peaks (this fraction depends on the particular realization
of the landscape), and are also roughly normally distributed
in fitness. Note that while the highest-fitness genotypes are
very likely peaks, there are peaks whose fitness is signifi-
cantly smaller, down to the mean fitness of genotypes in the
landscape. The number of peaks scales approximately expo-
nentially with N (when K is fixed), but only about linearly
with K for K sufficiently large, and at fixed IV (data not
shown).

6,
x104 60

81702 03 04 05 06 07
fitness

Figure 2: Fitness distribution of all 1,048,576 genotypes
(dashed line) in a typical landscape of N = 20 and K = 4.
This landscape contains 679 peaks whose fitness distribution
is shown as a solid black line. In the inset we have zoomed
in on the peaks.

Pairwise distances

Because the “Massif Central” hypothesis says that the neigh-
borhoods of high peaks are the best places to look for other
high peaks, it is natural to also look at the pairwise distance
of all peaks in a landscape. As we now know the genotypes
of all the peaks in the landscape, we can ask whether peaks
have a tendency to be located close to each other by study-
ing the distribution of Hamming distances between peaks,
which counts the number of differences in the binary rep-
resentation of the sequences. In fact, this is how Kauffman
validated his hypothesis: by plotting the fitness of peaks as

a function of the Hamming distance of all peaks to the high-
est peak he found (Kauffman (1993), page 61), for a land-
scape with N = 96 and K = 2, 4, and 8. As it is not
possible to enumerate 29 ~ 8 - 10%® genotypes, Kauffman
found high peaks using random uphill walks. Here, we in-
stead use N = 20, for which we can compute the fitness
of all genotypes and thus locate all peaks. After comput-
ing the Hamming distance between all pairs of peaks, we
can compare the distribution of these distances to a control
distribution constructed with the same number of random
genotypes, which are not expected to show any bias in the
distribution of distances. (It is easy to see that the distri-
bution of pairwise distances of random binary sequences of
length N = 20 peaks at d = 10.)
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Figure 3: Distributions of pairwise Hamming distances be-
tween all peaks (solid) and between random “control” geno-
types (dashed). The distributions shown are the averages of
50 different landscapes with genomes of length N = 20.
(A) K = 2 landscapes containing an average of 98 peaks.
(B) K = 4 landscapes containing an average of 720 peaks.
(C) K = 4 landscapes including only an average of 363
peaks with a fitness above a threshold: W > © = 0.60. (D)
K = 4 landscapes including only an average of 95 peaks
with a fitness above a threshold of © = 0.66. As the samples
include fewer and higher peaks, the pairwise distributions of
K = 4 landscapes begin to resemble that of the K = 2
landscapes, suggesting that the highest peaks do cluster in
genotype space, whereas the distribution of lower peaks is
less biased.

We find that for K = 2, peaks are generally closer to each
other than expected, indicating that peaks cluster in geno-
type space (see Fig. 3A). This alone does not tell us whether
high peaks are more frequently associated with other high
peaks (as opposed to peaks of lower fitness). Moreover,
when examining K = 4 landscapes (that contain over seven

Proc. of the Alife XII Conference, Odense, Denmark, 2010

128



times as many peaks on average as for K = 2) we notice that
the tendency for peaks to cluster close to each other is nearly
gone, that is, the distribution closely resembles the random
control (Fig. 3B). However, the bias reappears when we fil-
ter the peaks so that we only include those of high fitness
(Figs. 3C and D), reaffirming the hypothesis that in complex
epistatic landscapes, there is something special about being
a high peak, genotypically speaking.
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Figure 4: Mean fitness of peaks in circular clusters of radius
d = 2 as a function of the fitness of the peak in the center
of the cluster. (A) One landscape of K = 2 with 166 peaks
(black dots). All landscapes show a strong correlation be-
tween cluster mean fitness and peak fitness, while the same
analysis of assigning random genotypes to the peaks (but
keeping the fitness) shows no such correlation (gray dots).
The random data are from ten samplings. (B) One land-
scape of K = 4 with 679 peaks (black dots), and random
genotypes (gray dots) obtained by sampling four times.

Peak neighborhood

If we want to know whether peaks with high fitness are likely
to be found near other such peaks, we should study the mean
fitness of peaks within a specified radius of that peak. These
“circular” clusters contain all peaks within a Hamming dis-
tance d of a chosen peak (not counting the peak at the cen-
ter). For the smallest possible distance between peaks d = 2,
the size of a cluster is limited to 210 genotypes, but since
peaks must be at least two mutations away from each other,
there can be at most 190 peaks within a Hamming distance
of two.

Fig. 4A depicts the mean fitness of adjacent peaks in cir-
cular clusters of radius d = 2 (black dots, for K = 2),
showing a tight correlation between peak fitness and aver-
age adjacent peak fitness that indicates that the immediate
neighborhood of high peaks is populated by other peaks of
high fitness. On the contrary, when we randomize the lo-
cation of the 166 peaks in genotype space without chang-
ing their height, this relationship vanishes (light gray dots
in Fig. 4A). For K = 2 random peaks are far apart, result-
ing in only very few peaks within a distance d = 2 of each
other. The K = 4 landscape has four times as many peaks
as the K = 2 landscape, and the effect persists (Fig. 4B).
The observed relation between mean fitness of these circu-
lar clusters and peak fitness persists even when the radius in
increased to d = 6 (data not shown). We observe a similar
correlation between mean cluster fitness and maximum peak
height in network clusters (data not shown).

Adjacency matrices
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Figure 5: Adjacency matrices showing clusters of peaks. (A)
Single K = 4 landscape with peaks of Hamming distance
d = 2 connected. The peaks are ordered according to which
network cluster they belong to. This landscape consists of
109 peaks with fitness above © = (.66 that are grouped into
nine clusters (not counting singletons). (B) Random K = 4
landscape with d = 4 and © = 0, showing only the first 109
genotypes.

While circular clusters can tell us whether high peaks are
surrounded by peaks that are higher than expected, they do
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not allow us to examine certain critical properties of the
landscape. To do this, we should think of peaks in the ge-
netic landscape as nodes in a random graph, and study the
size of clusters of peaks that are formed by connecting all
those peaks that are within a distance d of each other. Con-
necting such networks clusters of peaks creates a percolation
problem (see, e.g., Bollobas and Riordan (2006)). In statis-
tical physics, systems where nodes are connected by edges
that are placed with a fixed probability undergo a geometric
phase transition as a function of the edge placement prob-
ability. One of the quantities studied in percolation theory
is the size of the largest cluster, because this variable rises
dramatically at the critical point so that it takes up most of
the system once past the critical point. If the largest cluster
takes up most of the nodes, the system is said to “percolate”,
which implies that the cluster spans the entire system (allow-
ing you to walk across connected nodes from any part to any
other in the system). We will study the percolation prop-
erties of the fitness landscape by using the peak height as
the critical parameter. Clearly, if only the highest few peaks
are considered the system is far from percolation, as these
peaks are unlikely to be connected. But if the highest peaks
are closer to each other than expected in a random control,
then the peaks could percolate far earlier.

Let us begin by computing the Hamming distance be-
tween all pairs of peaks with fitness greater than ©, and con-
nect those peaks that are a distance of no more than d away
from each other. In Fig. 5A, we show the adjacency matrix
of clusters, which we obtained by placing a dot for every two
peaks that are with a distance d (that is, immediately adja-
cent). Peaks are ordered in such a way that peaks that fall
into the same cluster are placed next to each other. This pro-
cedure allows us to the visualize the structure of clustered
peaks in the landscape. In contrast, if the same peaks are
assigned random locations in the landscape, there is no ap-
parent structure, and clusters of peaks are on average very
small (Fig. 5B). For K = 4 and d = 2 very few peaks are
connected in a random landscape, and because of this the ad-
jacency matrix shown in Fig. 5B is for d = 4, and includes
peaks of any height. Only the first 109 peaks are shown.

Percolation phase-transition

In Fig. 6 we show the average relative size of the largest
network cluster as a function of the peak threshold ©,
defined as the ratio of the largest number of connected
peaks with fitness above O to the total number of peaks in
the landscape. The relative size of the largest connected
component (also called the “giant cluster” in percolation
theory) increases dramatically as the critical threshold
is reached, much like the size of the giant component
increases when the critical probability of edges is reached
in percolation theory. But what is remarkable about this
transition is that it only occurs because the high peaks in the
landscape occur near other high peaks: if the peaks were
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Figure 6: Size of the largest network cluster in the landscape
averaged over 50 landscapes for each K as a function of fit-
ness threshold, ©. K = 2 (solid black line), K = 4 (dashed
black line), and K = 6 (solid black line with white circles).
The more rugged the landscapes are, the more abrupt the
transition is from small network clusters to one cluster dom-
inating the landscape. Random genotypes for K = 2 (solid
gray line) and K = 4 (dashed gray line) show no increase in
cluster size.

not clustered, the largest network cluster size would not
increase when we lower ©, as is the case when we reassign
peaks to random genotypes (gray lines in Fig. 6).

When we include enough peaks, either by setting © low
for K = 4 (or else for K = 6 or higher) we find that for
d = 2 there are always two largest network clusters, while
the third largest cluster contains significantly fewer peaks.
Both large clusters percolate genotype space and the diame-
ter of both graphs is 18, not 20 (in general, N — 2), while the
shortest distance between the two clusters is always 3. This
is peculiar to the way clusters are formed in this particular
percolation problem. It is a rewarding exercise to determine
the root cause of this peculiarity, which we leave to the in-
terested reader. The transition seen in Fig. 6 suggests that in
more rugged landscapes there are several clusters contain-
ing high peaks (high ©), and that these high-peak clusters
are connected by the peaks of lower fitness (lower ©).

The percolation of genetic space by peaks with a suffi-
ciently low height is reminiscent of the percolation of ge-
netic space by arbitrary shapes in the RNA folding prob-
lem (Griiner et al., 1996), except that in that case struc-
tures with different genotypes form a neutral network that
can be traversed by single point mutations. The giant clus-
ter of peaks in the NK landscapes cannot be traversed like
that: rather, it requires a minimum of two mutations to jump
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from peak to peak, and because some of the peaks have in-
ferior fitness, such mutations can only be tolerated for a fi-
nite amount of time—long enough to jump to the next highest
peak. Thus, deleterious mutations are likely to be important
to reach distant areas in genotype space, and the importance
of these is slowly being realized (Lenski et al., 2003, 2006;
Cowperthwaite et al., 2006; @stman et al., 2010).

Discussion

Using several methods we have shown that the rugged fit-
ness landscapes that epistatic interactions create in the NK
model consist of fitness peaks that are distributed in a man-
ner that strongly affects evolution. High peaks are more
likely to be found near other high peaks, rather than near
lower peaks or far from peaks altogether. Similarly, lower
peaks are predominantly located near each other in geno-
type space. Cluster analysis reveals that peaks tend to clus-
ter (as compared to the same peaks placed randomly in ge-
netic space) giving rise to large basins of attraction that are
effectively devoid of peaks. This feature is especially promi-
nent for moderately rugged landscapes (K = 2), while the
addition of many more smaller peaks in more rugged land-
scapes (K = 4 or higher) makes this trend less significant.
To the extent that we think that the NK landscape is an accu-
rate model for real fitness landscapes of proteins and genetic
pathways or modules, the discovery that these landscapes
possess a remarkable structure that appears to be conducive
to adaptation is highly informative about the process of evo-
lution. Clustering of peaks makes a difference when the en-
vironment changes in a way that is unfavorable to the pop-
ulation, and forcing the population to adapt anew. If the
landscape consists of evenly distributed peaks, then the risk
of becoming stuck on a low fitness peak is high, and the
population risks extinction. On the other hand, if peaks are
unevenly distributed, then the ascent of one peak may not
be where adaptation ends, making it possible to locate the
global peak or another high fitness peak.

The more rugged a landscape is, the more peaks it con-
tains, and the larger the space of genotypes that the largest
network cluster spans. In smooth landscapes with only one
or a few peaks, populations can evolve from genotypes of
low fitness and move across genotype space toward high fit-
ness. In rugged landscapes, the population always risks be-
coming stuck on a suboptimal peak. However, networks of
closely connected peaks that percolate genotype space may
still make it possible to traverse the fitness landscape jump-
ing from peak to peak (given a sufficiently high mutation
rate). If peaks are evenly distributed in genotype space, the
chance to jump from peak to peak and thereby eventually
locate the global peak is virtually nil. It is important, how-
ever, to remember that there are limits to the realism of the
NK landscape as a model of realistic genetic or protein land-
scapes. For example, it is known that a significant percent-
age of substitutions in proteins or mutations in genetic path-

ways are neutral, while the NK landscape has virtually no
neutrality (even though most mutations do not change the
fitness significantly). Neutrality plays an important role to
enhance traversability, and will facilitate the transition be-
tween peaks so that deleterious mutations are not essential
for the shift from peak to peak. However, one could main-
tain that deleterious mutations are more promising for adap-
tation than neutral mutations are, because they may be what
separate important phenotypes (Lenski et al., 2006).

The observation that peaks form clustered networks, and
that these networks percolate, implies that the risk of becom-
ing stuck on a suboptimal peak is significantly mitigated, be-
cause all it takes is the two right mutations to locate a new
peak. Thus, it appears that evolvability comes for free in
complex rugged landscapes of interacting loci. We should
note, however, that the reason why peaks cluster in land-
scapes with epistatic interactions is not immediately appar-
ent, and is a subject of ongoing investigations.
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Abstract

Biological development is governed by gene regulatory net-
works (GRNs), although detailed genetic and cellular mecha-
nisms remain unclear. By means of analyzing biological data,
it is believed that some GRN motifs have played an important
role in the evolution of biological development. In this work,
we investigate in a computational model for development to
verify if these motifs can also be evolved as in biology, which
can not only help understand biological development and im-
prove simulated evolution as well. The goal of the evolution
is to evolve an elongated body plan using a cellular devel-
opmental model controlled by a GRN. We count the number
of network motifs during the evolution and try to relate the
changes of these network motifs to the fithess profile of the
evolution. We find for the number of most motifs an increase
in the beginning of the evolution and a decrease as the evo-
lution proceeds. We hypothesize that at the beginning a high
number different motifs is helpful for the evolution, however,
motifs that are not used for the targeted development, i.e., an
elongated body morphology in this work, will get lost later
on. Finally, we examined two individuals before and after
a fitness jump to analyze which genetic changes have con-
tributed to the large fitness improvement.

I ntroduction

However, the analysis of motifs on an evolutionary scale re-
quires the data of many individuals from different evolatio

ary stages. These data are (currently) not available in biol
ogy. Therefore, it seems advisable to support the biolbgica
analysis with the results from computational models. Even
though these models are usually abstract and the analysis is
computationally expensive, it is the target to identify-pat
terns that relate the emergence of motifs to the evolutionar
progress in computational models.

Some computational models for artificial development
have been proposed (see Harding and Banzhaf (2008)) based
on various computational models of GRNs (de Jong, 2002;
Geard and Willadsen, 2009). In models of artificial devel-
opment, one or a few single cells divide and proliferate in a
2D or 3D environment. These cells interact with each other,
developing into a pattern, a structure or a shape.

One major concern in cell-based developmental models
under the control of GRNs is a self-stabilizing cell growth
and the ability to self-heal after a damage. The French flag
problem is a popular benchmark used in artificial develop-
ment, see e.g., Joachimczak andob&l (2009); Wolpert
(2004). Andersen et al. (2009) managed to evolve a stable
development and demonstrate the capacity of self-repair us
ing a GRN based on cellular automata. In their model, cells

Recent advances in computational systems biology suggest
that computational models for development may help us to
gain more insights into the genetic and cellular mechanisms

underlying biological development. Among other research . : - b
efforts, analysis of small, frequently occurred networkist scribed by Steiner etal. (2007), which was inspired by an ar-

tures, often known as network motifs, have attracted much tificial development model suggested by Eggenberger HOtZ
interest as described by Alon (2007, 2006). Analysis of bi- €t @l- (2003). We use a GRN network model that defines
ological data revealed that such motifs can widely be identi e actions of the cells. The cells interact with each other
fied in bacteria and yeast, see e.g., Babu et al. (2004). Most through diffusion of external transcription factors. Imeo
recently, it has been found that some motifs may have played trast to pther work, our _Ce||§ are no? fixed on a g'r|.d and can
an essential role in evolution. For instance, Kwon and Cho MOVE Via cell-cell physical interactions. m ?“?'d'“f_’”’ Isgl
(2008) analyzed the role of feedback loops and found that €&" divide as long as the gene for cell _d|V|S|0n is active.
more positive feedback loops and less negative feedback Therefore, the model has fewer assumptions and the devel-

loops contribute to the robustness of the regulatory system ©Pmental process is less constrained. This model has been
employed for simulating neural development in a hydra-like

animat (Jin et al., 2008). Stable cell growth has also e¥blve
in a co-evolution of morphology and control of swimming

are fixed on a grid and contact inhibition is adopted, i.e, if
cellis surrounded by other cells, it will not divide any more

In this work, we have used a cellular growth model de-

*The work was conducted while Yaochu Jin was with the
Honda Research Institute Europe.
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Figure 1: An example chromosome for the development.

animats (Schramm et al., 2009). Additionally, stable and
lightweight structures have evolved in (Steiner et al., 900
using this cellular model.

In (Steiner et al., 2007), the authors showed that the emer-
gence of a negative feedback motif helps to enhance the mu-

tational robustness. In this paper, we analyze the motifs of
the GRNSs in the best individuals of the whole evolution-
ary run to see how various network motifs have contributed
to the evolution of cellular development. We examine the
change in the number of motifs during evolution. Addition-
ally, we analyze the difference in the structure of the GRNs
of two related individuals before and after a fithess jump.

We describe our model in the next section followed by
an introduction to the widely studied network motifs. Then
we present the experimental results of the evolutionarg run
together with the number of motifs during the evolution. We
conclude the paper with an analysis of two individuals, a
summary and an outlook.

The Computational Model for Morphological
Development

The morphological development starts with a single cell tha
can perform a few cellular actions, e.g. cell division od cel
death. The cell is placed in the center of a two-dimensional
computation area of size00 x 80, the cells are not fixed
on a grid and can be at all positions inside the computation
area. The cells interact physically with each other and can
produce transcription factors (TFs) that are used foroall-
communication. A gene regulatory network (GRN) defines
the behavior of the cells.

The genes of the virtual DNA in each cell consist of reg-
ulatory units (RUs) and structural units (SUs), see Schramm
et al. (2009) for details, as illustrated in Figure 1. The SUs
of a gene define the cellular behaviors, in this paper cell di-
vision, cell death or the production of TFs. The RUs define

similarity (v; ;) between thé-th TF andj-th RU is defined
by:
i,; = max (e — [affl " — afffV

,0). @)

If v, ; is greater than zero, then the concentratipof the
i-th TF is checked whether it is above a threshd)diefined
in the j-th RU:
S max(ci — ’19]', O) if Yi,j > 0
bij = { 0 else 2)
Thus, the activation level contributed by thieh RU (de-
noted bya;, j =1, ..., N) can be calculated as follows:

®)

where) is the number of TFs that bind to theth RU. As-
sume thek-th gene is regulated bi¥ RUs, the expression
level of the gene can be defined by a summation of the acti-
vations of all RUs

N
ap =100 hja;(2s; — 1), s; € (0,1).
j=1

(4)

2s; — 1 denotes the sign (positive for activating and negative
for repressive) of thg-th RU andh; is a parameter repre-
senting the strength of thieth RU.Thek-th gene is activated

if i, > 0 and its corresponding behaviors coded in the SUs
are performed.

The SU for cell division (SY") encodes where the new
cell is placed in comparison to the mother cell. A cell
with an activated SU for cell death dies at the developmen-
tal timestep which it is activated. When SUs for both cell
death and cell division are simultaneously active, the cell
dies without division. Two additional SUs are reserved for
other possible behaviors, which are not used in this work. As
a result, it can happen that some genes perform no action.

An SU that produces a TF (S) also encodes all param-
eters related to the TF, such as the affinity value, the decay
rate Dy, the diffusion ratd?,Lf, as well as the amount; of
the TF, to be produced:

1) if i > 0

)
otherwise

2
A7(ak) = {g <1+6*20'f~o<k

whether a gene is activated (expressed). All RUs have an wheref and3 are both encoded in the $U Which TF, is

activation level depending on the TF concentrations inside
and outside a cell. The activation of a gene is defined by a
sum of the activation levels of its RUs, which can be activat-
ing (RU™) or inhibiting (RU ). If the difference between
the affinity values of a TF and a RU is smaller than a pre-
defined threshold (in this worke is set t00.2), the TF can
bind to the RU to regulate the gene activation. The affinity

produced is defined in terms of the affinity value.

A TF produced by an SU can be partly internal and partly
external. To determine how much of a produced TF is ex-
ternal, a percentage{® € (0, 1)) is also encoded in the
corresponding gene. ThuAc®t = p®t. 4, is the amount
of external TF to be produced adt™ = (1 — p™Y) - A4; is
that of the internal TF.
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Figure 2: Concentrations of the prediffused TFs.
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Figure 3: Network motifs (adapted from Alon (2006)).

External TFs are put on four grid points around the center
of the cell. They undergo first a diffusion and then a decay
process:

Diffusion: () =u;(t—1) + 0.1D} - (G -u;(t—1)),(6)
Decay: u;(t) =((1 — 0.1Df) u;(t)), ()

whereu; is a vector of the concentrations of théh TF at all
grid points and the matriz defines which grid points are
adjoining. The internal TFs underlie only a decay process:

(8)

All internal and external concentrations of TFs are limited
to an interval of(0, 1].

In our experiments, we put two prediffused, external TFs
without decay and diffusion in the computation area. The
first TF (preTFOO) has a constant gradient in ¢h@irection
and the second (preTFO01) irrdirection (see Figure 2 and
Figure 13).

Aty = (1 —0.1-D§) Mt — 1).

Static and Dynamic Network Motifs

Network motifs are sub-networks that occur more often in
biological gene regulatory networks than expected at ran-
dom. In this work, we analyze the occurrence of differ-
ent types of regulatory motifs, such as autoregulatiord-fee
forward-loops and single input modules, see Figure 3. In the
following, we describe the function of a few network motifs,
as described in Alon (2006, 2007):

e Negative autoregulation (NAR) defines a gene whose
product directly inhibits its own expression. Such motifs

can speed up the response time compared to a gene with-

out NAR with the same steady state. It leads to steady

states with a rapid rise and a sudden saturation. NAR also
promotes robustness.

e The positive autoregulation (PAR) slows down the re-
sponse time and can lead to bi-stability.

e Thecoherent feed-forward loop 1 (C1-FFL) results in a
fast convergence to a steady state but a slow decrease of
the concentration.

e The incoherent feed forward loop 1 (I11-FFL) can act
as a pulse generator. It can turn a concentration very fast
on with an overshoot, and then it converges to its steady
state.

e TheSingleinput module (SIM) consists of one gene reg-
ulating many other genes. Temporally sequential cellular
events can be controlled with a SIM.

There are a lot of different FFLs, among which C1-FFL and
I1-FFL are the most frequent ones in E. coli and yeast. The
functional analysis described above is performed on iedlat
motifs, and therefore their behavior in a whole network can
be very different.

All possible connections of a GRN define thitic net-
work. Therefore, thestatic network motifare all possible
network motifs regardless of whether they are actually used
during cell operations. In this paper, we want to analyzg onl
the network connections that are really used during develop
ment, which constitute thdynamic network The related
motifs are then termed thdynamic network motifdn order
for a static motif to be counted as a dynamic motif, all motif
connections have to have been activated (above the thresh-
old) in at least one cell at anytime during development. Thus
the dynamic motif must play an active role during cell op-
erations and not just a potential role as the static motif. Of
course dynamic motifs are a subset of static motifs.

Experimental Settings

We use an extended evolution strategy, X)-ES with
elitism for evolving the developmental model, wherand
A are parent and offspring population size, respectively
(Beyer and Schwefel, 2002). In this wogk~= 30, A = 200,
and3 elitists are adopted. The strategy parametées fixed
too = 10~*in our work.

in addition to mutation, we use gene duplication, gene
transposition and gene deletion as genetic variationseGen
duplication randomly copies a sequence of RUs and SUs in
the chromosome and then inserts it, again randomly, into the
chromosome. In the case of gene transposition or deletion,
this randomly picked out sequence of RUs and SUs is moved
to another randomly chosen site on the chromosome, or sim-
ply removed.

Mutation is always performed, while gene duplication,
transposition and deletion are exclusive, i.e., only one of
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Figure 4: The target shape for the cellular growth model.

them can be performed to the same chromosome in one gen-
eration. The probabilities for gene duplication, genedran

position, and gene deletion grg,, = 0.05, prans = 0.02,

andpg.; = 0.03. These values are not particularly moti-
vated, however, the algorithm is not sensitive to the choice

of probabilities.

The goal of the evolution is to obtain an elongated shape
resulting from the cell growth process controlled by the
GRN. To this end, we define a target shape, as described
in Figure 4. The target shape has an approximated width-
to-height ratio ofa : b, which in the experiment, we set
Amaz = 10, byin = 60 andb,,,. = 80. Thus, the fitness

function can be defined as follows:
. . i Amazx
f =p1—p2 — min {ml_m {CC (1)} ) *T}

+ max {m?x{a:i(l)} , a";”} , 9

wherex’ represents the position of the i-th cell and

70+min; {z*(0)} if min; {a*(0)} < —Pap=
p1=q —30 if — % < min; {331(0)} < —%
min; {z*(0)} otherwise
(10)
and
0 mas {a(0))if ma, (a(0)) > Ve
pa=i 0 f e > ma, {27(0)) > g
max; {x'(0)} otherwise

(11)

To achieve a computationally tractable size of the body
morphology, the number of cella() is constrained between

10 and500. A penalty of600 — n.. is applied ifn. < 10 and

a penalty ofn. if n, > 500. If the cells in the developed
morphology are not fully connected, this means there exists
one or several cells with a high distance to all other cells, a

fitness of50 is assigned.

Experimental Results

The best and mean fitness curves of an evolutionary run are
presented in Figure 5. We can observe two fitness jumps

—Mean of the generation|
|---Best individual

g 750\

™~ g820

800 1000

260 400 600
Generation
Figure 5: Fitness curves of the analyzed evolutionary run.

Solid line: mean of the generation. Dotted line: best indi-
vidual.

407 devStep 15
20f
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o0t
—4qk

5o 0 50

Figure 6: Resulting shape of the best individual.

around generatior0 and800 during the whole evolution.
The resulting shape of the best individual in the last genera
tion is shown in Figure 6. The morphologies of the individ-
uals of the first generations all result in either no cell ar to
many cells (we aborted the runs with more than 700 cells).
In Figure 7 the total number of genes is shown. The number
of genes is nearly constant, there is only one huge jump at
the end of the evolution.

Dynamic Network Motifs

We count the different network motifs for all selected indi-
viduals every 5th generation. The motifs of the best individ
ual and the mean of the parent generation are presented in
Figures 8 - 11. Our algorithm counts all occurrences of one
gene activating two others as one SIM (which is then a three
node motif). When there is one gene activating more than
two other genes, the algorithm counts more SIMs, accord-

ing to the combinatorial possibilitie(s?) . E.g. for4 genes
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Figure 8: Number of autoregulations (AR).

our algorithm countgﬁ = 6 SIMs. This masks on the

one hand the number of SIMs, but on the other hand the size

of the SIM is taken into account.

Regarding the number of most matifs, we find an increase
in the beginning of the evolution and a decrease in later gen- ®
erations. An increase in the number of motifs is observed

often between generati@®d0 and500, while a considerable
decrease of most motifs is observed around gener&ation
The number of some motifs, e.g., I11-FFL, 11-FFL with NAR

and SIM with NAR, increases again in the last generations,
which can be explained with the increase in the number of
genes (see Figure 7). The two large changes in the number
of motifs correlate with two large fitness jumps. A change

in the number of genes is not the reason, though the number
of genes is nearly constant (see Figure 7). We hypothesize e
that on the one hand, evolution attempts to increase the num-
ber of motifs to perform better, whereas on the other hand,

motifs that are not helpful are lost in later generations.
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(a) C1-FFL
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(b) C1-FFL with PAR
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(c) C1-FFL with NAR

Figure 9: Number of coherent feed-forward loops (C1-FFL)
with only activating connections.

In the following, we discuss in greater detail the change

of the number of the motifs:

e PAR: One PAR exists in the best individual until genera-

tion 800, then the PAR is lost. On average over the gener-
ations, the number of PAR increases between generation
300 and400 from about one to between one and two and
becomes zero around generatiki. PAR seems to be
important during evolution but is lost in later generations

NAR: The number of NARs is very low throughout the
evolution. It starts from one, goes up to two at about gen-
eration450 and falls back to one again at generatio9.

e The number ofC1-FFLis high during the evolution com-

pared to that of the PARs and NARs. There is a con-
siderable increase of this motif between generaton
and400 and a decrease around generago®. The num-
bers of C1-FFL with PAR andC1-FFL with NAR are
smaller but have a similar trend &4-FFL.

The number of 1-FFL is very low at the beginning and
also increases between generatd®d and 400 to about

10 and decreases again around gener&ion At the end

of the evolution, there is again an increase in the number
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Figure 10: Number of incoherent feed-forward loops (11- (© "

FFL) with one negative connection from B to C. Figure 11: Number of single input modules (SIM) during
the evolution. We count three nodes SIMs, so that larger

of this motif. The number of1-FFL with PAR andl 1- SIMs resultin a higher number of SIMs.

FFL with NAR is much lower than that of thiel-FFL.

e The number oSlMsandSIMswith NAR is much higher
than that of the other motifs. Note that we count all three-

node SIMs, and consequently the larger the SIM, the more o

three node SIMs are counted. The change of SIMs dur- sty —Finess

ing the evolution is comparable to that of the 11-FFL. The 10 + Dupfcation
SIM with PAR is the only motif that decreases between st W b Transposition | | |

generation300 and 400, and reaches zero at generation
800 (because the PARs decrease to zero).

To relate the changes in the number of motifs to the oc-
currences of the genetic operators during evolution, ghclu
ing duplication, deletion or transposition, we traced bidoek
ancestors of the best individual in the final generation and
analyzed which genetic operators are selected over the gen- R X P , T
erations. The results are given in Figure 12. 0 200 400, reratior° 800 1000

The gene deletion selected in generati®® correlates

with a strong fitness increase and a decrease of a lot of Mo- Eigyre 12: The fitness of the ancestors of the best individual
tifs. To better understand what happened during these gen-ij, the |ast generation. Symbol '+ denotes a gene duplica-
erations, we analyze the best individual in generaTighat tion, * a deletion and a triangle a gene transposition.

the fitness plateau before the deletion and the best ingil/idu

in generatior820 after the deletion in the next section.
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Figure 14: The genes and their used connections of the best
Figure 13: The genes and their used connections of the bestindividual 820. Notation as in Figure 13. The genes are
individual in generatiory50. The circles represent the dif- numbered, and number 10 is skipped for an easier compar-
ferent genes. Genes that are active during development areison betwen the two individuals of generatias0 and 820,
denoted with black (solid) circles. Red (dashed) circles in  because gene 10 was deleted in between.
dicate genes that are never active. The arrows represent the
interactions between the genes, where blue represents an ac
tivating, red an inhibiting and magenta both an activating preTFO0
and inhibiting connections. The two diamonds represent the |

predefined TFs. E Y ﬁi
2
Detailed analysis of two individuals 15 | 18| 16/l 22 | 24|

Note that only the dynamic activations are shown, and 24
there are much more static activations. —A

The deleted regulatory and structural units belong to (@) Individual 7500
genes 9 and 10 of the best individual of generation 750. The
SU for cell division of gene 9 and the complete gene 10 are preTFOO
deleted. We skipped gene number 10 in the second individ- [
ual to ease the comparison of the two individuals. Another J
difference is that the SU of gene 20 of the best individual >4
in generation 750 changes from TF production to an unused l
SU through mutation. Though gene 10 of the best individ-
ual in 750 has no further influence on the development (no | 21 |

The genes and their activations of the best individual in gen
eration750 and820 are presented in Figure 13 and 14.

arrows starting from this gene in Figure 13), the more impor- 13
tant change seems to be the mutation of gene 20. Figure 15 H
shows the activations of the different genes in temporal hi- | |

erarchies. The inhibitions are not shown and the inactivate 24 \
genes are omitted. There are only temporal hierarchies and o
one feedback loop. The mutation to gene 20 resulted in a (b) Individual 8200
deletion of the whole sub-tree. The deletion of gene 9 has
no further effect on the development. Gene 20 in the bestin-
dividual of generatiory50 has a lot of connections to other
genes and is a member of a lot of motifs. Interestingly, the
loss of gene 20 resulted in an increase in fitness from gener-
ation750 to generatior820.

Figure 15: The activating relations of the different genes.
Genes for cell division are marked with a circle, genes for
cell death with a triangle. Only some important activating
effects are shown, inactivated genes and inhibiting connec
tions are omitted.
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Extended Abstract

Living cells are in many respects the ultimate nanoscale chemical system. Within a very small volume they can produce highly
specific and useful products by extracting resources and free energy from the environment. They are self-assembled and self-
organized, as well as capable of self-repair and self-replication.

Designing artificial chemical systems bottom up (artificial cells "or protocells 2'4) endowed with these powerful capabilities are
being intensively investigated. Usually such chemical systems are designed around the encapsulation of a set of genes along with a
gene translation and protein generation unit, all confined within the boundaries of liposomes/vesicles 4 The generated artificial
systems have many of the basic characteristics of a living system, but usually completely lack the gene mediated regulation
functions that natural cells possess 7.

To address this issue, we are attempting to implement a simple, chemical system in which the regulation of the metabolism is truly
mediated by information molecules %9 Our proposed system is composed of a chemical mixture of fatty acids that form bilayers
(compartment), amphiphilic information molecules (polymerized nucleic acids -NAs), and metabolic complexes (photosensitizers).
Due to the intrinsic properties of all its components, a chemical system will self-assemble into aqueous, colloid mixtures conducive
to the necessary metabolic steps, as well as the non-enzymatic polymerization of the building blocks of the information unit. The
metabolic reaction products (e.g., the container molecules) will in turn promote system growth and information replication.

In this scheme, the polymerized NAs acts as an information molecule mediating the metabolic catalysis (electron donor/relay
system) with a ruthenium metal complex as a cofactor and sensitizer. The metabolic catalyst converts the hydrophobic precursor
container molecules into amphiphiles, thus directly linking protocell metabolism with information. In a first experimental design,
the NA chain has been replaced by a single nucleobase, 8-oxoguanine, which is tethered to one of the bipyridine ligands of the
metal center '

We report the following major steps towards this chemical protocell: (1) the spontaneous formation (self-assembly) of chemical
structures consisting of decanoic acid, its precursor, and the simplified NA-ruthenium complexes; (2) metabolism mediation by a
nucleobase to effectively promote the photochemical assisted amphiphile synthesis, which continuously drive the system away from
equilibrium; (3) the demonstration of reaction selectivity dependent on the nature of the information molecule since only one
specific nucleobase has the required redox potential to allow the metabolism to function; (4) photochemical formation of
amphiphiles that functions efficiently within the membrane, i.e., the protocell compartment; and (5) a demonstration of continued
metabolic functionality after extrusion mediated container division.

The next steps are the integration of short nucleic acid oligomers as opposed to a single nucleobase as the information material to
study their photocatalytic activity and attempts to adopt the underlying metabolic reaction to drive the polymerization of the
oligomers, thereby yielding replication of the information molecules.
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Extended Abstract

Self-replicating structures have been studied as models of living organisms since the very onset of Artificial Life research,
particularly in the abstract mathematical framework of cellular automata (von Neumann (1966); Langton (1984)). Here,
we study self-replicating structures in the 3D space-time continuous and physically grounded framework of dissipative
particle dynamics (DPD). DPD is essentially a numerical solver of the Navier-Stokes equations with incorporated thermal
fluctuations. The framework is particularly suited for coarse grained simulations of complex liquids and soft condensed
matter systems on microscopic length scales. (Groot (1997))

Such a DPD based physical embedding allows us to study self-replicating structures not only as abstract mathematical
entities, but to regard them as models of real-world physical objects. In particular, we model super-molecular lipid ag-
gregates (surfactant-coated oil droplets) equipped with an internal metabolism that drives their replication due to a natural
aggregate instability. In addition, the aggregate is equipped with inheritable carriers of regulatory chemical information
that enables the container-metabolism-information system (commonly referred to as protocell) to undergo Darwinian evo-
lution (Fellermann (2007,b)). Our model is directly related to the minimal protocell design of Rasmussen and coworkers
that is currently being pursued both experimentally and through theory (Rasmussen (2008)).

The simulation generates spontaneous self-assembly and self-replication of the entire container-metabolism-information
aggregates as well as a fitness function for the inheritable information carriers. These findings are emergent, generic, and
robust properties of the systems dynamics.

We analyze the performance of the system for all steps of the replication cycle consisting of (i) nutrient feeding, (ii)
information-regulated metabolic turnover, (iii) template-directed replication of the information component, and (iv) ag-
gregate replication by growth and division (see Figure). Interestingly, the model predicts that the most difficult obstacle
to be overcome in the life-cycle of this protocell model is product inhibition of the replicating information molecules - a
well-known issue from experimental studies (Sievers (1994)).

In conclusion, we argue that physical embedding allows for self-replicating structures of seemingly unanticipated simplic-
ity. Furthermore, the physical foundations of the model opens up for applications of established knowledge and methods,
e.g. from statistical physics and, therefore, allows to relate model findings to laboratory results in a qualitative manner. As
such, the model provides a systemic consistency check for laboratory implementation issues (which enabled us to discover
an earlier “design bug” with consequences for the experimental implementation).
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Figure 1: (a) The life-cycle of the protocell: Precursos molecules (yellow), surfactants (green), information polymers (black
and white), and a photo-sensitizer (red) spontaneously self-assemble in water to form protocells (lower left). Feeding additional
precursors increases their volume and stabilizes them when melting the information double strands. Feeding complementary
oligomers allows for template-directed replication through condensation. Metabolic turnover of precursors into surfactants
induces an aggregate instability that leads to division. Panels (b) through (d) show simulation snapshots of these processes.

Rasmussen et al. (2008). Assembly of a minimal protocell. In Rasmussen et al., editors, Protocells: bridging nonliving and
living matter pages 125-156, MIT Press, Cambridge, MA.
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Abstract

The recent advent, success and diffusion of synthetic biology
(SB) are mainly related to its application as markedly
bioengineering-oriented discipline. In addition to this classical
view, SB also means “constructive” biology, and it is aimed to
the construction of synthetic (artificial, man-made) biological-
like systems, at the aim of understanding basic concepts of
living systems and of their parts. In the last years, we have
investigated lipid vesicles (liposomes) as cell models, by
studying different aspects of their general reactivity, from their
self-reproduction to the hosting of simple and complex
biochemical reactions. In the attempt of modeling simple
autopoietic systems by vesicle populations, it was firstly shown
that simple vesicles may grow and divide according to physical
laws, also revealing an unexpected pattern recognized as a
“matrix effect”, consisting in the conservation of the average
size in a population of self-reproducing vesicles. Semi-
synthetic minimal cells, on the other hand, are defined as
liposome-based synthetic cells that contain the minimal and
sufficient number of macromolecular components in order to be
defined as “alive”. Clearly, the design and the construction of
minimal living cells require the establishment of the minimal
number of life criteria. These have been generally described as
self-maintenance, self-reproduction and evolution capability.
The current experimental approach to semi-synthetic minimal
living cells exploits the combination between cell-free protein
expression and liposome technology, and it is conceptually
based on autopoietic theory. In the FP6 SYNTHCELL project,
we have investigated the expression of functional proteins
inside lipid vesicles by using a minimal set of enzymes, t-
RNAs and ribosomes (PURESYSTEM) at the aim of
constructing functional cell models. In this contribution, we
will discuss recent experimental advancements in the field of
synthetic cell constructions, giving emphasis to their relevance
in synthetic biology, self-organization and biocomplexity, and
in origins of life studies.

1. Chemical Approaches to Synthetic Biology

In the last fifty years of biological research we have been
“much better at taking cells apart than putting them together’’
(Liu and Fletcher, 2009). Recently, however, also thanks to
great amount of detailed information gained by the analytic
approach, we have the unprecedented opportunity to develop a
new Kkind of biological understandings, namely by the
synthetic (constructive) approach. Synthetic biology (SB)
aims at ““designing and constructing biological parts, devices,
and systems that do not exist in the natural world and also at
the redesign of existing biological systems to perform specific

tasks’” (http://syntheticbiology.org). SB is generally seen as a
bioengineering discipline, based on design, simulation and
construction of novel biological systems, but it also embodies
the novel concept, perhaps not fully recognized, of gaining
knowledge by constructing biological systems. This attitude is
particularly relevant in those cases where the analytical
(dissecting) approach cannot be undertaken, as in the case of
primitive and minimal living systems.

Classic SB studies deal with the generation of new devices,
systems, organisms which are supposed to perform novel
“useful” tasks, like the production of fuels, of hydrogen, of a
chemical species, for bioremediation, and so on. Notice that in
such studies a determined goal is set at the very beginning,
and all routes and tools are bent and focused for the purpose
of obtaining that goal. Methodologically, SB operations on
biological systems can be tentatively classified as additions,
eliminations,  substitutions, combinations, modifications
(change, inversion, minimization, adaptation, etc.). They
reflect the above-mentioned engineering approach, but are
indeed synthetic operations, that define a constructive act and
bring about novel systems.

Seen with the eyes of a chemist, SB means the construction
of biological systems as in the case of molecules and
molecular systems. Molecules react together according to their
intrinsic chemical reactivity and environmental conditions,
giving rise to complex molecules starting from simpler ones.
Supramolecular chemistry describes the self-assembly and
self-organization of molecules into structures, kept together by
non-covalent interactions. Autocatalytic systems, oscillating
reactions, reaction networks, and reactions in micro-
compartments are other chemical examples of increasing
complexity. The main aim of chemical SB is therefore not the
achievement of a specific goal or function, but the study of the
properties of a certain construct, which has been built to be
tested. Clearly, as in the bioengineering approach to SB, here
also the concepts and the methodologies of assembling are
central, as well as the functional and structural integration
among the parts.

There are several examples of possible applications of
chemical synthetic biology, as recently reviewed (Luisi, 2007;
Chiarabelli et al., 2009), but in this contribution we would like
to focus on the attempts to make minimal living systems, in
particular primitive cell models and semi-synthetic cells.
Much of the discussion presented here has been published
recently in a more extensive form (Luisi et al., 2006; Stano
and Luisi, 2010; Stano 2010). We will first introduce the
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concept of autopoiesis, the theoretical framework that guides
the construction of minimal living cells, then we will shortly
comment recent results on the self-reproduction of lipid
vesicles. Then we shift the focus on more complex constructs,
i.e., semi-synthetic minimal cells. Finally, we discuss our
latest finding on the assembly of cells from lipids and solutes.

2. Vesicle Self-Reproduction

Studies on vesicles self-reproduction started about 20 years
ago in the Luisi’s group at the ETH (Zurich), together with
other investigations on micelle and reverse micelle self-
reproduction. These studies are linked to (and actually
inspired by) the theory of autopoiesis, which accounts for the
dynamical process at the basis of living entities. The self-
reproduction of synthetic compartments, like those listed
above, is a pre-requisite for projects aimed to construct
synthetic/artificial cells in the laboratory. In fact, since
synthetic compartments can grow and divide only due to
physical forces, it becomes plausible to design and try to build
a minimal living system that self-reproduce thanks to the
interplay between chemical transformation and
supramolecular reactivity, as shown in the case of micelles
and vesicles. Ultimately, projects as the Minimal Cell,
Synthcells, Los Alamos Bug, and similar ones are related to
such reactive pattern.

2.1 Autopoiesis

The term autopoiesis (self-production) refers to the
description of the behavior of all biological systems, and
especially cells, the simplest organisms. This theory was
introduced in the Seventies by the two Chilean biologists
Humberto R. Maturana and Francisco J. Varela (Maturana and
Varela, 1980). Within the context of SB and the construction
of synthetic cells, autopoiesis is a powerful conceptual tool for
defining in general terms what are the structural and
functional requirements of a molecular biosystems in order to
mimic the basic living features of natural ones. The simplest
autopoietic dynamics is shown schematically in Figure 1
(Luisi, 2003). The autopoietic unit is a self-bounded material
structure, where boundary components (L) are formed by
internal chemical transformations mediated by the network E.
In such way, the precursor(s) P enter the autopoietic unit and
are then transformed into L. Eventually L decays to a waste
product W. At the same time, the chemical network E, which
can be composed by few or several components (not shown) is
not static, but also continuously destroyed and reconstructed
at the expenses of building blocks Q (giving the by-products
Z). Overall, the autopoietic unit stays out of equilibrium but
maintains its identity despite the continuous transformation of
its components. Its existence relies on environmental
conditions, due to the need of assimilation of components
from outside. For this reasons the autopoietic cells establish a
sort of minimal cognitive relationships with its environment.

Notice that the “shell” (the boundary formed by L
molecules) as well as the “core” components (the E sub-
system) are simultaneously produced by the internal
autopoietic dynamic, i.e. the autopoietic system actually
produces its own compounds and its own processes.

Living cells are autopoietic units, but the contrary is not
necessarily true (for a discussion, see Bitbol and Luisi, 2004).
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Figure 1. Schematic drawing of an autopoietic cell.

Clearly, in living cells L molecules are the lipids and the
proteins of cell membranes, whereas E is the
genetic/metabolic network. P and Q are the basic nutrients for
cell growth, and W, Z the waste materials. Is it possible to
build a (minimal) autopoietic cell in the laboratory? To
answer this question, we firstly have to conceptually simplify
the structure shown in Figure 1 by reducing the complexity of
the elements involved in the autopoietic dynamics (reducing
their number, and simplifying their structure/function).

One first answer to this question has been provided in terms
of vesicle self-reproduction, which consists in an autopoietic
growth (and division) based on the scheme indicated in Figure
1. In particular, it has been demonstrated that a
supramolecular assembly of L molecules (a vesicle, but also a
micelle or a reverse micelle) can grow at the expenses of a
precursor P, without any internal metabolism (without the red
sub-system shown in Figure 1).

We will see later how synthetic cells are now designed in
order to display a similar autopoietic mechanism, based on a
minimal DNA/RNA/enzyme genetic/metabolic network (E in
Figure 1).

2.2 Recent advancements in vesicles self-

reproduction

We have recently reviewed the whole field of vesicles self-
reproduction, from the historical and scientific viewpoints
(Stano and Luisi, 2010). The mechanism underlying vesicle
self-reproduction is based on the following points: (1)
existence of a proper precursor P, that can be chemically
converted into the membrane-forming compound (L) by
hydrolysis, oxydation, deprotonation, and other simple
transformations; (2) uptake of P by existing vesicles, and
transformed into L therein; (3) the vesicle growth must
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proceed in a way that an unstable physical state is soon
reached, which precedes the division into two or more
daughter vesicles. It has been shown long ago that fatty acid
vesicles can grow and self-reproduced at the expenses of fatty
acid anhydride (Walde et al., 1994), and fatty acid micelles
(Bloechliger et al., 1998). Oleic acid systems are typically
used in this context. In these systems, the above-mentioned
conditions (1-3) are satisfied. In particular, condition 3 is
thought to derive from unbalanced surface-to-volume growth,
which brings about to vesicle instability (Fiordemondo e
Stano, 2007; Luisi et al., 2008). One of the most intriguing
results from such studies is known as the “matrix effect”
(Bloechliger et al., 1998; Lonchin et al. 1999; Berclaz et al.,
2001; Rasi et al., 2003). During the investigation of vesicles
self-reproduction it was discovered that the size of pre-
existing vesicles was somehow conserved in the next vesicle
generation. In particular, it was shown that the size
distribution of vesicles (formed after addition of P to a pre-
existing vesicles population) was very similar to the size
distribution of pre-existing vesicles, as if the vesicle size acts
as a “template”. The mechanism of matrix effect is not yet
understood, but a recent investigation brings about evidences
on possible intermediates. Freeze-fracture electron-
micrographs suggest the transitory existence of elongated
“twin” vesicles (Stano et al., 2006) resembling bacteria during
binary division. Previous results obtained with ferritin-
containing vesicles (Berclaz et al., 2001) indicate that in some
conditions the solute molecules are redistributed among
daughter vesicles. An interesting report on self-reproduction
of giant fatty acid vesicles has been recently provided by
Szostak and coworkers (Zhu and Szostak, 2009), who
demonstrated that elongated tubular vesicles, derived from
micelle uptake, can divide into into several smaller vesicles.
Interestingly, experiments done with a permeable buffer
indicate that vesicle pure-growth or vesicle growth/division is
indeed governed by the surface-to-volume growth ratio.
Experiments from Sugawara’s group (Kurihara et al., 2010)
with synthetic surfactants show that self-reproduction can also
occurs by a translocation mechanism, i.e., a new vesicle, born
inside the mother one, comes out via a not well understood
physical translocation through the parent membrane.

3. Minimal Cells

As noticed before, although the details of vesicle self-
reproduction are yet unknown, such studies prompted the
development of more complex models of minimal self-
reproducing systems, namely the construction of vesicle—
based cell-like systems, with the final aim of creating living
cells in the laboratory. These constructs, which are called
protocells, artificial cells, minimal cells, synthetic cells or
semi-synthetic cells, are the subject of flourishing research
into the origins of life and synthetic biology communities.
Among the most active groups in the field, we must recall
David Deamer at the University of California, Jack Szostak at
Harvard, Tetsuya Yomo at the Osaka University, Steen
Rasmussen at the FLinT (Southern Denmark University).

We limit ourselves to the discussion of our current
approach, known as the semi-synthetic one (Luisi et al.,
2006). Such approach (Figure 2) consists in using lipid vesicle

as cellular model, and implement a sort of minimal
metabolism based on DNA/RNA/enzyme components. The
philosophy behind minimal cells lies again in the autopoietic
theory. In particular, emphasis is placed on the need for a
cellular system of minimal complexity.
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Figure 2. Semi-synthetic approach. Reproduced with
permission from Elsevier from Chiarabelli et al. (2009).

Minimal cells are thus composed of the minimal number of
genes, enzymes, ribosomes, tRNAs and low molecular weight
compounds that are encapsulated within a synthetic
compartment as in the case of lipid vesicles. The resulting
construct, which is similar to a living cells and displays
minimal living properties (self-maintenance, self-reproduction
and possibility to evolve) is generally designed on the basis of
the minimal number of functions required and on the minimal
complexity of the biochemical elements needed for its
construction.

Conceptually, therefore, semi-synthetic minimal cells come
from one of the operations mentioned as typical of SB
approaches (elimination of unnecessary elements in a system).
The result of such simplification resembles very much the
biological notion of minimal genome, i.e., the minimal number
of genes requested to make a living organism. Classical
studies based on comparative genomics (reviewed by Luisi et
al., 2002, 2006) suggest that such number lies between 200-
300 genes, and the figure of 204 genes has been proposed by
Moya and coworkers on the basis of a recent study (Gil et al.,
2004). A similar result (151 genes) has been obtained by
Forster and Church (2006) by reasoning on the minimal
biochemical requirements of a minimal cell.

In principle, therefore, it would be possible to build a
synthetic cell by inserting a minimal genome inside
liposomes, as well as all the macromolecules and low
molecular-weight compound required for decoding the
genome. This has not been done yet, and although several
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advancements have been recorded in the recent years, this
goal appears to be not easily reachable. We describe below
some key milestones along the road-map to minimal cells,
according to the semi-synthetic approach. We then conclude
this contribution by giving a summary of most recent results
from our group, and a survey of some general aspects and
modern trends of minimal cell studies.

3.1 Pioneering studies

The first report dates back to 1999, and describes the first
proved ribosomal polypeptide synthesis (poly(Phe) from
poly(U)) inside liposomes (Oberholzer et al., 1999). The
demonstration that ribosomal protein synthesis can occurs
inside vesicles actually allows the design of more complex
systems, based on DNA transcription into messenger RNA
and translation of the latter into protein (therefore developing
a function). Semi-synthetic minimal cells approaches are
based on this idea. From the experimental viewpoint they
consist into a convergence of in vitro biochemical systems and
liposome technology. By using cell extracts or — more recently
— reconstituted transcription/translation kits, as the PURE
System introduced by Ueda and coworkers (Shimizu et al.,
2001), functional proteins can be expressed inside vesicles.
The basic idea is the following. Firstly, the protein expression
cover about 50% of the minimal genome; second, it has a
sufficient complexity to be used as a (partial) model of a
whole cell metabolism; third synthesizing functional proteins
inside liposomes, e.g. enzymes, structural proteins and so on,
paves the way to implementing minimal cellular functions,
like genomic replication, lipid synthesis, environment sensing,
membrane functionalization, active transportation of nutrients
inside, motion, etc.

Since the report from Yomo’s group in 2001 (Yu et al., 2001)
there have been several reports on the synthesis of a functional
soluble protein (GFP, green fluorescent protein) inside lipid
vesicles (reviewed in Luisi et al., 2006, Chiarabelli et al.
2009; Stano 2010). This can be considered a standard
achievement. Recent investigations are instead devoted to
more quantitative studies (Hasoda et al. 2008; Saito et al.
2009; Amidi et al. 2010; Sunami et al., 2010).

3.2 Recent advancements

It is useful to mention here two of the most recent results, that
differ technically and conceptually from the standard
achievement described in the previous paragraph. The first is
our report on the synthesis of transmembrane protein inside
lipid vesicles, without the help of specialized proteins, but
simply exploiting the self-assembly properties of the protein
and lipid membrane (Kuruma et al., 2009). The work aimed to
construct a minimal cell capable of synthesizing lipid
molecules from inside, as shown in Figure 1. The underlying
biochemistry is the two-steps transformation of glycerol-3-
phosphate into phosphatidic acid, a membrane-forming
compound. In order to carry out these transformations, two

active enzymes need to be synthesized inside a lipid vesicle,
namely the glycerol-3-phosphate acyltransferase (G3PAT, a
transmembrane enzyme) and the lysophosphatidic acid
acyltransferase (LPAAT, a membrane-associated enzyme)
(Figure 3).

POPC, POPE, POPG, cardiolipin

7
()
T7 S
NTPs
s
- A
PP, DqP
MRNA
G3P aa
)
H,0
olegylCoa i DC:PA
T B icleoc—s B —
‘ (G3PAT) (LPAAT)
> CoASH . * CoASH

Figure 3. Lipid-synthesizing minimal cell. All translational
factors are encapsulated inside liposome, which is composed
by four kinds of phospholipids. The composition of lipid
membrane is a key factor for obtaining simultaneously a good
entrapment of molecules inside liposomes, high yield of
protein synthesis, and functional forms (correct folding,
insertion) of the target enzymes (G3PAT and LPAAT).

The desired two-steps reaction could be achieved only by
changing the redox conditions, and unfortunately the amount
of produced phosphatidic acid was too low to observe a
macroscopic change on vesicles. This study represents,
however, an important advancement along the roadmap to
minimal self-reproducing cells.

The second most recent result deals instead with the attempt
of synthesizing a functional protein (GFP) inside small
vesicles (diameter 200 nm) (Souza et al., 2009). This study
was intended as an experimental investigation on the minimal
size of cells, an old debated question in biology. By using the
protein synthesis as a paradigm of the whole cellular
metabolism, we have indeed successfully demonstrated that
200 nm vesicles (plausible models for small ancient cells)
actually support a complex metabolism as the
transcription/translation one. Interestingly, a careful analysis
of the statistics of co-entrapment of all macromolecular
components (ca. 80) involved in the protein synthesis revealed
a surprising conclusion. In fact, according to the classical
description of solute entrapment, the Poisson probability of
co-encapsulating the ca. 80 different molecules (0.1-1 uM
each) inside 200 nm (diam.) vesicles is practically zero (10°).
Nevertheless, the protein was synthesized in some
compartments, and therefore the apparent contrast between
observed and predicted behavior represents a conundrum. In
order to explain the observations, we made the hypothesis that
local (internal) solute concentration was ca. 20 times higher
than the nominal (bulk) one. We have recently investigated
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this phenomenon by entrapping ferritin inside liposomes, and
analyzing the occupancy frequency in each liposome by
means of cryo-TEM visualization (Luisi et al. submitted), see
below for a short comment on such study.

3.3 On the entrapment of solutes

Projects on the construction of minimal cells foresee, as basic
assembly step, the formation of solute-containing lipid
vesicles. It is interesting to notice that such important process
has not been studied in great detail. It is clearly recognized
that the entrapment process depends on the mechanism of
vesicle formation, on the nature of lipids and solutes, and by
the concentrations used in the experiment. The general
hypothesis is that the average number of entrapped molecules
(No) depends on the concentration of solutes (C,) used and on
the vesicle volume (V), i.e. Ny = CyV. Deviations from the
expected average number are typically modeled by a Poisson
distribution. In our recent investigation on the encapsulation
of ferritin inside lipid vesicles — a study that was triggered by
the conundrum of simultaneous multiple entrapment of several
components inside liposomes, see above — we discovered that
the description of entrapment phenomena is not well described
by the standard model (Luisi et al., submitted). When vesicles
are allowed to form spontaneously in the presence of solutes,
the surprising result is that the classical description fails (at
least for submicrometric vesicles) with respect to: (i) the
average number of solute per vesicle, (ii) the expected
occupancy distribution.

In particular, we have observed that a small fraction of
vesicles are filled by several solute molecules, confirming our
working hypothesis of high internal solute concentration, and
that the occupancy profile does not follow the Poisson
distribution, being aligned instead as in a long-tail
distribution. Experiments are currently in progress to fully
characterize the vesicle system.

This result indicates that SB studies on the construction of
synthetic or semi-synthetic cells actually drives also
advancements in basic science. In fact, thanks to such
approach it becomes evident that our simple model of vesicle
formation needs a revision, since there are suggestions that
membrane closure into a vesicle is not a passive event, but
might bring about solute recruitment with the consequent
formation of high internal solute concentration, which is a pre-
requisite for the spontaneous formation of functional cells.

3.4 Next developments and conclusions

In conclusion, there has been a big progress in the ability of
constructing minimal cells by the semi-synthetic approach.
The state of the art is represented by the synthesis of water-
soluble as well as membrane proteins. This will allow the
realization of more complex systems that are capable of
implementing additional function, especially in the direction
of constructing a minimal autonomous cell, and a self-
reproducing cell. As evident in Figure 1, the final goal will be

the simultaneous and possibly functionally coupled core-and-
shell reproduction.

In order to discuss next development, we have to
distinguish among conceptual advancements and technical
ones. Moreover, it is also useful to discuss the general aspects
of semi-synthetic approach, within SB and with respect to
other research lines.

New directions in minimal cell research, as anticipated,
should focus on the self-reproduction of the genetic/metabolic
molecules as well as a more efficient lipid synthesis, the so-
called core-and-shell reproduction. Such goal can be reached
by duplicating DNA and by implementing the in situ ribosome
synthesis. The other two set of key macromolecules, tRNAs
and aa-tRNA synthase need also to be synthesized inside
vesicles. Lipid synthesis is particularly relevant, and together
with phospholipid synthesis, fatty acid synthesis should be
considered (for a preliminary report, see Murtas 2009). The
study on the cell-free synthesis of transcription factors
(Asahara and Chong, 2010), and on a short biosynthetic
pathway (UDP-N-acetylglucosamine pathway, by Zhou et al.,
2010), point toward the realization of more complex systems
by the in vitro gene expression approach. Another interesting
direction has been pioneered by Davis and coworkers, who let
synthetic cells send a chemical message (ribose-borate
complex, synthesized inside the synthetic cell via the formose
reaction) to a bacteria population, stimulating a quorum
sensing response (Gardner et al., 2009). It is expected that
further development may concern a two-way communication
between synthetic and natural cells (for a discussion, see also
Cronin et al. 2006, for a potential application as drug delivery
systems, see Zhang et al. 2008). Further studies might be
devoted to the explicit investigation of stochastic effects
within synthetic cells (such concept has been only marginally
discussed in Tsuji and Yoshikawa, 2010; Saito et al., 2009;
Yamaji et al., 2009; Carrara et al. 2009, Sun and Chiu, 2005;
Dominak and Keating, 2007; Lohse et al., 2008), as well as an
explicit approach that take into account the whole vesicle
population instead of focusing on single vesicles (competition
and selection, see Stano, 2007; Chen and Szostak, 2004;
Cheng and Luisi, 2003; and cooperation). From the technical
viewpoint, it is remarkable the use and the possible future
developments of microfluidic devices for producing and
filling giant vesicles (Ota et al. 2009).

A more general discussion, on the other hand, must focus
on the relevance of semi-synthetic cells as primitive cell
models. Clearly, the compounds used to build a semi-synthetic
cell are not primitive, and the resulting semi-synthetic cell is
“minimal” in the sense of minimal number of functions. In
other words, simplicity of minimal cell does not necessarily
translate into primitiveness. In other words, one has to also
point to simpler cellular models, highlighting chemical and
physical aspects of minimal cells, which are still not
completely clear. Some efforts have been done in this
direction by the group of Szostak, who recently reviewed the
main results of his research and the issue of constructive
approach (Mansy and Szostak, 2009; Schrum et al., 2010). In
order to build more primitive cell models it is necessary to
complement the notion of minimal cells with more basic
models, and several strategies can be tested. For instance, one
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could focus on the synthesis of very simple polypeptides, or
by implementing some small metabolic network, or exploiting
the catalytic properties of small peptides (such as Ser-His, see
Li et al., 2000; Gorlero et al., 2008), peptide-membrane
interaction, and the reduction of ribosome complexity. For
example, Chris Thomas, a former PhD student of Luisi’s
group, and Erica D’Aguanno (graduate student), studied the
interaction of rRNA with poly-L-arginine, showing that stable
complexes, in definite molar ratio, form rapidly and
spontaneously by simple mixing the two components. The
resulting complexes show a compact structure as evident by
cryo-TEM imaging and dynamic light scattering, and have
similar dimension and gross form of ribosomes. This may
suggest a simple origin for ribosome particles as ribonucleic
acid/basic peptide complexes.

In summary, research on synthetic cells is now flourishing
after a long “incubation” stage. Although limited, the number
of groups interested in such research is increasing, and the
issue of creating compartment-based cell model is approached
from the experimental as well as modeling (Solé et al., 2007;
Rasmussen et al., 2009) viewpoints. We are confident that
synthetic cell studies will impact on basic biological
knowledge, especially in revealing physico-chemical and
dynamic aspects of cell-like functions, as well as by becoming
important tools in biotechnology and drug delivery.

Acknowledgments. This work has been funded by the
SYNTHCELLS project (Approaches to the Bioengineering of
Synthetic Minimal Cells, EU FP6 Grant #FP6043359); by the
Human Frontiers Science Program (RGP0033/2007-C) and by
the Italian Space Agency (Grant Nr. 1/015/07/0). It is also
developed within the COST Systems Chemistry CMO0703
Action.

References

Amidi, M., de Raad, M., de Graauw, H., van Ditmarsch, D., Hennink, W.
E., Crommelin, D. J. A., and Mastrobattista, E. (2010). Optimization
and quantification of protein synthesis inside liposomes. Journal of
Liposome Research, 20:73-83.

Asahara, H., and Chong, S. (2010). In vitro genetic reconstruction of
bacterial transcription initiation by coupled synthesis and detection
of RNA polymerase holoenzyme, Nucleic Acid Research,
doi:10.1093/nar/gkq377.

Berclaz, N., Bloechliger, E., Mueller, M., and Luisi, P. L. (2001). Matrix
effect of vesicle formation as investigated by cryo-transmission
electron microscopy. Journal of Physical Chemistry B, 105:1065-
1071.

Bitbol, M., and Luisi, P. L. (2004). Autopoiesis with or without cognition:
defining life at its edge. Journal of the Royal Society Interface,
1:99-107.

Blochliger, E., Blocher, M., Walde, P., and Luisi, P. L. (1998). Matrix
effect in the size distribution of fatty acid vesicles. Journal of
Physical Chemistry, 102:10383-10390.

Carrara, P., Stano, P., and Luisi, P. L. (2009). Giant vesicles and w/o
emulsions as biochemical reactors. Origins of Life and Evolution of
Biospheres, 39:308-308.

Chen, I. A., Roberts, R. W., and Szostak, J. W. (2004). The emergence of
competition between model protocells. Science, 305:1474-1476.
Cheng, Z., and Luisi, P. L. (2003). Coexistence and mutual competition of
vesicles with different size distributions. Journal of Physical

Chemistry B, 107:10940-10945.

Chiarabelli, C., Stano, P., and Luisi, P. L. (2009). Chemical approaches to

synthetic biology. Current Opinion in Biotechnology, 20:492-497.

Cronin, L., Krasnogor, N., Davis, B. G., Alexander, C., Robertson, N.,
Steinke, J. H., Schroeder, S. L., Khlobystov, A. N., Cooper, G.,
Gardner, P. M., Siepmann, P., Whitaker, B. J., and Marsh, D.
(2006). The imitation game — A computational chemical approach to
recognizing life. Nature Biotechnology, 24:1203-1206.

Dominak, L. M., and Keating, C. D. (2007). Polymer encapsulation within
giant lipid vesicles. Langmuir, 23:7148-7154.

Fiordemondo, D., and Stano, P. (2007). Lecithin-based water-in-oil
compartments as dividing bioreactors. ChemBioChem, 8:1965-1973.

Forster, A. C., and Church, G. M. (2006). Towards synthesis of a minimal
cell. Molecular Systems Biology, 2:45.

Gardner, P. M., Winzer, K., and Davis, B. G. (2009). Sugar synthesis in a
protocellular model leads to a cell signalling response in bacteria,
Nature Chemistry, 1:377-383.

Gil, R, Silva, F. J., Peretd, J., and Moya, A. (2004). Determination of the
core of a minimal bacteria gene set. Microbiology Molecular
Biology Reviews, 68:518-537.

Gorlero, M., Wieczorek, R., Adamala, K., Giorgi, A., Schinina, M. E.,
Stano, P., and Luisi, P. L. (2008). Ser-His catalyses the formation of
peptides and PNAs. FEBS Letters, 583:153-156.

Hasoda, K., Sunami, T., Kazuta, Y., Matsuura, T., Suzuki, H., and Yomo,
T. (2008). Quantitative study of the structure of multilamellar giant
liposomes as a container of protein synthesis reaction. Langmuir,
24:13540-13548.

Kurihara, K., Takakura, K., Suzuki, K., Toyota, T., and Sugawara, T.
(2010). Cell-sorting of robust self-reproducing giant vesicles
tolerant to a highly ionic medium. Soft Matter, 6:1888-1891.

Kuruma, Y., Stano, P., Ueda, T., and Luisi, P. L. (2009). A synthetic
biology approach to the construction of membrane proteins in semi-
synthetic minimal cells. Biochimica et Biophysica Acta, 1788:567—
574.

Li, Y., Zhao, Y., Hatfield, S., Wan, R., Zhu, Q., Li, X., McMills, M., Ma,
Y., Li, J.,, Brown, K.L., He, C., Liu, F. and Chen, X. (2000).
Dipeptide Ser-His and related oligopeptides cleave DNA, proteins
and a carboxyl ester. Bioorganic Medical Chemistry, 8:2675-2680.

Liu, A. P., and Fletcher, D. A. (2009). Biology under construction: in
vitro reconstruction of cellular function. Nature Reviews, 10:644—
650.

Lohse, B., Bolinger, P.-Y., and Stamou, D. (2008). Encapsulation
efficiency measured on single small unilamellar vesicles. Journal of
the American Chemical Society, 130:14372-14373.

Lonchin, S., Luisi, P. L., Walde, P., and Robinson, B. H. (1999). A matrix
effect in mixed phospholipid/fatty acid vesicle formation. Journal of
Physical Chemistry B, 103:10910-10916.

Luisi, P. L. (2003). Autopoiesis: a review and a reappraisal.
Naturwissenschaften, 90:49-59.

Luisi, P. L. (2007). Chemical aspects of synthetic biology. Chemistry and
Biodiversity, 4:603-621.

Luisi, P. L., Allegreti, M., Souza, T., Steiniger, F., Fahr, A., and Stano, P.
(submitted) Spontaneous protein crowding in liposomes: A new
vista for the origin of cellular metabolism.

Luisi, P. L., Ferri, F., and Stano, P. (2006). Approaches to semi-synthetic
minimal cells: a review. Naturwissenschaften, 93:1-13.

Luisi, P. L., Oberholzer, T., and Lazcano A. (2002). The notion of a DNA
minimal cell: A general discourse and some guidelines for an
experimental approach. Helvetica Chimica Acta, 85:1759-1777.

Luisi, P. L., Souza, T., and Stano, P. (2008). Vesicle behavior: In search
of explanations. Journal of Physical Chemistry B, 112:14655-
14664.

Mansy, S. S., and Szostak J.W. (2009). Reconstructing the emergence of
cellular life through the synthesis of model protocells. Cold Spring
Harbor Symposia on Quantitative Biology, doi:
10.1101/sgb.2009.74.014

Maturana, H. R, and Varela, F. J. (1980). Autopoiesis and cognition: the
realization of the living. Reidel, Dordrecht

Murtas, G. (2009). Internal lipid synthesis and vesicle growth as a step
toward self-reproduction of the minimal cell. Systems Synthetic
Biology, doi: 10.1007/s11693-009-9048-1.

Oberholzer, T., Nierhaus. K. H., and Luisi, P. L. (1999). Protein
expression in liposomes. Biochemical Biophysical Research
Communications, 261:238-241.

Proc. of the Alife XII Conference, Odense, Denmark, 2010

152



Ota, S., Yoshizawa, S., and Takeuchi, S. (2009). Microfluidic formation
of monodisperse, cell-sized, and unilamellar vesicles. Angewantde
Chemie International Edition English, 48:6533-6537.

Rasi, S., Mavelli, F., and Luisi, P. L. (2003). Cooperative micelle binding
and matrix effect in oleate vesicle formation. Journal of Physical
Chemistry B, 107:14068-14076.

Rasmussen, S., Bedau, M. A., Chen, L., Deamer, D., Krakauer, D. C.,
Packard, N. H., Stadler, P. F. editors (2009). Protocells: Bridging
Nonliving and Living Matter, MIT Press, Cambridge,
Massachusetts.

Saito, H., Kato. Y., Le Berre, M., Yamada, A., Inoue, T., Yoshikawa, K.,
and Baigl, D. (2009). Time-resolved tracking of a minimum gene
expression system reconstituted in giant liposomes. ChemBioChem,
10:1640-1643.

Schrum, J. P., Zhu, T. F., and Szostak, J. W. (2010). The origins of
cellular life. Cold Spring Harbor Perspectives Biology, doi:
10.1101/cshperspect.a002212.

Shimizu, Y., Inoue, A., Tomari, Y., Suzuki, T., Yokogawa, T., Nishikawa,
K., and Ueda, T. (2001). Cell-free translation reconstituted with
purified components. Nature Biotechnology, 19:751-755.

Solé, R. V., Rasmussen, S., and Bedau, M. editors (2007). Towards the
artificial cell. (Vol 362) Philosophical Transaction of the Royal
Society B.

Souza, T., Stano, P., and Luisi, P. L. (2009). The minimal size of
liposome based model cells brings about a remarkably enhanced
entrapment and protein synthesis. ChemBioChem, 10:1056-1063.

Stano, P. (2007). Question 7: New aspects of interactions among vesicles.
Origins of Life and Evolution of Biospheres, 37:439-444.

Stano, P. (2010). Synthetic biology of minimal living cells: primitive cell
models and semi-synthetic cells. Systems and Synthetic Biology, doi:
10.1007/s11693-010-9054-3.

Stano, P., and Luisi, P. L. (2010). Achievements and open questions in the
self-reproduction of vesicles and synthetic minimal cells.
ChemComm, 46:3639-3653.

Stano, P., Wehrli, E., and Luisi, P. L. (2006). Insights on the oleate
vesicles self-reproduction. Journal of Physics: Condensed Matter,
18:52231-52238.

Sun, B., and Chiu, D. (2005). Determination of the encapsulation
efficiency of individual vesicles using single-vesicle photolysis and
confocal single-molecule detection. Analytical Chemistry, 77:2770-
2776.

Tsuji, A., and Yoshikawa, K. (2010). Real-time monitoring of RNA
synthesis in a phospholipid-coated microdroplet as a live-cell
model. Chembiochem, 11:351-357.

Walde, P., Wick, R., Fresta, A., Mangone, A, and Luisi, P. L. (1994)
Autopoietic self-reproduction of fatty acid vesicles. Journal of the
American Chemical Society 116:11649-11654.

Yamaji, K., Kanai, T., Nomura, S. M., Akiyoshi, K., Negishi, M., Chen,
Y., Atomi, H., Yoshikawa, K., and Imanaka, T. (2009). Protein
synthesis in giant liposomes using the in vitro translation system of
Thermococcus kodakaraensis. IEEE Transactions on
Nanobioscience, 8:325-331.

Yu, W., Sato, K., Wakabayashi, M., Nakatshi, T., Ko-Mitamura, E. P.,
Shima, Y., Urabe, I., and Yomo, T. (2001). Synthesis of functional
protein in liposome. Journal of Bioscience and Bioengineering,
92:590-593.

Zhang, Y., Ruder, W. C., and LeDuc, P. R. (2008). Artificial cells:
building bioinspired systems using small-scale biology. TRENDS in
Biotechnology, 26:14-20.

Zhou, J., Huang, L., Lian, J., Sheng, J., Cai, J., and Xu, Z. (2010).
Reconstruction of the UDP-N-acetylglucosamine biosynthetic
pathway in cell-free system. Biotechnology Letters, doi:
10.1007/s10529-010-0315-8.

Zhu, T. F., and Szostak, J. W. (2009). Coupled growth and division of
model protocell membranes. Journal of the American Chemical
Society, 131:5705-5713.

Proc. of the Alife XII Conference, Odense, Denmark, 2010

153



Ribocell Modeling

Fabio Mavelli

Chemistry Department University of Bari — Via Orabona 4 — 70125 Bari Italy
mavelli@chimica.uniba.it

Extended Abstract

A minimal living cell, or protocell, is a minimal supra molecular self-bounded structure that can exhibit self-maintenance, self-
reproduction and evolvability (Luisi 2003). Some years ago, Szostak and colleagues proposed a minimal cell prototype called
Ribocell: ribozymes based cell (Szostak et al. 2001) that, in principle, can exhibit all these three properties. This model cell consists
in a self-replicating minimum genome coupled with a self-reproducing lipid vesicular container. The genome is composed by two
hypothetical ribozymes: Ry, able to catalyze the conversion of molecular precursors into membrane lipids and Re, able to duplicate
RNA strands. Therefore, in an environment rich of both lipid precursors and activated nucleotides the Ribocell can self-reproduce if
both processes: the genome self-replication and the membrane reproduction (growth and division), are somehow synchronized. In a
recent work (Mavelli et al in press) we have presented and discussed a detailed and as realistic as possible kinetic mechanism for the
Ribocell based on a previously published in silico model of self-replicating vesicles (Mavelli and Ruiz-Mirazo 2007):
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Scheme 1: The Ribocell metabolism: (1) reversible association of RNA polymerase (Rpo) and
RNA-synthase (Ryjp) strands with the respective complement cRPol and cRLip; (2) catalytic cycle
of the RNA replication (S= Rpol, cReol, Riip @nd ¢Riip); (3) conversion of the precursor P into the
membrane lipid L catalyzed by the ribozyme RLip; (4) transport processes across the lipid
membranes.

Using a deterministic approach, we showed that synchronization between genoma duplication and membrane reproduction can
spontaneously emerge within the used approximations and the adopted Kinetic parameters, all derived from the literature (see Table
1), only if the k_ constant is increased of five orders of magnitude (Mavelli et al in press).

Kinetic Patameters ~ Values Process Description References
kgs[s'M'] 8.8-10° Formation of dimers RcRpo and RcRLip Christensen 2007
kgls”] 2.2.10° Dissociation of dimers RcRpo and RcRip Christensen 2007
kros[s'M'] 5.32:10°  Formation of R@S Tsoi and Yang 2002
kress/s™] 9.9-10° Dissociation of Complexes R@S.S Tsoi and Yang 2002
knrpls'M"] 0.113 Nucleotide Polymerization in Oleic Vesicle De Frenza 2009
k, [s'M'] 0.017 Catalyzed Lipid Precursor Conversion Stage-Zimmermann and Uhlenbeck 1998
k;, [dm’s] 7.6-10% Oleic acid association to the membrane Mavelli et al.2008
Ko [dm?s™] 7.6-107 Oleic acid release from the membrane Mavelli et al.2008
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Py [ems”] 4.2.10°  Membrane Permeability to Lipid Precursor Sacerdote and Szostak 2005

Pyrp[cm-s'] 1.9-10™  Membrane Permeability to Nucleotides De Frenza 2009
Pw=Ps 0.0 Membrane Permeability to W and genetic staff
Pag/cm-s”] 1.0.10° Oleic Acid Membrane Permeability to Water Sacerdote and Szostak 2005

Table 1: Kinetic Constants and Permeability of the Ribocell in silico model at room temperature (S= Ryol, cRpot, Riip and (RLip).

In this contribution we will focus the attention on the role of random fluctuations on the Ribocell time behaviour by using a
Monte Carlo program developed in recent years for simulating chemically reacting compartmentalized systems (Mavelli et al 2008).
The random nature of reacting events (intrinsic stochasticity) can highly differentiated the time course of each single protocell in the
population, since the effect of fluctuations is enlarged by the autocatalytic character of genome replication. Moreover, another
source of time course dispersion is the random distribution of the cell internal content after each division (extrinsic stochasticity).
Also in this case, displacement from the deterministic equality of the genetic staff amount in both the daughter cells is amplified by
the nature of the internal metabolism. However, while intrinsic stochasticity can determine equivalent behaviours with different time
scales (Fig.1A), the extrinsic randomness can produce completely different outcomes bringing to the death for dilution of the
Ribocell if a complete segregation of ribozymes in diverse protocells takes place (Fig 1B,C).
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Figure 1: Comparison between deterministic curves (black lines) and stochastic simulation data (gray lines with
error bars) of the Ribocell reduced surface @ obtained setting (A) k.=1.7x10* s'M” and (B) k. =1.7x10° s'M"
(Vertical dashed lines are the deterministic division times). (C) Composition of the Ribocells population against
the generation number (k_=1.7x10%s”"M").
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Extended Abstract

Mechano-Sensitive Channels
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Figure 1: Protocell model with rudimentary Mechano-Sensitive (MS) membrane channels. In osmotic crisis, internal turgor
causes tension in the membrane, opening the MS channels and allowing internal solutes to disperse, re-stabilising the system.
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We are interested in exploring plausible mechanisms which could enable a simple lipid bi-layer protocell system for more
robust and possibly richer self-maintenance dynamics in variable environmental conditions.

One fundamental problem faced by all compartments with a selectively semi-permeable membrane is the ever present
threat of osmotic burst. For various and sometimes unexpected reasons, internal or external conditions for a cellular
system can suddenly change (e.g. an E. coli bacterium caught in a rain shower), resulting in the appearance of a large
osmotic potential across the membrane. This potential drives a ’shock’ flow of water into the cellular compartment, quickly
expanding the internal volume and possibly rupturing the membrane. Mechano-Sensitive (MS) channels are one prudent
mechanism of increasing interest (Kung (2005)) by which a cell can detect and respond to forces in it’s lipid bi-layer. These
intricate structures (composed of folded protein helixes) span the membrane, and open a water-filled pore like an iris (see
box on Fig. 1) in response to increasing local membrane tension. In the case of the unlucky E. coli bacterium caught in
the rain shower, the MS channels act as ’emergency valves’, releasing internal solutes until osmotic equilibrium is restored
again. More generally, MS channels can be thought of as a tranducer mechanism, converting mechanical fluctuations in
the membrane (local tensions) into a chemical signal (by way of modulating compartment solute permeability).

This work aims to explore more fully some ideas seeded at ECAL 2007 (Ruiz-Mirazo and Mavelli (2007)) as to how a
protein channel feedback system could be useful for cellular stability at a very early stage in the origin of life i.e. in a
protocell scenario. In the previous work, one case considered was protein channels becoming aligned and active in the
protocell membrane only when the system was in osmotic crisis conditions ($ < 1, Fig. 1). When open, these channels
accelerated the diffusion of an internal waste product out of the protocell compartment, at a rate dependent on a diffusion
constant, the number of proteins channels in the membrane and the concentration gradient of the waste.

This study seeks to model the protein channels above as slightly more realistic MS channels. Instead of channels opening
indiscriminately whenever there is some membrane tension (as in the previous case), now channels open in proportion to
the relative membrane tension (1 — ®, when ® < 1), and each channel has a more realistic binary switching behaviour,
remaining effectively closed until a tension transition barrier is crossed, after which it snaps to a fully open conformation.
A second objective of this work is to investigate the dynamic implications of the MS channels facilitating not only the
diffusion of waste out of the compartment, but also the diffusion of the molecules involved in the internal Ganti (Ganti
(2002)) reaction cycle. This direct negative feedback on the growth of the internal cycle presents an interesting dynamical
scenario not tested before with the protocell model. Simulations are again being carried out with the ENVIRONMENT
(Mavelli et al. (2008)) platform. Results are to be presented at the conference.
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Abstract

Self-replication of genetic information is one of the central functions of living systems. This function enables the living system to
reproduce itself, introduce mutations, and evolve. How could a self-replication system be constructed from non-living materials on
the earth? What conditions are required? The answers to these questions are largely unknown. Here, we attempted to construct an
artificial self-replication system of genetic information from biological materials, such as RNA and proteins, to identify the
conditions necessary to establish self-replication and enable the system to evolve. Based on previous reports, we constructed a self-
replication system of genetic information from RNA (genetic information) encoding RNA replicase (Qf replicase) and a cell-free
translation system (PURE system). During the reaction, RNA replicase was translated from the RNA, and then bound to the original
RNA and catalyzed its replication. These successive reactions are referred to here as self-replication of genetic information. This
system consisted of more than 100 components, all of which were identified. Therefore, we can control all the components
independently and quantitative analysis is possible. The reaction efficiency was markedly lower than expected from the activity of
the replicase and the translation system. This poor efficiency suggests that there are as yet unknown conditions required for efficient
self-replication. To clarify the problems, we analyzed the self-replication system by mathematical modeling, which indicated three
limiting factors: 1) competition between translation and replication for RNA,; 2) parasitic RNA amplification; and 3) inactive double-
stranded RNA formation. Overcoming these problems will be necessary for realization of an in vitro self-replication system. To
resolve the first problems, we measured the affinity of RNA with replicase and ribosome, and adjusted the ribosomal concentration to
the optimum level. To resolve the second problem, we compartmentalized the reaction into a micrometer-sized water-in-oil emulsion.
This was considered to confine the parasitic RNA to minor compartments, so that the other major compartments were free from
parasite where self-replication continued. Although the third problem is now under investigation, the self-replication efficiency has
improved significantly. These result demonstrated that establishment of an efficient self-replication system requires coordination of
internal reactions and a mechanism for repression of parasitic replicator.
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Extended Abstract

Understanding the generalized mechanism of self-reproduction is considered to be fundamental for application in various fields
such as mass-production of molecular machines of nanotechnology and artificial synthetic of biology (synthetic biology).
Furthermore, it is considered that large, complex machine systems of over a certain size are difficult to construct by the top-down
approach. Therefore, these complex systems are required to be constructed by the bottom-up approach, by applying the phenomenon
of biological self-organization. Thus we have to elucidate not only the details of the cellular reaction network but also the condition
for simulating self-organized, self-replicating cells.

Fifty years ago, von Neumann initiated the study of the phenomenon of self-reproduction from a mathematical point of view.
This study theoretically proved the possibility of constructing a self-reproducing machine by cell state and transition rules of two-
dimensional square cells. On the other hand, Neumann’ self-reproducing machine was large in size; therefore, it is difficult to
implement this machine perfectly in a computer system (Mange et. al. (2004)). Thereafter, Langton (1989) developed a simple
machine capable of self-reproduction abandoning the completeness of Neumann’s self-reproducing machine. Although the shape
was very simple, the rules of transition are complicated and it could reproduce specific shapes.

In our study, we developed a model for simulating cellular self-reproduction in a two-dimensional Neumann-type cellular
automaton. We demonstrated that the following 3 functions can be realized by the transition of 2 adjacent cells in a cellular
automaton.

(1) Formation of a border similar to a cell membrane.

(2) Self-replication is achieved while maintaining a carrier containing information (information carrier).

(3) The division of the cell membrane is achieved while maintaining the total structure of the cell.

This study demonstrated the self-reproducing ability of a shape that was similar to that of real cell. This is not a study to clarify
all the necessary and sufficient conditions of self-reproduction. It is considered that it is possible to simulate self-replication in a real
dynamic chemical reaction environment by applying the transition rules determined in this study.

A two-dimensional triangular grid model was used in this study. The cell automaton was constructed by transition rules such
that the state of the next step was decided by the state of the cell and that of 6 neighboring cells. Each cell has a state (0-19) and
direction (6 directions) as an attribute. In the triangular grid, calculation starts from a certain initial condition. The transition rules
were divided into the following 4 phases: state transition concerning cell membrane formation, division of the information carriers,
movement of the information carriers, and formation of the nuclear membrane surrounding the information carriers. In other words,
first we applied transition rules of cell membrane formation and settled the total states in all cells. Then, we applied the transition
rules for the division of information carriers, following which we applied the transition rule of movement of the information carriers
and formation of the nuclear membrane.

Using the model mentioned above, we demonstrate a calculation result with transition rules and the initial condition. Our
model was capable of producing a self-reproducing phenomenon in a cell-like shape with few state transition rules (Figure 1).
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State Color Acquisition State Color Acquisition
1 Red Information carrier 10 [SkyBlue
2 Green 11 [Silver Constitute space
3 |Yellow Nuclear membrane 12 |Olive in the cell
4 |White 13 |Cream
5 Blue 14 |MoneyGreen
6 Purple 15 |Navy
7 Lime 16 DkGray
8 |Aqua 17 __|Maroon
9 |Teal 18 |Red
19 |Fuchsia Cell membrane

Figure 1 Results of a cell-type self-reproducing two-dimensional cellular automaton. Pink grids are cell membranes, and central red
grids are information carriers. This figure shows the process of formation of cell membrane, and the process of division of the
information carriers with the cell membrane.

Proc. of the Alife XII Conference, Odense, Denmark, 2010 160



Approach to Synthetic Cell with a Cell-free Toolbox

Jonghyeon Shin' and Vincent Noireaux'

1University of Minnesota, 116 Church Street SE, Minneapolis, MN 55455, USA
noireaux@umn.edu

Abstract

Cell-free protein synthesis is increasingly used to produce large amounts of proteins in vitro. Cell-free systems combine a strong
bacteriophage transcription, in most cases the T7 RNA polymerase, to a cytoplasmic extract from an organism, such as E. coli, that
provides the translation machinery. These systems have been prepared for many types of applications, mostly in biotechnology,
such as proteomics and directed evolution. Recently, cell-free protein synthesis was used to reconstitute informational processes
outside living organisms (Noireaux, et al 2003, Noireaux and Libchaber, 2004, Isalan, et al 2005). These studies were limited,
however, by the current properties of cell-free systems, which have not been optimized for synthetic biology purposes. In particular,
transcription is restricted to bacteriophage RNA polymerases and no procedures to accelerate messenger RNA and protein
degradations have been described.

Our laboratory has developed a new cell-free expression system to specifically reconstitute biological information processes in
vitro. This efficient transcription/translation E. coli cell-free system works with nine different transcription mechanisms: seven E.
coli sigma factors and two bacteriophage RNA polymerases with their respective promoters. This set of cell-free transcriptions
offers a unique modularity to engineer synthetic gene circuits. Although high protein production is required to reconstitute
interesting gene networks, degradation is also an essential characteristic of gene expression. Our system includes a control of the
mRNA lifetime and of the protein degradation rates. The dynamics of synthetic circuits is tuned by adjusting gene concentrations,
promoter strengths, synthesized messengers and proteins lifetime.

This cell-free toolbox is used for two purposes: (i) the construction and the study of elementary gene circuits and (ii) the synthesis
of an artificial cell. Multiple stage transcription cascades, AND gates and negative feedback loops have been engineered. The output
signals of these circuits can be tuned in a wide dynamics range depending on the mRNA and protein degradation rates. We are
currently investigating how this cell-free expression system can be used to approach biopolymer physics problems such as the DNA
binding protein search problem. The cell-free extract can be encapsulated into synthetic phospholipids vesicles, which form a sort of
artificial cell system. One of the main questions addressed by this research is: how can we develop the properties of these synthetic
vesicles from the internal gene expression? The perspectives and the limitations of this approach will be discussed.
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Extended Abstract

Fatty-acid vesicles are being extensively studied as experimental models of prebiotic compartments. These supramolecular
structures have shown a variety of interesting dynamic properties (spontaneous self-assembly, autocatalytic growth, potential
reproductive and/or competitive regimes — for a review see [1]). Nevertheless, their high dynamism presents at the same time some
drawbacks: compared to compartments made of standard phospholipids (or, so-called, liposomes), fatty-acid vesicles are more
permeable and less stable; they require higher monomer concentration thresholds (cvc values) and are rather sensitive to external
factors, such as pH, temperature, or ionic strength [2, 3].

However, several recent experiments (e.g., [4, 5, 6]) carried out with mixtures of simple amphiphiles (i.e., both mixtures of fatty-
acids and mixtures of fatty-acids with other simple surfactants or lipid derivatives), have demonstrated that certain combinations
provide higher stability to this type of compartments and indicate the relevance of diverse factors, such as the packing density or
irregularities between polar heads on the membrane surface, in their physical properties (e.g., in their permeability). This research is
opening a whole new panorama, in which different mixtures of plausible prebiotic amphiphiles need to be explored.

In this context, we have been studying various theoretical models of plausible prebiotic compartments with ENVIRONMENT, a
computational platform that was developed some years ago to simulate protocell dynamics [7]. In particular, we have started to
analyze the hypothetical transition from ‘self-assembling’ fatty acid vesicles to ‘self-producing’ lipid protocells [8], focusing on the
corresponding changes in the cvc and the permeability of the compartment, as well as its implications for the general stability of the
protocell. In the preceding simulations, as a first approximation, membrane permeability was assumed to change linearly with its
mixed composition. But, although the values of the permeability coefficients for the pure cases were derived from real data, we are
aware that such an assumption for intermediate cases (i.e., for different ratios of the binary mixture) may not truly hold.

Therefore, we are currently exploring a more realistic scenario in which changes in the cvc and permeability of the compartment are
a non-linear function of the membrane composition. Our approach involves the combination of “in vitro” methods (wet experiments)
and “in silico” techniques (stochastic simulations), since we are convinced that any theoretical protocell model should be empirically
grounded and, in turn, the interpretation of experimental data can be greatly clarified by means of theoretical modelling and
simulation tools. Our aim is to present the results of this combined effort in the conference.
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Abstract

The “holy grail” of medical treatment is early detection and in situ cure, or destruction of malfunctioning cells. Such
task could be achieved by intelligent nanometer devices capable of operating in vivo, sensing disease markers,
correctly identifying the abnormal cells, and curing them or causing their destruction.

Our laboratory's long-term objective is to develop a 'Doctor in a cell': molecular-sized device that can roam the body,
equipped with medical knowledge and treatment potential. It would diagnose a disease by analyzing the data available
in its biochemical environment, and treat it by synthesizing, or activating, the appropriate drug molecules in situ. This
kind of device might, in the future, be delivered to all cells in a specific tissue, organ or the whole organism, and cure
or kill only those cells diagnosed with a disease.

As an important milestone towards realizing this desirable long-term goal, we have developed a molecular system
shown to perform the abovementioned tasks in vitro (Benenson et al.). Although this system was initially limited to
mRNA based disease indicators as input, we are now developing new input mechanisms that expand the spectrum of
possible inputs. One input mechanism enables the detection of microRNA and almost any protein or small molecule.
Another input mechanism enables the sensing of active DNA binding proteins, such as transcription factors. These
new abilities may facilitate the detection of important intracellular and intercellular disease markers.

While operating this system inside living cells remains a major challenge, expanding the capabilities of molecular
computers and investigating their theoretical and practical attributes might be rewarding in the long term.
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Extended Abstract

We investigate the Belousov-Zhabotinzky (BZ) reaction as a substrate for computation. Expanding on previous research we present
a new technique that utilizes two modes of the BZ reaction, excitation and oscillation, and selective diffusive coupling. We show in
simulation that this technique can be used to invert input signals, providing the logical operator, NOT. Our system can readily
compute NOR, which when connected in multiples is sufficient for simulating any other logical operator. Furthermore, progress to
experimentally implement these operators and to wire them into circuits using soft lithography and replica molding is presented.

To synthesize living systems the field of artificial life has explored numerous substrates, physical and virtual. Chemical substrates
have been gaining in popularity with recent advances in chemical computation (Adamatzky, 2009; Gorecki, 2009) and cognition
(Dale and Husbands, 2010). In Braitenberg’s series of vehicles of increasing cognitive complexity a key turning point is the
introduction of inhibitory threshold devices, allowing for the use of numbers, logic, and basic memory (Braitenberg, 1986). Though
to an extent the latter two properties have been introduced in our choice substrate, the Belousov-Zhabotinzky (BZ) reaction, true
inhibition in the BZ has not been achieved. Here we applied the novel concept of inhibitory coupling (Toiya et al. 2008) to design
signal inverting logic gates.

Using BZ substrate, various logic gates have been implemented experimentally or by computer simulation. Gorecki has simulated
the gates AND and OR, as well as the MAJORITY function. Adamatzky showed XOR and AND in a related experimental
substrate. Collision dynamics of BZ waves have also been exploited to annihilate signals (de Lacy Costello, 2009). To our
knowledge, binary negation-based gates such as the computationally universal gates NAND and NOR (Sheffer, 1913) have not been
implemented. We simulated the computation of NOT and NOR in a heterogeneous BZ substrate and synthesized a NOT gate
prototype.

We designed negation-based gates using a light-sensitive implementation of the BZ reaction (Vanag and Epstein, 2009). Our system
is composed of two elements: excitatory and oscillatory domains connected through a filter. Both domains are chemically identical,
but differ in the amount of projected light. The illumination was tuned such that induction of a small perturbation (input) into the
excitatory domain can ignite a full excitation. The oscillatory domain follows an unsuppressed periodic trajectory.

a.) input

excitatory BZ

filter

in 0 1 0

oscillatory BZ I- -I
(] |

. = 1 0 1

output =
time

Figure 1: Inverter circuit and idealized space-time plots for signal inversion. The excitatory domain is conducting input waves into the oscillatory
patch (a). Without input, the oscillatory domain transitions between oxidized (white, logic state true) and reduced (dark, logic state false) state (b,
top). Due to the inhibitory coupling incoming waves will suppress and delay oscillations in the oscillatory domain into a later reading frame (b,
bottom).
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Using oil as a chemical filter allows for signal inversion. The filter is selective and only non-polar species such as bromine (Br,) can
permeate across (Toiya et al. 2008). Thus, a wave traveling from the excitable towards the oscillatory domain will temporarily
increase the Br, in the oscillatory domain. Br; is then readily converted back to the inhibitor Br-, which will delay the oscillation in
the oscillatory domain (Figure 1).

filter

excitatory BZ oscillatory BZ 100 ym

Figure 2: NOR gate prototype. Catalyst immobilized on silica gel was cast into patterned PDMS slabs. Hydrophobic PDMS walls separate BZ
domains and act as chemical filters. Action potential like input waves (indicated by grey arrows) propagate towards and couple into the central
oscillatory domain.

We verify our concept by simulating a simplified reaction-diffusion system of the light-sensitive BZ reaction (Vanag and Epstein,
2009). We integrate chemical turnover numerically in each BZ domain and compute the flux between compartments. Assuming fast
diffusion within compartments, we reduce their size to a single point. Though a single inverter is sufficient for an inhibitory
connection, we extend upon simple signal inversion to realize a NOR gate by combining two inverters. Prototypes were constructed
by casting BZ catalyst immobilized on silica gel into patterned PDMS slabs (Figure 2). Hydrophobic PDMS walls were designed to
separate BZ domains and act as selective chemical filters. Preliminary experimentation suggests our substrate can couple BZ
domains within circuits.

The BZ reaction offers a wide range of interesting dynamics. We have described a technique capable of inverting input signals, and
presented supporting simulations along with preliminary experimental results. This work suggests that the BZ reaction may be a
useful substrate for the synthesis of minimally cognitive agents. Future work will utilize finite element analysis to quantitatively
identify parameters for optimal input timing and delay strength. Experimental efforts will focus on increasing the robustness of
single logic operators as well as connecting them into functional circuits to achieve universal computation at the microscopic scale
in a chemical substrate.
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Abstract

Spontaneous emergence of non self-replication in a micro-
controller based artificial chemistry model, with replica-
tion being a concerted action of several sequential micro-
processes or instructions, is a difficult problem. The choice
of programming language that is used to realize replication
as a sequence of instructions is to a certain extent arbitrarily.
The question is, how many bits have to be found by a dynam-
ical system in the right space- and time-context to instantiate
this replication. A secondary structure is introduced to allow
complex instruction sets to be used. The secondary-structure
folding mechanism, a directed graph or Moore automaton,
allows replication to emerge with an arbitrary instruction-
width.

The question of whether there is anything before emergence
of replication has a tentative answer: early precursors of repli-
cation probably do not exist. Replication only starts when at
least two replicating programs are in the same neighborhood
replicating each other. A “cloud” of potential precursors of
replication is not visible.

Introduction

The desire to create hitherto unknown information from
scratch is at least as old as information processing machines,
cf. e.g. Menabrea (1842). The proof that a machine can hold
its own description and be able to replicate itself, together
with its own description, has been provided by von Neu-
mann (1966). The spontaneous emergence of higher-order
structures was already studied with first-generation comput-
ers by Barricelli (1962). The a-universe designed by Hol-
land (1976) was the first attempt to show spontaneous emer-
gence of self-replicating structures using a formal language
concept. But the first to convincingly show the evolution of
higher order structures and processes was Ray (1991). The
demonstration of spontaneous emergence of self-replication
was made by Pargellis (1996). He streamlined the Tierra in-
struction set Ray (1991) in such a way that there were about
one in 100 000 random sequences of five instructions which
resulted in a self-replicator. Artificial chemistry as a field
of research emerged when desktop computers had become
ubiquitous McCaskill (1988); Fontana (1991) (see Dittrich

et al. (2001) for a review). These works attempted to con-
nect chemical systems with information processing at the
molecular level. A promising idea was to use graph rewrit-
ing as a chemical representation and processing, McCaskill
and Niemann (2001); Benko et al. (2005). Unfortunately
no evolutionary studies could be realized because of the ex-
cessive computational processing required. Also, the inher-
ent brittleness of digital evolution made evolutionary stud-
ies with Turing machines infeasible Yoshii et al. (1998). It
is nearly impossible for self-replicating programs in Turing-
or register- machines to degrade smoothly.

In biochemistry, on the other hand, when an amino-acid
sequence of a natural enzyme is altered, the functionality
of the enzyme is extremely robust, with mostly just the cat-
alytic rate decreasing. However, sometimes mutations in the
active center of an enzyme knock-out its catalytic activity
altogether. Despite this remarkable robustness, in non-linear
complex networks of enzymes, drastic reactions can occur
when these are altered, or when environmental conditions
change.

How is it possible in principle to evolve such robust be-
havior? A minimal requirement for the evolution of ro-
bustness seems to be a powerful instruction set (or equiv-
alently: a multitude of different, even redundant, operators).
Then evolution can take several different pathways to solve a
problem and react flexibly to changing conditions. It seems
obvious that with only 16 discrete operations available Tan-
gen (2010), such a smooth ‘“action-landscape” cannot be
achieved. A possible way out of this dilemma will be pre-
sented in the sequel.

The evolutionary model

The evolutionary task to be solved in this model is much
harder than in previous models of self-replication, Ray
(1991); Pargellis (1996); Adami and Brown (1994). In self-
replication, the question of self and non-self is not relevant.
This is the reason why in a mixed system, self-replicators
will always prevail. Non self-replication requires at least
two cooperating entities before a replication cycle can hap-
pen. They have to solve the problem of kinship, otherwise
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they will go extinct due to parasitism. Furthermore, these
two entities — in our case micro-controllers — must be suffi-
ciently shielded from the disruptive activity of other micro-
controllers in the vicinity. Therefore, asking for the emer-
gence of non self-replication enlarges the effective evolu-
tionary search-space greatly.! Everything must fit into the
right spatio-temporal environment for all the programs in-
volved in the replication cycle.

On the other hand, merging all the functionality of a pro-
gram into one replication operator, as done in Tangen (1994)
which we here call atomic replication, is a simplistic an-
swer to the question of how new information is created from
scratch. This means that a gap exists between the number of
bits required in a program to encode a successful replication
cycle and the size of the search space allowed for finding the
correct bits, Tangen (2006, 2010); e.g., for two different sets
of instructions, see Table 1. This gap can be closed with the
secondary structure approach taken here.

Ribozymes or DNAzymes are biochemical equivalents to
the micro-controllers used here as active components, Levy
and Ellington (2003). They combine both properties: the
ability to store and to process information, that is, to catalyze
certain reactions. The goal of understanding the properties
of ribozyme replication is also the reason why this model
neglects the much easier approach of self-replication. It is
the hope that non self-replication does not show the early
convergence of self-replicating entities, Tangen (2002).

The model in a nutshell

Micro-controllers are situated in a spatially environment and
can interact with each other. Interaction occurs through a
recognition procedure. Each micro-controller can recognize
a pattern, which is defined as a concatenated sequence of Site
instructions, Table 2, in a neighboring micro-controller’s
program, which after recognition is then attached to the ac-
tive micro-controller. The attaching micro-controller puts
the address of the recognized micro-controller into its own
read- or write-slot, Figure 1. The second recognition-based
interaction is realized when program control is transferred
from the active micro-controller to another micro-controller:
this is equivalent to a subroutine call, see instruction Call
in Table 2. The third recognition event is a register access
event where the accumulator of the foreign micro-controller
acts as a local register.

'Three different terms dealing with replication are used
throughout this work: (a) self-replication means an active en-
tity is reading its own description, allocating, or creating a new
empty container and after putting a copy of the description into
this new container, so releasing it into the environment, (b) non
self-replication is essentially the same except that the active entity
is not able to read its own description but instead the description of
aneighboring entity, which it makes a copy of, and (c) atomic repli-
cation means that a single instruction in the program can perform
the whole replication.

template product

register access

register k

executing micro—controller (‘'me’)

Figure 1: How micro-controllers interact with each other. Each
interaction is realized via a recognition procedure with s concate-
nated bases (see Sife instruction in Table 2). Two attachment slots
are available per micro-controller. Micro-controllers attached to
the reading slot (see Load instruction in Table 2) serve as tem-
plates, and micro-controllers attached to the writing slot (see Store
instruction in Table 2) serve as products. Flags in other micro-
controllers can be set if they are attached to the reading-slot. The
standard registers are accumulators from other micro-controllers.
The address of the register is the recognition site which a neigh-
boring micro-controller exhibits.

The micro-controller? has input-ports (registers or a read-
attached program) and output-ports (registers or the write-
attached program of another micro-controller). Each in-
struction is divided into three parts, the cargo, conditional,
and special parts. The cargo part is the parameter for the in-
struction in the special part, which is executed if allowed by
the conditional part, see Figure 2.

A further bit is needed to allow conditional execution.
The instructions in row J1 of Table 1 are also executed if J2
is specified and the ZF-flag (accumulator value 0) is active
or if row J3 is specified and the PF1-flag is active. Only a
few instructions have side-effects during execution, namely
Search, SetFA, SetFB, and Site, see Table 2.

To summarize, each instruction is at least six bits wide,
see Table 1 (left part). The data and program width are
of size two bits. These two-bit words will be called nu-
cleotides. Each replicated instruction thus requires three nu-
cleotides and three copying operations.

The environment and physics of the simulations

The minimum case of sustained replication in this work
occurs when two machines replicate each other — in that

2A Harvard architecture (http://en.wikipedia.org/
wiki/Harvard_architecture) has been chosen because it
naturally allows to use different data widths without affecting the
instruction sequence.
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Input from registers (accumulators of foreign microcontrollers)
or attached program-codes (register—addr 0 or 1)

Input | ags whi ‘canbesa:jn,,,PFz,,,CYCLEJJEVERSEJ

Output into registers (foreign accus)
or attached programs (reg—addr 1)
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Figure 2: Structure of the micro-controller. The micro-controller
uses two bits of the special instruction section (SP). The condition
part (C) is two-bits wide. The width of the cargo depends on the
experiments, usually n = 2 using quaternary encoding. This leads
to a six bit micro-controller in the simple case. The zero-flag (ZF)
and PF1-flag (PF1) are used for conditional execution (see Table
4). Input and output either comes from or is sent to other micro-
controllers.

| so [ st |
J1 End | Call | SetFA | SetFB JO Set Site

7F « « “ « J1 | Load | Store
PF1 | * “ “ -

Table 1: Instruction sets which exhibit emergence of replication.
The left set is the most powerful case which is still able to develop
emergence of replication. The right set shows the simplest non-
trivial case. Though emergence of replication is possible, the diver-
sity of the emerging population is limited. The NAND-instruction,
shown in Figure 2, was omitted in this particular instruction set.
Many different instruction sets can be chosen as long as they rep-
resent a superset of the minimal instruction set given in the right
table.

Description

’ Instr.

Load | Load a value from a register into the accumulator.
The cargo specifies the address of the register.
Register 0 points to the micro-controller attached
to the reading slot. Register 1 points to the
micro-controller attached to the writing slot. With
no micro-controller attached, a search is initiated.
Prepended Site instructions increase the specificity
of register addressing. When there are no previous
Site instructions or accesses to registers O or 1, a
random search is done. If no suitable
micro-controller is found, this instruction has no
effect.

Store | Store the accumulator in a register. The cargo

specifies the address of the register. Register 1
points to the micro-controller attached in the
writing slot. Register 0 points to the
micro-controller attached to the reading slot. With
no micro-controller attached a search is ignited.
Prepended Site-instructions increase the specificity
of register-addressing. When there are no previous
Site instructions or accesses to registers 0 or 1, a
random search is done. If no suitable
micro-controller is found and address 1 is accessed,
the program is stopped to reduce processing costs.

Call | Transfer execution to the micro-controller specified
in the cargo part of this instruction. Accumulator
and attachment slots are transferred to the new
micro-controller. The current program is stopped
after this call.

Prepending Site instructions increase the specificity
of the micro-controller addressing, where these
Site instructions are combined with the cargo part

of the Call instruction to one big virtual
recognition-site. If no appropriate micro-controller
is found, the instruction has no effect.

Set Preset the accumulator with the value provided by
the cargo part.

Site Define a recognition site, either to be recognized
by others or to actively serve as an address. Used
with instructions Call, Load and Store.

SetFA | If a machine is attached to the reading-slot (e.g.
after accessing register 0) then certain flags can be

set in the machine Tangen (2010).
SetFB | Set flags in the executing machine Tangen (2010).
End This instruction is required with fixed-length

programs. Variable length programs can omit the
declaration of the end of the program because it is
already physically given.

Table 2: A few basic instructions understood by the micro-
controllers. Currently 64 different instructions are implemented
and used by the secondary structure approach. The End-instruction
is a special case, only needed with fixed-length programs.
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’ Bits ‘cargo‘ C ‘SP‘

’Bits‘cargo‘C‘SP‘

Site XX 00 | 01 Sire — - 01
Load 00 00 | 10 Toad 00 - 0
Store 01 00 | 11 Store 01 - 1

End - 01 | 00

Table 3: Two examples of minimum replicator programs. The
relevant instruction sets are given in Table 1. The bits (xx) in the
cargo part of the Sife-instructions are arbitrary but needed to be
stabilized throughout evolution. The minimal program on the left
requires the system dynamics to find 22 correct bits. The right
program needs 12 bits and a program length of three instructions.

sense a machine can be thought of as a ribozyme, although
in reality only the programs and a few state-variables are
copied! Many former studies McCaskill (1988); Tangen
(1994) found that if self-replicators compete with non self-
replicators, self-replicators prevail, simply because pertur-
bations caused by missed templates are not possible in the
self-replicating case. The minimal programs are shown in
Table 3.

So far the best way to minimize the number of bits needed
is to mimic physical behaviors and make use of this as-
sumption by introducing side-effects for some appropriate
instructions Tangen (2010). A universal, programmable in-
struction set was devised in that work, which needed only
22 significant bits in the minimum-replicator case. With
these 22 bits, a non-trivial evolution from the starting point
was shown. An even simpler program, Table 3 (right table),
needs only to have 12 bits specified by the system. Even
though the system has programs such as these, with their
simple, non-trivial instruction sets that have the potential to
exhibit replication, it is unlikely that in any particular col-
lective execution in this system that replication will occur.
This difficulty is due to the large class of perturbations that
can be exerted by uncoordinated Store-instructions.

Convolution of programs (secondary and tertiary
structure)

Mapping the primary structure of a program onto a sec-
ondary or tertiary structure promises better evolvability of
the resulting replication system Kimura (1990); Wagner
(1985). A simple approach is to use a graph whose nodes
represent instructions and whose edges represent traversals
according to the nucleotides given. Consider a graph for
which n is the data-/cargo-width and m is the instruction-
width in bits, and whose outbound degree is k. This graph
describes a kind of machine known as a Moore automata?,
and in the case where n < m, it provides the simplest
method which allows redundancy in the secondary land-
scape. Figure 3 describes a simple, non-trivial version of

*http://en.wikipedia.org/wiki/Moore_machine

’ Bit 1 ‘ Bit 0 ‘ Meaning

0 0 Instructions are always executed.

0 1 Instructions are always executed.These
instruction have conditional counterparts, see
Table 1.

1 0 Only executed if ZF-flag (ACCU == 0) is set.

1 1 Only executed if the PF1-flag is set.

Table 4: Conditional part of an instruction. Instructions can be
executed if certain conditions are fulfilled, such as the accumulator
(ZF-flag) being zero or the flag PF1 being set in the status-register
of a micro-controller.

this automaton with k& = 2. It is a matter of choice whether
the accumulator values of the micro-controller are consid-
ered part of the Moore automaton, as shown in part (a), or
are defined by the program, as in part (b). The latter case is
most natural for the Harvard architecture, with its strict sepa-
ration of data- and command- path. The first variant is more
akin to the natural biochemical situation where accumulator
values are only indirectly present in the form of co-factors.
From an evolutionary point of view, the search space de-
creases considerably in the first case as does the number of
degrees of freedom.

On the other hand, the extreme case of a fully connected
graph is equivalent to the situation where kK = n = m, which
is nothing but a system without any secondary structure.

A quaternary system is chosen here*: n = 4. The number
of instructions is m > 16. Furthermore, the values of the
accumulator are still set by the program directly, as in case
(b) in Figure 3.

Nucleotides in a program no longer represent instructions.
They represent commands to move along the instructions in
the graph and thus change the current state of the Moore au-
tomaton. Increasing the power of the instruction set means
inserting further nodes with the corresponding edges into the
graph. Of course, the graph must not contain nodes which
cannot be reached.

Trivial replicators If for example the size of a random
graph is sufficiently large, replicators will trivially emerge,
even without using replication. Two cases can happen:
Firstly, it is conceivable that a program emerges which con-
tains only a sequence of zeros, where these instructions are
interpreted as write-zero operators. Such a program repre-
sents a simple auto-catalytic process without any special no-
tion of evolution or information processing. Preliminary ex-
periments have shown that most random graphs with a min-
imum size do exhibit such a ’chemical’-nature. Secondly,

“Schuster and Stadler (1994) argue that quaternary RNA en-
codings have best evolutionary properties. Their assumptions on
RNAs certainly do not hold in the current model, but without fur-
ther investigation, taking a quaternary system is an initial choice.
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o]

Program: 001

Length: 3 bits 3SITE  2LOAD 2STORE

a) Values and commands per state

0011

D)

Program: 110 100 101

Length: 9 bits 3STE  2LOAD 2STORE
b) Only commands per state

Figure 3: Two variants of a simple non-trivial directed graph.
These graphs can be interpreted as Moore automata: (a) with a
program length of only three bits the commands Release, Load and
Site can be issued with their respective accumulator values (3, 2,
2) and (b) accumulator values are not part of the Moore automaton
and have to be provided by the program. This increases the pro-
gram length to 9 bits, giving the same functionality as in the upper
part.

Of course, the number of degrees of freedom in case (a) is much
less than in case (b). On the other hand, the search space in case b)
is much larger than in case a) and evolution needs to search longer
to find the specific functional sequences. With only one bit avail-
able the graphs must have an outgoing connectivity degree k = 2.
Each node can have arbitrarily many inbound connections.

a sequence of zeros only can be equivalent to a replicator
program. To create programs with identical nucleotides is
much easier than to sustain a complicated sequence of zeros

and ones °.

To avoid these trivial solutions, the Python script creating
these graphs looks for short cycles. They are eliminated via
arandomization procedure. A detected cycle is broken up by
the overwriting of one node on the cyclic path with a random
node. After several passes through the whole graph, almost
no short cycles remain. A successful example of emergence
of replication of a non-trivial replication can be seen in Fig-
ure 6.

SProblem of frame shifts http://en.wikipedia.org/
wiki/Frameshift_mutation

Site Load Store
Loadwa Storewa n
Loadwb Storewb 0.0 309
Loadf Storef 0.01 | 468
Cload Cstore 0.03 | 1302
Zf cload Zf _cstore 0.05 | 1932
Pfl_cload | Pfl_cstore 0.1 4057

Table 5: Searching potentially replicating programs. To increase
the probability of creating replicative programs additional instruc-
tions (Site and variants of Load and Store instructions, left table)
have been added with certain probabilities given in the table on the
right. A recursive search algorithm finds all occurrences of poten-
tial replicator programs and marks these as possible starting nodes
in the secondary structure. The second column in the right table
shows the frequency of possible replicator programs in a graph of
8192 nodes and the probabilities given in the first column. Only the
operators as such are considered and not the instruction parameters
in the cargo values, see Figure 2. In this case a program with three
instructions and a cargo-width of 2 bits has six unspecified bits to
be found by the dynamics of the system.

Means to increase the probability of emergence Fur-
thermore this Python script looks for possibly viable mini-
mal replicator-programs in the graph. It searches recursively
for instruction sequences [Site, Load, Store] and variants,
see Table 5, to extract suitable entry points for newly cre-
ated micro-controllers. Suitable entry points into the Moore
automaton (i.e., starting nodes) increase the probability of
emergence of replication. From an evolutionary point of
view, these entry points are neutral: they do not change the
physics in the system but rather provide hints for the dynam-
ics to find replicative sequences.

To further increase the probability of starting replication,
additional {Site, Load, Store} instructions can be inserted
at random into the graph. Table 5 (right) shows how many
suitable entry points are found by the Python script depend-
ing on the probability of adding one of these three instruc-
tions or their relatives. If all three instructions are inserted
equiprobably with, e.g., probability of 10%, then one of the
three instructions will be chosen with a probability of 30%.
As expected, the higher the probability, the more replication
programs there are in reach of an arbitrarily chosen entry
point (state) for the automaton. This can also be seen in Fig-
ure 4, where the distances of viable minimal programs from
each node in the graph are plotted. These distances measure
the effort of the recursive search algorithm to find such vi-
able programs. Only the special part of the instructions, as
such, are taken into account and not the cargo values, see
Figure 2. This means that the programs found are probably
not replicating at all but have a high propensity if the cargo
values can be altered by the dynamics. If no viable program
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Figure 4: Costs between each node of the graph to the next poten-
tial replicating program. The more additional Site, Load and Store
instructions are added, the more probable it is to find a replicative
program by accident. The numbers on the x-axis are arbitrary and
essentially only reflect the inner properties of the recursive-search
algorithm.

is found by a node, the maximum cost is assumed, see the
right box in Figure 4. The distribution of viable programs
from a given node in the graph is not a sharp one. There is
reason to hope that the wide distribution helps to find a new
niche for replication, but this has still to be demonstrated.

Computational results

The software used (EvoCpu_i686) is custom-developed®.
The space is divided into containers which are randomly se-
lected and processed. Each micro-controller in a processed
container is allowed to execute a certain number of instruc-
tions. Each executed instruction needs a certain amount of
energy. Several instructions and their “physico-chemical”
effects can be fine-tuned by such energy coefficients.

To illustrate how replication emerges, an extract of four
containers from a successful experiment with approximately
four million micro-controllers (i.e., 18 non-zero micro-
controllers, with two of them having a minimal replicator
program) were put into an empty, smaller system, and evo-
lution was started again. Eight consecutive generations are
shown in Figure 5. Common features of these replicating
systems are: (a) they do not use all the available space and
(b) irregular spatial structures emerge right from the begin-
ning. If these experiments are done on a single CPU, then
the evolutionary outcome is deterministic. No mutations or
other typical genetic algorithm operators are involved here.

®The software is available for download at http://www.
biomip.de/Uwe/projects/EvoCpu. It is suitable for SMP
(symmetric multiprocessor)-machines.  Further details on the
model are also provided.

An old question asks whether the emergence of replica-
tion has any precursors and whether supporting these precur-
sors can increase the probability of the emergence of repli-
cation. The first occurrence of replication in the above ex-
periment has been traced down to two micro-controllers, see
Figure 6, one of them a ligating program (center picture) and
the second a minimal replicator (lower picture). With a high
probability (p = (70/100) = 0.7 in this example) these two
programs are sufficient to develop two minimal programs
which will then be able to replicate each other, commencing
the evolutionary process. As one can see from the colors in
Figure 5, the diversity in the system is high right from the
beginning, and remains so with many interesting structures
developing (data not shown).

Discussion and conclusions

The work presented shows that with the help of customized
micro-controllers, non self-replicating programs can and
eventually will emerge. This is a much harder task for evolv-
ing systems than in the former models of self-replication.

Replication can only be realized if two replicating pro-
grams (or in biological terms, two ribozymes) cooperate in
such a way that both of them replicate each other simulta-
neously and that no other entities interfere. This scenario of
non self-replication seems to be more suitable when study-
ing the transition from non-living to living matter. Self-
replication requires a protecting hull, and this hull or mem-
brane has to be encoded also by the self-replicating system,
otherwise an exponential proliferation would not be possi-
ble. In addition, the problem of nutrients or waste passing
the hull or membrane needs to be solved right at the start in
the self-replicating system.

Convolution of a program into a secondary structure
solves the notorious problem of missing bits to code for the
many operators required and to circumvent the brittleness
problem. Furthermore, and even more important, physical
and chemical properties of the system can be naturally en-
coded (mapped) into the secondary structure without having
to change the micro-controller machinery. Having said that,
this particular solution of a secondary structure can hardly
be found in nature. Understanding the emergence of replica-
tion would make it possible to incorporate further biochem-
ical details. The secondary structure also provides a way to
abstract the details of physics and chemistry. This can facili-
tate higher forms of organization because they are no longer
perturbed by detailed settings.

When looking at the transition from non-living matter to
living matter, the question arises of whether there are any
precursors to replication. However, this appears to be un-
likely. In the example shown, a non-replicating program
works in conjunction with a replicator to create the second
required replicator, see Figure 6 (center). But restarting the
extracted system only one generation earlier fails to show
any emergence, even if very large parts of the original sys-
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Figure 5: Sequence showing the spatial fingerprints of the repli-
cating programs at the onset of replication. An area of 2x2 contain-
ers was extracted from a data-log shortly after replication emerged.

This area was transplanted into a new, smaller, empty system and
each image shows the fingerprints of replication in consecutive
generations. The asymmetric growth of the cluster is a conse-
quence of activity of perturbing parts in programs.

General IPC: 0 age: 8 anz_bits: 2

Container: 128 cur_st: 2636 ctr_protected: 0 start st: 2636
Micro-controller: 0 len: 7 | ctr copy: O site: (6]
Time of analysis: 0 type: 128 ctr_finished: 0 status: 536870913

ripe: 0 anz_site: o] energy: 825
accw: 0 anz_nucleo: 2

Nucleotides Instructions

List. List.
2(3) 1(0) _SYM_SITE_ 2
2(3) 1(0) _SYM_LIGATE_ o
2(3) 1(0) _SYM_STOREF_ 2
1(0) _SYM_GETFE_ 0

a) upper left micro-controller in top image

General IPC: O age: (o] anz_bits: 2
Container: 128 cur_st: 824 ctr_protected: 0 start_st: 824
Micro-controller: & len: 5] ctr_copy: O site: 0
Time of analysis: O | | type: 128 ctr_finished: O | status: 536870913
ripe: O anz_site: (o] Eenergy: 283
accu: O anz_nucleo: 2
Nucleotides Instructions
List List
1(0) 3(2) _SYM_SITE_ %
0(1) 1(0) _SYM_LOAD_ 0
1(0) 1(0) _SYM_STORE_ 1

b) lower-right micro-controller in top-image

Figure 6: Seed extracted from the very first generation (t = 347)
of the emergence of replication (system size 2048x2048 micro-
controllers). In the top image, the first two micro-controllers (red
and blue) are shown acting as seeds for replication. From these two
programs, two copies of the red program shown (machine-id 128:5)
are likely develop with high probability. The parameter of the in-
structions is shown to the right of the mnemonics (cargo value, see
Figure 2). The left part gives the same information, but now from
a nucleotide point of view, without printed mnemonics. The num-
bers in parentheses are the complements of the nucleotides (in this
case Watson-Crick complement). See also the irregular bits set in
the instructions, which prove that this onset of replication is not
due to a trivial unchanging sequence of only zero- or one-bits.
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tem are extracted and replayed. If there are precursors be-
fore replication, they cannot be numerous and only occur
right before the onset of non self-replication. Or they are so
special and specific that they do not exhibit a broad basin
of attraction. The major bottleneck does not seem to be
the occurrence of replicator-programs as such (in the ex-
ample shown above, only twelve specific bits have to be
available twice in a neighborhood) but the disturbance of
unrelated micro-controllers interfering with the replicating
process — in the above case there are five containers with
416 4 14 = 78 machines.

In previous work, non self-replication emerged only if
there were at most the 22 unknown bits (without secondary
structure) required for the shortest replicator program Tan-
gen (2010). The number 22 is not important, but it gives
a hint as to the difficulty of the search problem. Using the
secondary structure allows us to adjust the physics of the
system from a few bits per minimal replicator to a poten-
tially arbitrarily large number of bits. However, the most
important advantage of the secondary structure is the ability
to use many more instructions than there are bits available
for encoding, and to fine-tune the physical environment as
needed. Furthermore, different areas in the directed graph
represent different physics, thus allowing multiphysical ex-
periments to be conducted. Species with their center-points
moving along the directed graph represent a case of hard-
ware evolution.
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Abstract

We extend existing models and methods for the informational
treatment of the perception-action loop to the case of goal-
oriented behaviour and introduce the notion of relevant goal
information as the amount of information an agent necessar-
ily has to maintain about its goal. Starting from the hypoth-
esis that organisms use information economically, we study
the structure of this information and how goal-information
parsimony can guide behaviour. It is shown how these meth-
ods lead to a general definition and quantification of sub-goals
and how the biologically motivated hypothesis of information
parsimony gives rise to the emergence of behavioural proper-
ties such as least-commitment and goal-concealing.

Introduction

The world is a complex place. Millions of years of evo-
lution have created an environment with intricate relation-
ships, structure and many things that an organism living in
it has to look out for. It is no surprise then that organisms
invest a lot of energy in the processing of all the informa-
tion available to them. For instance, the retina of a resting
blowfly accounts for 10% of its energy consumption and for
the human brain this amount is estimated to be 20% (Laugh-
lin et al., 1998).

It is unlikely that an organism would spend all this energy
if it is not crucial; individuals that limit their information in-
take and processing to the necessary minimum and allocate
the rest of their energy to behaviour that is more relevant to
survival or reproduction will outperform ones that waste en-
ergy on useless information processing. Also, even though
this means an organism uses information economically, it
is plausible that an organism still often operates at the limit
of its information processing bandwidth and that there is an
evolutionary drive to do away with unused capacity, simi-
lar to the degeneration of useless eyes in cave-dwelling fish
(Jeftery, 2001). We will refer to these assumptions as the
information parsimony hypothesis.

We are interested in the necessary principles of life and
lifelike behaviour. The hypothesis of information parsimony
hints that information acquisition and processing capabili-
ties are part of these fundamental requirements. In the vein

of the Alife motto “life as it could be”’, we use minimal mod-
els of agents and their informational properties to study these
basic requirements of life. The substantial history of this ap-
proach shows that clear statements can be made about in-
formation processing bounds and how these influence the
structure of sensory and behavioural systems and embodi-
ment (Barlow, 1961; Brenner et al., 2000; Nehaniv et al.,
2007, Pfeifer et al., 2007; Polani, 2009).

The information parsimony hypothesis has given rise
to a body of research on the informational treatment of
the perception-action loop of agents and the interactions
with their environment. It has been shown that this can
lead to global, fundamental insights in necessary bounds
on behaviour (Polani et al., 2006), evolution of coordina-
tion (Sporns and Lungarella, 2006), intrinsic drives (Klyu-
bin et al., 2008), successful search strategies for tasks with
sparse information (Vergassola et al., 2007), and behaviour
structuring (van Dijk et al., 2009). These results are general
in the sense that they do not require a specific model of brain
mechanics. In this paper we will extend this previous work
to the more specialised, though sufficiently general case of
goal-oriented behaviour.

Goals

There are many cases, both in biological and in artificial set-
tings, where the environment can be seen as offering rewards
for certain types of behaviour. These rewards can range from
as clear-cut as a treat given by a dog trainer to as diffuse as
persistence. When such a reward measure is available to an
agent, it can often be regarded as performing a certain task
with an accompanying end-goal (Montague et al., 2004).
Although successful behaviour that appears goal-oriented
is achieved, note that we do not want to imply that the or-
ganism or agent necessarily maintains an explicit represen-
tation of this goal. However, there is evidence for the case
that human adults encode actions in terms of their outcomes
(Hommel et al., 2001). Furthermore, brain structures have
been located where activity is highly correlated to the goal
of observed behaviour (Hamilton and Grafton, 2006), indi-
cating an evolutionary drive towards goal-centred thought.
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Moreover, recent research is beginning to show evidence for
neural correlates of an individual’s own goals, not limited to
human brains, e.g. Saito et al. (2005); Spiers and Maguire
(2006). Therefore we will adopt the viewpoint that certain
behaviour, or in any case episodes of behaviour, can be seen
as being driven by a concrete, identifiable goal.

Goal Information

We extend methods for informational treatment of the
perception-action loop to explicitly include goal-directed
behaviour. Here an agent needs to actively maintain infor-
mation about its current goal. In the case of human beings
it has been consistently argued that this is performed by the
pre-frontal cortex (Montague et al., 2004). As any informa-
tion processing this takes effort and consumes energy, thus,
following the information parsimony hypothesis, it is ex-
pected that organisms attempt to optimise this process. Here
therefore we study the necessary bounds of goal-information
that has to be maintained at a given time. We show how
these bounds can guide behaviour and that they can give rise
to the emergence of certain behaviour properties, such as
least-commitment planning, which traditionally is explicitly
designed into computational approaches (Weld, 1994), and
goal-concealing.

In the following two sections we will give a short intro-
duction to concepts and notation used in this paper and an
overview of the informational methods used to study the
perception-action loop. Next, we introduce the main concept
of the research presented here: relevant goal information.
The effects of this quantity on behaviour and interpretations
of these effects are then presented using a navigation-task
example. Subsequently, we show how relevant goal infor-
mation gives rise to a natural notion of transition points. Fi-
nally, we will relate our results to previous work and give a
general discussion in the last section.

Concepts and Notation

When we talk about information, we refer to the
information-theoretical formalism introduced by Shannon
(1948). Here, the main elements are random variables,
which we denote with capital letters, e.g. X. Such a variable
can assume a specific value (small letter, x) from a given al-
phabet (curved capital, X’), subject to a probability distribu-
tion over the possible values: > . Pr(X =z) = 1. To
improve legibility we will, by abuse of notation, write p(z)
for both the entire distribution and for the probability that
variable X assumes the value x, determined by the context.
We use p(z,y) and p(y|z) for joint and conditional proba-
bilities, respectively.

A probability distribution implies an ‘uncertainty’ about
the value of a random variable. This uncertainty is quan-
tified as the entropy H(X) = —3__ p(z)logp(z). We
take 2 as the base of the logarithm, so that the unit of en-
tropy is bits. Alternatively, the entropy can be seen as

how much information on average is gained when learn-
ing the value of a random variable. The conditional en-
tropy H(Y|X) = —3_, , p(z,y)log p(y|z) determines the
amount of uncertainty left about Y when the value of X is
know.

The amount of information that on average is available
both in X and Y can be calculated with the mutual infor-
mation I(X;Y"). The mutual information can be defined as
I(X;Y)=HY)-HY|X)=H(X)— H(X|Y), which
leads to the interpretation that it is the decrease in uncer-
tainty about one variable when the value of the other one is
known.

Finally. the expected value of a random variable is writ-
ten as E[X], or E[X|0] when the value is conditioned on
some parameters 6. The expected value is equal to the
sum of the possible values, weighed by their probability:
E[X] = 3", p(z)z. Similarly, we can for instance write the
conditional expected value of a function as E[f? (X, y)|0] =
> p(aly, 0) (. y).

For a more elaborate background on the information-
theoretical concepts and notation used in the current paper
see Cover and Thomas (1991).

The Perception-Action Loop

An agent is embodied and situated in an environment; it has
direct contact to the environment through its sensors and ac-
tuators. Information about the world is obtained through
the sensors and influence the agent’s actions, which in turn
can affect the environment. This results in a Perception-
Action loop (PA-loop) and, following Klyubin et al. (2004),
we model this loop as a causal Bayesian network (CBN), as
shown in Fig. 1(a). Such a network represents the relation-
ship between the agent and the environment. At each time
step t the agent perceives part of the state of the world wy,
resulting in a sensor state s, € S. A fully reactive agent
chooses its action a; € A based solely on this state. Its
policy w defines the probability of performing these actions:
m(at|s:) = p(at|st). When the agent performs an action,
the world state is changed according to the state transition
probability distribution Py, ,, . = p(wit1|we, at).

Without loss of generality, in the rest of this paper a sim-
plified version of this model is used. It is assumed that the
world is fully accessible to the agent, i.e. the sensor state
reflects the full state of the world. For the CBN, this means
that the world and sensor nodes can be collapsed, resulting
in the network shown in Fig. 1(b). Consequently, we will
use the term ‘state’ interchangeably for both world and sen-
sor state.

As outlined in the introduction, we consider agents that
operate in an environment that rewards certain behaviour.
We are interested in how in this case the combined structure
of the world and rewards can influence the structuring of
behaviour. We assume that the reward that the agent receives
is quantifiable. For instance, in a food-searching task the
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Figure 1: Causal Bayesian network of the perception-action
loop, unrolled in time, showing (a) the complete model and
(b) the case when the world is fully accessible.

agent can be presented a reward related to the nutritional
value of the food when it is found. Another commonly used
scheme is to represent the energy spent to perform a task as a
penalty or negative reward for each time step that the goal is
not reached. We will use the first model, as detailed further
on.

These rewards are modelled by an immediate-reward
function (Sutton et al., 1999) which gives the immediate
reward that an agent will receive for performing action a;
when in state s; and consequently finding itself in state s;41:
RSl iy € R. Given this function we can define the state-
action value function (or utility function) U™ (s, a;) which
gives the expected future reward of taking action a; when in
state s; and subsequently following policy 7 (Sutton et al.,
1999):

UW(St, at) =
Z ng,t-,swl |:Rgfwst+1 + V]E[Uﬂ(st-‘rlaAt—&-l”ﬂ] ) (1)

St+1

where v € [0, 1] is a discount factor to model preference for
short term (low y) or long term reward (high ).

In this setting, a rational agent that performs goal-directed
behaviour will try to gather as much reward as it can as fast
as possible, effectively attempting to find an optimal policy
7* maximising the expected value of (1):

" = argmaxE [U7 (S, A:)| 7] 2)
= argmax Z p(se,ae)U™ (54, a¢) 3)
= argmax Z m(aels)p(se)UT (sg,a).  (4)

Information in the PA-Loop
With the formalisms outlined in the previous sections in
place, we can look at the informational properties of the PA-
loop. The arrows in the CBNs of Fig. 1 can be regarded as

Figure 2: Causal Bayesian network of the perception-action
loop, extended with the goal node.

channels; the world ‘transmits’ information which the agent
receives through its sensors and in turn the agent ‘injects’
information into the world through its actuators. The well
established field of information theory then provides us with
the tools to answer questions about the PA-loop in a concrete
way in the terms of Shannon information (Shannon, 1948).

For instance, we can determine the amount of informa-
tion that an agent on average takes in through its sensors to
determine its actions using the mutual information between
sensor states and actions I(.Sy; A;). Not all information that
is available in .S; is relevant to its current task and, following
the hypothesis of information parsimony as discussed in the
introduction, we assume that the agent will aim to minimise
this quantity. The lower bound of the necessary amount of
information intake to be able to achieve a certain level of
utility can be quantified using the paradigm of relevant in-
formation (Polani et al., 2006), and is done by solving the
following problem:

min [I(St; A;) — BE[U™(S,, At)|7r]] (5)

m(as|st)

The solution is a policy which minimises the state-
information used to select actions while maximising the ex-
pected utility achieved by this policy. The parameter 3 can
be varied to trade-off utility and information requirement;
low (8 promotes information parsimony, high 8 puts more
weight on utility. When S goes to infinity, the policy found
will become optimal and the minimum amount of state in-
formation needed to act optimally is given by I(S;; A¢). As
shown by Polani et al. (2006), the problem of (5) can be
solved with an iterative algorithm that interleaves traditional
algorithms of information theory (rate-distortion (Blahut,
1972)) and reinforcement learning (value iteration (Sutton
and Barto, 1998)). This algorithm has the important prop-
erty that the solution of (5) simultaneously fulfils (1).

Relevant Goal Information

The methods for relevant information are generally appli-
cable to any case where a reward function can be defined.
However, it is restricted to the analysis of a single task. Here
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(a) Relevant Goal Information

(b) Goal Information Transitions

Figure 3: Grid world example for relevant goal information. Walls are denoted with a brown, hashed background. The
remaining free cells comprise the set of states S. The goal G is uniformly distributed and its alphabet G consists of the empty
cells within the six rooms. The agent can perform four actions: move north, east, south or west. When such an action would
move the agent to an occupied cell the action has no effect. The shading of the background of the free cells indicates (a) the
total amount of relevant goal information for each cell and (b) the amount of new relevant goal information when arriving in a
cell. Dark blue shading for high amount, light blue or white for low amounts The meaning of the asterisk and letter marks is

explained in the text.

we will extend the model of the PA-loop to enable us to han-
dle an agent that could perform different tasks. To do so, we
focus on the common case where this task can be determined
by reaching a distinct goal. Here we do not discern how the
current goal of an agent is selected; it can be imposed exter-
nally, such as a command given to a dog by its master, or it
may be an intrinsically determined goal, as in the case of a
hungry predator that decides to catch a certain prey. Instead,
we only are concerned about the decision making process
once a goal is given.

We introduce the new random variable G. The value of
this variable, g, represents the current goal of an agent. Fig-
ure 2 shows how the CBN of the PA-loop is extended with
this new variable. Note that we do not aim to study the case
of an agent having several simultaneous goals. Rather, we
concentrate on agents that select a specific goal from a dis-
crete set of possible goals G. After this selection the goal is
fixed, until the goal is achieved or abandoned.

The new CBN shows that the policy now also depends
on the current goal: m(at|st,g) = p(at|st,g). Also, each
separate goal gives rise to a distinct immediate reward func-
tion and thus to a separate goal-dependent utility function
U™(s,g,a).

This extension of the model introduces an additional in-
formation source; apart from sensory information the agent
now also needs to maintain and process goal information to
guide its actions. Per the information parsimony hypothesis
this is assumed to be costly and therefore we are interested

in determining lower bounds on this amount of information
needed to achieve a given performance. Analogous to the
sensory case we term this the relevant goal information. In
contrast, we will denote the traditional relevant information
with relevant sensory information.

Whereas the relevant sensory information determines the
minimum amount of sensory information necessary for a
certain goal, we can also determine the minimum goal in-
formation necessary on average to achieve a certain utility,
given the current state. By analogy to (5), this is done by
solving the following minimisation problem:

L [1(G; AS,) — BEIU(S., G, A)lx]]  (©)
The solution to this problem, which is a policy trading off
goal information parsimony with utility, controlled by the
trade-off parameter (3, can be found using the same itera-
tive procedure used for relevant sensory information as de-
scribed in (Polani et al., 2006).

As an example we use a navigation task in the grid world
shown in Fig. 3(a). The set of states S and the set of goals
G both consist of all unoccupied cells, and the goal variable
G is assumed to be uniformly distributed; any of the goals is
as likely as another. The agent is rewarded when it achieves
the current goal (R}, = 1if s;41 = g, 0 otherwise) and
a discount factor of v = 0.9 is used.

As with relevant sensory information, we can study the
trade-off between utility and relevant goal information by
varying the value of 3 in (6). Figure 4 shows that the results
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Figure 4: Trade-off between goal information (horizontal
axis, bits) and expected utility (vertical axis).
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Figure 5: Trade-off between goal information (horizontal
axis, bits) and sensory information (vertical axis, bits) for
different values of « € [0, 1], which controls preference for
goal (low «) or sensory (high «) information parsimony.

of this trade-off are similar to that found for relevant sen-
sory information; expected utility rises monotonically with
higher goal information bandwidth, but the agent can still
achieve a performance close to 90% of the maximum with
as little as half of the optimal amount of information.

Besides utility, goal information may also have to be
traded off against sensory information; a policy that min-
imises relevant goal information could require a higher av-
erage bandwidth for the sensors. We can combine equations
(5) and (6) to take into account both costs:

min [(1 — a)I(G; Ay Sy) + al(Sy; Af|G)—

m(at|st,g)

BE[U(S1, G, Al ™

where o can be varied from O to 1 to reflect the relative
cost of each process; low « promotes goal information par-
simony, high « indicates sensor information is deemed to be
more costly. Figure 5 shows that generally more relevant

goal information is linked to an increase in sensory informa-
tion, but that different weights result in different trade-offs.
We can extract the relevant goal information for each state
separately, I(G; A¢|s:), as is shown in Fig. 3(a) for the
policy achieving maximum expected utility. This example
shows some interesting properties of relevant goal informa-
tion. Firstly, in central states the agent tends to require more
goal information than in more remote states or states close to
walls. This is easily explained by the fact that in the central
states the a priory probability of the direction the goal is in is
roughly uniformly distributed; the goal can be on any side.
When in the more distant states, however, the goal tends to
be in a single direction. Only in exceptional cases does the
agent need to deviate from going in this default direction and
thus use extra goal information. Directly next to the walls
the agent even only has to choose from the limited set of ac-
tions that do not make it run into a wall. Here the relevant
goal information is bounded from above by the cardinality
of this limited set. This also explains why the amount of
relevant information in doorways is found to be often lower
than in neighbouring states; here only two actions are useful.
Another observation is that local peaks in relevant goal in-
formation, marked with an asterisk in Fig. 3(a), can be found
in front of doorways, even several cells away, most notably
at ‘crossing points’ between different doorways. Trajecto-
ries of the agent tend to go from one of these peak cells to
another. We will give an interpretation and explanation for
this effect in the global discussion at the end of this paper.

Goal Information Transitions

In the example of the previous section we have only looked
at single step scenarios. It shows that in different states the
amount of goal information needed can vary. An interesting
question is whether there is also a qualitative difference be-
tween the relevant goal information in different states. For
instance, a bee flying out to search for food at first only has
to consider which patch in its habitat is its target. Only when
arrived at this patch it has to take into account the several in-
dividual resources (Bell, 1990). As another example, in our
grid world, when the agent is in front of a doorway, it has
to take into account whether the goal is in the neighbouring
room or not. However, when it has just entered the room,
this information is no longer relevant and it now has to fo-
cus on where exactly in the room the goal is. The model of
relevant goal information given here can be used to analyse
this development of goal information through time.

Given the single-step goal-information parsimonious pol-
icy as found in the previous section, we can determine how
much of the relevant goal information in a certain state was
not needed during the sequence leading to that state:

I(G; Ad| ALY s) = H(GIAL, s1) — H(G|AL, s4),
(8)
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where A = (Ay, ..., A;) denotes the sequence of actions
from the start of the task to time step ¢. This amount of new
relevant goal information is shown for our grid world case
in Fig. 3(b), averaged over sequences of up to 5 time steps.

As one would expect, some of the cells where the total
amount of relevant goal information is high (those marked
in Fig. 3(a)) also stand out here; if in a cell more goal infor-
mation is required than in the neighbouring cells, naturally
a relatively high amount of this information is new. How-
ever, there are some notable differences: although the states
where much new goal information is needed also require
much total goal information, the opposite argument does not
hold.

For instance, the cells marked a and b in Fig. 3(b) are
shaded darkest in Fig. 3(a) and so require the most amount
of information, with only a small difference between them.
But there is a clear difference in how much of this informa-
tion is new and different from the goal information that on
average is required in the past before arriving in these cells.
At cell b, in front of the doorway, the qualitative transition
in goal information is much more pronounced. This same
difference can be seen in the cells marked c and d; again,
the total amount of relevant information for these cells is ap-
proximately the same, but for cell ¢ more of this information
is the same as already maintained by the agent in previous
steps, showing a much less defined transition. All in all, we
can note that the largest transitions are at doorways and at
corners.

Discussion
Two Viewpoints

The result of minimisation of goal information is a policy
where the agent often takes the same action, regardless of
the goal; e.g. if going north works for all goals and go-
ing east only for a part of them the agent can always select
going north and it can disregard all goal information. This
leads to two complementary viewpoints for relevant goal in-
formation.

One is what we call the least-commitment (in the sense of
least-commitment planning (Weld, 1994)) viewpoint. Be-
cause the actions taken by the agent are optimal for as many
goals as possible, the amount of goals excluded by the ac-
tions are minimal. Although, in the methods described here,
the goal does not change during a single run, because of the
least-commitment property of the agent’s policy, the agent
will have a higher probability of still having behaved opti-
mal if such a change does happen. The policy of the agent
can be seen as keeping as many options open as possible.
Thus, minimisation of relevant goal information causes the
emergence of a least-commitment strategy.

This shows the relatedness of relevant goal information
to empowerment (Klyubin et al., 2008). This quantity de-
fines the maximum amount of possible observable control
an agent has on its environment and is based on the same

kind of informational treatment of the PA-loop as put for-
ward in this paper. In a task-less setting empowerment leads
to an intrinsic drive to least-commitment behaviour, whereas
relevant goal information gives rise to such a drive in a goal-
oriented agent.

The least-commitment viewpoint leads to the interpreta-
tion of states where relevant goal information is high as nec-
essary decision points. If the goal can be in either of two
rooms, the agent will not move towards one or the other un-
til it has no other option. This occurs at the crossing points
between doorways, where the agent has to make a decision
and commit to one of the rooms.

Such an approach to delay decision making may not al-
ways be optimal, such as a driver who risks an accident by
steering for a corner at the last moment at high speed. How-
ever, here these risks are assumed to be contained in the re-
ward function, rendering such policies suboptimal and thus
no longer considered by the agent.

Another interpretation arises from the goal-concealing
viewpoint. This viewpoint is obtained by noting that the
mutual information between goal and action can not only
be seen as how much goal information is needed to decide
on an action, or how much information the goal gives about
the action, but also how much information the actions give
about the goal (a similar viewpoint for sensory relevant in-
formation is taken by Salge and Polani (2010)). This means
that by minimising relevant goal information the agent gives
away as little information as possible about its goal to an
external observer. This observer could see this as the emer-
gence of a goal-hiding strategy.

From this viewpoint the peaks in relevant goal informa-
tion at crossing points can be explained by noting that the
actions taken here give away a lot of information about the
goal of the agent. When the agent is at a crossing point be-
tween two rooms, the observer does not know in which room
the goal is, but after seeing the action he can exclude all the
cells in the room the agent moved away from.

Sub-Goals

In the field of Reinforcement Learning (RL) there has been a
lot of recent activity on the subject of higher level behaviour
structuring, task decomposition and automatic sub-goal dis-
covery (Barto and Mahadevan, 2003). A large amount of al-
gorithms for automatic behaviour structuring have resulted
from this. For instance, the intuition that so called ‘bottle-
neck’ or ‘funnel’ states in an environment, such as door-
ways, are salient sub-goals has led to methods being devel-
oped based on visitation count (McGovern and Barto, 2001;
Kretchmar et al., 2003; Asadi and Huber, 2005) and graph-
theoretical techniques (Simsek et al., 2005; Kazemitabar and
Beigy, 2009; Simsek and Barto, 2009). Other approaches
that are also based on assumptions about the structure of
the world, but using less strict definitions of what may
constitute a ‘good’ sub-goal, include state space segmen-
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tation/clustering (Bakker and Schmidhuber, 2004; Mannor
et al.,, 2004), relative novelty (Simsek and Barto, 2004),
sensation/action co-occurrence (Digney, 1996) or transitions
(Hengst, 2002; Kozlova et al., 2009), causal-graph decom-
position (Jonsson and Barto, 2006) and the use of data-
mining techniques (Kheradmandian and Rahmati, 2009). Fi-
nally, a separate class of algorithms does not focus on struc-
ture of goals, but on segmentation, clustering and abstracting
common state-action sequences (Sun and Sessions, 2000;
Pickett and Barto, 2002; Girgin et al., 2006).

All these methods indicate their usefulness by showing
increased learning performance in certain RL tasks. Also,
they show that skill transfer, made possible by task segmen-
tation, can be highly beneficial (Perkins and Precup, 1999;
Konidaris and Barto, 2007). However, hardly any compari-
son of the performance of different approaches has yet been
done. This is not surprising, since the methods can differ
greatly and, more importantly, they are based on different,
designer imposed, assumptions about what is a good way to
structure a task. In these papers the structural properties of
a sub-goal or sub-task are defined for a particular domain of
interest, after which a solution is engineered for these spe-
cific properties.

The results of the current paper, however, suggest a more
fundamental, biologically/Alife motivated definition of sub-
goals: a sub-goal is achieved when a significant qualitative
change of the task at hand occurs, which is when the actions
of an agent are guided by a new component of, or new in-
formation about, the goal not taken into account earlier. As
shown earlier, the notion of relevant goal information can be
used to identify such transitions. Note that the informational
treatment of the PA-loop is independent of domain, archi-
tecture and particular implementations and therefore we do
not need any of the assumptions made in the engineering
solutions. The biologically plausible hypothesis of informa-
tion parsimony is sufficient for the treatment of emergence
of sub-goals.
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Extended Abstract

Quorum-sensing (QS) has been extensively studied in the context of synthetic biology (Basu et al., 2005; Danino et al., 2010;
Garcia-Ojalvo ef al., 2004). It enables a community-level response to emerge once a certain signal concentration threshold has been
reached. We use QS to design a multi-strain, engineered bacterial community with autonomous behaviour. We model our system on
the familiar "client-server" architecture, with a single central server and two clients (one "red" and the other "green"). The task we
define is that of oscillation (Tigges et al., 2009); by engineering feedback between three different strains, we obtain indefinite
switching between "red" and "green" outputs. The system is not restricted to simple oscillation, as server cells may be introduced
with much more complex behaviours.
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Figure 1: System architecture (left), simulation results (right).

In Figure 1, we show the server and two clients; the server is activated by selected signalling molecules, labelled AHLs and AHLs',
(producing either AHLr or AHLg respectively); the green client is activated by AHLg, producing AHLs and green fluorescent
protein, and the red client is activated by AHLr, producing AHLs' and red fluorescent protein. We can see how this machine lies
dormant until either AHLg or AHLr is added to the nutrient, after which one of the clients is activated and the system enters a
period of oscillation. This is achieved by the server cells switching “turns” between red and green client cells. We also see the
results of system simulations, with plots of AHLs' and AHLs over time.

Our key contribution is the design of the server, which is extremely noise-resistant, and robust in the face of differential client
behaviour (e.g., if one client's “off” signal degrades much more slowly than another's). Future work will focus on experimental
testing of the system, and investigation of its real-world applicability.
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Abstract

Using a set of genetic logic gates (AND, OR and XOR), we
constructed a binary full-adder. The optimality analysis o
the full-adder showed that, based on the position of the reg-
ulation threshold, the system displays different optinwai-c
figurations for speed and accuracy under fixed metabolic cost
In addition, the analysis identified an optimal trade-offveu
bounded by these two optimal configurations. Any configu-
ration outside this optimal trade-off curve is sub-optirmal
both speed and accuracy. This type of analysis represents a
useful tool for synthetic biologists to engineer faster,reno
accurate and cheaper genes.

Introduction

The desire to control is a recurring theme of human nature
and the control of biological systems represents the utéma
goal for synthetic biologists. Towards achieving this goal

researchers have modelled and engineered genes in blacteria

cells that perform basic computational tasks. These tasks
mainly mimic the behaviour of simple electronic compo-
nents, such as logic gates, oscillators, toggle switchds an
counters (Gardner et al., 2000; Elowitz and Leibler, 2000;
Guet et al., 2002). However, when attempting to increase
the complexity of these engineered genetic systems, nertai
limitations of the components are likely to hamper theircon
struction. Thus, there is an urgent need for an extensile ana
ysis of the biophysical limits of the elementary components
Synthetic biologists showed that binary logic gates can be
engineered in living cells using transcriptional logic @bu
et al., 2002; Kramer et al., 2004; Yokobayashi et al., 2002;
Cox Il et al., 2007; Anderson et al., 2007; Sayut et al.,
2009). Transcriptional logic gates are genes which can in-
tegrate multiple signals at the level of cis-regulatoryntra
scription control using various binary logic functions (BN
OR, NAND, NOR, XOR, etc.). To implement binary logic,

Hermsen et al., 2006; Schilstra and Nehaniv, 2008; Silva-

Rocha and deLorenzo, 2008). However, what is still miss-

ing is a complete analysis of how these logic gates can be
used as building blocks for more complex logical systems

and what are the parameters which ensure optimal design in
terms of speed and accuracy under limited (constant) ener-
getic resources.

There are three properties of a genetic system that we use
in our analysis: speed, accuracy and cost. We define the
propagation timeas the time required by the output species
in a logical system to reach the new steady state after an in-
stantaneous change of the inputs. This is directly condecte
with speedin the sense that fast system are described by
short propagation times and conversely. Due to low copy
number and slow chemical reactions, genetic systems are
stochastic and, thus, they are affectedhbjse(Kaern et al.,
2005). The noise reduces the ability to distinguish between
different logical outputs of a gate and, because of thag-it r
ducesaccuracy Finally, themetabolic costs usually mea-
sured as the required number of ATP molecules. We are in-
terested in the scaling properties of this measure, ratiaer t
in the exact value. Hence, we measure cost as the maximum
synthesis rate of a gene.

Recently we investigated speed and accuracy in the case
of single binary genes (genes with two expression levels,
high and low) (Zabet and Chu, 2010). The analysis revealed
that these genes display a trade-off curve between swigchin
time and noise under fix metabolic cost, i.e., lower noise is
achieved at lower speeds and conversely. This trade-off is
controlled by the decay rate, in the sense that higher decay
rate means higher speed but also lower accuracy.

In this contribution, we extend this analysis to gene net-
works by considering a specific binary logic system, the full
adder. The full-adder is a system able to perform binary ad-
dition (to produce both the sum and the carry) for three bi-

both the input and the output of these genes needs to havenary inputs, two of which are the two operands and the third
two abundance levels corresponding to the two logical lev- allows plugging in the carry from a previous full-adder mod-
els, a high and a low abundance level. Biological mod- ule. We constructed the required logic gates by considering
ellers successfully identified and described various aessig  genes that can be regulated by two proteins in an indepen-
of these logic gates (Weiss et al., 2003; Buchler et al., 2003 dent fashion, i.e., binding of any of the inputs does not alte
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the binding of the other input. Moreover, these logic gates
need to ensurmterconnectivity Assuming that the two in-

whereq« is the basal synthesis rate,+ 5 the maximum
synthesis ratef (x, y) is the regulation function of ger@.,

puts that regulate a gene can have two possible abundanceandy: is the decay rate.

levels, high {;,) and low (L;,), then, in order to connect
an arbitrary number of logic gates, the output has to have
two possible abundance level (,; andL,,;) with at least

the same signal strengttiZ;,, — Lin) < (Hout — Lout)
(Magnasco, 1997). Usually the output levels are identical
with the input one or very close to the#,,,, > H;, and
Lo < L;,. Based on these requirements, we found the
set of parameters which ensures interconnectivity of the re
quired logic gates and then we constructed the full-adder
showing the correct functioning of the system.

Gene regulation is usually modelled by a Hill function
(Ackers et al., 1982; Bintu et al., 2005; Chu et al., 2009).
The Hill function is a sigmoid function described by two pa-
rameters: the threshold (which represents the input abun-
dance required for half activation of the gene) and the Hill
coefficient! (which determines the steepness of the func-
tion). The results show that, for step-like regulation func
tions ( — o), the system displays an optimal position of
the threshold in terms of speed and accuracy, while, for fi-
nite Hill coefficients, there is a trade-off between these tw
properties and the trade-off is controlled by the positibn o
the threshold.

Model

We selected a design for the full-adder with five logic gates:
two XOR gates, two AND gates, and one OR gate (see Fig.
1).

AO—
@,
cO

Figure 1: Full-adder. The logic gate diagram of the full
adder.

To construct this full-adder from genes, we need first to
construct transcriptional logic gates. We model a trapscri
tional logic gate as a ger@,, which synthesises protein
the output of the gate. This gene is regulated by two pro-
teinsx andy, which are considered as the inputs of gate.
Speciex is described by the following deterministic differ-
ential equation

dz

7 1)

=a+ff(z,y) — pz

Although there are many scenarios for promoter regula-
tion that mimic the behaviour of different logic gates, we
selected independent binding (binding of one TF does not
influence in any way the binding of the other TF). In this sce-
nario there are two operator sit€s, andO,, each of them
having/ binding sites. On each operator site only molecules
of a specific transcription factor can bind, and they do this i
a homo-cooperative maner. The probabilities that an opera-
tor site is full is described by a Hill function (Ackers et,al.
1982; Bintu et al., 2005; Chu et al., 2009)

7 !

I = =7, = —-— 2
pz(2) TR py(y) S K 2

whereK is the regulation threshold (the required input value
for half activation of the gene) andis the Hill coefficient
(indicates steepness of the function). We assumed that the
two operator sites(, and O,) have identical parameters
(K andi).

Assuming that the gene is turned on when any of the two
TF are present, then the regulation function will mimic the
behaviour of an OR gate. Analogously, assuming that a gene
can be turned on only when both of the transcription factors
are present, then the regulation function will mimic the be-
haviour of an AND gate. Finally, if the gene is turned on
when any of the TF is present, but when both of them are
present their effects cancels out and the gene is turned off,
then the gene will behave as an XOR gate. The correspond-
ing forms of the regulation functions are

s (zy)!
AN (wy) + (Ko)l + (Ky) + K2
p (2y) + (2K) + (yK)" @)
of (ey) + (K2)l + (Ky)l + K2
Feon (Kz)' + (Ky)!

(zy) + (Ka)! 4+ (Ky)! + K21

Fig. 2 confirms that these regulation functions display the
desired behaviour.

Using these three logic gates, the full-adder, can be con-
structed as a set of chemical reactions. Since the fullvadde
contains five logic gates, then we need five species to im-
plement this systen( f, g, sum and carry). The chemical
reactions which describe all these species are given by

aet+PBefxor(a,b)
) = e,

e
ag+Bgfanp(a,b)

—_—
Hg
as+Bsfxor(e,c)

)
s

0 as+Brfanp(c,e)

nr

=

9,

AcotBeofor(f,9)

sum 0 carry

co

wherea, b andc are three input species.
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fAN D

Figure 2:Regulation functions that mimic logic gate behaviotline threshold was set f§ = 0.5 [¢M] and we considered a
Hill coefficient of h = 3.

Results Z can be defined as the maximum synthesis rate of that

First we need to identify the sets of parameters which allow 9€N€<: = a + 317, wheref " is the highest value which

interconnection of gates and then we need to identify the /() takes. Thus, by keeping the synthesis rate fixed
sub-set of parameters which allows optimal functioning of the metabolic cost is kept constant. Note that this is just
the full-adder in terms of speed and accuracy under fixed 0 @pproximation to the actual metabolic cost, and that the
metabolic cost. We will apply these two analyses for two metabolic cost of the maintenance of the entire machinery

cases: 4) step-like regulation functiond (— oc) and ) was notinclgded in it. However, this measure indicates how
the metabolic costs scales with different parameters.

The propagation time Ty.,., of a gene is the time re-
quired to reach the steady state to within a fractfoof
H — L. Assuming instant change of the input, Eq. (1) can
be solved analytically and the time to reakht (H — L)0
or H — (L — H)# can be computed as

)

1/ represents the average life time of the

finite Hill coefficients.

To keep the mathematics tractable, and without losing too
much generality, we consider identical gates, i.e., allegen
are affected by the same decay raty have the same syn-
thesis ratesq{ and 3) and the same Hill parametersgnd
K). The only thing that differentiates the gates is the regu-
lation function, which, in the case case of the full-addan c

be fanp, for O fxoR.

Step Regulation Functions

We start our analysis by considering the ideal case, the sys-
tem where the regulation functions have infinite Hill coeffi-
cient.

The interconnectivity property can be met by consider-
ing the output signal strength to be kept constdht,; =
H;, = HandL,,; = L;, = L. Inthe case of the OR gate,
the system has the following steady state behaviour

L = %[awaR(L,L)],
H o= i[awaR(L,H)], ()
H = %[a%fOR(H,H)]-

For infinite Hill coefficient the solution is given by = L
andg = (H — L). Analogously, it can be shown that the
solution is the same for all gates. This synthesis ratesrensu
a correct steady-state behaviour of the full-adder (see Fig

3(a)).

System Performance We investigate two properties of a

logic system, namely speed and accuracy, under the con-

straint of fix metabolic cost. The metabolic cost of a gene

1

14 (5)

Ti:T'ln<

where 7
species.

The propagation time through a single gate can only be
reduced by reducing the average life time of the prote)n (

In the case when the two logical steady states are kept con-
stant (so the signal strength is not reduced) and the syiathes
rate is kept constant (so we do not increase the metabolic
cost) then also the decay rate is kept constant. Thus, there i
no optimization that one could attempt to perform on indi-
vidual gates under fix metabolic cost without reducing sig-
nal strength. However in the case of logic gates systems,
like the case of the full-adder, the input is not changed in-
stantaneously in all gates and the position of the threshold
influences the propagation time.

The threshold is located between the low and the high
state, K = L+ (H — L)\, (A € [0,1]). X indicates the
position of the threshold; fok < 0.5, K is closer toL and
for A > 0.5, K is closer toH. Note that by considering’
to be outside the intervdl., H] the regulation is removed,
i.e., the gene is always in the same state no matter whether
the inputisL or H. In order for a gene to change state, one
of the inputs, has to cross over or undér Using Eq. (5)
one can compute the time it takes one species to move from
low state to the threshold,(— K) and from the high state
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Figure 3: Full-adder with step-like regulation functiorfa) The output abundance based on the input abundancefolilst
regulation functions. (b) We plotted the propagation timteew switching betwee(l, L, H) to (H, L, H). The following set
of parameters have been usged= 1 min=',1 =50, L = 0.2 uM, H = 1.2 uM, K = 0.7 uM, o = 0.2 uM - min~1,

B =1.0 uM -min~—t andf = 0.9.

to the threshold — K) as

1 1

Assuming that the longest cascade in the systemrhas
gates, then a general formula for the propagation time is
given by

n—1

T=Y tix+T, @)
=1

wheret; k is equal tof ;i if speciesith was in low state be-
fore changing the input in the system, ahg is equal to
tyx if speciesith was in high state before changing the in-
put in the system. Hence, the propagation time in a cascade
equals a sum of x andty terms and a fix time repre-
senting the last gene in the cascEge

Fig. 4 confirms that based on the threshold position, the
system can be faster when switching in one direction and
slower in the opposite direction. When the switching direc-
tion is not important, the problem of optimizing propagatio
time becomes a minimax problem, i.e., minimize the max- Figure 4: The time to reach the threshold@he protein av-
imum time to switch. In the context of step-like regulation  erage life time tor = 1 [min]. The two steady states are
functions, the optimum threshold, according to Eq. (6),re- I, = 0.2 [uM] and H = 0.8 [uM], and the corresponding
sides at the midpoint between high and low states= 0.5 synthesis rates were considered. Both switching direstion
(see Fig. 4). were consider.

Analysing the circuit diagram of the full-adder 1 one can
notice that the longest path through the circuit consists of
three gates, and this is used when computing the carry .
This path is followed, for example, when switching between
(L,L,H) and(H,L,H). Fig. 3(b) confirms that the op-
timum threshold, in the case of step-like regulation func-
tion, resides at the midpoint between high and low state

T [min]
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(A = 0.5). Also note, that Eq. (7) and Eq. (6) correctly
predict the propagation time in the full-adder in the case of
high Hill coefficients.

Next, we need to investigate the accuracy of the system.
At steady state thearianceof the outputz of a logic gate,
which has two inputs: andy, can be written as (van Kam-
pen, 2007; Elf and Ehrenberg, 2003; Paulsson, 2004)

sz
—_— T
2 —N—
o2 = : + 18 af(xay)T Tx o2
? N~~~ =0z Y| Te4T ©
intrinsic
upstream frome
e o,
—
af(xvy) 2 Ty 2
+ T, o 8
e A

upstream fromy

The intrinsic component is generated by the randomness
in the birth-death processes and it can be approximated by

a Poisson process (Bar-Even et al., 2006; Newman et al.,
2006). The upstream component is the noise transmited

functions, the system displays an optimum threshold posi-
tion (A = 0.5) which ensures optimality both for speed and
accuracy.

Finite Hill Coefficients

Due to the fact that Hill coefficients are bounded above by
the number of regulatory binding sites (Chu et al., 2009),
and genes have a small number of binding sites (Hermsen
et al., 2006), biologically realistic Hill coefficients dfiaite

and have low values.

For low Hill coefficients, Eq. (4) has only one solu-
tion, H = L. This is not a useful solution because it re-
moves the binary logic. Therefore, we search for param-
eters which ensure that the signal strength is not reduced,
(Hout — Lout) > (Hin — Liy), and this can be achieved by
solving only the first two equations in Eq. (4):

aor _  Lfor(L, H) - Hfor(L, L)
7] [fOR(L,H)_fOR(LaL)] 7
Bor H-L
p [for(L,H) = for(L,L)]’ (10)

Note that not for all sets of parameteisK, u, H, L) the

from the upstream species (the species that regulate thesynthesis rates will have positive values. Interestinigly,
gene) (Pedraza and van Oudenaarden, 2005). The upstreancreasing the Hill coefficient increases the space of allowed

noise is composed of three terms: the regulation fadtor (
andI'.,), the time average factoff{, andT.,), and the
variance of the upstream specie§ @ndo?).

In this contribution, we are interested in how noise af-
fects our ability to distinguish between the two known out-
put statesH and L. To get a meaningful measure of this,
we will normalise the variance by the square of the signal
strength;, = o2/(H — L)?, rather than by the square of
the mean (which is often used as a definition of noise).

T

z
(H — L)2 + |:ﬁz7—z

of (z,y)/0y
(H-1L)

0f(z,y)/0x
(H—1L)

:| 2
For step-like regulation function the derivatives in (9)lwi

be zero, and the only contribution to the noise is the inizins
component. Thus, the noise of the output depends only on

2
T,..0;

Nz

+ [ﬁzn T.y02 ©)

the steady state abundance (high and low), but is indepen-

dent of the number of gates in the system or of the threshold
position. However, if the threshold is close enough to one
of the steady stated( or L), then small fluctuations in the

parameters, and in the limit case of a step function (o)

any values of the other parameters will generate positive
synthesis rates. For Hill coefficient less than or equal to
there is no solution for this system. Analogously one could
use the same mechanism to determine the synthesis rates for
all the other gates. For AND and XOR gates the solution is
given by

QAND Lfanp(H,H) — Hfanp(L, H)
% [fanp(H,H) — fanp(L, H)]
BAND H-L (11)
% [fanp(H,H) — fanp(L, H)]
QaXOR Lfxor(L,H) — Hfxor(H, H)
% [fxor(L,H) — fxor(H, H)]
Bxor H—-L
I ~ [fxor(L,H) — fxor(H, H)|
(12)

Fig. 5(a) confirms that the signal is not decreased and
shows that in two cases the actual output low statg () is
lower than the desired oné).

System Performance For low Hill coefficients the op-

input generates high fluctuations in the output and the an- timum threshold in terms of speed in not positioned any
alytical method is not accurate any-more. Assuming that more at the midpoint between high state and low state (see
the threshold is positioned at the midpoint (optimum posi- Fig. 5(b)). This is a consequence of the fact that for
tion for speed) and the two steady states are far enough from low Hill coefficient the Hill function loses the symmetry
each other, then the noise will be determined only by the in- around the threshold. Hence, when designing a specific
trinsic component. Hence, in the case of step-like reqadati  system, one could use numerical solutions to determine the
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Figure 5:Full adder with low Hill coefficients(a) The output abundance based on the input abundancefétiliccoefficients.
(b) We plotted the propagation time when switching betwgenl., H) to (H, L, H) for low Hill coefficient. The following
set of parameters have been used: 1 min=',1 =6, L =0.2 uM, H = 1.2 uM, K = 0.7 pM andd = 0.5.

optimal threshold position for any specific set of parame- graphically represents the trade-off between noise anel tim
ters. Also, one can notice that decreasing the Hill coeffi- based on the threshold position. We identified the optimal
cient increases the propagation time due to the fact that a trade-off curve determined by, < A < Ar. Any threshold
gene is not instantly turned on/off when an input species in this interval can optimize the system either in speed or in
crosses over/under the threshold (compare Fig. 3(b) and Fig accuracy, but never in both. However, for threshold posgtio
5(b)). Increasing the Hill coefficient asymptotically rets outside this interval the system display sub-optimal trafie

the propagation time to the one of the step-like regulation curves; forA < X, or A > Az both the propagation time
function and, thus, the optimal threshold asymptotically a  and the noise are worst compared to the ones in the optimal
proaches the midpoink; = 0.5 (data not shown). trade-off curve.

Next, we investigated the accuracy of the full-adder. The
output sum for the inputH, L, L) produces the highest Discussion
noise levels independent of the threshold position. Camsid
ing this case we determined the dependence of noise on the
threshold position. The mathematical formula of the noise
is too complicated to give any information about the sys-
tem, but we can use it to generate numerical solutions. Fig.
6(a) shows that there is an optimal position of the thresh-
old in terms of noise which differs from the optimal position
in terms of speed),, # Ar. However, around the optimal

In this contribution, we presented a general method for con-
structing arbitrarily large logical systems based on hjinar
genes. For exemplification purpose, we designed a full-
adder system formed of five genes. The approach modelled
logic gates constructed using two cis-regulatory trapscri
tion control regions. This type of logic gates has been al-
ready synthetically engineered by synthetic biologistsdG
o ) . et al., 2002; Kramer et al., 2004; Yokobayashi et al., 2002;
thresh_old_ p05|t|0n n terms of noisa,) the noise does not Cox Il et al., 2007; Anderson et al., 2007; Sayut et al.,
vary S|gn|f|cantI¥ (see Fig. 6(a)?. - 2009). We propose the tuning of the synthesis/decay rates
The system displays two optimal threshold positions, one i such a way that will permit interconnectivity of differen
for speed §7) and one for noiseX;). If these two positions  gates/genes. This tuning represents basic requiremeat for
coincide v = A,) then the system has on optimal set of grrect functioning of the logic system.
parameters and the engineer needs to set up the threshold to Recently we showed that leak free systems are optimal

this position.. . _ ~interms of speed and noise (Zabet and Chu, 2010). How-
However, it is most likely, that these two threshold posi- ever, Eq. (10) and Eq. (11) indicate that basal vanishing

tions will differ, as it is the case with our full-adder. Inish leak rates are very difficult to obtain. This suggests thak le

case, there is an optimal trade-off curve when the threshold free systems, although optimal in speed and noise are not al-

resides between these two optimal positiois &nd),). In ways desirable, because they are likely to reduce the signal

addition any other trade-off curve is suboptimal comparing strength when thinking about interconnecting genes.

to this one. We also presented here an approach for selecting the set
In our example of the fulladdéx5 < A, < Ar. Fig. 6(b) of parameters which optimizes the system in terms of speed
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of the three input species.

and accuracy under constant metabolic cost. Increasing the can be achieved by considering logic gates built from more
Hill coefficient will optimize both the speed and the accu- than one genes that form a network motif. Nevertheless, the
racy, but this is not usually at the direct reach of synthetic details of this analysis need to be left for further research
biologists. However, the threshold can be altered by muta-
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Abstract

The pattern of gene expression in the phenotype of an organism
is determined in part by the dynamical attractors of the
organism’s gene regulation network. Changes to the
connections in this network over evolutionary time alter the
adult gene expression pattern and hence the fitness of the
organism. However, the evolution of structure in gene
expression networks (potentially reflecting past selective
environments) and its affordances and limitations with respect
to enhancing evolvability is poorly understood in general. In
this paper we model the evolution of a gene regulation network
in a controlled scenario. We show that selected changes to
connections in the regulation network make the currently
selected gene expression pattern more robust to environmental
variation. Moreover, such changes to connections are
necessarily ‘Hebbian’ — ‘genes that fire together wire together’
— i.e. genes whose expression is selected for in the same
selective environments become co-regulated. Accordingly, in a
manner formally equivalent to well-understood learning
behaviour in artificial neural networks, a gene expression
network will therefore develop a generalised associative
memory of past selected phenotypes. This theoretical
framework helps us to better understand the relationship
between homeostasis and evolvability (i.e. selection to reduce
variability facilitates structured variability), and shows that, in
principle, a gene regulation network has the potential to
develop ‘recall’ capabilities normally reserved for cognitive
systems.

Evolvability

How natural selection results in the evolution of complexity,
if it is natural selection that is responsible, is not yet
understood [1,2]. Tt is easy to see how natural selection
increases the frequency of fit phenotypes from a given
distribution of phenotypic variants. But this is only part of the
explanation. Although continued adaptation does not require
that the available distribution of phenotypes is fitter than the
parent on average (that would imply directed variation),
continued increases in fitness and functionality require that
this distribution includes at least some phenotypes that are
fitter than the parent. This is often taken for granted, but
experience in evolutionary algorithms and artificial life
experiments suggests that such variants are quickly exhausted
by selection, precluding further adaptation [2]. Thus the
evolution of significant biological complexity requires that we
explain how the distribution of phenotypes, resulting as they

do from random variation in genotypes, includes phenotypes
that are, not merely different from, but fitter than the parental
type. The explanation might be, at least in part, that in natural
organisms the distribution of phenotypic variants itself
becomes better adapted over time [3] — hence enhancing
evolvability, the ability of a population to evolve [4,5,6,7].
Since the processes of development, mapping genotype to
phenotype, is itself genetically specified and subject to natural
selection, this seems like a possibility, at least in principle.

However, although it is easy to say that natural selection
should favour more evolvable genotypes, without a proximal
account for the selective gradients that would produce such an
outcome this is just wishful thinking. It is not so easy to pin
down the source of a selection pressure that increases
evolvability. For example, enhanced evolvability ought to
mean that a genotype evolves better, not just that it evolves,
and given that adaptive variants from a given phenotypic
distribution are quickly exhausted it is hard to see how a
variant genotype in a population that is stuck at a local
optimum can be said to have better evolvability than another.
This implies that the evolution of evolvability might require a
constantly varying selective environment and multiple
opportunities to generate and exploit variant phenotypic
distributions. Moreover, if the environment changes in an
entirely arbitrary fashion, a genotype to phenotype mapping
cannot evolve to exploit it, so we are lead to the conclusion
that such a mapping could only be adaptive if it exploits some
kind of structure or regularity observed in the distribution of
selective environment [8].

A simple way in which this might work is as follows.
Different genotypes with the same phenotype might
(nonetheless) have a different distribution of phenotypic
neighbours - phenotypes produced through small mutations to
the genotype. In a selective environment that varies from one
selective regime to another (Fig.1), natural selection might
favour genotypes that have phenotypes that are fit in one
regime and have phenotypic neighbours that are fit in the
other (over genotypes that have phenotypes that are equally fit
in the first regime but do not have phenotypic neighbours that
are fit in the other) [8]. In a sense, we can understand the
propensity to produce phenotypes that are not currently
selected for but have been selected for in the past as a kind of
‘memory’ of past selective environments [8], and under
certain conditions evolved genotypes may even “generalise to
future environments, exhibiting high adaptability to novel
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goals”. But exactly how this might happen, what the selective
pressures are that might produce this outcome, and the
limitations and affordances of such a process are poorly
understood in general.

Part of the process might involve the evolution of
modularity, for example [9,10]. That is, certain phenotypic
features might become tightly integrated units (clusters of
phenotypic features that co-vary), whilst others remain, or
become, separated and vary independently. Such modularity
might then provide, in effect, higher-level variation — i.e.
variation at a higher-level of organisation [11]. Such high-
level variability might in principle provide new combinations
of modules with high probability (compared to the original
distribution of ‘atomic’ character combinations) even though
some particular combination of modules that is fit may not
previously have been selected for.

Wagner et al [10] explain part of the proximal mechanism
that might be involved in this process. Referring to genetic
loci that affect the correlation of phenotypic traits [12], they
state that “natural selection can act on [such loci] to either
increase the correlation among traits or decrease it depending
on whether the traits are simultaneously under directional
selection or not. ...[Resulting in] a reinforcement of
pleiotropic effects among co-selected traits and suppression of
pleiotropic effects that are not selected together” [10].

Wagner et al do not seem to notice, however, that this
suggests intriguing parallels with Hebbian learning familiar in
computational neuroscience [13,14]. Hebb’s rule, in the
context of neural network learning, is often represented by the
slogan neurons that fire together wire together, meaning that
synaptic connections are strengthened between neurons that
have correlated activation in response to a stimulus. Formally,
a common simplified form of Hebb’s rule states that the
change in a synaptic connection strength w; is Aw; = Jss;
where 0>0 is a fixed parameter controlling the learning rate
and s, is the current activation of the n"™ neuron. This learning
rule has the effect of transforming correlated neural
activations (created by an external stimulus) into causally
linked neural activations. From a dynamical systems
perspective, this has the effect of enlarging the basin of
attraction for the current activation pattern/system
configuration created by the stimulus. This type of learning
can be used to train a recurrent neural network to store a given
set of training patterns [15] thus forming what is known as an
‘associative memory’ of these patterns. A network trained
with an associative memory then has the ability to ‘recall’ the
previously seen training pattern that is most similar to a new
partially specified or corrupted test pattern.

In this paper we investigate the possibility that a gene
regulation network, capable in principle of exhibiting the
same kind of dynamics as a recurrent neural network, is
subject, over evolutionary timescales (not lifetimes [16]), to
modifications in connections that are in principle the same as
those produced by Hebbian learning familiar in neural
network models. Thus genes that fire together wire together -
i.e. genes whose expression is selected for in the same
selective environments become co-regulated. Accordingly, the
previously external cause of correlations in phenotypic

characters (i.e. direct selection on expression patterns)
becomes internalised (i.e. the result of a regulatory
connection). A developmental trajectory determined by such
an evolved network will then be able to reproduce a
previously selected phenotype ballistically from an arbitrary
initial condition using purely internalised dynamics, i.e. using
a memory of what phenotypic characters work well together.

This analogy helps us to understand how a gene regulation
network can modify the distribution of phenotypes in a
manner that reflects structure in the selective environment.
Specifically, we argue that evolved changes in regulatory
connections will tend to cause the regulatory network as a
whole to form an associative memory [15] of locally optimal
phenotypes that have been visited in the past [17,18]. The
evolved network has a dynamical behaviour which models the
historical selective pressures on phenotypes (in the sense of
having the same attractors) and can thereby create phenotypic
distributions that are especially fit. In particular, an evolved
network can produce a distribution of phenotypes that enables
a population to escape locally optimal phenotypes (i.e.
phenotypes that were locally optimal prior to the development
of this regulation) in favour of superior optima. We also show
that the proximal cause of these changes is not the teleological
anticipation of future reward but something much more
mundane — merely selection for robustness or canalisation of
the current phenotype [5]. By analogy with the Baldwin effect
[19], the internalised memory of previously found solutions
enables previously evolved phenotypes to be produced
innately by the developmental process. We therefore argue
that selection for homeostasis on an immediate timescale (i.e.
the ability to regulate a constant condition [20]), is the
proximal cause of increased evolvability on larger timescales
(i.e. increased ability for adaptation), as we will discuss.

Self-modelling dynamical systems

In related work [17,18] we have been developing the concept
of a ‘self-modelling’ dynamical system — a complex adaptive
system that creates a memory of its past dynamical behaviour.
We have shown that if changes to connections are Hebbian
and slow compared to the system’s state dynamics, a complex
adaptive system will form an associative memory of its own
dynamical attractors that enables it to lower its energy more
efficiently and completely when subjected to repeated
perturbation [17]. The ‘training patterns’ in such a scenario
are the configuration patterns that are commonly experienced
under the network’s intrinsic dynamics, hence ‘self-
modelling’ [18] — and if the system spends most of its time at
locally optimal configurations, it is these configurations that
the associative memory stores. From a neural network
learning point of view, a network that forms a memory of its
own attractors is a peculiar idea. Forming an associative
memory means that a system forms attractors that represent
particular patterns or state configurations. For a network to
form an associative memory of its own attractors therefore
seems redundant; it will be forming attractors that represent
attractors that it already has. However, in forming an
associative memory of its own attractors the system will
nonetheless alter its attractors; it does not alter their positions
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in state configuration space, but it does alter the size of their
basins of attraction (i.e. the set of initial conditions that lead
to a given attractor state via local energy minimisation).
Specifically, the more often a particular state configuration is
visited the more its basin of attraction will be enlarged and the
more it will be visited in future, and so on. Because every
initial condition is in exactly one basin of attraction it must be
the case that some attractor basins are enlarged at the expense
of others. Accordingly, attractors that have initially large
basins of attraction will, with continued positive feedback,
eventually out-compete all others until there is only one
attractor remaining in the system.

Variation in the selective targets/initial conditions

landscape 1 landscape 2

, A
<«

’
’

b) 1C. 1 1C2

Fig.1. a) Adaptation to two different targets from the same initial
condition (L.C.), b) Adaptation to one multi-modal target from two
different initial conditions.

Before introducing our model, we briefly discuss an
equivalence between multiple evolutionary episodes in
different selective environments (Fig.1.a) and multiple
evolutionary episodes from different initial conditions in a
static (but multi-modal) selective environment (Fig.1.b).
Parter et al, for example, conduct experiments using the
former — and construct by hand different selective targets that
are drawn from the same ‘language’ of tasks [8] (varying in a
modular manner). We prefer the latter; using a single multi-
modal landscape (created by modular epistasis) with repeated
radical ‘perturbations’ of the evolved solution causing it to
visit different local optima. What matters for our purposes is
only the similarity or differences of the multiple ‘targets’/
‘local optima’, and the latter method has the advantage that,
when the landscape is produced from the superposition of
many low-order epistatic interactions (see methods), it does
not require such explicit hand-crafting in this respect since
structural similarity in the local optima results naturally.

A model for the concurrent evolution of gene
expression patterns and regulation networks

Overview. Our model is intended to be as simple as possible.
Presumably, the evolution of a gene expression network that
is capable of creating correlated gene expression patterns and
potentially sophisticated dynamical attractors was preceded by
the evolution of static (unregulated) gene expression patterns.
Likewise, the evolution of robust cell types in single-celled
organisms, and gene expression networks that (partially)

determine those cell types, presumably preceded the evolution
of multi-cellular development and programmed cell
differentiation. Accordingly, our model addresses the
evolution of a gene expression pattern, and subsequently a
regulation network, in a single-celled organism. By
‘phenotype’ we therefore simply mean a particular pattern
gene expression, and by ‘development’ we simply mean the
dynamical gene regulation process that creates the ‘adult’
gene expression pattern.

The model is not intended to be a literal model of
biological processes. The critical features include a
continuous-valued state vector representing a pattern of gene
expression and a matrix of positive and negative connections
representing up- and down-regulating connections between
genes. These are subject to random variation and a selective
environment that favours particular gene expression
correlations. These components are linked together in a
manner representing the concurrent evolution of a gene
expression pattern and a gene regulation network but we aim
to keep this protocol as simple as possible (see Fig. 2).

We assume that a pattern of gene expression is
(epigenetically) inherited from one cell to the descendant cell
and that a selection pressure on this phenotype causes it to
evolve over many reproductions. A regulation network is also
(genetically) inherited and subject to evolution via selection
on the gene expression pattern that it modifies. We assume
that every gene has the potential to regulate any other gene but
that there is no significant regulation in the ancestral cell type
(i.e. initially zero connections). Random variation in the
connections of the network can introduce positive or negative
correlations in the expression of genes which may or may not
be beneficial given the current selective environment. So, in
the lifetime of the cell, its initial gene expression pattern is
inherited from the parent cell with random variation, this
pattern of expression then forms the initial condition of the
gene regulation network, which is then run for a number of
time-steps (usually one) creating a slightly altered pattern of
gene expression, and it is this pattern of expression which is
interpreted as the phenotype of the organism and evaluated by
the fitness function.

Evolutionary adaptation. The idea of evolved
correlations between the expression of one gene and that of
another invokes the notion of a distribution of phenotypes.
When there are many copies of each genotype in a population,
each one producing a phenotype from this distribution,
selection on these individual phenotypes implicitly selects for
genotypes that produce high fitness phenotype distributions
[10]. However, we find that an explicit population with
multiple copies of a genotype is more complicated than
necessary. It is sufficient to merely compare the phenotype of
a mutant to the phenotype of the original type and retain
whichever is fitter. Hence we model the evolutionary process
with a simple random mutation hill-climber (or
‘(1+1)ES’[21]) rather than a population-based evolutionary
algorithm [3]. The latter merely adds additional stochastic
fluctuations and unnecessary conceptual complications.

The overall architecture of the evolutionary model is
depicted in Fig. 2. and detailed in Fig.3. Note that the gene
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expression network does not so much represent a mapping
from genotype to phenotype, as it is popularly conceived, so
much as a mapping from an initial gene expression pattern to
an ‘adult’ gene expression pattern. This adult gene expression
pattern and the gene expression network is passed on the next
generation (with random variation).

\

Fig.2: Schematic overview of the inheritance, regulation and selection
processes (i.e. an iteration of the evolutionary hill-climber). a) A cell
contains both an expression pattern and a genetically specified gene
regulation network. b) Its descendents include individuals that are i)
identical to the parent, ii) have a perturbed expression pattern (black), iii)
have both a perturbed expression pattern and a genetically mutated
regulation network (here depicted by an additional connection). c¢) The
pattern of gene expression in each of these descendent cells is
‘developed’ or ‘run’ through their regulation networks creating three
slightly different ‘adult’ gene expression patterns. d) The cell with the
most fit gene expression pattern replaces the ancestral cell type.

The gene regulation network, R, (Fig. 3) is a matrix of
connection strengths initialised to 0. The expression pattern,
E, is set to a random configuration each *=5000 iterations
(each gene expression level is set to a value drawn uniformly
and independently in the range (-1,1)). This represents a
radical environmental perturbation of the expression pattern
and allows the expression pattern to visit the slopes of
different local optima in the fitness landscape (Fig. 1) hence
commencing a new evolutionary ‘episode’. £/, E2 and E3 are
the three modified expression patterns that result from the
three descendents of the ancestral type (having no mutations,
mutation to the expression pattern only, and mutation to both
the expression pattern and the regulation network,
respectively. We assume that mutation to the regulation
network without mutation to the regulation pattern is
unlikely). mut is a mutation function that introduces a small
perturbation to the expression pattern or a small mutation to
the regulation network. Specifically one of the existing
expression levels or connection strengths (selected at random)
is modified by adding a value drawn uniformly in the range
(-1,1). (In test cases where the regulation network is not
evolved, lines 2.c and 2.g are omitted.) run(E,R) is a function
that ‘develops’ the initial expression pattern £ by running the
regulation network R for p time steps (p=1 by default) and
returns a new expression pattern. For each time step the new

activation level, s,(t+1), of gene, i, is calculated using the old
value with a decay term and a sum of weighted (positive or
negative) inputs from the other genes in the network, as
follows [22]:

s;(t+1)=s,()+T iwiia(sj(t)) -s,(t) @

where 7=0.001 is a time constant, w; is the connection from
gene j to gene i, o(x)=tanh(x/10) is a sigmoidal output
function determining the expression level of a gene with
activation level x (representing the tendency of expression
levels to saturate).

1. initialise regulation network, R.

2. =0, repeat

if (=0) expression pattern, E=random, t=¢*;
E’=mut(E);

R’=mut(R);,

El=run(E, R); E2=run(E’, R); E3= run(E’,R’)
m=max(f(E1)E2)E3))

if ({E2)=m) E=E’;

if (RE3)=m) E=E’, R=R’;

=t-1

SR Mo a0 o

Fig. 3. Pseudocode of the inheritance, regulation and selection processes
depicted in Fig. 2.

The selective environment. The fitness landscape is
(initially) carefully controlled so that we can assess easily
whether an evolved regulation network is creating appropriate
correlations in the gene expression pattern. The minimal
conceivable scenario is one where there are only two genes
with selection for correlated expression in these two genes
[10]. If we do not have any intrinsic preference for absolute
gene expression levels, only for correlations, this means that
there will be two locally optimal gene expression patterns of
equal fitness — ‘HH’ and ‘LL’ (representing ‘High’ or ‘Low’
expression levels for the first and second genes).
Alternatively, if we select for anti-correlation then these will
be ‘HL’ and ‘LH’. However, although we might be able to
evolve a gene regulation network that supports correlation or
anti-correlation in such a scenario, the evolutionary outcome
will be somewhat degenerate in the sense that each of the two
locally optimal gene expression patterns will have equal
fitness and be equally likely to arise (from a random initial
condition) without a regulation network.

Accordingly, we will examine the next simplest case; a
system of four genes in two pairs. Here we can define a
fitness function where ‘HHHH’ and ‘LLLL’ are maximally
fit, but where ‘HHLL’ and ‘LLHH’ are local optima of lower
fitness. Favouring pairs of co-expressed genes in this manner
thus enables us to define a system with different-fitness
optima without introducing a preference for absolute
expression levels, or any asymmetries that would make one
gene more important than any other. It also represents a
minimally ‘modular’ fitness function. Naturally, we do not
imagine that such a fitness landscape represents any realistic
biological scenario — its structure is chosen merely to avoid
obfuscating the significance of an evolved regulation network
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with a complex adaptive landscape, and to test whether a
network can create correlations that support co-regulation and
create high-fitness phenotypes (we later investigate evolution
on a 30-variable randomised landscape).

We construct a fitness function of this type using a sum of
low-order (pair-wise) epistatic interactions [23] creating a
locally smooth (but multi-modal) fitness landscape.
Specifically, the fitness of an expression pattern,
S§=<51,5,...5y>, 1s given by:

£(5)= 3. ¢,0(5)0(s)) o

where N is the number of genes in the system, s; is the
activation of the i gene, e; is the epistatic interaction between
genes [ and j, defined below and o(s)=tanh(s/10) is the
expression level of the gene, as before. The epistatic matrix is
as follows: e;;=e;~1, e;;=e;~e;;=e,,=0.1, else e;=0 — thus
defining the two pairs of strongly interacting genes (s,/s, and
s3/s4), with only weak interactions between these pairs as
discussed above.

Results

Evolution of expression patterns without evolved
regulation. Fig. 4 (right) illustrates the evolution of an
expression pattern (without evolved regulation) over 10°
evolutionary time steps (therefore showing 20 evolutionary
episodes between radical perturbations of the expression
pattern). This clearly shows the four locally optimal
expression patterns (HHHH, HHLL, LLHH, and LLLL) and
that patterns where the four genes are all high or all low have
the highest fitness. The fitness values at each of the
evolutionary local maxima attained (i.e. at each =1 time step)
may be either in the lower class or the higher class (see Fig.
4). The proportion of high and low fitness optima found
indicates the size of the evolutionary basin of attraction for
each class of optima. For these parameters under these
conditions (without a regulation network) we find that the
evolutionary basin of attraction for the fitter local optima
accounts for about 73% of the initial configuration space
(averaged over 300 evolutionary episodes).

Evolved regulation. Under natural selection, evolved changes
to the connections in the regulation network must be those

gene

4 q -50
. . . . . . . . .
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3l 4
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N
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1k 4

. . . . . . . . .
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time step

that change the expression pattern in the direction that
increases fitness; and that direction may be different
depending on the currently selected expression pattern. Since
the evolved expression pattern very quickly settles into one
attractor or the other, most evolution of the regulation
network will occur when the expression pattern is at or near a
locally optimal configuration. So, as a first step to
investigating the evolution of a regulation network we evolve
the regulation network when the expression pattern is
‘clamped” at a single locally optimal configuration.
Specifically, in line 2.a of Fig.3, E is set to <s,s,5,5> (s=5)
instead of a random configuration. We find that after 100,000
more evolutionary steps the evolved connections in the
regulation network are all positive (Table 1). In contrast, when
the clamped expression pattern is HHLL (E= <s,s,-s,-5>), the
evolved connections are positive on the block diagonal
(shaded) and negative elsewhere (Table 2).

It is crucial to note that the signs of these connections do
not directly reflect the epistatic interactions in the fitness
landscape — the intrinsic epistasis in the landscape does not
change between the HHHH and HHLL test cases. Rather the
evolved connections reflect the expression states experienced
when the regulatory connection is altered (i.e. s=H/s/=H and
s=L/s=L expression levels create selection for positive
connections, whereas s=H/s=L and s=L/s/=H expression
levels evolve negative connections). This clearly follows
Hebbian principles — when equal gene expression levels are
selected together they wire together positively, when one is
selected to be high and the other low, they wire together
negatively.

However, the sign of the connection is really just a
labelling convention — what really matters with respect to
demonstrating Hebbian learning is that these evolved
connections increase the basin of attraction for the current
expression pattern. Fig. 5 shows, for example, the effect of the
connections evolved at the HHLL expression pattern (i.e.
Table 2). We see that the evolved connections change the size
of the HHLL attractor basin to fill 100% of the configuration
space (conversely, when regulation is evolved at the HHHH
expression pattern, Table 1, this pattern comes to occupy
100% of the configuration space).

1 2 3 4 5 6 7 8 9 10
time step x 10*

Fig.4. left) Evolution of a gene expression pattern without regulation for one evolutionary episode (5000 time steps). This happens to arrive at the locally
optimal expression pattern where genes 1 & 2 are low, and 3 & 4 are high. Right) A longer run (100,000 time steps) including 20 evolutionary episodes,
again without evolved regulation. Note that with these parameters, each evolutionary episode very quickly reaches a locally optimal expression pattern (i.e.
transients are short). Note that fitnesses at evolutionary attractors fall into two classes (roughly those below a fitness of 2 and those above).
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1=H 2=H 3=H 4=H

H | 89.13 160.18 126.02 104.35
H | 120.42 58.95 87.40 152.94
=H | 163.49 76.60 152.08 79.10
4=H | 197.69 56.58 158.36 159.87

1
2
3

Table 1: evolved connections when the expression pattern is HHHH.

i =0 2-H 3=L =
[=H | 80.93 | 105.81 | -60.99 | -146.92
2=H | 153.02 | 120.27 | 94.84 | -108.03
3=L | -157.65 | -125.27 | 69.33 | 163.97
4=L | -156.00 | -140.19 | 84.13 | 69.17

Table 2: evolved connections when the expression pattern is HHLL.

20 I ithout evolved regulation | -
[ ] with evolved regulation

.5 2 2.5
fitness

Fig. 5. Number of evolutionary episodes (from 20) finding each locally
optimal phenotype before and after evolution of the regulation network.
When the gene expression pattern is held at a low fitness attractor, the
evolved regulation network canalises this pattern.

251
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fitness
N

e o eeee o o oo @ °

o 20 40 60 80 100
episodes

50 =
I ithout evolved regulation

40 | [ with evolved regulation 7

30 g

20t 4

10+ l 4
[¢)
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Fig. 6. When the gene expression pattern is evolved freely, evolved
regulation canalises the fitter pattern (since it is visited more often).
Upper) The evolution of a gene expression pattern without evolvable
regulation (episodes 1-50) and with evolvable regulation (episodes 51-
100). Each point represents a locally optimal expression pattern found via
a single evolutionary episode from a random initial condition. Lower) see
Fig.5.

] 1 2 3 7

1 [ 437.37 | 56640 | 60.50 | 72.32
2 | 269.72 | 389.88 | 253.21 | 212.56
3 | 184.52 | 98.54 | 270.58 | 351.04
4 | 44846 | -25.23 | 373.18 | 246.46

Table 3: Evolved regulatory connections when the expression pattern
is not clamped. Although there is a lot of variation, the average value in
the block diagonal (shaded) is 363 and elsewhere 163. The generally
positive values mean that both the superior HHHH/LLLL attractor (Table
1) and the inferior HHLL/LLHH attractor (Table 2) have been reinforced,
but the lower values off the diagonal retain a reflection of the underlying
modularity.

Note that the evolved regulation network does not necessarily
increase the basin of attraction for the fitter phenotypes, but
rather for the phenotype present at the time that changes to the
regulation network were evolved. Next, we evolve the
regulation network without clamping the expression pattern.
Without regulation the fitter phenotype is already found 73%
of the time, so if the evolved regulation network reinforces the
fitter attractor 73% of the time and the less fit attractor only
27% of the time then on average the fitter attractor should be
enlarged more often than the less fit attractor in a positive
feedback manner and it will eventually outcompete it (Fig. 6,
Table 3).

Collectively, these results demonstrate that selection
favours changes to regulation connections that reflect co-
expression in the current phenotype, and that these
connections increase the basin of attraction for that expression
pattern, as expected for Hebbian changes to connections. They
also show that in a fitness landscape where fitter patterns have
larger basins (as is necessarily the case when the fitness
landscape is created from the superposition of many low order
interactions [18,24,25]) enlargement of these fitter basins will
outcompete lower fitness basins and create a regulation
network that produces fit phenotypes more reliably. Although
this result is somewhat underwhelming in this almost trivial
(two attractor) system, in addition to the basic Hebbian
principles, it also illustrates a further vital point. Specifically,
the fact that the basin of attraction for the superior phenotypes
is now almost 100% means that there are some initial
conditions that used to lead natural selection of expression
patterns to find the inferior phenotype but now evolution of
expression patterns from these same initial conditions leads to
the superior phenotype. That is, random variation in the
expression pattern that would increase fitness by moving
toward the inferior phenotype is being suppressed by the
regulation network, and variation that moves the expression
pattern toward the superior phenotype is being supported.
This means that given the evolved regulation network, the
evolutionary trajectory of the expression pattern is able to
‘climb out’ of the basin of attraction for the inferior
phenotype and secure adaptation in the direction of the
superior phenotype. Evolution of regulation that avoids sub-
optimal phenotypes in a larger system is shown in Fig.7!.

Ballistic development. Thus far the developmental
network is only run for one time step (p=1) per application of
natural selection. This is sufficient to induce significant
correlations and redirect the evolutionary trajectory of
expression patterns, as we have shown. But in general one
might expect a regulation network to ‘develop’ an initial
expression pattern into a fit adult expression pattern for many
time steps without the need for selection to act on the result of
every intermediate step. We therefore examine a ‘ballistic’
developmental trajectory (i.e. run(E,R) with p=5000, rather

]Here fitnesses are measured on thresholded expression values (>0—1,
<0—-1) to ensure that an increase in fitness is the result of increasing the
basin of attraction for a fit configuration pattern and not merely the result
of increasing the magnitude of the expression levels (see measuring
energy with the original weights rather than the learned weights [18]).
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than 5000 iterations of the evolutionary cycle with p=1) using
the regulation network evolved in Fig.7, applied to an initially
random expression pattern. We find that even though
selection is not being applied the fitness of the phenotype
increases monotonically at each developmental step, and in
fact the phenotypic attractor that is reached by this ballistic
developmental process is the same attractor that is reached
when selection was applied (Fig. 8). Thus selection on
intermediate phenotypes (and epigenetic inheritance) has
become redundant because development can now ‘recall’ the
result of, or recapitulate, what was previously an entire
evolutionary episode from any initial condition. Analogy with
the Baldwin effect, where phenotypes that were previously
acquired by lifetime learning are latterly exhibited innately
[19], is provocative.

1.6

[ ] without evolved regulation
o with evolved regulation

1.4

100 200 300 400
episodes

N \without evolved regulation
150} 1 with evolved regulation

o -
0.7 0.8 0.9

A NE NN I |
1 1.1 1.2 1.3 1.4
fitness

Fig. 7. As per Fig. 6 for a system of 30 genes with random epistasis in the
fitness function (Eq.2 with each e;j drawn randomly (-1,1)). The basin of
attraction for the highest fitness optima is initially only 9.5%, meaning
that 90.5% of episodes get stuck at some other sub-optimal phenotype.
After the regulation network is evolved all of these inferior phenotypes
are reliably evaded regardless of the initial gene expression pattern.

gene

gene

-20

20 40 60 80 100 120 140 160 180 200

Fig. 8. 200 steps of an evolutionary episode with the evolved regulation
network (upper) are accurately mimicked by ballistic (unselected) multi-
step development using the same network (lower).

Discussion

Distal ‘explanation’? On the one hand, the result of Fig. 7 is
just what one might expect — selection favours fit phenotypes
and if there are regulation networks that produce fit
phenotypes reliably then they will be selected for. But this
distal reasoning is misleading and obscures the proximal
mechanism by which this result is produced. Note that a

regulation network can preclude fit phenotypes just as easily,
if not more so, than it might support them — it has ‘masking’
as well as ‘guiding’ possibilities [26] — and the evolution of a
useful regulation network must not be taken for granted.

The point we illustrate in the initial results (Tables 1 & 2,
Fig. 5) is that the evolved regulation network is not favouring
fit phenotypes in a direct sense, it is merely canalising the
current phenotype. This is not an obvious route to finding fit
regulation networks and one might expect that, at best, it will
ultimately result in canalising an average-fitness phenotype,
not the fittest phenotype. But when the distribution of
phenotypes visited over many evolutionary episodes has some
correlations (or anti-correlations) that occur more frequently
than others, it is these correlations that are ultimately
reinforced by the regulation network (Fig. 6). If these
correlations appropriately reflect the epistatic structure in the
fitness landscape then they can enhance evolvability. In this
manner the regulation network comes to represent the
structure of the epistasis (or more exactly, the structure of the
correlations between phenotypic characters produced by the
epistasis) in the selective history over which the regulation
network was evolved. But by the same reasoning, when the
correlations in characters in the phenotypes visited do not
reflect the epistatic structure of the fitness landscape in
general, and instead reflect arbitrary phenotypic correlations,
the regulation network will evolve to represent correlations
that are not of especially high fitness. We demonstrate this by
increasing the mutation rate on the regulation network, and/or
increasing the duration of each evolutionary episode, such that
the evolutionary history does not visit a representative sample
of phenotypic attractors before the regulation network fixes on
a particular attractor. On average this causes the regulation
network to fix a phenotype with an average fitness rather than
the highest fitness. Accordingly, it is not to be taken for
granted that a gene regulation network will evolve to enhance
high-fitness phenotypes just because such a network exists in
the space of possible networks.

Proximal explanation. We should therefore investigate the
proximal selection pressures involved in the initial result of
Tables 2 & 3 (i.e. these data show that the selected changes to
regulation connections are Hebbian but they do not explain
why). Why is it that connections that reinforce the current
phenotype are evolved instead of, say, connections that
enlarge the basin of attraction for the fittest possible
phenotype? (And how does this ultimately result in fit
phenotypes?) To probe this issue we must consider the
immediate selective gradients in the vicinity of the current
phenotype. Specifically, for a change to a regulation
connection to confer a selective advantage it must change the
configuration of expression levels in a manner that increases
fitness. However, most of the time, the current phenotype is a
locally optimal configuration of gene expression levels. Thus,
it might seem that the only way for a change to a connection
to confer a fitness advantage would be when such a change
moves the current phenotype out of the current local optimum
and into a better one in a single mutation. But such a
possibility is highly unlikely when the nearest phenotype of
higher fitness is not an immediate neighbour.
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In fact, something much more subtle is at work. Although
most of the time the phenotype is almost locally optimal it is
in fact constantly perturbed by the small environmental
perturbations (line 2.b in Fig. 3). Changes to the regulation
network can therefore be favoured by selection if they have
the effect of returning the phenotype to the local optimum
more quickly or more completely after this minor
perturbation. In other words, we argue that changes to the
regulation network are selected for merely because they make
the current (almost locally optimal) phenotype more robust or
more homeostatic. We test this hypothesis by removing line
2.a., the small environmental perturbations, and repeating the
experiment shown in Table 2. In this case we find that there
are no changes to the regulation network that are selected, in
fact all changes are either neutral or deleterious. Thus the
small environmental perturbations serve a dual role — they
first provide (unregulated) phenotypic variation that selection
can act on to find locally optimal phenotypes, but they also
create instability in these phenotypes creating a selective
gradient that favours a regulation network that canalises these
phenotypes. We argue that this dual role of variation is not
special to this particular model but will necessarily occur
whenever random variation, necessary for evolution to act at
all, is present.

From proximal causes to distal consequences. This
proximal mechanism is also not very surprising given what
one might expect from natural selection — if natural selection
can act on the distribution of phenotypes in such a way as to
narrow that distribution onto the fitter phenotypes, then a
regulation network, for example, that provides such an
outcome will be selected for. But canalisation — a reduction in
the distribution of phenotypic characters — seems opposed to
concepts of evolvability and increases in adaptability.
However, a selection pressure for robustness can result in
increased adaptability — in essence evolvability is the
complement of canalisation [5]. The basic conceptual link is
that restricting variation in phenotypic characters that are
detrimental, whilst permitting continued variation in
characters that have the potential to be beneficial, enhances
adaptation rather than restricts it. But it is crucial to realise
that in the current model the canalisation provided by the
regulation network does not merely restrict variation in some
characters but rather it reduces the degrees of freedom in the
correlation of phenotypic characters [4].

In contrast, note that in Hinton and Nowlan’s model [19]
for example, canalisation acts to reduce the variation in each
phene independently. This therefore cannot act like an
associative memory — it is not a memory of what things have
co-occurred (i.e. have been selected together in the same
environments) only of what things have occurred (been
selected). The fact that the memory in our evolved regulation
networks is associative is evidenced by the fact that variation
in all phenes is still possible (when the network canalises the
fitter attractor it actually canalises both HHHH and LLLL).
This is crucial because if no further variation in phenotypic
characters was possible we would conclude that canalisation
had precluded further adaptation, but when canalisation
creates correlations in phenotypic variation it is plausible to

interpret this as smarter adaptation, i.e. a more evolvable
genotype, rather than an unevolvable genotype. This is really a
matter of perspective however, since both types of
canalisation (associative and non-associative) necessarily
reduce the space of phenotypic possibilities.

Limitations and further work

Our gene expression network uses signed expression levels to
facilitate straightforward comparison with Hebb’s rule, but
negative expression levels are biologically unnatural. We have
also hinted at the sensitivity of the results to the timescales of
evolutionary changes to expression patterns and to the
regulation network, and to the period of the perturbations/
evolutionary episodes, but we have not yet examined this
sensitivity carefully.

In related work we are interested in the question of whether
individual agents in a complex adaptive system that can alter
the strength of connections with one another will tend to do so
in a Hebbian manner [17,27,28]. In this paper we have shown
that selection on a network as a whole produces Hebbian
changes to connections, but we suspect that the same effect
occurs if each gene in the network is evolved independently.
This hints at an explanation for how a network of ‘selfish’
genes can coordinate with one another in a manner that
creates fit phenotypes despite being selected as individuals in
sexual organisms. This then parallels work we are developing
in the context of co-evolving species in an ecosystem where
species may evolve the coefficients of a Lotka-Volterra
system [27] or evolve symbiotic relationships [29], and
connects with ‘social niche construction’ concepts [30].

The fact that natural selection is involved in this model
should not to be mistaken for evidence of how ‘clever’ natural
selection is. On the contrary, we have shown that given an
appropriate (i.e. association-based) representation, a hill-
climber can produce these results. Moreover, the proximal
cause of these results is that selection is decreasing variability
which is something that hardly warrants natural selection at all
[17,18,31]. We think it more fruitful to ascribe the
‘cleverness’ of the result to the ability of an appropriate
substrate to ‘yield’ or ‘relax’ to structured perturbation in a
manner that reduces or dampens the effects of such
perturbations [31]. This is supported by the observation that
Hebbian changes to connections are equivalent to changes in
connections that reduce the energy of a system [17].

Conclusions

Wagner et al [10] suggest that phenotypic correlations will
evolve in a manner we recognise as Hebbian. Our
conclusions, originating from separate motivations [11,17],
agree but differ in emphasis — whereas Wagner et al/ address
the rate of adaptation created by a correlated phenotypic
distribution we emphasise the robustness or stability of a
phenotype under environmental perturbation. But the
mechanisms are deeply related because resilience is just
another way to say that a phenotype ‘re-adapts’ quickly. All of
the other results we have shown — the enlargement of the
basin of attraction for the current phenotype, the ability to
‘recall’ fit phenotypes that have been selected for in the past,
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and the ability for a developmental trajectory to recapitulate
what was previously an evolutionary trajectory — follow from
this basic observation and dynamics that are already well-
understood in neural networks. This theoretical framework
helps us to better understand the relationship between
homeostasis and evolvability (i.e. selection to differentially
reduce variability facilitates structured variability), and shows
that, in principle, a gene regulation network has the potential
to exhibit ‘recall’ capabilities normally considered to be the
exclusive purview of cognitive systems.

Acknowledgments. Chrisantha Fernando, Jason Noble,
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Abstract

Computational properties of gene regulatory networks
(GRNs) are of great interest in the field of systems biology
and, increasingly, in the field of artificial life. Understanding
how GRNs work and evolve may help in elucidating the prop-
erties of real biological networks and in designing new bio-
logical networks for practical applications. Here we investi-
gate the possibility to evolve artificial GRNs that can generate
or process continuous signals represented by concentrations
of artificial substances. We use a biologically-inspired model
of regulatory networks. The way the nodes in the GRN (reg-
ulatory units) are connected and the weights of connections
are encoded in a linear genome. A genetic algorithm is used
to obtain GRNSs that can solve problems with increasing dif-
ficulty. Some of these problems require performing simple
mathematical operations and sustaining memory. We analyse
if the solutions are general by presenting the GRNs with in-
put patterns that were not used for fitness evaluation during
evolution. We also briefly discuss the advantages of using
biologically-inspired GRN-like systems for control problems
and compare them with systems inspired by neural networks.

Introduction

The genes in the genomes (DNA) of all organisms encode
indirectly 3-dimensional structures of complex chemical
polymers (RNA, proteins). When the genes are expressed,
these polymers are produced in the cell. Cells consist of a
genome, gene products, and the chemical substances these
products help to construct (by chemical reactions) and/or
transport into the cell from the outside environment. Chem-
ical substances in the cell are a part of an intricate control
mechanism. The presence of particular gene products and
chemical substances in the cell at a particular moment de-
termines what genes will be expressed at the next moment,
and thus what will be produced. The regulation of gene ex-
pression occurs first of all at the level of transcription: for-
mation of RNA molecules with the sequence corresponding
to the DNA sequence in the genome. Some of these RNA
molecules later determine the sequence of proteins. Some
proteins (called transcription factors, TFs) have chemical
affinity to particular regions in the DNA. Binding of such
proteins to DNA may lower or increase the expression of

the genes nearby. This is just one example of chemical in-
teractions that regulate gene expression, but others follow
similar rules.

A network of such regulatory processes is known as a
gene regulatory network (GRN). GRNs can be thought of as
life’s primary computers, organizing all cellular processes.
The regulatory properties of such networks and their use for
control of artificial and biological systems are of great inter-
est for the Artificial Life and the Systems/Synthetic Biology
research community. Biological GRNs are robust to exter-
nal interferences and to damages caused by mutations. They
are able to control the development of an organism consist-
ing of billions of cells. In a developing or adult multicellular
organism, each cell is controlled by a GRN with essentially
the same structure. It is the state of the network (concentra-
tion of substances) that makes the cells behave differently,
depending on their local environment.

Artificial models of GRNs were previously used to inves-
tigate statistical properties of GRNs, such as the small world
property or the dominant motifs (Kuo et al., 2006; Nicolau
and Schoenauer, 2009). Network dynamics and evolution of
networks with certain patterns of gene expression has also
been explored to some extent (Banzhaf, 2003; Knabe et al.,
2006; Kuo et al., 2004; Reil, 1999). So was the application
of artificial GRNSs for control problems, such as animat con-
trol (Bentley, 2004; Taylor, 2004; Quick et al., 2003) and
artificial multicellular development. Indeed, we have origi-
nally formulated the GRN model used in this work to control
multicellular patterning of 3-dimensional artificial embryos
(Joachimczak and Wrébel, 2009), inspired by the model pre-
sented by Eggenberger (1997). Similar models have been
proposed (e.g. Schramm et al., 2009; Andersen et al., 2009),
so it is interesting to explore the computational properties of
such networks.

GRN topology in our model is encoded in a linear genome
which consists of genetic elements forming regulatory units
(nodes in the network). Connections between nodes are de-
fined by interactions between artificial TFs and regulatory
regions (“promoters”). The concentrations of TFs increase
and decrease in a continuous manner. There is no limit on
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the number of nodes, number of connections per node or to-
tal number of connections. Defining such limits would be
beneficial from the engineering point of view (it would de-
crease the vast search space of possible solutions). However,
we are not interested here in solving a particular engineering
problem, but rather in investigating the computational prop-
erties and evolvability of artificial but biologically realistic
regulatory networks.

In this paper we will aim to evolve systems in which the
expression of genes marked as the GRN output follows a
predefined target pattern. In most of the experiments the
target will depend on the input to the network. From the
biological point of view the input can be understood as a
concentration of a chemical substance in the environment.
From the engineering point of view, the input is a contin-
uous signal. In other words, we will describe networks
evolved to generate or process signals, in particular, signals
in which information is encoded in chemical pulses: coupled
increases/decreases of substance concentration.

Artificially designed regulatory networks that can per-
form desired tasks and react to external input are of re-
cent interest of the field of Synthetic Biology. Biologi-
cal GRNs in which gene expression oscillates and GRNs
created to count subsequent external signals (Elowitz and
Leibler, 2000; Friedland et al., 2009) are a step towards en-
gineering networks to produce proteins or RNAs in an in-
telligent and designed manner, for therapeutic or industrial
purposes.

In the following section, our model is briefly described.
The evolvability in various signal processing tasks and the
generality of the solutions is then discussed for each task
separately. General conclusions and the perspectives for fu-
ture work follow.

The model
Genome and genetic elements

Genomes are composed of a list of genetic elements. Several
genetic elements form a regulatory unit, which corresponds
to a node in a regulatory network. Genetic elements fall into
three classes. “Genes” are elements that code products (tran-
scription factors, TFs). Products can bind to “promoters”
(a generic term for regulatory regions). “Special elements”
code for either external inputs or outputs of the regulatory
network.

The genome is parsed sequentially and divided into reg-
ulatory units whenever a series of promoters followed by a
series of genes is found (Fig. 1). In other words, each reg-
ulatory unit can be composed of one or several regulatory
elements and one of several genes encoding TFs. In the next
step, special elements are assigned to inputs or outputs, ac-
cording to their type. The first special element of type one
is assigned to the first input, and so on. The same goes for
special elements of type two and the outputs. The number
of inputs/outputs depends on the particular experiment. If

there are more special elements of a particular type than in-
puts/outputs, they are ignored.

By computing affinities between all products and all pro-
moters, connections between regulatory units are formed.
This is how a gene regulatory network (GRN) emerges, with
each regulatory unit becoming a single node.

reg unit#1 reg. unit#2 reg. unit #3
/—’% —

-I:‘— lorl
/ \ co- regulamed genes \ positionin
R"
a special element: apromoter: agene: space

external signal (0) additive (2) transcription factor (4)
output product (1)  or multiplicative (3)

Figure 1: The genome and the structure of a single genetic
element. Each element consists of a type field, a sign field,
and a sequence of N real values used to determine affinity
to other elements (/N = 2 was used in this paper).

Each genetic element in our system encodes a point in N-
dimensional space (Fig. 1). This allows to calculate product-
promoter affinity, based on the Euclidean distance between
these points (the affinity is high when the distance is small).
If the distance is larger than a cut-off value, there is no affin-
ity. This prevents full connectivity in the network. The prod-
uct of sign fields of the two elements determines the sign of
the connection (which can be activatory or inhibitory). The
coordinates coded in genetic elements can mutate, so as the
genomes evolve, the points in N-dimensional space that cor-
respond to the elements approach one another or move away.
Neutral mutations result in a random walk in this space, so
only selection limits spreading of the points over time.

The activation of a promoter is a sum of the concentration
of all products that bind to it, weighted by their affinities.
Promoters in our systems can be either additive or multi-
plicative. The presence of a multiplicative promoter in a
regulatory unit results in a strict requirement for the presence
of a binding product, otherwise the unit is not expressed. To
compute expression of a given regulatory unit, the sum of
activations of its additive promoters is multiplied by the ac-
tivation of its every multiplicative promoter. The result (A)
allows to calculate the synthesis/degradation rate of all prod-

ucts in a given regulatory unit: % = fa(4) — L where L
is the current concentration, and f4(A4) = W This

sigmoid function can give positive or negative values. The
concentration will increase if synthesis rate is higher than
that of spontaneous degradation. Otherwise, the degradation
will be slowed down or indeed increased (when the f4(A)
is negative). Fig. 2 provides an overview of the time scale of
spontaneous product degradation in our system.

Special elements in our system, as any other genetic ele-
ments, are associated with points in N-dimensional abstract
space. If a particular special element corresponds to an in-
put, it means that the concentration of this artificial chemi-
cal substance is driven externally. Apart from that, the sub-
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Figure 2: Time scale of product
degradation. The product concentra-
tions are in the range < 0,1 >. The
intrinsic degradation can increase if
0 10 30 5o a gene is negatively regulated.

stance behaves as any other TF in the system and regulates
other genes, with one exception: it cannot directly control
the output node of the network. Although this could be ben-
eficial for some problems, we decided to prevent trivial so-
lutions by requiring all signals to be processed by at least
one internal node. For all the experiments presented here,
at least one external special substance was provided in this
manner, having a fixed concentration of “1”. This is because
it is necessary to have a substance with a non zero concen-
tration to start the GRN activity. For networks evolved to
react to changing concentrations of external substances, ad-
ditional input elements were provided.

If an input element can be seen as a regulatory unit with
one gene and zero promoters (its concentration is driven ex-
ternally), an output element is treated as a regulatory unit
with only one promoter and a gene that does not code for
a TF. The concentration of the output gene product is thus
a clearly defined exit point for all information processing in
the system, even though the fact that connections between
the output node and the internal nodes are not permitted is
expected to have a minor detrimental effect on evolvability.
Only one output was allowed.

Genetic algorithm

Genetic operators can act on the level of single elements or
multiple elements. On the level of single elements, partic-
ular fields can be mutated, changing element type, sign bit,
or disturbing the coordinates of an associated point in space.
Single or multiple elements can be deleted or duplicated. A
series of duplications and deletions can lead to changes in
the order of the elements. Changes in the order of promoters
within a regulatory unit are neutral, the same goes for the
changes in the order of genes. Changing the order of regu-
latory units does not lead to changes in the topology of the
network so it is also neutral. Any type change is permitted.
In particular, new input and output elements can be created
from other elements (genes, promoters) when the type field
of an element is changed by mutation. Type mutations can
in principle lead to the loss of inputs or outputs. Obviously,
in the experiments described here, such loss would be highly
deleterious.

The results shown in this work were obtained using a
fairly standard genetic algorithm with a population size of
300, elitism, tournament selection, and multipoint crossover
for sexual reproduction (for 30% of the individuals in each
generation). Evolutionary runs were initiated with individ-
uals consisting of 5 randomly created regulatory units. The

runs were terminated after no improvement over the last 500
generations was detected (typically, after 2500 — 10000 gen-
erations). Shorter runs would often indicate lower evolvabil-
ity (genetic algorithm stuck in a local optimum rather than
continuously improving the network).

Fitness function

The target for evolution was to obtain desired expression
patterns as a response to particular input signals. A straight-
forward approach would be to aim to minimize the differ-
ence between the desired (d;) and obtained (o;) expression
levels over time: Y |o; — d;|. However, this often lead us to

unsatisfying, suboi)timal solutions. This is because many of
the target patterns require keeping output product expression
at 0 for some time, so lack of expression during the whole
time results in higher fitness than, for example, a pattern that
is shifted but otherwise correct. Once such trivial solution is
reached, little can be improved by evolution: there is no reg-
ulation that can be fine tuned. We alleviated this problem by
including the terms that give higher weight for correctly ex-
pressing output product when its concentration is expected
to be higher and for the correct number of oscillations in
periodic expression patterns:

L
Z |0t — dt|(1 + k’dt)

t=p

1+8 M

where L is the number of GRN simulation steps (between
600 and 1000 clock ticks, depending on the experiment), and
k increases the weight of properly expressed high concentra-
tions (kK = 2 was used). Parameter p (“propagation time”)
allows to set the number of simulation steps after which the
activity of the output is evaluated. Because some time is
needed to build up TF concentrations, it is not reasonable to
penalize the network whatever its activity during this time.
Propagation time was set to 50 clock ticks: this is a rough
estimate of the time needed to form a response. The last
term promotes evolution of oscillatory patterns. .S was set to
1 when the desired number of oscillations was obtained or
to 0 when there was no oscillations or too many (more than
twice the desired number). Imperfect matches resulted in
intermediate values. To keep the matters simple, the num-
ber of events when the expression crosses the level of 0.5
was counted (the events when d;_1g < 0.5 and d; > 0.5 or
di_10 > 0.5 and d; < 0.5). The minimum distance between
countable events was set to 10 clock ticks to prevent trivial
fluctuations around 0.5. Inclusion of this term in the error
function promotes the correct number of oscillations from
the very beginning, even if not timed correctly.

Calculated error was further normalized, so that a per-
fect match in expression pattern would result in individual
scoring 0 and the worst possible would score 1. For ex-
periments where multiple training pairs were used, the final
fitness would be an average of every test case.
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Figure 3: Behaviour of an evolved network that gives a sine
wave expression pattern lasting for five periods (the best net-
work in 10 runs); dashed line: the desired response.

Results
Internally induced oscillations

We have first analysed if our system allows for evolution of
networks in which an output product level oscillates. Oscil-
lating gene expression has been previously investigated in
somewhat similar artificial GRN models (Kuo et al., 2004;
Knabe et al., 2006). This task can be made easier by pro-
viding the network with a periodically changing input of the
same frequency as the target. However, no such input was
made available in our experiments: the only external signal
was a special product with a constant maximum concentra-
tion, so the obtained dynamics was internally induced.

It proved very easy to evolve oscillating expression with
almost perfect match to the target pattern (sine waveforms)
in a large range of frequencies and amplitudes. The oscil-
lations were stable: they persisted also when the number of
simulation steps was increased beyond the network lifespan
used at the evaluation stage during evolution.

In a more challenging task, the target was a sine wave
starting at a certain time point and ending after 5 periods.
The oscillations in the best networks found in 9 independent
runs out of 10 had proper frequency but did not terminate.
Only in one run a good solution was obtained (Fig. 3), even
though the phase of the output signal does not match the
target phase. This is penalized by the error function, but the
solution is rewarded because the number of pulses is correct
(Eq. 1). Perhaps the difference in fitness between a solution
in which oscillations terminate and a solution in which they
do not is too small and this is why most runs got stuck in
a local minimum. If so, simple extension of the lifespan
beyond 600 clock ticks would improve evolvability.

Doubling the input frequency

Apart from the task described above, all the others involved
processing continuously changing input signals. In the first
such task, the networks were expected to double the fre-
quency of the input oscillations (sine wave). Three train-
ing inputs were provided at the evaluation stage in the GA:
two sinusoidal curves with different frequencies and an in-
put in which the signal was kept at 0 (requiring an empty
response). The “no signal” input was included to facilitate
emergence of solutions that are active only when external
signal is present.

In 10 out of 10 runs the evolved networks displayed the
correct behaviour for the training set. Fig. 4ab shows the

behaviour of the best network obtained. The solutions were
general: intermediate frequencies were also doubled. Even
very low frequencies posed no problem (Fig. 4c, note that
the time scale is different in different panels). Indeed, for
the best individuals we were not able to find a frequency
that would be too low to elicit the proper response. Gen-
eralizing to frequencies above the range in the training set
proved more challenging. The networks did not behave as
desired when the frequency was increased more than about
40% (Fig. 4d); interestingly, the best GRN in an experiment
in which the frequencies in the training examples were two
times lower had about the same relative upper limit.

The behaviour of the best GRN was tested using an in-
put pattern in which frequency changed multiple times (in
the training patterns, frequency was constant). The network
showed correct behaviour: matching the output frequency to
the input frequency (not shown). However, less general so-
lutions were obtained in some runs: these GRNs would lock
their outputs to the frequency present at the beginning of a
complex input pattern.

It is difficult to analyse how exactly the output of the
best GRN is calculated because of the high density of the
networks, about 0.5-0.6 (30-50 regulatory units linked with
about 1000 edges, encoded with roughly 250 genetic ele-
ments). However, a hint on inner mechanics can be obtained
by replacing the sinusoidal input with a trapezoid waveform
and changing its duty cycle. It can be seen (Fig. 4e) that
a spike of the output expression is generated for each rais-
ing and each falling edge in the input. This suggests that
the poor generalization for higher frequencies may result
from the fact that the rate of output product accumulation
and degradation is adjusted to the rates used in the training
set. If so, concentrations will increase and decrease too fast
when the frequency is low; indeed, this can be observed in
Fig. 4¢).

Low pass frequency filter

Filtering input frequency is a problem well suited for regu-
latory networks: limited speed of accumulation and degra-
dation of TFs will work as an RC circuit. In this task the
networks were expected to regenerate in the output the fre-
quency of the input sinusoid, but only if this frequency was
below a certain threshold. Five inputs were provided in the
training set: two with frequencies below the threshold, two
with frequencies above it, plus the “no signal” input which
was again expected to give no output signal. It was easy
to obtain networks with correct behaviour that generalized
for frequencies higher and lower than those in the training
set. However, providing these network with a sum of two
sinusoids with only one frequency below the threshold (an
example of such input is provided in Fig. 5cd) would result
in no output signal. This suggests that these networks sim-
ply detected the high rising slope in the input and blocked
the output if it was too high.
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Figure 4: Behaviour of the network evolved to double the
frequency of the input signals (the best solution in 10 evolu-
tionary runs, obtained after 6191 generations): (ab) the re-
sponse for the inputs in the training set (the correct response
for the “no signal” input is not shown), (¢) this network be-
haves correctly for an input with much lower frequency than
in the training set (note that the time scale was changed), but
fails to generalize for inputs with slightly higher frequency
(d), the response for the signal in panel (e) hints on the way
in which the output is calculated. Dashed lines in (a-d): the
desired ideal response.

To improve generality of the solutions, we have added
such inputs to the training set, requiring the network to fil-
ter out just the higher frequency component. Fig. S5e shows
the behaviour of a network that correctly if imperfectly fil-
ters the high frequency component even for an input not in
the training set. This network shows correct behaviour also
when another input not in the training set was used (Fig. 5f),
adjusting “on the fly” the output signal to the changing fre-
quency in the input. However, such behaviour was observed
for the best GRNs only in some of the runs. The best net-
works in other runs failed to generalize and locked to the
frequency present at the beginning of a complex input pat-
tern. This is similar to what was observed in the previous
task.

Doubling the pulse length

In the tasks described above, obtaining the solution did not
require the explicit memory of the input signal. This is not
the case for the task in which the networks were expected to
respond with a square pulse twice the length of the square
pulse in the input after 50 simulation steps. Three input pat-
terns plus the “no signal” input were used in the training set
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Figure 5: Behaviour of a GRN (the best individual in 10
evolutionary runs, obtained in generation 8839) acting as a
low pass filter for the inputs in the training set (a-d; only half
of the training examples is shown) and the inputs for which
the network was not evaluated during the genetic algorithm
(ef). The dashed lines correspond to the desired response.

(Fig. 6a-c). Good solutions were obtained in all 10 evolu-
tionary runs. The best network (Fig. 6a-c) behaved correctly
also when the square pulses in the inputs occurred at dif-
ferent times than in the inputs used in the training set. It
also behaved as expected when the input pattern consisted
of subsequent square pulses.

Good generalization was observed for pulses with other
(intermediate) lengths than the pulses in the training set.
Pulses up to 50% shorter (Fig. 6d-f) than the shortest training
pulse gave the desired response, but pulses longer than the
longest training pulse gave responses shorter than desired
(Fig. 6e), exposing leaky nature of the GRN-based memory.
When the pulses in the input had half the height of those
in the training set (Fig. 6f), the length of the output pulse
would be close to that of the input pulse. This suggests that
the network acts as a simple integrator (e.g. by slowly build-
ing up some concentrations) instead of reacting to raising
and falling edge of the input signal like frequency doubling
networks.

When the networks were required to output a square pulse
with doubled length after 300 time steps instead of 50, the
behaviours were less accurate, though proper generalization
was still observed. The average value of error function (con-
sidering only the best individuals in each independent run
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Figure 6: Behaviour of the network evolved to double the in-
put pulse length (the best individual in 10 evolutionary runs,
obtained in generation 7295): (a-c) the responses for the in-
puts in the training set (the response to the “no signal” input
was not shown) and (d-f) for the inputs used when testing
for generality. Dashed lines correspond to the desired ideal
response.

out of 10) was worse: 0.054 for 300 steps vs. 0.017 for
50. The values were also more variable (standard deviation
was 0.027 and 0.002, respectively). This further demon-
strates the leaky nature of evolved GRN-based memories:
the longer the networks have to store the information, the
more degraded it becomes.

Doubling the number of input pulses

From the biological point of view, the GRNs discussed thus
far could be seen as responding to continuously raising and
falling concentration of chemical substance (pulses in the in-
put). What was relevant was the frequency or the length of
the pulses. In the next two problems, the number of pulses
will be important. The first task, doubling the number of
pulses, can be seen as more difficult than the previous prob-
lem. The response still requires performing multiplication,
but the number of subsequent pulses needs to be counted,
not the pulse length.

Fig. 7a-c shows that the best network obtained in 10 runs
correctly doubles the number of pulses in the training set in-
puts when this number is one or two. The solution when the
expected number of subsequent oscillations is six is almost
correct. However, the generalization is imperfect: seven in-
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Figure 7: Behaviour of a GRN that doubles the number of
spikes (the best individual in 10 evolutionary runs, obtained
in generation 2794): (a-c) the network behaves correctly or
almost correctly for the training set input, but (d) responds
with less spikes than expected when the generality of the
solution is tested with a higher number of spikes in the input.

stead of eight pulses for four pulses in the input (Fig. 7d), a
response shorter than expected. This reminds the behaviour
of GRNs evolved to double pulse lengths when presented
with input pulses longer than the longest in the training set.

Integrating information from two separate signals:
counting pulses

The experiment described above indicates that a task that in-
volves processing concentration pulses allows to approach
the limits of our system in terms of searching for networks
with desired signal processing properties. To make the task
even more difficult, the networks were required to process
signals from two inputs instead of one. The task was to re-
spond with the number of output pulses equal to the number
of pulses on both inputs within a certain time window (see
Fig. 8a-e for the training set). No response was expected
when no input pulses were present in the pattern. Fig. 8
shows the behaviour of the best GRN in 10 runs. This net-
work is able not only to count correctly the pulses in the
training set but is also general enough to work in a continu-
ous manner (Fig. 8f).

Modifying the system time step

Product accumulation and degradation in our system is sim-
ulated in discrete steps. Changes in concentration are com-
puted with every iteration with a time step dt = 0.1. The
step size is a compromise between accuracy and computa-
tion cost. In principle, it would be possible for some of the
evolved networks to exploit inaccuracies that would occur
if some concentrations were to change rapidly due to over-
regulation and wrongly chosen dt. To test if this is an issue

Proc. of the Alife XII Conference, Odense, Denmark, 2010

208



IN1 IN2 ouT A
(a) A
0 100 300 ' 500 0 100 300 | 500 0 100 | 300 | 500
IN1 IN2 A
(b)
0 100 300 500 0 100 ' 300
IN1 IN2
(c)
0 100 300 '~ 500 0 100 ' 300
IN1 IN2
(d)
0 100 300 '~ 500 0 100 300
IN1 IN2
(e)
0 100 "~ 300 = 500 O 100 ' 300 500 0 100 ' 300 ' 500

IN2
®

:

500 1000 1500 O 500 1000 1500 0 500 1000 1500

o]

Figure 8: Behaviour of the GRN evolved to count the pulses
in two inputs (the best individual in 10 evolutionary runs,
obtained in generation 2168): (a-e) the network gives an ex-
pected output for the the inputs in the training set and the (f)
inputs used to test for generality.

we decreased dt by an order of magnitude and increased 10-
fold the number of simulation steps. This increased simula-
tion accuracy but did not affect the behaviour of any of the
networks discussed above.

The importance of continuous TF
accumulation/degradation

In the GRN model used here the TF concentration at a par-
ticular time point is determined by its synthesis and degra-
dation rates and its concentration at the previous time step.
In order to test if this GRN property is important for sig-
nal processing tasks, we have modified the model so that the
gene expression was determined only by the activation of
associated promoters in the previous time step. More pre-
cisely, the function f4(A), instead of being treated as cur-
rent product synthesis level (with the range < —1,1 >),
would be shifted right and scaled to < 0,1 > so that it
could be treated as a new expression level for the given time
step. This allows genes to change its activity instantly. In
this model GRNs behave similarly to recurrent networks of
perceptron-like neurons (similar regulatory networks were
used by us Joachimczak and Wrébel (2008) and other re-
searchers, e.g. Eggenberger (1997). To see if this change
affects evolvability, we compared the average fitness for the
best individuals in 10 runs using the problem of doubling

0 200 400 600 800 1000 O 200 400 660 800 1000

Figure 9: The best individual obtained in 10 evolutionary
runs using a modified model in which product built-up and
degradation is not simulated (response to one of the training
signals is shown).

the input frequency. The behaviour of the best individual for
a non-continuous model Fig. 9 can be compared with that
observed in Fig. 4. Even though a good solution was found,
the evolvability itself was clearly worse. Average error for
10 runs with a modified model was 0.075 (sd: 0.025). For
the model with continuous TF synthesis/degradation the er-
ror was 0.026 (sd: 0.005).

Discussion

The goal of this work was to investigate in a qualitative and
exploratory manner the possibility to evolve artificial GRN
that can generate or process continuous signals provided as
externally driven concentrations of chemical substances. We
have tested if the way we have formulated the encoding of
the structure of the networks in a linear genome and the ge-
netic algorithm allows for evolvability in several problems
of various difficulty. Several attempts have been made previ-
ously by us and other researchers to employ artificial GRNs
for various tasks (such as development). It is thus interest-
ing to investigate what kind of information processing can
be performed by single cells equipped with such networks.

In general, given enough simulation steps, artificial GRNs
can be expected to be similar to perceptron-like artificial
neural networks (ANNSs) with recurrent connections in terms
of computational properties, even though the biological in-
spiration is different. Perhaps the most important differ-
ence between the GRN model used here and commonly used
ANN models is that here the state of a regulatory node, rep-
resented by the concentration of associated products (tran-
scriptional factors) is influenced by the rate of product syn-
thesis and degradation. This limits the response time of the
network. On the other hand, smoothness of gene expres-
sion provides an advantage for generating gradually chang-
ing outputs, such as sine waves (compare Fig. 4b and Fig. 9).
One could also expect that such inherent dynamics of each
node could be exploited by biological GRNs when dealing
with noisy external signals and with the inherent noisiness of
gene expression itself. Obviously, “no free lunch” theorem
applies: GRNs may provide an advantage in a certain class
of problems, but one should not expect them to universally
outperform other approaches.

In particular, computations that required counting pulses
of input substance concentration proved more difficult than
other tasks (which also involved simple mathematical cal-
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culations and memory). Processing information encoded
in pulses is superficially similar to information processing
in spiking neural networks. However, in GRN-based sys-
tems the pulses result from simulated product accumulation
followed by degradation not by simulation of ion transport
through the membrane, often extremely simplified (so that a
spike results when a threshold potential is reached). It is rea-
sonable to assume that this kind of information encoding is
far from optimal for processing signals with regulatory net-
works. In other words, problems that require pulse counting
can help to find the limit of what can be evolved using GRN-
based systems such as ours.

Introducing more realistic molecular dynamics could
make evolving artificial GRN models a useful tool for ob-
taining synthetic regulatory networks (see e.g. Friedland
et al., 2009; Elowitz and Leibler, 2000). Such networks
might find applications for example in intelligent delivery of
therapeutic chemical substances (small molecules, proteins,
regulatory RNAs), regulated by external signals. Artificial
evolution would allow to design such networks and optimize
them by various criteria, such as the number of regulatory
elements and genes or robustness to noise.

The evolvability in signal processing tasks could be also
improved by changes in the error function or reformulation
of the tasks themselves. For example, it would probably help
to look for the best match of the output expression pattern
within a certain range of allowable response times instead
of requiring the pattern to appear after a predefined response
delay.

Although it would be very interesting to further explore
the areas hinted above, the next step in our work will be
to investigate the statistical properties of evolving artificial
GRNss and to employ the model described here in other con-
trol problems, for example, animat navigation.
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Abstract

Both metabolism and behavior play a key role in biological
theory and artificial life modelling. Yet, despite their central-
ity there has been very little exploration of the relationship
between these concepts and almost no exploration of how
the interaction between the two could impact on evolution
or instantiate alternative mechanisms for evolutionary pro-
cesses. We present a simulation model of bacteria capable of
metabolism-based chemotaxis: a minimal metabolic system
capable of modulating behavior by influencing the probability
of flagellar rotation (like in E. coli chemotaxis). We perform
two illustrative experiments. In the first, the incorporation
of a chemical compound into metabolism qualitatively im-
proves the chemotactic strategy. In the second, an encounter
with a specific chemical compound leads to a reaction that
opens up a new metabolic pathway while automatically regu-
lating chemotaxis towards that same compound. Both exper-
iments illustrate the adaptive potential of metabolism-based
behavior and can be used to explore the idea of “Behavioral
Metabolution,” a co-evolutionary synergy between behavior
and metabolism. We abstract some principles of behavioral
metabolution and discuss its application to early prebiotic
evolution.

Introduction: metabolism and behavior

There is a long tradition in artificial life of investigating the
origins and essence of life through the study of metabolism.
Metabolism is understood as the far from thermodynamic
equilibrium organization of chemical networks that pro-
duce and sustain their components from available ener-
getic and material resources (Ganti, 1975; Kauffman and
Farmer, 1986; Morowitz, 1999). Recent work on protocellu-
lar systems (Rasmussen et al., 2008) has re-framed research
on metabolism within the framework of minimal forms of
(proto)cellular compartments capable of self-maintenance.
Rarely is the environment of such early-life scenarios con-
sidered to be controlled or selected by a behaving or mov-
ing proto-life-form. However, recent artificial models of
self-moving protocellular (autopoietic) systems (Suzuki and
Ikegami, 2009; Egbert and Di Paolo, 2009) and real, self-
propelled chemical systems (Toyota et al., 2009) suggest that
even extremely simple forms of proto-life may have been ca-
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sensorimotor
, pathway

metabolism

AN

metabolism-based
chemotaxis

Copyright 2010 M. Egbert, X. Barandiaran and E. Di Paolo. Licensed under Creative
Commons — Attribution 3.0 Unported [http://creativecommons.org/licenses/by/3.0]

Figure 1: Three different relationships between metabolism
and chemotaxis. Arrows indicate only short-term dynamical
influence between processes. See text for details.

pable of selectively modulating their environment through
behavior.

In parallel to the omission of behavior in the study of the
origin of life, studies of minimal adaptive behavior have al-
most completely ignored the role of metabolism as sustain-
ing or modulating behavioral patterns. In particular, research
on bacterial chemotaxis (the paradigmatic case of “mini-
mal adaptive behavior”) has long proceeded under the as-
sumption that behavior generating mechanisms operate in an
metabolism independent manner (i.e., while behavior sub-
serves metabolic survival, sensorimotor pathways are not in-
fluenced by short-term metabolic dynamics). This assump-
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tion can be traced back to the pioneering work of Julius
Adler (1969) and has since remained almost unquestioned
even in the most detailed and systematic simulation models
of bacterial chemotaxis (Bray et al., 2007). It is, of course,
not the only possible relationship between metabolism and
chemotaxis. Figure 1 indicates three different possibilities
for this relationship, independent, dependent (mechanisms
in a sensorimotor loop are created by the metabolism) and
based (metabolism itself modulates behavior). Recently, the
growing evidence for metabolism-dependent chemotaxis in
many bacteria (Alexandre and Zhulin, 2001), including E.
coli, has attracted renewed attention to the interplay between
metabolism and behavior.

In short, the interaction between behavior and metabolism
remains currently under-explored even though empirical and
modelling work has begun to address its possible implica-
tions. In particular, an aspect that deserves further examina-
tion is the effect of this interaction on early (and not so early)
evolutionary dynamics. The goal of this paper is to present
a model that investigates some potential implications of the
interaction between metabolism and behavior in both direc-
tions (behavior — metabolism and metabolism — behavior)
as well as the potential impact of these interactions upon
evolutionary processes.

We shall first present a model of metabolism-based
chemotaxis consisting of a minimal metabolism coupled to
a simplified motor system inspired by E. coli. We use this
model to demonstrate, through two experiments, that: 1)
metabolism can modulate behavior in an adaptive manner,
2) behavior can change the metabolism by changing the en-
vironment in which it exists and, 3) changes in metabolism
can produce new types of behavioral patterns. Next, we
abstract away some general principles and implications of
metabolism-based chemotaxis. Finally, we conclude with
some discussion regarding the evolutionary dimension of
metabolism-based chemotaxis, what we term ‘“behavioral
metabolution”, and its potential application to the question
of early evolution of life.

Metabolism-based chemotaxis, the model

We consider metabolism as the self-production of a chemi-
cal network through the transformation (by the network) of
available energetic and material resources into constituents
of the network. This process is most simply realized through
an auto-catalytic reaction whereby energetic and material re-
sources (E and M respectively) are transformed by network
constituent C' into more C' and a low energy waste V' thus:

M+FE NG +2V'. This single reaction may be understood
as a higher level abstract representation of a whole network
of processes, considering that the essence of metabolism is
that of an auto-catalytic network. To capture the requirement
of far-from-thermodynamic equilibrium, C' and V" are con-
sidered thermodynamically unstable and degrade rapidly.
Their continued presence is therefore only possible through

Core Metabolic Pathway +
selective stopping mechanism

H autocatalysis
& Transformation of V -> W

M+E+C->2C+2V H+C+2V -> 2H + C + 2W
% \ .‘h‘
s CHCH2V—— “EHTH+C+2W
{}
S d metaboli th
inif::esrgjticgt;yZ?s :;ag { } { }
S+F+N+C->2C+25+2V H catalyzes
P equilibriation of C and W
PN H+C=H+W
Yo Fo Modulate R/T
S C C+S+S+C+2V C: +pTumble
W: -pTumble
{r {1}
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Figure 2: Reactions grouped conceptually by their ‘role’ in
the model. Resources are surrounded by pentagons. Auto-
catalytic reactions are indicated by circular paths. Degrada-
tion of reactants is indicated by an arrow to the empty set.

a dynamic equilibrium of degradation countered by produc-
tion. We label this reaction the “core metabolism” and ex-
pose it to various other reactants in different experiments.
Table 1 and Figure 2 show all of the chemical reactions that
can be active in the bacteria simulated in our model. The
upper-left square indicates the core metabolism described in
this section. The other pathways are described in the exper-
iments and results section.

The metabolic dynamics are described by the differential
equations in Table 2. These equations include some reac-
tants that are only used in some of our experimental sce-
narios and are explained later in the text. The rate con-

# reactants products ky ky
0 M+E+C &= 20+2V 0.61 ~0
I: H+C = H+W 0.006  0.006
2: H+C+2V = 2H+C+2W 0.37 ~0
3: c+2v. - {} 0.006 n/a
4 C+2W —  {} 0.006 n/a
5 H — {} 0.02 n/a
6 S —- {3 0.0001 n/a
7. S+F+N+C = 2C+2S5S+2V 0.99 ~0

Table 1: A list of the chemical reactions in each simulated
metabolism. Also indicated are the reaction rates (forward
and backward). These rates are referred to in Table 2.
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dE/dt = —kpoEMC + kypC?V?/4 + kq[E](x)
dM/dt = —kpoEMC + kyoC?V?/4 4 kq[M](x)
dC/dt = —kpoEMC + kpC?V?/4
—2kpoC?V? J4 + 2kpo EMC
—kfch + knn HW
—k3CV?/2 — ks CW?/2
—kp7CFNS + kpyyC?V2S2 /6
—2kyC?V252 /6 + 2k CFNS
avjdt = 2k C?*V?/4+2kjoEMC
—2k2CHV? /2 4 2k CH?*W? /4
—2k3CV? /2
—2ky7C?V25% /6 + 2k;7CFNS
dw/dt = —kpHW +kpCH
—2kpoCH?*W?2 /4 4 2k yoCHV? /2
—2k s CW?/2
dH/dt = —kpCHV?/2+ kypeCH*W?/4
—2kpeCH*W? /4 + 2k CHV? /2 — ks H
dF/dt = —kpCFNS + kyyC?*V?25%/6 + kq[F)(x)
dN/dt = —kpCFNS + kyrC?V25%/6 + ka[N](x)
dS/dt = —kgeS —kprCFNS + kyyC*V2S%/6

—2kb702V252/6 + 2k/‘7CFNS + kd[S](X)

Table 2: Differential equations specifying how chemical
concentrations change within each simulated bacterium (ex-
cluding influence of the environment). k¢, and Ky, repre-
sent the reaction rate constants for the nth reaction in the
forward or backward direction. [p](x) represents the local
environmental concentration of the resource p.

stants (k¢y, and kypy,) in the differential equations have been
determined by assigning free-energies to each reactant and
activation-energies for each reaction such that the system
adhered to the constraints defined in our definition of a min-
imal metabolism. Given chemical free-energies and reaction
activation-energies, reaction rates can be calculated accord-
ing to k; = exp(A) and k, = exp(A + R — P) which indi-
cate the reaction rate for a forward (exergonic) reactions and
backward (endergonic) reactions respectively. A represents
the activation energy of the reaction and R and P represent
the combined energy levels of the reactants and the products
respectively of the reaction. Figure 3 indicates why the for-
ward and backward equations are different. This method of
determining reaction rates allows the exploration of abstract
chemistries while remaining congruent with the 2 law of
thermodynamics.

Resources encountered in the environment diffuse into
bacteria at a rate proportional to the local concentration of
the environmental resource. The rate constant for this diffu-
sion, kq = 0.04, is the same for all resources.

The chemical reactions are simulated as occurring in a
compartment surrounded by a membrane that includes a set
of flagella. The clockwise and counter-clockwise flagellar
rotation is determined by the relation between the concen-
trations of C' and W compounds. In analogy to the working
of flagellar rotation in E. coli chemotaxis, when the overall
movement of flagellar rotation is counter-clockwise the bac-

N AForward — &
(R+P)
> < Activation
o Energy o
2 S
w +| Backward
g < (P-R)
s Activation
Energy
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Figure 3: Energy required for a reaction to take place. The
line traces the free energy of the reactants as the reaction
takes place.

terium is propelled in straight direction (what is generally
called the “running mode”), whereas when flagella rotate
clockwise, the bacterium rotates on its axis changing direc-
tion randomly (“tumbling mode”). Bacteria are simulated
in a 2D square ‘petri-dish’ of 200 units. By default, bacteria
are always running, i.e., moving in a straight line in the di-

rection of their orientation, ¢, thus: ‘fi—f = 0.05 - cos(a),
% = 0.05 - sin(a). A baseline probability of tumbling

allows for the random direction to be changed occasion-
ally. Tumbling bacteria remain at the same location, with
a changed to a random value selected from a flat distri-
bution between 0 and 27w. The effect of the influence of
C and W concentrations on flagellar rotation is abstracted
and summarized in the following equation governing the
probability of tumbling of the bacteria (i.e. the probabil-
ity of the bacteria changing direction randomly): Piymple =
0.001 * max(—0.1 + [C]? — 0.9[W]2,0.01).

Experiments and results

The goal of these two experiments we now present is to pro-
vide a proof of concept of how, in metabolism-based chemo-
taxis, small changes in metabolism can lead to qualitative
changes in behavior (experiment 1) and how behavior can
lead to fixation of new metabolic pathways (experiment 2).

E1. Influence of metabolic change in behavior

In this experiment, we demonstrate how a small change in
metabolism can lead to a substantial, qualitative difference
in behavior. Specifically we demonstrate a scenario whereby
one form of chemotaxis (selective-stopping) is transformed
into a more sophisticated form (gradient-climbing) through
exposure to a new reactant. To do this, we compare two dif-
ferent types of bacteria, placing 100 of each type evenly dis-
tributed on a petri dish containing at its center a resource of
M + E; the concentration of which decays with distance fol-
lowing a Gaussian distribution (indicated in the histograms).
The control group starts with only reactant [C] = 0.5 which
provides a functioning core metabolic pathway. The exper-
imental group is the same as the control except that it starts
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with an additional reactant, [H] = 1.0. The presence of
this chemical produces a self-maintaining gradient-climbing
mechanism by enabling reactions 1 and 2 (see Table 1 and
Figure 2 top-right and lower-right). These two conditions
allow us to examine the differences between bacteria that
have not encountered H (control group) and those that have
(experimental group).

Figure 4 indicates the behavior of the control group which
demonstrates the selective-stopping mechanism accomplish-
ing a simple form of chemotaxis. The histogram at the top
indicates the number of bacteria at different distances from
the peak resource at the end of the trial, (data taken from 10
trials, each of 100 bacteria). The three plots at the bottom of
the figure indicate the spatial distribution of the bacteria in
the petri dish at the start, halfway through, and end of a typ-
ical trial. The behavior of these bacteria is a simple result
of the metabolism and its influence on motion. In the ab-
sence of W, the concentration of C will drive the behavior
of the bacterium: if the metabolic activity (i.e., the produc-
tion of C) is high the probability of tumbling will increase
and the bacterium will remain in the local area. If C' is low
the probability of tumbling will decrease and the bacteria
will move, still in a random walk, but with increasingly long
durations of directional movement until C'is produced again
(e.g., when the bacterium finds a place where M and E are
abundant). The mechanisms resembles the Ashbian princi-
ples for adaptation (Ashby, 1952) except that the system is
simply altering its relation to the environment, instead of re-
configuring itself internally. In this way, behavior is directly
modulated by the rate of metabolic production in a “selective
stopping” manner that is beneficial for metabolism: “stay
where you are if the metabolism is running sufficiently well,
otherwise run”. This is the simplest example of what we
call metabolism-based chemotaxis where the “sensorimotor”
pathway is the metabolism itself.

Bacteria with [H] > 0 are capable of the the more sophis-
ticated “gradient climbing” strategy (widely found in bacte-
rial chemotaxis) whereby the bacteria are capable of com-
paring, as they move, the current concentration of a chemi-
cal compound with its concentration earlier. To explain how
this is accomplished, we must describe the dynamics of the
new reactant, H. H is auto-catalytic in the presence of C
and V/, so once a functioning metabolism encounters H, its
concentration will be maintained above 0. In this simula-
tion, H performs two roles. It catalyzes an equilibration
between C' and W, (H + C = H + W) and additionally, in
its auto-catalysis, transforms V' into W which inhibits tum-
bling. These equations produce a system that is described
conceptually in Figure 6 whereby 1) stoichiometry and re-
action rates cause W to change more rapidly than C, 2)
W and C tend to equilibriate to equal concentrations, and
3) W inhibits the probability of tumbling and C' enhances
it. These properties produce an adaptive gradient climbing
mechanism (adaptive in the sense used by bacteriologists to
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Figure 4: Selective-stopping bacteria distance from peak re-
source (top) and spatial distribution (bottom).

describe the ability to adapt to a wide range of base levels of
stimulus). It can be seen how in both conditions bacteria ap-
proach the resource center but H produces a more efficient
result due to its adaptation; as is evident when comparing
Figures 4 and 5 where the gradient-climbing bacteria move
to the highest concentration of resource, unlike the selective-
stoppers that stop when the resources are above a threshold.
(In both cases, a secondary peak around a distance of 190
can be observed due to the effect of the petri dish wall).

The experiment shows how changes in the metabolic net-
work of a metabolism-based chemotactic agent can lead to
qualitative adaptive changes and improvement on its behav-
ior, through relatively simple means. While moving through
its environment, a bacterium can potentially encounter a
new component H that is incorporated into the metabolism
through its self-catalytic activity and through its capacity
to improve the adaptive behavior of the bacterium. The
chances of this event happening are enhanced by the self-
movement of the bacterium. Note that the specific changes
that have occurred here have been designed to make the sys-
tem as simple to understand as possible, not to suggest that
the transformations described have occurred in this way in
biology.

E2. Influence of behavioral change on metabolism

In this new experiment we include a second metabolic path-
way. In this pathway, energetic and material resources (F
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Distribution of "Gradient Climbers" (H>0.0) relative to peak resource
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Figure 5: Gradient-climbing bacteria distance from peak re-
source (top) and spatial distribution (bottom).

and N respectively) are converted into C' and V. Like the
core metabolic pathway, this is an auto-catalytic production
requiring C' to be present to occur. However, unlike the core
metabolic pathway this reaction is also auto-catalytic with
respect to .S. This means that S is both produced by the re-
action and required for the reaction to occur (see Figure 2
bottom-left).

Bacteria, (initialized with C' = 0.5, H = 1.0 and S =
0.0) are placed evenly distributed around a petri dish con-
taining two sources of F and M, located at (x = —75,y =
0) and (z = 75,y = 0). One source of F' and N is located
at (x = 0,y = 0). There is no S in the environment except
within a circle of radius 0.5 around the left peak of resource
E and M (x = =75,y = 0), where [S] = 1.0.

Figure 7 indicates the distribution of the bacteria over the
course of the simulation. The bottom figures are as in Fig-
ures 4 and 5, but the histogram now indicates the distribu-
tion of bacteria along the x-axis, comparing the distributions
of bacteria that have zero and non-zero concentrations of S.
Data have been collected at the end of 10 different trials,
each of 100 simulated bacteria. As before, at the start of
the simulation, the bacteria are evenly distributed around the
arena. The gradient climbing mechanism attracts the bacte-
ria to one of the sources of E/M. At this stage, none of the
bacteria have any S, so F/N is not metabolizable and has
no effect on the behavior of the bacteria as the metabolism
based mechanism automatically ignores resources that are
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| 17
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free-energies of C and W | production and degradation and [W] on the probability
cause equilibriation, of C and W cause of tumbling produce a "keep
allowing adaptation [W] to change more moving straight if things are

to base level rapidly than [C improving, otherwise tumble®
pidly [ gradient-climbing behavior
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Figure 6: Implementation of gradient climbing mechanism.

irrelevant to the metabolism. As time progresses, bacteria
tend to gravitate towards the highest concentrations of E/M,
and those that are at the left source have an increasingly high
chance of encountering the pocket of S. Those bacteria that
come into contact with S become capable of auto-catalyzing
S. Their metabolism has been changed and the odds of this
change occurring have been significantly influenced by their
behavior. Those bacteria with [S] > 0 have gained a new
metabolic pathway. They are now capable of metaboliz-
ing F'/N and as time progresses, those bacteria that through
their random walk are brought close enough to “taste” F/N,
now also climb that gradient. Bacteria that were initially
attracted to the right-most source of E/M never encounter
S and accordingly never are drawn away from their initial
F/N resource source and at the end of the simulation there
are in a certain respect two ‘species’ of bacteria — one that
consumes and is attracted to both pairs of resources and one
that is only attracted to, and only consumes the original pair.

Discussion: Behavior, metabolism, evolution

The adaptive power of metabolism-based
chemotaxis

Adaptive behavior is generally understood and modelled as
optimizing some value function or as maintaining essential
variables under viability constraints. However, there is gen-
erally no reference to the dynamics of the biological orga-
nization (e.g., metabolism) that serves as the basis of these
viability constraints —see Egbert et al. (2009) for a discus-
sion. When metabolic dynamics are directly coupled to be-
havior a number of adaptive phenomena come to the surface
that generally pass unnoticed due to the typical abstractions
made in adaptive-behavior models.

From the previous experiments we can generalize that,
despite its simplicity (or perhaps thanks to it), metabolism-
based behavior can enable a number of powerful adaptive
capacities:

1. The metabolic consequences of behavior can be eval-
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Figure 7: Experiment 2. Bacteria are initially attracted to
sources of M + E, but those that encounter the metabolic-
path-opening reactant S, automatically become also at-
tracted to new resources N + F.

uated online (i.e., in ontongenetic time and in relatively
short timescales) and behavior can be modulated accord-

ingly.

2. Organisms can adapt not only to the presence of specific
chemicals but also to other environmental conditions
(e.g., temperature) that might influence metabolism.

3. Organisms can adapt not only to changes in the envi-
ronment, but to changes in their own metabolic orga-
nization by modulating their behavior accordingly.

4. Organisms can integrate information from the environ-
ment and from within, which means that behavioral and
metabolic processes of adaptation can feed back to
each other.

As a consequence, organisms can adapt (respond appropri-
ately) to various environmental and internal chemical com-
pounds and conditions that were never previously experi-
enced by the individual nor even by any of its ancestors.
Note that the system will be attracted to any compound or
condition that increases metabolic rate and will be repelled
by those that decrease or inhibit metabolism. However, this
does not rule out potential cases of maladaptation such as
parasitic interactions that override the behavioral mecha-
nism or interactions that increase the short-term rate of pro-

Metabolism Based
Behaviour

Metabolism Independent
Behavior
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Figure 8: Metabolism-independent and metabolism-
dependent responses to a change in organization (repre-
sented by a star in frame 2) that allows them to consume
a new resource (dark circle).

duction of C' but damage metabolism in the long-term by
e.g., destroying the membrane.

Behavioral metabolution, the very idea

Not only does metabolism-based behavior unveil a power-
ful form of adaptation in ontogenetic time, but it also ex-
poses an interesting evolutionary potential. Figure 8 illus-
trates the case of a mutation (genetic or otherwise inher-
itable) on metabolic pathways that permits one bacterium
to exploit and metabolize a new environmental resource.
Metabolism-independent chemotactic agents (left) will re-
main in place and the benefits of the mutation will pass
unnoticed; unless there is an unlikely coincident mutation
that makes transmembrane receptors sensitive to the new
metabolic source and generates attraction to it. Genetic drift
dictates that, most probably, such a potentially beneficial
mutation will be lost since it has no beneficial effect on the
bacterium. Metabolism-based chemotactic agents (right),
contrarily, will immediately and automatically be attracted
to the new resource (for it benefits metabolism) if they are
exposed to it. They will benefit from the mutation by in-
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Figure 9: A cycle of mechanisms contributing to adaptation.

corporating a new metabolizable resource into their organi-
zation; the mutation will be retained and a new population
could emerge in the new resource-rich environment, leading
potentially to speciation.

The model presented in this article was inspired on bacte-
rial chemotaxis. But the underlying principles can be easily
generalized to a wider context:

1. Behavior modulated by metabolism can produce an on-
line automatic adaptation to change. This change could
be external (in the sense of an environmental change), or
internal in that the behaving system has itself changed.
Internal change could include genetic mutations or sim-
ply perturbations that damage or enhance the behaving
system in some way.

2. Automatic, online adaptation to phenomena never experi-
enced before, neither by the individual, nor its ancestors
can make otherwise neutral mutations (such as the new
ability to consume a resource) more likely to be benefi-
cial mutations (through e.g., moving towards the new re-
source). It also facilitates speciation events through rapid
separation of a newly capable individual from its previous
population (discussed above).

3. Behavior can significantly influence metabolism during
lifetime. This change can be caused by a persistent be-
havior (e.g., seeking out of a reactant) or through a ran-
dom behavioral encounter with a reactant that is incorpo-
rated into the auto-catalytic network. In this way, behav-
ior can provide an important source of variation of avail-
able chemical compounds, or simply significantly influ-
ence the local concentration of reactants.

These type of interactions between behavior, metabolism
and evolution we have termed Behavioral Metabolution. We
can see the cycle of influence in Figure 9, where a change
to the organization of an agent causes it to automatically
behave differently, in a way appropriate to its change in

organization. The new behavior brings the system to a
new environment where new mutations (or old mutations)
and/or new environmental conditions might be beneficial
for metabolism, or as demonstrated in Experiment 1, can
produce a new (possibly improved) behavioral mechanism.
In this way, a push-me/pull-you dynamic interplay can be
established between changes in behavior and changes in
metabolism, influencing evolutionary processes in ways that
remain mostly unexplored.

The goal of the above experiments is not to provide ev-
idence for this phenomenon but to show the very possibil-
ity and some potential aspects of it. Further extensions of
the present work could include an open artificial chemistry
with moving protocellular systems that could be used to de-
termine whether the presence of self-movement largely in-
creases the probability of chemical-evolutionary adaptation.

Behavioral metabolution as proto-evolution

It is at the very early stages of life when the coupling be-
tween metabolism and behavior could have played a particu-
larly powerful role by instantiating, on its own (and without
the presence of a genetic code or even without reproduc-
tion!), a form of (proto-)evolution.

Assuming an origins-of-life scenario where membrane
compartments or oil-droplets enclose proto-metabolic reac-
tion networks undergoing natural selection (Shenhav et al.,
2005; Fernando and Rowe, 2008; Shapiro, 2007) it is evi-
dent how any tendency to move (even randomly) would be-
come beneficial to such systems: local metabolic resources
would soon be consumed and random movement would
lessen competition for local resources. Any bias of ran-
dom movement towards metabolically more beneficial en-
vironments would rapidly be selected. Since the selective-
stopping chemotactic strategy has been shown to be easily
evolvable (Goldstein and Soyer, 2008) it seems that it would,
sooner or later, appear and be metabolism-based (since early
metabolic networks would tend to be highly integrated and
simple—certainly not with the degree of specialization re-
quired for metabolism-independent modes of chemotaxis).

Admittedly, we have implemented an abstract version of
a sophisticated flagellar movement, which is highly unlikely
to be found at any early stage of evolution. However, at such
early stages movement could be implemented on a wide va-
riety of metabolism-controllable ways. For instance, sim-
ple reaction-diffusion spots have been shown to be capable
of movement (Krischer and Mikhailov, 1994), and more re-
cent work on convection cells (Toyota et al., 2009) also pro-
vides an example of potential early prebiotic life-like self-
movement. In addition, changes in membrane properties
could operate selectively on environmental currents; or, con-
trol of protocell buoyancy could lead to upward and down-
ward selective movement. Finally, in its most simplified
form, movement could be completely random and provided
by environmental factors; to accomplish behavioral metabo-
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lution, it would suffice (in this extremely simple form) for
the protocell to be capable of influencing the permeability
of its membrane.

In any of its possible instantiations, what remains central
to the idea of behavioral metabolution (and its relevance to
early forms of life) is the potential of the coupling between
metabolism and behavior to explore and select the chemi-
cal space that is available for metabolic organization (and its
behavioral control). In addition, differences between the be-
havioral trajectories of protocells could lead to differences
in their metabolic and behavioral organization, potentially
causing speciation and new ecological relationships (e.g.,
one species consuming another’s waste products). An exam-
ple of a “speciation-like” effect of behavioral metabolution
might be to consider irreversible effects on metabolic orga-
nization caused by behavioral patterns. Thus, for instance, if
the agent continuously moves towards certain types of envi-
ronments where resources of a certain redundant metabolic
pathway are not available it might lose its capacity to me-
tabolize such resources. A variation of experiment 2 could
explore this phenomenon by making S act like C (i.e., act as
a flagellar rotation modulator), so that agents without C' are
still viable in environments with F' 4+ N; without the pres-
ence of £/ 4+ M, C could eventually disappear and the agent
will lose its capacity to metabolize E + M again.

Conclusion

Despite the central role that both metabolism and adaptive
behavior play in artificial life and theoretical biology, very
little attention has been paid to the interplay between the
two, especially at the ontogenetic and evolutionary scales.
When behavior is not controlled by a subsystem that max-
imizes some function (generally external to the subsys-
tem itself, in the form of selected adaptations or satisfac-
tion of internal “needs”) but is, instead, directly modulated
by metabolism, then a wide range of adaptive phenomena
come to the surface. We have shown, through a model of
metabolism-based chemotaxis, how changes to metabolic
pathways can qualitatively improve behavioral strategies
(e.g., from a selective-stopping to a gradient-climbing strat-
egy; experiment 1) and how behavior might serve to ex-
plore and fixate new metabolic pathways (experiment 2).
These two examples may be used to reveal the deep role
that the behavior-metabolism interplay could have played
in evolution: by permitting the behavioral exploration of
the chemical space available for metabolism, by allowing
the behaviorally driven selective and repetitive exposure to
such chemical compounds and their subsequent incorpora-
tion into metabolism and, finally, by the potential behavioral
improvements that changes in metabolism could produce.
We coined the term “behavioral metabolution” to refer to
these phenomena where variations on metabolic dynamics
(genetic mutations, creation of new chemical species, etc.)
feed back into behavioral changes that, in turn, affect the

environmental conditions that feed metabolism.

Different forms of metabolism-behavior coupling could
have bootstrapped or driven the evolution of early (pre-
genetic) life and could be currently instantiating forms of
non-genetic inheritance or genetic assimilation of pheno-
typic plasticity. We hope to have shown that incorporating
this type of connection between behavior and metabolism
opens up a promising line of artificial life research where
the long term (evolutionary) consequences of interactions
between behavior, system organisation and environment and
can be systematically studied in simulation.
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Extended Abstract

Can we objectively distinguish chemical system that are &bprocess meaningful information from those that are not
suitable for information processing? In this talk we preseformal method to asses the semantic capacity of a chemical
reaction network.

The basic idea is to measure how easy it is to implement amirgaolecular code with this network. Inspired by
Barbieri (2008), we define a molecular organic code with eespo a given reaction network as a mapping between
two sets of molecular species called signs and meaningsgcteely, such that (a) this mapping can be realized by a
third set of molecular species, the codemaker and (b) thasésealternative sets of molecular species, i.e., alterma
codemakers, implying different mappings between the savonesets of signals and meanings (Gorlich and Dittrich, in
press).For an example see figure . We define the semanticityapiaa reaction network by simply counting the number
of different codes. We analyzed models of real chemicaksyst(Martian atmosphere chemistry and various combustion
chemistries), bio-chemical systems (gene expressior, anslation, and phosphorylation signaling cascadesye# as
random networks and artificial chemistries. We found thii¢cént chemical systems posses different semantic cégmci
Basically no semantic capacity was found in the atmosphemestry of Mars and all combustion chemistries, i.e., with
these chemistries, organic codes cannot be implementeéré&i the bio-chemical systems posses very high semantic
capacities, with (hypothetically) increasing capacitynfr metabolic networks, signalling networks, to gene repma
networks. andom networks have a much lower semantic cgghein biological networks like regulatory networks or the
genetic code network. Random networks show only organiesdor very specific parameters, for example a random
network with 15 species and an optimal density of reactiams, (30) has on average 2.7 code pairs whereas a gene
regulatory network of the same size has 9 code pairs. Thibeanplained by the fact that it is hard to achieve at the same
time a high number of closures and a large pool of pathwayslézsfrom. Note that for a code pair at least ten different
closed sets are necessary.

Our definition provides neither a necessary nor sufficieitgrga for information processing, however our resultséate
that it can be applied to evaluate the information procgssapabilities of a chemical system on an algebraic level and
may thus be a useful tool to understand the origin and ewrldf meaningful information, e.g., at the origin of life.

Acknowledgement: We acknowledge financial support by the Jena School of Miat@»mmunication (JSMC) and the
German Research Foundation (DFG).
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Figure 1: (a) lllustration of a reaction network motif thancrealize a molecular organic code. The netwoYk, R) consists
of speciesM = {a,b,c¢,d,e, f,g,h} and reaction ruleR = {a + e — e+ ¢,...}. (b) lllustration of the two possible
mappings between binary sets of species. In this exampleawebtain a molecular organic code by choosthg: {a, b}
andM = {¢,d} as signs and meanings, respectively. The €ets {e, h} is a codemaker witle’ = {f, g} the respective
alternative codemaker. Note that the arrows in (a) denatetians and the arrows in (b) denote mappings.
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Extended Abstract

We have designed a series of chemical experiments to investigate the emergence of spontaneous self-movement in a simple
chemical system. More specifically we have followed the dynamic motile behavior of oil droplets consisting of oleic anhydride in
an aqueous environment. The droplets can move by creating an internal convection flow, which enforces a break in symmetry and
organizes droplet movement. The droplets can exhibit several different styles of motion depending on their age, size and the pH
condition. The dynamics of single droplets on a glass plate show a transition from the anomalous diffusion to a directional motion
then to a more complex vibrating motion by radically modulating its boundary shape. When many droplets are present, they
aggregate and physically contact each other. We often observe that the internal convection flow of those droplets synchronize, i.e.
the directions of flow become parallel to each other like magnetic spin systems. These discoveries illustrate that coupling a
chemical reaction (hydrolysis of the anhydride) to a physical body (the oil droplet) can result in an instability that affects both
convective flow patterns and overall shape, and therefore the agents and their collective behavior.

In order to clarify how droplet ‘behavior’ changes with controlled parameters of the system, we analyzed the system for micro scale
flow patterns using microscopy and for macro scale behavior using image analysis and droplet tracking tools. First, the shape of
the droplet changes at a certain point as we increase the size from a few micrometers to a few centimeters, and accordingly the
motion pattern changes from the quasi Brownian to directional movement to a vibrating mode. We have characterized those
tendencies by measuring the stop/go intervals and the auto correlation functions. A shape change in such a system has great
importance since deformations will create new interfacial surfaces where dynamic phenomena may occur. Second, when droplets
come together, their internal convection flow is re-configured resulting in a collective motion. When the droplets use up their
chemical energy (reaction on their surfaces), the collective behavior will disappear. Therefore the collapse and genesis of collective
behavior is the evidence of the active moving droplets.

We tried to replicate those phenomena with the numerical procedure (coupling the Navier-Stokes equation with a chemical
reaction). When the initial size exceeds a certain limit, the numerical procedure fails to produce physically correct values. The
droplet breaks up into pieces. Thus the breakup of the numerical procedure may correspond to the shape transition. Therefore the
system is challenging for both experimental and numerical studies and at the conference we will focus on how single droplet mode
switching may reflect the important parameters that will allow different behaviors to emerge from such a simple chemical system.
Also when multiple droplets are present, the same signals that organize the movement of a single droplet may be used to organize
and coordinate the behavior of several droplets. Collective behavior can begin to be understood following the simple physico-
chemical processes described here.
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Abstract

We investigate the evolution of memory usage in environ-
ments where information about past experience is required
for optimal decision making. For this study, we use digital
organisms, which are self-replicating computer progrdras t
are subject to mutations and natural selection. We place the
digital organisms in a range of experimental environments:
simple ones where environmental cues indicate that a specifi
action should be takere(g, turn left to find food) as well as
slightly more complex ones where cues refer to prior expe-
rience €.g, repeat the action indicated by the previous cue).
We demonstrate that flexible behaviors evolve in each oéthes
environments, often leading to clever survival strateghets
ditionally, memory usage evolves only when it provides a sig
nificant advantage and organisms will often employ surpris-
ingly successful strategies that do not use memory. However
the most powerful strategies we found all made effective use
of memory.

Introduction

Organisms must be able to respond to their environment to

maximize their chances of survival. They must be able to

navigation. Our experimental environments are inspired by

maze-learning experiments with honey bees (described be-
low). By using these types of environments, we maintained

a strong connection between our experiments and their bio-
logical motivation, and we were able to probe specific issues
relating to the evolution of memory use. Situated at the in-

tersection of biology and computer science, our approach
aims to provide insight for both disciplines.

Motivation from insect navigation

Insects are ideal subjects for the study of navigation behav
iors. Ants, bees, and other insects use an array of innate
strategies to navigate, includingndmark tracking where
the insect refers to a visual marker (Graham et al., 2008), an
path integration(Muller and Wehner, 1988), which is the
continual internal monitoring of distance and directiolare
tive to a reference locatiore(g, the nest). Studies of maze
learning in insects are of particular interest, since margsh
and ants often follow fixed routes from the nest to a forag-
ing site (Collett et al., 2003). In learning a maze, an in-
sect is learning to follow a well-defined path (Collett et al.

vary their reactions based on differences in time, place, or 1993). Bees have been trained to fly through mazes of vary-
circumstance. Evolution has produced many mechanisms ing complexity. Studies by Collett and colleagues (Collett
that allow such flexible responses, including simple reflex- and Baron, 1995; Collett et al., 1993) used small mazes to
ive behavioral routines, such as the response of bactkeiali  investigate bees’ ability to learn motor or sensorimotor se
Escherichia coliE. coli) to move toward food, or innate be-  quences. One study (Collett et al., 1993) forced bees to fly
havioral preferences and patterns, as observed in many in- along prescribed routes and through obstacles in a large box
sects (Dukas and Bernays, 2000). In well-defined, stable and concluded that bees can remember sensory and motor
circumstances, a repertoire of innate, fixed behaviors may information that allows them to reproduce a complex route.
be sufficient to allow organisms to be successful. How- A study by Zhang and colleagues (1996) demonstrated
ever, when circumstances can vary due to dependencies onthat honey bees could use specific visual cues to learn to fly
time, place, previous experiences or environmental chenge through structurally complex mazes. Another study (Zhang
then more dynamic and flexible behavioral mechanisms are et al., 2000) probed whether bees learn and recognize struc-
needed. In such cases, memory and learning may allow indi- tural regularity in the mazes. For these experiments, bees

viduals to more effectively adjust behavior according te th
local world state (Dukas, 2008).

How do environment, memory, and learning interactin an
evolutionary context? This question is of great interest to
both biologists and computer scientists who study the evo-
lution of intelligence. We present early results in our ex-
ploration of this interplay in the context of the evolutioh o

were trained and tested in four different types of mazes:
constant-turn, where turns are always in the same direc-
tion; zig-zag, where each turn alternates direction; uitag
which has no apparent pattern of turns; and variable irreg-
ular, where bees had to learn several irregular mazes at the
same time. The bees performed best in constant-turn mazes,
somewhat poorer in zig-zag mazes, still worse in irregular
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mazes, and poorest of all in variable irregular mazes. The
authors concluded that the bees’ performance in the vari-
ous configurations depends on the structural regularityeof t

instructions, and its virtual CPU. The CPU contains three
general purpose registers, several heads, and two staois. T
instructions in the organism’s genome execute by acting on

mazes, and the ease with which the bees can recognize andhe components of the virtual CPU, and execution of instruc-

learn that regularity.

Computational approaches

Evolutionary robotics has dealt extensively with several
facets of evolving memory and learning. One aspect is phe-
notypic plasticity, the ability of a genotype to express dif
ferently in different environments. Nolfi et al. (1994) stud
ied this topic by evolving neural network “brains” for vir-
tual robots in environments that alternated between ligtt a
dark. Individuals that evolved under these conditions were
able to tune their behavior appropriately for both kindsref e
vironments, adapting within an individual “lifetime” to en
vironmental changes.

Evolution and learning employ different mechanisms and
occur at differing time scales making their interactiond,an
indeed, the evolutiomf learning, a topic of intense study
(Nolfiand Floreano, 2002). A study by Floreano and Urzelai
(2000) is a strong example of the latter. They evolved neural
networks with local synaptic plasticity and compared them
to fixed-weight networks in a two-step task. The networks
evolved to turn on a light and then move to a grey square.
The results showed that local learning rules helped netsvork
alter functionality quickly, facilitating moving from ortask
to the other. Blynel and Floreano (2003) explored the abilit
of continuous time recurrent neural networks (CTRNNS) to
solve reinforcement learning problems in the context of T-
Maze and double T-Maze navigation tasks, where the robot
had to find and “remember” the location of a reward zone.
The learning in this case occurred without modification of
synapse strengths, coming about instead from internal net-
work dynamics.

Methods
Avida: Overview

Digital evolution (Adami et al., 2000) is a form of evolution
ary computation in which a population of self-replicating
computer programs, or “digital organisms,” is placed in a
computational environment where they compete and mu-
tate. Digital evolution can be used both for understanding
biological processes and for applying insights from biol-
ogy to computational problems. The Avida software system
(Lenski et al., 2003; Ofria and Wilke, 2004) is a widely used
platform for digital evolution. Avida provides a separate i
stance of real evolution useful for experimental studien(P
nock, 2007).

The “world” in which evolution takes place in Avida is
a discrete two dimensional grid containing a population of
digital organisms (or “Avidians”), with at most one Avid-
ian per grid cell. The individual organism consists of its
“genome,” which is a circular list of assembly languageslik

tions incurs a cost in virtual CPU cycles. An Avida organ-
ism accomplishes all tasks.(, replication and movement)
by executing Avida instructions.

An Avida organism replicates by copying its genome into
a block of memory that will be its offspring’s genome. The
copying process is sometimes imperfect, leading to differ-
ences between the genomes of parent and offspring. These
differences are mutations, and may occur as a substitution,
insertion or deletion of an instruction. The Avida instioat
set is robust to mutations, so that any program will be syn-
tactically correct even when mutations occur (Ofria et al.,
2002). Upon replication, an organism’s offspring is placed
in a random grid cell, terminating any organism that previ-
ously occupied that cell. Thus, organisms in the population
compete for the limited space in the set of grid cells, and or-
ganisms that replicate more quickly will have a greater num-
ber of descendants. An organism can increase its metabolic
rate (the relative speed it executes instructions) by perfo
ing user-specified tasks. We measure the fithess of an or-
ganism as its metabolic rate divided by the number of CPU
cycles it requires to replicate.

Experimental environments

Each Avidian was placed in an environment containing a
path (inspired by the maze-learning experiments discussed
earlier (Zhang et al., 1996, 1999)) that it could gain nutri-
ents by following. To follow a path, an organism must sense
cues in the environment that tell it how to stay on the path,
and react appropriately to those cues. In some cases, this
task necessitated evolving the ability to store and reuse ex
perience. Sensing and movement in the virtual grids were
accomplished by executing experiment-specific Avida in-
structions. The movement instruction moves the organism
into the grid cell that it is currently facing. Movement oc-
curs only one step at a time. In the virtual environments of
the current study, each organism has its own virtual grid,
so organisms do not interact during movement. Orienta-
tion changes require additional instructions, one foringn
right 45 degrees and another for turning left 45 degrees. Or-
ganisms had to combine the different instructions—sensing
movement, and orientation—in order to successfully follow
more complex paths.

An organism must navigate its environment to find
sparsely distributed “food”. Movement requires energy, so
each step depletes the organism’s energy store. When an or-
ganism encounters food, the food gives it more energy than
the amount lost through movement. Locations that are off
the path are “empty”, containing no food. When an or-
ganism moves into an empty location, the organism loses
a small amount of energy, without regaining any energy.
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< Empty We conducted experiments using multiple environment

e Nutrient types. Each environment type placed different memory use

< Left Turn and decision-making demands on the organisms. In all

D> Right Turn cases, an organi.sm could sense the.conte_nts of a cell by using

’ Repeat Last a sense instruction; each cue (nutrient, right turn, left,tu

repeat last, empty) had a unique sensed value. The sense
instruction provided the sensory information from the envi
ronment, but the organism had to decide what, if anything,
to do with that information.

Figure 1: Example experimental environment, using all
cues.

Environment 1: Evolving reflex actions. This environ-
ment type contained turns in a single directioa.(one path
instance contained only right turns, while another path in-
stance had only left turns; see Figure 3 below). The single-
direction paths had a spiral shape and contained three cues:
nutrient, empty, and only one type of directional cue (right
or left). This environment presented organisms with all in-
1. Nutrient: A cue that indicates the path, and provides en- formation required to make turn decisions at the time and
ergy (the “food” on the path). place that it was needed.

Itis reasonable to believe that reflexive responses evolved
before learning (Todd and Miller, 1990), and these types
of responses are well known as the basis for conditioning
(Rescorla, 1988). From a practical standpoint, if an organ-
3. Repeat-last: A special directional cue to repeat the last iSm cannot evolve to perform an action correctly when it

turn direction, and acting as a nutrient. always should, it will never be able to effectively decide to
act selectively.

Movements into empty locations are detrimental to the or-
ganism: continued energy depletion will impair the organ-
ism’s ability to replicate. Organisms that move along the
food-rich path build up their energy, and are able to execute
at an accelerated rate. Each environment contained some
combination of the following cue®(g, Figure 1):

2. Directional cue: A cue that indicates to turn either right
or left (45 degrees in the specified direction) to remain on
the path. Directional cues also act as a nutrient.

4. Empty: A cue that indicates cells that are off of the path.
The net loss of energy from a step into an empty cell

equals the net gain of energy from a nutrient. Environment 2: Evolving volatile memory. In the first

environment type, the organisms could sense a directional

All paths used only 45-degree turns, so that a turn could be cue at each turn; a right turn and a left turn have different
accomplished with a single, unmodified Avida instruction.  sensed values. In that setup, past cues never had to be stored

An organism that travels the entire path without a mis- in order to make an informed decision about the current ac-

step receives the maximum possible bonus. The bonus istion. In the second set of experiments, the organism can

based on the count of unique path cells that the organism remain on the path only if it remembers the most recent turn
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direction. In this environment, if a turn is in the same direc

tion as the preceding turn, the sense value is different from
the sense values of a right turn and a left turn. This new
cue signals an organism to “repeat the last turn direction”.
This arrangement of information along the path means that

an Avidian must be able to change the remembered sense

cue value an arbitrary number of times in its lifetime, and at
irregular intervals. Thus, this memoryuislatile as opposed
to the unchanging reflex memory needed for the first exper-
imental environment. The arrangement of cues in the sec-
ond environment type necessitates flexible use of informa-
tion from an increasingly complex environment. An organ-
ism must remember a binary value (turn right or turn left),
or one bit of information in information theory terms.

To provide environmental variation and discourage the
evolution of brute-force solutions, organisms were presn
(at random) with one of four different paths of each environ-
ment type during the course of evolution. Thus, any individ-
ual organism had &.25 probability of being born into the
same environment as its parent.

For each experimental environment, we ran 50 replicate
populations capped at 3600 organisms for 250,000 updates
(a unit of time in Avida), or a median of approximately

33,000 generations. Each experiment seeded the population

with an organism capable only of replication. This simple
self-replicator ancestor’s genome consists of 100 instruc
tions, comprising a short copy loop and a large number of
no-operation instructions. Any other instructions andacap
bilities can appear through mutations. All experimentgluse
a 0.085 genomic mutation rate for a length organism

(a 0.0075 copy-mutation probability per copied instructio
and insertion and deletion mutation probabilities of 0.86 p
divide) (Ofria and Wilke, 2004).

Results and discussion
To evaluate the success of different experimental treatsnen
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Figure 2: Distribution of average maximum task quality
(AMTQ), individual Experiment 1 paths. Paths 1 and 2 are
right-turn-only paths, Paths 3 and 4 are left-turn-onlyhgat
There is no significant difference in the AMTQ distributions
for each path (Kruskal-Wallis Tegt,= 0.287).

ity quantifies the performance of the best-performing organ

isms from each population, and the Average Maximum Task
Quality (AMTQ) averages this population maximum task

quality over all 50 replicate experiments of each environ-
ment type.

To test the behavior of evolved organisms, we ran exe-
cution traces for selected final dominant genotypes (most
abundant genotype at the end of an evolution experiment) in
different environments. With each environment, we tested
organisms (1) on the same virtual grids that the organisms
experienced during evolution, to observe their behavior in
those “ancestral” environments, and (2) in novel environ-
mentsj.e., paths that no organism experienced during evolu-
tion, to demonstrate the generality of the evolved soltion

we used both quantitative performance measures and behav-or uncover solutions that had been tuned specifically to the

ioral tests of evolved organisms. For the quantitative mea-
sures of performance, we examined fitness and task quality
over time. These values are tracked and recorded during
the course of an Avida experiment. For behavioral tests, we
traced execution and trajectory of evolved organisms on dif
ferent path configurations, including paths that were never
experienced during the course of evolution.

We use task quality to measure how well an organism per-
forms in a given environment. For this study, task quality
measures the fraction of the path an organism traversed, les
any movement into empty cells; an organism that traversed
the full path without moving into any empty squares would
have a task quality of.0. Because overall metabolic rate

ancestral environments.

Evolving reflex actions. Figure 2 shows the distributions
of AMTQ values for each of the four single-direction paths.
There was no significant difference between the AMTQ dis-
tributions for each path, as measured by the AMTQ at the
end of evolution (Kruskal-Wallis Tesp, = 0.287). Figure 3
shows trajectories of the final dominant with the highestend
ing metabolic rate among all 50 replicate single-direction
path experiments, on a right-turn-only path (Figure 3a) and
on a left-turn-only path (Figure 3b). The organism’s tra-
jectories on the other two evolutionary environment paths
are qualitatively identical to those shown. The organism’s

for these experiments was associated solely with the path evolved strategy performed well in both turn environments.
traversal task, task quality and fitness track closely. The The organism did some “backtracking” on the right-turn

overall performance of a population is shown by the aver- grid, i.e., it turned around and retraced some of its steps on
age task quality for that population; the maximum task qual- the path. This behavior did not reduce the organism’s task
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Figure 3: Trajectories of an example evolved organism froqpefiment 1 on paths that were experienced during evolution
(“ancestral” paths).

quality as the calculation does not penalize an organism for 1r 1 i : L 1
multiple traversals of a path cell. The risk of such behavior 0.0 n + |
is that the organism wastes CPU cycles, thus reducing fit- -
ness, although this particular organism still evolved tthae 0.8 |
most fit individual in its population. This organism was able 0.7¢ + * 1
to navigate the entire right-turn path without entering any 8 o6l ’ i |
empty cells. The organism also successfully followed the £ ol ) ' . ' |
Iefltl-turn-only path, stopping after it encountered one gmp go il |
cell. 20

To understand this organism’s algorithm, we analyzed its 0.3} 1
execution while traversing each of these two paths. Most of
the path-following and replication code of this organism’s
genome is organized into two modules. The first module, 0.1r g Q g_g g J |
“Module 1A,” is mostly concerned with moving on a right- or ‘ ‘ ‘ ‘ 1
turn path while the second module, “Module 1B,” focuses on Path 1 Path 2 Path 3 Path 4
left-turn paths and contains a copy loop. These code section
are both executed, regardless of whether the organismis on a
right-turn or left-turn path, but the behavior that the miedu
produce differs according to the path type. In general, Mod-
ule 1A is a “counting” routine. When the organism is on a
right-turn path, Module 1A counts the organism’s steps. On
a left-turn path, Module 1A counts the number of rotations
the organism executes. Module 1B allows the organism to iment 1. The AMTQ for these experiments shows a weaker
travel to the end of a left-turn path and then replicate. When performance than in the other environment. The difference
the organism is on a right-turn path, the organism uses Mod- in AMTQ at the end of 250,000 updates was significantly
ule 1B to “backtrack” on the path, retracing some of its steps  different in the irregular path experiments compared to the

Figure 4: Distribution of average maximum task quality
(AMTQ), individual Experiment 2 paths. There is no sig-
nificant difference in the AMTQ distributions for each path
(Kruskal-Wallis Testp = 0.238).

while it finishes its replication process. other environment (Kruskal-Wallis Tegt, < 0.05). There
was, however, no significant difference in the performance
Evolving volatile memory. The irregular path environ- on each path, measured by the AMTQ at the end of evolu-

ment was more challenging than the environments of Exper- tion (Kruskal-Wallis Testp = 0.238). Figure 4 shows the
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Figure 5: Trajectories of an evolved organism from Experittiirregular path experiments. In both (a) and (b), the oigra

stops moving after encountering one empty cell.

distributions of AMTQ values for each of the four ancestral
irregular paths.

Despite the generally inferior performance of the evolved
populations in this environment, some highly effective
strategies evolved. Figure 5 shows the trajectories of the fi
nal dominant organism from the population with the highest
AMTQ at the end of the 250,000 update evolution run. This
organism has an excellent solution for following these path
stopping after taking one step off the end of the path into an
empty cell. The evolved algorithm is equally effective on
novel paths, as shown in Figure 6.

The execution of this organism’s genome is somewhat
complicated, and shows an impressive degree of flexibil-
ity. In general, this organism operates by moving its exe-

forward steps and repeated right turns. If a left turn cue is
sensed, Module 2B terminates and execution jumps to the
beginning of the genome, eventually reaching Module 2A

again. If an empty cell is sensed while execution is in Mod-

ule 2B, the module terminates and execution continues with
the instructions after the module. In addition to the move-

ment modules, the organism has a tight copy loop near the
end of its genome that accomplishes almost all the copying
for the organism'’s replication.

There are two features of this organism that are particu-
larly interesting. The first is the organization of the geeom
The sections of the genome that do the bulk of the work
for this organism—the two movement modules and the copy
loop—are functionally and spatially modular. For all three

cution to different parts of its genome based on the sensed of these loops, very little happens within them apart froe th

environmental cue. The organism accomplishes all of its
path-following with two loops, one for moving through left-
turn path sections, “Module 2A,” and the other for moving
through right-turn path segments, “Module 2B.” Unlike the
other organisms that we have examined in detail, this or-
ganism has well-defined functional and structural modular-
ity for handling right-turn and left-turn path sections. t4o

ule 2A appears before Module 2B in the organism’s genome.

Module 2A can perform an arbitrary number of consecutive
left turns, and any number of forward steps. Using Mod-
ule 2B, the organism can maneuver through right-turn path
sections. Module 2B functions with arbitrary humbers of

main function of the loop. The loops are also spatially mod-
ular: they are located in different sections of the genome.
Example organisms from the preceding experiments also
demonstrate structural modularity, but their functionaldn
ularity is generally less defined. The second feature of spe-
cial interest is the flexibility of execution flow between eod
modules. The execution flow enables the organism to clev-
erly handle all the contingencies of the environment. For
example, even though Module 2A (left-turn module) is en-
counteredfirstin the sequential execution of the genonae, if
right turn is encountered first, the flow moves easily through
Module 2A and into Module 2B (right-turn module). The

Proc. of the Alife XII Conference, Odense, Denmark, 2010

229



XX XK XX XX KK XX X K XX X X R XX
XX XX KX X KX KX X KK A XX XX X XX

—Organism Trajectory
ﬁfk Org. Initial Location
B Org. Final Location
< Empty

® Nutrient

< Left Turn

> Right Turn

@ Repeat Last Turn

Figure 6: Trajectory of an evolved organism from Experi-
ment 2 irregular path experiments, traversing a novel path.

algorithm evolved to deftly maneuver along the paths, using
environmental cue information to alter its execution.

By analyzing the execution of evolved genomes from both
environmenttypes, we found that memory use involved both
the organization of the genome and volatile states of the or-
ganisms’ virtual CPUs. The organization of the genomes
provided functional modularity, while different envirorem-
tal information created different states of the virtual CPU
that lead to differential behavior based on the currenestat
in the environment. The resulting behaviors formed a sim-
ple set of behavioral repertoires that could be used flexibly
in response to environmental stimuli.

Conclusions and Future Work

tigation in both biology and computer science. Insights int
the evolution of behavioral characteristics of naturalaorg
isms must rely on studies of extant species, since the fossil
record provides little information about an animal’s behav
ior. Our results may help provide additional insights by al-
lowing detailed analysis of the evolutionary transitiohatt

led to intelligent behavior. Those insights can, in turn, be
used in the context of computer science to produce artificial
systems that exhibit the behavioral flexibility of natungs
tems. The current work is an early step in this direction.

Natural evolution produced many impressive navigation
abilities in animals. These capabilities are made up of4inte
woven strategies, which are themselves made up of simpler
underlying mechanisms. Memory is undoubtedly one such
underlying mechanism. We witnessed memory evolve even
when not required in the single-direction path experiments
the “step-counter” organism based part of its strategy on
tracking its progress along its path. This organism pogsess
a simple odometry mechanism, like those found in many an-
imal navigation systems. This same organism was also able
to count its rotations to orient itself in the correct difent
Self-referential compasses are another component of &nima
navigation. The results from our study hold promise of fu-
ture insights into questions surrounding the evolutionasfn
igation. For example, the environments used in the current
study can be adjusted so that organisms need to explore the
environment to find resources, and then return to their ini-
tial location as efficiently as possible. This situatiorsagp
investigating the evolution of path integration. There is a
rich collection of evidence of this ability in many animals,
and different models of the mechanism have been presented
(e.g, Mittelstaedt (1985), Muller and Wehner (1988), Hart-
mann and Wehner (1995)). How evolution produced such
a capability is, however, an open question. Some interest-
ing work has explored this issue, such as Vickerstaff and
DiPaolo (2005), who used a genetic algorithm approach to
evolve neural network models of path integration. Experi-
ments such as those in the current work have the potential
to contribute to that discussion, by allowing detailed ekam
nation of both the evolution and the evolved algorithms that
are not possible in network based approaches.

The path-following environments can be used to study
the evolution of associative memory, the process by which
animals learn about cause-and-effect relationships lEstwe
events and then behave appropriately (Rescorla, 1988; Shet
tleworth, 1998). We can simulate the arbitrary stimulus, im

Through these results, we illustrate that memory and flexi- portant for associative learning, by generating random-num

ble behavior can evolve in simple environments. Evolution bers for signpost cues each time a particular path is agsigne
capitalizes on both environmental change and regularity to to an organism, changing the values for the organism’s off-
construct these solutions. The experiments presented herespring. For true associative memory, the organisms should

suggest, not surprisingly, that it is more difficult to evelv
volatile memory than to maintain “evolutionary memory”
(reflexes).

Results such as those we present here may inform inves-

be able to associate arbitrary features of their surrogsdin
with their desired goal. We plan to vary the relationship be-
tween the cue and the target, so the cue might be prompting a
turn in the paths, or it might indicate that the food source is
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certain distance ahead, regardless of what else the ongsinis
have seen in the interim.

The experimental results that we present here demonstrate

the evolutionary origin of simple intelligence and behaalo

flexibility. Organisms from these experiments were capable

of gathering information from the environment, storingttha
information, and using the information for decisions. More
over, organisms that succeeded in the irregular path emviro

ments were able to use a past individual life experience to

guide future decision-making.

Acknowledgments

We would like to thank Philip McKinley, Wesley Elsberry,
Jeff Clune, Michael Vo, Erica Rettig, and other members
of the MSU Digital Evolution Laboratory for valuable com-
ments and discussion.
grant from the DARPA FunBio program, NSF grant CCF-

0643952, and a grant from the Cambridge Templeton Con-

sortium,“Emerging Intelligence: Contingency, Convergen
and Constraints in the Evolution of Intelligent Behavior.”

References

Adami, C., Ofria, C. A., and Collier, T. C. (2000). Evolutiaf
biological complexity.Proceedings of the National Academy
of Science97:4463—-4468.

Blynel, J. and Floreano, D. (2003). Exploring the T-mazeihéng
learning-like robot behaviors using CTRNNs. In Cagnoni,
S., editor,Applications of Evolutionary Computind.ecture
Notes in Computer Science, pages 593-604. Springer, Berlin

Collett, T. S. and Baron, J. (1995). Learnt sensori-motoppireys
in honeybees: interpolation and its possible relevanceve n
igation. Journal of Comparative Physiology, A77:287—-298.

Collett, T. S., Fry, S. N., and Wehner, R. (1993). Sequenamie
ing by honeybees.Journal of Comparative Physiology, A
172:693-706.

Collett, T. S., Graham, P., and Durier, V. (2003). Routeragy by
insects.Current Opinion in Neurobiologyl3:718-725.

Dukas, R. (2008). Evolutionary biology of insect learnidginual
Review: Entomologyb3:145-160.

Dukas, R. and Bernays, E. A. (2000). Learning improves dgnowt
rate in grasshoppersProceedings of the National Academy
of Science97(6):2637—-2640.

Floreano, D. and Urzelai, J. (2000). Evolutionary robotshwi
online self-organization and behavioral fitned¢eural Net-
works 13:431-443.

Graham, P., Fauria, K., and Collett, T. S. (2003). The infbecof
beacon-aiming on the routes of wood artsurnal of Exper-
imental Biology 206:535-541.

This work was supported by a

Hartmann, G. and Wehner, R. (1995). The ant's path integra-
tion system: a neural architectur@iological Cybernetics
73:483-497.

Lenski, R. E., Ofria, C., Pennock, R. T., and Adami, C. (2003)e
evolutionary origin of complex featuresNaturg 423:139—
144,

Mittelstaedt, H. (1985). Analytical cybernetics of spideviga-
tion. In Barth, F. G., editofNeurobiology of arachnidpages
298-316. Springer, Berlin.

Muller, M. and Wehner, R. (1988). Path integration in desets,
Cataglyphis fortis Proceedings of the National Academy of
Sciences of the United States of AmerBs:5287-5290.

Nolfi, S. and Floreano, D. (2002). Synthesis of autonomohst
through evolutionTrends in Cognitive Science®(1):31-37.

Nolfi, S., Miglino, O., and Parisi, D. (1994). Phenotypic gilaity
in evolving neural networks. IRroceedings of the PerAc '94
Conferencepages 146-157, Los Alamitos, CA. IEEE, IEEE
Computer Society Press.

Ofria, C., Adami, C., and Collier, T. C. (2002). Design of kvo
able computer language&EE Transactions in Evolutionary
Computation17:528-532.

Ofria, C. and Wilke, C. O. (2004). Avida: a software platform
for research in computational evolutionary biologytificial
Life, 10(2):191-229.

Pennock, R. T. (2007). Models, simulations, instantiatj@nd ev-
idence: the case of digital evolutiodournal of Experimental
and Theoretical Artificial Intelligencel9(1):29-42.

Rescorla, R. A. (1988). Behavioral studies of Pavloviarditon-
ing. Annual Review of Neuroscienckl:329-352.

Shettleworth, S. J. (1998Fognition, evolution, and behavio©x-
ford University Press, New York.

Todd, P. M. and Miller, G. F. (1990). Exploring adaptive aggen
II: simulating the evolution of associative learning. Arom
Animals to Animats: Proceedings of the First International
Conference on Simulation of Adaptive Behavior pages
306-315. MIT Press, Cambridge, MA, USA.

Vickerstaff, R. and Di Paolo, E. A. (2005). Evolving neuraban
els of path integration. Journal of Experimental Biology
208:3349-3366.

Zhang, S. W., Bartsch, K., and Srinivasan, M. V. (1996). Maze
learning by honeybee&\eurobiology of Learning and Mem-
ory, 66:267-282.

Zhang, S. W., Lehrer, M., and Srinivasan, M. V. (1999). Hoeney
bee memory: navigation by associative grouping and recall
of visual stimuli. Neurobiology of Learning and Memary
72:180-201.

Zhang, S. W., Mizutani, A., and Srinivasan, M. V. (2000). Maz
navigation by honeybees: learning path regularitgarning
and Memory 7:363-374.

Proc. of the Alife XII Conference, Odense, Denmark, 2010

231



Self-organized Segregation Effect on Self-Assembling Robots

Aubery Marchel Tientcheu Ngouabé#, Shuhei Miyashit&, Rudolf M. Richslin?3,
Kohei Nakajimd, Maurice Gldi 2, and Rolf Pfeifer
! Technical University Munich
2 Artificial Intelligence Laboratory, University of Zurich
3 European Centre For Living Technology, Venice, Italy
aubery.tientcheu@mytum.de

Abstract

Complex systems involving many interacting components be-
ing out of equilibrium often organize into patterns. Under-
standing the underlying principles that govern such systems
might lead to a deeper insight into living systems and the
development of new applications in robotics. In this contri-
bution, we investigate water-based self-assembling modules,
exhibiting a segregation effect under some particular condi-
tions. The system consists of vibrating (active) and non vi-
brating (passive) circular modules floating on the surface of
the water. The segregation happens as a result of a depletion-
like force, which is of purely entropic nature and is based on
the characteristics of the modules (active or passive). We fo-
cus especially on the dynamics of the process with respect to
the energy and the entropy. Some applications of the designed
system are also discussed.

INTRODUCTION

Self-organization is one way by which nature builds arte-
facts at various scales. Nature offers diverse examples: th
formation of molecular crystals [9], the folding of polypep
tide chains into proteins [17], the folding of protein into
their functional form [20], the cell’'s spontaneous organiz
tion into tissues [18], bacteria into colonies [10] [6], floe-
mation of swarms (flock of bird or school of fish [23]) at a
higher level, are commonly achieved in a distributed man-
ner, where there is no central control system.

In the industry, as the aimed size of products decreases,
people have started to recognize the advantages of self-
organization in general and self-assembly in particular —
which is typically approached in a bottom-up fashion. The
potential capability as an alternative to replace tradalo
manipulating methods by self-assembly has been brought to
attention. Standard manipulators have shown some limita-
tions in the manipulation of nano-scaled components and
there is a need for alternative methods with the miniaturiza
tion in the nanotechnology industrilanogen Inc employs
electric field-mediated self-assembly to bring togethelrADN
nanocomponents for electronic and diagnostic devices [13]
Alien technology Corporation uses self-assembly techniques
like shape recognition or fluid transport to fabricate micro
scaled RFID tags [8][28].

One collective behavior that can emerge as result of local
interaction is segregation, that is a spatial sorting nektho
where a group of objects occupies a continuous area of the
environment which is not occupied by members of any other
group. Segregation plays a key role in the food and drug pro-
cessing industry. In particular, when shaking foods made of
particles or granular material of different sizes, segtiega
effects occurs and the underlying mechanism is known as the
Brazl nut effect or themuedli effect [24]. This spontaneous
ordering goes against one’s intuition that objects get thixe
when merged in random directions and was described by
Barker and Grimson in this way: "During the periods when
shaking loosens the packing, individual small particles ca
move into voids beneath large particles and so prevent them
from returning to their previous positions. It is far lessipr
able that several small particles will move together so as to
create a void that can be occupied by a single large parti-
cle. The net effect is that the smaller particles occupy the
lower positions during the active part of the shaking preces
and then become trapped there when the grains fix into a
new arrangement.” [3]. A similar phenomenon takes place
in the industrial production of drugs, thereby yielding €eon
siderable risks for patients (who are assumed to consume
homogeneous mixings).

Many self-assembly and self-organizing systems have
been suggested using different approaches, several of them
inspired by biology. The best known example in this domain
is probably the Reynolds flocks of birds [23], where differ-
ent agents generate a flocking behavior by means of sim-
ple rules: collision avoidance, speed and heading matching
and maintaining a close distance to the neighbor flock mates.
The collision avoidance enables the agents to avoid codlidi
with each other; the second rule enables the agents to match
their speed with their neighbors speed, whereas the thHied ru
enables them to maintain a close distance to the neighboring
birds. Reynolds simulations of the flock of bird show that
these local interactions produce a global behavior sinlar
the flocks of birds we observe in the nature. Reynolds work
doesn’t only provide a tool to understand how the real flocks
of birds achieve their global behavior but also help to de-
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sign machines with formation control capabilities. White-
sideset al. assessed dynamic self-assembly would be one
of the key challenges in building self-assembly system} [26
and in understanding life. Their suggestion relies on the fa

that can assemble to a single module. To overcome the re-
straint that the system has some difficulties to possessiglob
information, the designer is supposed to consider the chara
teristics of the system and design new in/out scheme and ap-

that the most living systems are dynamic and understanding ply an adequate controlling method to the robots. If thesunit

dynamic self-assembly would probably also leads to under-
standing life. Pfeifert al. proposed a new approached in

move around by other means (e.g., by exploiting surface ten-
sion or by taking advantage of Brownian maotion), the sys-

the design of robotics systems in general and living systems tem is stochastically self-reconfigurable implying vak&ab

in particular. They suggested a synthetic approach taking
morphological aspects into account [22].

There are three basic issues with this picture: (1) al-
though little is known about the underlying assembly pro-
cess, the fact that many living systems adopt similar mech-

reconfiguration times and uncertainties in the knowledge of
the units location (the location is known exactly only when
the unit docks to the main structure). The advantages of this
form of reconfiguration are at least two-folds: it can be ex-
tended to small scales, and it alleviates local power requir

anisms hints at common design principles suggesting that ments.

simplified models (such as the one presented in this paper)

might be helpful in understanding the process; (2) even for

In this paper, we show how segregation effects can be
achieved on our platform. An important part of our mod-

a small cells, there are too many possible intermediates to €lling is the introduction of passive and active modules. We

allow a complete description of the assembly process with

will see how these two types of particles successfully segre

three independent stages [10]; and (3) a generalized schemegate and describe the dynamics of the segregation behaviour
to avoid a substantial degree of incorrect assembly has to by discussing the center of mass of each cluster and the en-

exist.

To date a few self-reconfigurable modular robots relying
on stochastic self-assembly have been built [4][7]. White
et al. studied two systems in which the modules binding

tropy of the system.

THE EXPERIMENTAL SETUP
The Model

preferences are coded in a program executed by an on-boardrhe term self-assembly implies that the elements or parts

microcontroller, and thus can easily reconfigure the struc-
ture [25]. The modules are initially unpowered and passive,

involved assemble in a spontaneous manner without external
intervention or control. Taking this into account, we chose

but once they bind to a seed module connected to a power to produce a set of modules with the same shape that swarm

supply, they become active. Griffih al. studied a system
of template-replicating modules [12]. They used modules of

the same type, which are programmable and can store dis-

tinct states. The system demonstrated the self-replitatio
of a five modules polymer. Each module executed a finite-
state machine. Klavinst al. examined the problems of

designing a grammar that causes modules to assemble into

desired products, of predicting the time complexity of such
processes, and of predicting (and optimizing) the yield of

such processes [15]. Emergent self-propulsion mechanisms

were investigated by Ishiguret al. [14]. In Ant-inspired
robotics, the interest in self-organization has been drive

the observations of the same phenomena in ant colonies, in

particular the brood sorting biemnothorax [11]. Wilson et

al. [27] created an algorithm to realize two colors annular
sorting which used differential pull-back distances fdr di
ferent object types. By discriminating between three puck
types, the robots could drop the first type of object on col-
liding with another puck, drop the second object type after
pulling back a short distance and drop the third puck type
after pulling back a further distance.

The Tribolon platform developed in our group is an ex-
ample of a system using the morphology, which means the
form and the shape of the involved components to get self-
propelled robots to self-assemble [19]. Previouly, weiedrr
out several experiments with circular sector shaped madule

on water.

module |
L
r
2

pantograph i {
vibration motor self-propelled
o -,/ 4
*- »
selfspropelled
module

magnets base plate I‘"\l

electrode

YT
\ 1
“'"'-. passive ;
|

base plate

Figure 1: (a) Self-propelled and passive modules. Each

module weigh2.8 g and has a footprint af2.25 cm?.

To conduct the experiments, we used the Tribolon plat-
form [19] consisting of centimeter-sized modules floating
on the water surface. All the modules are equipped with
a permanent magnet attached at the bottom and aligned in a
way so that they repel each other (north is always pointing
up). Some of the modules are, in addition to the permanent
magnet, also equipped with a vibration motor. In this paper,
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Figure 2: lllustration of the experimental environmenttwit
three modules.

we will denote a module provided with a vibration motor as
vibrating or active module and a module only provided with
a permanent magnet as passive module.

The vibrating modules are equipped with a flat core-
less vibration motor (T.P.C DC MOTOR FM34E2000 ~
14000 rpm (2.5 — 3.5 Volts)) on the top of the base plate to
allow self-propulsion, and all the modules with a single cu-
bic permanent magnet (flux density 7', 5 x 5 x 5mmS3,
we decided that a single module should contain only one
magnet) at the bottom for attractive/repulsive interattio
(Fig.2). This allowed the modules to jiggle and move
around in their environment. A pantographic mechanism
was used to supply the vibration motor with energy. When
an electrical potential was applied to the ceiling plates(se
Fig. 2), current flowed through the pantograph to the vibra-
tion motor was applied to the ceiling plate, current retagni
to ground via electrodes immersed in the conductive water.

The Interaction M echanism

Long-range interactions between two modules depend only
on the force between the magnets on the tiles. We consider
the magnets as dipoles with a magnetic momant

The magnetic potentiab;(r) at a positionr due to the
magnetic momenin; is given by

m; - r
0(r) = 2T 1)

wherepy = 47 x 10~ "T'm/A is the permeability of free
space, and® = r/|r| assuming thatr| = r is much larger
than the size of the magnet. The magnetic flux of the dipole
is then given by

Bj =-V¢; 2

and the magnetic potential enerfjy; acquired by a second
dipolem; placed in the field oin; is given by
Uij = —--m,; - Bj. (3)

Then, the force between the two dipoles is found by differ-
entiating (3) with respect tp.

Tij

mixBj

“4)
(®)

We can determine the total potential energy of the system as

1
Utotal = 5 Z Uzg
1,ji#]

(6)

Finally, we normalize the energy a$/;,,
Utotar/(42m?). The long range interaction described above
is identical for each type of modules, since identical mégne

Due to this setup, all modules receive the same constant were used. However, the short range interaction, i.e. the fi-

power and they are be lightweiglt § g each), which would
not be the case if batteries were used.

nal alignment, is dominated by the non-linear dynamics and
will be explain later in this paper.

active modules moving to the middle
of the water tank because of the
vibration

passive modules come together,
maximizing the free space for the

active modules

Figure 3: The experimental results in time sequence. Thedsaare captured every 15 seconds
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THE EXPERIMENTAL RESULTS
Theinitial condition

In the following part, we investigate how designed system
achieves a global segregation effect. Our experimentapset
consists of ten modules, where five red colored modules are
"passive” and the remaining blue colored modules are "ac-
tive”, meaning the vibration motors are implemented. We
conducted 15 trials for the statistical analysis (see sedti

In Fig. 3, we show a representative resultin time sequence of
the obtained segregation behavior. The initial starting-co
dition was set as depicted in Fig. 3 (00:00), in which all the
modules were symmetrically aligned in a circular form alter
nately, such that the passive and the vibrating modules have ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
equal chances in the segregation process. This configura- oo e
tion also allows us to make a statistical analysis with gimil
starting conditions. The duration time for the experiment
was set to 90 seconds.

4
©

o
o

o
=

o
N

=4

=4
o
®

=4
o
=3

Normalized total potential Energy (cm-3)

=3
1<
x

=4
o
o

Figure 4: Total Energy of the system.

Global Observations o _ group,z; andy; are the positions of theéth component of
In order to perform the analysis, fifteen experiments were the considered group, respectively. We calculated the time
conducted and the trajectories (positions) of all the mod- evolution of the difference between the two modules groups

ules were tracked using the open source tracking software (the passive modules on one side and the active modules on
"Tracker Video Analysis and Modeling Tool” [5]. the second side and depicted in Fig. 5.

Our observation is that the red active modules tend to as-
semble together and go apart from the blue passive modules,
such that two different modules clusters can be spatiadly di
tinguished; the first cluster contains only the active mod-
ules and the second cluster the passive modules (see Fig. 3
(00:75)).

In the following sections, we investigate the segregation
behavior using statistical methods, by calculating thepot H
tial energy, the entropy and the centroids distance of tioe tw /
clusters. The reader should notice that the calculatedsalu
for the entropy, the potential energy and the centroids are
mean values over the fifteen experimental trials. The error

/W 1
1 HA
bars represent the standard deviation of uncertainty mithi I

the fifteen experimental trials. T Zj

>
1

~
T

o
T

Distances between the centroids (cm)
B (=)} ©

N
T

Potential Energy Transition I R R

The magnetic potential energy of the system is defined in

Eqg.6. We calculate the total magnetic potential energy of Figure 5: Time evolution of the distance to between the cen-
the system and show the obtained result in Fig. 4 presents ter of mass of the two clusters (N = 15).

the obtained result as function of the time.

Due to the characteristics of the system, non-equilibrium  As depicted in Fig. 5, there is an increase in the distance
system, the value keeps changing. Suppose we have all pas-between the centroids of the passive and the vibrating mod-
sive modules, the system is supposed to reach to the stateules. This corresponds to the formation of two clusters of
where modules are equally distributed and fixed. modules with a final mean distance between the two clusters

. of approximately 10 centimeters. Given that the diameter of
The Centroid Distance the arena (or tank as you wish) is 22.5 centimers, this corre-
In this section, we investigate the cluster formation by eom sponds to the 50% of the whole area.
puting the centroid of the system of the two clusters.

The centroid X,Y) = (£ SN (2), £ SN (y;)) of a Entropy
group (or cluster) of modules is the center of mass of the The definition of entropy differs in scientific fields, depend
modules, wheréV is the number of modules in the modules ing on to what one applies. Thermodynamics entropy (to
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heat), statistical mechanics entropy (to object), andiné DISCUSSIONS

tion er}tropy (tq event) are probably the three best known Depletion Effect

entropies in science. In self-assembly, systems that ¢anno . . )

presume some specific physical amounts, such as quantity!" this section, we speculate the main cause of the segrega-
of heat, employ information entropy for the measurement of tion effect. Fig. 7 illustrates the exclusive regions of mod
their "randomness”.

Balch proposed a novel definition of entropy (position
order) that can be applied for the measurement of multi-
components distributions (or quantitative metric of diver
sity) [2]. He usesd from Shannon’s theory

N
H(h) =~ pi(h)logy(pi(h)) (7)
i=1

wherep; is the number of modules in thie- th cluster ¢ €

N) divided by the total number of modules. A component
belongs to a cluster if the distance is within the lengtt of
(|7 — 75|] < h; 7; is the position of the-th component).
He then integrate$/ (k) over all possible:, and defines it
as entropy, namely:

surface “freed” by the passive modules to
maximize the moving area of the active modules.

S = /O H(h)dh. (8)

The definition describes the randomness of modules well.
Note that in this definition, the entropy may decreases over
time. In physics, an entropic force acting in a system is .
a macroscopic force whose properties are primarily deter-
mined not by the character of a particular underlying micro-
scopic force (such as electromagnetism), but by the whole
system’s statistical tendency to increase its entropy. X¥e e Dus o the kinetio oross caused by ¥lbrations,
amined the entropy of the system as derived as in Eg.8. the active modules (colored red) overcomes

Fig. 6 shows the time evolution of the entropy of the system. | eSS A

into the middle of the arena

Figure 7: lllustration of the excluded area of the passive
modules.

42

40
38

36 R c)

The vibration modules maximize the free
space by pushing passive modules such
that they assemble together and configure
a cluster.

As a result, passive modules are gathered
together to a certain place, causing a

34t

32

Entropy of the system (bit)

30

28
Figure 8: Explanation of the transitions in the experiments

26 I I I I I I I I I
=10 0 10 20 30 40 50 60 70 80 92

Time (s) ules, where different module have difficulty in lying in the
area around another module due mainly to the magnetic re-
Figure 6: The Transition of Entropy. pulsive forces. When the passive modules are closed to the

wall, the excluded area for the passive modules and the wall

As we can observe, the entropy of the system is decreas- overlap (shaded region) and this causes the reduction of the
ing as time progresses, which represents the convergence oftotal excluded area. Now the extra area is left for the vi-
the system to more ordered configurations. This corresponds brating modules. As shown here, the overlap is larger when
to the cluster formation described of the previous section.  the passive modules are placed next to the curved portion
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of the wall compared to it being in the middle of the wa-
ter tank. In the experiments, the vibration motion acts as
an effective short range repelling potential, which resirit

the observed separation of the passive modules, and in con-
sequence an effective attraction between the passive mod-

ules. In nature, depletion effects, which is also called ex-
clusion effect are observed at all length scales; espgciall
at the molecular scale, it can be described from a statistica
mechanics point of view as a minimization of free energy.

The careful observation of the segregation process is de-
scribed in Fig. 8. At the initial stage (Fig. 8 a), the vibrafi
modules tend to go to the middle of the water tank, due to the
vibration. In a further step, the vibrating modules maxieiz

their free space by pushing the passive modules to one side

of the water tank (Fig. 8 b). The free-space reaches its max-
imum when all the passive modules are close together and

there is no blank space between them. The passive modules

move towards the wall (as illustrated in Fig. 7). In that way,
the free area available to the vibrating modules is largar if
large module is placed next to the curved surface of the wall,
than if it is in the middle of the water tank.

A similar segregation effect is observed in granular mix-
tures and is known in physics as depletion effect. The seg-

regation criteria can be the size, the shape, the mass or some

frictional coefficients and can be caused by several mecha-
nisms, including vibration, percolation, convection ameht
bling [16] [21]. The force created by the vibrating modules,

The advandtage of distributed systems and the
potential applications

Realizing controlled global segregation behavior of dis-
tributed modules offers various applications; here we ‘high
light self-healing capabilities. A system containing agkar
amount of locally interacting (and cooperating) micro-
components offers considerable problems with respect to
maintenance (removing of damaged components as well as
recharging). If proper functioning is correlated with seg-
regation behavior, non-functional modules may tend au-
tonomously to the edge of the container where they can be
replaced or recharged. Conceptually, this means thatstt lea
parts of the control of the maintenance process are embod-
ied in the system. Future production processes may rely
on swarms of agents, probably of different morphology and
function. Tunable segregation mechanisms offer a poten-
tial for inducing a variety of different patterns of the atgen
under consideration, yielding an additional option for-pro
gramming swarm based production processes.

Finally, studies of the type presented here may shed light
on, in an industrial context, highly relevant class of sggre
tion processes in mixtures of objects of different morphol-
ogy. Examples are e.g. the Brazil nut effect, but also variou
types of sieving processes (in which the basically passive
granules take up energy from a shaking table in a way that
depends on their respective morphology).

which pushes the passive modules together and increases the

space available for the vibrating modules, is called dapiet
force. This force, which is purely entropic in origin has bee
predicted by Asakura and Oosawa [1] and confirmed since
then by several experiments. Other work on both experi-

ments and simulations were conducted using passive mod-

ules mostly of different sizes and have shown, that a similar
segregation can be produced by shaking mixtures of differ-
ent sizes vertically ([24]). This underlying effect is el
the Brazl nut effect and big particles, seem to move to the
top, while smaller particles move to the bottom.

Properties of the system

The particularity of our experiments is that it is conducted
at the centimeter size, , and not to mention, which helps to
observe and investigate the phenomena directly using sim-
ple observation tools (i.e. visual tracking for exampleeo
pared to the experiments at smaller scales. Furthermore, ou
experiments were conducted in two dimension utilizing also
vibrating modules; there is no microcontroller, no sensing
we only exploit the dynamic interaction between the mod-
ules to achieve the segregation. This way of proceeding is
unusual in distributed system’s robotics, where one mostly
use distributed algorithms and local rules to reach gloagl p
terns.

CONCLUSIONSAND FUTURE WORK

We proposed a stochastic self-assembly system in which a
segregation effect emerges as a result of local non-limear i
teractions between the modules of the system. The system
involves passive and active vibrating modules, that rarigom
move on water in a purely distributed way. By analyzing
fifteen experimental trials with statistical methods ona re
setup, we have shown the expected segregation behavior, in
which passive and active modules induced formed groups,
hence causing a segregation behavior. We believe that un-
derstanding dynamic self-assembly will play a key role in
the development of small-scaled modular robots and will
offer new opportunities to deepen both the realization and
the theoretical understanding of self-assembly systemns. F
thermore, some of the principles discovered especially con
cerning the dependence of self-organization on the dynamic
interaction between the modules might lead to a better un-
derstanding of similar processes found in natural systems
and of life in general.
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Extended Abstract

The evolution of the earliest nervous systems remains seriously under-researched. Within this small field, the focus has so far been
mostly on the evolution of nerve cells, nervous system centralization and biomolecular precursors of nerve cells (Lichtneckert &
Reichert, 2007). Another line of research concerns the geological and molecular evidence on ecological and morphological changes
that may have contributed to the development of nervous systems in Precambrian life (Dzik, 2005; Peterson et al., 2005).

An important open question is how the very first nervous systems might have worked as a behavior producing system. The classic
assumption, dating back to Parker's (1919), is that nerve cells evolved to connect pre-existing sensors and effectors, a proposal that
was strongly influenced by Sherrington's exposition of the reflex-organization in vertebrates. Nervous systems are here a connecting
device that gradually became more complex by adding feedback loops and cognitive extensions (Braitenberg, 1984).

However, this standard interpretation does not combine easily with other findings within this field. For example, many authors (e.g.
Pantin, Passano, Horridge, Pavans de Ceccaty) claim that reflexes are a secondary development on top of a more primitive
arrangement. The most basic examples of nervous systems are loosely connected nerve nets — skin brains (Holland, 2003) — spread
out over the body without fast and specialized connections between specific sensors and effectors. A long neglected suggestion,
going back to Pantin (1956), is that early nerve nets contributed foremost to the organization of patterns of muscle contractions in
large multicellular animals. Coordinated muscle contractions allowed large animals to move about when earlier mechanisms, like
ciliary crawling, became too inefficient. Under this interpretation, the key innovative function of early nervous systems is primarily
to generate larger-scaled effectors rather than connecting sensors to some pre-existing ‘effector’.

Figure: Emergent patterns on a simulated skin brain. Left: a simulation where every cell is connected to all six neighbors. Right: a
simulation where every cell is connected to three, out of six, neighbors, forcing the spontaneous patterns to travel from bottom to
top.

Our model investigates the transition from a non-neural conductive epithelium (Mackie, 1970) to a basic nerve net. A basic tube-
like animal structure is approximated as a single sheet of cells that are both contractile and electrically conductive. Epithelial
conduction produces spontaneous electrical activity on the bodily surface. We modelled the transition to nerve nets by varying three
parameters: (a) Increasing the number of cells mimics increasing body-size. (b) Directionality of signalling, representing the
evolution of synapses, makes cells in the model signal only in specific directions. (c) Formation and elongation of cell processes,
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representing the early evolution of axons and dendrites, allows cells to signal to non-neighbouring cells without influencing cells in
between. The two last parameters represent key-aspects of neurons and the model provides a platform to investigate how these
parameters modify global activity patterns at different body-sizes. The findings are relevant for a better understanding of the basic
operation of nervous systems, early nervous system evolution and the problems encountered in the field of soft robotics.
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Abstract

An agent controlled by a single computational neuron is used
to solve maze problems. The neuron has activity and time-
dependent computational and topological structure. The be-
haviour of a neuron is controlled by a collection of seven
evolved programs that are loosely analogous to aspects of bi-
ological neuron (dendrites, soma, axons, synapses, electrical
and developmental behaviour). The programs are represented
using Cartesian Genetic Programming. Our aim is to show
that it is possible to evolve programs that develop a single
neuron so that it is able to learn how to solve maze problems
purely by experience.

Introduction

Although many techniques have been introduced to develop
Artificial Neural Networks (ANNs) using genetic program-
ming, we found no evidence that an attempt has been made
to develop the functional model of real neurons with bio-
logical morphology. We have attempted to do this by de-
vising an abstraction of real neurons which captures many
important features. Various studies have shown that “den-
dritic trees enhance computational power” (Koch and Segev
(2000)). Neurons communicate through synapses which are
not merely the point of connection between neurons (Kandel
et al. (2000)). They can change the strength and shape of the
signal over various time scales. We have taken the view that
the time dependent and environmentally sensitive variation
of morphology and many other processes of real neurons
is very important and richer models are required that incor-
porate these features. In our model a neuron consists of a
soma, dendrites, axons with branches and dynamic synapses
and synaptic communication. Neurite branches can grow,
shrink, self-prune, or produce new branches. This allows
it to arrive at a network whose structure and complexity is
related to properties of the learning problem.

Our aim is to find a set of computational functions that
encode neural structures with an ability to learn through ex-
perience. Such neural structure would be very different from
conventional ANN models as they are self-training and con-
stantly adjust themselves over time in response to external

environmental signals. In addition they could grow new net-
works of connections when the problem domain required it.

From our studies of neuroscience, we have identified
seven essential computational functions that need to be in-
cluded in a model of a neuron and its communication mech-
anisms. From this analysis we decided what kind of data
these functions should work with and how they should inter-
act, however we cannot design the functions themselves. So
we turned to a well established and efficient form of Genetic
Programming called Cartesian Genetic Programming (CGP)
(Miller and Thomson (2000)).

We have tested the learning capability of this developmen-
tal system on maze problems. A maze is a complex tour puz-
zle with a number of passages and obstacles (impenetrable
barriers). It has a starting point and an end point. The job
of the agent is to find a route from starting point to the end
point. The agent starts with a limited energy that increases
and decreases as a result of interaction with the paths and the
obstacles in the maze environment. We show that the agent
is able to solve the maze a number of times in a single life
cycle. The agents start a maze with a single neuron having
random structure. However, the branching structure of the
neuron can grow and shrink during the game environment.

In previously work, we evaluated the effectiveness of this
approach on a classic Al problem called wumpus world
(Khan et al. (2007)). There we used a number of neu-
rons to solve the wumpus world. We have also tested the
network of CGP neurons for playing Checkers (Khan and
Miller (2009)). We found that the agents improved with ex-
perience and exhibited a range of intelligent behaviours. In
this paper we have turned our attention toward a single neu-
ron. The motivation for this was to explore the capability of
a single neuron in this model.

Biology of Neuron

Neurons are the main cells responsible for information pro-
cessing in the brain. They are different from other cells in
the body not only in term of functionality, but also in bio-
physical structure (Kandel et al. (2000)). They have differ-
ent shapes and structures depending on their location in the
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brain, but the basic structure of neurons is always the same.
They have three main parts.

e Dendrites (Inputs): Receive information from other neu-
rons and transfer it to the cell body. They have the form
of a tree structure, with branches close to the cell body.

e Axons (Outputs): Transfer the information to other neu-
rons by the propagation of a spike or action potential. Ax-
ons usually branch away from the cell body and make
synapses (connections) onto the dendrites and cell bodies
of other neurons.

e Cell body (Processing area or Function): This is the main
processing part of neuron. It receives all the information
from dendrite branches connected to it in the form of elec-
trical disturbances and converts it into action potentials,
which are then transferred through axon to other neurons.
It also controls the development of neurons and branches.

Neural modeling

A number of techniques are used for simulation of neu-
ral development either in the form of construction algo-
rithms or biologically-inspired growth processes. One ap-
proach aims to reproduce the geometrical properties of real
neurons and does not consider the actual biological pro-
cesses responsible for neural growth that could be used in an
electrophysiology simulator (Stiefel and Sejnowski (2007)).
Lindenmayer-System have been used to invent the proce-
dure for modeling plant branching structures (Lindenmayer
(1968)) and later has been successfully applied to develop
neural morphologies (Ascoli et al. (2001)). A number of
other methods such as probabilistic branching models (Klie-
mann (1987)), Markov models (Samsonovich and Ascoli
(2005)) and Monte Carlo processes (da Fontoura Costa and
Coelho (2005)) are also proposed as construction algorithm
for neural development. Although these methods produce
interesting neuronal shapes, they do not provide any in-
sight into the fundamental growth mechanisms for neuronal
growth. Growth models on the other hand provide the bio-
logical mechanisms responsible for generation of neuronal
morphology. A number of interesting agent-based simula-
tions are produced that highlights various aspects of biolog-
ical development, such as cell proliferation (Al-Musa et al.
(1999)), polarization (Samuels et al. (1996)), neurite exten-
sion (Kiddie et al. (2005)), growth cone steering (Krottje and
van Ooyen (2007)) synapse formation (Stepanyants et al.
(2008)) and axon guidance and map formation (de Gennes
(2007)).

Although these methods introduce various interesting
techniques to model the neuronal growth which is the early
stage of development of brain, they have not consider the
signal processing aspects and its effect on the growth dur-
ing interaction with the world via sensory mechanisms. We

introduce the method of evolving the functions that are re-
sponsiple for neuronal growth, signalling and synapse for-
mation during the lifetime of the agent as explained in later
sections.

Computational Development

In biology, multicellular organisms are built through devel-
opmental process from ’relatively simple’ gene structures.
The same technique could be used in computational devel-
opment to produce complex systems from simpler systems
that are capable of learning and adapting (Stanley and Mi-
ikkulainen (2003)).

Quartz and Sejnowski proposed a powerful manifesto for
the importance of dynamic neural growth mechanisms in
cognitive development (Quartz and Sejnowski (1997)). Mar-
cus emphasized the importance of growing neural structures
using a developmental approach (Marcus (2001)).

Parisi and Nolfi suggested that if neural networks are
viewed in the biological context of artificial life, they should
be accompanied by genotypes which are part of a popula-
tion and inherited from parents to offspring (Parisi and Nolfi
(2001)). They have used a growing encoding scheme to
evolve the architecture and the connection strengths of neu-
ral networks. The network consists of a collection of ar-
tificial neurons distributed in 2D space with growing and
branching axons. The genetic code inside them specifies the
instructions for axonal growth and branching in neurons.

Cangelosi proposed a neural development model, which
starts with a single cell that undergoes a process of cell divi-
sion and migration until a collection of neurons arranged in
2D space is developed (Cangelosi et al. (1994)). At the end,
neurons grow their axons to produce connection among each
other until a neural network is developed. The rules for cell
division and migration are stored in genotype, for a related
approach see (Dalaert and Beer (1994)). Gruau also pro-
posed a similar method (Gruau (1994)). The genotype used
in Gruau’s model is in the form of a binary tree structure as
in GP (Koza (1992)).

Rust and Adams have used a developmental model cou-
pled with a genetic algorithm to evolve parameters that grow
into artificial neurons with biologically-realistic morpholo-
gies (Rust et al. (2000)). Jakobi created an impressive ar-
tificial genome regulatory network, where genes code for
proteins and proteins activate (or suppress) genes (Jakobi
(1995)). The proteins define neurons with excitatory or in-
hibitory dendrites. The individual cell divides and moves
due to protein interactions causing a complete multicellular
network to develop. Federici presented an indirect encod-
ing scheme for development of a neuro-controller and com-
pared it with a direct scheme (Federici (2005)). He imple-
mented the system on a Khepera robot and tested it using
direct and indirect encoding schemes, finding that the latter
reached high fitness faster.

Downing favors a higher abstraction level in neural de-
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velopment to avoid the complexities of axonal and den-
dritic growth while maintaining key aspects of cell signal-
ing, competition and cooperation of neural topologies in na-
ture (Downing (2007)). He tested it on a simple movement
control problem known as starfish. The task for the k-limbed
animate is to move away from its starting point as far as pos-
sible in a limited time, producing encouraging preliminary
results.

One of the major difficulties in abstracting neuroscience
is that one can lose the essential aspects required to make a
powerful learning system. However the evidence of impor-
tance of time-dependent morphological processes in learn-
ing is highly compelling and we have thus included many of
these aspects in a model of an artificial neuron.

The Neuron Model

This section describes the Cartesian Genetic Programming
(CGP) and details the structure and processing inside the
CGP Neuron and the way inputs and outputs are interfaced
with it.

Cartesian Genetic Programming (CGP)

CGP is a well established and effective form of Genetic Pro-
gramming. It represents programs by directed acyclic graphs
(Miller and Thomson (2000)). The genotype is a fixed length
list of integers, which encode the function of nodes and the
connections of a directed graph. Nodes can take their in-
puts from either the output of any previous node or from
a program input (terminal). The phenotype is obtained by
following the connected nodes from the program outputs to
the inputs. The function nodes used here are variants of bi-
nary if-statements known as 2 to 1 multiplexers (Miller et al.
(2000)).

In CGP an evolutionary strategy of the form 1 + A, with
A set to 4 is often used (Miller et al. (2000)). The parent, or
elite, is preserved unaltered, whilst the offspring are gener-
ated by mutation of the parent. If two or more chromosomes
achieve the highest fitness then newest (genetically) is al-
ways chosen. We have used this algorithm in the work we
report here.

Health, Resistance, Weight and Statefactor

Four variables are incorporated into the CGP Neuron, repre-
senting either fundamental properties of the neuron (health,
resistance, weight) or as an aid to computational efficiency
(statefactor). The values of these variables are adjusted by
the CGP programs.

The health variable is used to govern replication and/or
death of dendritic and axonal connections. The resistance
variable controls growth and/or shrinkage of dendrites and
axons. The weight is used in calculating the potentials in
the network. Each soma has only two variables: health and
weight. The statefactor is used as a parameter to reduce

computational burden, by keeping neuron and branches in-
active for a number of cycles. Only when the statefactor is
zero are the neuron and branches are considered to be ac-
tive and their corresponding program is run. Statefactor is
affected indirectly by CGP programs.

Inputs, Outputs and Information Processing inside
CGP Neuron

The signal is transferred to and taken from this neuron us-
ing virtual axon and dendrite branches by making synaptic
connections.

The signal from the environment is applied to CGP neu-
ron using five virtual input axo-synaptic connections. Five
virtual output dendrite branches are used to decide the move-
ment of the agent. The virtual axo-synaptic branches are al-
lowed to not only transfer signals to the dendrite branches
of processing neuron (CGP Neuron) but also to the output
virtual dendrite branches which decide the movement of the
agent. The CGP Neuron transfers signals to the virtual out-
put dendrite branches using the program encoded in the axo-
synaptic chromosome.

Information processing in the CGP Neuron starts by se-
lecting the list of dendrites and running the electrical den-
drite branch program. The updated signals from dendrites
are averaged and applied to the soma program along with
the soma potential. The soma program is executed to get
the final value of soma potential, which decides whether a
neuron should fire an action potential or not. If soma fires,
an action potential is transferred in forward direction using
axo-synaptic branch programs.

Functionality of CGP Neuron

The CGP Neuron is placed at a random location in a two
dimensional spatial neural grid (as shown in figure 1). It is
initially allocated a random number of dendrites, dendrite
branches, one axon and a random number of axon branches.
Neurons receive information through dendrite branches, and
transfer information through axon branches to neighbouring
dendrite branches. The branches may grow or shrink and
move from one neural grid location to another. They can
produce new branches and can disappear. Axon branches
transfer information only to dendrite branches in their prox-
imity. Electrical potential is used for internal processing of
neurons and communication between neuron and is repre-
sented by an integer (32 bit).

Neural functionality is divided into three major cate-
gories: electrical processing, life cycle and weight process-
ing. These categories are described in detail below.

Electrical Processing The electrical processing part is re-
sponsible for signal processing inside neuron and commu-
nication between neurons. It consists of dendrite branch,
soma, and axo-synaptic branch electrical chromosomes.
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Figure 1: On the top left a neural grid is shown contain-
ing a single neuron. The rest of the figure is an exploded
view of the neuron is given. Electrical processing parts: den-
drite (D), soma (S) and axo-synapse branch (AS) are shown
as part of neuron. Developmental programs responsible for
the life-cycle of neural components are also shown (shown
in grey). These are dendrite branch life (DBL), soma life
(SL) and axo-synaptic branch life (ASL). The weight pro-
cessing program (WP) is used to adjusts synaptic and den-
dritic weights.

The dendrite program D, handles the interaction of den-
drite branches belonging to a dendrite. It take active dendrite
branch potentials and soma potential as input and updates
their values. The Statefactor is decreased if the update in
potential is large and vice versa.

If any of the branches are active (statefactor equal to zero),
their life cycle program (DBL) is run, otherwise D continues
processing the other dendrites.

The soma program S, determines the final value of soma
potential after receiving signals from all the dendrites. The
processed potential of the soma is then compared with the
threshold potential of the soma, and a decision is made
whether to fire an action potential or not. If it fires, it is kept
inactive (refractory) for a few cycles by changing its state-
factor, the soma life cycle chromosome (SL) is run, and the
firing potential is sent to the other neurons by running the
AS programs in axon branches.

AS updates neighbouring dendrite branch potentials and
the axo-synaptic potential. The statefactor of the axosynap-
tic branch is also updated. If the axo-synaptic branch is ac-
tive its life cycle program (ASL) is executed.

After this the weight processing program (WP) is run
which updates the Weights of neighbouring (branches shar-
ing same neural grid square) branches.

Life Cycle of Neuron This part is responsible for repli-
cation, death, growth and migration of neurite branches. It
consists of three life cycle chromosomes responsible for the

neurites development. The two branch chromosomes update
Resistance and Health of the branch. Change in Resistance
of a neurite branch is used to decide whether it will grow,
shrink, or stay at its current location. The updated value of
neurite branch Health decides whether to produce offspring,
to die, or remain as it was with an updated Health value. If
the updated Health is above a certain threshold it is allowed
to produce offspring and if below certain threshold, it is re-
moved from the neurite. Producing offspring results in a new
branch at the same neural grid square connected to the same
neurite (axon or dendrite). The soma life cycle chromosome
produces updated values of Health and Weight of the soma
as output.

Maze

A maze is a term used for complex and confusing series of
pathways. It is an important subject for autonomous robot
navigation and route optimization (Tani (1996); Blynel and
Floreano (2003)). The idea is to teach an agent to navi-
gate through an unknown environment and find the optimal
route without having prior knowledge. A simplified version
of this problem can be simulated by using a random two-
dimensional synthetic maze. The pathways and obstacles in
a maze are fixed.

Experimental Setup

In our experiments an agent is provided with CGP Neuron
as its computational network. The job of the agent is to
find routes from a starting point toward an end point of a
maze as many times as it can in a single life cycle. We have
used a 2D maze representation for this experiment as shown
in figure 2. The 2D Maze representation is explored in a
number of scenarios (Werbos and Pang (1996); Ilin et al.
(2007)). We have represented the maze as a rectangular ar-
ray of squares with obstacles and pathways (As shown in the
figure 2). A square containing an obstacle cannot be occu-
pied. Movement is possible up or down on squares on the
outside columns. Movement is either left or right on rows,
unless there is a pathway, in which case downward motion
is possible. This is inspired by the clustering approach used
to improve learning capabilities of an agent (Mannor et al.
(2004)). We used different sizes of mazes to test the ability
of the agent. The location of the obstacles, pathways and
exit are chosen randomly for different experimental scenar-
i0s.

Energy of Agent The agent is assigned a quantity called
energy, which has an initial value of 50 units. If an agent
attempts to penetrate an obstacle its energy level is reduced
by 5 units. If it encounters a pathway and moves to a row
closer to the exit, its energy level is increased by 10 units. If
it moves a row further away from the maze exit, its energy
is reduced by 10 units. This is done to enhance the learning
capability of agent by giving it a reward signal. If the agent
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Figure 2: The left figure shows a 10x10 maze with impenetrable obstacles (black), downward pathways (arrows), start (S) and
exit point (E), and their corresponding signals. On the neighbouring squares of an obstacle (north, south, east and west) and the
exit there is a signal detectable by the agent indicating whether the agent is on a square neigbouring an obstacle (radial shading)
or exit(linear shading). The figure on the right shows the path of an evolved agent.

reaches the exit, its energy level is increased by 50 units and
it is placed back at the starting point and allowed to solve
the maze again. Finally, if the agent arrives home, without
having reached the exit, the agent is terminated. For each
single move, the agent’s energy level is reduced by 1 unit,
so if the agent just oscillates in the environment and does
not move around and acquire energy through solving tasks,
it will run out of energy and die.

Fitness Calculation The fitness value, which is used in
the evolutionary scheme, is accumulated while the agent’s
energy is greater than zero as follows:

e For each move, increase fitness by one. This is done, to
encourage the agents to have ’brain’ that remains active
and does not die.

e FEach time the agent reaches the exit, its fitness is in-
creased by 100 units.

Inputs to neuron The maximum allowed neural potential
is M = 232—1. The agent’s input axo-synapses can perceive
input potentials, /, depending on the circumstances in the
following way. Note that the agent can perceives only one
signal on a maze square, even if there are more than one.

o [ = ( default.
e [ = M/60 finds a pathway to a row closer to exit.

e [ = M /120 tries to land on obstacle.

I = M /200 on exit square.

I = M /100 adjoining square north of an obstacle.

I = M /110 adjoining square east of an obstacle.

I = M /130 adjoining square south of an obstacle.

I = M /140 adjoining square west of an obstacle.

I = M /180 approaches exit from north direction

I = M /190 approaches exit from east direction
e [ = M/210 approaches exit from south direction
e [ = M /220 approaches exit from west direction
e I = M/255 home square (starting point)

Agent movement and termination When the experiment
starts, the agent takes its input from the starting point (on the
top left corner as shown in figure 2). This input is applied to
the computational network (CGP Neuron) of the agent using
input axo-synapses. The network is then run for five cycles
(one step). During this process it updates the potentials of
the output dendrite branches. After the step is complete the
updated potentials of all output dendrite branches are noted
and averaged. The value of this average potential decides the
direction of movement for the agent. If there is more than
one direction the potential is divided into as many ranges as
possible movements. For instance if two possible directions
of movement exist, then it will take one direction if the po-
tential is less than (M /2) and the other if greater. The same
process is then repeated for the next maze square. The agent
is terminated if either its energy level becomes zero or if it
returns home.

CGP Neuron Setup The various parameters of CGP neu-
ron are chosen as follows. The neuron’s branches are con-
fined to 3x3 CGPN neural grid. Inputs and outputs to the
network are located at five different random squares. The
maximum number of dendrites is 5. The maximum branch
statefactor is 7. The maximum soma statefactor is 3. The
mutation rate is 2%. The maximum number of nodes per
chromosome is 100. Maximum number of dendrite and axon
branches are hundred and twenty respectively. These param-
eters have not been optimized and have largely been chosen
as they work reasonably well and do not incur a prohibitive
computational cost.
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Difficulty of the problem

It is important to appreciate how difficult this problem is.
The agents starts with a single neuron with random connec-
tions. Evolution must find a series of programs that build
a computational neural structure that is stable (not lose all
branches etc.). Secondly, it must find a way of processing in-
frequent environmental signals (pathway, blocks, exit, home
etc) and understand their meaning (beneficial and deleteri-
ous). Thirdly, it must navigate in this environment using
some form of memory. Fourthly, it must confer goal-driven
behaviour on the agent. The agent performance is deter-
mined by its capability to solve the maze as many times as it
can during a single life cycle.

The maze environment we produced is much more com-
plex than the traditional mazes, as the agent in this environ-
ment can only sense the signal from the maze square it is
occupying, not from neighbouring squares. So in order to
solve the maze the agent must develop a memory of each
step it makes and the direction of movement, and use this
memory to find a route toward the exit. As the structure
and weights of branches changes at runtime while solving
the maze, the learned information is stored both in weights
and the structure of the neuron. The capability to learn and
transformation of learned information into memory in the
form of update in weights and structure is stored in geno-

type.

Results and Analysis

Figure 3 shows a number of mazes in first column. Fitness
improvement during evolution is shown in the second col-
umn. The third column in figure 3 shows the energy varia-
tion of the best maze solving agent. The small continuous
drop in energy is due to an agent losing its energy after every
step. Large decreases occur through encounters with an ob-
stacle or going away from the exit by following the pathway
in opposite direction. Small increases shows the result of
following the pathway and moving toward the exit and large
increases happen when the agent finds the exit. The fourth
and the last column shows the variation in neuron branch-
ing structure over the agent lifetime, while it is solving the
maze.

The agent is able to solve the maze four to five times dur-
ing a single life cycle in all the cases as shown in the second
column of figure 3. During this process the structure of the
neuron also changes in terms of the number of dendrite and
axon branches. The fourth column of the figure 3 shows
that although agents start with a minimal structure they soon
achieve a structure that is most advantageous.

In traditional methods that train an agent to solve the maze
and find a path, the network characteristics are fixed once
it is trained to solve the maze. So if they are allowed to
start the maze again they would always follow the same path.
As the CGP Neuron continues to change its architecture and
parameter values it also continues to explore different paths

on future runs. This makes it possible for it to obtain (or
forget!) a global optimum route. The networks is not trained
to stabilize on a fixed structure, that it does so, seems to
be because it has found a suitable structure for the desired
task. The best architecture does not necessarily have to have
the most neurite branches. This is evident from the varied
characteristics in the last column of figure 3.

It is interesting to note that as the task become bigger and
bigger the structure of the neuron grows in response to it.
This is evident from the last column of the figure 3. For an
8x8 maze (first and second maze) the agent structure grows
and stabilizes on a fairly small structure whereas for a 10x10
maze (3rd, 4th and 5th mazes) the number of dendrite and
axon branches grows into a fairly large structure (the max-
imum allowed value is 100 in this case). Further investiga-
tion reveals that as the route toward the exit becomes more
and more complex, the network structure become richer in
terms of branches. This is evident from the second 10x10
maze (4th row) where the number of blocking paths are 10
(with each obstacle providing four walls in all the four di-
rections, 40 walls), and number of pathways are 20. Ten on
the sides (first and last column) with possibility to move in
both upward and downward directions and ten that are only
open toward the exit in downward direction). In this case the
agent was able to solve the maze three times, as is evident
from the rises in the energy level diagram. However, it dies
on the fourth run when it tried to escape through the start-
ing point. In next case, when we have reduced the number
of obstacles to six (24 walls) while keeping the number of
pathways the same as shown in the in fourth row of figure
3. This time the agent was able to solve the maze four times
and its axon branch structure is improved during its run but
the dendrite structure is stabilized on a low value. The final
maze is a variant of 10x10 maze in third row with similar
characteristics. In 8x8 mazes when the environment is sim-
ple, the agent was able to solve the maze a number of times
even though it stabilized on a fairly small branch structure.
This strongly suggests that the complexity of the CGP Neu-
ron structure increases with increase in the complexity of the
task environment.

Conclusion

We have described a neuron-inspired developmental ap-
proach to construct a new kind of computational neural ar-
chitectures which has the potential to learn through expe-
rience. We found that the neural structure controlling the
agents grows and changes in response to their behaviour,
interactions with the environment, and allow them to learn
and exhibit intelligent behaviour. We found that the network
complexifies itself in response to the environmental com-
plexity. The eventual aim is to see if it is possible to evolve
a network that can learn by experience.
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Abstract

The Cellular Potts Model (CPM) is a cellular automaton (CA)
allowing to model the morphogenesis of living cells. It char-
acterizes a cell by its volume, surface and type. The CPM
has already been used to simulate several models of cell self-
organization. However, the cell shape is under-constraint i.e.
it does not implies a unique shape. We propose a definition
and an implementation of the cell shape in the CPM, that can
target a unique shape. The results of our simulations show
that this target shape can structure and maintain the cellular
tissue since the beginning of its growth and during its life.

I Introduction

The Cellular Potts Model (CPM) is a cellular automaton
(CA) made by Glazier and Graner (Graner and Glazier,
1992). It has been often used to model and simulate phe-
nomena occurring in the morphogenesis and embriogenisis.
(Cickovski et al., 2005; Marée, 2000). The CPM is an ex-
tension of the Potts Model developed by Potts in 1952 which
generalizes the Ising Model as described in (Wu, 1982). The
dynamics of these models are based on a minimization of en-
ergy. In the discrete case, the CPM consists of a grid where
a set of cells fills each site of the grid. The entities of the
system are called cells and are characterized by a volume,
surface and type. They are in interaction via contact ener-
gies and restricted access to grid sites.

The first model used to illustrate the CPM is the cell
sorting. It shows how simple local interactions allow self-
organization of the biological cells. At the cellular automata
level the self-organization has already been done in more ab-
stract phenomena like the Game of Life developed by John
Conway (Gardner, 1970) or the Langton’s Ant (Langton,
1984).

Since this first model several extensions of CPM have
been done (Anderson et al., 2007). However, the cell shape
is not defined in a more specific way. Indeed, in the ba-
sic CPM, the shape is characterized only by a target volume
and surface. So several shapes can verify a same target vol-
ume and surface. In this paper we propose to add an energy
that allows the cells to emerge towards a unique and defined

shape. This energy comes from a set of springs which pro-
vides the cell a elastic shape .

We use the cell shape to structure the shape tissue via the
cell self-organization. To test and show the characteristics
of the cell shape we simulate a model which comes from an
extended CPM. This model allows the cell to self-align and
to build a coherent cellular tissue i.e with a recognizable
shape and a dynamical tissue renewal.

This paper is organized as follows. A formalization of the
CPM is given in section II. In section III we describe the
MorphoPotts which represents a cell defined in the CPM to
which we add the elastic shape in section IV and other cell
behaviors. Using the MorphoPotts, in section V, we simulate
a model of tissue formation from which a stability of the cel-
lular tissue and a dynamical tissue renewal emerge. Finally,
we conclude in section VI.

II Presentation of the CPM

In this part we recall the formalism of CPM explained in
(Graner and Glazier, 1992; Glazier and Graner, 1993). The
first part describes the necessary notations to the compre-
hension of this paper. The second part describes the strong
notions of this formalism (see Figure 1), i.e. the state of the
system and the transition function thanks to the transition
probability, the energy function and the neighborhood func-
tion.

Notation. A grid is denoted by Sz and a site of this grid
is denoted by (4, 7). The value of a site (¢, j) is denoted by
sx;j. A cell is denoted by C! with o € [1, N| where N
is the number of cells and ¢ the type of cell. The number 0
is reserved for the medium. A cell C has a target volume
(resp. surface) Vo, (resp. So;) and current volume Vo
(resp. So). The target volumes and target surfaces of the
cell are the volumes and surfaces to which the cell tends.
The contact energies are recorded in a matrix 7' such that
T, . (resp. T} ;) is the contact energy between the cell Cf,
and the cell C’g, (resp. between the cells of type ¢ and t').
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Figure 1: Example of a transition in the CPM. A state Sz is a grid 8x8 where to each site (¢, j) we associate a value sz; ;.
So we have four cells (o € [0, 3]): one cell for the medium (C*), two cells of red type (C7,C%) and one cell of blue type
(C’S). The cells of the red type have the following characteristics: Vigrget = 7, Starger = 12, and the cell of blue type the
following characteristics: Viarger = 10, Starger = 11. In the state Sa the cell C7 (resp. C’Qb, C%) has a volume V1 = 7 (resp.
V2 =11, V3 = 4) and a surface S1 = 12 (resp. S2 = 13, S3 = 8). In the state Sb the cell C7 (resp. C%, C%) has a volume
V1="7(esp. V2 =10, V3 = 5) and a surface S1 = 12 (resp. S2 = 11, S3 = 10). The cell for the medium does not have
volume and surface constraints. The matrix (Symmetric) of contact energy (given) is defined as: Tp; = To 3 = 2, T2 = 1,
Ti2 =1Ts3=3,T13 =0. Since the cell C{ and the cell C§ are of the same type 1} 7 = T 3.

State of the System. The CPM is composed of a grid Sz!
of D dimensions (here D = 2). Each site (¢, j) is filled by
a particle of cell C?, i.e. the value sz; ; of site (i, j) in the
state Sz is equal to 0. So a cell C! is equal to {(i,7) €
Sz|sx; ; = o} the set of sites whose value is o.

Finally a state of system is a grid Sz where each sz; ; is
equal to an integer o € [0, N].

Transition Function. Let F},.(Sa,k,t) = Sb the tran-
sition function of the CPM between the State Sa and Sb
according to k and ¢. Let Sc be the state Sa where the value
of a site has been replaced by the value of a neighbor site. If
the probability of transition Py, between the states Sa and
Scis accepted, then Sb = Sc, otherwise Sb = Sa.
Fi.(Sa, k,t,p) = Sb< (¢, j') € neighbor(i, j)(

(scij = say j )N

(Sc—sc;; = Sa—sa;j) A (p=rand(]0,1])A

(p < P,-(Sa, Sc, k,t) = Sb= Sc)A

(p > Pi-(Sa, Sc, k,t) = Sb = Sa))
where rand(E) returns a random element of the set of E,
neighbor (i, j) is the set of neighbor sites of (4, j) and Py,
the probability of transition.
We can observe that only one site of the grid can change
and since several sites can be candidates to change, the
dynamics is asynchronous and non-deterministic.

"Here the environment is discrete but the continuous case is also
defined (Glazier and Graner, 1993).

Probability of Transition. The Probability of transition
used is the Monte Carlo probability following a tem-
perature ¢. Let P;.(Sa,Sb,k,t) = p, the probability of
transition between the states Sa and Sb according to k and ¢.
P;-(Sa, Sb, k,t) =p <
t>0A(E(Sb)—E(Sa)) <0=p=1
t>0A(E(Sb) — E(Sa)) > 0=
p = exp ((E(Sb) — E(Sa))/kt)
t=0A(E(Sb) — E(Sa))<0=p=1
t=0A(E(Sb) — E(Sa))=0=p=05
t=0A(E(Sb) — E(Sa))>0=p=0
where E(.9) is the function of energy.
This probability promotes the transitions which lead to a
lower energy state.

Energy Function. Let E(S) = e the energy function of
the state .S. This function characterizes the state of the sys-
tem. In the CPM, a basic function depends on the volume
and surface of each cell and on the contact energies between
two cells. E(S) can be defined as:

E(S) = Ae x E.(S) + Ay % Ey(S) + As x E5(S) with
E.(S) =

2 2

(i,4)€S (i',5)Eneighbors(i,j)
where A¢, Ay, A are constants, T}, ;- is a matrix of contact

2
TSi)j,si/,j/ * (1 - 5Si,j75i/,j’)

*In our simulations the neighbors are the nearest on a 3D square
lattice.
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energy between the type ¢ and ¢’ respectively of C% and Cg/
If x = 2’ then §,, ,» = 1 otherwise 0.
E,(S)= > (Vo,-Vo)’

o€[1,N]

E(S)= > (Soi—So)>.

c€[1,N]

IIT MorphoPotts

To model biological phenomena in a more realistic way, we
have proposed in (Tripodi et al., 2010) an multi-agent ap-
proach of CPM and a cell called MorphoPotts. The Mor-
phoPotts is an extension of the cell defined in the CPM by
adding the following behaviors: secretion and consumption
of molecules, transformation of molecules into energy, mi-
gration on a gradient of molecules, cell division and cell
differentiation. The MorphoPotts is very close to Mor-
phoBlock (Ballet et al., 2009) compared to secretion of
molecules and the migration under a gradient of molecules.
But the core of MorphoBlock is a pixel whereas the core of
MorphoPotts is a cell defined in the CPM. At CPM level, the
closest work to MorphoPotts is probably Compucell3D (Ci-
ckovski et al., 2007), a software which implements the CPM
and other behaviors. In this section, we describe fristly the
MorphoPotts, and secondly a step of simulation of CPM-
MorphoPotts couple.

Description of MorphoPotts

A MorphoPotts C? is based on the properties of the cell de-
fined in section II, but it also has an internal energy E. This
energy results from the consumption of molecules found in
the environment. The MorphoPotts can perceive and mod-
ify the environment beyond their neighborhood boundaries
defined in section II.

The behaviors of the MorphoPotts are described in Table
1. We assume that the secretion creates a gradient because
the diffusion of molecules is faster than cell migration and
the secretion is continuous. For the same reasons we assume
that the consumption of molecules creates a “well” (i.e. in-
verse effect of secretion). In this paper, the energy of the
MorphoPotts is used as a criterion for MorphoPotts division
and MorphoPotts death.

Step of Simulation

The step of the simulation which combines the CPM and the
MorphoPotts is following:

1. Let ¢ equals to 0 and n equal to the membrane size of all
MorphoPotts.

2. While 7 is lower than n

(a) One transition function of the CPM is applied.

(b) If the criterion of division of the chosen MorphoPotts
during the transition is verified, they divide.

(c) 7 is incremented by 1

3. All MorphoPotts execute their method of maintenance.
4. All MorphoPotts execute their method of secretion.

5. All MorphoPotts (the scheduling is random to delete the
artefacts) execute their method of consumption.

6. If the internal energy of the cells is lower than 0, they die.

The step of simulation can, for each cell, modify each mem-
brane site before calling to methods of maintenance, secre-
tion, consumption and death. This allows to synchronize
every MorphoPotts and so to delete some artefacts due to
asynchronicity of the CPM. Indeed, in reality, the cells move
at the same time and not one after another.

Proposition of a cell shape energy

In the previous section we have built a model of cell called
MorphoPotts. However, the cell shape is not strongly de-
fined. A volume and a surface do not entirely characterize a
geometric shape. The goal of this section is to constraint the
cell to keep a certain rigidity of the shape. The cell shape is
an important feature. It can lead to different functions and
properties, i.g. the spherical shape of red blood cells adapts
perfectly to their role in transport from the bloodstream, the
spindle-shaped muscle cells allows them to contact and re-
alizes a close fit between them, thus facilitating the simulta-
neous contraction of muscle tissue.

Several propositions have already been done to target the
cell shape, like cell elongation (Merks et al., 2006), but to
our knowledge, none can target all forms. The idea is to
give an elastic shape to the cell. For this we add a set of
springs to the cell like described in Figure 2. In this section,
we describe fristly the formalism , and secondly the imple-
mentation.

J

Figure 2: Example of elastic shape. We have one red cell C3
with an elastic shape where the distribution s L0, of springs
Ry is given by the function of a circle of center O and radius
4, represented by the blue circle. The energy of this elastic
shape is the sum of distance power 2 between the sites with
the lines and the circle blue. The sites with white lines are
sites of extension and the sites with red lines are sites of
compression.
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Behavior

| Description

Secret a gradient of arg
molecules Y

If the site (¢, ) contains n molecules Y then, after the secretion, the site will contain a number of
molecules Y equal to the integer closest to n + 219 where (g, gy) is the center of

V (i—gz)2+(i—gy)?
gravity of MorphoPotts.

Consume a gradient of arg
molecules Y

If the site (gz, gy) contains n molecules Y and the site (4, j) contains n’, the number of molecules
min(n,arg)

V (i—gz)2+(i—gy)?

Y in (4, §) is modified such that the new value is 0 if n’ < otherwise the new

min(n,arg)

V (i—gz)2+(i—gy)?

value is the integer closest to n’ —

Migrate to the molecules

The energy function of the CPM is modified by adding a new energy FEisr = —arg *
Z nbMolecules((i,7),Y) where nbMolecules((z,j),Y) is the number of molecules ¥

(4,5)EMo
on the site (3, j).

Transform  the  consumed

molecules in energy

In this paper for each consumed molecule the energy is incremented by 1.

Differentiate The probability that the MorphoPotts changes its types is equal to ﬁ where arg is the
Y'£Y

probabilty associated to the type Y cell. .

Divide A MorphoPotts can divide in two axes (vertical or horizontal). A new MorphoPotts is created
according to the probability of differentiation. The energy of the new MorphoPotts is equal to £’
and the energy of the old MorphoPotts is equal to F (internal energy of the MorphoPotts) minus E’
minus cost the cost of the MorphoPotts division.

Maintain The energy of the MorphoPotts is decremented by arg, representing the costs of the maintenance.

Die The MorphoPotts dies if its internal energy is equal to 0. The death means that the MorphoPotts

looses all its abilities and it does not generate energy in the CPM.

Table 1: Abilities of the MorphoPotts

Formalisation of the elastic cell

To constraint the cell to keep a 3D shape in the CPM for-
malism, we define in this section a function of energy Eo),.
Eogyp is null if the shape is reached by the Cell C,,. Fog), is
the sum of energies provided by the springs given to the cell.
The energy of one spring R at the position p, p’ (the position
of these extremities) for a cell C,, is defined like:
Z 1/2% k*  dist(a, R)?
if this spring is the closest to site a
according to criterion C'(R, a) and
dist(a, R) = min( . |ap|
0 otherwise.
where k is the constant force of the spring.
The disposition of the springs depends on the model and sev-
eral shapes can be given to one cell. In this paper the springs
are parallel. For this:

e we add a Cartesian coordinate system (O, Ox, Oy, Oz)
where O is a point in the grid. The axis Oy gives the
direction of the springs.

e we add a set of springs perpendicular to the plan de-
fined by the axes Oz and Oz, i.e the springs Ro, where
s € {+1,—1} whose two extremities are in position
(e Pys p=) and (pg, s % LO3 + py, p.), L0 being the rest
length of spring. The distribution of Ro,, and the length
L0,, depend on the desired shape (see Figure 2).

To compute Fo,, we define in this paper the following cri-
terion C":
“Ro, is the closest spring to the site (i,7,0) if
a spring Rop ., such that dist((i,j,0), Roy) >
dist((i, j,1), Roy, . ,.) does not exist”

So Eogy, in this paper is defined like:
Eogyp=1/2) > kS * dist(a, Ro3)?

Roj sq=0NC(Roj,a)

Implementation of the elastic cell

The implementation of the elastic cell can be done by the
computation of the intersection between a cell and a line (the
axis of the springs). A naive implementation could be to
browse all sites of the cell and to build the set of sites which
are crossed by the spring. The problem is that it will take
too long simulation time.

In one simulation step of the CPM, only one site value
s;.5,1 changes, modifying the cells C,, C5r. So we have:
AEos, =1/2% (

2(j, LOY) * k§ = dist((i, j, 1), Rog)?—

(4, LO%) * kS, = dist((4, 5, 1), Ro))?)

(', is the cell which increases, C(’, is the cell which decreases
and (i, j, ) the site added or deleted. C(Ro,, (4,3,1)) and
C(RO';:, (1,7,1)) are verified.

2(j,L0;) = 1if p; < j < sx L0, + p; (compression)
otherwise —1 (extension).

Also to compute A Eo,,» We store in a table for each site
p of the shape, the static following informations: z(p;, i),
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L0}, and k;, in the coordinate system of the shape.

So Ag,,, returns to compute one translation and one rota-
tion (to find the position of the changed site in the coordinate
system of the shape) and an access to the table. The cost is
constant and does not significantly modify the simulation
time.

Rotation and Translation of the elastic shape

We saw in the previous part that the definition of the cell
shape uses a target shape. However, the shape is located at
a specific coordinate. This causes the cell does not move
in the environment. In this part we show how we consider
the rotation and the translation of the shape according to the
adding or deleting sites

Rotation of the elastic shape This part describes how the
shape turns in the environment. For example, if a cell is
attracted to a direction due to a gradient of molecules, the
sites which are closed to the source of the gradient have a
higher probability to be added to the cell. This behavior can
turn the cell in the direction of the gradient.

We construct a function named rotation(m,p,Cy)
which returns a vector of angle. The size of this vector is
equal to the number of dimension. The angle corresponds to
the rotation of the cell (C;) shape after adding the site s, if
m = + or the deleting of the site s, if m = —. The shape ro-
tation is made by the rotation of its coordinate system com-
pared with the coordinate system of the environment.

Here, rotation(m, p, Cy) = a/Vy  x

(arcant2(py, pz), arcant2(p,, py), arcant2(py, pz)).
This function means that the rotation angle is the angle
between the axis Oy, the origin and the point p in the coor-
dinate system of the shape. The angle value is normalized
by the volume of the cell and the value is increased or
decreased by a.

Translation of the elastic shape We construct a function
translation(C, ) which returns a vector. This vector is used
to translate the shape after adding or deleting a site of the cell
Cy,.

Here, translation(C,) = B * AG, where AG,, is the
variation of the gravity center of the cell C, during a simu-
lation step of the CPM. 3 can favour or not the translation of
the shape.

Rotation and Translation in the simulation step The ro-
tation and translation of the shape is possible because envi-
ronmental or internal conditions can add or delete sites of
the cell in specific directions. However if the translation and
the rotation are made at each step of the simulation, an un-
desirable perpetuum mobile is possible.

Indeed, if the translation is realized towards a direction,
the sites in this direction will be added to the cell that im-
plies a new translation in this same direction and etc ... The
translation and rotation are not done when the transition is

accepted thanks to the energy provided by the springs, i.e.
when the variation of the energy is negative. The shape has
to be reached before doing a new translation or rotation.

IV Validation of the elastic shape

To validate and show the interest of the elastic shape we test
2 models of MorphoPotts. The first model proposes to test
the energy of the shape without cell translation and rotation,
the second to test the cell translation and rotation by simu-
lating the formation of a tissue via cell self-organization.

Example of the elastic shape

In this part, we test the elastic shape. For this, thanks to
our tool we can draw a 3D shape and automatically store the
informations described in section IV (see figure 3(a)).

The model used for the simulation consist of 4 Mor-
phoPotts: one MorphoPotts to model the exterior medium to
the cells and three MorphoPotts to test the same shape. The
coordinate system of the shape of the middle MorphoPotts
is rotated by /2 on the axis Oz (see Figure 3(a)). A verti-
cal section of the shape is given in Figure 3(a). The visible
springs on the horizontal axis have the parameters & = 10.
The springs of length null, complete the horizontal axis with
k = 10° to avoid a growth of the cell along this axis. In
this model, the parameter « (resp. [3) of the rotation (resp.
translation) is null. We just test the target shape. No con-
tact, volume and surface energy are taken into account in
this Model.

The results of the simulation are given in the Figure 3.
The Figure 3(a) shows the initial state. The Figure 3(b) is
a picture of the shape being built. The Figure 3(c) shows
the MorphoPotts having reached the target shape and also
validate our implementation of the elastic shape.

V Cell Self-organization

In this section we present a simulation of a model which test
both the translation and rotation of the shape, and the cell
self-organization to build a coherent tissue (a recognizable
shape and a dynamical tissue renewal). After a description
of model, we discuss the parameters before showing the re-
sults of the simulations.

Presentation of the model To show the interest and the
properties of the rotation and the translation of the shape,
we made a model allowing to simulate the generation and
the life of a cellular tissue. This model consists of three type
MorphoPotts:

o the first type of MorphoPotts models the exterior medium.

e the second type of MorphoPotts produces molecules in
the medium.

e the third type of MorphoPotts consumes the produced
molecules by the second type and divides. This type has
a elastic shape and is used to build the tissue.
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Figure 3: Example of elastic shape

The interactions between the MorphoPotts are:

e a direct interaction. A negative energy of contact (means
that the MorphoPotts which stay together do not use en-
ergy) is set between the MorphoPotts of type 3 . A posi-
tive energy of contact is set between the MorphoPotts of
type 3 and 2

e an indirect interaction. The MorphoPotts of type 2 pro-
vides molecules to MorphoPotts of type 3. If the Mor-
phoPotts of type 3 does not found the molecules, it dies.

We show with this model that the cell shape and the contact
energy can structure the cellular tissue. The competition of
the MorphoPotts to consume the molecules allows a finite
growth of cellular tissue like described in (Laforge et al.,
2005) and a dynamical tissue renewal.

Parameters analysis We have defined 4 types of Mor-
phoPotts. The parameters of these MorphoPotts are given
in Table 1.

The energies of contact verify that 5 x 17 3 + T3 3 < 0.
When two MorphoPotts of type 3 are in contact thanks to the
adding of a site, AE,. < 0. The adding of this site is favored
by energies of contact.

The concentration of the molecule 1 (produced by Mor-
phoPotts of type 2) decreases with the distace from the
source. If the MorphoPotts of type 3 are at a too long dis-
tance from a MorphoPotts of type 2, they have not enough

molecules to survive (higher than 52 pixels).
The MorphoPotts of type 3 can divide if its energy is higher
than 20000 (experimental value).

The shape described in Figure 4(a) is given to the Mor-
phoPotts of type 3. The volume and the surface are each
equal to 328,64. So the target volume and surface can fill the
shape. 21 extra sites have to be added to the MorphoPotts of
type 3 to verify the target volume and surface. The visible
springs in Figure 4(a) on the horizontal axis have the param-
eters k = 107 to force the MorphoPotts to reach its shape.
The springs of length null complete the horizontal axis with
k = 10° to avoid a growth of the cell along this axis. In this
model, the parameter « (resp. ) of the rotation (resp. the
translation) is 10 (resp. 75). The rotation and the translation
are possible only on the axis Oz because we model the con-
struction of a cellular tissue along one direction. The o and
B have been calibrated by dichotomy.

The parameters kt of the CPM is equal to 1, so the prob-
ability of transition is equal to e =¥, The transitions with
AFE > 0 have a weak chance to be accepted. The constant
Ac (resp. Ay, Ag) is equal to 1 (resp. 10000, 10000). These
constant values allow the MorphoPotts not to oversize their
target volume.
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Figure 4: Cell Self-organization. This simulation shows how the cell shape can structure and maintain the cellular tissue since
the beginning of its growth and during its life. t is the time of simulation and s is the number of CPM steps. The pc used used
for this simulation is a Pentium Quad 2.8Ghz and the language is JAVA.

type target target Energy of | Secretion Consumption | Division Maintenance
volume surface Contact
1 (exterior | _ _ 71 ,3=100 _ _ _ _
medium)
2 (producer of | _ _ _ secr(310000,1) | _ _ _
molecules)
3 (producer of | 350 350 T3,1=100 _ cons(1000,1) div( main(600)
molecules) T3,3=-10000 {E>20000,
E/2,0}, 3)

Table 2: MorphoPotts Parameters. The symbol _ means that the parameter is not taken into account. cons(1000,1) (resp.
secr(310000,1)) means that the MorphoPotts consumes (resp. produced) a gradient, 1000 (resp. 310000) molecules of type 1
in the center. div( {E>20000, E/2,0}, 3) means that if the internal energy of the MorphoPotts is higher than 20000, it divides and
gives half of its energy to newly born MorphoPotts and the cost of the division is null. main(600) means that the maintenance

cost 600.
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Discussion of the results The Figure 4 shows the results
of the simulation®. The initial state (see Figure 4(b)) con-
sists of one MorphoPotts of type 3 being attained its shape.
The MorphoPotts of type 2, which produce the molecules,
are also present. The MorphoPotts of type 1, which models
the exterior medium, is invisible and occupies the empty en-
vironment. The environment is a 3D matrix 100x100x100.

Between Figure 4(b) and 4(c) the MorphoPotts of type 3
consumes enough molecules to have an energy allowing its
division (on the axis Oy) in Figure 4(c). In Figure 4(d) the
shape of the MorphoPotts of type 3 is being built. In the
same time the two MorphoPotts of type 3 self-align thanks
to the energies of contact. In figure 4(e) and 4(f) we observe
the effects of the rotation of the shape. A MorphoPotts is
not aligned with the other, the energy of contact favors the
sites which are in contact with the other MorphoPotts to be
added. So the shape is rotated in this direction. In figure
4(g), the MorphoPotts on right in the figure is too far (a dis-
tance higher than 52), and dies. This keeps a finite width of
the cellular tissue. Figure 4(e) and 4(f) show the effects of
the translation of the shape. After a MorphoPotts division
at the center of the tissue, the MorphoPotts are compressed.
This implies a translation of the MorphoPotts towards the
exterior of the tissue.

The rotation of the shape and the energy of contact al-
low a self-alignment of the MorphoPotts. The translation
of the shape and the competition between the MorphoPotts
allow a finite growth of cellular tissue. During the simula-
tion, the MorphoPotts divide at the center of tissue, move
towards the exteriors and die at the extremities of the tissue.
The shape of the tissue emerges thanks to the shape of the
MorphoPotts.

VI Conclusion

We have defined a virtual cell called MorphoPotts. This
MorphoPotts is based on the cell defined in the Cellular Potts
Model. The MorphoPotts keeps the properties of this cell
and the cell behaviors that have been added. In the CPM,
the cell shape is represented only by a target volume and
surface. We have proposed and implemented a target shape.
Therefore, a set of springs is given to the MorphoPotts to
build the shape. These springs provide an energy which is
used to build a new function of energy in the CPM.

We have tested the target shape in two simulations. The
first one shows that it is possible, with this target shape, to
give a complex form to the MorphoPotts. The second sim-
ulation shows that this target shape allows to structure the
cellular tissue. Combined with the energy of contact, the tar-
get shape allows the MorphoPotts to self-align. By adding
the notion of the internal energy, available in the notion of
the MorphoPotts, the second simulation shows that the Mor-

*The video of this simulation is available at
http://pagesperso.univ-brest.fr/~tripodi/private/ALIFE12/

phoPotts self-organize to form a cellular tissue. This tissue
has a recognizable shape and a dynamical tissue renewal.
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Extended Abstract

Autonomous Robots have achieved considerable results ideavariety of domains, from the depths of the ocean to the

surface of Mars, and yet many vital locations, particuladylapsed buildings and mines, remain largely inaccessill

light of recent natural disasters in Haiti and Chile, thexraicompelling need for more versatile and robust search and
rescue robots. Imagine, for instance, a machine that caegguhrough holes, climb up walls, and flow around obstacles

Though it may sound like the domain of science fiction, mo@elvances in materials such as silk polymers (Huang et al.,
2007) and nanocomposites (Capadona et al., 2008) suchtadbot” is becoming an increasing possibility.

By soft, we mean an ability to significantly deform and alteajge at a much higher level of detail than discrete “modular”
snake-like robots (such as Yim’'s Polybot Yim et al. (2000] &us’s Molecubes (Kotay et al., 1998)). In fact the degree
of deformability demanded of truly soft robots requireg thay contain no rigid parts at all. Unfortunately, the ixtible
flexibility and deformability demanded of soft robotics igawith them considerable complexity.

There are two significant and coupled challenges to theioreaf soft robots: no one knows how to design soft robots,
and no one knows how to control them. These challenges adsethe complex dynamics intrinsic softness. Soft and
deformable bodies can possess near-infinite degrees dbirgeand elastic pre-stresses mean that any local pertumbat
causes a redistribution of forces throughout the structfisea consequence, there are no established principleselypu
analytical approaches to the problem of soft mechanicagdesnd control To make matters worse, the biomechanics of
soft animals are too complex and too inscrutable to providemuseful insight.

Consider what might seem like a relatively simple compleseift animal: Manduca sextathe tobacco hornworm. The
caterpillar achieves remarkable control and flexibilityspige the fact that each of its segments contains relatfesty
motoneurons (one, or maximally two per muscle, with apprately 70 muscles per segment), and no inhibitory motor
units (Levine and Truman, 1985). It is conjectured that thmplex and coupled dynamics caused by the interaction of
hydrostatics, an elastic body wall, and nonlinear muscddaavior, are all harnessed and exploited by the organism{T
mer, 2007).

This relationship between morphology and control in biglea richly studied and fascinating topic. Recent research
the tendinous network of the human hand indicate that thiesyperforms “anatomical computation”. It is conjectured
that “outsourcing” the computation into the mechanics @ #fructure allows related neural pathways to devote their
resources to higher level tasks (Valero-Cuevas et al., R@Bimilar phenomena have been shown in the physiology of
wallabies (Biewener et al., 2004) and cockroaches (Ahn add-Ril, 2002). Pfeifer and Paul (2006) coined the term
“morphological computation” to describe this class of eff@lickhan (2007) has similarly used the phrase “inteltige

by mechanics”.

Biological morphological computation has served as iradjain for robotic control in several recent works. lida arfeifer
(2006) explored how the body dynamics of a quadraped rolrobeaxploited for sensing. Watanadteal (2003) demon-
strated how inducing long distance mechanical couplingsinake robot improves its ability to learning a crawling rooti
All of these systems, however, involved relatively rigidodic platforms, and relatively well understood mechanicd
dynamics.

An outstanding challenge, therefore, lies in discoveriog Ito inject the properties of this “morphological compidat
into soft robots. Classically, engineers design complédotic systems and only later try to find a controller capable
of operating it. However, this approach has difficulty stgli- it is entirely possible to design a robot too complex to
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reasonably control. Of course, biology doesn’t first “dig&d an animal’s body, and only later its brain, rather, mlich
the proverbial chicken and egg, both evolve in tandem. tegdby those biological processes, modern approaches to the
Evolutionary Design of robots by co-evolving morphologylaontrol (Pollack et al., 1999; Sims, 1994).

In this work we show how the chicken-and-egg problem of smiftic design and control can be addressed via body/brain
co-evolution. A co-evolutionary algorithm operating witlthe PhysX physics simulator simultaneously searchesdfir
robot muscle attachment points (morphology) along withfiidng patterns for those muscles(gaits) capable of making
those bodies move. More specifically, two parallel popaliare evolved: fitness of the population of gaits relieswipe
current best evolved body plan, and fithess of the populatitrody plans relies upon the best evolved gait. By evolving
these two properties contingently and in lock-step, ouordtigm is able to produce effective, and sometimes surggisi
soft bodied gaits. One particularly interesting outcomthésemergence of antagonistically-placed muscle groups as
effective feature, whereas intuition would suggest thalybwall elasticity obviates such a need. This “discoverezEign
feature was then fed back into physical prototypes of a stbt, leading to improved real-world performance.
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Abstract

An Artificial Chemistry (AChem) is a set of components and
interactions that result in a composable system. Ideally, the
system is rich, and results in rich higher-order emergent prop-
erties. We present a methodology for discovering interesting
AChems through a series of tests that probe elementary low-
level properties. In doing so, we assume that these elemen-
tary properties are a necessary, but not sufficient, basis for
higher-order emergent properties, such as autocatalytic sets
and hypercycles. The test strategy is applied to RBN-World, a
sub-symbolic chemistry. This results in identifying a number
of new and interesting RBN-World chemistries that appear
richer than our original parameterisation.

Introduction

One approach towards the goal of Artificial Life (ALife) has
been Artificial Chemistry (AChem), particularly for the ori-
gins of life. Unlike many ALife approaches, life-like prop-
erties are not explicitly designed in, but emerge from the dy-
namics of the system. AChems have been applied in other
contexts [16, 12] however here we focus on their role as ap-
proach to the study of composable systems capable of ex-
hibiting rich higher-order emergent behaviour.

In its most basic form, an AChem is a collection of
molecules and reactions that describe transformations be-
tween groups of molecules, and an algorithm which deter-
mines how the reactions are applied over time [2]. There are
a large number of possible AChem designs (relating to the
nature of the components, interactions and reactions) each
with a potentially large parameter space. Moreover, some
examples of emergent systems (Boids [14], Conway’s Game
of Life [8], etc) only exhibit emergence at a small subset
of possible parameters. This motivates the need to develop
strategies to search the parameter spaces of AChems to find
those regions that exhibit rich emergence.

Here we describe a set of tests suitable for any AChem and
apply those tests to filtering 200 alternatives of an AChem —
RBN-World [7].

Desired high-level properties

Determining how to evaluate different AChems is a difficult
task. The overall goal when developing an AChem for ALife

is an emergent system capable of open-ended evolution. The
metric for this is unclear; some suggestions include Chem-
ical Organization Theory [1] and Granger causality [15];
however, searching for interesting chemistries using metrics
such as these would not be computationally tractable over
the large search space of alternative chemistries. Several
mid-level properties have been previously suggested as im-
portant in the emergence of rich evolutionary characteristics;
in the context of artificial chemistry, three of particular rel-
evance are autocatalytic sets [11], hypercycles [4, 6, 5] and
heteropolymers or co-polymers [13]. Desirable characteris-
tics of artificial chemistries have been suggested before [17]
however, these are design specifications rather than emer-
gent properties.

Autocatalytic Sets An autocatalyst is a molecular species
that catalyses its own production. Autocatalytic sets are two
or more molecular species where one or more reactions pro-
ducing each member of the set is catalysed by itself or an-
other member of the set [11]. The members of an autocat-
alytic set may be, but do not have to be, autocatalysts them-
selves. In addition, autocatalytic sets may overlap with in-
dividual molecular species belonging to more than one set.
Autocatalytic sets are thought to be important to the emer-
gence of life because of their characteristic growth; as long
as substrate is available, the members of an autocatalytic set
will continue to increase in concentration.

Hypercycles Hypercycles are a collection of coupled self-
replicative units and thought to be important as a higher-
order organization [4, 6, 5] — many biochemical metabolic
processes are hypercycles for example.

Heteropolymers Polymers are molecules composed of re-
peated subunits. Heteropolymers are molecules composed
of non-identical subunits, such as DNA or proteins which
both have a repeating backbone structure with different side-
groups attached to it. The important feature of heteropoly-
mers is their capacity for information storage encoded into
the ordering of the subunits.
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Desired low-level properties

Searching for autocatalytic sets, hypercycles and/or het-
eropolymers would be an useful step towards finding arti-
ficial chemistries with sufficiently rich emergent properties.
However, this is still too computationally intensive to be use-
ful as an initial step. We suggest that the space of possible
chemistries can be first reduced by selecting for specific fea-
tures thought to be required by the higher goal; towards that
end, the features being examined should be low-level and
computationally tractable.

In order to hunt for rich AChems, we specify tests for
low-level properties that we believe are necessary (but pos-
sibly insufficient) ‘stepping stones’ to higher-order emer-
gent behaviour. The tests can be structured, and as a result
chemistries that fail the lowest-level tests are not considered
for the intermediate tests thus allowing subsequent searches
to focus on interesting subspaces.

Synthesis is the formation of bonds is the lowest level
property possible; however it is important not only that syn-
thesis can occur in an AChem, but also that too much syn-
thesis does not occur. If every molecule can bond with every
other molecule, the chemistry is trivial and will not support
rich dynamic higher-level properties.

Self-Synthesis is bonding between two identical atoms or
molecules. As with synthesis, this is important for the for-
mation of larger molecular structures but also should be able
to occur between any two identical atoms/molecules.

Decomposition should also be possible, but not univer-
sal, within the AChem. Without the breakdown of larger
molecules, many conceivable mechanisms for higher-level
properties become impossible and the system may reach a
steady state once all raw materials have been consumed.

Substitution is a potential emergent behaviour given that
a particular AChem exhibits synthesis and decomposition.
While arguably not important in itself, substitution repre-
sents the potential for relationships between more than one
or two molecules.

Catalysis is another property of interest. We define catal-
ysis as a series of reactions that do not consume the catalyst,
yet the overall reaction would be slower (or not occur at all)
without it.

RBN-World: Overview

RBN-World [7] is an AChem framework combining random
Boolean networks (RBNs) [9, 10, 3] via bonding sites.
RBNs consist of n nodes synchronously updated in dis-
crete timesteps. Each node in the RBN has a Boolean state,
inputs from k£ nodes, and a Boolean function that maps the
state of inputs to an updated state at the next timestep. The
state of an RBN is the collection of states of all its nodes. All

RBNs have cyclic behaviour, returning to a previous state af-
ter sufficient number (usually small) of timesteps.

To use RBNs in a chemistry some modifications have
been made — we refer to the modified RBNs as bRBNs
(bonding random Boolean networks). Important aspects of
these are:

Atoms Within each RBN, there are one or more bonding
sites (b); these are additional nodes that provide inputs to or-
dinary nodes. Bonding sites do not have any inputs, instead
their state is determined by whether they are “bonded” or
“unbonded”.

Bonds A bond links two bRBNs, and there can be mul-
tiple bonds between the same pair of bRBNs. Each bond
requires one “unbonded” site within each of the bRBN pair
to become “bonded”, and each “bonded” site is associated
with only one bond.

Bonds are formed as a consequence of reactions when
specific criteria are met. If a bond is not formed by a re-
action, it is attempted again with any higher-level structures
(e.g. molecules) that the pair of bRBNs are part of. This it-
eration of attempting bonding and re-trying for higher-level
structures continues until either a bond is formed or there are
no more higher structures.

Molecules bRBNSs that are linked by bonds can be ex-
pressed as a composite bRBN. The composite bRBN’s in-
puts and functions are the component bRBNs with inputs
from “bonded” sites are replaced with direct inputs from
the other “bonded” node. Non-composed bRBNs are RBN-
atoms, and a composite bRBN is a RBN-molecule. A com-
posite bRBN that is part of a larger composite structure
is a functional group (by analogy with functional groups
in chemistry, such as the amine group). RBN-molecules
undergo reactions and form bonds in the same manner as
RBN-atoms to make further higher-level composite struc-
tures. Note that an internal RBN node can be in different
Boolean states at different levels of the structural hierarchy.

Bonding Consequences Forming a bond has two direct
consequences:

1. The process of bonding changes a bonding site in each
linked bRBN from “unbonded” to “bonded”.  This
changes one input to one node, which can potentially lead
to a change in the dynamic behaviour of the Boolean net-
work.

2. The bRBNs linked by the bond form a new higher-level

composite bRBN. If one of the participants of the bond
was already a component in another bRBN, then the com-
posite structures are combined into a larger composite
bRBN.

In addition to the direct consequences, there are potential
indirect consequences as well. The formation of a bond may
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change the dynamics of either bRBN, which may cause the
bonding requirements to be violated. When bonding criteria
are no longer valid, bonds break and the associated bonding
sites reverts to “unbonded”. This also alters any higher-level
composite structures, collapsing them if they are not distinct
from their lower-level components.

Due to the combinatoric nature of Boolean networks,
there are a vast number of possible bBRBN-atoms. However,
only a small subset will lead to the emergence of sufficiently
rich properties — most of the chemistry that underpins life
is consists of a restricted number of elements: Carbon, Hy-
drogen, Nitrogen, and Oxygen. Finding analogues of such
highly composable elements (and implicitly their interac-
tions) in a particular AChem is our task here.

RBN-World: Alternative Chemistries

During the development of RBN-World, it became clear that
a number of modelling decisions had to be made based on
limited information; for example, the size of the bRBNs and
bonding criteria between them. Also, pragmatically, a num-
ber of choices and assumptions were made without explicit
consideration of alternatives. These choices may have im-
pact on the emergent properties of the AChem.

To investigate the alternative chemistries, some of the
choices have been explicitly defined in order to determine
their effect upon the resulting AChem. It is worth noting
that the decisions around which alternatives to study have
themselves been made based on limited information from
preliminary experiments and exploratory ideas.

Four different categories of alternatives have been identi-
fied with multiple options within those categories. As well
as these separate alternatives, combinations of alternatives
from different categories can also be investigated.

Bonding Property

One of the novel aspects of RBN-World is the use of proper-
ties of the underlying dynamical system to determine bond-
ing. However, it is not clear which property would be most
suitable and what effect different properties might have.
Several alternatives are considered here, each with distinct
distributions. See tables 1 and 2 for summary and example.

Cyclelength (c) is the number of different states the bBRBN
passes through between repeats. Cyclelength has a large but
bounded asymmetric discrete distribution of values, with a
median of approximately /7 for small values of & [9].

Flashing counts how many Boolean nodes change state
during the cycle. RBNs typically have a ‘frozen core’ of
static Boolean nodes, and flashing is the inverse of this. This
can expressed as follows; let a state of ‘true’ have a value of
1 and a state of ‘false’ have a value of —1; N be the set of
nodes in the bRBN; s; ; be the state of the i™ node at the j®
state of the repeating cycle. Then:

1 if Z Si,j 7é c
Ninashing = j=1 (L
0 otherwise
Nﬂashing = Z Niﬂushi|]g (2)

ieN

Flashes is the total number of Boolean node state changes
over the cycle. As at least one node must change state at
each step around the cycle, this is related to the cyclelength
and the flashing property. This can be expressed as:

Niiashes = % Z Z

iEN j=1

3)

i, — Sij-1

Total is the sum of all Boolean node values at all time
steps over the cycle. This is a property of the states of the
bRBN rather than its dynamics and is related to the cycle-
length property and the number of Boolean nodes.

(&
Noo=Y_> sij 4)
iEN j=1

Magnitude is the larger out of the total number of Boolean
nodes at all time steps over the cycle that are in the ‘true’
state compared with the number that are in the ‘false’ state.

Ningg, = % SN (1 +sig) (5)

iEN j=1
1 C
Noage = 5 >, (1= si5) (6)
iEN j=1
Nmag = maX{NmagT7 Nmag,_-} (7N

Proportion is the proportion of nodes in state ‘true’ aver-
aged over both cyclelength and number of Boolean nodes.

Ninag,
nxe

Nprop = (8)

Bonding Criteria

In addition to the bonding property, the bonding rule re-
quires a comparison between the properties of two bRBNs
for some criteria to be met. There are multiple possibilities
to conduct this comparison, and this is another area for ex-
ploration.

Equal is the simplest bonding criteria; form a bond where
the value of bonding property is equal within 0.1% of the
maximum possible range of values to allow for numerical
error). This can be expressed as:

p(NL) — Pmin

Pmax — Pmin

N;) — min
_PWND) =P 4001 (9)
Pmax — Pmin
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Measurement Minimum Maximum Description

Cyclelength 1 2" Count of steps on cycle

Flashing 0 n Count of nodes that change state

Flashes 0 nxec Count of changes of node states over

Total —n Xc nxc Sum of node states over cycle

Proportion 0 1 Proportion of node steps with a value of True on cycle
Magnitude 1 nxc Maximum count of node states with False/True on cycle

Table 1: Alternative bRBN bonding criteria properties. n is the number of nodes within the bRBN, ¢ is the cyclelength of the bRBN.

bRBN node
A B C D
. F T F F
s F F F F
2 T T F F
S T T T F
o) T F T F
F T T F
c=6 Ningg = 14
Nﬂashing:1+1+1+0 Nmag—r:3+4+3+0
=3 =10
4+844+0 Ninagz =3 +2+3+6
Nﬂasheszi
2 =14
=8
N 10
Nt =0+2+0+—6 prop = 7
=—4 =0.417

Table 2: Example bonding properties for a n = 4 bRBN. Al-
though only one would be used for any specific AChem, here they
are all displayed. The table indicates the states of the bRBN nodes
at each sequential step on the cycle.

where N; and N; are the bRBNs involved in the bond, p(x)
is a function to calculate the bonding property of bRBN =z,
and Pmin & Pmax are the minimum and maximum possible
bonding property values.

Similar is a relaxation of the equal criteria — i.e. within
5% of the maximum possible range of values.

N:) —
_ PNG) = Poin 5 (10)
Pmax — Pmin

p(Nz) — Pmin
Pmax — Pmin

Different is the inversion of similar.

~ P(V;) = Prin

Pmax — Pmin

P(Ni) — Prmin
Pmax — Pmin

> 0.05 (11)

Sum one (applicable only to proportion) allows the forma-
tion of bonds where the proportion property of the interact-
ing molecules total to one (£0.001 allowing for numerical
error).

p(N:) + p(N;) = 1+ 0.001 (12)

Sum Zero (applicable only to total) requires that the total
property of the bRBNs sum to a value of zero (£0.001).

p(N:) + p(N;) = 0+ 0.001 (13)

Sum One and Sum Zero are applicable only to propor-
tion and total bonding properties respectively as these are
the only bonding properties that can meet these bonding cri-
teria.

n k Bonding Property Bonding Criteria
5 2 Equal Cyclelength
10 3 Similar Flashing
15 Difference Flashes
20 Total
25 Magnitude
Proportion
Sum One Proportion
Sum Zero Total

Table 3: Features of the 200 alternative AChems tested. Every
chemistry must have one feature from each column. Horizontal
lines cannot be crossed within the table when moving from one
column to the next. For example, 5 — 2 — Equal — Cyclelength is
valid, 20 — 2 — Sum One — Proportion is valid, but 5 —2 — Sum One
— Flashes is not valid.

Sizes of bRBNs

The number of nodes (n) within each bRBN-atom must be
chosen. A range of values at intervals was investigated (n €
{5,10, 15,20, 25} with the potential to expand this range if
there appears to be a directional trend).

The size of a bRBN does not have much impact on the
chemistry directly. However, it does alter the distribution of
the bonding properties, and their responses to bond forma-
tion, which in turn affects the propensity for different types
of reactions.

Connectivity of bRBNs

Previous work on RBNs [10] has shown that the number of
inputs (k) each node has can have an impact on their prop-
erties. There is also an interplay with the Boolean function

Proc. of the Alife XII Conference, Odense, Denmark, 2010

264



Figure 1: Schematic depiction of one sample for the ‘synthesis’
test its possible outcomes, and how those outcomes are interpreted
as ‘pass’ or ‘fail’ for that sample. A & B are two sample atoms.
A ‘+’ symbol denotes separate atoms and ‘-’ indicates a potential
bond formation between two atoms. Adjacent atoms (e.g. AB)
indicates that a bond has formed.

assigned to each node; certain functions can result in one or
more inputs having no affect on the state of the node (canal-
isation) and more different Boolean functions are possible
with more inputs.

As an initial assessment, we consider alternatives of two-
and three-input bRBNs (k € {2, 3}). In theory, any positive
integer value equal to or less than the total number of nodes
could be used. However, these are values known to be on
the ‘edge-of-chaos’ — higher values are chaotic and lower
values are statuc.

Combinations of Alternatives

The alternatives discussed above each change different, but
potentially interlinked, aspects of the AChem. Different
combinations of alternatives can be used, though some are
mutually exclusive. Table 3 shows the possible combina-
tions; in total there are 200 different AChems to be con-
sidered, each of which may have potentially different and
interesting features.

Previous work [7] used n = 10 k = 2 with ‘cyclelength’
as the bonding property and ‘equal’ for the bonding criterion
as an arbitrary initial choice from the 200 alternatives

Method

As discussed previously, there are a large number of poten-
tial alternative chemistries, and each of those has a very large
number of potential elemental bRBNs.

Due to the vast number of possible bRBNs, exhaustively
testing multiple chemistries is not feasible. Therefore, a ran-
dom sampling approach is taken. In order for a chemistry to

be have the potential for sufficiently rich properties, it is im-
portant that at the desired low-level behaviours are seen at
least once. However, it is also important that the behaviours
are not omnipresent — consider the synthesis test for ex-
ample (described below); if every interaction resulted in the
formation of a stable bond, it would rapidly coalesce into a
single molecule and would therefore not exhibit sufficiently
rich properties.

We do not seek to find the optimal subset of bRBNs in the
optimal AChem; we are simply looking to remove those al-
ternative AChems unlikely to exhibit sufficiently rich emer-
gent properties.

Desired Behaviours

As well as the alternative chemistries, the tests for required
low-level behaviours must also be defined. There is a natural
structuring of prerequisites within the behaviours — decom-
position can only occur if synthesis occurs for example. This
can be used to increase the efficiency of the sampling.

Synthesis Synthesis is the lowest-level behaviour possible
in an atom-based AChem. A pair of atoms is randomly sam-
pled, the two atoms interact, and the outcome is recorded.
RBN-World has a two-stage bonding process, and the bond-
ing criteria must be met both at the start of the interaction
and after bonding. If a stable bond can be formed, then the
sample passes; if not, the sample fails (figure 1).

Self-synthesis The self-synthesis test the synthesis test be-
tween two copies of the same element. If a stable bond can
be formed, then the sample passes; if not, the sample fails.

Decomposition This is the breaking of bonds, potentially
leading to a molecule separating into two (or more) smaller
molecules. In RBN-world this is triggered by an interaction
between an bRBN molecule and another bRBN. In the de-
composition test, samples of three atoms are taken and the
first two attempt to form a stable bond. If they cannot form
a stable bond, then that sample is ignored for determining
pass/fail; this is a test for decomposition, not for synthesis.
Once a stable molecule has been formed, it interacts with
the third sample. This can have several possible outcomes;
no interaction, formation of a larger molecule, or breakdown
into two or three separate molecules. If it results in the bond
between the first two sampled bRBNs breaking, then it is
recorded as a pass; other outcomes are classed as fail (figure
2).

Substitution Similar to decomposition, the substitution
test involves an interaction with a molecule that leads to re-
placement of part of the molecule with the reacting bRBN.
The process is the same as the decomposition test, but the
only valid outcome is a direct replacement of the second
sampled bRBN with the third sampled bRBN, i.e. AC+B in
figure 2.
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A 4

Sample Not Counted

Figure 2: Schematic depiction of the ‘decomposition’ test. A requirement of the decomposition test is that synthesis must have first occurred,
this part of the schematic is indicated in the highlighted subgraph (details removed for brevity).

Catalysis This is the highest-level property investigated
here. Unlike the other desired properties, catalysis can take
many forms. Any of the other tests could be repeated requir-
ing the presence of a catalyst. For simplicity, we focus on
catalysis of synthesis reactions.

The test proceeds as follows: as before, a sample of three
bRBNSs is taken and the first two attempt to form a stable
bond. However, unlike decomposition or substitution tests,
this time it is important that a stable bond does not form. If a
bond does form, then the sample is not counted for pass/fail.

After that initial bond formation stage, the third bRBN
in the sample attempts to form a bond with the first; this is
analogues to interacting with a catalyst to form a temporary
intermediate. If this does not form a stable bond, then again
the sample is not counted for pass/fail.

The final step is to test that the second bRBN from the
sample can substitute for the third bRBN. If this is the case,
then the third bRBN has acted as a catalyst for the forma-
tion of the bond between the first and the second bRBN that
would not occur directly (figure 3).

Results

The outcomes of testing the described alternative
chemistries with 10,000 randomly generated samples
of bRBNSs is summarized in table 4 (testing took approx. 2
days on a 24 quad-CPU cluster). With each test a number of
alternative AChems are ruled out; the chemistries that pass
all tests are listed table 5.

Less than 5% of alternative chemistries pass all the tests.
The n & k categories of alternatives have little or no in-
fluence on the low-level properties of the chemistry. The
anomaly is n = 25, k = 3 with bonding property ‘total’

po 2
LD [The=1
= =9
ag 3 33
v 12} v 72}
E Eg3 Ess E
5] L P S [T [0l
= S20 S8a0 S.E
Q Q £ = Q g v Qs
<g <=9 <=5 ° <=
S Dl 4 Dl G g
S ©°o=n °S=Zz= °©
Test #8 #I S H®OS o
Synthesis 200 10 7 183
Self-Synthesis 183 110 53 20
Decomposition 183 0 6 177
Substitution 177 0 18 159
Catalysis 177 0 39 138

Table 4: Results from testing 10,000 samples from each of 200 al-
ternative chemistries for low-level emergent behaviours. The pre-
requisite for decomposition and self-synthesis tests is synthesis.
The prerequisite for substitution and catalysis tests is decompo-
sition. See text for details.

and a comparison of ‘sum zero’; however, this may be due
to sample size. Closer examination of this case shows that
of 10,000 samples in the decomposition test, 9,677 were
not counted (as the did not form a molecule that could break
down) and none of the remaining 323 samples passed. In
comparison, the n = 20 equivalent AChem where 9, 382
were not counted and 43 of the remaining 618 samples
passed.

For the property and comparison alternatives, only those
using ‘proportion’ as property and ‘sum one’ as the criterion
or those using ‘total’ as the property and ‘sum zero’ as the
criterion pass all tests. Whilst alternatives should be kept in
mind, we now have evidence that these are options are more
likely to be capable of rich emergent properties. As various
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B[AC]| [AB+C

Sample Not Counted

Figure 3: Schematic depiction of the ‘catalysis’ test. Requirements of the catalysis test are that A and B must not synthesise, and that C and
A must synthesise; these are indicated by the highlighed subgraphs (details removed for brevity).

n k Measurement Comparison
5 2 Proportion Sum One
10 2 Proportion Sum One
15 2 Proportion Sum One
20 2 Proportion Sum One
25 2 Proportion Sum One
5 3 Proportion Sum One
10 3 Proportion Sum One
15 3 Proportion Sum One
20 3 Proportion Sum One
25 3 Proportion Sum One
5 2 Total Sum Zero
10 2 Total Sum Zero
15 2 Total Sum Zero
20 2 Total Sum Zero
25 2 Total Sum Zero
5 3 Total Sum Zero
10 3 Total Sum Zero
15 3 Total Sum Zero
20 3 Total Sum Zero

Table 5: The 19 alternative AChems that exhibit variation across
all 5 low-level emergent behaviours tested.

different values of n and k were tested and did not affect
which chemistries passed the tests, these values can be cho-
sen based on other concerns, such computational tractabil-
ity. One potential issue is that this work has only samples
from atomic constituents; it is not guaranteed that molecular
structures will also exhibit these behaviours. While various
values of n were tested, molecular bRBNs of many atoms
may not behave as an equivalent large bBRBN atom due to the
constrictions from reciprocal bonding sites between atoms.

Conclusions

We have presented simple tests of an AChem that can be
used to restrict the design space to non-trivial chemistries.
This is important, as for many AChems there are a large
number of alternatives that should be considered — for RBN-
World we have only examined a small fraction of possible
alternatives. It has also been shown that our initial arbitrary
choice of parameters did not pass these tests [7]. This is
an important consideration as the processes that lead to the
design of an AChem are typically opaque to the community.

A filtering metric provides a useful testing approach that
does not require computationally expensive and/or exhaus-
tive testing of molecules and/or reactions. It is also inter-
esting to see that some AChems fail because all tested sam-
ples interactions failed, but some chemistries fail because all
tested sample interactions passed; the presence of variation
is a requirement for emergent properties.

Future work

Two specific alternative parameterisations of RBN-World
have been identified as containing interesting atoms; future
work can now be focused onto searching for specific small
sets of elements within these chemistries that give rise to
the high-level desired properties discussed earlier — auto-
catalytic sets, hypercycles and heteropolymers. These have
not been tested for in the experiments described here due
to the small samples from each chemistry that were being
examined.

In addition, the low-level tests will be refined further. One
example is that here only atoms were tested and there is no
guarantee that these properties are also applicable for larger
structures. As we can now remove the trivial, uninterest-
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ing cases, computational effort will be concentrated on those
non-trivial cases, in the hunt for rich AChems.
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Abstract

We introduce multi-level Artificial Chemistries as a way of
tackling difficult problems in the evolution of complexity. We
present two algorithms for moving between levels of abstrac-
tion in a multi-level Artificial Chemistry. (1) Moving up-
wards from a low-level description to a high-level description
involves making approximations. We discuss these, and pro-
vide an algorithm to perform the approximations. (2) Mov-
ing downwards is more problematic. We discuss the issues
involved in moving down, including conservation of mass.
We present an algorithm to generate constraints that any low-
level implementation of the system must satisfy. These con-
straints can be used to: obtain information about the system;
automatically generate a low-level implementation of the sys-
tem; guide a search for suitable low-level implementations of
the system.

Introduction

Artificial Chemistries (AChems) can be explored from a
computational viewpoint, for example, as tools for imple-
menting evolutionary algorithms [9] and controlling robots
[6]. They can also be used to model biological systems
[10] such as replication [12] and membrane formation [13].
These varied applications of AChems lead to varied ways of
defining them, and consequently to AChems defined on dif-
ferent levels of abstraction, with different properties. How-
ever, one common feature among AChems is that they are
defined on only one level. Some problems, relevant to both
computation and biology, span two or more levels of abstrac-
tion (for example, any of the ‘major transitions in evolution’
[14]). If AChems are to tackle these problems, they must
span multiple levels of abstraction.

Previous authors have observed that biological systems
contain components on different levels [3], but the purpose
of multi-level AChems is to produce two different models of
the same system, from two different levels. Work has been
done on Course-Grained Molecular Dynamics [1] and Dis-
sipative Particle Dynamics [11], which move from the very
low level simulations of Molecular Dynamics, upwards to a
slightly higher level that is more computationally tractable
for larger molecules and longer timescales. But these sys-
tems still only operate on one level. Currently there is no

WWW.yccsa.org

well-defined way for the AChem itself to move between lev-
els of abstraction. We discuss the issues involved in moving
between levels of abstraction, and present two algorithms to
aid movement up and down levels of abstraction in AChems.

Traditionally, people use computers to do the ‘work’ of
running the AChem, and themselves do the ‘meta-work’ of
deciding at which level to run. But what if computers could
do this ‘meta-work’? A system that could automatically de-
cide which level to model at could attempt to tackle some of
the difficult modelling challenges that span multiple levels,
such as the ‘major transitions in evolution’. Here we discuss
both moving downwards from a higher level to a lower level
and moving upwards from a lower level to a higher level.

The higher level is an approximation of the lower level.
The lower level contains more information than the higher
level, and so moving downwards requires adding this in-
formation into the system. When moving downwards, we
do not know how the lower level is implemented. We only
know how it must behave when viewed from a high level.
So we cannot map directly from a high-level description to
‘the correct’ low-level description. In this paper, we map to
a set of constraints that any low-level implementation must
satisfy. These constraints describe how the low-level com-
ponents of the system combine to form high-level structures.

The constraints could then be used to guide an implemen-
tation of the lower level. For some low-level implemen-
tations, these constraints correspond almost directly to an
implementation (with possibly some arbitrary choices to be
made). For more involved low-level descriptions, these con-
straints can be used to search for low-level implementations.

When moving up from a low-level description to a high-
level description, an approximation must be made. The pur-
pose of having a high-level description of a system is that
there is too much information in the low-level description,
and a summary of this information is desired. The high-
level description approximates this information in a mean-
ingful way. We must decide precisely how to approximate
the system and how much to approximate it. An algorithm is
presented for performing this approximation, and the issues
surrounding approximation are discussed.
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What is an Artificial Chemistry?

AChems are agent-based systems where the agents are ana-
logues of chemicals participating in reactions. There are dif-
ferent types of AChem [4] with varying levels of complex-
ity. The simplest are defined by finite lists of chemical types
and the reactions they can participate in. More sophisticated
AChems define chemicals containing some internal structure
or properties. This makes it possible to describe an infinite
number of different chemicals using a finite number of prop-
erties [10]. The reactions in these systems do not need to be
explicitly listed; they are defined implicitly by the structure
and properties of the chemicals, and specific reactions can
be computed as and when they are needed.

When defining reactions implicitly, the possibility exists
for open chemistries [7]. In an open chemistry, the possible
chemical species that can exist need not be pre-specified.
Although many different chemical species are possible, only
a small number of them exist at any one time. A particular
instance of the chemistry occupies a sub-space of the space
of all possible chemical species. As an open chemistry runs,
it changes the sub-space that it occupies.

If an AChem is to be used to evolve a network of chem-
icals and reactions, an open chemistry is required. Addi-
tionally, the chemistry should also be evolvable: the chemi-
cal species should change (via mutation) in a structured way
that evolution can use to move through the space of possible
chemical species. Most changes should have only a small ef-
fect (so a mutated chemical can perform the same reactions
as its parent, but maybe faster or slower), but some changes
should have a large effect (occasionally a mutated chemical
can perform a new reaction, or lose the ability to perform an
existing reaction).

One way of making evolvable chemistries is to use sub-
symbolic chemistries [5], where chemicals have two levels
of description. On the higher level, the system is an open
AChem with chemical species containing structure and rules
that define their reactions. On the lower level, a chemical is
composed of parts that interact to give rise to properties that
entail the rules on the higher level. The lower level could
be a complex system such as a random boolean network [5],
it could be another AChem (for example a simple, closed
chemistry), or it could be a computer programming language
[8]. AChems that work on two or more levels have the po-
tential to possess properties such as evolvability.

What are levels?

There is no ‘correct’ level at which to design AChems, as
it depends on the particular problem being solved. This in-
cludes whether the purpose of using the AChem is to sim-
ulate a system from actual chemistry (or biochemistry), or
to use the AChem as a computational tool, exploiting its
properties to create a computational system (or to study a
computational system). 