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Artificial Life XII:
The 12th International Conference on the

Synthesis and Simulation of Living Systems

This is the proceeding for the Artificial Life XII Conference (http://www.alife12.org/), hosted by
the Center for Fundamental Living Technology (FLinT) (http://www.sdu.dk/flint/) at University
of Southern Denmark, Odense, August 19-23, 2010. Twenty three years ago in September 1987, the first
Artificial Life Workshop was held at Los Alamos National Laboratory and the subsequent Alife workshops
and conferences have been hosted in the US eight times (Los Alamos 1987, Santa Fe 1990 & 1992, MIT 1994,
UCLA 1998, Reed 2000, Boston 2004), Japan once (Nara 1996), Australia once (Sydney 2002), England once
(Southampton 2008) and now in Denmark (Odense 2010).

What is different about Alife XII?
You may have noticed that we have switched sequence of the concepts “Simulation” and “Synthesis” in
the title of the conference to emphasize some changes within our community. First of all, the Alife XII
submissions consist of a significantly higher fraction of wet Alife papers than at any earlier Alife conference.
It is a pleasure to see how the communities from wet and soft Alife are increasingly engaging with each
other. These submissions are also congruent with a clearer view in the broader scientific community on how
we might create life either from scratch or through top-down design [1, 2, 3]. This trend is also reflected by
a number of recent international collaborations across the top-down and the bottom-up communities, often
sponsored under the title of synthetic biology.1

Living processes have been implemented and studied for many years in soft Alife systems (living processes
implemented on computers), but the emergence of replicating programs from noisy computational environ-
ments remain an open issue. Significant progress has also been made for life-like robotics systems, for
example through the development of polymorphic robots, where e.g. simple self-assembly, self-replication
as well as complex collective behavior now have been obtained [4, 5].

In general, we see more integration between wet, hard, soft, and mixed living systems both within the
Alife community and across the broader scientific and technological landscapes. This is in part captured
by the definition of emerging living technology which comprises all technological applications of living and
life-like processes at all levels [6].

As the Alife community inches closer to an understanding of life as a physical process by constructing
living processes, we are also increasingly assessing the technological implications of the ability to engineer
systems, whose power is based on the core features of life: robustness, adaptation, self-repair, self-assembly,
and self-replication, centralized and distributed intelligence, and evolution [7].

In the coming years, we will likely see an accelerated movement towards more life-like, living, and in-
telligent processes as well as their integration across many technologies to form new biology-technology

1E.g., the European Science Foundation sponsored synthetics biology workshop on “Streamlined and synthetic
genomes”, November 16-17, 2009, Valencia, Spain. The Los Alamos National Laboratory sponsored synthetic biol-
ogy workshop, June 28-29, 2010, Los Alamos NM, USA.



Proc. of the Alife XII Conference, Odense, Denmark, 2010 vi

ecologies, that also include human institutions. If implemented appropriately, these new systems, technolo-
gies, and organizations could become more in tune with the needs of human society and the natural dynamics
of the biosphere.

These developments are emerging from a knowledge convergence between a variety of sciences and
technologies which we, within the Alife community, may group into (i) wet carbon-chemistry-based sys-
tems, (ii) computational and robotics based, ICT (information and communications technology) systems, and
(iii) human organizations and institutions dominated by culture and human nature.

As part of the Alife XII program, we have scheduled a session “Looking backwards, looking forwards”
to address the scientific questions related to these developments. Ten years have passed since the last Alife
community status report [8, 9, 10], and we hope that this conference program can contribute to updating the
critical open Alife questions. The day after the conclusion of the Alife XII conference, we have a one-day
workshop for a similar discussion focused on the technological implications of Alife. Part of this discussion
will be open to the public [11].

We should also emphasize that after 23 years, a hallmark for Alife community is still its scientific breath
and inclusiveness. The Alife conferences clearly continue to act as a Big Tent, where scientists from many
different disciplines and domains meet to present results and exchange ideas. This unique community feature
has historically made the Alife community highly innovative, however it also makes peer review difficult
as scientific methods vary dramatically across the many domains and disciplines. This breath also causes
problems when papers need to be categorized into sessions as most papers in this volume could fit under
several of the conference themes.

Background for Alife XII
For Alife XII 156 out of well over than 200 contributions (papers and abstracts) were accepted in the peer
review process. These papers and abstracts represent authors from 34 countries and they consist of 152 (= 156
presentations - 4 plenary talks) contributed talks in four, and at times five, parallel sessions. All contributions
have 15 minutes for their presentation and five minutes for discussion. The contributed plenary talks have 40
minutes. Alife XII also has a vibrant Poster Session, which is a crucial component of the Conference.

In addition to the peer reviewed presentations, Alife XII has six Satellite Events, which are proposed and
organized by individuals and groups from the community. Traditionally, these workshops add an important
dimension to the Alife meetings due to their free format and often more exploratory topic selection. Often,
radically new ideas are presented in these workshops or tutorials on specific topics and explored in more
details than regular peer reviewed presentations allow.

In order to assemble the Alife XII conference program, we have harvested as much domain and expert
knowledge as reasonably possible. This process started well before the first call for papers with a call for
contributed themes, where we consulted the invited Scientific Advisory Committee (SAC) for advice. The
Organizing Committee (OC) solicited the SAC, which effort we are deeply indebted for. The Alife XII SAC
consists of:

Chris Adami Pascale Ehrenfreund Andrés Moya
Martyn Amos Takashi Ikegami Ole Mouritsen
Wolfgang Banzhaf Martin N. Jacobi Peter Nielsen
Mark Bedau David Krakauer Norman Packard
Jim Boncella Doron Lancet Rolf Pfeifer
Liaohai Chen Kristian Lindgren Vitor Dos Santos
Greg Chirikjian Jerzy Maselko Andrew Shreve
David Deamer John McCaskill Ricard Solé
Peter Dittrich Chris Melhuish Richard Vaughan

The SAC together with the OC proposed a variety of conference themes and the SAC also took part in the
multiple conference announcements.
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Upon submission, authors were asked to attribute their submission to several of these conference themes.
In response to these preliminary assignments, the original themes were slightly revised to more closely match
the accepted contributions. A group of 18 track organizers were asked to vote for the contributions potentially
pertaining to their themes, and to suggest coherent sessions based on these submissions. This voting was
performed using online spreadsheets (Google documents). The Pareto front of the track organizer votes
identified few areas of strong overlap – mainly in the area of wet artificial life. For these areas, the session
assignment was done jointly by the responsible track organizers. At this stage 113 out of the 152 contributions
could be assigned to the unique highest bidder. The remaining 39 submissions with conflicting votes were
then assigned in a way that lead to the most consistent sessions. In only five cases, we overruled the bare
votes in favor of coherent session themes. However, it should be noted that many contributions fit well within
several of these themes due to the interdisciplinary character of the Alife community.

This collective intelligence process resulted in the following themes (with theme organizer names):

Chemical Self-Assembly and Complexity (Jerzy Maselko)
Origin of Life (Mark Dörr & Bruce Damer)
Bottom-up Synthetic Cells (Pierre-Alain Monnard)
Systems Biology (Luis Delaye)
Biological and Chemical Information Processing and Production (John McCaskill)
Artificial Chemistries (Wolfgang Banzhaf)
Minimal Cognition and Physical Intelligence (Martin Hanczyc)
Evolutionary Dynamics (Chris Adami)
Theoretical and Computational Frameworks (Peter Dittrich)
Complex Networks (Carlos Gershensen & Mikhail Prokopenko)
Ecology (Seth Bullock)
Collective Intelligence (Johan Bollen)
Emergent Engineering (Norman Packard)
Intelligence and Learning (Takashi Ikegami)
Robots (Kasper Støy)
Socio-Technical Systems (Kristian Lindgren)
Philosophy (Mark Bedau)

We have tried to organize the sequence of conference topics from lower to higher levels of organization with
a variety of methods themes sandwiched in between.

Four keynote presentations – by Christian de Duve, Tetsuya Yomo, John McCaskill, and Serge Kernbach –
provide overarching perspectives on the origins of life, artificial cells, the connection between biochemistry
and computational hardware and software as well as robotics, covering the classical wet, soft, and hard arti-
ficial life research areas. In addition to the invited keynote presentations, Alife XII also features contributed
plenary talks. Reviewers, theme organizers and the organizing committee jointly suggested candidates for
these presentations. Four plenary, contributed presentations were picked by the organizers to ensure an over-
all balanced conference program. Unfortunately, many other papers deserving to be highlighted as plenary
talks could not be accommodated.

The review process was conducted and coordinated utilizing the distributed online tool EasyChair
(http://www.easychair.org/), which the organizers can recommend for reviewing many confer-
ence paper and abstract submissions. We should stress that the assembly of the conference program would
have been impossible without the fantastic work of the 135 Alife XII submission reviewers. The OC is deeply
indebted to all of them and they are separately acknowledged on the next pages.

It is our belief that the resulting review process and conference program – a true child of bottom-up collec-
tive intelligence – benefited significantly from the participation of the many domain experts. It would have
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been very difficult to assemble a theme-based program using a traditional top-down approach. The bottom-
up process ensures a program organization, that reflects the highly diverse current activities within the Alife
community. The disadvantage of this collective intelligence based program assembly process is that more
time and effort is spend by more people.

We, the Alife XII OC, sincerely hope you will find these proceedings both useful and inspirational and that
you will enjoy the conference.

Harold Fellermann (Alife XII co-chair)
Mark Dörr
Martin Hanczyc
Lone Ladegaard Laursen (Alife XII administrative chair)
Sarah Maurer
Daniel Merkle (Alife XII EasyChair chair)
Pierre-Alain Monnard
Kasper Støy
Steen Rasmussen (Alife XII chair)

August 2010, Odense, Denmark.
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Extended Abstract 

 
The spontaneous increase of complexity in nature from the formation of elements, followed by the formation of 
compounds, both inorganic and organic, leading to the emergence of life -- from a single cell to multi-cellular 
organisms -- and the later formation of communities followed by the emergence of new technologies where complex 
structures are created by a humans is probably the most important property of matter. 
 
One common property of self-construction is the formation of new entities. The formation of elements and chemical 
compounds are relatively well studied, so the next step is to study the transition from non-living to living matter. 
This requires formation of complex structures on a scale that begins with nanometers and increases.  Most of this is 
done by “self-assembly,” defined as a process that must be completed without external assistance and must include 
stochastic aggregation of pre-existing components.  The formation of more complex structures inside cells and in 
multi-cellular systems requires a more complex mechanism.  Here, the formation of structures requires a complex 
network of physical and chemical processes that are precisely organized in space and time -- the parts are constantly 
produced in hierarchy.  The stochastic process of movement is replaced by the controlled movement of different 
parts (components) using different forces and different routes.  This process can be seen in the formation of magnets 
in magnetic bacteria; functioning of xylem and phloem in biological plants; veins, arteries and the lymphatic system 
in animals; as well as tubes and pumps in industrial plants.   

This complex spatio-temporal organization of chemical and physical processes that goes beyond the simple process 
of self-assembly can also be observed in chemical systems.   The construction of complex forms is controlled by the 
complex network of chemical reactions.  These chemical and physical processes may start in a defined place in 
space and time and be finished in another.   This will be discussed in the case of precipitation pattern formation in 
simple, even two component inorganic systems like, Cu2+ - PO4

3-, Al3+, silicate, Cu2+ - C2O4
2 , Pb2+ - chlorite – 

thiourea, and Fe2+ - silicate. 

Most of these structures are grown from a chemical seed that is immerged in a chemical solution.  The initial study 
of this seed theory is based on studies of cellular automata and numerical studies of multi-cellular chemical systems 
development, which will also be presented.    

The biological organism evolves forming structures of unbelievable complexity and precision in its construction 
process and in the functions of its controlling systems.  

The emergence of man follows as the next important step in the self-construction of the universe.  It has allowed the 
emergence of new construction technologies that have increased the number of constructed systems and their 
properties.  As predicted by Leonardo da Vinci, we now have the capacity to create technology: 

“Where nature finishes producing its species, the man begins with natural things to make with the aid 

of this nature an infinite number of species.” 

-Leonardo da Vinci (1452-1519)  

A final important step for discussion regards the construction of computers, allowing for the mathematical modeling 
and, further, the construction of virtual universes.   
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Abstract

The notion of autocatalysis actually covers a large variety of
mechanistic realisations of chemical systems. From the most
general definition of autocatalysis, that is a process in which
a chemical compound is able to catalyze its own formation,
several different systems can be described. We detail the dif-
ferent categories of autocatalyses, and compare them on the
basis of their mechanistic, kinetic, and dynamic properties. It
is proposed that the key signature of autocatalysis is its kinetic
pattern expressed in a mathematical form. It will be shown
how such a pattern can be generated by different systems of
chemical reactions.

Introduction
The notion of “autocatalysis” was introduced by Ostwald in
1890 for describing reactions showing a rate acceleration as
a function of time. It is for example the case of esters hydrol-
ysis, that is at the same time acid catalyzed and producing an
organic acid (Laidler, 1986). Defined as a chemical reaction
that is catalyzed by its own products, it has quickly been de-
scribed on the basis of a characteristic differential equation
(Ostwald, 1902, 1912). Typically used to describe complex be-
haviors of chemical systems, like oscillatory patterns (Lotka,
1910), it has immediately appeared to be essential for the
description of biological systems: growth of individual living
beings (Robertson, 1908), population evolution (Lotka, 1920)
or gene evolution (Muller, 1922).

Extending this concept from a chemical description to a
more open context was initially carefully described as an
analogy, sometime qualified by the more general notion of
“autocatakinesis” (Lotka, 1925; Witzemann, 1933). However,
this eventually leads to an overgeneralization of the term
of autocatalysis, tending to be assimilated to the notion of
“positive feedback”, for example in economy (Malcai et al.,
2002).

The notion of autocatalysis is now actively being used for
describing self-organizing systems, namely in the field of
emergence of life. Autocatalytic processes are the core of the
mechanisms leading to the symmetry breaking of chemical
compounds towards homochirality (Frank, 1953; Plasson
et al., 2007), and could be identified in several experimental

systems (Kondepudi et al., 1990; Soai et al., 1995). However,
how such autocatalytic processes shall manifest is still under
heavy debate (Plasson, 2008; Blackmond, 2009).

The purpose of this article is thus to clarify the meaning of
chemical autocatalysis and this effort will be undertaken by
covering these following points:

• What is autocatalysis for a chemical system? On the basis
of the general description of autocatalysis as a process al-
lowing a chemical compound to enhance the rate of its own
formation, it is defined by a kinetic signature, expressed in
a mathematical form.

• How can an autocatalytic process be realized? As many
mechanisms can reduce to the same macroscopic kinetic
laws exhibiting autocatalysis, the focus is put on several
mechanistic realisations of autocatalytic processes, on the
basis of simple models further illustrated by concrete chem-
ical examples.

• How can autocatalysis be observed and characterized? The
focus is put on the dynamic properties, showing that this
observable is the direct consequence of the kinetic pattern,
rather than the underlying mechanism.

• What is the role of autocatalysis? Embedded in non-
equilibrium reaction network, the competition between
autocatalytic processes allows the onset of chemical se-
lection, that is the existence of bifurcation phenomena
allowing the extinction of some compounds in favor of
others.

Autocatalysis: a Practical Definition
A Kinetic Signature
From its origin, the notion of autocatalysis has focused on
the kinetic pattern of the chemical evolution (Ostwald, 1902).
The general definition of autocatalysis as a chemical process
in which one of the products catalyzes its own formation can
be mathematically generalized as:

dxi
dt

= k(X) ·xni +f(X), k > 0; n > 0; |k| � |f | (1)
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Figure 1: Classification of the concepts of autocatalysis (AC) depending on their descriptions (mechanistic, kinetic, and dynamic).
The graphs represents the time evolution of a non-autocatalytic reaction (red), and of autocatalytic reaction of order 1/2 (green),
1 (blue), 3/2 (dotted red), 2 (dotted green), and 3 (dotted blue).

The term k(X) · xni describes the autocatalytic process it-
self, while f(X) describes the sum of all other contributions
coming from the rest of the chemical system.

We have an effective practical definition of the concept
of autocatalysis, based on a precise mathematical formula-
tion. The causes of this kinetic signature can be investigated,
searching what mechanism is responsible for the autocat-
alytic term. This leads to the discovery of a series of different
kinds of autocatalysis processes, and their respective effect,
describing what observable behavior is generated by the au-
tocatalytic term (see Fig. 1).

Potential vs Effective Autocatalysis
This kinetic definition is purely structural. As a matter of fact,
a system may contain potential autocatalysis i.e. an autocat-
alytic core exists in the reaction network. However, in the
absence of some specific conditions necessary for this auto-
catalysis to be effective, the potential autocatalysis may be
hidden by other kinetic effects, thus turns out not to manifest
its behavior in practice.

Possibly, in Eq. (1), the term f(X) may simply overwhelm
the autocatalytic process. This is typically the case when an
autocatalysis is present together with the non-catalyzed ver-
sion of the same reaction, that may not be negligible in all
conditions. Imagine the simple example of a system simul-
taneously containing a direct autocatalysis A + B → 2B,
concurrent with the non autocatalytic reaction A→ B. The
autocatalytic process follows a bimolecular kinetics, and will
be more efficient in a concentrated than in a diluted solution.
The dynamic profile of the reaction is thus sigmoidal for
high initial concentration of A, but no more for low initial

(a) Non-autocatalytic (b) Autocatalytic (c) Undamped AC

Figure 2: (a-b): First order autocatalytic process (Γ1 = 102

M.s−1) in presence of a non-autocatalytic reaction (Γ2 =
10−2 M.s−1) of spontaneous transformation of A into B
(KA = 1 M, KB = 102 M). (a) Diluted (ao = 10−3 M). (b)
Concentrated (a0 = 1 M). (c) Undamped autocatalysis (Indi-
rect autocatalysis, described in Fig. 4(b), Γ4 = 0.1 M.s−1)

concentration (see Fig. 2(a-b)).
It can also be seen that the term k(X) may also vary dur-

ing the reaction process. In a simple autocatalytic process as
describe above, k is proportional to the concentration in A,
and is thus more important at the beginning of the reaction
(thus an initial exponential increase of the product B) that
at the end (thus a damping of the autocatalysis) resulting in
a global sigmoidal evolution. In systems were the influence
of A on k is weaker, as detailed further, an undamped auto-
catalysis will be observed characterized by an exponential
variation until the very end (see Fig. 2(c)).

Mechanistic Distinctions
How can this kinetic pattern be realized? Let us now de-
tail several types of mechanisms. They can all be reduced,
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in some conditions, to the autocatalysis kinetic pattern of
Eq. (1). All of them will be equally defined in the paper as
autocatalytic, while this status may have been disputed in the
past on account of the distinct chemical realisations. In the
following, we emphasize the major mechanistic pattern to
eventually be reduced to an equivalent kinetic autocatalysis,
and discuss where their difference comes from.

Template Autocatalysis
The simplest autocatalysis is obtained by the X → 2X pat-
tern. It can be represented by:

A+B
k1

GGGGGGBFGGGGGG

k−1

B +B (2)

The corresponding network is given in Fig. 3(a). It can further
be decomposed through the introduction of an intermediate
compound C:

A+B
Γ1

GGGGGGBFGGGGGG C (3)

C
Γ2

GGGGGGBFGGGGGG B +B (4)

The corresponding network is given in Fig. 3(b).
The first mechanism entails the following kinetic evolu-

tion:

ḃ = −ȧ = k1ab− k−1b
2 (5)

This can be expressed as a chemical flux ϕ, by relying on
the Mikulecky formalism (Peusner et al., 1985; Mikulecky,
2001; Plasson and Bersini, 2009):

ϕ = Γ1(VAVB − V 2
B) = Γ1VB(VA − VB) (6)

VA =
a

KA
(7)

VB =
b

KB
(8)

Γ1 = k1 ·KAKB = k−1 ·K2
B (9)

Formally there is a linear flux ϕ of transformation of A into
B, coupled to a circular flux of same intensity fromB back to
B (see Fig. 3(a-b)). In presence of an intermediate compound,
the equations becomes:

ϕ1 = Γ1(VAVB − VC) (10)
ϕ2 = Γ2(VC − V 2

B) (11)

Under the hypothesis that C is an unstable intermediate,
(i.e. KC � KB ,KA), the variation of C can be neglected
compared to the variations of A and B (quasi steady-state
approximation, hereafter QSSA), so that:

ϕ1 ' ϕ2 (12)
= ϕ (13)

⇒ ϕ =
Γ1Γ2

Γ1 + Γ2
(VAVB − V 2

B) (14)

The system is strictly equivalent to the direct autocatalysis,
with an apparent rate Γ1Γ2/(Γ1 + Γ2). With these two sys-
tems, we are in presence of the perfect kinetic signature of
an autocatalytic system i.e. following a sigmoidal evolution
(see Fig. 4(a)). This equivalence is guaranteed as long as the
compound C remains unstable. When it is not the case, the
dimeric intermediate C hardly liberates the final compound
B, which gives rise to an autocatalytic process of order 1/2
rather than 1 (von Kiedrowski, 1993; Wills et al., 1998).

Template autocatalysis requires a direct association be-
tween the reactants and the products. This is typically the case
of DNA replication, one double strand molecule giving birth
to two identical double strand molecules, thanks to the very
selective association of complementary nucleotides along
each strand. More simple examples can be found in some
biological mechanisms that requires autocatalytic processes,
for example for the generation of chemical oscillation induc-
ing circadian rhytmicity in cells. The system described by
Mehra et al. (2006) is based on a non equilibrium system of
association/dissociation of proteins forming a large chemical
cycle [C → AC → AC∗ → ABC∗ → BC∗ → C∗ → C],
maintained by a flux of ATP consumption, one cycle con-
suming and freeing A and B. The oscillations are gener-
ated by coupling this chemical flux to an autocatalytic pro-
cess of phosphorylation obeying to the reaction scheme:
A+ C +AC∗ → 2AC∗ (Wang and Wu, 2002).

Network Autocatalysis
The direct mechanism of template autocatalysis just seen is
conceptually the simplest framework. It may actually not be
the most representative class of autocatalysis, as a similar
kinetic signature can appear as resulting from a complex
reaction network.

Indirect Autocatalysis: The autocatalytic effect may be
only indirect when reactant and products never directly inter-
act:

A+D
Γ1

GGGGGGBFGGGGGG C (15)

C
Γ2

GGGGGGBFGGGGGG B + E (16)

E
Γ3

GGGGGGBFGGGGGG B (17)

B
Γ4

GGGGGGBFGGGGGG D (18)

There is no direct A/B coupling, nor direct 2B formation,
but the presence of a dimeric compound C. The network de-
composition of this system (see Fig. 3(c)) implies once again
a linear flux of transformation of A into B, linked to a large
cycle of reaction transforming B back to B. Nevertheless,
this system is still reducible to an X → 2X pattern.



Proc. of the Alife XII Conference, Odense, Denmark, 2010 7

(a) Direct autocatalysis (b) Direct autocatalysis with
intermediate

(c) Indirect autocatalysis (d) Autoinductive autocatal-
ysis

(e) Iwamura et al. (2004) sys-
tem

(f) Collective autocatalysis

Figure 3: Reaction network of different autocatalytic pro-
cesses of spontaneous transformation of A into B (a-d), of
A + X into AX (e), and of Ai into Bi (f). The indicated
fluxes correspond to what is observed within the QSSA.

The QSSA for compounds C,D,E allows to express the
reaction flux as:

ϕ =
Γ1Γ4

Γ1VA + Γ4
VAVB − ε (19)

ε express the back-reactions fluxes, and can be neglected as
long as Γ3 is large enough. If it is not the case, the autocat-
alytic effect is destroyed.

When Γ1 � Γ4, the system can behave like a simple
autocatalytic system, with ϕ ∝ a · b before the reaction com-
pletion, implying a progressive damping of the exponential
growth as long as A is consumed. When Γ1 � Γ4, the flux
is ϕ ∝ b: the profile remains exponential up to the reaction
completion, with no damping due to A consumption (see
Fig. 4(b)).

Network autocatalysis is probably the most common kind
of mechanisms. A typical biochemical example is the pres-
ence of autocatalysis in glycolysis (Ashkenazi and Othmer,
1977; Nielsen et al., 1997). In this system, there is a net
balance following the X → 2X pattern. ATP must be con-

(a) Direct autocatalysis with in-
termediate

(b) Indirect autocatalysis

(c) Autoinductive autocatalysis (d) Collective autocatalysis

Figure 4: Time evolution of compound concentrations for dif-
ferent autocatalytic processes of spontaneous transformation
of A into B (KA = 1 and KB = 100) in a logarithmic scale
for concentrations (a-c), or logarithmic scales for both time
and concentrations (d). K and concentrations are in M, times
in s, and Γ in M.s−1. (a): Fig. 3(b), Γ1 = 1, Γ2 = 10−4,
KC = 0.01; (b): Fig. 3(c), Γ1 = Γ2 = Γ3 = Γ4 = 10
(except the values indicated on the graph), KC = KD =
KE = 0.01; (c): Fig. 3(d), Γ2 = Γ3 = 100, KC = KE = 1,
KE∗ = 10; (d): Fig. 3(f), Γ1 = 100, Γ2 = 1.

sumed to initiate the degradation of glucose, but much more
molecules of ATP are produced during the whole process.
While these systems are effectively autocatalytic, there is
obviously no possible “templating” effect of one molecule of
ATP to generate another one.

Collective Autocatalysis: More general systems, reminis-
cent of the Eigen’s hypercycles (Eigen and Schuster, 1977),
are responsible of even more indirect autocatalysis. No com-
pound influence its own formation rate, but rather influences
the formation of other compounds, which in turn influence
other reactions, in such a way that the whole set of compounds
collectively catalyzes its own formation.

A simple framework can be built from the association of
several systems of transformation Ai → Bi, each Bi catalyz-
ing the next reaction (see Fig. 3(f)):

Ai +Bi−1

Γi
GGGGGGBFGGGGGG Bi +Bi−1 (20)

i = {1, 2, 3, 4}

with B5 = B0 to close the cycle of reactions. There are four
independent systems, only connected by catalytic activities.

If the system is totally symmetric, then all bi are equal, and
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all ai are equal, so that the rates become:

ϕi = ΓiVBi−1
(VAi

− VBi
) (21)

ϕ = ΓVB(VA − VB) (22)

This leads to a collective autocatalysis with all compounds
present. They mutually favor their formation, which results
in an exponential growth of each compound (see Fig. 4(d)
dotted curve).

With symmetrical initial conditions (i.e. identical for the
four systems), the system strictly behaves autocatalytically.
If the symmetry is broken, e.g. by seeding only one of the
Bi, the system acts with delays. The evolution laws are sub-
exponential, of increasing order: At the very beginning of
the reaction, considering that Ai do not significantly change
and that Bi are in low concentration, we obtain ϕi ∝ ti−1. If
seeding with B1, the compound 2 evolves in t2. Its impact
on compound 3 induces an evolution in t3. In its turn, the
impact of compound 3 on compound 4 induces an evolution
in t4. The compound 1 at first remains constant, and it is
only following a given delay that it gets catalyzed by B4 (see
Fig. 4(d)).

This system is actually not characterized by a direct cyclic
flux, but by a cycle of fluxes influencing each other and re-
sulting in a cooperative collective effect:

(A1 +A2 +A3 +A4) + (B1 +B2 +B3 +B4)

−→ 2(B1 +B2 +B3 +B4)
(23)

The simultaneous presence of all different compounds is
needed to observe a first order autocatalytic effect. Given
asymmetric initial conditions, a transitory evolution of lower
order is first observed, until the formation of the full set of
compounds.

A typical example of collective autocatalysis is observed
for the replication of viroids (Flores et al., 2004). Each oppo-
site strand of cyclic RNAs can catalyze the formation of the
other one, leading to the global growth of the viroid RNA in
the infected cell.

Template vs Network Autocatalysis: Nevertheless, all
these systems can still be reduced to a X → 2X pattern.
This is characterized by a linear flux coupled to a loop flux,
i.e. for each molecule (or set of molecules) A transformed
into B, one B is transformed and goes back to B, following
a more or less complex pathways. They can be considered
as mechanistically equivalent: a seemingly direct autocatal-
ysis may really be an indirect autocatalysis once its precise
mechanism is known, decomposing the global reaction into
several elementary reactions.

Practically, autocatalysis will be considered to be direct (or
template) when a dimeric complex of the product is formed
(i.e. allowing the “imprint” of the product onto the reactant).
If such template complex is never formed, we preferentially
speak of network autocatalysis, in which the X → 2X pat-
tern only results from the reaction balance.

Autoinductive Autocatalysis
Some reactions are not characterized by an X → 2X pattern,
but still exhibit a mechanism for the enhancement of the
reaction rate through the products. This is typically the case
for systems where the products increase the reactivity of
the reaction catalyst rather than directly influencing their
reaction production itself. These systems still possess the
kinetic signature of Eq. (1), but are sometime referred as
“autoinductive” instead of “autocatalytic” (Blackmond, 2009).

Let us take a simple reaction network of a tranformation
A → B catalyzed by a compound that can exist under two
formsE/E∗,E∗ being the more stable one. These two forms
of the catalyst interact differently with the product B (see
Fig. 3(d)):

A+ E
Γ1

GGGGGGBFGGGGGG C (24)

C
Γ2

GGGGGGBFGGGGGG B + E (25)

C
Γ3

GGGGGGBFGGGGGG B + E∗ (26)

There is no dimeric compound in the system, even indirectly
formed.

Provided the catalyst, present in C,E,E∗, is in low total
concentration, the QSSA implies the presence of two fluxes:
the transformation of A into B catalyzed by E of intensity
ϕ, and the transformation of E∗ into E catalyzed by B of
intensity ε, with ϕ� ε. This decomposition gives:

ϕ =
αVAVB
βVB + γ

− δVB (27)

with α = δ(Γ1 + Γ2), β = Γ2 − Γ1
KB

KA
, γ = Γ1

V tot
A

and

δ = Γ1

V tot
E∗

.
The autoinduction is kinetically equivalent to the indirect

autocatalysis mechanism:

• When Γ2 � Γ1
KB

KA
, the flux tends to ϕ = α

βVA − δVB:
the system is non-autocatalytic.

• When Γ2 ≈ Γ1
KB

KA
, the flux tends to ϕ = α

γ VAVB − δVB :
the system is simply autocatalytic.

• When Γ2 � Γ1
KB

KA
, the flux tends to ϕ = α

Γ1
VB − δVB:

the system presents an undamped autocatalysis.

Following the kinetic analysis, the behavior is similar to
the time evolution of autocatalytic systems (See Fig. 4(c)).
The behavioral equivalence of these two systems (kinetically
equivalent but mechanistically very different) will be investi-
gated in more details in the next section.

The mechanism of Iwamura et al. (2004) is an autoinduc-
tive autocatalysis, with a slightly more complex mechanism
(see Fig. 3(e)). The core principle is a reactionA+X → AX ,
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catalyzed by P , the product AX catalyzing the first catalytic
step P+A→ PA. This chemical system can be decomposed
into two different fluxes A + X → AX , one coupled to a
catalytic cycle [P → PA → PAX → P |AX → P ], and
one coupled to a catalytic cycle [PA→ PAX → P |AX →
PA]. The first one contains the slow reaction of A on P , and
corresponds to a slow flux ε. The second one only contains
fast reactions, and corresponds to a fast flux ϕ. These two
fluxes can be shown to be related by:

ϕ

ε
= αVA + βVAX (28)

α and β being constants depending on the kinetic parameters
of the system. This implies an increase of the effective rate
production ϕ as a function of the concentration in product.

Network vs Autoinductive Autocatalysis: Autoinductive
autocatalysis is mechanistically different from network or
template autocatalysis. The balance equation is rather of
the form A + αB → (1 + α)B, with α � 1. The linear
transformationA→ B is only weakly coupled to the cycle of
B back to itself, this latter one being subject to a much lower
flux than the linear flux. However, autoinduction is kinetically
and dynamically equivalent to network autocatalysis, leading
to the same kind of differential equation, and thus of behavior.
It can be noted that the undamped exponential profile due to a
flux only proportional to the products and not to the reactant is
not characteristic of autoinductive processes (Iwamura et al.,
2004) but can also be explained by network autocatalytic
mechanisms, when the consumption of the reactant is not
limiting the kinetic of the network.

Embedded Autocatalyses
Autocatalysis is not so important per se but as a way of giving
birth to rich non-linear behaviors like bifurcation, multistabil-
ity or chemical oscillations. It becomes capital to study the
interaction of autocatalytic mechanisms and their ability to
generate such behaviors when embedded in a larger chemical
network.

Dynamical Distinctions
Different behaviors depending on the order n of the auto-
catalysis can be observed in biochemical competitive sys-
tems. They are classically studied in population evolution
(Szathmáry, 1991; Nowak, 2006) and described as “survival
of the all” in the case of 0 < n < 1 (characterized by the co-
existence of all compounds), as “survival of the fittest” in the
case of n = 1 (when the only stable solution retains the fittest
compound or the most ”reproductible”) and as “survival of
the first” in the case of n > 1 (when the final solution just
retains the product initially present in the highest concentra-
tion).

The case 0 < n < 1 is the least interesting, as it hardly
leads to a clear selectionnist process. However, real mech-
anism that seems to possess a first order autocatalysis may

actually present a lower autocatalytic order. This is typically
the case for direct template autocatalysis, in which the order
falls to 1/2 on account of the high stability of the dimeric
intermediate—which is actually a necessary condition for
the selectivity of template replication (von Kiedrowski, 1986,
1993; Wills et al., 1998). This turns out to be a fundamental
problem for understanding the emergence of the first replica-
tive molecules (Szathmáry and Gladkih, 1989; Lifson and
Lifson, 1999; Scheuring and Szathmáry, 2001).

More complex mechanisms may lead to higher orders,
typically by the formation of dimeric autocatalysts (Wagner
and Ashkenasy, 2009). This is the case of the Soai reaction
whose high sensitivity to initial conditions may potentially
be explained by the formation of trimeric (Gridnev et al.,
2003) or even hexameric complexes (Schiaffino and Ercolani,
2008).

Comparative Efficiency of Direct and
Autoinductive Autocatalyses
Bifurcations appear when installing two autocatalytic pro-
cesses in competition, placing them in a non-equilibrium
open-flow system, both being fed by the same incoming com-
pound and with cross-inhibition between them:

→ A (incoming flux) (29)
A ⇀↽ B1 (Direct AC) (30)
A ⇀↽ B2 (Autoinduced AC) (31)

B1 +B2 → (P ) (cross inhibition) (32)
B1 → (outgoing flux) (33)
B2 → (outgoing flux) (34)

In the case of total symmetry between B1 and B2, with the
same direct autocatalystic mechanism, this system would
correspond to the classical Frank model for the emergence of
homochirality (Frank, 1953), leading to a the same probability
to end up with either B1 or B2.

The kinetic equivalence between template autocatalysis
and autoinductive autocatalysis can be shown by making
these two mechanisms to compete, replacing Eq. (30) and
(31) by the corresponding mechanism. Kinetic parameters
have first been normalized so that both reaction leads to the
same kinetic behavior (sigmoidal evolution, half-reaction at
105 s), and then multiplied by respectively α and β parame-
ters in order to tune the respective velocity of each mecha-
nism. The result is actually quite symmetrical between the
two processes and only the fastest product is maintained in
the system: B1 when α > β, and B2 when α < β (see
Fig. 5(a)).

This selection is independent of the relative stability of B1

and B2, but is only possible for kinetics that are well adapted
to the global influx of matter. For slow kinetics, there is a
flush of the system, and noB1 norB2 compound can be main-
tained. For fast kinetics, the system is close to equilibrium,
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(a) Sharp bifurcation depending on the rela-
tive values of α and β for moderate reactivi-
ties.

(b) Different zones of behaviors: majority of
A for α, β � 1, majority of B1 for α > β,
majority of B2 for α < β, and coexistence
of B1 and B2 for α, β � 1.

Figure 5: Competition between template and autoinduc-
tive autocatalysis, generating respectively B1 and B2 com-
pounds from the same A compound. Incoming flux of A,
and outgoing fluxes of B1 and B2, 10−5 M.s−1. KA = 1,
KB1 = KB2 = 100. Direct autocatalysis: ΓAC = 10−2 · α,
ΓNC = 10−6 · α. Autoinduction, according to Fig. 3(d):
Γ1 = β, Γ2 = Γ3 = 100 · β, KC = KE = 1; KE∗ = 10.

the compounds B1 and B2 being both present in proportion
to their respective stability (see Fig. 5(b)). Such result is well
known for open flow Frank systems (Cruz et al., 2008).

From Autocatalytic Processes towards
Autocatalytic Sets
These competitive systems are able to dynamically maintain
a set of components, to the detriment of others. The notion of
autocatalytic set (requiring the system to be materially closed
and self-maintained by a crossing energetical flux) is rather
popular in the artificial life literature and relies much more
on the cooperation between autocatalytic mechanisms than
on the competition that has just been detailed here. It implies
a notion of closure of the system and of self maintenance
of the whole network (Kauffman, 1986; Hordijk and Steel,
2004; Benkö et al., 2009). Confusion among these different
phenomena can be pinpointed in the literature (Blackmond,
2009), when the failure of autoinductive sets to be maintained

do not originate from a difference of behavior between auto-
catalytic and autoinductive mechanisms, but from a defect in
the closure of the system.

Conclusion
Important distinctions need to be done between mechanistic
and dynamic aspects of autocatalysis. The same mechanisms
can produce different dynamics, while identical dynamics
can originate from different mechanisms. But all these differ-
ent autocatalytic processes are able to generate autocatalytic
kinetics, that may constitute a pathways towards the onset
of “self-sustaining autocatalytic sets”, as a chemical attractor
in non-equilibrium networks. However, the problem of the
evolvability of such systems must be kept in mind (Vasas
et al., 2010). If a system evolves towards a stable attractor, no
evolution turns out to be possible. There is the necessity of
“open-ended” evolution (Ruiz-Mirazo, 2007) i.e. the possibil-
ity of a dynamic set not only to maintain itself (i.e. a strictly
autocatalytic system) but act as a “general autocatalytic set”,
redounding upon the concept originally introduced by Muller
(1922) for the autocatalytic power linked to mutability of
genes. Insights can be gained by a deeper and renewed study
of the evolution of prions as a simple mechanism of mutable
autocatalytic systems (Li et al., 2010).

Acknowledgements
This work was done within the scope of the European pro-
gram COST “System Chemistry” CM0703. We additionally
thank R. Pascal for useful discussions.

References
Ashkenazi, M. and Othmer, H. G. (1977). Spatial patterns in coupled

biochemical oscillators. J. Math. Biol., 5(4):305–350.
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Extended Abstract 

It has been suggested by a number of theoreticians that cellularity is a precondition for a living system.  Over the years many 
researchers have sought to synthesize structures morphologically resembling cells under prebiotic conditions.  These structures may 
be vesicular or contain no lipid and are perhaps best termed “cell-like structures” than “proto-cells” or “cells”.  Conversely, likely 
prebiotic organic amphiphiles such as fatty acids only produce micelles or vesicles under select conditions: high ionic strength and 
divalent cations often inhibit the self-assembly of cell-like structures assembled from lipid amphiphiles such as vesicles.   
Hydrogen cyanide (HCN) is a ubiquitous compound in young circumstellar disks (Carr & Najita, 2008) and cometary comae 

(Irvine et al., 1997), and is readily produced in simulations of prebiotic atmospheric chemistry (Miller, 1957). During investigations 
of the chemistry of self-condensation of aqueous HCN in the presence of aldehydes we have discovered cell-like spherical and 
filamentous structures of extremely homogeneous size distribution which are produced robustly from these simple reactions (Figure 
1).  While there is some precedent for these structures (see for example Labadie et al., 1968; Kenyon & Nissenbaum, 1976), the 
chemical and morphological structure of these and their interactions with amphiphilic species have been investigated in 
considerably more detail here.  These are potentially important as scaffolds for cellular development on the primitive Earth, and 
may have implications for life-detection on other planets and in the geological record. 
 

 
Figure 1.  Spherical and filamentous structures formed from the reaction of aqueous HCN and aldehydes.  
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Extended Abstract 

 
Figure 1: (i) Activation of RNA with imidazole. (ii) RNA condensation reactions. 

 
Cellular life relies on a collection of linear polymers (among them DNA, RNA, proteins) to perform the functions necessary to its 
survival. It seems likely that catalytic and informational polymers played essential roles in the emergence of the first living entities, 
precursors of contemporary cells. Thus, their detection on other planetary bodies might hint at either emerging, or extant, or past life 
in these environments. 
A non-enzymatic synthesis of such polymeric materials or their precursors likely had to rely on a supply of monomers dissolved at 
low concentrations in an aqueous medium. An aqueous environment represents a clear hurdle to the synthesis of long polymers as it 
tends to inhibit polymerization due to entropic effects and favors the reverse reaction (decomposition by hydrolysis). It was 
therefore proposed that polymerization could occur in a distinct micro- or nanostructured environment that would permit a local 
increase in the monomer concentration, reduce water activity and protect monomers and polymers from hydrolysis. Several types of 
micro- or nanostructured environments, among them mineral surfaces [1], lattices of organic molecules, such as amphiphile bilayer 
structures [2], and the eutectic phase in water-ice [3, 4, add 2008 JIB, 2008 Chem. Biodiv] have been proposed to promote RNA 
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and peptide formation. This last environment might be of particular interest since space exploration has established that water exists 
on Mars, Europa, Enceladus and comets, mostly as ice. Ice deposits may also have existed on the early Earth. 
When an aqueous solution is cooled below its freezing point, but above the eutectic point, two aqueous phases co-exist and form the 
eutectic phase system: a solid (the ice crystals made of pure water) and a liquid phase containing most solutes. The role of water 
likely extends beyond that of a simple chemical liquid medium since the surfaces of ice crystals could act as a substrate on which 
other reactants can attach and/or become aligned.  
The emergence of a polymer-based genetic or/and catalytic system, as it for example the “RNA World hypothesis” states, initially 
requires the synthesis of monomers followed by three non-enzymatic processes: polymerization of monomers; elongation of 
existing polymers with monomers or short oligomers; and replication of existing polymers in a template-directed fashion. Ideally, 
these processes should take place efficiently, using simple metal ions as catalysts. However, in a dilute solution, even when using 
activated monomers, these chemical processes occur very slowly, if at all.  
We have been exploring the plausibility of chemical reactions, such as non-enzymatic nucleotide condensations forming RNA, 
under cold environmental conditions and found that the polymerization of RNA from imidazole-activated ribonucleotides (s. Fig. 1) 
can proceed efficiently in the eutectic phase in water-ice when metal ions are available as catalysts [4]. Starting from monomer 
mixtures, polymers up to 30 monomeric units in length can be readily formed [5]. Longer polymers can be obtained by adding 
freshly activated monomers or short oligomers to a solution over several freeze-thawing cycles. Depending on their sequences, 
oligomers can be elongated using monomers to obtain up to a 45-mer. Furthermore, the decomposition of the longer chains 
remained low. By using activated short oligomers, even longer polymers can be formed [6].  
Studying template-directed RNA polymerization under these conditions, we discovered that the initial elongation rates depended on 
the complementarity of the monomers with the templating nucleobases. That means that the polymerization rates for all four 
nucleobases pairing with their corresponding Watson-Crick  nucleobase were higher than in  cases where hydrogen bond based 
pairing is not favoured [7]- this was even the found for low H-bridging uridine monomers [7, 8]. The presence of templates further 
allows the synthesis of long complementary strands [9]. Thus, template-directed elongation of RNA in the eutectic phase of the 
water-ice system seems possible. 
Recently, Miller’s group [10, 11] in San Diego further established that dilute solutions of ammonium cyanide maintained frozen at -
78 ˚C could promote the synthesis of nucleobases, although with rather low yields. The catalytic activity of a ligase was also 
detected in the eutectic phase [12]. 
All the observations on the promotion of synthetic reactions in the eutectic phase in water-ice suggest that the cold conditions with 
transient thawing periods could have allowed the formation of RNA monomers on our Earth and possibly on other planets.  
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Extended Abstract

Complex-systems research has received a lot of attention in mathematics, physics, and biology, but until not too long ago was 
significantly underdeveloped in chemistry. Recently, it has been realized that while cell biochemistry is a natural model for studying 
functional networks, rationally designed self-organized synthetic networks might also provide useful models for understanding and 
exploitation of complex systems' behavior [1]. Thus, several relatively complex networks were studied, and it was found possible to 
predict and analyze their connectivity and global topology [2]. Moreover, the networks could also be manipulated in various ways to 
show that just like the cellular networks, their rewiring following changes in the environmental conditions is substantial, and that 
they can carry out chemical transformations via various complex pathways, such as the Boolean logic operations [3,4]. 

An important family of the studied non-enzymatic systems uses template directed autocatalysis and cross catalysis as a means of 
wiring  the  network  components  and  controlling  their  dynamics  and  replication.  As  such,  these  networks  have  also  received 
considerable attention with respect to possible scenarios in the origins of life and early molecular evolution. Several approaches 
have been taken to manipulate the systems studied so far, based on chemical changes that can affect the replication efficiency. The 
ability to test and control the response of non-enzymatic networks to external signals might increase significantly their utility and 
applicability. Such triggering can be used to shift the self-organization states away from equilibrium and thus may provide temporal 
control over the progress of the chemical (replication) reactions and the entire network topology. To the best of our knowledge, this 
challenge has not yet been met. We will describe in this presentation the use of light as an external trigger for quantitative control of 
peptide tertiary structures and consequently as a tool for controlling peptide based self-replication, thereby affecting replication-
dependent processes in small  molecular networks and facilitating selective and programmable product formation via the AND 
Boolean function.
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Abstract

“Epigenetic Tracking” is an evo-devo method to generate ar-
bitrary 2d or 3d shapes; as such, it belongs to the field of
“artificial embryology”. In silico experiments have proved
the effectiveness of the method in devo-evolving any kind of
shape, of any complexity (in terms of number of cells, num-
ber of colours, etc.); being shape complexity a metaphor for
organismal complexity, such simulations established its po-
tential to generate the complexity typical of biological sys-
tems. Furthermore, it has also been shown how the underly-
ing model of development is able to produce the artificial ver-
sion of key biological phenomena such as embryogenesis, the
presence of “junk DNA”, the phenomenon of ageing and the
process of carcinogenesis. In this paper the model is enriched
by adding computational capabilities to cells (besides spatial
position and colour); the cells endowed with such properties
constitute the nodes of an artificial “metabolic network”, able
to exchange signals and to process the equivalent of chemical
substances. The potential of the extended model is evaluated
in a computer simulation aimed at “devo co-evolving” shape
and metabolism for an artificial organ.

Introduction
The previous work in the field of Artificial Embryology
(see (Stanley and Miikkulainen, 2003) for a comprehen-
sive review) can be divided into two broad categories: the
grammatical approach and the cell chemistry approach. In
the grammatical approach development is guided by sets of
grammatical rewrite rules; context-free or context-sensitive
grammars, instruction trees or directed graphs can be used;
L-systems were first introduced by Lindenmayer (Linden-
mayer, 1968) to describe the complex fractal patterns ob-
served in the structure of trees. The cell chemistry approach
draws inspiration from the early work of Turing (Turing,
1952), who introduced reaction and diffusion equations to
explain the striped patterns observed in nature (e.g. shells
and animals’ fur); this approach attempts to simulating cell
biology at a deeper level, going inside cells and reconstruct-
ing the dynamics of chemical reactions and the networks of
chemical signals exchanged between cells. Notable exam-
ples of grammatical embryogenies are (Gruau et al., 1996),
(De Garis, 1999) and (Hornby and Pollack, 2002); among

cell chemistry embryogenies, we recall (Kauffman, 1969)
and, more recently, (Miller and Banzhaf, 2003), (Joachim-
czak and Wrobel, 2008) and (Doursat, 2008).

“Epigenetic Tracking” the name of an embryogeny ap-
plied to morphogenesis, i.e. the task of generating arbi-
trary 2d or 3d shapes, described in (Fontana, 2008). From
this initial work, two lines of research are possible. One
tries to make use of the method as a general-purpose tool
to solving real-world problems; the second line of research
tries to bridge the gap between the model and real biol-
ogy. This second line was pursued in (Fontana, 2009) (a
work that explored the model’s biological implications) and
will be continued in this paper, whose aim is to enrich
the model with metabolic-like capabilities, besides morpho-
genetic ones. The rest of this paper is organised as follows:
section 2 highlights the main features of the model of de-
velopment in its previous version and the relevant evo-devo
method, section 3 describes the model extension, section 4
delves into the details of the simulation performed, section
5 discusses the biological correlates and section 6 draws the
conclusions.

Epigenetic Tracking highlights
Shapes are composed of cells deployed on a grid; develop-
ment starts with a cell (zygote) placed in the middle of the
grid and unfolds in N age steps, counted by the variable “Age
Step” (AS), which is shared by all cells and can be consid-
ered the “global clock” of the organism. Cells belong to two
distinct categories: “normal” cells, which make up the bulk
of the shape and “driver” cells, which are much fewer in
number (typical value is one driver each 100 normal cells)
and are evenly distributed in the shape volume. Driver cells
have a Genome (an array of “instructions”, composed of a
left part and a right part) and a variable called cellular epi-
genetic type (CET, an array of integers). While the Genome
is identical for all driver cells, the CET value is different
in each driver cell; in this way, it can be used by different
driver cells as a “key” to activate different instructions in the
Genome. The CET value represents the source of differen-
tiation during development, allowing driver cells to behave
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Figure 1: Example of development in three steps (AS=0,1,2)
driven by five instructions: a proliferation triggered in step 1
on driver cell labelled with A, three proliferations triggered
in step 2 on driver cells labelled with D, E and F and an
apoptosis triggered in step 2 on driver cell labelled with G.
Internal view on the left, external view on the right.

differently despite sharing the same Genome. A shape can
be “viewed” in two ways: in “external view” cells are shown
with their colours; in “internal view” colours represent cell
properties: blue is used for normal cells alive, orange for
normal cells just (i.e. in the current age step) created, grey
for cells that have just died, yellow for driver cells (regard-
less of when they have been created).

An instruction’s left part is composed of the following el-
ements: an activation flag (AF), indicating whether the in-
struction is active or not; a variable called XET, of the same
type as CET; a variable called XS, of the same type as AS.
At each step, for each instruction and for each driver cell, the
algorithm tests if the instruction’s XET matches the driver’s
CET and if the instruction’s XS matches AS. In practise, XS
behaves like a timer, which makes the instruction activation
wait until the clock reaches a certain value. If a match oc-

Figure 2: Example of development coded in a Genome com-
posed of 360 instructions, evolved in 16000 generations; the
shape represents an artificial brain, composed of 200.000
cells. In the upper part, the development sequence; in the
lower part, some snapshots of the final phenotype taken from
different angles.

curs, it triggers the execution of the instruction’s right part,
which codes for three things: event type, shape and colour.
Instructions give rise to two ’types’ of events: “proliferation
instructions” cause the matching driver cell (called “mother
cell”) to proliferate in the volume around it (called “change
volume”), “apoptosis instructions” cause cells in the change
volume to be deleted from the grid; the parameter ’shape’
specifies the shape of the change volume, in which the pro-
liferation/apoptosis events occur, choosing from a number
of basic shapes called “shaping primitives”; in case of pro-
liferation, the parameter ’colour’ specifies the colour of the
new cells.

Always in case of proliferation, both normal cells and
driver cells are created: normal cells fill the change volume,
driver cells are “sprinkled” uniformly in the change volume.
To each new driver cell a new, previously unseen and unique
CET value is assigned (consider for example proliferation
triggered on A in figure 1), obtained by starting from the
mother’s CET value (the array [0,0,0] in the figure, labelled
with A) and adding 1 to the value held in the ith array posi-
tion at each new assignment (i is the current value of the
AS counter); with reference to the figure, the new driver
cells are assigned the values [0,1,0],[0,2,0],[0,3,0], ... , la-
belled with B,C,D, etc. (please note that labels are just used
in the figures for visualisation purposes, but all operations
are made on the underlying arrays). In practise a prolifer-



Proc. of the Alife XII Conference, Odense, Denmark, 2010 18

ation event does two things: first creates new normal cells
and sends them down a differentiation path (represented by
the colour); then creates other driver cells, one of which can
become the centre of another event of proliferation or apop-
tosis, if in the Genome an instruction appears, whose XET
matches such value. Figure 1 reports an example of devel-
opment hand-coded.

The model of development described, coupled with
a standard evolutionary technique, becomes an evo-devo
method to generate arbitrarily shaped 2d or 3d cellular sets.
The method evolves a population of Genomes that guide the
development of the shape starting from a zygote initially
present on the grid, for a number of generations; at each
generation development is let unfold for each Genome and,
at the end of it, adherence of the shape to the target shape is
employed as fitness measure. In silico experiments (exam-
ple in figure 2) have proved the effectiveness of the method
in devo-evolving any kind of shape, of any complexity (in
terms e.g. of number of cells, number of colours, etc.); be-
ing shape complexity a metaphor for organismal complex-
ity, such simulations established the method’s potential to
generate the complexity typical of biological systems. The
effectiveness of the method is, in our opinion, to be recon-
ducted to the presence of a homogeneous distribution of
driver cells, which keeps the shape “plastic” throughout de-
velopment and allows artificial evolution to exploit physics
to meet its ends.

Our model displays some similarities with L-systems;
both models have productions that replace existing symbols
with other symbols: the key difference lies in the mechanism
for generating new symbols. In L-systems the new symbols
have to be listed explicitly, in our model the number of new
symbols is proportional to the size of the change volume,
while the symbols themselves (the CET values) are created
through an automatic procedure, which never changes and
therefore is not encoded in the Genome: this feature al-
lows a more compact representation of the productions in
the Genome. Another important difference is that L-systems
draw the symbols from a finite alphabet, while in the case of
Epigenetic Tracking the alphabet is virtually unbounded and
this “unboundedness” paves the way for open-ended evolu-
tion. CA-based models of development also have a cell state
variable and again the key difference resides in the mech-
anism of assignment: while in CA-based models the value
of the cell state is determined by the states of neighbouring
cells, in our model it is assigned to cells as they are created
(during a proliferation event); of course this is not the only
difference: in CA models there is no distinction between
normal and driver cells, etc.

In the current model version each cell can be considered
as composed of two modules: 1) a “Morphogenetic Mod-
ule”, comprising all cellular variables related to morphol-
ogy, such as spatial position and colour and 2) a “Change
Module”, consisting of the list of change instructions and

Figure 3: The old version of the model, dedicated to mor-
phogenesis (on grey background); the new version of the
model adds a part dealing with metabolic computation (on
white background). Genetic elements are coloured in yel-
low; epigenetic elements are coloured in pink.

the CET (see left part of figure 3, on grey background); the
Change Module’s instructions code for changes affecting the
Morphogenetic Module. Each module is in turn composed
of “genetic” variables (unchanged during development and
identical in all cells) and “epigenetic” variables (of genetic
nature, but changed during development and potentially dif-
ferent in each cell). According to this definition, the Change
Module is made up of a single block of genetic memory (the
Genome, which will now be renamed “Change Genome”)
and an epigenetic variable (the CET). Besides possessing
properties such as position and colour, cells do not perform
any function; the present model has nonetheless served the
purpose of modelling morphogenesis, a process by which
an organism’s external appearance -characterised by physi-
cal properties such as shape and colour- is created.

On the other hand, we know that real cells, besides
having a position in space and a colour, are sophisticated
micro-machines that carry out complicated chemical reac-
tions, taking certain molecules as inputs and producing other
molecules as outputs; the sum of these reactions, which rep-
resents the bulk of the cellular function, is referred to as
the cell metabolism. Pancreatic cells, for instance, produce,
among others, the hormones insulin, glucagon, and somato-
statin; liver cells take in and degrade insulin, glycogen and
hemoglobin and produce cholesterol and triglycerides, etc.
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Figure 4: Metabolic computation in a cell. Operators are
organised in layers: layer k converts the substance concen-
tration array intsbc(s)(k) into intsbc(s)(k+1); each operator
has an associated flag indicating the operator’s activation
state; the exchange of substances between the interior and
the exterior of the cell is mediated by the arrays filterin and
filterout.

The cellular metabolic machine is realised through the com-
bined action of many simple “processors”, each of which is
dedicated to processing only few chemical subtances; such
processors are implemented by genes that are turned on in
the relevant cell. Different cell types have different patterns
of gene activation, which allow cells to perform different
specialised jobs; genes are by default active: the selective
de-activation of specific genes is achieved primarily through
a process called methylation, which prevents their transcrip-
tion and their use in the gene network. The remainder of the
paper will be dedicated to enriching the model with the in-
gredients necessary to realise the equivalent of a metabolic
network.

Extended Model
The key innovation of the extended model (see figure 3) is
the presence of a module, called “Metabolic Module”, dedi-
cated to carrying out the equivalent of metabolic operations.
The elements responsible for such operations, called “oper-
ators”, are arranged in layers and are grouped in a second
Genome, called “Metabolic Genome”; to each operator a bi-
nary flag is associated, indicating the activation state; two
other arrays, called filterin and filterout, are present, dedi-
cated to managing the exchange of subtances of the cell with
the external environment. The Change Genome present in

Figure 5: Details of a single layer k operator. The first
field indicates the operator’s activation state; the second
field specifies which substances are to be loaded from
intsbc(s)(k); the third field specifies the weights and the
fourth field defines which susbtance is to be “influenced”
in intsbc(s)(k+1).

the previous model version is still present in the new version
in an extended form, in which the instructions’ right parts,
besides defining the events of proliferation and apoptosis
and the shape and colour of the cells created, add some spec-
ifications relevant to changes affecting the cell metabolic dy-
namics.

Figure 4 gives a representation of the functioning of the
Metabolic Module. As we said, the Metabolic Module is
composed of a number of operators, each associated to a
“layer number”, so that the whole set of operators has the
structure of a strictly-layered network. Each operator has
a flag that indicates whether the operator is active or not:
if not active, it is excluded from the computation. The
operands are the equivalent of chemical substances and are
grouped in two arrays called intsbc and extsbc (“internal”
and “external” “substance concentrations”), whose values
are real numbers comprised in the [0,1] interval representing
substance concentrations; more precisely intsbc(s)(k) and
extsbc(s)(k) are the concentrations relevant to substance s,
to be processed by layer k operators. The arrays intsbc and
extsbc represent the chemical mix present inside the cell and
the chemical micro-environment present around the cell re-
spectively.

The first processing step consists in copying the content
of extsbc into intsbc; this copy operation is mediated by the
array filterin, implementing a filter that allows only certain
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Figure 6: Each driver cell is assigned a number, depend-
ing on the distance from the input cell and the output cell
(cells farther from the input and closer to the output have a
higher number), so that the whole of driver cells make up
a layered network; in the figure cells having different num-
bers are marked with different colours; arrows indicate the
direction of the computation flow.

types of chemical substances to enter the cell: in practise
intsbc(s)(0) is copied from extsbc(s) only if filterin(s)=1,
otherwise (if filterin(s)=0) intsbc(s)(0) is initialised to zero.
The computation is carried out one layer at a time; the ini-
tial state of intsbc (initialised from extsbc) is intsbc(s)(0); it
is processed by layer 0 operators and the resulting array is
intsbc(s)(1); subsequently intsbc(s)(1) is processed by layer
1 operators and the resulting array is intsbc(s)(2). This pro-
cedure is repeated K times (K=3 in our experiments), until
the final state of the operand array intsbc(s)(3) is reached. At
the end of the cycle, the content of intsbc “exits” the cell and
is added to the extsbc of all other cells; the value intsbc(s)(3)
to be added is multiplied by two factors: the first factor (fil-
terout(s)) is a value that can be equal to -1 or +1; the second
factor is a real number comprised in the [0,1] interval that
depends on the distance between the cell and the other cell
in whose extsbc the cell’s intsbc is being copied. The func-
tion of filterout is analogous to that of filterin, only the set
of possible values is different: (0,1) for filterin and (-1,1) for
filterout.

The execution of an operation (performed by a single op-
erator) is shown in figure 5. Each operator has four fields.
The first field is a binary flag indicating whether the opera-
tor is active or not; the second field is an array of N integers
(N=2 in our experiments), where the ith integer xp(i) repre-

sents the position of the ith input substance in the intsbc ar-
ray; the third field is an array of N+1 float, being the ith float
wht(i) the “weight” to be multiplied by the value contained
in the ith position of the intsbc array; the products specified
are summed together and then added to the (N+1)th weight
(called “threshold”); the fourth field (yp) is an integer repre-
senting the position of the intsbc array to which the opera-
tor’s output value (yv) is added. The operation implemented
is described by the following equations (it is the classical
nonlinear weighted sum neuron-like function; σ is the sig-
moid function):

yv = σ(
∑

(wht(i) ∗ intsbc(xp(i)(k))) + threshold)

intsbc(yp)(k + 1) = intsbc(yp)(k) + yv

For computational reasons the metabolic process has been
so far implemented in driver cells only. In order to provide
the shape with a direction for the computation flow, an in-
put cell and an output cell are defined (actually, since the
positions of driver cells are not known at the beginning of
the experiment, two points in space are given and the two
driver cells closest to such points are taken as input and out-
put cell). Then, each driver cell is assigned a number which
depends on its distance from the input cell and the output cell
(cells farther from the input and closer to the output have a
higher number -see figure 6). The initialisation of the input
cell’s extsbc with a set of input values triggers the start of the
computation, which is executed for all number 1 cells, then
for all number 2 cells etc., until the output cell is reached.
The computation is repeated E times, where E is the num-
ber of examples (each example is made up by a set of input
values and a set of target output values).

The Metabolic Module described provides cells with a
computational tool able to carry out the equivalent of a
metabolic process. So far, nevertheless, the set of operators
(coded by the metabolic Genome) is identical for all cells;
this leads to a biologically unrealistic behaviour, in which all
cells carry out the very same computation and differences in
the outputs are only determined by differences in the inputs.
This is in contrast to what happens in biological organisms,
where cells belonging to different organs have gene regula-
tory networks specialised to perform the metabolic reactions
required by the organ’s function in the body, despite the fact
that all cells are endowed with the same set of genes. This
specialisation is achieved through the selective inactivation
of individual genes that, through multiple chemical mech-
anisms, are excluded from the network; the introduction in
our model of the equivalent of such specialisation will re-
quire an extension to the right part of change instructions.

The extended right part is shown in the north-east quad-
rant of figure 3, on white background. The old right part
(north-west quadrant, grey background) contains the code
that specifies as usual the type of event (proliferation or
apoptosis) and, in case of proliferation, the shape and colour
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of the cells created. Besides position and colour, each cell
has now also a set of operators each with an associated bi-
nary flag indicating its activation state; when a new cell is
created during a proliferation event, the array of activation
states is inherited from the mother cell. The first new right
part field is a a P-dimensional binary array, called “operator
activation changes” (“O.A. CHG” in the figure), specifying
the P operator activation flags which have to be changed (0’s
are turned into 1’s and 1’s are turned into 0’s); in this way
the new cells end up having a set of active operators different
from that of the mother, creating the potential for metabolic
specialisation. Similarly, also the arrays filterin and filterout
are inherited from the mother during proliferation and the
second new field, called “filter changes” (“FILT CHG” in the
figure) specifies the changes affecting such arrays. In other
words, the new right part block contains the code that speci-
fies the epigenetic part of the Metabolic Module, which can
become different in every cell and which, together with the
genetic part (equal in all cells), determines cell behaviour.

We end this section by showing how the Metabolic Mod-
ule is integrated in the overall model of development. In
the extended model age steps can be divided into a “change
phase” and an “expression phase”. In the change phase, the
couple of variables (CET,AS) triggers the activation of pro-
liferation and apoptosis instructions on a number of driver
cells; as a consequence, some new cells are created and some
existing cells are deleted from the grid. The newly created
cells are given a position in space and a colour which are
based on the position of the mother and the morphogenetic
portion of the instructions’ right parts; the daughter cells are
also provided with a set of operators, a relevant set of acti-
vation states and filter arrays, all inherited from the mother.
The code contained in the metabolic right part brings some
changes to the activation pattern of the operators and to
the filters, allowing specialisation to take place: this ends
the change phase. In the expression phase the metabolic
network carries out the cell’s specialised metabolic func-
tion, processing input substances and producing output sub-
stances. These two phases can be thought of to correspond
roughly to the ’mitosis’ phase and the interphase of the cell
cycle (the main difference being that in our model the cycle
is syncronised for all cells, while in real cells it is not).

Simulation
The extended model of development has been tested with the
same criterion used to test the previous version of the model,
i.e. we have tested the model’s susceptibility to produce a
target result in combination with a standard evolutionary al-
gorithm; in other words, we have tested the model’s evolv-
ability. In previous simulations concerned only with mor-
phogenesis, we adopted a fitness function formula initially
proposed by H. de Garis (De Garis, 1999):

sfit = (ins − outs)/des

Figure 7: Morphogenesis of the artificial stomach. The up-
per part of the figure shows the development sequence, the
lower part some snapshots of the final shape taken from dif-
ferent angles. Shape made up of 20.000 cells, genome com-
posed of 300 instructions, evolved in 30000 generations.

where ins is the number of cells of the evolved shape falling
inside the target shape, outs is the number of cells of the
evolved shape falling outside the target shape, des is to-
tal number of cells of the target shape; for coloured target
shapes, also the adherence to colours is taken into account
(i.e. in order to add 1 to the ins count, a given cell must fall
inside the target shape and its colour must be equal to that of
the target cell in the same position).

To allow for the evolution of the metabolic part, a second
fitness function has been introduced, defined through the fol-
lowing procedure. We define E examples, each composed
of a set of input concentration values and a set of output
target concentration values, indicated with tgtin(e)(s) and
tgtout(e)(s). For each example, the extsbc of the input cell
is initialised with the tgtin values; then the computation is
carried out for all cells as described in the previous section,
until the output cell is reached: let actout(e)(s) be the value
of the output cell’s extsbc relevant to the eth example and
to the sth substance type. The computation is repeated for
the total number of examples foreseen; the metabolic fitness
function is defined as the sum of the differences between
the target output and the actual output across all examples
and substance types (normalised dividing by the number of
terms):

mfit =
∑

(abs(actout(e)(s) − tgtout(e)(s)))/(E · S)

The overall fitness is then calculated as a weighted average
of the shape fitness and the metabolic fitness (in the simula-
tions performed coe1=coe2=0.5):

fit = coe1 · sfit+ coe2 ·mfit
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Figure 8: Operator activation states of the first 40 cells. As
can be noted, there are sets of cells (those created in the same
proliferation event) sharing the same pattern of operator ac-
tivations (and the same filters).

In the following the values of some key parameters of the
algorithm. The target shape is an artificial stomach com-
posed of some 20.000 cells. The linear “driver to normal ra-
tio” used in proliferation events is 4, meaning that one driver
cell is created every 4 normal cells for each dimension (in
three dimensions the ratio is thus 43 = 64). As far as the
metabolic part is concerned, the number of substances is 8,
the number of operators is 16 and the number of examples
is 10. In this experiment only one input cell and one out-
put cell are foreseen: the driver cell closest to a predefined
“input position” is defined as the input cell (analogously for
the output cell). The genetic population is composed of 500
individuals (represented as strings of quaternary digits), un-
dergoing elitism selection; GA parameters are 50% single
point crossover, mutation rate of 0.1% per digit.

Simulation results are shown in figures 7-9. Figure 7
shows the development sequence of the artificial stomach
from the single cell stage to its final shape and some snap-
shots taken from different angles; circles indicate the posi-
tions of the input and output cells. Figure 8 shows the op-
erator activation state for the first 40 cells (for reasons of

Figure 9: Target-output comparison. The figure shows, for
each example, input value, target value, actual output value
and the absolute difference between target and output value.

space); figure 9 shows the comparison of the target and ac-
tual values of the extsbc array for all examples. As can be
seen, results are good both for the morphogenesis part and
for the metabolic part; the final value of the shape fitness is
0.82, the final value of the metabolic fitness is 0.80; the total
number of driver cells that make up the metabolic network
is 848.

Biological correlates
In biology, the term epigenetics refers to changes in pheno-
type or gene expression caused by mechanisms other than
changes in the DNA sequence. These changes may remain
through cell divisions for the remainder of the cell’s life and
may also last for multiple generations. One way that epi-
genetic influences are implemented is through the remod-
elling of chromatin and one way chromatin remodelling is
accomplished is through the addition of methyl groups to
the DNA. DNA methylation in vertebrates typically occurs
at CpG sites (cytosine-phosphate-guanine sites) and results
in the conversion of the cytosine to 5-methylcytosine, catal-
ysed by the enzyme DNA methyltransferase. The bulk of
mammalian DNA has about 40% of CpG sites methylated
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but there are certain areas, known as CpG islands -which
are GC rich- where none are methylated: these are associ-
ated with the promoters of a high percentage of mammalian
genes, including all ubiquitously expressed genes (in gen-
eral there is an inverse relationship between CpG methyla-
tion and transcriptional activity).

If we stick to the definition of epigenetic cellular ele-
ments given in section 2 (variables of genetic nature changed
during development and potentially not identical in differ-
ent cells), the CET value (already present in the previous
version of the model) qualifies as an epigenetic element.
In the extended model two new epigenetic memories have
been introduced: the operator activation states and the I/O
substance filters. These two new memories have their bio-
logical counterparts in the DNA methylation marks and in
the various “channels” present on the cell membrane (which
mediate inside-outside cellular communication) respectively
while, at the current level of knowledge, the CET has no bi-
ological equivalent. As far as the genetic part is concerned,
in the new version of the model two Genomes are present:
the Change Genome and the Metabolic Genome. This dis-
tinction appears to have no correspondence in nature, where
a single Genome seems to be present, more similar to the
Metabolic Genome in structure (genes are akin to metabolic
operators). On the other hand, we can imagine to decom-
pose the specifications contained in the change instructions
into smaller units equivalent to operators, thus reconducting
Change and Metabolic Genomes into a unitary representa-
tional framework: this will be a matter for future work.

The addition of computational capabilities to cells rep-
resents a significant step on the way to reducing the gap
between Epigenetic Tracking and real biological systems.
According to current knowledge, in multicellular organisms
the behaviour of a single cell is determined by three factors:
i) the genome; ii) the epigenome; iii) the influence of the
chemical microenvironment surrounding the cell, created by
all chemical signals generated by other cells. Cell behaviour
can be further divided into a change (or “mitotic”) part and
an expression (or “interphasic”) part; while the previous ver-
sion of the model covered essentially only the change part,
with genetic and epigenetic mechanisms, the extended ver-
sion covers also the expression part, still with genetic and
epigenetic mechanisms. The next logical step is represented
by the addition of the cellular microenvironment as yet an-
other determinant of cell behaviour.

Conclusions and future research
In the present paper the model of development called Epi-
genetic Tracking has been extended by adding to artificial
cells computational capabilities (besides physical attributes
-position and colour); cells endowed with such capabilities
constitute the equivalent of a metabolic network. The ex-
tended model has been applied to the problem of devo co-
evolving both the shape and the metabolic network of an

artificial organ (the stomach): the successful result of the
simulation have been presented and discussed. Future re-
search along this line is aimed at further reducing the gap be-
tween the model and real biological systems; in this respect,
a key ingredient to be added to the model is represented
by the influence of the surrounding chemical microenviron-
ment, other than genetic and epigenetic factors, as another
determinant of cell behaviour. I thank Perry for helping me
reviewing the paper.
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Abstract

We have developed an artificial chemistry that allows self-
maintaining molecular systems to mutate and exhibit innova-
tive behaviour. The molecular species in the chemistry are
defined by strings of symbols that specify both the binding
affinity and the reaction. We define a replicase molecule that
can copy any other molecule that binds at a particular re-
gion on the replicase. Molecules are copied on a symbol-
by-symbol basis. Occasional mis-copying of an individual
symbol forms our mutation scheme. This paper describes the
characteristics of the resulting evolutionary system. We ran
1,000 open-ended trials and observed an unexpectedly wide
range of emergent phenomena, with many parallels to biolog-
ical systems. We report these phenomena in qualitative terms,
and give details of one of the most interesting among them:
the emergence of co-dependent replicase hypercycles.

Introduction
Early-earth molecular systems are of interest due to their
relatively simple replication mechanisms, gene multiplic-
ity, and the blurring of the genotype-phenotype boundary.
The simplicity of these systems make them a good target for
models of chemical evolution. We have been working on an
artificial chemistry called Stringmol [4, 3], which combines
a stochastic chemistry, variable binding rates and a simple
sequence-based programming language.

Stringmol is a rich intra-cellular RNA-world analogue in
which there is no distinction between molecular template
and molecular machine. We have recently been experiment-
ing with a unimolecular system, where the molecule is ca-
pable of self-copying. We call this molecule a replicase.
The sequence of symbols that specify a particular molecu-
lar species can be interpreted both as a template (a sequence
of symbols) and as a program, which can be executed to
carry out the reaction between molecules. If two molecules
bind to each other by having a sufficiently “strong” match
in their sequences, a handshaking process determines where
the program that specifies the reaction starts. In our repli-
case example, this handshaking determines which molecule
is copied and which molecule carries out the copying. In
earlier work [5] we found that the function of simple molec-

ular simulations is heavily influenced by bind affinity be-
tween molecules, so it is important that the representation
of the molecules allows bind affinity to be specified on the
genome.

String- or tape-based evolutionary simulations have been
reported frequently in the literature, and there are many par-
allels between biology and computer science in the area.
Turing machines make use of a tape and read-write heads
[13]. They preceded von Neumann’s self-reproducing au-
tomata [15]. Both of these architectures have interdepen-
dence of data and program, and use self-copying as key
demonstrators of the function of the system. These are very
simple state machines, with only a loose analogue to the con-
cept of the organism. More recently, Ray’s Tierra [11] and
the AVIDA architecture [7] have expanded on the paradigm
of organism-as-tape, with interesting emergent phenomena
that mirror biology. A less well-known but related theme is
that of expressing the organism as a container for a large set
of strings, each of which contribute to the metabolism (and
hence fitness) of the organism. Examples include Laing’s
kinematic machines from the 1970s [8], Hofstader’s Ty-
pogenetics [6, 14], and Suzuki’s string rewriting system
[10]. The concept of mutation is realised only in Tierra and
AVIDA. These two systems have a single tape per individ-
ual, mirroring the function of DNA in the organism. We be-
lieve that string systems have the potential to encode more
than the genome of the system - the phenotypic machin-
ery of gene expression can also be encoded on string-like
agents and so lead to the evolution of effective machinery
for genome organisation.

This paper concerns our early experiments with mutation
in our replicase system. We believe that there should only
be one form of “spontaneous” mutation in the system, and
that this should occur when a symbol is copied from one se-
quence to another. We call this process “mutation-on-copy”.
In biology, mutation-on-copy certainly happens, especially
when resources are running low; i.e. while the cell is under
stress [16]. We believe that other forms of genome change
should be effected by mechanisms intrinsic to the chemi-
cal model. For example it should be possible to construct
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a transposon in the Stringmol language, which would allow
macromutations whilst itself being a candidate for genomic
control. Biological genomes are highly organised, and are
responsible for their own expression. In other words, the
phenotype includes the genotype-reading structures, and is
completely encoded in the genotype. In yet other words, the
genotype in its purest form is a sequence of symbols, and
this encodes everything else that is manufactured in the cell,
including the machinery for curating the genotype. We have
preserved this property in our Stringmol model, and detail
here a control experiment that attempts to determine the ef-
fects of single point mutations on such a system.

What might be expected of a single-container system that
contains mutating molecular replicators? Our experiments
confirm the prediction that a series of stable states would
emerge, with eventual collapse of the system due to emer-
gent selfish parasites. However, the observed range of re-
active behaviour and the interesting dynamics were not ex-
pected to occur so rapidly in such a simple system. Ana-
logues of parasitism, hypercycles, random drift, gene repres-
sion and co-evolution are reported. Unlike real biology, we
are in a position to fully examine the system, and can detail
the key events that led to the observed dynamics.

In an RNA-world analogue, such as the chemistry we
present here, a molecule can act as both template and ma-
chine. Initially, two identical molecules come together,
with one acting as the machine which makes a copy of
the other. Mutants that are better templates subsequently
sweep through the population, replacing the initial molec-
ular species. More interestingly, we repeatedly observe the
emergence of a molecular species that does not self-replicate
but drives evolution to a state where the system is dominated
for a long period by two co-dependent replicase species that
are not self-maintaining. This is a catalytic hypercycle as
defined by Eigen [2, fig.7].

It is interesting to consider the role of the container in
these experiments. Many explanations for the origin of
life include the use of membranes to keep the molecular
template in close association with the machinery it speci-
fies [9, 1], allowing selective advantage to operate on the
machine-template complex as an entity. In early living sys-
tems, where mutation was rampant and much less tightly
controlled, we observe that containers have a more time-
critical role of preventing the rampant spread of emergent
pathogens.

System overview

We give here a brief overview of our molecular system,
which is described fully in [3] and [4]. A summary of the
container metabolism is presented below, followed by a de-
scription and discussion of molecular structure. We pay par-
ticular attention to the role of sequence alignments and the
mutation scheme in our chemistry.

Metabolism
A simulation can be considered as a set of reacting
molecules whose movements inside a container are gov-
erned by a stochastic mixing function. All molecules are
subject to decay (spontaneous destruction), which places a
requirement upon the system to act in order to maintain it-
self in the face of entropy. Should molecules come suffi-
ciently close to one another, then they can bind and react.
The system has a clock. At each time step, all the molecules
in the system are processed. Actions only occur if energy
is available. Energy is consumed via binding and executing
each instruction in a reaction. The likelihood of binding and
the nature of the reaction is encoded in the string of each
molecule in the encounter. Binding and reacting have an en-
ergy cost. At one particular time step, we specify that 25 en-
ergy units are available. Selection of which events consume
the energy is stochastic. The balance between energy avail-
ability and the decay rate of the molecule maintains a pop-
ulation of around 350 molecules. We currently specify that
only two molecules can ever participate in a single reaction,
and that raw materials for the assembly of new molecules are
available in saturation. These assumptions will be addressed
in future work.

Molecular representation
Our molecular representation is a string of symbols. Each
unique string is considered to be a unique molecular species.
There are 33 symbols, most of which are non-functional.
Maximum string length is 2000 symbols (to accommodate
longer molecules with richer functionality), so there ex-
ists n =

∑2000
i=1 33i ≈ 103037 potential molecular species.

An important feature of the molecular representation is that
it allows the possibility of several complementary subse-
quence alignments. Complementary alignments are neces-
sary in order to prevent two identical molecules from bind-
ing to each other perfectly. Alignments have two key roles:
firstly, they specify binding regions on molecules such that
the more precise the alignment, the stronger the binding
affinity; secondly they specify program flow in the func-
tional region, commonly acting as placemarkers in “goto”
statements. An important property of the representation
is that the location of functional and binding regions is
solely specified by the subsequences themselves, and dif-
ferent molecular species can bind at different sites on the
sequence, so triggering different functions of the molecule.
The sequence of the molecule is used to determine how
likely a bind between molecules is via a process of Smith-
Waterman alignment [12] of complementary symbols. Once
a bind occurs, the sequence is treated like a program, com-
mencing at the beginning of whichever aligned subsequence
is furthest from the beginning of the string. There are 7
functional symbols, shown as non-alphabetical characters
‘$’, ‘>’, ‘ˆ’, ‘?’, ‘=’, ‘%’, and ‘}’. Stringmol uses func-

tional symbols to specify the manipulation of a set of point-



Proc. of the Alife XII Conference, Odense, Denmark, 2010 26

Figure 1: The seed replicase. The top line indicates the
regions of the sequence. The sequence itself is shown in
the centre box. Complementary alignments are indicated by
black connecting lines at the bottom of the figure

ers which indicate positions on the molecular strings, and
the symbols that the pointers index.

Mutation Scheme
One of the functional symbols is the copy operator ‘=’. This
operator reads the symbol at the read pointer, and writes
a copy of that symbol at the write pointer. To implement
mutation-on-copy, we specify that a copy operation occa-
sionally writes a different symbol to that being read with a
probability ps = 0.00001. More rarely still, insertion of an
extra random symbol, or deletion of the symbol, take place
with a much smaller probability pi = ps/(10n), where n is
the number of different symbol codes.

Experimental framework
We ran 1,000 simulations of a replicase environment under
the mutation scheme described above. The goal was to eval-
uate whether the system would be robust to mutation, and if
so, what effects it had on the molecular ecosystem. Each of
the 1,000 trials had the potential to run indefinitely and only
terminated when there were no molecules remaining in the
system. This occurs when the replication mechanism deteri-
orates in some way so that the replicating molecules cannot
copy themselves sufficiently quickly to counter the process
of decay. In particular, we sought to identify emergent be-
haviours in the system that were not part of the original spec-
ification and arose by mutation.

The “seed replicase”
Here we describe the molecule used as the seed for the trial.
It is one of many possible replicase molecules and is shown
in figure 1. There are several features to note:

1. Two binding regions. Two are needed to allow a replicase
to bind to a copy of itself because binding is complemen-
tary: a symbol is a perfect match to a different symbol in
the set.

2. A junk region. Mutations here have no effect on the bind-
ing or reaction-program, allowing us to explore the effects
of neutral mutation drift.

3. A functional region. This program specifies that the re-
action involves creating a copy of the partner molecule in
the reaction.

The seed replicase is 65 instructions long. The reactions
takes 240 time steps to construct a new replicase molecule.
All of the template codes in the seed replicase are more than
one mutation away from a function code. Alignments in the
functional region specify program flow. The two binding
sites in our seed molecule do not align perfectly, which en-
ables us to evaluate the evolutionary pressure on binding.

Analysis
As part of our evaluation, we developed several ways of rep-
resenting the simulation data. Each molecule has a sequence
of symbols. A particular sequence of symbols denotes a par-
ticular molecular species, which has an associated species
number. The seed replicase is always species number 1.
When a mutation occurs, a molecule with a novel sequence
is generated, and this is assigned a new species number. In
this way, we can record all new molecular species as they
arise. We must also record the dynamics that ensue. Occa-
sionally a new species increases in number and rises to dom-
inance of the system, driving the previous dominant species
to extinction. This is known in biology as a sweep event.
We can capture these events by monitoring when the species
number of the most abundant species changes (examples are
shown in figure 4). We can record the reactions that exist
between all species present in a system at any one time (see
figure 6). Finally, we can record the ancestry of a molec-
ular species: a new molecule is the product of a reaction
between two other molecules, which belong to either one or
two species types (see figure 7). These figures are described
in more detail later.

With these tools to hand, we are able to demonstrate that
our system is capable of producing innovative behaviour
even from very simple starting conditions and with no ex-
ternal selection pressure. Essentially, the molecular commu-
nity acts as a co-evolutionary system, in which the fitness of
a particular molecular species is largely determined by the
cohort of molecular species with which it shares the con-
tainer. To demonstrate this, we present results on three lev-
els. The first level gives summary observations and statistics
from the 1,000 trials. Secondly, we offer a qualitative analy-
sis of these trials, in which a range of emergent phenomena
are qualitatively described. The third analysis gives details
of a single trial with emergent phenomena and shows how
a series of single-point mutations change the seed replicase
system to a mutually-dependent “hypercycle” in which two
molecular species cannot self-maintain, but maintain a pop-
ulation by copying each other.

General observations
The mutation rate delivers a mean time of 18,700 time steps
for the creation of new molecular species. The majority of
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Figure 2: Distribution of extinction times for 1,000 trials

Figure 3: Histogram of number of epochs per trial

these new mutations are not “fixed” in the population and go
extinct very quickly. Occasionally a new species arises that
has some advantage over the current dominant species.

None of the 1,000 trials self-maintains indefinitely. The
nature of extinction follows a uniform pattern as described
below, but the timing of the extinction varies. Figure 2
shows the distribution of time to extinction for the molec-
ular populations. The modal extinction time is 750000 time
steps. In this time an average of 40 new species are pro-
duced.

Mutations occasionally produce molecules that rapidly
multiply to become the dominant species in the system via
the phenomenon of invasion when rare. We use the term
epoch to describe the period over which a particular molec-
ular species is dominant in the system; sweep describes a
change in epoch. A histogram of the number of epochs per
trial is shown in figure 3. The long tail on the histogram is
a caused by runs where periods with co-dominant species
that should be labelled as a single epoch are recorded by the
analysis as a high number of very short epochs due to small
fluctuations in abundance of the two species. This definition
of the epoch is not particularly useful in situations where
two species are co-dominant, but this behaviour was not pre-
dicted. Epochs for a single trial can be seen in figure 4.

A classification of emergent phenomena

In this section we give brief descriptions of the key phe-
nomena we have observed in the 1,000 trials. These were
identified by visual inspection of the plots of changes in the
populations of molecular species, e.g. figures 4 and 5.

Extinction
All trials end when no molecules exist in the system. This
occurs when there is a catastrophic decline in replicating
molecules. The common cause of this is when a new ‘para-
sitic’ molecule arises that is 1) incapable of replicating itself,
and 2) copied by the incumbent replicase at a higher rate
than the replicase. Note that in order to be copied, a para-
site must bind to the replicase sufficiently frequently. This
tends to make the system more robust to molecular “junk”
and explains why some of the trials continued for so long. A
characteristic spike may be observed at the end of each run,
which shows this new parasitic molecule as it rapidly in-
creases and then declines when the last replicase molecules
decay. Occasionally a parasite begins to overrun the repli-
case population, but it is unable to bind to a new replicase
mutant that is created as the parasitic molecule is increasing.
This is rare, occurring in only two of the trials.

Dynamics
Characteristic sweep. The majority of sweeps in our sys-
tem take a constant form, as shown in figure 4. These are the
the main cause of epoch change, and take less than 50,000
time steps for a new mutant to drive the previous dominant
species to extinction.

Drift. Drift is observed when a neutral mutation of a dom-
inant individual builds in numbers due to a random walk.
Drift is common, occurring in 92 trials. It is plausible that
sub-populations and slow sweeps (described below) are both
commonly caused by drift. Species exhibiting drift tend to
have mutations in the junk region, but can also show muta-
tions in binding regions that do not change the bind affinity.

Sub-populations. These are species which persist in the
community in fairly large numbers (more than 50 molecules
of approximately 350 in the system). These are very com-
mon, occurring in nearly all runs. These sub-populations are
nearly always wiped out when a new epoch begins, demon-
strating the biological phenomenon of selective sweeps. En-
during Sub-Populations, that persist across more than one
epoch, occur in 26 trials. This indicates that sub-populations
tend to depend on some property of the dominant species in
the system, essentially acting as non-lethal parasites. Co-
dependence between dominant and sub-populations cannot
be determined by examination of population numbers alone.
In 2 trials we observed a sweep in a subpopulation whilst the
dominant population remained stable.

Slow sweeps. A sweep can occasionally take much longer
than the 50,000 time steps of a typical sweep. These are
called “slow sweeps” and may be due to drift alone. An
example can be seen in one of the hypercycle partners in
figure 4 at around t = 2, 600, 000. Slow sweeps occurred in
52 trials.
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Figure 4: Dominant species in run 112. This trial exhibits (A) characteristic sweeps, (B) slow sweeps, (C) subpopulations, and
(D) multispecies hypercycles.

Figure 5: Dominant species in run 277. The short replicase (species 31) emerges at t = 748, 199 and forms a hypercycle (H) at
t = 5, 750, 000.

Rapid sweep sequences. Occasionally a mutant causes a
“cascade” of new molecules by triggering a sequence of new
unseen molecules that quickly dominate the population. The
most common mechanism for this is a mutation that gives
rise to a series of molecules that bind to a replicase such that
less than their entire sequence is copied. This occurs in 31
trials.

Complex behaviour
Emergent hypercycles. A hypercycle occurs when an en-
during sub-population increases in number until it becomes
co-dominant with a dominant species. The species forming
the enduring sub-population is not self-maintaining, but acts
as a copier for the dominant species. The dominant species
then repeatedly loses self-self affinity until it loses the ability
to self-maintain altogether. The hypercycle occurs when the
ability of the dominant population to self-maintain is lost,
and the two species become co-dependent. This occurs in
8 trials. Hypercycles end with a sweep, but occasionally
one of the partner molecules is still able to maintain a sub-
population. A series of sweeps ensues, in which the sub-
population declines slightly following each sweep. This oc-

curs in 6 trials.

Spontaneous hypercycles. are the same as the emergent
hypercycle, but forms from species that both arise in the im-
mediately preceding epoch. The mechanism is under inves-
tigation. This occurs in 15 trials.

Multispecies hypercycles. occur in 14 trials, when there
appears to be a mutual dependence among more than two
chemical species, as shown in figure 4.

Detailed evaluation of a single trial
We present here details of one of the more interesting
sequences of mutation that leads to a hypercycle of co-
dependent molecular species. This was observed in trial 277
(figure 5), but hypercycles of one form or another occurred
in 30 trials.

We classify this trial as an “emergent hypercycle”. At
t = 748, 199 one of the eventual partners (species 31) is
first produced via a mutation. This molecule exists as a sub-
population for around 5, 750, 000 time-steps before forming
one partner in a co-dominant pair of molecular species. The
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Figure 6: Reactions in the hypercycle. Molecules are repre-
sented by grey bars. Binding sites are shown as white boxes,
with active binds shown above and passive binds shown be-
low the molecule. Bind alignments are shown as black lines
between molecules. Dashed lines show the product of the
reaction (where one occurs).

partnership runs for approximately 3 million time steps be-
fore a parasitic molecule emerges to end the trial.

The molecular species in a hypercycle
The two molecular species (31 and 259) in the hypercycle
are shown in figure 6. The bindings that occur between them
are shown as black lines. The assignment of roles in the
reaction (i.e. whether the molecule is passive (acts as the
template) or active (acts as the program) occurs with equal
probability for both molecules, meaning that for 50% of the
time species 31 is produced and for the other 50% of the time
species 259 is produced. Also note that species 31 is shorter
than species 259 - it has lost one of the binding regions re-
quired for the reaction-program to initialise such that a copy
of the replicase is created. This means it tends to be copied
more quickly. Neither molecule is able to self-copy.

This phenomenon was neither foreseen in the original de-
sign nor expected to form without further design effort. It is
particularly surprising that both partners in our hypercycle
have no ability to self-copy. How could this have happened,
and what is the evolutionary advantage of it?

Origin of the short partner
We need to explain how species 31, that is missing a key
functional component, can rise to co-dominance in our sys-
tem. We can trace the ancestry of the molecular species,
and examine the reaction networks at key stages in any trial
(figure 7). A white box indicates that a new species is syn-
thesised de novo in the reaction, whereas a grey box indi-
cates that the new species arises by modification of one of
the reactants. Replicase molecules should act as catalysts,
remaining unchanged when they emerge from a reaction.
We can conclude that there is something in the reaction with
molecules of species 29 that has produced species 30, which
then reacts with species 9 to form species 31. The single

Figure 7: Ancestry of species 31. Numbers on the left in-
dicate the time of reaction. Black arrows indicate the active
partner. Grey arrows indicate the passive partner

point mutation of species 9 to create species 29 is shown
below by a vertical line:
009 OBEQBX...LHHHRLUEUOBLROORE$BLUBOˆB>C$=?>$$BLUBO%}OYHOB

|
029 OBEQBX...LHHHRLUEUOBLROORE$BLUBPˆB>C$=?>$$BLUBO%}OYHOB

The subsequence $BLUBO has mutated to $BLUBP. The
$ symbol is a code for “seek”, and (in this situation) po-
sitions the molecule’s flow pointer at the end of the best
complementary alignment for the sequence BLUBO, which
is the sequence OYHOB. With the mutation in species 29,
the alignment spans only the first four letters of $BLUBO,
so the copy of the molecule is constructed one symbol in
from the end of the molecule. When the construction is
complete, the newly-created string must be cleaved from the
active molecule’s sequence. The pointers are arranged to
achieve this via a second “seek” command with the same
target (OYHOB). However, since the target has been over-
written in the original molecule, the seek command posi-
tions the pointer at the end of the newly copied molecule
instead. The “cleave” command is applied to the far end of
the string and is thus ineffective. The reaction-program ter-
minates, and the new molecule (species 31) is created from
most of a molecule of species 29 with a copy of species 9
pasted over the penultimate symbol.

In this manner, the reaction between species 29 and 9 cre-
ates species 30, which is nearly twice as long as the seed
replicase, as shown in figure 8. Note there is only ever a
single molecule of species 29, which is immediately trans-
formed into species 30 when it reacts with a molecule from
species 9. When species 9 binds to species 31, the bind
site is shifted to a new position, as shown in figure 8. This
changes the action of the replicase program such that the
first 14 characters of the string are not copied. In this way,
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030 OBEQBXUUUDYGRHBBOSEOLHHHRLUEUOBLROORE$BLUBPˆB>C$=?>$$BLUBO%}OYHOOBEQBXUUUDYGRHBBOSEOLHHHRLUEUOBLROORE$BLUBOˆB>C$=?>$$BLUBO%}OYHOB
Bind site: |--------------|
009 OBEQBXUUUDYGRHBBOSEOLHHHRLUEUOBLROORE$BLUBOˆB>C$=?>$$BLUBO%}OYHOB
Product: |-------------------------------------------------|
031 BBOSEOLHHHRLUEUOBLROORE$BLUBOˆB>C$=?>$$BLUBO%}OYHOB

Figure 8: Origin of species 31

the single instance of species 30 can create many molecules
of species 31 until it decays. Species 31 is then copied by
dominant species in the system in 50% of reactions with it.
Note that this cascade of reactions all occurs as a result of
the single-point mutation on species 9.

Evolutionary pressure towards a hypercycle
Having established how a shorter molecule can arise via
single-point mutations, we need to investigate how the
molecule persists in the system, and what evolutionary pres-
sure there is towards the formation of a hypercycle. It is
important to note that in our replicase system a molecule
that ensures it will always act as the template in a reaction
is likely to sweep the population, as it will increase in num-
bers whenever it binds to another molecule. This is often
achieved by reducing the bind probability for self-self reac-
tions: as long as a bind is sufficiently likely, all the energy
available in the system can be consumed. Binds stronger
than this critical value have no advantage, whereas increas-
ing any bias towards becoming the template in a reaction is
clearly advantageous. For single-replicase systems, this is
straightforward to understand, but with the introduction of
species 31, the dynamics get more interesting.

Once present in the system, species 31 becomes a re-
source for other molecules. In all of the reactions with
species 31, the chances of acting as a template are 50-50
(since the position of the alignment is the same on each
string). This means that new species that bind to 31 can
use it as a resource for increasing their number, even though
half the time they will be exploited by species 31 to main-
tain its own population. Through a series of sweeps, each
new dominant species binds increasingly strongly to species
31, thus flushing the previous incumbent from the system.
Any new species that binds less strongly to species 31 than
the previous dominant species is unsuccessful: it loses in the
competition to exploit a valuable resource. Once bind affin-
ity to species 31 is maximised, the old strategy of weaken-
ing self-self binds to guarantee template status in a reaction
takes over again.

These processes are illustrated in figure 9, which plots
binding rates for new dominant species in trial 277. The
plots show the changes in bind probabilities with each suc-
cessive sweep of the population as illustrated in figure 5. The
line labelled “Bind to self” shows the probability of self-self
binding for each new dominant species. The line labelled
“Bind to 31” shows the bind probability between the new
dominant species and species 31. There are three phases.

Figure 9: Change in binding rates as a precursor to hypercy-
cle emergence

The first phase shows a decrease in self-binding probability
between successive dominant species. We then see a sec-
ond phase in which new species have an increasing affinity
for binding to molecule 31. Once this is maximised, the
third phase begins, in which successive dominant species
sacrifice their self-bind probability to ensure they act as tem-
plates when reacting with the previous dominant species. In
this way, dependence upon species 31 increases, until self-
replication disappears altogether, and a hypercycle emerges.

The single-point mutations between dominant species are
shown in figure 10. It shows that all mutations that confer
an advantage occur in the binding regions of the molecule.
Phases 1 and 3 of the run show changes in the second bind
region, whereas phase 2 shows mutations in the first bind re-
gion. This corresponds with the change in phase noted for
figure 9. The functional region of the molecule, which occu-
pies the last half of the string, is preserved throughout. This
is far from a random walk: the critical function of the repli-
case is preserved throughout, whilst a continual turnover of
the binding site sequences illustrates the evolutionary pres-
sure on the molecular species to act as a template for the
molecule that the replicase builds.

Conclusions
We have presented an evaluation of the effect of mutation on
an open-ended chemical system. The richness of behaviour
we have shown is striking; indeed it was unexpectedly rich
given that the only form of mutation is single-point. The
need for such richness in complex systems was one of our
main considerations during the design of this system. In ad-
dition, our chemistry reveals something of the dynamics of
replicase systems that is very difficult to observe in biology.
The decrease in binding affinity was not predicted, and the
mechanism by which the hypercycle emerged was the result
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Figure 10: Mutations for the dominant species in run 277.
Bind sites are indicated with dashed lines.

of a macromutation that was not “designed in” to the system.
Our replicase molecules are “imperfect replicators”: they

have a small chance of making an error when copying any-
thing that binds to a certain region on the molecule. The
imperfections in the copy process are not currently encoded
on the genome; they are preset in the microcode of the
copy instruction and thus unavailable for manipulation on
the genome. In future work, we could represent the copy
instruction at a finer level of granularity and use template
codes to specify the accuracy of each sub operation, possi-
bly including some cost for an increased accuracy of copy.
We observed macro-mutations arising as a result of single-
point changes that delivered emergent phenomena due to the
wide heritable range of the system.

Finally, we must emphasise that these trials form a con-
trol experiment in which the effects of single-point mutation
were evaluated. Future work will examine the effects of run-
ning a “population” of these trials, such that when a popula-
tion of molecules collapses in an individual container, it can
be replenished by a neighbour. This gives us a full model
of early life, in which replicating templates and machinery
self-maintain within membrane-bounded containers that can
be replenished by neighbours.
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Extended Abstract

We report several recent extensions of Swarm Chemistry (Sayama 2008; Sayama 2009), an artificial chemistry model that
uses kinetically interacting particle swarms as chemical reactants. Major modifications we newly implemented in the
Swarm Chemistry model are as follows:

1. There are now two categories of particles, active (moving and interacting kinetically) and passive (remaining still and
inactive). An active particle holds a recipe of the swarm (i.e., a list of kinetic parameter sets) in it (Fig. 1(a)).

2. A recipe is transmitted from an active particle to a passive particle when they collide, making the latter active (Fig. 1(b)).
3. The activated particle differentiates randomly into a type specified by one of the kinetic parameter sets in the recipe

given to it (Fig. 1(c)).
4. Active particles randomly re-differentiate with small probability.

It has been demonstrated that these model extensions enable morphogenetic processes starting with a single particle con-
taining a recipe (zygote) that grows into a fully developed self-organizing swarm pattern by “eating” other passive par-
ticles as raw materials through local recipe transmission (Sayama 2010). In addition, the stochastic re-differentiation
introduced above (4) naturally achieves self-repair capability of swarms with simple open-loop linear control mechanisms
(Sayama 2010).

Moreover, to demonstrate that macro-level ecological/evolutionary dynamics of self-organizing swarm patterns can arise
out of micro-level processes embedded in particle interactions, we further introduced minimal mechanisms for variation
and competition of recipes when they are transmitted between particles. Specifically, we implemented the following
mechanisms to the model:

5. A recipe is transmitted between active particles of different types when they collide (inheritance). The direction of
recipe transmission is determined by a competition function that picks one of the two colliding particles as a source
(and the other as a target) of transmission based on their properties (selection) (Fig. 1(d)).

6. The recipe can mutate when transmitted (as well as spontaneously at other times) with small probability (variation)
(Fig. 1(e)).

With these additional mechanisms, the Swarm Chemistry world has become capable of producing fully autonomous eco-
logical and evolutionary behaviors of self-organized “super-organisms” made of a number of swarming particles. With a
finite amount of resources (i.e., fixed number of particles) provided in a closed environment, we have observed behaviors
of those macroscopic patterns that could be interpreted in ecological/evolutionary terms, such as reproduction, chasing,
and predation, all emerging out of local interactions among individual particles (Fig. 1(f)).

We have tested a couple of different principles for the competition function, e.g.:

(i) The faster (or slower) particle wins (i.e., becomes the source).
(ii) The particle that hit the other one from behind wins.

(iii) The particle surrounded by more of the same type wins.

Each condition produced unique, distinct evolutionary dynamics. The most recent findings obtained from those different
conditions are presented and discussed comparatively.
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(a)

97 * (226.76, 3.11, 9.61, 0.15, 0.88, 43.35, 0.44, 1.0)

38 * (57.47, 9.99, 35.18, 0.15, 0.37, 30.96, 0.05, 0.31)

56 * (15.25, 13.58, 3.82, 0.3, 0.8, 39.51, 0.43, 0.65)

31 * (113.21, 18.25, 38.21, 0.62, 0.46, 15.78, 0.49, 0.61)

97 * (226.76, 3.11, 9.61, 0.15, 0.88, 43.35, 0.44, 1.0)

38 * (57.47, 9.99, 35.18, 0.15, 0.37, 30.96, 0.05, 0.31)

56 * (15.25, 13.58, 3.82, 0.3, 0.8, 39.51, 0.43, 0.65)

31 * (113.21, 18.25, 38.21, 0.62, 0.46, 15.78, 0.49, 0.61)

97 * (226.76, 3.11, 9.61, 0.15, 0.88, 43.35, 0.44, 1.0)

38 * (57.47, 9.99, 35.18, 0.15, 0.37, 30.96, 0.05, 0.31)

56 * (15.25, 13.58, 3.82, 0.3, 0.8, 39.51, 0.43, 0.65)

31 * (113.21, 18.25, 38.21, 0.62, 0.46, 15.78, 0.49, 0.61)

(b)

97 * (226.76, 3.11, 9.61, 0.15, 0.88, 43.35, 0.44, 1.0)

38 * (57.47, 9.99, 35.18, 0.15, 0.37, 30.96, 0.05, 0.31)

56 * (15.25, 13.58, 3.82, 0.3, 0.8, 39.51, 0.43, 0.65)

31 * (113.21, 18.25, 38.21, 0.62, 0.46, 15.78, 0.49, 0.61)

97 

38

56 31

(c)

97 * (226.76, 3.11, 9.61, 0.15, 0.88, 43.35, 0.44, 1.0)

38 * (57.47, 9.99, 35.18, 0.15, 0.37, 30.96, 0.05, 0.31)

56 * (15.25, 13.58, 3.82, 0.3, 0.8, 39.51, 0.43, 0.65)

31 * (113.21, 18.25, 38.21, 0.62, 0.46, 15.78, 0.49, 0.61)

67 * (216.35, 11.75, 7.7, 0.83, 0.97, 97.31, 0.02, 0.38)

29 * (254.64, 7.28, 7.0, 0.95, 0.11, 22.41, 0.43, 0.31)

13 * (105.4, 3.55, 5.24, 0.34, 0.18, 23.53, 0.39, 0.24)

(d)

75 * (216.35, 11.75, 7.7, 0.83, 0.97, 97.31, 0.02, 0.38)

29 * (254.64, 7.28, 7.0, 0.95, 0.11, 28.56, 0.43, 0.31)

13 * (105.4, 3.55, 5.24, 0.34, 0.18, 23.53, 0.39, 0.24)

67 * (216.35, 11.75, 7.7, 0.83, 0.97, 97.31, 0.02, 0.38)

29 * (254.64, 7.28, 7.0, 0.95, 0.11, 22.41, 0.43, 0.31)

13 * (105.4, 3.55, 5.24, 0.34, 0.18, 23.53, 0.39, 0.24)

(e)

competition 

function
winner:

(f)

Figure 1: How particle interactions work in the revised Swarm Chemistry. (a) There are two categories of particles, active
(blue) and passive (gray). An active particle holds a recipe of the swarm in it. (b) A recipe is transmitted from an active
particle to a passive particle when they collide, making the latter active. (c) The activated particle differentiates randomly
into a type specified by one of the kinetic parameter sets in the recipe given to it. (d) A recipe is transmitted between active
particles of different types when they collide (inheritance). The direction of recipe transmission is determined by a competition
function that picks one of the two colliding particles as a source (and the other as a target) of transmission based on their
properties (selection). (e) The recipe can mutate when transmitted with small probability (variation). (f) Examples of ecologies
of self-organizing patterns spontaneously formed in the Swarm Chemistry world (made of 10000 particles each).
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Abstract 
The RNA world hypothesis and the hydrothermal origin of life 
hypothesis are contradictory to maintain life-like systems for 
these two hypotheses to be compatible by the following two 
main reasons. First RNA molecules are too labile and second 
the biologically important interactions would not be effective at 
high temperatures. The assumption can be applied to the 
protein-based life-like systems. We have continuously 
investigated the stability and the chemical evolution of RNA- 
and protein-based life-like systems by using our hydrothermal-
monitoring techniques. According to these data, it has been 
found that two viewpoints are essential to discuss the 
temperature limit of RNA and/or protein-based life-like 
systems on the primitive earth. First, the accumulation of 
biomolecules should be determined by both the formation and 
degradation rates. Second, the reaction rates of the primitive 
life-like systems should be evaluated from the viewpoint of 
enzymatic reaction rates.  

Introduction 
The RNA world hypothesis has some drawbacks despite being 
supported by empirical data such as chemical evolution 
experiments using RNA and in vitro selection technique 
generating artificial ribozymes (Lohrmann and Orgel, 1980; 
Gilbert, 1986; Joyce et al., 1987; Sawai et al., 1989; Ellington 
& Szostak, 1990; Ferris and Ertem, 1992; Terfort and von 
Kiedrowski, 1992; Kawamura and Ferris, 1994). That is to 
say, the hypothesis that life originated near hydrothermal vent 
environments (the hydrothermal origin of life hypothesis) 
appears to be inconsistent with the RNA world hypothesis. 
The hydrothermal origin of life hypothesis was proposed 
based on the continuous investigations of thermophilic 
organisms (Corliss et al., 1981; Baross and Hoffman, 1985) 
and phylogenetic analysis of present organisms. The last 
common ancestor (LCA) is considered to have been a 
thermophilic organism (Pace, 1991; Forterre, 1994) although 
this is still disputed (Miller and Bada, 1988; Galtier et al., 
1999). 

It has been frequently concluded that RNA molecules are 
too labile under hydrothermal vent conditions for these two 
hypotheses to be compatible. Furthermore, biologically 
important weak interactions such as hydrophobic interactions 
and hydrogen bonding are weaker at higher temperatures. 
However, the most of simulation experiments have been 
carried out at low temperatures. In addition, there have been 

no practical techniques for the investigations of chemical 
evolution of RNA under hydrothermal conditions. These 
situations can be applied to the case that the protein-based 
life-like systems, such as GADV protein hypothesis (Ikehara, 
2005), since the half-lives of proteins under hydrothermal 
environments are much shorter than the geological time scale; 
the formation of protein-like molecules has been examined 
under simulated hydrothermal vent conditions (Holm, 1992; 
Marshall, 1994; Imai et al., 1999; Kawamura et al., 2005).  
 Naturally, it is difficult to determine the temperature at 
which life originated while it is estimated that life on Earth 
originated 4600 to 3500 million years ago (Mojzsis et al., 
1996). Frequent meteorite impacts could have raised the 
Earth’s temperature significantly (Maher and Stevenson, 
1988). Alternatively, some evidence suggests that the 
primitive ocean was frozen since the solar luminosity at that 
time was relatively less than at present (Sagan and Mullen, 
1972). Thus, the temperature of the primitive ocean in which 
life originated remains speculative (Walker, 1985; Kasting 
and Ackerman, 1986).  

Thus, investigations are required to evaluate the RNA- 
and/or protein-based life-like systems at different 
temperatures although the chemical evolution of RNA has 
been mainly studied at low temperatures. We have 
continuously studied the stability and prebiotic formation of 
RNA and protein-like molecules at high temperatures by 
using our monitoring methods of hydrothermal reactions. The 
systematic analyses of these data would provide insight into 
the possibility of a life-like system under hydrothermal 
conditions. 

Conclusively, it has been found that the following 
viewpoints are essential to discuss the temperature limit of 
RNA and/or protein-based life-like systems on the primitive 
earth and to determine whether biomolecules are sufficiently 
stable or not under hydrothermal conditions. 

View I: The accumulation of biomolecules should be 
evaluated under the thermodynamically open system, so that 
the accumulation of biomolecules should be determined by 
both the formation and degradation rates. Our experimental 
data suggested that the formation of RNA would be possible 
once the elongation of RNA starts from oligonucleotides 
longer than dimer at very high temperatures. 

View II: The rate of the primitive reactions within the 
primitive life-like systems should be evaluated from the 
viewpoint of enzymatic reaction rates. Based on the 
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comparison between the reaction rates with and without 
enzyme, much higher temperature limit, such as 300 ºC, can 
be assumed for the emergence of a life-like system.  

 Chemical Evolution of Biopoymers under 
Hydrothermal Conditions 

Monitoring methods of hydrothermal reactions 
While hydrothermal reactions were normally investigated 
using batch reactors, it was difficult to monitor hydrothermal 
reactions within the millisecond to second time scale. To 
monitor such rapid reactions, the flow systems monitoring of 
hydrothermal reactions are becoming practical techniques 
(Kawamura, 2000; 2002). We have invented a real-time and in 
situ monitoring method of hydrothermal reactions using a 
micro-flow reactor system assembled with fused-silica 
capillary tubing, which enables the monitoring 
reactions at 0.002 - 200 s at 400 ºC at 50 MPa. For in 
situ monitoring of hydrothermal reactions, an optical window 
on the fused-silica capillary and a UV-visible detector are 
connected with high temperature-resistant optical fibers; it 
enables monitoring of 200 – 900 nm at 0.08 – 3.2 s at 400 ºC.  

RNA- and protein-based life-like system 
Discovery of ribozyme suggested that RNA-like molecules 
had a central role in the first life on earth. The plausible 
information flow in a life-like system consisting of RNA 
molecules is shown in Figure 1, where RNA molecules 
preserve both information and enzymatic activities. RNA 
world hypothesis is supported by chemical evolution 
experiments using RNA formation models (Lohrmann and 
Orgel, 1980; Joyce et al., 1987; Sawai et al., 1989; Ferris and 
Ertem, 1992; Terfort and von Kiedrowski, 1992). Activated 
nucleotide monomers (5’-phosphorimidazolide of nucleoside) 
were synthesized in the laboratory as model activated 
prebiotic nucleotide monomers that might also be formed 
under primitive Earth conditions and could produce RNA 
oligonucleotides (Lohrmann and Orgel, 1973). This technique 
has been successfully applied to the formation of RNA in the 
presence of polynucleotide template, metal catalyst, and clay 
mineral catalyst. On the other hand, the fact that in vitro 

selections can produce several ribozymes and aptamers 
support the speculation that different functional RNA could 
have spontaneously formed on primitive earth (Ellington and 
Szostak, 1990; Tuerk and Gold, 1990) although the same 
molecular machinery, which is used in the modern in vitro 
selection techniques, was not present on primitive Earth. 

Naturally, proteins are important for the emergence of life-
like systems while it is generally considered that proteins 
could not preserve biological information as RNA and DNA 
preserve information on the basis of Watson-Crick base-pair 
formation. In addition, simulation experiments on primitive 
Earth imply that the formation of protein-like molecules 
would be easier than that of RNA on the primitive Earth 
although it is indeed difficult to determine which formation of 
RNA or proteins is more difficult. The reason that the 
formation of proteins is frequently regarded to be easier than 
that of RNA may be due to the fact that the formation of RNA 
monomers consists of three steps of nucleotide bases, 
nucleoside, and nucleotides while amino acids are directly 
formed from primitive gas mixture using different energy 
sources.  

Recently, GADV protein hypothesis has been proposed on 
the basis of analyses of the relationship between the structures 
of water-soluble granular proteins and nucleotide base 
compositions of genes regarding present organisms (Ikehara 
2005). Conclusively, this hypothesis suggests that glycine (G), 
alanine (A), aspartic acids (D), and valine (V) could have 
been the most primitive protein, which could have formed a 
simpler transcription systems. The importance of the 
combination of G, A, D, V has been sometime pointed out 
from different viewpoints (Eigen et al., 1981). In addition, the 
difficulty that proteins would not readily preserve genetic 
information might be solved by assuming that the information 

Figure 1. Hydrothermal flow reactor system using fused-
silica capillary tubing. This system enables real-time 
monitoring and in situ UV-visible monitoring. 

Figure 2. Prebiotic information flow for life-like systems 
consisting of RNA molecules and proteins. 
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could have been preserved on the basis of pseudo-replication 
mechanism. A possible information flow is illustrated in 
Figure 2, where GADV proteins could behave similarly to 
those assumed for an RNA based life-like system. 

Naturally, this protein-based origin-of-life hypothesis 
should be evaluated from the viewpoint of hydrothermal 
origin of life hypothesis.  

Prebiotic formations and stabilities of RNA and 
proteins under hydrothermal conditions 
While simulation experiments for the formation of RNA 
oligomers on the primitive earth conditions have been 
extensively investigated using the phosphorimidazolides of 
nucleotide monomers (Lohrmann and Orgel, 1980; Joyce et 
al., 1987; Sawai et al., 1989; Ferris and Ertem, 1992), the 
most of studies were carried out at 25 ºC. Thus, we have 
investigated kinetic analyses of prebiotic formation models of 
RNA using the activated nucleotide monomers or water-
soluble carbodiimide as a condensation reagent at 
temperatures up to 100 ºC. We successfully analyzed the 
following models (Figure 3), (1) the template-directed 
formation of oligoguanylate on a polycytidylic acid template 
(TD reaction) (Kawamura and Umehara, 2001), (2) the 
cyclization of oligonucleotides (CY reaction) (Kawamura et 
al., 2003), (3) the oligocytidylate formation in the presence of 
Pb2+ (ME reaction) (Kawamura and Maeda, 2007), and (4) the 
oligocytidylate formation in the presence of montmorillonite 
clay (CL reaction) (Kawamura and Maeda, 2008). The 
formations of oligonucleotides using these model reactions are 
basically difficult at high temperatures. Based on these 
empirical data, it was generalized that the reactions are 
expressed by the scheme shown in Figure 4. 

The accumulation of oligonucleotides is determined by the 
relative magnitude of the processes. The kinetic analyses of 
the 4 types of RNA formation models suggested that the low 
efficiency of oligonucleotide formation at high temperatures is 
mainly due to the weak association between an activated 
nucleotide monomer and an elongating oligonucleotide since 
hydrogen bonding and hydrophobic interaction decrease with 
increasing temperature. This trend was observed for all the 4 
types different prebiotic reactions. For the cases of TD, ME, 

and CL reactions, it is generally found that the association 
between an activated monomer and a monomer (or another 
activated monomer) for the formation of dimer becomes weak 
and the relative rate of the formation of dimer decreases 
notably as comparing to trimer and tetramer formations. On 
the contrary, for the cyclization of a linear oligonucleotide the 
association of 3’- and 5’-terminals is much easier since it is an 
innermolecular reaction. Thus, the rate constants of 
cyclization do not decrease notably as comparing to those of 
cleavage of phosphodiester bonding; naturally the cyclization 
of oligonucleotides would be disadvantageous for the 
formation of long oligonucleotides. According to these data, it 
was implied that the oligonucleotides could have formed at 
high temperatures if the association between the activated 
nucleotide monomer and the elongation oligonucleotide is 
facilitated by additives, such as, protein like-molecules, 
mineral surfaces, metal ions.  

On the other hand, it has been shown that the formation of 
protein-like molecules is possible under different conditions. 
Thermal condensations of amino acids mixtures including Asp 
and Glu have been frequently investigated as a formation 
model of protein-like molecules on the simulated dry surface 
model of primitive Earth (Fox and Harada, 1958). The 
formation of peptides was investigated in the presence and 
absence of condensation reagent while the investigations of 
peptide formation have been relatively weak as comparing to 
the formation of RNA (Ferris, et al., 1996).  

The formation of protein-like molecules is also possible 
even under the hydrothermal conditions in the absence of 
condensation reagent while the efficiency is lower than that of 
the dry model (Imai et al, 1999). Actually, the formation of 
proteins from amino acids under hydrothermal conditions is 
not so easy, where the yield of oligopeptides formation is 
typically 0.1 – 1 %. One reason is that the dehydration of 
amino acids is principally difficult in aqueous solution. In 
addition, the cyclization of dipeptide to form diketopiperazine 
inhibits the further elongation of oligopeptides. Furthermore, 
the condensation reagent would facilitate the formation of 
oligopeptides while suitable prebiotic condensation reagents 
have not been yet discovered for the oligopeptide formation 
under hydrothermal conditions (Kawamura et al., 2009a). 
Based on our investigation of a condensation reagent for the 
formation of oligopeptides, it was found that the condensation 

Figure 3. RNA formation models with and without activated 
nucleotide monomers. Figure 4. Generalized reaction model for the formation of 

prebiotic RNA molecules. 
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reagent is immediately destroyed under hydrothermal 
conditions.  

By using the hydrothermal flow reactor, we have 
discovered two possible pathways, which enhance the 
elongation of oligopeptide. First, the elongation of 
oligoalanine readily proceeds within 10 – 30 sec at 250 – 330 
ºC if its starts from 4-mer oligoalanine and longer (Kawamura 
et al., 2005). The efficiency of the formation of oligoalanine 
reaches to 10 %. Second, one-step formation of oligopeptides 
including 20 amino acids unit from Asp and Glu is possible 
within 3 min at 275 ºC (Kawamura and Shimahashi, 2008). 
However, it is generally true that the oligopeptides are not 
basically stable at high temperatures so the oligopeptides 
could not survive even if hydrothermal vent systems facilitate 
the formation of oligopeptides. Thus, it has been frequently 
proposed that oligopeptides could have accumulated in the 
surrounding cool ocean once the peptides are evacuated from 
the hydrothermal vent (Imai et al., 1999).  

We have carried out kinetic investigations of the 
degradation of nucleotide bases, nucleosides, nucleotides, 
oligonucleotides, polynucleotides, amino acids, peptides, and 
proteins. The fastest process for the degradation of nucleotides 
as RNA monomers is the cleavage of triphosphate of 
nucleotides (Kawamura, 2000). Besides, the fastest process 
for the degradation of amino acids is racemization (Kawamura 
and Yukioka, 2001). The cleavage of phosphoester bonding is 
approximately 10000 times faster than that of racemization of 
amino acids. Moreover, the cleavage of phosphodiester 
bonding of RNA is approximately 100 times faster than that 
of peptide bonding (Kawamura, 2003a, 2003b; Kawamura et 
al., 2005). These facts indicate that the RNA and nucleoside 
monomers are less stable as comparing to proteins and amino 
acids. However, it should be noted that these reactions 
proceed within much shorter time scale than the geological 
time scale. For instance, the ribonuclease loses the catalytic 
activity within 30 s at 275 ºC (Kawamura et al., 2009b). This 
fact suggests the importance how to judge the stability of 
these biomolecules.  

 
Table 1. Half-life calculated by the real-time monitoring of 
hydrothermal degradation for biomolecules. 

half-life / s Temperature / ºC 
 100 200 300 

oligo17 4500 3.08 0.0268 
C3’pG 12900 28.8 0.542 
C2’pG 14100 37.4 0.789 
dCdG 572000 45.7 0.0981 
ATP 1290 0.37 0.00187 
ADP 6830 1.61 0.0070 
AMP 83500 8.65 0.022 

adenosine 1610000 86.9 0.145 
alanine 15900000 3380 13.7 

Values of half-life were obtained from the previous investigations 
(Kawamura, 2000, 2003a, 2003b, Kawamura and Yukioka, 2001). 
 

Interactions of biopolymers under hydrothermal 
conditions 
Biologically important interactions, such as hydrogen 
bonding, hydrophobic interactions, π−π stacking, would 

decrease with increasing temperatures. However, it was 
normally difficult to analyze such interactions by using 
conventional techniques. Thus, we have attempted to measure 
such weak interactions of RNA and proteins using our in situ 
UV-visible monitoring system for hydrothermal reactions 
(Kawamura and Nagayoshi, 2007; Kawamura et al., 2010). 
Our accumulated data support quantitatively the assumption 
that the weak interactions, such as hydrogen bonding, 
hydrophobic interaction, π−π stacking, becomes weak.  

It was confirmed that double-stranded DNA is readily 
denatured to single-stranded DNA at temperature lower than 
100ºC by using our system (Kawamura and Nagayoshi, 2007). 
However, at higher temperatures it was found that single-
stranded DNA form aggregate at higher temperatures up to 
around 200 ºC, where the solubility of DNA becomes low 
especially in the presence of Mg2+. At higher temperatures, 
single-stranded DNA is cleaved so the solubility increases. 
This fact suggests that the solubility of DNA is an important 
factor to determine the limit temperature for life-like systems. 

On the other hand, the interactions between proteins and 
chromogenic reagents were investigated using the in situ UV-
visible monitoring system (Kawamura et al., 2010). Among a 
few kinds of proteins, the interaction of bovine serum albumin 
(BSA) with a water-soluble porphyrin (TPPS) was possible to 
investigate up to 150 ºC. The association constant between 
BSA and TPPS at 100 ºC was ca. 100 times smaller than that 
at 25 ºC. However, the interaction of TPPS with pyridine 
bases is not so reduced within this temperature range, where 
the association constants decrease only 2 – 6 times. Thus, we 
concluded that the decrease of the association constant of 
BSA with TPPS is due to the conformational change or 
denaturation of BSA at high temperatures. That is to say, BSA 
is a modern enzyme so that this is not suitable to interact with 
substrates at high temperatures, where denaturation occurs. 
Thus, it is important to investigate the interactions of prebiotic 
protein-like molecules with defferent substrates. 

Temperature Limits of Primitive Life-life 
Systems 

Viewpoints to determine whether prebiotic molecules 
are sufficiently stable 
The viewpoints to determine whether biopolymers are stable 
or not have been briefly discussed regarding the RNA world 
in the previous publications (Kawamura, 2004). It is assumed 
that the conditions necessary for the emergence of a life-like 
system consisting of RNA and/or proteins are as follows: (1) a 
sufficient amounts of biomolecules are accumulated, (2) 
biological information is replicated, (3) a set of chemical 
assemblies controlling the rate of the reactions (primitive 
enzymes) exists within the system, and (4) the compartment 
of these chemicals would be necessary in a cell or a single 
unit. In modern organisms, for instance, RNA molecules are 
synthesized by RNA polymerases and degraded by 
ribonucleases. Similarly, in the RNA world, both the 
formation and degradation of RNA molecules had to be 
controlled by primitive enzyme-like molecules. Naturally, this 
principle should be applied to the case of life-like systems 
based on proteins or protein-like molecules. That is to say, the 
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accumulation of protein-like molecules would be controlled in 
the presence of primitive ribosome with a set of primitive 
enzymes, such as aminoacyl tRNA synthetase and primitive 
protease-like molecules. Thus, the following two views should 
be applied to examine the possibility of the accumulation of 
biopolymers. The term to express the restriction conditions 
was called as “Scale” in the previous paper for the purpose 
that we will find a way to determine quantitatively such scales 
on the basis of the reaction rate. The term “View” is used in 
the present paper.  

View I:  The accumulation of prebiotic biopolymers 
should be evaluated from the viewpoint of kinetics of the 
accumulation of prebiotic polymers. As mentioned above, the 
accumulation of biopolymers in a cell is determined by the 
formation + inflow and the degradation + outflow. This is 
illustrated as shown in Figure 5. Here, for simplification the 
sum of formation and inflow is called as formation and that of 
degradation and outflow is called as degradation. If the 
hydrothermal origin-of-life hypothesis is correct, the relative 
rates of biopolymer formation and degradation should 
determine the accumulation of the biopolymers under 
hydrothermal vent conditions as well as under mild 
conditions. If such primitive enzymes had existed on primitive 
Earth, the accumulation would had been possible without 
considering a pathway for surviving of biopolymers in the 
surrounding cool ocean for the biopolymers formed in the 
hydrothermal vent system. 
 View II:  Since enzymes control reactions in modern 
organisms the rate of reactions in primitive life-like systems 
should be evaluated from the standpoint of possible primitive 
enzymatic reaction rates. The importance of the fact that 
enzymatic reaction rates are generally much greater than the 
uncatalyzed reaction rates has been addressed (Radzicka & 
Wolfenden, 1995). It is no doubt that enzymes are essential 
for controlling biological reactions in living systems. Based 
on this viewpoint, the comparison of the reaction rates with 
and without prebiotic enzymes should be essential for the 
evaluation of primitive life-like systems.  

Possibility of RNA- and protein-based life-like 
systems at high temperatures 
On View I, our data regarding the prebiotic formation of 
oligonucleotides show that the phosphodiester bond formation 
could be faster than that of the decomposition even at high 
temperature as mentioned above. Thus, these reaction models 
indicate that the oligonucleotides could have formed at high 
temperatures. As mentioned above, a strong association 
between the activated monomer and the elongating oligomer 
is required for the formation of the phosphodiester bond on 
the basis of the model shown in Figure 4. While we could 
have not detected prebiotic additives to facilitate the 
association, it is anticipated that the acceleration of 
phosphodiester bond formation with a strong association 
would be possible. Actually, chemical assemblies to enhance 
the association should exist at least up to 110-120 ºC in 
modern hyperthermophilic organisms (Stetter, 1982; Kashefi 
and Lovley, 2003). Presumably, potential prebiotic catalysts, 
such as protein-like molecules, clay minerals, and metal ions, 
could have facilitated the association of the monomer and the 
elongating oligomers for RNA based life-like systems. In 
addition, the supply of a sufficient concentration of the 
activated monomers that would be formed from bases, ribose, 
inorganic phosphate, and imidazole should be taken into 
account. View I is also applied for the accumulation of these 
resources for RNA molecules although the experimental 
evaluation would be difficult for simulating consecutive 
chemical evolution through these resources. 

 
Table 2. Limit temperatures where the rate of oligonucleotide 
formation is faster than that of degradation. 

Reactions Limit temperature (ºC) 
TD reaction 309 
CY reaction 382 
CL reaction 162 

Calculations were performed on the basis of our previous 
investigations (Kawamura and Umehara, 2001; Kawamura et 
al., 2003; Kawamura and Maeda, 2008). 
 
The temperatures where the formation of RNA becomes 

comparable to that of degradation of RNA were calculated on 
the basis of our previous data as shown in Table 2, where it is 
dependent on the type of prebiotic reaction models. The 
temperatures for CY reaction and TD reaction are somewhat 
higher than those of CL reaction. This value was not obtained 
for ME reaction. This is probably correlation with the yield of 
the phosphodiester bond formation, where the yields 
regarding TD and CY reactions are greater than those for CL 
and ME reactions. The association between two moieties to 
form phosphodiester bonding in CY is much easier than other 
reactions because it is innermolecular association. The 
association for TD reaction is efficient than that for CL and 
ME reactions. This finding suggests that the formation rate of 
RNA would be faster than the degradation rate of RNA even 
under hydrothermal conditions. The magnitude of the 
temperatures for these models is consistent with the efficiency 
of the phosphodiester bond formation of these reaction 
models. 

For the case of protein-based life-like systems, several 
condensation reagents would facilitate the peptide bonding 
formation. However, there has been no data regarding 

Figure 5. Accumulation of biopolymers kinetically 
controlled by the formation and degradation rates in the 
presence and absence of prebiotic enzymes. 
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temperature dependence of the primitive formation rates of 
proteins from amino acids in the presence of condensation 
regents or by using activated amino acids. 

On View II, enzymes control biological reactions in 
modern organisms. However, it is noted that the reactions can 
proceed even at very slow rates without enzymes as 
background reactions in organisms. The importance of this 
principle has been pointed out, where the ratio (kcat/knon) of the 
enzymatic reaction rate (kcat) to the background reaction rate 
(knon) represents the catalytic ability of the enzyme (Radzicka 
and Wolfenden, 1995; Kawamura, 2004). This fact indicates 
that the strong specificity of an enzyme to a substrate is due to 
the reduction of the activation energy for the enzymatic 
reaction. Thus, the specificity of enzyme is strongly 
dependent on the temperature since the background reaction 
rate increases with increasing temperature. Here, it is still 
difficult to compare the background rates of the reactions 
catalyzed by modern enzymes with that of primitive enzymes 
because the catalytic rate enhancement of primitive enzymes 
is unknown. The comparison of background reaction rates 
with modern enzymatic reaction rates was examined for 
thermophilic reactions in the previous study. In the present 
study, a continuous investigation on the basis of this concept 
has been carried out. The relationship between the enzymatic 
reactions and background reactions is illustrated in Figure 6. 

In addition, there is a trend, which would be found even in 
biochemical text books, the magnitudes of the rate constants 
(kcat) of reactions catalyzed by several enzymes are relatively 
narrow range of 102 – 106 s-1 while the uncatalyzed 
background rate constants (knon) are in the range of 10-16 – 100 
s-1 (Radzicka and Wolfenden, 1995). We showed a similar 
relationship for the cases of ribonucleases and a RNA 
polymerase (Kawamura, 2004). Furthermore, we have 
examined the rate constants compiled from literature sources 
for several thermophilic enzymes (Kawamura, 2004), which 
was possible to incorporate the rate constants that were within 
the same range of other enzymatic rate constants. In addition, 
the rate constants (kcat) of thermophilic enzymes do not largely 
differ from those of enzymes from mesophiles. According to 
this analysis, there is a general trend that the reaction rates 
with modern enzymes including thermophilic enzymes are in 
a relatively narrow range compared to the range of the 
background reaction rates. Conclusively, the enzymatic rate 
constants including mesophiles and thermophiles are shown in 
a trapezoid at the top-left corner and the uncatalyzed 
background rate constants are shown in a large trapezoid at 
the bottom (Figure 6).  

The difference between the reaction rate with and without 
primitive enzymes should have been necessary for the 
accumulation of biopolymers. This principle would provide a 

Figure 6. Comparison of the reaction rate with enzymes and without enzymes regarding prebiotic reactions. 
The horizontal axis indicates inverse values of temperature (T-1) and the vertical axis indicates logarithmic 
values of reaction rates. The numbers show the reaction rates determined by our studies. 1: ATP hydrolysis, 2: 
C3’pG cleavage, 3: racemization of alanine, 4: 4-mer formation by TD reaction, 5: cyclization of 
d(pGCGCG)rC, 6: CL 4-mer formation by reaction, 7: 3-mer formation by ME reaction. Top-right corner 
(green circle) would indicate the limit temperature and enzymatic reaction rate regarding the origin of life. 
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temperature limit for the primitive life-like system, where 
primitive enzymes could facilitate the target reactions with 
faster rates than the background reactions; this had to be 
chemically possible at the limit temperature. Besides, it is 
known that a fastest process in aqueous solution is proton 
transfer so that the enzymatic reaction could not be faster than 
the proton transfer process in aqueous medium. The proton 
transfer rates are plotted over the upper limit of enzymatic 
reaction rates. In addition, the interaction of a candidate 
biopolymer of primitive enzyme with a primitive substrate 
would decrease with increasing temperature.  

This implies a weak specificity and an enhancement of the 
primitive enzymatic reaction. Naturally, there is no basis to 
determine how much difference between kcat and knon should 
have been essential for the primitive enzymes to construct a 
most primitive life-like system. Nevertheless, even a small 
difference between primitive enzymatic rates and background 
rates could be considered as candidates for a primitive enzyme 
activity. The large difference between the enzymatic rates and 
the background rates even at very high temperatures at the 
top-right corner (green circle) is impressive, where the 
background reaction rates merge to the extrapolation of 
modern enzymatic reaction rates. This might reflect that the 
evolution of enzymatic activities would have synchronized 
with the decrease of temperature. 

By the way, the associate formation for elongating 
biopolymers would be facilitated by different additives while 
the assumption is now being evaluated. In addition, the 
compartment of chemicals for a life-like system would be also 
very important if we assume that the life-like system could 
have survived under hydrothermal conditions. In a 
compartment, that is, a cell, several advantageous are 
expected for the emergence of life-like systems (Figure 7). 
Chemical reactants could be concentrated so that the 
interactions among prebiotic chemicals would be enhanced. In 
addition, the stabilities of biomolecules would be facilitated 
by the associate formation with concentrated additives.  

To evaluate the possibility of spontaneous formation of 
enzymatic activities in protein-like molecules, we have 
investigated kinetics of primitive enzymatic functions of 
protein-like molecules mainly focusing to the formation and 
degradation of RNA molecules; the protein-like molecules 
were prepared by the simulation reactions of amino acids 
condensation under dry conditions and hydrothermal 
conditions (Kawamura et al, 2004). However, no notable 

enzymatic activities have been detected so far within such 
randomly formed peptide-like molecules although a series of 
catalytic activities have been observed during the 
investigations of proteinoids (Fox, 1986). Less activity of 
protein-like molecules might suggest that enzymatic functions 
would have started from a very small catalytic effect and 
specificity at the initial stage.  

Conclusions 
This paper proposes the viewpoints to evaluate whether 
biopolymers, RNA and proteins, are compatible with 
primitive hydrothermal vent conditions. On View I, the 
relative magnitudes of the rates of degradation and formation 
of RNA were evaluated. The TD, CY, and CL reactions 
showed the fairly high temperatures where the rate of RNA 
formation could be greater than the rate of degradation. 
Naturally, chemical assemblies would have been required to 
facilitate the association to form biopolymers. On View II, the 
stabilities of biopolymes were evaluated based on the 
comparison between non-enzymatic and enzymatic reaction 
rates. The evaluation suggests that a life-like system 
consisting of RNA and/or proteins is possible at fairly high 
temperatures above 100 ºC.  

In addition, the interactions and three-dimensional folding 
of biopolymers are important factor to determine the limit 
temperatures for life-like systems. From this viewpoint, the 
interactions between molecules would provide a limit 
temperature as well as View I and View II. Furthermore, the 
solubility of biopolymers is also important factor to determine 
the limit temperature for a life-like system. To evaluate the 
assumptions shown in the present paper, the experimental data 
on the kinetic accumulation of biopolymers, the primitive 
replication of RNA (possibly pseudo-replication by GADV 
proteins) and the primitive enzymatic functions under 
hydrothermal conditions should be explored in the future.  
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Abstract 
How can informational replicators (Zachar and Szathmáry 
2010) such as template replicators, arise from non-
informational autocatalysts (Szathmáry and Maynard Smith 
1997; Szathmary 2000)? Variants of an informational replicator 
have a high probability of being autocatalytic, thus allowing 
potentially unlimited heritable variants to be replicated, for 
example, mutants of a DNA sequence have this property. 
Variants of non-informational replicators such as 
glycolaldehyde in the Formose cycle are not in general 
autocatalytic; therefore, there is little capacity for hereditary 
variation (Szathmáry 2006). This paper asks; what are the 
necessary and sufficient conditions for an increase in the 
probability that a variant of an autocatalyst will itself be 
capable of autocatalysis? Given some well-defined 
assumptions, serial dilution in a rich generative chemistry such 
as that found in the Miller experiment should result in the 
emergence of informational replicators, i.e. autocatalysts whose 
variants have a high probability of themselves being capable of 
autocatalysis.   

Introduction 

A reactor such as that of Millar’s famous experiment (Miller 
1953) contains reactions that are simple autocatalytic cycles 
(and probably more complex kinds of autocatalytic structure, 
e.g. reflexive autocatalytic sets (Farmer, Kauffman et al. 
1986; Kauffman 1986)).  An example of a simple 
autocatalytic cycle is the Formose reaction (Fernando, Santos 
et al. 2005), see Figure 1. It is known that this autocatalytic 
cycle is notoriously subject to side-reactions, the reaction of 
molecules external to the cycle with the intermediates of the 
cycle to produce new molecules. Some of these new 
molecules will themselves be autocatalytic with some 
probability p that we assume is a property of the parental 
autocatalytic cycle. The same fate of side-reactions befalls 
these newly produced autocatalysts.  
 
Real chemistry is very complicated, but it is possible to get 
some idea of the dynamics of a growing chemical network of 
reactions by using simplified artificial chemistries. A typical 
abstraction is to use linear binary strings as molecules and 
allow ligation and cleavage reactions between these strings. 
This paper will use an even simpler artificial chemistry where 
a chemical is described by only two parameters. What is the 
motivation for this? In simulations carried out previously 
using a artificial chemistry (Fernando and Rowe 2007; 
Fernando and Rowe 2008) it was observed that the probability 

of an autocatalytic molecule producing another autocatalytic 
molecule in a side-reaction decreased with the size of the 
molecule. This is an inevitable consequence in a random 
chemistry of linear strings because longer strings are less 
likely to produce two copies of one reactant by chance, than 
are shorter strings, given random rearrangement of the 
monomers of in a bimolecular rearrangement reaction (the 
type used in the simulation). The reality for real organic 
molecules is of course much more complicated. Some classes 
of autocatalytic molecule will inevitably be more likely to 
produce autocatalysts than others (i.e. have different p values). 
The complexity of the chemical models that would be needed 
to determine these probabilities for various classes of 
molecule are bewildering and possibly beyond that which is 
currently feasible. Therefore, a model is presented that 
abstracts certain properties of this generative chemical 
process. The model assumes simply that an autocatalyst can 
be described by a small number of parameters. Firstly, a 
probability p that a side-reaction to the autocatalytic cycle 
produces an autocatalyst. Secondly, a structural parameter 

€ 

p  
that describes the mean of a lognormal distributed set of 
values from which is drawn the probability p’ that an 
autocatalyst produced by a side-reaction will be capable of 
itself producing autocatalysts, see Figure 1. Thirdly, for some 
variants of the model it is assumed that each autocatalyst has 
some observable property f. f is drawn randomly for each 
autocatalyst from a normal distribution with mean 0 and s.d. = 
1. In the models, there is no correlation between f of a parent 
and f of an offspring molecule. This f is intended to be some 
function that may contribute to fitness at a higher level.   
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Figure 1 (Top) The molecule glycolaldehyde is autocatalytic 
using Formaldehyde as food, and making copies of itself, and 
growing in concentration exponentially. (Bottom) The 
intermediates of the glycolaldehyde autocatalytic cycle can 
undergo side-reactions with other species (red) to produce 
autocatalysts with a low probability p. Let these new 
autocatalysts have a probability p’ of producing autocatalysts 
themselves by side-reactions. In the model, a structure 
parameter of the parental autocatalyst 

€ 

p  determines 
stochastically the actual value of p’ that an offspring 
autocatalyst will have.  

Methods 
A reactor is initialized with one core autocatalyst that has p 
drawn from a lognormal distribution with mean 

€ 

p  = e-10
 . This 

is a small value, e.g. 0.001. The production of novel 
autocatalysts is simulated using a discrete time simulation. At 
each time-step, each existing autocatalyst has a probability p 
of producing another autocatalyst. If it does produce an 
autocatalyst, then this new autocatalyst has its p’ value 
assigned by choosing a random number from the lognormal 
distribution defined by the 

€ 

p  value of the “parent” 
autocatalyst. The new autocatalyst then has its 

€ 

p ’ value 
defined based on the original 

€ 

p  value of its parent. The 
crucial question in any realistic chemistry is whether there is a 
correlation between the 

€ 

p  value of a parental autocatalyst and 
the 

€ 

p ’ value of the autocatalyst produced from it. In other 
words, is the probability of producing an autocatalyst in a 
side-reaction a heritable parameter; is 

€ 

p  heretable? It is 
clearly the case that there is no such simple correlation for all 
classes of molecule, although for some molecules there clearly 
is, for example, polymer template replicators. Such molecules 
have a very high probability that a variant will also be capable 
of replication. Several functions that relate the heretability 

€ 

p  
of parent and heritability 

€ 

p ’ of offspring are examined in this 
paper. The simplest function assumes correlated 

€ 

p  values 
where the 

€ 

p '= Norm(1,σ)p p , where Norm is a Gaussian 
random number with mean 1 and standard deviation

€ 

σ. An 
uncorrelated function is one in which 

€ 

p c = erand (−10,−9.5), where 
rand(-10,-9.5) is a uniform random number between -10 and -
9.5, the typical values evolved in the previous experiments 
when 

€ 

p  was an evolvable parameter.  

The reactor produces autocatalysts for a fixed time period T 
after which M random samples (containing autocatalysts) are 
taken from the reactor. Each autocatalyst has some probability 
q of being chosen for each sample, and let this value be fixed 
throughout a simulation. Let the chance of choosing an 
autocatalyst be low, e.g. 5%. In reality this probability q will 
depend on abundance, but here we have no model of chemical 
kinetics. Also, we do not allow the number of autocatalysts 
chosen to exceed some maximum C e.g. 50. The sample will 
also inevitably contain many non-autocatalytic molecular 
species that are not modeled here.  

One of the M samples are chosen based on maximizing the 
linear sum of f values of the autocatalyst species present in the 
reactor. Another valid option is just to choose a random 
sample. Both options are modeled here. The chosen sample 

then is used to reinitialize a new reactor. All autocatalysts not 
present in this sample are discarded. This is the serial dilution 
phase of the experiment.  

Results 

Correlated 

€ 

p  
 
Figure 2 shows the results obtained for a run in which 
selection is for highest summed f. The initial value of 

€ 

p  = e-10
, 

q = 0.05, C = 50, M = 10.  In the function 

€ 

p '= Norm(1,σ)p p , 

€ 

σ = 0.001, i.e. there are small correlated changes to the 
potential to produce autocatalysts (P1 in the diagram).  
 

      
Figure 2. 28 serial dilutions, with selection for highest f 
sample. (Top Left) Maximum p value obtained. (Top Right) 
Maximum 

€ 

p  value obtained. (Bottom) Total number of 
autocatalysts in the reactor.   
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Figure 3. 34 serial dilutions, with random selection of a 
compartment. (Top Left) Maximum p value obtained. (Top 
Right) Maximum 

€ 

p  value obtained. (Bottom) Number of 
autocatalysts. 
 
After 28 serial dilutions of the system, the maximum value of 

€ 

p  has increased significantly, and more autocatalysts are 
being produced in each round of network growth. Random 
compartment selection has a similar effect, see Figure 3. 
Selection for the compartment with the largest number of 
autocatalysts also has a similar effect (not shown). Next we 
consider the effect of making 

€ 

p  a non-heritable structural 
parameter.  

Uncorrelated 

€ 

p  
 
 

 
 
Figure 4. With uncorrelated 

€ 

p , there is no improvement in 
autocatalysts over many serial dilutions. Selection is for the 
compartment with the largest number of autocatalysts.  
 
Figure 4 shows the behaviour with an entirely uncorrelated 
potential for autocatalysis between successive autocatalysts 

€ 

p c = erand (−10,−9.5). The probability p no longer tends to higher 
values because whilst a parental catalyst may occasionally 
produce an offspring with high p, this offspring has no 
tendency to itself produce offspring with high p. There exist 
autocatalysts in the population that do have high values of 

€ 

p , 

but the mean value of 

€ 

p  does not increase, as can be seen in 
the plot of mean 

€ 

p  in Figure 4.  
These results suggest that if the structural variability 
parameter 

€ 

p  is not capable of being inherited, then there will 
be no tendency for the population of autocatalysts to tend 
towards becoming informational replicators.  

Conclusions 
 
The simple but fundamental principle demonstrated above is 
an example of the evolution of evolvability (Conrad 1990; 
Clune, Misevic et al. 2008; Parter, Kashtan et al. 2008), 
namely, that natural selection can act to select variants that are 
not of immediate benefit to the individual replicator, but 
confer improved variability properties, i.e. increase the chance 
that offspring will be fit. If there is variation (within 
generation differences) in variability (the capacity to produce 
variants during propogation) then there can be selection for 
variability properties that are beneficial to the lineage. This 
has been called lineage selection (Aboitiz 1991), and second 
order selection (Tenaillon, Taddei et al. 2001). Mark 
Toussaint has formalized the process of structuring 
phenotypic exploration distributions (Toussaint 2003) due to 
non-trivial neutrality, i.e. the capacity for the same phenotype 
p to be due to different genotypes 

€ 

p . If some genotypes 

€ 

p  
tend to produce better variations in the phenotype p then those 
genotypes can be selected for. In this model it is shown that 
the capacity for non-trivial heritable neutral variation of 

€ 

p  can 
allow increasing p.  
 
The question remains, in chemistry, is there ever a 
circumstance in which 

€ 

p  could be heritable within a lineage 
of autocatalysts? A conservative answer is sometimes yes, 
sometimes no. However, in this situation, the network 
dynamics would exhibit a tendency to select for that class of 
autocatalyst that did exhibit heredity of 

€ 

p .  
 
It is therefore proposed that experimentally it would be a 
matter of acute interest to take a rich generative chemistry 
such as that of Miller capable of producing a combinatorial 
explosion of polymers, and to take samples from the reactor 
once it had had a chance to generate this molecular diversity. 
These samples (selecting for the sample with the highest 
number of autocatalysts if possible) would be used to 
inoculate a new reactor. This cycle would be repeated for as 
many generations as possible. Each epoch should permit the 
generation of a new set of autocatalysts. This simple model 
predicts that such a protocol should be capable of generating 
informational replicators.  
 
There are several simplifying assumptions of this model that 
must be examined. First we have ignored the fact that mass is 
finite. This means that exploration of the autocatalytic 
network may become limited if the mass of the reactor is used 
up producing non-autocatalytic molecules. Secondly we have 
completely ignored the existence of cross-catalytic 
interactions which may produce reflexive autocatalytic 
structures that can act as informational units. However, 
reflexive structures are only an intermediate step in what must 
eventually be selection for heretable 

€ 

p  in the origin of 
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microevolution from macroevolution. An interesting addition 
to the model would be to allow species to be both 
autocatalytic and cross-catalytic with some probability. The 
interactions of the reactor would be described by a replication 
matrix. Adding a new species would involve producing a new 
row and column in this matrix. In addition to this matrix, each 
species would be described by structural parameters that 
determined the entries in the new row and column of the 
replication matrix for species that were produced in side 
reactions with it. Thirdly, the form of the structural parameter 

€ 

p  (acting as a mean of a lognormal distribution to produce p’) 
is somewhat arbitrary. A much more realistic method of 
describing the structural tendency for autocatalysis would be 
desirable.   
 
Recent work by Ben Davis’s group in Oxford has succeeded 
in enclosing a Formose cycle metabolism within lipid 
compartments. They are able to select for those compartments 
with certain chemical compositions (Gardner, Winzer et al. 
2009). This paper is of some significance to them. If they 
were to simply choose small samples of each compartment 
and continue to test each sample for distinct autocatalytics, we 
predict that over many generations, one should find a greater 
diversity of independent autocatalysts.  
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Abstract 
The chemoton model of cells posits three sub-systems: 
metabolism, compartmentalization and information (Gánti, 
2003). This paper describes a specific model for the evolution 
of a reproducing system with rudimentary versions of these 
three inter-dependent sub-systems. This is based on the initial 
emergence and reproduction of autocatalytic networks in 
hydrothermal micro-compartments containing iron sulfide. The 
driving force for life is catalysis of the dissipation of the 
intrinsic redox gradient of the planet (Russell and Kanik, 2010). 
The initial proto-metabolism was based on positive feedback 
loops associated with in situ carbon fixation in which the initial 
proto-metabolites modified the catalytic capacity and mobility 
of metal-based catalysts, especially iron-sulfur centres. A 
number of selection mechanisms, including catalytic efficiency 
and specificity, hydrolytic stability and selective solubilization, 
are proposed as key determinants for autocatalytic reproduction 
exploited in proto-metabolic evolution. This evolutionary 
process leads from autocatalytic networks within pre-existing 
compartments to discrete, reproducing, mobile vesicular 
protocells with the capacity to use soluble sugar phosphates and 
hence the opportunity to develop nucleic acids. Fidelity of 
information transfer in the reproduction of these increasingly 
complex autocatalytic networks is a key selection pressure in 
prebiological evolution that eventually leads to the selection of 
nucleic acids as a digital information sub-system and hence the 
emergence of fully functional chemotons capable of Darwinian 
evolution. 
 

Introduction 

Chemoton sub-systems and evolutionary pathways 
Living cells are autocatalytic entities that harness redox 
energy via the selective catalysis of biochemical 
transformations. The complexity of cells requires that they 
emerged from evolutionary processes that predate life: a form 
of prebiological evolution (Szathmáry, 2007). The simplest 
model for cells is the chemoton model which regards them as 
fluid automata (Gánti, 2003). Chemoton theory proposes that 
living cells are comprised of three essential interconnected 
sub-systems associated with metabolism, 
compartmentalization and information. A metabolic sub-
system is required to provide the building blocks and chemical 
energy for life. Compartmentalization is required for 
evolution to act on discrete competing entities. Finally, an 
information sub-system allows the evolution of levels of 
complexity that are a distinctive feature of life.  

 A theory of the origin of life based on the chemoton, or 
related, model must explain a clear pathway to the co-
existence of these three interdependent sub-systems. 
(Szathmáry, 2007). Simultaneous creation of an entity with all 
three sub-systems in place is exceedingly improbable (Dyson, 
1999); it is more likely that cells arose via a pathway 
involving accretion of one or two sub-system(s) by a simpler 
system. There are competing perspectives based on the 
assumed timing of events. What comes first: compartments, 
information and/or metabolism? The two main competing 
hypotheses both assume compartmentalization as an early 
feature, either via the self-assembly of lipids (Deamer, et al., 
2006), or via surface adsorption (Wächtershäuser, 1988). 
They differ in the initially associated sub-system: information-
first or metabolism first. 
 The closest synthetic models we have of partial chemotons 
are protocells based on lipid-encapsulated RNA molecules 
(Hanczyc, et al. 2003; Luisi, et al. 2006). These build on the 
demonstration of directed evolution in in vitro RNA systems 
(Kacian, et al. 1972) and the success of the RNA world 
hypothesis in exploring the dual ability of RNA molecules to 
act as both catalysts and stores of hereditary information 
(Gesteland, et al. 2006). However, an RNA world depends on 
the continued availability of complex raw materials, including 
sources of chemically activated nucleotides for 
polymerization, and of turnover of these materials in 
reproduction to allow selection of functional macromolecular 
structures. A significant challenge for this model is to 
understand the energy flux that created and sustained an RNA 
world; in particular the underpinning functional metabolism 
that harnessed redox energy for the evolution of the system 
and which provided the basis for contemporary biochemistry. 
In this model it is often assumed that metabolism emerges to 
replace spent pre-existing metabolites. This model for the 
engineering of metabolic pathways backwards to alternate 
starting materials is originally due to Horowitz (1945) but is 
out of step with recent insights into the evolution of 
biochemical metabolism (Zhang, et al., 2009) and unlikely to 
be the complete story. 
 The competing viewpoint is that the first steps to life were 
based on compartmentalized proto-metabolism that 
subsequently developed an information sub-system. 
Wächtershäuser, Russell, de Duve, Morowitz and others have 
developed models of this type in which proto-metabolic 
reactions are catalyzed and organized on iron sulfide surfaces 
(Wächtershäuser, 1988; Russell and Hall, 1997; de Duve, 
1991; Trefil, et al. 2009).  
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 A major challenge for models which base life on 
reproducing networks of catalysts, such as those envisaged in 
the GARD model (Shenhav, et al. 2007), is the limited 
evolvability of such systems (Vasas, et al. 2010). This paper 
presents a model that links metabolism-first and RNA models. 
It is proposed that self-organizing autocatalytic cycles did 
indeed provide the initial metabolic foundations that underpin 
a modified version of an RNA world, but that the latter 
emerged in response to the demands for fidelity of 
information reproduction. A prebiological (non-Darwinian) 
evolutionary account is presented that provides a series of 
specific chemical and physical selection mechanisms for the 
early stage development of a three sub-system RNA world 
chemoton.  

Proto-metabolism in Pre-existing 
Compartments 

Why and how did life emerge? Life depends on a continuous 
input of energy that can fuel redox chemistry. This theory for 
the origin of core metabolism, as a foundation for life, follows 
the hypothesis of Russell and Kanik (2010) in proposing that 
life emerged to exploit the intrinsic redox gradient of the earth 
that has existed since its origin. When the earth formed, an 
electron-rich core was physically segregated from a weakly 
oxidizing atmosphere containing carbon dioxide, nitrogen and 
other electron acceptors. By this model, life emerged in pores 
(Russell and Hall, 2006) within hydrothermal mineral deposits 
where there is a mixing of these otherwise segregated zones of 
the planet. 
 It is proposed that the critical features of this environment 
for the emergence of life are: (i) a continuous input of redox 
energy; (ii) a kinetic barrier to the dissipation of the intrinsic 
redox gradient; (iii) the availability of catalysts in a mixing 
zone that can speed dissipation of the gradient, but where 
initial catalysts are inefficient and capable of increased 
efficiency by diversification to networks of more specific 
catalysts; and (iv) protection against significant external 
shocks (e.g. protection against irradiation, variations in pH, 
ionic strength etc) to facilitate protocell evolution by allowing 
the reproduction of catalytic networks as discrete entities. This 
environment provides an evolutionary opportunity for the 
emergence of networks of catalysts of increasing complexity 
and is necessary, but not sufficient, for life. There is a limit to 
the complexity of simple catalytic cycles associated with 
limits to fidelity of reproduction (Vasas, et al. 2010). It is 
proposed that life, as we know it, emerges if and when a 
digital information sub-system evolves that transcends the 
information limits of simple chemical networks and allows 
open-ended Darwinian evolution with natural selection.  
 
Iron sulfur species and the early evolution of catalytic 
centres.  Following the patchwork model of evolution of 
biochemical catalysts (Jensen, 1976), the best starting point 
for evolution is the availability of generic, but inefficient 
catalysts that are capable of evolving increased specificity and 
efficiency (Szathmáry, 2007). One key issue for self-
organising autocatalytic networks, highlighted by Orgel 
(2000), is the need for a series of catalysts that mediate all the 
processes of the network. Iron-sulfur based species (Beinert, 

et al., 1997) are well placed to fill this role since they are 
capable of catalyzing a diverse range of both redox and acid-
base chemistry. Much of this chemistry is utilized in 
contemporary core metabolism via iron-sulfur clusters that 
resemble iron sulfide mineral structures (Figure 1) (Rickard 
and Luther III, 2007). Iron-sulfur clusters occur naturally in 
aqueous systems (Rozan, et al. 2000). Biochemical clusters of 
this kind mediate the following processes: (i) bioenergetic 
electron-transfer processes (e.g. Xia, et al. 1997; Cheng, et al. 
2006) (ii) other metabolic redox chemistry, e.g. carbon 
fixation (Ragsdale, 1991), nitrogen fixation (Einsle, et al. 
2002), reversible hydrogen formation (Nicolet, et al. 2000) 
and organic radical chemistry (Berkovich, et al., 2004; Nicolet 
and Drennan, 2004); and (iii) a diverse range of acid-base 
chemistry, including hydration-dehydration chemistry, e.g. 
aconitase, serine dehydratase and related enzymes (Flint and 
Allen, 1996). 
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Figure 1: Iron sulfur minerals and catalytic biochemical 
clusters. 1 mackinawite sub-structure 2: [2Fe,2S] electron-
transfer cluster; 3: greigite sub-structure; 4: [4Fe,4S] electron-
transfer cluster; 5: acid-base catalyst (aconitase with citrate 
bound); 6: radical generating cluster (with S-
adenosylmethionine bound, R = adenosyl); 7: model for Ni-
substituted greigite; 8: carbon fixing cluster of ACS. 
 
 The specific catalytic properties of iron-sulfur dependent 
enzymes is controlled by the composition of the metal-sulfur 
cluster and the details of the coordinating ligands (Figure 1). 
For example, iron-sulfur clusters completely coordinated by 
sulfur ligands (2 and 4) act as specific electron-transfer 
proteins in which the redox potential is moderated by cluster 
size and details (Rao and Holm, 2004). Clusters, such as the 
[4Fe,4S] cluster in aconitase (5), with one non-sulfur 
coordination site can undergo active metal and ligand 
exchange chemistry. Ligands, such as carboxylates, 
transiently bound to such clusters can undergo reactions 
involving acid-base catalysis (Flint and Allen, 1996). When 
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bound to an iron-sulfur cluster the amino acid derivative S-
adenosylmethionine is a source of organic radicals (6). Iron 
sulfide minerals contain other metal ions (7) (Russell and 
Hall, 2006). The presence of adjacent metals ions, e.g. nickel, 
cobalt and molybdenum, provides new distinctive catalytic 
chemistry that can exploit the electron-transfer chemistry of 
iron sulfides. For example, nickel, iron sulfur clusters are 
utilized in a number of enzymes, including both key enzymes 
of the Wood-Ljungdahl carbon fixation pathway, CO 
dehydrogenase and acetyl-CoA synthase (8) (Volbeda, A. and 
Fontecilla-Camps, 2005); likewise, molybdenum, iron sulfur 
clusters are utilized in nitrogenase (Einsle, et al. 2002). 
 The ability to modify and control specific catalytic 
activities via coordination chemistry provides the potential for 
the evolution of catalysts of diversified specificity and activity 
in an emerging division of (proto-metabolic) labour. 
 
Prebiotic Wood-Ljungdahl carbon fixation: the first step.  

H3C SCoA

O

(i)     CO2

COCH3-CoIII-CFeSP      +

HSCoA

CO2
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ACS

H3C SCH3

O

(ii)     CH3SH + CO

HSCH3Fe,Ni,S

CH3-THF

 

Figure 2: Overview of (i) Wood-Ljungdahl carbon fixation 
pathway and (ii) biomimetic geochemical analogue. 
 
 The shortest and simplest known route to biological carbon 
fixation is the Wood-Ljungdahl pathway (Figure 2) in which 
carbon dioxide is reduced to carbon monoxide at an iron, 
nickel sulfur centre of CO dehydrogenase (CODH). The 
carbon monoxide is then transferred directly to acetyl CoA 
synthase (ACS), another iron, nickel and sulfur-dependent 
enzyme, where it carbonylates a methyl-nickel species. The 
resulting acetyl nickel intermediate is intercepted by the thiol 
coenzyme A to produce acetyl CoA (Grahame, 2003; Hegg, 
2004; Russell and Martin, 2004). The methyl group is 
delivered to this system by a cobalt corrinoid iron sulfur 
protein (CFeSP) (Svetlitchnaia, et al., 2006). In this carbon 
fixation pathway the key manipulations of carbon species are 
mediated by nickel and cobalt centres with adjacent iron-
sulfur clusters supplying electrons. In geochemical systems 
the initially deposited iron monosulfide is nanoparticulate 
mackinawite, which adsorbs divalent metal ions (Wolthers, et 
al., 2003) such as nickel and cobalt. Huber and 
Wächtershäuser (1997) have shown that inorganic iron, nickel 
sulfide catalyses a simple analogue of acetyl CoA synthase 
chemistry in water, converting methanethiol to methyl 
thioacetate (Figure 2). The product thioester is hydrolysed 
under the reaction conditions to acetate which provides a 
strong overall thermodynamic driving force (Shock, 1992).  
 This simple geochemistry immediately provides a positive 
feedback mechanism that can underpin the generation of more 
complex catalytic networks. Carbon fixation involves the 

reductive formation of organic compounds and the 
concomitant oxidation of the iron sulfide. Mackinawite is a 
two dimensional semi-conductor with a layered structure 
(Rickard and Luther III, 2007). Surface oxidation processes, 
e.g. at a catalytically active nickel centre, will draw electrons 
from the iron sulfide. Oxidation of mackinawite produces 
greigite and other pyrrhotite iron sulfide minerals (Lennie, et 
al. 1997). Mackinawite oxidation is inefficient in the absence 
of suitable additives and it is known that redox-active organic 
compounds can facilitate such transformations (Rickard, et al., 
2001).  

 4FeS    Fe3S4  + Fe(II) + 2e- (Equation 1) 
 (mackinawite)  (greigite) 

 Mackinawite and greigite are both based on a close-packed 
sulfide lattice (Rickard and Luther III, 2007). In mackinawite 
the iron is in a tetragonal environment. In the transition to 
greigite some of the iron centres become octahedral. It is 
expected that this change will diversify the chemistry and 
catalytic properties of the iron sulfide local to the site of 
oxidation. In support of this view, Mike Russell has pointed 
out that mackinawite bears some resemblance to [2Fe,2S] 
clusters found in some simple electron transfer proteins, 
whereas greigite contains a sub-unit analogous to the [4Fe,4S] 
clusters found in many iron, sulfur dependent enzymes, 
including the key Wood Ljungdahl enzymes (Figure 1) 
(Russell and Hall, 2006).  
 Furthermore, interconversion of the two minerals involves 
a relocation of iron ions (Equation 1); these will presumably 
migrate to the surface. Organic compounds produced by the 
carbon fixation chemistry that are ligands will bind to the 
surface metal ions, including the newly exposed iron centres, 
modifying their chemistry. The generation of new catalytic 
centres which increase the overall activity with respect to 
carbon fixation will act as a positive feedback loop where the 
flux of oxidized carbon and reducing power, e.g. 
geochemically generated hydrogen, will be differentially 
turned over by catalytically active microporous domains 
within the hydrothermal rocks that contain both ligands and 
diverse catalytic metal centres. 
 Subsequent known iron-sulfur mediated transformations, 
can produce a suite of core proto-metabolites - ligands that 
can bind to and modify the catalytic chemistry of iron sulfur 
centres (Figure 3). Reductive carboxylation of thioesters from 
carbon fixation can produce α-keto acids, e.g. pyruvate 
(Cody, et al. 2000). These chelating ligands can undergo 
further chemistry once bound. Reductive amination of bound 
α-keto acids, using ammonia from the reductive fixation of 
nitrogen (Dörr, et al., 2003) and/or nitrate (Blochl, et al. 
1992), can then give rise to α-amino acids via reductive 
amination (Huber and Wächtershäuser, 2003). Utilization of 
related substrates will produce a core of simple proto-
metabolites which are selected on the basis of their being 
ligands for iron that modify the catalytic chemistry of exposed 
iron sites and hence the catalytic turnover of the emerging 
family of proto-metabolites. A family of diversified catalytic 
centres, with complementary activity, provides the basis for 
networks that are more productive than individual catalysts. In 
a porous hydrothermal mound a diverse variety of potential 
microenvironments will be evaluated as potential sources of 
autocatalytic networks. Individual pores with distinctive 
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mineral chemistry can develop distinctive chemical variants in 
an early form of compartmentalized proto-metabolism.  
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Figure 3: Generation of core proto-metabolites within an iron 
sulfide system. Binding of representative proto-metabolites to 
iron-sulfur centres is illustrated in the box. 
 
The first oligomers and molecular evolution. Complex 
macromolecules are a key feature of biochemistry. All 
biological macromolecules are condensation polymers, 
created by dehydration of monomeric building blocks. In 
water, condensation polymers are unstable with respect to 
hydrolysis. These condensation polymers require biochemical 
energy, usually equated with ATP or related polyphosphates, 
for their synthesis. ATP is the archetypal water-compatible 
dehydrating agent (Westheimer, 1987).  
 A critical feature of the prebiotic Wood-Ljungdahl 
chemistry is that it generates thioesters as obligate 
intermediates. Thioesters are the other major class of water-
compatible biochemical dehydrating agents and their 
intermediacy in carbon fixation chemistry provides 
dehydrating power that makes condensation polymers 
accessible. Since this chemistry was quickly associated with a 
growing pool of α-amino acids, oligopeptides were among the 
early oligomeric compounds (Figure 3). It has been shown 
that amides can be formed from amino acids in water using 
the intrinsic dehydrating power of prebiotic Wood-Ljungdahl 
catalysis (Huber and Wächtershäuser, 1998). Such 
oligopeptides are also ligands that are able to bind to iron-
sulfur and other metal species and thereby modify the 
catalytic activity of the system by controlling coordination 
spheres. The production of condensation oligomers provides 
an explicit molecular selection mechanism. Since 
condensation oligomers are unstable with respect to 
hydrolysis in water, such condensation polymers only 
accumulate if they are generated faster than the rate at which 
they “die” via hydrolysis. Oligopeptides that facilitate the 
overall catalytic potential of the system will facilitate the 
production of further oligopeptides; condensation oligomers 
that participate in this feedback loop will be selected. Families 
of related oligopeptide-metal centres will emerge that can 
harness the chemistry of metal-sulfide clusters found in 
aqueous systems (Rozan, et al. 2000) and mediate distinct 
classes of chemical transformation with rudimentary 

specificity (e.g. acid-base chemistry vs redox chemistry). 
There will be some structural and metal-binding selectivity in 
these ligands, but they will lack the ordering and hence 
specificity available from contemporary enzymes. 

Mobile Autocatalytic Networks 
Solubility and prebiological evolution. The solubility of 
chemicals associated with catalytically active hydrothermal 
pores will play a critical role in the chemistry that evolves and 
in the reproduction of that chemistry. Solid minerals and 
bound ligands are retained within a finite location of a 
hydrothermal environment. Such a location has a finite 
lifetime for active chemistry until the supplies of raw 
materials are exhausted. A permanently localized autocatalytic 
network will eventually ‘die’ from starvation generating a 
selection pressure for mobility. Chemical products of 
autocatalytic networks will be leached from the system by 
solubilization. This is both a purifying mechanism and a 
seeding or reproduction mechanism. Chemicals, individually, 
or en masse, that are lost but not replaced are removed from 
the system as waste. However mobile components that seed 
neighbouring sites with autocatalytic chemistry are potentially 
a selectable means of reproduction.  
 As proposed by Mike Russell (2006), if the emerging 
autocatalytic networks develop in pores within 
hydrothermally deposited minerals, these discrete cavities 
provide an initial rudimentary compartmentalization 
mechanism. They prevent the free loss of soluble proto-
metabolites allowing solution metabolism to emerge. 
Furthermore, proto-metabolites can accumulate in these pores 
by a hydrothermal concentration mechanism (Baaske et al., 
2007; Budin, et al., 2009). 
 
Iron encapsulation, phosphates and homeostasis. A 
significant challenge for the development of complex soluble 
chemistry within a specific pore of a hydrothermal deposit is 
the presence of high levels of free multivalent metal ions, 
including iron. Highly charged cations encourage precipitation 
of counter anions, notably phosphates. This facilitates 
localization of chemicals and surface catalysis but 
compromises the development of soluble metabolism, 
especially one that incorporates phosphate species (Pratt, 
2006). It presents a fundamental challenge to the development 
of an RNA world within a hydrothermal environment.  
 Cells avoid this precipitation problem via a combination of 
encapsulation and exclusion of multi-valent metal ions. For 
example, essentially all iron within living cells is encapsulated 
within proteins. Calcium ions cannot be readily encapsulated 
because of their dynamic coordination chemistry and so they 
are actively pumped out of cells whereupon they form 
extracellular precipitates, e.g. calcium carbonate exoskeletons 
and bone. These extracellular deposits provide a homeostatic 
backdrop to the chemistry of cells (e.g. bone acts as a 
reservoir of calcium and phosphate) (Fraústo da Silva and 
Williams, 2001).  
 In biochemistry, iron is commonly encapsulated within 
oligopeptides either as iron mineral clusters or as porphyrin 
complexes. Both oligopeptides and porphyrins (Eschenmoser, 
1988) are oligomers derivable from amino acid building 
blocks which are, in principle, accessible from plausible 
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prebiotic catalysis within the hydrothermal autocatalytic 
system. Templated synthesis (Costisor and Linert, 2004) of 
these oligomers on iron centres will provide selective routes to 
both classes of ligand which can sequester free iron ions 
within the system by competitive coordination chemistry. 
Oligomeric ligands will tailor the catalytic chemistry of iron 
sulfur catalytic centres by controlling the nature of the ligand 
coordination sphere. They will also control free metal ion 
levels and thereby allow partial solubilization of polyanionic 
species from pore surfaces.  
 In the presence of significant concentrations of free iron 
ions, inorganic phosphates precipitate, providing a 
concentration mechanism for this otherwise scarce resource. 
Surface-catalysed phosphoryl transfer from acetyl phosphate, 
available from acetyl thioesters (Weber, 1981), generates 
pyrophosphate that accumulates under these conditions (de 
Zwart, et al., 2004) and becomes a second source of 
dehydrating power in water (Baltscheffsky, 1997) once it can 
be solubilized. Iron(II) phosphates are sparingly soluble salts 
(Pratt, 2006); organic phosphates have significantly higher 
solubility than inorganic phosphates and, when the quantities 
of iron present are limiting, these are selectively desorbed into 
solution. For example, under conditions where there is 
competition for iron, phosphate and pyrophosphate are 
selectively precipitated in the presence of glycerol phosphates 
leaving the latter free in solution (Pratt, et al., 2009). Thus a 
selection mechanism for the utilization of soluble organo-
phosphates, e.g. sugar phosphates, arises. As surface-bound 
inorganic phosphates react with organic species generated by 
proto-metabolism they selectively desorb into solution and 
become integrated with the thioester and amino acid based 
catalytic networks. Precipitated sparingly soluble iron 
phosphate, iron pyrophosphate and iron sulfide, provide a 
homeostatic backdrop to the emerging proto-metabolic 
networks, with concentrations adjusting as catalysis consumes 
proto-metabolites. This backdrop became an essential feature 
in the subsequent development of an RNA world. 
 
Reproduction, mobility and selection. As individual pores 
evolve soluble proto-metabolic networks, some of the 
materials are washed to neighbouring pores where they can 
seed new autocatalytic networks: ligands can carry metal ions 
and influence the coordination chemistry, and hence catalytic 
activity, of metal sites; phosphates and other key proto-
metabolites can be relocated. Productive autocatalytic 
networks will be more successful in seeding neighbouring 
pores. For simple catalytic networks this provides a selectable 
form of reproduction based on catalytic efficiency. However, 
the amount of proto-metabolic information that can be 
relocated in this piecemeal fashion is very limited in scope 
and so only simple autocatalytic networks can reproduce by 
this mechanism. Autocatalytic networks that develop the 
capability of relocating populations of catalytically active 
chemicals to neighbouring pores can reproduce more 
effectively and evolve to more complex systems.  
 There will be a range of solubilities amongst the 
components of the emerging autocatalytic networks: both the 
proto-metabolites and the oligopeptide-encapsulated metal 
catalysts. Amphipathic molecules that arise, such as some of 
the oligopeptide complexes and any fatty acids present, will 
aggregate to form higher order structures including micelles 

and vesicles (Deamer, et al. 2006). Hydrothermal 
concentration mechanisms will facilitate the generation of 
such structures (Budin, et al., 2009). The resulting micelles 
and vesicles will be heterogeneous aggregates of chemicals 
that will be relocated to neighbouring pores en masse. This 
will act as a selection mechanism for reproducing more 
complex networks. More sophisticated and productive 
networks will be relocated to new environments in which they 
will have access to renewed chemical feedstocks. 
 
A stochastic corrector model of metabolic reproduction. 
Lipopeptide encapsulation allows relocation of multiple 
catalysts and proto-metabolites as envisaged by autocatalytic 
network theories, e.g. the GARD model (Shenhav et al., 
2007). Individual components will be distributed between 
lipopeptide vesicles in a stochastic manner. As long as a 
representative sample of the constituents of the autocatalytic 
network are present then the catalytic cycles in the vesicle will 
be fully active. Such vesicles can relocate, grow and divide 
(Szostak, et al., 2001) in the buffered environment of the 
hydrothermal pores. Omission of any critical species will lead 
to compromised networks that will reproduce more slowly, if 
at all, and fail to compete with fully functional networks. This 
situation is analogous to the stochastic corrector model 
developed by Szathmáry to describe the group selection of 
populations of replicators in an RNA world scenario 
(Szathmáry and Demeter, 1987; Grey, et al. 1995). An 
analogous stochastic corrector model for catalysts (Figure 4) 
leads to the selection of functional reproducing networks of 
metabolic information (Shenhav, et al., 2007).  

Division

Growth

 

Figure 4: A stochastic corrector model of metabolic 
reproduction. Only vesicles containing representative 
populations of catalysts can grow and divide efficiently. 
 
 Early vesicular structures would be loose dynamic 
associations. These allow exchange of material with the 
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environment so new feedstocks can be taken up. Furthermore, 
discrete vesicles can fuse on contact allowing deficient 
vesicles to regenerate fully functioning autocatalytic networks 
and for growing vesicles to generate new combinations of 
metabolic processes via symbiotic events. 
 Two significant features limit the complexity of such 
systems: the statistical distribution of molecules provides a 
limit to the number of discrete components that can be 
reliably distributed during growth and division cycles; in 
addition the accuracy of metabolic turnover is limited by the 
lack of precision in the ordering of monomers in oligomer-
based catalysts where specificity arises from simple chemical 
selectivity, rather than the degree of control that can be 
exerted by macromolecular catalysts (enzymes and 
ribozymes) of well-defined sequences. Such autocatalytic 
systems can develop general classes of proto-metabolic 
function involving the presence or absence of particular 
processes; however, as Szathmáry and colleagues have shown 
(Vasas, et al. 2010), these systems are not capable of open-
ended Darwinian evolution where incremental variants can be 
selected and maintained in populations of competing entities. 
Nevertheless, the proto-metabolic history is likely to vary 
from one set of hydrothermal pores to another with the 
resulting autocatalytic networks being a function of the 
particular local geochemistry. 

The Chemoton: Reproduction Fidelity and the 
Analogue-to-Digital Information Transition 

Digital molecular information. Fidelity of the reproduction 
of biochemical information is a critical selection pressure for 
the development of complex organisms. Eigen’s work has 
highlighted the critical role of error threshold limits in the 
reproduction of biochemical information in simple replicator 
systems (Eigen and Schuster, 1977). The fundamental 
discovery needed for the generation of digital information, in 
the form of well-defined macromolecular sequence 
information, was the generation of oligomers capable of 
carrying information but whose physical properties are 
approximately independent of composition. Benner (2004) has 
noted the importance of linear poly-ionic oligomers, built 
from monomeric units of similar size, structure and identical 
charges, in providing the requisite properties for genetic 
molecules. The ability of phosphate to link two units and 
retain a negative charge is critical to the structure and function 
of nucleic acids (Westheimer, 1987).  
 Some proto-metabolic networks provided a range of 
features that facilitated the development of RNA-based coding 
systems. They provided access to metallo-oligopeptide 
catalysts that generated both organic molecules and 
dehydrating power in water. They also manipulated phosphate 
precipitation equilibria, by encapsulating free divalent metal 
ions thereby allowing release of solubilized organo-phosphate 
species from precipitated stores. The ability of phosphate to 
channel sugar chemistry to useful metabolites (Muller, et al. 
1990; Eschenmoser and Loewenthal, 1992) could then be 
exploited opening the way to nucleotide derivatives (Powner, 
et al. 2009). Once phosphate precipitation equilibria were 
made freely reversible by cation binding, pyrophosphate from 
autocatalytic iron-sulfur networks became a more general 

source of activated phosphate species (Baltscheffsky, 1997). It 
was also possible to exploit reversible surface binding of 
oligomeric sugar phosphate species, including 
oligonucleotides (Hatton and Rickard, 2008) to allow 
templated oligomer synthesis (Joshi, et al. 2007). 
 Once sugar phosphate derivatives, including rudimentary 
nucleotide analogues, became available to proto-metabolism 
their oligomerization was subject to the same molecular 
selection processes that refined the properties of simple 
oligopeptides. Oligomeric derivatives that provided useful 
catalytic activity enhanced the productivity of the protocells 
and were produced faster than they hydrolysed. They were 
initially selected on this basis. In this way mixed proto-
metabolic networks arose in which catalysis was carried out 
by both oligopeptide complexes and oligonucleotide 
derivatives (White, 1976). The oligopeptide and 
oligonucleotide systems interfaced via simple amino-acylated 
nucleotide derivatives. Amino acids linked as esters to 
nucleotides could undergo a version of templated amide 
formation, facilitated by base-stacking of the nucleotide 
component. This provided a rudimentary precursor to 
translation.   
 Once catalytically useful oligomeric nucleotide derivatives 
emerged a second property was selected: namely the 
replication mechanisms associated with access to precise 
ordering of monomer units inherent in nucleic acid structures 
(Sievers and von Kiedrowski, 1994). This provided the basis 
for DNA replication. The co-evolution of translation occurred 
via increasingly precise versions of templated oligopeptide 
synthesis (Hsiao, et al. 2009). This was the final technology 
needed for the creation of replicators with a proto-metabolism 
built on an inter-dependent combination of iron sulfur 
catalysis, oligopeptides and oligonucleotides.  
 The continuing action of evolution, with replication fidelity 
as a key selection pressure (Eigen and Schuster 1977, 1978a 
and 1978b), set the stage for the emergence of a modified 
version of the RNA world (Gesteland, et al. 2006; Koonin and 
Martin, 2005) in which oligopeptide- and oligonucleotide-
derived catalysts co-existed within reproducing vesicles. In 
these systems the oligonucleotides developed a unique 
function as a repository for precise replicable sequence 
information: open-ended Darwinian evolution had emerged. 
This was harnessed as the basis for coding oligopeptides of 
reproducible sequence via the refinement of translation. The 
resulting enhancement in the catalytic specificity of 
oligopeptides provided ever more efficient variants on 
metabolism. The same opportunities and evolutionary driving 
forces led to protocell membranes becoming more rigid 
barriers to the outside world once precise transport 
mechanisms became available via protein evolution. The 
resulting entities were the first true chemotons having the 
irreducible complexity associated with living cells. 

Concluding remarks 
The model presented here provides a plausible account of a 
combination of specific prebiological processes that explain 
the early steps by which a functional chemoton, with three 
interdependent sub-systems, can emerge. By this account life 
is not inevitable, but requires an ordered sequence of proto-
metabolic innovations. Porous hydrothermal mineral mounds 
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provided an exceedingly large number of discrete 
geochemical environments that allowed parallel testing of vast 
numbers of chemical systems. Complex chemotons arose as a 
result of a series of molecular selection processes occurring 
within these environments. This model is potentially testable 
e.g. via combinatorial microfluidic technology (Kreutz, et al. 
2010) with screening of diverse chemical systems for 
proposed proto-metabolic innovations. 
 It is proposed that the creation and selection of metabolic 
diversity occurred via simple chemical and physical steps. 
Initially selection was based on catalytic efficiencies of 
networks that emerged in specific pre-existing mineral 
micropore compartments. Encapsulation of metal species by 
organic ligands provided more active and specific catalysts 
and also allowed the development of a soluble proto-
metabolism incorporating sugar phosphates. Systems that 
evolved the capacity to relocate en masse in lipopeptide 
vesicles, before their access to chemical feedstocks ends, 
selectively propagated. Protocells emerged with autocatalytic 
networks that included catalysts based on both oligopeptides 
and oligonucleotides which could then evolve complex 
oligonucleotide structures via molecular evolution. These first 
chemotons were the forerunners of an RNA world that 
evolved by open-ended Darwinian evolution.  
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Abstract

We developed a simulation tool for investigating the evolution
of early metabolism, allowing us to speculate on the forma-
tion of metabolic pathways from catalyzed chemical reactions
and development of characteristic properties. Our model con-
sists of a protocellular entity with a simple RNA-based ge-
netic system and an evolving metabolism of catalytically ac-
tive ribozymes that manipulate a rich underlying chemistry.
Ensuring an almost open-ended and fairly realistic simulation
is crucial for understanding the first steps in metabolic evo-
lution. We show here how our simulation tool can be help-
ful in arguing for or against hypotheses on the evolution of
metabolic pathways. We demonstrate that seemingly mutu-
ally exclusive hypotheses may well be compatible when we
take into account that different processes dominate different
phases in the evolution of a metabolic system. Our results
suggest that forward evolution shapes metabolic network in
the very early steps of evolution. In later and more com-
plex stages, enzyme recruitment supersedes forward evolu-
tion, keeping a core set of pathways from the early phase.

Introduction
Understanding the evolutionary mechanisms of complex bi-
ological systems is an intriguing and important task of cur-
rent research in biology as well as artificial life. The for-
mation of metabolic pathways from chemical reactions has
been discussed for decades and several hypotheses have
been proposed since the 1940s. Research on the TIMβ/α-
barrel fold architecture (Copley and Bork, 2000) shows that
the evolution of modern metabolism is mainly driven by
enzyme recruitment, as suggested by the patchwork model
(Ycas, 1974; Jensen, 1976)). Nevertheless, many aspects
of the evolutionary machinery are still not well understood.
In particular, the first steps in early metabolism evade ob-
servation by conventional approaches. Studies on hypothe-
ses of pathway evolution (Caetano-Anollés et al., 2009; Mo-
rowitz, 1999) suggest that metabolism has evolved in differ-
ent phases and only traces or “shadows” are still observable
from the events in the very distant past. Thus, there is a need
for realistic models of early metabolism that consider all its
components and scales. Simulation approaches have shown
to be useful in finding and challenging explanations for the

evolution of biological networks (Pfeiffer et al., 2005). We
have recently proposed a computational framework for the
evolution of metabolism (Flamm et al., 2010), modeling all
its significant components in a realistic way. In this report
we discuss first results from several simulation runs.

In the next section we recapitulate four scenarios of evolu-
tion that are of particular interest to understand the formation
of metabolic pathways and assessing our own results. This
will be followed by a brief introduction to our computational
model that we use in this study. Then we will present some
general results from a series of simulation runs and investi-
gate some of the findings in more detail on two examples.
We conclude with a short discussion on the comparison of
our results with existing pathway evolution hypotheses.

Scenarios of Evolution

In this section, we elucidate four relevant hypotheses on
the evolution of metabolism in general and formation of
metabolic pathways in specific. For more a more detailed
discussion of the theories of pathway evolution we refer to
the reviews by Caetano-Anollés et al. (2009) and Schmidt
et al. (2003) discussing further theories of pathway evolu-
tion.

Backward Evolution

Backward (or retrograde) evolution was one of the first the-
ories for the evolution of metabolic pathways, proposed by
Horowitz (1945). It assumes that an organism is able to
make use of certain molecules from the environment. How-
ever, individuals that can produce these beneficial molecules
by themselves gain an advantage in selection in the case of
depletion of the “food source”. Therefore, new chemical
reactions are added that produce beneficial molecules from
precursors that are abundant in the environment or that are
produced in turn by the organism’s metabolism. As a con-
sequence, one should observe more ancient enzymes down-
stream in present-day metabolic pathways. Towards the en-
try point of the pathway, younger and younger going en-
zymes should be found (see Figure 1(a)).
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Figure 1: Hypotheses about the formation and evolution of metabolic pathways. (a) Backward evolution, (b) Forward evolution,
(c) Patchwork model, (d) Shell hypothesis. Colored squaresrepresent enzymes, gray circles are metabolites. Color encoding
for enzymes stand for their age, red being older and blue being younger enzymes.

Forward Evolution
Forward evolution could be seen as an extension or coun-
terpart of the backward evolution hypothesis, reversing the
direction of pathway evolution. Granick (1957), and later
Cordon (1990), argue for a pathway evolution in forward
direction, requiring that the intermediates are already ben-
eficial to the organism. This is in particular plausible for
catabolic pathways, where the organism can extract more
energy by breaking food molecules downs to simpler and
simpler end products. Older enzymes are then expected to
be upstream in the pathway, with younger enzymes appear-
ing further downstream (see Figure 1(b)).

Patchwork Model
The patchwork model (Ycas, 1974; Jensen, 1976) explains
the formation of pathways by recruiting enzymes from exist-
ing pathways. The recruited enzymes may change their reac-
tion chemistry and metabolic function in the new pathways
and specialize later trough evolution. This introduction of
new catalytic activities lead to a selective advantage. Look-
ing at the constitution of a pathway formed by enzyme re-
cruitment, we should observe a mosaic-like picture of older
and younger enzymes mixed throughout the pathway (see
Figure 1(c)).

Shell Hypothesis
The shell hypothesis was proposed by Morowitz (1999). It
argues for the case of the reductive citric acid cycle that in
the beginning an auto-catalytic core is formed from which
new catalytic activities and pathways could be recruited and
fed. Thus a metabolic shell would form around this core.
Enzymes in the core would likely be less prone to mutational
changes because they are essential for the organism. Thus,
one should still be able to observe a core of ancient enzymes
(see Figure 1(d)).

Model
The computational model, summarized schematically in
Figure 2, is composed of a genetic and a metabolic sub-
system. The genetic subsystem is implemented as a cyclic
RNA genome. A special sequence motif indicates the
start of genes which are of constant length. The RNA se-
quence corresponding to the “coding sequence” of a gene
is folded into the (secondary) structure using theVienna
RNA Package (Hofacker et al., 1994) (Step A in Figure 2).

During chemical reactions bond formation/breaking is
confined to a small subset of atoms of the reacting
molecules. A cyclic graph abstraction, called the imaginary
transition state (ITS) (Fujita, 1986), can be used to capture
the changes in the reactive center (Hendrickson, 1997). Fur-
thermore, over 90% of all known organic reactions can be
classified by their ITS (Hendrickson and Miller, 1990) and
organized in a hierarchical structure (Herges, 1994). Se-
quence and structure features of the folded RNA gene prod-
ucts are mapped into the classification tree of organic re-
actions for functional assignment of the catalytic set (Step
B in Figure 2). Thus we have implemented an evolvable
sequence-to-function map (Ullrich and Flamm, 2009), al-
lowing the metabolic organization to escape from the con-
fines of the chemical space set by the initial conditions of
the simulation.

The metabolic subsystem is built upon a graph-based arti-
ficial chemistry (Benkö et al., 2003) endowed with a built-in
thermodynamics. To generate the metabolic reaction net-
work, induced by the catalytic set (chemical reactions de-
coded from the genome) on the set of metabolites (chemical
molecules of interest from user input), a rule-based stochas-
tic simulation is performed, where the likelihood of a reac-
tion being chosen depends on its reaction rate (Faulon and
Sault, 2001). Reaction rates are calculated “on the fly” from
the chemical graphs of the reactants.
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in the hierarchy (Hendrickson, 1997); (C) Construction andstochastic simulation of the metabolic network; (D) Metabolic Flux
analysis and fitness evaluation; (E) Application of geneticvariation operators.

To identify the elementary flux modes, i.e., extreme path-
ways (Gagneur and Klamt, 2004), of the resulting reaction
network, a metabolic flux analysis is performed. (Step D in
Figure 2). The fitness of an organism is computed as the
maximum of the (linear) yield function (e.g. biomass pro-
duction) over all extreme pathways. Finally, genetic varia-
tion operators are applied to the genome (Step E in Figure 2).
For a detailed discussion of the various steps of the compu-
tational model we refer the reader to Flamm et al. (2010).

Simulations and Results

In this section we use the computational model described
above to simulate the evolution of metabolic networks and
analyze the change of its structure and components over sev-
eral generations. All simulation runs performed for this
paper were initialized with the full set of chemical reac-
tions to chose from, the same configurations for genome
length (5000 bases), and the same TATA-box constitution
(“UAUA”) and fixed gene length (100 bases). They differ
in initial conditions, population size, environmental condi-

tions, selection criteria, and simulation time (number of gen-
erations and stochastic simulation steps).

Quantitative Analysis

To gain some quantitative insights into the general princi-
ples of metabolic evolution we performed a series of simu-
lation runs to investigate certain measures that give a picture
of the evolutionary constitution of the metabolic networks
throughout the evolution process.

In a previous study (Ullrich and Flamm, 2008), we al-
ready showed that our metabolic networks evolved certain
properties such as a scale-free node degree distribution and
the existence of hub-metabolites. An investigation of the en-
zyme connectivity suggested that enzymes from early stages
show a higher connectivity than those from later stages.
Here, we confirm these findings with a much larger sam-
ple of 100 simulation runs starting from the same set of
initial metabolites (cyclobutadiene, ethenol, phthalic an-
hydride, methylbutadiene, and cyclohexa-1,3-diene). Fig-
ure 3(a) shows a clear trend for enzymes from the first gen-
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Figure 3: Average relative connectivity of (a) enzymes and (b) metabolites introduced in the same generation, for 100 genera-
tions. The height of the bars shows the fraction of the overall connections that are accounted by enzymes/metabolites from a
particular generation. All values are averages over 100 simulation runs. Input molecules are not considered in the statistic, they
account for nearly 50 percent of metabolite connectivity.

erations to be responsible for the major part of connections
in the metabolic network. On the one hand, this can be ex-
plained simply due to the fact that enzymes that enter the
system earlier have more time to form connections. On
the other hand, this observation could also indicate that en-
zymes with higher and higher specificity evolve in the later
stages. It could be anticipated, that enzymes with all speci-
ficities still appear in later generations but only specific en-
zymes catalyzing few reactions are taken to the next genera-
tion, while multi-functional enzymes are discarded because
they would change the structure of the network too rigor-
ously. Considering the connectivities of metabolites (see
Figure 3(b)), we still find the highly connected nodes in the
early steps, especially if we consider environment metabo-
lites that are always abundant which account for about 50
percent of connectivity. However, there is constant produc-
tion of metabolites potentially becoming highly connected.

In order to find arguments for some of the evolution hy-
potheses, we study the occurrence time (age) of reactions
and metabolites along pathways. It is of particular interest
to determine in which direction (downwards – with the flow
of mass, or upwards – against mass-flow) pathways are form
by addition of chemical reactions that recruit or produce new
metabolites. We will use the term forward (backward) link
if, in a pair of reactions in a pathway, the successor is evolu-
tionary older (younger). In the same vein, a forward (back-
ward) link between metabolites refers to a situation in which
the products of a reaction are evolutionarily older (younger)
than the educts. Accordingly, we define forward (backward)
pathways as pathways in which there is at least one forward
(backward) link and no backward (forward) link. Given

these definitions, we compute the set of extreme pathways
for every generation and all cells. For each pathway we then
determine the percentage of forward and backward links and
pathways, for both reactions and metabolites.

For this study, we performed 100 runs with a popu-
lation size of 100 cells running for 100 generations and
performing 100 network expansion (stochastic simulation)
steps per generation, the input molecules were cyclobuta-
diene, ethenol, phthalic anhydride, methylbutadiene, and
cyclohexa-1,3-diene. In Figure 4 we see the change from
generation to generation in the constitution of the metabolic
networks regarding our measures of forward/backward links
and pathways. Considering the reactions of the networks,
one can see that in the first generations, the networks con-
sist mainly of links and pathways conforming to the forward
evolution scenario. However, in later generations we ob-
serve a much more mixed mosaic like picture arguing in fa-
vor of the patchwork model. This trend becomes even more
evident from the metabolite’s point of view: almost all path-
ways consist of forward and backward links in equal num-
bers. Another observation from the reaction’s point of view
is that most forward pathways from the early stages remain
even in the last stages, which could mean that they form a
core of pathways that are not subject to evolutionary change.
This supports the shell hypothesis. So far, our simulation re-
sults do not provide any support for the backward evolution
scenario. However, so far we have not simulated an environ-
ment with temporary depletion of “food” metabolites, which
is one of the major assumption of this theory. A future study
considering this impact of variations in resource abundances
might bring new insights on this matter.
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Figure 4: Evolutionary history of simulated metabolic networks. For the first 100 generations, we show the number of links
and pathways that conform to the forward and backward evolution scenarios, respectively. Links are pairs of (a) consecutive
reactions or (b) consecutive metabolites along a pathway. Apathway is identified as “forward-evolved” if at least one ofits
links is forward and none backward. In the first generations,the network consists predominantly of forward (reaction) links and
pathways. After about 20 generations, the relative abundance of forward pathways decreases drastically but quickly reaches a
persistent plateau value.

Example

In the following we illustrate some of our findings from
the previous study in more detail for an example simula-
tion. We use data from a simple simulation run, starting
with only two input molecules and developing only few en-
zymes, for the visualization of an evolutionary time series
(see Figure 5) an animation of the network evolution (see
Additional Files) and the reaction- and metabolite-lifetime
overviews (see Figure 6). The genome, and hence the set
of enzymes, is chosen at random in the beginning. The two
input molecules of this simulation are cyclic and sequential
glucose. The simulation run is kept to 100 generations. We
focus again on the evolutionary constitution of the metabolic
network, i.e. investigating the relation between the occur-
rence time (age) of chemical reactions and their position in
the network (downstream vs upstream) to draw conclusions
about one of the evolution scenarios being at work. The four
snapshots in Figure 5 showing the metabolic network in dif-
ferent stages are aligned to a union graph over all genera-
tions (Rohrschneider et al., tted). Thus, we can see that in
the first steps the reactions upward in the network are added.
The pathways are formed further in this forward direction.
Looking at the last generation, basically all pathways from
source to sink follow the forward evolution scenario. This
observation is further supported by the interval graph for all
chemical reactions in Figure 6. The reactions are here or-
dered according to their position in the graph. There is a
clear trend of older reactions being on the top (upstream)

and younger ones following more downstream. The colored
bar next to the interval graph shows the pattern of the re-
lation between age and position of reactions and metabo-
lites for our example simulation run. The other three bars
show the patterns for backward, forward evolution and the
patchwork model, respectively. The forward evolution pat-
tern comes closest to the simulated pattern.This illustrates
again the speculation from the general analysis that in the
early phase of metabolic evolution, forward evolution seems
to be dominant. However, for metabolites we do not see
a clear relation between the position along pathways or the
network and their first appearance in the system. Similar to
the general results, a much more mixed picture is observed
for the metabolites. Therefore, no clear explanation can be
made for the metabolite constitution.

Another, more complex, setting is used in a simulation
run in which we investigate the evolutionary history of the
involved genes/enzymes, depicted in the catalytic function
genealogy for all generations (Figure 7). The simulation
takes the same five input molecules from the above gen-
eral study, but with a higher mutation and duplication rate
and runs for a total of 2000 generations. Our simulation
frameworks allows us to study the divergence and conver-
gence of catalytic functions (Almonacid et al., 2010) since
we can record the genealogy of each gene (reaction cata-
lyst) throughout a simulation run, and we can utilize the ITS
classification of the catalyzed reaction as a representation of
the enzymatic function. Divergence of function is caused by
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Figure 5: A series of simulated metabolic networks after (a)10, (b) 30, (c) 66, and (d) 100 generations. Colored squares
represent chemical reactions, gray circles represent metabolites. Metabolites involved in a reaction are connected to it in the
network graph. The size of the nodes and the width of the edgesencode for the number of extreme pathways in which the
respective object is involved. The coloring for the reactions encode their age, where red stands for older (occurrence in early
generation) and blue for newer (later generation) reactions.
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Figure 6: Life-time diagram for reactions and metabolites.(a) Life-time of reactions, (b) union network graph over all100
generations, (c) life-time of metabolites. The reactions and metabolites (rows) in the life-time diagrams are positioned corre-
sponding to their position in the union network graph, i.e. reactions/metabolites close to the source metabolites are in upper
positions, reactions/metabolites close to the sink metabolites are placed at the bottom. The rows have colored entriesif the
corresponding reaction/metabolite was present at a certain generation (columns 1-100). We use the same coloring scheme as
above, older reactions/metabolites are red, newer blue. The colored bars show the age distribution of reactions in the network
in the same order as in the lifetime overview. The first bar represents our results, following the pattern for backward evolution,
forward evolution and the patchwork model.
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Figure 7: Genealogy of catalytic functions and gene dosage
over 2000 generations. Each row represents an observed cat-
alytic function. Black horizontal lines indicate time inter-
vals in which genes coding for that catalytic function were
present in the genome (0-200: from left to right). The thick-
ness of the black lines indicates the number genes with a
given function. Thin vertical red lines indicate points where
the accumulation of mutations caused a transitions between
catalytic functions. If the number of genes copies in a func-
tion class increases without a transition from another gene,
then the increase is due to a gene duplication. A new gene
can be created in the genome through the fortuitous for-
mation of a TATA-box. Conversely, a gene can vanish if
its TATA-box is destroyed by mutation. On the left of the
chart a numerical encoding of the graph transformations per-
formed by the “enzyme” is plotted.

gene duplication followed by sequence mutations, creating
functionally different but structurally related catalysts. Con-
vergence of function happens when catalysts from genealog-
ically unrelated genes independently accumulate mutations
resulting in the catalysis of the same reaction (or class of
reactions). In Figure 7 convergence events are marked by
circles. A small selection of divergence events, which are
very frequent in our simulations, are marked by broken cir-
cles. Furthermore, the analysis of the functional transitions
on the basis of the ITS graphs reveals that catalysts can alter
their substrate specificity by small changes of the context of
the graph rewrite rule, i.e. the necessary precondition forthe
applicability of the graph transformation rule.

Conclusions

We have introduced a simulation tool that models the early
evolution of metabolism in a quite realistic setting and pro-
vides many tools for the detailed investigation of metabolic
evolution. Using both simple example and a series of more
complex simulation runs, the evolution of the components
on the small scale (metabolites, enzymes) as well as on sys-
tems (pathways, networks) was investigated. The simula-
tions allow to discriminate between different scenarios for
the evolution of metabolic pathways. Based on the observa-
tions from this study, we argue that the different evolution-
ary hypotheses can be reconciled, in that they act in differ-
ent phases of evolution, i.e. in different scenarios we might
observe another strategy at work. Here, we suggest that for-
ward evolution dominates in the earliest steps and is then su-
perseded by a phase of enzyme recruitment, however, leav-
ing behind a trace in form of a core set of forward evolved
pathways.

To further test these hypotheses, we intend to simulate
a number of different scenarios with changing parameters
(mutation rate, duplication rate, “food” metabolite deple-
tion), define other goals for the organisms (production of
one specific metabolite, biomass or energy) and increase the
complexity of the simulation runs (length and number of in-
put molecules).

Albeit our simulation environment is still a drastic simpli-
fication of chemistry, it is realistic enough to investigatethe
evolution of early metabolism. Computer simulations like
this one are likely to provide new insights about the gen-
eral evolutionary mechanisms governing biological systems
in particular in regimes that are not readily observable. Our
approach of a realistic, yet computationally feasible, model
appears to be a promising step in this direction.
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Abstract

Theoretical investigations of autocatalytic sets rendered the
occurrence of self-sustaining sets of molecules to be a generic
property of random reaction networks. This stands in some
contrast to the experimental difficulty to actually find such
systems. In this work, we argue that the usual approach,
which is based on the study of static properties of reaction
graphs has to be complemented with a dynamic perspective
in order to avoid overestimation of the probability of getting
autocatalytic sets. Especially under the, from the experimen-
tal point of view, important flow reactor conditions, it is not
sufficient just to have a pathway generating a given type of
molecules. The respective process has also to happen with a
sufficient rate in order to compensate the outflow. Reaction
rates are therefore of crucial importance. Furthermore, pro-
cesses such as cleavage are on one hand advantageous for the
system, because they enhance the molecular variability and
therefore the potential for catalysis. On the other hand, cleav-
age may also act in an inhibiting manner by the destruction
of vital components: therefore, an optimal balance between
ligation and cleavage has to be found. If energy is included as
a limiting resource, the concentration profiles of the compo-
nents of autocatalytic sets are altered in a manner that renders
a certain range for the energy supply rate as optimal for the
realization of robust autocatalytic sets.

The results presented are based on a theoretical model and ob-
tained by numerical integration of systems of ODE. This lim-
its the number of involved molecular species which implies
that the quantitative findings of this work may have no direct
relevance for experimental situations, whereas the qualitative
insights in the dynamics of the systems under consideration
may generalize to systems of truly combinatorial size.

Keywords: Autocatalytic sets, autocatalytic metabolism,ori-
gin of life.

Introduction
In recent years, autocatalytic sets (ACS) Calvin (1956);
Eigen (1971) have attracted interest from many different re-
search directions. Probably most prominent are thereby in-
vestigations concerning the origin of life, but ACS proved to
be a concept also of value e.g. for the study of transitions
in general (non-chemical) systems of interacting production
processes including the generation of knowledge, see Hanel
et al. (2005).

Informally, the fundamental question with respect to
chemical reaction networks is whether or not a given set
of different, potentially catalytic molecules immersed into
a suitable environment (most often some type of flow reac-
tor) and provided with a sufficient supply of food or building
blocks is able of maintaining the concentration of its mem-
bers via mutual catalysis. The conditions under which such a
self-maintaining or autocatalytic set can be expected to ap-
pear with sufficiently high probability are then those to be
mimicked in an experiment e.g. concerned with the emer-
gence of protolife.

Based on different models of catalytic networks, there is
broad literature on the detection of ACS, see Letelier et al.
(2006); Mossel and Steel (2005); Hordijk and Steel (2004).
In Hordijk and Steel (2004) a polynomial-time algorithm
for the detection of an important class of ACS has been
presented. Hordijk and Steel applied this algorithm to a
model by Kauffman (1986). By analyzing large numbers
of randomly chosen networks, they corroborated a conclu-
sion which Kauffman derived from combinatorial reason-
ing, namely that in sufficiently diverse populations of po-
tentially catalytic chain molecules, an ACS will be present
almost with certainty. Thereby, ACS will form independent
of how sparse catalytic activity is distributed in the com-
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binatorial variety of molecules, as long as this variety is
big enough (usually limited by a maximal sequence length).
Stated differently, given a certain variety of potentiallycat-
alytic molecules, there is always a threshold for the probabil-
ity of catalytic activity such that above that threshold, ACS
can be expected to emerge with high probability.

Despite some criticism (see Lifson (1997) and for a dis-
cussion of Lifson’s arguments, see Steel (2000)) and the fact
that more detailled models of catalysis may modify some
results presented in Kauffman (1986), the main conclusions
seem to generalize in one or the other form to a broad variety
of models. The obvious question to ask then is, why ACS
are not regularly discovered in the laboratory. In Filisetti
et al. (2010), three possible answers were discussed. The
first one (sometimes preferred by experimentalists) claims
that the simplifications used in the formulation of the mod-
els on one hand make them tractable by analytical and/or
computational means but on the other hand renders them
unrealistic. The second answer (favored by some theorists)
says that the basic statements derived from simplified mod-
els are also valid if the details of the physical and chemical
world were considered, but that the threshold necessary for
the emergence of ACS never has been reached. Finally, the
third position (and also the one advocated in Filisetti et al.
(2010) and in this work) highlights the fact that in investiga-
tions purely based on the properties of reaction graphs, dy-
namical and stochastic aspects are not considered. For some
models, this is not necessary because their dynamics is basi-
cally (at least piecewise) determined by linear operators,e.g.
Jain and Krishna (2001). But for most models (which are
based on general reaction graphs), graph-theoretical meth-
ods may identify ACS which are only transient; this in the
sense that the chemical dynamics eventually leads to a col-
lapse of the ACS. This holds especially under flow reactor
conditions, where e.g. a catalyst needs not only to be pro-
duced via some reaction path, but also at a sufficient rate in
order to compensate for loss by outflow. Graph-theoretical
means are able to identify whether or not a reaction path is
present in a given network but not wether the dynamics es-
tablishes a non-trivial stationary ACS (In fact, one should
speak of ACS exhibiting stationary or limit cycle behavior,
but in practice one observes most models to yield almost
exclusively stationary solutions. For a discussion, see e.g.
Stadler et al. (1993)). In an experiment, however, it may
be difficult to observe transient ACS, first because they may
only be active during a very short period of time and sec-
ond because their emergence may be highly susceptible to
initial conditions. In contrast, stationary ACS which are
able to produce a permanent deviation of some molecular
concentrations from those one expects to result from the in-
flow and some non-catalytic background reactions offer a
higher potential for being observable in a reproducible man-
ner, as pointed out by Bagley and Farmer (1991). Whereas
in Filisetti et al. (2010) the emphasis has been put on the in-

vestigation of the influence of stochastic fluctuations on the
emergence and dynamics of ACS, this paper is concerned
with the study of the influence of various parameters on the
observability of stationary ACS.

The paper is organized as follows: In the second section,
we discuss two different approaches for the definition of an
ACS (or to be precise, the general and a more restrictive
definition, the latter termed “autocatalytic metabolism”)and
motivate the choice being taken for the investigations in this
work. In the third section, we briefly review the original
model by Kauffman (1986) and present our implementation
as a system of coupled ODEs. In the section reporting re-
sults, we show that the presence of a stationary ACS depends
critically on the choice of parameters. We further study a
derivative of the original model that takes energy considera-
tions into account, means the different reactions compete for
a, with a constant rate renewed, energy resource. We close
with a discussion of the relevance of our results for experi-
mental setups.

Autocatalytic Sets
We compare two different approaches for the analysis of au-
tocatalytic sets. The first approach is especially appropriate
for the study of reaction graphs and thoroughly discussed
and formalized in Hordijk and Steel (2004). The second
one, discussed in Bagley and Farmer (1991) takes into ac-
count the dynamics of the system but is less formal. Bagley
and Farmer define an “autocatalytic metabolism” (ACM) as
a coupled set of reactions which lead to permanent concen-
trations that are significantly departing from the values one
would obtain without catalysis. As they point out, this def-
inition is to some extent problematic, because what one re-
gards as significant may depend on the experimental means.
However, we will use a similar approach, because only those
systems delivering a measurable deviation (both with respect
to quantities as well as time) from some equilibrium distri-
bution are of experimental interest. In order to highlight the
difference between the two approaches, we briefly review
the graph theoretical definition used by Hordijk and Steel
and show that an ACS identified with their method needs
not necessarily to be observable.

In Hordijk and Steel (2004) the main focus is laid on
so called “reflexively autocatalytic andF -generated reac-
tion systems (RAF)”, wherebyF denotes a set of “food”-
molecules which are provided by the environment. For
investigations concerned with the catalytic formation of
chain molecules,F most often contains monomeric building
blocks or a set of short oligomers. Informally, the concept
of a RAF covers those sets of reaction systemsR for which
it holds that a) each reaction inR is catalyzed by a molecule
being part ofR and b) all reactants can be generated from a
food setF by iterative applications of the reactions inR. In
order to formalize the notion of a RAF in a rigorous man-
ner, a number of definitions are required. We don’t repeat
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them here, but refer to the original work by Hordijk and Steel
(2004)).

A RAF can be regarded as, once present, a potentially
self-sustaining reaction system that in principle produces
all the catalysts and intermediates it needs for its reac-
tions. It is only potentially self-sustaining, because neces-
sary molecules need not only to be produced but being pro-
duced with sufficient rates. Note further that the definition
of a RAF does not require the system to emerge, given the
molecules inF are supplied (In fact, the elements ofF need
not to be catalysts at all).

As shown in Hordijk and Steel (2004), there exists a
polynomial-time algorithm for the detection of RAFs, given
a system of catalytic reactions. That such a RAF is only
potentially self-sustaining is demonstrated by a (completely
artificial) reaction system given as follows (with respective
catalyst and reaction rate above the arrows):

a + e
d,k
−→ c

b + e
c,k
−→ d

c
d,k
−→ e + e

(1)

With F = {a, b}, this system qualifies as a RAF (possibly
being part of some bigger catalytic reaction system). It is
possible (not shown here) to add further reactions represent-
ing the renewal of resources and outflow, the former taking
place with unit rate, the latter with ratekd. Settingk = 1
anda(0) = b(0) = c(0) = d(0) = e(0) = 1, the behavior
of the system then depends critically on the size ofkd. As
illustrated in Fig. 1, the system attains a stationary statefor
kd = 0.1 and collapses forkd = 0.5. This observation is
of importance insofar that it shows that one tends to overes-
timate the probability for the observation of experimentally
relevant ACM if one relies on static, graph theoretical meth-
ods yielding probabilities for the occurrence of ACS. Con-
sequently, in what follows we employ dynamic reaction ki-
netics in order to decide whether a reaction system contains
as a subsystem an ACM in the sense of Bagley and Farmer
(1991).

The Model
A fundamental model for the study of the emergence of ACS
has been proposed in Kauffman (1986); we will briefly re-
view this approach and its main conclusions and present our
own implementation which is used for the construction of a
set of ODEs. These ODEs are solved numerically for var-
ious parameter settings in order to identify the relative im-
portance of different reaction mechanisms. Thereby, we are
interested in parameter combinations that exhibit non-trivial
optima for the probability of the existence of an ACM, espe-
cially if these parameters offers the potential of being con-
trollable in an experimental setting.
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Figure 1: Time evolution of the system given by eqs. 1 for
two different values of the outflow rate parameterkd. Shown
are the logarithms of the concentration ofc(t) (continuous
line) andd(t) (dashed line) as a function of time.

The Basic Model

In Kauffman (1986), the properties of sets of potentially cat-
alytic di-block copolymers were investigated. Thereby, it
was assumed

• Polymers consist of two different types of monomersA
andB.

• There are two types of catalyzed reactions, namely liga-
tion and cleavage.

• The probability for a polymerPc to catalyze a ligation

P1 + P2

Pc−→ P1P2 or a cleavageP1P2

Pc−→ P1 + P2 is
given by a probabilityr.

• The numberpi represents the density of the polymerPi.

This setting, basically a random reaction system, doesn’t
make any specific “helpful” assumptions supporting the
emergence or existence of an ACM, and nevertheless, strong
evidence was given that such a system should eventually
contain an ACM, given only a sufficiently large variety of
different polymers being included in the system (In case of
block polymers, this can be achieved simply by allowing se-
quences of length up to a criticalLc).

Several implementations of random graph models using
ODEs have been studied, see e.g. Farmer et al. (1986);
Bagley and Farmer (1991). In this work, the dynamics of
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the system is given by:

dpi

dt
= ki,in − koutpi (2)

+
∑

j,k,m

kj,k,LL(j, k, i, m)pjpkpm

−
∑

j,k,m

ki,j,LL(i, j, k, m)pipjpm

−
∑

j,k,m

kj,i,LL(j, i, k, m)pjpipm

+ kC

∑

j,k,m

C(i, j, k, m)pkpm

+ kC

∑

j,k,m

C(j, i, k, m)pkpm

− kC

∑

j,k,m

C(j, k, i, m)pipm.

Thereby,pi represents the density of a polymer with se-
quencePi composed of two types of monomersA, B. The
rate of influxki,in is set to one for the monomersA, B and
zero for all other sequences. Outflow is determined by the
ratekout, and the kinetic rates of ligation and cleavage are
denoted byki,j,L and kC respectively. The arraysL and
C represent the random graphs, chosen at the beginning of
each run: This means thatL, C are arrays representing fixed
random reaction networks, which, once set, remain constant.
Using the symbol⊕ for sequence concatenation, it holds:

L(i, j, k, m) =

{

0 Pi ⊕ Pj 6= Pk

1with prob. rL Pi ⊕ Pj = Pk

(3)

and

C(i, j, k, m) =

{

0 Pi ⊕ Pj 6= Pk

1with prob. rC Pi ⊕ Pj = Pk

(4)

The indexm represents the dependence on the catalystPm.
In all calculations subsequently shown, several additional

assumptions have been made:

1. The monomersA, B must not act as catalysts; this in or-
der to enhance chemical plausibility.

2. There is a maximal sequence lengthL. Ligations may
well produce longer sequences, but those are assumed to
fall out by precipitation. This is physically plausible and
keeps the system tractable.

3. In order to capture steric effects, the ligation rateki,j,L

is length dependent. Shall|Pi| denote the length ofPi,
we setki,j,L = kL/(|Pi||Pj |) for some constantkL. The
idea behind this (crude) approximation is that in a well-
stirred reactor, the collision frequency of two sequences
is assumed to be independent of the length. The collision

happens by the contact of two monomers, one out of each
sequence. The chance that those are the ones that are able
of mutual ligation because they mark the end and the start
of the respective sequences is inversely proportional to the
respective length of the sequences.

The system then contains2L+1 − 2 variables. This means,
taking into account the non-catalycity of the monomers, that
there are(2L+1 − 2)2(2L+1 − 4) potential ligation reac-
tions and(2L+1 − 4)

∑L

l=2
2l(l − 1) possible cleavage pro-

cesses. As it turned out, already values ofL = 6 deliver
systems of sufficient combinatorial variety in order to ex-
hibit interesting dynamical effects. In all simulations, we
set∀i : pi(0) = 1 as initial condition; this with the idea
to give a potential ACM in a random graph sufficiently fa-
vorable starting conditions. Following Bagley and Farmer
(1991), a random reaction graph qualifies as containing an
ACM, if the concentration of at least one non-monomeric
species is above a thresholdT after a time interval longer
than10td with td = − log(T )/kout denoting the typical de-
cay time forT . As will be shown (and has already been
discussed by Bagley and Farmer), the decision whether a re-
action system contains an ACM is surprisingly insensitive to
the choice ofT . The numerical solutions were obtained by
internal routines of the software package MathematicalTM

and a sample of solutions was verified with a standard adap-
tive fourth-order Runge-Kutta solver.

The Model with Explicit Consideration of Energy
Most of the investigations dealing with ACM don’t take into
account energy considerations, or more generally, the ex-
plicit competition for some limited resource other than the
supplied monomers. As will be discussed in the result sec-
tion, such an external limitation need not to be disadvanta-
geous for the system, but may even help to stabilize it. We
consider energy in a relatively simple manner. The ligation
and cleavage terms in eqs. 2 are multiplied with the concen-
tratione(t) of some energy resource. Thereby, the energy re-
source is used up and permanently renewed by inflow with
a ratekE . The dynamics of the additional variablee(t) is
given by:

de

dt
= kE − koute (5)

−
∑

i,j,k,m

ki,j,LL(pi, pj, pk, pm)pipjpme

− kC

∑

i,j,k,m

C(pi, pj , pk, pm)pkpme.

Results
In this section, we study the dependence of the dynamics
of the models presented in the preceding section. Some
of the parameters remain fixed for all simulations:kout =
0.02, kL = kC = 1. Furthermore, each data point represent-
ing an average value has been computed using at least 20,
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Figure 2: Probability for observing an ACM in a random
reaction graph as a function of the catalytic reaction prob-
ability rL = rC = r for different values of the maximal
sequence lengthL = 2, 3, 4, 5, 6, 8. Starting fromL = 8,
graphs representing decreasing length exhibit increasingval-
ues for the transition value ofr.

but most often more than 50 samples. As a convention, log-
arithms are always taken to the basee. Whiskers, if shown,
denote first and third quartiles.

The Fundamental Transition

As postulated in Kauffman (1986), for sufficiently large val-
ues of the probabilities for catalytic reactionsrL and rC

given in eqs. 3 and 4, the reaction graph should contain
an ACM with high probability. In fig. 2, this transition
is clearly observable and becomes sharper for longer se-
quences. Interestingly, the transition curves, giving theprob-
ability of observing at least one non-monomeric sequence
with a concentration above the threshold valueT look identi-
cally the same forT in the range from10−12 to 10−2, which
means that if there is an ACM, at least one of its compo-
nents will be present with a significant concentration. Fig.
3 shows the average size of the ACM, means the average
number of components with concentration values above a
thresholdT = 10−6 after an integration timet = 105 for se-
quences of maximal lengthL = 3, 4, 5, 6. We observe that
above the transition value ofr, the system becomes maxi-
mally diverse. This may be of relevance in an evolutionary
context.

The Role of Cleavage

Given a certain fixed probability for ligationrL, one may
ask for the corresponding optimal value ofrC . It is clear
that cleavage has some beneficial aspects for the appearance
of an ACM, because cleavage tends to enlarge the variety
of sequences. However, cleavage may as well destroy vital
parts of an ACM. This is relevant especially under flow reac-
tor conditions, where the generation of a specific sequence
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Figure 3: Average size of ACM (number of non-monomeric
components bigger thanT = 10−6 aftert = 105) as a func-
tion of r and for sequence lengthL = 3, 4, 5, 6 (bottom to
top). Shown are the median values for the size of the ACM,
the whiskers denoting the first and third quartile. Above the
transition value ofr, the system tends to be maximally di-
verse (A maximal sequence lengthL implies2(L + 1) − 4
non-monomeric sequences).

needs to be sufficiently powerful in order to compensate the
outflow. And in fact, in fig. 4, a clear optimum forrC can
be observed, given a fixedrL = 0.01 andL = 6. Notably,
in our simulation, this optimum perfectly justifies the orig-
inal choice ofrL = rC by Kauffman. The choice ofrL in
the transition region is motivated by first taking into account
that a system may be based only on ligation but not solely
on cleavage (at least with monomeric input). A small value
for rL will most probably not yield an ACM. A large value
is also not of big interest: A system with lots of ligation re-
actions already produces most sequences and does not profit
from a further broadening of the sequence variety by cleav-
age. The transition region in fig. 2 is the domain in which
an optimization ofrC will take the most effect.

Again, it is emphasized that the curve shown does not de-
pend on the detection thresholdT , though the average num-
ber of concentrations above the threshold does, see figs. 5
and 6. Note that whereas the curve in fig. 4 refers to the
whole sample and shows the ratio of those reaction systems
containing an ACM, the data in figs. 5 and6 give the average
size of the ACM, provided there is one. Consequently, data
points at the lower and higher end of the scale are of less
statistical weight (and relevance) than those in the middle.

The Role of Energy

Controlling the influx of energy (or, to be chemically more
accurate, the influx of molecular energy carriers) is a pa-
rameter easy to control in an experiment, therefore its influ-
ence is of interest. It is clear that below a certain thresh-
old of the influx ratekE the generation of non-monomeric
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Figure 4: Probability for observing an ACM in a reaction
graph with maximal sequence lengthL = 6 andrL = 0.01
as a function ofrC . The detection threshold is set toT =
10−6 (continuous line) andT = 10−2 (dashed line).
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Figure 5: Average size of ACM forL = 6 andrL = 0.01
as a function ofrC . The detection threshold is given by
T = 10−6. Shown are the median values for the size of the
ACM and the whiskers denote the first and third quartile.
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Figure 6: Same as fig. 5, but withT = 10−2.
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Figure 7: Probability for observing an ACM in a random
reaction system withL = 6, rL = rC = 0.01 as a function
of the rate of energy influxkE .

sequences is not anymore powerful enough to compensate
for the outflux. This can be seen in fig. 7. Given suit-
able system parameters, ACM are easy to observe at higher
values ofkE . Interestingly, the average size of the ACM
for a large thresholdT shows a maximum for intermedi-
ate values ofkE , see fig. 8 (giving the average number of
concentrations aboveT = 10−6) and more prominently for
T = 10−2 in fig. 9. A possible explanation for this phe-
nomenon is that the plenty abundance of energy alllows the
generation of more or less all possible sequences, as sug-
gested by the results shown in fig. 3. A more fierce compe-
tition for energy, however, may lead to the eventual extinc-
tion of some side branches of an ACM and consequently a
boost of its “core” components. This externally controlled
focussing is of relevance, because in more realistic scenarios
with larger sequence lengths, the relative concentrationsof
core components may be much lower than in the (numeri-
cally tractable) model systems presented in this work. Con-
sequently, stochastic fluctuations play a more important role
and a mechanism strengthening the “backbone” of an ACM
at the expense of some side reactions increases the robust-
ness of the system which is of evolutionary and experimen-
tal importance (the consideration made here applies also to
the scenario discussed in fig. 6). Studying stochastic effects
in ACM with longer sequences requires, however, a particle
based approach. For a detailed discussion, see Filisetti etal.
(2010).

Summary and Discussion

We have shown the importance of the dynamics of a reac-
tion system for answering the question whether it contains
an autocatalytic metabolism. Many algorithms are based on
the analysis of combinatorial properties of random graphs.
Thereby, they are not considering that, especially in the sit-
uation of a flow reactor, there must not only be a pathway
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Figure 8: Average size of the observed ACM in a random
reaction system withL = 6, rL = rC = 0.01 as a function
of the rate of energy influxkE and for a detection threshold
T = 10−6.
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Figure 9: Average size of the observed ACM in a random
reaction system withL = 6, rL = rC = 0.01 as a function
of the rate of energy influxkE and for a detection threshold
T = 10−2.

for the production of a given molecule but its production has
in addition to happen at a rate that compensates for the loss
by outflow. Studying the kinetic behavior of random reac-
tion systems reveals the importance of a proper balancing of
the probabilities for different types of reactions: We inves-
tigated cleavage and found that taking into account dynam-
ics, cleavage does not only enlarge the variety of polymer
species (which is desirable from the perspective of obtain-
ing an ACM) but may also destroy components relevant for
the system with a rate that cannot be compensated by their
respective generation processes. We also investigated the
role of energy consumption and found that the introduction
of energy as a limiting factor strongly influences the concen-
tration profile of the ACM. It turned out that whereas a large
supply of energy leads to a broad variability of sequences,
intermediate values seem to favor ACM with less, but, with
respect to concentration also in absolute terms, more pro-
nounced components. This means that such intermeidate
values render ACM that are less susceptible to fluctuations,
which is of relevance in the context of evlutionary processes.

We investigated systems with rather short sequences,
mostly with a maximal sequence length ofL = 6. The
numerical values for the catalytic probabilitiesrL and rC

need then to be of a size which is chemically not realistic.
We claim that our results are of worth because whereas the
quantitative features of the shown results heavily depend on
L, the qualitative ones don’t. Even more, data (partially not
shown) suggests that the discussed effects become more pro-
nounced with increasingL. According investigations need
then to be performed in a particle based manner, see Filisetti
et al. (2010). Another interesting perspective is presently in-
vestigated by DeLucrezia and coworkers. In their approach,
the “monomers” are replaced by pre-prepared strands con-
sisting of some ten amino acids. A sequence consisting of a
combinatorial assembly of these strands may have a higher
probability of exhibiting catalytic properties. However,the
model presented in this paper is then only a “coarse-grained”
approximation to the dynamics, because cleavage may well
happen within one of the original monomeric strands.

Our choice of the initial conditions, namely to set the con-
centrations of all sequences to one at the start is certainly
unrealistic and motivated by our focus on stability consid-
erations. The discovery that the energy supply influences
the concentration profile opens the perspective of “iterative”
emergence. A very limited set of initially provided compo-
nents may establish a first, still frail ACM which produces as
side products some further, possibly catalytic componentsat
low concentrations. A only temporal increase of the energy
supply may enable the system to reach a new basin of at-
traction by a short-term increase of cleaving activity which
in turn produce a passing wider variety of sequences at suf-
ficient concentration in order to take effect, but without hav-
ing to cope with the long-term presence of enhanced cleav-
age. We will address this scenario in a subsequent work fo-
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cussed on issues of emergence, also considering aspects of
stabilization against molecular parasites achieved by spatial
organization with Filisetti et al. (2008) or without Füchslin
and McCaskill (2001); Füchslin et al. (2004) explicit com-
partmentalization.

The problem of deciding whether or not a given reac-
tion system contains an ACM may one remind to a simi-
lar problem in systems biology, namely the determination
of possible fluxes in a only partially known metabolic net-
worksVarma and Palsson (1994); Orth et al. (2010). In flux
balance analysis, one basically determines the set of poten-
tial solutions for the fluxes, given that a) the stoichiomet-
ric matrix and a vector containing fluxes forms an under-
determined linear system and b) some (in practice usually
linear) constraints have to be observed. Flux balance anal-
ysis provides a highly successful and efficient tool for e.g.
the optimization of only partially known networks (By us-
ing linear programming). The problem we address in this
work is, however, different. The networks are completely
known and therefore, the flux balance equation are fully de-
termined, which means that searching a stationary solution
requires solving a non-linear system.

Taking into account dynamics shows that first, one of the
reasons for the fact that spontaneously formed autocatalytic
systems have not or only rarely been observed in the lab-
oratory may not only be due to lack of catalytic activity.
As a matter of fact, it could even be caused by too much
catalysis, if cleavage is too frequent. Second, and proba-
bly more important, we need to shift our attention from fo-
cussing solely on catalysis (and respective probabilities) to a
picture in which kinetics plays an important role too. Even
if we had reaction system in which in principle an ACM
could produce measurable signals, it only does if the kinetic
parameters are suitably chosen. Some of these parameters,
such as e.g. outflux rates, can easily be manipulated in an
experiment and should be in the focus of future work.
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Abstract 
The Evolution Grid, or EvoGrid is a computer simulation 
framework for distributed artificial chemistry (AC) supporting 
computational origins of life (COoL) research. The EvoGrid 
consists of a number of small experiments running on short 
time scales pruned by aggressive tree-branching searches 
supported by random parametric re-seeding and temporal back-
tracking. The EvoGrid is designed to converge upon the 
observation of “cameo” simulations of key pre-biotic or simple 
biological structures or behaviors. These cameo simulations can 
then inform and feed larger AC simulations operating over 
biologically relevant time scales. In addition, the framework is 
designed to plug into a heterogeneous set of engines ranging 
from high fidelity molecular dynamics (MD) to more abstract 
AC techniques on the same set of data. The EvoGrid also 
provides shared web-based simulation management services 
and uniform, open standards for execution, storage and data 
analysis. We conclude by describing the first prototype 
implementation of the EvoGrid, early results, next steps and 
open questions in this and other COoL endeavors.  

Introduction 
In their seminal paper Open Problems in Artificial Life 
(Bedau et al., 2000) the authors set a challenge in the second 
open problem to “achieve the transition to life in an artificial 
chemistry in silico” (p. 364) while also identifying that 
“[b]etter algorithms and understanding may well accelerate 
progress… [and] combinations of… simulations… would be 
more powerful than any single simulation approach” (p. 367-
68). The authors also point out that while the digital medium 
is very different from molecular biology, it “has considerable 
scope to vary the type of ‘physics’ underlying the evolutionary 
process” and that this would permit us to “unlock the full 
potential of evolution in digital media” (p. 369).  
 
All of this potential awaits further progress in the 
computational challenges of high fidelity (i.e. accurate and 
predictive) artificial chemistries. Current state-of-the-art 
artificial chemistries (AC) (Dittrich, et al., 2001) including 
molecular dynamics (MD) projects utilize large centralized 
general-purpose computer clusters or, more recently, purpose 
built hardware, such as Anton, an MD supercomputer (Shaw, 

et al., 2009). Simulating tens of thousands of atoms for days 
to weeks on a commodity cluster will produce a number of 
nanoseconds of real-time equivalent chemistry. Optimized 
software running on Anton promises milliseconds of real-time 
equivalent ACs in weeks of computation (Shaw, et al., 2008).  
 
To meet these challenges, proposals to unify efforts into larger 
computational origins of life (COoL) endeavors have been 
brought forth. Shenhav and Lancet (2004) propose utilizing 
the Graded Autocatalysis Replication Domain (GARD) 
statistical chemistry framework (Segre and Lancet, 1999, 
2000). These authors have developed a hybrid scheme 
merging MD with stochastic chemistry. In GARD many short 
MD computations would be conducted to compute rate 
parameters or constraints for subsequent stochastic 
simulations. Thus, a federation of simulations and services 
was conceived which would also involve interplay with in 
vitro experiments. It is this vision for unifying efforts in 
COoL that has inspired our own work to build a framework 
for distributing and searching a large number of small 
chemistry simulation experiments. 
 
As stated by Shenhav and Lancet, “the prebiotic milieu could 
best be characterized by a dense network of weak interactions 
among relatively small molecules” (p. 182). Simulating such a 
soup represents yet another scale of complexity beyond the 
targets set by even the builders of Anton. While the 
simulating of the full pathway to life in silico seems like a 
journey of a thousand miles, the first few steps can be taken 
and may become less daunting when helped along by some 
innovative algorithmic and architectural short cuts. 
 
A fundamental property of large scale (in time duration and 
population of objects) simulations is that for the most part 
they use a homogeneous approach to optimize computation. 
On the opposite end of the spectrum we propose to run a large 
number of small simulations. Such an approach would in 
theory support a heterogeneous network of simulation 
techniques which vary physics, levels of abstraction and could 
even employ selection methods and replication of results 
inspired by the process of evolution. This is the approach 
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taken by the authors in developing the Evolution Grid (or 
EvoGrid), to be discussed next. 

EvoGrid Search Function 
 
The basic concept behind the EvoGrid is what we are terming 
cameo simulations. Cameo simulations are comprised of no 
more than a few hundred or thousand particles representing 
atoms and small molecules running over short time scales and 
in multiple instances. The existence of those instances is 
governed by a search tree function which permits variations of 
initial conditions and the branching of multiple, parallel 
simulations. Variation of parameters and branching are under 
control of an analysis step which looks for interesting 
structures or behaviors within each cameo simulation frame. 
Frames deemed less interesting may be terminated so as to 
permit other branches to be explored to a greater extent. This 
approach is inspired by the class of genetic algorithms (GA) 
combined with hill climbing algorithms widely used in 
Artificial Intelligence (Russell and Norvig, 2003). It is a form 
of importance sampling (Kalos and Whitlock, 2008), and its 
relationship to Maxwell’s Demon requires careful scrutiny 
(Maruyama et al., 2009). 

 
Figure 1: Illustration of the hill climbing search tree method 
employed by the EvoGrid 
 
Figure 1 illustrates this method for a Control (A) which 
depicts a typical linear time sequence simulation and Test (B) 
which depicts the arising of simulation branches in this case 
due to selection for the phenomenon of more densely 
interconnected points. This illustration depicts another 
optimization called temporal back-tracking. If the simulation 

states of each frame can be stored through time, then a failed 
branch may be rolled back to the point at which “interesting” 
frames were still occurring. With a random seed applied, a 
new branch is started. This branch may yield a complex 
phenomenon forgone in the failed branch. In the example 
illustrated abstractly by C, that phenomenon might be a ring 
structure, as shown in the frame with the check mark. In this 
way, improbable occurrences may be guided across valleys of 
highly probable failure. 

Genes of Emergence 
 
Efforts to bridge nonliving and living matter and develop 
protocells from scratch (Rasmussen et al., 2003) will rely on 
bottom-up self assembly with commensurate self organization 
of classes of molecules. The development of repeatable self 
assembly experiments in silico (Rajagopalan, 2001) could 
serve as an important aid to in vitro protocell research. Self 
assembly in simulation may be purposefully designed into the 
experiment or may be an emergent phenomenon discovered 
by a directed search through multiple trial simulations. The 
initial conditions for a simulation could be equated to the 
coding sequences of a genetic algorithm (GA), and the 
simulation outputs seen as its expressed phenotype. The 
EvoGrid’s search for self-assembly and other phenomena in 
cameo simulations is therefore a search for what we might 
term “genes of emergence” (GoE). 
 
GoEs may be derived from within many different types of 
simulation, not just in the computationally intensive MD 
world. More abstract simulation modalities may yield shorter 
pathways to the production of important emergent phenomena 
than through computationally complex ACs (Barbalet et al., 
2009). One could then see that the EvoGrid represents a 
“discovery system” operating on a continuum of techniques 
which might include: the execution of simulation modules 
that code for abstract universes yielding interesting results, to 
be then swapped out for a simple AC within which we would 
hope to reproduce the results, and finally, carrying the GoEs 
one step further into high fidelity MD, then which could 
inform validation through full scale in vitro experimentation. 
 

Figure 2: Illustration of the concept of cameo simulations feeding a 
larger composite simulation. 
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Figure 2 graphically illustrates the first two stages of this 
continuum. In the first stage, hill-climbing search functions 
(represented here as trees) process through a number of small 
cameo AC simulations. The end-point simulations, shown 
here as S1, S2 and S3, each meet some criteria for generating 
a structure or behavior of relevance to a larger composite 
simulation Sc. In the second stage, Sc is constructed from a 
mixture of content from each of the "feeder" cameo 
simulations and is driven by an amalgamation of the 
individual simulation experimental parameters A, B and C. 
The hope is that this amalgamation in simulation Sc, running 
with a much larger content store and over biologically 
significant time scales, would generate a rich mixture of 
phenomena, such as the formation of membranes, emergence 
of replicators, or the observation of autocatalytic reaction 
pathways. It is this enriched simulation environment which 
could be the basis for more ambitious computational origin of 
life endeavors. In another twist, an interesting phenomenon 
observed in Sc could be captured, its parameters and local 
contents extracted and cameo simulations run to characterize 
and fine tune the phenomenon more closely, enabling another 
ratchet in the emergent power of the larger simulation. 

EvoGrid Design and Operation 
 

Figure 3: High level design and data flow of the EvoGrid 
 
As depicted in Figure 3, the modular design of the EvoGrid 
encapsulates an MD simulation engine, in this case 
GROMACS (Van der Spoel, 2005), which we found to have 
good performance and was suitable to run as a plug-in 
component. GROMACS could be swapped out for other 
suitable simulation systems or the EvoGrid would support 
these systems running in parallel on the same data set. This 
architecture is designed to meet the challenge posed by Bedau 
et al. (2000) in which combinations of different simulation 
approaches might be a pathway to significant progress. 
 
 

Figure 4: Lower level sequencing of data types through the EvoGrid 
 
Other abstracted components depicted include an Analysis 
Server and an Analysis Client. Both of these components 
process inputs and outputs to the Simulation Cluster using the 
compact JSON format. The Simulation Manager running via 
HTTP/Web services sequences the simulation of and the 
analysis of individual frames (Figure 4). MD simulations 
typically have heavy compute loads in executing the time-
steps for each force interaction of artificial atoms. In the 
EvoGrid, tens of thousands of frames are being executed and 
replicated through new branches. This generates terabytes of 
stored states for analysis. This could eventually call for a fully 
distributed simulation network, such as provided by the 
BOINC network (Anderson, 2004). BOINC supports many 
computationally intensive scientific applications, such as 
Folding@home (Pande et al., 2003). However, at this time we 
are relying on the centralized analysis server. 

EvoGrid Prototype Runs and Results 
 
A prototype of the EvoGrid architecture was built in 2009. 
Frames of 1,000 simulated atoms were run for 1,000 time 
steps within the GROMACS module with a uniform heat bath 
applied. 
 
Initial conditions for GROMACS were: 

• Density in particles per Angstrom: 0.01 - 0.1 
• Temperature in Kelvin: 200 – 300, used for initial 

velocity and temperature bath 
• Bond outer threshold in Angstrom: 0.1 - 1.0, distance, 

used for bond creation 
 
The atoms ranged between three and ten randomly generated 
types. All their parameters (mass, charge, force interaction 
with other types, radius and volume) were selected from a 
uniformly distributed random range.  
 
Forces between atom types included: 
Pre-computed components of the Lennard-Jones force 
function: 

• c6      0.0 - 0.1 
• c12     0.0 - 0.00001 
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Covalently bonded (pre-computed components of the 
harmonic bond force function): 

• rA      0.0 - 2.0 
• krA     0.0 - 2.0 
• rB      0.0 - 2.0 
• krB     0.0 - 2.0 

 
As an initial test case on a single instance of GROMACS 
when a bond was created, the Lennard-Jones forces would 
cease applying, and no new forces were applied. This was 
done to minimize real world constraints prior to having access 
to a computer cluster supporting covalent bond computations. 
The main focus of this prototype was to be able to test the 
architecture, not faithfully simulate the chemistry. 
 
The position and velocity data was dumped every 1000 cycles 
and a naïve bonding applied to all atoms or atom-molecule or 
molecule-molecule objects. After a thousand of these dumps, 
this collected history was processed by the analysis server. 
Table 1 represents the scoring for frame number 144,204, the 
final frame in our trial run. The analysis was set up to look for 
the formation of “larger” virtual molecules, which in our 
simplistic interpretation meant a simple count of the greatest 
number of bonds between any two atoms. Employing Monte 
Carlo methodologies, the maximum search score reached in 
the trial was a simple sum of the entries in Table 1. 
 
Measured values Final simulation scores 
Average molecular size 2.2303 
Maximum average molecular size 4.47307 
Average maximum molecular size 9.355 
Maximum individual molecular size 17 
Final maximum search score 33.0584 
Table 1: Scoring produced by prototype analysis server for final 
simulation frame 
 

Figure 5: Scoring of experiments in “control” mode (random 
regeneration with no search tree function) 
 
Figure 5 shows the “control” case (A) from figure 1 in which 
a random initial frame is simply run with a randomly seeded 
restarting of GROMACS for a duration of one thousand 
internal simulation steps (atom-atom interactions) with a 
thousand state dumps without the search function applied. As 
we can see, while there were some highly scored frames (red 
line), there is no maintained trend. Please note that the 

missing lines indicate cases where our software generated 
impossible simulation configurations and the execution was 
halted. This illustrated an area for improvement of how we 
were operating the GROMACS engine. 
 

Figure 6: “Test” run showing trend toward higher “fitness” utilizing 
the search tree function 
 
In Figure 6, the “test” case (B) from Figure 1 applies the 
search function, which clearly takes the initially high value 
produced by the same starting frame generated for the control 
case and improves on it over time. The strength of the search 
function is that subsequently generated frames eventually 
climb to a higher score-generating capacity (“fitness”) over 
randomly generated control case frames. The search function 
will restart with lower performing simulations if all the 
potentially better options are exhausted. As seen in Figure 6, 
this causes a period where the evaluated simulation fitness 
(blue line) remains less than the best observed fitness (orange 
line). In this manner, the search function is operating as a 
Stochastic Hill Climbing algorithm in that the system has the 
ability to find its way out of traps set by local maxima. 

EvoGrid Next Steps: Questions for the 
Computational Origins of Life 

This very preliminary work poses far more questions than 
provides answers. However, as an early exemplar of 
computational origins of life (COoL) endeavors, the EvoGrid 
prototype and its proposed development path could serve as a 
roadmap to more fully functional platforms of the future. This 
roadmap also summons some broader issues, which might be 
considered a good start to a list of open problems in 
computational origins of life. 
 
The greatest limitation in the EvoGrid prototype is our use of 
a naïve model of chemistry including the abstractness of our 
atom types, bond formation and the resulting “molecular 
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structures”. Bonds are formed by simple proximity 
calculations using the positions, velocities and other data for 
objects exported from GROMACS. This situation may be 
improved by using the MOPAC7 library (Stewart, 2008) 
employed by GROMACS for covalent bond formation and the 
representation of other molecular affinities such as those 
produced by electrostatic and van der Waals forces: 
 

1. Related to this first limitation is the need to go beyond 
the initial proof of concept prototype which is 
restricted to abstract atoms assembling into molecules. 
Our next steps must involve molecules assembling into 
larger structures that have the potential to exhibit 
properties of evolution. When this capability is 
prepared, a “real” set of experiments for testing the 
capabilities of the EvoGrid architecture should be 
attempted. Some proposed experiments include 
support for MD or coarse-grained simulation of lipid 
bilayer assembly reproducing the work of Fellerman 
(2009) using LAMMPS (Plimpton, 1995). Another 
good early test case would be to reproduce a simplified 
version of the groundbreaking experimental work by 
Bartel and Szostak (1993) in the isolation of new 
ribozymes from a large pool of random sequences. 

 
2. The storage of frame states will be implemented in the 

near future. Temporal back-tracking is now being 
improved which will enhance the selective power of 
the search tree function. In addition, the computing 
resources of CALIT2 at the University of California at 
San Diego have been offered to the project, giving us 
critical storage and multiprocessor clusters for the next 
testing of the framework. A full work-up of computing 
and storage resources required by this architecture 
operating at different levels of simulation would be of 
value. Axes on a plot of EvoGrid computational 
complexity might include: number of particles and 
types of interactions handled for volume and time 
frame simulated, and desired level of fidelity to 
chemistry. 

 
3. Another significant test of this concept would be the 

integration of simulation platforms other than 
GROMACS within the EvoGrid architecture to 
support heterogeneous simulations. For example, 
numerous engines, along the continuum of artificial 
chemistries from the highly abstract to the highly 
faithful to chemistry, are candidates to be integrated. 
In no particular order, candidate platforms are: The 
Organic Builder (Hutton, 2009), Avida (Adami and 
Brown, 1994), GARD (Segre and Lancet, 1999), 
NAMD (Philips et al., 2005), Desmond from Shaw et 
al (2008), and possible tie-ins to GPU-based hardware 
platforms (Anderson, 2008).  

 
4. Bedau et al (2000) call for creating frameworks for 

synthesizing dynamical hierarchies at all scales. The 
heterogeneous nature of EvoGrid simulations would 
allow for coarse-graining procedures to focus 
simulation from lower levels to higher ones, saving 
computing resources by shutting off the less critical, 

more detailed simulations below. An example of this 
would be to switch to coarse grained simulation of an 
entire lipid vesicle, ceasing simulation of individual 
vesicle wall molecules. Conversely, fine grained 
simulations could be turned on for locally important 
details, such as diffusion of molecules through vesicle 
membranes. As exciting as this all sounds, a decade in 
the world of 3D simulation platforms has taught the 
authors of this paper that interfacing different software 
engines and representations of simulation space is 
extremely difficult. Running the same simulation 
space at multiple scales employing multiscale physics 
(e.g. from MD to dissipative particle dynamics, and 
beyond to smooth particle hydrodynamics) is also a 
very challenging problem that awaits future research. 

 
5. A general theory of so-called cameo simulations needs 

to be developed to understand the minimum number of 
interacting objects and physical simulation properties 
required in these simulations for the emergence of 
“interesting” phenomena pertinent to life’s building 
blocks. Our hypothesis that the GoEs in cameo 
simulations would apply to larger simulations also 
needs to be tested in the context of more ambitious 
COoL efforts capable of supporting artificial evolution 
thereby giving credence to the “Evo” in EvoGrid. 

 
6. The EvoGrid cannot escape the meta-problem of all 

designed simulation environments: if we set up and 
simulate a system acting in the ways we accept as 
probable, then that system is much less likely to act in 
improbable and potentially informative ways, as 
results are always constrained by the abstractions and 
assumptions used. Another way of stating this very 
central conundrum is that as long as we do not know 
how chemical molecules might be able to exhibit 
emergence of important characteristics such as 
replication we will not be able to design the fitness 
functions to actually select for these molecules or their 
precursors. The fitness-function generation problem is 
as yet unsolved. However, the EvoGrid framework is 
being built to: 1) allow each potential experimenter 
to code in their own definition of fitness, accumulating 
knowledge applicable to the problem in an iterative 
fashion; and 2) support a more exotic solution in 
which the search functions themselves ‘evolve’ or 
‘emerge’ alongside the simulation being searched. 
Actually building the second option would first require 
a much more extensive treatment from the field of 
information theory. 

 
7. There are the deeper considerations that reach back to 

Langton who coined the term “artificial life” (Langton, 
1986) and envisaged an investigation of life as it could 
be. COoL systems need not be constrained to models 
of the emergence of life on Earth. More abstract 
simulations may shine a light on life as it might be out 
in the universe (Gordon and Hoover, 2007), as a tool 
for use in the search for extraterrestrial intelligence 
(SETI) (Damer, 2010), or as a technogenesis within 
computing or robotic worlds. 
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8. A critic of theories of chemical evolution, cosmologist 

Sir Fred Hoyle used the statement about a ready-to-fly 
747 aircraft being assembled by a tornado passing 
through a junk yard of parts (Hoyle 1984) to ridicule 
the idea of spontaneous generation of life at its origin. 
This idea today fuels creationist claims for irreducible 
complexity as one of their strongest arguments for the 
existence of a Creator. Like it or not, this flavor of 
debate will find its way to practitioners of COoL 
efforts. Gordon (2008), Damer (2008) and Barbalet 
and Daigle (2008) take this theme head on within a 
compendium of dialogues between creationists and 
scientists.  

 
9. A corollary to Gordon’s prediction (Gordon, 2008, p. 

359) that Alife enthusiasts have an opportunity to 
solve the “Origin of Artificial Life” problem well 
before the chemists will solve the “Origin of Life” 
problem, is the very question of “what defines 
something as being life?”. In the case of an in silico 
genesis we would ask “when will we know something 
is artificially alive?” Given latitude to speculate about 
these grand questions from such lofty heights of 
ignorance, it will be no surprise if emerging COoL 
endeavors attract a wide and vocal variety of converts 
and critics alike. 

 
10. In the end the key question must be asked is: of what 

relevance is digital simulation to real chemistry or 
biology? Any given computational system might be 
able to show fascinating emergent phenomena but 
such discoveries might well stay trapped in silico and 
never transition over to inform experimentation in 
vitro. This would indeed be a shame and as such 
should motivate builders of systems like the EvoGrid 
to keep their eye on the ultimate prize: the transfer of 
concepts developed digitally into chemical 
experimentation. The inevitable marrying of these two 
media will produce one of the most powerful new 
tools for science and technology in the 21st Century. 

Conclusion 
 
A hybrid synthesis has been proposed between large scale 
high fidelity molecular dynamics simulations and distributed 
cameo simulations acting as an aggressive discovery system 
for the genes of emergence for some of life’s building blocks. 
The EvoGrid is a framework under construction to support 
such distributed cameo simulations. Early results from a 
prototype implementation indicate that our search tree with 
temporal back-tracking optimization is performing as 
predicted as a stochastic hill climbing system. The EvoGrid 
software architecture has been shown to operate successfully 
with a large number of small, naïve chemical simulations run 
with the support of an industry standard MD engine. A listing 
of the current system’s shortcomings and a roadmap for future 
development of the EvoGrid was presented. The authors 
concluded with a look at a few of the open questions 

applicable to the emerging field of computational origins of 
life (COoL) which is dedicated to “achieve the transition to 
life in an artificial chemistry in silico” (Bedau, et al. 2000). 
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Extended Abstract 

How can a system become better adapted over time without natural selection? Although some argue for ‘organismic’ 
properties such as robustness and self-sustaining regulation in non-evolved systems [1,5,11], others insist that natural 
selection is the only source of true adaptation [3]. We suggest that understanding how adaptation can occur without natural 
selection remains a fundamental open question for the Artificial Life community. For example, the origin of life, the origin of 
evolution, and the origin of new units of selection in the major evolutionary transitions/biological dynamical hierarchies, all 
seem to imply an adaptive process, or at least a non-arbitrary organisational process, that precedes the onset of natural 
selection proper (at each level of organisation).  

In recent work we have been developing a number of inter-related concepts that approach this question from 
different angles [2,6,7,8,9,10,12,13,14,15]. In a general sense, it is known that a complex dynamical system can self-organise 
in a manner that reflects structure in external perturbations. But more specifically, we find that when variables in the system 
have a bi-modal distribution of decay constants (some fast and many slow), slow variables spontaneously act in a manner 
functionally equivalent to the weights of a neural network undergoing Hebbian learning, thereby modulating the behaviour of 
the fast variables such that the resultant internalised structure takes the form of an associative memory [4]. The proximal 
cause of these changes is merely that such a configuration is less resistant to, and hence less affected by, the perturbations to 
the system (c.f. homeostasis). But the system-scale consequences of this structuring is that such a system can ‘recall’, 
‘recognise’ or ‘classify’ stimuli and, given appropriate structure in the perturbations, generalise to previously unseen stimuli, 
in just the same manner as a trained neural network [4]. 

This provides a framework to connect the concepts of a dynamical system merely ‘doing what it does naturally’ at 
one scale of explanation with interpretation as an adaptive system at another. In particular, in the joint phase space of both 
fast and slow variables the system merely decreases in energy, as one would expect from any purely mechanistic explanation. 
But induced structure in the slow variables improves the ability to dissipate energy from the fast state variables. Thus with 
respect to the fast system variables only, systems organised in this manner do not merely minimise system energy but get 
better at minimising energy over time. When the external environment of the system corresponds to an optimisation problem, 
the system thus improves its ability to solve that problem over time. It is in this sense that we can understand the system, not 
just as self-organised, but adapted. We present an abstract model and simulation of this process and discuss how it relates to a 
number of different domains: the evolution of evolvability in gene regulation networks [12], the evolution of new units of 
selection [10] via symbiosis [15] and 'social niche construction' [8,9], games on adaptive networks [2], distributed 
optimisation in multi-agent complex adaptive systems [13,14] and multi-scale optimisation algorithms [6,7].  
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Abstract

We use Artificial Chemistries (ACs) as a way of addressing
problems in Artificial Life (ALife) and evolution, by consid-
ering Eigen’s paradox — small replicators with poor fidelity
can not encode sufficient information to build a replicator
with improved fidelity. We describe three AC case studies
for different periods in the early evolution of the earth. From
these, we discuss more general properties that are useful for
ACs to possess for evolution, and compare our properties to
those described by other authors.

We do not present a resolution of Eigen’s paradox; rather we
demonstrate a way of thinking about AC in the context of
early evolution. Eigen’s paradox is one key issue in this pe-
riod. We use ACs as a model paradigm and from these we
extract relevant properties that can be considered separately
from the specific ACs that informed them; these properties
can be used to inform design and analysis of future ACs.

Introduction
Artificial Chemistries (ACs) are a useful basis for experi-
ments in Artificial life and evolution. Approaches to ACs
in this area tend to emulate the ‘central dogma’ of biology,
whereby information is encoded on macromolecules analo-
gous to DNA, RNA, and proteins. This is a difficult mod-
elling challenge due to the size of the molecules relative to
their atomic constituents, and the complexity of the inter-
actions between them. An alternative to this approach is to
seek ACs that more closely resemble models of the early
evolution of life on earth which do not have such a con-
strained linear flow of information. These stages may be
easier to model due to their relative simplicity, and from
these models, a set of properties can be derived that allow
better models of the macromolecules of the central dogma
of biology to be constructed. However, this pathway is not
well understood in paleobiology and is therefore difficult to
emulate. Recent work in paleobiology suggests that there
were many different modes of evolution before the central
dogma of biology became prevalent [25]. These modes ex-
ploit a more vague distinction between template (genotype-
carrying) molecules and machine (phenotype) molecules. In
this paper, we report work on ACs carried out separately by

the three authors, that collectively emulate this period in the
history of life.

One of the key problems an AC must handle is that any
route from pre-biotic chemistry to the central dogma of bi-
ology must resolve Eigen’s paradox [5]. This is Manfred
Eigen’s observation of the following cycle:

• Low-fidelity replicators are only able to preserve small
genomes reliably.

• Small genomes limit the power of the phenotypes they
express.

• So a small genome cannot encode a phenotype which con-
tains a high-fidelity replicating mechanism

In essence, the poor copy fidelity of early genotypes could
not encode the phenotype sufficiently accurately to preserve
any improvements in copy fidelity.

We do not attempt to resolve Eigen’s paradox here. In-
stead, we used the paradox as a challenge for AC design.
This allows us to set ACs in a context and discuss their
properties relative to this context. We argue for Goldberg’s
‘piecewise engineering’ approach in the first instance [12]
and take the view that a ‘one size fits all’ approach to AC
design is not the most efficient way of approaching diffi-
cult problems. These problems are characterised by a sys-
tem (such as chemistry, in the case of Eigen’s paradox) that
changes how it behaves as it develops through time. Be-
fore the resolution of Eigen’s paradox, replicators were con-
strained in their size and therefore in their functionality;
once the paradox has been resolved, this ceiling is lifted
which allows for further evolution and adaptation, eventu-
ally leading to the central dogma of biology that we recog-
nise today.

ACs can be used to produce Artificial Life (ALife) sys-
tems in which evolutionary features (such as reproduction
or mutation) are not explicitly defined a priori. Instead, they
are emergent properties of the system and as such are implic-
itly embedded:— they can be changed by the ALife system,
rather than having to be pre-specified by a designer.
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We investigate this by considering three different ACs
which can represent the chemistry that existed before, after
and during Eigen’s paradox (figure 1). These chemistries
come from recent work by the authors, developing ACs
for three challenges: the origin of life [10]; the evolu-
tion of evolvability (meta-evolution) [21]; and as the ba-
sis for a self-maintaining genetic algorithm [16]. Note that
the emphasis in these works is placed heavily on replica-
tion processes and do not consider the role of the container
in the context of resolving Eigen’s paradox. None of our
chemistries currently model a cell membrane within the
chemistry itself (but our chemistries do occupy a set volume
and thus at least have the abstract concept of a container)
although the emergence of membranes is linked to the emer-
gence of replicators in models of the early earth. After de-
scribing these three chemistries, we discuss the properties
they possess, how these relate to properties considered inter-
esting by other authors [24] and how they relate to Eigen’s
paradox.

Finding a single chemistry to span these phases is much
harder than finding different chemistries modelling each sit-
uation appropriately. The goal of our work in these three
areas is to derive a new set of desired properties, to aid us in
designing a series of ACs that together form an innovative
artificial evolutionary platform. We are interested in finding
which properties of ACs contribute to evolution and evolv-
ability in general. Focusing on Eigen’s paradox as an exam-
ple of evolvability is a way in which we can tease out these
properties.

The Context of Eigen’s Paradox
A time-line of the beginnings of evolution on the early earth
is shown in figure 1. This period is interesting to ALife re-
searchers because it resolved Eigen’s paradox [22], a key
problem in evolution. The period begins with the ‘late heavy
bombardment’ of the earth by debris from space as the so-
lar system formed — only after this was the planet thought
to be stable enough for life to prosper. Then come the well-
known phases in the development of life on this planet, from
the pre-biotic chemical ‘soup’ to the emergence of the cen-
tral dogma of biology. The graphic in the middle of figure
1 illustrates the inheritance of genetic strategies over this
period. Essentially, many different evolutionary strategies
are prevalent, until the central dogma sweeps the planet as
shown by the shaded region at the bottom of the graphic.
Eigen’s paradox is resolved before the emergence of repli-
cator molecules that precede the central dogma of biology.
The three chemistries forming the basis of the current con-
tribution are shown to the right of the graphic in figure 1.
These are described below.

From the perspective of the central dogma, Eigen’s para-
dox is insoluble. It is not possible to construct a long geno-
type for an accurate copying phenotype from the basis of a
short genotype that encodes an inaccurately-copying pheno-

Figure 1: Timeline of the beginning of evolving systems.
Events leading to the central dogma of biology are shown
on the left. The resolution of Eigen’s paradox is required for
the emergence of competent replicators. The central graphic
shows the myriad different evolutionary processes that are
thought to have been prevalent before the central dogma.
The three Artificial chemistries are shown on the right of
the figure.

type. And yet, the central dogma is common to all known
life. Potential resolutions to Eigen’s paradox are:

1. Stochastic processes throughout the planet over a billion
years could ensure that, even though on average a short
sequence does not copy well, given enough sequences,
some might work well enough for long enough to encode
a faithful genotype-copying arrangement.

2. Environment: there may have been local isolated envi-
ronments where fidelity was higher and denaturation was
reduced. If a long & accurate replicator could have arisen
there, it could have spread to other locations; e.g. the pres-
ence of inorganic compounds such as clay crystals, could
have aided replication [2].

3. The assumption that short sequences imply low fidelity
is false. It may have been possible to construct some effi-
cient copier from a short genome in some ‘lost’ chemistry.
Alternatively, some collective property of the system does
the job of forming an accurate template before the arrival
of specialised template-carrying molecules.

Our chemistries explore the third possibility for resolution
of the paradox. ACs for ALife could be used to find evolu-
tionary mechanisms simpler than the central dogma of biol-
ogy — this forms the central design objective of our ACs.
It involves seeking simpler molecular machinery than DNA,
RNA and protein, which will be easier to simulate compu-
tationally. However, by discarding the central dogma of bi-
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ology, we have lost the ability to design replicators by look-
ing at biology and attempting to copy what we see because
these primitive replicators no longer exist on the Earth. We
are faced with the task of designing from scratch an AC that
can support recognisable evolution.

The paradox is related to ACs in two ways. Firstly, if we
have an AC that cannot resolve this paradox, then the AC has
a (small) maximum genome size that it can not overcome. If
we want genomes larger than this size, then we must ex-
plicitly add in high-fidelity replicators. Secondly, the ACs
may foster new theories about how Eigen’s paradox can be
resolved. We can design ACs to test these new theories.

Implementations
We now present a brief overview of the three chemistries ref-
erenced in figure 1. In its most basic form, an AC is defined
as[4]:

• A set of molecules (both those present at a point in time
and all possible molecules)

• Reactions that describe transformations between sets of
molecules

• An algorithm which determines how the reactions are ap-
plied to the set of molecules present

A number of different ACs have been developed from this
basis, without much consensus on which approach is ‘best’.
However, there have been a number of different properties
and characteristics proposed as interesting features or re-
quirements. ACs have also been applied in various other
contexts [23, 20], but the power of ACs is limited if evolu-
tionary processes are not implicit in the representation.

Our approach is to decompose the problem into three
phases: emergence of self-replicators (AC1); evolution of
evolvability (AC2); stable but primitive evolutionary system
(AC3).

AC1: Emergence of Replicators
AC1 is an analogue of the pre-biotic soup in which early
replicators emerged. It is designed as an source of open-
ended chemical novelty and innovation, in which replicating
molecular species may be initially formed. In this phase,
replicators do not yet exist and therefore other processes and
structures, such as autocatalytic sets [19] and hypercycles
[6, 7, 8], are the focus of investigation.

One of the problems investigating the earliest phase of
evolution is that there cannot be an assumption of a pre-
existing replicating structure — it must be initially formed
from other reactions. In order to achieve this, the chemistry
must spontaneously generate sufficient novelty in order to
describe templates and the molecular machinery to replicate
them.

To implement an AC for this phase, we have developed a
novel molecular representation classification, which we call

Organism

Evolutionary
algorithm

Meta-evolutionary
a lgorithm

Meta-meta-
evolutionary a lgorithm

changes

changes

changes

Organism

Evolutionary
algorithm

changes

produces

a ) b)

Figure 2: a) Naive meta-evolution suffers from the problem
of how many meta-levels to use. b) Having the evolutionary
algorithm as an emergent property of the organisms solves
this problem. Evolution itself can choose how many levels
of evolutionary algorithm to encode within the organism.

“sub-symbolic”. Rather than reactants and products of re-
actions being defined in advance, they are determined by
bonding criteria applied to bonding properties of the molec-
ular species present; the bonding properties are themselves a
emergent property of each atoms collection of sub-symbolic
components. This means that for any molecule (either cre-
ated within the system or provided by external input) all of
its interactions can be generated dynamically.

Rather than try to specify a single AC that can achieve the
emergence we seek, we have designed a framework within
which many ACs can exist (RBN-World [10]). To find in-
dividual ACs that may achieve the goal of emergent replica-
tors within this design space, we have developed a series of
tests for desirable low-level properties. These form a set of
‘stepping stones’ that lead towards self-replicating systems.
[9]

At the end of this phase, we anticipate a collection of
molecules that form an autocatalytic set — production of
every member of the set is catalysed by at least one member
of the set. Taken as a cooperative collective, this forms a
proto-organism capable of growth and replication.

AC2: Meta-Evolution
AC2 overlaps with AC1. AC2 is a meta-evolution phase
in which speed and fidelity of replications increases as a
loosely-replicating proto-entity becomes more capable of
maintaining both its own fidelity and the fidelity of a larger
reaction network [21]. The proto-entity will gradually
evolve robust replication until it is widespread and preva-
lent.

AC2 implements an analogue of a traditional genetic algo-
rithm (GA) in the same medium as the organisms themselves
(figure 2). This requires the organisms and algorithm to be
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implemented in a single representation, which a sufficiently
rich AC can provide. We have identified the following re-
quirements of an AC for meta-evolution:

• template molecule(s) that encode enzymes, including in-
directly encoding the reactions that they can perform.

• translation enzymes that “read” the template molecule and
construct the enzymes that are coded for.

• replication enzymes that can copy templates with some
stochastic error so that mutations can occur.

We will encode initial examples of all of the above into
template molecules within the system. This will allow meta-
evolution to happen, because mutations occurring on the
template molecule can cause the EA to change.

One part of evolving the EA is evolving the concept of
mutation. We enable evolution of mutation because mu-
tations can occur due to inexact copying of the template
(mutation-on-copy). The replication enzymes are encoded
on the template, and so the process of replication (and thus
the process of mutation) can evolve under its own control.

The replication machines in this AC contain complex in-
ternal structure, and replication is a multi-step, character-by-
character process. To replicate a template molecule, each
character is replicated in turn by the following sequence of
steps:

1. The next character from the template is read;

2. The replicator makes an internal representation of the next
character;

3. Raw materials are picked up from the environment;

4. The raw materials are used to write the next character to
the copy;

5. The replicator moves on to the next character on the tem-
plate and the copy.

Because the copying process involves many steps, there are
many ways in which is can go wrong. This means that many
different types of mutation are possible, and also many dif-
ferent ways in which the replicator can evolve.

The replicators emerging from AC1 can be seen in AC2
as primitive and unstable with have low fidelity (high muta-
tion). These will undergo metaevolution within AC2 to be-
come the stable replicators of AC 3 exhibiting high fidelity
(low mutation).

In relation to Eigen’s paradox, this AC has a representa-
tion of replicating chemicals that can evolve their own copy-
ing fidelity. Therefore changes in the template and/or copy
fidelity can be recorded over time and different conditions.
This will enable examination of the conditions under which
Eigen’s paradox is resolvable and if it is inevitable.

AC3: “RNA world”
AC3 represents molecules that can copy with relatively high
accuracy, even though there is not necessarily a distinction
between template and machine.

AC 3 is called Stringmol . The Stringmol chemistry was
developed to emulate molecular systems in such a man-
ner that the binding and reactions between molecules could
be varied using evolutionary approaches. In a nutshell, a
molecule consists of a sequence along with a set of flags and
pointers that allow the sequence to be executed as a program.
Further details are available in [16] and [14]

There are two key features of the Stringmol system. The
first is the binding scheme, which specifies the probability
of two molecules joining together and creating a reaction.
The second is the mutation-reaction scheme, which specifies
how reactions occur under an environment of mutation, and
determines what the products of the reaction are. Thus we
have rules that handle the alignment of two strings of sym-
bols (bound pair of molecules), and interprets the strings as
a program and a data repository simultaneously.

Experiments with mutation in the Stringmol system have
shown that a wide variety of phenomena can occur with no
extenally-applied evolutionary pressure. In particular, we
see the spontaneous emergence of autocatalytic sets from a
basic replicase system [15].

Properties of Artificial Chemistries
It is useful to consider ACs in the light of the properties of
ALife listed in [1]. ACs offer a route to generating “life”
from the non-living by: A.2, exploring the transition to
life in silico; A.3, discovering novel living organisations;
A.4, determining how rules and symbols are generated from
physical dynamics. Once a ‘living’ AC is constructed, then
investigation can proceed, to: B.6, determine what is in-
evitable in open-ended evolution; B.7, explore evolution-
ary transitions (e.g. Eigen’s paradox); B.8, provide the base
layer of a hierarchical dynamical system; B.10, form the
currency of an information processing theory for evolving
systems. These ALife properties drive the properties of the
underlying chemistry. One classification of desirable prop-
erties of an AC by Suzuki et al was published in [24] and
is reproduced for convenience in table 1 alongside our sum-
marised interpretations. We divide those ten properties into
three groups: molecule & reaction properties, membrane
properties and mutation properties.

New properties
Each of the three authors of this paper has independently de-
veloped ACs analogous to different stages in early evolution.
We use these three ‘case study’ ACs to think about desirable
properties of ACs in general.

In addition to the properties in table 1, there are some
further properties we perceive to be desirable in an AC:



Proc. of the Alife XII Conference, Odense, Denmark, 2010 86

No. Property Interpretation

1. The symbols or symbol ingredients be conserved (or quasi-conserved)
in each elementary reaction, at least with the aid of a higher-level man-
ager.

Conservation of Mass

M
ol

ec
ul

es
&

re
ac

tio
ns

2. An unlimited amount of information be coded in a symbol or a sequence
of symbols.

Molecules composed of
atoms & bonds

3. Particular symbols that specify and activate reactions be present. Catalysis
4. The translation relation from genotypes to phenotypes be specified as a

phenotypic function.
Phenotypic gene expression

5. The information space be able to be partitioned by semi-permeable
membranes, creating cellular compartments in the space.

Cells

M
em

br
an

e

6. The number of symbols in a cell can be freely changed by symbol trans-
portation, or at least can be changed by a modification in the breeding
operation.

Variable cell volume / con-
centration

7. Cellular compartments mingle with each other by some random pro-
cess.

Cell movement

8. In-cell or between-cell signals be transmitted in the manner of symbol
transportation.

Diffusion through mem-
branes

10. Symbols be selectively transferred to specific target positions by partic-
ular activator symbols (strongly selective), or at least selectively trans-
ferred by symbol interaction rules (weakly selective).

Membrane pores & pumps

9. There be a possibility of symbols being changed or rearranged by some
random process.

Spontaneous Mutation

M
ut

at
io

n

Table 1: The list of desirable AC properties from [24]. On the left is the original description, on the right is our summarised
interpretation. NB: we classify property 10 as a membrane property along with 5-8 rather than a genome property with 9.

11. Novelty & innovation This is a property desired in
evolutionary systems, and AC design should reflect this. If
a new molecule is introduced to the chemistry, it should be
able to interact with the other molecules present without re-
quiring the AC to be changed. Furthermore, the AC should
be able to generate novel molecules itself to allow innovative
genetic architectures to emerge. This is related to Suzuki’s
properties #2: Atoms and bonds and #3: Catalysis, but rather
than defining the function of molecules a priori, the possi-
bility of novelty should be a general property of the molecu-
lar design. It is clear that ACs require this property in order
to resolve Eigen’s paradox, since without novelty there can
be no transition between replicating systems. One can de-
tect this property in absolute terms by asking whether it is
possible to add a new molecular species to the system. If
it is possible, one should then ask how easy it is to do so,
and how easy it is for the system to generate new molecular
species.

12. Range of Scales Although we do not think that all evo-
lutionary phases should be supported by a single chemistry,
we do think that chemistries should exhibit a wide range
of scales — both spatially and temporally. Much of biol-
ogy relies on reactions that proceed much slower than oth-

ers, spanning several orders of magnitude in some cases. A
large range of sizes of molecules are also present — from
small metabolites consisting of a handful to atoms, to huge
enzyme complexes with tens of thousands. Without such
diversity, an AC would have limited scope for evolutionary
exploration and therefore be restricted in terms of its poten-
tial behaviours and solutions to encountered problems.

A large range of spatio-temporal scales would also al-
low for smoother evolutionary slope climbing by gradual
improvements once a solution has been found, for example
with a faster rate or greater stability. Scale need not be mea-
sured in terms of size alone. Multi-scale representations are
useful, because they offer a route to increase the efficiency
of the system.

13. Dynamic environment History is littered with cases
where an environmental change triggered an evolutionary
breakthrough (punctuated equilibria [13]). There is also
evidence that variation maintained by different environ-
ments can provide useful raw material for evolution, such as
around deep-sea geothermal vents [11]. These dynamic en-
vironments can occur on many different scales; real-world
biology varies from day/night cycles, to changing seasons
and ice ages on a temporal scale and varies from micro-



Proc. of the Alife XII Conference, Odense, Denmark, 2010 87

environments between soil particles, through regional varia-
tions to continents (which themselves change over geologi-
cal timescales). In order to utilise some of these dynamics,
an AC should have parameters that can be varied (over time,
space or both) to created different environments – analogous
to temperature, pressure, pH, or other similar characteristics.

Dynamic environments allows a system to fully explore
a chemistry, particularly if the rate of mutation varies. If
the system can resolve Eigen’s paradox locally within one
environment, it can improve there and then spread to other
environments — even if it could not evolve in those other
environments directly.

14. Redundancy & degeneracy Successful evolutionary
systems often contain neutral mutation. In an AC, this can
be characterised by redundancy — multiple molecules that
participate in equivalent reactions. However, neutral mu-
tation is rarely completely neutral; it may have small side-
effects. Degeneracy in an AC captures this by allowing two
molecules to be equivalent for some reactions, but not for
others.

In relation to Eigen’s Paradox, redundancy and/or degen-
eracy can help by allowing multiple molecules to fulfil the
same roles in the system. If one or more of these are lost
through mutation, then the others may be able to partially
or fully compensate. Techniques for measuring redundancy
and degeneracy should be applicable to the AC, and give a
feel for the expressive power of the system.

15. Emergent complex properties The reactions a molec-
ular species participates in should be based on its struc-
ture, with similar molecules participating in similar reac-
tions. However, there should be variation in this mapping
such that while similar molecules in general have similar
interactions, some similar molecules have very different in-
teractions. This will allow an evolutionary landscape where
gradual change generally occurs, yet there are some large
changes in some regions. Combined with appropriate evolu-
tionary pressures, this will lead to an efficient evolutionary
engine.

16. Unified molecular representation There should be
no ‘special privileges’ for template molecules — the prop-
erty of holding genetic instructions should be an emergent
property of the AC. This does not mean they have to be
constructed from the same materials as other aspects of the
chemistry, only that they should obey the same constraints
and rules. In addition, if explicit membranes are used, they
should also be represented without ‘special privileges’.

The advantage of a unified molecular representation is
that any part of the system can potentially interact with
by any other part. This allows wider-ranging evolutionary
changes and potentially highly innovative solutions to meta-
evolutionary problems. It also means that the ‘best’ imple-
mentation of template molecules (or membranes) does not

need to be hard-wired into the system beforehand — the sys-
tem can be bootstrapped with an implementation that works
and go on to optimise this itself.

17. Stochasticity Deterministic interactions between
agents are a potential barrier to novel behaviour, and
stochasticity can help smooth evolutionary changes by
sampling the search space of possible alternatives. This
leads to more efficient evolution when there are a large
number of possible improvements.

18. Emergent mutation rates The replication mecha-
nisms should enable the rate of error-on-copy to be modi-
fied. This allows the evolution of evolvability. A system
that can reduce its own mutation rate in this manner can re-
solve Eigen’s paradox by allowing larger templates to mu-
tate less and so be more stable. But since the mechanism
of genotype-encoding is changeable, the rate at which error
accumulates cannot be set as an individual system-level pa-
rameter. Rather, the manifestation of error emerges from the
reaction mechanism of the AC.

Mapping properties to three chemistries
Our three chemistries conform to the new properties listed in
the previous section, thought no one chemistry contains all
of them, but do not conform to some of the properties listed
[24]. Below we show where our chemistries fit into Suzuki’s
and our own framework and the implications of those design
decisions.

AC 1: Emergence of Replicators This AC analogue has
a number of key properties within it. AC 1 implements #1:
conservation of mass and #2: atoms and bonds of Suzuki’s
properties. Properties #3: catalysis and #4: phenotypic gene
expression are deliberately not implemented in advance but
are sought as emergent properties of the system. Our new
property #11: novelty & innovation is the most important for
this problem as we rely on novelty in order for replicators to
emerge. Property #16: unified molecular representation is
also key as we do not define what molecules fulfil which
functions of the evolution of the system. #15: Emergent
complex properties is another property that this systems is
designed to exhibit, and is fundamental for the problem we
are attempting to address.

Some properties we deliberately do not attempt to include
in this AC. #18: Emergent mutation and Suzuki’s #9: spon-
taneous mutation are not applicable to this phase, as there
is not an explicit genome to be mutated; mutation-on-copy
may appear as an emergent phenomenon however.

AC 2: Meta-Evolution The purpose of this AC is to inves-
tigate a rich mutation scheme, in particular #18: emergent
mutation This is done by an enzyme-driven copying pro-
cess with both #14: redundancy and degeneracy and #17:
stochastic properties. This AC will display the emergent
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complex property of meta-evolution when the copying ma-
chine is both encoded on the template being copied (which
requires a #16: unified molecular representation) and situ-
ated in a #13: dynamic environment to provide a changing
evolutionary pressure.

Relating this to Suzuki’s properties, exploring #9: sponta-
neous mutation is also part of the purpose of this chemistry.
In order for there to be a template to copy, this chemistry
must satisfy #2: atoms and bonds. To be able to encode
enzymes, we must satisfy #3: catalysis. The translation ma-
chines described above satisfy #4: phenotypic expression as
they are both encoded and represented within the chemistry.
To make evolution happen, this chemistry will enforce #1:
conservation of mass through the atomic structures, which
imposes additional restrictions upon the potential evolution-
ary solutions. As with AC 1 above, this chemistry is not
especially concerned with membranes, and so properties #6,
#7, #8 and #10 are not applicable to this chemistry. How-
ever, property #5: containers is satisfied in that membranes
are implemented as simple containers, but their only func-
tion is to keep enzymes close to the templates they are acting
on. There is no direct cell-cell interaction.

AC 3: “RNA world” Relating this AC to the the molec-
ular and mutation-reaction properties described in table 1
[24] indicates that #1: conservation of mass, #2: atoms and
bonds, #3: catalysis, and #4: phenotypic gene expression are
all applicable to Stringmol . The mutation-reaction frame-
work is more complicated however. In Stringmol mutation
only occurs as new molecules are constructed, not sponta-
neously as specified by Suzuki et al. Mutations occur during
the selective copy of symbols during a reaction of a partic-
ular type. This mimics biology more closely and can poten-
tially be built into the AC to implement the meta-evolution
described in AC 2.

Although this deviates from Suzuki et al.’s specification,
mutation still occurs and it’s rate can be controlled in a sim-
ilar manner to the ‘spontaneous’ mutation in described (a
‘cosmic ray rate’). Stringmol system allows reliable replica-
tion to be specified, but has a set mutation rate that allows
adaptation to occur. These are the conditions in an ‘RNA-
world’ which the Stringmol system was designed to emu-
late, and which has the capability to produce innovative re-
sponses.

Turning to the remainder of our new properties, #14: Re-
dundancy & degeneracy are properties of this system, as
well as #17: stochasticity due to the variable binding affini-
ties. There is also the possibility for #11: novelty & inno-
vation in terms of novel sequences with novel behaviours.
Interestingly, the baseline mutation scheme allows a richer
suite of macro-mutations to arise, with dramatic changes
in the inter-molecular dynamics of the replication process.
Stringmol therefore possesses our new property #18: Emer-
gent mutation rates.

Conclusion
AC designs have to trade off between being rich enough to
exhibit interesting behaviours and being simple enough to
be computationally tractable. To address this, we develop
abstractions with two goals: 1, to make the rich behaviour
computationally tractable, and 2, to discover which proper-
ties underlie the richness. When using ACs to address evo-
lutionary problems, the goals become further complicated.
For example, in real chemistry the problems and solutions
regarding survival of the organism have changed over time
— the first forms of life were very different to modern popu-
lations of multi-cellular organisms. We use Eigen’s paradox
as an example of applying ACs to a evolutionary problem.
We are not aiming to provide a resolution of Eigen’s para-
dox: we provide a way of thinking about problems in which
the properties and behaviours of the chemistry change over
time (before, during and after the paradox).

In this work we have not looked at properties involving
membranes and other spatial characteristics (#5: cells with
membranes, #6: variable cell volume / concentration, #7:
cell movement, #8: diffusion through membranes, and #10:
membrane pores & pumps from Suzuki et al.). This is be-
cause these properties are predominantly under the control
of the ‘kinetics’ used for any particular implementation of an
AC. In our experiences, the kinetics component of the model
can often be interchanged between different ACs depending
on the features under investigation and available computa-
tional resources. For example, previous work on membranes
in an AC [17, 18, 3], whilst clearly demonstrating interest-
ing behaviours, poses computational challenges when used
for investigations of evolution and novelty.

By considering specific ACs for three phases of evolution
in the context of Eigen’s paradox, we have concentrated on
the properties needed for each phase. In all of these ACs,
sub-symbolic atomic representations are useful because they
preclude the need to create a set of reaction rules whenever
a novel molecular species is produced, and so provide an
appropriate platform for evolution to discover and preserve
novel solutions which confer some benefit on the system.
Effectively, using the sub-symbolic representation provides
many properties for ‘free’; #1: conservation of mass, #2:
atoms and bonds and #3: catalysis from Suzuki’s proper-
ties as well as #11: novelty & innovation and #16: unified
molecular representation from our additional properties.

We have presented eight new properties in addition to the
ten given in [24]. We have used Eigen’s paradox as a context
to map these properties onto our ACs to demonstrate how
they can be used in the design and evaluation process. The
resulting set of principles can be used for the design of a
more generally applicable set of ACs.
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Extended Abstract 
Toll-like receptors (TLRs) offer the first line of host defense by recognizing the danger signals of pathogen and by 

inducing intracellular signaling that culminate in pathogen specific innate immune responses.  We have been studying the early 
events that occur upon engagement of TLRs in cells.  These events include protein phosphorylation and protein-protein 
interactions1.  Intracellular protein interactions mediated by adapter proteins in the host are critical for generating an innate immune 
response. We have studied these interactions in both the cellular context, and by using isolated proteins. To minimize the 
complexity of working with cells, we are now developing a bottom-up approach to recreate the initial signaling that is triggered by 
TLRs, by generating protein assemblies in vitro. This will make it possible to directly and cleanly understand the prototypical 
signaling cascades involved in the ability of the host to detect pathogen components and mount an appropriate response. Although 
we are still very far from rationally assembling and understanding all of the design principles under which biological networks 
operate, tools of synthetic biology and computation developed by us and others offer the prospect of design and manufacture of 
networks with reportable and predictable properties. 

To investigate the nature and specificity of interactions taking place in the host, we are using both cell-based and cell-free 
approaches.  Cutting-edge reporter technologies help us design and analyze these systems.  The split-luciferase protein technology 
can report various protein interactions in a high-throughput format 2. The split-green fluorescence protein (GFP) technology, has 
allowed us to study protein folding and aggregations of protein domains 3,4, and is available in a multi-color format. Finally, the 
novel, triple-split GFP technology developed in the Waldo laboratory at LANL allows us to investigate specificities of protein-
protein interactions by flow cytometry and imaging. Homology-based5 and docking-typed6 modeling approaches have allowed us to 
develop protein oligomer structures, and identify and validate critical interfaces that play a role these interactions. Finally, we are 
building predictive models of TLR signaling events and attempting to understand the design principles of cellular regulatory 
systems7,8.  In summary, synergisms between experimental and theoretical approaches will allow us to develop artificial signal 
transduction systems that mimic the early steps of pathogen recognition by the host innate immune system. Such systems will allow 
us to understand, manipulate, and control early steps that play a role in pathogen detection.  
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Abstract

There are deep underlying similarities between Rosen’s
(M,R) systems as a definition of life and the RAF sets (Re-
flexive Autocatalytic systems generated by a Food source) in-
troduced by Hordijk and Steel as a way of analyzing autocat-
alytic sets of reactions. Using RAF concepts we have system-
atically explored the set of possible small idealized metabolic
networks, searching for instances of (M,R) systems. This
exhaustive search has shown that the central requirement of
Rosen’s framework, unicity of �, becomes harder and harder
to obtain as the network grows in size. In addition, we give
an expression for operators f , � and � in terms of RAF sets.

Introduction
Metabolic closure is easy to introduce informally but rather
difficult to define. Although it is crucial for understanding
living organization it was neglected until late in the 20th cen-
tury. The rebirth of the scientific study of biological organi-
zation can be traced back to the 30-year period from 1958 to
1987, which saw the publication of several distinct perspec-
tives on closure, including (M,R) systems (Rosen, 1958), the
chemoton (Gánti, 1975), hypercycles (Eigen and Schuster,
1977), autopoiesis (Maturana and Varela, 1980), autocat-
alytic sets (Kauffman, 1986), and the first Artificial Life con-
ference in Los Alamos in 1987 (organized by Christopher
Langton). There was, however, an almost complete lack of
cross-fertilization between the different schools of thought,
with each theory developed with almost no reference to any
of the others (Letelier et al., 2006; Cornish-Bowden et al.,
2007; Cárdenas et al., 2010). The most extreme case of iso-
lation is represented by Robert Rosen (1934-1998), who in-
troduced the concept of (M,R) systems early in his career
to represent biological metabolic networks. His isolation
was aggravated by the intricate nature of his writings, in
which biological ideas were mixed with abstract mathemat-
ics. Furthermore, he expressed his mathematical ideas in
non-standard notations and without any effort to help the
reader by giving examples or offering many needed clari-
fications.

In recent years, we have undertaken a systematic attempt
to understand and explain the core notions of Rosen’s the-

ory (Letelier et al., 2006). We have (a) clarified the re-
lationship between (M,R) systems and autopoiesis (Lete-
lier et al., 2003); (b) reframed Rosen’s original formula-
tion in terms of biochemical networks, with the introduction
of the notion of “organizational invariance” for understand-
ing Rosen’s elusive mathematical operators (such as his �);
(c) made a clear distinction between (M,R) systems in gen-
eral and (M,R) systems with organizational invariance, a no-
tion that is only implicit in Rosen’s writing (he confusingly
called these “replicative” (M,R) systems); (d) given mathe-
matical and biological examples of simple idealized systems
that can be understood within Rosen’s intellectual frame-
work; (e) clarified how these notions can be used to explore
the origin of living systems and how they should be used in
the context of what has come to be called “systems biology”.
Finally, we have also shown how our formulation of (M,R)
systems can shed light on the problem of the computability
of living systems (Cárdenas et al., 2010). This short sum-
mary is intended simply to underline how fruitful Rosen’s
view of metabolic closure has become, and to explain why
we feel that the boundaries of our knowledge can be pushed
to qualitatively new grounds by continuing the exploration
of his ideas.

The systematic absence of examples (whether mathemat-
ical or biological) from Rosen’s work has always been prob-
lematical, especially of simple examples that can serve as
heuristic devices for enhancing theoretical research. In this
paper we address the two points outlined above by pointing
out the close relationship between (M,R) systems and a re-
cent theory of living organization based on what have been
called RAF sets. We show how many examples of simple
(M,R) systems can be found by a computer algorithm con-
structed on the model of RAF sets. We discuss how the tech-
nical tools originating in RAF sets can be used to enhance
the research of (M,R) systems, and specifically we address
the problem of the nature and unicity of Rosen’s � in the
context of RAF sets.
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(M,R) systems
Rosen’s original formulation of (M,R) systems (Rosen,
1958), relied on a view of metabolism as a graph, and on
a very abstract view of enzymes as functions (in the mathe-
matical sense). The metaphor of metabolism as a graph, new
in 1958, has subsequently been adopted by many people,
without attribution to Rosen. The view of enzymes as func-
tions has not attracted a wide following as Rosen’s formu-
lation seems unnecessarily abstract, without bringing prac-
tical or theoretical benefits. He used this approach in order
to be able to use category theory for framing his important
intuition about metabolic closure. Although this demanding
mathematical approach has some advantages, as described
in our previous work, we shall not use it here as the funda-
mental ideas exposed by Rosen can be explained using set
theory, and thereby become accessible to mainstream biolo-
gists.

Our analysis of (M,R) systems, together with our exam-
ples, shows that the crucial aspect to understand organiza-
tional invariance is to understand the nature of the equation

�(b) = f

Here � represents the aspect of biological organization that
relates how catalysts are produced by the system. This equa-
tion seems to imply that a living system is organized in such
a way that knowing b (right-hand side of biochemical equa-
tions) should be enough to unambiguously assign the cata-
lysts (represented by f ) to the reactions in the network.

Rosen, moreover, requires that there be only way to carry
out this assignment, i.e., that there is only one mapping �

such that �(b) = f , a demanding assumption indeed. In
other words, that we can reverse the procedure that gives f
back from �. The reverse procedure is Rosen’s �, so that

�(f) = �

Mathematically, � is just the inverse of the “evaluation at
b” operator that evaluates every function at b. Biologically,
� represents the mechanisms that specify how the process
of creating catalysts is maintained over time, i.e., organiza-
tional invariance.

To clarify these notions, we created a small metabolic net-
work where they can be embodied in actual molecules that
implement the functions � and � (Letelier et al., 2006).

RAF sets
We now give a brief introduction to the work of Hordijk and
Steel (2004), who constructed a formal framework to study
autocatalytic systems. Their main aim appears to have been
to expand Kauffman’s formalism about autocatalytic sets
(Kauffman, 1993), to respond the criticisms that arose out
of Kauffman’s assumptions. At the same time, their analysis
developed interesting algorithms that handle this expanded

Figure 1: (M,R) system described by a catalytic reaction
graph. Gray squares represent reactions and circles denote
metabolites and enzymes. The black arrows represent chem-
ical transformations while gray dashed arrows indicate cat-
alyzations. This small network also contains a RAF set gen-
erated by the food set (S;T;U).

framework. As a result, they have produced a powerful ap-
proach that can be used to analyze a wide variety of systems,
and here we shall describe how it applies to (M,R) systems.
Their formalism depends on the following two sets: X , the
set of molecules involved in metabolism as metabolites, cat-
alysts or external input material (termed food in the formal-
ism), and R, the set of reactions that defines the metabolic
network.

Each reaction r is represented as a tuple (A;B), where
A;B ⊂ X , A ∩B = ∅, A are the reactants and B the prod-
ucts of reaction r. This formalism is similar to Rosen’s
treatment of enzymes as transformations between two sets
of molecules.

Further, to formalize the notion of catalysis, a specific set
C (called the set of “catalyzations” by Hordijk and Steel),
is introduced. Each catalyzation c is a tuple (x; r), where
x ∈ X is the catalyst and r ∈ R is the reaction catalyzed
by x. The similarity with Rosen (1958) is evident, as any
given catalyzation c = (x; r) can be rewritten as c = (x; r) =
(x; (A;B)) = (A;x;B), making transparent the fact that
molecule x catalyzes the reaction A→ B.

With the set of catalyzations defined, Mossel and Steel
(2005) introduced a function 
 that helps to simplify formu-
lae in later sections:


C(A; r) = {
1 if ∃x ∈ A ∶ (x; r) ∈ C,
0 otherwise (1)

Additionally, a specific subset of X containing every
molecule that is used but not produced by the metabolism
is denoted F and it represents the food molecules.

Thus a catalytic reaction system over a food source F is
composed by a triplet L = (X;R;C) that defines the uni-
verse of molecules (X), the reactions occurring among these
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molecules (R) and the identity of the catalyst involved in
each reaction (C) (see Figure 1). The following additional
functions are defined: �(r) = A and �(r) = B, which re-
turn the reactants and the products of any given reaction r,
respectively. With the help of these elementary functions
the same notion can be extended to a set of reactions R′

as �(R′) = ⋃r∈R′ �(r), where R′ ⊆ R. This definition
captures the conglomerate of molecules that participate as
reactants for a set of reactions. A similar definition holds
for �(R′), the products of a subset of reactions. With these
ideas, we can define the closure of a subset X ′ ⊆ X relative
to R′ ⊆ R (clR′(X ′)) as the set of reachable molecules that
can be synthesized by starting from X ′ and applying all the
reactions in R′ until no new molecule types appear. Then,
a non-empty reaction subset R′ of R is a reflexively auto-
catalytic network over F if �(R′) ⊆ clR′(F ) and for each
r ∈ R′, 
(�(R′)∪�(R′); r) = 1. In other words every cata-
lyst must be produced by a reaction in the same system or be
part of the food set. This definition allows many reflexively
autocatalytic networks in a catalytic reaction system. The
network is F -generated if every reactant is either produced
by the system or incorporated as a food item (i.e. formally
�(R) ⊆ F ∪ �(R)). A network that is reflexively autocat-
alytic and F -generated is called a RAF set (see Figure 1).

RAF sets can be understood informally as an interdepen-
dent set of biochemical reactions where all of the metabo-
lites are produced by the collection of reactions R′. The
advantage of this formalism is that it is precise enough to be
coded in well defined algorithms that check whether a given
reaction subset R′ ⊆ R is a RAF set over some food set F .
We have implemented these algorithms, and we have created
a simple framework in Lisp and Python, allowing us to carry
out qualitative and quantitative analyses of (M,R) systems in
terms of RAF formalism. Before discussing this, however,
we need to show the extent to which RAF sets and (M,R)
systems are equivalent.

RAF sets and (M,R) systems
Are (M,R) systems RAF sets? The original definition of an
(M,R) system (Rosen, 1958) explicitly requires every cata-
lyst (M in his original symbols) must be produced by the
metabolism (R sub-systems are responsible for this task).
This condition shows that (M,R) systems must be reflexively
autocatalytic (RA) sets. Although, this does not necessarily
imply that a RA set is an (M,R) system, because metabolic
closure requires that no catalyst is given in the food set. In
other words, a RA set is not in general an (M,R) system, but
it may become one if all the catalysts in C are produced by
the system and are not part of the food set F .

As (M,R) systems must be open to the flow of matter in or-
der to satisfy thermodynamic requirements, their molecules
derive ultimately from a food source, and they are, obvi-
ously, F -generated in the terminology of RAF sets. So
(M,R) systems without organizational invariance are a sub-

set of RAF sets, as are (M,R) systems with organizational in-
variance. The latter must, however, have additional features
(in the context of RAF) to explain the unusual properties of
operators � and �.

Algorithmic search for simple metabolic (M,R)
systems

In this section we explore the probability of occurrence of an
(M,R) system with a unique assignment of catalysts. For this
purpose we characterized all the possible graphs describing
a system consisting of a number#F of initial molecules and
#R synthesis reactions between any two molecules in the
system. More specifically, we analyzed systems that con-
formed with the requirement of being (M,R) systems, that
is, we did not allow any catalyst to be food, nor a reactant
nor a product in the reaction it catalyzed.

Attention must be paid to avoid having two apparently
distinct reaction networks exhibiting the same topological
structure. The mathematical term for this is graph isomor-
phism (see Figure 3). Two graphs are said to be isomorphic
when they can be transformed into each other by a simple
relabeling of their vertices. Isomorphic metabolisms can be
grouped under an equivalence class.

Thus, for a given pair (#F;#R) we enumerate the num-
ber of all possible different equivalence classes of reaction
networks. Next, for each one of these reaction networks, we
generated the set of all possible assignments for the catalysts
complying with the restrictions stated previously. But again,
by the argument of relabeling, the set of assignments can be

Figure 2: Diagram representing an example for the proce-
dure to compute results from table 1. In the first step, the
equivalence classes (3 in this example) are estimated for a
given (#F;#R); in the second step, all possible catalysts
assignments for each equivalence class are calculated.
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(a) (b) (c)

Figure 3: Three automatically generated RAF sets illustrating equivalence class and multiple catalyst assignments. Systems
(a) and (b) have the same topological structure, i.e. there is an isomorphism from one to the other. Although this might not be
obvious at first sight, a simple procedure of node relabeling transforms the reaction pathway in (a) to the one in (b). In spite of
that, the systems differ in their catalyst assignments, i.e., even with the additional rules imposed by (M,R) systems, it is possible
to make different choices when assigning the catalysts. System (c) has the same number of elements in the food set and the
same number of reactions, but it belongs to another equivalence class.

also divided into equivalence classes (see Figure 2). Table 1
shows for (#F;#R) the number of metabolic equivalence
classes and the interquartile range1 of the number of assign-
ments. It can be seen that the number of possible assign-
ments grows steeply with the number of reactions, so that it
becomes more and more difficult to have a unique �(b) = f
(Letelier et al., 2006).

There are some cases in which the range includes the crit-
ical value 1, which implies organizational invariance. Al-
though, if we increase the number of food elements and
leave the number of reactions unchanged, the generated re-
action networks become shallower, and so we can consider
the complexity of the network to be reduced and therefore
the degrees of freedom of the assignation process are also re-
duced. In principle we could separate the trivial cases from
those in which the unicity of the assignment reflects organi-
zational invariance.

Rosen’s triad in RAF formalism
The RAF formalism is not only useful for exploring the land-
scape of possible (M,R) systems, but it can also help to clar-
ify some core concepts of (M,R) systems, namely Rosen’s
triad: f , � and �.

To explore the potential of the RAF formalism, we ana-
lyze the old problem in the theory of (M,R) systems of how

1This refers to the range in which data falls after removing
lower and upper 25%, thus giving a notion of the amplitude of the
mean values

to treat molecules as functions. Consider the following bio-
chemical reaction:

x + y MÐ→ w + z

According to Rosen, this is the manifestation of the follow-
ing function:

M ∈Map(X × Y;W ×Z)
M ∶X × Y →W ×Z
(x; y) → (w; z)

The input elements are derived from the cartesian set X ×Y
that contains all the molecular types that, because of their
structural similarities, can be used by the enzyme M as sub-
strates. Our RAF-derived formalism extends the domain of
function M to the whole set of molecules as follows: M is
a function that, when given a set of molecules with the re-
actants, e.g. (: : : ; x; : : : ; y; : : :), returns a set containing ele-
ments w and z. But if the original input set lacks elements x
or y, we have M(input set) = ∅. Interestingly, with this for-
malism any molecule in the network (x ∈ X) can be treated
as a function operating on any subset (X ′ ⊆X) as follows:

x(X ′) = �(rx) provided that �(rx) ⊆X ′

where rx stands for the reaction that x catalyzes. If x cat-
alyzes more than one reaction2, then the above definition can

2This multifunctionality seems to be necessary for (M,R) sys-
tems (Letelier et al., 2006).
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Number of Number of reactions
food molecules 3 4 5

2 4 2–2 19 12–24 136 144-216
3 10 1–4 72 12–31 685 216–324
4 8 1–6 75 1–36 933 204–432
5 2 1–1 37 1–34 577 1–432
6 1 1–1 11 1–1 212 1–1

Table 1: Number of metabolic equivalence classes and the interquartile range of the number of their possible assignments. The
number of equivalence classes increases dramatically with the number of reactions.

be generalized to:

x(X ′) = {xi ∶ xi ∈ �(r) ∣ (x; r) ∈ C ∧
�(r) ⊆X ′} (2)

Note that defining x only requires the set of reactions each
molecule catalyzes, not the whole reaction network. This
means that every molecule-as-a-function definition depends
only on local information.

In our earlier work, the following small metabolism was
used as a testbed for exploring concepts related to (M,R) sys-
tems.

S +T SUÐÐ→ ST (3)

S +U STUÐÐÐ→ SU (4)

ST +U SUÐÐ→ STU (5)

Then, treating every molecule as a function we have:

SU(S;T) = {ST}
STU(S;U;T) = {SU}

U(S;T;U;ST;STU) = ∅
: : :

The last equation means that molecule U cannot transform
the given mixture, because U is not a catalyst in the given
metabolism. That said, we shall now analyze how concepts
like f , � and � can be expressed with these ideas.

Metabolism: f
One of the basic equations in Rosen’s model is f(a) = b,
in which a represents the input materials (food set) needed
by the organism to produce the complete set of metabo-
lites and enzymes (b), i.e., every molecule reachable by the
metabolism. Therefore, the function f is related to the no-
tion of closure (clR′(X ′)). To be able to define f in our
terms, let us define function expand.

expandX(X ′) =X ′ ∪ ⋃
xi∈X

xi(X ′) (6)

Moreover, let us define how a molecule set (X ′) can be
applied to another molecule set (Y ′).
Ð⇀
X ′(Y ′) =

{
Y ′ if expandX′(Y ′) = Y ′,Ð⇀
X ′(expandX′(Y ′)) otherwise

(7)

Thus, we use a molecular set as a function (distinguished
from regular molecular set by a “semi-arrow”) by repeatedly
applying expand until no further additions occur. With these
two last definitions, for any given catalytic reaction system
L = (X;R;C), f(a) can be defined as:

f(a) =
ÐÐÐÐÐÐÐ⇀
catalysts(C)(a) = b (8)

where catalysts is a function that returns every catalyst in
the given catalyzation set C (catalysts(C) = {x ∶ (x; r) ∈
C}). The function catalysts is not required, as non-catalyst
molecules do not modify the result. But it is used here as
Rosen’s formalism considers only catalysts as the core com-
ponents of the metabolism.

Replacement: �
The formulation of � under RAF sets is more elaborate
as we need to generate a function that using b as an in-
put returns function f . The basic idea is to create mathe-
matical objects that somehow keep track of which catalysts
are produced and how these are created as a result of the
metabolism. To begin we introduce operator Op. This oper-
ator returns the subset of molecules X ′′ ⊆X ′ that can act as
catalysts upon the molecules in X ′ (the given molecule set).

Op(X ′) = {x ∈X ′ ∶ x(X ′) ≠ ∅}
Then, for any given catalytic reaction system L =

(X;R;C) over a food source F , �(b) will be defined as

�(b) =
ÐÐÐÐÐÐÐÐÐÐ⇀
Op(clR(b) ∪ F ) = f ′ (9)

where clR(b) is the closure of b relative to the reaction set R
as defined above. Therefore, � returns the catalyst set that
are reachable from b as a function (f ′), because the “semi-
arrow” over the expression transforms the resulting set into
a function. Thus, f ′ is operationally equivalent to function
f .
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Organizational invariance: �
Finally, it remains to define �, which should take the
metabolism f as input and give us the replacement system�.
The function � receives a hypothetical metabolism f ′ in the
form of a function, thus our first step will be to find which
catalysts can be related to that function f ′. For that purpose,
let us define the function � that given a molecular set b and
a function f ′, returns every reaction catalyzed by molecules
in b, which produces part of the result of f ′ applied to F .

�(b; f ′; F ) = {r ∶ 
(b ∪ F; r) = 1}

By using a new function �, we filter out those reactions
that cannot take place given the molecule set of interest (b ∪
F ).

�(b; f ′; F ) = {r ∈ �(b; f ′; F ) ∶
�(r) ⊆ b ∪ F} (10)

This equation gives the reactions that are related to f ′,
therefore � can be defined. For simplicity we shall define it
as applied to a molecular set b.

�(f ′)(b) =
ÐÐÐÐÐÐÐÐÐÐÐÐÐÐ⇀
Op(cl�(b;f ′;F )(b) ∪ F ) (11)

This formula is similar to that of �, the main difference be-
ing that it uses function � to obtain R instead of using R
directly. In this way � returns a function that, used in an
(M,R) system, would relate unequivocally to �.

Conclusion
A formidable challenge for using (M,R) systems as a frame-
work for modeling biological systems has been the lack of
operational definitions for the important functions f , � and
�. Here we have presented various definitions for those
functions that can be used for any catalytic reaction system.

An important unresolved matter is to make explicit how
Rosen’s equations can be fulfilled using concepts and def-
initions imported from RAF sets. Suppose that a given
molecule set X and reaction set R compose an (M,R) sys-
tem, how can that be proved using RAF-derived functions?
First, let us distinguish a particular subset a of X , which
contains every molecule that is not a product or a catalyst
for any reaction. Then, we can write:

f(a) = b

This signifies “let the molecular system evolve until no fur-
ther novelty can be produced”. Now, we should expect that
using the produced molecules as function will have the same
effect as using f . In our terms, that means:

�(b)(a) = b

This has the important consequence that f becomes equiva-
lent (operationally) to �(b) in this molecular system.
�, as introduced here, does not explain Rosen’s basic re-

sult (�(f) = �, which means that � is uniquely determined
by f ). The definition of � and all associated formulae cannot
explain Rosen’s result, they merely serve as formal language
that could help us to operate on modern metabolic data using
Rosen’s viewpoint.

Since the beginning of the 21st century there has been a
resurgence of interest in the work of Robert Rosen, but it is
not easy to understand and it is not apparent how to advance
in a theory full of powerful but often obscure ideas (Lete-
lier et al., 2006). Many attempts have been made to find
the route to be followed in developing the theory (Wolken-
hauer and Hofmeyr, 2007). Here we apply another formal-
ism (RAF sets) that could be useful for clarifying the nature
and properties of the operators f , � and �.

Finally, we have the caveat that living systems are not
mere “soups of letters”, and their complex properties are due
to more than some combinatorics among molecules. It is ap-
parent that to advance in our understanding of living organ-
isms, it will be necessary to include further considerations
into our current theory. These could be geometrical, ther-
modynamical, topological, or even merely historical, that
is, relative to how life has come into existence, and later
evolved here on Earth.

The RAF formalism may usher in an era in which the the-
ory of (M,R) systems will demand reasoning tools that begin
to resemble category theory more and more... Rosen would
be amused!
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Abstract

“Epigenetic Tracking” is the name of a model of cellular de-
velopment that, coupled with an evolutionary technique, be-
comes an evo-devo method to generate arbitrary 2d or 3d
shapes. The method evolves instructions contained in the
genome inside cells, which guide the development of an ar-
tificial zygote into a mature phenotype: as such it belongs to
the field of “artificial embryology”, or “computational devel-
opment”. In silico experiments have proved its effectiveness
in developing shapes of any kind and complexity, establishing
its potential to generate the complexity typical of biological
systems. Furthermore, it has also been shown how the under-
lying model of development is able to produce the artificial
version of key biological phenomena such as embryogenesis,
“junk DNA”, and ageing. In this paper we show how mal-
functions in the model lead to a phenomenon that can be con-
sidered the artificial equivalent of the process of carcinogen-
esis, which is explored through a simulation and analysed for
two categories of tumours, teratomas and all other tumours, a
distinction that emerges naturally from the framework.

Introduction
The previous work in the field of Artificial Embryology can
be divided into two broad categories: the grammatical ap-
proach and the cell chemistry approach. In the grammat-
ical approach development is guided by sets of grammat-
ical rewrite rules; context-free or context-sensitive gram-
mars, instruction trees or directed graphs (in place of actual
grammars) can be used. L-systems were first introduced by
Lindenmayer (Lindenmayer, 1968) to describe the complex
fractal patterns observed in the structure of trees. The cell
chemistry approach draws inspiration from the early work
of Turing (Turing, 1952), who introduced reaction and dif-
fusion equations to explain the striped patterns observed in
nature (e.g. shells and animals’ fur). This approach attempts
to simulate cell biology at a deeper level, going inside cells
and reconstructing the dynamics of chemical reactions and
the networks of chemical signals exchanged between cells.
Notable examples of grammatical embryogenies are (Lin-
denmayer, 1968) and (Gruau et al., 1996); among cell chem-
istry embryogenies, we recall (Kauffman, 1969) and (Bon-
gard and Pfeifer, 2001).

“Epigenetic Tracking” (E.T.), first described in (Fontana,
2008), is the name of a model of cellular development that,
coupled with an evolutionary technique, becomes an evo-
devo method to generate arbitrary 2d or 3d shapes. The
method evolves instructions contained in the genome inside
cells, which guide the development of an artificial zygote
into a mature phenotype; in silico experiments have proved
its effectiveness in developing shapes of any kind and com-
plexity (e.g. number of cells, number of colours, etc.), es-
tablishig its potential to generate the complexity typical of
biological systems. Furthermore, it has also been shown
how the underlying model of development is able to pro-
duce the artificial version of key biological phenomena such
as embryogenesis, the presence of “junk DNA” and the phe-
nomenon of ageing. The objective of this document is to
use E.T. to explore another key topic in biology: the process
of carcinogenesis. The rest of this document is organised
as follows: section 2 provides a concise description of the
model, section 3 gives a brief overview of the biological im-
plications already analysed in previous work and outlines the
main facts about carcinogenesis, sections 4 and 5 deal with
artificial carcinogenesis, section 6 discusses the results and
section 7 draws the conclusions.

The Model of Development
Shapes are composed of cells deployed on a grid; develop-
ment starts with a cell (zygote) placed in the middle of the
grid and unfolds in N age steps, counted by the variable “Age
Step” (AS), which is shared by all cells and can be consid-
ered the “global clock” of the organism. Cells belong to two
distinct categories: “normal” cells, which make up the bulk
of the shape and “driver” cells, which are much fewer in
number (typical value is one driver each 100 normal cells)
and are evenly distributed in the shape volume. Driver cells
have a Genome (an array of “instructions”, composed of a
left part and a right part) and a variable called cellular epi-
genetic type (CET, an array of integers). While the Genome
is identical for all driver cells, the CET value is different
in each driver cell; in this way, it can be used by different
driver cells as a “key” to activate different instructions in the
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Figure 1: Example of development in three steps (AS=0,1,2)
driven by five instructions: a proliferation triggered in step 1
on driver cell labelled with A, three proliferations triggered
in step 2 on driver cells labelled with D, E and F and an
apoptosis triggered in step 2 on driver cell labelled with G.
Internal view on the left, external view on the right.

Genome. The CET value represents the source of differen-
tiation during development, allowing driver cells to behave
differently despite sharing the same Genome. A shape can
be “viewed” in two ways: in “external view” cells are shown
with their colours; in “internal view” colours represent cell
properties: blue is used for normal cells alive, orange for
normal cells just (i.e. in the current age step) created, grey
for cells that have just died, yellow for driver cells (regard-
less of when they have been created).

An instruction’s left part is composed of the following el-
ements: an activation flag (AF), indicating whether the in-
struction is active or not; a variable called XET, of the same
type as CET; a variable called XS, of the same type as AS.
At each step, for each instruction and for each driver cell, the
algorithm tests if the instruction’s XET matches the driver’s
CET and if the instruction’s XS matches AS. In practise, XS
behaves like a timer, which makes the instruction activation
wait until the clock reaches a certain value. If a match oc-

Figure 2: Development of an artificial human embryo of
200000 cells from a single cell (circled in yellow), gener-
ated with a Genome composed of 300 instructions, evolved
in 40000 generations.

curs, it triggers the execution of the instruction’s right part,
which codes for three things: event type, shape and colour.
Instructions give rise to two ’types’ of events: “proliferation
instructions” cause the matching driver cell (called “mother
cell”) to proliferate in the volume around it (called “change
volume”), “apoptosis instructions” cause cells in the change
volume to be deleted from the grid; the parameter ’shape’
specifies the shape of the change volume, in which the pro-
liferation/apoptosis events occur, choosing from a number
of basic shapes called “shaping primitives”; in case of pro-
liferation, the parameter ’colour’ specifies the colour of the
new cells.

Always in case of proliferation, both normal cells and
driver cells are created: normal cells fill the change vol-
ume, driver cells are “sprinkled” uniformly in the change
volume. To each new driver cell a new, previously unseen
and unique CET value is assigned, obtained by starting from
the mother’s CET value (the array [0,0,0] in the figure, la-
belled with A) and adding 1 to the value held in the ith array
position at each new assignment (i is the current value of
the AS counter); with reference to the figure, the new driver
cells are assigned the values [0,1,0],[0,2,0],[0,3,0], ... , la-
belled with B,C,D, etc. (please note that labels are just used
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in the figures for visualisation purposes, but all operations
are made on the underlying arrays). In practise a prolifer-
ation event does two things: first creates new normal cells
and sends them down a differentiation path (represented by
the colour); then creates other driver cells, one of which can
become the centre of another event of proliferation or apop-
tosis, if in the Genome an instruction appears, whose XET
matches such value. This mechanism constitutes the “core”
of the machine: a CET value produces a change event, which
in turn produces other CET values, some of which produce
other change events and so on, in an indefinitely sustainable
way. Figure 1 reports a simple hand-coded example of de-
velopment.

It may happen that the change volume is not empty; in this
case the most realistic and physically plausible behaviour
would be one in which the newly created cells push the ex-
isting cells outwards, which in turn would push other cells
located in more external positions and so forth, until the
moved cells find empty positions to settle without having to
displace other cells. Since this approach has the drawback
of involving the movement of most cells of the shape, be-
ing thus computationally demanding, a different solution has
been undertaken. It consists of a procedure called “remove-
redeploy” that, as the name implies, removes cells present
in the volume before proliferatio, stores them in a temporary
buffer and redeploys them back onto the grid after prolif-
eration has occurred. The remred procedure plays the role
of “physics”, i.e. the set of rules by which cells are moved
around and find their final position in the shape; based on
our experience, the choice of the particular physics imple-
mented has little impact on the effectiveness of the method,
as long as physics behave predictably and consistently, as
we all expect. This thanks to the distribution of driver cells
throughout the shape, that enables the model of development
to bend any kind of physics to its goals, keeping the shape
plastic during development.

The model of development described, coupled with
a standard evolutionary technique, becomes an evo-devo
method to generate arbitrarily shaped 2d or 3d cellular sets.
The method evolves a population of Genomes that guide the
development of the shape starting from a small number of
zygotes (usually one) initially present on the grid, for a num-
ber of generations; at each generation development is let un-
fold for each Genome and, at the end of it, adherence of
the shape to the target shape is employed as fitness mea-
sure. In silico experiments have proved the effectiveness of
the method in devo-evolving any kind of shape, of any com-
plexity (in terms e.g. of number of cells, number of colours,
etc.); figure 2 shows the development of an artificial human
embryo, produced by a Genome composed of 300 instruc-
tions, evolved in 40.000 generations.

The effectiveness of the method is to be reconducted to
four features of the model of development. The first key fea-
ture is the distinction between normal cells and driver cells;

the latter represent the backbone of the developing shape and
make it possible to steer development acting on a small sub-
set of cells. The second feature is the implementation of
the change events of proliferation and apoptosis in such a
way that they create/delete many cells at once (instead of
one). This increases the power of the single change event
and allows a reduction of the number of change instructions
needed to generate a given shape, speeding up the morpho-
genetic process. The third feature is the explicit presence
of an epigenetic memory, i.e. a cell variable (the CET, only
present in driver cells) that takes different values in differ-
ent cells and represents the source of differentiation during
development, leading different cells at different times to ex-
ecuting different portions of the Genome. The fourth fea-
ture is the mechanism of assignment of the CET values on
the newly generated driver cells during a proliferation event,
which ensures that each new driver cell is assigned a new,
previously unseen CET value; the CET value represents the
link by which these driver cells in subsequent steps can be
picked up by the Genome and given other instructions to be
executed.

Biological Implications
Embryogenesis. The interpretation of Epigenetic Track-
ing as a model of morphogenesis and cell differentiation is
straightforward (the process of natural morphogenesis corre-
sponds to the process of artificial morphogenesis, in which
different cells types are represented by different colours);
in this perspective, driver cells take the role of embryonic
stem cells and have also much in common with the concept
of Spemann’s organiser. The Genome corresponds to the
natural genome, while the cell epigenetic type (CET) corre-
sponds to cellular epigenetic memory, representing in both
the natural and the artificial world the portion of informa-
tion which is different from cell to cell and, as such, con-
stitutes the key ingredient necessary for cellular differenti-
ation. A key difference is that, while embryonic stem cells
are thought to be present only in the embryo, driver cells
are present, evenly distributed throughout the body, for the
entire duration of the organism’s life.

Junk DNA. In molecular biology “junk DNA” is a collec-
tive label for the portions of the DNA sequence of a genome
for which no function has been identified. In E.T., at any mo-
ment in the course of evolution, the set of driver cells/CET
values generated during an individual’s development can be
divided into i) driver cells that activate an instruction dur-
ing development and ii) driver cells that do not activate any
instruction during development; in the same way the indi-
vidual’s Genome is composed by i) instructions that become
active during development and by ii) instructions that do not
become active during development. By analogy with real
genomes, elements in the two categories labelled with ii) can
be defined as “junk” driver cells and “junk” instructions re-
spectively. The presence of junk information in both the set
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of driver cells and the Genome was shown to be inescapably
connected to the core of the Epigenetic Tracking machine, a
requirement essential to its evolvability.

Ageing. As we said, at the end of an individual’s devel-
opment many junk driver cells are present, as well as many
junk instructions; such stock of junk represents a reservoir of
events that can potentially be triggered after the moment of
fitness evaluation (in what can be called the period of “arti-
ficial ageing”). Since these events occur after fitness evalua-
tion, they are by definition not affecting the fitness value; for
this reason they will tend to have a random nature and their
overall effect on the phenotype is more likely to be detri-
mental than beneficial: they can be thought of as a random
noise superimposed on the phenotype created by the instruc-
tions subject to evolutionary pressure. In this perspective,
the presence of a big stock of junk mediates both a species’s
evolvability and its susceptibility to ageing, which appear to
be two sides (one good and one bad) of the same coin.

Carcinogenesis is the process by which normal cells are
transformed into cancer cells. The standard theory of car-
cinogenesis states that carcinogenesis is a multi-step process
that can take place in any cell, driven by damage (muta-
tions) to genes (onco-genes and tumour-suppressor genes)
that normally regulate cell proliferation, which in turn up-
sets the normal balance between cell proliferation and cell
death and results in uncontrolled cell division and tumour
formation. A few cancer-related genes, such as p53, do seem
to be mutated in the majority of tumours, but many other
cancer genes are changed in only a small fraction of cancer
types, a minority of patients, or a subset of cells within a tu-
mour; moreover, some of the most commonly altered cancer
genes have inconsistent effects; for instance the oncogenes
c-fosand c-erbb3 are strangely less active in tumours than
they are in nearby normal tissues; the tumour suppressor
gene rb was recently shown to be hyperactive -not disabled-
in some colon cancers (Gibbs, 2003). In conclusion, the at-
tempt to reconduct tumour formation to a subset of mutated
genes, consistently found in all tumours, has so far been un-
successful.

A more recent theory differentiates from the standard the-
ory in tracing back the origin, the maintenance and the
spread of a tumour to a relatively small subpopulation of
cells called cancer stem cells (CSCs), whereas the bulk of
the tumour would actually be composed of non-tumorigenic
cells that, deprived of the cancer stem cells, would quickly
shrink and disappear. CSCs possess characteristics associ-
ated with normal stem cells, specifically the ability to give
rise to all cell types found in a particular cancer sample;
CSCs may generate tumours through the stem cell processes
of self-renewal and differentiation into multiple cell types.
The implications of this hypothesis for therapy cannot be
overstated: conventional chemotherapies kill differentiated
or differentiating cells, which form the bulk of the tumor
but are unable to generate new cells; a population of CSCs,

which gave rise to it, could remain untouched and cause a
relapse of the disease.

Mathematical models of cancer -see (Wodarz and Ko-
marova, 2006) for a comprehensive review- have found ap-
plication in three major areas: i) modelling in the context of
epidemiology and other statistical data; ii) mechanistic mod-
elling of avascular and vascular tumour growth (including
physical properties of biological tissues); iii) modelling of
cancer initiation and progression; basic mathematical tools
used are ordinary differential equations, partial differential
equations, stochatic processes, cellular automata and agent-
based models. To our knowledge, most mathematical mod-
els stick to the standard theory, are based on differential
equations and have the primary objective of explaining the
dynamics of tumour growth, i.e. they try to answer to “how
fast” tumours grow; our approach, instead, seeks to explain
the mechanism of tumour formation from the very begin-
ning.

Artificial Carcinogenesis I: Teratomas
In this section we will analyse a possibile malfunction of the
model of cellular growth described in section 2 and we will
show how such malfunction gives origin to a phenomenon
that can be considered the artificial equivalent of carcino-
genesis, with reference to a particular kind of tumour called
teratoma. In the Epigenetic Tracking framework, a certain
body part of an artificial organism is generated by a single
driver cell that, once activated, proliferates, generating other
driver cells, some of which in turn get activated, proliferat-
ing and generating other driver cells etc. (the same holds
true for the entire organism). This process presupposes that
each driver cell, at the moment of activation, find itself in
the right position: only in this case is the cascade of events
capable, along with physics, of generating the relevant body
part. This delicate mechanism can be perturbed by both ge-
netic mutations (affecting the Genome) and epigenetic alter-
ations (affecting a driver cell’s CET value). We will now
focus our attention on a case characterised by an epigenetic
mutation that, at step AS(J), turns the CET value (J) of a
certain driver cell C(J), positioned at point P(J), into another
CET value (K); if CET value K is not generated during nor-
mal development, or if it is generated but never activated,
nothing happens.

If, on the contrary, CET value K does get activated dur-
ing normal development to produce a certain body part -say
at step AS(K), when cell C(K) finds itself at point P(K)- as
a result of the mutation the cascade of events destined to
give rise to such body part will start from both point P(K) at
step AS(K) -right place and moment- and point P(J) at step
AS(J) -ectopic place, wrong moment-. Being activated in the
wrong place and moment, cell C(J) is not surrounded by the
right micro-environment: as a result, the cascade of events
originating from C(J) will only manage to mimic the devel-
opment of the relevant body part in a grotesque fashion. Fig-
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Figure 3: Example of artificial teratoma. In step 2 the driver
cell bearing the CET value D is hit by an epigenetic muta-
tion, that turns D into E. As a result, the cell starts behav-
ing like the one bearing CET value E, triggering an arrow-
shaped fuchsia proliferation, generating CET values, that
can in turn trigger other proliferations, etc.

ure 4 provides a hand-coded example of artificial teratoma,
occurring to the shape whose development is shown in fig-
ure 1: in step 1 a mutation turns CET value D into CET
value E: as a result, the same arrow-shaped fuchsia struc-
ture produced in the north-east part of the shape by CET
value E is also produced in the north-west part, in place of
the rectangle-shaped light blue structure produced by D (see
figure 1); if some of the CET values produced by the pro-
liferation originated from E trigger in turn other poliferation
events, such events will occur both in the north-east and in
the north-west part of the shape. The outcome of this sce-
nario is an uncontrolled proliferation with a self-sustaining
nature of limited duration (after a given number of steps,
both sequences halt, as development does not go on forever).

A possible biological counterpart of this scenario is ter-
atoma, a tumour with tissue or organ components resem-
bling normal derivatives of all three germ layers. The tissues
of a teratoma, although normal in themselves, may be quite

Figure 4: On the right: simulation of an artificial teratoma.
In step 6 the CET value belonging to the driver cell circled
in red is turned into the CET value of the zygote: as a con-
sequence the development of the whole embryo starts over
from the point indicated, producing a shapeless mass of cells
in the neck region, composed of differentiated cells. On the
left the normal development sequence for comparison.

different from surrounding tissues, and may be highly inap-
propriate, even grotesque: teratomas have been reported to
contain hair, teeth, bone and very rarely more complex or-
gans such as eyeball, torso, and hand; usually, however, a
teratoma does not contain organs but rather tissues normally
found in organs such as the brain, liver, and lung. Teratomas
are thought to be present at birth, but small ones often are
only discovered much later in life. Fetus in fetu is a rare
form of teratoma that resembles a malformed fetus (it may
appear to contain complete organ systems, even major body
parts such as torso or limbs).

Figure 4 shows a simulation of an artificial teratoma, oc-
curring to the artificial embryo shown in figure 2. In step
6, the CET value (J) of the driver cell marked with the cir-
cle (C(J)) is mutated into the CET value of the zygote (K)
(hence AS(J)=6 and AS(K)=1); as a result, the development
of the whole embryo starts over again from cell C(J): the cell
proliferates, generating other CET values some of which, as
occurred in normal development, trigger other proliferation
events and so on. But, since in this case the zygote and all
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Figure 5: Ageing-related proliferation in a driver cell (the
event is triggered during the ageing period). After step 2
the CET values generated do not trigger further events and
the proliferation halts. The effects contribute to the ageing
phenotype.

other CET values cascaded from it are in ectopic positions
and are surrounded by wrong environments, while the dif-
ferent cell types (represented by different colours) continue
to be created, the interactions with other cells -mediated by
physics- prevent them from being arranged in the correct
patterns; instead, an amorphous mass of differentiated cells
is produced. The kind of epigenetic mutation reported in
this simulation is only one among endless possibilities; an-
other possible path leading to an (artificial) teratoma is the
following: the CET value belonging to a driver cell of the
developing (artificial) liver is turned into the CET value of a
driver cell which in normal development is a precursor of the
(artificial) hand; as a result, the mutated driver cell will try
to generate the hand, etc. It is quite natural to hypothesise
a direct link between the size of a teratoma and the depth
of the tree of CET values at which the mutation occurs (the
closer the latter is to the level of the zygote, the bigger the
tumour).

Figure 6: The “face”. On the left the period of development
(steps 0-5): the shape grows from a single cell to the mature
phenotype in step 5, fitness is evaluated; on the right the
period of ageing (steps 6-11): the picture quality deteriores
steadily under the action of random instructions.

Artificial Carcinogenesis II: Other Tumours
As recalled in section 3, at the end of an individual’s devel-
opment many junk driver cells are present, as well as many
junk instructions; such stock of junk represents a reservoir
of events that can potentially be triggered after the moment
of fitness evaluation, in the artificial ageing period. Since
these events occur after fitness evaluation, they are by def-
inition not affecting the fitness value; for this reason they
will tend to have a random nature and their effects on the
overall individual’s fitness are more likely to be detrimental
than beneficial: they can be thought of as a random noise
superimposed on the phenotype created by the instructions
subject to evolutionary pressure. An example is reported in
figure 5: driver cell bearing CET value A triggers the activa-
tion of a proliferation instruction at step 64 (beyond fitness
evaluation); at the subsequent step another proliferation is
triggered on the driver cell bearing CET value E. Such ran-
dom events represent indeed the essence of artificial ageing.

A simulation of artificial ageing is reported in figure 6
for a bi-dimensional “face” shape (picture of 100x100 size
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Figure 7: Tumorigenic proliferation in a driver cell. A dam-
age is the CET generating mechanism has the effect of re-
placing CET values B and D with additional copies of A,
which in turn trigger another proliferation in the subsequent
steps. The amount of purple cells expands without limit.

with 16 grey shades); the left part shows steps 0-5, belong-
ing to the period of development: the shape grows from the
single cell stage to the mature phenotype in step 5, when
fitness is evaluated; the right sequence refers to the period
of ageing (steps 6-11), characterised by the accumulation
of random events (of the type of that of figure 5), whose
global effect causes a progressive deterioration of the qual-
ity of the image. In nature the moment of fitness evaluation
can be thought to coincide with the moment of reproduction,
even though, actually, an individual’s fitness depends also on
characteristics manifesting themselves after reproduction, as
also those can affect the survival chances of its progeny; in
other words the effect of changes on the fitness tends to de-
crease as the age of their appearance increases, rather than
going abruptly to zero right after reproduction.

Now, the stage for a dangerous scenario is set if a fault
arises in one of such “ageing” driver cells, affecting the
mechanism used by the cell to generate new CET values dur-
ing a proliferation event. Within this scenario many variants

are conceivable (this mechanism can be damaged in many
ways): in one possible variant the damage can be such that
the CET value A (the mother’s) appears among the CET val-
ues of the daughter cells, in one or more copies. Figure 7
shows the effect of such a damage on the same event of fig-
ure 5: CET values B and D have been replaced with CET
value A: in this context the mother cell and its epigenetically
identical progeny are stuck to execute the same proliferation
instruction, leading to a situation in which the amount of
purple cells tends to increase without limit. Along with the
purple cells, also cells of a different type (in this case the red
cells) may be present, leading to a heterogenous mix of cell
types.

Discussion
The process of carcinogenesis is traditionally divided into
three phases: initiation, promotion and progression. Initi-
ation is linked to chemicals or physical stimuli that induce
permanent alterations to DNA; a single exposure appears to
be sufficient for the establishment of the initiated phenotype
which, once in place, is irreversible. An initiated cell is sus-
ceptible to the effects of promoters; these compounds favour
the proliferation of the cell, giving rise to a large number of
daughter cells containing the mutation created by the initia-
tor (if the cell has not been previously initiated promoters
have no effect). The third stage, progression, refers to the
stepwise transformation of a benign tumour into a malignant
one (this framework is based on skin cancer studies, but it is
thought to be valid for most tumour types).

As we said, the attempt to trace back carcinogenesis to a
subset of mutated genes (oncogenes and tumour-suppressor
-TS- genes) consistently found in all tumours, has so far
been unsuccessful. Nevertheless, most tumours are undeni-
ably correlated with specific patterns of mutations, affecting
specific genes involved in cell-cycle regulation and cellu-
lar differentiation; individual genes are mutated in percent-
ages that are tumour-specific, e.g. the rb gene is mutated
in 50% of colorectal cancers, in 30% of adenocarcinomas,
etc.: these correlations represent evidence a theory of car-
cinogenesis should seek to explain. According to current
knowledge, TS genes are thought to act as checkpoints at
some cell-cycle key moments, when they can stop the cy-
cle upon detection of damages to DNA; oncogenes, on the
other hand, are genes implicated in the cascade of chem-
ical signals that drive the cell towards mitosis. While the
supposed role of oncogenes appears to be realistic, the role
of TS genes as “guardians of the genome” is, in our opinion,
less firmly grounded; moreover, if they played this role, they
should be mutated in 100% of cancers.

The hypothesis we wish to put forward here is that the
cellular equipment dedicated to the generation of new CET
values, which in our model is embedded in the cell struc-
ture, in real cells is implemented by means of TS genes; in
other words, the CET values would be determined by the
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interplay of the product of TS genes. In the light of this hy-
pothesis, it is not surprising to find that the set of TS genes
is tissue-specific, as it is the set of CET values dedicated to
the differentiation of different tissues (the set of CET values
needed to induce the differentiation of skin progenitor cells
is different from the set of CET values needed to induce the
differentiation of gut progenitor cells, for instance). This
would explain why the set of mutated TS genes is different
in different tumours, a fact that the “genome guardian” hy-
pothesis is unable to account for. In the E.T. framework, the
damage to the CET generation mechanism corresponds to
initiation, a situation in which the number of CET values in
the progeny which are equal to the CET value of the mother
is altered.

The subsequent phase of promotion sets in once the con-
ditions required for proliferation are met (if the cell does not
proliferate, the effects of the damage to the CET generating
mechanism do not become apparent, even if present). The
progression phase corresponds to the drive towards the ma-
lignant phenotype, caused by mutations occurring to onco-
genes (not included in the model’s current version), which
confer additional powers to the already transformed cells,
e.g. the capacity to infiltrate tissues and to produce metas-
tases. The presence in tumours of cells having different de-
grees of differentiation is a well documented phenomenon,
coherent with the cancer stem cell theory and more diffi-
cult to explain with the standard theory (that postulates that
tumour cells are clones of the cell originally affected by a
number of mutations); this is a fact that, as we have seen, is
easily accounted for by our model.

The proposed theory provides also a quite straightforward
explanation for another well-known fact about cancer: the
prevalence increasing with the age. The temporal patterns
of ageing and cancer appear indeed to be perfectly superim-
posed: cancer is a rare occurrence in the young and becomes
more and more common as the age progresses. This fact is
easily accounted for by our theory, which hypothesises that
the same events triggered in the artificial ageing period can
contribute to the ageing phenomenon (if the CET generating
machinery is intact) or give rise to a tumour (if the CET gen-
erating machinery is damaged). This can also explain the
long latency observed between the exposure to mutagenic
chemicals (e.g. tobacco smoke) and the manifestation of the
tumour (e.g. lung cancer). As a matter of fact, even if the
damage to the driver cell’s CET generating mechanism oc-
curs early in life, for its effects to become manifest we need
to wait until a proliferation event is triggered on the relevant
cell: if the instruction’s timer is set to 60 years of age, the
tumour will not appear until that moment.

According to the theory proposed, tumours originate from
the artificial equivalent of embryonic stem cells, which in
our model are present throughout the body for the entire
life of the organism; a similar phenomenon could also origi-
nate from the artificial equivalent of adult stem cells, which

at present are not included in the model. In such “adult
driver cells” the CET value of the mother would normally
be present in the progeny (to guarantee the renewal of the
stem pool), in such an amount to keep the system in equilib-
rium (the renewal of progenitor driver cells -the equivalent
of those having CET value A- would be counterbalanced by
the disapperance of as many driver cells that differentiate to
perform their specialised job in the body). In a patholog-
ical scenario, a damage to the CET generation mechanism
would be such that the amount of new “A cells” outweighs
the amount of differentiating cells, leading to a situation in
which “A cells” become prevalent. In conclusion, we can
say that our model of development is able to provide an ex-
planation for some basic evidence relevant to tumours and
fits well with the cancer stem cell theory.

Conclusions
In the present work the model of cellular development called
Epigenetic Tracking has been employed to explore carcino-
genesis; in this context, we have been able to show how mal-
functions of model can produce the artificial counterpart of
the process of carcinogenesis, broken down into two broad
categories: one containing just a single tumour type called
teratoma and one with all other tumours. In previous works
it was shown how the model is able to produce the artifi-
cial version of key biological phenomena such as junk DNA
and ageing; the addition of carcinogenesis to the repertoire
of cellular behaviours strengthens the susceptibility of the
model to be used as a universal model of cellular develop-
ment, that can be succesfully employed as a tool to exploring
a wide range of biological phenomena.
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Abstract 

Simpler biological systems should be easier to understand and engineer. One way to achieve biological simplicity is through genome 
minimization. Here we have looked for genomic islands in the fresh water cyanobacterium Synechococcus elongatus PCC 7942 that 
could be used as targets for deletion for genome minimization. By using a combination of methods we have identified 184 genes that 
have been horizontally transferred into the genome of S. elongatus plus 127 ORFans (Figure 1).  These genes have a combination of: 
a) unusual G+C content; b) unusual phylogenetic similarity; and/or c) a small number of a highly iterated palindrome 1 (HIP1) motif 
plus an unusual codon usage. We have also corroborated the existence of the largest genomic island by its lack of coverage among 
metagenomic sequences from a fresh water microbialite. Interestingly, most genes coding for proteins with a diguanylate cyclase 
domain are predicted to be xenologous, suggesting a role for horizontal gene transfer in the evolution of sensory systems in this 
cyanobacteria. In parallel we have identified 1401 highly conserved genes that might be essential for cell survival and should not be 
deleted. These two datasets (variable and conserved genes) comprises ~11.8% and 53.6% of annotated genes in S. elongatus. Our 
results set a guide to non-essential genes in S. elongatus PCC 7942 indicating a path towards the engineering of a simpler 
photoautotrophic cell. 
 

 
 
Figure 1. Conserved and variable regions in the genome of S. elongatus PCC 7942. Outer circle. Red: variable genes; green: 
conserved genes; gray: other. Inner circle. Regions of atypical tri-nucleotide composition are shown in purple. 
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Abstract

The hierarchical organisation of biological systems plays a
crucial role in the pattern formation of gene expression result-
ing from the morphogenetic processes. Being able to repro-
duce the systems dynamics at different levels of such a hier-
archy might be very useful for studying such a complex phe-
nomenon of self-organisation. In this paper we propose the
adoption of the agent-based model as an approach capable of
capture multi-level dynamics. We then realise an agent-based
model of Drosophila Melanogaster morphogenesis demon-
strating its capability of reproducing the expression pattern
of the embryo.

Introduction
Developmental biology is an interesting branch of life sci-
ence that studies the process by which organisms develop,
focussing on the genetic control of cell growth, differen-
tiation and movement. A main problem in developmental
biology is understanding the mechanisms that make the pro-
cess of vertebrates’ embryo regionalisation so robust, mak-
ing it possible that from one cell (the zygote) the organism
evolves acquiring the same morphologies each time. This
phenomenon involves at the same time the dynamics of –
at least – two levels, including both cell-to-cell communica-
tion and intracellular phenomena: they work together, and
influence each other in the formation of complex and elab-
orate patterns that are peculiar to the individual phenotype.
This happens according to the principles of downward and
upward causation, where the behaviour of the parts (down)
is determined by the behaviour of the whole (up), and the
emergent behaviour of the whole is determined by the be-
haviour of the parts (Uhrmacher et al., 2005).

Modelling embryo- and morphogenesis presents big chal-
lenges: (i) there is lack of biological understanding of how
intracellular networks affect multicellular development and
of rigourous methods for simplifying the correspondent bio-
logical complexity: this makes the definition of the model
a very hard task; (ii) there is a significant lack of multi-
level models of vertebrate development that capture spatial
and temporal cell differentiation and the consequent hetero-
geneity in these four dimensions; (iii) on the computational

framework side, there is the need of tools able to integrate
and simulate dynamics at different hierarchical levels and
spatial and temporal scales.

A central challenge in the field of developmental biol-
ogy is to understand how mechanisms at intracellular and
cellular level of the biological hierarchy interact to produce
higher level phenomena, such as precise and robust patterns
of gene expressions which clearly appear in the first stages of
morphogenesis and develop later into different organs. How
does local interaction among cells and inside cells give rise
to the emergent self-organised patterns that are observable
at the system level?

The above issues have already been addressed with differ-
ent approaches, including mathematical and computational
ones. Mathematical models, on the one side, are contin-
uous, and use differential equations—in particular, partial
differential equations describing how the concentration of
molecules varies in time and space. A main example is the
reaction-diffusion model developed by Turing, 1952 and ap-
plied to the Drosophila Melanogaster (Drosophila in short)
development by Perkins et al., 2006. The main drawback of
mathematical models is the inability of building multi-level
models that could reproduce dynamics at different levels.

Computational models, on the other side, are discrete,
and model individual entities of the system—cells, proteins,
genes. The agent-based approach is an example of such a
kind of models. Agent-based modelling (ABM) is a com-
putational approach that can be used to explicitly model a
set of entities with a complex internal behaviour and which
interact with the others and with the environment generating
an emergent behaviour representing the system dynamics.
Some work has already been done which applies ABM in
morphogenesis-like scenarios: a good review is proposed in
Thorne et al., 2008. Most of these models generate artificial
pattern – French and Japanese flags (Beurier et al., 2006) –
realising bio-inspired models of multicellular development
in order to obtain predefined spatial structures. At the best
of our knowledge, however, few results have been obtained
till now in the application of ABM for analysing real phe-
nomena of morphogenesis.
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In order to get the benefits of both approaches, hybrid
frameworks has been developed. For instance, COMPU-
CELL 3D (Cickovski et al., 2005) combines discrete meth-
ods based on cellular-automata to model cell interactions
and continuous model based on reaction-diffusion equation
to model chemical diffusion. COMPUCELL 3D looks like
a very promising framework whose main limitation is rep-
resented by the lack of a suitable model for cell internal
behaviour—gene regulatory network in particular.

In this paper we present an agent-based model of the
Drosophila embryo development, reproducing the gene reg-
ulatory network that causes the early (stripes-like) regionali-
sation of gene expression in the anteroposterior axis (Yamins
and Nagpal, 2008; Perkins et al., 2006). The embryo is
modelled as a set of agents, where each agent is a cell.
Our approach allows the gene-regulatory network to be di-
rectly modelled as the internal behaviour of an agent, whose
state reproduces the gene expression level and dynamically
changes according to functions that implement the interac-
tions among genes. It also allows the cell interacting ca-
pability mediated by morphogens to be modelled as the ex-
change of messages among agents that absorb and secrete –
from and towards the environment – the molecules that are
then able to diffuse over the environment.

The remainder of this paper is organised as follows: The
role of hierarchy in the spatial self-organisation of gene
expression during morphogenesis is first highlighted along
with the main biochemical mechanisms taking place in this
phenomenon. The agent-based approach is then presented
with the modelling abstractions it provides. The third part
describes the biological principles of Drosophila embryo de-
velopment, while the fourth part reports the ABM we have
developed and implemented. Simulation results are then dis-
cussed, followed by concluding remarks.

The Role of Hierarchy in Morphogenesis
Complex systems in general exhibit a hierarchical organisa-
tion that divide the system into levels composed by many
interacting elements whose behaviour is not rigid, and is
instead self-organised according to a continuous feedback
between levels. Hierarchy has therefore a crucial role in
the static and dynamic characteristics of the systems them-
selves. These properties are highly dependent by the prin-
ciples of downward and upward causation, where the be-
haviour of the parts (down) is determined by the behaviour
of the whole (up), and the emergent behaviour of the whole
is determined by the behaviour of the part (Uhrmacher et al.,
2005). An example is given by biological systems: an out-
standing property of all life is the tendency to form multi-
levelled structures of systems within systems. Each of these
forms a whole with respect to its parts, while at the same
time being a part of a larger whole. Biological systems
have different level of hierarchical organisation – (1) se-
quences; (2) molecules; (3) pathways (such as metabolic

or signalling); (4) networks, collections of cross-interacting
pathways; (5) cells; (6) tissues; (7) organs – and the constant
interplay among these levels gives rise to their observed be-
haviour and structure. This interplay extends from the events
that happen very slowly on a global scale right down to
the most rapid events observed on a microscopic scale. A
unique molecular event, like a mutation occurring in partic-
ularly fortuitous circumstances, can be amplified to the ex-
tent that it changes the course of evolution. In addition, all
processes at the lower level of this hierarchy are restrained
by and act in conformity to the laws of the higher level.

In this contest, an emblematic process is morphogenesis,
which takes place at the beginning of the animal life and is
responsible for the formation of the animal structure. Mor-
phogenesis phenomena includes both cell-to-cell communi-
cation and intracellular dynamics: they work together, and
influence each other in the formation of complex and elabo-
rate patterns that are peculiar to the individual phenotype.

The biology of development
Animal life begins with the fertilisation of one egg. Dur-
ing the development, this cell undergoes mitotic division and
cellular differentiation to produce many different cells. Each
cell of an organism normally owns an identical genome; the
differentiation among cells is then not due to different ge-
netic information, but to a diverse gene expression in each
cell. The set of genes expressed in a cell controls cell pro-
liferation, specialisation, interactions and movement, and it
hence corresponds to a specific cell behaviour and role in the
entire embryo development.

One possible way for creating cells diversity during em-
bryogenesis is to expose them to different environmental
conditions, normally generated by signals from other cells,
either by cell-to-cell contact, or mediated by cues that travel
in the environment.

On the side of intracellular dynamics, signalling pathways
and gene regulatory networks are the means to achieve cells
diversity. Signalling pathways are the ways through which
an external signal is converted into an information travelling
inside the cell and, in most of the cases, affecting the expres-
sion of one or more target genes. The signalling pathways
are activated as a consequence of the binding between (i) a
cue in the environment and a receptor in the cell membrane,
or (ii) two membrane proteins belonging to different cells.
The binding causes the activation of the downstream pro-
teins until a transcription factor that activates or inhibits the
expression of target genes.

During embryo-morphogenesis few pathways are active.
They work either as mutual inhibitors, or as mutual en-
hancers. The idea is that there are regions where the mu-
tual enhancers are active and interact giving rise to positive
feedbacks. Pathways active in different regions work prob-
ably as mutual inhibitors. There are then boundary regions
where we can observe a gradient of activity of the different
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sets of pathways, due to the inhibitory effect of the pathways
belonging to neighbour regions.

The Agent-based Approach
In literature, agent-based systems – in particular Multi-
Agent Systems (MAS) – are considered as an effective
paradigm for modelling, understanding, and engineering
complex systems, providing a basic set of high level abstrac-
tions that make be possible to directly capture and represent
the main aspects of such complex systems, such as interac-
tion, multiplicity and decentralisation of control, openness
and dynamism (Michel et al., 2009; Merelli et al., 2007;
Klügl et al., 2002). A MAS can be characterised by three
key abstractions: agents, societies and environment. Agents
are the basic active components of the systems, executing
pro-actively and autonomously. Societies are formed by set
of agents that interact and communicate with each other, ex-
ploiting and affecting the environment where they are sit-
uated. Such an environment plays a fundamental role, as a
context enabling, mediating and constraining agent activities
(Weyns et al., 2007).

By adopting an agent-based approach, biological systems
can be modelled as a set of interacting autonomous com-
ponents – i.e., as a set of agents –, whereas their chemical
environment can be modelled by suitable agent environment
abstractions, enabling and mediating agent interactions. In
particular, MAS provide a direct way to model: (i) the in-
dividual structures and behaviours of different entities of
the biological system as different agents (heterogeneity); (ii)
the heterogeneous – in space and time – environment struc-
ture and its dynamics; (ii) the local interactions between
biological entities/agents (locality) and their environment.
An agent-based simulation means executing the MAS and
studying its evolution through time, in particular: (i) ob-
serving individual and environment evolution; (ii) observing
global system properties as emergent properties from agent-
environment and inter-agent local interaction; (iii) perform-
ing in-silico experiments. The approach is ideal then for
studying the systemic and emergent properties that charac-
terise a biological system, which are meant to be reproduced
in virtuo. In the context of biological system, agent-based
models can therefore account for individual cell biochemi-
cal mechanisms – gene regulatory network, protein synthe-
sis, secretion and absorption, mitosis and so on – as well as
the extracellular matrix dynamic – diffusion of morphogens,
degradation and so on – and their dynamic influences on cell
behaviour.

The Drosophila Melanogaster Embryo
Development

One of the best example of pattern formation during mor-
phogenesis is given by the patterning along the anteropos-
terior axis of the fruit fly Drosophila Melanogaster. In this

section we briefly propose a model for the pattern forma-
tion in the embryo. We reproduce the interaction among
pathways inside the cell, that is responsible for its stabili-
sation into a specific genetic expression, and the cell-to-cell
interactions mediated by cues, i.e., transcription factors that
enhance or inhibit the original cell activity and cause the for-
mation of regions of cells with similar activity.

Biological background

The egg of Drosophila is about 0.5 mm long and 0.15 mm
in diameter. It is already polarised by differently localised
mRNA molecules which are called maternal effects The
early nuclear divisions are synchronous and fast (about every
8 minutes): the first nine divisions generate a set of nuclei,
most of which move from the middle of the egg towards the
surface, where they form a monolayer called syncytial blas-
toderm. After other four nuclear divisions, plasma mem-
branes grow to enclose each nucleus, converting the syn-
cytial blastoderm into a cellular blastoderm consisting of
about 6000 separate cells.

Up to the cellular blastoderm stage, development depends
largely – although not exclusively – on maternal mRNAs
and proteins that are deposited in the egg before fertilisation.
After cellularisation, cell division continues asynchronously
and at a slower rate, and the transcription increases dramati-
cally. Once cellularisation is completed the gene expression
regionalisation is already observable.

The building blocks of anterior-posterior axis patterning
are laid out during egg formation thanks to the maternal ef-
fects. Bicoid and caudal are the maternal effect genes that
are most important for patterning of anterior parts of the
embryo in this early stage. They are transcription factors
that drive the expression of gap genes such as hunchback
(Hb), Krüppel (Kr), knirps (Kni) and giant (Gt), as shown
in the diagram of Fig. 1; there, tailess (Tll) also appears as
gap genes whose regulation we do not represent here. Gap
genes together with maternal factors then regulate the ex-
pression of downstream targets, such as the pair-rule and
segment polarity genes. The segmentation genes specify 14
parasegments that are closely related to the final anatomical
segments (Alberts et al., 2002; Gilbert, 2006).

Methods

Our model consists of a set of agents that represent the cells,
as well as of a grid-like environment representing the extra-
cellular matrix. Agent internal behaviour reproduces the
gene regulatory network of the cell, while agent interaction
with the environment models the process of cell-to-cell com-
munication mediated by the signalling molecules secreted in
and absorbed by the extra-cellular matrix. Our model aims
at reproducing the expression pattern of the gap genes, be-
fore the pair-rule genes are activated.
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Figure 1: Gene regulatory network as in Perkins et al., 2006;
Gursky et al., 2004

Model of the cell
We model different cell processes: secretion-absorption dif-
fusion of chemicals from and towards the environment, cell
growth and cell internal dynamics—gene regulatory net-
work in particular.

Chemical diffusion Until cleavage cycle 13, there are
no cell membranes surrounding cell cytoplasm and nu-
cleus, and the transport of material mainly interests the nu-
clear membrane, and involves also cell membranes once
they grow. We do not distinguish between the syncytial
blastoderm and the cellular blastoderm stages, and model
the process of molecule secretion and absorption as facili-
tated diffusion—the literature lacks of information about the
transport mechanisms of such transcription factors and about
the rate of diffusion.

Gene regulatory network Gene transcription begins with
the binding at the gene promoter of one or more transcrip-
tion factors. Gene transcription might also be repressed once
transcription factors bind to other control regions called si-
lencers. This activation/inhibition is stochastic (Kaern et al.,
2005) and highly depends on the concentration of transcrip-
tion factors. For those genes whose transcription is regu-
lated by a set of other gene products we define a probability
of transcription as a sum of positive and negative contribu-
tions from the concentration of enhancers and silencers, re-
spectively. The probability of transcription of hunckback,
according to the graph of Fig. 1, is then calculated as:

Ph = f([Bicoid ]) + f([Hunchback ]) + f([Tailess])
−f([Knirps])− f([Kruppel ])

where f is a linear function with the proportionality constant
representing the strength of interaction. Then if Ph > 0 the
protein is synthesised, otherwise the gene remains silent.

No distinction has been done in the model between ante-
rior (a) and posterior (p) hunckback and giant, whose dif-
ferent expression only deals with the spatial distribution of
maternal products.

Mitosis According to Fig. 2 where we show how the num-
ber of cells varies in the first four hours of embryo devel-
opment – until the cleavage cycle 14, temporal class 8 – we
computed the rate of division as a function of time: cell di-
vision is fast and synchronous until cleavage cycle 9, then
slows down and becomes asynchronous. The rate of division
is constant in the first hours of development (9.05 min−1),
then decreases until a low value (0.2 min−1), as it appears
in Figure 3.
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Figure 2: Number of cells varying from one to 6000 in the
first 14 cleavage cycles
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Figure 3: Rate of division in the first 14 cleavage cycles

Model of the environment
The 3D-tapered structure of the embryo, as in Figure 4, is
modelled as a 2D-section of the embryo along the antero-
posterior axis (c) under the assumption that the dynamics
along the other two axis, a and b, does not influence what
happens along the c axis. The space scale is 1:3.33 accord-
ing to the real dimension of the embryo where the antero-
posterior axis is almost three times the dorso-ventral one
a. Space is not continuous but grid like, and each location
might be occupied both by a set of morphogenes and by a
cell.

The environment has its own dynamics, which mainly
consists in the diffusion of morphogenes from region with
bigger concentration to region with lower concentration,
according to the Fick’s low that the diffusive flux is pro-
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Figure 4: 3D-structure of real embryo

portional to the local concentration gradient (Smith and
Hashemi, 2005). This law is used in its discretised form.

Model implementation and simulation procedure
The model is implemented on top of Repast Simphony1, an
open-source, agent-based modelling and simulation toolkit.
It provides all the abstraction for directly modelling the
agent behaviour and the environment. It implements a multi-
threaded discrete event scheduler. In our simulations a time
step corresponds to 4 seconds of the real system simulated.
This is the smallest time-interval allowing for a good com-
promise between precision in the observation of the system
dynamic and simulation execution time.

Simulations are executed from the cleavage cycle 11,
when the zygotic expression begins. We used the experi-
mental data available online in the FlyEx database2. The
data contains quantitative wild-type concentration profiles
for the protein products of the seven genes – Bcd, Cad, Hb,
Kr, Kni, Gt, Tll – during cleavage cycles 11 up to 14A,
which constitutes the blastoderm stage of Drosophila de-
velopment. These data are used to validate the model dy-
namic. Expression data from cleavage cycle 11 are used as
initial condition—see Fig. 6. The concentration of proteins
are unitless, ranging from 0 to 255, at space point x, ranging
from 0 to 100 % of embryo length.

Model parameters are: (i) diffusion constants of morpho-
genes motion; (ii) rates of gene interactions; (iii) rates of
protein synthesis. Few data are available in literature for
inferring the diffusion constants. We took inspiration from
the work of Gregor et al., 2007 that calculates the diffusion
rate for Bicoid and we imposed the value for all the mor-
phogenes at 0.3 µm2/sec. The rates of gene interactions
and of protein synthesis are determined through a process
of automatic parameter tuning. The task is defined as an
optimisation problem over the parameter space. The opti-
misation makes use of metaheuristics – particle swarm op-
timisation – to find a parameter configuration such that the
simulated system has a behaviour comparable with the real
one (Montagna and Roli, 2009). We supported the automatic

1http://repast.sourceforge.net/index.html
2http://flyex.ams.sunysb.edu/flyex/index.jsp

parameter tuning with a process of model refinement which
slightly changed the topology of gene regulatory network,
adding some edges that we found necessary for obtaining
the real behaviour. An argumentation about the final model
is provided in the Discussion.

Figure 5: Qualitative results

Simulation results
Qualitative results charted in the 2D-grid are shown in Fig. 5
(top) for expression of hb, kni, gt, Kr at the eighth time step
of cleavage cycle 14A. The image shows for each cell of the
embryo the genes with higher expression. It clearly displays
the formation of a precise spatial pattern along the A-P axis
but it does not give any information about gene expression
level. Experimental data are also provided in Fig. 5 (bot-
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Figure 6: Experimental data at cleavage cycle 11 of genes with non-zero concentration: maternal genes Bcd, Cad, Tll and the
gap gene Hb
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Figure 7: Quantitative simulation results for the four gap genes hb, kni, gt, Kr at a simulation time equivalent to the eighth time
step of cleavage cycle 14A (top) and the corresponding experimental data (bottom)

tom) with 2D-Atlas reconstructing the expression level of
the four genes in A-P sections of the embryo. More pre-
cise information about simulation behaviour are given with
the quantitative results provided in Fig. 7. A comparison
shows that the expression pattern of genes Hb, Kni, Gt and
Kr nicely fit the spatial distribution shown in the experimen-
tal data: Hb is expressed in the left pole until about 45%
of embryo length, while it does not appear on the right as
it should between about 85% and 95%; Kni is correctly ex-
pressed on the extreme left and between 65% and 75% but
it is slightly over-expressed on the right; Gt is reproduced
in the correct regions but over-expressed in the extreme left
and slightly under-expressed between 20% and 30%; finally,
Kr properly appears between 40% and 60%.

Discussion
Through the model refinement we found the network
showed in Fig. 8 where some more interactions are per-

formed. The weight in sec−1 of each node is then reported
in Fig. 9.

Figure 8: Gene regulatory network
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Figure 9: Rate of gene interactions

Bcd and Cad are activators of the gap genes. As maternal
factor their central role is in fact to input the wave of zygotic
expression. In particular, given the spatial distribution of
their expression, Bcd is responsible for the activations on the
left side of the embryo, while Cad in the opposite side. Tll
enhances Hb expression while inhibits the expression of all
the others as in the previous model. The interactions among
gap genes are slightly different. As before Hb and Kni on
one side and Gt and Kr on the other side inhibits one each
other, and from the parameters found we infer that these are
the strongest inhibitions among gap genes; Hb then weakly
inhibits Kr and vice-versa, as well as Gt versus Kni. New
weak edges have been found between Kni versus Gt, and Kr
versus Kni.

As far as we know, there are no evidences in biological
literature that already support the above results. It might be
a starting point for new laboratory experiments.

Conclusion
The process of spatial organisation resulting from the mor-
phogenesis process is demonstrated to be highly-dependent
by the interplay between the dynamics at different levels of
the biological systems hierarchical organisation. In mod-
elling and simulating the phenomena of morphogenesis it
might be appropriate to reproduce such a hierarchy. In this
work we have described the application of ABM as an ap-
proach capable of supporting multi-level dynamics.

We studied the phenomenon of pattern formation during
Drosophila embryo development, modelling the interactions
between maternal factors and gap genes that originate the
early regionalisation of the embryo. The possibility to model
both the reactions taking place inside the cells that regulate
the gene expressions, and the molecules diffusion that me-
diates the cell-to-cell communication, makes it possible the
reproduction of the interplay between the two levels in order
to verify its fundamental role in the spatial self-organisation
characteristic of such a phenomenon.

The results presented show the formation of a precise spa-
tial pattern which have been successfully compared with ob-
servations acquired from the real embryo gene expressions.

Future work will be firstly devoted to extending the model
with the introduction of new phenomena on the side of both
intracellular dynamics and cell-to-cell interaction. Gene reg-
ulatory network will be enlarged with other sets of genes
which are downstream to gap genes such as the pair rule
genes, even-skipped as first, whose expression gives rise at

the characteristic segments of Drosophila embryo. Mecha-
nisms regulating cell movements will then be added – cell
adhesion and chemotaxis in particular – as soon as they are
known to play a crucial role in cell sorting during morpho-
genesis.

Finally. we are planning to exploit the predictive power
of the model analysing embryos that are not wild type, for
instance performing in-silico Knock-Out experiments.
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Abstract

Artificial embryogeny aims at developing a complete organ-
ism starting from a unique cell. Nowadays many algorithms
exist to synthesize artificial creature shapes or behaviours.
With the purpose of shape and high-level behaviour joint evo-
lution, one of the key aspects is the synthesis of positional
information. Such pieces of information, called morphogens,
are in many developmental models embedded in the environ-
ment and interactions are made through simple protein recep-
tors. In this paper, we propose a new and original approach to
solve the morphogen-positioning problem. We use a hydro-
dynamic model to replace the classical spreading algorithm.
Mechanical constraints (the cell shape) and a dynamic activ-
ity are integrated. Thanks to this improvement, the cell be-
haviour can affect the spreading algorithm: cells can apply
forces on the hydrodynamic environment to create substrate
flows. Through experiments, this paper shows the way to de-
velop complex shapes using this kind of simulator and pro-
poses how to extend the simulation in a 3-D world in which
physical laws are taken into account.

Introduction
Literature offers many developmental models able to de-
velop several kinds of creatures starting from a single cell
(Stanley and Miikkulainen, 2003). Many goals motivate
that kind of research work: to develop a particular shape,
to evolve a high-level behaviour, etc. or, at a higher level,
to understand living systems by the use of such models to
simulate their mechanisms. Nowadays, a complete research
field axis is about shape development from a single cell. One
of the major problems of this work is morphogen position-
ing. Morphogens are often used as positional information
to lead cells in their development. In nature, positional in-
formation is a key aspect in morphogenesis, embryogene-
sis, organogenesis and in behaviour synthesis at last. Evolv-
able mechanisms should be used in developmental models to
spread their positional information in the environment. This
could allow the emergence of a complex structure and/or be-
haviour. Keeping this goal in mind, we choose to embed
morphogen positioning in cellular activity thanks to a hy-
drodynamic simulator which cells are able to interact with.

Our previous work proposed a developmental model,
named Cell2Organ (Cussat-Blanc et al., 2008), based on a

strong simplification of mechanisms used by living systems.
The developmental model is a chemical simulator where
organisms have to develop a metabolism, may have self-
repairing capacities and have to perform user-defined func-
tions. In this paper, we show the plug of a hydrodynamic
engine with the developmental model in order to solve one
of its main limitations: manual morphogen positioning. In
comparison to a classical spreading algorithm, widely used
in developmental models in literature, the use of a hydro-
dynamic engine allows more possibilities. Organisms will
have the ability to create fluid flows, to move substrates or
structures to organize the environment at their convenience.
Gastrulation stage of vertebrate embryos can be simulated
with this kind of system. In this early development stage,
morphogens are positioned thanks to a physical invagination
that induces many flows in the environment, as explained by
some physicists’ theories such as (Fleury, 2009).

In our bio inspired approach, the use of a hydrodynamic
engine has sense looking at the early development stage.
Gastrulation stage is seen as the first step of the morpho-
genetic process. During this step, high dynamic is observed
in the embryo. Undifferentiated cells migrate and the egg
membrane invaginates itself. Hydrodynamic forces are gen-
erated with a combination of these mechanisms. These
forces are constraints for the different actors of the system.
The consequence is the positioning of a kind of ”mechani-
cal gradients”, in other words growth lines take place thanks
to the created mechanical constraints. These developmental
axis could be seen as an embryogenic pre-pattern. This latter
is, as the example of vertebrates, four members positioned in
pairs on the anterior and posterior zones of the organism.

This paper is organised as follows. Section 2 gives the re-
lated works on artificial development and morphogen posi-
tioning. Section 3 summarizes the model Cell2Organ. Sec-
tion 4 details the hydrodynamic layer we add to the model
in order to set up morphogens in the environment. Section 5
presents some results we obtain thanks to this new layer. We
first develop simple shapes like diamonds or rectangles and
a mushroom-shaped creature. We then develop more com-
plex shapes. We conclude these experimentations by hav-
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ing a discussion on the practicality of such a morphogenesis
process to generate bigger creatures that could populate a 3-
D world based on newtonian dynamics. Finally, we expose
several options to improve this work.

Related works
Over the past few years, more and more models concern-
ing artificial development have been produced. A common
method for developing digital organisms is to use Artificial
Regulatory Networks (ARN). Banzhaf was one of the first
to design such a model (Banzhaf, 2003). In his work, the
beginning of each gene, before the coding itself, is marked
by a starting pattern named “promoter”. This promoter is
composed of enhancer and inhibitor sites that allow the gene
activations and inhibitions regulation. Another different ap-
proach is based on Random Boolean Networks (RBN) first
presented by Kauffman (Kauffman, 1969) and re-used by
Dellaert (Dellaert and Beer, 1994). An RBN is a network in
which each node has a boolean state: activate or inactivate.
The nodes are interconnected by boolean functions, repre-
sented by edges in the net. The cell function is determined
during genome interpretation.

Several models dealing with shape generation have re-
cently been designed (de Garis, 1999; Kumar and Bentley,
2003; Stewart et al., 2005; Chavoya and Duthen, 2008; Kn-
abe et al., 2008; Joachimczak and Wróbel, 2009). Most
of them use artificial regulatory network and morphogens
to drive the development. With the latter approach, mor-
phogens positioning in the environment is one of the main
difficulties. In order to produce user-defined shapes as a
French flag - that is one of the main benchmarks, a pre-
cise morphogen positioning is crucial. Two main meth-
ods exist to solve this problem: on the one hand, cells
can produce morphogens by themselves that are spread in
the environment with a simple spreading algorithm (Stewart
et al., 2005; Knabe et al., 2008; Joachimczak and Wróbel,
2009) and, on the other hand, environment can contain built-
in fixed morphogens (Chavoya and Duthen, 2008). Var-
ious shapes are produced, with or without cell differenti-
ation. The well-known French flag problem was solved
by Chavoya and Duthen, Knabe and recently in 3-D by
Joachimczak. This problem shows the model differentiation
capacity during multiple colour shifts.

Eggenberger was one of the first to propose a model that
takes a leaf out of gastrulation (Hotz, 2003). In his work,
both physics engine and artificial regulatory network (ARN)
are used. The ARN controls cells behaviour whereas a
physics engine allows to apply local constraints. Physical
interactions could be observed between the cells and be-
tween the cells and the environment. Nevertheless, the sub-
strate spread is made by cellular activity but is not influ-
enced by the mechanical activity, that is to say movements
made by cells do not spread any morphogen. Some biologi-
cal theories about embryonic development bring out that hy-

drodynamic morphogen movements seem to be the basics
of organogenesis (organ positioning the early embryo) and
an explanation of most living being symmetric morphology
(Cartwright et al., 2009; Fleury, 2009). To study the possi-
ble benefits of the morphogen flow creation in environments,
we proposed to use a hydrodynamic layer whose activity is
directly influenced by forces applied by cells.

This paper proposes a new morphogen positioning ap-
proach. More bio-inspired than biologically acceptable, we
use a hydrodynamic engine to produce morphogen flows in
the environment. Special cells have the ability to expulse
morphogens with a given force whereas others will use the
positional information to produce a defined shaped creature.
Because our research axis is more focussed on creature de-
velopment for virtual reality application than on cell mech-
anism realistic simulation, this bio-inspired approach is suf-
ficient. Moreover, this kind of method could be used for
future modular robots that could have the ability to expulse
a substrate.

The next section presents our developmental model. It
is based on action optimisation networks and on an action
selection system inspired by classifier rule sets. It has been
presented in details in (Cussat-Blanc et al., 2008).

Summary of Cell2Organ
We choose to implement the environment as a 2-D toric grid.
This choice allows a significant decrease in the simulation
complexity keeping a sufficient degree of freedom thus re-
ducing the simulation computation time.

The environment contains several kinds of substrates.
They spread within the grid, minimizing the variation of sub-
strate quantities between two neighbouring points. These
substrates can spread on the grid at several speeds and can
interact with other substrates. Interactions between sub-
strates can be viewed as a great simplification of a chemical
reaction: using different substrates, the transformation will
create new substrates, emitting or consuming energy. For-
mally, this chemical reaction can be written as follows:

a1s1+a2s2+...+ansn → a′1s
′
1+a

′
2s
′
2+...+a

′
ms
′
m (δenergy)

where si represents substrates, ai ∈ N and a′j ∈ N (i ∈
1..n, j ∈ 1..m are stoichiometric coefficients of the reaction
and δ ∈ R the quantity of energy produced (if positive) or
consumed (if negative) during the reaction. For example,
the reaction 2A + B → C (+50) produces one unit of C
substrate from two units of A substrate and one of B’s. The
reaction also produces 50 units of energy.

To reduce the complexity, the environment contains a list
of available substrate transformations. Only cells can trigger
substrate transformations.

Cells
Cells act in the environment, more precisely on the environ-
ment’s spreading grid. Each cell contains sensors and has
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different abilities (or actions). An action selection system
allows the cell to select the best action to perform at any
moment of the simulation. Finally, a representation of an
ARN is available inside the cell to allow specialization dur-
ing division.

Each cell contains different density sensors positioned at
each cell corner. Sensors allow the cell to measure the
amounts of substrates available its Von Neumann neighbour-
hood. The list of available sensors and their position in the
cell are described by the genetic code.

To interact with the environment, cells can perform dif-
ferent actions: perform a substrate transformation, absorb or
reject substrates in the environment, divide (see later), wait,
die, etc. This list is not exhaustive. The addition of an action
is simplified by model implementation. As with sensors, not
all actions are available for the cell: the genetic code will
give the available action list.

Cells contain an action selection system. A system based
on a set of rules is inspired by classifier systems. It uses data
given by sensors to select the best action to perform. Each
rule is composed of three parts: (1) The precondition de-
scribes when the action can be triggered. A list of substrate
density intervals describes the neighbourhood in which ac-
tion must be triggered. (2) The action gives the action that
must be performed if the corresponding precondition is re-
spected. (3) The priority allows the selection of only one
action if more than one can be performed. The higher the
coefficient, the more probable the rule selection.

Division is a particular action performable if the next three
conditions are respected. First, the cell must have at least
one free neighbour to create the new cell. Secondly, the cell
must have enough vital energy to perform the division. The
vital energy level needed is defined during the environment
specification. Finally, during the environment modelling, a
condition list can be added.

Action optimisation
A new cell created after division is totally independent and
interacts with the environment. During a division, the cell
can optimize a group of actions. In nature, this specialisation
seems to be mainly carried out by a gene regulatory network
(GRN). In our model, we imagine a mechanism that plays
the role of an artificial GRN. Each action has an efficiency
coefficient that is linked to the action optimisation level: the
higher the coefficient, the lower the vital energy cost. More-
over, if the coefficient is null, the action is not yet available
for the cell. Finally, the sum of efficiency coefficients re-
mains constant during the simulation. In other words, if an
action is optimised by increasing its efficiency coefficient
during a division, another (or a group of) efficiency coeffi-
cient has to be decreased. A network represents the transfer
rule during a division stage. In this network, weighed nodes
represent cell actions with their efficiency coefficients and
weighed edges representing efficiency coefficient quantities

that will be transferred during the division. Efficiency coef-
ficient variations during division stage allow cell specialisa-
tion over divisions.

Creature’s genome
To find the best-adapted creature to a specific problem, we
use a genetic algorithm. Each creature is tested in its envi-
ronment. This latter returns the fitness at the end of the sim-
ulation. Each creature is coded with a genome composed of
three different chromosomes: the list of available actions,
an encoding of the action selection system and an encoding
of the optimisation network.

Because of the complexity of developed creatures, the ge-
netic algorithm had to be improved. First, we have decided
to parallelise it on a computation grid. We used a middle-
ware, named ProActive, that allows a total abstraction of
grid infrastructure (Caromel et al., 2006). We applied a Mas-
ter/Worker algorithm to parallelise our genetic algorithm.
This algorithm is well suited to artificial evolution because
the creature genome is small and the fitness computing cost
is very important. Because of the small size of the genome,
the network bottleneck induced by a Master/Worker archi-
tecture deployed on a computational grid will not heavily
increase the computation time. Moreover, because the Mas-
ter/Worker algorithm preserves the properties of a classical
genetic algorithm, the number of generations needed by the
algorithm to converge and the final solution quality are ex-
actly the same with or without parallelisation.

A second optimisation of our genetic algorithm consists in
leading the algorithm in its search. In our experimentation,
the fitness function can be broken up with sub-objectives
to describe the different evolution stages of the creature.
This approach, commonly named incremental evolution, has
been used in different domains such as behaviour simula-
tion (Kodjabachian and Meyer, 1998; Mouret and Doncieux,
2008) or genetic programming (Walker, 2004). Authors
generally conclude that global computation time is the same
in comparison to a classical fitness but this algorithm gives
more adapted solutions. In our problem, we generally break
the fitness up in the three following stages: metabolism that
is the lowest level function needed by the creature, cell birth
quantity during the simulation shows the capacity of the or-
ganism to develop itself in the environment and global fit-
ness that gives the efficiency of the organism to solve the
problem (can also be broken up into sub-objectives).

Example of generated creatures
Different creatures have been generated using this model.
For example, we develop a harvester, a creature able to col-
lect a maximum of substrate scattered all over the environ-
ment and to transform it into division material and waste.
The creature has to reject the waste because of each cell
limited substrate capacity. Another creature is the transfer
system. Presented in (Cussat-Blanc et al., 2008), this crea-
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ture is able to move substrate from one point to another.
This creature is interesting because it has to alternate its be-
haviour between performing its function and developing its
metabolism to survive. Finally, different morphologies, such
as a starfish, a jellyfish or any user-designed shape, have
been obtained (Cussat-Blanc et al., 2008). Once again, the
organism must develop its metabolism to be able to sustain
its activity.

All generated creatures have a common property: they
are able to repair themselves in case of injury (Cussat-Blanc
et al., 2009). This feature is an inherent property of the
model. It shows the phenotype plasticity of produced crea-
tures.

The last model’s interesting feature is organ cooperation
capacity to produce bigger structures. We have developed
organs separately and built an organism composed of these
organs that has a higher-level purpose. We create for exam-
ple a self-feeding structure composed of four organs: two
transfer systems and two producer-consumers.

Concerning the morphology development, one limitation
of the model is the necessity to position morphogens by hand
in the environment. In order to solve this problem, we pro-
pose a hydrodynamic layer that allows morphogen flow cre-
ation by cells. The organism has to make a morphogenetic
blueprint of the shape in the environment before it develops
itself by following division information. The next section
details the hydrodynamic model we use and its set up op-
tions. The integration to the developmental model is also
detailed.

Hydrodynamic layer
This simulator manages hydrodynamic substrate interac-
tions of our model. Its main aim is to propose a method
inspired by the gastrulation of some living beings to posi-
tion morphogens. This early stage of the organism develop-
ment allows the morphogen positioning of the embryo in its
immediat environment. It then allows the development of
its organs. By the use of a hydrodynamic simulator in our
model, we can produce the apparition of flows in the envi-
ronment that correspond to flows created by the organism
when it performs its actions (division, substrate absorption
or rejection in particular). Thus, cells can for example ex-
pulse a substrate to be positioned in the environment in a
specific direction and with a specific strength.

Hydrodynamic model
Because of the computation cost induced by the hydrody-
namic simulator complexity, we use a method that reduces
the resource usage of the hydrodynamic layer on our sim-
ulation but keeps enough realism and degree of freedom.
We base our work on Jos Stam’s solver (Stam, 2003). This
model is mainly used for image processing. This quite sim-
ple approach is interesting because its ability to solve Navier
and Strokes’ equations has been proved.

(a) (b)

Figure 1: (a) Relative positioning of the chemical (red bold
lines) and hydrodynamic (blue thin lines) environment. (b)
Velocity vectors (red bold arrow) allow the spreading of few
substrates on the other side of the cellular membrane.

In this model, the environment is a grid on which fluids
particles are moving following speed vectors. Particles here
represent our substrates. Our simulated cells are impassable
obstacles. When a particle hits a cell membrane, the speed
vector that corresponds to the collision point is modified in
order to redirect the particle along the cell edge. In a first
step, to simplify the simulation, all substrates will be spread
separately, that is to say independently of one another. In
other words, substrate flow interactions are not simulated
with model. In our experimentation of morphogen position-
ing, this limitation has been overtaken bringing together all
morphogens in a unique substrate and then breaking it up in
the developmental model into several morphogens.

To ripen border conditions, the hydrodynamic simulator
grid size has been doubled in comparison with the chemi-
cal simulator grid. Indeed, the smaller the grid subdivision,
the more precise the border condition computation. In other
words, fluid flows will be more precisely described. Because
the grid subdivision strongly increases the computation cost,
the hydrodynamic grid has only been subdivided by two in
comparison to the chemical grid. The algorithm has also
been adapted to take into consideration the inter-cell spread-
ing allowed by our previous spreading algorithm. Because
obstacles represented by cells are stuck together, no fluid
flow is possible between cells. In our model, the organism’s
external speed vectors are able to modify the organism’s in-
ternal speed vector in order to create internal flows. Figure
1 is a scheme of the subdivision grid and force applications
in the environment.

The non-conservation material quantity is one of the main
limitations of this model. Indeed, during the simulation, the
hydrodynamic engine can generate a small loss of material.
Such a loss could be unacceptable for the developmental
model on little quantities or on application linked with real
data such as real cell simulation. The main aim of the hydro-
dynamic engine is to spread morphogens in the environment
in order to develop a shaped creature. Such a loss of ma-
terial could generate a non-desired growth of the organism.
However, several methods exist to fix the problem. The first
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one consists in the implementation of an energy conserva-
tion law, which equilibrates the substrate leaks due to equa-
tion reductions. A proportional distribution of lost material
on the entire grid has been preferred because the energy con-
servation method is expensive in computation resources and
will be difficult to apply to our simulator.

The number of adjustable parameters is another strength
of this model. Many properties are implied in fluid move-
ments. The first parameter is the viscosity coefficient. This
coefficient is used to describe the fluid movement. the higher
the coefficient, the easier the outflow on its support. The
second parameter of the model is the substrate density. This
latter represents the capacity of the substrate to be spread
during its spread. The higher the coefficient, the higher the
links between substrates particles. Finally, the last parame-
ter on which the user should act is the intensity of the force
applied on the environment. The higher the force intensity,
the bigger the induced activity.

The integration in our cellular simulation is simple: the
hydrodynamic engine totally replaces the traditional spread-
ing algorithm previously used to spread substrates. Cells
interact with the environment, in particular by absorbing or
rejecting substrates. Without a hydrodynamic layer, their
actions could not create the fluid flows due to molecular
movement. Now, the hydrodynamic engine can simulate this
kind of phenomenon. Expulsion strength with a particular
direction can be given to the cell. According to hydrody-
namic forces, cells can position now a substrate everywhere
in its environment. Cells can also create flows to produce
global movement in the environment. Substrate absorption
can create suctions in the same way. Lastly, as defined in the
developmental model Cell2Organ, during a division stage,
future cell position must be empty before the daughter cell
creation. In other words, substrates in the mother cell neigh-
bourhood must be spread in the close environment in order
to clean up the space to the daughter cell. The addition of a
hydrodynamic engine instead of a classical spreading algo-
rithm induces the creation of multiple complex flows (vortex
in particular) near the division that can modify the behaviour
of close cells.

Preliminary results of such an engine use with our devel-
opmental model has been presented in (Cussat-Blanc et al.,
2010). Through several experimentations, we showed the
capacity of this kind of model to create hydrodynamic flows
by using a cell that rejects substrates in a chosen direction.
We also showed the possibility to lead the flow with the use
of other cells, these latter acting as obstacles in the environ-
ment. Finally, we showed a possible extension of the model
Cell2Organ in a physical world through the experimentation
of a muscular joint.

In this paper, the previously presented hydrodynamic en-
gine is used to position morphogens in the environment. A
cell able to reject morphogens in the environment by giving
them a defined force is used to create a pattern that an organ-

ism endowed with a shape generation genome will follow.
Thanks to this method, we develop several shapes presented
in the next section.

Experiments
Experimental conditions
To provide comparable results, the environment composition
is the same in all next experiments. In order to develop sev-
eral shaped creatures, several hydrodynamic engine param-
eters (viscosity, expulsion force and density) and initial cell
possibilities are tested. We first present the used environ-
ment and cell capacities, which are always the same in next
experimentations. The results of these experimentations are
then presented.

The environment is composed of 5 substrates: energetic
substrate W that provides energy to cell by chemical reac-
tion W → Energy (30), morphogen substrates NE, NW ,
SE, SW that provide division information to cells. Whereas
W can spread and is massively present in the environment
to develop an easy and efficient metabolism (the latter is not
the main goal of the experiments), few morphogens are po-
sitioned in the environment to be only expulsed by cells.

Two kinds of cells are available in the environment.
Pusher cells have two actions: reject morphogen in the

environment and wait for a signal. Because the cells’
genome is very simple, it is hand-coded: cells can reject
morphogens while they have units into their membranes;
when they have no more substrate, they wait indefinitely.

Development cells can follow morphogens to develop a
shaped-creature. The used genome has been evolved by
a genetic algorithm and is detailed in (Cussat-Blanc et al.,
2008). To summarize its functioning, cells have to manage
their metabolisms provided by the energetic substrateW and
their development functions (follow morphogens to produce
a shape). A good genome has been found by a genetic algo-
rithm and can produce any desired shape if morphogens are
correctly positioned in the environment.

The rest of this section presents three experiments: sim-
ple shapes development, the development of a mushroom-
like shaped creature and a four-armed creature. The aim
is to study the impact of the hydrodynamic engine pa-
rameter modifications on the developed shapes. Videos
of all these experiments are available on the website
http://www.irit.fr/∼Sylvain.Cussat-Blanc.

Simple shapes
The aim of this first experiment is to give a range of possible
shapes that can be produced by the model and to evaluate the

Viscosity Density Force
10−6 < V i < 10−28 1 < De < 105 30 < Fo < 50

Table 1: Parameter acceptable value ranges
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(a) Vi=10−26, De=105, Fo=30

(d) Vi=10−18, De=10, Fo=45

(c) Vi=10−6, De=10, Fo=50

Figure 2: Influence of viscosity (Vi), density (De) and ex-
pulsion force (Fo) on developed shapes. On the left, hydro-
dynamic world where cells (in green) are obtacles and mor-
phogen densities are represented with a gradient from white
to red. On the right, the chemical world where cells (in red)
are developping by following morphogens.

acceptable range of each parameter. In a first step, we em-
pirically modify the parameters to develop as many shapes
as possible. The parameter ranges are presented in table 1.

Figure 2 shows examples of produced shapes. As ex-
pected, parameter variations allow the development of dif-
ferent shape sizes (width) and statures (height). It is interest-
ing to notice that figure 2(a) shows the capacity of the model
to develop a square, a common problem of the literature
(first step of the French flag problem). A high-density value
(De = 100000) has been used here to keep morphogens
grouped and make the production of such a shape possible.

With a low-density value, we develop the mushroom-
shaped creature presented in figure 3. As previously intro-
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Si
m

ul
at

io
n 

tim
e

Figure 3: Development of a mushroom with morphogens
positioning: a high fluid viscosity allows the cap formation.

duced, the density parameter configures the stickiness force
between substrates. The result is the development of a mush-
room “cap” on the top of the shape, due to the vortex forma-
tion along the “stalk” that creates depressions. This accu-
mulation produces two big vortexes of substrates on the top
that produce the “cap”.

Cell configuration influence on morphogen flows
Modifying the initial cell configuration in the environment
strongly influences the produced shape. Because cells are
considered as obstacles in the hydrodynamic world, when a
morphogen flow hits one of them, it is automatically divided
in two flows that interfere. In these experiments, medium
values of viscosity, density and expulsion forces are used.
Depending on the cell position and the hydrodynamic engine
parameters, many shapes can be obtained. Figure 4 presents
some examples of initial configurations influences. Some
interesting shapes appear in this figure: a kind of body en-
dowed of tow tentacles in figure 4(a), an stomach-like shape
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(a) Vi=10−28, De=100, Fo=50

(b) Vi=10−10, De=100, Fo=50

(c) Vi=10−22, De=10, Fo=50

Figure 4: Influence of viscosity (Vi), density (De), expulsion
force (Fo) and initial configuration on developed shapes (ini-
tial cells are highlighted in the chemical world).

on figure 4(b) and two wings on figure 4(c). This kind of
shapes can be mixed to produce a complex creature and al-
low to jiggle in a simulated physical world. We will present
an idea of such an improvement later in this paper.

The four-armed creature

In order to produce a bigger creature that could move and
act in a physical world, we develop a creature endowed with
four arms. Based on the same environment as before, we
modify the pusher cell to give it the possibility to expulse
substrates in the four cardinal directions (up, down, left and
right) in order to produce four morphogen flows in the envi-
ronment. According to previous results, we choose the hy-
drodynamic parameters to produce rectangular sets of cells
that will represent the arms. The initial configuration is also
based on a simple shape development: a 4-direction pusher
cell is set in the centre of the environment and four devel-
opment cells are positioned on its diagonals, all around the
pusher cell. Figure 5 shows the development of this four-
armed creature.

Artificial creatures, with a morphology such as the four-
armed creature previously presented, could be endowed with
locomotive abilities in a simulated physical world. We al-
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Figure 5: Development of a four-armed creature

ready develop a physics engine that we plug in our model.
This simulator, presented in details in (Cussat-Blanc et al.,
2010), is linked to the chemical environment (Cell2Organ)
and allows the simulation in a 3-D physical world of these
developed organisms. We already showed the movement
of a “muscular joint” where two “bones” rotate around a
“kneecap” thanks to a “muscular fibre”. All these compo-
nents are produced by the developmental model and then
linked in the physical world. Muscular fibre cells are able to
change their shapes in order to produce a global movement.
This kind of mechanism could be applied to the four-armed
creature: each cell could be able to rotate around each other
in order to produce a global movement of such a structure.
With the intention of realising this behaviour, a high-level
controller (neural network, classifier system, etc.) must be
added to the cell to manage the rotation.

Conclusion
In this paper, we have presented the last features added to our
developmental model. We have plugged a hydrodynamic en-
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gine to automatically position morphogens in the environ-
ment. This first stage prepares the environment by position-
ing morphogens in the environment. A creature can then
develop its morphology by following division information.
Thanks to this add-on, we develop various shapes, simple or
more complex. The hydrodynamic model we choose for a
simulation allows us an interesting parameterisation of fluid
properties: whereas most models are hard to tune, Stam’s
model allows a simple modification of viscosity, density and
forces applied to substrates. We show that several morpholo-
gies can be obtained.

This work can be improved in many ways. First, it could
be interesting to evolve the presented parameter set with an
evolutionary algorithm. The use of such a research algo-
rithm could help us to produce user-defined morphologies
just by giving a fitness function that describes the shape of
the creature (that is a common problem in literature).

To produce more complex creatures, we imagine a cell
differentiation inspired from nature: in real living systems,
after a given number of divisions, embryonic stem cells can
produce differentiated cells (neurons, epithelial cells, etc.).
The mechanism could be used in our model to produce ro-
tations or morphology modifications in creatures: a pusher
cell produces an initial morphogenetic pattern. Developing
cells have a given division credit to produce a shape. When
this credit is depleted, the developing cell turns into a pusher
cell that produces a new morphogenetic pattern. Surround-
ing developing cells continue the shape development follow-
ing the previously produced pattern and so on. A gram-
mar based on L-Systems could give the division credit and
pusher parameters (expulsion force and direction) and could
be evolved by an evolutionary algorithm in order to produce
complex creature morphologies.

Lastly, as presented at the end of the previous section,
creatures must also be simulated in a 3-D physical world to
produce high-level moves. This feature will bring us closer
to our goal: producing a creature from a single cell able to
move in a 3-D environment.
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Abstract

Evolutionary adaptation is the process that increases the fit of
a population to the fitness landscape it inhabits. As a con-
sequence, evolutionary dynamics is shaped, constrained, and
channeled, by that fitness landscape. Much work has been ex-
pended to understand the evolutionary dynamics of adapting
populations, but much less is known about the structure of
the landscapes. Here, we study the global and local structure
of complex fitness landscapes of interacting loci that describe
protein folds or sets of interacting genes forming pathways
or modules. We find that in these landscapes, high peaks are
more likely to be found near other high peaks, corroborat-
ing Kauffman’s “Massif Central” hypothesis. We study the
clusters of peaks as a function of the ruggedness of the land-
scape and find that this clustering allows peaks to form inter-
connected networks. These networks undergo a percolation
phase transition as a function of minimum peak height, which
indicates that evolutionary trajectories that take no more than
two mutations to shift from peak to peak can span the entire
genetic space. These networks have implications for evolu-
tion in rugged landscapes, allowing adaptation to proceed af-
ter a local fitness peak has been ascended.

Introduction
The structure of the fitness landscapes that populations find
themselves in determines to a large extent how those popu-
lations will evolve. In introducing the concept of an adaptive
fitness landscape, Sewall Wright (1932) sought to illustrate
the idea that some combinations of characters will give rise
to very high fitness (peaks) while some others do not (val-
leys), and to study the processes that allow a population to
shift from peak to peak. Evolution in simple smooth land-
scapes (where each site or locus contributes independently to
fitness) is trivial, because the ascent of a single fitness peak
is largely deterministic (Tsimring et al., 1996; Kessler et al.,
1997). At the other extreme lie “random” landscapes (Der-
rida and Peliti, 1991; Flyvbjerg and Lautrup, 1992), which
are characterized by an absence of any fitness correlations
between genotypes, and whose dynamics can likewise be
solved using statistical approaches. In between these two ex-
tremes lie fitness landscapes that are neither smooth nor ran-
dom, where mutations at different loci interact in complex

patterns, giving rise to variedly rugged and highly epistatic
landscapes (Whitlock et al., 1995; Burch and Chao, 1999;
Phillips et al., 2000; Beerenwinkel et al., 2007; Phillips,
2008). Experiments with bacteria and viruses (Elena and
Lenski, 2003) have revealed that real fitness landscapes are
of this nature: they are neither smooth nor random, and con-
sist of a large number of fitness peaks.

Unfortunately, while experiments with bacteria and
viruses have taught us a lot about evolutionary dynamics,
they can only probe very limited regions of the fitness land-
scape, confined to the genotype space surrounding those of
living organisms. In artificial landscapes we are not con-
strained by generation time or the specific genotypic space
that organisms happen to occupy, but can place organisms
anywhere in the fitness landscape, thus enabling us to exam-
ine the statistical properties of fitness landscapes.

If realistic fitness landscapes are neither smooth (a sin-
gle peak) nor random (very many randomly placed peaks in
the landscape), what is the structure of complex landscapes
in “peak space”? Are most peaks confined to one region
of genotype space, leaving other areas empty? Are peaks
clustered or are they evenly distributed? One hypothesis
about the structure of fitness landscapes was proposed by
Kauffman (1993), who posited that peaks are not evenly dis-
tributed, but that high peaks are correlated in space, forming
a Massif Central, and presented numerical evidence support-
ing this view. According to this observation, the best place
to look for a high fitness peak is near another high fitness
peak. A corollary to this hypothesis is that large basins with
no peaks surrounds the central massif. If fitness peaks are
indeed distributed in this manner, it would have profound
implications for the traversability of the landscape, and for
evolvability in general (Altenberg and Wagner, 1996).

Here we strive to study this question in much more de-
tail, by analyzing all the peaks in a landscape in which the
ruggedness can be tuned from smooth to random. In par-
ticular, we would like to know whether the highest peaks
form clusters of connected walks that can percolate, i.e.,
form connected clusters that span the entire fitness land-
scape. Such clusters are very different from the neutral net-
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works studied elsewhere (van Nimwegen et al., 1999; Wilke,
2001), and we briefly argue that peak networks may be more
important for evolvability.

NK Landscape
Kauffman’s NK model (Kauffman and Levin, 1987, see also
Altenberg, 1997) has been used extensively to study evolu-
tion because it is a computationally tractable model of N bi-
nary interacting loci where the ruggedness of the landscape
can be tuned by varying K, the number of loci that each
locus interacts with. Typically N is of the order of 10-30,
but larger sets can be studied if a complete enumeration of
genotypes is not necessary. If K = 0, the smooth landscape
limit is reached, because if loci do not interact, then there
is a single peak in the landscape that can be reached by op-
timizing each locus independently. If K = N − 1, on the
other hand, the model reproduces the random energy model
of Derrida (Derrida and Peliti, 1991). The N loci are usually
thought of as occupying sites on a circular genome, while the
interactions occur between adjacent sites (see Fig. 1), but the
identity of the interactors are immaterial and the results do
not depend on their physical location on the genome. The
example genome in Fig. 1 shows the interactions between
loci in an N = 20 and K = 2 model, where the width
and darkness of the lines reflects the strength of the epistatic
interactions between sites for the global peak of that land-
scape.

While clearly the NK model should not be thought of as
describing the genome of whole organisms, the model has
been used extensively to study the evolution of a smaller set
of sites, such as the residues in a protein (Macken and Perel-
son, 1989; Perelson and Macken, 1995; Hayashi et al., 2006;
Carneiro and Hartl, 2010) or the set of interacting genes cod-
ing for a pathway or a module (Kauffman and Weinberger,
1989; Sole et al., 2003; Yukilevich et al., 2008; Østman
et al., 2010).

In the original NK model, the fitness contribution of each
locus is calculated as the arithmetic mean of the fitness con-
tributions of each locus w(xi), which itself is a function of
the value of the bit at that locus (’1’ if the gene is expressed,
’0’ if it is silent) and the allele of the K genes it interacts
with. This fitness landscape is constructed by obtaining uni-
formly distributed independent random numbers for all the
possible combinations of the K +1 sites (2K+1 numbers for
each locus), so that the fitness contribution for any combina-
tions of alleles can simply be found by looking up that value
in the table. Here, we modify this model slightly, by replac-
ing the customary arithmetic mean by the geometric one, so
that the fitness of genotype ~x = (x1, ..., xN ) is given by

W (~x) =

(
N∏

i=1

w(xi)

)1/N

. (1)

This modification better captures the nature of real genetic

Figure 1: Genome and epistatic interactions between sites
for the peak genotype of an N = 20 and K = 2 model.
While all sites within a “radius” of two interact (light grey),
the strength of interaction can be very different depending
on the actual landscape that was formed. Here, the strength
of epistatic interactions was calculated by performing all
single-site and pairwise knockouts on the global peak geno-
type, and calculating the deviation of independence using a
standard method (Bonhoeffer et al., 2004; Elena and Lenski,
1997; Østman et al., 2010).

interactions (see, e.g., St Onge et al., 2007), and it makes
it possible to introduce lethal mutations by setting one or
more numbers in the fitness lookup-table to zero. Taking the
geometric mean skews the distribution of genotype fitness
to the left, resulting in a mean of about 0.4, rather than the
value of 0.5 when using the arithmetic mean (see Fig. 2). Of
course the logarithm of W (~x) reduces to the usual arithmetic
mean of the log-transformed fitnesses.

In the NK model we can easily compute the fitness of all
genotypes as long as N and K are not too large, and we
can also identify fitness peaks as those genotypes whose N
one-mutation neighbors all have lower fitness. Increasing K
creates landscapes that are increasingly rugged, containing
more and higher peaks with deeper valleys in between. The
waiting time to new mutations becomes a determining fac-
tor in how much the population can evolve before it risks
becoming stuck on a peak of suboptimal fitness. Visualizing
natural fitness landscapes is difficult since it requires prob-
ing genotype-space by measuring the fitness of organisms
whose genomes are fully sequenced. Even worse, natural
fitness landscapes are rarely static, making such an endeavor
even more futile. In computational models all genotypes can
sometimes be enumerated, and we can thus learn about the
global properties of the fitness landscape. This exciting pos-
sibility is muted by the fact that we cannot easily visualize
high-dimensional spaces, and we are forced to resorting to
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statistical methods to probe the landscape.

How Peaks Cluster
In Fig. 2 we show the fitness distribution of all genotypes
of an N = 20, K = 4 landscape (this distribution is virtu-
ally identical for different realizations of landscapes with the
same N and K). Of those 220 genotypes, less than 0.07%
are peaks (this fraction depends on the particular realization
of the landscape), and are also roughly normally distributed
in fitness. Note that while the highest-fitness genotypes are
very likely peaks, there are peaks whose fitness is signifi-
cantly smaller, down to the mean fitness of genotypes in the
landscape. The number of peaks scales approximately expo-
nentially with N (when K is fixed), but only about linearly
with K for K sufficiently large, and at fixed N (data not
shown).
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Figure 2: Fitness distribution of all 1, 048, 576 genotypes
(dashed line) in a typical landscape of N = 20 and K = 4.
This landscape contains 679 peaks whose fitness distribution
is shown as a solid black line. In the inset we have zoomed
in on the peaks.

Pairwise distances
Because the “Massif Central” hypothesis says that the neigh-
borhoods of high peaks are the best places to look for other
high peaks, it is natural to also look at the pairwise distance
of all peaks in a landscape. As we now know the genotypes
of all the peaks in the landscape, we can ask whether peaks
have a tendency to be located close to each other by study-
ing the distribution of Hamming distances between peaks,
which counts the number of differences in the binary rep-
resentation of the sequences. In fact, this is how Kauffman
validated his hypothesis: by plotting the fitness of peaks as

a function of the Hamming distance of all peaks to the high-
est peak he found (Kauffman (1993), page 61), for a land-
scape with N = 96 and K = 2, 4, and 8. As it is not
possible to enumerate 296 ≈ 8 · 1028 genotypes, Kauffman
found high peaks using random uphill walks. Here, we in-
stead use N = 20, for which we can compute the fitness
of all genotypes and thus locate all peaks. After comput-
ing the Hamming distance between all pairs of peaks, we
can compare the distribution of these distances to a control
distribution constructed with the same number of random
genotypes, which are not expected to show any bias in the
distribution of distances. (It is easy to see that the distri-
bution of pairwise distances of random binary sequences of
length N = 20 peaks at d = 10.)

0 5 10 15 200

0.05

0.1

0.15

0.2

P(
d H
)

0 5 10 15 200

0.05

0.1

0.15

0.2

Hamming distance

P(
d H)

0 5 10 15 200

0.05

0.1

0.15

0.2

Hamming distance

0 5 10 15 200

0.05

0.1

0.15

0.2
A B

DC

Figure 3: Distributions of pairwise Hamming distances be-
tween all peaks (solid) and between random “control” geno-
types (dashed). The distributions shown are the averages of
50 different landscapes with genomes of length N = 20.
(A) K = 2 landscapes containing an average of 98 peaks.
(B) K = 4 landscapes containing an average of 720 peaks.
(C) K = 4 landscapes including only an average of 363
peaks with a fitness above a threshold: W ≥ Θ = 0.60. (D)
K = 4 landscapes including only an average of 95 peaks
with a fitness above a threshold of Θ = 0.66. As the samples
include fewer and higher peaks, the pairwise distributions of
K = 4 landscapes begin to resemble that of the K = 2
landscapes, suggesting that the highest peaks do cluster in
genotype space, whereas the distribution of lower peaks is
less biased.

We find that for K = 2, peaks are generally closer to each
other than expected, indicating that peaks cluster in geno-
type space (see Fig. 3A). This alone does not tell us whether
high peaks are more frequently associated with other high
peaks (as opposed to peaks of lower fitness). Moreover,
when examining K = 4 landscapes (that contain over seven
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times as many peaks on average as for K = 2) we notice that
the tendency for peaks to cluster close to each other is nearly
gone, that is, the distribution closely resembles the random
control (Fig. 3B). However, the bias reappears when we fil-
ter the peaks so that we only include those of high fitness
(Figs. 3C and D), reaffirming the hypothesis that in complex
epistatic landscapes, there is something special about being
a high peak, genotypically speaking.
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Figure 4: Mean fitness of peaks in circular clusters of radius
d = 2 as a function of the fitness of the peak in the center
of the cluster. (A) One landscape of K = 2 with 166 peaks
(black dots). All landscapes show a strong correlation be-
tween cluster mean fitness and peak fitness, while the same
analysis of assigning random genotypes to the peaks (but
keeping the fitness) shows no such correlation (gray dots).
The random data are from ten samplings. (B) One land-
scape of K = 4 with 679 peaks (black dots), and random
genotypes (gray dots) obtained by sampling four times.

Peak neighborhood
If we want to know whether peaks with high fitness are likely
to be found near other such peaks, we should study the mean
fitness of peaks within a specified radius of that peak. These
“circular” clusters contain all peaks within a Hamming dis-
tance d of a chosen peak (not counting the peak at the cen-
ter). For the smallest possible distance between peaks d = 2,
the size of a cluster is limited to 210 genotypes, but since
peaks must be at least two mutations away from each other,
there can be at most 190 peaks within a Hamming distance
of two.

Fig. 4A depicts the mean fitness of adjacent peaks in cir-
cular clusters of radius d = 2 (black dots, for K = 2),
showing a tight correlation between peak fitness and aver-
age adjacent peak fitness that indicates that the immediate
neighborhood of high peaks is populated by other peaks of
high fitness. On the contrary, when we randomize the lo-
cation of the 166 peaks in genotype space without chang-
ing their height, this relationship vanishes (light gray dots
in Fig. 4A). For K = 2 random peaks are far apart, result-
ing in only very few peaks within a distance d = 2 of each
other. The K = 4 landscape has four times as many peaks
as the K = 2 landscape, and the effect persists (Fig. 4B).
The observed relation between mean fitness of these circu-
lar clusters and peak fitness persists even when the radius in
increased to d = 6 (data not shown). We observe a similar
correlation between mean cluster fitness and maximum peak
height in network clusters (data not shown).

Adjacency matrices

A B

Figure 5: Adjacency matrices showing clusters of peaks. (A)
Single K = 4 landscape with peaks of Hamming distance
d = 2 connected. The peaks are ordered according to which
network cluster they belong to. This landscape consists of
109 peaks with fitness above Θ = 0.66 that are grouped into
nine clusters (not counting singletons). (B) Random K = 4
landscape with d = 4 and Θ = 0, showing only the first 109
genotypes.

While circular clusters can tell us whether high peaks are
surrounded by peaks that are higher than expected, they do
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not allow us to examine certain critical properties of the
landscape. To do this, we should think of peaks in the ge-
netic landscape as nodes in a random graph, and study the
size of clusters of peaks that are formed by connecting all
those peaks that are within a distance d of each other. Con-
necting such networks clusters of peaks creates a percolation
problem (see, e.g., Bollobas and Riordan (2006)). In statis-
tical physics, systems where nodes are connected by edges
that are placed with a fixed probability undergo a geometric
phase transition as a function of the edge placement prob-
ability. One of the quantities studied in percolation theory
is the size of the largest cluster, because this variable rises
dramatically at the critical point so that it takes up most of
the system once past the critical point. If the largest cluster
takes up most of the nodes, the system is said to ”percolate”,
which implies that the cluster spans the entire system (allow-
ing you to walk across connected nodes from any part to any
other in the system). We will study the percolation prop-
erties of the fitness landscape by using the peak height as
the critical parameter. Clearly, if only the highest few peaks
are considered the system is far from percolation, as these
peaks are unlikely to be connected. But if the highest peaks
are closer to each other than expected in a random control,
then the peaks could percolate far earlier.

Let us begin by computing the Hamming distance be-
tween all pairs of peaks with fitness greater than Θ, and con-
nect those peaks that are a distance of no more than d away
from each other. In Fig. 5A, we show the adjacency matrix
of clusters, which we obtained by placing a dot for every two
peaks that are with a distance d (that is, immediately adja-
cent). Peaks are ordered in such a way that peaks that fall
into the same cluster are placed next to each other. This pro-
cedure allows us to the visualize the structure of clustered
peaks in the landscape. In contrast, if the same peaks are
assigned random locations in the landscape, there is no ap-
parent structure, and clusters of peaks are on average very
small (Fig. 5B). For K = 4 and d = 2 very few peaks are
connected in a random landscape, and because of this the ad-
jacency matrix shown in Fig. 5B is for d = 4, and includes
peaks of any height. Only the first 109 peaks are shown.

Percolation phase-transition
In Fig. 6 we show the average relative size of the largest
network cluster as a function of the peak threshold Θ,
defined as the ratio of the largest number of connected
peaks with fitness above Θ to the total number of peaks in
the landscape. The relative size of the largest connected
component (also called the ”giant cluster” in percolation
theory) increases dramatically as the critical threshold
is reached, much like the size of the giant component
increases when the critical probability of edges is reached
in percolation theory. But what is remarkable about this
transition is that it only occurs because the high peaks in the
landscape occur near other high peaks: if the peaks were
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Figure 6: Size of the largest network cluster in the landscape
averaged over 50 landscapes for each K as a function of fit-
ness threshold, Θ. K = 2 (solid black line), K = 4 (dashed
black line), and K = 6 (solid black line with white circles).
The more rugged the landscapes are, the more abrupt the
transition is from small network clusters to one cluster dom-
inating the landscape. Random genotypes for K = 2 (solid
gray line) and K = 4 (dashed gray line) show no increase in
cluster size.

not clustered, the largest network cluster size would not
increase when we lower Θ, as is the case when we reassign
peaks to random genotypes (gray lines in Fig. 6).

When we include enough peaks, either by setting Θ low
for K = 4 (or else for K = 6 or higher) we find that for
d = 2 there are always two largest network clusters, while
the third largest cluster contains significantly fewer peaks.
Both large clusters percolate genotype space and the diame-
ter of both graphs is 18, not 20 (in general, N−2), while the
shortest distance between the two clusters is always 3. This
is peculiar to the way clusters are formed in this particular
percolation problem. It is a rewarding exercise to determine
the root cause of this peculiarity, which we leave to the in-
terested reader. The transition seen in Fig. 6 suggests that in
more rugged landscapes there are several clusters contain-
ing high peaks (high Θ), and that these high-peak clusters
are connected by the peaks of lower fitness (lower Θ).

The percolation of genetic space by peaks with a suffi-
ciently low height is reminiscent of the percolation of ge-
netic space by arbitrary shapes in the RNA folding prob-
lem (Grüner et al., 1996), except that in that case struc-
tures with different genotypes form a neutral network that
can be traversed by single point mutations. The giant clus-
ter of peaks in the NK landscapes cannot be traversed like
that: rather, it requires a minimum of two mutations to jump
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from peak to peak, and because some of the peaks have in-
ferior fitness, such mutations can only be tolerated for a fi-
nite amount of time–long enough to jump to the next highest
peak. Thus, deleterious mutations are likely to be important
to reach distant areas in genotype space, and the importance
of these is slowly being realized (Lenski et al., 2003, 2006;
Cowperthwaite et al., 2006; Østman et al., 2010).

Discussion
Using several methods we have shown that the rugged fit-
ness landscapes that epistatic interactions create in the NK
model consist of fitness peaks that are distributed in a man-
ner that strongly affects evolution. High peaks are more
likely to be found near other high peaks, rather than near
lower peaks or far from peaks altogether. Similarly, lower
peaks are predominantly located near each other in geno-
type space. Cluster analysis reveals that peaks tend to clus-
ter (as compared to the same peaks placed randomly in ge-
netic space) giving rise to large basins of attraction that are
effectively devoid of peaks. This feature is especially promi-
nent for moderately rugged landscapes (K = 2), while the
addition of many more smaller peaks in more rugged land-
scapes (K = 4 or higher) makes this trend less significant.
To the extent that we think that the NK landscape is an accu-
rate model for real fitness landscapes of proteins and genetic
pathways or modules, the discovery that these landscapes
possess a remarkable structure that appears to be conducive
to adaptation is highly informative about the process of evo-
lution. Clustering of peaks makes a difference when the en-
vironment changes in a way that is unfavorable to the pop-
ulation, and forcing the population to adapt anew. If the
landscape consists of evenly distributed peaks, then the risk
of becoming stuck on a low fitness peak is high, and the
population risks extinction. On the other hand, if peaks are
unevenly distributed, then the ascent of one peak may not
be where adaptation ends, making it possible to locate the
global peak or another high fitness peak.

The more rugged a landscape is, the more peaks it con-
tains, and the larger the space of genotypes that the largest
network cluster spans. In smooth landscapes with only one
or a few peaks, populations can evolve from genotypes of
low fitness and move across genotype space toward high fit-
ness. In rugged landscapes, the population always risks be-
coming stuck on a suboptimal peak. However, networks of
closely connected peaks that percolate genotype space may
still make it possible to traverse the fitness landscape jump-
ing from peak to peak (given a sufficiently high mutation
rate). If peaks are evenly distributed in genotype space, the
chance to jump from peak to peak and thereby eventually
locate the global peak is virtually nil. It is important, how-
ever, to remember that there are limits to the realism of the
NK landscape as a model of realistic genetic or protein land-
scapes. For example, it is known that a significant percent-
age of substitutions in proteins or mutations in genetic path-

ways are neutral, while the NK landscape has virtually no
neutrality (even though most mutations do not change the
fitness significantly). Neutrality plays an important role to
enhance traversability, and will facilitate the transition be-
tween peaks so that deleterious mutations are not essential
for the shift from peak to peak. However, one could main-
tain that deleterious mutations are more promising for adap-
tation than neutral mutations are, because they may be what
separate important phenotypes (Lenski et al., 2006).

The observation that peaks form clustered networks, and
that these networks percolate, implies that the risk of becom-
ing stuck on a suboptimal peak is significantly mitigated, be-
cause all it takes is the two right mutations to locate a new
peak. Thus, it appears that evolvability comes for free in
complex rugged landscapes of interacting loci. We should
note, however, that the reason why peaks cluster in land-
scapes with epistatic interactions is not immediately appar-
ent, and is a subject of ongoing investigations.
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Abstract

Biological development is governed by gene regulatory net-
works (GRNs), although detailed genetic and cellular mecha-
nisms remain unclear. By means of analyzing biological data,
it is believed that some GRN motifs have played an important
role in the evolution of biological development. In this work,
we investigate in a computational model for development to
verify if these motifs can also be evolved as in biology, which
can not only help understand biological development and im-
prove simulated evolution as well. The goal of the evolution
is to evolve an elongated body plan using a cellular devel-
opmental model controlled by a GRN. We count the number
of network motifs during the evolution and try to relate the
changes of these network motifs to the fitness profile of the
evolution. We find for the number of most motifs an increase
in the beginning of the evolution and a decrease as the evo-
lution proceeds. We hypothesize that at the beginning a high
number different motifs is helpful for the evolution, however,
motifs that are not used for the targeted development, i.e., an
elongated body morphology in this work, will get lost later
on. Finally, we examined two individuals before and after
a fitness jump to analyze which genetic changes have con-
tributed to the large fitness improvement.

Introduction

Recent advances in computational systems biology suggest
that computational models for development may help us to
gain more insights into the genetic and cellular mechanisms
underlying biological development. Among other research
efforts, analysis of small, frequently occurred network struc-
tures, often known as network motifs, have attracted much
interest as described by Alon (2007, 2006). Analysis of bi-
ological data revealed that such motifs can widely be identi-
fied in bacteria and yeast, see e.g., Babu et al. (2004). Most
recently, it has been found that some motifs may have played
an essential role in evolution. For instance, Kwon and Cho
(2008) analyzed the role of feedback loops and found that
more positive feedback loops and less negative feedback
loops contribute to the robustness of the regulatory system.

∗The work was conducted while Yaochu Jin was with the
Honda Research Institute Europe.

However, the analysis of motifs on an evolutionary scale re-
quires the data of many individuals from different evolution-
ary stages. These data are (currently) not available in biol-
ogy. Therefore, it seems advisable to support the biological
analysis with the results from computational models. Even
though these models are usually abstract and the analysis is
computationally expensive, it is the target to identify pat-
terns that relate the emergence of motifs to the evolutionary
progress in computational models.

Some computational models for artificial development
have been proposed (see Harding and Banzhaf (2008)) based
on various computational models of GRNs (de Jong, 2002;
Geard and Willadsen, 2009). In models of artificial devel-
opment, one or a few single cells divide and proliferate in a
2D or 3D environment. These cells interact with each other,
developing into a pattern, a structure or a shape.

One major concern in cell-based developmental models
under the control of GRNs is a self-stabilizing cell growth
and the ability to self-heal after a damage. The French flag
problem is a popular benchmark used in artificial develop-
ment, see e.g., Joachimczak and Wròbel (2009); Wolpert
(2004). Andersen et al. (2009) managed to evolve a stable
development and demonstrate the capacity of self-repair us-
ing a GRN based on cellular automata. In their model, cells
are fixed on a grid and contact inhibition is adopted, i.e., ifa
cell is surrounded by other cells, it will not divide any more.

In this work, we have used a cellular growth model de-
scribed by Steiner et al. (2007), which was inspired by an ar-
tificial development model suggested by Eggenberger Hotz
et al. (2003). We use a GRN network model that defines
the actions of the cells. The cells interact with each other
through diffusion of external transcription factors. In con-
trast to other work, our cells are not fixed on a grid and can
move via cell-cell physical interactions. In addition, cells
can divide as long as the gene for cell division is active.
Therefore, the model has fewer assumptions and the devel-
opmental process is less constrained. This model has been
employed for simulating neural development in a hydra-like
animat (Jin et al., 2008). Stable cell growth has also evolved
in a co-evolution of morphology and control of swimming
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Figure 1: An example chromosome for the development.

animats (Schramm et al., 2009). Additionally, stable and
lightweight structures have evolved in (Steiner et al., 2009)
using this cellular model.

In (Steiner et al., 2007), the authors showed that the emer-
gence of a negative feedback motif helps to enhance the mu-
tational robustness. In this paper, we analyze the motifs of
the GRNs in the best individuals of the whole evolution-
ary run to see how various network motifs have contributed
to the evolution of cellular development. We examine the
change in the number of motifs during evolution. Addition-
ally, we analyze the difference in the structure of the GRNs
of two related individuals before and after a fitness jump.

We describe our model in the next section followed by
an introduction to the widely studied network motifs. Then
we present the experimental results of the evolutionary runs
together with the number of motifs during the evolution. We
conclude the paper with an analysis of two individuals, a
summary and an outlook.

The Computational Model for Morphological
Development

The morphological development starts with a single cell that
can perform a few cellular actions, e.g. cell division or cell
death. The cell is placed in the center of a two-dimensional
computation area of size100 × 80, the cells are not fixed
on a grid and can be at all positions inside the computation
area. The cells interact physically with each other and can
produce transcription factors (TFs) that are used for cell-cell
communication. A gene regulatory network (GRN) defines
the behavior of the cells.

The genes of the virtual DNA in each cell consist of reg-
ulatory units (RUs) and structural units (SUs), see Schramm
et al. (2009) for details, as illustrated in Figure 1. The SUs
of a gene define the cellular behaviors, in this paper cell di-
vision, cell death or the production of TFs. The RUs define
whether a gene is activated (expressed). All RUs have an
activation level depending on the TF concentrations inside
and outside a cell. The activation of a gene is defined by a
sum of the activation levels of its RUs, which can be activat-
ing (RU+) or inhibiting (RU−). If the difference between
the affinity values of a TF and a RU is smaller than a pre-
defined thresholdǫ (in this workǫ is set to0.2), the TF can
bind to the RU to regulate the gene activation. The affinity

similarity (γi,j) between thei-th TF andj-th RU is defined
by:

γi,j = max
(

ǫ−
∣

∣affTFi − affRUj
∣

∣ , 0
)

. (1)

If γi,j is greater than zero, then the concentrationci of the
i-th TF is checked whether it is above a thresholdϑj defined
in thej-th RU:

bi,j =

{

max(ci − ϑj , 0) if γi,j > 0
0 else

. (2)

Thus, the activation level contributed by thej-th RU (de-
noted byaj , j = 1, ..., N ) can be calculated as follows:

aj =
M
∑

i=1

bi,j , (3)

whereM is the number of TFs that bind to thej-th RU. As-
sume thek-th gene is regulated byN RUs, the expression
level of the gene can be defined by a summation of the acti-
vations of all RUs

αk = 100
N
∑

j=1

hjaj(2sj − 1), sj ∈ (0, 1). (4)

2sj −1 denotes the sign (positive for activating and negative
for repressive) of thej-th RU andhj is a parameter repre-
senting the strength of thej-th RU.Thek-th gene is activated
if αk > 0 and its corresponding behaviors coded in the SUs
are performed.

The SU for cell division (SUdiv) encodes where the new
cell is placed in comparison to the mother cell. A cell
with an activated SU for cell death dies at the developmen-
tal timestep which it is activated. When SUs for both cell
death and cell division are simultaneously active, the cell
dies without division. Two additional SUs are reserved for
other possible behaviors, which are not used in this work. As
a result, it can happen that some genes perform no action.

An SU that produces a TF (SUTF) also encodes all param-
eters related to the TF, such as the affinity value, the decay
rateDc

i , the diffusion rateDf
i , as well as the amountAi of

the TFi to be produced:

Ai(αk) =

{

β
(

2
1+e−20·f·αk

− 1
)

if αk > 0

0 otherwise
, (5)

wheref andβ are both encoded in the SUTF. Which TFi is
produced is defined in terms of the affinity value.

A TF produced by an SU can be partly internal and partly
external. To determine how much of a produced TF is ex-
ternal, a percentage (pext

∈ (0, 1)) is also encoded in the
corresponding gene. Thus,∆cext

i = pext
· Ai is the amount

of external TF to be produced and∆cint
i = (1− pext) · Ai is

that of the internal TF.
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Figure 2: Concentrations of the prediffused TFs.
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Figure 3: Network motifs (adapted from Alon (2006)).

External TFs are put on four grid points around the center
of the cell. They undergo first a diffusion and then a decay
process:

Diffusion: u
∗

i (t)=ui(t−1) + 0.1Df
i ·(G·ui(t−1)),(6)

Decay: ui(t) =((1− 0.1Dc
i )u

∗

i (t)), (7)

whereui is a vector of the concentrations of thei-th TF at all
grid points and the matrixG defines which grid points are
adjoining. The internal TFs underlie only a decay process:

cint
i (t) = (1− 0.1 ·Dc

i ) c
int
i (t− 1). (8)

All internal and external concentrations of TFs are limited
to an interval of[0, 1].

In our experiments, we put two prediffused, external TFs
without decay and diffusion in the computation area. The
first TF (preTF00) has a constant gradient in they-direction
and the second (preTF01) inx-direction (see Figure 2 and
Figure 13).

Static and Dynamic Network Motifs
Network motifs are sub-networks that occur more often in
biological gene regulatory networks than expected at ran-
dom. In this work, we analyze the occurrence of differ-
ent types of regulatory motifs, such as autoregulation, feed-
forward-loops and single input modules, see Figure 3. In the
following, we describe the function of a few network motifs,
as described in Alon (2006, 2007):

• Negative autoregulation (NAR) defines a gene whose
product directly inhibits its own expression. Such motifs
can speed up the response time compared to a gene with-
out NAR with the same steady state. It leads to steady

states with a rapid rise and a sudden saturation. NAR also
promotes robustness.

• The positive autoregulation (PAR) slows down the re-
sponse time and can lead to bi-stability.

• Thecoherent feed-forward loop 1 (C1-FFL) results in a
fast convergence to a steady state but a slow decrease of
the concentration.

• The incoherent feed forward loop 1 (I1-FFL) can act
as a pulse generator. It can turn a concentration very fast
on with an overshoot, and then it converges to its steady
state.

• TheSingle input module (SIM) consists of one gene reg-
ulating many other genes. Temporally sequential cellular
events can be controlled with a SIM.

There are a lot of different FFLs, among which C1-FFL and
I1-FFL are the most frequent ones in E. coli and yeast. The
functional analysis described above is performed on isolated
motifs, and therefore their behavior in a whole network can
be very different.

All possible connections of a GRN define thestatic net-
work. Therefore, thestatic network motifsare all possible
network motifs regardless of whether they are actually used
during cell operations. In this paper, we want to analyze only
the network connections that are really used during develop-
ment, which constitute thedynamic network. The related
motifs are then termed thedynamic network motifs. In order
for a static motif to be counted as a dynamic motif, all motif
connections have to have been activated (above the thresh-
old) in at least one cell at anytime during development. Thus
the dynamic motif must play an active role during cell op-
erations and not just a potential role as the static motif. Of
course dynamic motifs are a subset of static motifs.

Experimental Settings
We use an extended evolution strategy, (µ, λ)-ES with
elitism for evolving the developmental model, whereµ and
λ are parent and offspring population size, respectively
(Beyer and Schwefel, 2002). In this work,µ = 30, λ = 200,
and3 elitists are adopted. The strategy parameterσ is fixed
to σ = 10−4 in our work.

in addition to mutation, we use gene duplication, gene
transposition and gene deletion as genetic variations. Gene
duplication randomly copies a sequence of RUs and SUs in
the chromosome and then inserts it, again randomly, into the
chromosome. In the case of gene transposition or deletion,
this randomly picked out sequence of RUs and SUs is moved
to another randomly chosen site on the chromosome, or sim-
ply removed.

Mutation is always performed, while gene duplication,
transposition and deletion are exclusive, i.e., only one of
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Figure 4: The target shape for the cellular growth model.

them can be performed to the same chromosome in one gen-
eration. The probabilities for gene duplication, gene trans-
position, and gene deletion arepdup = 0.05, ptrans = 0.02,
andpdel = 0.03. These values are not particularly moti-
vated, however, the algorithm is not sensitive to the choice
of probabilities.

The goal of the evolution is to obtain an elongated shape
resulting from the cell growth process controlled by the
GRN. To this end, we define a target shape, as described
in Figure 4. The target shape has an approximated width-
to-height ratio ofa : b, which in the experiment, we set
amax = 10, bmin = 60 andbmax = 80. Thus, the fitness
function can be defined as follows:

f = p1 − p2 −min
{

min
i

{

x
i(1)

}

,−
amax

2

}

+max
{

max
i

{

x
i(1)

}

,
amax

2

}

, (9)

wherexi represents the position of the i-th cell and

p1=











70+mini
{

x
i(0)

}

if mini
{

x
i(0)

}

< −
bmax

2

−30 if− bmax

2 <mini
{

x
i(0)

}

<−
bmin

2

mini
{

x
i(0)

}

otherwise
(10)

and

p2=











70+maxi
{

x
i(0)

}

if maxi
{

x
i(0)

}

> bmax

2

30 if bmax

2 >maxi
{

x
i(0)

}

> bmin

2

maxi
{

x
i(0)

}

otherwise

.

(11)
To achieve a computationally tractable size of the body

morphology, the number of cells (nc) is constrained between
10 and500. A penalty of600−nc is applied ifnc < 10 and
a penalty ofnc if nc > 500. If the cells in the developed
morphology are not fully connected, this means there exists
one or several cells with a high distance to all other cells, a
fitness of50 is assigned.

Experimental Results
The best and mean fitness curves of an evolutionary run are
presented in Figure 5. We can observe two fitness jumps
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Figure 5: Fitness curves of the analyzed evolutionary run.
Solid line: mean of the generation. Dotted line: best indi-
vidual.
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Figure 6: Resulting shape of the best individual.

around generations350 and800 during the whole evolution.
The resulting shape of the best individual in the last genera-
tion is shown in Figure 6. The morphologies of the individ-
uals of the first generations all result in either no cell or too
many cells (we aborted the runs with more than 700 cells).
In Figure 7 the total number of genes is shown. The number
of genes is nearly constant, there is only one huge jump at
the end of the evolution.

Dynamic Network Motifs

We count the different network motifs for all selected indi-
viduals every 5th generation. The motifs of the best individ-
ual and the mean of the parent generation are presented in
Figures 8 - 11. Our algorithm counts all occurrences of one
gene activating two others as one SIM (which is then a three
node motif). When there is one gene activating more than
two other genes, the algorithm counts more SIMs, accord-

ing to the combinatorial possibilities

(

N

2

)

. E.g. for4 genes
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Figure 7: Number of genes of the best individual and the
mean of the generation.
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(a) Positive autoregulation (PAR)
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(b) Negative autoregulation (NAR)

Figure 8: Number of autoregulations (AR).

our algorithm counts 4!
2!(4−2)! = 6 SIMs. This masks on the

one hand the number of SIMs, but on the other hand the size
of the SIM is taken into account.

Regarding the number of most motifs, we find an increase
in the beginning of the evolution and a decrease in later gen-
erations. An increase in the number of motifs is observed
often between generation300 and500, while a considerable
decrease of most motifs is observed around generation800.
The number of some motifs, e.g., I1-FFL, I1-FFL with NAR
and SIM with NAR, increases again in the last generations,
which can be explained with the increase in the number of
genes (see Figure 7). The two large changes in the number
of motifs correlate with two large fitness jumps. A change
in the number of genes is not the reason, though the number
of genes is nearly constant (see Figure 7). We hypothesize
that on the one hand, evolution attempts to increase the num-
ber of motifs to perform better, whereas on the other hand,
motifs that are not helpful are lost in later generations.
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(a) C1-FFL
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(b) C1-FFL with PAR
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(c) C1-FFL with NAR

Figure 9: Number of coherent feed-forward loops (C1-FFL)
with only activating connections.

In the following, we discuss in greater detail the change
of the number of the motifs:

• PAR: One PAR exists in the best individual until genera-
tion 800, then the PAR is lost. On average over the gener-
ations, the number of PAR increases between generation
300 and400 from about one to between one and two and
becomes zero around generation800. PAR seems to be
important during evolution but is lost in later generations.

• NAR: The number of NARs is very low throughout the
evolution. It starts from one, goes up to two at about gen-
eration450 and falls back to one again at generation800.

• The number ofC1-FFLis high during the evolution com-
pared to that of the PARs and NARs. There is a con-
siderable increase of this motif between generation300
and400 and a decrease around generation800. The num-
bers ofC1-FFL with PAR andC1-FFL with NAR are
smaller but have a similar trend asC1-FFL.

• The number ofI1-FFL is very low at the beginning and
also increases between generation300 and400 to about
10 and decreases again around generation800. At the end
of the evolution, there is again an increase in the number
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(a) I1-FFL
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(b) I1-FFL with PAR
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(c) I1-FFL with NAR

Figure 10: Number of incoherent feed-forward loops (I1-
FFL) with one negative connection from B to C.

of this motif. The number ofI1-FFL with PAR andI1-
FFL with NAR is much lower than that of theI1-FFL.

• The number ofSIMs andSIMs with NAR is much higher
than that of the other motifs. Note that we count all three-
node SIMs, and consequently the larger the SIM, the more
three node SIMs are counted. The change of SIMs dur-
ing the evolution is comparable to that of the I1-FFL. The
SIM with PAR is the only motif that decreases between
generation300 and400, and reaches zero at generation
800 (because the PARs decrease to zero).

To relate the changes in the number of motifs to the oc-
currences of the genetic operators during evolution, includ-
ing duplication, deletion or transposition, we traced backthe
ancestors of the best individual in the final generation and
analyzed which genetic operators are selected over the gen-
erations. The results are given in Figure 12.

The gene deletion selected in generation800 correlates
with a strong fitness increase and a decrease of a lot of mo-
tifs. To better understand what happened during these gen-
erations, we analyze the best individual in generation750 at
the fitness plateau before the deletion and the best individual
in generation820 after the deletion in the next section.
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(b) SIM with PAR
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(c) SIM with NAR

Figure 11: Number of single input modules (SIM) during
the evolution. We count three nodes SIMs, so that larger
SIMs result in a higher number of SIMs.
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Figure 12: The fitness of the ancestors of the best individual
in the last generation. Symbol ’+’ denotes a gene duplica-
tion, ’*’ a deletion and a triangle a gene transposition.
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Figure 13: The genes and their used connections of the best
individual in generation750. The circles represent the dif-
ferent genes. Genes that are active during development are
denoted with black (solid) circles. Red (dashed) circles in-
dicate genes that are never active. The arrows represent the
interactions between the genes, where blue represents an ac-
tivating, red an inhibiting and magenta both an activating
and inhibiting connections. The two diamonds represent the
predefined TFs.

Detailed analysis of two individuals

The genes and their activations of the best individual in gen-
eration750 and820 are presented in Figure 13 and 14.

Note that only the dynamic activations are shown, and
there are much more static activations.

The deleted regulatory and structural units belong to
genes 9 and 10 of the best individual of generation 750. The
SU for cell division of gene 9 and the complete gene 10 are
deleted. We skipped gene number 10 in the second individ-
ual to ease the comparison of the two individuals. Another
difference is that the SU of gene 20 of the best individual
in generation 750 changes from TF production to an unused
SU through mutation. Though gene 10 of the best individ-
ual in 750 has no further influence on the development (no
arrows starting from this gene in Figure 13), the more impor-
tant change seems to be the mutation of gene 20. Figure 15
shows the activations of the different genes in temporal hi-
erarchies. The inhibitions are not shown and the inactivated
genes are omitted. There are only temporal hierarchies and
one feedback loop. The mutation to gene 20 resulted in a
deletion of the whole sub-tree. The deletion of gene 9 has
no further effect on the development. Gene 20 in the best in-
dividual of generation750 has a lot of connections to other
genes and is a member of a lot of motifs. Interestingly, the
loss of gene 20 resulted in an increase in fitness from gener-
ation750 to generation820.

Figure 14: The genes and their used connections of the best
individual 820. Notation as in Figure 13. The genes are
numbered, and number 10 is skipped for an easier compar-
ison betwen the two individuals of generation750 and820,
because gene 10 was deleted in between.

(a) Individual 7500

(b) Individual 8200

Figure 15: The activating relations of the different genes.
Genes for cell division are marked with a circle, genes for
cell death with a triangle. Only some important activating
effects are shown, inactivated genes and inhibiting connec-
tions are omitted.
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Summary and Conclusion

In this work, we have analyzed the change in the number of
network motifs in the gene regulatory network during evolu-
tion of a cell growth model for an elongated body morphol-
ogy. A general trend is that the overall number of motifs
increases significantly at the beginning of evolution. Dur-
ing the evolutionary process the numbers of all motifs have
increased with the exception of PAR.

Since the genome length does not change significantly
during evolution, it seems that it is not just the increase of
genetic material but of structured genetic material, i.e.,dy-
namic network motifs, that is important during the evolu-
tionary process. At the same time, motifs that do not influ-
ence development are lost again during evolution. There-
fore, it seems that the frequency of motifs is under selec-
tional control and that the increase of dynamic network mo-
tifs is related to the evolvability of the process.

We analyzed the genetic changes that contributed to the
fitness jump around generation800 and compared the genes
of two individuals before and after the genetic change.
We found that the fitness increase and the decrease of the
number of dynamic motifs were due to one mutation that
changed a gene from producing an important TF to a gene
without function. Contrary to intuition, the correlated gene
deletion neither influenced the fitness nor the number of mo-
tifs.

A more detailed interpretation of our results is restricted
by the fact that only observations from one experiment are
available. Needless to say that a more statistically sound
analysis would be desirable, however, the considerable com-
putational expense of the described process makes it difficult
to run a larger number of experiments.

For the analysis of static motifs, other authors have nor-
malized their results to the motifs one can find in random
networks (Kashtan and Alon, 2005). For dynamic motifs
this is difficult, because most static motifs in random net-
works will not be dynamical, simply because the develop-
mental process terminates very early. Frequently, this is due
to the early activation of cell death by a prediffused TF in
random networks. More precise, most random networks re-
sult in an activation of cell death in the first developmental
step and the development stops. This results in nearly no
network motifs, because no TFs are produced. In order to
make sure that during the evolutionary process not just the
raw genetic material is increased we compared the number
of dynamic motifs to the genome length during evolution.
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Extended Abstract 
Living cells are in many respects the ultimate nanoscale chemical system.  Within a very small volume they can produce highly 
specific and useful products by extracting resources and free energy from the environment. They are self-assembled and self-
organized, as well as capable of self-repair and self-replication.  
Designing artificial chemical systems bottom up (artificial cells 1 or protocells 2-4) endowed with these powerful capabilities are 
being intensively investigated. Usually such chemical systems are designed around the encapsulation of a set of genes along with a 
gene translation and protein generation unit, all confined within the boundaries of liposomes/vesicles 3, 4. The generated artificial 
systems have many of the basic characteristics of a living system, but usually completely lack the gene mediated regulation 
functions that natural cells possess 5-7.  
To address this issue, we are attempting to implement a simple, chemical system in which the regulation of the metabolism is truly 
mediated by information molecules 8, 9. Our proposed system is composed of a chemical mixture of fatty acids that form bilayers 
(compartment), amphiphilic information molecules (polymerized nucleic acids -NAs), and metabolic complexes (photosensitizers). 
Due to the intrinsic properties of all its components, a chemical system will self-assemble into aqueous, colloid mixtures conducive 
to the necessary metabolic steps, as well as the non-enzymatic polymerization of the building blocks of the information unit. The 
metabolic reaction products (e.g., the container molecules) will in turn promote system growth and information replication. 
In this scheme, the polymerized NAs acts as an information molecule mediating the metabolic catalysis (electron donor/relay 
system) with a ruthenium metal complex as a cofactor and sensitizer. The metabolic catalyst converts the hydrophobic precursor 
container molecules into amphiphiles, thus directly linking protocell metabolism with information. In a first experimental design, 
the NA chain has been replaced by a single nucleobase, 8-oxoguanine, which is tethered to one of the bipyridine ligands of the 
metal center 10. 
We report the following major steps towards this chemical protocell: (1) the spontaneous formation (self-assembly) of chemical 
structures consisting of decanoic acid, its precursor, and the simplified NA-ruthenium complexes; (2) metabolism mediation by a 
nucleobase to effectively promote the photochemical assisted amphiphile synthesis, which continuously drive the system away from 
equilibrium; (3) the demonstration of reaction selectivity dependent on the nature of the information molecule since only one 
specific nucleobase has the required redox potential to allow the metabolism to function; (4) photochemical formation of 
amphiphiles that functions efficiently within the membrane, i.e., the protocell compartment; and (5) a demonstration of continued 
metabolic functionality after extrusion mediated container division.  
The next steps are the integration of short nucleic acid oligomers as opposed to a single nucleobase as the information material to 
study their photocatalytic activity and attempts to adopt the underlying metabolic reaction to drive the polymerization of the 
oligomers, thereby yielding replication of the information molecules. 
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Extended Abstract

Self-replicating structures have been studied as models of living organisms since the very onset of Artificial Life research,
particularly in the abstract mathematical framework of cellular automata (von Neumann (1966); Langton (1984)). Here,
we study self-replicating structures in the 3D space-time continuous and physically grounded framework of dissipative
particle dynamics (DPD). DPD is essentially a numerical solver of the Navier-Stokes equations with incorporated thermal
fluctuations. The framework is particularly suited for coarse grained simulations of complex liquids and soft condensed
matter systems on microscopic length scales. (Groot (1997))

Such a DPD based physical embedding allows us to study self-replicating structures not only as abstract mathematical
entities, but to regard them as models of real-world physical objects. In particular, we model super-molecular lipid ag-
gregates (surfactant-coated oil droplets) equipped with an internal metabolism that drives their replication due to a natural
aggregate instability. In addition, the aggregate is equipped with inheritable carriers of regulatory chemical information
that enables the container-metabolism-information system (commonly referred to as protocell) to undergo Darwinian evo-
lution (Fellermann (2007,b)). Our model is directly related to the minimal protocell design of Rasmussen and coworkers
that is currently being pursued both experimentally and through theory (Rasmussen (2008)).

The simulation generates spontaneous self-assembly and self-replication of the entire container-metabolism-information
aggregates as well as a fitness function for the inheritable information carriers. These findings are emergent, generic, and
robust properties of the systems dynamics.

We analyze the performance of the system for all steps of the replication cycle consisting of (i) nutrient feeding, (ii)
information-regulated metabolic turnover, (iii) template-directed replication of the information component, and (iv) ag-
gregate replication by growth and division (see Figure). Interestingly, the model predicts that the most difficult obstacle
to be overcome in the life-cycle of this protocell model is product inhibition of the replicating information molecules - a
well-known issue from experimental studies (Sievers (1994)).

In conclusion, we argue that physical embedding allows for self-replicating structures of seemingly unanticipated simplic-
ity. Furthermore, the physical foundations of the model opens up for applications of established knowledge and methods,
e.g. from statistical physics and, therefore, allows to relate model findings to laboratory results in a qualitative manner. As
such, the model provides a systemic consistency check for laboratory implementation issues (which enabled us to discover
an earlier ”design bug” with consequences for the experimental implementation).
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Figure 1: (a) The life-cycle of the protocell: Precursos molecules (yellow), surfactants (green), information polymers (black
and white), and a photo-sensitizer (red) spontaneously self-assemble in water to form protocells (lower left). Feeding additional
precursors increases their volume and stabilizes them when melting the information double strands. Feeding complementary
oligomers allows for template-directed replication through condensation. Metabolic turnover of precursors into surfactants
induces an aggregate instability that leads to division. Panels (b) through (d) show simulation snapshots of these processes.
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Abstract 
The recent advent, success and diffusion of synthetic biology 
(SB) are mainly related to its application as markedly 
bioengineering-oriented discipline. In addition to this classical 
view, SB also means “constructive” biology, and it is aimed to 
the construction of synthetic (artificial, man-made) biological-
like systems, at the aim of understanding basic concepts of 
living systems and of their parts. In the last years, we have 
investigated lipid vesicles (liposomes) as cell models, by 
studying different aspects of their general reactivity, from their 
self-reproduction to the hosting of simple and complex 
biochemical reactions. In the attempt of modeling simple 
autopoietic systems by vesicle populations, it was firstly shown 
that simple vesicles may grow and divide according to physical 
laws, also revealing an unexpected pattern recognized as a 
“matrix effect”, consisting in the conservation of the average 
size in a population of self-reproducing vesicles. Semi-
synthetic minimal cells, on the other hand, are defined as 
liposome-based synthetic cells that contain the minimal and 
sufficient number of macromolecular components in order to be 
defined as “alive”. Clearly, the design and the construction of 
minimal living cells require the establishment of the minimal 
number of life criteria. These have been generally described as 
self-maintenance, self-reproduction and evolution capability. 
The current experimental approach to semi-synthetic minimal 
living cells exploits the combination between cell-free protein 
expression and liposome technology, and it is conceptually 
based on autopoietic theory. In the FP6 SYNTHCELL project, 
we have investigated the expression of functional proteins 
inside lipid vesicles by using a minimal set of enzymes, t-
RNAs and ribosomes (PURESYSTEM) at the aim of 
constructing functional cell models. In this contribution, we 
will discuss recent experimental advancements in the field of 
synthetic cell constructions, giving emphasis to their relevance 
in synthetic biology, self-organization and biocomplexity, and 
in origins of life studies.  

1. Chemical Approaches to Synthetic Biology 

In the last fifty years of biological research we have been 
“much better at taking cells apart than putting them together’’ 
(Liu and Fletcher, 2009). Recently, however, also thanks to 
great amount of detailed information gained by the analytic 
approach, we have the unprecedented opportunity to develop a 
new kind of biological understandings, namely by the 
synthetic (constructive) approach. Synthetic biology (SB) 
aims at ‘‘designing and constructing biological parts, devices, 
and systems that do not exist in the natural world and also at 
the redesign of existing biological systems to perform specific 

tasks’’ (http://syntheticbiology.org). SB is generally seen as a 
bioengineering discipline, based on design, simulation and 
construction of novel biological systems, but it also embodies 
the novel concept, perhaps not fully recognized, of gaining 
knowledge by constructing biological systems. This attitude is 
particularly relevant in those cases where the analytical 
(dissecting) approach cannot be undertaken, as in the case of 
primitive and minimal living systems.  
 Classic SB studies deal with the generation of new devices, 
systems, organisms which are supposed to perform novel 
“useful” tasks, like the production of fuels, of hydrogen, of a 
chemical species, for bioremediation, and so on. Notice that in 
such studies a determined goal is set at the very beginning, 
and all routes and tools are bent and focused for the purpose 
of obtaining that goal. Methodologically, SB operations on 
biological systems can be tentatively classified as additions, 
eliminations, substitutions, combinations, modifications 
(change, inversion, minimization, adaptation, etc.). They 
reflect the above-mentioned engineering approach, but are 
indeed synthetic operations, that define a constructive act and 
bring about novel systems. 
 Seen with the eyes of a chemist, SB means the construction 
of biological systems as in the case of molecules and 
molecular systems. Molecules react together according to their 
intrinsic chemical reactivity and environmental conditions, 
giving rise to complex molecules starting from simpler ones. 
Supramolecular chemistry describes the self-assembly and 
self-organization of molecules into structures, kept together by 
non-covalent interactions. Autocatalytic systems, oscillating 
reactions, reaction networks, and reactions in micro-
compartments are other chemical examples of increasing 
complexity. The main aim of chemical SB is therefore not the 
achievement of a specific goal or function, but the study of the 
properties of a certain construct, which has been built to be 
tested. Clearly, as in the bioengineering approach to SB, here 
also the concepts and the methodologies of assembling are 
central, as well as the functional and structural integration 
among the parts. 
 There are several examples of possible applications of 
chemical synthetic biology, as recently reviewed (Luisi, 2007; 
Chiarabelli et al., 2009), but in this contribution we would like 
to focus on the attempts to make minimal living systems, in 
particular primitive cell models and semi-synthetic cells. 
Much of the discussion presented here has been published 
recently in a more extensive form (Luisi et al., 2006; Stano 
and Luisi, 2010; Stano 2010). We will first introduce the 
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concept of autopoiesis, the theoretical framework that guides 
the construction of minimal living cells, then we will shortly 
comment recent results on the self-reproduction of lipid 
vesicles. Then we shift the focus on more complex constructs, 
i.e., semi-synthetic minimal cells. Finally, we discuss our 
latest finding on the assembly of cells from lipids and solutes. 
 

2. Vesicle Self-Reproduction 

Studies on vesicles self-reproduction started about 20 years 
ago in the Luisi’s group at the ETH (Zurich), together with 
other investigations on micelle and reverse micelle self-
reproduction. These studies are linked to (and actually 
inspired by) the theory of autopoiesis, which accounts for the 
dynamical process at the basis of living entities. The self-
reproduction of synthetic compartments, like those listed 
above, is a pre-requisite for projects aimed to construct 
synthetic/artificial cells in the laboratory. In fact, since 
synthetic compartments can grow and divide only due to 
physical forces, it becomes plausible to design and try to build 
a minimal living system that self-reproduce thanks to the 
interplay between chemical transformation and 
supramolecular reactivity, as shown in the case of micelles 
and vesicles. Ultimately, projects as the Minimal Cell, 
Synthcells, Los Alamos Bug, and similar ones are related to 
such reactive pattern. 

2.1 Autopoiesis 
The term autopoiesis (self-production) refers to the 
description of the behavior of all biological systems, and 
especially cells, the simplest organisms. This theory was 
introduced in the Seventies by the two Chilean biologists 
Humberto R. Maturana and Francisco J. Varela (Maturana and 
Varela, 1980). Within the context of SB and the construction 
of synthetic cells, autopoiesis is a powerful conceptual tool for 
defining in general terms what are the structural and 
functional requirements of a molecular biosystems in order to 
mimic the basic living features of natural ones. The simplest 
autopoietic dynamics is shown schematically in Figure 1 
(Luisi, 2003). The autopoietic unit is a self-bounded material 
structure, where boundary components (L) are formed by 
internal chemical transformations mediated by the network E. 
In such way, the precursor(s) P enter the autopoietic unit and 
are then transformed into L. Eventually L decays to a waste 
product W. At the same time, the chemical network E, which 
can be composed by few or several components (not shown) is 
not static, but also continuously destroyed and reconstructed 
at the expenses of building blocks Q (giving the by-products 
Z). Overall, the autopoietic unit stays out of equilibrium but 
maintains its identity despite the continuous transformation of 
its components. Its existence relies on environmental 
conditions, due to the need of assimilation of components 
from outside. For this reasons the autopoietic cells establish a 
sort of minimal cognitive relationships with its environment.  

Notice that the “shell” (the boundary formed by L 
molecules) as well as the “core” components (the E sub-
system) are simultaneously produced by the internal 
autopoietic dynamic, i.e. the autopoietic system actually 
produces its own compounds and its own processes. 

Living cells are autopoietic units, but the contrary is not 
necessarily true (for a discussion, see Bitbol and Luisi, 2004). 
 

 
 

Figure 1. Schematic drawing of an autopoietic cell. 
 

Clearly, in living cells L molecules are the lipids and the 
proteins of cell membranes, whereas E is the 
genetic/metabolic network. P and Q are the basic nutrients for 
cell growth, and W, Z the waste materials. Is it possible to 
build a (minimal) autopoietic cell in the laboratory? To 
answer this question, we firstly have to conceptually simplify 
the structure shown in Figure 1 by reducing the complexity of 
the elements involved in the autopoietic dynamics (reducing 
their number, and simplifying their structure/function). 

One first answer to this question has been provided in terms 
of vesicle self-reproduction, which consists in an autopoietic 
growth (and division) based on the scheme indicated in Figure 
1. In particular, it has been demonstrated that a 
supramolecular assembly of L molecules (a vesicle, but also a 
micelle or a reverse micelle) can grow at the expenses of a 
precursor P, without any internal metabolism (without the red 
sub-system shown in Figure 1). 

We will see later how synthetic cells are now designed in 
order to display a similar autopoietic mechanism, based on a 
minimal DNA/RNA/enzyme genetic/metabolic network (E in 
Figure 1). 
 

2.2 Recent advancements in vesicles self-
reproduction 
We have recently reviewed the whole field of vesicles self-
reproduction, from the historical and scientific viewpoints 
(Stano and Luisi, 2010). The mechanism underlying vesicle 
self-reproduction is based on the following points: (1) 
existence of a proper precursor P, that can be chemically 
converted into the membrane-forming compound (L) by 
hydrolysis, oxydation, deprotonation, and other simple 
transformations; (2) uptake of P by existing vesicles, and 
transformed into L therein; (3) the vesicle growth must 



Proc. of the Alife XII Conference, Odense, Denmark, 2010 149

proceed in a way that an unstable physical state is soon 
reached, which precedes the division into two or more 
daughter vesicles. It has been shown long ago that fatty acid 
vesicles can grow and self-reproduced at the expenses of fatty 
acid anhydride (Walde et al., 1994), and fatty acid micelles 
(Bloechliger et al., 1998). Oleic acid systems are typically 
used in this context. In these systems, the above-mentioned 
conditions (1-3) are satisfied. In particular, condition 3 is 
thought to derive from unbalanced surface-to-volume growth, 
which brings about to vesicle instability (Fiordemondo e 
Stano, 2007; Luisi et al., 2008). One of the most intriguing 
results from such studies is known as the “matrix effect” 
(Bloechliger et al., 1998; Lonchin et al. 1999; Berclaz et al., 
2001; Rasi et al., 2003). During the investigation of vesicles 
self-reproduction it was discovered that the size of pre-
existing vesicles was somehow conserved in the next vesicle 
generation. In particular, it was shown that the size 
distribution of vesicles (formed after addition of P to a pre-
existing vesicles population) was very similar to the size 
distribution of pre-existing vesicles, as if the vesicle size acts 
as a “template”. The mechanism of matrix effect is not yet 
understood, but a recent investigation brings about evidences 
on possible intermediates. Freeze-fracture electron-
micrographs suggest the transitory existence of elongated 
“twin” vesicles (Stano et al., 2006) resembling bacteria during 
binary division. Previous results obtained with ferritin-
containing vesicles (Berclaz et al., 2001) indicate that in some 
conditions the solute molecules are redistributed among 
daughter vesicles. An interesting report on self-reproduction 
of giant fatty acid vesicles has been recently provided by 
Szostak and coworkers (Zhu and Szostak, 2009), who 
demonstrated that elongated tubular vesicles, derived from 
micelle uptake, can divide into into several smaller vesicles. 
Interestingly, experiments done with a permeable buffer 
indicate that vesicle pure-growth or vesicle growth/division is 
indeed governed by the surface-to-volume growth ratio. 
Experiments from Sugawara’s group (Kurihara et al., 2010) 
with synthetic surfactants show that self-reproduction can also 
occurs by a translocation mechanism, i.e., a new vesicle, born 
inside the mother one, comes out via a not well understood 
physical translocation through the parent membrane.  
   

3. Minimal Cells 

As noticed before, although the details of vesicle self-
reproduction are yet unknown, such studies prompted the 
development of more complex models of minimal self-
reproducing systems, namely the construction of vesicle–
based cell–like systems, with the final aim of creating living 
cells in the laboratory. These constructs, which are called 
protocells, artificial cells, minimal cells, synthetic cells or 
semi-synthetic cells, are the subject of flourishing research 
into the origins of life and synthetic biology communities. 
Among the most active groups in the field, we must recall 
David Deamer at the University of California, Jack Szostak at 
Harvard, Tetsuya Yomo at the Osaka University, Steen 
Rasmussen at the FLinT (Southern Denmark University). 

We limit ourselves to the discussion of our current 
approach, known as the semi-synthetic one (Luisi et al., 
2006). Such approach (Figure 2) consists in using lipid vesicle 

as cellular model, and implement a sort of minimal 
metabolism based on DNA/RNA/enzyme components. The 
philosophy behind minimal cells lies again in the autopoietic 
theory. In particular, emphasis is placed on the need for a 
cellular system of minimal complexity. 
 

 
Figure 2. Semi-synthetic approach. Reproduced with 
permission from Elsevier from Chiarabelli et al. (2009).  
 

Minimal cells are thus composed of the minimal number of 
genes, enzymes, ribosomes, tRNAs and low molecular weight 
compounds that are encapsulated within a synthetic 
compartment as in the case of lipid vesicles. The resulting 
construct, which is similar to a living cells and displays 
minimal living properties (self-maintenance, self-reproduction 
and possibility to evolve) is generally designed on the basis of 
the minimal number of functions required and on the minimal 
complexity of the biochemical elements needed for its 
construction.  

Conceptually, therefore, semi-synthetic minimal cells come 
from one of the operations mentioned as typical of SB 
approaches (elimination of unnecessary elements in a system). 
The result of such simplification resembles very much the 
biological notion of minimal genome, i.e., the minimal number 
of genes requested to make a living organism. Classical 
studies based on comparative genomics (reviewed by Luisi et 
al., 2002, 2006) suggest that such number lies between 200-
300 genes, and the figure of 204 genes has been proposed by 
Moya and coworkers on the basis of a recent study (Gil et al., 
2004). A similar result (151 genes) has been obtained by 
Forster and Church (2006) by reasoning on the minimal 
biochemical requirements of a minimal cell. 

In principle, therefore, it would be possible to build a 
synthetic cell by inserting a minimal genome inside 
liposomes, as well as all the macromolecules and low 
molecular-weight compound required for decoding the 
genome. This has not been done yet, and although several 
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advancements have been recorded in the recent years, this 
goal appears to be not easily reachable. We describe below 
some key milestones along the road-map to minimal cells, 
according to the semi-synthetic approach. We then conclude 
this contribution by giving a summary of most recent results 
from our group, and a survey of some general aspects and 
modern trends of minimal cell studies. 
 
 

3.1 Pioneering studies 
The first report dates back to 1999, and describes the first 
proved ribosomal polypeptide synthesis (poly(Phe) from 
poly(U)) inside liposomes (Oberholzer et al., 1999). The 
demonstration that ribosomal protein synthesis can occurs 
inside vesicles actually allows the design of more complex 
systems, based on DNA transcription into messenger RNA 
and translation of the latter into protein (therefore developing 
a function). Semi-synthetic minimal cells approaches are 
based on this idea. From the experimental viewpoint they 
consist into a convergence of in vitro biochemical systems and 
liposome technology. By using cell extracts or – more recently 
– reconstituted transcription/translation kits, as the PURE 
System introduced by Ueda and coworkers (Shimizu et al., 
2001), functional proteins can be expressed inside vesicles. 
The basic idea is the following. Firstly, the protein expression 
cover about 50% of the minimal genome; second, it has a 
sufficient complexity to be used as a (partial) model of a 
whole cell metabolism; third synthesizing functional proteins 
inside liposomes, e.g. enzymes, structural proteins and so on, 
paves the way to implementing minimal cellular functions, 
like genomic replication, lipid synthesis, environment sensing, 
membrane functionalization, active transportation of nutrients 
inside, motion, etc. 
Since the report from Yomo’s group in 2001 (Yu et al., 2001) 
there have been several reports on the synthesis of a functional 
soluble protein (GFP, green fluorescent protein) inside lipid 
vesicles (reviewed in Luisi et al., 2006, Chiarabelli et al. 
2009; Stano 2010). This can be considered a standard 
achievement. Recent investigations are instead devoted to 
more quantitative studies (Hasoda et al. 2008; Saito et al. 
2009; Amidi et al. 2010; Sunami et al., 2010). 
 
 

3.2 Recent advancements  
It is useful to mention here two of the most recent results, that 
differ technically and conceptually from the standard 
achievement described in the previous paragraph. The first is 
our report on the synthesis of transmembrane protein inside 
lipid vesicles, without the help of specialized proteins, but 
simply exploiting the self-assembly properties of the protein 
and lipid membrane (Kuruma et al., 2009). The work aimed to 
construct a minimal cell capable of synthesizing lipid 
molecules from inside, as shown in Figure 1. The underlying 
biochemistry is the two-steps transformation of glycerol-3-
phosphate into phosphatidic acid, a membrane-forming 
compound. In order to carry out these transformations, two 

active enzymes need to be synthesized inside a lipid vesicle, 
namely the glycerol-3-phosphate acyltransferase (G3PAT, a 
transmembrane enzyme) and the lysophosphatidic acid 
acyltransferase (LPAAT, a membrane-associated enzyme) 
(Figure 3). 
 

 
Figure 3. Lipid-synthesizing minimal cell. All translational 
factors are encapsulated inside liposome, which is composed 
by four kinds of phospholipids. The composition of lipid 
membrane is a key factor for obtaining simultaneously a good 
entrapment of molecules inside liposomes, high yield of 
protein synthesis, and functional forms (correct folding, 
insertion) of the target enzymes (G3PAT and LPAAT). 
 
The desired two-steps reaction could be achieved only by 
changing the redox conditions, and unfortunately the amount 
of produced phosphatidic acid was too low to observe a 
macroscopic change on vesicles. This study represents, 
however, an important advancement along the roadmap to 
minimal self-reproducing cells. 
 The second most recent result deals instead with the attempt 
of synthesizing a functional protein (GFP) inside small 
vesicles (diameter 200 nm) (Souza et al., 2009). This study 
was intended as an experimental investigation on the minimal 
size of cells, an old debated question in biology. By using the 
protein synthesis as a paradigm of the whole cellular 
metabolism, we have indeed successfully demonstrated that 
200 nm vesicles (plausible models for small ancient cells) 
actually support a complex metabolism as the 
transcription/translation one. Interestingly, a careful analysis 
of the statistics of co-entrapment of all macromolecular 
components (ca. 80) involved in the protein synthesis revealed 
a surprising conclusion. In fact, according to the classical 
description of solute entrapment, the Poisson probability of 
co-encapsulating the ca. 80 different molecules (0.1-1 µM 
each) inside 200 nm (diam.) vesicles is practically zero (10-26). 
Nevertheless, the protein was synthesized in some 
compartments, and therefore the apparent contrast between 
observed and predicted behavior represents a conundrum. In 
order to explain the observations, we made the hypothesis that 
local (internal) solute concentration was ca. 20 times higher 
than the nominal (bulk) one. We have recently investigated 



Proc. of the Alife XII Conference, Odense, Denmark, 2010 151

this phenomenon by entrapping ferritin inside liposomes, and 
analyzing the occupancy frequency in each liposome by 
means of cryo-TEM visualization (Luisi et al. submitted), see 
below for a short comment on such study. 
 
 

3.3 On the entrapment of solutes 
Projects on the construction of minimal cells foresee, as basic 
assembly step, the formation of solute-containing lipid 
vesicles. It is interesting to notice that such important process 
has not been studied in great detail. It is clearly recognized 
that the entrapment process depends on the mechanism of 
vesicle formation, on the nature of lipids and solutes, and by 
the concentrations used in the experiment. The general 
hypothesis is that the average number of entrapped molecules 
(N0) depends on the concentration of solutes (C0) used and on 
the vesicle volume (V), i.e. N0 = C0V. Deviations from the 
expected average number are typically modeled by a Poisson 
distribution. In our recent investigation on the encapsulation 
of ferritin inside lipid vesicles – a study that was triggered by 
the conundrum of simultaneous multiple entrapment of several 
components inside liposomes, see above – we discovered that 
the description of entrapment phenomena is not well described 
by the standard model (Luisi et al., submitted). When vesicles 
are allowed to form spontaneously in the presence of solutes, 
the surprising result is that the classical description fails (at 
least for submicrometric vesicles) with respect to: (i) the 
average number of solute per vesicle, (ii) the expected 
occupancy distribution.  
 In particular, we have observed that a small fraction of 
vesicles are filled by several solute molecules, confirming our 
working hypothesis of high internal solute concentration, and 
that the occupancy profile does not follow the Poisson 
distribution, being aligned instead as in a long-tail 
distribution. Experiments are currently in progress to fully 
characterize the vesicle system. 
 This result indicates that SB studies on the construction of 
synthetic or semi-synthetic cells actually drives also 
advancements in basic science. In fact, thanks to such 
approach it becomes evident that our simple model of vesicle 
formation needs a revision, since there are suggestions that 
membrane closure into a vesicle is not a passive event, but 
might bring about solute recruitment with the consequent 
formation of high internal solute concentration, which is a pre-
requisite for the spontaneous formation of functional cells. 
 
 

3.4 Next developments and conclusions 
In conclusion, there has been a big progress in the ability of 
constructing minimal cells by the semi-synthetic approach. 
The state of the art is represented by the synthesis of water-
soluble as well as membrane proteins. This will allow the 
realization of more complex systems that are capable of 
implementing additional function, especially in the direction 
of constructing a minimal autonomous cell, and a self-
reproducing cell. As evident in Figure 1, the final goal will be 

the simultaneous and possibly functionally coupled core-and-
shell reproduction.  
 In order to discuss next development, we have to 
distinguish among conceptual advancements and technical 
ones. Moreover, it is also useful to discuss the general aspects 
of semi-synthetic approach, within SB and with respect to 
other research lines. 

New directions in minimal cell research, as anticipated, 
should focus on the self-reproduction of the genetic/metabolic 
molecules as well as a more efficient lipid synthesis, the so-
called core-and-shell reproduction. Such goal can be reached 
by duplicating DNA and by implementing the in situ ribosome 
synthesis. The other two set of key macromolecules, tRNAs 
and aa-tRNA synthase need also to be synthesized inside 
vesicles. Lipid synthesis is particularly relevant, and together 
with phospholipid synthesis, fatty acid synthesis should be 
considered (for a preliminary report, see Murtas 2009). The 
study on the cell-free synthesis of transcription factors 
(Asahara and Chong, 2010), and on a short biosynthetic 
pathway (UDP-N-acetylglucosamine pathway, by Zhou et al., 
2010), point toward the realization of more complex systems 
by the in vitro gene expression approach. Another interesting 
direction has been pioneered by Davis and coworkers, who let 
synthetic cells send a chemical message (ribose-borate 
complex, synthesized inside the synthetic cell via the formose 
reaction) to a bacteria population, stimulating a quorum 
sensing response (Gardner et al., 2009). It is expected that 
further development may concern a two-way communication 
between synthetic and natural cells (for a discussion, see also 
Cronin et al. 2006, for a potential application as drug delivery 
systems, see Zhang et al. 2008). Further studies might be 
devoted to the explicit investigation of stochastic effects 
within synthetic cells (such concept has been only marginally 
discussed in Tsuji and Yoshikawa, 2010; Saito et al., 2009; 
Yamaji et al., 2009; Carrara et al. 2009, Sun and Chiu, 2005; 
Dominak and Keating, 2007; Lohse et al., 2008), as well as an 
explicit approach that take into account the whole vesicle 
population instead of focusing on single vesicles (competition 
and selection, see Stano, 2007; Chen and Szostak, 2004; 
Cheng and Luisi, 2003; and cooperation). From the technical 
viewpoint, it is remarkable the use and the possible future 
developments of microfluidic devices for producing and 
filling giant vesicles (Ota et al. 2009). 

A more general discussion, on the other hand, must focus 
on the relevance of semi-synthetic cells as primitive cell 
models. Clearly, the compounds used to build a semi-synthetic 
cell are not primitive, and the resulting semi-synthetic cell is 
“minimal” in the sense of minimal number of functions. In 
other words, simplicity of minimal cell does not necessarily 
translate into primitiveness. In other words, one has to also 
point to simpler cellular models, highlighting chemical and 
physical aspects of minimal cells, which are still not 
completely clear. Some efforts have been done in this 
direction by the group of Szostak, who recently reviewed the 
main results of his research and the issue of constructive 
approach (Mansy and Szostak, 2009; Schrum et al., 2010). In 
order to build more primitive cell models it is necessary to 
complement the notion of minimal cells with more basic 
models, and several strategies can be tested. For instance, one 
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could focus on the synthesis of very simple polypeptides, or 
by implementing some small metabolic network, or exploiting 
the catalytic properties of small peptides (such as Ser-His, see 
Li et al., 2000; Gorlero et al., 2008), peptide-membrane 
interaction, and the reduction of ribosome complexity. For 
example, Chris Thomas, a former PhD student of Luisi’s 
group, and Erica D’Aguanno (graduate student), studied the 
interaction of rRNA with poly-L-arginine, showing that stable 
complexes, in definite molar ratio, form rapidly and 
spontaneously by simple mixing the two components. The 
resulting complexes show a compact structure as evident by 
cryo-TEM imaging and dynamic light scattering, and have 
similar dimension and gross form of ribosomes. This may 
suggest a simple origin for ribosome particles as ribonucleic 
acid/basic peptide complexes.  

In summary, research on synthetic cells is now flourishing 
after a long “incubation” stage. Although limited, the number 
of groups interested in such research is increasing, and the 
issue of creating compartment-based cell model is approached 
from the experimental as well as modeling (Solé et al., 2007; 
Rasmussen et al., 2009) viewpoints. We are confident that 
synthetic cell studies will impact on basic biological 
knowledge, especially in revealing physico-chemical and 
dynamic aspects of cell-like functions, as well as by becoming 
important tools in biotechnology and drug delivery. 
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Extended Abstract 
A minimal living cell, or protocell, is a minimal supra molecular self-bounded structure that can exhibit self-maintenance, self-
reproduction and evolvability (Luisi 2003). Some years ago, Szostak and colleagues proposed a minimal cell prototype called 
Ribocell: ribozymes based cell (Szostak et al. 2001) that, in principle, can exhibit all these three properties. This model cell consists 
in a self-replicating minimum genome coupled with a self-reproducing lipid vesicular container. The genome is composed by two 
hypothetical ribozymes: RLip able to catalyze the conversion of molecular precursors into membrane lipids and RPol able to duplicate 
RNA strands. Therefore, in an environment rich of both lipid precursors and activated nucleotides the Ribocell can self-reproduce if 
both processes: the genome self-replication and the membrane reproduction (growth and division), are somehow synchronized. In a 
recent work (Mavelli et al in press) we have presented and discussed a detailed and as realistic as possible kinetic mechanism for the 
Ribocell based on a previously published in silico model of self-replicating vesicles (Mavelli and Ruiz-Mirazo 2007): 
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Scheme 1: The Ribocell metabolism: (1) reversible association of RNA polymerase (RPol) and 
RNA-synthase (RLip) strands with the respective complement cRPol and cRLip; (2) catalytic cycle 
of the RNA replication (S= RPol, cRPol, RLip and cRLip); (3) conversion of the precursor P into the 
membrane lipid L catalyzed by the ribozyme RLip; (4) transport processes across the lipid 
membranes. 

Using a deterministic approach, we showed that synchronization between genoma duplication and membrane reproduction can 
spontaneously emerge within the used approximations and the adopted kinetic parameters, all derived from the literature (see Table 
1), only if the kL constant is increased of five orders of magnitude (Mavelli et al in press). 

Kinetic Patameters Values Process Description References 

kSS[s-1M-1] 8.8⋅106 Formation of dimers RcRPol and RcRLip Christensen 2007 

kS[s-1] 2.2⋅10-6 Dissociation of dimers RcRPol and RcRLip Christensen 2007 

kR@S[s-1M-1] 5.32⋅105 Formation of R@S Tsoi and Yang 2002 

kR@SS[s-1] 9.9⋅10-3 Dissociation of Complexes R@ScS Tsoi and Yang 2002 

kNTP[s-1M-1] 0.113 Nucleotide Polymerization in Oleic Vesicle De Frenza 2009 

kL [s-1M-1] 0.017 Catalyzed Lipid Precursor Conversion Stage-Zimmermann and Uhlenbeck  1998

kin [dm2s-1] 7.6⋅1019 Oleic acid association to the membrane Mavelli et al.2008 

kout [dm2s-1] 7.6⋅10-2 Oleic acid release from the membrane Mavelli et al.2008 



Proc. of the Alife XII Conference, Odense, Denmark, 2010 155

PP  [cm⋅s-1] 4.2 ⋅10-9 Membrane Permeability to Lipid Precursor  Sacerdote and Szostak 2005 

PNTP [cm⋅s-1] 1.9 ⋅10-11 Membrane Permeability to Nucleotides De Frenza 2009 

PW=PS  0.0 Membrane Permeability to W and genetic staff  

Paq[cm⋅s-1] 1.0⋅10-3 Oleic Acid Membrane Permeability to Water Sacerdote and Szostak 2005 

Table 1: Kinetic Constants and Permeability of the Ribocell in silico model at room temperature (S= Rpol, cRpol, Rlip and cRLip). 

 In this contribution we will focus the attention on the role of random fluctuations on the Ribocell time behaviour by using a 
Monte Carlo program developed in recent years for simulating chemically reacting compartmentalized systems (Mavelli et al 2008). 
The random nature of reacting events (intrinsic stochasticity) can highly differentiated the time course of each single protocell in the 
population, since the effect of fluctuations is enlarged by the autocatalytic character of genome replication. Moreover, another 
source of time course dispersion is the random distribution of the cell internal content after each division (extrinsic stochasticity). 
Also in this case, displacement from the deterministic equality of the genetic staff amount in both the daughter cells is amplified by 
the nature of the internal metabolism. However, while intrinsic stochasticity can determine equivalent behaviours with different time 
scales (Fig.1A), the extrinsic randomness can produce completely different outcomes bringing to the death for dilution of the 
Ribocell if a complete segregation of ribozymes in diverse protocells takes place (Fig 1B,C). 
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Figure 1: Comparison between deterministic curves (black lines) and stochastic simulation data (gray lines with 
error bars) of the Ribocell reduced surface Φ obtained setting (A) kL=1.7x104 s-1M-1 and  (B) kL=1.7x105 s-1M-1  
(Vertical dashed lines are the deterministic division times). (C) Composition of the Ribocells population against 
the generation number (kL=1.7x105 s-1M-1). 
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Extended Abstract
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Figure 1: Protocell model with rudimentary Mechano-Sensitive (MS) membrane channels. In osmotic crisis, internal turgor
causes tension in the membrane, opening the MS channels and allowing internal solutes to disperse, re-stabilising the system.
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We are interested in exploring plausible mechanisms which could enable a simple lipid bi-layer protocell system for more
robust and possibly richer self-maintenance dynamics in variable environmental conditions.

One fundamental problem faced by all compartments with a selectively semi-permeable membrane is the ever present
threat of osmotic burst. For various and sometimes unexpected reasons, internal or external conditions for a cellular
system can suddenly change (e.g. an E. coli bacterium caught in a rain shower), resulting in the appearance of a large
osmotic potential across the membrane. This potential drives a ’shock’ flow of water into the cellular compartment, quickly
expanding the internal volume and possibly rupturing the membrane. Mechano-Sensitive (MS) channels are one prudent
mechanism of increasing interest (Kung (2005)) by which a cell can detect and respond to forces in it’s lipid bi-layer. These
intricate structures (composed of folded protein helixes) span the membrane, and open a water-filled pore like an iris (see
box on Fig. 1) in response to increasing local membrane tension. In the case of the unlucky E. coli bacterium caught in
the rain shower, the MS channels act as ’emergency valves’, releasing internal solutes until osmotic equilibrium is restored
again. More generally, MS channels can be thought of as a tranducer mechanism, converting mechanical fluctuations in
the membrane (local tensions) into a chemical signal (by way of modulating compartment solute permeability).

This work aims to explore more fully some ideas seeded at ECAL 2007 (Ruiz-Mirazo and Mavelli (2007)) as to how a
protein channel feedback system could be useful for cellular stability at a very early stage in the origin of life i.e. in a
protocell scenario. In the previous work, one case considered was protein channels becoming aligned and active in the
protocell membrane only when the system was in osmotic crisis conditions (Φ < 1, Fig. 1). When open, these channels
accelerated the diffusion of an internal waste product out of the protocell compartment, at a rate dependent on a diffusion
constant, the number of proteins channels in the membrane and the concentration gradient of the waste.

This study seeks to model the protein channels above as slightly more realistic MS channels. Instead of channels opening
indiscriminately whenever there is some membrane tension (as in the previous case), now channels open in proportion to
the relative membrane tension (1 − Φ, when Φ < 1), and each channel has a more realistic binary switching behaviour,
remaining effectively closed until a tension transition barrier is crossed, after which it snaps to a fully open conformation.
A second objective of this work is to investigate the dynamic implications of the MS channels facilitating not only the
diffusion of waste out of the compartment, but also the diffusion of the molecules involved in the internal Ganti (Ganti
(2002)) reaction cycle. This direct negative feedback on the growth of the internal cycle presents an interesting dynamical
scenario not tested before with the protocell model. Simulations are again being carried out with the ENVIRONMENT
(Mavelli et al. (2008)) platform. Results are to be presented at the conference.
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Abstract 
Self-replication of genetic information is one of the central functions of living systems. This function enables the living system to 
reproduce itself, introduce mutations, and evolve. How could a self-replication system be constructed from non-living materials on 
the earth? What conditions are required? The answers to these questions are largely unknown. Here, we attempted to construct an 
artificial self-replication system of genetic information from biological materials, such as RNA and proteins, to identify the 
conditions necessary to establish self-replication and enable the system to evolve. Based on previous reports, we constructed a self-
replication system of genetic information from RNA (genetic information) encoding RNA replicase (Q replicase) and a cell-free 
translation system (PURE system). During the reaction, RNA replicase was translated from the RNA, and then bound to the original 
RNA and catalyzed its replication. These successive reactions are referred to here as self-replication of genetic information. This 
system consisted of more than 100 components, all of which were identified. Therefore, we can control all the components 
independently and quantitative analysis is possible. The reaction efficiency was markedly lower than expected from the activity of 
the replicase and the translation system. This poor efficiency suggests that there are as yet unknown conditions required for efficient 
self-replication. To clarify the problems, we analyzed the self-replication system by mathematical modeling, which indicated three 
limiting factors: 1) competition between translation and replication for RNA; 2) parasitic RNA amplification; and 3) inactive double-
stranded RNA formation. Overcoming these problems will be necessary for realization of an in vitro self-replication system. To 
resolve the first problems, we measured the affinity of RNA with replicase and ribosome, and adjusted the ribosomal concentration to 
the optimum level. To resolve the second problem, we compartmentalized the reaction into a micrometer-sized water-in-oil emulsion. 
This was considered to confine the parasitic RNA to minor compartments, so that the other major compartments were free from 
parasite where self-replication continued. Although the third problem is now under investigation, the self-replication efficiency has 
improved significantly. These result demonstrated that establishment of an efficient self-replication system requires coordination of 
internal reactions and a mechanism for repression of parasitic replicator. 
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Abstract 
 
Cell-free protein synthesis is increasingly used to produce large amounts of proteins in vitro. Cell-free systems combine a strong 
bacteriophage transcription, in most cases the T7 RNA polymerase, to a cytoplasmic extract from an organism, such as E. coli, that 
provides the translation machinery. These systems have been prepared for many types of applications, mostly in biotechnology, 
such as proteomics and directed evolution. Recently, cell-free protein synthesis was used to reconstitute informational processes 
outside living organisms (Noireaux, et al 2003, Noireaux and Libchaber, 2004, Isalan, et al 2005). These studies were limited, 
however, by the current properties of cell-free systems, which have not been optimized for synthetic biology purposes. In particular, 
transcription is restricted to bacteriophage RNA polymerases and no procedures to accelerate messenger RNA and protein 
degradations have been described. 
Our laboratory has developed a new cell-free expression system to specifically reconstitute biological information processes in 
vitro. This efficient transcription/translation E. coli cell-free system works with nine different transcription mechanisms: seven E. 
coli sigma factors and two bacteriophage RNA polymerases with their respective promoters. This set of cell-free transcriptions 
offers a unique modularity to engineer synthetic gene circuits. Although high protein production is required to reconstitute 
interesting gene networks, degradation is also an essential characteristic of gene expression. Our system includes a control of the 
mRNA lifetime and of the protein degradation rates. The dynamics of synthetic circuits is tuned by adjusting gene concentrations, 
promoter strengths, synthesized messengers and proteins lifetime. 
This cell-free toolbox is used for two purposes: (i) the construction and the study of elementary gene circuits and (ii) the synthesis 
of an artificial cell. Multiple stage transcription cascades, AND gates and negative feedback loops have been engineered. The output 
signals of these circuits can be tuned in a wide dynamics range depending on the mRNA and protein degradation rates. We are 
currently investigating how this cell-free expression system can be used to approach biopolymer physics problems such as the DNA 
binding protein search problem. The cell-free extract can be encapsulated into synthetic phospholipids vesicles, which form a sort of 
artificial cell system. One of the main questions addressed by this research is: how can we develop the properties of these synthetic 
vesicles from the internal gene expression? The perspectives and the limitations of this approach will be discussed. 
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Extended Abstract 

Fatty-acid vesicles are being extensively studied as experimental models of prebiotic compartments. These supramolecular 
structures have shown a variety of interesting dynamic properties (spontaneous self-assembly, autocatalytic growth, potential 
reproductive and/or competitive regimes – for a review see [1]). Nevertheless, their high dynamism presents at the same time some 
drawbacks: compared to compartments made of standard phospholipids (or, so-called, liposomes), fatty-acid vesicles are more 
permeable and less stable; they require higher monomer concentration thresholds (cvc values) and are rather sensitive to external 
factors, such as pH, temperature, or ionic strength [2, 3]. 

However, several recent experiments (e.g., [4, 5, 6]) carried out with mixtures of simple amphiphiles (i.e., both mixtures of fatty-
acids and mixtures of fatty-acids with other simple surfactants or lipid derivatives), have demonstrated that certain combinations 
provide higher stability to this type of compartments and indicate the relevance of diverse factors, such as the packing density or 
irregularities between polar heads on the membrane surface, in their physical properties (e.g., in their permeability). This research is 
opening a whole new panorama, in which different mixtures of plausible prebiotic amphiphiles need to be explored.  

In this context, we have been studying various theoretical models of plausible prebiotic compartments with ENVIRONMENT, a 
computational platform that was developed some years ago to simulate protocell dynamics [7]. In particular, we have started to 
analyze the hypothetical transition from ‘self-assembling’ fatty acid vesicles to ‘self-producing’ lipid protocells [8], focusing on the 
corresponding changes in the cvc and the permeability of the compartment, as well as its implications for the general stability of the 
protocell. In the preceding simulations, as a first approximation, membrane permeability was assumed to change linearly with its 
mixed composition. But, although the values of the permeability coefficients for the pure cases were derived from real data, we are 
aware that such an assumption for intermediate cases (i.e., for different ratios of the binary mixture) may not truly hold.  

Therefore, we are currently exploring a more realistic scenario in which changes in the cvc and permeability of the compartment are 
a non-linear function of the membrane composition. Our approach involves the combination of ‘in vitro’ methods (wet experiments) 
and ‘in silico’ techniques (stochastic simulations), since we are convinced that any theoretical protocell model should be empirically 
grounded and, in turn, the interpretation of experimental data can be greatly clarified by means of theoretical modelling and 
simulation tools. Our aim is to present the results of this combined effort in the conference.  
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Abstract
The “holy grail” of medical treatment is early detection and in situ cure, or destruction of malfunctioning cells. Such 
task  could  be  achieved  by intelligent  nanometer  devices  capable  of  operating  in  vivo,  sensing  disease  markers, 
correctly identifying the abnormal cells, and curing them or causing their destruction.  
Our laboratory's long-term objective is to develop a 'Doctor in a cell': molecular-sized device that can roam the body, 
equipped with medical knowledge and treatment potential. It would diagnose a disease by analyzing the data available 
in its biochemical environment, and treat it by synthesizing, or activating, the appropriate drug molecules in situ. This 
kind of device might, in the future, be delivered to all cells in a specific tissue, organ or the whole organism, and cure 
or kill only those cells diagnosed with a disease.
As an important milestone towards realizing this desirable long-term goal,  we have developed a molecular system 
shown to perform the abovementioned tasks in vitro (Benenson et al.). Although this system was initially limited to 
mRNA based disease indicators as input, we are now developing new input mechanisms that expand the spectrum of 
possible inputs. One input mechanism enables the detection of microRNA and almost any protein or small molecule. 
Another input mechanism enables the sensing of active DNA binding proteins, such as transcription factors. These 
new abilities may facilitate the detection of important intracellular and intercellular disease markers.
While operating this system inside living cells remains a major challenge, expanding the capabilities of molecular 
computers and investigating their theoretical and practical attributes might be rewarding in the long term.
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Extended Abstract 
 

We investigate the Belousov-Zhabotinzky (BZ) reaction as a substrate for computation. Expanding on previous research we present 
a new technique that utilizes two modes of the BZ reaction, excitation and oscillation, and selective diffusive coupling. We show in 
simulation that this technique can be used to invert input signals, providing the logical operator, NOT. Our system can readily 
compute NOR, which when connected in multiples is sufficient for simulating any other logical operator. Furthermore, progress to 
experimentally implement these operators and to wire them into circuits using soft lithography and replica molding is presented. 
 
To synthesize living systems the field of artificial life has explored numerous substrates, physical and virtual. Chemical substrates 
have been gaining in popularity with recent advances in chemical computation (Adamatzky, 2009; Gorecki, 2009) and cognition 
(Dale and Husbands, 2010). In Braitenberg’s series of vehicles of increasing cognitive complexity a key turning point is the 
introduction of inhibitory threshold devices, allowing for the use of numbers, logic, and basic memory (Braitenberg, 1986). Though 
to an extent the latter two properties have been introduced in our choice substrate, the Belousov-Zhabotinzky (BZ) reaction, true 
inhibition in the BZ has not been achieved. Here we applied the novel concept of inhibitory coupling (Toiya et al. 2008) to design 
signal inverting logic gates. 
 
Using BZ substrate, various logic gates have been implemented experimentally or by computer simulation. Gorecki has simulated 
the gates AND and OR, as well as the MAJORITY function. Adamatzky showed XOR and AND in a related experimental 
substrate. Collision dynamics of BZ waves have also been exploited to annihilate signals (de Lacy Costello, 2009). To our 
knowledge, binary negation-based gates such as the computationally universal gates NAND and NOR (Sheffer, 1913) have not been 
implemented. We simulated the computation of NOT and NOR in a heterogeneous BZ substrate and synthesized a NOT gate 
prototype.  
 
We designed negation-based gates using a light-sensitive implementation of the BZ reaction (Vanag and Epstein, 2009). Our system 
is composed of two elements: excitatory and oscillatory domains connected through a filter. Both domains are chemically identical, 
but differ in the amount of projected light. The illumination was tuned such that induction of a small perturbation (input) into the 
excitatory domain can ignite a full excitation. The oscillatory domain follows an unsuppressed periodic trajectory. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Inverter circuit and idealized space-time plots for signal inversion. The excitatory domain is conducting input waves into the oscillatory 
patch (a). Without input, the oscillatory domain transitions between oxidized (white, logic state true) and reduced (dark, logic state false) state (b, 
top). Due to the inhibitory coupling incoming waves will suppress and delay oscillations in the oscillatory domain into a later reading frame (b, 
bottom).  
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Using oil as a chemical filter allows for signal inversion. The filter is selective and only non-polar species such as bromine (Br2) can 
permeate across (Toiya et al. 2008). Thus, a wave traveling from the excitable towards the oscillatory domain will temporarily 
increase the Br2 in the oscillatory domain. Br2 is then readily converted back to the inhibitor Br-, which will delay the oscillation in 
the oscillatory domain (Figure 1). 
 
 
 
 
 
 
 
 
 
Figure 2: NOR gate prototype. Catalyst immobilized on silica gel was cast into patterned PDMS slabs. Hydrophobic PDMS walls separate BZ 
domains and act as chemical filters. Action potential like input waves (indicated by grey arrows) propagate towards and couple into the central 
oscillatory domain. 
 
We verify our concept by simulating a simplified reaction-diffusion system of the light-sensitive BZ reaction (Vanag and Epstein, 
2009). We integrate chemical turnover numerically in each BZ domain and compute the flux between compartments. Assuming fast 
diffusion within compartments, we reduce their size to a single point. Though a single inverter is sufficient for an inhibitory 
connection, we extend upon simple signal inversion to realize a NOR gate by combining two inverters. Prototypes were constructed 
by casting BZ catalyst immobilized on silica gel into patterned PDMS slabs (Figure 2). Hydrophobic PDMS walls were designed to 
separate BZ domains and act as selective chemical filters. Preliminary experimentation suggests our substrate can couple BZ 
domains within circuits.  
 
The BZ reaction offers a wide range of interesting dynamics. We have described a technique capable of inverting input signals, and 
presented supporting simulations along with preliminary experimental results. This work suggests that the BZ reaction may be a 
useful substrate for the synthesis of minimally cognitive agents. Future work will utilize finite element analysis to quantitatively 
identify parameters for optimal input timing and delay strength. Experimental efforts will focus on increasing the robustness of 
single logic operators as well as connecting them into functional circuits to achieve universal computation at the microscopic scale 
in a chemical substrate. 
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Abstract

Spontaneous emergence of non self-replication in a micro-
controller based artificial chemistry model, with replica-
tion being a concerted action of several sequential micro-
processes or instructions, is a difficult problem. The choice
of programming language that is used to realize replication
as a sequence of instructions is to a certain extent arbitrarily.
The question is, how many bits have to be found by a dynam-
ical system in the right space- and time-context to instantiate
this replication. A secondary structure is introduced to allow
complex instruction sets to be used. The secondary-structure
folding mechanism, a directed graph or Moore automaton,
allows replication to emerge with an arbitrary instruction-
width.

The question of whether there is anything before emergence
of replication has a tentative answer: early precursors of repli-
cation probably do not exist. Replication only starts when at
least two replicating programs are in the same neighborhood
replicating each other. A “cloud” of potential precursors of
replication is not visible.

Introduction
The desire to create hitherto unknown information from
scratch is at least as old as information processing machines,
cf. e.g. Menabrea (1842). The proof that a machine can hold
its own description and be able to replicate itself, together
with its own description, has been provided by von Neu-
mann (1966). The spontaneous emergence of higher-order
structures was already studied with first-generation comput-
ers by Barricelli (1962). The α-universe designed by Hol-
land (1976) was the first attempt to show spontaneous emer-
gence of self-replicating structures using a formal language
concept. But the first to convincingly show the evolution of
higher order structures and processes was Ray (1991). The
demonstration of spontaneous emergence of self-replication
was made by Pargellis (1996). He streamlined the Tierra in-
struction set Ray (1991) in such a way that there were about
one in 100 000 random sequences of five instructions which
resulted in a self-replicator. Artificial chemistry as a field
of research emerged when desktop computers had become
ubiquitous McCaskill (1988); Fontana (1991) (see Dittrich

et al. (2001) for a review). These works attempted to con-
nect chemical systems with information processing at the
molecular level. A promising idea was to use graph rewrit-
ing as a chemical representation and processing, McCaskill
and Niemann (2001); Benkö et al. (2005). Unfortunately
no evolutionary studies could be realized because of the ex-
cessive computational processing required. Also, the inher-
ent brittleness of digital evolution made evolutionary stud-
ies with Turing machines infeasible Yoshii et al. (1998). It
is nearly impossible for self-replicating programs in Turing-
or register- machines to degrade smoothly.

In biochemistry, on the other hand, when an amino-acid
sequence of a natural enzyme is altered, the functionality
of the enzyme is extremely robust, with mostly just the cat-
alytic rate decreasing. However, sometimes mutations in the
active center of an enzyme knock-out its catalytic activity
altogether. Despite this remarkable robustness, in non-linear
complex networks of enzymes, drastic reactions can occur
when these are altered, or when environmental conditions
change.

How is it possible in principle to evolve such robust be-
havior? A minimal requirement for the evolution of ro-
bustness seems to be a powerful instruction set (or equiv-
alently: a multitude of different, even redundant, operators).
Then evolution can take several different pathways to solve a
problem and react flexibly to changing conditions. It seems
obvious that with only 16 discrete operations available Tan-
gen (2010), such a smooth “action-landscape” cannot be
achieved. A possible way out of this dilemma will be pre-
sented in the sequel.

The evolutionary model
The evolutionary task to be solved in this model is much
harder than in previous models of self-replication, Ray
(1991); Pargellis (1996); Adami and Brown (1994). In self-
replication, the question of self and non-self is not relevant.
This is the reason why in a mixed system, self-replicators
will always prevail. Non self-replication requires at least
two cooperating entities before a replication cycle can hap-
pen. They have to solve the problem of kinship, otherwise
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they will go extinct due to parasitism. Furthermore, these
two entities – in our case micro-controllers – must be suffi-
ciently shielded from the disruptive activity of other micro-
controllers in the vicinity. Therefore, asking for the emer-
gence of non self-replication enlarges the effective evolu-
tionary search-space greatly.1 Everything must fit into the
right spatio-temporal environment for all the programs in-
volved in the replication cycle.

On the other hand, merging all the functionality of a pro-
gram into one replication operator, as done in Tangen (1994)
which we here call atomic replication, is a simplistic an-
swer to the question of how new information is created from
scratch. This means that a gap exists between the number of
bits required in a program to encode a successful replication
cycle and the size of the search space allowed for finding the
correct bits, Tangen (2006, 2010); e.g., for two different sets
of instructions, see Table 1. This gap can be closed with the
secondary structure approach taken here.

Ribozymes or DNAzymes are biochemical equivalents to
the micro-controllers used here as active components, Levy
and Ellington (2003). They combine both properties: the
ability to store and to process information, that is, to catalyze
certain reactions. The goal of understanding the properties
of ribozyme replication is also the reason why this model
neglects the much easier approach of self-replication. It is
the hope that non self-replication does not show the early
convergence of self-replicating entities, Tangen (2002).

The model in a nutshell

Micro-controllers are situated in a spatially environment and
can interact with each other. Interaction occurs through a
recognition procedure. Each micro-controller can recognize
a pattern, which is defined as a concatenated sequence of Site
instructions, Table 2, in a neighboring micro-controller’s
program, which after recognition is then attached to the ac-
tive micro-controller. The attaching micro-controller puts
the address of the recognized micro-controller into its own
read- or write-slot, Figure 1. The second recognition-based
interaction is realized when program control is transferred
from the active micro-controller to another micro-controller:
this is equivalent to a subroutine call, see instruction Call
in Table 2. The third recognition event is a register access
event where the accumulator of the foreign micro-controller
acts as a local register.

1Three different terms dealing with replication are used
throughout this work: (a) self-replication means an active en-
tity is reading its own description, allocating, or creating a new
empty container and after putting a copy of the description into
this new container, so releasing it into the environment, (b) non
self-replication is essentially the same except that the active entity
is not able to read its own description but instead the description of
a neighboring entity, which it makes a copy of, and (c) atomic repli-
cation means that a single instruction in the program can perform
the whole replication.
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Figure 1: How micro-controllers interact with each other. Each
interaction is realized via a recognition procedure with s concate-
nated bases (see Site instruction in Table 2). Two attachment slots
are available per micro-controller. Micro-controllers attached to
the reading slot (see Load instruction in Table 2) serve as tem-
plates, and micro-controllers attached to the writing slot (see Store
instruction in Table 2) serve as products. Flags in other micro-
controllers can be set if they are attached to the reading-slot. The
standard registers are accumulators from other micro-controllers.
The address of the register is the recognition site which a neigh-
boring micro-controller exhibits.

The micro-controller2 has input-ports (registers or a read-
attached program) and output-ports (registers or the write-
attached program of another micro-controller). Each in-
struction is divided into three parts, the cargo, conditional,
and special parts. The cargo part is the parameter for the in-
struction in the special part, which is executed if allowed by
the conditional part, see Figure 2.

A further bit is needed to allow conditional execution.
The instructions in row J1 of Table 1 are also executed if J2
is specified and the ZF-flag (accumulator value 0) is active
or if row J3 is specified and the PF1-flag is active. Only a
few instructions have side-effects during execution, namely
Search, SetFA, SetFB, and Site, see Table 2.

To summarize, each instruction is at least six bits wide,
see Table 1 (left part). The data and program width are
of size two bits. These two-bit words will be called nu-
cleotides. Each replicated instruction thus requires three nu-
cleotides and three copying operations.

The environment and physics of the simulations
The minimum case of sustained replication in this work
occurs when two machines replicate each other – in that

2A Harvard architecture (http://en.wikipedia.org/
wiki/Harvard_architecture) has been chosen because it
naturally allows to use different data widths without affecting the
instruction sequence.



Proc. of the Alife XII Conference, Odense, Denmark, 2010 170

PF1−flag

ZF−flag

Output into registers (foreign accus)
or attached programs (reg−addr 1)

Input

Input from registers (accumulators of foreign microcontrollers)
or attached program−codes (register−addr 0 or 1)

NAND

ACCU

Bit

cargo

0

C SP

24n + 4

Bit

cargo C

35n + 5

SP

0or

cargo−value

Flags which can be set: _PF1_, _PF2_, _CYCLE_, _REVERSE_

Output

Instruction:

n = 2

Figure 2: Structure of the micro-controller. The micro-controller
uses two bits of the special instruction section (SP). The condition
part (C) is two-bits wide. The width of the cargo depends on the
experiments, usually n = 2 using quaternary encoding. This leads
to a six bit micro-controller in the simple case. The zero-flag (ZF)
and PF1-flag (PF1) are used for conditional execution (see Table
4). Input and output either comes from or is sent to other micro-
controllers.

S0 S1 S2 S3

J0 Set Site Load Store
J1 End Call SetFA SetFB
ZF “ “ “ “
PF1 “ “ “ “

S0 S1

J0 Set Site
J1 Load Store

Table 1: Instruction sets which exhibit emergence of replication.
The left set is the most powerful case which is still able to develop
emergence of replication. The right set shows the simplest non-
trivial case. Though emergence of replication is possible, the diver-
sity of the emerging population is limited. The NAND-instruction,
shown in Figure 2, was omitted in this particular instruction set.
Many different instruction sets can be chosen as long as they rep-
resent a superset of the minimal instruction set given in the right
table.

Instr. Description

Load Load a value from a register into the accumulator.
The cargo specifies the address of the register.
Register 0 points to the micro-controller attached
to the reading slot. Register 1 points to the
micro-controller attached to the writing slot. With
no micro-controller attached, a search is initiated.
Prepended Site instructions increase the specificity
of register addressing. When there are no previous
Site instructions or accesses to registers 0 or 1, a
random search is done. If no suitable
micro-controller is found, this instruction has no
effect.

Store Store the accumulator in a register. The cargo
specifies the address of the register. Register 1
points to the micro-controller attached in the
writing slot. Register 0 points to the
micro-controller attached to the reading slot. With
no micro-controller attached a search is ignited.
Prepended Site-instructions increase the specificity
of register-addressing. When there are no previous
Site instructions or accesses to registers 0 or 1, a
random search is done. If no suitable
micro-controller is found and address 1 is accessed,
the program is stopped to reduce processing costs.

Call Transfer execution to the micro-controller specified
in the cargo part of this instruction. Accumulator
and attachment slots are transferred to the new
micro-controller. The current program is stopped
after this call.
Prepending Site instructions increase the specificity
of the micro-controller addressing, where these
Site instructions are combined with the cargo part
of the Call instruction to one big virtual
recognition-site. If no appropriate micro-controller
is found, the instruction has no effect.

Set Preset the accumulator with the value provided by
the cargo part.

Site Define a recognition site, either to be recognized
by others or to actively serve as an address. Used
with instructions Call, Load and Store.

SetFA If a machine is attached to the reading-slot (e.g.
after accessing register 0) then certain flags can be
set in the machine Tangen (2010).

SetFB Set flags in the executing machine Tangen (2010).
End This instruction is required with fixed-length

programs. Variable length programs can omit the
declaration of the end of the program because it is
already physically given.

Table 2: A few basic instructions understood by the micro-
controllers. Currently 64 different instructions are implemented
and used by the secondary structure approach. The End-instruction
is a special case, only needed with fixed-length programs.
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Bits cargo C SP

Site xx 00 01
Load 00 00 10
Store 01 00 11
End – 01 00

Bits cargo C SP

Site xx - 01
Load 00 - 10
Store 01 - 11

Table 3: Two examples of minimum replicator programs. The
relevant instruction sets are given in Table 1. The bits (xx) in the
cargo part of the Site-instructions are arbitrary but needed to be
stabilized throughout evolution. The minimal program on the left
requires the system dynamics to find 22 correct bits. The right
program needs 12 bits and a program length of three instructions.

sense a machine can be thought of as a ribozyme, although
in reality only the programs and a few state-variables are
copied! Many former studies McCaskill (1988); Tangen
(1994) found that if self-replicators compete with non self-
replicators, self-replicators prevail, simply because pertur-
bations caused by missed templates are not possible in the
self-replicating case. The minimal programs are shown in
Table 3.

So far the best way to minimize the number of bits needed
is to mimic physical behaviors and make use of this as-
sumption by introducing side-effects for some appropriate
instructions Tangen (2010). A universal, programmable in-
struction set was devised in that work, which needed only
22 significant bits in the minimum-replicator case. With
these 22 bits, a non-trivial evolution from the starting point
was shown. An even simpler program, Table 3 (right table),
needs only to have 12 bits specified by the system. Even
though the system has programs such as these, with their
simple, non-trivial instruction sets that have the potential to
exhibit replication, it is unlikely that in any particular col-
lective execution in this system that replication will occur.
This difficulty is due to the large class of perturbations that
can be exerted by uncoordinated Store-instructions.

Convolution of programs (secondary and tertiary
structure)
Mapping the primary structure of a program onto a sec-
ondary or tertiary structure promises better evolvability of
the resulting replication system Kimura (1990); Wagner
(1985). A simple approach is to use a graph whose nodes
represent instructions and whose edges represent traversals
according to the nucleotides given. Consider a graph for
which n is the data-/cargo-width and m is the instruction-
width in bits, and whose outbound degree is k. This graph
describes a kind of machine known as a Moore automata3,
and in the case where n < m, it provides the simplest
method which allows redundancy in the secondary land-
scape. Figure 3 describes a simple, non-trivial version of

3http://en.wikipedia.org/wiki/Moore_machine

Bit 1 Bit 0 Meaning

0 0 Instructions are always executed.
0 1 Instructions are always executed.These

instruction have conditional counterparts, see
Table 1.

1 0 Only executed if ZF-flag (ACCU == 0) is set.
1 1 Only executed if the PF1-flag is set.

Table 4: Conditional part of an instruction. Instructions can be
executed if certain conditions are fulfilled, such as the accumulator
(ZF-flag) being zero or the flag PF1 being set in the status-register
of a micro-controller.

this automaton with k = 2. It is a matter of choice whether
the accumulator values of the micro-controller are consid-
ered part of the Moore automaton, as shown in part (a), or
are defined by the program, as in part (b). The latter case is
most natural for the Harvard architecture, with its strict sepa-
ration of data- and command- path. The first variant is more
akin to the natural biochemical situation where accumulator
values are only indirectly present in the form of co-factors.
From an evolutionary point of view, the search space de-
creases considerably in the first case as does the number of
degrees of freedom.

On the other hand, the extreme case of a fully connected
graph is equivalent to the situation where k = n = m, which
is nothing but a system without any secondary structure.

A quaternary system is chosen here4: n = 4. The number
of instructions is m > 16. Furthermore, the values of the
accumulator are still set by the program directly, as in case
(b) in Figure 3.

Nucleotides in a program no longer represent instructions.
They represent commands to move along the instructions in
the graph and thus change the current state of the Moore au-
tomaton. Increasing the power of the instruction set means
inserting further nodes with the corresponding edges into the
graph. Of course, the graph must not contain nodes which
cannot be reached.

Trivial replicators If for example the size of a random
graph is sufficiently large, replicators will trivially emerge,
even without using replication. Two cases can happen:
Firstly, it is conceivable that a program emerges which con-
tains only a sequence of zeros, where these instructions are
interpreted as write-zero operators. Such a program repre-
sents a simple auto-catalytic process without any special no-
tion of evolution or information processing. Preliminary ex-
periments have shown that most random graphs with a min-
imum size do exhibit such a ’chemical’-nature. Secondly,

4Schuster and Stadler (1994) argue that quaternary RNA en-
codings have best evolutionary properties. Their assumptions on
RNAs certainly do not hold in the current model, but without fur-
ther investigation, taking a quaternary system is an initial choice.
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Figure 3: Two variants of a simple non-trivial directed graph.
These graphs can be interpreted as Moore automata: (a) with a
program length of only three bits the commands Release, Load and
Site can be issued with their respective accumulator values (3, 2,
2) and (b) accumulator values are not part of the Moore automaton
and have to be provided by the program. This increases the pro-
gram length to 9 bits, giving the same functionality as in the upper
part.
Of course, the number of degrees of freedom in case (a) is much
less than in case (b). On the other hand, the search space in case b)
is much larger than in case a) and evolution needs to search longer
to find the specific functional sequences. With only one bit avail-
able the graphs must have an outgoing connectivity degree k = 2.
Each node can have arbitrarily many inbound connections.

a sequence of zeros only can be equivalent to a replicator
program. To create programs with identical nucleotides is
much easier than to sustain a complicated sequence of zeros
and ones 5.

To avoid these trivial solutions, the Python script creating
these graphs looks for short cycles. They are eliminated via
a randomization procedure. A detected cycle is broken up by
the overwriting of one node on the cyclic path with a random
node. After several passes through the whole graph, almost
no short cycles remain. A successful example of emergence
of replication of a non-trivial replication can be seen in Fig-
ure 6.

5Problem of frame shifts http://en.wikipedia.org/
wiki/Frameshift_mutation

Site Load Store
Loadwa Storewa
Loadwb Storewb
Loadf Storef
Cload Cstore

Zf_cload Zf_cstore
Pf1_cload Pf1_cstore

p n

0.0 309
0.01 468
0.03 1302
0.05 1932
0.1 4057

Table 5: Searching potentially replicating programs. To increase
the probability of creating replicative programs additional instruc-
tions (Site and variants of Load and Store instructions, left table)
have been added with certain probabilities given in the table on the
right. A recursive search algorithm finds all occurrences of poten-
tial replicator programs and marks these as possible starting nodes
in the secondary structure. The second column in the right table
shows the frequency of possible replicator programs in a graph of
8192 nodes and the probabilities given in the first column. Only the
operators as such are considered and not the instruction parameters
in the cargo values, see Figure 2. In this case a program with three
instructions and a cargo-width of 2 bits has six unspecified bits to
be found by the dynamics of the system.

Means to increase the probability of emergence Fur-
thermore this Python script looks for possibly viable mini-
mal replicator-programs in the graph. It searches recursively
for instruction sequences [Site, Load, Store] and variants,
see Table 5, to extract suitable entry points for newly cre-
ated micro-controllers. Suitable entry points into the Moore
automaton (i.e., starting nodes) increase the probability of
emergence of replication. From an evolutionary point of
view, these entry points are neutral: they do not change the
physics in the system but rather provide hints for the dynam-
ics to find replicative sequences.

To further increase the probability of starting replication,
additional {Site, Load, Store} instructions can be inserted
at random into the graph. Table 5 (right) shows how many
suitable entry points are found by the Python script depend-
ing on the probability of adding one of these three instruc-
tions or their relatives. If all three instructions are inserted
equiprobably with, e.g., probability of 10%, then one of the
three instructions will be chosen with a probability of 30%.
As expected, the higher the probability, the more replication
programs there are in reach of an arbitrarily chosen entry
point (state) for the automaton. This can also be seen in Fig-
ure 4, where the distances of viable minimal programs from
each node in the graph are plotted. These distances measure
the effort of the recursive search algorithm to find such vi-
able programs. Only the special part of the instructions, as
such, are taken into account and not the cargo values, see
Figure 2. This means that the programs found are probably
not replicating at all but have a high propensity if the cargo
values can be altered by the dynamics. If no viable program
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Figure 4: Costs between each node of the graph to the next poten-
tial replicating program. The more additional Site, Load and Store
instructions are added, the more probable it is to find a replicative
program by accident. The numbers on the x-axis are arbitrary and
essentially only reflect the inner properties of the recursive-search
algorithm.

is found by a node, the maximum cost is assumed, see the
right box in Figure 4. The distribution of viable programs
from a given node in the graph is not a sharp one. There is
reason to hope that the wide distribution helps to find a new
niche for replication, but this has still to be demonstrated.

Computational results
The software used (EvoCpu_i686) is custom-developed6.
The space is divided into containers which are randomly se-
lected and processed. Each micro-controller in a processed
container is allowed to execute a certain number of instruc-
tions. Each executed instruction needs a certain amount of
energy. Several instructions and their “physico-chemical”
effects can be fine-tuned by such energy coefficients.

To illustrate how replication emerges, an extract of four
containers from a successful experiment with approximately
four million micro-controllers (i.e., 18 non-zero micro-
controllers, with two of them having a minimal replicator
program) were put into an empty, smaller system, and evo-
lution was started again. Eight consecutive generations are
shown in Figure 5. Common features of these replicating
systems are: (a) they do not use all the available space and
(b) irregular spatial structures emerge right from the begin-
ning. If these experiments are done on a single CPU, then
the evolutionary outcome is deterministic. No mutations or
other typical genetic algorithm operators are involved here.

6The software is available for download at http://www.
biomip.de/Uwe/projects/EvoCpu. It is suitable for SMP
(symmetric multiprocessor)-machines. Further details on the
model are also provided.

An old question asks whether the emergence of replica-
tion has any precursors and whether supporting these precur-
sors can increase the probability of the emergence of repli-
cation. The first occurrence of replication in the above ex-
periment has been traced down to two micro-controllers, see
Figure 6, one of them a ligating program (center picture) and
the second a minimal replicator (lower picture). With a high
probability (p = (70/100) = 0.7 in this example) these two
programs are sufficient to develop two minimal programs
which will then be able to replicate each other, commencing
the evolutionary process. As one can see from the colors in
Figure 5, the diversity in the system is high right from the
beginning, and remains so with many interesting structures
developing (data not shown).

Discussion and conclusions
The work presented shows that with the help of customized
micro-controllers, non self-replicating programs can and
eventually will emerge. This is a much harder task for evolv-
ing systems than in the former models of self-replication.

Replication can only be realized if two replicating pro-
grams (or in biological terms, two ribozymes) cooperate in
such a way that both of them replicate each other simulta-
neously and that no other entities interfere. This scenario of
non self-replication seems to be more suitable when study-
ing the transition from non-living to living matter. Self-
replication requires a protecting hull, and this hull or mem-
brane has to be encoded also by the self-replicating system,
otherwise an exponential proliferation would not be possi-
ble. In addition, the problem of nutrients or waste passing
the hull or membrane needs to be solved right at the start in
the self-replicating system.

Convolution of a program into a secondary structure
solves the notorious problem of missing bits to code for the
many operators required and to circumvent the brittleness
problem. Furthermore, and even more important, physical
and chemical properties of the system can be naturally en-
coded (mapped) into the secondary structure without having
to change the micro-controller machinery. Having said that,
this particular solution of a secondary structure can hardly
be found in nature. Understanding the emergence of replica-
tion would make it possible to incorporate further biochem-
ical details. The secondary structure also provides a way to
abstract the details of physics and chemistry. This can facili-
tate higher forms of organization because they are no longer
perturbed by detailed settings.

When looking at the transition from non-living matter to
living matter, the question arises of whether there are any
precursors to replication. However, this appears to be un-
likely. In the example shown, a non-replicating program
works in conjunction with a replicator to create the second
required replicator, see Figure 6 (center). But restarting the
extracted system only one generation earlier fails to show
any emergence, even if very large parts of the original sys-
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Figure 5: Sequence showing the spatial fingerprints of the repli-
cating programs at the onset of replication. An area of 2x2 contain-
ers was extracted from a data-log shortly after replication emerged.
This area was transplanted into a new, smaller, empty system and
each image shows the fingerprints of replication in consecutive
generations. The asymmetric growth of the cluster is a conse-
quence of activity of perturbing parts in programs.

a) upper left micro-controller in top image

b) lower-right micro-controller in top-image

Figure 6: Seed extracted from the very first generation (t = 347)
of the emergence of replication (system size 2048?2048 micro-
controllers). In the top image, the first two micro-controllers (red
and blue) are shown acting as seeds for replication. From these two
programs, two copies of the red program shown (machine-id 128:5)
are likely develop with high probability. The parameter of the in-
structions is shown to the right of the mnemonics (cargo value, see
Figure 2). The left part gives the same information, but now from
a nucleotide point of view, without printed mnemonics. The num-
bers in parentheses are the complements of the nucleotides (in this
case Watson-Crick complement). See also the irregular bits set in
the instructions, which prove that this onset of replication is not
due to a trivial unchanging sequence of only zero- or one-bits.
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tem are extracted and replayed. If there are precursors be-
fore replication, they cannot be numerous and only occur
right before the onset of non self-replication. Or they are so
special and specific that they do not exhibit a broad basin
of attraction. The major bottleneck does not seem to be
the occurrence of replicator-programs as such (in the ex-
ample shown above, only twelve specific bits have to be
available twice in a neighborhood) but the disturbance of
unrelated micro-controllers interfering with the replicating
process – in the above case there are five containers with
4 · 16 + 14 = 78 machines.

In previous work, non self-replication emerged only if
there were at most the 22 unknown bits (without secondary
structure) required for the shortest replicator program Tan-
gen (2010). The number 22 is not important, but it gives
a hint as to the difficulty of the search problem. Using the
secondary structure allows us to adjust the physics of the
system from a few bits per minimal replicator to a poten-
tially arbitrarily large number of bits. However, the most
important advantage of the secondary structure is the ability
to use many more instructions than there are bits available
for encoding, and to fine-tune the physical environment as
needed. Furthermore, different areas in the directed graph
represent different physics, thus allowing multiphysical ex-
periments to be conducted. Species with their center-points
moving along the directed graph represent a case of hard-
ware evolution.
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Abstract

We extend existing models and methods for the informational
treatment of the perception-action loop to the case of goal-
oriented behaviour and introduce the notion of relevant goal
information as the amount of information an agent necessar-
ily has to maintain about its goal. Starting from the hypoth-
esis that organisms use information economically, we study
the structure of this information and how goal-information
parsimony can guide behaviour. It is shown how these meth-
ods lead to a general definition and quantification of sub-goals
and how the biologically motivated hypothesis of information
parsimony gives rise to the emergence of behavioural proper-
ties such as least-commitment and goal-concealing.

Introduction
The world is a complex place. Millions of years of evo-
lution have created an environment with intricate relation-
ships, structure and many things that an organism living in
it has to look out for. It is no surprise then that organisms
invest a lot of energy in the processing of all the informa-
tion available to them. For instance, the retina of a resting
blowfly accounts for 10% of its energy consumption and for
the human brain this amount is estimated to be 20% (Laugh-
lin et al., 1998).

It is unlikely that an organism would spend all this energy
if it is not crucial; individuals that limit their information in-
take and processing to the necessary minimum and allocate
the rest of their energy to behaviour that is more relevant to
survival or reproduction will outperform ones that waste en-
ergy on useless information processing. Also, even though
this means an organism uses information economically, it
is plausible that an organism still often operates at the limit
of its information processing bandwidth and that there is an
evolutionary drive to do away with unused capacity, simi-
lar to the degeneration of useless eyes in cave-dwelling fish
(Jeffery, 2001). We will refer to these assumptions as the
information parsimony hypothesis.

We are interested in the necessary principles of life and
lifelike behaviour. The hypothesis of information parsimony
hints that information acquisition and processing capabili-
ties are part of these fundamental requirements. In the vein

of the Alife motto “life as it could be”, we use minimal mod-
els of agents and their informational properties to study these
basic requirements of life. The substantial history of this ap-
proach shows that clear statements can be made about in-
formation processing bounds and how these influence the
structure of sensory and behavioural systems and embodi-
ment (Barlow, 1961; Brenner et al., 2000; Nehaniv et al.,
2007; Pfeifer et al., 2007; Polani, 2009).

The information parsimony hypothesis has given rise
to a body of research on the informational treatment of
the perception-action loop of agents and the interactions
with their environment. It has been shown that this can
lead to global, fundamental insights in necessary bounds
on behaviour (Polani et al., 2006), evolution of coordina-
tion (Sporns and Lungarella, 2006), intrinsic drives (Klyu-
bin et al., 2008), successful search strategies for tasks with
sparse information (Vergassola et al., 2007), and behaviour
structuring (van Dijk et al., 2009). These results are general
in the sense that they do not require a specific model of brain
mechanics. In this paper we will extend this previous work
to the more specialised, though sufficiently general case of
goal-oriented behaviour.

Goals
There are many cases, both in biological and in artificial set-
tings, where the environment can be seen as offering rewards
for certain types of behaviour. These rewards can range from
as clear-cut as a treat given by a dog trainer to as diffuse as
persistence. When such a reward measure is available to an
agent, it can often be regarded as performing a certain task
with an accompanying end-goal (Montague et al., 2004).

Although successful behaviour that appears goal-oriented
is achieved, note that we do not want to imply that the or-
ganism or agent necessarily maintains an explicit represen-
tation of this goal. However, there is evidence for the case
that human adults encode actions in terms of their outcomes
(Hommel et al., 2001). Furthermore, brain structures have
been located where activity is highly correlated to the goal
of observed behaviour (Hamilton and Grafton, 2006), indi-
cating an evolutionary drive towards goal-centred thought.
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Moreover, recent research is beginning to show evidence for
neural correlates of an individual’s own goals, not limited to
human brains, e.g. Saito et al. (2005); Spiers and Maguire
(2006). Therefore we will adopt the viewpoint that certain
behaviour, or in any case episodes of behaviour, can be seen
as being driven by a concrete, identifiable goal.

Goal Information
We extend methods for informational treatment of the
perception-action loop to explicitly include goal-directed
behaviour. Here an agent needs to actively maintain infor-
mation about its current goal. In the case of human beings
it has been consistently argued that this is performed by the
pre-frontal cortex (Montague et al., 2004). As any informa-
tion processing this takes effort and consumes energy, thus,
following the information parsimony hypothesis, it is ex-
pected that organisms attempt to optimise this process. Here
therefore we study the necessary bounds of goal-information
that has to be maintained at a given time. We show how
these bounds can guide behaviour and that they can give rise
to the emergence of certain behaviour properties, such as
least-commitment planning, which traditionally is explicitly
designed into computational approaches (Weld, 1994), and
goal-concealing.

In the following two sections we will give a short intro-
duction to concepts and notation used in this paper and an
overview of the informational methods used to study the
perception-action loop. Next, we introduce the main concept
of the research presented here: relevant goal information.
The effects of this quantity on behaviour and interpretations
of these effects are then presented using a navigation-task
example. Subsequently, we show how relevant goal infor-
mation gives rise to a natural notion of transition points. Fi-
nally, we will relate our results to previous work and give a
general discussion in the last section.

Concepts and Notation
When we talk about information, we refer to the
information-theoretical formalism introduced by Shannon
(1948). Here, the main elements are random variables,
which we denote with capital letters, e.g. X . Such a variable
can assume a specific value (small letter, x) from a given al-
phabet (curved capital, X ), subject to a probability distribu-
tion over the possible values:

∑
x∈X Pr(X = x) = 1. To

improve legibility we will, by abuse of notation, write p(x)
for both the entire distribution and for the probability that
variable X assumes the value x, determined by the context.
We use p(x, y) and p(y|x) for joint and conditional proba-
bilities, respectively.

A probability distribution implies an ‘uncertainty’ about
the value of a random variable. This uncertainty is quan-
tified as the entropy H(X) = −

∑
x p(x) log p(x). We

take 2 as the base of the logarithm, so that the unit of en-
tropy is bits. Alternatively, the entropy can be seen as

how much information on average is gained when learn-
ing the value of a random variable. The conditional en-
tropy H(Y |X) = −

∑
x,y p(x, y) log p(y|x) determines the

amount of uncertainty left about Y when the value of X is
know.

The amount of information that on average is available
both in X and Y can be calculated with the mutual infor-
mation I(X;Y ). The mutual information can be defined as
I(X;Y ) = H(Y )−H(Y |X) = H(X)−H(X|Y ), which
leads to the interpretation that it is the decrease in uncer-
tainty about one variable when the value of the other one is
known.

Finally. the expected value of a random variable is writ-
ten as E[X], or E[X|θ] when the value is conditioned on
some parameters θ. The expected value is equal to the
sum of the possible values, weighed by their probability:
E[X] =

∑
x p(x)x. Similarly, we can for instance write the

conditional expected value of a function as E[fθ(X, y)|θ] =∑
x p(x|y, θ)fθ(x, y).
For a more elaborate background on the information-

theoretical concepts and notation used in the current paper
see Cover and Thomas (1991).

The Perception-Action Loop
An agent is embodied and situated in an environment; it has
direct contact to the environment through its sensors and ac-
tuators. Information about the world is obtained through
the sensors and influence the agent’s actions, which in turn
can affect the environment. This results in a Perception-
Action loop (PA-loop) and, following Klyubin et al. (2004),
we model this loop as a causal Bayesian network (CBN), as
shown in Fig. 1(a). Such a network represents the relation-
ship between the agent and the environment. At each time
step t the agent perceives part of the state of the world wt,
resulting in a sensor state st ∈ S. A fully reactive agent
chooses its action at ∈ A based solely on this state. Its
policy π defines the probability of performing these actions:
π(at|st) = p(at|st). When the agent performs an action,
the world state is changed according to the state transition
probability distribution Patwt,wt+1

= p(wt+1|wt, at).
Without loss of generality, in the rest of this paper a sim-

plified version of this model is used. It is assumed that the
world is fully accessible to the agent, i.e. the sensor state
reflects the full state of the world. For the CBN, this means
that the world and sensor nodes can be collapsed, resulting
in the network shown in Fig. 1(b). Consequently, we will
use the term ‘state’ interchangeably for both world and sen-
sor state.

As outlined in the introduction, we consider agents that
operate in an environment that rewards certain behaviour.
We are interested in how in this case the combined structure
of the world and rewards can influence the structuring of
behaviour. We assume that the reward that the agent receives
is quantifiable. For instance, in a food-searching task the
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Figure 1: Causal Bayesian network of the perception-action
loop, unrolled in time, showing (a) the complete model and
(b) the case when the world is fully accessible.

agent can be presented a reward related to the nutritional
value of the food when it is found. Another commonly used
scheme is to represent the energy spent to perform a task as a
penalty or negative reward for each time step that the goal is
not reached. We will use the first model, as detailed further
on.

These rewards are modelled by an immediate-reward
function (Sutton et al., 1999) which gives the immediate
reward that an agent will receive for performing action at
when in state st and consequently finding itself in state st+1:
Ratst,st+1

∈ R. Given this function we can define the state-
action value function (or utility function) Uπ(st, at) which
gives the expected future reward of taking action at when in
state st and subsequently following policy π (Sutton et al.,
1999):

Uπ(st, at) =∑
st+1

Patst,st+1

[
Ratst,st+1

+ γE[Uπ(st+1, At+1)|π]
]
, (1)

where γ ∈ [0, 1] is a discount factor to model preference for
short term (low γ) or long term reward (high γ).

In this setting, a rational agent that performs goal-directed
behaviour will try to gather as much reward as it can as fast
as possible, effectively attempting to find an optimal policy
π∗ maximising the expected value of (1):

π∗ = argmax
π

E [Uπ(St, At)|π] (2)

= argmax
π

∑
st,at

p(st, at)U
π(st, at) (3)

= argmax
π

∑
st,at

π(at|st)p(st)Uπ(st, at). (4)

Information in the PA-Loop
With the formalisms outlined in the previous sections in
place, we can look at the informational properties of the PA-
loop. The arrows in the CBNs of Fig. 1 can be regarded as

St−1

At−1

St

At

St+1

G

Figure 2: Causal Bayesian network of the perception-action
loop, extended with the goal node.

channels; the world ‘transmits’ information which the agent
receives through its sensors and in turn the agent ‘injects’
information into the world through its actuators. The well
established field of information theory then provides us with
the tools to answer questions about the PA-loop in a concrete
way in the terms of Shannon information (Shannon, 1948).

For instance, we can determine the amount of informa-
tion that an agent on average takes in through its sensors to
determine its actions using the mutual information between
sensor states and actions I(St;At). Not all information that
is available in St is relevant to its current task and, following
the hypothesis of information parsimony as discussed in the
introduction, we assume that the agent will aim to minimise
this quantity. The lower bound of the necessary amount of
information intake to be able to achieve a certain level of
utility can be quantified using the paradigm of relevant in-
formation (Polani et al., 2006), and is done by solving the
following problem:

min
π(at|st)

[
I(St;At)− βE [Uπ(St, At)|π]

]
. (5)

The solution is a policy which minimises the state-
information used to select actions while maximising the ex-
pected utility achieved by this policy. The parameter β can
be varied to trade-off utility and information requirement;
low β promotes information parsimony, high β puts more
weight on utility. When β goes to infinity, the policy found
will become optimal and the minimum amount of state in-
formation needed to act optimally is given by I(St;At). As
shown by Polani et al. (2006), the problem of (5) can be
solved with an iterative algorithm that interleaves traditional
algorithms of information theory (rate-distortion (Blahut,
1972)) and reinforcement learning (value iteration (Sutton
and Barto, 1998)). This algorithm has the important prop-
erty that the solution of (5) simultaneously fulfils (1).

Relevant Goal Information
The methods for relevant information are generally appli-
cable to any case where a reward function can be defined.
However, it is restricted to the analysis of a single task. Here
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(a) Relevant Goal Information
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(b) Goal Information Transitions

Figure 3: Grid world example for relevant goal information. Walls are denoted with a brown, hashed background. The
remaining free cells comprise the set of states S. The goal G is uniformly distributed and its alphabet G consists of the empty
cells within the six rooms. The agent can perform four actions: move north, east, south or west. When such an action would
move the agent to an occupied cell the action has no effect. The shading of the background of the free cells indicates (a) the
total amount of relevant goal information for each cell and (b) the amount of new relevant goal information when arriving in a
cell. Dark blue shading for high amount, light blue or white for low amounts The meaning of the asterisk and letter marks is
explained in the text.

we will extend the model of the PA-loop to enable us to han-
dle an agent that could perform different tasks. To do so, we
focus on the common case where this task can be determined
by reaching a distinct goal. Here we do not discern how the
current goal of an agent is selected; it can be imposed exter-
nally, such as a command given to a dog by its master, or it
may be an intrinsically determined goal, as in the case of a
hungry predator that decides to catch a certain prey. Instead,
we only are concerned about the decision making process
once a goal is given.

We introduce the new random variable G. The value of
this variable, g, represents the current goal of an agent. Fig-
ure 2 shows how the CBN of the PA-loop is extended with
this new variable. Note that we do not aim to study the case
of an agent having several simultaneous goals. Rather, we
concentrate on agents that select a specific goal from a dis-
crete set of possible goals G. After this selection the goal is
fixed, until the goal is achieved or abandoned.

The new CBN shows that the policy now also depends
on the current goal: π(at|st, g) = p(at|st, g). Also, each
separate goal gives rise to a distinct immediate reward func-
tion and thus to a separate goal-dependent utility function
Uπ(s, g, a).

This extension of the model introduces an additional in-
formation source; apart from sensory information the agent
now also needs to maintain and process goal information to
guide its actions. Per the information parsimony hypothesis
this is assumed to be costly and therefore we are interested

in determining lower bounds on this amount of information
needed to achieve a given performance. Analogous to the
sensory case we term this the relevant goal information. In
contrast, we will denote the traditional relevant information
with relevant sensory information.

Whereas the relevant sensory information determines the
minimum amount of sensory information necessary for a
certain goal, we can also determine the minimum goal in-
formation necessary on average to achieve a certain utility,
given the current state. By analogy to (5), this is done by
solving the following minimisation problem:

min
π(at|st,g)

[
I(G;At|St)− βE[U(St, G,At)|π]

]
(6)

The solution to this problem, which is a policy trading off
goal information parsimony with utility, controlled by the
trade-off parameter β, can be found using the same itera-
tive procedure used for relevant sensory information as de-
scribed in (Polani et al., 2006).

As an example we use a navigation task in the grid world
shown in Fig. 3(a). The set of states S and the set of goals
G both consist of all unoccupied cells, and the goal variable
G is assumed to be uniformly distributed; any of the goals is
as likely as another. The agent is rewarded when it achieves
the current goal (Ratst,st+1

= 1 if st+1 = g, 0 otherwise) and
a discount factor of γ = 0.9 is used.

As with relevant sensory information, we can study the
trade-off between utility and relevant goal information by
varying the value of β in (6). Figure 4 shows that the results



Proc. of the Alife XII Conference, Odense, Denmark, 2010 180

0
0.05

0.1
0.15

0.2
0.25

0.3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

E[
U
(S
t
,G
,A

t
)|π

]

I(G;At|St)
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Figure 5: Trade-off between goal information (horizontal
axis, bits) and sensory information (vertical axis, bits) for
different values of α ∈ [0, 1], which controls preference for
goal (low α) or sensory (high α) information parsimony.

of this trade-off are similar to that found for relevant sen-
sory information; expected utility rises monotonically with
higher goal information bandwidth, but the agent can still
achieve a performance close to 90% of the maximum with
as little as half of the optimal amount of information.

Besides utility, goal information may also have to be
traded off against sensory information; a policy that min-
imises relevant goal information could require a higher av-
erage bandwidth for the sensors. We can combine equations
(5) and (6) to take into account both costs:

min
π(at|st,g)

[
(1− α)I(G;At|St) + αI(St;At|G)−

βE[U(St, G,At)|π]
]
, (7)

where α can be varied from 0 to 1 to reflect the relative
cost of each process; low α promotes goal information par-
simony, high α indicates sensor information is deemed to be
more costly. Figure 5 shows that generally more relevant

goal information is linked to an increase in sensory informa-
tion, but that different weights result in different trade-offs.

We can extract the relevant goal information for each state
separately, I(G;At|st), as is shown in Fig. 3(a) for the
policy achieving maximum expected utility. This example
shows some interesting properties of relevant goal informa-
tion. Firstly, in central states the agent tends to require more
goal information than in more remote states or states close to
walls. This is easily explained by the fact that in the central
states the a priory probability of the direction the goal is in is
roughly uniformly distributed; the goal can be on any side.
When in the more distant states, however, the goal tends to
be in a single direction. Only in exceptional cases does the
agent need to deviate from going in this default direction and
thus use extra goal information. Directly next to the walls
the agent even only has to choose from the limited set of ac-
tions that do not make it run into a wall. Here the relevant
goal information is bounded from above by the cardinality
of this limited set. This also explains why the amount of
relevant information in doorways is found to be often lower
than in neighbouring states; here only two actions are useful.

Another observation is that local peaks in relevant goal in-
formation, marked with an asterisk in Fig. 3(a), can be found
in front of doorways, even several cells away, most notably
at ‘crossing points’ between different doorways. Trajecto-
ries of the agent tend to go from one of these peak cells to
another. We will give an interpretation and explanation for
this effect in the global discussion at the end of this paper.

Goal Information Transitions
In the example of the previous section we have only looked
at single step scenarios. It shows that in different states the
amount of goal information needed can vary. An interesting
question is whether there is also a qualitative difference be-
tween the relevant goal information in different states. For
instance, a bee flying out to search for food at first only has
to consider which patch in its habitat is its target. Only when
arrived at this patch it has to take into account the several in-
dividual resources (Bell, 1990). As another example, in our
grid world, when the agent is in front of a doorway, it has
to take into account whether the goal is in the neighbouring
room or not. However, when it has just entered the room,
this information is no longer relevant and it now has to fo-
cus on where exactly in the room the goal is. The model of
relevant goal information given here can be used to analyse
this development of goal information through time.

Given the single-step goal-information parsimonious pol-
icy as found in the previous section, we can determine how
much of the relevant goal information in a certain state was
not needed during the sequence leading to that state:

I(G;At|At−1
0 , st) = H(G|At−1

0 , st)−H(G|At
0, st),

(8)
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where At
0 = (A0, . . . , At) denotes the sequence of actions

from the start of the task to time step t. This amount of new
relevant goal information is shown for our grid world case
in Fig. 3(b), averaged over sequences of up to 5 time steps.

As one would expect, some of the cells where the total
amount of relevant goal information is high (those marked
in Fig. 3(a)) also stand out here; if in a cell more goal infor-
mation is required than in the neighbouring cells, naturally
a relatively high amount of this information is new. How-
ever, there are some notable differences: although the states
where much new goal information is needed also require
much total goal information, the opposite argument does not
hold.

For instance, the cells marked a and b in Fig. 3(b) are
shaded darkest in Fig. 3(a) and so require the most amount
of information, with only a small difference between them.
But there is a clear difference in how much of this informa-
tion is new and different from the goal information that on
average is required in the past before arriving in these cells.
At cell b, in front of the doorway, the qualitative transition
in goal information is much more pronounced. This same
difference can be seen in the cells marked c and d; again,
the total amount of relevant information for these cells is ap-
proximately the same, but for cell cmore of this information
is the same as already maintained by the agent in previous
steps, showing a much less defined transition. All in all, we
can note that the largest transitions are at doorways and at
corners.

Discussion
Two Viewpoints
The result of minimisation of goal information is a policy
where the agent often takes the same action, regardless of
the goal; e.g. if going north works for all goals and go-
ing east only for a part of them the agent can always select
going north and it can disregard all goal information. This
leads to two complementary viewpoints for relevant goal in-
formation.

One is what we call the least-commitment (in the sense of
least-commitment planning (Weld, 1994)) viewpoint. Be-
cause the actions taken by the agent are optimal for as many
goals as possible, the amount of goals excluded by the ac-
tions are minimal. Although, in the methods described here,
the goal does not change during a single run, because of the
least-commitment property of the agent’s policy, the agent
will have a higher probability of still having behaved opti-
mal if such a change does happen. The policy of the agent
can be seen as keeping as many options open as possible.
Thus, minimisation of relevant goal information causes the
emergence of a least-commitment strategy.

This shows the relatedness of relevant goal information
to empowerment (Klyubin et al., 2008). This quantity de-
fines the maximum amount of possible observable control
an agent has on its environment and is based on the same

kind of informational treatment of the PA-loop as put for-
ward in this paper. In a task-less setting empowerment leads
to an intrinsic drive to least-commitment behaviour, whereas
relevant goal information gives rise to such a drive in a goal-
oriented agent.

The least-commitment viewpoint leads to the interpreta-
tion of states where relevant goal information is high as nec-
essary decision points. If the goal can be in either of two
rooms, the agent will not move towards one or the other un-
til it has no other option. This occurs at the crossing points
between doorways, where the agent has to make a decision
and commit to one of the rooms.

Such an approach to delay decision making may not al-
ways be optimal, such as a driver who risks an accident by
steering for a corner at the last moment at high speed. How-
ever, here these risks are assumed to be contained in the re-
ward function, rendering such policies suboptimal and thus
no longer considered by the agent.

Another interpretation arises from the goal-concealing
viewpoint. This viewpoint is obtained by noting that the
mutual information between goal and action can not only
be seen as how much goal information is needed to decide
on an action, or how much information the goal gives about
the action, but also how much information the actions give
about the goal (a similar viewpoint for sensory relevant in-
formation is taken by Salge and Polani (2010)). This means
that by minimising relevant goal information the agent gives
away as little information as possible about its goal to an
external observer. This observer could see this as the emer-
gence of a goal-hiding strategy.

From this viewpoint the peaks in relevant goal informa-
tion at crossing points can be explained by noting that the
actions taken here give away a lot of information about the
goal of the agent. When the agent is at a crossing point be-
tween two rooms, the observer does not know in which room
the goal is, but after seeing the action he can exclude all the
cells in the room the agent moved away from.

Sub-Goals
In the field of Reinforcement Learning (RL) there has been a
lot of recent activity on the subject of higher level behaviour
structuring, task decomposition and automatic sub-goal dis-
covery (Barto and Mahadevan, 2003). A large amount of al-
gorithms for automatic behaviour structuring have resulted
from this. For instance, the intuition that so called ‘bottle-
neck’ or ‘funnel’ states in an environment, such as door-
ways, are salient sub-goals has led to methods being devel-
oped based on visitation count (McGovern and Barto, 2001;
Kretchmar et al., 2003; Asadi and Huber, 2005) and graph-
theoretical techniques (Şimşek et al., 2005; Kazemitabar and
Beigy, 2009; Şimşek and Barto, 2009). Other approaches
that are also based on assumptions about the structure of
the world, but using less strict definitions of what may
constitute a ‘good’ sub-goal, include state space segmen-
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tation/clustering (Bakker and Schmidhuber, 2004; Mannor
et al., 2004), relative novelty (Şimşek and Barto, 2004),
sensation/action co-occurrence (Digney, 1996) or transitions
(Hengst, 2002; Kozlova et al., 2009), causal-graph decom-
position (Jonsson and Barto, 2006) and the use of data-
mining techniques (Kheradmandian and Rahmati, 2009). Fi-
nally, a separate class of algorithms does not focus on struc-
ture of goals, but on segmentation, clustering and abstracting
common state-action sequences (Sun and Sessions, 2000;
Pickett and Barto, 2002; Girgin et al., 2006).

All these methods indicate their usefulness by showing
increased learning performance in certain RL tasks. Also,
they show that skill transfer, made possible by task segmen-
tation, can be highly beneficial (Perkins and Precup, 1999;
Konidaris and Barto, 2007). However, hardly any compari-
son of the performance of different approaches has yet been
done. This is not surprising, since the methods can differ
greatly and, more importantly, they are based on different,
designer imposed, assumptions about what is a good way to
structure a task. In these papers the structural properties of
a sub-goal or sub-task are defined for a particular domain of
interest, after which a solution is engineered for these spe-
cific properties.

The results of the current paper, however, suggest a more
fundamental, biologically/Alife motivated definition of sub-
goals: a sub-goal is achieved when a significant qualitative
change of the task at hand occurs, which is when the actions
of an agent are guided by a new component of, or new in-
formation about, the goal not taken into account earlier. As
shown earlier, the notion of relevant goal information can be
used to identify such transitions. Note that the informational
treatment of the PA-loop is independent of domain, archi-
tecture and particular implementations and therefore we do
not need any of the assumptions made in the engineering
solutions. The biologically plausible hypothesis of informa-
tion parsimony is sufficient for the treatment of emergence
of sub-goals.
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Extended Abstract
Quorum-sensing (QS) has been extensively studied in the context of synthetic biology (Basu  et al.,  2005; Danino  et al.,  2010; 
Garcia-Ojalvo et al., 2004). It enables a community-level response to emerge once a certain signal concentration threshold has been 
reached. We use QS to design a multi-strain, engineered bacterial community with autonomous behaviour. We model our system on 
the familiar "client-server" architecture, with a single central server and two clients (one "red" and the other "green"). The task we 
define is that of  oscillation  (Tigges  et al.,  2009); by engineering feedback between three different strains, we obtain indefinite 
switching between "red" and "green" outputs. The system is not restricted to simple oscillation, as server cells may be introduced 
with much more complex behaviours. 

Figure 1: System architecture (left), simulation results (right).

In Figure 1, we show the server and two clients; the server is activated by selected signalling molecules, labelled AHLs and AHLs', 
(producing either AHLr or AHLg respectively); the green client is activated by AHLg, producing AHLs and green fluorescent 
protein, and the red client is activated by AHLr, producing AHLs' and red fluorescent protein. We can see how this machine lies 
dormant until either AHLg or AHLr is added to the nutrient, after which one of the clients is activated and the system enters a 
period of oscillation. This is achieved by the server cells switching “turns” between red and green client cells. We also see the 
results of system simulations, with plots of AHLs' and AHLs over time.

Our key contribution is the design of the server, which is extremely noise-resistant, and robust in the face of differential client 
behaviour (e.g., if one client's “off” signal degrades much more slowly than another's). Future work will focus on experimental 
testing of the system, and investigation of its real-world applicability.
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Abstract

Using a set of genetic logic gates (AND, OR and XOR), we
constructed a binary full-adder. The optimality analysis of
the full-adder showed that, based on the position of the reg-
ulation threshold, the system displays different optimal con-
figurations for speed and accuracy under fixed metabolic cost.
In addition, the analysis identified an optimal trade-off curve
bounded by these two optimal configurations. Any configu-
ration outside this optimal trade-off curve is sub-optimalin
both speed and accuracy. This type of analysis represents a
useful tool for synthetic biologists to engineer faster, more
accurate and cheaper genes.

Introduction
The desire to control is a recurring theme of human nature
and the control of biological systems represents the ultimate
goal for synthetic biologists. Towards achieving this goal,
researchers have modelled and engineered genes in bacterial
cells that perform basic computational tasks. These tasks
mainly mimic the behaviour of simple electronic compo-
nents, such as logic gates, oscillators, toggle switches and
counters (Gardner et al., 2000; Elowitz and Leibler, 2000;
Guet et al., 2002). However, when attempting to increase
the complexity of these engineered genetic systems, certain
limitations of the components are likely to hamper their con-
struction. Thus, there is an urgent need for an extensive anal-
ysis of the biophysical limits of the elementary components.

Synthetic biologists showed that binary logic gates can be
engineered in living cells using transcriptional logic (Guet
et al., 2002; Kramer et al., 2004; Yokobayashi et al., 2002;
Cox III et al., 2007; Anderson et al., 2007; Sayut et al.,
2009). Transcriptional logic gates are genes which can in-
tegrate multiple signals at the level of cis-regulatory tran-
scription control using various binary logic functions (AND,
OR, NAND, NOR, XOR, etc.). To implement binary logic,
both the input and the output of these genes needs to have
two abundance levels corresponding to the two logical lev-
els, a high and a low abundance level. Biological mod-
ellers successfully identified and described various designs
of these logic gates (Weiss et al., 2003; Buchler et al., 2003;

Hermsen et al., 2006; Schilstra and Nehaniv, 2008; Silva-
Rocha and deLorenzo, 2008). However, what is still miss-
ing is a complete analysis of how these logic gates can be
used as building blocks for more complex logical systems
and what are the parameters which ensure optimal design in
terms of speed and accuracy under limited (constant) ener-
getic resources.

There are three properties of a genetic system that we use
in our analysis: speed, accuracy and cost. We define the
propagation timeas the time required by the output species
in a logical system to reach the new steady state after an in-
stantaneous change of the inputs. This is directly connected
with speedin the sense that fast system are described by
short propagation times and conversely. Due to low copy
number and slow chemical reactions, genetic systems are
stochastic and, thus, they are affected bynoise(Kaern et al.,
2005). The noise reduces the ability to distinguish between
different logical outputs of a gate and, because of that, it re-
ducesaccuracy. Finally, themetabolic costis usually mea-
sured as the required number of ATP molecules. We are in-
terested in the scaling properties of this measure, rather than
in the exact value. Hence, we measure cost as the maximum
synthesis rate of a gene.

Recently we investigated speed and accuracy in the case
of single binary genes (genes with two expression levels,
high and low) (Zabet and Chu, 2010). The analysis revealed
that these genes display a trade-off curve between switching
time and noise under fix metabolic cost, i.e., lower noise is
achieved at lower speeds and conversely. This trade-off is
controlled by the decay rate, in the sense that higher decay
rate means higher speed but also lower accuracy.

In this contribution, we extend this analysis to gene net-
works by considering a specific binary logic system, the full-
adder. The full-adder is a system able to perform binary ad-
dition (to produce both the sum and the carry) for three bi-
nary inputs, two of which are the two operands and the third
allows plugging in the carry from a previous full-adder mod-
ule. We constructed the required logic gates by considering
genes that can be regulated by two proteins in an indepen-
dent fashion, i.e., binding of any of the inputs does not alter
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the binding of the other input. Moreover, these logic gates
need to ensureinterconnectivity. Assuming that the two in-
puts that regulate a gene can have two possible abundance
levels, high (Hin) and low (Lin), then, in order to connect
an arbitrary number of logic gates, the output has to have
two possible abundance levels (Hout andLout) with at least
the same signal strength,(Hin − Lin) ≤ (Hout − Lout)
(Magnasco, 1997). Usually the output levels are identical
with the input one or very close to them,Hout ≥ Hin and
Lout ≤ Lin. Based on these requirements, we found the
set of parameters which ensures interconnectivity of the re-
quired logic gates and then we constructed the full-adder
showing the correct functioning of the system.

Gene regulation is usually modelled by a Hill function
(Ackers et al., 1982; Bintu et al., 2005; Chu et al., 2009).
The Hill function is a sigmoid function described by two pa-
rameters: the thresholdK (which represents the input abun-
dance required for half activation of the gene) and the Hill
coefficientl (which determines the steepness of the func-
tion). The results show that, for step-like regulation func-
tions (l → ∞), the system displays an optimal position of
the threshold in terms of speed and accuracy, while, for fi-
nite Hill coefficients, there is a trade-off between these two
properties and the trade-off is controlled by the position of
the threshold.

Model
We selected a design for the full-adder with five logic gates:
two XOR gates, two AND gates, and one OR gate (see Fig.
1).

Figure 1: Full-adder. The logic gate diagram of the full
adder.

To construct this full-adder from genes, we need first to
construct transcriptional logic gates. We model a transcrip-
tional logic gate as a geneGz , which synthesises proteinz,
the output of the gate. This gene is regulated by two pro-
teinsx andy, which are considered as the inputs of gate.
Speciesz is described by the following deterministic differ-
ential equation

dz

dt
= α + βf(x, y) − µz (1)

whereα is the basal synthesis rate,α + β the maximum
synthesis rate,f(x, y) is the regulation function of geneGz,
andµ is the decay rate.

Although there are many scenarios for promoter regula-
tion that mimic the behaviour of different logic gates, we
selected independent binding (binding of one TF does not
influence in any way the binding of the other TF). In this sce-
nario there are two operator sitesOx andOy, each of them
havingl binding sites. On each operator site only molecules
of a specific transcription factor can bind, and they do this in
a homo-cooperative maner. The probabilities that an opera-
tor site is full is described by a Hill function (Ackers et al.,
1982; Bintu et al., 2005; Chu et al., 2009)

px(x) =
xl

xl + K l
, py(y) =

yl

yl + K l
(2)

whereK is the regulation threshold (the required input value
for half activation of the gene) andl is the Hill coefficient
(indicates steepness of the function). We assumed that the
two operator sites (Ox and Oy) have identical parameters
(K andl).

Assuming that the gene is turned on when any of the two
TF are present, then the regulation function will mimic the
behaviour of an OR gate. Analogously, assuming that a gene
can be turned on only when both of the transcription factors
are present, then the regulation function will mimic the be-
haviour of an AND gate. Finally, if the gene is turned on
when any of the TF is present, but when both of them are
present their effects cancels out and the gene is turned off,
then the gene will behave as an XOR gate. The correspond-
ing forms of the regulation functions are

fAND =
(xy)l

(xy)l + (Kx)l + (Ky)l + K2l
,

fOR =
(xy)l + (xK)l + (yK)l

(xy)l + (Kx)l + (Ky)l + K2l
, (3)

fXOR =
(Kx)l + (Ky)l

(xy)l + (Kx)l + (Ky)l + K2l
.

Fig. 2 confirms that these regulation functions display the
desired behaviour.

Using these three logic gates, the full-adder, can be con-
structed as a set of chemical reactions. Since the full-adder
contains five logic gates, then we need five species to im-
plement this system (e, f , g, sum and carry). The chemical
reactions which describe all these species are given by

∅
αe+βefXOR(a,b)
−−−−−−−−−−−⇀↽−−−−−−−−−−−

µe

e, ∅
αf+βf fAND(c,e)
−−−−−−−−−−−⇀↽−−−−−−−−−−−

µf

f,

∅
αg+βgfAND(a,b)
−−−−−−−−−−−⇀↽−−−−−−−−−−−

µg

g,

∅
αs+βsfXOR(e,c)
−−−−−−−−−−−⇀↽−−−−−−−−−−−

µs

sum, ∅
αco+βcofOR(f,g)

−−−−−−−−−−−⇀↽−−−−−−−−−−−
µco

carry

wherea, b andc are three input species.
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Figure 2:Regulation functions that mimic logic gate behaviour. The threshold was set toK = 0.5 [µM ] and we considered a
Hill coefficient ofh = 3.

Results
First we need to identify the sets of parameters which allow
interconnection of gates and then we need to identify the
sub-set of parameters which allows optimal functioning of
the full-adder in terms of speed and accuracy under fixed
metabolic cost. We will apply these two analyses for two
cases: (i) step-like regulation functions (l → ∞) and (ii)
finite Hill coefficients.

To keep the mathematics tractable, and without losing too
much generality, we consider identical gates, i.e., all genes
are affected by the same decay rate (µ), have the same syn-
thesis rates (α andβ) and the same Hill parameters (l and
K). The only thing that differentiates the gates is the regu-
lation function, which, in the case case of the full-adder, can
befAND, fOR or fXOR.

Step Regulation Functions
We start our analysis by considering the ideal case, the sys-
tem where the regulation functions have infinite Hill coeffi-
cient.

The interconnectivity property can be met by consider-
ing the output signal strength to be kept constant,Hout =
Hin = H andLout = Lin = L. In the case of the OR gate,
the system has the following steady state behaviour

L =
1

µ
[α + βfOR(L, L)] ,

H =
1

µ
[α + βfOR(L, H)] , (4)

H =
1

µ
[α + βfOR(H, H)] .

For infinite Hill coefficient the solution is given byα = L
andβ = (H − L). Analogously, it can be shown that the
solution is the same for all gates. This synthesis rates ensure
a correct steady-state behaviour of the full-adder (see Fig.
3(a)).

System Performance We investigate two properties of a
logic system, namely speed and accuracy, under the con-
straint of fix metabolic cost. The metabolic cost of a gene

Z can be defined as the maximum synthesis rate of that
gene,ζz = α + βfH

z , wherefH
z is the highest value which

f(x, y) takes. Thus, by keeping the synthesis rate fixed
the metabolic cost is kept constant. Note that this is just
an approximation to the actual metabolic cost, and that the
metabolic cost of the maintenance of the entire machinery
was not included in it. However, this measure indicates how
the metabolic costs scales with different parameters.

The propagation time, Tgene, of a gene is the time re-
quired to reach the steady state to within a fractionθ of
H − L. Assuming instant change of the input, Eq. (1) can
be solved analytically and the time to reachL + (H − L)θ
or H − (L − H)θ can be computed as

Ti = τ · ln

(

1

1 − θ

)

(5)

where τ = 1/µ represents the average life time of the
species.

The propagation time through a single gate can only be
reduced by reducing the average life time of the protein (τ ).
In the case when the two logical steady states are kept con-
stant (so the signal strength is not reduced) and the synthesis
rate is kept constant (so we do not increase the metabolic
cost) then also the decay rate is kept constant. Thus, there is
no optimization that one could attempt to perform on indi-
vidual gates under fix metabolic cost without reducing sig-
nal strength. However in the case of logic gates systems,
like the case of the full-adder, the input is not changed in-
stantaneously in all gates and the position of the threshold
influences the propagation time.

The threshold is located between the low and the high
state,K = L + (H − L)λ, (λ ∈ [0, 1]). λ indicates the
position of the threshold; forλ < 0.5, K is closer toL and
for λ > 0.5, K is closer toH . Note that by consideringK
to be outside the interval[L, H ] the regulation is removed,
i.e., the gene is always in the same state no matter whether
the input isL or H . In order for a gene to change state, one
of the inputs, has to cross over or underK. Using Eq. (5)
one can compute the time it takes one species to move from
low state to the threshold (L → K) and from the high state
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Figure 3:Full-adder with step-like regulation function. (a) The output abundance based on the input abundance for step-like
regulation functions. (b) We plotted the propagation time when switching between(L, L, H) to (H, L, H). The following set
of parameters have been used:µ = 1 min−1, l = 50, L = 0.2 µM , H = 1.2 µM , K = 0.7 µM , α = 0.2 µM · min−1,
β = 1.0 µM · min−1 andθ = 0.9.

to the threshold (H → K) as

tLK = τ · ln

(

1

1 − λ

)

, tHK = τ · ln

(

1

λ

)

. (6)

Assuming that the longest cascade in the system hasn
gates, then a general formula for the propagation time is
given by

T =

n−1
∑

i=1

tiK + Tn (7)

wheretiK is equal totLK if speciesith was in low state be-
fore changing the input in the system, andtiK is equal to
tHK if speciesith was in high state before changing the in-
put in the system. Hence, the propagation time in a cascade
equals a sum oftLK and tHK terms and a fix time repre-
senting the last gene in the cascadeTn.

Fig. 4 confirms that based on the threshold position, the
system can be faster when switching in one direction and
slower in the opposite direction. When the switching direc-
tion is not important, the problem of optimizing propagation
time becomes a minimax problem, i.e., minimize the max-
imum time to switch. In the context of step-like regulation
functions, the optimum threshold, according to Eq. (6), re-
sides at the midpoint between high and low states,λT = 0.5
(see Fig. 4).

Analysing the circuit diagram of the full-adder 1 one can
notice that the longest path through the circuit consists of
three gates, and this is used when computing the carry .
This path is followed, for example, when switching between
(L, L, H) and (H, L, H). Fig. 3(b) confirms that the op-
timum threshold, in the case of step-like regulation func-
tion, resides at the midpoint between high and low state

 0
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Figure 4: The time to reach the threshold. The protein av-
erage life time toτ = 1 [min]. The two steady states are
L = 0.2 [µM ] andH = 0.8 [µM ], and the corresponding
synthesis rates were considered. Both switching directions
were consider.
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(λ = 0.5). Also note, that Eq. (7) and Eq. (6) correctly
predict the propagation time in the full-adder in the case of
high Hill coefficients.

Next, we need to investigate the accuracy of the system.
At steady state thevarianceof the outputz of a logic gate,
which has two inputsx andy, can be written as (van Kam-
pen, 2007; Elf and Ehrenberg, 2003; Paulsson, 2004)

σ2

z = z
︸︷︷︸

intrinsic

+

Γzx

︷ ︸︸ ︷

[

βz

∂f(x, y)

∂x
τz

]2

Tzx

︷ ︸︸ ︷

τx

τx + τz

σ2

x

︸ ︷︷ ︸

upstream fromx

+

Γzy

︷ ︸︸ ︷

[

βz

∂f(x, y)

∂y
τz

]2

Tzy

︷ ︸︸ ︷

τy

τy + τz

σ2

y

︸ ︷︷ ︸

upstream fromy

(8)

The intrinsic component is generated by the randomness
in the birth-death processes and it can be approximated by
a Poisson process (Bar-Even et al., 2006; Newman et al.,
2006). The upstream component is the noise transmited
from the upstream species (the species that regulate the
gene) (Pedraza and van Oudenaarden, 2005). The upstream
noise is composed of three terms: the regulation factor (Γzx

and Γzy), the time average factor (Tzx and Tzy), and the
variance of the upstream species (σ2

x andσ2

y).
In this contribution, we are interested in how noise af-

fects our ability to distinguish between the two known out-
put states,H andL. To get a meaningful measure of this,
we will normalise the variance by the square of the signal
strength,ηz

.
= σ2

z/(H − L)2, rather than by the square of
the mean (which is often used as a definition of noise).

ηz =
z

(H − L)2
+

[

βzτz

∂f(x, y)/∂x

(H − L)

]2

Tzxσ2

x

+

[

βzτz

∂f(x, y)/∂y

(H − L)

]2

Tzyσ
2

y (9)

For step-like regulation function the derivatives in (9) will
be zero, and the only contribution to the noise is the intrinsic
component. Thus, the noise of the output depends only on
the steady state abundance (high and low), but is indepen-
dent of the number of gates in the system or of the threshold
position. However, if the threshold is close enough to one
of the steady states (H or L), then small fluctuations in the
input generates high fluctuations in the output and the an-
alytical method is not accurate any-more. Assuming that
the threshold is positioned at the midpoint (optimum posi-
tion for speed) and the two steady states are far enough from
each other, then the noise will be determined only by the in-
trinsic component. Hence, in the case of step-like regulation

functions, the system displays an optimum threshold posi-
tion (λ = 0.5) which ensures optimality both for speed and
accuracy.

Finite Hill Coefficients
Due to the fact that Hill coefficients are bounded above by
the number of regulatory binding sites (Chu et al., 2009),
and genes have a small number of binding sites (Hermsen
et al., 2006), biologically realistic Hill coefficients arefinite
and have low values.

For low Hill coefficients, Eq. (4) has only one solu-
tion, H = L. This is not a useful solution because it re-
moves the binary logic. Therefore, we search for param-
eters which ensure that the signal strength is not reduced,
(Hout − Lout) ≥ (Hin − Lin), and this can be achieved by
solving only the first two equations in Eq. (4):

αOR

µ
=

LfOR(L, H) − HfOR(L, L)

[fOR(L, H) − fOR(L, L)]
,

βOR

µ
=

H − L

[fOR(L, H) − fOR(L, L)]
. (10)

Note that not for all sets of parameters (l, K, µ, H, L) the
synthesis rates will have positive values. Interestingly,in-
creasing the Hill coefficient increases the space of allowed
parameters, and in the limit case of a step function (l → ∞)
any values of the other parameters will generate positive
synthesis rates. For Hill coefficient less than or equal to1
there is no solution for this system. Analogously one could
use the same mechanism to determine the synthesis rates for
all the other gates. For AND and XOR gates the solution is
given by

αAND

µ
=

LfAND(H, H) − HfAND(L, H)

[fAND(H, H) − fAND(L, H)]

βAND

µ
=

H − L

[fAND(H, H) − fAND(L, H)]
(11)

αXOR

µ
=

LfXOR(L, H) − HfXOR(H, H)

[fXOR(L, H) − fXOR(H, H)]

βXOR

µ
=

H − L

[fXOR(L, H) − fXOR(H, H)]

(12)

Fig. 5(a) confirms that the signal is not decreased and
shows that in two cases the actual output low state (Lout) is
lower than the desired one (L).

System Performance For low Hill coefficients the op-
timum threshold in terms of speed in not positioned any
more at the midpoint between high state and low state (see
Fig. 5(b)). This is a consequence of the fact that for
low Hill coefficient the Hill function loses the symmetry
around the threshold. Hence, when designing a specific
system, one could use numerical solutions to determine the
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Figure 5:Full adder with low Hill coefficients. (a) The output abundance based on the input abundance for low Hill coefficients.
(b) We plotted the propagation time when switching between(L, L, H) to (H, L, H) for low Hill coefficient. The following
set of parameters have been used:µ = 1 min−1, l = 6, L = 0.2 µM , H = 1.2 µM , K = 0.7 µM andθ = 0.5.

optimal threshold position for any specific set of parame-
ters. Also, one can notice that decreasing the Hill coeffi-
cient increases the propagation time due to the fact that a
gene is not instantly turned on/off when an input species
crosses over/under the threshold (compare Fig. 3(b) and Fig.
5(b)). Increasing the Hill coefficient asymptotically reduces
the propagation time to the one of the step-like regulation
function and, thus, the optimal threshold asymptotically ap-
proaches the midpoint,λT = 0.5 (data not shown).

Next, we investigated the accuracy of the full-adder. The
output sum for the input(H, L, L) produces the highest
noise levels independent of the threshold position. Consider-
ing this case we determined the dependence of noise on the
threshold position. The mathematical formula of the noise
is too complicated to give any information about the sys-
tem, but we can use it to generate numerical solutions. Fig.
6(a) shows that there is an optimal position of the thresh-
old in terms of noise which differs from the optimal position
in terms of speed,λη 6= λT . However, around the optimal
threshold position in terms of noise (λη) the noise does not
vary significantly (see Fig. 6(a)).

The system displays two optimal threshold positions, one
for speed (λT ) and one for noise (λη). If these two positions
coincide (λT = λη) then the system has on optimal set of
parameters and the engineer needs to set up the threshold to
this position.

However, it is most likely, that these two threshold posi-
tions will differ, as it is the case with our full-adder. In this
case, there is an optimal trade-off curve when the threshold
resides between these two optimal positions (λT andλη). In
addition any other trade-off curve is suboptimal comparing
to this one.

In our example of the full adder0.5 ≤ λη ≤ λT . Fig. 6(b)

graphically represents the trade-off between noise and time
based on the threshold position. We identified the optimal
trade-off curve determined byλη ≤ λ ≤ λT . Any threshold
in this interval can optimize the system either in speed or in
accuracy, but never in both. However, for threshold positions
outside this interval the system display sub-optimal trade-off
curves; forλ < λη or λ > λT both the propagation time
and the noise are worst compared to the ones in the optimal
trade-off curve.

Discussion

In this contribution, we presented a general method for con-
structing arbitrarily large logical systems based on binary
genes. For exemplification purpose, we designed a full-
adder system formed of five genes. The approach modelled
logic gates constructed using two cis-regulatory transcrip-
tion control regions. This type of logic gates has been al-
ready synthetically engineered by synthetic biologists (Guet
et al., 2002; Kramer et al., 2004; Yokobayashi et al., 2002;
Cox III et al., 2007; Anderson et al., 2007; Sayut et al.,
2009). We propose the tuning of the synthesis/decay rates
in such a way that will permit interconnectivity of different
gates/genes. This tuning represents basic requirement fora
correct functioning of the logic system.

Recently we showed that leak free systems are optimal
in terms of speed and noise (Zabet and Chu, 2010). How-
ever, Eq. (10) and Eq. (11) indicate that basal vanishing
leak rates are very difficult to obtain. This suggests that leak
free systems, although optimal in speed and noise are not al-
ways desirable, because they are likely to reduce the signal
strength when thinking about interconnecting genes.

We also presented here an approach for selecting the set
of parameters which optimizes the system in terms of speed
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Figure 6:OptimumK for noise. (a) The noise dependence on the threshold. The following set of parameters have been used:
V = 8 × 10−16 l, µ = 1 min−1, l = 6, L = 0.2 µM , H = 1.2 µM , K = 0.7 µM andλ = 0.5. We assumed a Poisson noise
of the three input species.

and accuracy under constant metabolic cost. Increasing the
Hill coefficient will optimize both the speed and the accu-
racy, but this is not usually at the direct reach of synthetic
biologists. However, the threshold can be altered by muta-
tions of the regulatory binding sites (Buchler et al., 2005).
We show that the threshold position, for a fixed Hill coeffi-
cient, influences both the speed (see Fig. 5(b)) and the noise
(see Fig. 6(a)).

In an ideal system, a system with gates that display
step-like regulation functions (infinite Hill coefficients), we
found that the system has an optimal set of parameters
(threshold positioned at the midpoint between the two steady
states). This set of parameters maximizes both speed and ac-
curacy for a fix cost. Moreover, the speed and the accuracy
achieved in this type of system is the asymptotic limit that
any biological real system can aim towards.

Real genes have finite low Hill coefficients and, in this
case, a logic system will display two optimal sets of param-
eters: one in speedλT and another one in noiseλη. We
found that there is a trade-off curve between speed and ac-
curacy which is bounded by these optimal sets of parameters
(λT andλη) and any point between these two can optimize
the system in either speed or accuracy. Nevertheless, any
other set of parameters (the threshold outside this interval)
is sub-optimal with respect to accuracy or speed.

This analysis showed that for finite low Hill coefficients
there are two sets of parameters, one optimizing in terms of
speed and the other on in terms of noise, when the metabolic
cost is not increased. However, this analysis addressed only
logic gates formed of individual genes. It was widely recog-
nized, that network motifs can play a significant role in both
speed and noise (Alon, 2007). Thus, further optimization

can be achieved by considering logic gates built from more
than one genes that form a network motif. Nevertheless, the
details of this analysis need to be left for further research.
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Abstract 

The pattern of gene expression in the phenotype of an organism 

is determined in part by the dynamical attractors of the 

organism’s gene regulation network. Changes to the 

connections in this network over evolutionary time alter the 

adult gene expression pattern and hence the fitness of the 

organism. However, the evolution of structure in gene 

expression networks (potentially reflecting past selective 

environments) and its affordances and limitations with respect 

to enhancing evolvability is poorly understood in general. In 

this paper we model the evolution of a gene regulation network 

in a controlled scenario. We show that selected changes to 

connections in the regulation network make the currently 

selected gene expression pattern more robust to environmental 

variation. Moreover, such changes to connections are 

necessarily ‘Hebbian’ – ‘genes that fire together wire together’ 

– i.e. genes whose expression is selected for in the same 

selective environments become co-regulated. Accordingly, in a 

manner formally equivalent to well-understood learning 

behaviour in artificial neural networks, a gene expression 

network will therefore develop a generalised associative 

memory of past selected phenotypes. This theoretical 

framework helps us to better understand the relationship 

between homeostasis and evolvability (i.e. selection to reduce 

variability facilitates structured variability), and shows that, in 

principle, a gene regulation network has the potential to 

develop ‘recall’ capabilities normally reserved for cognitive 

systems. 

Evolvability 

How natural selection results in the evolution of complexity, 

if it is natural selection that is responsible, is not yet 

understood [1,2]. It is easy to see how natural selection 

increases the frequency of fit phenotypes from a given 

distribution of phenotypic variants. But this is only part of the 

explanation. Although continued adaptation does not require 

that the available distribution of phenotypes is fitter than the 

parent on average (that would imply directed variation), 

continued increases in fitness and functionality require that 

this distribution includes at least some phenotypes that are 

fitter than the parent. This is often taken for granted, but 

experience in evolutionary algorithms and artificial life 

experiments suggests that such variants are quickly exhausted 

by selection, precluding further adaptation [2]. Thus the 

evolution of significant biological complexity requires that we 

explain how the distribution of phenotypes, resulting as they 

do from random variation in genotypes, includes phenotypes 

that are, not merely different from, but fitter than the parental 

type. The explanation might be, at least in part, that in natural 

organisms the distribution of phenotypic variants itself 

becomes better adapted over time [3] – hence enhancing 

evolvability, the ability of a population to evolve [4,5,6,7]. 

Since the processes of development, mapping genotype to 

phenotype, is itself genetically specified and subject to natural 

selection, this seems like a possibility, at least in principle. 

 However, although it is easy to say that natural selection 

should favour more evolvable genotypes, without a proximal 

account for the selective gradients that would produce such an 

outcome this is just wishful thinking. It is not so easy to pin 

down the source of a selection pressure that increases 

evolvability. For example, enhanced evolvability ought to 

mean that a genotype evolves better, not just that it evolves, 

and given that adaptive variants from a given phenotypic 

distribution are quickly exhausted it is hard to see how a 

variant genotype in a population that is stuck at a local 

optimum can be said to have better evolvability than another. 

This implies that the evolution of evolvability might require a 

constantly varying selective environment and multiple 

opportunities to generate and exploit variant phenotypic 

distributions. Moreover, if the environment changes in an 

entirely arbitrary fashion, a genotype to phenotype mapping 

cannot evolve to exploit it, so we are lead to the conclusion 

that such a mapping could only be adaptive if it exploits some 

kind of structure or regularity observed in the distribution of 

selective environment [8].  

 A simple way in which this might work is as follows. 

Different genotypes with the same phenotype might 

(nonetheless) have a different distribution of phenotypic 

neighbours - phenotypes produced through small mutations to 

the genotype. In a selective environment that varies from one 

selective regime to another (Fig.1), natural selection might 

favour genotypes that have phenotypes that are fit in one 

regime and have phenotypic neighbours that are fit in the 

other (over genotypes that have phenotypes that are equally fit 

in the first regime but do not have phenotypic neighbours that 

are fit in the other) [8]. In a sense, we can understand the 

propensity to produce phenotypes that are not currently 

selected for but have been selected for in the past as a kind of 

‘memory’ of past selective environments [8], and under 

certain conditions evolved genotypes may even “generalise to 

future environments, exhibiting high adaptability to novel 
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goals”. But exactly how this might happen, what the selective 

pressures are that might produce this outcome, and the 

limitations and affordances of such a process are poorly 

understood in general. 

Part of the process might involve the evolution of 

modularity, for example [9,10]. That is, certain phenotypic 

features might become tightly integrated units (clusters of 

phenotypic features that co-vary), whilst others remain, or 

become, separated and vary independently. Such modularity 

might then provide, in effect, higher-level variation – i.e. 

variation at a higher-level of organisation [11]. Such high-

level variability might in principle provide new combinations 

of modules with high probability (compared to the original 

distribution of ‘atomic’ character combinations) even though 

some particular combination of modules that is fit may not 

previously have been selected for. 

Wagner et al [10] explain part of the proximal mechanism 

that might be involved in this process. Referring to genetic 

loci that affect the correlation of phenotypic traits [12], they 

state that “natural selection can act on [such loci] to either 

increase the correlation among traits or decrease it depending 

on whether the traits are simultaneously under directional 

selection or not. …[Resulting in] a reinforcement of 

pleiotropic effects among co-selected traits and suppression of 

pleiotropic effects that are not selected together” [10].  

Wagner et al do not seem to notice, however, that this 

suggests intriguing parallels with Hebbian learning familiar in 

computational neuroscience [13,14]. Hebb’s rule, in the 

context of neural network learning, is often represented by the 

slogan neurons that fire together wire together, meaning that 

synaptic connections are strengthened between neurons that 

have correlated activation in response to a stimulus. Formally, 

a common simplified form of Hebb’s rule states that the 

change in a synaptic connection strength ωij is ∆ωij = δsisj 

where δ>0 is a fixed parameter controlling the learning rate 

and sn is the current activation of the n
th
 neuron. This learning 

rule has the effect of transforming correlated neural 

activations (created by an external stimulus) into causally 

linked neural activations. From a dynamical systems 

perspective, this has the effect of enlarging the basin of 

attraction for the current activation pattern/system 

configuration created by the stimulus. This type of learning 

can be used to train a recurrent neural network to store a given 

set of training patterns [15] thus forming what is known as an 

‘associative memory’ of these patterns. A network trained 

with an associative memory then has the ability to ‘recall’ the 

previously seen training pattern that is most similar to a new 

partially specified or corrupted test pattern. 

In this paper we investigate the possibility that a gene 

regulation network, capable in principle of exhibiting the 

same kind of dynamics as a recurrent neural network, is 

subject, over evolutionary timescales (not lifetimes [16]), to 

modifications in connections that are in principle the same as 

those produced by Hebbian learning familiar in neural 

network models. Thus genes that fire together wire together - 

i.e. genes whose expression is selected for in the same 

selective environments become co-regulated. Accordingly, the 

previously external cause of correlations in phenotypic 

characters (i.e. direct selection on expression patterns) 

becomes internalised (i.e. the result of a regulatory 

connection).  A developmental trajectory determined by such 

an evolved network will then be able to reproduce a 

previously selected phenotype ballistically from an arbitrary 

initial condition using purely internalised dynamics, i.e. using 

a memory of what phenotypic characters work well together. 

This analogy helps us to understand how a gene regulation 

network can modify the distribution of phenotypes in a 

manner that reflects structure in the selective environment. 

Specifically, we argue that evolved changes in regulatory 

connections will tend to cause the regulatory network as a 

whole to form an associative memory [15] of locally optimal 

phenotypes that have been visited in the past [17,18]. The 

evolved network has a dynamical behaviour which models the 

historical selective pressures on phenotypes (in the sense of 

having the same attractors) and can thereby create phenotypic 

distributions that are especially fit. In particular, an evolved 

network can produce a distribution of phenotypes that enables 

a population to escape locally optimal phenotypes (i.e. 

phenotypes that were locally optimal prior to the development 

of this regulation) in favour of superior optima. We also show 

that the proximal cause of these changes is not the teleological 

anticipation of future reward but something much more 

mundane – merely selection for robustness or canalisation of 

the current phenotype [5]. By analogy with the Baldwin effect 

[19], the internalised memory of previously found solutions 

enables previously evolved phenotypes to be produced 

innately by the developmental process. We therefore argue 

that selection for homeostasis on an immediate timescale (i.e. 

the ability to regulate a constant condition [20]), is the 

proximal cause of increased evolvability on larger timescales 

(i.e. increased ability for adaptation), as we will discuss. 

Self-modelling dynamical systems 

In related work [17,18] we have been developing the concept 

of a ‘self-modelling’ dynamical system – a complex adaptive 

system that creates a memory of its past dynamical behaviour. 

We have shown that if changes to connections are Hebbian 

and slow compared to the system’s state dynamics, a complex 

adaptive system will form an associative memory of its own 

dynamical attractors that enables it to lower its energy more 

efficiently and completely when subjected to repeated 

perturbation [17]. The ‘training patterns’ in such a scenario 

are the configuration patterns that are commonly experienced 

under the network’s intrinsic dynamics, hence ‘self-

modelling’ [18] – and if the system spends most of its time at 

locally optimal configurations, it is these configurations that 

the associative memory stores. From a neural network 

learning point of view, a network that forms a memory of its 

own attractors is a peculiar idea. Forming an associative 

memory means that a system forms attractors that represent 

particular patterns or state configurations. For a network to 

form an associative memory of its own attractors therefore 

seems redundant; it will be forming attractors that represent 

attractors that it already has. However, in forming an 

associative memory of its own attractors the system will 

nonetheless alter its attractors; it does not alter their positions 
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in state configuration space, but it does alter the size of their 

basins of attraction (i.e. the set of initial conditions that lead 

to a given attractor state via local energy minimisation). 

Specifically, the more often a particular state configuration is 

visited the more its basin of attraction will be enlarged and the 

more it will be visited in future, and so on. Because every 

initial condition is in exactly one basin of attraction it must be 

the case that some attractor basins are enlarged at the expense 

of others. Accordingly, attractors that have initially large 

basins of attraction will, with continued positive feedback, 

eventually out-compete all others until there is only one 

attractor remaining in the system.  

Variation in the selective targets/initial conditions 

 
Fig.1. a) Adaptation to two different targets from the same initial 

condition (I.C.), b) Adaptation to one multi-modal target from two 

different initial conditions. 

Before introducing our model, we briefly discuss an 

equivalence between multiple evolutionary episodes in 

different selective environments (Fig.1.a) and multiple 

evolutionary episodes from different initial conditions in a 

static (but multi-modal) selective environment (Fig.1.b). 

Parter et al, for example, conduct experiments using the 

former – and construct by hand different selective targets that 

are drawn from the same ‘language’ of tasks [8] (varying in a 

modular manner). We prefer the latter; using a single multi-

modal landscape (created by modular epistasis) with repeated 

radical ‘perturbations’ of the evolved solution causing it to 

visit different local optima. What matters for our purposes is 

only the similarity or differences of the multiple ‘targets’/ 

‘local optima’, and the latter method has the advantage that, 

when the landscape is produced from the superposition of 

many low-order epistatic interactions (see methods), it does 

not require such explicit hand-crafting in this respect since 

structural similarity in the local optima results naturally.  

A model for the concurrent evolution of gene 

expression patterns and regulation networks 

Overview. Our model is intended to be as simple as possible. 

Presumably, the evolution of a gene expression network that 

is capable of creating correlated gene expression patterns and 

potentially sophisticated dynamical attractors was preceded by 

the evolution of static (unregulated) gene expression patterns. 

Likewise, the evolution of robust cell types in single-celled 

organisms, and gene expression networks that (partially) 

determine those cell types, presumably preceded the evolution 

of multi-cellular development and programmed cell 

differentiation. Accordingly, our model addresses the 

evolution of a gene expression pattern, and subsequently a 

regulation network, in a single-celled organism. By 

‘phenotype’ we therefore simply mean a particular pattern 

gene expression, and by ‘development’ we simply mean the 

dynamical gene regulation process that creates the ‘adult’ 

gene expression pattern. 

The model is not intended to be a literal model of 

biological processes. The critical features include a 

continuous-valued state vector representing a pattern of gene 

expression and a matrix of positive and negative connections 

representing up- and down-regulating connections between 

genes. These are subject to random variation and a selective 

environment that favours particular gene expression 

correlations. These components are linked together in a 

manner representing the concurrent evolution of a gene 

expression pattern and a gene regulation network but we aim 

to keep this protocol as simple as possible (see Fig. 2). 

We assume that a pattern of gene expression is 

(epigenetically) inherited from one cell to the descendant cell 

and that a selection pressure on this phenotype causes it to 

evolve over many reproductions. A regulation network is also 

(genetically) inherited and subject to evolution via selection 

on the gene expression pattern that it modifies. We assume 

that every gene has the potential to regulate any other gene but 

that there is no significant regulation in the ancestral cell type 

(i.e. initially zero connections). Random variation in the 

connections of the network can introduce positive or negative 

correlations in the expression of genes which may or may not 

be beneficial given the current selective environment. So, in 

the lifetime of the cell, its initial gene expression pattern is 

inherited from the parent cell with random variation, this 

pattern of expression then forms the initial condition of the 

gene regulation network, which is then run for a number of 

time-steps (usually one) creating a slightly altered pattern of 

gene expression, and it is this pattern of expression which is 

interpreted as the phenotype of the organism and evaluated by 

the fitness function. 

Evolutionary adaptation. The idea of evolved 

correlations between the expression of one gene and that of 

another invokes the notion of a distribution of phenotypes. 

When there are many copies of each genotype in a population, 

each one producing a phenotype from this distribution, 

selection on these individual phenotypes implicitly selects for 

genotypes that produce high fitness phenotype distributions 

[10]. However, we find that an explicit population with 

multiple copies of a genotype is more complicated than 

necessary. It is sufficient to merely compare the phenotype of 

a mutant to the phenotype of the original type and retain 

whichever is fitter. Hence we model the evolutionary process 

with a simple random mutation hill-climber (or 

‘(1+1)ES’[21]) rather than a population-based evolutionary 

algorithm [3]. The latter merely adds additional stochastic 

fluctuations and unnecessary conceptual complications.  

The overall architecture of the evolutionary model is 

depicted in Fig. 2. and detailed in Fig.3. Note that the gene 

I.C. 1 and 2 

landscape 1 landscape 2 

a) 

                    I.C. 1                           I.C.2 b) 
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expression network does not so much represent a mapping 

from genotype to phenotype, as it is popularly conceived, so 

much as a mapping from an initial gene expression pattern to 

an ‘adult’ gene expression pattern. This adult gene expression 

pattern and the gene expression network is passed on the next 

generation (with random variation).  

  
Fig.2: Schematic overview of the inheritance, regulation and selection 

processes (i.e. an iteration of the evolutionary hill-climber). a) A cell 

contains both an expression pattern and a genetically specified gene 

regulation network. b) Its descendents include individuals that are i) 

identical to the parent, ii) have a perturbed expression pattern (black), iii) 

have both a perturbed expression pattern and a genetically mutated 

regulation network (here depicted by an additional connection). c) The 

pattern of gene expression in each of these descendent cells is 

‘developed’ or ‘run’ through their regulation networks creating three 

slightly different ‘adult’ gene expression patterns. d) The cell with the 

most fit gene expression pattern replaces the ancestral cell type. 

The gene regulation network, R, (Fig. 3) is a matrix of 

connection strengths initialised to 0. The expression pattern, 

E, is set to a random configuration each t*=5000 iterations 

(each gene expression level is set to a value drawn uniformly 

and independently in the range (-1,1)). This represents a 

radical environmental perturbation of the expression pattern 

and allows the expression pattern to visit the slopes of 

different local optima in the fitness landscape (Fig. 1) hence 

commencing a new evolutionary ‘episode’. E1, E2 and E3 are 

the three modified expression patterns that result from the 

three descendents of the ancestral type (having no mutations, 

mutation to the expression pattern only, and mutation to both 

the expression pattern and the regulation network, 

respectively. We assume that mutation to the regulation 

network without mutation to the regulation pattern is 

unlikely). mut is a mutation function that introduces a small 

perturbation to the expression pattern or a small mutation to 

the regulation network. Specifically one of the existing 

expression levels or connection strengths (selected at random) 

is modified by adding a value drawn uniformly in the range 

(-1,1). (In test cases where the regulation network is not 

evolved, lines 2.c and 2.g are omitted.) run(E,R) is a function 

that ‘develops’ the initial expression pattern E by running the 

regulation network R for p time steps (p=1 by default) and 

returns a new expression pattern. For each time step the new 

activation level, si(t+1), of gene, i, is calculated using the old 

value with a decay term and a sum of weighted (positive or 

negative) inputs from the other genes in the network, as 

follows [22]: 











−+=+ ∑ (t)s))((T(t)s1)(ts iii

N

j

jij tsw σ    (1) 

where T=0.001 is a time constant, wij is the connection from 

gene  j to gene i, σ(x)=tanh(x/10) is a sigmoidal output 

function determining the expression level of a gene with 

activation level x (representing the tendency of expression 

levels to saturate).   

1. initialise regulation network, R. 

2. t=0, repeat 

a. if (t=0) expression pattern, E=random, t=t*; 

b. E’=mut(E);  

c. R’=mut(R);  

d. E1=run(E, R); E2=run(E’, R); E3= run(E’,R’) 

e. m= max(f(E1),f(E2),f(E3)) 

f. if (f(E2)=m) E=E’; 

g. if (f(E3)=m) E=E’, R= R’; 

h. t=t-1 

Fig. 3. Pseudocode of the inheritance, regulation and selection processes 

depicted in Fig. 2.  

 The selective environment. The fitness landscape is 

(initially) carefully controlled so that we can assess easily 

whether an evolved regulation network is creating appropriate 

correlations in the gene expression pattern. The minimal 

conceivable scenario is one where there are only two genes 

with selection for correlated expression in these two genes 

[10]. If we do not have any intrinsic preference for absolute 

gene expression levels, only for correlations, this means that 

there will be two locally optimal gene expression patterns of 

equal fitness – ‘HH’ and ‘LL’ (representing ‘High’ or ‘Low’ 

expression levels for the first and second genes). 

Alternatively, if we select for anti-correlation then these will 

be ‘HL’ and ‘LH’. However, although we might be able to 

evolve a gene regulation network that supports correlation or 

anti-correlation in such a scenario, the evolutionary outcome 

will be somewhat degenerate in the sense that each of the two 

locally optimal gene expression patterns will have equal 

fitness and be equally likely to arise (from a random initial 

condition) without a regulation network.  

 Accordingly, we will examine the next simplest case; a 

system of four genes in two pairs. Here we can define a 

fitness function where ‘HHHH’ and ‘LLLL’ are maximally 

fit, but where ‘HHLL’ and ‘LLHH’ are local optima of lower 

fitness. Favouring pairs of co-expressed genes in this manner 

thus enables us to define a system with different-fitness 

optima without introducing a preference for absolute 

expression levels, or any asymmetries that would make one 

gene more important than any other. It also represents a 

minimally ‘modular’ fitness function. Naturally, we do not 

imagine that such a fitness landscape represents any realistic 

biological scenario – its structure is chosen merely to avoid 

obfuscating the significance of an evolved regulation network 

d) 

a) 

b) 

c) 

i 
ii 

iii 
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with a complex adaptive landscape, and to test whether a 

network can create correlations that support co-regulation and 

create high-fitness phenotypes (we later investigate evolution 

on a 30-variable randomised landscape). 

 We construct a fitness function of this type using a sum of 

low-order (pair-wise) epistatic interactions [23] creating a 

locally smooth (but multi-modal) fitness landscape. 

Specifically, the fitness of an expression pattern, 

S=<s1,s2…sN>, is given by:   

∑∑=
N

i

N

j

jiij sseS )()()(f σσ            (2) 

where N is the number of genes in the system, si is the 

activation of the i
th
 gene, eij is the epistatic interaction between 

genes i and j, defined below and σ(s)=tanh(s/10) is the 

expression level of the gene, as before. The epistatic matrix is 

as follows: e12=e34=1, e13=e14=e23=e24=0.1, else eij=0 – thus 

defining the two pairs of strongly interacting genes (s1/s2 and 

s3/s4), with only weak interactions between these pairs as 

discussed above.  

Results 

Evolution of expression patterns without evolved 

regulation. Fig. 4 (right) illustrates the evolution of an 

expression pattern (without evolved regulation) over 10
5
 

evolutionary time steps (therefore showing 20 evolutionary 

episodes between radical perturbations of the expression 

pattern). This clearly shows the four locally optimal 

expression patterns (HHHH, HHLL, LLHH, and LLLL) and 

that patterns where the four genes are all high or all low have 

the highest fitness. The fitness values at each of the 

evolutionary local maxima attained (i.e. at each t=1 time step) 

may be either in the lower class or the higher class (see Fig. 

4). The proportion of high and low fitness optima found 

indicates the size of the evolutionary basin of attraction for 

each class of optima. For these parameters under these 

conditions (without a regulation network) we find that the 

evolutionary basin of attraction for the fitter local optima 

accounts for about 73% of the initial configuration space 

(averaged over 300 evolutionary episodes). 

Evolved regulation. Under natural selection, evolved changes 

to the connections in the regulation network must be those 

that change the expression pattern in the direction that 

increases fitness; and that direction may be different 

depending on the currently selected expression pattern. Since 

the evolved expression pattern very quickly settles into one 

attractor or the other, most evolution of the regulation 

network will occur when the expression pattern is at or near a 

locally optimal configuration. So, as a first step to 

investigating the evolution of a regulation network we evolve 

the regulation network when the expression pattern is 

‘clamped’ at a single locally optimal configuration. 

Specifically, in line 2.a of Fig.3, E is set to <s,s,s,s> (s=5) 

instead of a random configuration. We find that after 100,000 

more evolutionary steps the evolved connections in the 

regulation network are all positive (Table 1). In contrast, when 

the clamped expression pattern is HHLL (E= <s,s,-s,-s>), the 

evolved connections are positive on the block diagonal 

(shaded) and negative elsewhere (Table 2). 

It is crucial to note that the signs of these connections do 

not directly reflect the epistatic interactions in the fitness 

landscape – the intrinsic epistasis in the landscape does not 

change between the HHHH and HHLL test cases. Rather the 

evolved connections reflect the expression states experienced 

when the regulatory connection is altered (i.e. si=H/sj=H and 

si=L/sj=L expression levels create selection for positive 

connections, whereas si=H/sj=L and si=L/sj=H expression 

levels evolve negative connections). This clearly follows 

Hebbian principles – when equal gene expression levels are 

selected together they wire together positively, when one is 

selected to be high and the other low, they wire together 

negatively. 

However, the sign of the connection is really just a 

labelling convention – what really matters with respect to 

demonstrating Hebbian learning is that these evolved 

connections increase the basin of attraction for the current 

expression pattern. Fig. 5 shows, for example, the effect of the 

connections evolved at the HHLL expression pattern (i.e. 

Table 2). We see that the evolved connections change the size 

of the HHLL attractor basin to fill 100% of the configuration 

space (conversely, when regulation is evolved at the HHHH 

expression pattern, Table 1, this pattern comes to occupy 

100% of the configuration space).
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Fig.4. left) Evolution of a gene expression pattern without regulation for one evolutionary episode (5000 time steps). This happens to arrive at the locally 

optimal expression pattern where genes 1 & 2 are low, and 3 & 4 are high. Right) A longer run (100,000 time steps) including 20 evolutionary episodes, 

again without evolved regulation. Note that with these parameters, each evolutionary episode very quickly reaches a locally optimal expression pattern (i.e. 

transients are short). Note that fitnesses at evolutionary attractors fall into two classes (roughly those below a fitness of 2 and those above). 
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i/j 1=H 2=H 3=H 4=H 
1=H 89.13 160.18 126.02 104.35 
2=H 120.42 58.95 87.40 152.94 
3=H 163.49 76.60 152.08 79.10 
4=H 197.69 56.58 158.36 159.87 

Table 1: evolved connections when the expression pattern is HHHH. 

i/j 1=H 2=H 3=L 4=L 
1=H 80.93 105.81 -60.99 -146.92 
2=H 153.02 120.27 -94.84 -108.03 
3=L -157.65 -125.27 69.33 163.97 
4=L -156.00 -140.19 84.13 69.17 

Table 2: evolved connections when the expression pattern is HHLL. 
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Fig. 5. Number of evolutionary episodes (from 20) finding each locally 

optimal phenotype before and after evolution of the regulation network. 

When the gene expression pattern is held at a low fitness attractor, the 

evolved regulation network canalises this pattern. 
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Fig. 6. When the gene expression pattern is evolved freely, evolved 

regulation canalises the fitter pattern (since it is visited more often). 

Upper) The evolution of a gene expression pattern without evolvable 

regulation (episodes 1-50) and with evolvable regulation (episodes 51-

100). Each point represents a locally optimal expression pattern found via 

a single evolutionary episode from a random initial condition. Lower) see 

Fig.5.  

i/j 1 2 3 4 
1 437.37 566.40 60.50 72.32 
2 269.72 389.88 253.21 212.56 
3 184.52 98.54 270.58 351.04 
4 448.46 -25.23 373.18 246.46 

Table 3: Evolved regulatory connections when the expression pattern 

is not clamped. Although there is a lot of variation, the average value in 

the block diagonal (shaded) is 363 and elsewhere 163. The generally 

positive values mean that both the superior HHHH/LLLL attractor (Table 

1) and the inferior HHLL/LLHH attractor (Table 2) have been reinforced, 

but the lower values off the diagonal retain a reflection of the underlying 

modularity. 

Note that the evolved regulation network does not necessarily 

increase the basin of attraction for the fitter phenotypes, but 

rather for the phenotype present at the time that changes to the 

regulation network were evolved. Next, we evolve the 

regulation network without clamping the expression pattern. 

Without regulation the fitter phenotype is already found 73% 

of the time, so if the evolved regulation network reinforces the 

fitter attractor 73% of the time and the less fit attractor only 

27% of the time then on average the fitter attractor should be 

enlarged more often than the less fit attractor in a positive 

feedback manner and it will eventually outcompete it (Fig. 6, 

Table 3).  

Collectively, these results demonstrate that selection 

favours changes to regulation connections that reflect co-

expression in the current phenotype, and that these 

connections increase the basin of attraction for that expression 

pattern, as expected for Hebbian changes to connections. They 

also show that in a fitness landscape where fitter patterns have 

larger basins (as is necessarily the case when the fitness 

landscape is created from the superposition of many low order 

interactions [18,24,25]) enlargement of these fitter basins will 

outcompete lower fitness basins and create a regulation 

network that produces fit phenotypes more reliably. Although 

this result is somewhat underwhelming in this almost trivial 

(two attractor) system, in addition to the basic Hebbian 

principles, it also illustrates a further vital point. Specifically, 

the fact that the basin of attraction for the superior phenotypes 

is now almost 100% means that there are some initial 

conditions that used to lead natural selection of expression 

patterns to find the inferior phenotype but now evolution of 

expression patterns from these same initial conditions leads to 

the superior phenotype. That is, random variation in the 

expression pattern that would increase fitness by moving 

toward the inferior phenotype is being suppressed by the 

regulation network, and variation that moves the expression 

pattern toward the superior phenotype is being supported. 

This means that given the evolved regulation network, the 

evolutionary trajectory of the expression pattern is able to 

‘climb out’ of the basin of attraction for the inferior 

phenotype and secure adaptation in the direction of the 

superior phenotype. Evolution of regulation that avoids sub-

optimal phenotypes in a larger system is shown in Fig.71.  

Ballistic development. Thus far the developmental 

network is only run for one time step (p=1) per application of 

natural selection. This is sufficient to induce significant 

correlations and redirect the evolutionary trajectory of 

expression patterns, as we have shown. But in general one 

might expect a regulation network to ‘develop’ an initial 

expression pattern into a fit adult expression pattern for many 

time steps without the need for selection to act on the result of 

every intermediate step. We therefore examine a ‘ballistic’ 

developmental trajectory (i.e. run(E,R) with p=5000, rather 

                                                             
1

Here fitnesses are measured on thresholded expression values (>0→1, 

<0→-1) to ensure that an increase in fitness is the result of increasing the 

basin of attraction for a fit configuration pattern and not merely the result 

of increasing the magnitude of the expression levels (see measuring 

energy with the original weights rather than the learned weights [18]). 
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than 5000 iterations of the evolutionary cycle with p=1) using 

the regulation network evolved in Fig.7, applied to an initially 

random expression pattern. We find that even though 

selection is not being applied the fitness of the phenotype 

increases monotonically at each developmental step, and in 

fact the phenotypic attractor that is reached by this ballistic 

developmental process is the same attractor that is reached 

when selection was applied (Fig. 8). Thus selection on 

intermediate phenotypes (and epigenetic inheritance) has 

become redundant because development can now ‘recall’ the 

result of, or recapitulate, what was previously an entire 

evolutionary episode from any initial condition. Analogy with 

the Baldwin effect, where phenotypes that were previously 

acquired by lifetime learning are latterly exhibited innately 

[19], is provocative. 
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Fig. 7. As per Fig. 6 for a system of 30 genes with random epistasis in the 

fitness function (Eq.2 with each eij drawn randomly (-1,1)). The basin of 

attraction for the highest fitness optima is initially only 9.5%, meaning 

that 90.5% of episodes get stuck at some other sub-optimal phenotype. 

After the regulation network is evolved all of these inferior phenotypes 

are reliably evaded regardless of the initial gene expression pattern. 
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Fig. 8. 200 steps of an evolutionary episode with the evolved regulation 

network (upper) are accurately mimicked by ballistic (unselected) multi-

step development using the same network (lower).  

Discussion 

Distal ‘explanation’? On the one hand, the result of Fig. 7 is 

just what one might expect – selection favours fit phenotypes 

and if there are regulation networks that produce fit 

phenotypes reliably then they will be selected for. But this 

distal reasoning is misleading and obscures the proximal 

mechanism by which this result is produced. Note that a 

regulation network can preclude fit phenotypes just as easily, 

if not more so, than it might support them – it has ‘masking’ 

as well as ‘guiding’ possibilities [26] – and the evolution of a 

useful regulation network must not be taken for granted. 

The point we illustrate in the initial results (Tables 1 & 2, 

Fig. 5) is that the evolved regulation network is not favouring 

fit phenotypes in a direct sense, it is merely canalising the 

current phenotype. This is not an obvious route to finding fit 

regulation networks and one might expect that, at best, it will 

ultimately result in canalising an average-fitness phenotype, 

not the fittest phenotype. But when the distribution of 

phenotypes visited over many evolutionary episodes has some 

correlations (or anti-correlations) that occur more frequently 

than others, it is these correlations that are ultimately 

reinforced by the regulation network (Fig. 6). If these 

correlations appropriately reflect the epistatic structure in the 

fitness landscape then they can enhance evolvability. In this 

manner the regulation network comes to represent the 

structure of the epistasis (or more exactly, the structure of the 

correlations between phenotypic characters produced by the 

epistasis) in the selective history over which the regulation 

network was evolved. But by the same reasoning, when the 

correlations in characters in the phenotypes visited do not 

reflect the epistatic structure of the fitness landscape in 

general, and instead reflect arbitrary phenotypic correlations, 

the regulation network will evolve to represent correlations 

that are not of especially high fitness. We demonstrate this by 

increasing the mutation rate on the regulation network, and/or 

increasing the duration of each evolutionary episode, such that 

the evolutionary history does not visit a representative sample 

of phenotypic attractors before the regulation network fixes on 

a particular attractor. On average this causes the regulation 

network to fix a phenotype with an average fitness rather than 

the highest fitness. Accordingly, it is not to be taken for 

granted that a gene regulation network will evolve to enhance 

high-fitness phenotypes just because such a network exists in 

the space of possible networks. 

Proximal explanation. We should therefore investigate the 

proximal selection pressures involved in the initial result of 

Tables 2 & 3 (i.e. these data show that the selected changes to 

regulation connections are Hebbian but they do not explain 

why). Why is it that connections that reinforce the current 

phenotype are evolved instead of, say, connections that 

enlarge the basin of attraction for the fittest possible 

phenotype? (And how does this ultimately result in fit 

phenotypes?) To probe this issue we must consider the 

immediate selective gradients in the vicinity of the current 

phenotype. Specifically, for a change to a regulation 

connection to confer a selective advantage it must change the 

configuration of expression levels in a manner that increases 

fitness. However, most of the time, the current phenotype is a 

locally optimal configuration of gene expression levels. Thus, 

it might seem that the only way for a change to a connection 

to confer a fitness advantage would be when such a change 

moves the current phenotype out of the current local optimum 

and into a better one in a single mutation. But such a 

possibility is highly unlikely when the nearest phenotype of 

higher fitness is not an immediate neighbour.  
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In fact, something much more subtle is at work. Although 

most of the time the phenotype is almost locally optimal it is 

in fact constantly perturbed by the small environmental 

perturbations (line 2.b in Fig. 3). Changes to the regulation 

network can therefore be favoured by selection if they have 

the effect of returning the phenotype to the local optimum 

more quickly or more completely after this minor 

perturbation. In other words, we argue that changes to the 

regulation network are selected for merely because they make 

the current (almost locally optimal) phenotype more robust or 

more homeostatic. We test this hypothesis by removing line 

2.a., the small environmental perturbations, and repeating the 

experiment shown in Table 2. In this case we find that there 

are no changes to the regulation network that are selected, in 

fact all changes are either neutral or deleterious. Thus the 

small environmental perturbations serve a dual role – they 

first provide (unregulated) phenotypic variation that selection 

can act on to find locally optimal phenotypes, but they also 

create instability in these phenotypes creating a selective 

gradient that favours a regulation network that canalises these 

phenotypes. We argue that this dual role of variation is not 

special to this particular model but will necessarily occur 

whenever random variation, necessary for evolution to act at 

all, is present. 

From proximal causes to distal consequences. This 

proximal mechanism is also not very surprising given what 

one might expect from natural selection – if natural selection 

can act on the distribution of phenotypes in such a way as to 

narrow that distribution onto the fitter phenotypes, then a 

regulation network, for example, that provides such an 

outcome will be selected for. But canalisation – a reduction in 

the distribution of phenotypic characters – seems opposed to 

concepts of evolvability and increases in adaptability. 

However, a selection pressure for robustness can result in 

increased adaptability – in essence evolvability is the 

complement of canalisation [5]. The basic conceptual link is 

that restricting variation in phenotypic characters that are 

detrimental, whilst permitting continued variation in 

characters that have the potential to be beneficial, enhances 

adaptation rather than restricts it. But it is crucial to realise 

that in the current model the canalisation provided by the 

regulation network does not merely restrict variation in some 

characters but rather it reduces the degrees of freedom in the 

correlation of phenotypic characters [4]. 

In contrast, note that in Hinton and Nowlan’s model [19] 

for example, canalisation acts to reduce the variation in each 

phene independently. This therefore cannot act like an 

associative memory – it is not a memory of what things have 

co-occurred (i.e. have been selected together in the same 

environments) only of what things have occurred (been 

selected). The fact that the memory in our evolved regulation 

networks is associative is evidenced by the fact that variation 

in all phenes is still possible (when the network canalises the 

fitter attractor it actually canalises both HHHH and LLLL). 

This is crucial because if no further variation in phenotypic 

characters was possible we would conclude that canalisation 

had precluded further adaptation, but when canalisation 

creates correlations in phenotypic variation it is plausible to 

interpret this as smarter adaptation, i.e. a more evolvable 

genotype, rather than an unevolvable genotype. This is really a 

matter of perspective however, since both types of 

canalisation (associative and non-associative) necessarily 

reduce the space of phenotypic possibilities. 

Limitations and further work 

Our gene expression network uses signed expression levels to 

facilitate straightforward comparison with Hebb’s rule, but 

negative expression levels are biologically unnatural. We have 

also hinted at the sensitivity of the results to the timescales of 

evolutionary changes to expression patterns and to the 

regulation network, and to the period of the perturbations/ 

evolutionary episodes, but we have not yet examined this 

sensitivity carefully. 

 In related work we are interested in the question of whether 

individual agents in a complex adaptive system that can alter 

the strength of connections with one another will tend to do so 

in a Hebbian manner [17,27,28]. In this paper we have shown 

that selection on a network as a whole produces Hebbian 

changes to connections, but we suspect that the same effect 

occurs if each gene in the network is evolved independently. 

This hints at an explanation for how a network of ‘selfish’ 

genes can coordinate with one another in a manner that 

creates fit phenotypes despite being selected as individuals in 

sexual organisms. This then parallels work we are developing 

in the context of co-evolving species in an ecosystem where 

species may evolve the coefficients of a Lotka-Volterra 

system [27] or evolve symbiotic relationships [29], and 

connects with ‘social niche construction’ concepts [30]. 

The fact that natural selection is involved in this model 

should not to be mistaken for evidence of how ‘clever’ natural 

selection is. On the contrary, we have shown that given an 

appropriate (i.e. association-based) representation, a hill-

climber can produce these results. Moreover, the proximal 

cause of these results is that selection is decreasing variability 

which is something that hardly warrants natural selection at all 

[17,18,31]. We think it more fruitful to ascribe the 

‘cleverness’ of the result to the ability of an appropriate 

substrate to ‘yield’ or ‘relax’ to structured perturbation in a 

manner that reduces or dampens the effects of such 

perturbations [31]. This is supported by the observation that 

Hebbian changes to connections are equivalent to changes in 

connections that reduce the energy of a system [17].  

Conclusions 

Wagner et al [10] suggest that phenotypic correlations will 

evolve in a manner we recognise as Hebbian. Our 

conclusions, originating from separate motivations [11,17], 

agree but differ in emphasis – whereas Wagner et al address 

the rate of adaptation created by a correlated phenotypic 

distribution we emphasise the robustness or stability of a 

phenotype under environmental perturbation. But the 

mechanisms are deeply related because resilience is just 

another way to say that a phenotype ‘re-adapts’ quickly. All of 

the other results we have shown – the enlargement of the 

basin of attraction for the current phenotype, the ability to 

‘recall’ fit phenotypes that have been selected for in the past, 
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and the ability for a developmental trajectory to recapitulate 

what was previously an evolutionary trajectory – follow from 

this basic observation and dynamics that are already well-

understood in neural networks. This theoretical framework 

helps us to better understand the relationship between 

homeostasis and evolvability (i.e. selection to differentially 

reduce variability facilitates structured variability), and shows 

that, in principle, a gene regulation network has the potential 

to exhibit ‘recall’ capabilities normally considered to be the 

exclusive purview of cognitive systems.  
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1Computational Biology Group, Institute of Oceanology, Polish Academy of Sciences

2Laboratory of Bioinformatics, Adam Mickiewicz University in Poznań, Poland
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Abstract

Computational properties of gene regulatory networks
(GRNs) are of great interest in the field of systems biology
and, increasingly, in the field of artificial life. Understanding
how GRNs work and evolve may help in elucidating the prop-
erties of real biological networks and in designing new bio-
logical networks for practical applications. Here we investi-
gate the possibility to evolve artificial GRNs that can generate
or process continuous signals represented by concentrations
of artificial substances. We use a biologically-inspired model
of regulatory networks. The way the nodes in the GRN (reg-
ulatory units) are connected and the weights of connections
are encoded in a linear genome. A genetic algorithm is used
to obtain GRNs that can solve problems with increasing dif-
ficulty. Some of these problems require performing simple
mathematical operations and sustaining memory. We analyse
if the solutions are general by presenting the GRNs with in-
put patterns that were not used for fitness evaluation during
evolution. We also briefly discuss the advantages of using
biologically-inspired GRN-like systems for control problems
and compare them with systems inspired by neural networks.

Introduction
The genes in the genomes (DNA) of all organisms encode
indirectly 3-dimensional structures of complex chemical
polymers (RNA, proteins). When the genes are expressed,
these polymers are produced in the cell. Cells consist of a
genome, gene products, and the chemical substances these
products help to construct (by chemical reactions) and/or
transport into the cell from the outside environment. Chem-
ical substances in the cell are a part of an intricate control
mechanism. The presence of particular gene products and
chemical substances in the cell at a particular moment de-
termines what genes will be expressed at the next moment,
and thus what will be produced. The regulation of gene ex-
pression occurs first of all at the level of transcription: for-
mation of RNA molecules with the sequence corresponding
to the DNA sequence in the genome. Some of these RNA
molecules later determine the sequence of proteins. Some
proteins (called transcription factors, TFs) have chemical
affinity to particular regions in the DNA. Binding of such
proteins to DNA may lower or increase the expression of

the genes nearby. This is just one example of chemical in-
teractions that regulate gene expression, but others follow
similar rules.

A network of such regulatory processes is known as a
gene regulatory network (GRN). GRNs can be thought of as
life’s primary computers, organizing all cellular processes.
The regulatory properties of such networks and their use for
control of artificial and biological systems are of great inter-
est for the Artificial Life and the Systems/Synthetic Biology
research community. Biological GRNs are robust to exter-
nal interferences and to damages caused by mutations. They
are able to control the development of an organism consist-
ing of billions of cells. In a developing or adult multicellular
organism, each cell is controlled by a GRN with essentially
the same structure. It is the state of the network (concentra-
tion of substances) that makes the cells behave differently,
depending on their local environment.

Artificial models of GRNs were previously used to inves-
tigate statistical properties of GRNs, such as the small world
property or the dominant motifs (Kuo et al., 2006; Nicolau
and Schoenauer, 2009). Network dynamics and evolution of
networks with certain patterns of gene expression has also
been explored to some extent (Banzhaf, 2003; Knabe et al.,
2006; Kuo et al., 2004; Reil, 1999). So was the application
of artificial GRNs for control problems, such as animat con-
trol (Bentley, 2004; Taylor, 2004; Quick et al., 2003) and
artificial multicellular development. Indeed, we have origi-
nally formulated the GRN model used in this work to control
multicellular patterning of 3-dimensional artificial embryos
(Joachimczak and Wróbel, 2009), inspired by the model pre-
sented by Eggenberger (1997). Similar models have been
proposed (e.g. Schramm et al., 2009; Andersen et al., 2009),
so it is interesting to explore the computational properties of
such networks.

GRN topology in our model is encoded in a linear genome
which consists of genetic elements forming regulatory units
(nodes in the network). Connections between nodes are de-
fined by interactions between artificial TFs and regulatory
regions (“promoters”). The concentrations of TFs increase
and decrease in a continuous manner. There is no limit on
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the number of nodes, number of connections per node or to-
tal number of connections. Defining such limits would be
beneficial from the engineering point of view (it would de-
crease the vast search space of possible solutions). However,
we are not interested here in solving a particular engineering
problem, but rather in investigating the computational prop-
erties and evolvability of artificial but biologically realistic
regulatory networks.

In this paper we will aim to evolve systems in which the
expression of genes marked as the GRN output follows a
predefined target pattern. In most of the experiments the
target will depend on the input to the network. From the
biological point of view the input can be understood as a
concentration of a chemical substance in the environment.
From the engineering point of view, the input is a contin-
uous signal. In other words, we will describe networks
evolved to generate or process signals, in particular, signals
in which information is encoded in chemical pulses: coupled
increases/decreases of substance concentration.

Artificially designed regulatory networks that can per-
form desired tasks and react to external input are of re-
cent interest of the field of Synthetic Biology. Biologi-
cal GRNs in which gene expression oscillates and GRNs
created to count subsequent external signals (Elowitz and
Leibler, 2000; Friedland et al., 2009) are a step towards en-
gineering networks to produce proteins or RNAs in an in-
telligent and designed manner, for therapeutic or industrial
purposes.

In the following section, our model is briefly described.
The evolvability in various signal processing tasks and the
generality of the solutions is then discussed for each task
separately. General conclusions and the perspectives for fu-
ture work follow.

The model
Genome and genetic elements
Genomes are composed of a list of genetic elements. Several
genetic elements form a regulatory unit, which corresponds
to a node in a regulatory network. Genetic elements fall into
three classes. “Genes” are elements that code products (tran-
scription factors, TFs). Products can bind to “promoters”
(a generic term for regulatory regions). “Special elements”
code for either external inputs or outputs of the regulatory
network.

The genome is parsed sequentially and divided into reg-
ulatory units whenever a series of promoters followed by a
series of genes is found (Fig. 1). In other words, each reg-
ulatory unit can be composed of one or several regulatory
elements and one of several genes encoding TFs. In the next
step, special elements are assigned to inputs or outputs, ac-
cording to their type. The first special element of type one
is assigned to the first input, and so on. The same goes for
special elements of type two and the outputs. The number
of inputs/outputs depends on the particular experiment. If

there are more special elements of a particular type than in-
puts/outputs, they are ignored.

By computing affinities between all products and all pro-
moters, connections between regulatory units are formed.
This is how a gene regulatory network (GRN) emerges, with
each regulatory unit becoming a single node.

a special element:
external signal (0)
output product (1) 

a promoter:
additive (2)

or multiplicative (3)

a gene:
transcription factor (4)

G PS G P PG G GP G P GPP P PS G PP G PG P G PS G P G PG S G P G P

reg. unit #1

co-regulated genes

reg. unit #2 reg. unit #3

position in
Rn space

type

x1

«

-1 or 1sign

x2

xn

0,1,2,3 or 4

Figure 1: The genome and the structure of a single genetic
element. Each element consists of a type field, a sign field,
and a sequence of N real values used to determine affinity
to other elements (N = 2 was used in this paper).

Each genetic element in our system encodes a point in N -
dimensional space (Fig. 1). This allows to calculate product-
promoter affinity, based on the Euclidean distance between
these points (the affinity is high when the distance is small).
If the distance is larger than a cut-off value, there is no affin-
ity. This prevents full connectivity in the network. The prod-
uct of sign fields of the two elements determines the sign of
the connection (which can be activatory or inhibitory). The
coordinates coded in genetic elements can mutate, so as the
genomes evolve, the points in N -dimensional space that cor-
respond to the elements approach one another or move away.
Neutral mutations result in a random walk in this space, so
only selection limits spreading of the points over time.

The activation of a promoter is a sum of the concentration
of all products that bind to it, weighted by their affinities.
Promoters in our systems can be either additive or multi-
plicative. The presence of a multiplicative promoter in a
regulatory unit results in a strict requirement for the presence
of a binding product, otherwise the unit is not expressed. To
compute expression of a given regulatory unit, the sum of
activations of its additive promoters is multiplied by the ac-
tivation of its every multiplicative promoter. The result (A)
allows to calculate the synthesis/degradation rate of all prod-
ucts in a given regulatory unit: dL

dt = fA(A) − L, where L
is the current concentration, and fA(A) = 2

1+e−(A−1) . This
sigmoid function can give positive or negative values. The
concentration will increase if synthesis rate is higher than
that of spontaneous degradation. Otherwise, the degradation
will be slowed down or indeed increased (when the fA(A)
is negative). Fig. 2 provides an overview of the time scale of
spontaneous product degradation in our system.

Special elements in our system, as any other genetic ele-
ments, are associated with points in N -dimensional abstract
space. If a particular special element corresponds to an in-
put, it means that the concentration of this artificial chemi-
cal substance is driven externally. Apart from that, the sub-
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Figure 2: Time scale of product
degradation. The product concentra-
tions are in the range < 0, 1 >. The
intrinsic degradation can increase if
a gene is negatively regulated.

stance behaves as any other TF in the system and regulates
other genes, with one exception: it cannot directly control
the output node of the network. Although this could be ben-
eficial for some problems, we decided to prevent trivial so-
lutions by requiring all signals to be processed by at least
one internal node. For all the experiments presented here,
at least one external special substance was provided in this
manner, having a fixed concentration of “1”. This is because
it is necessary to have a substance with a non zero concen-
tration to start the GRN activity. For networks evolved to
react to changing concentrations of external substances, ad-
ditional input elements were provided.

If an input element can be seen as a regulatory unit with
one gene and zero promoters (its concentration is driven ex-
ternally), an output element is treated as a regulatory unit
with only one promoter and a gene that does not code for
a TF. The concentration of the output gene product is thus
a clearly defined exit point for all information processing in
the system, even though the fact that connections between
the output node and the internal nodes are not permitted is
expected to have a minor detrimental effect on evolvability.
Only one output was allowed.

Genetic algorithm
Genetic operators can act on the level of single elements or
multiple elements. On the level of single elements, partic-
ular fields can be mutated, changing element type, sign bit,
or disturbing the coordinates of an associated point in space.
Single or multiple elements can be deleted or duplicated. A
series of duplications and deletions can lead to changes in
the order of the elements. Changes in the order of promoters
within a regulatory unit are neutral, the same goes for the
changes in the order of genes. Changing the order of regu-
latory units does not lead to changes in the topology of the
network so it is also neutral. Any type change is permitted.
In particular, new input and output elements can be created
from other elements (genes, promoters) when the type field
of an element is changed by mutation. Type mutations can
in principle lead to the loss of inputs or outputs. Obviously,
in the experiments described here, such loss would be highly
deleterious.

The results shown in this work were obtained using a
fairly standard genetic algorithm with a population size of
300, elitism, tournament selection, and multipoint crossover
for sexual reproduction (for 30% of the individuals in each
generation). Evolutionary runs were initiated with individ-
uals consisting of 5 randomly created regulatory units. The

runs were terminated after no improvement over the last 500
generations was detected (typically, after 2500−10000 gen-
erations). Shorter runs would often indicate lower evolvabil-
ity (genetic algorithm stuck in a local optimum rather than
continuously improving the network).

Fitness function
The target for evolution was to obtain desired expression
patterns as a response to particular input signals. A straight-
forward approach would be to aim to minimize the differ-
ence between the desired (dt) and obtained (ot) expression
levels over time:

∑
t
|ot − dt|. However, this often lead us to

unsatisfying, suboptimal solutions. This is because many of
the target patterns require keeping output product expression
at 0 for some time, so lack of expression during the whole
time results in higher fitness than, for example, a pattern that
is shifted but otherwise correct. Once such trivial solution is
reached, little can be improved by evolution: there is no reg-
ulation that can be fine tuned. We alleviated this problem by
including the terms that give higher weight for correctly ex-
pressing output product when its concentration is expected
to be higher and for the correct number of oscillations in
periodic expression patterns:

L∑
t=p

|ot − dt|(1 + kdt)
1

1 + S
(1)

where L is the number of GRN simulation steps (between
600 and 1000 clock ticks, depending on the experiment), and
k increases the weight of properly expressed high concentra-
tions (k = 2 was used). Parameter p (“propagation time”)
allows to set the number of simulation steps after which the
activity of the output is evaluated. Because some time is
needed to build up TF concentrations, it is not reasonable to
penalize the network whatever its activity during this time.
Propagation time was set to 50 clock ticks: this is a rough
estimate of the time needed to form a response. The last
term promotes evolution of oscillatory patterns. S was set to
1 when the desired number of oscillations was obtained or
to 0 when there was no oscillations or too many (more than
twice the desired number). Imperfect matches resulted in
intermediate values. To keep the matters simple, the num-
ber of events when the expression crosses the level of 0.5
was counted (the events when dt−10 < 0.5 and dt ≥ 0.5 or
dt−10 ≥ 0.5 and dt < 0.5). The minimum distance between
countable events was set to 10 clock ticks to prevent trivial
fluctuations around 0.5. Inclusion of this term in the error
function promotes the correct number of oscillations from
the very beginning, even if not timed correctly.

Calculated error was further normalized, so that a per-
fect match in expression pattern would result in individual
scoring 0 and the worst possible would score 1. For ex-
periments where multiple training pairs were used, the final
fitness would be an average of every test case.
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Figure 3: Behaviour of an evolved network that gives a sine
wave expression pattern lasting for five periods (the best net-
work in 10 runs); dashed line: the desired response.

Results
Internally induced oscillations
We have first analysed if our system allows for evolution of
networks in which an output product level oscillates. Oscil-
lating gene expression has been previously investigated in
somewhat similar artificial GRN models (Kuo et al., 2004;
Knabe et al., 2006). This task can be made easier by pro-
viding the network with a periodically changing input of the
same frequency as the target. However, no such input was
made available in our experiments: the only external signal
was a special product with a constant maximum concentra-
tion, so the obtained dynamics was internally induced.

It proved very easy to evolve oscillating expression with
almost perfect match to the target pattern (sine waveforms)
in a large range of frequencies and amplitudes. The oscil-
lations were stable: they persisted also when the number of
simulation steps was increased beyond the network lifespan
used at the evaluation stage during evolution.

In a more challenging task, the target was a sine wave
starting at a certain time point and ending after 5 periods.
The oscillations in the best networks found in 9 independent
runs out of 10 had proper frequency but did not terminate.
Only in one run a good solution was obtained (Fig. 3), even
though the phase of the output signal does not match the
target phase. This is penalized by the error function, but the
solution is rewarded because the number of pulses is correct
(Eq. 1). Perhaps the difference in fitness between a solution
in which oscillations terminate and a solution in which they
do not is too small and this is why most runs got stuck in
a local minimum. If so, simple extension of the lifespan
beyond 600 clock ticks would improve evolvability.

Doubling the input frequency
Apart from the task described above, all the others involved
processing continuously changing input signals. In the first
such task, the networks were expected to double the fre-
quency of the input oscillations (sine wave). Three train-
ing inputs were provided at the evaluation stage in the GA:
two sinusoidal curves with different frequencies and an in-
put in which the signal was kept at 0 (requiring an empty
response). The “no signal” input was included to facilitate
emergence of solutions that are active only when external
signal is present.

In 10 out of 10 runs the evolved networks displayed the
correct behaviour for the training set. Fig. 4ab shows the

behaviour of the best network obtained. The solutions were
general: intermediate frequencies were also doubled. Even
very low frequencies posed no problem (Fig. 4c, note that
the time scale is different in different panels). Indeed, for
the best individuals we were not able to find a frequency
that would be too low to elicit the proper response. Gen-
eralizing to frequencies above the range in the training set
proved more challenging. The networks did not behave as
desired when the frequency was increased more than about
40% (Fig. 4d); interestingly, the best GRN in an experiment
in which the frequencies in the training examples were two
times lower had about the same relative upper limit.

The behaviour of the best GRN was tested using an in-
put pattern in which frequency changed multiple times (in
the training patterns, frequency was constant). The network
showed correct behaviour: matching the output frequency to
the input frequency (not shown). However, less general so-
lutions were obtained in some runs: these GRNs would lock
their outputs to the frequency present at the beginning of a
complex input pattern.

It is difficult to analyse how exactly the output of the
best GRN is calculated because of the high density of the
networks, about 0.5-0.6 (30-50 regulatory units linked with
about 1000 edges, encoded with roughly 250 genetic ele-
ments). However, a hint on inner mechanics can be obtained
by replacing the sinusoidal input with a trapezoid waveform
and changing its duty cycle. It can be seen (Fig. 4e) that
a spike of the output expression is generated for each rais-
ing and each falling edge in the input. This suggests that
the poor generalization for higher frequencies may result
from the fact that the rate of output product accumulation
and degradation is adjusted to the rates used in the training
set. If so, concentrations will increase and decrease too fast
when the frequency is low; indeed, this can be observed in
Fig. 4c).

Low pass frequency filter
Filtering input frequency is a problem well suited for regu-
latory networks: limited speed of accumulation and degra-
dation of TFs will work as an RC circuit. In this task the
networks were expected to regenerate in the output the fre-
quency of the input sinusoid, but only if this frequency was
below a certain threshold. Five inputs were provided in the
training set: two with frequencies below the threshold, two
with frequencies above it, plus the “no signal” input which
was again expected to give no output signal. It was easy
to obtain networks with correct behaviour that generalized
for frequencies higher and lower than those in the training
set. However, providing these network with a sum of two
sinusoids with only one frequency below the threshold (an
example of such input is provided in Fig. 5cd) would result
in no output signal. This suggests that these networks sim-
ply detected the high rising slope in the input and blocked
the output if it was too high.
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Figure 4: Behaviour of the network evolved to double the
frequency of the input signals (the best solution in 10 evolu-
tionary runs, obtained after 6191 generations): (ab) the re-
sponse for the inputs in the training set (the correct response
for the “no signal” input is not shown), (c) this network be-
haves correctly for an input with much lower frequency than
in the training set (note that the time scale was changed), but
fails to generalize for inputs with slightly higher frequency
(d), the response for the signal in panel (e) hints on the way
in which the output is calculated. Dashed lines in (a-d): the
desired ideal response.

.

To improve generality of the solutions, we have added
such inputs to the training set, requiring the network to fil-
ter out just the higher frequency component. Fig. 5e shows
the behaviour of a network that correctly if imperfectly fil-
ters the high frequency component even for an input not in
the training set. This network shows correct behaviour also
when another input not in the training set was used (Fig. 5f),
adjusting “on the fly” the output signal to the changing fre-
quency in the input. However, such behaviour was observed
for the best GRNs only in some of the runs. The best net-
works in other runs failed to generalize and locked to the
frequency present at the beginning of a complex input pat-
tern. This is similar to what was observed in the previous
task.

Doubling the pulse length
In the tasks described above, obtaining the solution did not
require the explicit memory of the input signal. This is not
the case for the task in which the networks were expected to
respond with a square pulse twice the length of the square
pulse in the input after 50 simulation steps. Three input pat-
terns plus the “no signal” input were used in the training set
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Figure 5: Behaviour of a GRN (the best individual in 10
evolutionary runs, obtained in generation 8839) acting as a
low pass filter for the inputs in the training set (a-d; only half
of the training examples is shown) and the inputs for which
the network was not evaluated during the genetic algorithm
(ef). The dashed lines correspond to the desired response.

(Fig. 6a-c). Good solutions were obtained in all 10 evolu-
tionary runs. The best network (Fig. 6a-c) behaved correctly
also when the square pulses in the inputs occurred at dif-
ferent times than in the inputs used in the training set. It
also behaved as expected when the input pattern consisted
of subsequent square pulses.

Good generalization was observed for pulses with other
(intermediate) lengths than the pulses in the training set.
Pulses up to 50% shorter (Fig. 6d-f) than the shortest training
pulse gave the desired response, but pulses longer than the
longest training pulse gave responses shorter than desired
(Fig. 6e), exposing leaky nature of the GRN-based memory.
When the pulses in the input had half the height of those
in the training set (Fig. 6f), the length of the output pulse
would be close to that of the input pulse. This suggests that
the network acts as a simple integrator (e.g. by slowly build-
ing up some concentrations) instead of reacting to raising
and falling edge of the input signal like frequency doubling
networks.

When the networks were required to output a square pulse
with doubled length after 300 time steps instead of 50, the
behaviours were less accurate, though proper generalization
was still observed. The average value of error function (con-
sidering only the best individuals in each independent run
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Figure 6: Behaviour of the network evolved to double the in-
put pulse length (the best individual in 10 evolutionary runs,
obtained in generation 7295): (a-c) the responses for the in-
puts in the training set (the response to the “no signal” input
was not shown) and (d-f) for the inputs used when testing
for generality. Dashed lines correspond to the desired ideal
response.

out of 10) was worse: 0.054 for 300 steps vs. 0.017 for
50. The values were also more variable (standard deviation
was 0.027 and 0.002, respectively). This further demon-
strates the leaky nature of evolved GRN-based memories:
the longer the networks have to store the information, the
more degraded it becomes.

Doubling the number of input pulses
From the biological point of view, the GRNs discussed thus
far could be seen as responding to continuously raising and
falling concentration of chemical substance (pulses in the in-
put). What was relevant was the frequency or the length of
the pulses. In the next two problems, the number of pulses
will be important. The first task, doubling the number of
pulses, can be seen as more difficult than the previous prob-
lem. The response still requires performing multiplication,
but the number of subsequent pulses needs to be counted,
not the pulse length.

Fig. 7a-c shows that the best network obtained in 10 runs
correctly doubles the number of pulses in the training set in-
puts when this number is one or two. The solution when the
expected number of subsequent oscillations is six is almost
correct. However, the generalization is imperfect: seven in-
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Figure 7: Behaviour of a GRN that doubles the number of
spikes (the best individual in 10 evolutionary runs, obtained
in generation 2794): (a-c) the network behaves correctly or
almost correctly for the training set input, but (d) responds
with less spikes than expected when the generality of the
solution is tested with a higher number of spikes in the input.

stead of eight pulses for four pulses in the input (Fig. 7d), a
response shorter than expected. This reminds the behaviour
of GRNs evolved to double pulse lengths when presented
with input pulses longer than the longest in the training set.

Integrating information from two separate signals:
counting pulses
The experiment described above indicates that a task that in-
volves processing concentration pulses allows to approach
the limits of our system in terms of searching for networks
with desired signal processing properties. To make the task
even more difficult, the networks were required to process
signals from two inputs instead of one. The task was to re-
spond with the number of output pulses equal to the number
of pulses on both inputs within a certain time window (see
Fig. 8a-e for the training set). No response was expected
when no input pulses were present in the pattern. Fig. 8
shows the behaviour of the best GRN in 10 runs. This net-
work is able not only to count correctly the pulses in the
training set but is also general enough to work in a continu-
ous manner (Fig. 8f).

Modifying the system time step
Product accumulation and degradation in our system is sim-
ulated in discrete steps. Changes in concentration are com-
puted with every iteration with a time step dt = 0.1. The
step size is a compromise between accuracy and computa-
tion cost. In principle, it would be possible for some of the
evolved networks to exploit inaccuracies that would occur
if some concentrations were to change rapidly due to over-
regulation and wrongly chosen dt. To test if this is an issue
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Figure 8: Behaviour of the GRN evolved to count the pulses
in two inputs (the best individual in 10 evolutionary runs,
obtained in generation 2168): (a-e) the network gives an ex-
pected output for the the inputs in the training set and the (f)
inputs used to test for generality.

we decreased dt by an order of magnitude and increased 10-
fold the number of simulation steps. This increased simula-
tion accuracy but did not affect the behaviour of any of the
networks discussed above.

The importance of continuous TF
accumulation/degradation

In the GRN model used here the TF concentration at a par-
ticular time point is determined by its synthesis and degra-
dation rates and its concentration at the previous time step.
In order to test if this GRN property is important for sig-
nal processing tasks, we have modified the model so that the
gene expression was determined only by the activation of
associated promoters in the previous time step. More pre-
cisely, the function fA(A), instead of being treated as cur-
rent product synthesis level (with the range < −1, 1 >),
would be shifted right and scaled to < 0, 1 > so that it
could be treated as a new expression level for the given time
step. This allows genes to change its activity instantly. In
this model GRNs behave similarly to recurrent networks of
perceptron-like neurons (similar regulatory networks were
used by us Joachimczak and Wróbel (2008) and other re-
searchers, e.g. Eggenberger (1997). To see if this change
affects evolvability, we compared the average fitness for the
best individuals in 10 runs using the problem of doubling
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Figure 9: The best individual obtained in 10 evolutionary
runs using a modified model in which product built-up and
degradation is not simulated (response to one of the training
signals is shown).

the input frequency. The behaviour of the best individual for
a non-continuous model Fig. 9 can be compared with that
observed in Fig. 4. Even though a good solution was found,
the evolvability itself was clearly worse. Average error for
10 runs with a modified model was 0.075 (sd: 0.025). For
the model with continuous TF synthesis/degradation the er-
ror was 0.026 (sd: 0.005).

Discussion
The goal of this work was to investigate in a qualitative and
exploratory manner the possibility to evolve artificial GRN
that can generate or process continuous signals provided as
externally driven concentrations of chemical substances. We
have tested if the way we have formulated the encoding of
the structure of the networks in a linear genome and the ge-
netic algorithm allows for evolvability in several problems
of various difficulty. Several attempts have been made previ-
ously by us and other researchers to employ artificial GRNs
for various tasks (such as development). It is thus interest-
ing to investigate what kind of information processing can
be performed by single cells equipped with such networks.

In general, given enough simulation steps, artificial GRNs
can be expected to be similar to perceptron-like artificial
neural networks (ANNs) with recurrent connections in terms
of computational properties, even though the biological in-
spiration is different. Perhaps the most important differ-
ence between the GRN model used here and commonly used
ANN models is that here the state of a regulatory node, rep-
resented by the concentration of associated products (tran-
scriptional factors) is influenced by the rate of product syn-
thesis and degradation. This limits the response time of the
network. On the other hand, smoothness of gene expres-
sion provides an advantage for generating gradually chang-
ing outputs, such as sine waves (compare Fig. 4b and Fig. 9).
One could also expect that such inherent dynamics of each
node could be exploited by biological GRNs when dealing
with noisy external signals and with the inherent noisiness of
gene expression itself. Obviously, “no free lunch” theorem
applies: GRNs may provide an advantage in a certain class
of problems, but one should not expect them to universally
outperform other approaches.

In particular, computations that required counting pulses
of input substance concentration proved more difficult than
other tasks (which also involved simple mathematical cal-
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culations and memory). Processing information encoded
in pulses is superficially similar to information processing
in spiking neural networks. However, in GRN-based sys-
tems the pulses result from simulated product accumulation
followed by degradation not by simulation of ion transport
through the membrane, often extremely simplified (so that a
spike results when a threshold potential is reached). It is rea-
sonable to assume that this kind of information encoding is
far from optimal for processing signals with regulatory net-
works. In other words, problems that require pulse counting
can help to find the limit of what can be evolved using GRN-
based systems such as ours.

Introducing more realistic molecular dynamics could
make evolving artificial GRN models a useful tool for ob-
taining synthetic regulatory networks (see e.g. Friedland
et al., 2009; Elowitz and Leibler, 2000). Such networks
might find applications for example in intelligent delivery of
therapeutic chemical substances (small molecules, proteins,
regulatory RNAs), regulated by external signals. Artificial
evolution would allow to design such networks and optimize
them by various criteria, such as the number of regulatory
elements and genes or robustness to noise.

The evolvability in signal processing tasks could be also
improved by changes in the error function or reformulation
of the tasks themselves. For example, it would probably help
to look for the best match of the output expression pattern
within a certain range of allowable response times instead
of requiring the pattern to appear after a predefined response
delay.

Although it would be very interesting to further explore
the areas hinted above, the next step in our work will be
to investigate the statistical properties of evolving artificial
GRNs and to employ the model described here in other con-
trol problems, for example, animat navigation.
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Abstract

Both metabolism and behavior play a key role in biological
theory and artificial life modelling. Yet, despite their central-
ity there has been very little exploration of the relationship
between these concepts and almost no exploration of how
the interaction between the two could impact on evolution
or instantiate alternative mechanisms for evolutionary pro-
cesses. We present a simulation model of bacteria capable of
metabolism-based chemotaxis: a minimal metabolic system
capable of modulating behavior by influencing the probability
of flagellar rotation (like in E. coli chemotaxis). We perform
two illustrative experiments. In the first, the incorporation
of a chemical compound into metabolism qualitatively im-
proves the chemotactic strategy. In the second, an encounter
with a specific chemical compound leads to a reaction that
opens up a new metabolic pathway while automatically regu-
lating chemotaxis towards that same compound. Both exper-
iments illustrate the adaptive potential of metabolism-based
behavior and can be used to explore the idea of “Behavioral
Metabolution,” a co-evolutionary synergy between behavior
and metabolism. We abstract some principles of behavioral
metabolution and discuss its application to early prebiotic
evolution.

Introduction: metabolism and behavior
There is a long tradition in artificial life of investigating the
origins and essence of life through the study of metabolism.
Metabolism is understood as the far from thermodynamic
equilibrium organization of chemical networks that pro-
duce and sustain their components from available ener-
getic and material resources (Ganti, 1975; Kauffman and
Farmer, 1986; Morowitz, 1999). Recent work on protocellu-
lar systems (Rasmussen et al., 2008) has re-framed research
on metabolism within the framework of minimal forms of
(proto)cellular compartments capable of self-maintenance.

Rarely is the environment of such early-life scenarios con-
sidered to be controlled or selected by a behaving or mov-
ing proto-life-form. However, recent artificial models of
self-moving protocellular (autopoietic) systems (Suzuki and
Ikegami, 2009; Egbert and Di Paolo, 2009) and real, self-
propelled chemical systems (Toyota et al., 2009) suggest that
even extremely simple forms of proto-life may have been ca-

Copyright 2010 M. Egbert, X. Barandiaran and E. Di Paolo. Licensed under Creative
Commons – Attribution 3.0 Unported [http://creativecommons.org/licenses/by/3.0]

Figure 1: Three different relationships between metabolism
and chemotaxis. Arrows indicate only short-term dynamical
influence between processes. See text for details.

pable of selectively modulating their environment through
behavior.

In parallel to the omission of behavior in the study of the
origin of life, studies of minimal adaptive behavior have al-
most completely ignored the role of metabolism as sustain-
ing or modulating behavioral patterns. In particular, research
on bacterial chemotaxis (the paradigmatic case of “mini-
mal adaptive behavior”) has long proceeded under the as-
sumption that behavior generating mechanisms operate in an
metabolism independent manner (i.e., while behavior sub-
serves metabolic survival, sensorimotor pathways are not in-
fluenced by short-term metabolic dynamics). This assump-
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tion can be traced back to the pioneering work of Julius
Adler (1969) and has since remained almost unquestioned
even in the most detailed and systematic simulation models
of bacterial chemotaxis (Bray et al., 2007). It is, of course,
not the only possible relationship between metabolism and
chemotaxis. Figure 1 indicates three different possibilities
for this relationship, independent, dependent (mechanisms
in a sensorimotor loop are created by the metabolism) and
based (metabolism itself modulates behavior). Recently, the
growing evidence for metabolism-dependent chemotaxis in
many bacteria (Alexandre and Zhulin, 2001), including E.
coli, has attracted renewed attention to the interplay between
metabolism and behavior.

In short, the interaction between behavior and metabolism
remains currently under-explored even though empirical and
modelling work has begun to address its possible implica-
tions. In particular, an aspect that deserves further examina-
tion is the effect of this interaction on early (and not so early)
evolutionary dynamics. The goal of this paper is to present
a model that investigates some potential implications of the
interaction between metabolism and behavior in both direc-
tions (behavior→metabolism and metabolism→ behavior)
as well as the potential impact of these interactions upon
evolutionary processes.

We shall first present a model of metabolism-based
chemotaxis consisting of a minimal metabolism coupled to
a simplified motor system inspired by E. coli. We use this
model to demonstrate, through two experiments, that: 1)
metabolism can modulate behavior in an adaptive manner,
2) behavior can change the metabolism by changing the en-
vironment in which it exists and, 3) changes in metabolism
can produce new types of behavioral patterns. Next, we
abstract away some general principles and implications of
metabolism-based chemotaxis. Finally, we conclude with
some discussion regarding the evolutionary dimension of
metabolism-based chemotaxis, what we term “behavioral
metabolution”, and its potential application to the question
of early evolution of life.

Metabolism-based chemotaxis, the model
We consider metabolism as the self-production of a chemi-
cal network through the transformation (by the network) of
available energetic and material resources into constituents
of the network. This process is most simply realized through
an auto-catalytic reaction whereby energetic and material re-
sources (E and M respectively) are transformed by network
constituent C into more C and a low energy waste V thus:
M+E

C−→ C+2V . This single reaction may be understood
as a higher level abstract representation of a whole network
of processes, considering that the essence of metabolism is
that of an auto-catalytic network. To capture the requirement
of far-from-thermodynamic equilibrium, C and V are con-
sidered thermodynamically unstable and degrade rapidly.
Their continued presence is therefore only possible through

Copyright 2010 M. Egbert, X. Barandiaran and E. Di Paolo. Licensed under Creative
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Figure 2: Reactions grouped conceptually by their ‘role’ in
the model. Resources are surrounded by pentagons. Auto-
catalytic reactions are indicated by circular paths. Degrada-
tion of reactants is indicated by an arrow to the empty set.

a dynamic equilibrium of degradation countered by produc-
tion. We label this reaction the “core metabolism” and ex-
pose it to various other reactants in different experiments.
Table 1 and Figure 2 show all of the chemical reactions that
can be active in the bacteria simulated in our model. The
upper-left square indicates the core metabolism described in
this section. The other pathways are described in the exper-
iments and results section.

The metabolic dynamics are described by the differential
equations in Table 2. These equations include some reac-
tants that are only used in some of our experimental sce-
narios and are explained later in the text. The rate con-

# reactants products kf kb

0: M + E + C ⇀↽ 2C + 2V 0.61 ≈ 0
1: H + C ⇀↽ H + W 0.006 0.006
2: H + C + 2V ⇀↽ 2H + C + 2W 0.37 ≈ 0
3: C + 2V → {} 0.006 n/a
4: C + 2W → {} 0.006 n/a
5: H → {} 0.02 n/a
6: S → {} 0.0001 n/a
7: S + F + N + C ⇀↽ 2C + 2S + 2V 0.99 ≈ 0

Table 1: A list of the chemical reactions in each simulated
metabolism. Also indicated are the reaction rates (forward
and backward). These rates are referred to in Table 2.
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dE/dt = −kf0EMC + kb0C
2V 2/4 + kd[E](x)

dM/dt = −kf0EMC + kb0C
2V 2/4 + kd[M ](x)

dC/dt = −kf0EMC + kb0C
2V 2/4

−2kb0C2V 2/4 + 2kf0EMC
−kf1CH + kb1HW
−kf3CV 2/2− kf4CW 2/2
−kf7CFNS + kb7C

2V 2S2/6
−2kb7C2V 2S2/6 + 2kf7CFNS

dV/dt = −2kb0C2V 2/4 + 2kf0EMC
−2kf2CHV 2/2 + 2kb2CH2W 2/4
−2kf3CV 2/2
−2kb7C2V 2S2/6 + 2kf7CFNS

dW/dt = −kb1HW + kf1CH
−2kb2CH2W 2/4 + 2kf2CHV 2/2
−2kf4CW 2/2

dH/dt = −kf2CHV 2/2 + kb2CH2W 2/4
−2kb2CH2W 2/4 + 2kf2CHV 2/2− kf5H

dF/dt = −kf7CFNS + kb7C
2V 2S2/6 + kd[F ](x)

dN/dt = −kf7CFNS + kb7C
2V 2S2/6 + kd[N ](x)

dS/dt = −kf6S − kf7CFNS + kb7C
2V 2S2/6

−2kb7C2V 2S2/6 + 2kf7CFNS + kd[S](x)

Table 2: Differential equations specifying how chemical
concentrations change within each simulated bacterium (ex-
cluding influence of the environment). kfn and kbn repre-
sent the reaction rate constants for the nth reaction in the
forward or backward direction. [ρ](x) represents the local
environmental concentration of the resource ρ.

stants (kfn and kbn) in the differential equations have been
determined by assigning free-energies to each reactant and
activation-energies for each reaction such that the system
adhered to the constraints defined in our definition of a min-
imal metabolism. Given chemical free-energies and reaction
activation-energies, reaction rates can be calculated accord-
ing to kf = exp(A) and kb = exp(A+R− P ) which indi-
cate the reaction rate for a forward (exergonic) reactions and
backward (endergonic) reactions respectively. A represents
the activation energy of the reaction and R and P represent
the combined energy levels of the reactants and the products
respectively of the reaction. Figure 3 indicates why the for-
ward and backward equations are different. This method of
determining reaction rates allows the exploration of abstract
chemistries while remaining congruent with the 2nd law of
thermodynamics.

Resources encountered in the environment diffuse into
bacteria at a rate proportional to the local concentration of
the environmental resource. The rate constant for this diffu-
sion, kd = 0.04, is the same for all resources.

The chemical reactions are simulated as occurring in a
compartment surrounded by a membrane that includes a set
of flagella. The clockwise and counter-clockwise flagellar
rotation is determined by the relation between the concen-
trations of C and W compounds. In analogy to the working
of flagellar rotation in E. coli chemotaxis, when the overall
movement of flagellar rotation is counter-clockwise the bac-
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Figure 3: Energy required for a reaction to take place. The
line traces the free energy of the reactants as the reaction
takes place.

terium is propelled in straight direction (what is generally
called the “running mode”), whereas when flagella rotate
clockwise, the bacterium rotates on its axis changing direc-
tion randomly (“tumbling mode”). Bacteria are simulated
in a 2D square‘petri-dish’ of 200 units. By default, bacteria
are always running, i.e., moving in a straight line in the di-
rection of their orientation, α, thus: dx

dt = 0.05 · cos(α),
dy
dt = 0.05 · sin(α). A baseline probability of tumbling
allows for the random direction to be changed occasion-
ally. Tumbling bacteria remain at the same location, with
α changed to a random value selected from a flat distri-
bution between 0 and 2π. The effect of the influence of
C and W concentrations on flagellar rotation is abstracted
and summarized in the following equation governing the
probability of tumbling of the bacteria (i.e. the probabil-
ity of the bacteria changing direction randomly): Ptumble =
0.001 ∗max(−0.1 + [C]2 − 0.9[W ]2, 0.01).

Experiments and results
The goal of these two experiments we now present is to pro-
vide a proof of concept of how, in metabolism-based chemo-
taxis, small changes in metabolism can lead to qualitative
changes in behavior (experiment 1) and how behavior can
lead to fixation of new metabolic pathways (experiment 2).

E1. Influence of metabolic change in behavior
In this experiment, we demonstrate how a small change in
metabolism can lead to a substantial, qualitative difference
in behavior. Specifically we demonstrate a scenario whereby
one form of chemotaxis (selective-stopping) is transformed
into a more sophisticated form (gradient-climbing) through
exposure to a new reactant. To do this, we compare two dif-
ferent types of bacteria, placing 100 of each type evenly dis-
tributed on a petri dish containing at its center a resource of
M+E; the concentration of which decays with distance fol-
lowing a Gaussian distribution (indicated in the histograms).
The control group starts with only reactant [C] = 0.5 which
provides a functioning core metabolic pathway. The exper-
imental group is the same as the control except that it starts
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with an additional reactant, [H] = 1.0. The presence of
this chemical produces a self-maintaining gradient-climbing
mechanism by enabling reactions 1 and 2 (see Table 1 and
Figure 2 top-right and lower-right). These two conditions
allow us to examine the differences between bacteria that
have not encountered H (control group) and those that have
(experimental group).

Figure 4 indicates the behavior of the control group which
demonstrates the selective-stopping mechanism accomplish-
ing a simple form of chemotaxis. The histogram at the top
indicates the number of bacteria at different distances from
the peak resource at the end of the trial, (data taken from 10
trials, each of 100 bacteria). The three plots at the bottom of
the figure indicate the spatial distribution of the bacteria in
the petri dish at the start, halfway through, and end of a typ-
ical trial. The behavior of these bacteria is a simple result
of the metabolism and its influence on motion. In the ab-
sence of W , the concentration of C will drive the behavior
of the bacterium: if the metabolic activity (i.e., the produc-
tion of C) is high the probability of tumbling will increase
and the bacterium will remain in the local area. If C is low
the probability of tumbling will decrease and the bacteria
will move, still in a random walk, but with increasingly long
durations of directional movement until C is produced again
(e.g., when the bacterium finds a place where M and E are
abundant). The mechanisms resembles the Ashbian princi-
ples for adaptation (Ashby, 1952) except that the system is
simply altering its relation to the environment, instead of re-
configuring itself internally. In this way, behavior is directly
modulated by the rate of metabolic production in a “selective
stopping” manner that is beneficial for metabolism: “stay
where you are if the metabolism is running sufficiently well,
otherwise run”. This is the simplest example of what we
call metabolism-based chemotaxis where the “sensorimotor”
pathway is the metabolism itself.

Bacteria with [H] > 0 are capable of the the more sophis-
ticated “gradient climbing” strategy (widely found in bacte-
rial chemotaxis) whereby the bacteria are capable of com-
paring, as they move, the current concentration of a chemi-
cal compound with its concentration earlier. To explain how
this is accomplished, we must describe the dynamics of the
new reactant, H . H is auto-catalytic in the presence of C
and V , so once a functioning metabolism encounters H , its
concentration will be maintained above 0. In this simula-
tion, H performs two roles. It catalyzes an equilibration
between C and W , (H +C ⇀↽ H +W ) and additionally, in
its auto-catalysis, transforms V into W which inhibits tum-
bling. These equations produce a system that is described
conceptually in Figure 6 whereby 1) stoichiometry and re-
action rates cause W to change more rapidly than C, 2)
W and C tend to equilibriate to equal concentrations, and
3) W inhibits the probability of tumbling and C enhances
it. These properties produce an adaptive gradient climbing
mechanism (adaptive in the sense used by bacteriologists to
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Figure 4: Selective-stopping bacteria distance from peak re-
source (top) and spatial distribution (bottom).

describe the ability to adapt to a wide range of base levels of
stimulus). It can be seen how in both conditions bacteria ap-
proach the resource center but H produces a more efficient
result due to its adaptation; as is evident when comparing
Figures 4 and 5 where the gradient-climbing bacteria move
to the highest concentration of resource, unlike the selective-
stoppers that stop when the resources are above a threshold.
(In both cases, a secondary peak around a distance of 190
can be observed due to the effect of the petri dish wall).

The experiment shows how changes in the metabolic net-
work of a metabolism-based chemotactic agent can lead to
qualitative adaptive changes and improvement on its behav-
ior, through relatively simple means. While moving through
its environment, a bacterium can potentially encounter a
new component H that is incorporated into the metabolism
through its self-catalytic activity and through its capacity
to improve the adaptive behavior of the bacterium. The
chances of this event happening are enhanced by the self-
movement of the bacterium. Note that the specific changes
that have occurred here have been designed to make the sys-
tem as simple to understand as possible, not to suggest that
the transformations described have occurred in this way in
biology.

E2. Influence of behavioral change on metabolism
In this new experiment we include a second metabolic path-
way. In this pathway, energetic and material resources (F
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Figure 5: Gradient-climbing bacteria distance from peak re-
source (top) and spatial distribution (bottom).

and N respectively) are converted into C and V . Like the
core metabolic pathway, this is an auto-catalytic production
requiring C to be present to occur. However, unlike the core
metabolic pathway this reaction is also auto-catalytic with
respect to S. This means that S is both produced by the re-
action and required for the reaction to occur (see Figure 2
bottom-left).

Bacteria, (initialized with C = 0.5, H = 1.0 and S =
0.0) are placed evenly distributed around a petri dish con-
taining two sources of E and M , located at (x = −75, y =
0) and (x = 75, y = 0). One source of F and N is located
at (x = 0, y = 0). There is no S in the environment except
within a circle of radius 0.5 around the left peak of resource
E and M (x = −75, y = 0), where [S] = 1.0.

Figure 7 indicates the distribution of the bacteria over the
course of the simulation. The bottom figures are as in Fig-
ures 4 and 5, but the histogram now indicates the distribu-
tion of bacteria along the x-axis, comparing the distributions
of bacteria that have zero and non-zero concentrations of S.
Data have been collected at the end of 10 different trials,
each of 100 simulated bacteria. As before, at the start of
the simulation, the bacteria are evenly distributed around the
arena. The gradient climbing mechanism attracts the bacte-
ria to one of the sources of E/M . At this stage, none of the
bacteria have any S, so F /N is not metabolizable and has
no effect on the behavior of the bacteria as the metabolism
based mechanism automatically ignores resources that are
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Figure 6: Implementation of gradient climbing mechanism.

irrelevant to the metabolism. As time progresses, bacteria
tend to gravitate towards the highest concentrations ofE/M ,
and those that are at the left source have an increasingly high
chance of encountering the pocket of S. Those bacteria that
come into contact with S become capable of auto-catalyzing
S. Their metabolism has been changed and the odds of this
change occurring have been significantly influenced by their
behavior. Those bacteria with [S] > 0 have gained a new
metabolic pathway. They are now capable of metaboliz-
ing F /N and as time progresses, those bacteria that through
their random walk are brought close enough to “taste” F /N ,
now also climb that gradient. Bacteria that were initially
attracted to the right-most source of E/M never encounter
S and accordingly never are drawn away from their initial
F /N resource source and at the end of the simulation there
are in a certain respect two ‘species’ of bacteria – one that
consumes and is attracted to both pairs of resources and one
that is only attracted to, and only consumes the original pair.

Discussion: Behavior, metabolism, evolution
The adaptive power of metabolism-based
chemotaxis
Adaptive behavior is generally understood and modelled as
optimizing some value function or as maintaining essential
variables under viability constraints. However, there is gen-
erally no reference to the dynamics of the biological orga-
nization (e.g., metabolism) that serves as the basis of these
viability constraints —see Egbert et al. (2009) for a discus-
sion. When metabolic dynamics are directly coupled to be-
havior a number of adaptive phenomena come to the surface
that generally pass unnoticed due to the typical abstractions
made in adaptive-behavior models.

From the previous experiments we can generalize that,
despite its simplicity (or perhaps thanks to it), metabolism-
based behavior can enable a number of powerful adaptive
capacities:

1. The metabolic consequences of behavior can be eval-
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Figure 7: Experiment 2. Bacteria are initially attracted to
sources of M + E, but those that encounter the metabolic-
path-opening reactant S, automatically become also at-
tracted to new resources N + F .

uated online (i.e., in ontongenetic time and in relatively
short timescales) and behavior can be modulated accord-
ingly.

2. Organisms can adapt not only to the presence of specific
chemicals but also to other environmental conditions
(e.g., temperature) that might influence metabolism.

3. Organisms can adapt not only to changes in the envi-
ronment, but to changes in their own metabolic orga-
nization by modulating their behavior accordingly.

4. Organisms can integrate information from the environ-
ment and from within, which means that behavioral and
metabolic processes of adaptation can feed back to
each other.

As a consequence, organisms can adapt (respond appropri-
ately) to various environmental and internal chemical com-
pounds and conditions that were never previously experi-
enced by the individual nor even by any of its ancestors.
Note that the system will be attracted to any compound or
condition that increases metabolic rate and will be repelled
by those that decrease or inhibit metabolism. However, this
does not rule out potential cases of maladaptation such as
parasitic interactions that override the behavioral mecha-
nism or interactions that increase the short-term rate of pro-
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Figure 8: Metabolism-independent and metabolism-
dependent responses to a change in organization (repre-
sented by a star in frame 2) that allows them to consume
a new resource (dark circle).

duction of C but damage metabolism in the long-term by
e.g., destroying the membrane.

Behavioral metabolution, the very idea
Not only does metabolism-based behavior unveil a power-
ful form of adaptation in ontogenetic time, but it also ex-
poses an interesting evolutionary potential. Figure 8 illus-
trates the case of a mutation (genetic or otherwise inher-
itable) on metabolic pathways that permits one bacterium
to exploit and metabolize a new environmental resource.
Metabolism-independent chemotactic agents (left) will re-
main in place and the benefits of the mutation will pass
unnoticed; unless there is an unlikely coincident mutation
that makes transmembrane receptors sensitive to the new
metabolic source and generates attraction to it. Genetic drift
dictates that, most probably, such a potentially beneficial
mutation will be lost since it has no beneficial effect on the
bacterium. Metabolism-based chemotactic agents (right),
contrarily, will immediately and automatically be attracted
to the new resource (for it benefits metabolism) if they are
exposed to it. They will benefit from the mutation by in-
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Figure 9: A cycle of mechanisms contributing to adaptation.

corporating a new metabolizable resource into their organi-
zation; the mutation will be retained and a new population
could emerge in the new resource-rich environment, leading
potentially to speciation.

The model presented in this article was inspired on bacte-
rial chemotaxis. But the underlying principles can be easily
generalized to a wider context:

1. Behavior modulated by metabolism can produce an on-
line automatic adaptation to change. This change could
be external (in the sense of an environmental change), or
internal in that the behaving system has itself changed.
Internal change could include genetic mutations or sim-
ply perturbations that damage or enhance the behaving
system in some way.

2. Automatic, online adaptation to phenomena never experi-
enced before, neither by the individual, nor its ancestors
can make otherwise neutral mutations (such as the new
ability to consume a resource) more likely to be benefi-
cial mutations (through e.g., moving towards the new re-
source). It also facilitates speciation events through rapid
separation of a newly capable individual from its previous
population (discussed above).

3. Behavior can significantly influence metabolism during
lifetime. This change can be caused by a persistent be-
havior (e.g., seeking out of a reactant) or through a ran-
dom behavioral encounter with a reactant that is incorpo-
rated into the auto-catalytic network. In this way, behav-
ior can provide an important source of variation of avail-
able chemical compounds, or simply significantly influ-
ence the local concentration of reactants.

These type of interactions between behavior, metabolism
and evolution we have termed Behavioral Metabolution. We
can see the cycle of influence in Figure 9, where a change
to the organization of an agent causes it to automatically
behave differently, in a way appropriate to its change in

organization. The new behavior brings the system to a
new environment where new mutations (or old mutations)
and/or new environmental conditions might be beneficial
for metabolism, or as demonstrated in Experiment 1, can
produce a new (possibly improved) behavioral mechanism.
In this way, a push-me/pull-you dynamic interplay can be
established between changes in behavior and changes in
metabolism, influencing evolutionary processes in ways that
remain mostly unexplored.

The goal of the above experiments is not to provide ev-
idence for this phenomenon but to show the very possibil-
ity and some potential aspects of it. Further extensions of
the present work could include an open artificial chemistry
with moving protocellular systems that could be used to de-
termine whether the presence of self-movement largely in-
creases the probability of chemical-evolutionary adaptation.

Behavioral metabolution as proto-evolution
It is at the very early stages of life when the coupling be-
tween metabolism and behavior could have played a particu-
larly powerful role by instantiating, on its own (and without
the presence of a genetic code or even without reproduc-
tion!), a form of (proto-)evolution.

Assuming an origins-of-life scenario where membrane
compartments or oil-droplets enclose proto-metabolic reac-
tion networks undergoing natural selection (Shenhav et al.,
2005; Fernando and Rowe, 2008; Shapiro, 2007) it is evi-
dent how any tendency to move (even randomly) would be-
come beneficial to such systems: local metabolic resources
would soon be consumed and random movement would
lessen competition for local resources. Any bias of ran-
dom movement towards metabolically more beneficial en-
vironments would rapidly be selected. Since the selective-
stopping chemotactic strategy has been shown to be easily
evolvable (Goldstein and Soyer, 2008) it seems that it would,
sooner or later, appear and be metabolism-based (since early
metabolic networks would tend to be highly integrated and
simple—certainly not with the degree of specialization re-
quired for metabolism-independent modes of chemotaxis).

Admittedly, we have implemented an abstract version of
a sophisticated flagellar movement, which is highly unlikely
to be found at any early stage of evolution. However, at such
early stages movement could be implemented on a wide va-
riety of metabolism-controllable ways. For instance, sim-
ple reaction-diffusion spots have been shown to be capable
of movement (Krischer and Mikhailov, 1994), and more re-
cent work on convection cells (Toyota et al., 2009) also pro-
vides an example of potential early prebiotic life-like self-
movement. In addition, changes in membrane properties
could operate selectively on environmental currents; or, con-
trol of protocell buoyancy could lead to upward and down-
ward selective movement. Finally, in its most simplified
form, movement could be completely random and provided
by environmental factors; to accomplish behavioral metabo-
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lution, it would suffice (in this extremely simple form) for
the protocell to be capable of influencing the permeability
of its membrane.

In any of its possible instantiations, what remains central
to the idea of behavioral metabolution (and its relevance to
early forms of life) is the potential of the coupling between
metabolism and behavior to explore and select the chemi-
cal space that is available for metabolic organization (and its
behavioral control). In addition, differences between the be-
havioral trajectories of protocells could lead to differences
in their metabolic and behavioral organization, potentially
causing speciation and new ecological relationships (e.g.,
one species consuming another’s waste products). An exam-
ple of a “speciation-like” effect of behavioral metabolution
might be to consider irreversible effects on metabolic orga-
nization caused by behavioral patterns. Thus, for instance, if
the agent continuously moves towards certain types of envi-
ronments where resources of a certain redundant metabolic
pathway are not available it might lose its capacity to me-
tabolize such resources. A variation of experiment 2 could
explore this phenomenon by making S act like C (i.e., act as
a flagellar rotation modulator), so that agents without C are
still viable in environments with F + N ; without the pres-
ence of E +M , C could eventually disappear and the agent
will lose its capacity to metabolize E +M again.

Conclusion
Despite the central role that both metabolism and adaptive
behavior play in artificial life and theoretical biology, very
little attention has been paid to the interplay between the
two, especially at the ontogenetic and evolutionary scales.
When behavior is not controlled by a subsystem that max-
imizes some function (generally external to the subsys-
tem itself, in the form of selected adaptations or satisfac-
tion of internal “needs”) but is, instead, directly modulated
by metabolism, then a wide range of adaptive phenomena
come to the surface. We have shown, through a model of
metabolism-based chemotaxis, how changes to metabolic
pathways can qualitatively improve behavioral strategies
(e.g., from a selective-stopping to a gradient-climbing strat-
egy; experiment 1) and how behavior might serve to ex-
plore and fixate new metabolic pathways (experiment 2).
These two examples may be used to reveal the deep role
that the behavior-metabolism interplay could have played
in evolution: by permitting the behavioral exploration of
the chemical space available for metabolism, by allowing
the behaviorally driven selective and repetitive exposure to
such chemical compounds and their subsequent incorpora-
tion into metabolism and, finally, by the potential behavioral
improvements that changes in metabolism could produce.
We coined the term “behavioral metabolution” to refer to
these phenomena where variations on metabolic dynamics
(genetic mutations, creation of new chemical species, etc.)
feed back into behavioral changes that, in turn, affect the

environmental conditions that feed metabolism.
Different forms of metabolism-behavior coupling could

have bootstrapped or driven the evolution of early (pre-
genetic) life and could be currently instantiating forms of
non-genetic inheritance or genetic assimilation of pheno-
typic plasticity. We hope to have shown that incorporating
this type of connection between behavior and metabolism
opens up a promising line of artificial life research where
the long term (evolutionary) consequences of interactions
between behavior, system organisation and environment and
can be systematically studied in simulation.
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Extended Abstract

Can we objectively distinguish chemical system that are able to process meaningful information from those that are not
suitable for information processing? In this talk we present a formal method to asses the semantic capacity of a chemical
reaction network.

The basic idea is to measure how easy it is to implement an organic molecular code with this network. Inspired by
Barbieri (2008), we define a molecular organic code with respect to a given reaction network as a mapping between
two sets of molecular species called signs and meanings, respectively, such that (a) this mapping can be realized by a
third set of molecular species, the codemaker and (b) there exists alternative sets of molecular species, i.e., alternative
codemakers, implying different mappings between the same two sets of signals and meanings (Görlich and Dittrich, in
press).For an example see figure . We define the semantic capacity of a reaction network by simply counting the number
of different codes. We analyzed models of real chemical systems (Martian atmosphere chemistry and various combustion
chemistries), bio-chemical systems (gene expression, gene translation, and phosphorylation signaling cascades), as well as
random networks and artificial chemistries. We found that different chemical systems posses different semantic capacities.
Basically no semantic capacity was found in the atmosphere chemistry of Mars and all combustion chemistries, i.e., with
these chemistries, organic codes cannot be implemented. Whereas the bio-chemical systems posses very high semantic
capacities, with (hypothetically) increasing capacity from metabolic networks, signalling networks, to gene regulatory
networks. andom networks have a much lower semantic capacity than biological networks like regulatory networks or the
genetic code network. Random networks show only organic codes for very specific parameters, for example a random
network with 15 species and an optimal density of reactions (i.e., 30) has on average 2.7 code pairs whereas a gene
regulatory network of the same size has 9 code pairs. This canbe explained by the fact that it is hard to achieve at the same
time a high number of closures and a large pool of pathways to select from. Note that for a code pair at least ten different
closed sets are necessary.

Our definition provides neither a necessary nor sufficient criteria for information processing, however our results indicate
that it can be applied to evaluate the information processing capabilities of a chemical system on an algebraic level and
may thus be a useful tool to understand the origin and evolution of meaningful information, e.g., at the origin of life.

Acknowledgement: We acknowledge financial support by the Jena School of Microbial Communication (JSMC) and the
German Research Foundation (DFG).

References
Barbieri, M. (2008). Biosemiotics: a new understanding of life. Naturwissenschaften, 95(7):577–599.

Görlich, D. and Dittrich, P. (in press). Identifying Molecular Organic Codes in Reaction Networks. To appear inProceedings
of 10th European Conference, ECAL 2009, Budapest, Hungary, September 13-16, 2009, LNCS, Springer Berlin.



Proc. of the Alife XII Conference, Odense, Denmark, 2010 222

a

b

c

d

e

f

g

h

(a) Network view

b

a

d

c

b

a

d

c

C = {e, h}

C′ = {f, g}

(b) Code view

Figure 1: (a) Illustration of a reaction network motif that can realize a molecular organic code. The network〈M,R〉 consists
of speciesM = {a, b, c, d, e, f, g, h} and reaction rulesR = {a + e → e + c, . . .}. (b) Illustration of the two possible
mappings between binary sets of species. In this example, wecan obtain a molecular organic code by choosingS = {a, b}
andM = {c, d} as signs and meanings, respectively. The setsC = {e, h} is a codemaker withC′ = {f, g} the respective
alternative codemaker. Note that the arrows in (a) denote reactions and the arrows in (b) denote mappings.
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Extended Abstract 
We have designed a series of chemical experiments to investigate the emergence of spontaneous self-movement in a simple 
chemical system. More specifically we have followed the dynamic motile behavior of oil droplets consisting of oleic anhydride in 
an aqueous environment. The droplets can move by creating an internal convection flow, which enforces a break in symmetry and 
organizes droplet movement. The droplets can exhibit several different styles of motion depending on their age, size and the pH 
condition. The dynamics of single droplets on a glass plate show a transition from the anomalous diffusion to a directional motion 
then to a more complex vibrating motion by radically modulating its boundary shape. When many droplets are present, they 
aggregate and physically contact each other. We often observe that the internal convection flow of those droplets synchronize, i.e. 
the directions of flow become parallel to each other like magnetic spin systems. These discoveries illustrate that coupling a 
chemical reaction (hydrolysis of the anhydride) to a physical body (the oil droplet) can result in an instability that affects both 
convective flow patterns and overall shape, and therefore the agents and their collective behavior. 
 
In order to clarify how droplet ‘behavior’ changes with controlled parameters of the system, we analyzed the system for micro scale 
flow patterns using microscopy and for macro scale behavior using image analysis and droplet tracking tools.  First, the shape of 
the droplet changes at a certain point as we increase the size from a few micrometers to a few centimeters, and accordingly the 
motion pattern changes from the quasi Brownian to directional movement to a vibrating mode. We have characterized those 
tendencies by measuring the stop/go intervals and the auto correlation functions. A shape change in such a system has great 
importance since deformations will create new interfacial surfaces where dynamic phenomena may occur. Second, when droplets 
come together, their internal convection flow is re-configured resulting in a collective motion. When the droplets use up their 
chemical energy (reaction on their surfaces), the collective behavior will disappear. Therefore the collapse and genesis of collective 
behavior is the evidence of the active moving droplets. 
 
We tried to replicate those phenomena with the numerical procedure (coupling the Navier-Stokes equation with a chemical 
reaction). When the initial size exceeds a certain limit, the numerical procedure fails to produce physically correct values. The 
droplet breaks up into pieces. Thus the breakup of the numerical procedure may correspond to the shape transition. Therefore the 
system is challenging for both experimental and numerical studies and at the conference we will focus on how single droplet mode 
switching may reflect the important parameters that will allow different behaviors to emerge from such a simple chemical system.  
Also when multiple droplets are present, the same signals that organize the movement of a single droplet may be used to organize 
and coordinate the behavior of several droplets. Collective behavior can begin to be understood following the simple physico-
chemical processes described here. 
 

Fig. Droplet in a glass plate, trajectory of a droplet and autocorrelation function of a trajectory. 
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Abstract

We investigate the evolution of memory usage in environ-
ments where information about past experience is required
for optimal decision making. For this study, we use digital
organisms, which are self-replicating computer programs that
are subject to mutations and natural selection. We place the
digital organisms in a range of experimental environments:
simple ones where environmental cues indicate that a specific
action should be taken (e.g., turn left to find food) as well as
slightly more complex ones where cues refer to prior expe-
rience (e.g., repeat the action indicated by the previous cue).
We demonstrate that flexible behaviors evolve in each of these
environments, often leading to clever survival strategies. Ad-
ditionally, memory usage evolves only when it provides a sig-
nificant advantage and organisms will often employ surpris-
ingly successful strategies that do not use memory. However,
the most powerful strategies we found all made effective use
of memory.

Introduction
Organisms must be able to respond to their environment to
maximize their chances of survival. They must be able to
vary their reactions based on differences in time, place, or
circumstance. Evolution has produced many mechanisms
that allow such flexible responses, including simple reflex-
ive behavioral routines, such as the response of bacteria like
Escherichia coli(E. coli) to move toward food, or innate be-
havioral preferences and patterns, as observed in many in-
sects (Dukas and Bernays, 2000). In well-defined, stable
circumstances, a repertoire of innate, fixed behaviors may
be sufficient to allow organisms to be successful. How-
ever, when circumstances can vary due to dependencies on
time, place, previous experiences or environmental changes,
then more dynamic and flexible behavioral mechanisms are
needed. In such cases, memory and learning may allow indi-
viduals to more effectively adjust behavior according to the
local world state (Dukas, 2008).

How do environment, memory, and learning interact in an
evolutionary context? This question is of great interest to
both biologists and computer scientists who study the evo-
lution of intelligence. We present early results in our ex-
ploration of this interplay in the context of the evolution of

navigation. Our experimental environments are inspired by
maze-learning experiments with honey bees (described be-
low). By using these types of environments, we maintained
a strong connection between our experiments and their bio-
logical motivation, and we were able to probe specific issues
relating to the evolution of memory use. Situated at the in-
tersection of biology and computer science, our approach
aims to provide insight for both disciplines.

Motivation from insect navigation
Insects are ideal subjects for the study of navigation behav-
iors. Ants, bees, and other insects use an array of innate
strategies to navigate, includinglandmark tracking, where
the insect refers to a visual marker (Graham et al., 2003), and
path integration(Müller and Wehner, 1988), which is the
continual internal monitoring of distance and direction rela-
tive to a reference location (e.g., the nest). Studies of maze
learning in insects are of particular interest, since many bees
and ants often follow fixed routes from the nest to a forag-
ing site (Collett et al., 2003). In learning a maze, an in-
sect is learning to follow a well-defined path (Collett et al.,
1993). Bees have been trained to fly through mazes of vary-
ing complexity. Studies by Collett and colleagues (Collett
and Baron, 1995; Collett et al., 1993) used small mazes to
investigate bees’ ability to learn motor or sensorimotor se-
quences. One study (Collett et al., 1993) forced bees to fly
along prescribed routes and through obstacles in a large box
and concluded that bees can remember sensory and motor
information that allows them to reproduce a complex route.

A study by Zhang and colleagues (1996) demonstrated
that honey bees could use specific visual cues to learn to fly
through structurally complex mazes. Another study (Zhang
et al., 2000) probed whether bees learn and recognize struc-
tural regularity in the mazes. For these experiments, bees
were trained and tested in four different types of mazes:
constant-turn, where turns are always in the same direc-
tion; zig-zag, where each turn alternates direction; irregular,
which has no apparent pattern of turns; and variable irreg-
ular, where bees had to learn several irregular mazes at the
same time. The bees performed best in constant-turn mazes,
somewhat poorer in zig-zag mazes, still worse in irregular
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mazes, and poorest of all in variable irregular mazes. The
authors concluded that the bees’ performance in the vari-
ous configurations depends on the structural regularity of the
mazes, and the ease with which the bees can recognize and
learn that regularity.

Computational approaches
Evolutionary robotics has dealt extensively with several
facets of evolving memory and learning. One aspect is phe-
notypic plasticity, the ability of a genotype to express dif-
ferently in different environments. Nolfi et al. (1994) stud-
ied this topic by evolving neural network “brains” for vir-
tual robots in environments that alternated between light and
dark. Individuals that evolved under these conditions were
able to tune their behavior appropriately for both kinds of en-
vironments, adapting within an individual “lifetime” to en-
vironmental changes.

Evolution and learning employ different mechanisms and
occur at differing time scales making their interaction, and,
indeed, the evolutionof learning, a topic of intense study
(Nolfi and Floreano, 2002). A study by Floreano and Urzelai
(2000) is a strong example of the latter. They evolved neural
networks with local synaptic plasticity and compared them
to fixed-weight networks in a two-step task. The networks
evolved to turn on a light and then move to a grey square.
The results showed that local learning rules helped networks
alter functionality quickly, facilitating moving from onetask
to the other. Blynel and Floreano (2003) explored the ability
of continuous time recurrent neural networks (CTRNNs) to
solve reinforcement learning problems in the context of T-
Maze and double T-Maze navigation tasks, where the robot
had to find and “remember” the location of a reward zone.
The learning in this case occurred without modification of
synapse strengths, coming about instead from internal net-
work dynamics.

Methods
Avida: Overview
Digital evolution (Adami et al., 2000) is a form of evolution-
ary computation in which a population of self-replicating
computer programs, or “digital organisms,” is placed in a
computational environment where they compete and mu-
tate. Digital evolution can be used both for understanding
biological processes and for applying insights from biol-
ogy to computational problems. The Avida software system
(Lenski et al., 2003; Ofria and Wilke, 2004) is a widely used
platform for digital evolution. Avida provides a separate in-
stance of real evolution useful for experimental studies (Pen-
nock, 2007).

The “world” in which evolution takes place in Avida is
a discrete two dimensional grid containing a population of
digital organisms (or “Avidians”), with at most one Avid-
ian per grid cell. The individual organism consists of its
“genome,” which is a circular list of assembly language-like

instructions, and its virtual CPU. The CPU contains three
general purpose registers, several heads, and two stacks. The
instructions in the organism’s genome execute by acting on
the components of the virtual CPU, and execution of instruc-
tions incurs a cost in virtual CPU cycles. An Avida organ-
ism accomplishes all tasks (e.g., replication and movement)
by executing Avida instructions.

An Avida organism replicates by copying its genome into
a block of memory that will be its offspring’s genome. The
copying process is sometimes imperfect, leading to differ-
ences between the genomes of parent and offspring. These
differences are mutations, and may occur as a substitution,
insertion or deletion of an instruction. The Avida instruction
set is robust to mutations, so that any program will be syn-
tactically correct even when mutations occur (Ofria et al.,
2002). Upon replication, an organism’s offspring is placed
in a random grid cell, terminating any organism that previ-
ously occupied that cell. Thus, organisms in the population
compete for the limited space in the set of grid cells, and or-
ganisms that replicate more quickly will have a greater num-
ber of descendants. An organism can increase its metabolic
rate (the relative speed it executes instructions) by perform-
ing user-specified tasks. We measure the fitness of an or-
ganism as its metabolic rate divided by the number of CPU
cycles it requires to replicate.

Experimental environments

Each Avidian was placed in an environment containing a
path (inspired by the maze-learning experiments discussed
earlier (Zhang et al., 1996, 1999)) that it could gain nutri-
ents by following. To follow a path, an organism must sense
cues in the environment that tell it how to stay on the path,
and react appropriately to those cues. In some cases, this
task necessitated evolving the ability to store and reuse ex-
perience. Sensing and movement in the virtual grids were
accomplished by executing experiment-specific Avida in-
structions. The movement instruction moves the organism
into the grid cell that it is currently facing. Movement oc-
curs only one step at a time. In the virtual environments of
the current study, each organism has its own virtual grid,
so organisms do not interact during movement. Orienta-
tion changes require additional instructions, one for turning
right 45 degrees and another for turning left 45 degrees. Or-
ganisms had to combine the different instructions—sensing,
movement, and orientation—in order to successfully follow
more complex paths.

An organism must navigate its environment to find
sparsely distributed “food”. Movement requires energy, so
each step depletes the organism’s energy store. When an or-
ganism encounters food, the food gives it more energy than
the amount lost through movement. Locations that are off
the path are “empty”, containing no food. When an or-
ganism moves into an empty location, the organism loses
a small amount of energy, without regaining any energy.
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Figure 1: Example experimental environment, using all
cues.

Movements into empty locations are detrimental to the or-
ganism: continued energy depletion will impair the organ-
ism’s ability to replicate. Organisms that move along the
food-rich path build up their energy, and are able to execute
at an accelerated rate. Each environment contained some
combination of the following cues (e.g., Figure 1):

1. Nutrient: A cue that indicates the path, and provides en-
ergy (the “food” on the path).

2. Directional cue: A cue that indicates to turn either right
or left (45 degrees in the specified direction) to remain on
the path. Directional cues also act as a nutrient.

3. Repeat-last: A special directional cue to repeat the last
turn direction, and acting as a nutrient.

4. Empty: A cue that indicates cells that are off of the path.
The net loss of energy from a step into an empty cell
equals the net gain of energy from a nutrient.

All paths used only 45-degree turns, so that a turn could be
accomplished with a single, unmodified Avida instruction.

An organism that travels the entire path without a mis-
step receives the maximum possible bonus. The bonus is
based on the count of unique path cells that the organism

encountered less the total count of movements into cells that
are off the path, without allowing the value to become nega-
tive. Organisms were not penalized for taking extra steps on
the path. Conceptually, the path cells are analogous to food
patches. The organism consumes most of the food in the
patch the first time it moves into a path cell. Subsequent vis-
its to a previously visited location supply only enough food
to offset the energy lost in moving to the location. On the
other hand, empty cells are always empty, and movement
always requires energy. Each step into an empty location
results in a net loss of energy, because the organism can-
not replenish its energy stores at that location. We used the
value of the count of path cells traversed to determine the
organism’s metabolic rate bonus. Our approach delivered an
exponential reward, doubling the organism’s metabolic rate
bonus for each step on the path that is not counteracted by a
step off the path into an empty cell.

Experiments and results
We conducted experiments using multiple environment
types. Each environment type placed different memory use
and decision-making demands on the organisms. In all
cases, an organism could sense the contents of a cell by using
a sense instruction; each cue (nutrient, right turn, left turn,
repeat last, empty) had a unique sensed value. The sense
instruction provided the sensory information from the envi-
ronment, but the organism had to decide what, if anything,
to do with that information.

Environment 1: Evolving reflex actions. This environ-
ment type contained turns in a single direction (i.e., one path
instance contained only right turns, while another path in-
stance had only left turns; see Figure 3 below). The single-
direction paths had a spiral shape and contained three cues:
nutrient, empty, and only one type of directional cue (right
or left). This environment presented organisms with all in-
formation required to make turn decisions at the time and
place that it was needed.

It is reasonable to believe that reflexive responses evolved
before learning (Todd and Miller, 1990), and these types
of responses are well known as the basis for conditioning
(Rescorla, 1988). From a practical standpoint, if an organ-
ism cannot evolve to perform an action correctly when it
always should, it will never be able to effectively decide to
act selectively.

Environment 2: Evolving volatile memory. In the first
environment type, the organisms could sense a directional
cue at each turn; a right turn and a left turn have different
sensed values. In that setup, past cues never had to be stored
in order to make an informed decision about the current ac-
tion. In the second set of experiments, the organism can
remain on the path only if it remembers the most recent turn
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direction. In this environment, if a turn is in the same direc-
tion as the preceding turn, the sense value is different from
the sense values of a right turn and a left turn. This new
cue signals an organism to “repeat the last turn direction”.
This arrangement of information along the path means that
an Avidian must be able to change the remembered sense
cue value an arbitrary number of times in its lifetime, and at
irregular intervals. Thus, this memory isvolatileas opposed
to the unchanging reflex memory needed for the first exper-
imental environment. The arrangement of cues in the sec-
ond environment type necessitates flexible use of informa-
tion from an increasingly complex environment. An organ-
ism must remember a binary value (turn right or turn left),
or one bit of information in information theory terms.

To provide environmental variation and discourage the
evolution of brute-force solutions, organisms were presented
(at random) with one of four different paths of each environ-
ment type during the course of evolution. Thus, any individ-
ual organism had a0.25 probability of being born into the
same environment as its parent.

For each experimental environment, we ran 50 replicate
populations capped at 3600 organisms for 250,000 updates
(a unit of time in Avida), or a median of approximately
33,000 generations. Each experiment seeded the population
with an organism capable only of replication. This simple
self-replicator ancestor’s genome consists of 100 instruc-
tions, comprising a short copy loop and a large number of
no-operation instructions. Any other instructions and capa-
bilities can appear through mutations. All experiments used
a 0.085 genomic mutation rate for a length-100 organism
(a 0.0075 copy-mutation probability per copied instruction,
and insertion and deletion mutation probabilities of 0.05 per
divide) (Ofria and Wilke, 2004).

Results and discussion

To evaluate the success of different experimental treatments,
we used both quantitative performance measures and behav-
ioral tests of evolved organisms. For the quantitative mea-
sures of performance, we examined fitness and task quality
over time. These values are tracked and recorded during
the course of an Avida experiment. For behavioral tests, we
traced execution and trajectory of evolved organisms on dif-
ferent path configurations, including paths that were never
experienced during the course of evolution.

We use task quality to measure how well an organism per-
forms in a given environment. For this study, task quality
measures the fraction of the path an organism traversed, less
any movement into empty cells; an organism that traversed
the full path without moving into any empty squares would
have a task quality of1.0. Because overall metabolic rate
for these experiments was associated solely with the path
traversal task, task quality and fitness track closely. The
overall performance of a population is shown by the aver-
age task quality for that population; the maximum task qual-
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Figure 2: Distribution of average maximum task quality
(AMTQ), individual Experiment 1 paths. Paths 1 and 2 are
right-turn-only paths, Paths 3 and 4 are left-turn-only paths.
There is no significant difference in the AMTQ distributions
for each path (Kruskal-Wallis Test,p = 0.287).

ity quantifies the performance of the best-performing organ-
isms from each population, and the Average Maximum Task
Quality (AMTQ) averages this population maximum task
quality over all 50 replicate experiments of each environ-
ment type.

To test the behavior of evolved organisms, we ran exe-
cution traces for selected final dominant genotypes (most
abundant genotype at the end of an evolution experiment) in
different environments. With each environment, we tested
organisms (1) on the same virtual grids that the organisms
experienced during evolution, to observe their behavior in
those “ancestral” environments, and (2) in novel environ-
ments,i.e., paths that no organism experienced during evolu-
tion, to demonstrate the generality of the evolved solutions,
or uncover solutions that had been tuned specifically to the
ancestral environments.

Evolving reflex actions. Figure 2 shows the distributions
of AMTQ values for each of the four single-direction paths.
There was no significant difference between the AMTQ dis-
tributions for each path, as measured by the AMTQ at the
end of evolution (Kruskal-Wallis Test,p = 0.287). Figure 3
shows trajectories of the final dominant with the highest end-
ing metabolic rate among all 50 replicate single-direction
path experiments, on a right-turn-only path (Figure 3a) and
on a left-turn-only path (Figure 3b). The organism’s tra-
jectories on the other two evolutionary environment paths
are qualitatively identical to those shown. The organism’s
evolved strategy performed well in both turn environments.
The organism did some “backtracking” on the right-turn
grid, i.e., it turned around and retraced some of its steps on
the path. This behavior did not reduce the organism’s task
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Organism Trajectory
Org. Initial Location
Org. Final Location
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Right Turn

(a) Right-turn Path

 

 

Organism Trajectory
Org. Initial Location
Org. Final Location
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Left Turn

(b) Left-turn Path

Figure 3: Trajectories of an example evolved organism from Experiment 1 on paths that were experienced during evolution
(“ancestral” paths).

quality as the calculation does not penalize an organism for
multiple traversals of a path cell. The risk of such behavior
is that the organism wastes CPU cycles, thus reducing fit-
ness, although this particular organism still evolved to bethe
most fit individual in its population. This organism was able
to navigate the entire right-turn path without entering any
empty cells. The organism also successfully followed the
left-turn-only path, stopping after it encountered one empty
cell.

To understand this organism’s algorithm, we analyzed its
execution while traversing each of these two paths. Most of
the path-following and replication code of this organism’s
genome is organized into two modules. The first module,
“Module 1A,” is mostly concerned with moving on a right-
turn path while the second module, “Module 1B,” focuses on
left-turn paths and contains a copy loop. These code sections
are both executed, regardless of whether the organism is on a
right-turn or left-turn path, but the behavior that the modules
produce differs according to the path type. In general, Mod-
ule 1A is a “counting” routine. When the organism is on a
right-turn path, Module 1A counts the organism’s steps. On
a left-turn path, Module 1A counts the number of rotations
the organism executes. Module 1B allows the organism to
travel to the end of a left-turn path and then replicate. When
the organism is on a right-turn path, the organism uses Mod-
ule 1B to “backtrack” on the path, retracing some of its steps,
while it finishes its replication process.

Evolving volatile memory. The irregular path environ-
ment was more challenging than the environments of Exper-
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Figure 4: Distribution of average maximum task quality
(AMTQ), individual Experiment 2 paths. There is no sig-
nificant difference in the AMTQ distributions for each path
(Kruskal-Wallis Test,p = 0.238).

iment 1. The AMTQ for these experiments shows a weaker
performance than in the other environment. The difference
in AMTQ at the end of 250,000 updates was significantly
different in the irregular path experiments compared to the
other environment (Kruskal-Wallis Test,p < 0.05). There
was, however, no significant difference in the performance
on each path, measured by the AMTQ at the end of evolu-
tion (Kruskal-Wallis Test,p = 0.238). Figure 4 shows the
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(a) Example Trajectory, Path 1
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(b) Example Trajectory, Path 2

Figure 5: Trajectories of an evolved organism from Experiment 2 irregular path experiments. In both (a) and (b), the organism
stops moving after encountering one empty cell.

distributions of AMTQ values for each of the four ancestral
irregular paths.

Despite the generally inferior performance of the evolved
populations in this environment, some highly effective
strategies evolved. Figure 5 shows the trajectories of the fi-
nal dominant organism from the population with the highest
AMTQ at the end of the 250,000 update evolution run. This
organism has an excellent solution for following these paths,
stopping after taking one step off the end of the path into an
empty cell. The evolved algorithm is equally effective on
novel paths, as shown in Figure 6.

The execution of this organism’s genome is somewhat
complicated, and shows an impressive degree of flexibil-
ity. In general, this organism operates by moving its exe-
cution to different parts of its genome based on the sensed
environmental cue. The organism accomplishes all of its
path-following with two loops, one for moving through left-
turn path sections, “Module 2A,” and the other for moving
through right-turn path segments, “Module 2B.” Unlike the
other organisms that we have examined in detail, this or-
ganism has well-defined functional and structural modular-
ity for handling right-turn and left-turn path sections. Mod-
ule 2A appears before Module 2B in the organism’s genome.
Module 2A can perform an arbitrary number of consecutive
left turns, and any number of forward steps. Using Mod-
ule 2B, the organism can maneuver through right-turn path
sections. Module 2B functions with arbitrary numbers of

forward steps and repeated right turns. If a left turn cue is
sensed, Module 2B terminates and execution jumps to the
beginning of the genome, eventually reaching Module 2A
again. If an empty cell is sensed while execution is in Mod-
ule 2B, the module terminates and execution continues with
the instructions after the module. In addition to the move-
ment modules, the organism has a tight copy loop near the
end of its genome that accomplishes almost all the copying
for the organism’s replication.

There are two features of this organism that are particu-
larly interesting. The first is the organization of the genome.
The sections of the genome that do the bulk of the work
for this organism—the two movement modules and the copy
loop—are functionally and spatially modular. For all three
of these loops, very little happens within them apart from the
main function of the loop. The loops are also spatially mod-
ular: they are located in different sections of the genome.
Example organisms from the preceding experiments also
demonstrate structural modularity, but their functional mod-
ularity is generally less defined. The second feature of spe-
cial interest is the flexibility of execution flow between code
modules. The execution flow enables the organism to clev-
erly handle all the contingencies of the environment. For
example, even though Module 2A (left-turn module) is en-
countered first in the sequential execution of the genome, ifa
right turn is encountered first, the flow moves easily through
Module 2A and into Module 2B (right-turn module). The
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Figure 6: Trajectory of an evolved organism from Experi-
ment 2 irregular path experiments, traversing a novel path.

algorithm evolved to deftly maneuver along the paths, using
environmental cue information to alter its execution.

By analyzing the execution of evolved genomes from both
environment types, we found that memory use involved both
the organization of the genome and volatile states of the or-
ganisms’ virtual CPUs. The organization of the genomes
provided functional modularity, while different environmen-
tal information created different states of the virtual CPU
that lead to differential behavior based on the current state
in the environment. The resulting behaviors formed a sim-
ple set of behavioral repertoires that could be used flexibly
in response to environmental stimuli.

Conclusions and Future Work
Through these results, we illustrate that memory and flexi-
ble behavior can evolve in simple environments. Evolution
capitalizes on both environmental change and regularity to
construct these solutions. The experiments presented here
suggest, not surprisingly, that it is more difficult to evolve
volatile memory than to maintain “evolutionary memory”
(reflexes).

Results such as those we present here may inform inves-

tigation in both biology and computer science. Insights into
the evolution of behavioral characteristics of natural organ-
isms must rely on studies of extant species, since the fossil
record provides little information about an animal’s behav-
ior. Our results may help provide additional insights by al-
lowing detailed analysis of the evolutionary transitions that
led to intelligent behavior. Those insights can, in turn, be
used in the context of computer science to produce artificial
systems that exhibit the behavioral flexibility of natural sys-
tems. The current work is an early step in this direction.

Natural evolution produced many impressive navigation
abilities in animals. These capabilities are made up of inter-
woven strategies, which are themselves made up of simpler
underlying mechanisms. Memory is undoubtedly one such
underlying mechanism. We witnessed memory evolve even
when not required in the single-direction path experiments;
the “step-counter” organism based part of its strategy on
tracking its progress along its path. This organism possesses
a simple odometry mechanism, like those found in many an-
imal navigation systems. This same organism was also able
to count its rotations to orient itself in the correct direction.
Self-referential compasses are another component of animal
navigation. The results from our study hold promise of fu-
ture insights into questions surrounding the evolution of nav-
igation. For example, the environments used in the current
study can be adjusted so that organisms need to explore the
environment to find resources, and then return to their ini-
tial location as efficiently as possible. This situation sets up
investigating the evolution of path integration. There is a
rich collection of evidence of this ability in many animals,
and different models of the mechanism have been presented
(e.g., Mittelstaedt (1985), Müller and Wehner (1988), Hart-
mann and Wehner (1995)). How evolution produced such
a capability is, however, an open question. Some interest-
ing work has explored this issue, such as Vickerstaff and
DiPaolo (2005), who used a genetic algorithm approach to
evolve neural network models of path integration. Experi-
ments such as those in the current work have the potential
to contribute to that discussion, by allowing detailed exami-
nation of both the evolution and the evolved algorithms that
are not possible in network based approaches.

The path-following environments can be used to study
the evolution of associative memory, the process by which
animals learn about cause-and-effect relationships between
events and then behave appropriately (Rescorla, 1988; Shet-
tleworth, 1998). We can simulate the arbitrary stimulus, im-
portant for associative learning, by generating random num-
bers for signpost cues each time a particular path is assigned
to an organism, changing the values for the organism’s off-
spring. For true associative memory, the organisms should
be able to associate arbitrary features of their surroundings
with their desired goal. We plan to vary the relationship be-
tween the cue and the target, so the cue might be prompting a
turn in the paths, or it might indicate that the food source isa
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certain distance ahead, regardless of what else the organisms
have seen in the interim.

The experimental results that we present here demonstrate
the evolutionary origin of simple intelligence and behavioral
flexibility. Organisms from these experiments were capable
of gathering information from the environment, storing that
information, and using the information for decisions. More-
over, organisms that succeeded in the irregular path environ-
ments were able to use a past individual life experience to
guide future decision-making.
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Abstract

Complex systems involving many interacting components be-
ing out of equilibrium often organize into patterns. Under-
standing the underlying principles that govern such systems
might lead to a deeper insight into living systems and the
development of new applications in robotics. In this contri-
bution, we investigate water-based self-assembling modules,
exhibiting a segregation effect under some particular condi-
tions. The system consists of vibrating (active) and non vi-
brating (passive) circular modules floating on the surface of
the water. The segregation happens as a result of a depletion-
like force, which is of purely entropic nature and is based on
the characteristics of the modules (active or passive). We fo-
cus especially on the dynamics of the process with respect to
the energy and the entropy. Some applications of the designed
system are also discussed.

INTRODUCTION
Self-organization is one way by which nature builds arte-
facts at various scales. Nature offers diverse examples: the
formation of molecular crystals [9], the folding of polypep-
tide chains into proteins [17], the folding of protein into
their functional form [20], the cell’s spontaneous organiza-
tion into tissues [18], bacteria into colonies [10] [6], thefor-
mation of swarms (flock of bird or school of fish [23]) at a
higher level, are commonly achieved in a distributed man-
ner, where there is no central control system.

In the industry, as the aimed size of products decreases,
people have started to recognize the advantages of self-
organization in general and self-assembly in particular –
which is typically approached in a bottom-up fashion. The
potential capability as an alternative to replace traditional
manipulating methods by self-assembly has been brought to
attention. Standard manipulators have shown some limita-
tions in the manipulation of nano-scaled components and
there is a need for alternative methods with the miniaturiza-
tion in the nanotechnology industry.Nanogen Inc employs
electric field-mediated self-assembly to bring together DNA
nanocomponents for electronic and diagnostic devices [13].
Alien technology Corporation uses self-assembly techniques
like shape recognition or fluid transport to fabricate micro-
scaled RFID tags [8][28].

One collective behavior that can emerge as result of local
interaction is segregation, that is a spatial sorting method,
where a group of objects occupies a continuous area of the
environment which is not occupied by members of any other
group. Segregation plays a key role in the food and drug pro-
cessing industry. In particular, when shaking foods made of
particles or granular material of different sizes, segregation
effects occurs and the underlying mechanism is known as the
Brazil nut effect or themuesli effect [24]. This spontaneous
ordering goes against one’s intuition that objects get mixed
when merged in random directions and was described by
Barker and Grimson in this way: ”During the periods when
shaking loosens the packing, individual small particles can
move into voids beneath large particles and so prevent them
from returning to their previous positions. It is far less prob-
able that several small particles will move together so as to
create a void that can be occupied by a single large parti-
cle. The net effect is that the smaller particles occupy the
lower positions during the active part of the shaking process
and then become trapped there when the grains fix into a
new arrangement.” [3]. A similar phenomenon takes place
in the industrial production of drugs, thereby yielding con-
siderable risks for patients (who are assumed to consume
homogeneous mixings).

Many self-assembly and self-organizing systems have
been suggested using different approaches, several of them
inspired by biology. The best known example in this domain
is probably the Reynolds flocks of birds [23], where differ-
ent agents generate a flocking behavior by means of sim-
ple rules: collision avoidance, speed and heading matching
and maintaining a close distance to the neighbor flock mates.
The collision avoidance enables the agents to avoid colliding
with each other; the second rule enables the agents to match
their speed with their neighbors speed, whereas the third rule
enables them to maintain a close distance to the neighboring
birds. Reynolds simulations of the flock of bird show that
these local interactions produce a global behavior similarto
the flocks of birds we observe in the nature. Reynolds work
doesn’t only provide a tool to understand how the real flocks
of birds achieve their global behavior but also help to de-
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sign machines with formation control capabilities. White-
sideset al. assessed dynamic self-assembly would be one
of the key challenges in building self-assembly systems [26]
and in understanding life. Their suggestion relies on the fact
that the most living systems are dynamic and understanding
dynamic self-assembly would probably also leads to under-
standing life. Pfeiferet al. proposed a new approached in
the design of robotics systems in general and living systems
in particular. They suggested a synthetic approach taking
morphological aspects into account [22].

There are three basic issues with this picture: (1) al-
though little is known about the underlying assembly pro-
cess, the fact that many living systems adopt similar mech-
anisms hints at common design principles suggesting that
simplified models (such as the one presented in this paper)
might be helpful in understanding the process; (2) even for
a small cells, there are too many possible intermediates to
allow a complete description of the assembly process with
three independent stages [10]; and (3) a generalized scheme
to avoid a substantial degree of incorrect assembly has to
exist.

To date a few self-reconfigurable modular robots relying
on stochastic self-assembly have been built [4][7]. White
et al. studied two systems in which the modules binding
preferences are coded in a program executed by an on-board
microcontroller, and thus can easily reconfigure the struc-
ture [25]. The modules are initially unpowered and passive,
but once they bind to a seed module connected to a power
supply, they become active. Griffithet al. studied a system
of template-replicating modules [12]. They used modules of
the same type, which are programmable and can store dis-
tinct states. The system demonstrated the self-replication
of a five modules polymer. Each module executed a finite-
state machine. Klavinset al. examined the problems of
designing a grammar that causes modules to assemble into
desired products, of predicting the time complexity of such
processes, and of predicting (and optimizing) the yield of
such processes [15]. Emergent self-propulsion mechanisms
were investigated by Ishiguroet al. [14]. In Ant-inspired
robotics, the interest in self-organization has been driven by
the observations of the same phenomena in ant colonies, in
particular the brood sorting byTemnothorax [11]. Wilson et
al. [27] created an algorithm to realize two colors annular
sorting which used differential pull-back distances for dif-
ferent object types. By discriminating between three puck
types, the robots could drop the first type of object on col-
liding with another puck, drop the second object type after
pulling back a short distance and drop the third puck type
after pulling back a further distance.

The Tribolon platform developed in our group is an ex-
ample of a system using the morphology, which means the
form and the shape of the involved components to get self-
propelled robots to self-assemble [19]. Previouly, we carried
out several experiments with circular sector shaped modules

that can assemble to a single module. To overcome the re-
straint that the system has some difficulties to possess global
information, the designer is supposed to consider the charac-
teristics of the system and design new in/out scheme and ap-
ply an adequate controlling method to the robots. If the units
move around by other means (e.g., by exploiting surface ten-
sion or by taking advantage of Brownian motion), the sys-
tem is stochastically self-reconfigurable implying variable
reconfiguration times and uncertainties in the knowledge of
the units location (the location is known exactly only when
the unit docks to the main structure). The advantages of this
form of reconfiguration are at least two-folds: it can be ex-
tended to small scales, and it alleviates local power require-
ments.

In this paper, we show how segregation effects can be
achieved on our platform. An important part of our mod-
elling is the introduction of passive and active modules. We
will see how these two types of particles successfully segre-
gate and describe the dynamics of the segregation behaviour
by discussing the center of mass of each cluster and the en-
tropy of the system.

THE EXPERIMENTAL SETUP
The Model
The term self-assembly implies that the elements or parts
involved assemble in a spontaneous manner without external
intervention or control. Taking this into account, we chose
to produce a set of modules with the same shape that swarm
on water.

pantograph

magnets

electrode

vibration motor

base plate

base plate

1cm

self-propelled

module

self-propelled

module

passive

module

Figure 1: (a) Self-propelled and passive modules. Each
module weighs2.8 g and has a footprint of12.25 cm2.

To conduct the experiments, we used the Tribolon plat-
form [19] consisting of centimeter-sized modules floating
on the water surface. All the modules are equipped with
a permanent magnet attached at the bottom and aligned in a
way so that they repel each other (north is always pointing
up). Some of the modules are, in addition to the permanent
magnet, also equipped with a vibration motor. In this paper,
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Figure 2: Illustration of the experimental environment with
three modules.

we will denote a module provided with a vibration motor as
vibrating or active module and a module only provided with
a permanent magnet as passive module.

The vibrating modules are equipped with a flat core-
less vibration motor (T.P.C DC MOTOR FM34F,12000 ∼

14000 rpm (2.5− 3.5V olts)) on the top of the base plate to
allow self-propulsion, and all the modules with a single cu-
bic permanent magnet (flux density1.3T , 5 × 5 × 5mm3,
we decided that a single module should contain only one
magnet) at the bottom for attractive/repulsive interactions
(Fig. 2). This allowed the modules to jiggle and move
around in their environment. A pantographic mechanism
was used to supply the vibration motor with energy. When
an electrical potential was applied to the ceiling plate (see
Fig. 2), current flowed through the pantograph to the vibra-
tion motor was applied to the ceiling plate, current returning
to ground via electrodes immersed in the conductive water.

Due to this setup, all modules receive the same constant
power and they are be lightweight (2.8 g each), which would
not be the case if batteries were used.

The Interaction Mechanism

Long-range interactions between two modules depend only
on the force between the magnets on the tiles. We consider
the magnets as dipoles with a magnetic momentm.

The magnetic potentialφj(r) at a positionr due to the
magnetic momentmj is given by

φj(r) =
µ0

4π

mj · r̂

r2
(1)

whereµ0 = 4π × 10−7Tm/A is the permeability of free
space, and̂r ≡ r/|r| assuming that|r| = r is much larger
than the size of the magnet. The magnetic flux of the dipole
is then given by

Bj = −∇φj (2)

and the magnetic potential energyUij acquired by a second
dipolemi placed in the field ofmj is given by

Uij = −mi ·Bj . (3)

Then, the force between the two dipoles is found by differ-
entiating (3) with respect tor.

F ij = (mi · ∇)Bj (4)

τ ij = mi ×Bj (5)

We can determine the total potential energy of the system as

Utotal =
1

2

∑

i,j i6=j

Uij . (6)

Finally, we normalize the energy asU ′

total ≡

Utotal/(
µ0

4πm
2). The long range interaction described above

is identical for each type of modules, since identical magnets
were used. However, the short range interaction, i.e. the fi-
nal alignment, is dominated by the non-linear dynamics and
will be explain later in this paper.

active modules moving to the middle 

of the water tank because of the 

vibration

passive modules come together, 

maximizing the free space for the 

active modules

00:00 00:15 00:30 00:45 00:60 00:75

Figure 3: The experimental results in time sequence. The frames are captured every 15 seconds
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THE EXPERIMENTAL RESULTS
The initial condition
In the following part, we investigate how designed system
achieves a global segregation effect. Our experimental setup
consists of ten modules, where five red colored modules are
”passive” and the remaining blue colored modules are ”ac-
tive”, meaning the vibration motors are implemented. We
conducted 15 trials for the statistical analysis (see section ).
In Fig. 3, we show a representative result in time sequence of
the obtained segregation behavior. The initial starting con-
dition was set as depicted in Fig. 3 (00:00), in which all the
modules were symmetrically aligned in a circular form alter-
nately, such that the passive and the vibrating modules have
equal chances in the segregation process. This configura-
tion also allows us to make a statistical analysis with similar
starting conditions. The duration time for the experiment
was set to 90 seconds.

Global Observations
In order to perform the analysis, fifteen experiments were
conducted and the trajectories (positions) of all the mod-
ules were tracked using the open source tracking software
”Tracker Video Analysis and Modeling Tool” [5].

Our observation is that the red active modules tend to as-
semble together and go apart from the blue passive modules,
such that two different modules clusters can be spatially dis-
tinguished; the first cluster contains only the active mod-
ules and the second cluster the passive modules (see Fig. 3
(00:75)).

In the following sections, we investigate the segregation
behavior using statistical methods, by calculating the poten-
tial energy, the entropy and the centroids distance of the two
clusters. The reader should notice that the calculated values
for the entropy, the potential energy and the centroids are
mean values over the fifteen experimental trials. The error
bars represent the standard deviation of uncertainty within
the fifteen experimental trials.

Potential Energy Transition
The magnetic potential energy of the system is defined in
Eq. 6. We calculate the total magnetic potential energy of
the system and show the obtained result in Fig. 4 presents
the obtained result as function of the time.

Due to the characteristics of the system, non-equilibrium
system, the value keeps changing. Suppose we have all pas-
sive modules, the system is supposed to reach to the state
where modules are equally distributed and fixed.

The Centroid Distance
In this section, we investigate the cluster formation by com-
puting the centroid of the system of the two clusters.

The centroid(X,Y ) = ( 1
N

∑N

i=1(xi),
1
N

∑N

i=1(yi)) of a
group (or cluster) of modules is the center of mass of the
modules, whereN is the number of modules in the modules
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Figure 4: Total Energy of the system.

group,xi andyi are the positions of thei-th component of
the considered group, respectively. We calculated the time
evolution of the difference between the two modules groups
(the passive modules on one side and the active modules on
the second side and depicted in Fig. 5.

−10 0 10 20 30 40 50 60 70 80 90
0

2

4

6

8

10

12

14

Time (s)

D
is

ta
n

c
e

s
 b

e
tw

e
e

n
 t
h

e
 c

e
n

tr
o

id
s
 (

c
m

)
s

Figure 5: Time evolution of the distance to between the cen-
ter of mass of the two clusters (N = 15).

As depicted in Fig. 5, there is an increase in the distance
between the centroids of the passive and the vibrating mod-
ules. This corresponds to the formation of two clusters of
modules with a final mean distance between the two clusters
of approximately 10 centimeters. Given that the diameter of
the arena (or tank as you wish) is 22.5 centimers, this corre-
sponds to the 50% of the whole area.

Entropy
The definition of entropy differs in scientific fields, depend-
ing on to what one applies. Thermodynamics entropy (to
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heat), statistical mechanics entropy (to object), and informa-
tion entropy (to event) are probably the three best known
entropies in science. In self-assembly, systems that cannot
presume some specific physical amounts, such as quantity
of heat, employ information entropy for the measurement of
their ”randomness”.

Balch proposed a novel definition of entropy (position
order) that can be applied for the measurement of multi-
components distributions (or quantitative metric of diver-
sity) [2]. He usesH from Shannon’s theory

H(h) = −

N
∑

i=1

pi(h) log2(pi(h)) (7)

wherepi is the number of modules in thei− th cluster (i ∈
N ) divided by the total number of modules. A component
belongs to a cluster if the distance is within the length ofh

(||~ri − ~rj || < h; ~ri is the position of thei-th component).
He then integratesH(h) over all possibleh, and defines it
as entropy, namely:

S =

∫

∞

0

H(h)dh. (8)

The definition describes the randomness of modules well.
Note that in this definition, the entropy may decreases over
time. In physics, an entropic force acting in a system is
a macroscopic force whose properties are primarily deter-
mined not by the character of a particular underlying micro-
scopic force (such as electromagnetism), but by the whole
system’s statistical tendency to increase its entropy. We ex-
amined the entropy of the system as derived as in Eq. 8.
Fig. 6 shows the time evolution of the entropy of the system.
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Figure 6: The Transition of Entropy.

As we can observe, the entropy of the system is decreas-
ing as time progresses, which represents the convergence of
the system to more ordered configurations. This corresponds
to the cluster formation described of the previous section.

DISCUSSIONS
Depletion Effect

In this section, we speculate the main cause of the segrega-
tion effect. Fig. 7 illustrates the exclusive regions of mod-

Figure 7: Illustration of the excluded area of the passive
modules.

Figure 8: Explanation of the transitions in the experiments

ules, where different module have difficulty in lying in the
area around another module due mainly to the magnetic re-
pulsive forces. When the passive modules are closed to the
wall, the excluded area for the passive modules and the wall
overlap (shaded region) and this causes the reduction of the
total excluded area. Now the extra area is left for the vi-
brating modules. As shown here, the overlap is larger when
the passive modules are placed next to the curved portion
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of the wall compared to it being in the middle of the wa-
ter tank. In the experiments, the vibration motion acts as
an effective short range repelling potential, which results in
the observed separation of the passive modules, and in con-
sequence an effective attraction between the passive mod-
ules. In nature, depletion effects, which is also called ex-
clusion effect are observed at all length scales; especially
at the molecular scale, it can be described from a statistical
mechanics point of view as a minimization of free energy.

The careful observation of the segregation process is de-
scribed in Fig. 8. At the initial stage (Fig. 8 a), the vibrating
modules tend to go to the middle of the water tank, due to the
vibration. In a further step, the vibrating modules maximize
their free space by pushing the passive modules to one side
of the water tank (Fig. 8 b). The free-space reaches its max-
imum when all the passive modules are close together and
there is no blank space between them. The passive modules
move towards the wall (as illustrated in Fig. 7). In that way,
the free area available to the vibrating modules is larger ifa
large module is placed next to the curved surface of the wall,
than if it is in the middle of the water tank.

A similar segregation effect is observed in granular mix-
tures and is known in physics as depletion effect. The seg-
regation criteria can be the size, the shape, the mass or some
frictional coefficients and can be caused by several mecha-
nisms, including vibration, percolation, convection and tum-
bling [16] [21]. The force created by the vibrating modules,
which pushes the passive modules together and increases the
space available for the vibrating modules, is called depletion
force. This force, which is purely entropic in origin has been
predicted by Asakura and Oosawa [1] and confirmed since
then by several experiments. Other work on both experi-
ments and simulations were conducted using passive mod-
ules mostly of different sizes and have shown, that a similar
segregation can be produced by shaking mixtures of differ-
ent sizes vertically ([24]). This underlying effect is called
the Brazil nut effect and big particles, seem to move to the
top, while smaller particles move to the bottom.

Properties of the system

The particularity of our experiments is that it is conducted
at the centimeter size, , and not to mention, which helps to
observe and investigate the phenomena directly using sim-
ple observation tools (i.e. visual tracking for example) com-
pared to the experiments at smaller scales. Furthermore, our
experiments were conducted in two dimension utilizing also
vibrating modules; there is no microcontroller, no sensing,
we only exploit the dynamic interaction between the mod-
ules to achieve the segregation. This way of proceeding is
unusual in distributed system’s robotics, where one mostly
use distributed algorithms and local rules to reach global pat-
terns.

The advandtage of distributed systems and the
potential applications

Realizing controlled global segregation behavior of dis-
tributed modules offers various applications; here we high-
light self-healing capabilities. A system containing a large
amount of locally interacting (and cooperating) micro-
components offers considerable problems with respect to
maintenance (removing of damaged components as well as
recharging). If proper functioning is correlated with seg-
regation behavior, non-functional modules may tend au-
tonomously to the edge of the container where they can be
replaced or recharged. Conceptually, this means that at least
parts of the control of the maintenance process are embod-
ied in the system. Future production processes may rely
on swarms of agents, probably of different morphology and
function. Tunable segregation mechanisms offer a poten-
tial for inducing a variety of different patterns of the agents
under consideration, yielding an additional option for pro-
gramming swarm based production processes.

Finally, studies of the type presented here may shed light
on, in an industrial context, highly relevant class of segrega-
tion processes in mixtures of objects of different morphol-
ogy. Examples are e.g. the Brazil nut effect, but also various
types of sieving processes (in which the basically passive
granules take up energy from a shaking table in a way that
depends on their respective morphology).

CONCLUSIONS AND FUTURE WORK

We proposed a stochastic self-assembly system in which a
segregation effect emerges as a result of local non-linear in-
teractions between the modules of the system. The system
involves passive and active vibrating modules, that randomly
move on water in a purely distributed way. By analyzing
fifteen experimental trials with statistical methods on a real
setup, we have shown the expected segregation behavior, in
which passive and active modules induced formed groups,
hence causing a segregation behavior. We believe that un-
derstanding dynamic self-assembly will play a key role in
the development of small-scaled modular robots and will
offer new opportunities to deepen both the realization and
the theoretical understanding of self-assembly systems. Fur-
thermore, some of the principles discovered especially con-
cerning the dependence of self-organization on the dynamic
interaction between the modules might lead to a better un-
derstanding of similar processes found in natural systems
and of life in general.
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Extended Abstract 

The evolution of the earliest nervous systems remains seriously under-researched. Within this small field, the focus has so far been 
mostly on the evolution of nerve cells, nervous system centralization and biomolecular precursors of nerve cells (Lichtneckert & 
Reichert, 2007). Another line of research concerns the geological and molecular evidence on ecological and morphological changes 
that may have contributed to the development of nervous systems in Precambrian life (Dzik, 2005; Peterson et al., 2005). 
An important open question is how the very first nervous systems might have worked as a behavior producing system. The classic 
assumption, dating back to Parker's (1919), is that nerve cells evolved to connect pre-existing sensors and effectors, a proposal that 
was strongly influenced by Sherrington's exposition of the reflex-organization in vertebrates. Nervous systems are here a connecting 
device that gradually became more complex by adding feedback loops and cognitive extensions (Braitenberg, 1984).  
However, this standard interpretation does not combine easily with other findings within this field. For example, many authors (e.g. 
Pantin, Passano, Horridge, Pavans de Ceccaty) claim that reflexes are a secondary development on top of a more primitive 
arrangement. The most basic examples of nervous systems are loosely connected nerve nets – skin brains (Holland, 2003) –  spread 
out over the body without fast and specialized connections between specific sensors and effectors. A long neglected suggestion, 
going back to Pantin (1956), is that early nerve nets contributed foremost to the organization of patterns of muscle contractions in 
large multicellular animals. Coordinated muscle contractions allowed large animals to move about when earlier mechanisms, like 
ciliary crawling, became too inefficient. Under this interpretation, the key innovative function of early nervous systems is primarily 
to generate larger-scaled effectors rather than connecting sensors to some pre-existing ‘effector’. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure: Emergent patterns on a simulated skin brain. Left: a simulation where every cell is connected to all six neighbors. Right: a 
simulation where every cell is connected to three, out of six, neighbors, forcing the spontaneous patterns to travel from bottom to 
top. 
 
 
Our model investigates the transition from a non-neural conductive epithelium (Mackie, 1970) to a basic nerve net. A basic tube-
like animal structure is approximated as a single sheet of cells that are both contractile and electrically conductive. Epithelial 
conduction produces spontaneous electrical activity on the bodily surface. We modelled the transition to nerve nets by varying three 
parameters: (a) Increasing the number of cells mimics increasing body-size. (b) Directionality of signalling, representing the 
evolution of synapses, makes cells in the model signal only in specific directions. (c) Formation and elongation of cell processes, 
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representing the early evolution of axons and dendrites, allows cells to signal to non-neighbouring cells without influencing cells in 
between. The two last parameters represent key-aspects of neurons and the model provides a platform to investigate how these 
parameters modify global activity patterns at different body-sizes. The findings are relevant for a better understanding of the basic 
operation of nervous systems, early nervous system evolution and the problems encountered in the field of soft robotics. 
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Abstract

An agent controlled by a single computational neuron is used
to solve maze problems. The neuron has activity and time-
dependent computational and topological structure. The be-
haviour of a neuron is controlled by a collection of seven
evolved programs that are loosely analogous to aspects of bi-
ological neuron (dendrites, soma, axons, synapses, electrical
and developmental behaviour). The programs are represented
using Cartesian Genetic Programming. Our aim is to show
that it is possible to evolve programs that develop a single
neuron so that it is able to learn how to solve maze problems
purely by experience.

Introduction
Although many techniques have been introduced to develop
Artificial Neural Networks (ANNs) using genetic program-
ming, we found no evidence that an attempt has been made
to develop the functional model of real neurons with bio-
logical morphology. We have attempted to do this by de-
vising an abstraction of real neurons which captures many
important features. Various studies have shown that ”den-
dritic trees enhance computational power” (Koch and Segev
(2000)). Neurons communicate through synapses which are
not merely the point of connection between neurons (Kandel
et al. (2000)). They can change the strength and shape of the
signal over various time scales. We have taken the view that
the time dependent and environmentally sensitive variation
of morphology and many other processes of real neurons
is very important and richer models are required that incor-
porate these features. In our model a neuron consists of a
soma, dendrites, axons with branches and dynamic synapses
and synaptic communication. Neurite branches can grow,
shrink, self-prune, or produce new branches. This allows
it to arrive at a network whose structure and complexity is
related to properties of the learning problem.

Our aim is to find a set of computational functions that
encode neural structures with an ability to learn through ex-
perience. Such neural structure would be very different from
conventional ANN models as they are self-training and con-
stantly adjust themselves over time in response to external

environmental signals. In addition they could grow new net-
works of connections when the problem domain required it.

From our studies of neuroscience, we have identified
seven essential computational functions that need to be in-
cluded in a model of a neuron and its communication mech-
anisms. From this analysis we decided what kind of data
these functions should work with and how they should inter-
act, however we cannot design the functions themselves. So
we turned to a well established and efficient form of Genetic
Programming called Cartesian Genetic Programming (CGP)
(Miller and Thomson (2000)).

We have tested the learning capability of this developmen-
tal system on maze problems. A maze is a complex tour puz-
zle with a number of passages and obstacles (impenetrable
barriers). It has a starting point and an end point. The job
of the agent is to find a route from starting point to the end
point. The agent starts with a limited energy that increases
and decreases as a result of interaction with the paths and the
obstacles in the maze environment. We show that the agent
is able to solve the maze a number of times in a single life
cycle. The agents start a maze with a single neuron having
random structure. However, the branching structure of the
neuron can grow and shrink during the game environment.

In previously work, we evaluated the effectiveness of this
approach on a classic AI problem called wumpus world
(Khan et al. (2007)). There we used a number of neu-
rons to solve the wumpus world. We have also tested the
network of CGP neurons for playing Checkers (Khan and
Miller (2009)). We found that the agents improved with ex-
perience and exhibited a range of intelligent behaviours. In
this paper we have turned our attention toward a single neu-
ron. The motivation for this was to explore the capability of
a single neuron in this model.

Biology of Neuron
Neurons are the main cells responsible for information pro-
cessing in the brain. They are different from other cells in
the body not only in term of functionality, but also in bio-
physical structure (Kandel et al. (2000)). They have differ-
ent shapes and structures depending on their location in the
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brain, but the basic structure of neurons is always the same.
They have three main parts.

• Dendrites (Inputs): Receive information from other neu-
rons and transfer it to the cell body. They have the form
of a tree structure, with branches close to the cell body.

• Axons (Outputs): Transfer the information to other neu-
rons by the propagation of a spike or action potential. Ax-
ons usually branch away from the cell body and make
synapses (connections) onto the dendrites and cell bodies
of other neurons.

• Cell body (Processing area or Function): This is the main
processing part of neuron. It receives all the information
from dendrite branches connected to it in the form of elec-
trical disturbances and converts it into action potentials,
which are then transferred through axon to other neurons.
It also controls the development of neurons and branches.

Neural modeling
A number of techniques are used for simulation of neu-
ral development either in the form of construction algo-
rithms or biologically-inspired growth processes. One ap-
proach aims to reproduce the geometrical properties of real
neurons and does not consider the actual biological pro-
cesses responsible for neural growth that could be used in an
electrophysiology simulator (Stiefel and Sejnowski (2007)).
Lindenmayer-System have been used to invent the proce-
dure for modeling plant branching structures (Lindenmayer
(1968)) and later has been successfully applied to develop
neural morphologies (Ascoli et al. (2001)). A number of
other methods such as probabilistic branching models (Klie-
mann (1987)), Markov models (Samsonovich and Ascoli
(2005)) and Monte Carlo processes (da Fontoura Costa and
Coelho (2005)) are also proposed as construction algorithm
for neural development. Although these methods produce
interesting neuronal shapes, they do not provide any in-
sight into the fundamental growth mechanisms for neuronal
growth. Growth models on the other hand provide the bio-
logical mechanisms responsible for generation of neuronal
morphology. A number of interesting agent-based simula-
tions are produced that highlights various aspects of biolog-
ical development, such as cell proliferation (Al-Musa et al.
(1999)), polarization (Samuels et al. (1996)), neurite exten-
sion (Kiddie et al. (2005)), growth cone steering (Krottje and
van Ooyen (2007)) synapse formation (Stepanyants et al.
(2008)) and axon guidance and map formation (de Gennes
(2007)).

Although these methods introduce various interesting
techniques to model the neuronal growth which is the early
stage of development of brain, they have not consider the
signal processing aspects and its effect on the growth dur-
ing interaction with the world via sensory mechanisms. We

introduce the method of evolving the functions that are re-
sponsiple for neuronal growth, signalling and synapse for-
mation during the lifetime of the agent as explained in later
sections.

Computational Development
In biology, multicellular organisms are built through devel-
opmental process from ’relatively simple’ gene structures.
The same technique could be used in computational devel-
opment to produce complex systems from simpler systems
that are capable of learning and adapting (Stanley and Mi-
ikkulainen (2003)).

Quartz and Sejnowski proposed a powerful manifesto for
the importance of dynamic neural growth mechanisms in
cognitive development (Quartz and Sejnowski (1997)). Mar-
cus emphasized the importance of growing neural structures
using a developmental approach (Marcus (2001)).

Parisi and Nolfi suggested that if neural networks are
viewed in the biological context of artificial life, they should
be accompanied by genotypes which are part of a popula-
tion and inherited from parents to offspring (Parisi and Nolfi
(2001)). They have used a growing encoding scheme to
evolve the architecture and the connection strengths of neu-
ral networks. The network consists of a collection of ar-
tificial neurons distributed in 2D space with growing and
branching axons. The genetic code inside them specifies the
instructions for axonal growth and branching in neurons.

Cangelosi proposed a neural development model, which
starts with a single cell that undergoes a process of cell divi-
sion and migration until a collection of neurons arranged in
2D space is developed (Cangelosi et al. (1994)). At the end,
neurons grow their axons to produce connection among each
other until a neural network is developed. The rules for cell
division and migration are stored in genotype, for a related
approach see (Dalaert and Beer (1994)). Gruau also pro-
posed a similar method (Gruau (1994)). The genotype used
in Gruau’s model is in the form of a binary tree structure as
in GP (Koza (1992)).

Rust and Adams have used a developmental model cou-
pled with a genetic algorithm to evolve parameters that grow
into artificial neurons with biologically-realistic morpholo-
gies (Rust et al. (2000)). Jakobi created an impressive ar-
tificial genome regulatory network, where genes code for
proteins and proteins activate (or suppress) genes (Jakobi
(1995)). The proteins define neurons with excitatory or in-
hibitory dendrites. The individual cell divides and moves
due to protein interactions causing a complete multicellular
network to develop. Federici presented an indirect encod-
ing scheme for development of a neuro-controller and com-
pared it with a direct scheme (Federici (2005)). He imple-
mented the system on a Khepera robot and tested it using
direct and indirect encoding schemes, finding that the latter
reached high fitness faster.

Downing favors a higher abstraction level in neural de-
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velopment to avoid the complexities of axonal and den-
dritic growth while maintaining key aspects of cell signal-
ing, competition and cooperation of neural topologies in na-
ture (Downing (2007)). He tested it on a simple movement
control problem known as starfish. The task for the k-limbed
animate is to move away from its starting point as far as pos-
sible in a limited time, producing encouraging preliminary
results.

One of the major difficulties in abstracting neuroscience
is that one can lose the essential aspects required to make a
powerful learning system. However the evidence of impor-
tance of time-dependent morphological processes in learn-
ing is highly compelling and we have thus included many of
these aspects in a model of an artificial neuron.

The Neuron Model
This section describes the Cartesian Genetic Programming
(CGP) and details the structure and processing inside the
CGP Neuron and the way inputs and outputs are interfaced
with it.

Cartesian Genetic Programming (CGP)
CGP is a well established and effective form of Genetic Pro-
gramming. It represents programs by directed acyclic graphs
(Miller and Thomson (2000)). The genotype is a fixed length
list of integers, which encode the function of nodes and the
connections of a directed graph. Nodes can take their in-
puts from either the output of any previous node or from
a program input (terminal). The phenotype is obtained by
following the connected nodes from the program outputs to
the inputs. The function nodes used here are variants of bi-
nary if-statements known as 2 to 1 multiplexers (Miller et al.
(2000)).

In CGP an evolutionary strategy of the form 1 + λ, with
λ set to 4 is often used (Miller et al. (2000)). The parent, or
elite, is preserved unaltered, whilst the offspring are gener-
ated by mutation of the parent. If two or more chromosomes
achieve the highest fitness then newest (genetically) is al-
ways chosen. We have used this algorithm in the work we
report here.

Health, Resistance, Weight and Statefactor
Four variables are incorporated into the CGP Neuron, repre-
senting either fundamental properties of the neuron (health,
resistance, weight) or as an aid to computational efficiency
(statefactor). The values of these variables are adjusted by
the CGP programs.

The health variable is used to govern replication and/or
death of dendritic and axonal connections. The resistance
variable controls growth and/or shrinkage of dendrites and
axons. The weight is used in calculating the potentials in
the network. Each soma has only two variables: health and
weight. The statefactor is used as a parameter to reduce

computational burden, by keeping neuron and branches in-
active for a number of cycles. Only when the statefactor is
zero are the neuron and branches are considered to be ac-
tive and their corresponding program is run. Statefactor is
affected indirectly by CGP programs.

Inputs, Outputs and Information Processing inside
CGP Neuron

The signal is transferred to and taken from this neuron us-
ing virtual axon and dendrite branches by making synaptic
connections.

The signal from the environment is applied to CGP neu-
ron using five virtual input axo-synaptic connections. Five
virtual output dendrite branches are used to decide the move-
ment of the agent. The virtual axo-synaptic branches are al-
lowed to not only transfer signals to the dendrite branches
of processing neuron (CGP Neuron) but also to the output
virtual dendrite branches which decide the movement of the
agent. The CGP Neuron transfers signals to the virtual out-
put dendrite branches using the program encoded in the axo-
synaptic chromosome.

Information processing in the CGP Neuron starts by se-
lecting the list of dendrites and running the electrical den-
drite branch program. The updated signals from dendrites
are averaged and applied to the soma program along with
the soma potential. The soma program is executed to get
the final value of soma potential, which decides whether a
neuron should fire an action potential or not. If soma fires,
an action potential is transferred in forward direction using
axo-synaptic branch programs.

Functionality of CGP Neuron

The CGP Neuron is placed at a random location in a two
dimensional spatial neural grid (as shown in figure 1). It is
initially allocated a random number of dendrites, dendrite
branches, one axon and a random number of axon branches.
Neurons receive information through dendrite branches, and
transfer information through axon branches to neighbouring
dendrite branches. The branches may grow or shrink and
move from one neural grid location to another. They can
produce new branches and can disappear. Axon branches
transfer information only to dendrite branches in their prox-
imity. Electrical potential is used for internal processing of
neurons and communication between neuron and is repre-
sented by an integer (32 bit).

Neural functionality is divided into three major cate-
gories: electrical processing, life cycle and weight process-
ing. These categories are described in detail below.

Electrical Processing The electrical processing part is re-
sponsible for signal processing inside neuron and commu-
nication between neurons. It consists of dendrite branch,
soma, and axo-synaptic branch electrical chromosomes.
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External output

External Input

Figure 1: On the top left a neural grid is shown contain-
ing a single neuron. The rest of the figure is an exploded
view of the neuron is given. Electrical processing parts: den-
drite (D), soma (S) and axo-synapse branch (AS) are shown
as part of neuron. Developmental programs responsible for
the life-cycle of neural components are also shown (shown
in grey). These are dendrite branch life (DBL), soma life
(SL) and axo-synaptic branch life (ASL). The weight pro-
cessing program (WP) is used to adjusts synaptic and den-
dritic weights.

The dendrite program D, handles the interaction of den-
drite branches belonging to a dendrite. It take active dendrite
branch potentials and soma potential as input and updates
their values. The Statefactor is decreased if the update in
potential is large and vice versa.

If any of the branches are active (statefactor equal to zero),
their life cycle program (DBL) is run, otherwise D continues
processing the other dendrites.

The soma program S, determines the final value of soma
potential after receiving signals from all the dendrites. The
processed potential of the soma is then compared with the
threshold potential of the soma, and a decision is made
whether to fire an action potential or not. If it fires, it is kept
inactive (refractory) for a few cycles by changing its state-
factor, the soma life cycle chromosome (SL) is run, and the
firing potential is sent to the other neurons by running the
AS programs in axon branches.

AS updates neighbouring dendrite branch potentials and
the axo-synaptic potential. The statefactor of the axosynap-
tic branch is also updated. If the axo-synaptic branch is ac-
tive its life cycle program (ASL) is executed.

After this the weight processing program (WP) is run
which updates the Weights of neighbouring (branches shar-
ing same neural grid square) branches.

Life Cycle of Neuron This part is responsible for repli-
cation, death, growth and migration of neurite branches. It
consists of three life cycle chromosomes responsible for the

neurites development. The two branch chromosomes update
Resistance and Health of the branch. Change in Resistance
of a neurite branch is used to decide whether it will grow,
shrink, or stay at its current location. The updated value of
neurite branch Health decides whether to produce offspring,
to die, or remain as it was with an updated Health value. If
the updated Health is above a certain threshold it is allowed
to produce offspring and if below certain threshold, it is re-
moved from the neurite. Producing offspring results in a new
branch at the same neural grid square connected to the same
neurite (axon or dendrite). The soma life cycle chromosome
produces updated values of Health and Weight of the soma
as output.

Maze
A maze is a term used for complex and confusing series of
pathways. It is an important subject for autonomous robot
navigation and route optimization (Tani (1996); Blynel and
Floreano (2003)). The idea is to teach an agent to navi-
gate through an unknown environment and find the optimal
route without having prior knowledge. A simplified version
of this problem can be simulated by using a random two-
dimensional synthetic maze. The pathways and obstacles in
a maze are fixed.

Experimental Setup
In our experiments an agent is provided with CGP Neuron
as its computational network. The job of the agent is to
find routes from a starting point toward an end point of a
maze as many times as it can in a single life cycle. We have
used a 2D maze representation for this experiment as shown
in figure 2. The 2D Maze representation is explored in a
number of scenarios (Werbos and Pang (1996); Ilin et al.
(2007)). We have represented the maze as a rectangular ar-
ray of squares with obstacles and pathways (As shown in the
figure 2). A square containing an obstacle cannot be occu-
pied. Movement is possible up or down on squares on the
outside columns. Movement is either left or right on rows,
unless there is a pathway, in which case downward motion
is possible. This is inspired by the clustering approach used
to improve learning capabilities of an agent (Mannor et al.
(2004)). We used different sizes of mazes to test the ability
of the agent. The location of the obstacles, pathways and
exit are chosen randomly for different experimental scenar-
ios.

Energy of Agent The agent is assigned a quantity called
energy, which has an initial value of 50 units. If an agent
attempts to penetrate an obstacle its energy level is reduced
by 5 units. If it encounters a pathway and moves to a row
closer to the exit, its energy level is increased by 10 units. If
it moves a row further away from the maze exit, its energy
is reduced by 10 units. This is done to enhance the learning
capability of agent by giving it a reward signal. If the agent
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Figure 2: The left figure shows a 10x10 maze with impenetrable obstacles (black), downward pathways (arrows), start (S) and
exit point (E), and their corresponding signals. On the neighbouring squares of an obstacle (north, south, east and west) and the
exit there is a signal detectable by the agent indicating whether the agent is on a square neigbouring an obstacle (radial shading)
or exit(linear shading). The figure on the right shows the path of an evolved agent.

reaches the exit, its energy level is increased by 50 units and
it is placed back at the starting point and allowed to solve
the maze again. Finally, if the agent arrives home, without
having reached the exit, the agent is terminated. For each
single move, the agent’s energy level is reduced by 1 unit,
so if the agent just oscillates in the environment and does
not move around and acquire energy through solving tasks,
it will run out of energy and die.

Fitness Calculation The fitness value, which is used in
the evolutionary scheme, is accumulated while the agent’s
energy is greater than zero as follows:

• For each move, increase fitness by one. This is done, to
encourage the agents to have ’brain’ that remains active
and does not die.

• Each time the agent reaches the exit, its fitness is in-
creased by 100 units.

Inputs to neuron The maximum allowed neural potential
is M = 232−1. The agent’s input axo-synapses can perceive
input potentials, I , depending on the circumstances in the
following way. Note that the agent can perceives only one
signal on a maze square, even if there are more than one.

• I = 0 default.

• I = M/60 finds a pathway to a row closer to exit.

• I = M/120 tries to land on obstacle.

• I = M/200 on exit square.

• I = M/100 adjoining square north of an obstacle.

• I = M/110 adjoining square east of an obstacle.

• I = M/130 adjoining square south of an obstacle.

• I = M/140 adjoining square west of an obstacle.

• I = M/180 approaches exit from north direction

• I = M/190 approaches exit from east direction

• I = M/210 approaches exit from south direction

• I = M/220 approaches exit from west direction

• I = M/255 home square (starting point)

Agent movement and termination When the experiment
starts, the agent takes its input from the starting point (on the
top left corner as shown in figure 2). This input is applied to
the computational network (CGP Neuron) of the agent using
input axo-synapses. The network is then run for five cycles
(one step). During this process it updates the potentials of
the output dendrite branches. After the step is complete the
updated potentials of all output dendrite branches are noted
and averaged. The value of this average potential decides the
direction of movement for the agent. If there is more than
one direction the potential is divided into as many ranges as
possible movements. For instance if two possible directions
of movement exist, then it will take one direction if the po-
tential is less than (M/2) and the other if greater. The same
process is then repeated for the next maze square. The agent
is terminated if either its energy level becomes zero or if it
returns home.

CGP Neuron Setup The various parameters of CGP neu-
ron are chosen as follows. The neuron’s branches are con-
fined to 3x3 CGPN neural grid. Inputs and outputs to the
network are located at five different random squares. The
maximum number of dendrites is 5. The maximum branch
statefactor is 7. The maximum soma statefactor is 3. The
mutation rate is 2%. The maximum number of nodes per
chromosome is 100. Maximum number of dendrite and axon
branches are hundred and twenty respectively. These param-
eters have not been optimized and have largely been chosen
as they work reasonably well and do not incur a prohibitive
computational cost.
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Difficulty of the problem
It is important to appreciate how difficult this problem is.
The agents starts with a single neuron with random connec-
tions. Evolution must find a series of programs that build
a computational neural structure that is stable (not lose all
branches etc.). Secondly, it must find a way of processing in-
frequent environmental signals (pathway, blocks, exit, home
etc) and understand their meaning (beneficial and deleteri-
ous). Thirdly, it must navigate in this environment using
some form of memory. Fourthly, it must confer goal-driven
behaviour on the agent. The agent performance is deter-
mined by its capability to solve the maze as many times as it
can during a single life cycle.

The maze environment we produced is much more com-
plex than the traditional mazes, as the agent in this environ-
ment can only sense the signal from the maze square it is
occupying, not from neighbouring squares. So in order to
solve the maze the agent must develop a memory of each
step it makes and the direction of movement, and use this
memory to find a route toward the exit. As the structure
and weights of branches changes at runtime while solving
the maze, the learned information is stored both in weights
and the structure of the neuron. The capability to learn and
transformation of learned information into memory in the
form of update in weights and structure is stored in geno-
type.

Results and Analysis
Figure 3 shows a number of mazes in first column. Fitness
improvement during evolution is shown in the second col-
umn. The third column in figure 3 shows the energy varia-
tion of the best maze solving agent. The small continuous
drop in energy is due to an agent losing its energy after every
step. Large decreases occur through encounters with an ob-
stacle or going away from the exit by following the pathway
in opposite direction. Small increases shows the result of
following the pathway and moving toward the exit and large
increases happen when the agent finds the exit. The fourth
and the last column shows the variation in neuron branch-
ing structure over the agent lifetime, while it is solving the
maze.

The agent is able to solve the maze four to five times dur-
ing a single life cycle in all the cases as shown in the second
column of figure 3. During this process the structure of the
neuron also changes in terms of the number of dendrite and
axon branches. The fourth column of the figure 3 shows
that although agents start with a minimal structure they soon
achieve a structure that is most advantageous.

In traditional methods that train an agent to solve the maze
and find a path, the network characteristics are fixed once
it is trained to solve the maze. So if they are allowed to
start the maze again they would always follow the same path.
As the CGP Neuron continues to change its architecture and
parameter values it also continues to explore different paths

on future runs. This makes it possible for it to obtain (or
forget!) a global optimum route. The networks is not trained
to stabilize on a fixed structure, that it does so, seems to
be because it has found a suitable structure for the desired
task. The best architecture does not necessarily have to have
the most neurite branches. This is evident from the varied
characteristics in the last column of figure 3.

It is interesting to note that as the task become bigger and
bigger the structure of the neuron grows in response to it.
This is evident from the last column of the figure 3. For an
8x8 maze (first and second maze) the agent structure grows
and stabilizes on a fairly small structure whereas for a 10x10
maze (3rd, 4th and 5th mazes) the number of dendrite and
axon branches grows into a fairly large structure (the max-
imum allowed value is 100 in this case). Further investiga-
tion reveals that as the route toward the exit becomes more
and more complex, the network structure become richer in
terms of branches. This is evident from the second 10x10
maze (4th row) where the number of blocking paths are 10
(with each obstacle providing four walls in all the four di-
rections, 40 walls), and number of pathways are 20. Ten on
the sides (first and last column) with possibility to move in
both upward and downward directions and ten that are only
open toward the exit in downward direction). In this case the
agent was able to solve the maze three times, as is evident
from the rises in the energy level diagram. However, it dies
on the fourth run when it tried to escape through the start-
ing point. In next case, when we have reduced the number
of obstacles to six (24 walls) while keeping the number of
pathways the same as shown in the in fourth row of figure
3. This time the agent was able to solve the maze four times
and its axon branch structure is improved during its run but
the dendrite structure is stabilized on a low value. The final
maze is a variant of 10x10 maze in third row with similar
characteristics. In 8x8 mazes when the environment is sim-
ple, the agent was able to solve the maze a number of times
even though it stabilized on a fairly small branch structure.
This strongly suggests that the complexity of the CGP Neu-
ron structure increases with increase in the complexity of the
task environment.

Conclusion

We have described a neuron-inspired developmental ap-
proach to construct a new kind of computational neural ar-
chitectures which has the potential to learn through expe-
rience. We found that the neural structure controlling the
agents grows and changes in response to their behaviour,
interactions with the environment, and allow them to learn
and exhibit intelligent behaviour. We found that the network
complexifies itself in response to the environmental com-
plexity. The eventual aim is to see if it is possible to evolve
a network that can learn by experience.
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Figure 3: Mazes, Fitness, Best Run and Variation in Branch Structure
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Abstract

The Cellular Potts Model (CPM) is a cellular automaton (CA)
allowing to model the morphogenesis of living cells. It char-
acterizes a cell by its volume, surface and type. The CPM
has already been used to simulate several models of cell self-
organization. However, the cell shape is under-constraint i.e.
it does not implies a unique shape. We propose a definition
and an implementation of the cell shape in the CPM, that can
target a unique shape. The results of our simulations show
that this target shape can structure and maintain the cellular
tissue since the beginning of its growth and during its life.

I Introduction
The Cellular Potts Model (CPM) is a cellular automaton
(CA) made by Glazier and Graner (Graner and Glazier,
1992). It has been often used to model and simulate phe-
nomena occurring in the morphogenesis and embriogenisis.
(Cickovski et al., 2005; Marée, 2000). The CPM is an ex-
tension of the Potts Model developed by Potts in 1952 which
generalizes the Ising Model as described in (Wu, 1982). The
dynamics of these models are based on a minimization of en-
ergy. In the discrete case, the CPM consists of a grid where
a set of cells fills each site of the grid. The entities of the
system are called cells and are characterized by a volume,
surface and type. They are in interaction via contact ener-
gies and restricted access to grid sites.

The first model used to illustrate the CPM is the cell
sorting. It shows how simple local interactions allow self-
organization of the biological cells. At the cellular automata
level the self-organization has already been done in more ab-
stract phenomena like the Game of Life developed by John
Conway (Gardner, 1970) or the Langton’s Ant (Langton,
1984).

Since this first model several extensions of CPM have
been done (Anderson et al., 2007). However, the cell shape
is not defined in a more specific way. Indeed, in the ba-
sic CPM, the shape is characterized only by a target volume
and surface. So several shapes can verify a same target vol-
ume and surface. In this paper we propose to add an energy
that allows the cells to emerge towards a unique and defined

shape. This energy comes from a set of springs which pro-
vides the cell a elastic shape .

We use the cell shape to structure the shape tissue via the
cell self-organization. To test and show the characteristics
of the cell shape we simulate a model which comes from an
extended CPM. This model allows the cell to self-align and
to build a coherent cellular tissue i.e with a recognizable
shape and a dynamical tissue renewal.

This paper is organized as follows. A formalization of the
CPM is given in section II. In section III we describe the
MorphoPotts which represents a cell defined in the CPM to
which we add the elastic shape in section IV and other cell
behaviors. Using the MorphoPotts, in section V, we simulate
a model of tissue formation from which a stability of the cel-
lular tissue and a dynamical tissue renewal emerge. Finally,
we conclude in section VI.

II Presentation of the CPM
In this part we recall the formalism of CPM explained in
(Graner and Glazier, 1992; Glazier and Graner, 1993). The
first part describes the necessary notations to the compre-
hension of this paper. The second part describes the strong
notions of this formalism (see Figure 1), i.e. the state of the
system and the transition function thanks to the transition
probability, the energy function and the neighborhood func-
tion.

Notation. A grid is denoted by Sx and a site of this grid
is denoted by (i, j). The value of a site (i, j) is denoted by
sxi,j . A cell is denoted by Ctσ with σ ∈ [1, N ] where N
is the number of cells and t the type of cell. The number 0
is reserved for the medium. A cell Ctσ has a target volume
(resp. surface) V σt (resp. Sσt) and current volume V σ
(resp. Sσ). The target volumes and target surfaces of the
cell are the volumes and surfaces to which the cell tends.
The contact energies are recorded in a matrix T such that
Tσ,σ′ (resp. Tt,t′ ) is the contact energy between the cell Ctσ
and the cell Ct

′

σ′ (resp. between the cells of type t and t′).
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Figure 1: Example of a transition in the CPM. A state Sx is a grid 8x8 where to each site (i, j) we associate a value sxi,j .
So we have four cells (σ ∈ [0, 3]): one cell for the medium (Cm0 ), two cells of red type (Cr1 , C

r
3 ) and one cell of blue type

(Cb2). The cells of the red type have the following characteristics: Vtarget = 7, Starget = 12, and the cell of blue type the
following characteristics: Vtarget = 10, Starget = 11. In the state Sa the cell Cr1 (resp. Cb2, Cr3 ) has a volume V 1 = 7 (resp.
V 2 = 11, V 3 = 4) and a surface S1 = 12 (resp. S2 = 13, S3 = 8). In the state Sb the cell Cr1 (resp. Cb2, Cr3 ) has a volume
V 1 = 7 (resp. V 2 = 10, V 3 = 5) and a surface S1 = 12 (resp. S2 = 11, S3 = 10). The cell for the medium does not have
volume and surface constraints. The matrix (symmetric) of contact energy (given) is defined as: T0,1 = T0,3 = 2, T0,2 = 1,
T1,2 = T2,3 = 3, T1,3 = 0 . Since the cell Cr1 and the cell Cr3 are of the same type T1,? = T?,3.

State of the System. The CPM is composed of a grid Sx1

of D dimensions (here D = 2). Each site (i, j) is filled by
a particle of cell Ctσ , i.e. the value sxi,j of site (i, j) in the
state Sx is equal to σ. So a cell Ctσ is equal to {(i, j) ∈
Sx|sxi,j = σ} the set of sites whose value is σ.
Finally a state of system is a grid Sx where each sxi,j is
equal to an integer σ ∈ [0, N ].

Transition Function. Let Ftr(Sa, k, t) = Sb the tran-
sition function of the CPM between the State Sa and Sb
according to k and t. Let Sc be the state Sa where the value
of a site has been replaced by the value of a neighbor site. If
the probability of transition Ptr between the states Sa and
Sc is accepted, then Sb = Sc, otherwise Sb = Sa.
Ftr(Sa, k, t, p) = Sb⇔ ∃(i′, j′) ∈ neighbor(i, j)(

(sci,j = sai′,j′)∧
(Sc− sci,j = Sa− sai,j) ∧ (p = rand(]0, 1])∧
(p ≤ Ptr(Sa, Sc, k, t)⇒ Sb = Sc)∧
(p > Ptr(Sa, Sc, k, t)⇒ Sb = Sa))

where rand(E) returns a random element of the set of E,
neighbor(i, j) is the set of neighbor sites of (i, j) and Ptr
the probability of transition.
We can observe that only one site of the grid can change
and since several sites can be candidates to change, the
dynamics is asynchronous and non-deterministic.

1Here the environment is discrete but the continuous case is also
defined (Glazier and Graner, 1993).

Probability of Transition. The Probability of transition
used is the Monte Carlo probability following a tem-
perature t. Let Ptr(Sa, Sb, k, t) = p, the probability of
transition between the states Sa and Sb according to k and t.
Ptr(Sa, Sb, k, t) = p⇔

t > 0 ∧ (E(Sb)− E(Sa)) ≤ 0⇒ p = 1
t > 0 ∧ (E(Sb)− E(Sa)) > 0⇒
p = exp ((E(Sb)− E(Sa))/kt)
t = 0 ∧ (E(Sb)− E(Sa)) < 0⇒ p = 1
t = 0 ∧ (E(Sb)− E(Sa)) = 0⇒ p = 0.5
t = 0 ∧ (E(Sb)− E(Sa)) > 0⇒ p = 0

where E(S) is the function of energy.
This probability promotes the transitions which lead to a
lower energy state.

Energy Function. Let E(S) = e the energy function of
the state S. This function characterizes the state of the sys-
tem. In the CPM, a basic function depends on the volume
and surface of each cell and on the contact energies between
two cells. E(S) can be defined as:
E(S) = λc ∗ Ec(S) + λv ∗ Ev(S) + λs ∗ Es(S) with
Ec(S) =∑
(i,j)∈S

∑
(i′,j′)∈neighbors(i,j)

2Tsi,j ,si′,j′ ∗ (1− δsi,j ,si′,j′ )

where λc, λv , λs are constants, Tx,x′ is a matrix of contact

2In our simulations the neighbors are the nearest on a 3D square
lattice.
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energy between the type t and t′ respectively of Ctx and Ct
′

x′ .
If x = x′ then δx,x′ = 1 otherwise 0.
Ev(S) =

∑
σ∈[1,N ]

(V σt − V σ)2

Es(S) =
∑

σ∈[1,N ]

(Sσt − Sσ)2.

III MorphoPotts
To model biological phenomena in a more realistic way, we
have proposed in (Tripodi et al., 2010) an multi-agent ap-
proach of CPM and a cell called MorphoPotts. The Mor-
phoPotts is an extension of the cell defined in the CPM by
adding the following behaviors: secretion and consumption
of molecules, transformation of molecules into energy, mi-
gration on a gradient of molecules, cell division and cell
differentiation. The MorphoPotts is very close to Mor-
phoBlock (Ballet et al., 2009) compared to secretion of
molecules and the migration under a gradient of molecules.
But the core of MorphoBlock is a pixel whereas the core of
MorphoPotts is a cell defined in the CPM. At CPM level, the
closest work to MorphoPotts is probably Compucell3D (Ci-
ckovski et al., 2007), a software which implements the CPM
and other behaviors. In this section, we describe fristly the
MorphoPotts, and secondly a step of simulation of CPM-
MorphoPotts couple.

Description of MorphoPotts
A MorphoPotts Ctσ is based on the properties of the cell de-
fined in section II, but it also has an internal energy E. This
energy results from the consumption of molecules found in
the environment. The MorphoPotts can perceive and mod-
ify the environment beyond their neighborhood boundaries
defined in section II.

The behaviors of the MorphoPotts are described in Table
1. We assume that the secretion creates a gradient because
the diffusion of molecules is faster than cell migration and
the secretion is continuous. For the same reasons we assume
that the consumption of molecules creates a “well” (i.e. in-
verse effect of secretion). In this paper, the energy of the
MorphoPotts is used as a criterion for MorphoPotts division
and MorphoPotts death.

Step of Simulation
The step of the simulation which combines the CPM and the
MorphoPotts is following:

1. Let i equals to 0 and n equal to the membrane size of all
MorphoPotts.

2. While i is lower than n

(a) One transition function of the CPM is applied.
(b) If the criterion of division of the chosen MorphoPotts

during the transition is verified, they divide.
(c) i is incremented by 1

3. All MorphoPotts execute their method of maintenance.

4. All MorphoPotts execute their method of secretion.

5. All MorphoPotts (the scheduling is random to delete the
artefacts) execute their method of consumption.

6. If the internal energy of the cells is lower than 0, they die.

The step of simulation can, for each cell, modify each mem-
brane site before calling to methods of maintenance, secre-
tion, consumption and death. This allows to synchronize
every MorphoPotts and so to delete some artefacts due to
asynchronicity of the CPM. Indeed, in reality, the cells move
at the same time and not one after another.

Proposition of a cell shape energy
In the previous section we have built a model of cell called
MorphoPotts. However, the cell shape is not strongly de-
fined. A volume and a surface do not entirely characterize a
geometric shape. The goal of this section is to constraint the
cell to keep a certain rigidity of the shape. The cell shape is
an important feature. It can lead to different functions and
properties, i.g. the spherical shape of red blood cells adapts
perfectly to their role in transport from the bloodstream, the
spindle-shaped muscle cells allows them to contact and re-
alizes a close fit between them, thus facilitating the simulta-
neous contraction of muscle tissue.
Several propositions have already been done to target the
cell shape, like cell elongation (Merks et al., 2006), but to
our knowledge, none can target all forms. The idea is to
give an elastic shape to the cell. For this we add a set of
springs to the cell like described in Figure 2. In this section,
we describe fristly the formalism , and secondly the imple-
mentation.

Figure 2: Example of elastic shape. We have one red cell Cr2
with an elastic shape where the distribution sL0sp of springs
Rsp is given by the function of a circle of centerO and radius
4, represented by the blue circle. The energy of this elastic
shape is the sum of distance power 2 between the sites with
the lines and the circle blue. The sites with white lines are
sites of extension and the sites with red lines are sites of
compression.
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Behavior Description
Secret a gradient of arg
molecules Y

If the site (i, j) contains n molecules Y then, after the secretion, the site will contain a number of
molecules Y equal to the integer closest to n + arg√

(i−gx)2+(i−gy)2
where (gx, gy) is the center of

gravity of MorphoPotts.
Consume a gradient of arg
molecules Y

If the site (gx, gy) contains n molecules Y and the site (i, j) contains n′, the number of molecules
Y in (i, j) is modified such that the new value is 0 if n′ < min(n,arg)√

(i−gx)2+(j−gy)2
otherwise the new

value is the integer closest to n′ − min(n,arg)√
(i−gx)2+(j−gy)2

Migrate to the molecules The energy function of the CPM is modified by adding a new energy Emigr = −arg ∗∑
(i,j)∈Mσ

nbMolecules((i, j), Y ) where nbMolecules((i, j), Y ) is the number of molecules Y

on the site (i, j).
Transform the consumed
molecules in energy

In this paper for each consumed molecule the energy is incremented by 1.

Differentiate The probability that the MorphoPotts changes its types is equal to
arg∑

Y ′ 6=Y
arg′

where arg is the

probabilty associated to the type Y cell.
Divide A MorphoPotts can divide in two axes (vertical or horizontal). A new MorphoPotts is created

according to the probability of differentiation. The energy of the new MorphoPotts is equal to E′

and the energy of the old MorphoPotts is equal to E (internal energy of the MorphoPotts) minus E′

minus cost the cost of the MorphoPotts division.
Maintain The energy of the MorphoPotts is decremented by arg, representing the costs of the maintenance.
Die The MorphoPotts dies if its internal energy is equal to 0. The death means that the MorphoPotts

looses all its abilities and it does not generate energy in the CPM.

Table 1: Abilities of the MorphoPotts

Formalisation of the elastic cell

To constraint the cell to keep a 3D shape in the CPM for-
malism, we define in this section a function of energy Eσsp.
Eσsp is null if the shape is reached by the Cell Cσ . Eσsp is
the sum of energies provided by the springs given to the cell.
The energy of one springR at the position p, p′ (the position
of these extremities) for a cell Cσ is defined like:∑
sa=σ

1/2 ∗ k∗ dist(a,R)2

if this spring is the closest to site a
according to criterion C(R, a) and
dist(a,R) = min(|−→ap|, |

−→
ap′|)

0 otherwise.
where k is the constant force of the spring.
The disposition of the springs depends on the model and sev-
eral shapes can be given to one cell. In this paper the springs
are parallel. For this:

• we add a Cartesian coordinate system (O,Ox,Oy,Oz)
where O is a point in the grid. The axis Oy gives the
direction of the springs.

• we add a set of springs perpendicular to the plan de-
fined by the axes Ox and Oz, i.e the springs Rσsp where
s ∈ {+1,−1} whose two extremities are in position
(px, py, pz) and (px, s ∗L0sp + py, pz), L0sp being the rest
length of spring. The distribution of Rσsp and the length
L0sp depend on the desired shape (see Figure 2).

To compute Eσsp we define in this paper the following cri-
terion C:
“Rσsp is the closest spring to the site (i, j, l) if
a spring Rσspx,y′,pz such that dist((i, j, l), Rσsp) >
dist((i, j, l), Rσspx,y′,pz ) does not exist”

So Eσsp in this paper is defined like:
Eσsp = 1/2

∑
Rσsp

∑
sa=σ∧C(Rσsp,a)

ksp ∗ dist(a,Rσsp)2

Implementation of the elastic cell
The implementation of the elastic cell can be done by the
computation of the intersection between a cell and a line (the
axis of the springs). A naive implementation could be to
browse all sites of the cell and to build the set of sites which
are crossed by the spring. The problem is that it will take
too long simulation time.

In one simulation step of the CPM, only one site value
si,j,l changes, modifying the cells Cσ, Cσ′ . So we have:
∆Eσsp = 1/2 ∗ (
z(j, L0sp) ∗ ksp ∗ dist((i, j, l), Rσsp)2−
z(j, L0s

′

p′) ∗ ks
′

p′ ∗ dist((i, j, l), Rσs
′

p′)
2)

Cσ is the cell which increases,C ′σ is the cell which decreases
and (i, j, l) the site added or deleted. C(Rσsp, (i, j, l)) and
C(Rσs

′

p′ , (i, j, l)) are verified.
z(j, L0sp) = 1 if pj ≤ j ≤ s ∗ L0sp + pj (compression)
otherwise −1 (extension).

Also to compute ∆Eσsp , we store in a table for each site
p of the shape, the static following informations: z(pj , Rsp),
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L0sp and ksp, in the coordinate system of the shape.
So ∆Eσsp returns to compute one translation and one rota-
tion (to find the position of the changed site in the coordinate
system of the shape) and an access to the table. The cost is
constant and does not significantly modify the simulation
time.

Rotation and Translation of the elastic shape
We saw in the previous part that the definition of the cell
shape uses a target shape. However, the shape is located at
a specific coordinate. This causes the cell does not move
in the environment. In this part we show how we consider
the rotation and the translation of the shape according to the
adding or deleting sites

Rotation of the elastic shape This part describes how the
shape turns in the environment. For example, if a cell is
attracted to a direction due to a gradient of molecules, the
sites which are closed to the source of the gradient have a
higher probability to be added to the cell. This behavior can
turn the cell in the direction of the gradient.

We construct a function named rotation(m, p,Cσ)
which returns a vector of angle. The size of this vector is
equal to the number of dimension. The angle corresponds to
the rotation of the cell (Cσ) shape after adding the site sp if
m = + or the deleting of the site sp ifm = −. The shape ro-
tation is made by the rotation of its coordinate system com-
pared with the coordinate system of the environment.

Here, rotation(m, p,Cσ) = α/Vσ ∗
(arcant2(py, px), arcant2(pz, py), arcant2(px, pz)).
This function means that the rotation angle is the angle
between the axis Oy, the origin and the point p in the coor-
dinate system of the shape. The angle value is normalized
by the volume of the cell and the value is increased or
decreased by α.

Translation of the elastic shape We construct a function
translation(Cσ) which returns a vector. This vector is used
to translate the shape after adding or deleting a site of the cell
Cσ .

Here, translation(Cσ) = β ∗ ~∆Gσ where ∆Gσ is the
variation of the gravity center of the cell Cσ during a simu-
lation step of the CPM. β can favour or not the translation of
the shape.

Rotation and Translation in the simulation step The ro-
tation and translation of the shape is possible because envi-
ronmental or internal conditions can add or delete sites of
the cell in specific directions. However if the translation and
the rotation are made at each step of the simulation, an un-
desirable perpetuum mobile is possible.

Indeed, if the translation is realized towards a direction,
the sites in this direction will be added to the cell that im-
plies a new translation in this same direction and etc ... The
translation and rotation are not done when the transition is

accepted thanks to the energy provided by the springs, i.e.
when the variation of the energy is negative. The shape has
to be reached before doing a new translation or rotation.

IV Validation of the elastic shape
To validate and show the interest of the elastic shape we test
2 models of MorphoPotts. The first model proposes to test
the energy of the shape without cell translation and rotation,
the second to test the cell translation and rotation by simu-
lating the formation of a tissue via cell self-organization.

Example of the elastic shape
In this part, we test the elastic shape. For this, thanks to
our tool we can draw a 3D shape and automatically store the
informations described in section IV (see figure 3(a)).

The model used for the simulation consist of 4 Mor-
phoPotts: one MorphoPotts to model the exterior medium to
the cells and three MorphoPotts to test the same shape. The
coordinate system of the shape of the middle MorphoPotts
is rotated by π/2 on the axis 0x (see Figure 3(a)). A verti-
cal section of the shape is given in Figure 3(a). The visible
springs on the horizontal axis have the parameters k = 10.
The springs of length null, complete the horizontal axis with
k = 106 to avoid a growth of the cell along this axis. In
this model, the parameter α (resp. β) of the rotation (resp.
translation) is null. We just test the target shape. No con-
tact, volume and surface energy are taken into account in
this Model.

The results of the simulation are given in the Figure 3.
The Figure 3(a) shows the initial state. The Figure 3(b) is
a picture of the shape being built. The Figure 3(c) shows
the MorphoPotts having reached the target shape and also
validate our implementation of the elastic shape.

V Cell Self-organization
In this section we present a simulation of a model which test
both the translation and rotation of the shape, and the cell
self-organization to build a coherent tissue (a recognizable
shape and a dynamical tissue renewal). After a description
of model, we discuss the parameters before showing the re-
sults of the simulations.

Presentation of the model To show the interest and the
properties of the rotation and the translation of the shape,
we made a model allowing to simulate the generation and
the life of a cellular tissue. This model consists of three type
MorphoPotts:

• the first type of MorphoPotts models the exterior medium.

• the second type of MorphoPotts produces molecules in
the medium.

• the third type of MorphoPotts consumes the produced
molecules by the second type and divides. This type has
a elastic shape and is used to build the tissue.
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(a) target shape (b) initial state (c) shape being built

(d) shape built (e) shape built and rotation of
the environment

Figure 3: Example of elastic shape

The interactions between the MorphoPotts are:

• a direct interaction. A negative energy of contact (means
that the MorphoPotts which stay together do not use en-
ergy) is set between the MorphoPotts of type 3 . A posi-
tive energy of contact is set between the MorphoPotts of
type 3 and 2

• an indirect interaction. The MorphoPotts of type 2 pro-
vides molecules to MorphoPotts of type 3. If the Mor-
phoPotts of type 3 does not found the molecules, it dies.

We show with this model that the cell shape and the contact
energy can structure the cellular tissue. The competition of
the MorphoPotts to consume the molecules allows a finite
growth of cellular tissue like described in (Laforge et al.,
2005) and a dynamical tissue renewal.

Parameters analysis We have defined 4 types of Mor-
phoPotts. The parameters of these MorphoPotts are given
in Table 1.

The energies of contact verify that 5 ∗ T1,3 + T3,3 < 0.
When two MorphoPotts of type 3 are in contact thanks to the
adding of a site, ∆Ec < 0. The adding of this site is favored
by energies of contact.
The concentration of the molecule 1 (produced by Mor-
phoPotts of type 2) decreases with the distace from the
source. If the MorphoPotts of type 3 are at a too long dis-
tance from a MorphoPotts of type 2, they have not enough

molecules to survive (higher than 52 pixels).
The MorphoPotts of type 3 can divide if its energy is higher
than 20000 (experimental value).

The shape described in Figure 4(a) is given to the Mor-
phoPotts of type 3. The volume and the surface are each
equal to 328,64. So the target volume and surface can fill the
shape. 21 extra sites have to be added to the MorphoPotts of
type 3 to verify the target volume and surface. The visible
springs in Figure 4(a) on the horizontal axis have the param-
eters k = 107 to force the MorphoPotts to reach its shape.
The springs of length null complete the horizontal axis with
k = 105 to avoid a growth of the cell along this axis. In this
model, the parameter α (resp. β) of the rotation (resp. the
translation) is 10 (resp. 75). The rotation and the translation
are possible only on the axis Oz because we model the con-
struction of a cellular tissue along one direction. The α and
β have been calibrated by dichotomy.

The parameters kt of the CPM is equal to 1, so the prob-
ability of transition is equal to e−∆E . The transitions with
∆E > 0 have a weak chance to be accepted. The constant
λc (resp. λv , λs) is equal to 1 (resp. 10000, 10000). These
constant values allow the MorphoPotts not to oversize their
target volume.
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(a)
target
shape

(b) initial state, s=0, t=0s (c) MorphoPotts divison, s=217058,
t=1min30

(d) shape being built, s=220474,
t=1min32

(e) effect of the rotation (1),
s=4057167, t=20min

(f) effect of the rotation (2),
s=4626796, t=21min30

(g) death MorphoPotts,
s=7316104, t=35min

(h) MorphoPotts divison,
s=9178409, t=45min

(i) movement of MorphoPotts via
the translation of the shape after a
division, s=9244846, t=45min20

Figure 4: Cell Self-organization. This simulation shows how the cell shape can structure and maintain the cellular tissue since
the beginning of its growth and during its life. t is the time of simulation and s is the number of CPM steps. The pc used used
for this simulation is a Pentium Quad 2.8Ghz and the language is JAVA.

type target
volume

target
surface

Energy of
Contact

Secretion Consumption Division Maintenance

1 (exterior
medium)

_ _ T1,3=100 _ _ _ _

2 (producer of
molecules)

_ _ _ secr(310000,1) _ _ _

3 (producer of
molecules)

350 350 T3,1=100
T3,3=-10000

_ cons(1000,1) div(
{E>20000,
E/2,0}, 3)

main(600)

Table 2: MorphoPotts Parameters. The symbol _ means that the parameter is not taken into account. cons(1000, 1) (resp.
secr(310000,1)) means that the MorphoPotts consumes (resp. produced) a gradient, 1000 (resp. 310000) molecules of type 1
in the center. div( {E>20000, E/2,0}, 3) means that if the internal energy of the MorphoPotts is higher than 20000, it divides and
gives half of its energy to newly born MorphoPotts and the cost of the division is null. main(600) means that the maintenance
cost 600.
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Discussion of the results The Figure 4 shows the results
of the simulation3. The initial state (see Figure 4(b)) con-
sists of one MorphoPotts of type 3 being attained its shape.
The MorphoPotts of type 2, which produce the molecules,
are also present. The MorphoPotts of type 1, which models
the exterior medium, is invisible and occupies the empty en-
vironment. The environment is a 3D matrix 100x100x100.

Between Figure 4(b) and 4(c) the MorphoPotts of type 3
consumes enough molecules to have an energy allowing its
division (on the axis Oy) in Figure 4(c). In Figure 4(d) the
shape of the MorphoPotts of type 3 is being built. In the
same time the two MorphoPotts of type 3 self-align thanks
to the energies of contact. In figure 4(e) and 4(f) we observe
the effects of the rotation of the shape. A MorphoPotts is
not aligned with the other, the energy of contact favors the
sites which are in contact with the other MorphoPotts to be
added. So the shape is rotated in this direction. In figure
4(g), the MorphoPotts on right in the figure is too far (a dis-
tance higher than 52), and dies. This keeps a finite width of
the cellular tissue. Figure 4(e) and 4(f) show the effects of
the translation of the shape. After a MorphoPotts division
at the center of the tissue, the MorphoPotts are compressed.
This implies a translation of the MorphoPotts towards the
exterior of the tissue.

The rotation of the shape and the energy of contact al-
low a self-alignment of the MorphoPotts. The translation
of the shape and the competition between the MorphoPotts
allow a finite growth of cellular tissue. During the simula-
tion, the MorphoPotts divide at the center of tissue, move
towards the exteriors and die at the extremities of the tissue.
The shape of the tissue emerges thanks to the shape of the
MorphoPotts.

VI Conclusion
We have defined a virtual cell called MorphoPotts. This
MorphoPotts is based on the cell defined in the Cellular Potts
Model. The MorphoPotts keeps the properties of this cell
and the cell behaviors that have been added. In the CPM,
the cell shape is represented only by a target volume and
surface. We have proposed and implemented a target shape.
Therefore, a set of springs is given to the MorphoPotts to
build the shape. These springs provide an energy which is
used to build a new function of energy in the CPM.

We have tested the target shape in two simulations. The
first one shows that it is possible, with this target shape, to
give a complex form to the MorphoPotts. The second sim-
ulation shows that this target shape allows to structure the
cellular tissue. Combined with the energy of contact, the tar-
get shape allows the MorphoPotts to self-align. By adding
the notion of the internal energy, available in the notion of
the MorphoPotts, the second simulation shows that the Mor-

3The video of this simulation is available at
http://pagesperso.univ-brest.fr/~tripodi/private/ALIFE12/

phoPotts self-organize to form a cellular tissue. This tissue
has a recognizable shape and a dynamical tissue renewal.

Acknowledgements
We thank the Region Bretagne for its financial contributions.

References
Anderson, A., Chaplain, M., and Rejniak, K. (2007). Single-Cell-

Based Models in Biology and Medicine. Birkhauser.

Ballet, P., Tripodi, S., and Rodin, V. (2009). Morphoblock pro-
gramming: a way to model and simulate morphogenesis of
multicellular organisms. Journal of Biological Physics and
Chemistry ISSN 1512-0856, 9(1):37–44.

Cickovski, T., Aras, K., Swat, M., Merks, R., Glimm, T.,
Hentschel, H., Alber, M., Glazier, J., Newman, S., and Iza-
guirre, J. (2007). From Genes to Organisms Via the Cell:
A Problem-Solving Environment for Multicellular Develop-
ment. Computing in Science & Engineering, 9(4):50–60.

Cickovski, T., Huang, C., Chaturvedi, R., Glimm, T., Hentschel,
H., Alber, M., Glazier, J., Newman, S., and Izaguirre, J.
(2005). A framework for three-dimensional simulation of
morphogenesis. Computational Biology and Bioinformatics,
IEEE/ACM Transactions on, 2(4):273–288.

Gardner, M. (1970). Mathematical games: The fantastic combina-
tions of John Conway’s new solitaire game ’Life’. Scientific
American, 223(4):120–123.

Glazier, J. and Graner, F. (1993). Simulation of the differential
adhesion driven rearrangement of biological cells. Physical
Review E, 47(3):2128–2154.

Graner, F. and Glazier, J. (1992). Simulation of biological cell sort-
ing using a two-dimensional extended Potts model. Physical
Review Letters, 69(13):2013–2016.

Laforge, B., Guez, D., Martinez, M., and Kupiec, J. (2005). Mod-
eling embryogenesis and cancer: an approach based on an
equilibrium between the autostabilization of stochastic gene
expression and the interdependence of cells for proliferation.
Progress in biophysics and molecular biology, 89(1):93–120.

Langton, C. (1984). Self-reproduction in cellular automata. Phys-
ica D: Nonlinear Phenomena, 10(1-2):135–144.

Marée, S. (2000). From Pattern Formation to Morphogenesis. PhD
thesis, Utrecht University.

Merks, R., Brodsky, S., Goligorksy, M., Newman, S., and Glazier,
J. (2006). Cell elongation is key to in silico replication of in
vitro vasculogenesis and subsequent remodeling. Develop-
mental biology, 289(1):44–54.

Tripodi, S., Ballet, P., and Rodin, V. (2010). Computational en-
ergetic model of morphogenesis based on multi-agent Cellu-
lar Potts Model. Book chapter in Advances in Computational
Biology. Advances in Experimental Medicine and Biology.
research book series Springer (accepted).

Wu, F. Y. (1982). The potts model. Rev. Mod. Phys., 54(1):235–
268.



Proc. of the Alife XII Conference, Odense, Denmark, 2010 257

Body/Brain Co-Evolution in Soft Robots

John Rieffel1 and Barry Trimmer2

1Union College, Schenectady, NY 12308
2Tufts University, Medford, MA 02155

rieffelj@union.edu

Extended Abstract

Autonomous Robots have achieved considerable results in a wide variety of domains, from the depths of the ocean to the
surface of Mars, and yet many vital locations, particularlycollapsed buildings and mines, remain largely inaccessible. In
light of recent natural disasters in Haiti and Chile, there is a compelling need for more versatile and robust search and
rescue robots. Imagine, for instance, a machine that can squeeze through holes, climb up walls, and flow around obstacles.
Though it may sound like the domain of science fiction, modernadvances in materials such as silk polymers (Huang et al.,
2007) and nanocomposites (Capadona et al., 2008) such a “soft robot” is becoming an increasing possibility.

By soft, we mean an ability to significantly deform and alter shape at a much higher level of detail than discrete “modular”
snake-like robots (such as Yim’s Polybot Yim et al. (2000) and Rus’s Molecubes (Kotay et al., 1998)). In fact the degree
of deformability demanded of truly soft robots requires that they contain no rigid parts at all. Unfortunately, the incredible
flexibility and deformability demanded of soft robotics carry with them considerable complexity.

There are two significant and coupled challenges to the creation of soft robots: no one knows how to design soft robots,
and no one knows how to control them. These challenges arise from the complex dynamics intrinsic softness. Soft and
deformable bodies can possess near-infinite degrees of freedom, and elastic pre-stresses mean that any local perturbation
causes a redistribution of forces throughout the structure. As a consequence, there are no established principles or purely
analytical approaches to the problem of soft mechanical design and control To make matters worse, the biomechanics of
soft animals are too complex and too inscrutable to provide much useful insight.

Consider what might seem like a relatively simple completely soft animal:Manduca sexta, the tobacco hornworm. The
caterpillar achieves remarkable control and flexibility despite the fact that each of its segments contains relativelyfew
motoneurons (one, or maximally two per muscle, with approximately 70 muscles per segment), and no inhibitory motor
units (Levine and Truman, 1985). It is conjectured that the complex and coupled dynamics caused by the interaction of
hydrostatics, an elastic body wall, and nonlinear muscularbehavior, are all harnessed and exploited by the organism (Trim-
mer, 2007).

This relationship between morphology and control in biology is a richly studied and fascinating topic. Recent researchon
the tendinous network of the human hand indicate that the system performs “anatomical computation”. It is conjectured
that “outsourcing” the computation into the mechanics of the structure allows related neural pathways to devote their
resources to higher level tasks (Valero-Cuevas et al., 2007). Similar phenomena have been shown in the physiology of
wallabies (Biewener et al., 2004) and cockroaches (Ahn and R.J.Full, 2002). Pfeifer and Paul (2006) coined the term
“morphological computation” to describe this class of effect. Blickhan (2007) has similarly used the phrase “intelligence
by mechanics”.

Biological morphological computation has served as inspiration for robotic control in several recent works. Iida and Pfeifer
(2006) explored how the body dynamics of a quadraped robot can be exploited for sensing. Watanabeet al (2003) demon-
strated how inducing long distance mechanical coupling in asnake robot improves its ability to learning a crawling motion.
All of these systems, however, involved relatively rigid robotic platforms, and relatively well understood mechanicsand
dynamics.

An outstanding challenge, therefore, lies in discovering how to inject the properties of this “morphological computation”
into soft robots. Classically, engineers design complex robotic systems and only later try to find a controller capable
of operating it. However, this approach has difficulty scaling – it is entirely possible to design a robot too complex to
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reasonably control. Of course, biology doesn’t first “discover” an animal’s body, and only later its brain, rather, muchlike
the proverbial chicken and egg, both evolve in tandem. Inspired by those biological processes, modern approaches to the
Evolutionary Design of robots by co-evolving morphology and control (Pollack et al., 1999; Sims, 1994).

In this work we show how the chicken-and-egg problem of soft robotic design and control can be addressed via body/brain
co-evolution. A co-evolutionary algorithm operating within the PhysX physics simulator simultaneously searches forsoft
robot muscle attachment points (morphology) along with forfiring patterns for those muscles(gaits) capable of making
those bodies move. More specifically, two parallel populations are evolved: fitness of the population of gaits relies upon the
current best evolved body plan, and fitness of the populationof body plans relies upon the best evolved gait. By evolving
these two properties contingently and in lock-step, our algorithm is able to produce effective, and sometimes surprising,
soft bodied gaits. One particularly interesting outcome isthe emergence of antagonistically-placed muscle groups asan
effective feature, whereas intuition would suggest that body wall elasticity obviates such a need. This “discovered” design
feature was then fed back into physical prototypes of a soft robot, leading to improved real-world performance.
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Abstract

An Artificial Chemistry (AChem) is a set of components and
interactions that result in a composable system. Ideally, the
system is rich, and results in rich higher-order emergent prop-
erties. We present a methodology for discovering interesting
AChems through a series of tests that probe elementary low-
level properties. In doing so, we assume that these elemen-
tary properties are a necessary, but not sufficient, basis for
higher-order emergent properties, such as autocatalytic sets
and hypercycles. The test strategy is applied to RBN-World, a
sub-symbolic chemistry. This results in identifying a number
of new and interesting RBN-World chemistries that appear
richer than our original parameterisation.

Introduction
One approach towards the goal of Artificial Life (ALife) has
been Artificial Chemistry (AChem), particularly for the ori-
gins of life. Unlike many ALife approaches, life-like prop-
erties are not explicitly designed in, but emerge from the dy-
namics of the system. AChems have been applied in other
contexts [16, 12] however here we focus on their role as ap-
proach to the study of composable systems capable of ex-
hibiting rich higher-order emergent behaviour.

In its most basic form, an AChem is a collection of
molecules and reactions that describe transformations be-
tween groups of molecules, and an algorithm which deter-
mines how the reactions are applied over time [2]. There are
a large number of possible AChem designs (relating to the
nature of the components, interactions and reactions) each
with a potentially large parameter space. Moreover, some
examples of emergent systems (Boids [14], Conway’s Game
of Life [8], etc) only exhibit emergence at a small subset
of possible parameters. This motivates the need to develop
strategies to search the parameter spaces of AChems to find
those regions that exhibit rich emergence.

Here we describe a set of tests suitable for any AChem and
apply those tests to filtering 200 alternatives of an AChem —
RBN-World [7].

Desired high-level properties
Determining how to evaluate different AChems is a difficult
task. The overall goal when developing an AChem for ALife

is an emergent system capable of open-ended evolution. The
metric for this is unclear; some suggestions include Chem-
ical Organization Theory [1] and Granger causality [15];
however, searching for interesting chemistries using metrics
such as these would not be computationally tractable over
the large search space of alternative chemistries. Several
mid-level properties have been previously suggested as im-
portant in the emergence of rich evolutionary characteristics;
in the context of artificial chemistry, three of particular rel-
evance are autocatalytic sets [11], hypercycles [4, 6, 5] and
heteropolymers or co-polymers [13]. Desirable characteris-
tics of artificial chemistries have been suggested before [17]
however, these are design specifications rather than emer-
gent properties.

Autocatalytic Sets An autocatalyst is a molecular species
that catalyses its own production. Autocatalytic sets are two
or more molecular species where one or more reactions pro-
ducing each member of the set is catalysed by itself or an-
other member of the set [11]. The members of an autocat-
alytic set may be, but do not have to be, autocatalysts them-
selves. In addition, autocatalytic sets may overlap with in-
dividual molecular species belonging to more than one set.
Autocatalytic sets are thought to be important to the emer-
gence of life because of their characteristic growth; as long
as substrate is available, the members of an autocatalytic set
will continue to increase in concentration.

Hypercycles Hypercycles are a collection of coupled self-
replicative units and thought to be important as a higher-
order organization [4, 6, 5] — many biochemical metabolic
processes are hypercycles for example.

Heteropolymers Polymers are molecules composed of re-
peated subunits. Heteropolymers are molecules composed
of non-identical subunits, such as DNA or proteins which
both have a repeating backbone structure with different side-
groups attached to it. The important feature of heteropoly-
mers is their capacity for information storage encoded into
the ordering of the subunits.
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Desired low-level properties
Searching for autocatalytic sets, hypercycles and/or het-
eropolymers would be an useful step towards finding arti-
ficial chemistries with sufficiently rich emergent properties.
However, this is still too computationally intensive to be use-
ful as an initial step. We suggest that the space of possible
chemistries can be first reduced by selecting for specific fea-
tures thought to be required by the higher goal; towards that
end, the features being examined should be low-level and
computationally tractable.

In order to hunt for rich AChems, we specify tests for
low-level properties that we believe are necessary (but pos-
sibly insufficient) ‘stepping stones’ to higher-order emer-
gent behaviour. The tests can be structured, and as a result
chemistries that fail the lowest-level tests are not considered
for the intermediate tests thus allowing subsequent searches
to focus on interesting subspaces.

Synthesis is the formation of bonds is the lowest level
property possible; however it is important not only that syn-
thesis can occur in an AChem, but also that too much syn-
thesis does not occur. If every molecule can bond with every
other molecule, the chemistry is trivial and will not support
rich dynamic higher-level properties.

Self-Synthesis is bonding between two identical atoms or
molecules. As with synthesis, this is important for the for-
mation of larger molecular structures but also should be able
to occur between any two identical atoms/molecules.

Decomposition should also be possible, but not univer-
sal, within the AChem. Without the breakdown of larger
molecules, many conceivable mechanisms for higher-level
properties become impossible and the system may reach a
steady state once all raw materials have been consumed.

Substitution is a potential emergent behaviour given that
a particular AChem exhibits synthesis and decomposition.
While arguably not important in itself, substitution repre-
sents the potential for relationships between more than one
or two molecules.

Catalysis is another property of interest. We define catal-
ysis as a series of reactions that do not consume the catalyst,
yet the overall reaction would be slower (or not occur at all)
without it.

RBN-World: Overview
RBN-World [7] is an AChem framework combining random
Boolean networks (RBNs) [9, 10, 3] via bonding sites.

RBNs consist of n nodes synchronously updated in dis-
crete timesteps. Each node in the RBN has a Boolean state,
inputs from k nodes, and a Boolean function that maps the
state of inputs to an updated state at the next timestep. The
state of an RBN is the collection of states of all its nodes. All

RBNs have cyclic behaviour, returning to a previous state af-
ter sufficient number (usually small) of timesteps.

To use RBNs in a chemistry some modifications have
been made — we refer to the modified RBNs as bRBNs
(bonding random Boolean networks). Important aspects of
these are:

Atoms Within each RBN, there are one or more bonding
sites (b); these are additional nodes that provide inputs to or-
dinary nodes. Bonding sites do not have any inputs, instead
their state is determined by whether they are “bonded” or
“unbonded”.

Bonds A bond links two bRBNs, and there can be mul-
tiple bonds between the same pair of bRBNs. Each bond
requires one “unbonded” site within each of the bRBN pair
to become “bonded”, and each “bonded” site is associated
with only one bond.

Bonds are formed as a consequence of reactions when
specific criteria are met. If a bond is not formed by a re-
action, it is attempted again with any higher-level structures
(e.g. molecules) that the pair of bRBNs are part of. This it-
eration of attempting bonding and re-trying for higher-level
structures continues until either a bond is formed or there are
no more higher structures.

Molecules bRBNs that are linked by bonds can be ex-
pressed as a composite bRBN. The composite bRBN’s in-
puts and functions are the component bRBNs with inputs
from “bonded” sites are replaced with direct inputs from
the other “bonded” node. Non-composed bRBNs are RBN-
atoms, and a composite bRBN is a RBN-molecule. A com-
posite bRBN that is part of a larger composite structure
is a functional group (by analogy with functional groups
in chemistry, such as the amine group). RBN-molecules
undergo reactions and form bonds in the same manner as
RBN-atoms to make further higher-level composite struc-
tures. Note that an internal RBN node can be in different
Boolean states at different levels of the structural hierarchy.

Bonding Consequences Forming a bond has two direct
consequences:

1. The process of bonding changes a bonding site in each
linked bRBN from “unbonded” to “bonded”. This
changes one input to one node, which can potentially lead
to a change in the dynamic behaviour of the Boolean net-
work.

2. The bRBNs linked by the bond form a new higher-level
composite bRBN. If one of the participants of the bond
was already a component in another bRBN, then the com-
posite structures are combined into a larger composite
bRBN.

In addition to the direct consequences, there are potential
indirect consequences as well. The formation of a bond may
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change the dynamics of either bRBN, which may cause the
bonding requirements to be violated. When bonding criteria
are no longer valid, bonds break and the associated bonding
sites reverts to “unbonded”. This also alters any higher-level
composite structures, collapsing them if they are not distinct
from their lower-level components.

Due to the combinatoric nature of Boolean networks,
there are a vast number of possible bRBN-atoms. However,
only a small subset will lead to the emergence of sufficiently
rich properties – most of the chemistry that underpins life
is consists of a restricted number of elements: Carbon, Hy-
drogen, Nitrogen, and Oxygen. Finding analogues of such
highly composable elements (and implicitly their interac-
tions) in a particular AChem is our task here.

RBN-World: Alternative Chemistries
During the development of RBN-World, it became clear that
a number of modelling decisions had to be made based on
limited information; for example, the size of the bRBNs and
bonding criteria between them. Also, pragmatically, a num-
ber of choices and assumptions were made without explicit
consideration of alternatives. These choices may have im-
pact on the emergent properties of the AChem.

To investigate the alternative chemistries, some of the
choices have been explicitly defined in order to determine
their effect upon the resulting AChem. It is worth noting
that the decisions around which alternatives to study have
themselves been made based on limited information from
preliminary experiments and exploratory ideas.

Four different categories of alternatives have been identi-
fied with multiple options within those categories. As well
as these separate alternatives, combinations of alternatives
from different categories can also be investigated.

Bonding Property
One of the novel aspects of RBN-World is the use of proper-
ties of the underlying dynamical system to determine bond-
ing. However, it is not clear which property would be most
suitable and what effect different properties might have.
Several alternatives are considered here, each with distinct
distributions. See tables 1 and 2 for summary and example.

Cyclelength (c) is the number of different states the bRBN
passes through between repeats. Cyclelength has a large but
bounded asymmetric discrete distribution of values, with a
median of approximately

√
n for small values of k [9].

Flashing counts how many Boolean nodes change state
during the cycle. RBNs typically have a ‘frozen core’ of
static Boolean nodes, and flashing is the inverse of this. This
can expressed as follows; let a state of ‘true’ have a value of
1 and a state of ‘false’ have a value of −1; N be the set of
nodes in the bRBN; si,j be the state of the ith node at the jth

state of the repeating cycle. Then:

Niflashing =

1 if
∣∣∣∣ c∑

j=1

si,j

∣∣∣∣ 6= c

0 otherwise

(1)

Nflashing =
∑
i∈N

Niflashing (2)

Flashes is the total number of Boolean node state changes
over the cycle. As at least one node must change state at
each step around the cycle, this is related to the cyclelength
and the flashing property. This can be expressed as:

Nflashes =
1
2

∑
i∈N

c∑
j=1

∣∣∣∣si,j − si,j−1

∣∣∣∣ (3)

Total is the sum of all Boolean node values at all time
steps over the cycle. This is a property of the states of the
bRBN rather than its dynamics and is related to the cycle-
length property and the number of Boolean nodes.

Ntot =
∑
i∈N

c∑
j=1

si,j (4)

Magnitude is the larger out of the total number of Boolean
nodes at all time steps over the cycle that are in the ‘true’
state compared with the number that are in the ‘false’ state.

NmagT
=

1
2

∑
i∈N

c∑
j=1

(1 + si,j) (5)

NmagF
=

1
2

∑
i∈N

c∑
j=1

(1− si,j) (6)

Nmag = max{NmagT
, NmagF

} (7)

Proportion is the proportion of nodes in state ‘true’ aver-
aged over both cyclelength and number of Boolean nodes.

Nprop =
NmagT

n× c
(8)

Bonding Criteria
In addition to the bonding property, the bonding rule re-
quires a comparison between the properties of two bRBNs
for some criteria to be met. There are multiple possibilities
to conduct this comparison, and this is another area for ex-
ploration.

Equal is the simplest bonding criteria; form a bond where
the value of bonding property is equal within 0.1% of the
maximum possible range of values to allow for numerical
error). This can be expressed as:

p(Ni)− pmin

pmax − pmin
− p(Nj)− pmin

pmax − pmin
= 0± 0.001 (9)
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Measurement Minimum Maximum Description

Cyclelength 1 2n Count of steps on cycle
Flashing 0 n Count of nodes that change state
Flashes 0 n× c Count of changes of node states over
Total −n× c n× c Sum of node states over cycle
Proportion 0 1 Proportion of node steps with a value of True on cycle
Magnitude 1 n× c Maximum count of node states with False/True on cycle

Table 1: Alternative bRBN bonding criteria properties. n is the number of nodes within the bRBN, c is the cyclelength of the bRBN.

bRBN node
A B C D

C
yc

le
st

ep
s F T F F

F F F F
T T F F
T T T F
T F T F
F T T F

c = 6

Nflashing = 1 + 1 + 1 + 0

= 3

Nflashes =
4 + 8 + 4 + 0

2
= 8

Ntot = 0 + 2 + 0 +−6

= −4

Nmag = 14

NmagT = 3 + 4 + 3 + 0

= 10

NmagF = 3 + 2 + 3 + 6

= 14

Nprop =
10

4× 6

= 0.417

Table 2: Example bonding properties for a n = 4 bRBN. Al-
though only one would be used for any specific AChem, here they
are all displayed. The table indicates the states of the bRBN nodes
at each sequential step on the cycle.

where Ni and Nj are the bRBNs involved in the bond, p(x)
is a function to calculate the bonding property of bRBN x,
and pmin & pmax are the minimum and maximum possible
bonding property values.

Similar is a relaxation of the equal criteria — i.e. within
5% of the maximum possible range of values.

p(Ni)− pmin

pmax − pmin
− p(Nj)− pmin

pmax − pmin
≤ 0.05 (10)

Different is the inversion of similar.

p(Ni)− pmin

pmax − pmin
− p(Nj)− pmin

pmax − pmin
≥ 0.05 (11)

Sum one (applicable only to proportion) allows the forma-
tion of bonds where the proportion property of the interact-
ing molecules total to one (±0.001 allowing for numerical
error).

p(Ni) + p(Nj) = 1± 0.001 (12)

Sum Zero (applicable only to total) requires that the total
property of the bRBNs sum to a value of zero (±0.001).

p(Ni) + p(Nj) = 0± 0.001 (13)

Sum One and Sum Zero are applicable only to propor-
tion and total bonding properties respectively as these are
the only bonding properties that can meet these bonding cri-
teria.

n k Bonding Property Bonding Criteria

5 2 Equal Cyclelength
10 3 Similar Flashing
15 Difference Flashes
20 Total
25 Magnitude

Proportion

Sum One Proportion

Sum Zero Total

Table 3: Features of the 200 alternative AChems tested. Every
chemistry must have one feature from each column. Horizontal
lines cannot be crossed within the table when moving from one
column to the next. For example, 5 – 2 – Equal – Cyclelength is
valid, 20 – 2 – Sum One – Proportion is valid, but 5 – 2 – Sum One
– Flashes is not valid.

Sizes of bRBNs
The number of nodes (n) within each bRBN-atom must be
chosen. A range of values at intervals was investigated (n ∈
{5, 10, 15, 20, 25} with the potential to expand this range if
there appears to be a directional trend).

The size of a bRBN does not have much impact on the
chemistry directly. However, it does alter the distribution of
the bonding properties, and their responses to bond forma-
tion, which in turn affects the propensity for different types
of reactions.

Connectivity of bRBNs
Previous work on RBNs [10] has shown that the number of
inputs (k) each node has can have an impact on their prop-
erties. There is also an interplay with the Boolean function
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No Interaction

A + B

Interact

A--B

Unstable Stable

AB

A

A + B

B

Sample Fail Sample Pass

Figure 1: Schematic depiction of one sample for the ‘synthesis’
test its possible outcomes, and how those outcomes are interpreted
as ‘pass’ or ‘fail’ for that sample. A & B are two sample atoms.
A ‘+’ symbol denotes separate atoms and ‘–’ indicates a potential
bond formation between two atoms. Adjacent atoms (e.g. AB)
indicates that a bond has formed.

assigned to each node; certain functions can result in one or
more inputs having no affect on the state of the node (canal-
isation) and more different Boolean functions are possible
with more inputs.

As an initial assessment, we consider alternatives of two-
and three-input bRBNs (k ∈ {2, 3}). In theory, any positive
integer value equal to or less than the total number of nodes
could be used. However, these are values known to be on
the ‘edge-of-chaos’ — higher values are chaotic and lower
values are statuc.

Combinations of Alternatives
The alternatives discussed above each change different, but
potentially interlinked, aspects of the AChem. Different
combinations of alternatives can be used, though some are
mutually exclusive. Table 3 shows the possible combina-
tions; in total there are 200 different AChems to be con-
sidered, each of which may have potentially different and
interesting features.

Previous work [7] used n = 10 k = 2 with ‘cyclelength’
as the bonding property and ‘equal’ for the bonding criterion
as an arbitrary initial choice from the 200 alternatives

Method
As discussed previously, there are a large number of poten-
tial alternative chemistries, and each of those has a very large
number of potential elemental bRBNs.

Due to the vast number of possible bRBNs, exhaustively
testing multiple chemistries is not feasible. Therefore, a ran-
dom sampling approach is taken. In order for a chemistry to

be have the potential for sufficiently rich properties, it is im-
portant that at the desired low-level behaviours are seen at
least once. However, it is also important that the behaviours
are not omnipresent — consider the synthesis test for ex-
ample (described below); if every interaction resulted in the
formation of a stable bond, it would rapidly coalesce into a
single molecule and would therefore not exhibit sufficiently
rich properties.

We do not seek to find the optimal subset of bRBNs in the
optimal AChem; we are simply looking to remove those al-
ternative AChems unlikely to exhibit sufficiently rich emer-
gent properties.

Desired Behaviours
As well as the alternative chemistries, the tests for required
low-level behaviours must also be defined. There is a natural
structuring of prerequisites within the behaviours – decom-
position can only occur if synthesis occurs for example. This
can be used to increase the efficiency of the sampling.

Synthesis Synthesis is the lowest-level behaviour possible
in an atom-based AChem. A pair of atoms is randomly sam-
pled, the two atoms interact, and the outcome is recorded.
RBN-World has a two-stage bonding process, and the bond-
ing criteria must be met both at the start of the interaction
and after bonding. If a stable bond can be formed, then the
sample passes; if not, the sample fails (figure 1).

Self-synthesis The self-synthesis test the synthesis test be-
tween two copies of the same element. If a stable bond can
be formed, then the sample passes; if not, the sample fails.

Decomposition This is the breaking of bonds, potentially
leading to a molecule separating into two (or more) smaller
molecules. In RBN-world this is triggered by an interaction
between an bRBN molecule and another bRBN. In the de-
composition test, samples of three atoms are taken and the
first two attempt to form a stable bond. If they cannot form
a stable bond, then that sample is ignored for determining
pass/fail; this is a test for decomposition, not for synthesis.
Once a stable molecule has been formed, it interacts with
the third sample. This can have several possible outcomes;
no interaction, formation of a larger molecule, or breakdown
into two or three separate molecules. If it results in the bond
between the first two sampled bRBNs breaking, then it is
recorded as a pass; other outcomes are classed as fail (figure
2).

Substitution Similar to decomposition, the substitution
test involves an interaction with a molecule that leads to re-
placement of part of the molecule with the reacting bRBN.
The process is the same as the decomposition test, but the
only valid outcome is a direct replacement of the second
sampled bRBN with the third sampled bRBN, i.e. AC+B in
figure 2.
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A

A + B

B C

AB + C

Sample Pass Sample FailSample Not Counted

A + B AB

No Interaction

AB + C

Interact

AB--C C--AB

Unstable

A + B + C

Stable

A + BC ABC[AB]C

Unstable Stable

AC + BCAB C[AB]

Figure 2: Schematic depiction of the ‘decomposition’ test. A requirement of the decomposition test is that synthesis must have first occurred,
this part of the schematic is indicated in the highlighted subgraph (details removed for brevity).

Catalysis This is the highest-level property investigated
here. Unlike the other desired properties, catalysis can take
many forms. Any of the other tests could be repeated requir-
ing the presence of a catalyst. For simplicity, we focus on
catalysis of synthesis reactions.

The test proceeds as follows: as before, a sample of three
bRBNs is taken and the first two attempt to form a stable
bond. However, unlike decomposition or substitution tests,
this time it is important that a stable bond does not form. If a
bond does form, then the sample is not counted for pass/fail.

After that initial bond formation stage, the third bRBN
in the sample attempts to form a bond with the first; this is
analogues to interacting with a catalyst to form a temporary
intermediate. If this does not form a stable bond, then again
the sample is not counted for pass/fail.

The final step is to test that the second bRBN from the
sample can substitute for the third bRBN. If this is the case,
then the third bRBN has acted as a catalyst for the forma-
tion of the bond between the first and the second bRBN that
would not occur directly (figure 3).

Results
The outcomes of testing the described alternative
chemistries with 10,000 randomly generated samples
of bRBNs is summarized in table 4 (testing took approx. 2
days on a 24 quad-CPU cluster). With each test a number of
alternative AChems are ruled out; the chemistries that pass
all tests are listed table 5.

Less than 5% of alternative chemistries pass all the tests.
The n & k categories of alternatives have little or no in-
fluence on the low-level properties of the chemistry. The
anomaly is n = 25, k = 3 with bonding property ‘total’
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Synthesis 200 10 7 183
Self-Synthesis 183 110 53 20
Decomposition 183 0 6 177

Substitution 177 0 18 159
Catalysis 177 0 39 138

Table 4: Results from testing 10,000 samples from each of 200 al-
ternative chemistries for low-level emergent behaviours. The pre-
requisite for decomposition and self-synthesis tests is synthesis.
The prerequisite for substitution and catalysis tests is decompo-
sition. See text for details.

and a comparison of ‘sum zero’; however, this may be due
to sample size. Closer examination of this case shows that
of 10, 000 samples in the decomposition test, 9, 677 were
not counted (as the did not form a molecule that could break
down) and none of the remaining 323 samples passed. In
comparison, the n = 20 equivalent AChem where 9, 382
were not counted and 43 of the remaining 618 samples
passed.

For the property and comparison alternatives, only those
using ‘proportion’ as property and ‘sum one’ as the criterion
or those using ‘total’ as the property and ‘sum zero’ as the
criterion pass all tests. Whilst alternatives should be kept in
mind, we now have evidence that these are options are more
likely to be capable of rich emergent properties. As various
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No Interaction

AC + B

Interact

AC--B B--AC

Unstable

A + B + C

Stable

ACB[AC]BA + BC

Unstable Stable

BAC B[AC] AB + C

A

A + B
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Figure 3: Schematic depiction of the ‘catalysis’ test. Requirements of the catalysis test are that A and B must not synthesise, and that C and
A must synthesise; these are indicated by the highlighed subgraphs (details removed for brevity).

n k Measurement Comparison

5 2 Proportion Sum One
10 2 Proportion Sum One
15 2 Proportion Sum One
20 2 Proportion Sum One
25 2 Proportion Sum One

5 3 Proportion Sum One
10 3 Proportion Sum One
15 3 Proportion Sum One
20 3 Proportion Sum One
25 3 Proportion Sum One

5 2 Total Sum Zero
10 2 Total Sum Zero
15 2 Total Sum Zero
20 2 Total Sum Zero
25 2 Total Sum Zero

5 3 Total Sum Zero
10 3 Total Sum Zero
15 3 Total Sum Zero
20 3 Total Sum Zero

Table 5: The 19 alternative AChems that exhibit variation across
all 5 low-level emergent behaviours tested.

different values of n and k were tested and did not affect
which chemistries passed the tests, these values can be cho-
sen based on other concerns, such computational tractabil-
ity. One potential issue is that this work has only samples
from atomic constituents; it is not guaranteed that molecular
structures will also exhibit these behaviours. While various
values of n were tested, molecular bRBNs of many atoms
may not behave as an equivalent large bRBN atom due to the
constrictions from reciprocal bonding sites between atoms.

Conclusions
We have presented simple tests of an AChem that can be
used to restrict the design space to non-trivial chemistries.
This is important, as for many AChems there are a large
number of alternatives that should be considered – for RBN-
World we have only examined a small fraction of possible
alternatives. It has also been shown that our initial arbitrary
choice of parameters did not pass these tests [7]. This is
an important consideration as the processes that lead to the
design of an AChem are typically opaque to the community.

A filtering metric provides a useful testing approach that
does not require computationally expensive and/or exhaus-
tive testing of molecules and/or reactions. It is also inter-
esting to see that some AChems fail because all tested sam-
ples interactions failed, but some chemistries fail because all
tested sample interactions passed; the presence of variation
is a requirement for emergent properties.

Future work
Two specific alternative parameterisations of RBN-World
have been identified as containing interesting atoms; future
work can now be focused onto searching for specific small
sets of elements within these chemistries that give rise to
the high-level desired properties discussed earlier — auto-
catalytic sets, hypercycles and heteropolymers. These have
not been tested for in the experiments described here due
to the small samples from each chemistry that were being
examined.

In addition, the low-level tests will be refined further. One
example is that here only atoms were tested and there is no
guarantee that these properties are also applicable for larger
structures. As we can now remove the trivial, uninterest-
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ing cases, computational effort will be concentrated on those
non-trivial cases, in the hunt for rich AChems.
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Abstract

We introduce multi-level Artificial Chemistries as a way of
tackling difficult problems in the evolution of complexity. We
present two algorithms for moving between levels of abstrac-
tion in a multi-level Artificial Chemistry. (1) Moving up-
wards from a low-level description to a high-level description
involves making approximations. We discuss these, and pro-
vide an algorithm to perform the approximations. (2) Mov-
ing downwards is more problematic. We discuss the issues
involved in moving down, including conservation of mass.
We present an algorithm to generate constraints that any low-
level implementation of the system must satisfy. These con-
straints can be used to: obtain information about the system;
automatically generate a low-level implementation of the sys-
tem; guide a search for suitable low-level implementations of
the system.

Introduction
Artificial Chemistries (AChems) can be explored from a
computational viewpoint, for example, as tools for imple-
menting evolutionary algorithms [9] and controlling robots
[6]. They can also be used to model biological systems
[10] such as replication [12] and membrane formation [13].
These varied applications of AChems lead to varied ways of
defining them, and consequently to AChems defined on dif-
ferent levels of abstraction, with different properties. How-
ever, one common feature among AChems is that they are
defined on only one level. Some problems, relevant to both
computation and biology, span two or more levels of abstrac-
tion (for example, any of the ‘major transitions in evolution’
[14]). If AChems are to tackle these problems, they must
span multiple levels of abstraction.

Previous authors have observed that biological systems
contain components on different levels [3], but the purpose
of multi-level AChems is to produce two different models of
the same system, from two different levels. Work has been
done on Course-Grained Molecular Dynamics [1] and Dis-
sipative Particle Dynamics [11], which move from the very
low level simulations of Molecular Dynamics, upwards to a
slightly higher level that is more computationally tractable
for larger molecules and longer timescales. But these sys-
tems still only operate on one level. Currently there is no

well-defined way for the AChem itself to move between lev-
els of abstraction. We discuss the issues involved in moving
between levels of abstraction, and present two algorithms to
aid movement up and down levels of abstraction in AChems.

Traditionally, people use computers to do the ‘work’ of
running the AChem, and themselves do the ‘meta-work’ of
deciding at which level to run. But what if computers could
do this ‘meta-work’? A system that could automatically de-
cide which level to model at could attempt to tackle some of
the difficult modelling challenges that span multiple levels,
such as the ‘major transitions in evolution’. Here we discuss
both moving downwards from a higher level to a lower level
and moving upwards from a lower level to a higher level.

The higher level is an approximation of the lower level.
The lower level contains more information than the higher
level, and so moving downwards requires adding this in-
formation into the system. When moving downwards, we
do not know how the lower level is implemented. We only
know how it must behave when viewed from a high level.
So we cannot map directly from a high-level description to
‘the correct’ low-level description. In this paper, we map to
a set of constraints that any low-level implementation must
satisfy. These constraints describe how the low-level com-
ponents of the system combine to form high-level structures.

The constraints could then be used to guide an implemen-
tation of the lower level. For some low-level implemen-
tations, these constraints correspond almost directly to an
implementation (with possibly some arbitrary choices to be
made). For more involved low-level descriptions, these con-
straints can be used to search for low-level implementations.

When moving up from a low-level description to a high-
level description, an approximation must be made. The pur-
pose of having a high-level description of a system is that
there is too much information in the low-level description,
and a summary of this information is desired. The high-
level description approximates this information in a mean-
ingful way. We must decide precisely how to approximate
the system and how much to approximate it. An algorithm is
presented for performing this approximation, and the issues
surrounding approximation are discussed.
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What is an Artificial Chemistry?
AChems are agent-based systems where the agents are ana-
logues of chemicals participating in reactions. There are dif-
ferent types of AChem [4] with varying levels of complex-
ity. The simplest are defined by finite lists of chemical types
and the reactions they can participate in. More sophisticated
AChems define chemicals containing some internal structure
or properties. This makes it possible to describe an infinite
number of different chemicals using a finite number of prop-
erties [10]. The reactions in these systems do not need to be
explicitly listed; they are defined implicitly by the structure
and properties of the chemicals, and specific reactions can
be computed as and when they are needed.

When defining reactions implicitly, the possibility exists
for open chemistries [7]. In an open chemistry, the possible
chemical species that can exist need not be pre-specified.
Although many different chemical species are possible, only
a small number of them exist at any one time. A particular
instance of the chemistry occupies a sub-space of the space
of all possible chemical species. As an open chemistry runs,
it changes the sub-space that it occupies.

If an AChem is to be used to evolve a network of chem-
icals and reactions, an open chemistry is required. Addi-
tionally, the chemistry should also be evolvable: the chemi-
cal species should change (via mutation) in a structured way
that evolution can use to move through the space of possible
chemical species. Most changes should have only a small ef-
fect (so a mutated chemical can perform the same reactions
as its parent, but maybe faster or slower), but some changes
should have a large effect (occasionally a mutated chemical
can perform a new reaction, or lose the ability to perform an
existing reaction).

One way of making evolvable chemistries is to use sub-
symbolic chemistries [5], where chemicals have two levels
of description. On the higher level, the system is an open
AChem with chemical species containing structure and rules
that define their reactions. On the lower level, a chemical is
composed of parts that interact to give rise to properties that
entail the rules on the higher level. The lower level could
be a complex system such as a random boolean network [5],
it could be another AChem (for example a simple, closed
chemistry), or it could be a computer programming language
[8]. AChems that work on two or more levels have the po-
tential to possess properties such as evolvability.

What are levels?
There is no ‘correct’ level at which to design AChems, as
it depends on the particular problem being solved. This in-
cludes whether the purpose of using the AChem is to sim-
ulate a system from actual chemistry (or biochemistry), or
to use the AChem as a computational tool, exploiting its
properties to create a computational system (or to study a
computational system). But there are some problems that
involve crossing levels. For example, actual chemistry has

gone through events crossing levels at different times dur-
ing the evolution of life (the ‘major transitions in evolution’
[14]), for example: naked replicating molecules becoming
encased in compartments and replicating as populations;
RNA acting as both genes and enzymes, changing to use
DNA as genes and proteins as enzymes; and the evolution
of multi-cellular organisms from single-celled organisms.
These kinds of problem may be interesting to systems bi-
ologists wanting to better understand what happened in real
chemistry/biology. They may also be interesting to people
wanting to use AChems for computational purposes, as they
are examples of natural systems increasing their own com-
plexity, something that current artificial systems find diffi-
cult to achieve.

All of these problems involve concepts at two (or more)
levels. Choosing the most appropriate level at which to
model is not easy. Addressing these problems (from the
point of view of either biology or computation) involves one
of two options: either modelling and simulating the whole
system from the lower level, and enduring the computational
burden that this entails; or modelling the system on both
levels simultaneously, switching between the two levels in
a multi-level chemistry. To automate the second option re-
quires a well defined way of moving between the levels.

Going downwards
The concept of multi-level chemistries can provide new
ways of thinking about high-level, symbolic, chemistries
(lists of chemicals as symbols, and their reactions). Any
symbolic chemistry describes a system at a certain level.

For systems that are models of the real world, there is al-
ways a lower level of description that the system could be
described on (until we reach the level of our understanding
of particle physics). Also, for real world systems, some in-
formation about this lower level is always known (we know
that organisms are composed of cells, which are composed
of molecules, and so on.)

For artificial systems, however, the implementation of any
level is arbitrary (and is often chosen to make the program
execute efficiently). So when describing an artificial system
in terms of a lower level, there are arbitrary implementation
choices to be made, some of which are constrained by the
higher level. Looking for these constraints can give insight
and information about the higher level, and resolve some of
the seemingly arbitrary design choices for the lower level.
These kinds of insight can also be gained about real systems
as well as computational ones.

The high-level entities are symbols. On the lower level,
each of these high level symbols is expressed as a collection
of lower-level components. For example, the decomposition
of hydrogen peroxide into water and oxygen can be written
as:

2 hydrogen-peroxide→ 2 water + oxygen (1)
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But the same equation can be written in terms of the lower
level of atoms, instead of in terms of the higher level of
molecules:

2 H2O2 → 2 H2O + O2 (2)

Here, ‘hydrogen-peroxide’ is a symbol on the higher level,
that is expressed as two ‘H’ components and two ‘O’ com-
ponents on the lower level. Note also the constraint: ‘oxy-
gen’ and ‘hydrogen-peroxide’ are different symbols on the
higher level, but they share common components on the
lower level: ‘hydrogen-peroxide’ has the same components
as ‘oxygen’, along with some other components.

On the high level, information about the system is con-
tained in the reaction equations. On the low level, it is con-
tained in the structure of the chemicals (how their compo-
nents are arranged). So the task of describing a high-level
system on a lower level is about moving information from
reaction equations to chemical structures.

This movement can be performed by humans looking at
reaction equations and diagrams. But as the lists of equa-
tions become longer and the number of different symbols
increases, the problem becomes harder and more tedious to
solve. Also, if evolutionary algorithms are to evolve sym-
bolic systems, then this problem needs to be solved hundreds
of times for each generation of the evolutionary algorithm.
This is why it is useful to have an algorithm for automati-
cally performing this process.

Conservation of mass
The above reasoning relied on the assumption that ‘mass’ is
conserved in the high-level reaction equations: if α+β → γ,
then all the low-level components making up α and β are
present in γ, and γ contains no new components that have
not come from α or β.

This is not a difficult condition to fulfill on the high level,
as new symbols can be introduced to account for any mass
gained or lost in a reaction. For example, if α+ β → γ, but
mass is lost (γ does not contain all of the components of α
and β), then α+ β → γ can be replaced by α+ β → ξ+ γ,
where the symbol ξ does not appear anywhere else in the
system. ξ represents the mass that is lost in the reaction.
Likewise, if mass is gained in the reaction (γ contains a com-
ponent that does not come from α or β), then α+β+ζ → γ
can be used, where ζ represents the mass gained in the re-
action. These two patterns can be applied to any reaction.
If they are applied at the same time, they can represent re-
actions in which some components are lost and some are
gained.

Given a high-level system of reaction equations that con-
serve mass, we can deduce constraints on how the high-level
symbols are composed of low-level components. We can
also put constraints on the possible masses that the sym-
bols can have. Technically, we deduce a partial order on
the masses of the symbols, with constraints of the form: ‘χ

has more mass than ψ’. We can also use this to work out if a
system conserves mass or not, so we do not need to know be-
forehand. If we encounter a contradiction when building the
partial order, we have proved the system does not conserve
mass. If we can build the partial order with no contradic-
tions, then we have proved the system does conserve mass.

Multiple meanings
Some high-level reaction equations can have more than one
interpretation on the lower level. These can be disam-
biguated by modifying the reaction equations to include in-
termediate steps. Different disambiguations lead to different
low-level constraints for the same high-level system.

3 chemicals or fewer — unambiguous reactions
There are five kinds of reaction equation that have only
one interpretation on the lower level: they involve three
molecules or fewer.

1. nothing→ α (influx)

2. α→ nothing (outflux, or decay)

3. α→ β (isomerisation)

4. α+ β → γ (composition or association)

5. γ → α+ β (decomposition or dissociation)

Reaction types (1) and (2) give no information about the
lower level (other than saying “α is a symbol that exists”),
so are ignored in later analysis.

4 chemicals
Four chemicals participating in a reaction can have more
than one interpretation on the lower level.

3→ 1 reactions. Reactions of the form α+β+γ → δ im-
ply that chemical δ is a composite of chemicals α, β and γ.
The ambiguity lies in the order in which α, β and γ combine
to form δ. Because the probability of three molecules react-
ing with each other at the same instant is negligibly small,
two of α, β and γ must react first, the other one reacting with
the intermediate complex, ξ. There are three possibilities:

α+ β → ξ ; ξ + γ → δ (3)
α+ γ → ξ ; ξ + β → δ (4)
β + γ → ξ ; ξ + α→ δ (5)

If α+ β + γ → δ were the only reaction in the system, then
these three disambiguations would be equivalent. But if α, β
and γ participate in other reactions, then the order in which
they combine to form δ could have implications on the lower
level.
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1 → 3 reactions. Similarly to the 3 → 1 reactions, reac-
tions of the form α→ β+γ+δ can also have multiple inter-
pretations. The chemical α must be composed of chemicals
β, γ and δ, and so it must be composed of their low-level
components, held together in a certain structure. It must re-
lease one of chemicals β, γ and δ first, which implies the
existence of an intermediate chemical, ξ, that is the combi-
nation of two of β, γ and δ. There are three possibilities:

α→ β + ξ ; ξ → γ + δ (6)
α→ γ + ξ ; ξ → β + δ (7)
α→ δ + ξ ; ξ → β + γ (8)

2→ 2 reactions. Reactions of the form α+β → γ+δ can
have multiple interpretations, but these interpretations are of
a different kind from those above. The earlier interpretations
are about the order in which three chemicals come together
to form a complex (or come apart from a complex). The
interpretations for α+β → γ+δ reactions concern symbols
being transformed into other symbols, which corresponds,
on the lower level, to chemicals undergoing isomerisations.
There are three possibilities for how this isomerisation can
occur:

1. α is an isomer of γ; and β is an isomer of δ.

2. α is an isomer of δ; and β is an isomer of γ.

3. Both α and β contain some components of γ and δ.

Depending on precisely how the lower level will be imple-
mented, point (3) may or may not be possible.

For the purpose of reducing every ambiguous reaction to
unambiguous reactions, the reaction α+ β → γ + δ can be
replaced with the two reactions:

α+ β → ξ ; ξ → γ + δ (9)

This again introduces an intermediate complex, ξ. Replac-
ing the equation in this way does not remove the underlying
ambiguity. We must make another disambiguation by choos-
ing one of the three cases above.

More than 4 chemicals
In the same way that reactions involving four chemicals can
be reduced to unambiguous reactions involving three chem-
icals or fewer, reactions with more than 4 chemicals can be
reduced to unambiguous reactions by the repeated applica-
tion of the above reductions.

Disambiguation
The first step in the analysis of a high-level system is to
pre-process the reactions, reducing them to unambiguous
reactions. This involves making choices about how to de-
compose ambiguous reactions, as described above. If only
one ambiguous reaction needs to be decomposed, then the

choice made is somewhat arbitrary. But if multiple choices
need to be made, then there is the possibility that choices
can affect each other.

There is no way in which choices can be incompatible
with each other: any set of choices will always lead to a
valid disambiguation, and every disambiguation can always
be reversed (by removing the intermediates) to return to the
same set of ambiguous equations. However, different dis-
ambiguations of the same equations can differ in the num-
ber of intermediates introduced. If two reactions need to be
disambiguated, then this will introduce two new intermedi-
ate symbols (one for each reaction). These intermediates
are different symbols on the high level, but if there is extra
information in the system about the reactants and products
of the ambiguous reactions, then it may be possible to re-
late the intermediates on the lower level, seeing them as iso-
mers of each other (i.e. realising they are composed of the
same components). If, however, the equations were disam-
biguated using different choices, then it might not be possi-
ble to relate the intermediates on the lower level. This can
also carry over to some of the non-intermediate symbols as
well. One disambiguation may make it possible to infer that
two non-intermediate symbols are isomers of each other, but
a different disambiguation may not make it possible to infer
this.

Note that this is not a mistake in the disambiguation pro-
cess: it is a choice that must be made about how to interpret
the high-level equations. If an equation is ambiguous about
how one reaction happens, then this ambiguity can carry
over to other parts of the system. If application-specific
information is available about how ambiguous equations
should be disambiguated, then they can be disambiguated by
hand before running the analysis. Or if the equations are be-
ing generated by a computer program, then this program can
be instructed to produce unambiguous equations of the cor-
rect form. If it is not known which way the equations would
be best disambiguated, then any disambiguation will give a
valid representation of the equations. If there is reason to
believe that one representation will be better than the others,
but it is not known which, then all disambiguations can be
enumerated. The analysis can be run on all disambiguations
and the results compared to see if multiple representations
are possible. If the most compact representation is desired
(i.e. the representation that sees the greatest number of sym-
bols as isomers of each other), then this can be found by
comparing the different representations. The fact that mul-
tiple representations are possible via different disambigua-
tions, highlights the fact that the lower level contains more
information than the higher level. Thus we can not map di-
rectly to a low-level description from a high-level descrip-
tion; we can only obtain constraints on the lower level.
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Algorithm
Once the high-level set of reaction equations has been dis-
ambiguated, they can be reasoned about to obtain constraints
on the low-level implementation of the system. This reason-
ing will give us:

• L : a list of low-level components.

• H : a list of the high-level symbols and how they are com-
posed of low-level components.

• I : a list which high-level symbols are isomers of each
other.

• P : a partial order on the masses of the components and
symbols.

The low-level components here represent constraints on how
the lower level must be implemented. These components are
no more than the high-level symbols that do not need to be
broken down into other symbols. (If a high-level symbol
does not need to be broken down on the lower-level, it does
not mean that it must not be broken down; it just means
there is no information in the high-level reaction equations
requiring it to be broken down.)

A set of high-level reaction equations can be thought of as
an implicit description of how some symbols in the system
are composed of other symbols. The purpose of this algo-
rithm is to make this implicit description explicit. This uses
a form of unification [2]. The word ‘unification’ has a spe-
cific meaning in Computer Science (that applies here), but
it can be thought of more generally as a way of taking in-
formation that is implicit and spread out; making it explicit
and bringing it into one place. In this situation, the informa-
tion is implicitly spread throughout the high-level reaction
equations. We are bringing it into an explicit description of
how the high-level symbols are composed of low-level com-
ponents. Off-the-shelf unification algorithms are not suited
to this particular situation, as here there is only one function
(composition), and it is commutative. So we have designed
a special-purpose unification algorithm (algorithms 1 and 2)
to exploit the structure of this problem.

Algorithm 1 — set-up
Before we can perform the unification, we need some equa-
tions to unify. These will be of the form α = β + γ,
representing the fact that the high-level symbol α is com-
posed of the same low-level components as a β symbol com-
bined with a γ symbol. These equations are stored in the
data structure D. After the pre-processing steps of disam-
biguation and removal of influx and outflux reactions, we
have isomerisation, composition and decomposition reac-
tions. Algorithm 1 processes these reactions, putting their
information into the data structures D, I and P. The decom-
position reactions are added as-is into D; the composition
reactions are reversed, and added to D. The isomerisation

Algorithm 1 The first half of the ‘downwards’ algorithm:
Setting up the decompositions of symbols.

P := ∅ {partial order on the masses}
I := ∅ {high-level symbols that are isomers}
D := ∅ {decompositions being unified}
for all reaction in high-level-reactions do

if reaction is α→ β {isomerisation} then
add isomer ‘α = β’ to I
add order relation ‘α = β’ to P

else if reaction is α+ β → γ {composition}
or γ → α+ β {decomposition} then

add decomposition ‘γ = α+ β’ to D
add order relations ‘α < γ’ and ‘β < γ’ to P

if there is a contradiction in P then
return failure: the system does not conserve mass

reactions do not need to be put into D, instead their informa-
tion can be put directly into I. As each equation is added, its
information about the partial order on the masses is added to
P. When every equation has been processed, the unification
can begin. We check the partial order to see if the system
conserves mass, and stop now if it does not (because the uni-
fication would fail). If there is a contradiction in the partial
order, then the high-level system does not conserve mass.
If there is not a contradiction then this does not necessarily
mean that the system does conserve mass; there is another
conservation of mass check during the unification.

Algorithm 2 — unification
After set-up stage, the data structure D is filled with the
equations to unify. Algorithm 2 performs this unification
and completes the ‘downwards’ algorithm. D contains a list
of equations of the form ω = χ + ψ, where ω, χ and ψ are
symbols from the high-level system (or intermediates gener-
ated by disambiguation). The equation ω = χ + ψ means
that the symbol ω is composed of the same low-level compo-
nents as the symbols χ and ψ. But D could contain another
equation: ω = τ + υ. These two equations both describe
how ω is composed, and need to be considered together dur-
ing this step of the algorithm. During this step we iterate
through the equations in D, grouping together all equations
describing the same symbol (e.g. ω). So in a typical itera-
tion we might consider the decompositions d = d1 = d2,
where d is ω, d1 is χ + ψ and d2 is τ + υ. So the nota-
tion d = d1 = d2 means that we are considering the two
equations, ω = χ+ ψ and ω = τ + υ.

For each of these sets of decompositions, we apply one
of five operations (in order) to simplify the equations. This
process is iterated until no equations remain. Then the equa-
tions have been unified and the process is complete. WHen
simplifying the equations, we may find a way to partially
decompose a symbol but not know its full decomposition
yet. This information is stored in the temporary variable PA,
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which is like H but stores partial information about decom-
positions. The operations that we perform are:

1. If a symbol has only one decomposition (d = d1) then this
symbol has been fully decomposed. We add this decom-
position to H, including any partial decomposition already
done to d.

2. If there are common symbols in the decompositions of a
symbol (d = χ + ψ = τ + ψ) then we cancel these and
add them to the partial decomposition of d.

3. If any decompositions of a symbol contain only one sym-
bol themselves, then we can cancel them. We remove all
but one of these decompositions from D, and add into I
the fact that these symbols are all isomers of each other.
We also update the partial order, P , with the fact that these
symbols all have the same mass (and we check the partial
order for contradictions).

4. Because different symbols can be isomers of each other,
we replace all instances of these isomers with a common
identifier so they can be cancelled from the equations by
operation 2.

5. If none of the above operations can be performed, then
we search the decompositions for the first symbol that we
know how to decompose (it has an entry in H). We replace
this symbol in its equation by its decomposition. So if
ω = ψ + χ = τ + υ and τ = ρ+ σ then we end up with
ω = ψ + χ = ρ+ σ + υ.

After all the equations have been unified, the set of low-level
components, L, can be read off as those high-level symbols
that can not be decomposed (are not in H) and are not iso-
mers of a different high-level symbol (are not in I).

Going upwards
Moving up from a low-level system to a high-level system is
more straightforward than moving down.

The precise implementation details of the lower level sys-
tem do not matter for the process of moving up to the higher
level. However the low-level system is implemented, it
will consist of components that interact with each other and
join together to form structures. (For example, two hydro-
gen atoms and one oxygen atom may join to form a water
molecule structure.) These structures are symbols on the
higher level. The reactions on the higher level summarise
the low-level mechanisms by which these structures interact.
To produce a high-level description of a low-level system,
two things are needed: (1) a list of high-level symbols; and
(2) a list of reactions involving these symbols. The symbols
represent the structures formed by the low-level components
and the reactions represent the dynamics happening on the
lower level. Algorithm 3 gives the pseudocode of an algo-
rithm to do this.

Algorithm 2 The second half of the ‘downwards’ algorithm:
Unifying the decompositions

L := ∅ {low-level components}
H := ∅ {high-level symbols to be broken down}
PA := ∅ {partial decompositions}
while D is not empty do

for all d = d1 = d2 = · · · = dn in D do
if n = 1 then

add decomposition ‘d = PA(d) ∪ d1’ to H
remove decomposition ‘d = d1’ from D

else if common symbols in d1 = d2 = · · · = dn
then

cancel the common symbols
add the common symbols to PA(d)

else if more than one of d1 = d2 = · · · = dn are
length 1 then
s1 = s2 = · · · = sm are these decompositions
for all unique pairs si, sj do

add isomer ‘si = sj’ to I
add order relation ‘si = sj’ to P
if there is a contradiction in P then

return failure: system not conserve mass
remove all but one of s1 = · · · = sm from D

else if at least one of d1 = d2 = · · · = dn contains a
chemical in S then

for all matching chemicals c do
replace c with its common identifier from I

else
find the first di in d1 = d2 = · · · = dn with a
match in H
replace ‘d = di’ in D with ‘d = H(di)’

L := {all high-level symbols} \ (H ∪ I)
return success: L, H, I, P

To produce a list of symbols, it is necessary to simulate
the low-level system and observe the structures that form.
The length of time the system is observed for has an im-
pact on the structures observed. If very involved structures
could form within the system but they take longer to form
than the system is simulated for, then they will not be ob-
served. Likewise if some structures form quickly but rarely,
they may not be observed if the system is not simulated for
long enough. This highlights the fact that the high-level sys-
tem is an approximation of the low-level system, capturing
those structures that form within a certain timescale.

There is another timescale associated with the observa-
tion of the low-level system. When observing structures
within the system, a short timescale must also be chosen.
Because the low-level components are constantly interacting
with each other, a complicated structure goes through inter-
mediate stages in its formation. These intermediate stages
may not be appropriate to represent in the high-level system:
the only thing required may be the resulting structure. The
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Algorithm 3 Going upwards from a low-level description to
a high-level description of a system.

S := ∅ {set of high-level symbols}
R := ∅ {set of high-level reactions}
while long timescale has not expired do

while short timescale has not expired do
simulate low-level system

observe low-level system
for all new structures not seen before do

create a new symbol for this structure
add this new symbol to S

for all structures, S, at the start of this timescale do
if S was in a reaction during this timescale then

A := { structures that S reacted with }
B := { products remaining after these reactions }
create a new symbolic reaction: A→ B
add this reaction to R

separate, simple operations happening on the low level are
combined into one complicated operation on the high level.
This again highlights the fact that the high-level system is
an approximation of the low-level system. A complicated
structure that forms through intermediate stages on the lower
level springs into being in one step on the higher level.

Observation of the low-level system gives a list of re-
action equations as well as a list of symbols. The short
timescale is used to approximate a series of intermediate
structures by one symbol: the end product of the series. This
approximation gives a reaction equation. Whatever struc-
tures were present in the area of interest at the start of the
short timescale are the reactants in the reaction equation, and
whatever structures were left over after the short timescale
are the products of the reaction equation. Thus the observa-
tion of symbols also gives a list of reaction equations. For a
new symbol to be observed, there must have been a process
taking place by which the symbol was formed. This process
is observed and approximated by the short timescale. This
gives a new symbol (or symbols), and a reaction creating the
symbol(s). Repeating this observation of the low-level sys-
tem for the whole duration of the long timescale gives a list
of high-level symbols and a list of reaction equations. This
is a high-level description of the system.

Conclusions and future work
Building AChems on multiple levels provides more flexi-
bility than using just one level. It may provide a way of
approaching difficult problems in the evolution of complex-
ity, such as the ‘major transitions in evolution’ [14]. This
paper presents some initial thoughts about moving between
levels, and some algorithms that allow systems to automati-
cally move between levels.

An algorithm is presented for moving down from a high-
level description of a system to a lower level of description.

Conservation of mass is needed in the high-level system in
order to infer information about the low-level system. The
algorithm can be used to determine if a system conserves
mass or not. If the system does conserve mass, then the
analysis can be performed. If it does not, then the algorithm
can be used to determine precisely which parts of the system
do not conserve mass. Since a high-level description is an
approximation of a low-level system, this algorithm gener-
ates a set of constraints that any low-level implementation
of the system must satisfy. Depending on the precise way in
which the low-level system is implemented, this either pro-
vides a way of generating an implementation, or it provides
a criterion that can be used to search for an implementation.

We will use this algorithm to investigate different low-
level implementations of AChems. We have developed
some implementations where the constraints generated by
this algorithm map directly into low-level descriptions. We
also have some sub-symbolic representations [5] where
these constraints can be used to search for sub-symbolic
chemistries that fulfil the high-level description.

Some high-level systems are ambiguous as to how they
operate on the low-level. This algorithm can be used on dif-
ferent disambiguations of the high-level system to give in-
formation about the system. We will build a tool to show
which parts of the system are most ambiguous, and which
are most constrained on the lower level. This information
may be helpful, particularly in guiding algorithms that are
searching for low-level implementations.

The algorithm introduces intermediate chemicals into the
system to disambiguate reactions. A consequence is that re-
actions happening in one step in the high-level system can
take multiple steps to happen in the low-level system. Inter-
mediates can interact with other parts of the system, disrupt-
ing the reaction. Things not possible in the high-level system
become possible by moving to a lower level of description.
So some richness is added into the system by a low-level
description, which may be useful to other processes that are
exploiting the AChem. For example, the extra richness can
provide more ways in which to evolve the reactions.

There is a further part to the ‘downwards’ algorithm,
which we will develop. As well as knowing how high-level
symbols are composed of low-level components, it would be
useful to know precisely how these low-level components
are connected together. If we consider the low-level com-
ponents connected to each other by ‘binding sites’, then we
can work this out. Each binding site has an affinity to each
other binding site, and each component can have many bind-
ing sites. Components binding to each other can cause new
binding sites on the components to become available, and
existing ones to become unavailable. After running the pre-
sented ‘downwards’ algorithm, we have enough information
to work out how many binding sites each low-level compo-
nent needs to have, and which sites must be able to bind with
which others. If the high-level reaction equations come with
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reaction rates, then in principle we could carry these rates
through the algorithm and work out values for the affinities
on the binding sites (although this would require knowing
how the kinetics will be simulated on the lower level). The
concept of binding sites shows further richness gained by us-
ing a low-level description of a system. Rather than listing
which components must come together to form which high-
level symbols, we just list which binding sites each compo-
nent must possess. The high-level symbols come out from
the low-level system as a consequence of the binding sites
possessed by each component in the system. Creating a new
component only involves creating an arrangement of binding
sites (with affinities to sites already in the system). Adding a
new component to an existing system changes the high-level
structures the system can form.

An algorithm is also presented for moving up from a low-
level description to a high-level description. A high-level
description is described as an approximation of the low-
level description, and this approximation is made precise
by the description of two different timescales that consti-
tute this approximation. A short timescale is used to ap-
proximate the interactions and intermediate structures on the
lower level into symbols and reactions on the higher level.
A long timescale is chosen to give a period over which the
low-level system will be observed, and only those events oc-
curring within this time period will be approximated.

We will link the two algorithms presented here. One way
to do this is with a heuristic search algorithm operating on
two different levels. A search algorithm (such as an evolu-
tionary algorithm) is used to search for an AChem to solve a
particular problem. A common issue encountered when de-
signing heuristic search algorithms is which problem repre-
sentation to choose. This issue can be somewhat avoided by
representing solutions to the problem as two-level AChems.
The search algorithm can search through different high-level
representations of the AChem until it becomes stuck in a lo-
cal optimum. It can then switch to the low-level represen-
tation and search in this representation for a time (perhaps
until it becomes stuck in another local optimum). Now, it
can move back to the high-level representation. When it
does this it will not only find itself in a different part of
the high-level search space, but it may find itself in a dif-
ferent high-level search space altogether. Because the low-
level representation can easily create new high-level sym-
bols, moving down to the low-level description and running
the search will change the symbols that exist on the high-
level, and change the relationships of existing symbols to
each other. Likewise, running a search on the high level
and moving back down to the low level has the potential to
change the type of low-level representation that will be gen-
erated by the ‘downwards’ algorithm. This searching on two
levels effectively co-evolves two different problem represen-
tations. It is just one way in which the two tools provided by
this paper can be used.
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Abstract

Catalytic Search is an optimization algorithm inspired by ran-
dom catalytic reaction networks and their pre-evolutionary
dynamics. It runs within an Artificial Chemistry in which
reactions can be reversible, and replication is not taken for
granted. In previous work one of us had shown that although
inherently slower than Evolutionary Algorithms, Catalytic
Search is able to solve simple problems while naturally main-
taining diversity in the population. This is a useful property
when the environment may change.

In this paper, we compare the performance of Catalytic
Search and a Genetic Algorithm in a dynamic environment
represented by a periodically changing objective function.
We investigate the impact of parameters such as tempera-
ture, inflow/outflow rate, and amount of enzymes. We show
that Catalytic Search is generally more stable in the face of
changes, although still slower in achieving the absolute best
fitness. Our results also offer some indications on how cat-
alytic search could either degenerate into random search, or
progress towards evolutionary search, although the lattertran-
sition has not been fully demonstrated yet.

Introduction

Artificial chemistries have been used to understand the ori-
gin of evolution from a pre-evolutionary, random initial state
(Fontana and Buss (1994); Dittrich and Banzhaf (1998)), to
devise bottom-up chemical computing algorithms for emer-
gent computation (Banzhaf et al. (1996); Dittrich (2005)),
and to build new optimization algorithms (Banzhaf (1990);
Kanada (1995); Weeks and Stepney (2005)), among other
usages. The motivation for the present work lies at the
intersection of these three application domains. We are
interested in exploring the emergent computation proper-
ties of artificial chemistries for the construction of beamed
search schemes able to optimize solutions to user-defined
problems. Instead of a top-down, pre-designed optimiza-
tion algorithm, optimization could be regarded as a compu-
tation task to emerge from the bottom up, as an outcome
of molecule interactions. In this context, it is worth deter-
mining the conditions for the emergence of optimization, of
which evolution is only one example.

Bagley and Farmer (1991) showed that primitive
metabolisms calledautocatalytic metabolismscan emerge
in an artificial chemistry where polymers undergo reversible
polymerization reactions. One of the conditions for the
emergence of such metabolisms is to drive the system out of
equilibrium by a constant inflow of molecules from the food
set, accompanied by a non-selective dilution flow. In this
case, some reactions may be boosted bycatalytic focusing:
starting from a random soup of molecules, the system ends
up focusing most of its activity and mass into a few types
of molecules, self-organizing into autocatalytic reaction net-
works that consume food molecules to produce longer poly-
mers. The molecules taking part in this autocatalytic core
can be regarded as primitive metabolisms.

In previous work, Yamamoto (2010) proposedcatalytic
search, an optimization scheme inspired by catalytic focus-
ing. Catalytic search is based on a pre-evolutionary chem-
istry (Nowak and Ohtsuki (2008)), where reactions might
be reversible, and replication is not taken for granted. The
reaction energy functions are assigned such that reactions
towards fitter products are favored. The selective pressurein
catalytic search comes from the differences in reaction rates
for different molecules in the reactor. These differences can
be amplified selectively by enzymes: some reactions can be
accelerated by enzymes that decrease the activation energy
barrier necessary for them to occur. Due to the absence of
direct replication, he performance of such scheme lies be-
tween that of a random search, and that of an evolution-
ary algorithm. In spite of such apparent weakness, catalytic
search and related chemical schemes have many interesting
properties, as pointed out by Weeks and Stepney (2005): the
potential to undo wrong computations or to decompose bad
solutions through reversible reactions; the ability to steer the
reaction flow towards the production of good products by
shifting the equilibrium distribution of molecules; a certain
robustness to noisy fitness feedback; and the prevention of
premature convergence through a natural tendency to gen-
erate and maintain diversity in the population. This paper
focuses on the latter property.
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Catalytic Search
In this section we summarize the catalytic search algorithm
by Yamamoto (2010), and introduce our own modifications:
an improvement of the original enzyme matching scheme,
and its adaptation to run continuously in dynamic environ-
ments.

Catalytic search works as follows: initially, a random
soup of monomers (letters from an alphabetΣ) is generated.
These monomers later concatenate into polymers (strings of
symbols fromΣ). Each polymer represents a candidate so-
lution to the problem to be solved. At every time step, two
molecules (monomers or polymers) are chosen for collision.
They react with a probabilityk, which is also thekinetic
coefficientof the reaction. If they react, acrossoverof the
two molecules is produced, and the two resulting molecules
are injected into the soup. The educts are consumed in the
process. The collision is elastic with probability(1− k).

A crossover reaction can be written as follows:

A + B
kf

⇀↽
kr

C + D (1)

whereA, B, C andD are strings from an alphabetΣ, kf is
the coefficient of the forward reaction, andkr is the coeffi-
cient of the reverse reaction. An example for strings from
Σ = {a, b, c, d} is:

abdba + ccbdd
kf

⇀↽
kr

abdbdd + ccba (2)

Crossover is a mass-conserving operation, i.e. it con-
serves the total number of symbols before and after the re-
action. Concatenation occurs as a special case of crossover
where the crossover points are the beginning and end of each
string, respectively.

Figure 1: Potential energy changes during catalysed and un-
catalyzed chemical reactions. From Yamamoto (2010).

Once the molecules have collided, the reaction only oc-
curs if the molecules have sufficient kinetic energy in order
to overcome theactivation energy barrier(Ea) needed for

the reaction. Acatalystis a substance that participates in a
chemical reaction by accelerating it without being consumed
in the process. Its effect is to lower the reaction’s activation
energy peak, thereby accelerating the reaction, while leav-
ing the initial and final states unchanged. This acceleration
comes from the fact that the coefficientk decreases expo-
nentially with the activation energy, following theArrhenius
equationfrom chemistry:

k = Ae−
Ea

RT (3)

whereA is the so-calledpre-exponential factorof the reac-
tion, Ea is its activation energy, T is the absolute tempera-
ture, andR is a constant.

Figure 1 shows the energy diagram for a typical reversible
reaction, where the effect of catalysis is highlighted witha
red dotted line. The difference in potential energy before
and after the reaction is given by∆G:

∆G = Gp −Ge (4)

whereGe is the potential energy of the educts, andGp that
of the products. In Figure 1,Ge = GX , Gp = GY , and
∆G > 0 if the reaction moves from left to right (i.e. in
the direction fromX to Y , the forward reaction); in the
direction of the reverse reaction (fromY to X), we have
Ge = GY , Gp = GX , and∆G < 0. In this figure, the re-
verse direction is favored since it leads to more stable prod-
ucts (i.e. ∆G < 0), while the forward direction is unfa-
vored (∆G > 0). The reverse direction sees a lower acti-
vation energy than the forward direction (Ea(Y → X) <
Ea(X → Y )) therefore it will be faster on average. Catal-
ysis further reduces this barrier, accelerating the reaction
in both directions (E′

a(Y → X) < Ea(Y → X) and
E′

a(X → Y ) < Ea(X → Y )).
In order to steer the system towards the production of fit-

ter solutions, in catalytic search the potential energy of a
molecule is mapped to the fitness of the solution that it repre-
sents. The fitness function must be designed such that lower
values indicate better fitness, for instance, a shorter distance
to the optimum, or a lower cost of the solution. The educt
and product energies are calculated as the sum of the fitness
of the molecules involved:

Ge = f(A) + f(B) (5)

Gp = f(C) + f(D) (6)

wheref(i) is the fitness of solutioni. In this way, fitter so-
lutions have a lower potential energy and are therefore more
stable. The production of fitter solutions (i.e. with lower
potential energy) is favored (∆G < 0), whereas the produc-
tion of poorer solutions is unfavored (∆G > 0), which is the
desired effect.

The activation energy for a reaction is further mapped to
the estimated computation cost of producing a solution: so-
lutions that are more difficult to compute must overcome a
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higher energy barrier, and therefore will be less likely to oc-
cur. This leads to a form of double-objective optimization
scheme that seeks to optimize the fitness of the solution as
well as the efficiency of its computation; these two objec-
tives can be balanced via a proper choice of energy func-
tions.

An increase in activation energy∆Ea corresponding to
the cost of the operation is then added on top of the high-
est potential energyG. ∆Ea corresponds to the portion
Ea(Y → X) in Figure 1.

The activation energies of the forward and reverse reac-
tions,Eaf andEar respectively, are:

if ∆G ≤ 0

{

Eaf = ∆Ea

Ear = ∆Ea −∆G
(7)

if ∆G > 0

{

Eaf = ∆Ea + ∆G

Ear = ∆Ea

(8)

The coefficientskf andkr follow a simplified form of the
Arrhenius equation:

kf = e−αEaf /T (9)

kr = e−αEar/T (10)

whereα is a configuration parameter of the algorithm (cur-
rently set toα = 1), andT is the temperature of the reactor.

This scheme is able to steer the flow of production of can-
didate solutions towards better ones, without explicit repli-
cation, and without an explicit memory of which molecules
produced good solutions. The search process is guided by
the differences in reaction rates to move from one pair of
candidate solutions to another.

Enzymes
The energy-based reaction steering scheme described above
is further complemented with an enzymatic step: reactions
may be catalysed by enzymes that decrease the needed acti-
vation energy. In nature, enzymes act on both forward and
reverse sides of the reaction, therefore the equilibrium con-
centrations do not change. In contrast, the enzymes used
in catalytic search only facilitate the forward reaction inthe
direction of fitter products.

Enzymes are kept in a separate pool. When two molecules
collide, if the reaction results in∆G < 0, i.e. in better fit
products, then an enzyme might be created for this reaction,
with a probabilitypc proportional to the amount of improve-
ment |∆G|. The next time similar molecules collide, the
enzyme can be used to facilitate their reaction, by lowering
the corresponding∆Ea.

In the original catalytic search scheme only exact match
between enzyme and substrates was supported. In this paper,
we extend the matching scheme such that enzymes bind to
their substrates with a certain affinity, proportional to how

well their strings match. With this scheme, an enzyme may
accelerate similar reactions, and a reaction may benefit from
the combined catalytic effect of similar enzymes. For this
purpose, we have modified the format of the enzymes in the
original catalytic search scheme in order to take into account
the strength of matching between enzyme and substrates. In
our scheme, enzymes are built from chemical reactions as
follows. A generic crossover reaction between two educt
stringss1 ands2 can be written as:

s1as1b + s2as2b → s1as2b + s2as1b (11)

wheresij are the substrings insi separated by the chosen
crossover points. An enzyme for this reaction is a string of
the form: “s1a|s1b|s2a|s2b”, with the vertical bar “|” indicat-
ing the crossover points. The enzyme uniquely identifies the
reaction, and can therefore be used to represent it in molecu-
lar form, constituting a memory of past successful reactions.

We use the similarity between the enzyme and the con-
catenated substrates as the affinity metric. The simi-
larity is the number of matching positions in the align-
ment between the two strings. For the example of Re-
action (2), the corresponding perfectly matching enzyme
is “abd|ba|cc|bdd”. If another reaction between similar
strings with similar crossover point happens, say, one de-
scribed by enzyme “abb|a|cc|bd”, then the similarity be-
tween the two corresponding enzymes is high (10 over
a maximum of 11 in this example), leading to a higher
catalytic enhancement. The similarity is further normal-
ized by the length of the smallest of the two strings, such
that shorter polymers also have a chance to get catal-
ysis. More exactly, the binding strength function be-
tween two stringss1 and s2 is defined asbind(s1, s2) =
similarity(s1, s2)/min(length(s1), length(s2)).

Once two molecules collide and their crossover points are
decided, a small number of enzymes (subsetB) are drawn at
random from the enzyme pool, and their matching strengths
are calculated with respect to the perfect enzymec for the
reaction. The contributions of all enzymes are added up to-
gether: sc =

∑

b∈B bind(b, c). The sum of the strengths
is then used to calculate the reduction in activation energy
contributed by the enzymes. Ifsc ≥ 1, the new activation
energy becomes:

∆E′

a =
∆Ea

sc

(12)

else∆Ea remains unchanged.
In order to make sure that the enzyme pool is periodically

refreshed and does not grow unbounded, enzymes are sub-
ject to a non-selective dilution flow beyond the maximum
capacity of the enzyme pool,Cmax.

We have further modified the algorithm to run continu-
ously, not stopping when a solution is found, in order to run
it in dynamic environments. The updated algorithm is shown
in Algorithm 1.
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Algorithm 1 Catalytic Search Algorithm
1: S: multiset of candidate solutions
2: C: pool of enzymes (catalysts)
3: Cmax: maximum capacity ofC
4: initialization:
5: S = random soup ofN monomersm ∈ Σ
6: C = ∅
7: while true do
8: expel two random moleculese1 ande2 out ofS
9: (i1, i2) = random crossover points withine1 ande2

10: (p1, p2)← crossover(e1, e2, i1, i2)
11: Ge = fitness(e1)+ fitness(e2)
12: Gp = fitness(p1)+ fitness(p2)
13: ∆G = Gp −Ge

14: Ea = (|e1|+ |e2|)/2
15: if ∆G > 0 then
16: Ea ← Ea + ∆G
17: else if ∆G < 0 then
18: c = enzyme(e1, e2, i1, i2)
19: B ← drawnc enzymes fromC
20: sc =

∑

b∈B bind(b, c)
21: if sc ≥ 1 then
22: Ea ← Ea/sc

23: end if
24: pc = |∆G|/Ge

25: add another instance ofc to C with probabilitypc

26: while |C| > Cmax do
27: destroy a random catalyst fromC
28: end while
29: end if
30: kf = e−αEa/T

31: if dice(kf ) then
32: inject new productsp1 andp2 into S
33: else
34: inject eductse1 ande2 back toS
35: end if
36: end while

Catalytic search steers the flow of chemical reactions by
acting primarily on the rate coefficients rather than on the
concentrations. Therefore it has a natural tendency to keep
a diversity of molecules in the reactor, some of which are
rarely used because of a slow reaction speed, but neverthe-
less stay present at some concentration. These molecules
could become useful in the future, for instance when the en-
vironment changes. This provides a simple way to keep a
pool of alternative solutions in the population, and to switch
to different solutions by preferentially choosing different re-
action pathways to construct alternative solutions using the
elements in the pool. In this paper we perform experiments
to support this claim.

Genetic Algorithm in a Chemistry

For comparison purposes, a Genetic Algorithm (GA) is im-
plemented within a similar artificial chemistry. This GA was
briefly introduced in (Yamamoto (2010)). Here we describe
it in more detail for completeness. It is a variation of a
Steady-State Genetic Algorithm (SSGA) based on tourna-
ment selection. SSGA is a non-generational evolutionary
algorithm in which at each time step, individuals are se-
lected for evaluation and reproduction, without a synchro-
nized generational loop (see Lozano et al. (2008) for a sur-
vey).

The initial population in the “chemical GA” is also a col-
lection of monomers, as in catalytic search. At every itera-
tion, r individuals (the tournament size) are chosen at ran-
dom and placed in a “catalyst pocket”C. The two best in-
dividuals (winners of the tournament) producer − 2 chil-
dren by crossover and mutation. These children replaced
the otherr−2 individuals who had lost the tournament. The
full algorithm is shown in Algorithm 2.

Note that in contrast with catalytic search, the GA is
not mass-conserving: the new individuals might have com-
pletely different sizes from those they replaced. This is done
in order to keep the chemical version of the GA as close as
possible to a normal GA.

Algorithm 2 Steady State Genetic Algorithm in a Chemistry
1: S: multiset of candidate solutions
2: r: tournament size
3: pc: crossover probability
4: pm: mutation probability
5: initialization:
6: S = random soup ofN monomersm ∈ Σ
7: while true do
8: C: set of tournament members
9: expelr random molecules out ofS and inject them

into C
10: expel the two fittest moleculese1 ande2 out ofC
11: for i = 1 to r/2 − 1 do
12: if dice(pc) then
13: (p1, p2)← crossover(e1, e2)
14: else
15: p1 = e1, p2 = e2

16: if dice(pm) then
17: p1 ← mutate(p1)
18: end if
19: if dice(pm) then
20: p2 ← mutate(p2)
21: end if
22: end if
23: injectp1 andp2 into S
24: end for
25: end while
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Experiments
Yamamoto (2010) compared catalytic search, GA and a ran-
dom search to solve instances of the OneMax problem, ex-
tended to arbitrary target strings from a given alphabetΣ.
The OneMax problem consists in maximizing the number
of ones in a binary string, which is a special case of finding
a hidden sentences ∈ Σ+, made of a sequence of letters
from Σ. This problem is known to be very easy to optimize,
facilitating the comparison of the algorithms under ideal sit-
uations.

Yamamoto (2010) had already shown that catalytic search
is able to solve simple problems, but in a slower manner than
a GA. She had also shown that while catalytic search moves
steadily towards the goal, a purely random search not only
does not find the optimum but also diverges.

In this paper we focus on comparing catalytic search and
GA under a changing environment, simulated by a target ob-
jective that is periodically modified. Furthermore, we in-
vestigate the influence of several parameters on the behav-
ior of catalytic search, namely, the size of the enzyme pool,
the amount of inflow/outflow, and the temperature. Two in-
stances of the hidden sentence problem are used: one with
binary strings with a target of all ones (OneMax), and an-
other with an alphabetic sentence. They are shown in Table
1, where “id” is the identifier of the instance (subsequently
labeled as “case 1” and “case 2” on the plots), andss is the
size of the search space for each instance, when considering
only sentences of length up to|s|.

id Σ |Σ| target sentences |s| ss

1 01 2 1111111111111111 16 131070
2 a-z 26 catalyticsearch 15 1.744e+21

Table 1: Problem instances used

The∆Ea cost function is set to the average length of the
reacting strings, as in (Yamamoto (2010)). Fixed parameters
set to default values are shown in Table 2.

size of the initial population of monomersN0 = 100
number of enzymes drawn from the
enzyme pool for each catalysed reaction |B| = 10
GA tournament size r = 4

Table 2: Fixed parameter values

Results
We measure the obtained fitness and the ability to maintain
diversity in the presence of changes. For catalytic search,
we investigate the impact of the amount of inflow/outflow,
the temperature and the size of the enzyme pool. Diver-
sity is measured using a multiset diversity metric (Mattiussi
et al. (2004)). It measures the fraction of unique elements

(molecules) over the total size of the multiset (population
size).

The target string changes 3 times during a run, att =
25, 50, 75 (in units of 100 iterations). The target string is
modified simply by applying the same mutation operator
used in GA, with a given mutation probability per symbol
of µt. All the results shown reflect the average of 10 runs.
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Figure 2: Average diversity and average best fitness for the
genetic algorithm with changing target strings.

First of all, we compare GA and catalytic search for tar-
get mutation valuesµt varying from 0.1 to 1.0, representing
slight to severe environmental changes.

Figure 2 shows the behavior of the GA under this sce-
nario. As expected, bigger changes (represented by a higher
µt) disturb the optimization process to a greater extent.
For case 1, the amount of worsening in fitness corresponds
roughly to the amount of mutation added. For example,
for µt = 1.0 (the target string changes entirely) the search
restarts from scratch, with the best fitness jumping to 100%
of its initial value att = 0. Forµt = 0.1 (the target string
changes slightly) the best fitness jumps to around 10% of its
initial value, and so on. For case 2, the fitness also presents
the characteristic sawtooth, but the recovery after changes is
slower due to the higher difficulty of the problem.

The diversity of the population in GA displays a curious
behavior under higher target mutation values. This is es-
pecially visible on case 1: soon after the target changes,
the diversity jumps nearly to the maximum, and then de-
creases as the system approaches the optimum. The latter
decrease in diversity is a well-known phenomenon in evolu-
tionary computation, however the spontaneous jumps seem
more surprising.

Figure 3 (left) shows the behavior of catalytic search un-
der the same situation, for the case of no catalysis (empty
enzyme pool), no inflow/outflow, and temperatureT = 1.
Naturally, the GA is much faster than the catalytic search
at finding the optimum, which is an expected outcome. A
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Figure 3: Average best fitness for catalytic search,
with/without inflow/outflow.

more surprising result is that the behavior of catalytic search
is qualitatively distinct from the GA: a small amount of tar-
get mutation does not seem to affect the system so clearly as
it does for GA: sometimes, it even seems to help the search,
such as aroundt = 25 for case 1 andµt ≤ 0.5.

Figure 3 (right) shows what happens when we introduce
a small amount of inflow/outflow. This is represented by
a decay parameterpd = 0.1, meaning that at every itera-
tion, with probabilitypd, a negative tournament with sizer
is executed:r = 4 individuals are extracted at random from
the population; their fitness is evaluated, and the one with
the worst fitness (the loser of the tournament) is destroyed.
It is then replaced by its length in new randomly generated
monomers. In this way we ensure a mass-conserving in-
flow/outflow mechanism that combined with a negative se-
lection mechanism makes sure that worse individuals are re-
placed with a higher probability. Here two types of behavior
can be distinguished:

• for high target changes (µt ≥ 0.5) the behavior is quali-
tatively different from that with no inflow: it looks more
like a GA (the fitness jumps when the target changes) al-
though quantitatively (in terms of absolute fitness values)
it still cannot optimize as fast as GA.

• for low target changes (µt ≤ 0.25) the behavior looks like
the catalytic search with no inflow/outflow.

Increasingpd does not seem to help: it floods the system
with new monomers that cannot be consumed on time, and
also causes the search to become more random.

Figure 4 compares the diversity of the population for cat-
alytic search with and without inflow/outflow, for both cases
studied. In contrast to the GA, the diversity in catalytic
search is unaffected by the mutation of the target string.
All mutation values produced similar figures, so we chose
to plot only the results forµt = 0.5.
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Figure 4: Average diversity for catalytic search, with and
without inflow/outflow.

At the beginning, the population is made entirely of
monomers, therefore the diversity is at most|Σ|/N , i.e. 0.02
for case 1 and 0.26 for case 2, forN = 100. It then in-
creases progressively as new solutions are built by concate-
nating monomers. The fact that the diversity is close to the
maximum for the case of no inflow/outflow (pd = 0 on Fig.
4) means that in this situation, every individual in the pop-
ulation is nearly unique; there is no visible catalytic effect
fostering the production of selected individuals.

For the case with inflow/outflow (pd = 0.1 on Fig. 4) a
lower diversity is observed. This is explained by the constant
inflow of new monomers: since the size of the alphabet is
small compared to the population, the monomer population
necessarily contains a lot of copies of the same molecule.
This is more evident for case 1, which uses a binary alpha-
bet. There, the inflow causes the diversity to decrease much
more prominently than in case 2.

Catalysis is expected to decrease diversity, by focusing the
mass of the system into fewer species when the system is out
of equilibrium. This phenomenon has not been observed in
our system: the plots forCmax = 100 andCmax = 1000
closely resemble Fig. 4. This result indicates that the way
catalysis is implemented in this system is not sufficient to
modify the concentration pattern significantly when out of
equilibrium, and focus most of the mass of the system into
fewer, selected species. Catalysis does have a moderate ef-
fect on the performance, as will be shown in Figures 5 and 6.
However, this effect is probably achieved primarily by accel-
erating a few reactions selectively by increasing their kinetic
coefficients, and not by a significant concentration change.
Even if faster, the enzymatic reactions do not succeed to fo-
cus sufficient mass, since the amount of possible reactions is
not restricted: random crossover points are chosen at every
time step, leading to different outcomes. This issue deserves
further investigation. Actually, it is not straightforward to
design an artificial chemistry to exhibit the focusing effect
reported by Bagley and Farmer (1991), and it is even more
difficult to cause it to spontaneously produce autocatalytic
networks, which could later lead to the emergence of a GA-
like scheme. On the other hand, the fact that catalytic search
is able to keep diversity under a wide variety of conditions
is a good property worth exploring.
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Figure 5: Influence of temperature and catalysis, no in-
flow/outflow

We now look at the influence of the temperature and of the
amount of enzymes in the catalyst pool. We takeµt = 0.5
as an example (other values ofµt produced similar results).
The temperature makes all reactions faster, non-selectively,
while the enzymes selectively speed up a few matching reac-
tions. Figure 5 compares the best fitness of catalytic search
for varying temperatures, with and without explicit cataly-
sis, and no inflow/outflow (pd = 0). We first look at the
results without catalysis (left side). For case 1, increasing
the temperature to moderate values improves the search: the
optimum temperature is around2 ≤ T ≤ 4. For case 2,
increasing the temperature does not seem to help: the best
fitness does not improve. This can be explained by the fact
that the energy barrier for case 1 might be too high, exces-
sively penalizing the longer solutions necessary to solve this
problem. Case 2 suffers from the same problem, but has
a much larger search space, so merely increasing the tem-
perature, a global parameter affecting all individuals, isnot
sufficient to improve the search.

Very high temperatures (for example,T ≥ 12 for case 1,
T ≥ 8 for case 2, Fig. 5 (left), without catalysis) introduce
more noise in the system, which becomes closer to a random
search and hence tends to diverge.

Figure 5 (right) shows the effect of catalysts, for a to-
tal capacity of the catalyst pool set toCmax = 1000 en-
zymes. Catalysts help to improve the search and sometimes
also help to stabilize the system: for lower temperatures,
the system with catalysts moves faster towards the optimum;
for higher temperatures, sometimes the catalysts prevent the
search from becoming random, as forT = 12 in case 1.

When combining catalysis with inflow/outflow (Cmax =
1000 andpd = 0.1) the effect of catalysis becomes barely
noticeable (Figure 6). This could be due to the fact that indi-
viduals that could be recognized by the enzymes are then se-
lected for destruction, while new individuals for which there
are no ready-made catalysts are created at a higher rate. Fig-
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Figure 6: Influence of temperature and catalysis, with in-
flow/outflow

ure 6 also shows that the temperature has little impact on the
performance (except for case 1 forT = 1 vs. other values
of T ). More importantly, the system with inflow/outflow no
longer tends to diverge to a random search when the tem-
perature increases, which is a positive aspect. The sawtooth
pattern reminding us of GA appears here again, as in Figure
3 (right).

Related Work
This work was inspired mainly by Bagley and Farmer
(1991), Banzhaf (1990), Kanada (1995), and Weeks and
Stepney (2005).

Farmer et al. (1986) identify a critical probability of
catalysis, near which the spontaneous emergence of self-
sustaining autocatalytic networks becomes highly proba-
ble. Bagley and Farmer (1991) then show the spontaneous
emergence of autocatalytic metabolisms, together with fur-
ther conditions for their emergence. However, their results
were based on a random assignment of catalytic efficien-
cies. Methods still lack for designing a proper structure-
to-function mapping in a string-based chemistry, that would
lead to a critical catalysis probability in the range neededfor
such emergent phenomenon to occur and persist. Hintze and
Adami (2008) showed the evolution of metabolisms using a
string-based chemistry with binding affinity and specificity.
However, their design already assumes a whole cell structure
with interacting genes and proteins.

Suzuki et al. (2003) enumerate minimal conditions for the
evolution of artificial life forms, however they do so in a
qualitative way. The quantitative conditions for the emer-
gence of life subsystems (including metabolism) in an artifi-
cial environment are still not entirely understood, and meth-
ods for designing emergent algorithms based on these prin-
ciples are still lacking. Designing algorithms inspired by
such thin border between life and inanimate chemistry could
help to understand such conditions and to devise correspond-
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ing methods in an iterative way.
The Molecular Travelling Salesman by Banzhaf (1990) is

an optimization algorithm based on an artificial chemistry in
which molecules representing candidate solutions are pro-
cessed by machines that float in the reactor. These machines
perform variation and selection, and are therefore closer to
our version of GA in a chemistry.

In the Chemical Casting Model (CCM) by Kanada (1995),
reaction rules modify and select molecules (candidate solu-
tions) such as to drive the system towards a more ordered
state (with lower entropy) in which molecules encode better
solutions. The fitness mapping in CCM is similar to cat-
alytic search: CCM seeks to maximize order by minimizing
entropy (which is a macroscopic quantity), whereas catalytic
search seeks to improve the fitness by moving towards lower
energy levels at the microscopic level.

In the Artificial Catalysed Reaction Networks by Weeks
and Stepney (2005), molecules encode partial solutions that
are constructed via reversible polymerization reactions.Fit-
ter products are rewarded by catalyzing their own produc-
tion, therefore each molecule is potentially an autocatalyst,
in contrast to our work where autocatalysis is not assumed.

A lot of work has been done on improving evolutionary
computation for dynamic environments (see Jin and Branke
(2005)). However, the potential of pre-evolutionary schemes
in such context remains to be explored.

Summary and Conclusions
Our results reveal interesting aspects and point to many is-
sues to be investigated. First of all, the behavior of catalytic
search in the presence of changes is qualitatively different
from that of an evolutionary algorithm. Evolution is capable
of fast optimization, but is also more severely affected by
changes. Catalytic search, on the other hand, is slower but
also less sensitive to changes, and able to maintain a diverse
pool of individuals in the population.

The behavior of catalytic search can be steered by pa-
rameters: a higher temperature, for instance, can cause the
system to degenerate into a random search. Such degra-
dation can be slowed down by the presence of catalysts,
which have a stabilizing effect provided that the amount of
inflow/outflow is very small or none.

Perhaps the most interesting phenomenon that could be
expected from such a system would be a spontaneous tran-
sition to an autocatalytic or collectively autocatalytic stage,
which could become a bridge towards a further transition
to an evolutionary stage. So far however, we were not able
to demonstrate such transitions in an emergent way. One
of the major improvements needed in the current system is
to ensure a larger impact of catalysts, in order to exhibit
the focusing phenomenon that could enable such transitions
to occur spontaneously. This would require a carefully de-
signed structure-to-function mapping reflecting the required
catalysis probabilities. It would also require a more effi-

cient stochastic collision algorithm able to take into account
a large number of possible reactions with rates differing by
several orders of magnitude. Another major improvement
needed is to make the system more tolerant to a continuous
inflow/outflow, which is one of the primary conditions nec-
essary for catalytic focusing to succeed.
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Abstract

In this paper we present an Alife-platform named Urdar
aimed at investigating dynamics of ecosystems where species
engage in cross-feeding, i.e. where metabolites are passed
from one species to the next in a process of sequential degra-
dation. This type of interactions are commonly found in
microbial ecosystems such as bacterial consortia degrading
complex compounds. We have studied this phenomenon from
an abstract point of view by considering artificial organisms
which metabolise binary strings from a shared environment.
The organisms are represented as simple cellular automaton
rules and the analogue of energy in the system is an approxi-
mation of the Shannon entropy of the binary strings. Only or-
ganisms which increase the entropy of the transformed strings
are allowed to replicate. We find that the system exhibits a
large degree of biodiversity and a non-stationary species dis-
tribution, especially during low rates of energy inflow, and
that the time spent in each species configuration exhibits a
broad distribution. Investigating the interaction between dif-
ferent species in the system by invasion experiments we ob-
serve that co-existence is a common feature and that some
triplets of species exhibit intransitive, i.e. rock-paper-scissors
like, interactions.

Introduction
The origin and maintenance of biodiversity has been a long
standing question among ecologists (Hutchinson, 1959).
One of the simplest ecological system where biodiversity
emerges, and is stably maintained, is in populations of E.
coli growing in a homogeneous environment limited by a
single resource, usually glucose. The diversity is facilitated
by cross-feeding (syntrophy), where one strain partially de-
grades the limiting resource into a secondary metabolite
which is then utilised by a second strain. This phenomenon
was first observed by Helling et al. (1987) and has since been
reported to occur in other systems such as methanogenic en-
vironments (Stams, 1994), bacteria engaging in nitrification
(Costa et al., 2006) and degradation of xenobiotic compunds
(Dejonghe et al., 2003; Katsuyama et al., 2009).

The evolution of cross-feeding has been investigated
by Pfeiffer and Bonhoeffer (2004) using a theoretical
model, and their results showed that cross-feeding naturally

emerges under the assumption that ATP production is max-
imised while the total concentrations of enzymes and inter-
mediates are minimised. Further they showed that the evo-
lution of cross-feeding depends on the dilution rate in the
chemostat, and that a stable polymorphism is more likely to
emerge at low dilution rates.

A different approach was taken by Doebeli (2002) who
investigated the emergence of cross-feeding in the frame-
work of adaptive dynamics. In this case the conditions for
evolutionary branching and the appearance of cross-feeding
are that there is a trade-off between uptake efficiency of the
primary and seconday metabolites, and that this trade-off
function has a positive curvature. The model also makes
the correct prediction that cross-feeding is less likely to oc-
cur in serial batch culture, in which the primary resource is
not replenished (Rozen and Lenski, 2000). This highlights
the necessity of the secondary metabolite being present for
an extended period of time for cross-feeding to evolve.

In this study we present a recent Alife-platform (Gerlee
and Lundh, 2010) aimed at investigating the evolution of
cross-feeding, but not in the context of a specific biolog-
ical system, but instead we extract and analyse the gen-
eral principles governing systems where cross-feeding might
emerge. In its abstract nature the model will be more akin to
an artificial chemistry (Dittrich et al., 2001), but with the
difference that we make a distinction between the agents
subject to an evolutionary process and resources which they
consume for reproduction. The aim of this paper is to de-
scribe the new platform, present some new results, and dis-
cuss future investigations and possible extensions of the sys-
tem.

The model
To explain the motivation behind the plaform Urdar, let us
consider the following thought experiment: a population of
different species of bacteria inhabit a petri dish continually
supplied with a given nutrient. The bacteria only partially
metabolise the nutrient, which is added at a certain rate, so
other bacteria might extract energy from the “left-overs” of
this successive degradation. Assume that this experiment is



Proc. of the Alife XII Conference, Odense, Denmark, 2010 286

carried out for a long period of time, so that species that do
well will increase their share of the total population. Since
we can imagine that different strains of bacteria have vari-
ations to their metabolism, we have that if a single species
dominates the population, a certain type of left-overs will be
abundant in the free pool of metabolites. Hence that would
lead to higher number of offspring of a species that is spe-
cialised on extracting energy from that kind of left-overs.

Please note that the model we will present is not specific
to bacteria, but could represent any ecosystem where
resources are consecutively degraded by several species,
creating a network of interdependence. We set up such
an experiment using artificial organisms or agents that
are capable of successive degradation (transformation)
of metabolites from which they extract energy used for
self-maintenance and reproduction.

In our model we will use binary strings as the “foodstuff”,
and we will view the metabolic process as the degradation of
ordered strings into strings with a higher degree of disorder.
More specifically, let R be a pool of resources (or metabo-
lites) {ri} where each ri is a binary string of length L, as
for example ri = 00101 . . . 01110. Let A be the population
{aj} of agents (or organisms), where each agent aj is repre-
sented by a function that transforms binary strings into new
binary strings, aj : R → R. We can view this mapping as a
“metabolic digestion” of the string being transformed. More
precisely the agents inA transforms resource strings fromR
in the following way

rnew
i = aj(rold

i ).

Let now a positive function E on the binary strings in R
represent the “energy state” of such a string. If the agent
aj is able to extract energy from the resource string ri, we
have that E(rnew

i ) < E(rold
i ), and the amount of energy

extracted is given by

∆Ej = E(rold
i )− E(rnew

i ).

The evolutionary dynamics are then introduced by a
possible replication of the agent aj to a daughter agent
whenever ∆Ej > 0. Replication in the current model is
asexual and offspring have just a single parent organism.
The offspring is mutated with probability µ, and replaces
another agent in the population, thus keeping the population
size constant. The constant population size can be thought
of as either being imposed by a space constraint, or by
the carrying capacity of an additional nutrient required for
biomass synthesis (assuming that the evolutionary dynamics
related to this trait occurs on a much slower time-scale). The
probability for a reproduction to take place is an increasing
function of ∆Ej with zero probability if ∆Ej ≤ 0. Hence a
successful type of agent, is one which is able to effectively
extract energy from the binary resource strings in R, and the

aj

ri

r'i

ΔEj

ak

r''i

ΔEk

aj

ak

P(ΔEj)

P(ΔEk)

γ

γ

γ

Figure 1: A schematic view of the model. The agents
in the model digest binary strings by applying CA-rules,
transforming r to r′. To each such metabolic step we can
associate a difference in energy ∆E (visualised with dot-
ted lines). The reproduction of each agent depends on how
much it can decrease the energy of the binary string and oc-
curs with probability P (∆E) (represented by the arrows on
the left hand side). The binary strings exist in a common
pool which they enter (and leave) at a rate γ, as shown by
the arrows on the right hand side.

content of R in turn depends on which agents constitute the
population. In order to feed the system with energy, strings
in the resource pool R are continually being replaced with
new high-energetic strings at a rate γ, representing a flow
of energy into the system. A schematic of the modelling
framework is shown in fig. 1, which illustrates how binary
strings are metabolised by the organisms and flow through
the system.

The frame-work described so far is quite general, and we
will in the following describe the particular choices we have
made in the current study. Firstly, the agents aj are chosen
to be nearest-neighbour one-dimensional elementary cellu-
lar automata (CA), one of the simplest notions of digital al-
gorithms. The reason for that particular choice in Urdar is
that such functions are well studied in the literature starting
from the work of Wolfram (1983). They are simple, but still
shows a surprisingly wide range of complexity. The second
choice we made was using an approximated Shannon En-
tropy as the energy function E, which gives an estimate of
the amount of disorder a binary string contains (Shannon,
1948), associating a low entropy (low level of disorder) with
a high “energy” state of the string, i.e. we set E = 1− s. To
motivate such a choice, one can see organismal metabolism
as degradation of ordered structures into less ordered con-
figurations. Entropy is a measure of such disorder. This
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viewpoint is both common and well established:

“Thus the device by which an agent maintains station-
ary at a fairly high level of orderliness ( = fairly low
level of entropy) really consists in continually sucking
orderliness from its environment.” (Schrödinger, 1944)

One could of course make use of a more sophisticated
artificial chemistry by assigning higher energy, and hence
fitness, if an organism is able to transform strings into certain
patterns, instead of just increasing the entropy; but in our
effort for simplicity and a more open-ended fitness function
we have chosen the current set up.

Finally, the probability for agent aj to reproduce, as a
function of the energy it extracts from a binary string, is
given by

P (∆E) =

{
1−exp(−∆E/β)

1−exp(−β) , if ∆E > 0
0, if ∆E ≤ 0.

(1)

where β is a positive parameter indicating the level of com-
petitive pressure among the agents. When β tends to zero,
selection is weak as any ∆E > 0 gives a probability of re-
production very close to unity, while for larger β selection is
stronger as the magnitude of ∆E is more important for de-
termining the value of P (∆E) and hence the reproductive
success of the organisms.

An example of applying CA-rules to binary strings is
shown in fig. 2, where three rules, i.e. three different species,
digest a string with a low entropy to binary strings with suc-
cessively increasing entropy. This is the type of interactions
we can expect in the model, in particular at low γ when
the strings are replenished at a low rate. This figure also
illustrates the fact that the CA-rules in general make small
changes to the food string during digestion. In fact there is
no CA-rule which can, in a single metabolic step, increase
the entropy of a fairly ordered string to the maximum at-
tainable entropy. This is similar to individual metabolic re-
actions in real organisms which generally only change the
free energy of the metabolites a small amount, while the
metabolism as a whole is responsible for the major differ-
ence in free energy between the nutrients taken up by the
organism and the waste products being excreted. This fact
also suggests that Urdar can be viewed as a model of the
early stages of life on earth when the metabolic repertoire of
organisms was much smaller and cross-feeding was possibly
more prominent.

Note that in the current set up, the mapping between the
genotype and phenotype of the agents is one-to-one, where
the genotype corresponds to the integer value representing
the rule (ranging from 0 to 255), and the phenotype simply
is the action of the rule on the strings which are metabolised.
All organisms implementing the same CA-rule are conse-
quently referred to as belonging to the same species. In
the current set up, we have chosen not to explicitly model

self-replication in order to keep things simple. In future ex-
tensions of the model both sex and self-replication can be
included.

The implementation of the model
To conclude the model description, let us sum up the main
features of the model1. The dynamics, depicted schemati-
cally in fig. 1, in the model during one update can be de-
scribed in the following way:

1. Each agent in the population picks randomly a resource
string rj from the well mixed resource pool R and trans-
form it accordingly to its CA-rule and then puts the trans-
formed string back into the resource pool.

2. The efficiency of the “metabolic process” just occurred
is evaluated by measuring the energy difference ∆E of
the string before and after the ”digestion/transformation”.
This is done by drawing a random number x uniformly
between 0 and 1, and ifP (∆E) > x the agent reproduces.

3. With probability µ the offspring will be mutated uni-
formly to another CA-rule.

4. In order to keep energy flowing into the system, after all
agents have been updated, a fraction γ of the strings are
replaced with high energy binary strings.

The replacement rate γ can be seen as a flow rate of en-
ergy into the system. If that rate is high, there will be less
interaction through cross-feeding among the agents in A, as
strings are flushed out at high rate, but if on the other hand
γ is set to zero, the whole process will slow down to a halt,
as only a finite amount of energy can be extracted from each
food string. The strings introduced into the system are ran-
dom binary strings, however with a low entropy (high de-
gree of order). The new strings are constructed by at each
position adding a 1 with probability p0 and a 0 with the com-
plementary probability 1−p0. The Shannon entropy of such
strings is given by

s0 = p0 log2

1
p0

+ (1− p0) log2

1
1− p0

, (2)

where log2 is the logarithm with base 2, i.e. 2log2 x = x.
By setting p0 close to unity we can create strings which,
although being random, have a low entropy. In order not
to bias the resource pool to strings which are dominated by
ones, at an equal rate we add strings which have the proba-
bilities reversed, i.e. are dominated by zeros instead.

The parameters
We here briefly recapitulate the main parameters of the sys-
tem and their significance.

1An online version of the platform is available at:
http://www.math.chalmers.se/∼torbjrn/Urdar/urdar.html

http://www.math.chalmers.se/~torbjrn/Urdar/urdar.html
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Figure 2: The transformation of binary food strings by three different species (i.e. CA-rules). Only transformations that increase
the entropy are shown and they have been truncated at a metabolic depth of four. The number of possible transformations is
greater for the three rules together than for a single isolated rule suggesting the possible advantage of cross-feeding among the
species in the model.

γ is the inflow rate of new high energetic binary resource
strings into the pool R. After each update, i.e. after all
agents have digested a resource string, the probability for
each resource string in the pool to be replaced by a new
fresh one, keeping the total number of resource strings
constant, is γ. Here we will typically set γ ∈ [0.003, 0.3].

µ is the mutation probability during reproduction, where an
agent is uniformly changed to another of the 256 CA-
rules. We will use µ = 0.01 as a default value of the
mutation rate.

β is the level of selective pressure, as it determines the
importance of ∆E in calculating the reproductive rate,
see eq. (1). The default value of in the current study is
β = 0.1.

The population size is set to NA = 1024, and the number
of binary strings in the resource pool isNR = 5NA = 5120.
The size of the binary strings is set to L = 100, and level of
order in the inflowing strings is p0 = 0.95, which gives,
through eq. (2), an initial energy of E0 = 1− s0 ≈ 0.8. The
initial condition of each simulation is a uniform distribution
of species, i.e. 1024/256 = 4 organisms of each species, and
a resource pool consisting of strings with the initial energy
E0.

Results
All ecosystem on earth are driven by energy entering the
system either in the form of sunlight or in some chemical
form such as for example glucose or ironsulphide. Similarly
the dynamics in Urdar are driven by the flow of food strings
with a high energy into the system, and if γ is set to zero the
dynamics will eventually grind to a halt when all possible
energy has been extracted from the resource pool, i.e. no
new agents will be generated. The rate of energy supply is
known to be of great importance to real ecosystems (Waide

et al., 1999), and it is therefore of interest to analyse how the
dynamics in our system depend on the flow rate of energy γ.

The most straight forward way of characterising the dy-
namics is to look at the time evolution of the species distri-
bution. This is shown in fig. 3 for two different values of the
flow rate, in (a) γ = 0.3 while in (b) γ = 0.003. The striking
difference between these two simulations implies the inter-
esting statement that the number of co-existing species in
the low flow case is considerably higher. Hence one might
say that a relative supply shortage encourages species diver-
sification and cooperation. This relation is investigated in
detail in Gerlee and Lundh (2010) and we will here focus on
ecosystem stability and species interactions.

Ecosystem stability
These plots also show that at low flow rates the species dis-
tribution does not settle in a steady state but seems to fluc-
tuate with different species dominating the ecosystem at dif-
ferent times. This shows that the dynamics of the system
does not converge to a fixed-point, but instead obeys oscil-
latory or even chaotic dynamics. If the mutation rate is set
to zero the dynamics settle on a species distribution with a
diversity which still depends on the flow rate. However, the
distribution is stable over time, which suggests that the small
mutation rate is what drives the intermittent dynamics.

We can visualise the dynamics more easily if instead of
viewing the frequency of all species in a 2-d plot as in fig. 3,
pick a reference state F0 = (f0

0 , f
0
1 , ...., f

0
255), and plot the

L1-distance from the reference state as a function of time,
i.e.

∆F (t) =
255∑
i=0

|f0
i − fi(t)|, (3)

where fi(t) is the fraction of the agents belonging to species
i (i.e. performing the elementary CA-rule i) at time t. An
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Figure 3: The time evolution of the species distribution for
(a) γ = 0.3 and (b) γ = 0.003.

example of such a plot is shown in fig. 4, which illustrates
the same simulation as in fig. 3b, where the reference state
was picked as the final state of the system at t = 2 × 104.
From this point of view we can clearly see how the system
exhibits long periods of stasis and seems to jump between
different states corresponding to specific species configura-
tions; as in the so called punctuated equilibria introduced in
Eldregde and Gould (1972). This can be compared to dif-
ferent epochs in the history of the ecosystem, and is thus
comparable to paleontological data, which we will return to
in the discussion. The time spent in these states seems to
vary heavily and in order to quantify this we measured the
waiting time distribution, i.e. the probability of the species
distribution remaining in the same state a time T . The muta-
tions present in the system, together with the relatively small
population size, introduces fluctuations into the system, and
in order to avoid these the projected time series ∆F (t) was
binned into 20 equal sized bins (as shown in fig. 4).

From this discretised data we calculated the cumulative
probability P (x > T ) of finding the system in the same
bin for at least T time steps. This was calculated from 50
different simulations each lasting tmax = 2 × 104 times
steps for γ = 0.3, 0.03 and 0.003. The result is shown in
fig. 5, where the curves corresponding to the lower flow
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time (102 updates)
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Figure 4: The species distribution shown in fig. 3b projected
down to a one-dimensional state using (3). The dotted hori-
zontal lines indicates the bins used for calculating the wait-
ing times shown in fig. 5 below. The reference state F0 was
picked as the final state of the system at t = 2× 104.

rates appear approximately as straight lines in a loglog-plot.
This suggests that the waiting time scales as a power-law,
and a linear regression showed that P (T ) ∼ T−α, where
α ≈ 2.6 and 3.5 for γ = 0.03 and 0.003 respectively. On
the other hand, the curve corresponding to γ = 0.3 is closer
to a straight line in semilog-plot (see inset), and from this
we found that P (T ) ∼ e−εT , where ε ≈ 0.04. The exact
slope of the curves naturally depends on the number of bins
(a smaller bin size gives steeper curves), but the difference
between the functional forms of the curves is robust. Please
note that the waiting time for a random walk is exponential,
which gives an indication of the difference in dynamics
between the high and low flow rate.

Pair-wise species interactions
A natural question that arises is what kind of underlying dy-
namics gives rise to these transition patterns. If there existed
for a fixed flow rate a single dominant species among the
256 possible then we would expect the evolutionary dynam-
ics to converge to a species distribution and remain there.
This is clearly not the case, at least not for the lower flow
rates, which suggests that more complicated dynamics than
simply the selection for the best metaboliser occurs in the
system.

This is in fact obvious if we return to the schematic of
the model and also realise that different species have vary-
ing capacity to metabolise different strings. The fitness of
a species depends on its ability to extract energy from the
strings in the resource pool, but the composition of the re-
source pool in turn depends on what species are present in
the ecosystem. This means that the fitness of a species de-
pends on state of the entire ecosystem and will therefore
change as the system evolves.
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Figure 5: The cumulative distribution of waiting times plot-
ted in a loglog-diagram for three different values of γ. For
low flow rates the waiting times appear to scale as a power-
law, while for high flow it seems to follow an exponential
distribution as indicated in the inset where the graph fol-
lows approximately a straight line over a long period in the
semilog-diagram.

The simplest possible way to analyse the species interac-
tions is to simulate the dynamics when only a pair of species
are present and the mutation rate is set to zero. This of
course neglects higher-order interactions, between conglom-
erates of species, which might influence the dynamics, but
at least it represents a starting point for a deeper understand-
ing of the system. We probed these species interactions by
initialising the system with a 9:1 ratio in the abundance of
a pair of species and then ran the simulation (without muta-
tions) for 1000 time steps or until only one of the species re-
mained. At the end of the simulation we recorded the abun-
dance of the species and stored the frequency of the initially
abundant species in a matrix C. Element cij thus holds the
equilibrium frequency of species i when the initial ratio be-
tween i : j was 1 : 9. This experiment was carried out for all
possible pairs of species in the range 90-164 of which there
are 74 × 74 = 5476, and an excerpt of the resulting matrix
is shown in fig. 6. Here white and black correspond to com-
plete dominance, while any shade in between signifies stable
co-existence between the species.

A striking feature is that co-existence seems to be a com-
mon mode of interaction. This emphasises what was dis-
cussed before, namely that the replication rate of species de-
pends on the totality of species present (including itself) in
the ecosystem. In the case of co-existing species, the in-
crease in abundance is balanced by a reduction in repro-
duction rate, a phenomenon known as negative frequency-
dependent selection (Huisman and Weissing, 1999), and
when the replication rate of both species is balanced a
steady-state is attained.

The interaction matrix in most cases satisfies cij + cji =
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Figure 6: Excerpt of the matrix C describing the pair-wise
species interactions in the system. White and black cor-
respond to complete dominance, while any shade of grey
corresponds to co-existence.

1, which means that the equilibrium concentration of the
species is independent of the initial condition, but there are
some interesting exceptions from this rule. Firstly we have
the anti-diagonal of the matrix where cij + cji ≈ 2, and
this is due to the underlying symmetry of the cellular au-
tomaton rules. The pairs on the anti-diagonal are in fact
rules that are inverses of each other when viewed in binary
representation. For example rule 145 = 100100012 and its
anti-diagonal partner is rule 255− 145 = 110 = 011011102.
When these rules are applied to a generic binary string the
output strings they yield are inverses of each other, which by
symmetry of the entropy function imply that they have the
same entropy. This means that the two rules, when compet-
ing in isolation, are neutral and the only evolutionary force
acting on the system is random drift. The consequence of
this is that the initially dominant rule is more likely to win
and therefore we observe cij ≈ cji ≈ 1 (or visually a white
line) on the anti-diagonal. Note that this does not imply that
the two species are identical in their competition with other
rules, and this has some important consequences for the dy-
namics of the model.

Secondly we have the cases where 1 < cij + cji < 2,
which indicates that the initial condition in fact influences
the equilibrium concentration. Upon further inspection
we found that the dynamics of these pair-wise interactions
contain two stable fixed-points, as opposed to one which
is the case in all other interactions. Typically the only
fixed-point lies either, in the case of co-existence, in the
interior of the phase space at (i, j) = (c, 1 − c), for the
equilibrium concentration c, which satisfies 0 < c < 1, or
in the case of dominance at (0,1). In the above mentioned
cases both an interior and a boundary fixed-point are
present, and this implies that the dynamics can converge
either to co-existence or dominance depending on the initial
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frequencies of the species.

Rock-Paper-Scissors
The presence of co-existence in the pair-wise experiments
gives a reasonable explanation of the large degree of co-
existence in the full simulation (cf. fig. 3), but it does not
explain why the species configuration never settles into a
steady state. The lack of stability must be an inherent in the
species configuration itself, and one possible explanation is
that the property of being able to invade another species is
not transitive. By this we mean that if ai invades aj , and aj
invades ak, then it is not necessarily so that ai invades ak.
If on the contrary ak invades ai we have what is called an
intransitive cycle, similar to the Rock-Paper-Scissors game.

In order to investigate this possibility we searched the
matrix C for species triplets which satisfy the above con-
dition, and found 59 unique triplets (containing 44 differ-
ent species) which satisfied the condition of intransitivity.
A suitable way to illustrate this is with a network where
the species are represented as nodes and a directed link
connects node A and B if species A can invade species
B. This is shown in fig. 7, and in this figure the intransi-
tive relations appear as directed triangles of which there are
plenty. For clarity we have only included species involved
in at least one intransitive interaction. The network con-
sists of 4 connected components suggesting a certain degree
of modularity, which could allow for independent compe-
tition occurring simultaneously in the well-stirred environ-
ment. Further analysis showed that all except two triplets
exhibited the double fixed-point property discussed above,
and thus exhibit a weaker form of intransitivity. The two
fully intransitive triplets where given by (120,145,158) and
(120,131,158) and are highlighted in fig. 7. Mathematical
analysis has suggested that RPS-dynamics can give rise to
oscillatory behaviour due to the cyclic replacement of the
species (Laird and Schamp, 2009). We investigated this pos-
sibility by performing experiments where the three mem-
bers of an intransitive cycle were present in equal propor-
tion in the initial population and the system was run with-
out any mutations. We did however not observe oscillatory
behaviour, but instead the dynamics converged on either a
pair of species co-existing (and one species going extinct) or
one single species dominating the system. This discrepancy
from the analytical result is most likely due to a difference
in the rates of replacement of the species, which in the ana-
lytical treatment is set to be equal for all interactions. This
deviation from theory has also been observed in a bacterial
system exhibiting RPS-dynamics (Kerr et al., 2002).

Discussion
In this paper we have presented an Alife-platform Urdar,
based on the mechanism of cross-feeding, which is observed
in many microbial ecologies. The components of the plat-
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Figure 7: Network illustrating the intransitive species inter-
actions. An edge points from node a to b if species a wins
over b in a pair-wise invasion experiment, i.e. Cab > 0.75.
Intransitive triples are seen as cyclic triangles in the network.
The species involved in fully intransitive competition (not
involving multiple fixed-points) are highlighted.

form are fairly simple consisting of elementary CA rules that
transform binary strings. Similar systems have been anal-
ysed by for example Dittrich et al. (2001) and Ikegami and
Hashimoto (1995). The former considered a matrix multi-
plication chemistry, where binary strings could act both as
agents and substrate, and in which stable autocatalytic cy-
cles emerged. In the latter a different formalism was ap-
plied, where agents defined as Turing machines acted on
tapes represented as binary strings. What these systems did
not include was a notion of energy necessary for replication,
which is a central feature of Urdar.

This energy is obtained by increasing the entropy (dis-
order) of binary food strings. Despite of its simplicity the
system exhibits surprising features such as a high degree of
species diversity, non-stationary dynamics, and periods of
stasis with broad distribution of waiting times.

The latter have also been observed in other evolutionary
models such as Bak and Sneppen (1993) and Sole and Man-
rubia (1996), and relates to the punctuated equilibrium hy-
pothesis put forward by Eldregde and Gould (1972). In the
original conception of the hypothesis it was believed that
geographic separation was a necessary condition. Our re-
sults show that long periods of stasis of stasis can appear in
cross-feeding ecosystem that lacks any spatial component,
and where the dynamics are driven by the mutual depen-
dence between the species.

The above mentioned features are all driven by the cross-
feeding interactions between the species and are more pro-
nounced at low flow rates of high energy strings into the
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system. One way to study these interactions is to perform
pair-wise invasion experiments captured in the matrixC (see
fig. 6), which reveal that co-existence is quite common in
the system. Studying this matrix we also found intransitive
relations between three different species similar to the Rock-
Paper-Scissors game. This type of interactions are com-
monly found in real ecosystems, and are know to promote
biodiversity (Kerr et al., 2002; Laird and Schamp, 2009),
suggesting a source of the observed non-stationarity in our
system.

However, preliminary results indicate that removing the
44 species involved in intransitive relations from the ecosys-
tem (and prohibiting mutations to them) does not reduce
species diversity nor increases ecosystem stability. This sug-
gest that higher-order interactions not captured by the pair-
wise invasion experiments are responsible for the inherent
instability of Urdar.

Future work
The experiments presented in this article only scratch the
surface of this surprisingly complex ecosystem, and whole
host of interesting questions remain to study. One obvious
question that remains unanswered regards the underlying
mechanism driving the above mentioned non-stationarity.
One could also investigate the dynamics from a different
point of view by making use of the metabolic history of all
food strings (i.e. the list of species each string has been
metabolised by). This makes it possible to map out which
species engage in cross-feeding, and from this information
generate a network of ecological interactions. Another pos-
sibility is to examine to which extent the process of evolution
maximises productivity from an ecosystem point of view,
i.e. how well does the evolved species composition do com-
pared to an optimal species composition which maximises
productivity (for a given flow rate). Further, the model could
also be extended to include features present in real biologi-
cal systems, such as a distinction between the genotype and
phenotype of the organisms and a spatial dimension which
would impact the nature of the species interactions.
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Abstract

In this paper we consider the problem of organizing networks
of spatially embedded oscillators to maximize the propensity
for synchronization for limited availability of wire, needed to
realize the physical connections between the oscillators.We
consider two extensions of previous work (Brede, 2010b): (i)
oscillators that can flexibly arrange in space during the op-
timization process and (ii) a generalization to weighted net-
works. In the first case, we discuss the emergence of spatially
and relationally modular network organizations, while in the
second case the emphasis of our analysis is on link hetero-
geneity and the particular organization of strong and weak
links that facilitates synchronization in space.

Introduction

Probably starting with Huygens observation of synchro-
nized motions among nearby pendula clocks, synchroniza-
tion phenomena have long attracted much interest among
physicists. Synchronization is ubiquitous in the biological
(Winfree, 1980) and in the engineered world (Blekhman,
1988): fireflies that flash in unison, cardiac pacemaker cells,
rhythms in the brain or power stations and laser systems are
just a few examples (Arenas et al., 2008; Manrubia et al.,
2004). All of these systems are distributed coupled systems
that can be described by complex networks. Recent findings,
that many such networks have highly non-trivial topologies
have given rise to a wave of studies about synchronization
on complex networks.

One overriding question in this research has been to iden-
tify characteristics of network topology that are correlated
with enhanced or poor synchronization characteristics. Even
though such a statistical characterization has caveats (Atay
et al., 2006), important findings have resulted, which al-
low a rough “rule of thumb” characterization of a networks’
propensity for synchronization. Many factors that influ-
ence synchronization have been identified: homogeneous
network topologies such that every node receives the same
strength of an ‘in-signal’ (Donetti et al., 2005; Motter et al.,
2005; Hwang et al., 2005; Chavez et al., 2005; Nishikawa
and Motter, 2006b; Brede, 2010c; Nishikawa and Motter,

2010), an ‘entangled’ structure that does not allow for sepa-
rate communities of nodes (Donetti et al., 2005), short path-
lengths (Watts and Strogatz, 1998) and disassortative de-
gree mixing are just a few examples. Even though optimal
network topologies have thus been well-classified, under-
standing the role of constraints on the network topology and
the varying trade-offs between the mentioned characteristics
still pose a challenging problem.

One natural source of constraints on network organiza-
tion is the spatial embedding typical to almost all applica-
tion systems. The biological fitness (or in an engineering
context, a system’s optimality) is then not only determined
by it’s synchronization properties, but also by cost factors
associated with requirements to realize the physical connec-
tions in space that are needed to establish the coupling. If
one considers a system without the spatial embedding, this
synchronization cost is related to the number (and possibly
weight) of links. In fact, for this case it has been shown
that optimal synchronization can be achieved for minimized
cost (Nishikawa and Motter, 2006a). However, for spatially
embedded networks the cost to establish linkages is a com-
bination of the number and length of links: It can be seen as
the length of a wire needed to realize the network links in
space.

The problem of optimal synchronization in space has re-
cently been addressed (Brede, 2010b), finding that over a
large range of parameters synchrony-optimal networks are
small worlds with power law distributed link length. The
more severe spatial constraints, the steeper the decay of the
power law describing the link length distribution. For sev-
eral reasons this is an important finding: small worlds with
power law distributed link length have been found in neuro-
logical networks (Schüz and Braitenberg, 2002), the (physi-
cal) internet (Yook et al., 2002) or networks of wire in elec-
tronic circuits (Zarkesh-Ha et al., 2000) – all systems where
synchronization plays a role. Moreover, random walks on
such particular small worlds establish fractal movements
patterns in the underlying space, which could have relevance
for optimal search (or foraging) patterns (Viswanathan et al.,
1999).
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Optimization and evolutionary algorithms have a natu-
ral place in this research, since they allow for the numer-
ical construction of networks with enhanced synchroniza-
tion characteristics. Further, apart from the scientific prob-
lem setting, many of the biological systems, like the brain,
where synchronization plays a role, are systems that have
evolved to their current state over a long period of time. Syn-
chronization very likely has played a role in their evolution,
such that one can imagine an algorithm that optimizes as
networked system for enhanced synchronization as a model
to mimick this evolution process.

In this paper we discuss two natural extensions of
the abovementioned study Brede (2010b) and investigate
whether the power law distributions that classify optimal
networks persist in these more general situations as well.
First, after a short description of the framework and meth-
odes we employ, we consider optimal synchronization in
systems where the nodes are not fixed in space, but are free
to change their relative arrangement during the optimiza-
tion for synchrony-enhancement. Second, in the next fol-
lowing section, we consider the case of synchrony-optimal
weighted networks in space. The paper concludes with a
section that summarizes our results and puts them into a
more general context.

The Model
We investigate identical synchronization in systems ofN
coupled oscillators, the collective dynamics of which is
given by

ẋi = f(xi) + σ
∑

j

Aij(g(xj) − g(xi)). (1)

In the above equation, the functionf describes the dynam-
ics of the individual oscillators (without coupling), the ma-
trix Aij is the adjacency matrix of the coupling network,
σ the coupling strength and the functiong characterizes
the so-called ‘inner coupling’, i.e. defines how the oscil-
lators influence each other. The equation can be rewritten as
ẋi = f(xi) + σ

∑

j Lijg(xj), which introduces the graph
Laplacian matrix belonging to the adjacency matrixA via
L = I − A, whereI = (δij) is the identity matrix. It is
important to note that in all scenarios considered in this pa-
perA is symmetrical and has only positive entries, such that
all eigenvalues ofL are real and nonnegative. Without loss
of generality we will further restrict the study to connected
networks. In this caseL has exactly one zero eigenvalue
and one can label the eigenvalues ofL in ascending order
0 = λ1 < λ2 < ... < λN .

A big step forward in understanding identical synchro-
nization in the system (1) is due to Pecora and Carroll (Pec-
ora and Carroll, 1998), who analyzed the stability of the syn-
chronized statėx = f(x). In (Pecora and Carroll, 1998)
they were able to show that for a large class of oscillatorsf

and inner couplingsg, the stability of the fully synchronized
state is determined by the eigenratioe = λN/λ2. Impor-
tantly, the eigenratio analysis abstracts from the detailsof
the underlying dynamics (i.e. the functionf ) and allows
an analysis of the influence of the connection architecture
(given by the adjacency matrixA of the coupling network)
for a general class of dynamics. Essentially, a network has
a superior propensity to synchronize when the spread of the
eigenvalues is as small as possible – ore close (or identical)
to one.

The spatial component of the model is introduced by al-
locating nodes spatial locationsli > 0 in a one-dimensional
space with periodic boundary conditions. Then, iflmax =
maxi(li), a spatial distance metric can be defined via
d(i, j) = min(|li − lj |, lmax− |li − lj|) and the amount
of ‘wire’ needed to connect the nodes in space according to
a networkA is

W =
∑

i<j

Aijd(i, j). (2)

As already suggested in (Brede, 2010b), spatial con-
straints on the network evolution can be considered via the
optimization of the synchronization properties of the net-
work for limited amount of wireW . Alternatively, a more
elegant framework can be the minimization of an energy-like
goal function that combines considerations of synchroniza-
tion properties with the minimization of the amount of wire
used via

E = βW + (1 − β)e, (3)

where the trade-off parameter0 ≤ β ≤ 1 weighs the impor-
tance of wire minimization versus that of enhanced synchro-
nization during network evolution. Compare also (Mathias
and Gopal, 2001; Sole and Ferrer i Cancho, 2003; Brede,
2008) for other studies where a similar framework has been
used in different contexts.

Importantly, if β = 1 the goal function is solely deter-
mined by the amount of wire. The minimum ofE then cor-
responds to a network configuration in which only spatial
nearest neighbours are connected – a configuration which is
known to have very poor synchronization properties. On the
other hand, whenβ = 0 considerations of wire and the un-
derlying space play no role in the minimization ofE. This
case corresponds to (Donetti et al., 2005) (and apart from
(Brede, 2010b) all other studies of optimal identical syn-
chronization on networks, cf. (Arenas et al., 2008)). Note,
that if one decreasesβ towardsβ = 1, the ‘severity’ of
spatial constraints in the network evolution process can be
tunedx.

We approach the problem of minimizing (3) via a numer-
ical optimization scheme using simulated annealing. The
scheme consists of a series of rewiring suggestions, which
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are accepted if they improve the fitness or energy (3) of the
network configuration. Prototypically, even though step 2
is modified according to the slightly more general problem
definitions in section III and IV, we employ the following
scheme:

1. Start with an Erdös-Rényi random graph with exactlyL
links and distribute oscillators uniformly in space at loca-
tionsli = i, i = 0, ..., N − 1. Calculate the fitness of the
first network configuration.

2. Rewire one or several links. Calculate the resulting net-
work fitnessE′ of the modified configuration according
to Eq. (3) and accept ifE′ < E or with probability
p ∝ exp(−ν(E − E′)) otherwise. The inverse temper-
atureν of the annealing procedure is gradually reduced as
the optimization progresses.

3. Terminate the algorithm if no large improvement inE was
achieved during a certain number of iterations.

Because for larger networks the optimization procedure
did not result in a unique optimal configuration (and due
to the inherent difficulty of making sure a numerical opti-
mization approach actually achieved a global optimum) we
typically constructed aroundR = 100 optimal network con-
figurations by the algorithm. In both situations considered
in more detail in the following sections, all the near-optimal
networks proved to be structurally very similar, which un-
derlines that the findings we will discuss below are robust.
The structural similarity of the constructed networks also
gives support to the approach to optimize linear combina-
tions of the quantities of interest rather than to constructthe
full Pareto front in a multi-objective optimization approach.

Optimal synchronization with flexible node
locations

In the previous study (Brede, 2010b), optimal synchroniza-
tion was considered for the case of spatial networks with
nodes that have fixed locations in space. Here, we extend
the framework and consider nodes that can arrange freely
in space during the optimization procedure. However, with-
out further constraint this would clearly imply that all nodes
drift to one location, thus allowing for complete connec-
tivity without cost of wire. To prevent this and to study
which arrangement of nodes is optimal, we introduce a fur-
ther constraint, requiring that the average spatial distance of
the nodes remains the same during the optimization, i.e. that

D =
2

N(N − 1)

∑

i<j

d(i, j) = const. (4)

Accordingly, we then modify step 2. of the optimiza-
tion procedure of the previous section, in which we now
also include suggestions for location changes of nodesli →
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Figure 2: Dependence of the relational (top) and spatial
modularity (bottom) of the evolved networks and spatial ar-
rangements on the trade-off parameterβ: For reference, the
horizontal lines indicate the range the respective quantities
would assume for a an Erdös-Rényi random graph whose
nodes are uniformly distributed in space. In the plot of the
spatial modularity the lines are omitted for scaling reasons,
one hasS < 10−3 in that case. All data are for networks of
N = 100 nodes withL = 400 links and are averaged over
100 different initial configurations for eachβ.
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(a) (b) (c)

Figure 1: Examples of evolved networks for different trade-offs between cost of wire and desireability for superior synchro-
nization: (a)β = 0.01 (very low cost of wire), (b)β = 0.5 (balanced costs for wire and synchronization), and (c)β = .01
(very high cost of wire). The networks are of sizeN = 100 and containL = 400 links. In the figure vertices have been colored
according to the modules they belong to (modularities areQ = .26 for (a) andQ = 0.71 andQ = 0.78 for (b) and (c)). The
spatial locations roughly correspond to the evolved spatial locations of the nodes during the optimization, however a random
number was added to make vertices distinguishable.

li + ∆li. After such a location change suggestion,D′ of
the modified configuration is calculated and all locationsli,
i = 1, ..., N are scaled byD/D′, i.e. we setli → D/D′li,
to ensureD = const. during the optimization.

Figure 1 gives some illustrations of example networks
constructed by optimizing the energy (3) for three differ-
ent scenarios: (a) very low cost of wire, (b) balanced cost
of wire and desirability of superior synchronization and (c)
expensive wire. The figures already illustrate a number of
differences in network organization to the results reported
in (Brede, 2010b). First, it becomes apparent that two dis-
tinct classes of link lengths can be identified: short links and
long links. The gap between these two types of links de-
pends on the trade-off parameterβ – it is large when wire is
very costly or very inexpensive and relatively small when the
cost of wire and synchronization needs are balanced. Sec-
ond, depending onβ, the network organization can become
distinctly modular. Third, it becomes apparent that the spa-
tial locations of nodes become distinctly clustered, such that
the nodes either crowd at two (for the case of lowβ) or more
(for intermediate and largeβ) spatial locations.

Modularity is an important property of many real-world
networks, see, e.g. (Girvan and Newman, 2004). It de-
notes the fact that networks are organized into communities
of nodes that are more strongly connected to each other than
to the rest of the network. A widely accepted measure to
quantify network modularity has been introduced in (Girvan
and Newman, 2004)

Q =
∑

m

[Lm/L − (dm/2L)2]. (5)

In eq. (5) the indexm runs over all network communities,
Lm denotes the number of links within a module,dm the

sum of all degrees of nodes in modulem andL =
∑

i<j Aij

the overall number of links in the network. Several algo-
rithms to identify modules in networks have been suggested.
Because the networks that we evolved above are relatively
small, we use extremal stochastic optimization (Duch and
Arenas, 2005) to calculateQ and identify modules. As an
example of results of the module identification see figure
1a-c, where we have identified modules by the colors of the
nodes. The respective values of the modularity measureQ
are given in the caption of the figure.

For an analysis of the spatial modularity of the evolved
networks we have analyzed the correlation functionG(x)
that gives the density of nodes at distancex from an av-
erage node. A plot ofG for different trade-off parameters
allows the distinction between two scenarios (see also fig-
ure 1): (i) G(x) is u-shaped with two peaks atx = 0 and
x = lmax/2 and a flat trough in between which clearly cor-
responds to an arrangement of nodes into two clusters sepa-
rated by the maximum distance and (ii)G(x) has one sharp
peak atx = 0 which corresponds to an arrangement into
several spatial clusters. A more thorough investigation ofthe
link length distributions and widths of the peaks of the cor-
relation functionG suggests a cut-off of around∆x = 0.01,
links with lengthl ≤ ∆x being classified as ‘short’ and links
with lengthsl > ∆x being ‘long’. Then, one can define a
spatial cluster as the maximum number of nodes with dis-
tances less than∆x or

S =

∫ ∆x

0

G(x)dx. (6)

Thus, our spatial modularity measure is the average fraction
of nodes in one spatial ‘0.01-cluster’.

In the top and bottom panel of figure 2 we present a
more detailed analysis of the modularities of the evolved
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networks. A short glance at the spatial modularity reveals
two typical structural regimes that are separated by a sharp
transition at aroundβc = 0.1. Below the transition for
β < βc the evolved networks show a clear two spatial cluster
regime, both clusters being separated by the maximum spa-
tial distance. A comparison of the respective network modu-
larity to that of random networks (indicated by the two lines
in Fig. 2) shows that the network modularity is suppressed
in this regime. The spatial clustering is thus not correlated
with a corresponding network modularity. As an aside, it
is also clear thatS → ∆xlmax/(2N) (uniform distribution
of nodes in space) asβ → 0. From this argument one un-
derstands that the spatial modularity peaks and then declines
again in theβ < βc-regime.

Above the transition, withS > 0.15 the networks are still
strongly spatially clustered, albeit the spatial clustering is
strongly reduced in comparison to theβ > βc case. This
indicates the presence of multiple (≈ 1/S) smaller spatial
clusters. In contrast to the case ofβ < βc, the spatial clus-
tering goes hand in hand with strong network modularity.
Closer investigation reveals that membership of nodes to
spatial modules is correlated with membership in network
modules, which already hints to a mechanism of module for-
mation. Clearly, in terms of wire it is ‘cheap’ to connect
near-by nodes. Thus, there is a positive feedback mecha-
nism: near-by nodes are likely to move closer to each other.
This makes it cheaper to connect them and fosters the es-
tablishment of connections to other near-by nodes, thus fa-
cilitating network modularity. Network modularity in turn
causes more spatial clustering since moving nodes of the
same module spatially closer to each other further reduces
the cost of wire.

Hence, allowing for flexible node locations during the net-
work evolution leads to the formation of very different opti-
mal network organizations than described in (Brede, 2010b),
namely a very clear two mode structure of the link length
distribution compared to the presence of all length scales
leading to the power laws observed in (Brede, 2010b). Inter-
estingly, the additional degree of freedom leads to the emer-
gence of spatial clustering and modular network organiza-
tion, and, associated with it, separate time-scales of synchro-
nization processes (Arenas et al., 2006). For a more detailed
discussion of these networks the reader is referred to (Brede,
2010d).

Optimal synchronization in weighted networks
In this section we are interested in weighted synchrony-
optimal networks in space. In order to understand the in-
fluence of weights and spatial arrangement separately, like
(Brede, 2010b) we consider nodes at fixed spatial locations
li = i, i = 0, ..., N − 1 that do not change position during
the optimization. However, linksAij are now not restricted
to binary values, but can assume any weightAij ≥ Amin.
The lower cut-offAmin was introduced for reasons of lim-

ited computation time and limited numerical precision in the
eigenvalue calculations.

A larger couplingAij between two nodes allows for better
synchronization between the nodesi andj. However, larger
coupling also requires more wire and thus implies a larger
cost for the physical connection of the nodes in space. A rea-
sonable assumption is that the connection strength between
two nodes is proportional to the thickness of the wire to con-
nect the nodes. Hence, assuming a wire of constant density,
the costC of the wire is proportional to its length in space
and the connection strength, such thatCij = d(i, j)Aij .
One may also think of more general formulations for the
cost function likeCij = dijh(Aij), which we leave for fu-
ture work.

If one considers optimal weighted networks in the frame-
work of the stability analysis of the synchronized state which
leads to the eigenratioe = λN/λ2 as a measure for syn-
chronization, it is important to note that for any coupling
network with Laplacian matrixL one hase(kL) = e(L) for
any scaling factork > 0. Also, one hase = 1 for the fully
connected graph withLF

ij = 1 for i 6= j andLF
ii = −N +1.

Thus, for any coupling network configuration in space with
E(β) > 1− β one can always choose a small enough factor
k, such that the fully connected graph with link weightsk
has a smaller energy. As one easily realizes, however, this is
a consequence of the different scaling of both contributing
factors to Eq. (3). A more adequate problem definition that
avoids this scaling issue is to introduce a scaled cost of wire
via

Cij =
L

∑

i<j d(i, j)Aij
∑

i<j Aij

, (7)

whereL =
∑

i<j H(Aij) andH(x) = 1 if x > Amin and
H(x) = 0 otherwise. In Eq. (7) every link contributes to the
cost with its weight relative to the average weight of links
w =

∑

i<j Aij/L. One can then substitute (7) into Eq. (3)
and obtains

E(β) = β
∑

ij

Cij + (1 − β)e. (8)

In fact, sincew = 1 for binary networks the definition (8)
coincides with (3) for this case.

To construct optimal weighted networks in space we mod-
ify step 2. of the network evolution algorithm outlined be-
fore, by now considering weight transfers between links in
the network, i.e. for randomly selectedi, j with Aij ≥ ǫ
and randomly selectedk, l we suggest a reconfiguration
Aij → Aij − ǫ andAkl → Akl + ǫ. The suggested amount
of the weight transfersǫ is randomly selected from the inter-
val [Amin, s]. Best performance of the algorithm could be
achieved when one starts withs ≈ 2w and then decreasess
linearly during the optimization.

Figure 3 displays some illustrations of typical optimal
weighted networks for various trade-off parametersβ. As
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β=0.01 β=0.5 β=0.99

Figure 3: Illustration of some example weighted optimized networks for trade-off parametersβ = 0.01, 0.50 and0.99. The
shade of grey of the links corresponds to link weight, weak links are white and strong links black. The background is shaded in
grey to demonstrate the presence of very weak long links.
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Figure 4: Network statistics for typical optimal weighted networks for small (β = 0.005), intermediate (β = 0.5) and large
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dependence of link length on link weight. The data have been averaged over 100 optimized networks of sizeN = 100.
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one would expect, links are relatively dense and strong for
low β and become increasingly scarcer and weaker when
β is increased. Importantly, however, a careful inspection of
the figures reveals that in all situations strong and weak links
are present: strong links typically connecting spatially close
nodes whereas weak links establish long-range connections.

For a more detailed investigation we constructed ensem-
bles of 100 optimized networks ofN = 100 nodes for var-
ious trade-off parametersβ. To understand the pecularities
of a given network, comparisons to suitable randomized null
models are necessary. For the case of spatially embedded
networks of interest here, a possible null model are (con-
nected) networks with the same spatial constraint, i.e. ran-
dom weighted networks that use the same amount of wire
than the original network. Such networks can easily be con-
structed by randomly shifting small amounts of wire density
between links (and to link vacancies), which are accepted as
long as they (i) leave the network connected and (ii) leave
the amount of wire used constant within a certain tolerance
interval.

As a reference point for comparison below it is of interest
to understand the architecture of such randomized networks.
As connections between nodes are random, they have bino-
mial degree distributions. The distribution of link weights
is centred around a mean with steeply decaying tails to-
wards much larger or much smaller weights. Further, link
length distributions are exponential and, by construction,
link weight is independent of link length.

In Figure 4 some network statistics for typical situations
for low, intermediate and largeβ are displayed. The top left
panel gives the distribution of link lengths in the optimized
networks. Even though the system size is relatively small, it
is apparent that the optimal link arrangements for strong and
intermediate spatial constraint are characterized by power
law tailsP (l) ∝ l−α in the link length distribution. Best fits
yield α = 1.23 ± 0.02 for β = 0.99 andα = 1.15 ± 0.02
for β = 0.5 and the organization is thus clearly distinct from
the random null model.

The decay of the tails with growing link size becomes
steeper, the more emphasis is put on link economy. In
contrast, when spatial contraints play only a minor role for
β = 0.005, the link length distribution is fitted well by an
exponential function. This function, however, declines more
strongly for large link length than expected from the null
model.

Networks in the power law regime are very sparse and not
very far from being tree-like, such that the power laws in the
link length distributions appear consistent with a hierarchi-
cal organization in space (Brede, 2010a). The exponents of
the power laws, however, are distinctly smaller thanα = 2
which has been found to be the optimal arrangement for dis-
crete networks that optimize a trade-off between cost of wire
and network distance.

Of interest is also the distribution of weights, cf. figure 4

(top right). Whereas this distribution is only slightly skewed
for small β, increasing the cost of wire leads to increas-
ingly more asymmetrical skewed distributions. Finally, for
very largeβ, the distributions become bimodal – strongly
spatially constrained synchrony-optimal networks are thus
comprised of clearly distinct strong and weak links. How
is the arrangement of these links? The answer is already
suggested by the network illustrations in figure 3. A more
thorough statistical analysis is provided in figure 4 (bot-
tom right), in which we plot the dependence of the average
length of a link on its weight. For all situations investigated,
low, intermediate and strong spatial constraints, a clear pic-
ture emerges. Strong links typically connect spatially close
nodes whereas weak links establish long-range connections.

The increasing skewness of the link weight distributions
with increasing spatial constraints is also reflected in thedis-
tributions of (weighted) degreeskw(i) =

∑

j Aij , cf. fig-
ure 4 (bottom left). When spatial constraints only play a
small role, the distribution of weighted degrees is very nar-
row and almost bell-shaped, as one would expect from pre-
vious studies of unconstrained networks which have high-
lighted the important role of in-signal homogeneity for su-
perior synchronization (Motter et al., 2005). With increasing
influence of spatial constraints, however, the distribution be-
comes more and more skewed towards lower degrees and
finally becomes bimodal at aroundβ = 0.95.

Summary and conclusions
In this paper we have explored three scenarios for
synchrony-optimal undirected networks subject to a tune-
able degree of spatial constraints, which are parametrised
by a cost-of-wire parameterβ. We started with the model of
(Brede, 2010b) of unweighted networks connecting nodes
with fixed spatial locations. In this case, over a wide range
of constraintsβ, such networks are characterized by link size
arrangements that obey a power lawP (l) ∝ l−α with an ex-
ponentα that becomes larger the stronger the influence of
spatial constraints on network formation.

Next, in the same model, we explored optimal network
configurations that arise when nodes are free to change their
relative arrangement in space during the optimization. Two
regimes of optimal networks separated by a sharp transition
at some critical trade-off parameterβc can be distinguished.
For low β < βc, nodes are found to cluster into two spatial
groups separated by the maximum spatial distance. Above
the criticalβ, nodes arrange themselves into multiple spa-
tial clusters that conincide with network modules. These
findings are of interest, since they point out that network ar-
rangements normally not associated with superior synchro-
nization can become optimal, when spatial constraints are
important.

In the third part of the paper we have gone back to the
scenario of (Brede, 2010b), but now considered weighted
undirected networks. The results essentially corroborate
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that spatially constrained synchrony-optimal networks are
characterized by power-law link length distributions. How-
ever, as the networks are weighted, when spatial constraints
are important, a clear separation of strong and weak links
emerges as well. We typically find that strong links connect
spatially close nodes, whereas weak links establish remote
connections.
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Extended Abstract

Modularity plays an important role in evolution, for even unicellular organisms have separable functional systems (Wagner
et al., 2007) which are relatively autonomous. Modularity allows for changes to occur within modules without propagating
to other regions and the combination of modules to explore new functions (Espinoza-Soto and Wagner, 2010).

Random Boolean networks (RBNs) (Kauffman, 1993; Gershenson, 2004) have been a very popular model of genetic
regulatory networks for several decades, where the state of N nodes is regulated by the state of K neighbour nodes using
randomly generated Boolean lookup tables.

However, most studies consider homogeneous or normal topological connectivities between nodes. Aldana (2003) already
studied the effect of a scale-free topology on the dynamics of RBNs. In this work, we study the effect of modularity on
the dynamics of RBNs, which has been missing from most RBN studies, in spite of its prevalence in natural systems.

We define a modular RBN (MRBN) as a set of M modules connected by L “weak” links. Each module is a RBN with N
nodes and K connections between the N nodes within the module. The total number of nodes NTOT is given by N · M ,
while the total number of connections T is given by M · (K · N + L). The average connections per node KTOT is NTOT

T .

Our preliminary results suggest that, for a broad range of values of KTOT, modularity induces complex dynamics, i.e. closer
to the transition between the ordered and dynamic phases, also dubbed “the edge of chaos” (Kauffman, 1993). In terms
of sensitivity to initial conditions, trajectories in the state space tend to converge in the ordered phase and to diverge in
the chaotic phase. For regular RBNs, it is well known that the transition lies at K = 2 (Gershenson, 2004). At this point,
trajectories neither converge nor diverge. This represents a balance where information can be stored (chaotic phase is too
dynamic) as well as modified (ordered phase is too static). However, this behaviour is observed only in a small region
of possibilities in unstructured, regular RBNs. Modularity broadens this region considerably, reducing the sensitivity to
initial conditions for values of KTOT > 2. Keeping NTOT constant, the number of attractors grows as M grows, although
the lengths of these attractors tend to decrease. The highest percentage of states in attractors is given when N = M .

We defend that modularity plays an important role in RBNs, as it constrains the topology in such a way that damage is not
fully spread across the modular network. Thus, modularity reduces chaos and is desirable for evolvability. It is clear that
there is a considerable dynamical difference between modular and regular topologies. Since most studies of RBNs have
been made with regular topologies, their results have to be reconsidered in the light of the new evidence, given the fact
that real genetic regulatory networks are modular (Segal et al., 2003; Callebaut and Rasskin-Gutman, 2005; Schlosser and
Wagner, 2004).
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Abstract

We study the order-chaos phase transition in random Boolean
networks (RBNs), which have been used as models of gene
regulatory networks. In particular we seek to characterise the
phase diagram in information-theoretic terms, focussing on
the effect of the control parameters (activity level and con-
nectivity). Fisher information, which measures how much
system dynamics reveal about its parameters, offers a natu-
ral interpretation of the phase diagram in RBNs. We report
that this measure is maximised near the critical state in the
order-chaos phase transitions in RBNs, since this is the region
where the system is most sensitive to its parameters. Further-
more, we use this study of RBNs to clarify the relationship
between Shannon and Fisher information measures.

Introduction
Random Boolean Networks (RBNs) (Kauffman, 1993) have
typically been used by Artificial Life researchers as discrete
dynamical network models (e.g., models of Gene Regula-
tory Networks) with a large sample space available. In par-
ticular, RBNs exhibit a well-known phase transition from
ordered to chaotic dynamics, with respect to average con-
nectivity or activity level.

Recently, there have been several attempts to study the
order-chaos phase transitions of RBNs using information
theory.1 Ribeiro et al. (2008) measured mutual information
within random node pairs as a function of connectivity in the
network, finding a maximum near the critical point. Rämö
et al. (2007) measured the uncertainty (entropy) in the size
of perturbation avalanches as a function of an order parame-
ter, and also found a maximum near the critical point. Lizier
et al. (2008a) studied the information storage and transfer
components of the computation conducted by each node in
RBNs. The authors found maxima of these computational
quantities just inside the ordered and chaotic sides of the
critical point respectively.

While all of these studies provide useful findings re-
garding the nature of the phase transition, none provide a

1We note the study of entropy and mutual information between
node inputs and outputs by Oosawa and Savageau (2002), though
this study did not consider the phase transition in RBNs.

generic measure that can directly, reliably, and information-
theoretically locate the critical point in other systems. For
example, the study of perturbation avalanches in (Rämö
et al., 2007) is not applicable to systems in which we can-
not interfere. The measure of pairwise mutual informa-
tion (Ribeiro et al., 2008) can be imagined to be max-
imised for trivial short-periodic behaviour as well as com-
plex behaviour at critical point. And while our previous
work (Lizier et al., 2008a) certainly characterises how the
RBNs’ computation is made up of both information storage
and transfer, none of the measures of computation exam-
ined were maximised precisely at the critical point in finite-
sized systems. In this study we aim to provide a prelimi-
nary analysis (in the context of RBNs) of a phase diagram
in information-theoretic terms, aiming for the analysis to be
generically applicable to other phase transitions. The search
for generic tools motivates our study and we use informa-
tion theory that allows us to analyse and compare critical
behaviours across different domains.

Phase transitions are often related to symmetry breaking
and self-organisation (Polani, 2007). For instance, Jetschke
(1989) defines a system as undergoing a self-organising tran-
sition if the symmetry group of its dynamics changes to a
less symmetrical one (e.g., a subgroup of the original sym-
metry group). An example may be given by a ferromagnetic
system undergoing a second-order phase transition: (i) in
the high-temperature phase the system has no net magneti-
sation, is ‘disordered’ and has a complete rotational symme-
try (isotropy); (ii) at low temperature, the system becomes
‘ordered’, and the net magnetisation defines a preferred di-
rection in space (anisotropy), breaking rotational symmetry.
The low-temperature ordered phase is therefore less sym-
metrical and can be fully described by an order parameter
— the magnetisation vector (Parwani, 2001).

In explaining non-equilibrium structures that sponta-
neously self-organise in nature, Synergetics (Haken, 1983)
— a theory of pattern formation in complex systems — also
employs order parameters. When energy or matter flows into
a system typically describable by many variables, it may
move far from equilibrium, approach a threshold (that can
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be defined in terms of some control parameters, e.g., the
strength of interactions within the system, or the correlation
length), and undergo a phase transition. At this stage, the
behaviour of the overall system can be described by only a
few order parameters (degrees of freedom) that characterise
newly formed patterns. In other words, the system becomes
low-dimensional as some dominant variables “enslave” oth-
ers, making the whole system act in synchrony. By varying
control parameters (e.g., the strength of interactions within
the system) one may trigger phase transitions.

At this stage we would like to highlight the role of (Shan-
non) information: “a macroscopic description allows an
enormous compression of information so that we are no
more concerned with the individual microscopic data but
rather with global properties” (Haken, 2006). A canonical
example is a laser: a beam of coherent light created out
of the chaotic movement of particles. Rather than using a
large amount of information describing the states of indi-
vidual atoms, only a single quantity (e.g., the phase of the
total light field) is needed, achieving compression of infor-
mation. Hence, a consensus is reached among the individual
parts of the system, indicated by the compression of infor-
mation, and only one or a few variables have to be guided
or controlled (Prokopenko, 2009). In addition, in a vicin-
ity of phase transitions, the information of the order param-
eters changes dramatically whereas the information of the
enslaved modes does not (Haken, 2006).

These insights suggest the use of Fisher informa-
tion (Fisher, 1922), which measures the amount of infor-
mation that an observable random variable carries about an
unknown parameter. Intuitively, if this unknown parameter
can be estimated well using the observable random variable,
then Fisher information carried by these observations with
respect to this parameter must be high. Otherwise, if the
parameter cannot be well-estimated using the observations,
the corresponding Fisher information must be low. The ap-
plication of Fisher information to measure the information
that system dynamics contain about control parameters dur-
ing a phase transition is quite natural. One could expect this
quantity to be maximised near the critical point where sys-
tem dynamics are most sensitive to control parameters.

Our main goal then is to obtain a phase diagram of
RBNs in information-theoretic terms using Fisher informa-
tion. Furthermore, since some studies of Fisher information
discuss its connections to (derivatives of) Shannon informa-
tion, we intend to clarify the relationship between Shannon
and Fisher information, using RBNs.

We begin this paper with overviews of RBNs, Fisher in-
formation and Shannon information. This is followed by
a discussion of how to apply Fisher information to RBNs.
We then present the phase diagram of RBNs in terms of
Fisher information about the control parameter, demonstrat-
ing that this quantity is indeed maximised near the critical
point in the order-chaos phase transition in RBNs. Finally,

we provide quantitative clarification regarding the relation-
ship between Fisher and Shannon information measures us-
ing RBNs as an example.

Random Boolean Networks
Random Boolean Networks is a class of generic discrete dy-
namical network models. They are particularly important
in artificial life, since they were proposed as models of gene
regulatory networks by Kauffman (1993). See also Gershen-
son (2004a) for another thorough introduction to RBNs.

An RBN consists of N nodes in a directed network. The
nodes take boolean state values, and update their state val-
ues in time as a function of the state values of the nodes
from which they have incoming links. The network topol-
ogy (i.e. the adjacency matrix) is determined at random,
subject to whether the in-degree for each node is constant
or stochastically determined given an average in-degree K
(giving a Poisson distribution). It is also possible to bias
the network structure, e.g., toward scale-free degree distri-
bution (Aldana, 2003). Given the topology, the determin-
istic boolean function or lookup table by which each node
computes its next state from its neighbours is also decided
at random for each node, subject to a probability r of pro-
ducing outputs of “1” (the bias). Note that r close to 1 or
0 gives low activity, whereas r close to 0.5 gives the high-
est activity for any K. The nodes here are heterogeneous
agents: there is no spatial pattern to the network structure
(indeed there is no inherent concept of locality), nor do the
nodes have the same update functions. (Though, of course
either of these can arise at random). Importantly, the net-
work structure and update functions for each node are held
static in time (“quenched”). In classical RBNs (CRBNs), the
nodes all update their states synchronously.2

The synchronous nature of CRBNs, their boolean states
and deterministic update functions give rise to a global state
space for the network as a whole with deterministic transient
trajectories ultimately leading to either fixed or periodic at-
tractors in finite-sized networks (Wuensche, 1997). Effec-
tively, the transient is the period in which the network is
computing its steady state attractor.

RBNs are known to exhibit three distinct phases of dy-
namics, depending on their parameters: ordered, chaotic and
critical. At relatively low connectivity (i.e., low degree K)
or activity (i.e., r close to 0 or 1), the network is in an or-
dered phase, characterised by high regularity of states and
strong convergence of similar global states in state space.
Alternatively, at relatively high connectivity and activity, the
network is in a chaotic phase, characterised by low regularity

2While there has been some debate about the best updating
scheme to model GRNs (Darabos et al., 2007), the relevant phase
transitions are known to exist in all updating schemes, and their
properties depend more on the network size than on the updating
scheme (Gershenson, 2004b). As such, the use of CRBNs is justi-
fied for ensemble studies such as ours (Gershenson, 2004c).
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of states and divergence of similar global states. In the crit-
ical phase (the edge of chaos (Langton, 1990)), there is per-
colation in nodes remaining static or updating their values,
and uncertainty in the convergence or divergence of similar
macro states. This phase transition is typically quantified
using a measure of sensitivity to initial conditions, or dam-
age spreading. Following Gershenson (2004c), we take a
random initial state A of the network, invert the value of a
single node to produce state B, then run both A and B for
many time steps (enough to reach an attractor is most appro-
priate). We then use the Hamming distance:

D(A, B) =
1
N

N∑

i=1

|ai − bi|, (1)

between A and B at their initial and final states to obtain a
convergence/divergence parameter δ:

δ = D(A,B)t→∞ −D(A,B)t=0. (2)

(Note D(A,B)t=0 = 1/N ). Finding δ < 0, implies the con-
vergence of similar initial states, while δ > 0 implies their
divergence.3 For fixed r, the critical value of K between the
ordered and chaotic phases is (Derrida and Pomeau, 1986):

Kc =
1

2r(1− r)
. (3)

For finite-sized networks the standard deviation of δ peaks
slightly inside the chaotic regime, indicating the widest
diversity of networks for those parameters (Gershenson,
2004b). Indeed, the standard deviation is used as a guide
to the relative regions of dynamics in finite-sized networks
by Rämö et al. (2007), and the indicated shift of the criti-
cal point towards the chaotic regime at these finite sizes is
reflected by other measures, e.g. (Ribeiro et al., 2008).

Much has been speculated on the possibility that gene reg-
ulatory and other biological networks function in (or evolve
to) the critical regime (see Gershenson (2004a)). It has been
suggested that computation occurs more naturally with the
balance of order and chaos there (Langton, 1990), possibly
with information storage, propagation and processing capa-
bilities maximised (Kauffman, 1993). Indeed, our previous
work has indicated that both information storage and coher-
ent (single-source) information transfer are maximised near
the critical state, just within the ordered and chaotic regimes
respectively (Lizier et al., 2008a). Because of the impor-
tance of the critical state, identifying its precise location is
a crucial task, particularly in other systems where analytical
solutions are not possible. We look to information theory to
address this question.

3Typically an order parameter is 1 in the extreme ordered phase,
and 0 in the extreme disordered phase. Here, δ is a proxy to this,
with negative values representing the ordered phase and positive
values representing the chaotic phase.

Fisher Information
Information theory (MacKay, 2003) is an increasingly pop-
ular framework for the study of complex systems and their
phase transitions (Prokopenko et al., 2009). In part, this
is because complex systems can be viewed as distributed
computing systems, and information theory is a natural way
to study computation, e.g. Lizier et al. (2008b). Informa-
tion theory is applicable to any system, provided that one
can define probability distribution functions for its states.
This is a particularly important characteristic since it means
that information-theoretic insights can be directly compared
across different system types. It is for these reasons that we
seek an information-theoretic characterisation of the phase
transition in RBNs.

Fisher information (Fisher, 1922) is a way of measuring
the amount of information that an observable random vari-
able X has about an unknown parameter θ, upon which the
likelihood function of θ depends. Let p(x|θ) be the likeli-
hood function of θ given the observations x. Then, Fisher
information can be written as:

F (θ) =
∫

x

(
∂ ln(p(x|θ))

∂θ

)2

p(x|θ)dx, (4)

where ln(p(x|θ)) is the log-likelihood of θ given x. Thus,
Fisher information is not a function of a particular observa-
tion, since the random variable X has been averaged out.

Fisher information can be reduced to:

F (θ) = −
∫

x

(
∂2 ln(p(x|θ))

∂θ2

)
p(x|θ)dx, (5)

if ln(p(x|θ)) is twice differentiable with respect to θ and if
the regularity condition:

∫
∂2

∂θ2
p(x|θ)dx = 0 (6)

holds. In this paper we use Equation 4, since the regularity
condition (Equation 6) does not necessarily hold.

The discrete form of Fisher information is:

F (θ) =
∑
xj

pxj

(
∆ ln(pxj )

∆θ

)2

, (7)

where ∆ln(pxj ) = ln(p′xj
) − ln(pxj ) and pxj = p(xj |θ),

p′xj
= p(xj |θ+∆θ). In this case, p(x) is a discrete probabil-

ity distribution function, such that x ∈ {x1, . . . , xD}, where
D is the number of states for the variable X . For example,
for a boolean network, x ∈ {0, 1}.

Fisher information has been extensively used in many
fields of science. Frank (2009) argued that Fisher informa-
tion may be used as the intrinsic metric of natural selec-
tion and evolutionary dynamics. Brunel and Nadal (1998)
showed that in the context of neural coding, the mutual in-
formation between stimuli applied to neurons and neuronal
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activity can be characterised by Fisher information. In com-
puter science, Ganguli et al. (2008) studied short term mem-
ory in discrete time neural networks by using a criterion
based on Fisher information.

We are interested in two aspects of Fisher information.
Firstly, it is a measure of the ability to estimate a parame-
ter, making it an important aspect of parameter estimation
in statistics (Frieden, 1998). Secondly, it is related to the
fundamental quantity of information theory, Shannon infor-
mation that measures system’s uncertainty.

Shannon Information
Shannon Information (Shannon, 1948) was originally devel-
oped for reliable transmission of information from a source
X to a receiver Y over noisy communication channels. Put
simply, it addresses the question of “how can we achieve
perfect communication over an imperfect, noisy communi-
cation channel?” (MacKay, 2003). When dealing with out-
comes of imperfect probabilistic processes, it is useful to
define the information content of an outcome x, which has
the probability P (x), as log2

1
P (x) . Crucially, improbable

outcomes convey more information than probable outcomes.
Given a probability distribution P over the outcomes x ∈ X
(a discrete random variable X representing the process, and
defined by the probabilities P (x) ≡ P (X = x) given for
all x ∈ X ), the average Shannon information content of an
outcome is determined by

H(X) = −
∑

x∈X
P (x) log2 P (x), (8)

We note the information is measured in bits, and henceforth
omit the logarithm base 2. This quantity is known as (infor-
mation) entropy, and may be contrasted with Fisher infor-
mation in Equation 7.

Intuitively, Shannon information measures the amount of
freedom of choice (or the degree of randomness) contained
in the process — a process with many possible outcomes
has high entropy. This measure has some unique properties
that make it specifically suitable for measuring “how much
‘choice’ is involved in the selection of the event or of how
uncertain we are of the outcome?” (Shannon, 1948). In an-
swering this question, Shannon suggested the entropy func-
tion −k

∑n
i=1 P (xi) log P (xi), where a positive constant k

represents a unit of measure.
In this paper we consider the entropy defined in terms of

the probability distribution of the states of each node with
respect to some parameter θ.4 Here the probabilities p(xi

j |θ)
are defined for each possible state xi

j for each node i (given

4We note the alternative view used elsewhere of information in
networks as that contained in the degree distribution amongst nodes
(Solé and Valverde, 2004; Bianconi, 2008; Piraveenan et al., 2009).

θ), and Shannon entropy

H(Xi|θ) = −
∑
xj

p(xi
j |θ) log p(xi

j |θ)

is subsequently also defined for each node i given θ, mea-
suring the diversity of system’s states. Then this quantity is
averaged across the network given θ,

H(θ)RBN , 〈H(Xi|θ)〉i. (9)

Fisher Information for RBNs
We aim to study Fisher information F (r) in RBNs as a func-
tion of the probability r of each node producing an output of
“1”. When changing r, the total number of 1s and 0s in
the logic tables (which each node uses to compute its next
state from its neighbours) would change. So when we cal-
culate p(x|r) and p(x|r + ∆r) for each r, some nodes in
the network with θ = r + ∆r would have different logic
tables. Therefore, we will produce two sets of results when
calculating Fisher information: one where we take into ac-
count all the nodes in the network, and one where we ig-
nore those nodes that have their logic table changed. This
will allow us to see whether the changes in dynamics are
mostly constrained to the nodes whose logic tables have
changed, or whether the alterations to their logic genuinely
cause changes to the dynamics of the whole network and al-
low insights into r from across the network.

To find Fisher information for the networks, Equation 7 is
used since the RBN has nodes with discrete states 0 and 1.
If we applied this equation to the RBN as a whole, the likeli-
hood function p(x|r) is a joint distribution over all nodes X
in the network. This means that for an RBN of 100 nodes,
there are 2100 possible joint states, which makes a calcu-
lation of Fisher information for the joint state of the RBN
impractical. Furthermore, since the RBN is not a directed
acyclic graph, and its nodes are not independent and iden-
tically distributed (i.i.d.), we can not write the likelihood
function as a product of the individual nodes. An alterna-
tive would be to apply Equation 7 to the single node states
x, computing the p(x|r) by combining observations of all
nodes in the RBN. This is undesirable though, since the
nodes are heterogeneous agents with very different dynam-
ics. Instead, we chose to study the average Fisher informa-
tion of the individual nodes:

F (r)RBN , 〈Fi(r)〉 (10)

where Fi(r) is the Fisher information of the i-th node of the
RBN calculated using Equation 7.

We model the RBNs using enhancements to Gershenson’s
RBNLab software (http://rbn.sourceforge.net). When ap-
proximating an infinitely-sized network with a finite one,
the risk is to run the dynamics for too many time steps and
reach a periodic or fixed attractor (inevitable for finite-sized
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Figure 1: (blue) Average Shannon information H(r) and
(green) standard deviation of the convergence/divergence
parameter δ versus the bias of the network r. The RBNs
here have network size N = 250, and average network con-
nectivity K = 4.0.

RBNs). In order to avoid this, for each simulation run start-
ing from an initial randomised state, we ignore a short initial
transient of 30 steps to allow the network to settle into the
main phase of the computation, and then stop the computa-
tion after 400 time steps.

In order to properly sample the dynamics of each node
in each RBN and generate enough data for the information
theoretic calculations, many repeat runs from random initial
states are required for each network (250 were used).

We thus calculate p(xi|r) of each node i in a given RBN
over all the repeat runs. This likelihood of each node is
used to calculate the Fisher information at node i, thus
giving us the average Fisher information of the network,
F (r) = 〈F (r)RBN 〉. Similarly, we averaged the entropy
measurements H(r) = 〈H(r)RBN 〉 over the network reali-
sations for each r.

It should be noted, that for many nodes, it often hap-
pens that px and/or p′x = 0 because a node may exhibit
either all 0s or all 1s, especially when r of the network is
heavily biased towards 0 or 1. In these cases, if pxj = 0,
we set the corresponding individual terms in Equation 7

pxj

(
∆ ln(pxj

)

∆r

)2

= 0, where j is the state of the node i.
If p′xj

= 0, we write the respective terms as (Frank, 2009):

pxj

(
∆ln(pxj )

∆r

)2

=
1

pxj

(p′xj
− pxj )

2,

yielding: pxj

(
∆ ln(pxj

)

∆r

)2

= pxj .
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Figure 2: Average Fisher information F (r) versus the bias
of the network, r, for networks of size N = 250 and aver-
age connectivity K = 4.0. The blue curve shows the Fisher
information if we take into account all the nodes in the net-
work, the red curve shows the Fisher information if we ig-
nore those nodes whose logic table has changed due to the
change in parameter r.

Results and Discussions
We focus on RBNs with N = 250 nodes and average con-
nectivity of K = 4.0, while altering the bias in the network
r. K = 4.0 was chosen because, with it held constant, RBNs
at low and high values of r exhibit ordered behaviour and
RBNs at mid-range values of r exhibit chaotic behaviour.

Figure 1 shows two baseline measures for studying the
phase transition. The green curve shows the standard devia-
tion of the convergence/divergence parameter δ as it changes
over r. As discussed earlier, this is a typical parameter used
to study this phase transition, and the standard deviation is
known to reflect the shift of the edge of chaos in finite-sized
networks. We can see that there are two separate peaks in
this curve, representing the edge of chaos for this finite-
sized RBN. This is expected, since the probability distribu-
tion function is symmetrical about r = 0.5, where there is
no bias between choosing a 0 or a 1. These two peaks occur
at r = 0.22 and 0.77, which as expected are ‘inside’ the the-
oretical edge of chaos of an infinite-sized RBN at r = 0.147
and 0.853 as found using Equation 3. The blue curve shows
the average Shannon information H(r) through this phase
transition. H(r) exhibits a bell shaped curve with maximum
at r = 0.5; this is as expected since the level of activity in
the network should be maximum when there is no bias. This
result aligns with the previous study of the entropy through
the phase transition in RBNs as a function of K while hold-
ing r constant (Lizier et al., 2008a) .

Now, we examine the phase transition with respect to r
using Fisher information F (r). Figure 2 shows the average
F (r) calculated in two scenarios: the blue curve shows F (r)
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when we take into account observations from all nodes in the
network, the red curve shows F (r) when we ignore obser-
vations from those nodes that have their logic table changed
from p(x|r) to p(x|r + ∆r).

It can be seen from this plot that F (r) has two peaks al-
most mirrored about r = 0.5. These peaks occur approxi-
mately at the phase transition between the chaotic phase and
the ordered phase for RBN with K = 4.0 as shown in Fig-
ure 2, while F (r) away from the phase transition r has val-
ues at least one order of magnitude smaller than the peaks.
This indicates that close to the phase transition, there is a
large increase in the information in the state distribution of
the nodes about the parameter r. On the other hand, deep in-
side the ordered and chaotic phases, the state distribution of
the nodes indicates little about r, other than that the network
is in one of these phases.

Certainly the blue curve for F (r) is consistently higher.
This curve includes Fisher information from the nodes
whose logic tables were changed, and these nodes obviously
carry a significant amount of information about the r param-
eter. Crucially though, there is little difference between the
two curves, and both have peaks at r = 0.17 and r = 0.79.
Were the curves identical, this would imply the amount of
information about r in the changed nodes did not differ from
that in the unchanged nodes, and the average F (r) was not
affected. A small quantitative difference indicates that the
nodes with changed logic tables retain more information
about r. Nevertheless, the information diffuses through the
whole network, making the curves quite similar here.

Some studies on Fisher information discuss the relation-
ship between Fisher and Shannon information. Frank (2009)
proposed the interpretation that Fisher information is equiv-
alent to the acceleration of Shannon information, i.e. the
second derivative of H(X|θ) with respect to θ. This was
shown under the assumption that the outer (or averaging)
term p(x|θ) holds constant while differentiating H(X|θ),
thus differentiating log p(x|θ) only. The equivalence be-
tween Fisher and acceleration of Shannon information also
requires that the regularity condition in Equation 6 holds.
However, this is not always the case, and here we now de-
scribe our observation of more similarity between Fisher in-
formation and first derivative of Shannon information.

Figure 3 shows the derivatives of Shannon information
H(r) versus network bias r for RBNs with average con-
nectivity of K = 4.0: the square of the first derivative of
Shannon information, ( d

dr H)2, is shown in blue and the sec-
ond derivative, d2

dr2 H , is shown in green. In comparison
with Figure 2, we can see that Fisher information for RBNs
is more qualitatively similar in shape to the square of rate
of change of Shannon information than the acceleration of
Shannon information. However, there is a difference in their
orders of magnitude, an explanation for which is presented
in the Appendix. In general, this is because in finding F (θ),
we first differentiate and then square and average the val-
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Figure 3: Derivatives of Shannon Information, H(r), for the
same networks as Figure 2 (K = 4.0). (blue) First derivative
of H squared. (green) Second derivative of H .

ues, while for (dH
dθ )2 we average and then differentiate and

square the values. Furthermore, the peaks for (dH
dθ )2 occur at

r = 0.21 and r = 0.79, coinciding with the Fisher informa-
tion peaks shown in Figure 2. This shows that for RBNs, the
regularity condition of Equation 6 does not hold, and Fisher
information is not equivalent to the acceleration of Shannon
entropy.

Let rmax denote the maximum Fisher information that oc-
curs with respect to r for fixed K. Formally, rmax for ev-
ery K is set to the global maxima of F (r) in two regions:
0 ≤ r ≤ 0.5 and 0.5 ≤ r ≤ 1. For example, rmax corre-
spond to the peaks shown in Figure 2. We now examine the
values of rmax as a function of K. To reiterate, each F (r)
is an average of Fisher information F (r)RBN over 250 net-
works, yielding rmax values for both regions. Repeating the
experiment 10 times with different 250 networks allows us
to average these rmax values over 10 runs. Figure 4 shows
the plot of rmax versus K for K = 2.0 to K = 10.0. The
blue curve shows the rmax computed over all nodes in the
network, and the red curve corresponds to the case when
those nodes that have their logic table changed were ignored.
As we can see from the figure, there is very little difference
between the two rmax curves. In alignment with the find-
ings for Figure 2, we see that the changes to the logic tables
of a few nodes genuinely cause the effect of changes in r to
diffuse throughout the network.

The green dashed curve in Figure 4 shows the theoretical
critical phase (edge of chaos) of the RBNs, generated using
Equation 3. We can see from the figure that the phase dia-
gram obtained by maximising Fisher information generally
follows the same shape, but is bounded by the theoretical
curve for critical Kc versus r. This is because the theoretical
curve corresponds to an RBN with an infinite size, while the
phase diagram based on the maximum Fisher information is
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Figure 4: Phase diagram of rmax where the maximum
Fisher information, F (r), occurs with respect to r for fixed
K, as a function of K. Blue: when all the nodes in the
network were taken into account; Red: when those nodes
whose logic table has changed due to the change in param-
eter r were ignored. The error bars on the curves show the
standard deviation of rmax. The green dashed line is the
theoretical curve for critical Kc versus r.

for a finite size RBN. As pointed out previously, for finite-
size networks the critical point is known to shift towards the
theoretically chaotic region, and the maximum Fisher infor-
mation certainly reflects this.

Indeed, these finite-size effects also partly explain why
the loci of the divergent maxima of Fisher information do
not meet as K → 2. For r = 0.5, the phase transition
with respect to K shifts towards the chaotic regime at around
K ≈ 2.5 in these finite size RBNs rather than the theoretical
2.0. Our experimental curve(s) should converge/diverge at
around K ≈ 2.5. The fact that they do not converge is an
artifact of our explicit search for two maximum values of
F (r) for 0 ≤ r ≤ 0.5 and 0.5 ≤ r ≤ 1.

Conclusion
In this paper, we contrasted Fisher information and Shannon
information in the context of Random Boolean Networks
(RBNs). RBNs are known to exhibit three distinct phases of
dynamics, depending on their parameters: ordered, chaotic
and critical, and we analysed the phase diagram of RBN dy-
namics interpreted in information-theoretic terms.

Both the activity level r and average connectivity K play
the role of control parameters, and the phase diagram is ob-
tained by plotting (K, r) points that separate the ordered and
chaotic phases. If δ was used as a proxy to an order parame-
ter, the critical (K, r) points are those where δ changes sign.
Information-theoretically, Shannon information H(r) which
measures (globally) the diversity of RBN’s states given the
parameter r, is minimal in the ordered phase and maximal

in the chaotic phase. However, it does not identify the pre-
cise location of the critical points. On the other hand, Fisher
information about the control parameters has maxima at the
critical (K, r) points. This is because F (r) measures (lo-
cally) the amount of information that RBN dynamics carry
about the parameter r, and these dynamics are most sensitive
to the control parameter near the critical point.

Our analysis showed that an information-theoretic inter-
pretation of the phase diagram (K with respect to r) re-
veals expected phases (ordered, chaotic and critical) as well
as symmetry breaking (slightly obscured by finite-size ef-
fects). In addition, the comparison between Fisher infor-
mation F (r) and a square of a first derivative of Shannon
information H(r) uncovered their strong qualitative similar-
ity, albeit separated by an order of magnitude. The analysis
shed more light on connections between Fisher information
and (derivatives of) Shannon information, and provided a
means for further rigorous information-theoretic studies of
phase transitions in complex networks.
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Appendix
It can be seen from Figure 2 and 3 that the magnitude of the
F (r) is much higher than (dH

dr )2, in fact, the peak for F (r)
is approximately 200 times that of (dH

dr )2’s peak. This is
due to the order of averaging and differential in the two cal-
culations. To illustrate this, let us take one simple example,
where the variable x has two states {0, 1} the probabilities
of which depend on some parameter θ:

Let : p(0|θ) = 0.5 p(1|θ) = 0.5
p(0|θ + ∆θ) = 0.3 p(1|θ + ∆θ) = 0.7
∆θ = 0.01

Now, using Equation 8, we can find the Shannon informa-
tion:

H(X|θ) = −(0.5 log2 0.5 + 0.5 log2 0.5) = 1,

H(X|θ + ∆θ) = −(0.3 log2 0.3 + 0.7 log2 0.7) = 0.8843.

Thus, the first derivative squared in this case is:
(

dH(X|θ)
dθ

)2

=
(

H(X|θ + ∆θ)−H(X|θ)
∆θ

)2

= 133.86.

Using Equation 7, we can find the Fisher information:

F (θ) = 0.5
(

ln 0.3− ln 0.5
∆θ

)2

+ 0.5
(

ln 0.7− ln 0.5
∆θ

)2

=
0.5(−0.5108)2 + 0.5(0.33647)2

(0.01)2
= 6965.
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Here, we can see that F (θ) is 50 times larger than (dH
dθ )2.

This shows that while at the first glance, the values of F (θ)
and (dH

dθ )2 should be similar, there is actually one to two
orders of magnitudes difference between them.
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Abstract

We explore the relationship between evolved neural network
structure and function, by applying graph theoretical tools
to the analysis of the topology of artificial neural networks
known to exhibit evolutionary increases in dynamical neu-
ral complexity. Our results suggest a synergistic convergence
between network structures emerging due to physical con-
straints, such as wiring length and brain volume, and optimal
network topologies evolved purely for function in the absence
of physical constraints. We observe increases in clustering
coefficients in concert with decreases in path lengths that
together produce a driven evolutionary bias towards small-
world networks relative to comparable networks in a passive
null model. These small-world biases are exhibited during
the same periods that evolution actively selects for increasing
neural complexity (also during which the model’s agents are
behaviorally adapting to their environment), thus strengthen-
ing the association between small-world network structures
and complex neural dynamics.

Introduction
Dynamical processes in networks are unavoidably influ-
enced by the networks’ underlying topologies. As the study
of networks has come to pervade all of science, a need has
arisen to understand this relationship between the anatomi-
cal structure of networks and the dynamical functions they
carry out (Strogatz, 2001).

Small-world properties have been shown (Watts and
Strogatz, 1998) to characterize many networks of interest,
including biological nervous systems. Small-world net-
works of Hodgkin-Huxley neurons have been shown (Lago-
Fernández et al., 2000) to provide the best features of both
random networks (fast system response) and regular net-
works (coherent oscillations). Small-world-ness has also
been shown (Sporns et al., 2000) to be highly correlated with
dynamical complexity in artificial neural networks evolved
specifically for complexity. In the biological realm, cortical
connection matrices for macaque visual cortex and rat cortex
have been shown (Sporns et al., 2000) to exhibit both small
world anatomical properties and high dynamical complexity.

It has been argued that physical constraints—evolutionary
pressures to reduce overall wiring length (Mitchison, 1991;
Cherniak, 1995) and to maximize connectivity while min-
imizing volume (Murre and Engelhardt, 1995)—might ex-

plain key aspects of biological brain connectivity. But it
is unlikely that evolutionary pressure on wiring alone is re-
sponsible for the detailed patterns of connectivity seen in
biological brains (Sporns et al., 2000). Thus one is led to
ask how natural selection would act upon the topological
characteristics of nervous systems in the absence of phys-
ical constraints, and whether such functional evolutionary
pressures are opposed to, independent of, or aligned with
physical evolutionary pressures.

In previous work using the Polyworld artificial life sys-
tem (Yaeger, 1994) we have shown that when agents whose
behaviors are controlled by a genetically prescribed artifi-
cial neural network are subject to natural selection, the net-
works’ dynamical neural complexity increases over evolu-
tionary time (Yaeger and Sporns, 2006), the networks’ com-
plexity will be actively selected for by evolution (Yaeger
et al., 2008), and periods of neural complexity growth cor-
respond to periods of behavioral adaptation of the agents to
their environment (Yaeger, 2009).

We now seek to understand the underlying network
topologies that give rise to this evolved functional complex-
ity. Preliminary results for several graph theoretical met-
rics from one simulation suggested (Lizier et al., 2009) that
evolutionary trends in Polyworld mirrored those in biolog-
ical neural networks (and successfully related anatomical
networks to inferred functional networks). We will more
fully characterize those evolutionary trends, determine their
robustness and statistical significance, quantify the small-
world-ness of those trends, and confirm the role of natural
selection (as opposed to random drift, in a “driven” vs. “pas-
sive” sense (McShea, 1996)) in the shaping of those trends.
This allows us to characterize the relationship between evo-
lutionary pressures on brain structure due to functional opti-
mization vs. physical constraints.

Tools and Techniques
Polyworld
Polyworld is an ecosystem model in which the agents are
controlled by artificial neural networks using a firing rate
neuron model performing Hebbian learning at the synapses.
The wiring diagrams of these networks are the primary sub-
ject of evolution in the system, through a genetic encoding
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of a generative model of network architectures. This genetic
encoding describes the network topology in terms of an arbi-
trary number of neural groups, containing arbitrary numbers
of excitatory and inhibitory neurons, wired together with ge-
netically determined connection densities, ordered-nessof
connections, and learning rates. By eschewing any particu-
lar model of ontogenetic development, Polyworld avoids the
biases inherent in such a model choice. Further, instead of
evolving specific network topologies, Polyworld forces evo-
lution to select for useful statistics of neural connectivity.

Vision, current energy level, and a randomly firing neuron
are the inputs to the network. A suite of primitive behaviors
(move, turn, eat, mate, attack, light, focus) are the outputs.
All agent actions consume energy, which must be replen-
ished by consuming food from the environment, or by killing
and eating other agents. Normally there are per-neuron and
per-synapse energy costs, but these have been eliminated
for this study so as not to impose any pseudo-physical con-
straints on network topology. Survival and reproduction,
variation and selection, are the only driving forces, so Poly-
world acts as a model of natural selection, with no fitness
function, rather than in the manner of a genetic algorithm
(though that is possible, if desired).

In these experiments Polyworld is used to produce paired
runs in which an initial, normal “driven” run is followed by
a “passive”, null-model run. (The terms driven and passive
are used in the sense proposed by McShea (1996).) In the
passive run, agents cannot reproduce or die on their own;
rather, pairs are chosen for reproduction at random and in-
dividuals are killed at random to match the birth and death
events of the original driven run, thus removing the effects
of selection, while retaining population statistics and levels
of genetic variation that are equivalent to those in the driven
run. This allows the direct comparison of driven vs. passive,
natural-selection vs. random-walk evolutionary trajectories.
See (Yaeger et al., 2008; Yaeger, 2009) for more details.

The activation of every neuron at every time step for every
agent is recorded to disk as simulations progress, as is the
neural architecture of every agent. Thus we are able to study
both the structure and the function of the evolved neural net-
works, under conditions in which either natural selection or
increasing variance due to a random walk are holding sway.

The Polyworld source code and data analysis tools are
available at http://sourceforge.net/projects/polyworld/ and
instructions for installing and building Polyworld are at
http://beanblossom.in.us/larryy/BuildingPolyworld.html.

Complexity

Though other measures of complexity are being investi-
gated, our primary tool for analyzing neural dynamics is an
information theoretic measure of neural complexity, origi-
nally proposed by Tononi et al. (1994), introduced in a sim-
plified and more computationally tractable form in (Tononi
et al., 1998), and explored computationally in (Sporns et al.,

2000; Lungarella et al., 2005). Referred to throughout as
just “complexity” (aka “TSE complexity”, for the initials
of its inventors), the measure captures a trade-off between
integration (cooperation) and segregation (specialization) at
multiple scales in any system of random variables, such as
the temporal traces of one of our agents’ neural activations.
Maximally complex networks exhibit a high degree of both
integration and segregation at multiple scales. The simpli-
fied version of TSE complexity we use is given by:

C(X) = H(X) −
∑

xi∈X

H(xi|X − xi) (1)

whereH(X) is the entropy of the entire system and the
H(xi|X − xi) terms are the conditional entropy of each of
the variablesxi given the entropy of the rest of the system.

Graph Theoretical Metrics
For current purposes we are interested primarily in three
graph theoretical metrics. Two of them—clustering coef-
ficient and characteristic path length—were used by Watts
and Strogatz (1998) to define and characterize small-world
networks. The third is a quantitative means of characterizing
the degree of small-world-ness exhibited by a network intro-
duced by Humphries et al. (2006). Throughout we will talk
about our neural networks as graphs, which can be described
by the number of nodes (aka vertices or neurons) and the
number of links (aka edges or synapses) that connect them.

Clustering coefficient (CC) is a local measure of cliquish-
ness in a graph, and characterizes the degree to which a
node’s neighbors are likely to be neighbors of each other
(where “neighbor” means a link exists between the nodes).
In friend networks this would be the degree to which friends
of a common friend are likely to be friends of each other. It
is defined at each node as the fraction of possible links be-
tween neighbors that are actually present in the graph, and
defined for the entire network as the average of this fraction
over all nodes in the graph.

Characteristic path length (CPL), also called average
shortest path length, is a global measure of the average sep-
aration between all node pairs in a graph—an estimate of
how far it is from any one node to another. The average dis-
tance to all other nodes is calculated for each node, and then
averaged over all nodes.

Watts and Strogatz (1998) identified small-world net-
works by their combination of high clustering and low path
length. By contrast, though regular lattice networks also ex-
hibit high clustering, they typically have high path lengths,
since any given node must traverse all intervening nodes and
links to reach a distant node. And while random graphs tend
to have low path lengths, since any given node is only a few
random hops away, they usually exhibit low clustering.

Small-world index (SWI) is a quantitative measure of
small-world-ness introduced by Humphries et al. (2006). To
calculate the SWI of a graph, one computes CC and CPL
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for the actual graph, plus CC and CPL for a corresponding
random graph (or ensemble of random graphs as done here),
and compares the ratios of actual to random measurements,
as follows:

γ = CC/ 〈CCr〉 (2)

λ = CPL/ 〈CPLr〉 (3)

s = γ/λ (4)

where〈CCr〉 and〈CPLr〉 are the ensemble averages ofCC
andCPL over some number of random graphs having the
same number of nodes and edges as the original graph, ands
is the desired SWI.1 SWI captures the degree to which clus-
tering and path length in the actual, original graph vary, in
the appropriate directions, from the values seen in compara-
ble random graphs. The more small-world a network is, the
greater its SWI will be above 1.0.

These metrics are most frequently applied to undirected
graphs (a given edge connects in both directions), often with
binary edges (either present or not). However, neural net-
works importantly have both weighted and directed edges.
Fortunately these metrics extend straightforwardly to sup-
port the analysis of weighted, directed (WD) graphs, but
their application to such networks has been less well char-
acterized than for binary, undirected (BU) graphs and, in-
deed, there turn out to be some issues applying them to WD
graphs. (Such as a greater prevalence of disconnected nodes
in WD graphs.) Accordingly, we analyzed our networks
treating them both as BU and WD graphs.

Neural network edge weights are also signed—positive
for excitatory connections, negative for inhibitory connec-
tions. Unfortunately, few graph theoretical metrics extend
well to signed graphs. So for these analyses we have made
the less than desirable, but simple and common, approxima-
tion of using the absolute values of the network weights on
the graph edges.

The fact that one of our key metrics, path length, is based
on distances between nodes, yet our neural networks have
weights, not distances, associated with their connections,
presents another small conundrum. We again take the sim-
plest, most common approach, and invert the weights to
provide a distance measure. Thus a strong weight, which
produces a strong influence, after inversion corresponds toa
short distance. So nodes that strongly influence each other
are seen as close neighbors, while nodes that only weakly in-
fluence each other are seen as distant neighbors, and nodes
that do not directly affect each other at all (have zero weight)
are infinitely far apart (though they may be reachable indi-
rectly, through other nodes and links). For our other fun-
damental metric, clustering coefficient, we use the original
neural network weights on the edges.

1Humphries used a single random graph corresponding to each
original graph, but there is sufficient variance in CC and CPL
amongst graphs with the same numbers of nodes and links that we
have chosen to use ensemble averages instead.

A question also arises as to which neural network nodes
to include in the graph being analyzed. One obvious answer
is all of them. However, the sensory nodes have an unusual
constraint—zero in-degree (no incoming connections)—and
their activations are purely determined by what the agent
senses in its environment rather than anything that happens
within the neural network. Another answer, then, is the non-
sensory neurons; i.e., all internal and output/behavioralneu-
rons. In our complexity work we have referred to this set
of non-sensory neurons as the “processing” neurons. Ac-
cordingly, we have carried out our graph theoretical analy-
ses looking at both cases: all (A) neurons and processing (P)
neurons.

Finally, especially early on in our simulations, some of
the graphs are quite small and consist of multiple compo-
nents (disconnected sub-graphs) and even contain discon-
nected neurons. It turns out that CPL behaves poorly and er-
ratically in this situation. This is due to its treatment of inter-
node distances between disconnected nodes as infinite. Thus
path lengths are computed only within each disconnected
subgraph and the metric can exhibit sudden large changes as
subgraphs become connected or disconnected and shortest
paths span much larger or smaller subsets of nodes.

A length metric proposed by Marchiori and Latora (2000),
connectivity length (CL), uses inverted lengths to calculate
the harmonic (rather than arithmetic) mean of average short-
est path length, and better handles multiple components and
disconnected nodes. However, by effectively including all
those infinities (as zeroes), it can compress the distinctions
between sparsely connected and disconnected graphs.

We therefore devised, and introduce here, a new length
metric, normalized path length (NPL), that appears to be bet-
ter behaved than either CPL or CL for the class of graphs we
are analyzing, though it too has some quirks (a sensitivity to
edge weights that makes it somewhat noisy in its WD form).

To calculate NPL, node pairs that have no path between
them are assigned a maximum path lengthlmax defined
as N/wmax, rather than infinity, whereN is the number
of nodes in the graph andwmax is the maximum possible
synaptic weight in our neural networks. (For binary net-
works the greatest possible path length isN − 1, hence this
value of N is one that cannot occur by any means other
than disconnection.) Inverting to convert weight to distance,
we also define a minimum path lengthlmin, which is just
1/wmax. We then proceed to compute CPL normally, limit-
ing path length to the defined maximum, and normalize first
by subtracting the minimum path length and then dividing
by the difference between the maximimum and minimum
path lengths. Thus, in terms of CPL, NPL may be written as
follows:

NPL = (CPL∗ − lmin)/(lmax − lmin) (5)

whereCPL∗ is a normally calculated CPL usinglmax as the
maximum possible distance between nodes. Or expressed in
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terms of path lengths:

NPL =

N
∑

i, j = 1
j 6= i

min(lij , lmax)

N(N−1)
− lmin

lmax − lmin

(6)

wherelij is the shortest path from nodej to nodei. NPL is
guaranteed to lie between 0.0, for a fully connected graph,
and 1.0, for a fully disconnected graph (a collection of nodes
with no links between them), and has proven to be well
behaved for graphs with multiple components and discon-
nected nodes (as well as for the more commonly analyzed
strongly connected graphs).

Since none of our three length metrics is “perfect” and
NPL is entirely new, wherever a length metric is calcu-
lated or used, we examine all three, and refer in general
to simply path length. Thus for each metric we treat the
graph as consisting of either the A neurons or the P neu-
rons and we treat the graph edges as being either BU or
WD, and for length metrics we look at each of CPL, CL,
and NPL. Different neuron sets, graph types, and length
metrics usually agree on common trends, but do sometimes
provide different insights into the algorithms and architec-
tures. Unfortunately, due to space constraints we cannot
show all variations of all metrics. A complete set of plots
of these metrics may be obtained as supplementary material
here: http://informatics.indiana.edu/larryy/alife12sup.zip.
The abbreviations defined here (CC, CPL, CL, NPL, SWI,
A, P, BU, WD) and another new metric (SWB) defined later
are consistently applied in these plots as well as this paper.

All graph theoretical metrics were calculated using our
new C++ implementation (bct-cpp) of the Brain Connectiv-
ity Toolbox (BCT) MATLAB module (Rubinov and Sporns,
2010). The original BCT may be found at http://www.brain-
connectivity-toolbox.net/ and bct-cpp may be found at
http://code.google.com/p/bct-cpp/.

Simulations and Data Acquisition
A set of 10 paired simulations, differing only in initial ran-
dom number seeds, were run in driven and passive modes;
i.e., 20 simulations in all. Each simulation ran for 30,000
time steps. Temporal traces of neural activations and struc-
tural descriptions of neural anatomies were recorded for all
agents. Agents were assigned to temporal bins correspond-
ing to 1,000 time steps, according to the time of their death.

This type of binning was necessary for our complexity
studies, since an agent’s neural complexity can only be ac-
curately computed after the completion of its neural activa-
tion time series—its death. We have retained this binning
in our graph theoretical analysis so we can directly compare
structural and functional results.

Complexity and graph theoretical metrics were calcu-
lated for each agent and averaged to produce a population

mean (and standard deviation) in each temporal bin, for each
driven and passive run. In addition, for each agent’s actual
neural network, 10 graphs with an identical node count, edge
count, and distribution of weights were generated randomly,
and the means of the graph theoretical measures for these
networks were used to characterize the structure of a ran-
dom graph corresponding to each actual graph.

Results and Discussion
Given that we know complexity increases over evolution-
ary time in Polyworld and is, in fact, actively selected for
by evolution under certain conditions, our intention is to de-
velop a better understanding of the structural characteristics
that give rise to these complex network dynamics. To this
end we start by examining clustering coefficient.

The various neuron sets and graph types tell much the
same story for clustering coefficient, as represented by the
P,WD results in Figure 1. Initially CC is actively selected
for by evolution, as evidenced by the more rapid rate of in-
crease in the driven runs than in the passive runs. But once a
“good enough” solution emerges and spreads throughout the
population, CC in the passive populations surpasses that in
the driven populations. The period during which there exists
a statistically significant bias for high CC in the driven runs
is from about t=1000 to t=11000. This mimics but extends
the trend previously observed in neural complexity (Yaeger
et al., 2008), as complexity’s period of statistically signif-
icant differences lasted only from about t=1000 to t=4000,
and passive complexity caught up to driven complexity by
about t=7000. The period of behavioral adaptation is ap-
proximately t=1000 to t=7000 (Yaeger, 2009).

A traditional means of looking for meaningful graph
structure is to compare suitable graph theoretical metrics
computed for one’s actual graphs to the same metrics calcu-
lated for comparable random graphs. We examined driven
vs. random and passive vs. random CC, but do not include
the results here due to space considerations. CC was sub-
stantially and statistically significantly greater in the actual
evolved graphs than in the corresponding random graphs.
Curiously, this difference was observed in passive vs. ran-
dom as well as driven vs. random graphs, which we take
as a warning that there is a bias present in our genetic en-
coding mechanism towards at least some degree of clus-
tering. Given that the encoding expresses connectivity be-
tween groups of neurons, this seems reasonable. This re-
sult suggests that the differences we observe between driven
and passive results may be lower than one might find with
a completely unbiased encoding scheme. It also means we
are probably better off focusing on driven vs. passive results
than driven vs. random results, since the passive runs repre-
sent a more appropriate and tightly constrained null model
than do the random graphs.

Turning to path length, the stories told by NPL and CL
are very similar to each other and to that told by CC and
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Figure 1: Drivenvs. passive clustering coefficient as a function of time. Light solid lines show mean population CC for each
driven run. Light dashed lines show mean population CC for each passive run. Heavy lines show meta-means of all ten runs
for the corresponding line style. Light dotted line at bottom shows dependent 1−p-value for a Student’s T-test with typical
p > 0.05 statistical significance indicated by the horizontal line at p= 0.95.

complexity. CPL is less consistent, due to its previously
discussed shortcomings, showing generally the same trends,
but without much statistical significance in both WD analy-
ses, large and greatly extended statistical significance inthe
P,BU analysis, and a result much like the other length met-
rics in the A,BU analysis. Figure 2, though somewhat noisy,
shows the typical trends in path length, using NPL. Path
length initially drops much more rapidly in the driven runs
than it does in the passive runs, but as that “good enough”
solution becomes weakly stabilized in the driven runs, path
length in the passive runs drops below that in the driven runs.
In fact, path length in the passive runs drops nearly to the
level seen in random graphs (not shown). The initial period
of driven vs. passive statistical significance is from about
t=1000 to t=7000, again corresponding well to the period of
complexity growth and behavioral adaptation.

Thus we have seen that during the period of growth in the
complexity of the agents’ neural dynamics there is a corre-
sponding, statistically significant growth in clustering coef-
ficient and reduction in path length. High clustering coeffi-
cient and low path length are the defining characteristics of
a small-world network. So our results are suggestive of a se-
lective pressure towards small-world networks, and provide
support for a correlation between small-world structure and
complex function.

To investigate this trend towards small-world-ness, we
turned to the small world index proposed by Humphries
et al. (2006). As it was originally formulated, SWI is based
on comparing CC and CPL in actual graphs vs. random
graphs. However, given the problems previously discussed
in applying CPL to our small, sparse, multi-component
graphs with disconnected nodes, the standard version of
SWI proved to be uninformative, displaying little consis-
tency amongst the different neuron sets and graph types we
analyzed and with sufficient noise to render some results un-
interpretable. So we developed alternative formulations of
SWI, using our better behaved length metrics, CL and NPL.
Curiously, some of the inconsistencies were present in these
formulations as well.

We could have cherry-picked an SWI result based on NPL
for the A neuron set and BU graph type that looks very much
like we expected, with a statistically significantly higher
growth rate in SWI for the driven runs compared to the pas-
sive runs. However, the P,WD version of this metric, even
using NPL, actually reverses the roles of driven and passive
(in a clear, although not significant fashion). We believe that
the small and weakly connected character of our early nets
are contributing to these difficulties, which explains why the
problems are most exacerbated in the nets with the most lim-
ited set of connections (P,WD), but are not entirely satisfied
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Figure 2: Drivenvs. passive normalized path length as a function of time. Light solid lines show mean population NPL for
each driven run. Light dashed lines show mean population NPLfor each passive run. Heavy lines show meta-means of all ten
runs for the corresponding line style. Light dotted line at bottom shows dependent 1−p-value for a Student’s T-test with typical
p > 0.05 statistical significance indicated by the horizontal line at p= 0.95.

with any of the explanations we have devised so far and feel
this needs further investigation, which is why none of these
results are included here (though they are all present in the
supplemental materials).

The actual numerical values of all these different versions
of SWI are greater than 1.0 for the driven runs, ranging
from 1.5 to as much as 32.0, depending on the specific data
and specific form of the metric, and the values are generally
(though not always) greater for the driven runs than they are
for the passive runs. So all we can really take away from the
SWI analysis is that the evolved nets are small-world nets.

Given the difficulties and inconsistencies with SWI, we
sought to define a metric that would more directly cap-
ture and quantify the apparent bias towards high clustering
and short path lengths evidenced in all of the raw cluster-
ing and path length data. To this end we have defined a
new “small-world bias” (SWB) metric that takes its form
from Humphries et al’s SWI, but directly compares driven to
passive—instead of actual to random—clustering and length
metrics:

γ = 〈CCdriven〉 / 〈CCpassive〉 (7)

λ = 〈Ldriven〉 / 〈Lpassive〉 (8)

SWB = γ/λ (9)

whereL can be any suitable length metric (such as CPL, CL,
or NPL). The ensemble averages are taken over the usual
population of agents expiring during a given temporal epoch.
The numerator captures the degree to which a driven run fa-
vors high clustering relative to a passive run. The denomina-
tor captures the degree to which a driven run favors low path
length relative to a passive run. Accordingly, when SWB
exceeds 1.0, the driven run is at least slightly biased towards
small world network characteristics relative to a passive run.
It is not actually possible (because driven and passive graph
sizes are different), but if one could calculate Humphries
et al. (2006)’s SWI using the same random-graph basis for
corresponding terms inSWIdriven andSWIpassive, then
take their ratio, all the random-graph terms would cancel
out and what one would be left with is SWB.

The precise numerical values and periods of bias vary,
but the resultant trends in SWB were remarkably consistent
for both sets of neurons (A and P), all graph types (BU and
WD), and all length metrics (CPL, CL, and NPL). Figure 3
shows the results for SWB based on connectivity length for
the processing neurons treated as weighted, directed graphs.
There is a strong (> 1.5) bias towards small-world-ness from
about t=2000 to t=7000, corresponding to the previously ob-
served, statistically significant growth in neural complexity
and behavioral adaptation to the environment.
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Conclusions
We have shown strong, reproducible evolutionary biases to-
wards high clustering coefficients, short path lengths, and
small-world-ness in driven runs subject to natural selec-
tion relative to passive runs in which natural selection is
disabled. These structural, graph theoretical trends corre-
spond to previously observed evolutionary trends in the dy-
namical complexity of neural function and behavioral adap-
tation of agents to their environment. These observations
thus strengthen the association between small-world-ness
and complexity.

Short path lengths contribute to increased “integration”
of neural function throughout the brain. Clustering can con-
tribute to and is often evidence of increased “segregation”
of specialized neural functions in the brain. It is this com-
bination of increasing integration and segregation that pro-
duces the measured increases in dynamical neural complex-
ity (Tononi et al., 1994).

Our work demonstrates that even in the absence of physi-
cal constraints on wiring length and brain volume, evolution
selects for small-world networks in order to enhance brain
function. The resulting networks thus combine the predom-
inantly local connectivity imposed by physical volume con-
straints (Murre and Engelhardt, 1995) with the short path
lengths necessary to satisfy fast response time requirements
(Lago-Fernández et al., 2000), despite a lack of physical
constraints in their evolution. We suggest that humans (and

all biological organisms with even modestly complex ner-
vous systems) are the fortunate beneficiaries of these con-
vergent and synergistic physical and functional constraints.
Rather than physical constraints acting to limit brain func-
tion, our evidence suggests that physical constraints workin
concert with evolutionary pressures to select neural topolo-
gies that foster more complex, adaptive behaviors.

Future Directions
There is one instance in which increases in clustering coef-
ficient are not correlated with increasing neural segregation
and complexity, which is progression towards a single large
cluster. Since we do see correlated increases in neural com-
plexity our clustering increases cannot be the result of net-
work topologies approaching a single large cluster, however
in the future we intend to look into modularity metrics that
more directly address community structure. Our expecta-
tions are that structural modularity and functional complex-
ity will be positively correlated. However, preliminary in-
consistent and contradictory results have led to the realiza-
tion that standard measures of modularity, such as those due
to Newman (2006) and Blondel et al. (2008), are not well
suited to the types of networks generated early in our simu-
lations and we believe values of these metrics are artificially
elevated for such graphs. Further research is required to ei-
ther develop better ways to characterize community struc-
ture in these networks or determine suitable subsets of these
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graphs to which the standard modularity metrics may rea-
sonably be applied, perhaps only after having evolved be-
yond certain minimum size and connectivity constraints.

We further hope to identify more discriminating struc-
tural metrics, that will be reliably predictive of functional
complexity. We also seek to improve upon our current tech-
nique of ignoring (by taking absolute values) what is likely
to be a crucial distinction between the positive and nega-
tive weights associated with excitatory and inhibitory con-
nections. One particular direction we intend to explore may
address both aims at once, which is distributions of signed
motifs. Network motifs, such as those advanced by Milo
et al. (2008) and related to small-world properties and com-
plexity by Sporns and Kötter (2004), are typically treatedas
unsigned, though there has been some discussion of small
subsets of signed motifs in genetic transcription and otherbi-
ological networks (Alon, 2007). Work by Kashtan and Alon
(2005) demonstrates that modularity and motif distributions
are sometimes correlated, but not uniquely so. We speculate
that motif distributions may be more discriminating and pre-
dictive of functional complexity than modularity or the other
metrics we have examined to date. We also expect that ex-
tending the standard 13 unsigned motifs to a corresponding
204 signed motifs will provide much greater discrimination,
as well as greater relevance to signed neural networks.
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J. A. (2000). Fast Response and Temporal Coherent Oscil-
lations in Small-World Networks.Phys. Rev. Lett., 84:2758–
2761.

Lizier, J. T., Piraveenan, M., Dany, P., Prokopenko, M., andYaeger,
L. S. (2009). Functional and Structural Topologies in Evolved
Neural Networks. In Kampis, G., Szathmry, E., Fernando,
C., Jelasity, M., Jordn, F., Lrincz, A., and Scheuring, I., edi-
tors,Advances in Artificial Life: Proceedings of the Tenth Eu-
ropean Conference on Artificial Life (ECAL2009). Springer
Verlag, Heidelberg.

Lungarella, M., Pegors, T., Bulwinkle, D., and Sporns, O. (2005).

Methods for quantifying the information structure of sensory
and motor data.Neuroinformatics, 3(3):243–262.

Marchiori, M. and Latora, V. (2000). Harmony in the Small-World.
Physica A, 285(3-4):539–546.

McShea, D. W. (1996). Metazoan complexity and evolution: Is
there a trend?Evolution, 50:477–492.

Milo, R., Itzkovitz, S., Kashtan, N., Levitt, R., Shen-Orr,S., Ayzen-
shtat, I., Sheffer, M., and Alon, U. (2008). Superfamilies of
Evolved and Designed Networks.Science, 303:1538–1542.

Mitchison, G. (1991). Neuronal branching patterns and the econ-
omy of cortical wiring. Proceedings of the Royal Society of
London. Series B: Biological Sciences, 245(1313):151–158.

Murre, J. M. J. and Engelhardt, D. P. F. (1995). The connectiv-
ity of the brain: multi-level quantitative analysis.Biological
Cybernetics, 73:529–545.

Newman, M. E. J. (2006). Modularity and community structurein
networks.Proc. Natl. Acad. Sci. U. S. A., 103:8577–8582.

Rubinov, M. and Sporns, O. (2010). Complex network measures
of brain connectivity: Uses and interpretations.NeuroImage,
In Press, Corrected Proof:–.

Sporns, O. and Kötter, R. (2004). Motifs in brain networks.PLoS
Biol, 2(11):e369.

Sporns, O., Tononi, G., and Edelman, G. (2000). TheoreticalNeu-
roanatomy: Relating Anatomical and Functional Connectiv-
ity in Graphs and Cortical Connection Matrices.Cerebral
Cortex, 10:127–141.

Strogatz, S. H. (2001). Exploring complex networks.Nature,
410:268–276.

Tononi, G., Edelman, G., and Sporns, O. (1998). Complexity and
coherency: integrating information in the brain.Trends in
Cognitive Sciences, 2(12):474–484.

Tononi, G., Sporns, O., and Edelman, G. (1994). A measure
for brain complexity: Relating functional segregation and
integration in the nervous system.Proc. Nat. Acad. Sci.,
91:5033–5037.

Watts, D. J. and Strogatz, S. H. (1998). Collective dynamicsof
‘small-world’ networks.Nature, 393(6684):440–442.

Yaeger, L. S. (1994). Computational Genetics, Physiology,Meta-
bolism, Neural Systems, Learning, Vision, and Behavior or
Polyworld: Life in a New Context. In Langton, C. G., editor,
Proceedings of the Artificial Life III Conference, pages 263–
298. Addison-Wesley, Reading, MA.

Yaeger, L. S. (2009). How evolution guides complexity.HFSP,
3(5):328–339.

Yaeger, L. S., Griffith, V., and Sporns, O. (2008). Passive and
Driven Trends in the Evolution of Complexity. In Bullock,
S., Noble, J., Watson, R., and Bedau, M. A., editors,Artificial
Life XI: Proceedings of the Tenth International Conferenceon
the Simulation and Synthesis of Living Systems, pages 725–
732. MIT Press, Cambridge, MA.

Yaeger, L. S. and Sporns, O. (2006). Evolution of Neural Structure
and Complexity in a Computational Ecology. In Rocha, L.,
Yaeger, L. S., Bedau, M., Floreano, D., Goldstone, R., and
Vespignani, A., editors,Artificial Life X: Proceedings of the
Tenth International Conference on the Simulation and Syn-
thesis of Living Systems, pages 330–336. MIT Press (Brad-
ford Books), Cambridge, MA.



Proc. of the Alife XII Conference, Odense, Denmark, 2010 321

Stability in Flux: Group Dynamics in Evolving Networks
Nicholas Geard1, John Bryden2, Sebastian Funk2, Vincent Jansen2,and Seth Bullock1

1School of Electronics and Computer Science, University of Southampton
Southampton, SO17 1BJ, United Kingdom

2School of Biological Sciences, Royal Holloway University of London
Egham, TW20 0EX, United Kingdom

nlg@ecs.soton.ac.uk

Extended Abstract

From Facebook groups and online gaming clans, to social movements and terrorist cells, groups of individuals aligned by
interest, values or background are of increasing interest to social network researchers (Snow et al., 1980; Zheleva et al.,
2009). In particular, understanding the structural and dynamic factors that influence the evolution of these groups remains
an open challenge (Palla et al., 2007; Geard and Bullock, 2008, 2010). Why do some groups persist and succeed, while
others fail to do so?

Three features characterise real social networks. They are inherently dynamic: explaining the structure of social networks
requires us to understand how this structure is created, modified and maintained. They are co-evolutionary, exhibiting
a reflexive relationship between topology and state. For example, individuals often interact preferentially with others
who are similar to themselves, thus state affects topology; at the same time, neighbouring individuals tend to influence
one another and hence become more similar, thus topology affects state (Gross and Blasius, 2008). Finally, interactions
between individuals are not distributed uniformly across a network: rather, we can detect community structure, in which
subsets of individuals are more densely linked to each other than to the rest of the population (Newman, 2006).

Analysis of telephone and collaboration data by Palla et al. (2007) has demonstrated some of the ways in which social
groups evolve over time, but there is more to be done in understanding the multi-level relationship between individual
and group dynamics. Here, we address two questions: How do stable macro-level structures and behaviours emerge and
persist as a consequence of simple micro-level processes? How can we characterise the dynamics of meso-level structures
such as groups and communities?

We introduce a simple model of a co-evolving network in which the state of an individual represents the group to which
it is currently (and exclusively) affiliated. Four processes govern network evolution: individuals can create new groups,
influence neighbours to switch affiliation to their group, replace an out-group edge with an in-group edge, or replace edges
at random.

Using this model, we explore the parameter space defined by the relative rates of each process, revealing a region in which
networks exhibit connected community structure reminiscent of observed social networks (Figure 1). We demonstrate how
macro-level properties of the network (e.g., state and degree distribution, modularity, clustering coefficient and path length)
stabilise, while underlying micro- and meso-level properties remain dynamic; that is, individuals continue to update their
neighbours and states, and groups are born, grow, shrink and die.

Finally, we report findings on the behaviour of groups: at equilibrium, there is a stable rank-distribution of group sizes;
however, the identities of the groups occupying each rank change over time. Furthermore, the distribution of group
lifespans is bimodal, reflecting two possible group trajectories: After being introduced into a population, a group either
thrives, or struggles. Interestingly, the probability of these two events appears to be almost entirely stochastic, and appears
to be independent of factors that one might expect play a role, such as the location of group foundation.

While our model is undoubtedly simple, we believe it provides a useful baseline for further studies, and a helpful tool for
understanding the multi-level dynamic interactions that underlie the complex behaviour of more complicated models.
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Figure 1: A slice through model parameter space, showing sample networks that result from different rates of state influence
(y-axis) and random rewiring (x-axis), given fixed rates of group rewiring (1.0) and state innovation (0.001). When state
influence is very high (top row), a single group spreads to dominate the population. In contrast, when state influence is very
low (bottom row), groups grow very slowly, if at all, and many small groups coexist. When random rewiring is very high
(right column), little structure emerges in the population. Lower levels of random rewiring enable the emergence of topological
communities focused around shared state. These communities either disconnect completely, fragmenting the population and
inhibiting the flow of individuals between groups, or remain connected (the central region). Note that these networks are static
snapshots: while aggregate network properties stabilise, local properties such as the pattern of social ties and distribution of
groups continue to evolve dynamically.
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Abstract 
We argue that the networks that can be constructed to represent 
ecosystems may inform us about the open-endedness of the 
evolutionary systems that underlie their dynamics. By adopting 
this approach we circumvent problems that arise from looking 
for open-endedness at the level of the organism, the more usual 
approach. We then examine various measures of ecosystem 
(niche web) complexity and propose a new information-
theoretic approach, Shannon Web Complexity. We compare its 
behaviour to that of the more common measures in ecology, in 
the light of common intuitions about complexity over a set of 
test networks and real ecosystem trophic webs. We show that 
our measure better accommodates intuitions about the 
complexity of these networks. 

Introduction 
The search for open-ended evolutionary simulations is 
compelling and has driven a sub-community of Artificial Life 
researchers to join philosophers and theoretical biologists in 
pondering the manner in which biological evolution is open-
ended. This has resulted in various simulation environments 
that attempt to replicate the behaviour of real ecosystems (e.g. 
see the review in (Dorin, Korb et al. 2008)) and open 
problems such as the call to, “Create a formal framework for 
synthesizing dynamical hierarchies at all scales” (Bedau, 
McCaskill et al. 2000). 
 
To achieve the goal of open-ended evolutionary software, we 
must first unambiguously identify open-ended complexity 
increase when we see it – we require a measure. Typically, as 
we show below, the search has focused on the increasing 
complexity of organisms, their structure and behaviour. For 
reasons we outline, we believe this to be wrong-headed and 
the source of much confusion. Instead, we propose to measure 
the complexity of the ecosystems of which organisms are a 
part, and to show that these do increase in complexity over 
evolutionary time periods. We achieve this by looking at 
ecosystem networks. 

Ecosystem networks 
Biological evolution operates within ecosystems on changing 
populations that define for themselves new ways of 
accumulating and consuming energy and matter to be 
employed for reproduction. Through feedback loops, 
organisms construct their own niches, passively and actively 

organising their environment, modifying the selection 
pressures acting on themselves, their progeny, and their 
cohabiters (Odling-Smee, Laland et al. 2003). The moulding 
of self-selection pressures by a population shifts the 
constraints within which future generations are introduced. 
Ecosystems can be described by a variety of networks linking 
these biotic and abiotic physical, chemical and behavioural 
relationships. We, like many ecologists, focus our attention on 
such networks as a way of understanding the global properties 
of the systems they represent (Watts and Strogatz 1998; Barrat 
and Weigt 2000; Dunne, Williams et al. 2002; Proulx, 
Promislow et al. 2005; Blüthgen, Fründ et al. 2008). 
 
We examine several techniques employed in the ecological 
and other literature for measuring the properties of ecosystem 
food webs and networks, describing also the Shannon web 
complexity based on information theory (Boulton and Wallace 
1969). We then assess how these measures stack up against 
one another and against our intuitions about the complexity of 
ecosystem networks in a set of examples. 

Open-Ended Complexity Increase 
A common opinion about evolution has been that it swims 
against the tide of entropy and in particular that evolution over 
time constructs more and more complex organisms (e.g., see 
(Bronowski 1970)). This idea of creative complexity increase 
equates at its most extreme, to the view that evolution is 
progressing from bacteria to invertebrates and thence to 
vertebrates and mammals and, finally, to the pinnacle of life 
forms, us.1 Such a view of Progress, however, ignores some 
quite basic features of evolution. For example, that the 
bacteria being “progressed from” still exist today and, indeed, 
have exactly as long an evolutionary history as we do, since 
we all have common ancestry. So, progress can hardly be 
characterized by endurance. Instead, progress has been recast 
as complexity, and complexity itself has been cast in terms 
favorable to ourselves; for example, as owning complex 
neural organizations — an account that fails to address the 
vast majority of earth’s life (Maynard-Smith and Szathmáry 
                                                             
1 For a skeptical review of this consensus opinion, identifying 
culprits, see McShea, D. W. (1991). "Complexity and evolution: 
what everybody knows." Biology and Philosophy 6(3): 303-324.
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1995). An infatuation with ourselves is also behind the “C-
value paradox” — our chromosomes appear no more complex 
than those of other mammals and less complex than those of 
some plants. The two long-standing antagonists Dawkins and 
Gould have together, and quite rightly, castigated this view as 
human chauvinism in an exchange in Evolution (Dawkins, 
1997; Gould, 1997). Gould preferred to see in every attempt 
to characterize complexity and attribute its increase to 
evolutionary processes this hidden agenda of congratulating 
ourselves on our own unique wonderfulness. Dawkins, on the 
other hand, considers the evolutionary increase in complexity 
to be not just compatible with evolution, but intrinsic to it. 
Evolution climbs “Mount Improbable” (Dawkins, 1996). 
Dawkins’ line of defence for ongoing complexity increase is 
to suggest that, whereas adaptive processes responding to the 
abiotic environment may just track meandering changes in the 
climate, coevolutionary processes acting between species 
work to develop coadaptations in trajectories that can be 
regarded as progressive in an engineering sense. Arms races 
lead to better weaponry and better defences, including better 
speed, flight, hearing and vision, for example. 
In the Artificial Life literature, Bedau takes up the debate, 
offering his evolutionary activity statistics to assess whether 
or not an evolutionary system is evolving in an open-ended 
fashion (Bedau, Snyder et al. 1998) and an Arrow of 
Complexity Hypothesis that evolutionary systems show a 
systematic tendency to increase the complexity of organisms 
over time (Bedau 2006). Some Artificial Life researchers, 
notably (Ray 1990), have attempted to replicate this apparent 
evolutionary complexity increase in software, thus far, 
without any consensus of success, although some claim a 
limited success whilst improving Bedau et al’s measures of 
open-endedness (Channon 2006). The fundamental problem 
we have with the activity statistics, however, is that whatever 
they measure is not what we want to measure: they make no 
attempt to assess the complexity of organisms or ecosystems, 
but only the volume of new, adaptive "components" within an 
evolutionary system. 
An attempt to dismiss complexity increases in species' 
organisation and behaviour over evolutionary time periods 
invokes a metaphoric “passive diffusion” (McShea 1994) 
through species design space, rather than a directed drive 
towards greater complexity. While diffusion may well 
contribute to increases in species complexity, it is unlikely to 
explain it entirely (Korb and Dorin 2010). In any case, we 
prefer to sidestep the issue and focus on complexity at a 
higher level: in the organization of niches in the ecosystem. 
Niche web complexity is not subject to the diffusion effects 
cited by McShea and others; furthermore, it, and its correlate 
species biodiversity, relatively non-controversially have 
shown sustained increases over geological time. Indeed, it is 
arguable that niche web complexity exhibits an exponential 
trajectory over evolutionary time periods, which we call the 
Arrow of Niche Complexity Hypothesis (Korb and Dorin 
2010): with complexity interpreted simply as the number of 
niches, this hypothesis states that any ecosystem acting 
beneath the ceiling of its capacity constraints whilst 
maintaining its stability will robustly tend to produce new 
niches, at an exponential growth rate – every species, without 

exception, creates multiple new niches by its waste products, 
its impact as an ecosystem engineer (the existence of its body 
as habitat, for instance), its availability as food for other 
organisms, and its removal of resources from the environment 
changing their relative abundance and distribution. Elsewhere 
we offer a simulation that demonstrates the effect of an 
exponentially increasing number of niches (Korb and Dorin 
2009). Furthermore, the network of dependence of species (in 
niches) to other species (in other niches) also increases in 
complexity. In order to argue that the latter increases are 
exponential and, in general, to assess changes in niche web 
complexity, we require a principled way of measuring such 
complexity. 

Complexity Measures for Ecosystems 
We require a measure for the complexity of (virtual or real) 
ecosystems in order to assess whether or not our Arrow of 
Niche Complexity hypothesis holds true under some 
circumstances. This measure must correspond to our 
(educated) intuitions about what constitutes the complexity of 
a network (such as a food web). A few useful intuitions are 
listed next. We then present some measures of network 
properties that have been employed in the literature and our 
own suggestion. 

Intuitions about network complexity 
Intuition 1 (simple): A network with a regular, repeating 
structure is simple (e.g. a lattice or a fully-connected 
network). 
Intuition 2 (simple): Networks with few links are simple (e.g. 
a single long chain or a fully disconnected network). 
Intuition 3 (simple): A random network is simple (with a 
high probably; but since random processes can produce any 
structure, such a net will sometimes accidentally be 
complex!). 
Intuition 4 (simple): Small world networks − those with low 
"degrees of separation" − are simple.  
Intuition 5 (complex): A complex network has organisation 
(e.g. clusters, loops) at multiple scales. 
Intuition 6 (complex): A complex network has organisation 
(clusters, loops) of multiple sizes. 
Intuition 7 (complex): A bigger network is more complex 
than a small one. 
These intuitions, while widely commented upon in the 
ecological literature, are not universal; nor are they 
unambiguous. For one thing, they only make sense with 
ceteris paribus clauses − other things remaining equal. And 
there are potential interactions between some of them. For 
example, Intuition 7 may be undermined by increasing the 
size of the network while simultaneously deleting arcs and 
bringing in Intuition 2. They work perhaps as heuristic guides 
to assessing networks and their complexity measures.  
Intuitions 5 and 6 are likely to capture some aspects of the 
major transitions in evolution, which can lead to tightly 
organized groups of niches. 
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Intuitions 1 and 2 have an interesting joint consequence which 
we will make use of later: networks of low density are simple, 
but so too are networks of high density (fully connected or 
worse). We infer that there may well be some kind of 
"Goldilocks effect", i.e., that there is a maximum of network 
complexity achieved at some middle level of density, which 
tapers off when there is either too many or too few arcs. The 
same effect applies to Intuition 4 as well: very small worlds 
mean very high interconnection, while very large worlds 
imply very low interconnection. 
 
Measures of network properties 
Networks have been widely studied in biology and several 
measures have been used to inform us about their properties in 
general (Watts and Strogatz 1998; Dunne, Williams et al. 
2002; Proulx, Promislow et al. 2005; Neutel, Heesterbeek et 
al. 2007; Blüthgen, Fründ et al. 2008). Here we list some of 
relevance,2 gauging the extent to which each informs us about 
network complexity. We conclude this list by introducing our 
own proposal. 
 
Number of nodes: n 
Ceteris paribus, smaller networks are simpler networks (cf. 
Intuition 7). 
Number of edges: e 
Having fewer edges is another way in which networks can be 
smaller and therefore simpler (Intuition 2). 
Density: D = e / n2 
Given that there are n2 potential directed arcs in a network 
(where a node may have an arc directed back to itself), this is 
the frequency of arcs (relevant to Intuitions 1, 2, 4, 5 and 6). 
Density-Mass: D × n = e / n 
This combines Intuitions 2 and 7. Given that denser networks 
are more complex (other things being held equal and up to a 
point of diminishing returns) and larger networks are more 
complex, it’s reasonable to suppose that a measure of 
complexity might be proportional to both simultaneously, so 
we multiply the two measures. 
Characteristic path length (CPL):  

CPL =

€ 

sij
pi=1

n

∑
j=1

n

∑  

where sij is the shortest path between nodes i and j (0 in case 
the shortest path is infinite) and p is the number of finite 
shortest paths between two nodes in the network (i.e. p < n2 
just in case some shortest paths are infinite). Thus, CPL is the 
average shortest path length (“degree of separation”) between 
nodes. Low values would normally indicate a highly 
connected network, i.e., high edge density, or perhaps 
strategically placed edges allowing for shortcuts, 
corresponding to Intuitions 1 and 4. 
                                                             
2 The literature contains many measures and variations. We focus 
on a few popular unweighted measures. Measures such as the 
maximum omnivourous loop weight (Neutel, Heesterbeek, et al. 
2007) are useful in some ecological applications but obviously 
not applicable to networks with unweighted edges. 

Clustering Coefficient (CC): 
 

CC = 

€ 

1
n

Si
Nii

∑  

where Ni is the number of i’s neighbors and Si is the number 
of shared neighbors, i.e., neighbors which are also neighbors 
of neighbors. This measures, on average, how “cliquey” the 
neighbors are across a network. 
In a niche web a high clustering coefficient shows the 
presence of tightly coupled clusters of niche-dependencies. 
So, this is a partial indicator of the clusters and loops of 
Intuitions 5 and 6.  
Shannon web complexity (SWC). 
This is a new use of a prior information-theoretic complexity 
measure, measuring niche web complexity by the number of 
bits needed to efficiently encode a network with n nodes, 
where the web may be any directed graph between the nodes. 
The code should be Shannon efficient for specifying the 
network structure to a receiver. In this first version of SWC 
we make the simplifying assumption that the density of arcs in 
the network is uniform; i.e., the number of arcs in any two 
subgraphs of the same size is approximately the same. This 
assumption admittedly will be untrue for many networks, 
when the measure will no longer be Shannon efficient; 
however, SWC can be refined in the future to deal with such 
networks. As it stands, this measure will still be useful for a 
very large range of networks. 
 
First, we need to identify (label, number) all the nodes. We 
can do this simply by specifying how many there are, i.e., 
coding the number n, assuming the labels will be 1, 2, …, n. 

log2 n 

Now we need to specify all arcs. We can do this in two steps. 
First we encode an estimate p of the probability that an arc 
exists between any two nodes; call this code length M(p). 
Given knowledge of p, specifying an existing arc takes  
−log2 p bits and specifying the absence of an arc takes  
−log2 (1 − p) bits. The number of possible arcs (going in either 
direction between nodes) is n2 (since nodes may be parents of 
themselves), so 

p = e / n2 

where e is the number of arcs in the graph (i.e., this is the 
density measure from above). 
Hence, we can identify the arc structure in the following 
number of bits: 

e (−log2 p) + [n2 − e] (−log2 (1 − p)) 

The first summand is the bit cost of specifying e arcs; the 
second is the bit cost of specifying all other potential arcs are 
missing. So, our final measure is: 

M(p) + log2 n + e (– log2 p) + [n2 – e] (– log2 (1 – p)) 

This has the reasonable Goldlilocks property above: a low 
density web is counted as simple; complexity increases as the 
number of arcs increase; but as the web becomes very dense – 
as, for example, an ecosystem turns into an indiscriminate 
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mush – it starts losing complexity. Maximal complexity is 
reached when p ≈ 0.5. This measure is shown by (Boulton and 
Wallace 1969) to be effectively the same as the following 
adaptive code, which is simpler to compute (meaning, e.g., we 
don’t actually have to measure M(p)): 

€ 

log2
(n2 +1)!
e!(n2 − e)!

 

This measure doesn’t respond directly to the Intuitions that 
loopiness implies complexity (5 and 6), however as the arc 
density goes from low towards 0.5, loopiness is inevitable. 
Loopiness is improbable at low arc densities, while in some 
way meaningless at very high arc densities. 

Testing Our Measures 

Sample graphs. 
Figure 1 shows four test graphs C1… 4 that we have designed 
with a constant number of nodes but increasing number of 
edges to highlight the behaviour of the network measures. 
 

 
 
Figure 1. Graphs of five nodes with increasing number of edges. 
 
Figure 2 is a set of networks showing successional stages of a 
subterranean food web redrawn from (Neutel, Heesterbeek et 
al. 2007). To the authors of that paper and this alike, these 
networks appear to be of increasing complexity3. In the 
following section we present the results of our measurement 
of the properties of these two sets of graphs. 
 
                                                             
3 Sch(iermonnikoog) and Hul(shorsterzand) 1 are both 
successional stage 1 food webs. Hul 2, 2-3 and 4 are subsequent 
stages of development at the latter site. Nodes represent trophic 
groups detailed in the original paper. 
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Figure 2. Graphs of subterranean food webs at progressing 
successional stages (Schiermonnikoog and Hulshorsterzand in the 
Netherlands). 

Results 
Figure 3 allows us to read the trends of the measures given 
above for graphs C1-4. Apart from SWC and CPL, all 
measures rise with the number of edges in the network. This 
certainly corresponds with naïve Intuition 2. But this suggests 
the measures are actually poor indicators of complexity as the 
sustained increase contradicts Intuitions 1 and 4 that as the 
network becomes more fully connected, it is becoming more 
homogeneous, less likely to have long loops and distinct 
clusters, and therefore less complex. In contrast, we see here 
that SWC and CPL both take the requisite dive after C3 
(which has density ≈ 0.5) as the network connectedness 
climbs “too far”. 
Figures 4 and 5 show the CPL and SWC respectively, as 
applied to the webs of figure 2. The CPL drops in the middle 
stages, before rising once again. As the ratio of the number of 
arcs to number of nodes increases (i.e., the edge density 
increases), the chance of having differentiated sub-networks 
actually decreases – the network will become one large 
structure with many internally connecting arcs. Depending on 
how these edges are added, the characteristic path length may 
drop, as is the case here and as we saw above, in moving from 
our network C3 to C4. If more nodes are later added in such a 
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way as to add lengthy loops, then the CPL too will rise. 
The SWC demonstrates a continued increase in complexity 
across the webs as we, and the ecologists, would wish. 
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Figure 3. Trends of the various dimensionless measures across 
test graphs, C1-4 (vertical axis has a log scale). 

 
Figure 4. The drop in characteristic path length (CPL) of the food 
webs from Sch to Hul 1 and 2 is counter to our intuition about the 
webs’ complexity. 

 
Figure 5. The increase in the Shannon web complexity (SWC) of 
the food webs matches our intuitions about their complexity. 

Discussion and Future Work 
Our proposed measure of niche web complexity is an 
improvement upon Bedau’s evolutionary activity plots for 
identifying open-ended evolution – in particular, it measures 
the right thing, biological complexity, at at least one of the 
right levels of organisation, the niche web. Even this first 
SWC measure appears tricky to subvert; it is at least better 
than the measures actually employed in the ecological 
literature. In particular, we have shown that SWC corresponds 
to basic intuitions regarding complexity and, at least in our 
test cases, tells us more than its competitors in this regard. 
There are various options for improvement nevertheless. We 
can anticipate in the future looking at: the number of iterations 
required to reduce a non-planar graph to planarity by 
subtraction of maximal planar subgraphs; the standard 
deviations of shortest path lengths clustering coefficients 
across subgraphs; dropping the assumption of uniform arc 
densities in the SWC measure by compounding the SWCs of 
subgraphs. 
Even before we extend our existing measures, we plan to 
apply them to the networks generated by various artificial-life 
ecosystems, especially our own (Korb and Dorin 2009) and 
those measured by others using their own statistics (e.g. (Ray 
1990; Bedau, Snyder et al. 1998; Channon and Damper 2000)) 
to see what they may tell us about the simulations' open-
endedness. Should they prove to support open-endedness, one 
significant hurdle must still be overcome — accommodating 
the “major transitions” of evolution (Maynard-Smith and 
Szathmáry 1995) that play a key role in the open-endedness of 
real evolution. Can these be replicated in simulation? Would 
our measures detect them if they did occur? 
The major transitions such as the evolution of eukaryotes and 
the development of sexual reproduction, relate in part to 
changes in how information is passed between generations. 
Niche webs do not explicitly model such behaviour; however, 
another prominent feature of many of these transitions is the 
incorporation of one entity in the life cycle of another (e.g., 
bacteria in digestion or the development of mitochondria) or, 
again, the differentiation of subparts into specialising modules 
(e.g., new organs and tissues). These kinds of transitions have 
impacts on niche webs, either explicitly or implicitly, and will 
often show up in the ways in which subgraphs of niches are 
interrelated. So, while there are limitations to what examining 
niche webs can reveal about major transitions, there are also 
potential impacts of the transitions on niche webs that should 
not go unexamined. 

Conclusions 
Niche web complexity is a promising focus for understanding 
biological complexity growth and so for assessing also the 
complexity of Artificial Life simulations. While there is a 
long tradition in ecology of considering this kind of 
complexity, most of the literature uncritically adopts one or 
another measure on the basis of intuitive arguments. We have 
codified these intuitions, formalized a variety of measures 
corresponding to them, as well as an information-theoretic 
measure, and tested them using a range of networks. We think 
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the information-theoretic measure has considerable promise 
for assisting us in understanding biological complexity growth 
and, therefore, open-ended evolution. 
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Abstract

Assortativity is a network-level measure which quantifies the
tendency of nodes to mix with similar nodes in a network. Lo-
cal assortativity has been introduced as a measure to analyse
the contribution of individual nodes to network assortativity.
In this paper we argue that there is a bias in the formulation of
local assortativity which favours low-degree nodes. We show
that, after the bias is removed, local assortativity of a node
can be interpreted as a scaled difference between the average
excess degree of the node neighbours and the expected excess
degree of the network as a whole. Finally, we study the local
assortativity profiles of a number of model and real world net-
works, demonstrating that four classes of complex networks
exist: (i) assortative networks with disassortative hubs, (ii)
assortative networks with assortative hubs, (iii) disassortative
networks with disassortative hubs, and (iv) disassortative net-
works with assortative hubs.

Introduction
Many complex systems are amenable to be described as
networks, with a given number of nodes and connecting
edges. These include ecological systems, author collab-
orations, metabolism of biological species, and interac-
tion of autonomous systems in the Internet, among others
(Soĺe and Valverde, 2004; Albert and Barabasi, 2002; Al-
bert et al., 1999; Newman, 2003; Faloutsos et al., 1999). It
has been a recent trend to study common topological fea-
tures of such networks. Network diameter, clustering co-
efficients, modularity and community structure, informa-
tion content are some features analysed in recent literature
in this regard (Faloutsos et al., 1999; Alon, 2007; Lizier
et al., 2009; Prokopenko et al., 2009). One such measure
which has been analysed extensively is assortativity (Solé
and Valverde, 2004; Newman, 2002; Albert and Barabasi,
2002; Newman, 2003; Callaway et al., 2001; Palsson, 2006;
Maslov and Sneppen, 2002; Zhou et al., 2008; Bagler and
Sinha, 2007; V́azquez, 2003). Having originated in eco-
logical and epidemiological literature (Albert and Barabasi,
2002), the term ‘assortativity’ refers to the correlation be-
tween the properties of adjacent network nodes.

While similarity between adjacent nodes can be measured
in a number of ways, the property that is of interest to us is

node degree. Based on degree-degree correlations, assor-
tativity has been defined as a correlation function, and the
level of assortative mixing has been measured quantitatively
for a number of networks, including social, biological and
technical networks (Solé and Valverde, 2004). The networks
that have a positive correlation coefficient are called assor-
tative: similar nodes tend to mix with each other in such
networks. The networks characterised by a negative corre-
lation coefficient are called disassortative: dissimilar nodes
tend to connect predominantly in these networks. The pre-
cise local contribution of each node to the global level of
assortative mixing can also be quantified (Piraveenan et al.,
2008, 2009b, 2010). This quantity has been called “local as-
sortativity”. Local assortativity measures the local contribu-
tion of each node to the global correlation coefficient which
is the network assortativity. Local assortativity profiles(as
distributions of local assortativity over nodes’ degrees)can
also be constructed for various networks, and these profiles,
in turn, can be used to classify networks (Piraveenan et al.,
2008, 2009a). Two such classes of disassortative networks
have been proposed in Piraveenan et al. (2008).

In this paper, we demonstrate that the formulation pro-
posed for local assortativity in Piraveenan et al. (2008) has
a bias, which favours low-degree nodes over hubs. This bias
needs to be removed before networks can be analysed in
terms of local assortativity. Therefore, our objective is two-
fold: (i) to propose an unbiased formulation of local assorta-
tivity, and (ii) to characterise classes of networks in terms of
this unbiased formulation. After presenting the unbiased for-
mulation for local assortativity, we show that the classifica-
tion of disassortative real-world networks that was proposed
in Piraveenan et al. (2008) still holds, and in addition, there
are two similar classes among assortative networks as well.
The unbiased formulation also provides a clearer interpreta-
tion of what it means for a node to be locally assortative.

Definitions and Terminology

We need to introduce a number of definitions before remov-
ing the bias from the formulation of local assortativity. Con-
sider a network withN nodes andM links. Assortativity for
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such a network has been defined as a correlation function
(Newman, 2002), in terms of the network’s excess degree
distributionq(k), and link distributionej,k. The excess de-
gree is the number of remaining links encountered when one
reaches a node by traversing a link. The link distribution of
the network is the joint probability distribution of the excess
degrees of the two nodes at either end of a randomly chosen
link. The formal definition of network assortativity is given
by:

r =
1

σ2
q





∑

jk

jk (ej,k − q (j) q (k))



 (1)

whereej,k is the link distribution of the network andσq is
the standard deviation of the excess degree distribution of
the network,q(k).

Since the expectation of the distributionq(k) is given by
∑

k

kq(k), the assortativity of a network can also be written

as:

r =
1

σ2
q









∑

jk

jkej,k



− µ2

q



 (2)

whereµq is the expectation of the distribution.
Local assortativity was motivated in Piraveenan et al.

(2008) by calculating the contribution of each node to the
above correlation coefficient. Therefore, the sum over all
nodes is equal to network assortativity. Formally, local as-
sortativity of a given nodev was derived in Piraveenan et al.
(2008) to be:

ρv =
αv − βv

σ2
q

=
(j + 1)

(

jk − µ2

q

)

2Mσ2
q

(3)

wherej is the node’s excess degree;k is the average excess
degree of its neighbours,σq 6= 0; the contributionαv of the
nodev to the first term in (2), that is, to the sum

∑

jk

jkej,k is

αv = (j + 1)
jk

2M
(4)

and the contributionβv of the nodev to the second term in
(2), that is, toµ2

q is

βv = (j + 1)
µ2

q

2M
(5)

It can be shown that local assortativity satisfies the summa-
tion property:

r =

N
∑

v=1

ρv (6)

In particular,

∑

jk

jkej,k =

N
∑

v=1

αv and µ2

q =

N
∑

v=1

βv (7)

While the componentαv captures the precise contribution
of each node to the term

∑

jk

jkej,k, the componentβv

represents the contribution of each node to the termµ2

q

with an imprecise scaling. Specifically, the scaling factor
(j + 1)/2M in (5) is the correct scaling factor forµq, rather
thanµ2

q, and hence,βv has a bias towards low-degree nodes
(Piraveenan et al., 2010).

Unbiased local assortativity
The derivation of the correctly scaled (and hence, unbiased)
contribution,β̂v, of a given nodev to the termµ2

q is shown
in Appendix A, yielding

β̂v = (j + 1)
jµq

2M
(8)

wherej is the node’s excess degree, as before. Hence, the
unbiased representation of local assortativity is given by

ρ̂v =
αv − β̂v

σ2
q

=
j (j + 1)

(

k − µq

)

2Mσ2
q

(9)

Let us compare the unbiased local assortativityρ̂v with that
defined by (3). Specifically, the sign of the local assortativ-
ity (positive or negative) is determined by the difference be-
tween the average excess degree (k) of the neighbours and
the global average excess degree (µq). If the neighbours’
average is higher, then the node is assortative. If the global
average is higher, the node is disassortative. Therefore, the
local assortativity can also be defined as a scaled difference
between the average excess degree of the node’s neighbours
and the global average excess degree (the scale factor is pro-
portional to the product of the node’s degree and excess de-
gree). In other words, a node tends to be locally assortative
if it is surrounded by nodes with comparatively high degrees
— hence, even though local assortativity is a property of a
node, it is influenced by a node’s ‘locality’, or neighbour-
hood.

The only difference betweenβv defined by (5) and the
unbiasedβ̂v defined by (8) is that the network’s meanµq,
which is constant across nodes, is replaced byj, the node’s
excess degree. This means that there is a bias in the term (3)
which favours low-degree nodes (with smallerj) and dis-
favours hubs (with largerj). In summary,

1. both theβv proposed in Piraveenan et al. (2008) andβ̂v

corrected in Piraveenan et al. (2010) adhere to summation
rule

∑

βv =
∑

β̂v = µ2

q.

2. β̂v is higher for hubs and lower for low-degree nodes com-
pared toβv.

We will utilise average local assortativity plotted against
degree. Average local assortativityρ(d) can be calculated
by averaging local assortativity quantities of all nodes with a
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given degreed. For example, the difference between biased
local assortativity profileρ(d) and unbiased local assortativ-
ity ρ̂(d) for H. pylori Protein Protein Interaction network is
shown in the Appendix B.

We point out that local assortativity is a quantity that in-
volves both degree and average (neighbour) degree, and as a
result, the local assortativity profiles clearly differ from aver-
age degree profiles. In particular, an average degree profile
always contains positive values that increase with the de-
gree, while local assortativity profiles may contain both pos-
itive or negative values, increasing or decreasing with the
degree.

Local assortativity in canonical networks

Regular lattice
For a lattice network each node has the same degree and

excess degree, therefore the variance of the excess degree
distribution is0. Since there is only one type of nodes, the
network is perfectly assortative (r = 1) and the local assor-
tativity of all nodes is1/N , as shown in Figure 1.
Star network

A star graph is another extreme example of complex net-
works in terms of topology. In a pure star graph, any given
link has a degree-one node at one end, with the excess degree
zero. It can be shown that a star graph is perfectly disassor-
tative (r = −1). Furthermore, any node in the star graph
has either its excess degree as zero, or all of its neighbours’
excess degrees as zero. It is easy to see that the term repre-
sented by equation (4) reduces to zero in all cases. Thus, the
local assortativity reduces to

ρ = −
j + 1

2M

µq

σ2
q

(10)
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Figure 1: Local assortativity distribution,ρ(k) vs k, of
a regular lattice with four nodes connecting to each node
(squares), and of a star graph (stars). Network size in both
cases isN = 20.

Figure 1 shows the local assortativity distribution for a
pure star graph: the central node is much more locally-
disassortative, as it connects with many dissimilar nodes,
whereas the low-degree nodes are less locally-disassortative
since they connect to only one dissimilar node.
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Figure 2: Local assortativity profile of scale-free networks
(N = 1000 andγ = 2.1) with r = 1.0 (‘♦’), r = 0.5 (‘+’) ,
r = −0.5 (‘×’) and r = −1.0 (‘�’).

Classification of networks using unbiased local
assortativity profiles

In this section we aim to classify both model and real-world
networks using the unbiased local assortativity. Since lo-
cal assortativity is a property of a node, it is possible to
construct local assortativity distributions of networks (Pi-
raveenan et al., 2008).

We begin the analysis by constructing model Barabási–
Albert scale-free networks (Albert and Barabasi, 2002) of
various assortativity levels and observing their local assor-
tativity profiles. Specifically, we use the Assortative Pref-
erential Attachment method (APA) (Piraveenan et al., 2007)
to control the level of assortativity. Some of the results are
shown in Figure 2 for network sizeN = 1000 and power
law exponentγ = 2.1.

We could observe from Figure 2 that the profiles are sym-
metric with respect to the degree axis when assortativity is
varied fromr = 1.0 to r = −1.0 while other network pa-
rameters are kept constant. We also note that (i) globally as-
sortative networks have assortative hubs and disassortative
low-degree nodes, and (ii) globally disassortative networks
have disassortative hubs and assortative low-degree nodes.
That is, the overall assortativity of the network is matchedby
that of the hubs. Thus, we are able classify the constructed
model networks as either (i) assortative networks with as-
sortative hubs, or (ii) disassortative networks with disassor-
tative hubs. This is not surprising. However, one may ask
whether there are also any disassortative networks with as-
sortative hubs, as proposed in Piraveenan et al. (2008). To
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Figure 3: Example of an assortative network with assortative
hubs. H. sapiens metabolic network;N = 1288, γ ≈ 2.32,
r = 0.382.

Figure 4: Example of an assortative network with disassor-
tative hubs. H. sapiens Protein Protein Interaction network;
N = 1529, γ ≈ 2.1, r = 0.075.

answer this question, let us look at the model network given
in Figure 5. This network is made up of a number of in-
terconnected star-like subnetworks. Each subnetwork has a
core of hubs that are densely connected to one another: this
is the ‘rich club phenomenon’ (Zhou and Mondragón, 2004;
Colizza et al., 2006). The rest of the subnetwork seems to
have mostly disassortative connections. The subnetworks
are then linked together with hub-to-hub connections, fur-
ther reinforcing the rich-club phenomenon. The overall as-
sortativity of the network isr = −0.109. However, as
shown in Figure 9, the hubs are assortative. The embed-
ded subnetworks pattern can be repeated on larger scales, re-
taining the assortative hubs with higher and higher degrees,
while keeping the overall disassortativity. This example rep-
resents a third class, demonstrating that it is possible to have
disassortative networks with assortative hubs.

The real-world networks we studied included most recent
metabolic networks (KEGG database), citation networks,
Protein-Protein Interaction (PPI) networks, food-webs, and
Internet AS level networks among others. A list of the net-
works we analysed is shown in Table 1. We were able to

Figure 5: Example of a disassortative network with assorta-
tive hubs. A model network withN = 150, r = −0.109.

Figure 6: Example of a disassortative network with disassor-
tative hubs. Crystal River D foodweb,N = 24, r = −0.467.

observe the following from our analysis.
Firstly, as in the case of model APA networks, some real-

world assortative networks have assortative hubs (e.g., Fig-
ure 7; most other metabolic networks showed similar pro-
files). Also many real-world disassortative networks have
disassortative hubs, e.g., one such food-web is shown in Fig-
ure 10. However, other assortative networks exhibit disas-
sortative hubs, such as the PPI networks of H. sapiens shown
in Figure 8. A number of other PPI networks displayed a
similar profile. These networks represent the fourth class,
namely the assortative networks with disassortative hubs.

Therefore, we can identify four classes of complex net-
works, namely: (i) assortative networks with assortative
hubs, (ii) assortative networks with disassortative hubs,(iii)
disassortative networks with disassortative hubs, (iv) disas-
sortative networks with assortative hubs.

There are several examples of real-world networks for
each of the first three cases, and we have shown represen-
tative examples in Figures 7, 8, and 10 respectively . We did
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Network assortativityr class

Human metabolic (KEG, 2009) 0.382 assortative with assortative hubs

Chimpanzee metabolic (KEG, 2009) 0.398 assortative with assortative hubs

Rhesus monkey metabolic (KEG, 2009) 0.363 assortative with assortative hubs

Astro physics citation (Newman, 2009) 0.276 assortative with assortative hubs

Cond. mat. 2003 citation (Newman, 2009) 0.178 assortative with assortative hubs

Cond. mat. 2005 citation (Newman, 2009) 0.186 assortative with assortative hubs

Hep theory citation (Newman, 2009) 0.293 assortative with disassortative hubs

Net science citation (Newman, 2009) 0.46 assortative with disassortative hubs

H. sapiens PPI (PPI, 2009) 0.075 assortative with disassortative hubs

E. coli PPI (PPI, 2009) 0.056 assortative with disassortative hubs

Internet AS 1998 (CAI, 2009) -0.198 disassortative with disassortative hubs

Internet AS 2008 (CAI, 2009) -0.198 disassortative with disassortative hubs

Fruitfly PPI (PPI, 2009) -0.21 disassortative with disassortative hubs

H. pylori PPI (PPI, 2009) -0.235 disassortative with disassortative hubs

Mouse PPI (PPI, 2009) -0.057 disassortative with disassortative hubs

Crystal River C (Batagelj and Mrvar, 2006) -0.334 disassortative with disassortative hubs

Crystal River D (Batagelj and Mrvar, 2006) -0.467 disassortative with disassortative hubs

Lower Chesapeake (Batagelj and Mrvar, 2006) -0.391 disassortative with disassortative hubs

Scimet collaboration (Batagelj and Mrvar, 2006) -0.03 disassortative with disassortative hubs

Smart grid collaboration (Batagelj and Mrvar, 2006) -0.193 disassortative with disassortative hubs

Table 1: The networks studied and their classification.

not find any example of the fourth case among the networks
we studied, however we have demonstrated that in theory
such networks could exist, as shown in the profile in Figure
9, and real-world examples may yet be found as the range of
networks studied is expanded.

We show the corresponding networks for each example in
Figures 3, 4, 5, and 6 respectively. Note that the networks
with assortative hubs and disassortative hubs are not always
visually distinguishable, however, the local assortativity pro-
files are able to highlight an important topological difference
in them.

While a detailed analysis of the classification results in the
context of biological networks is out of scope for the paper,
we briefly mention some possibilities. Assortative metabolic
networks may have assortative hubs due to optimality in flux
balance (Varma and Palsson, 1994): most metabolic reac-
tions form chains ending with a regulatory decision in a hub,
and the connections between hubs may optimise metabolic
requirements for growth, utilising different pathways.

The hubs in food-webs could be disassortative because the
separation between hubs plays an evolutionary role, main-
taining sustainable food chains.

It is somewhat more complicated why the PPI networks
that are assortative overall have disassortative hubs. On
the one hand, many individual proteins may form a multi-

protein complex, and some of the proteins can participate
in the formation of a variety of different protein complexes.
Such high-interacting proteins are likely to be locally assor-
tative. On the other hand, the anticorrelation in the node de-
gree of connected nodes, i.e., the tendency of highly interact-
ing nodes to be connected to low-interacting ones, has been
reported previously (Maslov and Sneppen, 2002; Spirin and
Mirny, 2003). In particular, Maslov and Sneppen argued that
“this effect decreases the likelihood of cross talk between
different functional modules of the cell and increases the
overall robustness of a network by localizing effects of dele-
terious perturbations” (Maslov and Sneppen, 2002). These
two alternatives are related to the distinction between pro-
tein complexes and functional modules (Spirin and Mirny,
2003): protein complexes are groups of proteins that interact
with each other at the same time and place, forming a sin-
gle multimolecular machine, while functional modules con-
sist of proteins that participate in a particular cellular pro-
cess while binding each other at a different time and place.
Disassortative hubs are likely to be the proteins within func-
tional modules. In addition, one may point out that there are
artefacts of the high-throughput methods used to discover
the interactions that may lead to low interaction coverage of
certain protein types and obscure local assortativity profiles
(Shoemaker and Panchenko, 2007a,b).
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Figure 7: Local assortativity profile of H. sapiens metabolic
network;N = 1288, γ ≈ 2.32, r = 0.382.

Conclusions
We proposed an unbiased formulation for local assortativ-
ity in complex networks, and analysed the local assortativity
profiles of some model and real-world networks in terms of
this new formulation. We showed that a node’s local assor-
tativity is proportional to the difference between the average
excess degree of its neighbours and the network’s overall
average excess degree. Specifically, a node is locally assor-
tative if its neighbours have comparatively (i.e., compared
with all nodes in the network) higher degrees. It is important
to realise that the nodes with the highest local assortativity
differ in general from the largest hubs (the nodes with the
highest degrees).

Analyzing a range of model and real-world networks,
we observed four classes of networks, namely: (i) assor-
tative networks with assortative hubs, (ii) assortative net-
works with disassortative hubs, (iii) disassortative networks
with disassortative hubs, and (iv) disassortative networks
with assortative hubs. Real-world examples for the first
three classes were identified, and a model network was con-
structed as an example for the fourth class.

The local assortativity profiles provide an additional
quantitative tool for network analysis. These profiles high-
light important topological differences in otherwise seem-
ingly indistinguishable networks. This may help in studying
diverse network properties and dynamics: e.g., (a) network
growth may be modelled in such a way that the grown net-
works not only satisfy global characteristics, but also agree
with required local assortativity profiles (Piraveenan et al.,
2009b); (b) network robustness may be analysed in terms of
an attack targeting the nodes with higher local assortativity;
(c) motifs within networks can be studied via their average
local assortativity, etc. One avenue for future work is to de-
fine local assortativity in directed networks, and apply this
definition to directed biological networks, studying the role
of the nodes with the highest local assortativity in regulatory
processes (e.g., reaction cascades).
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Figure 8: Local assortativity profile of H. sapiens Protein-
Protein Interaction network;N = 1529, γ ≈ 2.1, r =
0.075.
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Figure 9: Local assortativity profile of the network shown in
Figure 5;N = 150, r = −0.109.
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Figure 10: Local assortativity profile Chrystal River D food-
web;N = 24, r = −0.467.
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Appendix A
To derive the contribution of each node toµ2

q we first look at
the following equivalent definitions ofµq:

µq =
1

2M

M
∑

m=1

km (11)

µq =
1

2M

N
∑

v=1

kv(1 + kv) (12)

wherek is excess degree,m is a given edge andv is a given
node of the network. We are especially interested in the lat-
ter form (12) since it makes it obvious what each node con-
tributes to the termµq. It follows that

µq =
1

2M

(

N
∑

v=1

kv +
N
∑

v=1

kv
2

)

(13)

yielding

µ2

q =
1

4M2

(

(

N
∑

v=1

kv)2 + (

N
∑

v=1

kv
2)2 + 2

N
∑

v=1

kv

N
∑

v=1

kv
2

)

(14)
Now, let us consider a single node (without loss of gen-

erality, let it be the node 1 with excess degreek1), and its
contribution to each of the three summation terms in the ex-
pression above. Considering the first summation term, ex-
cess degreek1 contributes to it as follows:

k1
2 + 2(k1k2 + k1k3 + ........... + k1kN ) (15)

Among these, terms such as2k1kj have to be ‘divided’ be-
tween node 1 and nodej respectively. These are multiplica-
tion terms, and we assume that an equal division is appro-
priate. Therefore, the contribution of node 1 is:

k1
2 + (k1k2 + k1k3 + .... + k1kN ) = k1

N
∑

j=1

kj (16)

Considering the second summation term in (14), we observe

that the contribution of node 1 isk1
2

N
∑

j=1

kj
2. Let us analyse

the contribution of node 1 to the third summation term in
(14). The third summation term is given by

2

N
∑

i=1

ki

N
∑

j=1

kj
2 = 2

(

k1 +

N
∑

i=2

ki

)



k2

1
+

N
∑

j=2

kj
2





(17)

wherei, j are node indices. The contribution of node 1 to
the third term is obtained by dividing terms such as2k1kj

between node 1 and nodej respectively:

2k3

1
+k2

1

N
∑

i=2

ki+k1

N
∑

j=2

kj
2 = k1

N
∑

j=1

kj
2+k1

2

N
∑

j=1

kj (18)

Therefore, the total contribution of node 1,β1, to µ2

q is:

β1 =

k1

N
∑

j=1

kj + k1
2

N
∑

j=1

kj
2 + k1

N
∑

j=1

kj
2 + k1

2
N
∑

j=1

kj

4M2

(19)
This can be further regrouped as

β1 =
k1 + k1

2

4M2





N
∑

j=1

kj +
N
∑

j=1

kj
2



 (20)

Using equation (13) forµq, this can be reduced to:

β1 =
k1 + k1

2

2M
µq (21)

Hence, the contribution of a nodev to µ2

q is given by:

β̂v = (j + 1)
jµq

2M
(22)

wherej is the excess degree of the nodev. Thus, local as-
sortativity is given by

ρ̂v =
αv − β̂v

σ2
q

=
j (j + 1)

(

k − µq

)

2Mσ2
q

(23)

Appendix B
The difference between the biased local assortativity pro-
file ρ(d), defined by (3), and the unbiased local assortativity
ρ̂(d), defined by (9), for H. pylori Protein Protein Interaction
network is shown in Figure 11. It is evident thatρ̂(d) < ρ(d)
for the hubs, and more importantly, the hubs are now locally
disassortative.
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Network Complexity of Foodwebs
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Abstract

In previous work, I have developed an information theoretic
complexity measure of networks. When applied to several
real world food webs, there is a distinct difference in com-
plexity between the real food web, and randomised control
networks obtained by shuffling the network links. One hy-
pothesis is that this complexity surplus represents informa-
tion captured by the evolutionary process that generated the
network.

In this paper, I test this idea by applying the same complex-
ity measure to several well-known artificial life models that
exhibit ecological networks: Tierra, EcoLab and Webworld.
Contrary to what was found in real networks, the artificial life
generated foodwebs had little information difference between
itself and randomly shuffled versions.

Introduction
In Standish (2005), I developed a method for computing the
information complexity of a network. In Standish (2010a),
I refined and generalised the method to overcome a problem
with higher complexity values of empty and full networks
relative to partially filled networks of the same degree, as
well as taking account of link weights. Coupled with some
new algorithms for computing automorphism group size,
this network complexity measure is practical for networks
of several thousand nodes.

In Standish (2010a), I studied several published datasets
of natural networks, including a number of foodwebs avail-
able from the Pajek website, and the neural network ofC. el-
egans(see Table 1). In most cases, these networks exhibited
significantly heightened complexity values compared with
those of control networks obtained by shuffling the links in a
random fashion. This leads to the hypothesis that evolution-
ary processes tend to produce networks with acomplexity
surplus(∆) compared with random assembly processes.

In this work, I apply the same methods to networks cre-
ated by artificial life evolutionary systems, in particularthe
interaction network of Tierra (Ray, 1991) and the foodwebs
of EcoLab (Standish, 1994) and Webworld (Caldarelli et al.,
1998).

Complexity as Information
The notion of using information content as a complexity
measure is fairly simple. In most cases, there is an ob-
vious prefix-freerepresentation language within which de-
scriptions of the objects of interest can be encoded. There
is also a classifier of descriptions that can determine if two
descriptions correspond to the same object. This classifieris
commonly called theobserver, denotedO(x).

To compute the complexity of some objectx, count the
number of equivalent descriptionsω(ℓ, x) of length ℓ that
map to the objectx under the agreed classifier. Then the
complexity ofx is given in the limit asℓ → ∞:

C(x) = lim
ℓ→∞

ℓ logN − log ω(ℓ, x) (1)

whereN is the size of the alphabet used for the representa-
tion language.

Because the representation language is prefix-free, every
descriptiony in that language has a unique prefix of length
s(y). The classifier does not care what symbols appear af-
ter this unique prefix. Henceω(ℓ, O(y)) ≥ N ℓ−s(y). As ℓ
increases,ω must increase as fast, if not faster thanN ℓ, and
do so monotonically. ThereforeC(O(y)) decreases mono-
tonically with ℓ, but is bounded below by 0. So equation (1)
converges.

To use this formalism with networks, we need to fix two
things: how to decide when two networks are identical, and
a prefix-free representation language, which will be used to
count the representations of a given network. In this con-
text, ignoring any link weights, two networks are considered
identical if the nodes of one can be placed over the nodes
of the second one, such that the links correspond exactly.
They are topologically identical. We ignore any labels on
the nodes or links.

Network bitstring representation
To represent the network as a bitstring, we need to store the
node count (n) and link count (l), as well as representation
of the adjacency matrix. The initial part of the string has
w = ⌈log

2
n⌉ ‘1’ bits, followed by a single ‘0’ stop bit. Fol-

lowing that arew bits representing the value ofn in binary.
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Dataset nodes links C e〈lnCER〉 ∆ = C − e〈ln CER〉
| ln C−〈ln CER〉|

σER

celegansneural 297 2345 442.7 251.6 191.1 29
celegansmetabolic 453 4050 25421.8 25387.2 34.6 ∞
lesmis 77 508 199.7 114.2 85.4 24
adjnoun 112 850 3891 3890 0.98 ∞
yeast 2112 4406 33500.6 30218.2 3282.4 113.0
baydry 128 2138 126.6 54.2 72.3 22
baywet 128 2107 128.3 51.0 77.3 20
cypdry 71 641 85.7 44.1 41.5 13
cypwet 71 632 87.4 42.3 45.0 14
gramdry 69 911 47.4 31.6 15.8 10
gramwet 69 912 54.5 32.7 21.8 12
Chesapeake 39 177 66.8 45.7 21.1 10.4
ChesLower 37 178 82.1 62.5 19.6 10.6
ChesMiddle 37 208 65.2 48.0 17.3 9.3
ChesUpper 37 215 81.8 60.7 21.1 10.2
CrystalC 24 126 31.1 24.2 6.9 6.4
CrystalD 24 100 31.3 24.2 7.0 6.2
Everglades 69 912 54.5 32.7 21.8 11.8
Florida 128 2107 128.4 51.0 77.3 20.1
Maspalomas 24 83 70.3 61.7 8.6 5.3
Michigan 39 219 47.6 33.7 14.0 9.5
Mondego 46 393 45.2 32.2 13.0 10.0
Narragan 35 219 58.2 39.6 18.6 11.0
Rhode 19 54 36.3 30.3 6.0 5.3
StMarks 54 354 110.8 73.6 37.2 16.0

Table 1: Complexity values of several freely available network datasets, as reported in Standish (2010a). For each network,
the number of nodes and links are given, along with the computed complexityC. In the fourth column, the original network is
shuffled 1000 times, and the logarithm of the complexity is averaged (〈ln CER〉). The fifth column gives the difference between
these two values, which represents the information contentof the specific arrangement of links. The final column gives a
measure of the significance of this difference in terms of thenumber of standard deviations (“sigmas”) of the distribution of
shuffled networks. In two examples, the distribution of shuffled networks had zero standard deviation, so∞ appears in this
column.
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Knowing the value ofn, the number of bits needed to repre-
sentl is ⌈log2 L⌉, whereL = (n(n − 1)/2) so l is stored in
a field of that width.

For the final part of the string, the linkfield, we can rep-
resent the adjacency matrix such that a ‘1’ bit in position
i(n− 1) + j-th represents a link from nodei to j if j < i or
from i to j+1 if j > i, where nodes are numbered0 . . . n−1,
i < n andj < n− 1. However, this representation is not ef-
ficient — givenl, there must be exactlyl ‘1’ bits in the link-
field, ie it is one of the permutations ofl ‘1’ bits andL − l

‘0’ bits. We can enumerate the

(

L
l

)

permutations, and

choose the rank of our linkfield in the enumeration as the
encoding of the linkfield. This is known as rank encoding
(Myrvold and Ruskey, 2001). One of the effects of choosing
this encoding is that both an empty and a full network have
just one possible linkfield, so will have a rank encoding of
0, representable in 0 bits, as we already know whether a net-
work is empty or full from the values ofn andl. Hence, the
full and empty networks are the simplest networks for given
n andl.

Weighted links
Whilst the information contained in link weights might be
significant in some circumstances (for instance the weights
of a neural network can only be varied in a limited range
without changing the overall qualitative behaviour of the
network), of particular theoretical interest is to consider the
weights as continuous parameters connecting one network
structure with another. For instance if a networkX has the
same network structure as A, withb links of weight 1 with a
network structureB and the remaininga− b links of weight
w, then we would like the network complexity ofX to vary
smoothly between that ofA andB asw varies from 1 to 0.
Görnerup and Crutchfield (2008) introduced a similar mea-
sure.

The most obvious way of defining this continuous com-
plexity measure is to start with normalised weights

∑

i wi =
1. Then arrange the links in weight order, and compute the
complexity of networks with just those links of weights less
thanw. The final complexity value of a networkX = N×L,
whereN is the set of nodes, andL the set of links with as-
sociated weightswi, ∃i ∈ L, is obtained by integrating:

C(X = N × L) =

∫ 1

0

C(N × {i ∈ L : wi < w})dw (2)

Obviously, since the integrand is a stepped function, this is
computed in practice by a sum of complexities of partial net-
works.

Counting the representations
In principle, one could compute the complexity of a net-
work by enumerating all bitstrings for a givenn andl, and
counting the number of bitstrings that represent the target

network. However, this algorithm is highly combinatoric,
and only really feasible for small networks. However, the
number of representations can also be computed by dividing
the total number of possible renumberings of the nodes (N !)
by the size of the automorphism group, for which several
practical algorithms exist (McKay, 1981; Standish, 2010b;
Darga et al., 2008). Even though each of these algorithms
is NP-complete, in practice they tend to perform quite well
for networks up to several thousands of nodes. Where each
algorithm performs poorly, one of the other algorithms per-
forms well, so a hybrid algorithm that runs each algorithm
in parallel, and returning the result of the first algorithm to
complete, performs extremely well.

ALife models
Tierra
Tierra (Ray, 1991) is a well known artificial life system in
which self reproducing computer programs written in an
assembly-like language are allowed to evolve. The pro-
grams, ordigital organismscan interact with each via tem-
plate matching operations, modelled loosely on the way
proteins interact in real biological systems. A number of
distinct strategies evolve, including parasitism, where or-
ganisms make use of another organism’s code and hyper-
parasitism where an organism sets traps for parasites in or-
der to steal their CPU resources. At any point in time in
a Tierra run, there is an interaction network between the
species present, which is the closest thing in the Tierra world
to a foodweb.

Tierra is an aging platform, with the last release (v6.02)
having been released more than six years ago. For this work,
I used an even older release (5.0), for which I have had some
experience in working with. Tierra was originally written in
C for an environment where ints were 16 bits and long ints
32 bits. This posed a problem for using it on the current gen-
eration of 64 bit computers, where the word sizes are dou-
bled. Some effort was needed to get the code 64 bit clean.
Secondly a means of extracting the interaction network was
needed. Whilst Tierra provided the concept of “watch bits”,
which recorded whether a digital organism had accessed an-
other’s genome or vice versa, it did not record which other
genome was accessed. So I modified the template match-
ing code to log the pair of genome labels that performed the
template match to a file.

Having a record of interactions by genotype label, it is
necessary to map the genotype to phenotype. In Tierra, the
phenotype is the behaviour of the digital organism, and can
be judged by running the organisms pairwise in a tourna-
ment, to see what effect each has on the other. The pre-
cise details for how this can be done is described in Standish
(2003).

Having a record of interactions between phenotypes, and
discarding self-self interactions, there are a number of ways
of turning that record into a foodweb. The simplest way,
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which I adopted, was sum the interactions between each pair
of phenotypes over a sliding window of 100 million exe-
cuted instructions, and doing this every 20 million executed
instructions. This lead to time series of around 2000 food-
webs for each Tierra run.

In Tierra, parsimony pressure is controlled by the parame-
ter SlicePow. CPU time is allocated proportional to genome
size raised to SlicePow. If SlicePow is close to 0, then there
is great evolutionary pressure for the organisms to get as
small as possible to increase their replication rate. When it is
one, this pressure is eliminated. In Standish (2004b), I found
that a SlicePow of around 0.95 was optimal. If it were much
higher, the organisms grow so large and so rapidly that they
eventually occupy more than 50% of the soup. At which
point they kill the soup at their next Mal (memory alloca-
tion) operation. In this work, I altered the implementation
of Mal to fail if the request was more than than the soup
size divided by minimum population save threshold (usually
around 10). Organisms any larger than this will never appear
in the Genebanker (Tierra’s equivalent of the fossil record),
as their population can never exceed the save threshold. This
modification allows SlicePow = 1 runs to run for an exten-
sive period of time without the soup dying.

EcoLab
EcoLab was introduced by the author as a simple model of
an evolving ecosystem (Standish, 1994). The ecological dy-
namics is described by ann-dimensional generalised Lotka-
Volterra equation:

ṅi = rini +
∑

j

βijninj , (3)

whereni is the population density of speciesi, ri its growth
rate andβij the interaction matrix. Extinction is handled via
a novel stochastic truncation algorithm, rather than the more
usual threshold method. Speciation occurs by randomly mu-
tating th ecological parameters (ri andβij ) of the parents,
subject to the constraint that the system remain bounded
(Standish, 2000).

The interaction matrix is a candidate foodweb, but has too
much information. Its offdiagonal terms may be negative as
well as positive, whereas for the complexity definition (2),
we need the link weights to be positive. There are a number
of ways of resolving this issue, such as ignoring the sign of
the off-diagonal term (ie taking its absolute value), and an-
tisymmetrising the matrix by subtracting its transpose, then
using the sign of the offdiagonal term to determine the link
direction.

For the purposes of this study, I chose to subtract just the
negativeβij terms from itself and its transpose termβji.
This effects a maximal encoding of the interaction matrix
information in the network structure, with link direction and
weight encoding the direction and size of resource flow. The
effect is as follows:

• Bothβij andβji are positive (themutualistcase). Neither
offdiagonal term changes, and the two nodes have links
pointing in both directions, with weights given by the two
offdiagonal terms.

• Bothβij andβji are negative (thecompetitivecase). The
terms are swapped, and the signs changed to be positive.
Again the two nodes have links pointing in both direc-
tions, but the link direction reflects the direction of re-
source flow.

• Bothβij andβji are of opposite sign (thepredator-preyor
parasiticcase). Only a single link exists between species
i andj, whose weight is the summed absolute values of
the offdiagonal terms, and whose link direction reflects
the direction of resource flow.

Webworld

Webworld is another evolving ecology model, similar in
some respects to EcoLab, introduced by Caldarelli et al.
(1998), with some modifications described in Drossel et al.
(2001). It features more realistic ecological interactions than
does EcoLab, in that it tracks biomass resources. It too has
an interaction matrix called afunctional responsein that
model that could serve as a foodweb, which is converted
to a directed weighted graph in the same way as the Eco-
Lab interaction matrix. I used the Webworld implementa-
tion distributed with theEcoLab simulation platform Stan-
dish (2004a).

Results

Methods and materials

Tierra was run on a 512KB soup, with SlicePow set to 1, un-
til the soup died, typically after some5 × 1010 instructions
have executed. Some variant runs were performed with Sli-
cePow=0.95, and with different random number generators,
but no difference in the outcome was observed.

The source code of Tierra 5.0 was modified in
a few places, as described in the Tierra section of
this paper. The final source code is available as
tierra.5.0.D7.tar.gz from theEcoLab website hosted on
SourceForge (http://ecolab.sf.net).

The genebanker output was processed by the eco-
tierra.3.D13 code, also available from theEcoLab website,
to produce a list of phenotype equivalents for each genotype.
A function for processing the interaction log file generated
by Tierra and producing a timeseries of foodweb graphs was
added to Eco-tierra. The script for running this postprocess-
ing step is processecollog.tcl.

The EcoLab model was adapted to convert the interaction
matrix into a foodweb and log the foodweb to disk every
1000 time steps for later processing. The Webworld model
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Figure 1: Complexity of the Tierran interaction network forSlicePow=0.95, and∆, exaggerated by a factor of 100. Two
different random number generators were used, Havege and the normal linear congruential generator supplied with Tierra.
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was adapted similarly. The model parameters were as doc-
umented in the included ecolab.tcl and webworld.tcl exper-
iment files of the ecolab.4.D37 distribution, which is also
available from theEcoLab website.

Finally, each foodweb, and 100 link-shuffled control ver-
sions were run through the network complexity algorithm
(2). This is documented in the cmpERmodel.tcl script of
ecolab.4.D37. The average and standard deviation ofln C
was calculated, rather thanC directly, as the shuffled com-
plexity values fitted a log-normal distribution better thana
standard normal distribution. The difference between the
measured complexity andexp〈ln C〉 (ie the geometric mean
of the control network complexities) is what is reported as
∆ in Figures 1–4.

Discussion

It can be seen from Figures 1–4, that none of the artificial life
models studied generate substantially greater network com-
plexities than do the control networks. By “substantially”, I
mean more than 10% of the total network complexity. The
complexity difference that exists is nevertheless often statis-
tically significant, albeit small (of the order of a few bits).
By contrast, most of the 26 practical networks studied in
Standish (2010a) exhibited substantially greater complexi-
ties than their controls, the exceptions being the David Cop-
perfield adjective-noun adjacency dataset (0.98 bits), andthe
C. elegansmetabolic network (which at 34.6 bits is about
0.1% of the total complexity).

The complete failure for several independent artificial
evolutionary systems to be able to generate this complex-
ity surplus weakens the case for the surplus as being due
to operation of an evolutionary process. It is possible that
this is another illustration of the difference between arti-
ficial evolutionary systems and natural evolutionary sys-
tems observed with Bedau-Packard statistics (Bedau et al.,
1998). There is also the possibility that some systematic
artifact skews the observational data towards more symmet-
ric networks (which increases complexity values), however
it seems implausible that networks collected by many dif-
ferent observers in many different fields should exhibit the
same systematic error. More work needs to be done applying
this complexity metric to both artificially evolved networks
and observational data of naturally evolved networks to elu-
cidate if this is artifact, or a real phenomenon.

Conclusion

In this work, I measured the network complexity of several
artificially evolved foodwebs to see if I could reproduce the
complexity surplus seen in empirical network data. In none
of the artificial systems I studied was the complexity surplus
substantial enough to be considered a real effect.

References
Bedau, M. A., Snyder, E., and Packard, N. H. (1998). A classi-

fication of long-term evolutionary dynamics. In Adami, C.,
Belew, R., Kitano, H., and Taylor, C., editors,Artificial Life
VI, pages 228–237, Cambridge, Mass. MIT Press.

Caldarelli, G., Higgs, P. G., and McKane, A. J. (1998). Modelling
coevolution in multispecies communities.J. Theor, Biol.,
193:345–358.

Darga, P. T., Sakallah, K. A., and Markov, I. L. (2008). Faster sym-
metry discovery using sparsity of symmetries. InProceed-
ings of the 45st Design Automation Conference, Anaheim,
California.

Drossel, B., Higgs, P. G., and McKane, A. J. (2001). The influ-
ence of predator-prey population dynamics on the long-term
evolution of food web structure.J. Theor. Biol., 208:91–107.

Görnerup, O. and Crutchfield, J. P. (2008). Hierarchical self-
organization in the finitary process soup.Artificial Life,
14:245–254.

McKay, B. D. (1981). Practical graph isomorphism.Congressus
Numerantium, 30:45–87.

Myrvold, W. and Ruskey, F. (2001). Ranking and unranking per-
mutations in linear time. Information Processing Letters,
79:281–284.

Ray, T. (1991). An approach to the synthesis of life. In Langton,
C. G., Taylor, C., Farmer, J. D., and Rasmussen, S., editors,
Artificial Life II , page 371. Addison-Wesley, Reading, Mass.

Standish, R. K. (1994). Population models with random embryolo-
gies as a paradigm for evolution.Complexity International,
2.

Standish, R. K. (2000). The role of innovation within economics.
In Barnett, W., Chiarella, C., Keen, S., Marks, R., and Schn-
abl, H., editors,Commerce, Complexity and Evolution, vol-
ume 11 ofInternational Symposia in Economic Theory and
Econometrics, pages 61–79. Cambridge UP.

Standish, R. K. (2003). Open-ended artificial evolution.Inter-
national Journal of Computational Intelligence and Applica-
tions, 3:167. arXiv:nlin.AO/0210027.

Standish, R. K. (2004a). Ecolab, Webworld and self-organisation.
In Pollack et al., editors,Artificial Life IX, page 358, Cam-
bridge, MA. MIT Press.

Standish, R. K. (2004b). The influence of parsimony and random-
ness on complexity growth in Tierra. In Bedau et al., editors,
ALife IX Workshop and Tutorial Proceedings, pages 51–55.
arXiv:nlin.AO/0604026.

Standish, R. K. (2005). Complexity of networks. In Abbass etal.,
editors,Recent Advances in Artificial Life, volume 3 ofAd-
vances in Natural Computation, pages 253–263, Singapore.
World Scientific. arXiv:cs.IT/0508075.

Standish, R. K. (2010a). Complexity of networks (reprise).Artifi-
cial Life. submitted. arXiv: 0911.348.

Standish, R. K. (2010b). SuperNOVA: a novel algorithm for graph
automorphism calculations.Journal of Algorithms - Algo-
rithms in Cognition, Informatics and Logic. submitted, arXix:
0905.3927.



Proc. of the Alife XII Conference, Odense, Denmark, 2010 344

Identification of Functional Hubs through Metabolic Networks

M Beurton-Aimar1, N. Parisey2, F Vallée1 and S. Colombié3
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Abstract

Metabolic networks are described as a set of pathways, each pathway being a set of biochemical reactions, mainly enzy-
matic reactions. It is often considered that the global behavior of a metabolic network is characterized by the additionof
behaviors of each pathway. But in fact, in such large networks it is difficult to predict the consequences of competition
between several enzymes that react with the same molecule (metabolite) or, for example, how modification of the produc-
tion of a specific molecule can influence, directly or not, another part of the network (Klamt and Stelling (2002)). Several
works have shown that metabolic networks exhibit all characteristics of ”small world” networks (Wagner and Fell (2001),
Ravasz et al. (2002)). In this case, classical techniques from graph analysis domain can be used to find partitions or clusters
in such networks. However in biological context, finding clusters must be related to biological functions and the analysis
has to be driven by this concern to reveal functional links through the network. But these analyses from classical clustering
use the network descriptions and do not take into account biological constraints on pathways. Tools based on linear alge-
bra like elementary flux modes (Schuster et al. (1999) (or Extreme pathways Papin et al. (2002)) allow to select pathways
through the network which satisfy constraints like the steady state of the system. In metabolism context, steady state is
defined as a state where all the molecules produced by one reaction are consumed by another one, except external inputs or
outputs. The obtained result is a set of unique and minimal reaction chains which are all solutions of the system. This set
is often huge and gives a good appreciation of the network complexity. It is also considered as a measure of the network
robustness to perturbations (Stelling et al. (2004)) and issuitable to identify if some reactions are always associated to
another one even if they are not directly connected (path length between these two nodes longer than 1). We have used
this tool to refine the description of 4 metabolic networks:3 from mitochondria of different cell types (muscle, liver and
yeast) and the last one from tomato fruit central metabolism. The elementary flux modes computings have identified from
several thousands solutions for mitochondria networks to more than one hundred thousand for tomato fruit network. These
results show the complexity level of interactions through the networks and obviously it is not possible for biologists to
analyze them by hands (Pérès et al. (2006)). Building classification and identifying modular organization in the networks
is an obvious requirement. We have applied clustering technique to identify reaction or molecule hubs and so to show new
indirect links between distant parts of the networks. Evident hubs have been found like currency metabolites ATP, ADP ...
but other belonging to the TCA cycle pathway like malate havebeen identified as good candidates for hub role whereas
nothing in the primary network descriptions suggested thatthey are more implicated than another belonging to the TCA
cycle. This result is consistent with analysis of the topology of E. Coli metabolism done by Zhao et al. (2007). These first
results lead to build multi-layer description from metabolite hubs to small modules connections taking into account both
information about feasible pathways and metabolites and reaction degree of connections.
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Extended Abstract

Gene regulatory networks set a second order approximation to genetics understanding, where the first order is the know-
ledge at the single gene activity level. With the increasing number of sequenced genomes, including human’s, the time
has come to investigate the interactions among myriads of genes that result into complex behaviours. The composition
and unfolding of interactions among genes determine the activity of cells and, when is considered during development, the
organogenesis. Hence the interest of building representative networks of gene expression and their temporal evolution, i.e.
the structure as the network dynamics (Barabási (2005)), for certain development processes.

This paper shows research on the gene regulatory network that controls the early development of the mouse (Mus mus-
culus) eye. The developmental stages chosen comprise the specification of the eye progenitor cells (E9: nine days post
fertilization), the morphogenesis of the optic cup (E10.5) and the specification of the first neuronal precursors (E11.5). The
reason for this choice of stages was two-fold: first, all subsequent stages are contingent upon these ones. And second, the
complexity of cell types is reduced, so we can consider that the tissue we analyze is composed of basically one cell type.
The gene network construction (see Figure 1) has been carried out from our gene transcription profiling experiments of
murine eyes at the already mentioned embryonic stages and a wide bibliographic review for their interactions (see Rebay
et al. (2005), Sansom et al. (2009) and Purcell et al. (2005)). The resulting network can be analysed through network
theory, where genes are the network nodes and interactions are the network links (U. Alon (2006)).

Figure 1: Visual transformation dynamics between E9 (left) to E10.5 (right) stages. Nodes: Red = E9, Green = E10.5,
Y ellow = Common; Links: Green = Activator, Blue = Repressor, Solid = Functional interaction, Dashed =
Protein− protein interaction.
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With the aim of determining a pathway through these links from E9 to E10.5, and then to E11.5, i.e. the process dynamics,
a genetic algorithm (GA) has been developed (Mitchell (1999)). In this GA, each “chromosome” in the initial population
consists of two parts. The first one involves the activity of the interactions among all nodes, i.e. activation, inhibition
and non-interaction. The second part includes an activation/inhibition set of rules for the inputs into each gene. Each
chromosome generates a dynamics to build a possible E10.5 stage starting from the well-known E9 stage (later E11.5
from found E10.5), where the input interactions for each node will determine its next state.

The GA fitness function is made of two suitably weighted addends: the first one, and the most important in the global
computation, a distance between the experimental stage and the resulting from the GA; and the second one, a distance
between the chromosome part formed by the genes interactions and the ones experimentally found.

It should be mentioned that certain experimental interactions may be lacking or be incorrect, so the interaction fitting must
not be totally strict.

The results lead to a complete fitting for the gene activation states and to a good approximation for the links, and allow
discovering some development dynamics. Further analysis, based on biological considerations, additional experiments and
network pruning, will allow a final tuning to select the best network and dynamics for the early phases of eye development
as a general model of organogenesis.
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{mjoach,bwrobel}@iopan.gda.pl

Abstract

We use a genetic algorithm to obtain artificial gene regula-
tory networks (GRNs) controlling real time behaviour of ar-
tificial agents (animats) that gather food resources in a 2D
environment. We build a system in which evolving GRNs are
encoded in linear genomes. The encoding allows to deter-
mine which transcriptional factors (TFs) interact with which
regulatory regions (promoters) to form a GRN. The sensory
information is provided to an animat as externally driven con-
centration of selected TFs. Concentration of selected inter-
nally produced TFs is interpreted as signals for actuators.
We first consider foraging for one food source and then scale
the problem up to obtain animats that are able to switch be-
tween two types of food sources and avoid the poisonous
one. We show that our system is highly evolvable, even
though the genome encoding is very flexible (which results in
a large search space) and though continuous product accumu-
lation and degradation causes latencies in signal processing
by the networks. We then discuss the topological properties
of evolved networks and their evolutionary trajectories. Our
results provide a first step toward a more ambitious goal of
developing an artificial ecosystem in which multiple individ-
uals will compete for food and mates.

Introduction
Gene regulatory networks (GRNs) are an underlying con-
trol mechanism of all living cells. Artificial gene regulatory
networks are build either in order to understand how biolog-
ical GRNs work or in the hope of engineering biologically-
inspired systems that are, like biological systems, robust to
environmental and mutational insults. Many GRN mod-
els have been proposed, and quite a few papers consid-
ered the properties of evolving GRNs (for recent exam-
ples see Kuo et al., 2006; Nicolau and Schoenauer, 2009).
The model used in this work has been inspired by earlier
work of Eggenberger (1997) and is similar to several mod-
els developed in recent years (e.g Andersen et al., 2009;
Schramm et al., 2009). We have developed it originally
for controlling development of 3-dimensional embryos with
non-trivial morphologies or patterning (Joachimczak and
Wróbel, 2008, 2009).

Models of multicellular development are of great interest
in the field of Artificial Life, because they require consider-

ing at least two levels of biological organization: the level
of molecules (genes, proteins, etc.) and the level of cells.
Foraging behaviour also requires these two levels, and in
this work we apply our model to control unicellular animats
in an environment with a gradient of scents coming from
food particles. The cells are provided with sensory informa-
tion using externally driven concentrations of transcription
factors. Such setup resembles chemotaxis of unicellular eu-
karyotic organisms which can detect gradients of substances
with membrane receptors (Bagorda and Parent, 2008). How-
ever, small size of prokaryotic cells does not allow for signal
to noise ratio high enough to do that, so prokaryotes evolved
a different mechanism: bacterial chemotaxis is based on
detecting concentration fluctuations over time and random
changes in movement direction (see e.g. Alon, 2006).

What happens to the animat in our system depends not
only on the GRN state but also on the laws of simulated
simple Newtonian physics, and this can be exploited by
evolution. The interplay between the GRN and the physi-
cal environment removes some of the computational burden
from the GRN. This is analogous to the physics-GRN inter-
play used previously to guide developmental systems (e.g.
Eggenberger, 2003; Joachimczak and Wróbel, 2009). Also,
this is not the first time GRNs are used to control animat
behaviour (see e.g. Bentley (2004); Taylor (2004); Quick
et al. (2003) where obstacle avoidance, wall and light fol-
lowing were considered). Some previous papers considered
the dynamical properties of GRNs in which product con-
centrations oscillate, decay within desired time frames or
respond to noisy external signals (Kuo et al., 2004; Knabe
et al., 2006).

In this paper, we will first provide a brief description of
the regulatory model and the environment used in the ex-
periments. Two experiments will be presented. In one only
single food type was provided. In a more complex prob-
lem, two substances were present. One was poisonous until
a certain number of particles of the other were consumed; at
this point the roles were reversed. We end with a discussion
of the topologies of evolved GRNs and of the evolutionary
trajectories that lead to the solutions.
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Figure 1: The genome and the structure of a single genetic
element. Each element consists of a type field, a sign field,
and a sequence of N real values used to determine affinity
to other elements (N = 2 was used in this paper).

The model
Our model of the genome is designed to capture some of
the most essential features of evolving regulatory networks.
The GRN topology is encoded in a linear genome. Genes
encode transcription factors (TFs). TFs bind to promoters
of genes to regulate their expression. Any network topol-
ogy can be encoded: there are no limits on the size of the
network, number of connections or maximum number of
connections per node. This is because our primary moti-
vation is to build a model that allows to ask questions rele-
vant to biology (where no such limits are imposed) rather the
to solve a particular optimization problem (where enforcing
them might decrease the search space).

Encoding a GRN in a linear genome

The genome is a list of genetic elements that fall into three
classes: elements that code for products (called genes); reg-
ulatory elements (called promoters); special elements (that
code for external inputs and outputs of the regulatory net-
work). The genome is parsed sequentially, and regulatory
units are formed whenever a series of promoter elements
is followed by a series of genes. Special elements are as-
signed to input and output nodes at a later stage. In result,
each regulatory unit is composed of one or several regula-
tory elements and one of several genetic elements coding
for TFs. Regulatory units form the nodes in the regulatory
graph. When the unit is expressed (active), all TFs that be-
long to it are produced at the same level. Fig. 1 provides
an overview of the process, together with the structure of a
single genetic element.

Each genetic element encodesN coordinates (N = 2 was
used) and thus can be assigned to a point inR2 space. When
a TF lies close enough to a promoter in this space, a con-
nection between the respective regulatory units is formed (a
cut-off distance of 5 prevents full connectivity, Fig. 2). The
abstract R2 product-promoter space should not be confused
with the 2D environment in which the animat is simulated.
“Sign” fields of two elements allow to determine whether the
weight of a connection is positive or negative (using multi-
plication). Because regulatory units can have multiple pro-
moters and multiple genes, two nodes can be connected by
several edges.

 5
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 0  5

af
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ity
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Figure 2: Translation of Euclidean
distance between genetic elements
into affinities (weights). Maximum
weight of 10 and cut-off at the dis-
tance of 5 are used.

Genetic algorithm
Each evolutionary run was initiated with 300 genomes con-
sisting of 5 randomly created regulatory units. Element co-
ordinates were initiated using uniform distribution to draw
a random direction and a random distance from (0,0). The
population size was kept constant. Binary tournament selec-
tion (draw two individuals, keep the better one) was used.

Genetic operators in our system act on the level of genetic
elements. Single element mutations can change element
type, sign bit (changing all its connections from inhibitory
to regulatory or vice versa) or coordinates (changing con-
nection weights). Coordinates are changed by shifting the
associated point in the abstract N -dimensional space in a
random direction by a distance drawn from a Gaussian dis-
tribution. Duplications and deletions of multiple elements
occur at random locations in the genome. When they oc-
cur, some points are created or removed in the abstract N -
dimensional space. If N ≤ 3, it is possible to visualize
how the points move, appear and disappear. The duplica-
tion/deletion length is drawn from a geometric distribution,
with equal probability of duplications and deletions. Since
genetic elements cannot be created de novo and there is no
recombination, all genetic elements in any individual can be
traced back to the elements in one of the genomes that were
present in the initial population.

GRN dynamics
During simulation of the network, regulation of a given reg-
ulatory unit (node of the graph) will result in the change in
concentrations of TFs that belong to this unit. The rate of TF
synthesis is a function of activation of all promoters belong-
ing to the unit (inputs to the node). First, distances are con-
verted to affinities using an exponential function shown in
Fig. 2. Activation of each promoter is a sum of the concen-
tration of all products binding to it weighted by their affini-
ties. This sum (A) is used to derive product concentration (a
value within < 0, 1 >) in the next simulation step using the
equation:

dL

dt
=

2

1 + e−(A−1)
− L (1)

where the time step dt determines the simulation accuracy
(dt = 0.1 was used), and current concentration (L) deter-
mines the intrinsic product degradation rate, so concentra-
tion increases only if the sigmoid function gives a value
above L, and the degradation rate increases if the value is
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negative. Fig. 3 illustrates the time scale of product degra-
dation used in the system.

Animats and their environment
Animats are modelled as simple circular objects, equipped
with two identical food sensors located towards the front
and two actuators towards the back (Fig. 4). To evaluate
the fitness of an animat, it is placed in the environment that
is an open and continuous 2D space with randomly placed
food particles. The animat and food particle coordinates are
represented as real numbers.

Each food particle generates a field of scent. At each
location in the environment, the scent coming from a food
particle is directly proportional to the distance to this scent
source. Fields from each food particle sum up, forming a
scent map (see right panel of Fig. 6 for an example). An-
imat’s sensors perceive the scent at its location in a non-
directional manner, so the gradient information has to be ex-
tracted using two sensors and/or movement. When a food
particle is consumed its field is removed from the map.

Sensors and actuators are assigned to special elements in
the genome, which come in two subtypes: input and out-
put. The scent perceived by a sensor determines the con-
centration of associated input product. In addition to inputs
representing sensors, special product whose concentration
is always at a maximum (1) can be used to initiate gene ex-
pression. The positions of input products in the R2 product-
promoter space determine how they are connected to the rest
of the GRN. However, direct connection between the input
products and the output is not permitted. The output element
behaves essentially as a promoter in the system, but a better
way of putting it is that it is a single promoter regulating ex-
pression of a single gene, and that the concentration of the
corresponding product regulates the animat’s actuators. The
assignment of special elements to actual inputs and outputs
in the system (sensors/actuators) is based on their order in
the genome, superfluous special elements are ignored.

Actuators work as thrusters and animat motion is sim-
ulated using simple Newtonian physics. The thrust force
is proportional to the concentration of a product associated
with the output special element. The force is not directed
toward the centre of the animat, so when the activation of
actuators differ, the animat is caused to spin. However, the
animat cannot turn on the spot: even when only one actua-
tor is active, the animat moves in a loop rather than rotate
in place. Switching the actuators off results in continued
motion because of inertia, but the animat will be eventually

S
L

S
R

F
AR

F
AL

Figure 4: The placement of sensors of
chemical signal (scent) and actuators
on the animat.

brought to a stop due to fluid drag proportional to squared
velocity. This drag also limits the maximum speed possible.
To find a food particle it is thus not only necessary for the
animat to properly orient itself but also to properly deal with
inertia when taking turns.

Results
Designing a way to assess fitness in a chemotaxis
problem
In preliminary experiments, we have assessed the fitness by
measuring the energy level of an animat at the end of its
lifetime divided by the maximum energy that could be ob-
tained in a particular environment. The energy level was set
to zero at the beginning of fitness evaluation. Each particle
consumed by the animat increased the energy by 1.

We have noticed that if the genetic algorithm was con-
structed to minimize

ffitness = 1− energy

energymax
(2)

the best animats would often show a suboptimal behaviour,
circling towards the food (Fig. 5). The corresponding hill in
the fitness landscape is very easy to find and climb, but dif-
ficult to escape from: simply circling around a map allows
to find some food particles by chance and the behaviour can
be further optimized by controlling the loop diameter with
only a single actuator (tightening it when the scent gradi-
ent increases). To promote alternative solutions, an addi-
tional term was introduced in the fitness function. This term
favours individuals that change the direction of the move-
ment at least once during their lifetime. For such individuals
ffitness was decreased by 10%. This helps to arrive at an-
imats capable of controlling both actuators early during the
course of evolution, even though circling behaviour remains
a strong attractor for the genetic algorithm.

Using a map with fixed locations resulted in overfit in-
dividuals that simply followed trajectories optimized for a
particular map. To prevent this, for each animat fitness
was averaged for four maps with the same number of parti-
cles at random locations (so this average, favg, would differ
slightly even for two identical genomes).

Designing sensor preprocessing for foraging
behaviour
The only information about the environment made avail-
able to the animat is the state of two sensors SL and SR,
corresponding to the concentration of the food scent in the
location when the sensors would actually be at. To allow
the information from the sensors to be processed by the
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START

STOP

Figure 5: A common suboptimal solution in the fitness land-
scape: targeting the food particles by performing circular
motion. Despite low average speed, it can be quite effective
at targeting. Particles consumed during lifetime are drawn
as empty circles.

GRN, some preprocessing of sensory information is neces-
sary. This is because TF concentrations in the system are in
the range < 0, 1 > whereas the value of the scent field at a
given location has no upper limit.

Our initial approach was to provide the GRN with concen-
trations of input products S1 and S2 that would correspond
directly to the values of SL and SR but were restricted to
< 0, 1 > using sigmoid function. This, in principle, should
have allowed for the emergence of simple controllers with
sensors cross wired with actuators in the regulatory network,
similar to Braitenberg vehicles.

However, such signal preprocessing resulted in very poor
evolvability, for a very simple reason. The diameter of the
animat is very small compared to the size of the environ-
ment, so both sensors perceive the scent at a very similar
level. Unless the animat is very close to the food parti-
cle, the difference in signal levels would often be less than
1%. Although we were able to obtain some animats capable
to climb the scent gradients, their overall performance was
poor.

Much better results were obtained when a simple sigmoid
function was used to derive the concentration of the input
product S1:

S1 =
1

1 + e−α(SR−SL)
(3)

where α controls the steepness of the function and was set so
that it amplifies small differences between SL and SR. If SL
is equal to SR, the S1 concentration is 0.5. The concentra-
tion approaches 1 or 0 depending on the difference between
SL and SR.

Using just S1 was enough to evolve animats that quite
efficiently search for one food source. However, we have
observed that the animats turn too fast when close to the food
sources and too slowly when far away. Information about the
distance from sources is missing in S1, so to allow for better
turn taking we have introduced a second input product (S2)
which concentration depends on the perceived food scent at

START

STOP

Figure 6: Left panel: best individual navigating the map
with single type of food; Right panel: initial map of scent
intensity that is locally perceived by animat sensors (nor-
malized to span full colour range).
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Figure 7: Fitness over generations for the problem with a
single type of food source.

the animat location:

S2 =
2

1 + e−β(SR+SL)
− 1 (4)

where β similarly controls the steepness of the sigmoid.

Foraging for a single type of food
In the first experimental setting, maps were created by plac-
ing 20 food particles at random locations. Animat behaviour
was simulated for 2000 time steps. The size of the map
was such that typically about 300 time steps were required
to cover the distance between the farthest food particles at
maximum speed. Because about 50 steps are needed for TF
degradation at the default rate (Fig. 3), latencies in informa-
tion processing in the GRN quickly become an issue when
there is a need to react fast.

Out of ten independent evolutionary runs of 5000 gener-
ations, seven resulted in very efficient solutions. The best
animats had favg between 0.05 and 0.25, which means that
around 70-90% of food particles were collected. In the re-
maining runs the algorithm got stuck in a solution with a
circular motion and loop tightening when close to a food
particle (such behaviour is shown in Fig. 5). Only about 30-
40% food particles could be collected with this approach.

The behaviour of the best individual in ten runs is shown
in Fig. 6 (left panel). Fairly good solutions were found quite
early (Fig. 7; this could be observed also in the other runs).
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Figure 8: GRN topologies of animats foraging for one (a,b)
or two (c) chemical substances; (b) shows the GRN of the
best animat (generation 5000), and (a) its ancestor in gen-
eration 3000. Multiple links between nodes have been col-
lapsed to one line.

In later generations, speed and targeting gradually improves,
but even the best animats turn too widely (which later needs
correction) and move only at about 60% of the maximum
speed possible. However, this is an expected trade-off given
the physical (inertia) and biochemical (latencies in product
synthesis/degradation) constraints.

Analysis of the evolved regulatory network (Fig. 8b)
shows a simple, largely symmetric topology with only three
internal nodes. The best GRN uses both sensory inputs
available: the directional information (S1) and the scent
concentration at the animat location (S2). However, S2 is
not critical for navigation, and in the best networks in other
runs it was often disconnected. Indeed, going back from the
best animat at generation 5000 to its ancestor at generation
3000 (Fig. 8a) shows that in the ancestral GRN S2 was not
connected. Perhaps this is the primary reason why the an-
cestral animat is less efficient at gathering food particles.

In 2000 generations that separate these two animats, the
network became less dense (see below) and the genome size
roughly doubled. The number of deletions and duplications
was similar, but the duplications were longer on average: 6.8
genetic elements for average duplication vs. 2.3 for deletion
(despite lengths being drawn from the same distribution). It
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Figure 9: Measuring the spread of genetic elements over
time: average distance from (0, 0) for all genetic elements
in each generation for the problem with single food type.
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Figure 10: Distribution of genetic elements from all individ-
uals in first generation (left) and last generation (right). Dots
represent locations inR2 space of all genetic elements in the
gene pool.

is possible that this excess of duplications allows for some
of the duplicated elements to take on new functions and per-
haps to optimize the speed of information processing in the
network. This requires changing the coordinates of points
associated with the duplicated elements.

Many genetic elements in a particular genome are not im-
portant for GRN functionality and small mutations in their
coordinates are neutral or almost so. This means that over
time, points in product-promoter space spread away from
each other, and because initial coordinates are drawn from a
uniform distribution centred at 0, points spread away from
the centre (Fig. 10 and Fig. 9). The unimportant points per-
form a random walk and slowly move beyond the interaction
distance, which reduces the density of the network. This is
a general property of element evolution in our system, but a
similar process is at play in biological evolution: neutral mu-
tations in duplicated genes or promoters eventually remove
redundant connections in GRNs.

Foraging for two types of food
The chemotaxis problem can be made more difficult by in-
troducing more types of food. Evolving animats that search
for two types of food may be seen as a first step towards
evolving even more complex behaviours, such as the ability
to avoid obstacles or to search for mates, perhaps with sepa-
rate modules in the network controlling different behaviours.
The task was formulated so that consuming an appropriate
food particle increases the energy by 1, wrong particle re-
sults in a decrease by 1. Poison changes to food and vice
versa when energy reaches a certain value (5). When energy
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START
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Figure 11: The path of the best individual from generation
2600 for the problem with two food sources. After seek-
ing blue particles, the animat switches to circular motion
strategy, similar to that observed in the previous experiment
(Fig. 5). This behaviour is replaced later in evolution with
direct targeting. Consumed particles are drawn as empty cir-
cles.

drops below zero the animat becomes immobile. 30 food
particles of type one (blue) and 30 of type two (red) were
placed in the environment, and this rather high density of
particles was required so that poison avoidance could evolve
(otherwise accidental consumption would be too rare to af-
fect fitness).

To allow perception of two substances in the same fashion
as for one, four special genetic elements were used as GRN
input (S1 and S2 for the first type, and S3 and S4 for the
second). To increase evolvability, one more element (S5)
had to be introduced. The concentration of its product would
be 0 until the energy reaches 5 for the first time, and 1 from
then on, signalling that a behaviour switch is necessary. The
best animats evolved before this mechanism was introduced
would move slowly enough to collect only about 5 particles
during their lifetime.

In this experimental setup ten independent evolutionary
runs were performed, but with individual lifespan increased
to 7000 time steps so that more particles could be collected.
In three runs favg for the best individuals was between 0.19
and 0.26, which means that the animats extracted around
70% of energy available to them in the environment. The
animats showed the desired behaviour: they first searched
for blue particles and switched to search for red as soon as
signal S5 was set to 1. In four runs the best animats would
gather around 50% of energy by efficiently collecting blue
particles, but then collected red using the circular motion ap-
proach (a manifestation of same attractor in the fitness land-
scape as seen on Fig. 5). The best animats in the remaining
runs would gather only blue particles and then stop.

Fig. 12 shows the behaviour of the best animat in ten runs,
its GRN has been presented in Fig. 8c. Information from all
externally provided signals (S1 − S5) is used. This ani-
mat actively avoids wrong (red) food particles when search-
ing for blue. However, after the behaviour switch, when it

STOP

START

SWITCH

Figure 12: The path of the best individual from the final gen-
eration (5000) for the problem with two food sources. The
switch in behaviour occurs after 5 blue particles are con-
sumed. Particles consumed are marked as empty circles.1

actively seeks red particles, it will consume any blue par-
ticles that accidentally come its way. The difference in the
avoidance behaviours likely stems from the fact that the evo-
lutionary pressure to avoid red particles at the beginning
is stronger: consuming them when low on energy will be
lethal.

Fig. 13 shows that evolution of foraging for two types for
food was less gradual than for one type (Fig. 7), though in
some runs the plateaus were less pronounced; their lengths
varied. The best individual from the first plateau (generation
2600) actively and efficiently searches for blue particles, and
avoids the red, but uses the circular motion strategy after
the food/poison switch (Fig. 11). This behaviour allows to
gain energy because at this stage there is more red particles
than blue. The best individual from generation 3100 (the
second plateau) already seeks the red particles actively, but
moves rather slowly. The third plateau in fitness is reached
by improving the speed.

A large fitness improvement between generation 2900 and
3900 corresponds to an increase of genome size (Fig. 14).
The duplications that lead to this increase tend to create
new connections between existing nodes in the GRN rather
than create new nodes. This is not surprising: duplication
of genetic elements results more readily in a new product-
promoter pair than in a new regulatory unit. However, it
was rare for the duplications to occur before the onset of the
episodes of fitness improvement. Rather, they tended to oc-
cur at the very end of these episodes or during the plateaus.

1Videos of animat behaviours are available at:
http://www.evosys.org/alife12chemotaxis
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Figure 13: The fitness for the problem with two food types.
Three stages corresponding to improved behaviour are seen.
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Figure 14: The genome size (the number of genetic ele-
ments) for the problem with two food types.

This suggests that even though the duplications may prepare
the stage for the improvements, the episodes themselves are
actually initiated when the elements acquire new functions,
and the points in the promoter-product space need to move
some distance before that can happen.

Discussion
The genetic algorithm used in this work did not include
elitism nor recombination. Together with small population
size and the fact that the fitness was evaluated using ran-
dom scent maps would mean that the best genomes, sub-
ject to the Muller’s ratchet, would not necessarily be main-
tained in the population. Even so, good solutions were ob-
tained. Random genomes grew through duplications, with
better and better fitness thanks to the divergence of dupli-
cated elements. The evolvability was good enough to scale
the system to a more complex foraging problem, in which
several navigating behaviours are required. The best animat
displayed 3 behaviours, activating them in a proper fashion:
first seeking blue particles and avoiding red, and then seek-
ing red particles after food/poison switch. Although pre-
processing of sensory information was necessary to obtain
good evolvability in the foraging tasks, all the information
available to the animats came from the scent concentrations
perceived at the locations of two sensors (Fig. 4).

Before this research platform could be used to address bi-
ologically relevant questions pertaining to the properties of
evolving networks, a few issues need to be addressed. First
of all, evolved networks are fairly small, even for the more
complex problem. Secondly, to observe any emerging trend
in properties with confidence, networks from multiple evo-
lutionary histories will have to be analysed. This is because
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Figure 15: The number of generations to the most recent
common ancestor (MRCA) for the entire population in each
generation of the experiment with one food source. Average:
148.7; the value for the experiment with two sources was
similar.

individuals in a single evolving population are not very di-
vergent. For a given generation, all individuals have a com-
mon ancestor about 150 generations earlier (Fig. 15), so they
represent a single successful lineage rather than multiple lin-
eages evolving independently. To analyse general trends in
properties, evolutionary runs will have to be repeated many
times. Alternatively, such analysis will require constructing
a system in which multiple lineages can co-exist.

Artificial GRNs have computational properties equivalent
to recurrent neural networks. However, when compared with
typical perceptron-based neural networks, GRNs have richer
dynamics coming from product accumulation and degrada-
tion. This results in lower response time, but can allow
e.g. to integrate noise or produce signals that change grad-
ually. We provide a more in-depth discussion of evolv-
ability of regulatory networks together with comparison to
perceptron-like GRNs in a parallel paper (Joachimczak and
Wróbel, 2010).

We have observed that animats in the final generation have
usually low maximum TF concentrations, rarely above 0.3.
This may stem from the evolutionary pressure to reduce the
response time of the networks. In a system in which con-
centrations represent some continuous variables (such as the
activity of a sensor or actuator), it is relative changes of con-
centrations that are important. Intrinsic TF degradation is
exponential, so resulting relative changes do not depend on
the concentration itself (Fig. 3). However, relative changes
caused by regulation do depend on current concentration:
a low concentration allows for a larger relative change, so
keeping TF expression low permits to react faster to chang-
ing environmental signals. In biological systems lower con-
centrations would result in a decreased signal-to-noise ratio,
but in our system GRNs there is no noise. The only thing
that prevents using extremely low expression levels is the
limit of maximum connection weight. It will be interesting
to investigate if adding noise to gene expression will affect
the properties of evolved networks and the way information
is encoded in changing concentrations of TFs.

Our results demonstrate that a slightly simplified model
previously employed for artificial embryogenesis (Joachim-
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czak and Wróbel, 2009) can be used to obtain GRNs control-
ling real-time foraging behaviours of unicellular artificial or-
ganisms. In our future work, we plan to bring two problems
together with the goal to build a system in which multicel-
lular animats will develop from single cells and co-evolve
competing for resources.

Acknowledgements
This work was supported by the Polish Ministry of Science
and Education (project N519 384236). The computational
resources used in this work were obtained thanks also to the
support of the project N303 291234, the Tri-city Academic
Computer Centre (TASK) and the Interdisciplinary Centre
for Molecular and Mathematical Modelling (ICM, Univer-
sity of Warsaw; project G33-8).

References
Alon, U. (2006). An Introduction to Systems Biology: Design Prin-

ciples of Biological Circuits (Chapman & Hall/CRC Mathe-
matical & Computational Biology). Chapman & Hall, 1 edi-
tion.

Andersen, T., Newman, R., and Otter, T. (2009). Shape homeosta-
sis in virtual embryos. Artif. Life, 15(2):161–183.

Bagorda, A. and Parent, C. A. (2008). Eukaryotic chemotaxis at a
glance. J Cell Sci, 121(16):2621–2624.

Bentley, P. J. (2004). Adaptive fractal gene regulatory networks for
robot control. In Workshop on Regeneration and Learning
in Developmental Systems in the Genetic and Evolutionary
Computation Conference (GECCO 2004).

Eggenberger, P. (1997). Evolving morphologies of simulated 3D
organisms based on differential gene expression. In Proceed-
ings of the Fourth European Conference on Artificial Life,
pages 205–213, Cambridge, MA. MIT Press.

Eggenberger, P. (2003). Genome-physics interaction as a new con-
cept to reduce the number of genetic parameters in artificial
evolution. In Congress on Evolutionary Computation, CEC
’03, volume 1, pages 191–198.
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Abstract
Living systems are equipped with the coding system which
enables them to autonomously determine set of agents for
performing all functional tasks. Since scope of their functioning
for given environment is entirely dependant on internally given
structure of the coding system they are able to evolve both new
traits (evolutionary innovation) and optimize existent ones
(evolutionary adaptation) by means of mutations and different
mechanisms of genetic rearrangements. In this paper we give a
generalized mathematical framework for presenting evolution in
living systems in terms of category theory, comprising both
innovation and adaptation. On that basis we construct a simple
computational model, where as an example we performed
evolution of randomly generated coding sequences and analyze
appearance of interaction networks and their evolution, as well
as evolution of the coding sequence itself. We also demonstrate
that evolved networks have some properties of metabolism-like
systems.

Introduction

Basic mechanism of evolution in biological world is well
known. All organisms are equipped with some form of coding
sequences (RNA or DNA) which serve as a blueprint for
synthesis of RNA and/or proteins, which in turn perform all
functional tasks (interaction with environment, transformation
of elements, synthesis of all necessary systemic structures).
Their functional role depends on their ability to assimilate a
segment of environment with an appropriate set of internal
operations to produce reactions. Therefore, some form of
shared interface between organism and its environment should
exist. At the same time, coding sequences are subject to
changes through generations due to various external or
internal factors, and these changes can be reflected on
phenotypic traits of an organism. Usually, phenotype changes
are only variations of a given trait, but sometimes organisms
can attain completely new properties. These changes are
reflected on the overall reproductive success of an organism,
as a measure of evolutionary success, which is relative
category and depends on three factors: genotype of that
organism, properties of the given environment and other
organisms in the same population. In more abstract terms, in a
given universe, an organism occupy subset of that universe

(called niche), and possible scope of organism’s place is
genetically determined.

Currently, full formal treatment of evolvability is not yet
achieved. Evolutionary adaptation is addressed through
evolutionary computation (e.g. De Jong, 2006) but innovation
has been scarcely touched. One of the reasons for that may be
the need for more general formal setting in order to fully
capture possibilities of appearance of new structures or
mechanism. Some efforts have been made, within domain of
topology spaces (Stadler et al. 2001; Shpak and Wagner,
2000) where importance of introducing genotype-phenotype
separation was highly emphasized. However, in those works
focus was mainly on analysis of topological configuration of
state space.

Our aim here is to show that generalized framework for
creating an evolvable system (both innovative and adaptive)
for the given universe can be described as generation of a set
of free objects in n generators from the monoidal subcategory
where objects of the mother category are collection of all
possible words over the given alphabet which constitutes the
set of generators of the universe. The process consists of
subsequent creation of equivalence classes where equivalence
relations are only implicitly determined, so that their exact
action depends on structure of objects on which they are
applied. For the sake of simplicity in our elaboration we will
limit ourselves only to the domain of strings and lattices.
Resulting objects are ordered pairs of strings, which can be
considered as functions in the given universe, by creation of
enriched category. Overall, starting monoidal subcategory can
be interpreted as mutation search-space, where objects are
coding strings (DNAs), their substrings are transformed to
functions which operate on a given environment and give rise
to appearance of the network of interactions (metabolism).
Therefore, one object of the monoidal subcategory coupled
with the set of all functions derived from its structure
constitutes one genotype, while the phenotype is here simply
equal to the metabolic network. Together, they constitute an
organism.

In the next section we will develop described framework
and will point out some general requirements of genotype-
phenotype mapping, in order to be functionally evolvable.

mailto:ibalaz@polj.uns.ac.rs
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After that we will concretize previous notions by generating
computational model and demonstrate its functioning for
randomly generated coding sequences placed in randomly
generated environment. Finally, in conclusions we point out
some possibilities for further development and application of
the given framework.

Mathematical Framework

If we denote some living system as L and its environment as
E, in analogy to biological world, we can define three basic
premises important for our task:

1. interaction  of  two  systems  L  and  E  is  based  on
transformation of elements of E by action of elements
of L, called functional elements;

2. in order to interact, functional elements and
environment must share some of their properties and
such shared subset of properties should be general
enough to serve as a representative of the environment;

3. generation of functional elements is determined
internally, by the system L, through existence of some
coding element(s) on which a sequence of equivalence
relations is applied.

Whatever mathematical representation we chose for L and
E, in the most general sense both of them can be regarded as
free objects generated over some alphabets, which are in turn
members of category of sets, Set:

U

F
Set . (1)

where F  is free functor, U  is its right adjoint, forgetful
functor, while  is category of all algebraic structures
generated by F . If we take some X Set , then ( )F X  is free
object, while X  can be defined as a set of generators of the

( )F X . In order to keep things as simple as possible, we will
neglect all notions of dynamics of metabolism and existence of
any control mechanism, which will demand definition of
additional restrictions on chosen structures. Also, from the
environment we expelled all other “organisms” and consider
environment as an inert space without internal dynamics.
Therefore, we will only define two alphabets, EX  and

L EX X , and corresponding monoidal categories generated
by F : ( , , )LM e  and ( , , )EM e  where LM  and EM  are
categories of all strings generated by corresponding generators
(objects are strings, mappings are inclusion maps), bifunctor

 is binary operation of string concatenation, while e  is
identity element, in this case, empty string. Following our
analogy with coding elements in living systems, ( , , )LM e  can
be interpreted as universe of all possible coding strings while
( , , )EM e  can be regarded as universe of all possible
structures in the environment. At this stage, ( , , )LM e  is
simply a subcategory of ( , , )EM e  with no additional
properties. However, applying premises we postulated at the
beginning of this section, this simple monoidal category will

be transformed into category of function over the given
universe.

Since by premise 3, we demand that some structure should
serve as the coding element we can choose any Ld M  and
construct slice category /LM d  where objects are mappings in

LM  with d  as the codomain ( , ,...a d b d ), while
mappings are given by : ( ) ( )f a d b d  such that

,f f . Therefore, /LM d  is category of all
strings which are substrings of the string d . Description of
structure of objects in categories /LM d  and ( , , )LM e  can be
regarded only as a specialization, but these two categories are
structurally different. Category /LM d  is not monoidal
category since closeness under operation  is violated.
Loosing its monoidal character, category /LM d  is also
expelled from dynamics provided by bifunctor  which in
practice means that by changing d , /LM d  should be
reconstructed de novo. However, certain stability of /LM d

can be achieved if d  is part of some equivalence class. Living
systems provided such stability by existence of rewriting-like
systems of gene expression where linear order of elements of
chains is preserved while several points of reduction are
performed (e.g. basis for DNA transcription are triplets,
genetic code is degenerate and amino acids can be sorted into
groups with similar chemical reactivity). In other words,
process of gene expression generates additional structure on
the DNA in the following manner. If we represent gene
expression as the functor G  which is full and faithful but not
embedding, from category ( , , )LM e  to monoidal category At

generated from some A EX X , then category At  will
preserve internal string order but exact reconstruction of its
source in ( , , )LM e  could not be realized. In other words,
since G  is bijective only on hom-sets, but is not injective on
objects, its object function g  have section such that for

( )G
g

s
a a (2)

equation ( )1G ag s  is valid but 1as g  cannot hold (it
does not have retraction). In that case objects of ( , , )LM e  are
naturally, by functor G , separated into disjoint union of n
sets. If we denote set of objects of ( , , )LM e  as

LMS   then
relation

L LM MR S S   naturally defined by g :

{( , ') ( ) ( ')}
L LM MR d d S S g d g d (3)

is congruence relation, and by [ ]Gd  we will denote
equivalence class of elements of ( , , )LM e  with respect to
functor G . Therefore, in order to provide some degree of
stability when facing with mutations, sufficient formal
requirement is that expression mechanism from genotype to
phenotype reduces number of elements along the process.
However, structures created during expression should be able
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to interact with environmental structures and perform some
action upon them, in order to be functional. This notion leads
us to our second basic premise: two systems should share
some of their properties, thus creating an interface.
 Formally, interface between two different objects can be
introduced quite simply. It is enough to postulate segments of
structures as visible to each other which is basically in focus
of control theory and agent based systems. From algebraic
perspective it raises an interesting problem of general
mathematical properties of interfaced objects which should be
fulfilled in order to be able to perform transformations, either
mutual or governed by one of interacting systems. However,
here we will omit that question and will take most simple
approach by creating interface within the same group of
mathematical structures, performed by the functor G .
 As we implied in introduction, object part of the functor G
decomposes objects of LM  into ordered pairs whose structure
is determined by arrangement of attributes introduced by the
functor G . It can be done in n steps, depending on the chosen
model. If we follow analogy with the natural world, then we
can construct 2-step process. The first one is defined simply by
identifying all permutations of strings of fixed length created
over the alphabet LX , grouping them into m  disjoint subsets,
and declaring equivalence relation  over each subset. Then,
subsets are equivalence classes and strings

LMs S  can be
mapped into corresponding quotient strings /s .

Since by functor G  each element of EX  is equipped with
some attributes it raises following structure. Let us denote set
of all words over the alphabet EX  as T, set of all attributes as
M, and set of attribute values as J, then formal context is
( , , , )T M J I  where I  is a ternary relation I T M J  which
unites objects with corresponding attributes. Further, if O T

is set of all functional elements, W M  is set of their
attributes and K J  is  set  of  attribute  values  for W , such
that ' { ( ), }O w W t O tIw  and ' { ( ) }W t T m W tIw ,
then concept of the context ( , , , )T M J I  is triple ( , , )O W K

where 'O W  and 'W O . Since for a given context a
number of different concepts can be defined, we will denote
set of all possible concepts as ( , , , )T M J I .  If we take  as
an order relation, then ( ( , , , ); )T M J I  is concept lattice
where nodes are concepts of the given context. Finally, we will
demand that set of attributes M is created as union of
languages created over n alphabets. Elements of alphabets we
will denote as generator attributes, and all other words will be
called derived attributes. Reasons for that will be clear shortly.

Since elements of /s  are also equipped with some
attributes, they are characterized by specific /sI o s  and
are associated with the mapping : / ( , )s W ,

1 2 1 1 1 2 2 2(( , ,..., ) ({ } ,{ } ,...,{ } ))n n n no o o w j w j w j . Clearly
( , )W  is not a chain anymore since there are no defined order
relations among members of the set M  by the mapping
which preserves only order generated at the original coding

string. However, following our analogy with natural systems,
we can define some relations among attributes themselves.
Keeping things as simple as possible we can for example take
only one alphabet D M  and define equivalence relation
over all words of the D-language. Resulting posets / ( )s

now represents “folded” functional elements, where order of
remaining attributes determine interface. Referring back to our
second basic premise, we demand that in order to interact,
functional elements should reduce environment on the basis of
existence of shared properties. Here, it means that interface is
formed on the basis of existence of some pV L W K

where ,pV W L K , and Vp is  actually  a  subset  of
remaining generator attributes on the / ( )s . Our
questions are: (i) what are the meaningful constraints for
determining Vp within our framework, and (ii) what is the
position of the concept generated by the / ( )s  within the
( ( , , , ); )T M J I . Since Vp is naturally designed to be a filter
for representing environment we can postulate that it should
be a part of majority of concepts of the ( , , , )T M J I .
Choosing some obscure attributes will promptly lead the
system to evolutionary or functional dead end. Further,
concept generated by the / ( )s  represents interface for
that functional element and its upper bound is exclusively
composed of concepts with derived attributes and represents
place where environmental objects suitable for functional
transformation can be found.
 Finally, referring back to our first premise, / ( )s

should also govern determination of some function over the
“visible” part of environment. Since determination of exact
function is highly dependant on the chosen model, at this stage
is only possible to point out general requirements which
should be fulfilled in order to autonomously generate functions
within given framework. Our strategy is to reconstruct
possible relations from already generated structures, and then
to group them into small number of isomorphic
representatives, according to the structure of Vp. We will start
with some basic notions.
  Any finitary relation R can be defined as a couple

( ( ), ( ))R D R C R  where ( )D R  is collection of nonempty
sets 1,..., kX X  which are called domains, while

1( ) ... kC R X X  can be denoted as the figure of R. Since,
number of possible relations which can be constructed from

the set A , equals
2

2 A (Robinson, 2003), our aim is to
postulate some restriction rules and to find some route to
grouping them together. Reconstructed relation should satisfy
following axioms:
1. Function: for each element of ( )D R , is assigned a unique

element of ( )C R ;
2. Identity: for every object a, there exists relation

id :a a a  such that for every relation :f x y ,
id idy xf f f ;
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3. Associativity: if , ,f g h  are relations, then
( ) ( )h g f h g f  should always hold;

4. Limit: if we have some set of relations of shape J , then a
diagram of shape J  is functor :F J C . A cone of the
diagram is an object K  of C  together with family of
morphisms : ( )x K F x  such that for every morphism

:f x y , ( ) x yF f . A limit of the diagram is a

cone ( , )K  such that for any other cone ( , )L  there
exists a unique morphism :u L K  such that

x xu  for all x  in J . Valid relations are only those
that have limit.

By the first three axioms, we narrowed down universe of
possible relations to structure preserving morphisms. In that
sense set A  of elements which constitute upper bound of the

/ ( )s  can be defined as domain of some function /( )sf

while its codomain should be subset of all concepts consisting
Vp. By the last axiom we demand that reconstructed relation at
least satisfy condition of being some of universal constructions
in abstract algebra (product/coproduct, pushout/pullback...).
As it is obvious we put only very elementary constraints, just
in order to keep the system consistent. However, at the same
time we come very near to our goal. Now, all possible
functions can be generalized to some of few universal
constructions applicable to chosen model. For example, if
objects are strings, two most basic structure preserving
operations are string separation and string concatenation.
Limits of these universal operations are product and
coproduct.  Therefore, suitable codomains for the set A  can
only be such that operations of separation and concatenation
are reconstructed. Exact structure of functions, of course
depends on structure of attributes on a given functional
element. As a final step, we should preserve stability of
determined modes of action. It can be easily done by choosing
any subalphabet of pV  attributes and mapping groups of
words to some of possible universal constructions.
 In summary, functor G  maps strings of the category
( , , )LM e  to the monoidal category ( , , )At A e  where
objects are ordered pairs, composed of upper bound of the
concept generated by the / ( )s  as the first member of the
element, while the second member is determined again by
equivalence relations generated by the pV  over  the  set M,
morphisms are inclusion maps, bifunctor  is binary
operation of object concatenation, while e  is identity element,
in this case, empty string. Due to its monoidal character, and
structure of its objects, At  can readily be used as generator of
abstract metrics over the environment, represented by some
category , by replacing hom-sets from  with objects from
At . Then  is category enriched over At  (or At -category)
such that for each pair of object , ( )x y ob , where ( )ob

is collection of objects of , hom-set hom( , ) Atx y , with
preserved identity, composition and associativity.

Computational Model

In order to demonstrate functioning of the framework
described above we built the model of it using the individual-
based approach: population of “cells” consists of individual
coding strings glued with corresponding network of
transformations of environmental elements, the environment is
composed of n number of different strings and interaction of
each cell with environment is computed individually.
Additionally, process of transformation of codes to functions is
inspired by natural process of gene expression and formally is
composed of two approaches: reduction by imposing
equivalence relations at different levels, on which are applied
some elementary notions of relation theory. As a result,
functions are created in recipe-like manner. It enables free
application of mutations over the coding sequence, without
designed constraints on allowed number of functional
elements, or scope of their domains/codomains.

Elements of the
alphabet O

Corresponding triplets

A GCT, GCC, GCA, GCG
R CGT, CGC, CGA, CGG, AGA, AGG,

AAA, AAG
H AAT, AAC, CAT, CAC, CAA, CAG
D GAT, GAC, GAA, GAG, TCT, TCC,

TCA, TCG, AGT, AGC, ACU, ACC,
ACA, ACG

S UGT, TGC
W GGT, GGC, GGA, GGG, CCT, CCC,

CCA, CCG, TGG
I ATT, ATC, ATA, TTA, TTG, CTT,

CTC, CTA, CTG, ATG, TTT, TTC
Y TAT, TAC
V GTT, GTC, GTA, GTG

Table 1: Rules of transformation of triplets from coding strings
to elements of the alphabet O

 Coding strings were generated randomly as words over the
given alphabet { , , , }X A T G C . There were no additional
structures on coding strings; they were composed only as
segments of symbols. Any additional structure on them can
only be implicitly imposed, as a result of mappings applied to
them. Separation into genes, and their expression into
functional elements was designed as a composition of three
mappings: identification of “proper” substrings (genes), their
translation into strings of symbols equipped with attributes
and folding into functions guided by order of attributes.
 In analogy to the natural world, as a unit of reading of
coding string we choose triplets (how changing complexity
and strategy of reading influence dynamics of evolution will
be presented elsewhere). Again, in analogy to the natural
world, we determine rules of transformations of triplets into
elements of the alphabet O = {A,R,H,D,C,I,W,Y,V} which is
reduced version of list of amino acids. We analyzed their
chemical properties and grouped similar ones into only one
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representative. In order to keep their natural ratio, we
assemble their coding triplets under representative groups
(Table 1). As genes we identify those substrings which start
with ATG tripled and end with TAG, TGA or TAA triplet. In
order to optimize procedure, we neglected all sequences
translated into strings shorter that 10 characters. At the same
time, for members of the alphabet O we define formal context
by introducing the set of many-valued attributes

{ , , , ,#}M C H I K , and the set of attribute values
{ , ,0,1,2,3, , }J k k . Together they constitutes many

valued context ( , , , )O M J I  where I  is ternary relation
I O M J  which unites objects with corresponding
attributes in accordance to the Table 2.
 Translated strings to the alphabet O are “folded” in
accordance to the attribute H such that all elements where H
value is 1, constitute equivalence class. On that basis, reduced
quotient string is formed and it will be regarded as an active
place. After that, procedure for determination of domains of
active place and mode of action is activated.

Having in mind that each function can be represented as
subset of the set of ordered pairs, we determined functioning
of folded strings creating following duple. First element,
which determine domain of the function, is defined as a set of
strings such that for all strings exists substring which is equal
to the structure of the C-index in the single domain of the
active place. Determination of the second element is based on
the structure of the K-index at the domain. We simply
determine mode of action as k- when there is prevalence of k-
values and vice versa. Exact action is defined as string
separation at the beginning of the matching region for the k-,
and concatenation of all strings recognized by all domains at
the single functional element, for k+. It is clear that action of
k+ can only be performed if there are more than one domains.
Therefore, second element of the duple is defined by
performing K-derived action.
 Environment is composed of n number of randomly
generated binary strings composed only of C-attributes. Since
our focus is possibility for evolution in principle, we did not
determine any constraints regarding spatial distribution or
concentration of substances, or their internal structure. When
examining population of cells we suppose they share the same
environment. It means that after each interaction, newly
generated strings are placed into shared environment
uniformly available to all cells. Interaction of cells with
environment is performed by searching given environment for
members of the domain of each functional element. If some
environmental element is recognized, it is transformed into
product(s) according to the K-derived action for given
functional element. As a result, interaction networks are
created. In order to analyze them, we used Python-based
package, NetworkX (Hagberg, et al. 2008). As main
indicators of evolution of networks we used number of
connected components, and diameter of components. After
completing interaction with environment, fitness value was
calculated for each individual cell using formula:

acfit nd en  where nd denotes total number of reactions
which can be performed in given environment, ac is number
of autocatalytic chains, while *100 /en ob uk  where ob is

number of different molecules transformed by the cell in given
environment and uk is total number of molecules in given
environment. According to calculated fitness values, some
cells were removed, while some were duplicated, keeping the
number of cells in population constant. Detailed procedure
depends of particular experiment performed. The rules for the
evolution were chosen in order to represent essential
mechanisms of natural evolution: selection, chance and ability
to cope with the environment. Since in this model cells do not
reproduce autonomously, which should be used as a measure
of their fitness, we designed fitness so to reflect cell’s ability
to survive, in terms of number of reactions and percent of
environmental objects which cell can recognize and transform.

AttributesElements
of O # C H I K

R 0 + 0 3 k+
H 0 + 0 2 k-
D 0 - 0 3 k-
Y 0 - 0 3 k+
W 0 0 0 0 0
A 0 0 1 1 0
V 0 0 1 2 0
I 0 0 1 3 0
S 1 0 0 0 0

Table 2: Attributes of elements of the alphabet O. C-index and I-
index are taken in accordance to Whitford [2005] so that C-index
represents unified charge and polarity values, while I-index is
derived from Van der Waals index and normalized for a real
number scale in a range [0-3]. H and K values are taken from
Copeland [2000] so that H-index represents hydrophobicity
distribution, while K values are normalized pKa values
transformed to the mode of reactivity, where k- denotes string
separation, while k+ means string concatenation. Index # is
introduced as a separator of active place into domains.

  Finally, next generation was created by mutating existent
coding sequences of each individual. Mutation rate was set to
1 mutation cycle / 100 coding bases. Mutation cycle consists
of three defined possibilities, randomly chosen at each cycle
repetition: (1) point mutation – one base is randomly chosen
and replaced by some other random base; (2) deletion –
randomly chosen sequence up to 10 elements is removed; and
(3) insertion – randomly generated sequence of the same
length is inserted at randomly chosen place within coding
sequence.

Performed Experiments and Simulation
Results

We performed two kinds of experiments. In the first one we
randomly generate population of 20 coding strings of variable
length, which was randomly chosen from the interval 500-
1000 elements. Environment was composed of 100 randomly
generated different elements, where maximum length of
generated strings was set to 10. All cells were placed into the
same environment, so products generated by one cell were
available to all other members of the population. After each
generation fitness was calculated for each cell and the
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population was accordingly separated into two halves: “least
fit” and “most fit”.  Half of the cells from the first group were
randomly chosen, eliminated and replaced by the same
number of cells, randomly chosen from the second group.
 In the second experiment our aim was to monitor evolution
of a single cell lineage. Therefore, we randomly generated only
one coding string of length randomly chosen from the interval
500-1000 elements. Environment was created as in the first
experiment. In order to reduce complete randomness of the
search space we performed “forced” evolution by creating
generations according to the following procedure. After
completing interaction with the environment, the string was
multiplied into 10 copies and each of them was mutated.
Interaction of mutants with environment was “virtual” in a
sense that their interaction was performed separately of each
other. Fitness for them was calculated like in the previous
experiment and only one was randomly chosen from the “most
fit” group to replace the original one.
 Figure 1a, depicts growing of length of coding strings
during the evolution, which is followed by increase in number
of encoded functional elements at the same rate (results not
shown). This is clearly governed by demands of the fitness
value, where any increase in number of performed reaction is
favorable. However, analysis of appeared interaction networks
shows that underlying process of optimization also takes
place. We searched each network for number of components
where component is defined as its maximal connected
subgraph where any two vertices are connected to each other
by path. When number of components is 1, it means that the
whole network is connected. Otherwise, network is divided
into n disjointed subgraphs. For each component we also
determined diameter defined as greatest distance between any
pair of vertices. As it can be seen from Figure 1b, average
number of components per cell in the population decreases
with time and at n = 378, population became uniform in the
sense that networks for all cells became fully connected.
However, it takes additional 235 generations until population
settled down to that value and remains uniform for next 200
generations. At the same time, diameter of the largest
component slowly declined and for the last 200 generations
oscillates around 9. Diameter is important characteristic which
can indicate structural difference between non-biological
scale-free networks, as opposed to metabolic networks (Jeong
et al. 2000). For non-biological networks diameter increases
logarithmically with the addition of new nodes (Barabasi and
Albert, 1999) which, in this case would imply that increase in
number of functional elements should lead to larger diameter
of the corresponding interaction network. However, as Figure
2a depicts, diameter remains stable despite several-fold
increase in number of nodes. Indirect confirmation can be seen
in Figure 2b which show that after initial rapid increase in
number of environmental elements suitable to transformation
their number remains relatively stable, while total number
elements is stabilized within first 30 generations. All of these
facts indicate increased connectedness of substrates, leading to
evolutionary stabilization of appeared interaction networks.
Additionally, it clearly shows that networks evolved within
described framework diverge from randomly generated ones.

a

b

c

Figure 1. Results of the population experiment, where n is
number of generations. Vertical axes represents: (a) average
length of coding strings in population; (b) average number of
connected components in interaction networks in population
(dashed line) and average diameter of the largest component
(solid line); (c) variance of number of connected components
among cells in the population.
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a

b

Figure 2. Results of the experiment where single cell lineage
was followed through evolution; n is number of generations. (a)
number of functional elements (dashed line), diameter of the
network (circles), and number of components in the network
(triangles); (b) total number of elements in the environment
(dashed line) compared with number of environmental elements
suitable to transformation by functional elements of the cell
(solid line).

 Another problem we investigated is the ability of the
computational model to avoid being trapped in a fixed stable
state. As it was pointed out by Conrad (1998), evolving
system that gradually optimizes its traits can escape local
stable state by increasing dimensionality of evolutionary
search space. He termed such strategy as extradimensional
bypass. In natural systems, the only mechanism to transform
evolutionary search space is adding new observables by
constructions of new sensors (Pattee, 1985). Each new sensor
means opening possibility for functional existence of new

observable in the environment which in turn means creation of
additional state variable. Changing the set of state variables
that characterize the system, at the same time means changing
the structure of both: its functional space and its evolutionary
search space. In order to examine the possibility of
extradimensional bypass of our computational model, we first
evolved one population of cells within one environment, and
after 500 generations we replaced environment with the new
one composed of 100 randomly generated different elements.
Figure 3, depicts change of the fitness value along
generations. A gap at n = 500 and relatively fast recovery
indicate the ability of the model to extend its dimensionality
when faced with new conditions. Therefore, settling into the
stable state indicated by results shown in Figure 1, is directed
by environmental fixedness that leads to evolutionary
stagnation.

Figure 3. Results of the experiment where population of cells
was successively evolved in two different environments; n is
number of generations while vertical line shows fitness value.
New environment is introduced after 500 generations.

Conclusions

We have created generalized mathematical framework for
describing evolutionary systems in which appearance of
phenotype (network generated by the interaction of the set of
functional elements with the environment) is governed by
expression of the coding sequence (genotype). Rules of
expression were determined implicitly as successive
determination and application of equivalence classes. In terms
of universal algebra, described framework is actually process
of freely creating algebraic structures. Therefore, depending on
chosen rules for formation of equivalence classes, any
mathematical object can be created. Comparison of such
created objects can be performed by associating appropriate
homomorphisms, which adds additional strength to the
described framework. In the context of this paper it means that
patterns of evolution can further be abstracted and analyzed
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for different algebras, thus possibly revealing underlying
mechanisms of evolutionary adaptation and innovation.
 On the other hand, it is also a rich source of investigation of
evolution within the single model. In this paper we confine
ourselves only to pursuing analogy to existent natural world.
However, dynamics of evolution can be easily investigated
with different parameters: different modes of reading coding
sequence, variations in chosen attributes and their
characteristics, or cardinality of alphabets used.
 Even within single model we described in this paper, some
significant results are obtained. First, we show that initially
created disjointed networks, during evolution tends to fall into
single connected network which remains relatively stable
under unchanged mutation pressure. Additionally, as opposed
to random networks, diameter of evolved networks remains
stable even when number of functional elements increase
several-fold. Therefore, we think that they can be regarded as
metabolism-like.
 Finally, in order to enrich described system and raise it to
the level of artificial cells, two additional aspects should be
introduced into models derived from the framework. Firstly, in
natural systems gene manipulation machinery is the product of
that machinery and its evolution. Therefore, it would be
necessary to allow interaction of obtained functions with the
coding string in order to allow evolution of expression rules.
Although the framework allows such reverse operations, we
tried to keep presented models as simple as possible.
Therefore, we didn’t define any attributes over coding strings,
thus keeping them out of the domain of derived functions.
Secondly, notions of space (either metric or topological),
quantity and control would add possibility for investigation of
metabolism functioning, not just of its general structure,
which is the case here.
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Extended Abstract

The molecular discreteness would be important in intracellular chemical reactions since the number of copies of molecules
included in the reactions is small. In order to investigate the molecular discreteness systematically and theoretically, we
proposed a scheme to bridge the chemical master equation (CME) and the chemical Fokker-Planck equation (CFPE) pre-
viously (Haruna, in press). CME is a discrete stochastic model and CFPE is a continuous stochastic model for chemically
reacting systems. By making use of the well-known idea of approximating diffusion processes by birth-death processes
(Gardiner, 2004), we constructed a family of master equations{Mε}0<ε≤1 where the parameterε can be considered as
the degree of discreteness. This family of master equations{Mε}0<ε≤1 bridges CME and CFPE in the following way:
for ε = 1 we recover CME andMε converges to CFPE asε → 0. The basic idea of the construction of{Mε}0<ε≤1 is as
follows: in CFPE the time derivative of the probability distribution for the number of copies of molecules is the sum of
the drift term and the diffusion term. Consequently we divide each reaction probability into two parts, one corresponding
to the drift term and the other corresponding to the diffusion term, and introduce the parameterε so that the first and
the second jump moments for the number of copies of molecules (corresponding to the drift term and the diffusion term,
respectively) are independent ofε. Our strategy here to investigate the molecular discreteness is not to study CME directly
but to distinguish the properties of CME by putting CME into the family of master equations{Mε}0<ε≤1 bridging CME
and CFPE. In this presentation, we theoretically re-examine a transition phenomenon caused by the molecular discreteness
in a simple set of autocatalytic reactions found by Togashi and Kaneko (2001) in terms of our scheme to bridge CME and
CFPE. Togashi and Kaneko (2001) studied their autocatalytic reaction network consisting of four molecular species by
computer simulation. Ohkubo et al. (2008) proposed a simplified version of the autocatalytic reaction network consisting
of just two molecular species in which essentially the same transition phenomenon as that of Togashi and Kaneko (2001)
occurs in order to explain the transition phenomenon analytically. Based on their simplified model, they showed that the
transition phenomenon can also occur in the continuous stochastic model, i.e. in the Fokker-Planck equation formalism.
However, they only considered the steady probability distribution. Our contribution to this problem is as follows: by
combining generating function method and the large deviation theory for stationary time series, we succeeded to calculate
stationary moments and correlation time for the autocatalytic network by Ohkubo et al. (2008) as functions of the degree
of discretenessε rigorously. We found that both stationary variance and correlation time decrease asε → 0 due to an
“imbalance effect” between the drift and the diffusion parts in the state in which the number of copies of one of the two
molecular species is zero.
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Extended Abstract

Local minima of a fitness landscape are separated by barriers. A barrier tree (Flamm et al., 2002) is a representation of a
fitness landscape as a binary tree, where each leaf represents a local minimum; the barriers connecting the local minima
are represented as the internal horizontal nodes of the barrier tree. To reflect the fitness values of barriers and minima,
each node in the barrier tree is positioned relative to the height of the represented point in the fitness landscape.

Until now, barrier trees have been applied to discrete fitness landscapes. This contribution extends the concept to multi-
dimensional continuous landscapes; a generalization that allows the use of the approach in various areas of life sciences.
Methods for generating barrier trees for continuous fitness landscapes will be presented, ranging from a coarse grained
view of the landscapes by converting them to discrete ones, to the use of heuristic approaches, where local minima are
found via the Nelder-Mead simplex method, and the minima are then connected via biased random walks. Advantages
and disadvantages of the approaches will be demonstrated and methods to compare generated trees will be explained.

In order to exemplify the power of the approach, the real-life problem of molecular docking will be treated. In molecular
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Figure 1: Barrier tree for docking of Buxaminol-E with AChE. Colored by Cartesian coordinates of the center of the ligand.
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Figure 2: An illustration of the best nodes of the barrier tree from each subtree of the largest barrier. Id 35 (blue) from the
lower subtree and id 0 (green) from the upper. The gray molecular surface represents the receptor AChE; the two ligands are
illustrated in a stick view with the color of their respective subtree in Figure 1.

docking the interactions between small (ligand) and large (receptor) molecules are investigated in the search for the cor-
rect binding pose, which means in which ligand and receptor form a stable complex. Modeling the interaction between
molecules is a complicated problem; the system’s degrees of freedom include the position in Cartesian space, the ori-
entation of the ligand, and internal flexibility of the ligand or of ligand and receptor. The ruggedness of the landscapes
resulting from the different possible fitness functions makes sampling and optimization challenging. As the backbone
for doing molecular docking landscape analysis, we make use of the fitness function from molecular docking software
PARADOCKS (Meier et al., 2010). We used a test set with pharmaceutical relevance, a small library of known ligands and
decoys of acetylcholinesterase.

Docking test illustrated in this abstract were done with acetylcholinesterase (AChE, Kryger et al. 1999) and Buxaminol-E,
a natural occurring steroid isolated from Boxwood that is a known inhibitor of AChE (Thomson Scientific, 2001). First
10,000 local minima were located with the Nelder Mead method (Nelder and Mead, 1965), then removing any of those
having a neighbor with a lower fitness value, neighbor again meaning within a certain step size range, and finally keeping
only the 150 lowest points remaining. The barrier tree created is shown in Figure 1. The structure of the tree indicates that
there are two groups of local minima separated by a high barrier, where the one group is again subdivided into smaller
groups by smaller barriers.

With the barrier trees it can be seen how the search space of docking the ligand Buxaminol-E to the receptor AChE is
structured. This is confirmed when we look at a figurative of the actual structure of the molecules. Figure 2 illustrates the
difference in position for the ligands of the left and right subtree of the highest barrier of the barrier tree. The ligands are
positioned in two distinct regions of space, which indicates two possible binding sites at the receptor.
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Abstract 
Artificial Life and Evolutionary Computation studies have until 
now failed to model the symbiotic evaluation methods and the 
extensive amounts of horizontal gene transfer that are starting 
to be recognized in recent Metagenomic approaches to 
understanding microbial populations. Examples can be seen, in 
Learning Classifier Systems, and the SANE algorithm, of 
symbiotic evaluations; the Microbial Genetic Algorithm (GA) 
introduced horizontal gene transfer. Here for the first time these 
two are brought together in the Binomic GA, which is shown to 
perform well in a series of trials. It is proposed that Binomics, 
defined as computational algorithms inspired by Metagenomic 
studies, forms a potentially fruitful field of study waiting to be 
investigated.  

Introduction 
For many years our conventional understanding of Darwinian 
evolution has been dominated by the idea of species of 
individuals, where those individuals favoured by selection 
become parents and pass on their genes to their offspring. 
Although selection takes place at the individual level, this 
vertical transmission of genetic material leads to an 
identifiable entity at the species level that has the capacity to 
adapt over time. Our models of artificial evolution, such as 
Genetic Algorithms (GAs), have typically followed this 
picture. 
    But in the last decade or so some biologists have started to 
realize that a significant part of evolution on this planet – in 
particular bacterial evolution – has important mismatches with 
this picture. There can be a significant amount of horizontal 
gene transmission between different individuals. As a result, 
much of their functionality can be passed on from their 
neighbours rather than inherited from parents. This makes the 
concept of a species in such circumstances rather looser than 
previously thought. Further, the fitness of a population of 
diverse bacteria floating in the sea may depend significantly 
on their local collective symbiotic functionality, rather than 
simply on the individual fitness of each. 
    Studies of the collective genetic properties of such a diverse 
population have come to be known as Metagenomics. 
Research into these natural processes has been driven by 
recent major advances in gene sequencing techniques. 
Analysis of Metagenomic results now needs new tools from 
complex systems theory, and already some people have 
started applying ideas from Artificial Life (AL) and 
Evolutionary Computation (EC). What has been 

conspicuously missing so far has been a movement of ideas in 
the other direction. This paper is primarily a position paper 
calling for new developments in AL and EC, as applied to 
synthetic problems, to be inspired by these new discoveries in 
the natural world. Drawing on biologists’ use of the ‘-omics’ 
suffix to refer to the collective properties of a totality, we 
propose Binomics as a new sub-field where ideas from 
Metagenomics are applied to applications in the binary 
computational world. 
    We start with a brief review of Metagenomics, and then a 
survey of those main techniques within AL that do already 
distil some relevant ideas. We focus on symbiotic evaluation, 
where individuals are evaluated collectively; specifically we 
look at Learning Classifier Systems (LCS) and the SANE 
algorithm for artificial neuro-evolution. Then we consider 
horizontal gene transfer, looking at the Microbial GA. We 
note that to date nobody seems to have combined symbiotic 
evaluations with horizontal gene transfer.  
    So we do just this with a proposal for a Binomic Genetic 
Algorithm. Although this is primarily a position paper, we can 
demonstrate its performance in a series of trials and compare 
with other evolutionary techniques. These are preliminary 
studies, but gratifyingly we can report that in these trials the 
Binomic GA outperformed the competitors by at least an 
order of magnitude. We suggest that this is a fruitful new area 
for further study, and discuss the types of applications where 
the particular properties of a Binomic GA could be beneficial.   

Metagenomics 
As a very recent field, most of the reporting on Metagenomics 
comes in specialised technical research papers. Useful 
overviews for a more general audience include Handelsman 
(2004), a report by the Committee on Metagenomics (2007), 
and Eisen (2007).  
    Previously our understanding of microbes has been based 
on studying rather few samples. In order to perform 
reproducible scientific experiments, well-defined species have 
been used, often with great care taken to culture them in the 
lab in isolation to ensure their purity. It is typically assumed 
that the test-tube is full of a single species that is genetically 
well-defined. It has been belatedly realized that such 
assumptions may not hold true in the real world. 
    In microbial communities there may often be large 
functional differences between close relatives; further, 
horizontal gene transmission means that many functions 
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(chemical cycles) typically performed by one species may be 
also performed by very different species. Microbes such as 
bacteria do not undergo sexual reproduction, but reproduce by 
binary fission. But they have a further method for exchanging 
genetic material, bacterial conjugation. Chunks of DNA, 
plasmids, can be transferred from one bacterium to the next 
when they are in direct contact with each other. Whereas the 
genomes of different humans vary by around 0.1%, different 
members of what may conventionally be termed a microbial 
species (or phylotype) can differ by up to 30%. It now makes 
conceptual sense – and technical developments make it 
possible – to perform shotgun sequencing of a whole 
bucketful of microbes taken from the Sargasso Sea (Venter et 
al., 2004) and consider the metagenomic sequence of the 
whole community, together with the functions that such a 
community collectively performs. Shotgun analysis involves 
breaking up the DNA randomly into small segments that are 
individually sequenced; then using computational methods, by 
seeking overlaps in these fragments, they are built up again 
into a complete sequence. 
    There are 10 times as many microbial cells in a human 
body than there are human cells; the human metagenome 
contains perhaps a hundred times more genes than the human 
genome (Qin et al. 2010). Many such bacteria are essential for 
our human well-being, and in turn they rely on us to provide 
them with an appropriate environment.  

Comparisons: Metagenomics and AL, EC 

Horizontal gene transfer rarely features in EC, though we give 
one example below with the Microbial GA. We can analyse 
the real world of bacteria floating in the sea in terms of two 
separate fitness criteria: internal (individual) and external 
(symbiotic). Firstly, each individual organism (given a 
sustaining environment) has to have the appropriately 
functioning internal mechanisms to individually survive. 
Secondly and collectively, their interactions -- the inputs and 
outputs of all such organisms -- must have an appropriate fit 
with their neighbours, so that they can collectively survive. In 
artificial evolution, we can choose to take the internal fitness 
criteria for granted and focus our attention solely on the 
external criteria, of fit to the environment. If we want to 
follow the Metagenomic metaphor, we shall be evolving 
individual entities whose value (as assessed by a fitness 
function) will depend on how they cooperate to tackle some 
task. Penn and Harvey (2004) demonstrated how ecosystem-
level evolution can take place without genetic change in the 
component species, but here we want to focus on ecosystem-
level evolution driven by genetic change. 
     We now discuss two areas of EC where relevant work has 
been done in the next sections on LCS and SANE. 

Learning Classifier Systems 

Learning Classifier Systems (LCS) were devised by John 
Holland (Holland 1976, Holland and Reitman, 1978) as a 
means of using a GA to do just this; for an introduction see 
Bull (2004). The classifiers are condition-action rules, 
typically expressed as a string of symbols, where the first part 
represents a template that expresses the conditions under 

which this classifier could match a possible input string; and 
the second part represents the output string of the classifier 
when the condition is met. Inputs to a classifier may come 
from the external task (e.g. they could come from sensors if 
this is a robot control task, or from a visual array if the task is 
pattern classifying), or come from other classifiers; outputs 
from a classifier could be to the external solution (e.g. strings 
interpreted as robot motor actions) or to other classifiers. 
Internal message-boards can be used for communication 
between the classifiers. 
    As Bull (2004) comments:  
 

It is important to note that the role of the GA in LCS 
is to create a cooperative set of rules which together 
solve the task. That is, unlike a traditional 
optimisation scenario, the search is not for a single 
fittest rule but a number of different types of rule 
which together give appropriate behaviour. The rule-
base of an LCS has been described as an evolving 
ecology of rules - “each individual rule evolves in the 
context of the external environment and the other 
rules in the classifier system.” [Forrest & Miller, 
1991]. 

 
This raises a major issue in deciding how to assign a fitness to 
each rule, when this can only be evaluated in the context of a 
collective ecology. Two main approaches have been 
developed for LCS, named for the places where they were 
first proposed.   

Pittsburgh LCS. In this approach each individual in the 
evolving population is a complete set of rules or classifiers. 
The rules play a role more similar to that of genes in an 
organism than being themselves independent organisms. In 
this way the problem of assigning value to each rule is 
avoided. The GA reproduces, with recombination and 
mutation, from the fitter rule sets. 
 
Michigan LCS. In this approach the individuals in the 
population are the individual rules or classifiers themselves. 
During evolution, any of the individual rules can be 
operational, and this needs some arbitration mechanism to 
decide between them if some are matching in their input 
conditions but potentially conflicting in their outputs. Further 
complications arise from deciding how to allocate fitness to 
each rule that is actually operational, bearing in mind that only 
the collective can be evaluated. In some cases there may be a 
temporal element, in that the consequences of one specific 
condition-action rule may not be immediately apparent, but 
only become evident due to later knock-on consequences.  
     Many different methods have been proposed for tackling 
these issues, including auctions with specificity-based 
arbitration mechanisms to allow default hierarchies to form, 
and bucket-brigade algorithms for the temporal credit-
assignment problem. This has resulted in many different 
flavours of Michigan LCS.  

Implicit Niching in LCS 
In a typical evolutionary algorithm such as a GA, we can 
expect selection to drive the population in the direction of 
genetic convergence, where it consists almost entirely of 
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copies, or near-copies, of the single fittest individual. But in 
the context of an LCS, where fitness will likely depend on the 
co-existence of several different individuals performing sub-
functions of the whole task, such loss of diversity is 
undesirable. There is a need to find and maintain a diverse and 
cooperative set of classifiers. Some form of niching in the 
population is desirable. One approach to achieving this is 
through an island model, where distributed populations are 
separated into different demes.  
    Another approach is through fitness sharing (Goldberg and 
Richardson 1987), which requires some distance metric or 
similarity measure (either genotypic or phenotypic) between 
any two individuals. By using suitable methods to adjust the 
fitnesses of any individual according to how many other 
similar individuals there are nearby in this metric space, there 
is a tendency for the population to spread out over multiple 
peaks or niches in the fitness landscape; thus diversity is 
maintained. It can be shown that LCS models where fitness is 
shared amongst cooperating individuals can produce implicit 
niching (Horn et al. 1994), and this will be discussed further 
with the Binomic GA. 

Comparisons: LCS and Metagenomics 

We can relate the condition-action classifiers to the bacteria in 
the sea. The evaluation of the symbiotic functionality of 
groups of these does indeed reflect, in the context of artificial 
evolution, some aspects of what we observe in real world 
Metagenomics. The Michigan style of LCS does, at the 
expense of often complex auction and bucket-brigade 
schemes, manage the evaluation of individual ‘organisms’ 
(classifiers) that can only function effectively as part of a set. 
The evolutionary aspect is limited to the vertical genetic 
transfer between generations that is traditional with GAs.  

Symbiotic Evaluations: SANE 

There is a different perspective on evaluating different 
individuals on the basis of their group performance, taken by 
Moriarty and Miikkulainen (1996, 1999) in their proposal of 
the SANE algorithm. SANE stands for Symbiotic, Adaptive 
Neuro-Evolution, and this is one approach to evolving 
Artificial Neural Networks (ANNs).  The motivation is 
described thus (Moriarty and Miikkulainen, 1999):  
 

SANE incorporates the idea of diversity into neuro-
evolution. SANE evolves a population of neurons, 
where the fitness of each neuron is determined by 
how well it cooperates with other neurons in the 
population. To evolve a network capable of 
performing a task, the neurons must optimize 
different aspects of the network and form a 
mutualistic symbiotic relationship. Neurons will 
evolve into several specializations that search 
different areas of the solution space. 

 
In an example implementation, they show a simple ANN with 
2 layers of connection weights, from Input to Hidden neurons 
and from Hidden neurons to Outputs. They treat each Hidden 
neuron, together with its incoming and outgoing connections, 

as a member of the evolving population. Figure 1 shows how 
a complete network could be formed from e.g. 3 such Hidden 
neurons selected at random from the population. The network 
as a whole is evaluated on some required task, and the 
network’s score is added to the fitness of each Hidden neuron 
that it contains. Thereafter, the selection, replication, 
crossover and mutation of members of the population is 
carried out by conventional GA methods. 
 

 
 

 
 
 
 
 
 
 
 
    

Moriarty and Miikkulainen (1999) report that this 
implementation of SANE works well on such simple ANNs. 
They also comment that it is feasible to extend this approach 
to different neuron encodings, and to diverse network 
architectures including recurrency.  

Comparisons between SANE and Metagenomics 
Much as we did with the condition-action classifiers of LCS, 
we can relate the Hidden neurons (with incoming and 
outgoing connections) to the bacteria in the sea. Once again, 
these are only evaluated in the context of a group, which is 
why it has been called symbiotic (artificial) evolution. Implicit 
niching is again important. We can characterize this approach 
in much the same way as LCS, in that there are similarities in 
this symbiotic evaluation to some aspects of what we observe 
in real world Metagenomics; the evolutionary aspect is still 
restricted to the vertical gene transfer of conventional GAs. 

Horizontal Gene Transfer: Microbial GA 
Significant features of evolution that were under-recognised 
before Metagenomic studies included the symbiotic nature of 
functionality of groups of organisms, and the prevalence of 
horizontal gene transmission. In Genetic Algorithms, vertical 
genetic transmission has been very much the norm. An 
exception has been the Microbial GA (Harvey 2001, 2010 In 
Press) that we review here in a reprise of relevant sections of 
Harvey (2010). This is the result of stripping away as much as 
possible from a traditional GA, whilst maintaining the bare 
essentials of a population with Heredity, Variation and 
Selection. The Microbial GA uses Tournament Selection 
within a Steady State GA, hence we introduce these concepts 
first. 

Figure 1. Each Hidden Layer neuron, with its associated 
incoming and outgoing connections (e.g. the highlighted central 
one with its links), is a member of the population. Here 3 such 
neurons combine to make a complete feedforward ANN. 
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Steady State GAs 
Traditionally GAs were first presented in generational form. 
This roughly corresponds to some natural species that has just 
one breeding season, say once a year, and after breeding the 
parents die out without a second chance. There are many 
natural species that do not have such constraints, with birth 
and death events happening asynchronously across the 
population. Hence the Steady State GA, which in its simplest 
form has as its basic event the replacement of just one 
individual from P by a single new one. One reason for using 
Steady State in a minimalist GA is that it allows for a very 
simple implementation of selection.  

Tournament Selection 
There are many problems with the traditional GA method of 
fitness-proportionate selection that are avoided by using some 
form of rank-based selection. In this, once all the members of 
the population have been evaluated, each fitness is rescaled on 
the basis of their relative ranking. A common choice made is 
to allocate (at least in principle) 2.0 reproductive units to the 
fittest, 1.0 units to the median, and 0.0 units to the least fit 
member, similarly scaling pro rata for intermediate rankings; 
this is linear rank selection. The probability of being a parent 
is now proportional to these rank-derived numbers, rather than 
to the original fitness scores.  
    It is possible to achieve equivalent results to this through 
tournament selection. If two members of the population are 
chosen at random, their fitnesses compared (the 
‘tournament’), and the Winner selected, then the probability 
of the Winner being any specific member of the population 
exactly matches the reproductive units allocated under linear 
rank selection.  

Who to Breed, Who to Die? 
Selection can be implemented in two very different ways; 
either is fine, as long as the end result is to bias the choice of 
those who contribute to future generations in favour of the 
fitter ones. The usual method in GAs is to focus the selection 
on who is to become a parent, whilst making an unbiased, 
unselective choice of who is to die. In the standard 
Generational GA, every member of the preceding generation 
is eliminated without any favouritism, so as to make way for 
the fresh generation reproduced from selected parents. In a 
Steady State GA, once a single new individual has been bred 
from selected parents, some other individual has to be 
removed so as to maintain a constant population size; this 
individual is often chosen at random, again unbiased.  
    Some people, however, will implement a method of biasing 
the choice of who is removed towards the less fit. It should be 
appreciated that this is a second form of selective pressure, 
that will compound with the selective pressure for fit parents 
and potentially make the combined selective pressure stronger 
than is wise. In fact, one can generate the same degree of 
selective pressure by biasing the culling choice towards the 
less fit (whilst selecting parents at random) as one gets by the 
conventional method of biasing the parental choice towards 
the more fit (whilst culling at random). 
    This leads to an unconventional, but effective, method of 
implementing Tournament Selection. For each birth/death 
cycle, generate one new offspring with random parentage; 

with a standard sexual GA, this means picking both parents at 
random, but it can similarly work with an asexual GA through 
picking a single parent at random. A single individual must be 
culled to be replaced by the new individual; by picking two at 
random, and culling the Loser, or least fit of the two, we have 
the requisite selection pressure.  
    Going further, we can consider a yet more unconventional 
method, that combines the random undirected parent-picking 
with the directed selection of who is to be culled. Pick two 
individuals at random to be parents, and generate a new 
offspring from them; then use the same two individuals for the 
tournament to select who is culled -- in other words the 
weaker parent is replaced by the offspring.  
    It turns out that this is easy to implement, and is effective. 
This is the underlying intuition behind the Microbial GA.  

Microbial Sex: Horizontal Gene Transmission 
    We can reinterpret the Tournament described above, so as 
to somewhat resemble bacterial conjugation. If the two 
individuals picked at random to be parents are called A and B, 
whilst the offspring is called C, then we have described what 
happens as C replacing the weaker one of the parents, say B; 
B disappears and is replaced by C. If C is the product of 
sexual recombination between A and B, however, then ~50% 
of C’s genetic material (give or take the odd mutation) is from 
A, ~50% from B.  So what has happened is indistinguishable 
from B remaining in the population, but with ~50% of its 
original genetic material replaced by material copied and 
passed over from A. We can consider this as a rather 
excessive case of horizontal gene transfer from A (the fitter) 
to B (the weaker).  
 

Figure 2. Sketch of the Microbial GA. The genotypes are 
represented as a pool of strings. One cycle of the GA is 
represented by the operations PICK (at random), COMPARE 
(their fitnesses to determine Winner = W, Loser = L, 
RECOMBINE (some proportion of Winner’s genetic material 
‘infects’ the Loser) and MUTATE (the revised version of Loser. 
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The Microbial GA in schematic form 

We now have the basis for a radical, minimalist revision of 
the normal form of a GA, although functionally, in terms of 
Heredity, Variation and Selection, it is performing just the 
same job as the standard version. This is illustrated in Figure 
2. Here the recombination is described in terms of ‘infecting’ 
the Loser with genetic material from the Winner, and we can 
note that this rate of infection can take different values. In 
bacterial conjugation it will typically be rather a low 
percentage that is replaced or supplemented; if instead we 
want to reproduce the typical effects of sexual reproduction, 
as indicated in the previous section, this rate should be ~50%. 
But in principle we may want, for different effects, to choose 
any value between 0% and 100%.  
    From a programming perspective, this cycle is very easy to 
implement efficiently. For each such tournament cycle, the 
Winner genotype can remain unchanged within the genotype-
array, and the Loser genotype can be modified (by ‘infection’ 
and mutation) in situ. We can note that this cycle gives a 
version of ‘elitism’ for free: since the current fittest member of 
the population will win any tournament that it participates in, it 
will thus remain unchanged in the population -- until eventually 
overtaken by some new individual even fitter. Further, it allows 
us to implement an effective version of geographical clustering 
for a trivial amount of extra code. 

Microbial GA: with a Trivial Geography 
For some purposes we may not want a panmictic population, 
and instead constrain the operations of choosing tournament 
participants, and hence exchange of genetic material, to be 
within some local geographical distribution, perhaps within 
demes. This allows for more genetic diversity to be 
maintained across sub-populations. Spector and Klein (2005) 
note that a one-dimensional geography, as in Figure 3 where 
the population is considered to be on a (virtual) ring, can be as 
effective as higher dimensional versions. If we consider our 
array that contains the genotypes to be wrap-around, then we 
can implement this version by, for each tournament cycle: 
choose the first member A of the tournament at random from 
the whole population; then select the next member B at 
random from a deme, or sub-population that starts 
immediately after A in the array-order. The deme size D, <= 

P, is a parameter deciding just how local each tournament is.  

Comparisons: Microbial GA and Metagenomics 
The Microbial GA is a deliberately minimalist version of a 
classical GA, but re-described in terms of horizontal gene 
transmission. The parameter that determines what proportion 
of genetic material is copied from Winner to Loser after each 
tournament can be varied according to need. Setting this at 
50% gives the closest  analogy to a classical GA, but other 
values may be of interest. Low ‘rates of infection’ may reflect 
typical values of gene transfer seen in real world 
Metagenomic studies; setting the rate to 100% would 
correspond to replication by fission of the Winner, since the 
Loser then becomes an identical copy. The addition of 
geographical demes could be tailored to correspond to any 
model of local interactions between, for example, bacteria 
swimming in the sea. 
    So this is a rare example of a GA with horizontal gene 
transmission. If we want to replicate in an evolutionary 
algorithm more of the essential properties that we see in 
Metagenomic studies of bacteria in a sea, then what is still 
missing is the aspect of assessing the fitness of each member 
of the population in some symbiotic or communal fashion.  

Binomic GA 

We now introduce a Binomic GA, that combines the 
symbiotic evaluation methodology of SANE with the 
horizontal gene transfer of the Microbial GA. We start with an 
outline of the general requirements, and then illustrate in the 
context of evolving Artificial Neural Networks. 

General Requirements 
We shall be evolving the equivalent of a Sargasso Sea (Sea) of 
individual organisms (Orgs). Orgs are not evaluated in 
isolation, but only as part of a randomly chosen subset of the 
Sea, a Bucket; such a Bucket may be drawn from a local area 
(or Deme) or from the whole of the Sea (Figure 4). The fitness 
function is used to evaluate a Bucket as a whole, and this 
fitness is passed on equally to all members of that Bucket. It is 
used to update the current fitness of each such Org, on the 
basis of New_Org_fit = R*Bucket_fit + (1.0-R)*Old_Org_fit. 
With an appropriate choice of R (0.0<R<1.0), the effective 

Figure 3. The population is geographically distributed 
on a ring, numbered from 0 to P-1. For a tournament, 
A is picked at random from the whole population; 
then B is picked at random from the deme (here of size 
D=5) immediately following A. 

Figure 4. A Bucketful of Orgs is evaluated as a whole, and the 
resulting fitness assigned equally to all in that Bucket. Such a 
Bucket can be drawn locally from an area of the Sea, or (with a 
'well-mixed' Sea) drawn at random. 
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fitness of each Org has any variance smoothed over several 
recent evaluations of different Buckets that it happens to have 
featured in, whilst still tracking any general changes in its 
environment. 
    Figure 5 sketches the Binomic GA. As with a Microbial 
GA, genetic changes in the Sea of Orgs are driven via a 
Tournament involving selecting two Orgs at random, 
comparing their currently stored fitnesses (as calculated via 
Buckets), and designating one as W = Winner, the other as L = 
Loser. W will remain unchanged, and L is the single Org that 
gets changed as a result of this tournament.  

 With some small probability V (for vertical gene 
transmission) L is made an identical clone of W and also 
inherits its fitness, that is then updated as below. Otherwise 
(horizontal gene transmission) some proportion REC of the 
genes of W are copied over so as to replace those genes in L.  
 The tournament is completed by mutating L, and then 
evaluating a number (1 or more) of random Buckets that each 
contain L. In this way its inherited fitness is updated, along 
with the fitnesses of those other Orgs that happened to share 
those Buckets. The mutation will be a limited change in the 
Org, either retaining its functionality whilst making a small 
change in some parameter value (such as, in the case of 
ANNs, a neural network weight) or making a small change in 
functionality (such as, with ANNs, adding or deleting a 
connection between nodes). This should become clearer with 
a worked example that follows a brief explanation of niching. 

Implicit Niching 
To understand how implicit niching can occur in an algorithm 
like this, let us illustrate with a cartoon example. Suppose a 
population has 4 types of entity, bread, butter, jam and 
diverse garbage. The only collection that has any value is a 
bread+butter+jam sandwich. When fitnesses are allocated 
through assessing the value of a Bucket of such individuals, 
we can see that garbage would tend to decrease. But further, 
consider what happens if one of the useful components, e.g. 
jam, is in much shorter supply than the others. Then as a 
consequence of some Buckets containing bread and butter but 
no jam (and hence valueless), the relative fitness allocated to 
those individuals will decrease; whereas the relative fitness of 
jam (that will under these circumstances almost always 
complete a sandwich) increases. In this way, all these different 
component parts will tend towards similar proportional 
representation in the population as a whole. 

Altruism and cheating. Any procedure that uses some form 
of group selection raises concerns about the possibility of 
cheating. If fitness is allocated collectively, why should an 
individual altruistically contribute to the common good, why 
not benefit from others’ efforts whilst making no contribution 
itself? This potential pitfall is avoided by the use of Buckets 
allocating fitness within a temporary local subset of the whole 
Sea, even if that subset is taken at random from the whole 
well-mixed Sea. Restricting Buckets to (overlapping) local 
regions within a geographically distributed Sea provides yet 
more pressure to eliminate cheats and garbage. 

Evolving ANNs with a Binomic GA 
The SANE algorithm, discussed above, implemented the 
equivalent of Orgs as subsets of a 3-layer ANN, each one 
based on a single node in the middle (Hidden) layer with 
connections and weights to genetically specified Input or 
Output nodes. We can generalize this to ANNs of arbitrary 
topology (including recurrent networks such as CTRNNs) by 
first making each Org in principle equivalent to the whole 
fully-connected ANN; but then setting the majority of  
connections between nodes to zero, with a small subset of 
genetically specified non-zero weights. We can maintain, 
throughout evolution, the typical proportion of weights that 
are non-zero by monitoring the add-link and delete-link 
components of the mutation operator. Thus if, for instance, at 
any mutation each non-zero weight was mutated to zero with 
probability 9%, and each zero weight mutated to a non-zero 
value with probability 1%, we can expect the proportion of 
non-zero weights to stay around 10%. In this manner, each 
Org is a only a small part of the whole possible ANN, and 
may very well be functionless on its own through having no 
connected path from inputs to outputs. 
 When a Bucket is assembled, then this is treated as the full 
ANN with any specific weight on a connection calculated as 
the sum (an alternative method would be to use the mean) of 
all values for that connection as specified on all the 
constituent Orgs; a variant method with subtle differences 
would be to exclude any zero values in the calculation of such 
a mean.  

Designing an Autoencoder ANN with a Binomic GA 
As a working demonstration we chose to use the Binomic GA 
to evolve ANNs in the form of an autoencoder, as described 
below. This allows us to compare performance with other 
versions of evolutionary algorithms that we had developed for 
similar autoencoders in a separate study. 
    Such autoencoders (Hinton and Salakhutdinov, 2006) are 
ANNs with a feedforward succession of layers, potentially 
fully connected between each successive layer. When 
appropriate weights are found, it should reduce high-
dimensional input data through a lower-dimensional 
Bottleneck layer and then recover the input pattern and 
replicate it at the final output layer. Between Input and 
Bottleneck there is a Hidden Layer, which should encode the 
input pattern into the Bottleneck; thereafter a further Hidden 
Layer should decode to the Output. 
    We used autoencoders of the form N-h-M-h-N (see Figure 
6), where N is number of Inputs/Outputs, M is the size of the 
Bottleneck layer, and h is the size of each Hidden layer. In our 

Figure 5. The Binomic GA. 
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implementation, all inputs were either 1 or -1. The Hidden 
Layer transfer functions were hyperbolic tangents, whereas 
the Bottleneck transfer function was linear. The output layer 
transfer function was a discrete step function that mapped 
positive/negative values into +1/-1 respectively. For 
simplicity, no biases were used in any of the networks. 
    We report here initial results on evolving with the Binomic 
GA appropriate weights for such autoencoders of sizes 3-12-
2-12-3 and 4-24-4-24-3. Evaluations of such networks tested 
every possible binary input pattern and assessed how many 
output patterns matched. We compared performance of the 
Binomic GA (BGA) with two versions of a straightforward 
Microbial GA (recombination or ‘infection’ rate 0.5) where 
each individual in the population was a complete autoencoder 
with the appropriate architecture and genotypes specifying all 
the weights. The Microbial GA versions differed in mutation 
method: either a single weight was mutated, or all weights 
were mutated together.  

Parameters used 
We report on initial BGA experiments using a population or 
Sea of 50 Orgs, where each Org was a subset of the full 
autoencoder with (initially) 50% of the weights set to zero, the 
rest set to small random numbers with mean zero and standard 
deviation 0.1. Each Bucket took 25 Orgs at random from the 
Sea, and superimposed these on each other to form an 
autoencoder with weights on each connection equal to the sum 
of the respective weights on each Org. The fitness score of 
this Bucket was allocated equally to all of its component Orgs, 
their fitnesses updated with a smoothing factor R=0.1. No 
geographical demes were used. 
    Each tournament took two Orgs at random from the Sea, 
and determined Winner and Loser depending on their current 
fitnesses. The Loser was modified with a probability 0.5 of 
Vertical Gene Transmission (becoming a copy of the Winner), 
otherwise Horizontal Gene Transmission occurred (with 50% 
of the Winner’s genes, or genetically specified weights, 
overwriting the corresponding Loser’s genes). In order to 
maintain the proportions of zero/non-zero weights at around 
the initial 50/50 ratio, each non-zero weight in the Loser was 

deleted (set to zero) with probability (Number of non-zero 
weights)/(Number of weights) and conversely each zero 
weight was made non-zero, set to an initial small random 
value, with probability (Number of zero weights)/(Number of 
weights). Then a single non-zero weight of the Loser was 
mutated by adding a mutation, mean value 0.0, standard 
deviation 0.5 (the same mutation method as used with the 
single-weight-mutation Microbial GA). 
    Each time a tournament was completed, and the Loser thus 
modified, one Bucket containing the Loser was evaluated and 
all the Orgs within that Bucket had their fitnesses adjusted. 
This completes the Binomic GA cycle.   

Experimental Results 
For making comparisons, we take the significant factor to be 
the number of autoencoders that need evaluating before a 
perfect score is achieved. Runs were terminated if no success 
was achieved by a cutoff point. Each experiment was repeated 
10 times; as is common with GAs, there was variance between 
runs; but there was a clear and striking pattern. The Binomic 
GA clearly outperformed its competitors.  
    We show in Figures 7 and 8 results for the 3-12-2-12-3 
autoencoder, and the more difficult 4-24-3-24-4 autoencoder. 
In both cases the Binomic GA reliably generated perfect 
results, overall significantly faster than the competing 
methods, and with less variance. These are initial tests to 
demonstrate in principle that this method works, and it is 
gratifying to see the striking performance. 

Discussion 
GAs have been based on a traditional view of Darwinian 
evolution with individuals being evaluated for their fitness, 
and vertical gene transmission down the generations. 
Metagenomic studies have recently started to transform our 

Figure 6. The task for this 4-24-3-24-3 autoencoder ANN is for 
the binary Input Pattern (here 4 bits) to be replicated at the 
final Output Layer, despite having passed through a narrower 
Bottleneck (here 3 nodes) in the middle. 

Figure 7. Number of evaluations needed to achieve a perfect 
score using 3 different GA methods (10 runs each) on the 3-12-2-
12-3 autoencoder. The Microbial GA, with single weight 
mutation, took mean 19,092, std. dev. 24,932, maximum 75,623 
evaluations; with multiple mutations 8,921, 5,118, 21,868 
respectively. The Binomic GA took mean 2,052, std. dev. 1,098, 
maximum 4,105 evaluations, and is shown rescaled in the insert. 
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view of evolution in the world of bacteria, which were 
amongst the earliest living entities and continue to play an 
enormous, often under-appreciated, role. We have highlighted 
the symbiotic nature of evaluations in communities of such 
real organisms, as emulated in part in the artificial world with 
LCS and SANE. We have shown how the horizontal gene 
transmission of bacteria is emulated in the Microbial GA. But 
as yet nobody appears to have combined these two aspects 
into applications in AL or EC. 
    This is primarily a position paper drawing attention to this 
lack of AL/EC work inspired by Metagenomics, despite 
significant traffic in the other direction. We propose a new 
sub-field of Binomics bringing these two ideas together as 
potentially fruitful in synthetic applications. The Binomic GA 
has been demonstrated to work well in preliminary tests, and 
this new approach opens up a whole range of new questions. 
    We need to investigate what parameter settings work well 
for what kind of problem. Does the autoencoder problem have 
some special property that is relevant? We note a potential 
relationship with neutral networks in the fitness landscape. 
The effects of varying Bucket size and the impact of drawing 
the Buckets locally within the Sea need to be studied. Taking 
account of this Metagenomic inspiration, we may expect that 
an appropriate application could be Evolutionary Computation 
that needs to be carried out online, with the evolving 
population actually carrying out its function in real time whilst 
adapting to environmental changes. One such example could 
be anti-virus (the computer variety of virus) software agents 
where a diverse population protects a system in real time, 
whilst reacting and adapting to new environmental threats.  
    Our preliminary work with the BGA leads us to believe that 
there is enormous scope for further developments. We hope 
this paper will stimulate interest in what has been until now a 
surprising gap in Artificial Life studies. 
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Abstract
Determining the electronic structure of long chain molecules is 
essential  to  the  understanding of  many biological  processes, 
notably those involving molecular  receptors  in cells.  Finding 
minimum energy conformers  and thus  electronic  structure  of 
long-chain  molecules  by  exhaustive  search  quickly  becomes 
infeasible  as  the chain length increases.  Typically,  resources 
required are proportional to the number of possible conformers 
(shapes),  which  scales  as  O(3^L)  where  L is  the length.  An 
optimized genetic  algorithm that can determine the minimum 
energy  conformer  of  an  arbitrary  long-chain  molecule  in  a 
feasible  time  is  described,  using  the  tool,  PyEvolve.  The 
method is to first solve a generic problem for a long chain by 
exhaustive search, then by using the pre-determined results in a 
look-up  table,  to  make  use  of  a  Meta-GA  to  optimize 
parameters of a simple GA through an evolutionary process to 
solve that same problem.  By comparing the results using the 
tuned parameters obtained by this method with the results from 
exhaustive search  on several  molecules  of  comparable  chain 
length  we  have  obtained  quantitative  measurements  of  an 
increase in speed by a factor of three over standard parameter 
settings, and a factor of ten over exhaustive search.

Introduction
In  computational  chemistry,  there  is  a  requirement  to 
determine minimal energy conformers (shapes) of molecules 
such as dipeptides using a high level of  theory, in order to 
determine  their  molecular  properties.  Typically  there  are 
thousands of such possible shapes for any particular molecule, 
and the  calculation  of  energy for  each would take O(10e3) 
CPU-seconds  at 500 GFlops for a relatively simple level of 
chemical theory, but O(10e7+) for successively more complex 
levels. Traditionally, the method has been to determine a good 
subset at one level of theory, then use these as candidates for 
the next level, then take a further, smaller subset at that level, 
and so on until the required level of theory had been reached.

Various levels of theory are used to determine energies. These 
vary from the semi-empirical AM1 (Austin Model 1)[1] and 
PM3 (Parametrized  Model  3)[2][3]  methods  often  used  on 
such computationally intensive problems, through the higher 
level B3LYP (Becke, three-parameter, Lee-Yang-Parr) density 
functional [4][5] whose formal scaling is to the fourth power, 
the MP2 (Møller–Plesset 2nd order) method [6] which scales 
to  the  fifth  power,  the  CCSD  (Coupled-cluster   including 

Single  and  Double  excitations)  model  which  scales  to  the 
sixth  power,  and  with  inclusion  of  iterative  Triples  i.e. 
CCSD(T) scales to the seventh power [7]. The computational 
resources required to determine the energies of all conformers 
of a general molecule are   determined by the length L – and 
are typically O(3L). Beyond length 10, the problems become 
infeasible  using  B3LYP/6-31+g(d,p)  and  exhaustive  search 
techniques[7].  An  increase  of  efficiency  of  one  order  of 
magnitude would therefore allow either an increase in length 
of 2, or one higher level of theory, while consuming the same 
or less computational resources. 

The  initial  molecule  chosen  for  experimentation  is  the 
dipeptide carnosine (Figure 1), as the exhaustive search results 
were  already  available  from  previous  work.   Further 
molecules were examined later. The landscape of conformer 
energies  for  a  dipeptide  of  length  8  such  as  carnosine 
correspond  to  an  8-dimensional  manifold,  with  occasional 
gaps  due  to  some  molecular  configurations  resulting  in 
infeasibly small inter-atomic distances.  

Figure 1. Carnosine

Carnosine  (D-alanyl-L-histidine)  is  a  dipeptide  found  in 
several  human  tissues,  particularly  skeletal  muscle,  heart 
tissue and the brain [9]. Its functions in each of these tissues 
is  not  well  understood,  but  studies  have  shown  that  it 
possesses  potent  antioxidant  properties,  protects  against 
neuronal cell death and that its zinc salt promotes the healing 
of peptic ulcers [10].
 
Carnosine  may  be  considered  to  have  8  rotatable  bonds 
(labeled  a..h  in  Figure  1).  Work by  Izgorodina et  al  [11]  . 
indicates  that  when  starting  from  a  previously  optimized 
structure, 120 degree resolution is generally sufficient to map 
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sigma  bonds.  At  this  resolution,  this  yields  3^8  =  6561 
possible  conformers  (shapes)  of  carnosine,  some  of  which 
may be  inaccessible  as  the  combination  of  rotations  places 
atoms at or near the same coordinates. In addition, it is known 
that  in neutral polypeptides,  rather than adopting its normal 
shape (Structure A, Figure 2),  the carboxylic acid hydrogen 
may point away from the carboxylic acid group to  form an 
intramolecular  hydrogen bond with  the amide oxygen atom 
(Structure B, Figure 2). As this does not correspond to a 120o 

rotation, these two structures are considered separately in this 
paper. 

Figure 2 Optimized A and B Structures of Carnosine

Simple  GAs  were  a  plausible  candidate  for  finding  the 
minimum energy conformers, but the best parameter values to 
be used in them were unknown. While there is considerable 
heuristic knowledge about these values for particular problem 
domains,  there  has  been  very  little  systematic  research 
investigating the interaction between the different parameters 
that  are  used  to  define  GAs.  Research  has  been  mainly 
confined  to  modifying one or two of  the  parameter  values, 
keeping  all  the  others  constant.  Work  has  recently 
concentrated on optimizing a particular  GA for a particular 
problem, injecting more and more domain-knowledge into the 
genetic  representation,  and making the  GA more  and  more 
specialized. This has been found to be a very fruitful line of 
research,  with  large  degrees  of  optimization  having  been 
achieved. Most knowledge we have is on the effect of varying 
population size and mutation rate parameters in isolation, with 
the  rest  having  been  assigned  arbitrary  values.[12][13]. 
Nannen's  results  [14]  using  120  different  combinations  of 
Evolutionary Algorithm (EA) operators on 4 different generic 
problems using the generic information-theoretical metric of 
Shannon  Entropy  found  the  different  components  varied 
greatly  in  importance,  but  did  not  give  practical  optimum 

values for different classes of problem. Other methods used 
include statistical or theoretical analysis.[15][16]

The use of Meta-GAs to optimize parameters and thus tune 
GAs was first proposed by Grefenstette [17] and continued by 
Friesleben  and  Hartfelder  [18]  in  1993.  de  Laangraaf  [19] 
showed that the performance of Meta-GA optimized simple 
GAs was at least comparable to those of adaptive ones. We 
therefore  use  Meta-GAs  to  optimize  the  simple  GAs  that 
calculate the lowest-energy conformers.

Aim

Our object was to provide computational chemists with little 
or no experience in the use of GAs with a “turnkey” method 
of determining minimum energy conformers of molecules.

What was needed was a set of default parameters to set the 
GA to  to  have  a  reasonably well  optimized  computational 
factory for generating candidate low-energy conformers.

As  a  single  calculation  for  a  dipeptide  of  length  8  using 
UB3LYP/6-31+g(d,p)  takes  approximately  25  minutes  of 
CPU  time  at  0.5  TFLOPS  on  the  National  Computational 
Infrastructure  in  Australia,  exhaustive  search  calculations 
beyond  this  level  of  theory  become  computationally 
infeasible; and even a single calculation of the energy of one 
length-8 conformer to the CCSD(T) level would take time on 
the limits of feasibility today.  Previous computational studies 
by Diez [20] on carnosine have featured only two neutral or 
zwitterionic  conformers,  the only study to  consider  the full 
conformational landscape of carnosine was undertaken using 
the semi-empirical PM3 method [21]. 

Exhaustive Search Method

In order to produce the exhaustive search  results, both A and 
B  carnosine  structures  were  constructed.  Their  geometries 
were optimized using the UB3LYP density functional and the 
6-31+g(d,p) basis set [4][5]. All calculations were undertaken 
using the Gaussian09  suite [8].

The  optimized  structure  was  denoted  carnosine-
a1b1c1d1e1f1g1h1 and  had  an  energy  of  -796.150527 
hartree.  From  this  structure,  internal  coordinates  for  each 
conformer were generated.  Single-point  energy calculations, 
also  using  UB3LYP/6-31+g(d,p)  were  undertaken  and  the 
energies saved. The optimized  geometries of both A and B 
structures are shown in Figure 2 

For the  “A” structure  of  carnosine,  the  optimized  structure 
was  only  the  second  lowest  energy  structure  (∆E  =  4.72 
kJmol-1).   The  global  minimum  corresponding  to 
a1b2c1d1e1f1g1h1 differed by a single rotation and had an 
energy of -796.152327 hartree. 597 possible conformers were 
excluded due to infeasibly small interatomic distances.  The 
optimized “B” structure was also similarly low in energy (∆E 
3.85 kJ mol-1) but was only the third lowest in energy. Again, 
the  a1b2c1d1e1f1g1h1 conformer  proved  to  be  the  global 
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minimum  and  the  intervening  conformer  was  the 
a2b2c3d1e1f1g1h1 conformer (∆E 2.44 kJ mol-1). In this case 
619  conformers  were  excluded  based  on  interatomic 
distances.

The corresponding structures were also calculated using the 
HF/6-31g (Hartree-Fock)[22,23,24] model chemistry. This is 
computationally less  intensive  by a  factor  of  20.  However, 
results  differed  significantly  from  those  produced  by  the 
UB3LYP/6-31+g(d,p)  model,  indicating  that  this  is  a  less 
desirable  technique  than  using  GAs  for  minimizing 
computational  load.  That  we  are  close  to  the  limits  of 
computing feasibility is shown by the fact that this is the first 
time the conformational preference  of the gas-phase structure 
of carnosine has been calculated to the UB3LYP/6-31+g(d,p) 
level  of  theory.  The  calculations  for  the  conformers  of 
carnosine-A  took  2300  CPU  hours  on   2.93  GHz  Intel 
Nehalem CPUs.

Meta-Genetic Algorithm Method 

Table 1: Canonical Parameters of a  Simple GA

Parameter Values Arguments

Crossover OX
Uniform
Two Point
One Point

Probability

Mutators Swap Probability

Binary Probability

Gaussian Probability
Mean
Standard Deviation
Minimum
Maximum

Uniform Probability

Parental 
Selection

Tournament Tournament Size

Uniform

Rank

RouletteWheel

Survivor 
Selection

Elitism 
(True or False)

Population 
Size

Positive binary

A Meta-GA was used to tune the parameters of a simple GA, 
which in turn determined the energy of the conformers of the 
dipeptide  carnosine.  The  parameters  of  a  simple  GA  are 
shown in Table 1. Our Meta-GA genome was implemented as 
a 1D list  of  12 integers between 1 and 1000,  as  shown in 
Table 2.

The  problem  of  dealing  with  multiple  mutually  exclusive 
choices was dealt with by using  “winner take all” probability 

densities. That is, given 3 possibilities, A, B and C, and if the 
PD of A was 500, B was 900, and C was 600, then the highest 
(B in this case) would always be chosen.  

Table 2 - Genome Representation of GA Parameters

Parameter Range

Population Size 5-1000 1-1000  with  a 
Floor of 5

Uniform  X-Over 
Probability Density

1-1000 Exclusive with
OX,  1-Pt,  2-Pt, 
None. 

One-Point  X-Over 
Probability Density 

1-1000

Two Point X-Over 
Probability Density

1-1000

No  X-Over 
Probability Density

1-1000

Binary  Mutator 
Probability

0.001-1.000 1-1000 
thousandths

Swap Mutator
Probability

0.001-1000 1-1000 
thousandths

Roulette Selector
Probability Density

1-1000 Exclusive  with 
Tournament, 
Uniform, Rank

Tournament 
Selector
Probability Density

1-1000

Uniform Selector
Probability Density

1-1000

Rank Selector
Probability Density

1-1000

The swap mutator could be used on its own, or in addition to 
binary mutation. Tournament Size was left at the default value 
of 2.  Mutator probability is  defined in PyEvolve[25]  as the 
proportion of the genome where a mutation is attempted, each 
mutation having a probability of the mutator probability. Thus 
a chromosome of length 4 and a mutator probability of 0.5 
would  have  two  of  its  genes  selected  randomly  possibly 
mutated, each with a probability of 0.5. Elitism was enabled. 
No tuning of  the Meta-Ga itself  was attempted:  the default 
parameters  of  the  PyEvolve  toolset  were  used.  These  are 
Parent  Selector:Rank;  Tournament  Size:2;  Swap:Enabled, 
Mutation  rate:0.02,  Population  Size:80,  Crossover:1  Point, 
Crossover rate: 0.5.

The Meta-GA termination  condition  was  initially set  to  20 
generations,  but  later  increased  to  100  to  confirm 
convergence. This Meta-GA was run 100 times yielding 100 
different  optimized  parameter  sets,  with  the  corresponding 
fitness (number of computations required using that set) for 
each.
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The termination condition for the conformer determining GA 
was  when  the  the  minimum  energy  conformer  (known  a-
priori) had been found. The fitness for a GA with that set of 
parameter values was the number of computations required to 
obtain this minimum. 

For the  GA to determine minimum energy conformers,  the 
genome   was  encoded  as  a  simple  vector  of  eight  trinary 
numbers (a,b,c...g,h) each value corresponding to one of the 
three allowed positions of the corresponding bond. 

In  this  case,  the  difference  between  Binary  and  Gaussian 
mutators were not examined – the differences between a flat 
distribution and a Gaussian distribution, are negligible in the 
range  1..3.  OX  crossover  was  not  appropriate  for  this 
representation, so was not used.

To determine the energy for each conformer was just a matter 
of using a look-up table on the values for energy previously 
determined  by the  exhaustive  search  method.  This  enabled 
experimentation to be performed using significant quantities 
of evaluations. To calculate these values any other way would 
have  taken  many orders  of  magnitude  more  time.  On  the 
supercomputer  network  used  in  the  experiment  one  such 
calculation took 20-30 CPU minutes.

After  tuning of  the  GA parameters,  each  of  the  100  fittest 
tuned  GAs  was  run  100  times  to  gain  some  measure  of 
reliability,  as  some  of  the  associated  parameters  were 
probabilistic.  Therefore  the  outcomes  were  stochastic  not 
deterministic.

Initial  experiments  [26]  only  looked  at  population  size, 
mutation rate, and 1-point crossover rate with Elitism enabled, 
the  other  values  being set  to  the PyEvolve defaults  (Parent 
Selector  :Rank;  Tournament  Size:2;  Swap:Enabled).  These 
were  applied  to  carnosine,  and  then  to  other  molecules  of 
comparable size to evaluate the  general applicability of the 
technique.

Results

Exhaustive Search Calculations
Calculated energies represent the stabilization of the molecule 
compared to all of its constituent particles (nuclei, electrons) 
separated to infinity and thus are negative quantities. To use 
linear  scaling  within  PyEvolve,  positive  raw  scores  are 
required, therefore the fitness of any given conformer is made 
equal  to  zero  minus  its  energy  and  the  normal  chemical 
problem of  minimization  becomes  a  maximization  problem 
within PyEvolve. Figure 3 shows the negative energy (0 - E) 
of the 5970 non-excluded carnosine A conformers, 1288 of 
these conformers have an energy within 0.05 a.u. of the global 
minimum. This energy range is shown expanded in Figure 4. 
In  each  figure,  “Conformer  ID”  represents  the  encoded 
genome, minus the alpha characters (i.e.  a1b1c1d1e1f1g1h1 
=> 11111111) and listed in numeric order. Thus the vertical 
series  of  points  apparent  in  Figure  4  represent  sets  of 
conformers where the first five bonds (a—e) are conserved.

Some general  conclusions  about  conformer stability can  be 
drawn from Figure 3.   The very highest  energies,  clustered 
around -791 a.u. occur in three sets of three, corresponding to 
genomes  of  the  form  a[1-3]b2c3d2e1f[1-3]g2h3. These 
conformers  all  have  the  imidazole  ring  in  extremely close 
proximity to the terminal NH2 group. The second cluster of 
high  energy  structures,  having  energies  of  approximately 
-793.055  a.u.  also  place  the  imidazole  and  NH2 groups  in 
close proximity. These conformers correspond to genomes of 
the  form  a[1-3]b1c3d3e3f[1-3]g2h3 or  a[1-3]b3c2d3e3f[1-
3]g2h3.

In contrast, the lowest five energy structures all preserve the 
final 5 bits of the genome as their optimized (original) values 
– i.e. d1e1f1g1h1. These conformers span an energy range of 
11.4  kJmol-1,  only  just  over  the  10  kJmol-1 range  that  is 
typically  considered  chemically  relevant.  The  10  lowest 
energy conformers of carnosine A are shown in Table 4. The 
conservation  of  this  portion  of  the  molecule  is  even  more 
pronounced  in  the  B  structure  of  carnosine,  where  the  15 
lowest  energy  structures  all  preserve  the  original  histidine 
conformer, as shown in table 5. 

Figure 3 – Energies of All Carnosine A Conformers

Figure 4. Energies  below 796.1025 a.u. Scale shows 0-E

This greater conservation is expected, given the stabilization 
provided  by  the  intramolecular  hydrogen  bond  present  in 
carnosine B, which effectively fixes bonds (d—g).
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Table 2. 10 Lowest Energy Conformers of Carnosine A

E(UB3LYP/6-31+g(d,p)) Genome
-796.152327 a1b2c1d1e1f1g1h1
-796.150527 a1b1c1d1e1f1g1h1
-796.149450 a2b2c3d1e1f1g1h1
-796.148919 a1b1c2d1e1f1g1h1
-796.147980 a3b2c1d1e1f1g1h1
-796.147800 a1b2c1d1e1f2g3h1
-796.147574 a1b2c1d1e1f2g2h1
-796.147441 a1b2c2d1e1f1g1h1
-796.147369 a2b1c1d1e1f1g1h1
-796.147337 A1b1c1d1e1f2g2h1

Table 3. 15 Lowest Energy Conformers of Carnosine B

E(UB3LYP/6-31+g(d,p)) Genome
-796.157523 a1b2c1d1e1f1g1h1
-796.156592 a2b2c3d1e1f1g1h1
-796.156054 a1b1c1d1e1f1g1h1
-796.155025 a1b3c2d1e1f1g1h1
-796.155001 a1b1c2d1e1f1g1h1
-796.153013 a1b2c2d1e1f1g1h1
-796.152772 a3b2c1d1e1f1g1h1
-796.152660 a2b1c1d1e1f1g1h1
-796.152270 a3b1c1d1e1f1g1h1
-796.151997 a2b2c1d1e1f1g1h1
-796.151893 a2b3c2d1e1f1g1h1
-796.151554 a3b1c2d1e1f1g1h1
-796.151122 a2b1c2d1e1f1g1h1
-796.150818 a1b1c3d1e1f1g1h1
-796.150469 a3b2c2d1e1f1g1h1

Initial  Experiments  –  Population  Size,  Mutation 
rate, 1-D Crossover rate
The top 5 tunings of the GA are shown in table 3. To verify 
the performance of the GA parameters,  the top 5 sets  were 
also used to determine the lowest energy conformer of the B 
structure of carnosine. Each set of parameters was used 100 
times, results are shown in Table 4. All 5 GAs find the global 
minimum 100% of  the  time,  the  worst  case  required  1056 
evaluations (16% of the 5942 conformers). The mean number 
of evaluations for all GAs was between 176 (2.7%) and 253 
(3.9%).

Table 3. Results for Top 5 Parameter Sets Carnosine A

Init
Rank

Pop 
size

Mut
rate

XOvr
rate

Min 
Evals

Max 
Evals

Mean 
Evals

1 6 0.238 0.156 12 888 218.52
2 2 0.225 0.005 12 1154 220.96
3 31 0.403 0.977 62 930 242.73
4 11 0.341 0.786 33 946 245.3
5 32 0.365 0.810 64 1056 256

Table 4. Results for Top 5 Parameter Sets Carnosine B

Init
Rank

Pop 
size

Mut
rate

XOvr
rate

Min 
Evals

Max 
Evals

Mean 
Evals

1 6 0.238 0.156 12 1116 175.74
2 2 0.225 0.005 14 886 190.66
3 31 0.403 0.977 62 899 252.96
4 11 0.341 0.786 22 682 181.83
5 32 0.365 0.810 64 1056 253.44

The  close  agreement  of  the  two  sets  of  mean  evaluation 
counts,  both  between  the  different  parameter  sets,  and  the 
different  molecules,  suggests  that  the  estimates  of 
performance are reliable, and applicable to a broad range of 
molecular species.

Figure  4.  Computational  Efficiency  as  a  Function  of 
Population Size and Mutation Rate for Carnosine-A Hollow 
squares  denote  parameter  sets  that  did  not  always  find  the 
global optimum.

Figure 4 shows the computational requirements for each pair 
(p,m) of population size and mutation rate. Crossover rate was 
not found to affect the GA's fitness. All of the pairs generated 
a global optimum energy in all 100 runs (success rate 1.00) 
except for the three points marked as hollow squares.

Table 5. Partly Unsuccessful Parameters 
Population 
Size

Mutation 
rate

Success 
Rate

Crossover 
Probability

Mean  Number 
of  Evaluations 
(Successful 
Runs only)

28 0.172 0.29 0.474 127.45

16 0.168 0.30 0.873 82.13

36 0.179 0.31 0.050 157.94

A variety of different molecules were downloaded from the 
Cambridge Structural Database [28]. Molecules were selected 
to be close to  the largest  size where exhaustive search was 
considered feasible (approximately 50 atoms) but to contain a 
wide  variety  of  structural  motifs  (linear,  branching,  planar 
regions)  and  chemical  functional  groups.  Using  the  same 
technique on a variety of other molecules suggested that the 
optimum  parameters  of  population  size  and  mutation  rate 
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were valid in general for molecules of similar size. Three test 
molecules are illustrated in figures 5-7 and the corresponding 
results in figures 8-10.  In figures 8-10, hollow squares denote 
parameter sets that did not always find the global optimum.

Figure 5 – Optimized Structure of Dawmoe

Figure 6 optimized Structure of Exuduy
 

Figure 7 Optimized Structure of Ifevoe

Subsequent Experiments – Tuning all parameters  
The  use  of  the  swap  mutator  was  found  to  be  strongly 
deleterious  to  the  reliability  of  the  GA,  without  any 
compensatory increase in efficiency. When Elitism and swap 
were  both  used,  only  10  of  the  GAs  found  the  global 
minimum 100% of the time. The use of elitism did not have a 
significant effect on reliability with only 11 GAs being 100% 
successful when swap was employed without elitism. 16 GAs 
were less than 20% reliable.

Elitism strongly affected the efficiency of  the GA. Without 
employing  swap,  when  elitism  was  employed,  the  mean 
minimum,  maximum and mean number of evaluations were 
147.82,  2800.10  and  794.99  respectively.  Not  employing 
elitism, raised these numbers to 157.25, 3457.90 and 991.76 
respectively.

Figure  8.   Computational  Efficiency  as  a  Function  of 
Population Size and Mutation Rate for  Dawmoe. 

Figure  9.   Computational  Efficiency  as  a  Function  of 
Population Size and Mutation Rate for  Exuduy. 

Figure  10.   Computational  Efficiency  as  a  Function  of 
Population Size and Mutation Rate for  Ifevoe.
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After  running  each  parameter  set  100  times,  the  100  GA 
parameter sets were ranked according to their efficiency, such 
that  the highest  rank (100)  has the lowest mean evaluation 
score,  i.e. is the most fit parameter set. These rankings were 
then  graphed  against  selector  and  crossover  methods  to 
determine which methods typically fared well, or conversely, 
which methods decreased the efficiency of the GA. These
inverse  rankings  are  shown  in  Figures  11  to  14  for  the 
Tournament,  Roulette,  Uniform  and  Rank  selectors 
respectively. Figure 15 compares all four selectors. The top 10 
GA tunings  were applied  100 times  to  A- and B-carnosine 
datasets and the mean evaluations  are shown  in Table 6. The 
results appear consistent, suggesting  the general applicability 
of these tunings .

Figure 11 Inverse Rankings of Tournament Parent Selector for 
different Crossover Methods

Figure 12 Inverse Rankings of  Uniform Parent Selector for 
different Crossover Methods

Figure 13 Inverse Rankings of Roulette Wheel Parent Selector 
for different Crossover Methods

Often it is not only the minimum energy conformer that is of 
chemical  interest,  but  all  conformers within a given energy 
range,  say  10  kJmol-1.  With  this  in  mind,  an  alternate 
termination  criterion  was  trialled,  whereby the  five  lowest 
energy conformers were required to exist in the population. 
This  fared  very  poorly,  with  success  rates  of  only  a  few 
percent and the original termination criteria based on a single 
raw score was restored.  

Figure  14  Inverse  Rankings  of  Rank  parent  Selector  for 
different Crossover Methods

Figure  15  Comparison  of  all  Parent  Selectors  for  different 
Crossover Methods

Table 6.  Performance of  GAs with same parameter sets  on 
different datasets

GA(ranked) A-Carnosine Dataset B-Carnosine Dataset

1 651.82 627.64

2 270.64 241.06

3 322.07 253.54

4 320.12 301.57

5 372.40 353.15

6 537.68 576.40

7 439.56 495.00

8 555.66 497.70

9 566.26 557.98

10 492.65 438.37
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CONCLUSIONS 

Unreliable parameter sets were found when mutation rate and 
population  size  were  both  low.  This  suggests  that  the 
algorithm  degenerates  into  simple  stairclimbing  in  those 
regions,  and  success  depends  on  initial  conditions.  If  the 
initial  population  contains  values  near  the  global  optimum, 
performance is very good, but if  not,  the low mutation rate 
means that the result may be stuck in a local optimum. 

Both  Rank  and  Tournament  parental  selection  far  out-
performed Uniform selection  and  Roulette-Wheel  selection. 
Tournament selection plus uniform crossover appeared to be 
the  most  reliable.  Tournament  selection  plus  no  crossover 
performed poorly : but Rank selection performed well with no 
crossover. Optimum population size was  less than 100, and 
usually less than 50: optimum mutation rate was less 0.7 and 
usually less than 0.5. Examination of the populations revealed 
many  duplicates  of  the  lowest  energy  conformer.  This 
suggests that incest-prevention is required in order to obtain 
results containing sets of near-optima  for this method.

No  improvement  on  default  values  was  observed  using 
optimized  selection/crossover/mutation  values  for  the  best-
performing  mutation  rate/population  size  combinations, 
except for replacing the swap mutator with the binary mutator. 
PyEvolve  using default  values,  except  for   population  size 
~30,  mutation  rate  of  ~0.35,  elitism and  binary mutator  as 
described  in  [26]  is  therefore  recommended  for  use  by 
computational  chemists  to  locate  global  minimum 
conformers.

Without effective removal of duplicates or Incest prevention 
[27], a future implementation could work-around the problem 
of finding sets of lowest energy conformers by searching for 
the  lowest  energy conformer,  then  once  that  is  identified, 
excluding it and looking for the next lowest energy conformer 
until  the  desired  number  of  conformers  were  identified.  A 
lookup  table  with  the  results  of  each  energy  calculation, 
means  that  later  runs  would  undertake  far  fewer  of  these 
calculations.

Acknowledgments
This work was based on initial research funded in part by the 
Australian  Government  under  the  Auspices  of  the  Co-
Operative Research Centre for Advanced Automotive Systems 
(Auto-CRC). Supercomputer facilities  were provided by the 
National Computing Infrastructure (NCI).

References
[1] Michael J. S. Dewar, Eve G. Zoebisch, Eamonn F. Healy, James J. P. 

Stewart  (1985)  Development  and  use  of  quantum  mechanical 
molecular  models.  76.  AM1:  a  new  general  purpose  quantum 
mechanical  molecular  model Journal  of  the  American  Chemical  
Society 1985 107 (13), 3902-3909

[2]  James  J.  P.  Stewart  (1989)  Optimization  of  parameters  for 
semiempirical  methods  I.  Method  Journal  of  Computational  
Chemistry Volume 10, Issue 2, Date: March 1989, Pages: 209-220

[3]  James  J.  P.  Stewart(1989)  Optimization  of  parameters  for 
semiempirical methods II. Applications  Journal of Computational  
Chemistry Volume 10, Issue 2, Date: March 1989, Pages: 221-264 

[4] Becke A.D. (1993), Density-functional thermochemistry. III. The role 
of exact exchange, J. Chem. Phys. 98  1993 5648-5652

[5] Stephens P.J. , Devlin F.J. , Chabalowski C.F. , Frisch, M.J.  (1994) 
Ab  initio  calculation  of  vibrational  absorption  and  circular 
dichroism  spectra  using  density  functional  force  fields,  J.  Phys.  
Chem. 98 1994 11623-11627. 

[6]  Møller  C.,  Plesset  M.S.  (1934).  "Note  on  an  Approximation 
Treatment  for Many-Electron  Systems"  (abstract).  Phys.  Rev.  46: 
618–622.

[7] Cizek, J. (1966) On the correlation problem in atomic and molecular 
systems" J. Chem. Phys. 45, 4256  1966

[8] Frisch, M. J. et al (2004)  Gaussian 09, Revision A.01, Gaussian, Inc., 
Wallingford CT, 2004.

[9]  Quinn,  PJ;  Boldyrev, AA; Formazuyk(1992)  VE  Mol Aspects  Med 
Vol. 13 379 1992

[10]  Matsukura,  T; Tanaka,  H (2000)  Biochemistry  (Moscow) Vol.  65 
961 2000 

[11]  Izgorodina  E.,  Lin  L.,  and  Coote  M.L.   (2007)  “Energy-Directed 
Tree Search:  An Efficient  Systematic  Algorithm  for  Finding  the 
Lowest  Energy  Conformation  of  Oligomeric  Molecules”,  Phys.  
Chem. Chem. Phys., 2007,  9, 2507-2516

[12] Yu-an Zhang, Makoto Sakamoto, Hiroshi Furutani, (2008) “Effects 
of  Population  Size  and  Mutation  Rate  on  Results  of  Genetic 
Algorithm,"  Fourth  International  Conference  on  Natural  
Computation, vol. 1, pp. 70-75 

[13]  Wolpert D. and Macready W (1997) “No free lunch theorems for 
optimisation”.  IEEE Transactions  on  Evolutionary  Computation, 
1(1):67-82, 1997 

[14]  Nannon  V.,  Smit  S.K.,  Eben A.E. (2008)  “Costs  and Benefits  of 
Tuning Parameters of Evolutionary Algorithms”  Parallel Problem 
Solving from Nature 2008

[15] Grefenstette J (1986), Optimization of control parameters for genetic 
algorithms, IEEE Transactions on Systems, Man and Cybernetics, 
v.16 n.1, p.122-128, Jan./Feb. 1986  

[16] Nakama T. (2008),  “Theoretical analysis of genetic  algorithms in 
noisy environments based on a Markov Model”.  Proceedings of  
the  10th  Annual  Conference  on  Genetic  and  Evolutionary  
Computation  GECCO08 pp1001-1008. 

[17] Smit,  S.  K. and Eiben, A. E (2009)  Comparing parameter tuning 
methods for evolutionary algorithms  Proceedings of the Eleventh  
conference on  Evolutionary Computation CEC09 pp 399-406

[18]  Friesleben,  B.,  Hartfelder,  M.(1993):  “Optimization  of  Genetic 
Algorithms  by  Genetic  Algorithms”.  In:  Albrecht,  R.F.,  Reeves, 
C.R.,  Steele, N.C.  (eds.)  Artificial  Neural  Networks and Genetic  
Algorithms, pp. 392–399. Springer, Heidelberg 1993

[19]  De Landgraaf W.A. (2006),  Parameter   Calibration  Using Meta-
Algorithms,  Master's  Thesis,  Artificial  Intelligence  Vrije 
Universiteit Amsterdam 2006

[20] Diez, R.P., Baran, E..J. (2003)  Journal of Molecular Structure –  
Theochem Vol. 621(3) 245-251  2003

[21] Klyuev, S. A. (2006)  BIOFIZIKA Vol. 51(4)669-672 2006
[22] Hartree D. R. (1928), Proc Cambridge Phil Soc 24 ,89,111,246
[23] Fock V(1930)  , Z Phyzik, 61, 126
[24] Slater  J.C(1930) , Phys Rev, 35, 210
[25] Perone C.S.(2009) PyEvolve a Python Open-Source Framework for 

    Genetic Algorithms  ACM SIGEvolution Vol 4 Issue 1 2009 
[26]  Addicoat,  M.A,  Brain  Z.E.  (in  press)  Using  a  Meta-GA  for 

Parametric  Optimization  of  Simple  GAs  in  the  Computational 
Chemistry Domain  To appear in  the  Proceedings  of  the  Genetic  
and Evolutionary Computation Conference 2010  GECCO10

[27]  Eshelman  L.J.,  Schaffer  J.D.  (1997)  Preventing  premature 
convergence  in  genetic  algorithms  by  preventing  incest”,  in 
Foundations of Genetic Algorithms 4. pp 115-122  Eds R.K.Belew, 
M.D.Vose - Morgan Kaufman, San Francisco 1997

[28]   Fletcher D.A.,  McMeeking,  R.F.,  Parkin  D, (1996)  “The United 
Kingdom Chemical Database Service", J. Chem. Inf. Comput. Sci. 
1996, 36, 746-749.



Proc. of the Alife XII Conference, Odense, Denmark, 2010 386

Formalising Harmony Seeking Rules of Morphogenesis

Tim Hoverd and Susan Stepney

Department of Computer Science, University of York, UK, YO10 5DD
tim.hoverd@cs.york.ac.uk susan@cs.york.ac.uk

Abstract

The 15 generative patterns of Alexander’s “Nature of Order”
are descriptions of architectural structures that are seen in
both buildings and in the natural world. We are investigating
various aspects of complex systems, including those relating
to structural patterns that may underlie those systems. Here
we describe some experiments to generate 2D structures that
incorporate those patterns that Alexander describes as Pos-
itive Space, the voids that contribute to the overall pattern,
and Levels of Scale, a gradation in the size of the pattern’s
components. We show some of the results, illustrating that
these patterns can be achieved as emergent properties of sim-
ple placement algorithms with a generative component.

Introduction
Studies of morphogenesis in ALife are typically inspired by
biological growth and development process. However, there
are other systems that grow and develop, influencing and
influenced by their environment: buildings and towns. Here
we investigate using these processes as an alternative source
of inspiration.

Alexander’s Generative Patterns (Alexander, 2004) are a
vision of the way that successful architectural forms can be
seen as the product of the generative application of a small
number of properties that are seen in those forms. They at-
tempt to describe the way that an architectural whole, be it a
house or a city, evolves as a consequence of its environment
and use. For example, (Alexander, 2004) shows a diagram
of ancient Rome and discusses how that particular configu-
ration emerged from the human use and development of the
city.

We are examining these Generative Patterns to investi-
gate the way that such approaches work. Our long term goal
is to apply these properties, or similar ones, to the gener-
ative development of the architecture of complex systems:
systems whose complex behaviour emerges from the simple
behaviour of a large number of elements. But first it is nec-
essary to explore Alexander’s patterns in more detail, and to
be able to synthesise structures that satisfy his criteria.

Here we discuss Alexander’s patterns, and show the re-
sults of a computer program that uses a number of different

algorithms which attempt to generate structures that match
two of his generative patterns.

The Nature of Order

The four volumes of The Nature of Order (Alexander, 2004)
explore the notion of Wholeness in relation to architectural
structures. Wholeness is Alexander’s enigmatic term for
the “quality without a name” that he identified earlier in
(Alexander, 1979). In The Nature of Order, Alexander iden-
tifies 15 generative properties as the root characteristics of
those architectural structures that form a satisfactory whole.

Alexander describes structures in terms of centres, each
of which is “a zone of coherence in space”. A centre is a re-
gion that is in some way coherent in the way it represents the
space and its use. By “coherence” Alexander means that a
centre is distinct from those around it and within it, but that
in some way it contributes to the coherence of those other
centres. Alexander refers to these as “centres” as they are
“centres of influence, centres of action, centres of other cen-
tres” (Alexander, 2004, vol.1, p108). One particular reason
for using the word “centre” is that he is trying to describe
things that may have no specific boundary; a pond, for ex-
ample, might include the pipes bringing in water, the rocks
on its edge (Alexander, 2004, vol.1, p84). A centre is some-
thing noticeable about a structure; something that draws at-
tention from neighbouring structures. Examples might be
(Appleton, 1997) a row of tiles on a ceiling or floor, a hall-
way, a pond in the countryside, and—in the context of soft-
ware development—what are known as “patterns” (Gamma
et al., 1995).

The generative properties are used to describe a structure
as a system of centres, and to show the ways that that struc-
ture can be further elaborated and extended, or generated,
as a region is architecturally developed. Alexander sees this
as a generative, developmental process, where the system
of centres is progressively developed using the same set of
generative processes which each application of these pro-
cesses being dependent on the current structure. For ex-
ample, Alexander (Alexander, 2004, vol.2, pp252–255) de-
scribes how the structure of St Mark’s Square in Venice can
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be described as the current end product of an evolutionary
process. At each step of this process, Alexander identifies
latent centres and shows how, in his view, new building sup-
ported and strengthened these centres.

Generative Properties
The 15 properties are described in (Alexander, 2004, vol.1)
as:

Levels of Scale “how a centre is made stronger (more co-
herent) by the smaller strong centres within it and the
larger strong centres that surround it.”

Positive Space “the way that a given centre must draw its
strength, in part, from the strength of other centres imme-
diately adjacent to it in space.”

Roughness “the way that the field effect of a given centre
draws its strength, necessarily, from irregularities in the
sizes, shapes and arrangements of other nearby centres”

Alternating Repetition “the way in which centres are
strengthened when they repeat, by the insertion of other
centres between the repeating ones”

Thick Boundary “the way in which the field-like effect of a
centre is strengthened by the creation of a ring-like centre,
made of smaller centres which surround and intensify the
first. [It] also unites the centre with the centres beyond it,
thus strengthening it further”

Good shape “the way that the strength of a given centre de-
pends on its actual shape and the way this effect requires
that even the shape, its boundary, and the space around it
are made up on strong centres.”

Local Symmetry “the way that the intensity of a given cen-
tre is increased by the extent to which other smaller cen-
tres that it contains are themselves arranged in locally
symmetrical groups”

Contrast “the way that a centre is strengthened by the
sharpness of the distinction between its character and the
character of surrounding centres”

Gradient “the way in which a centre is strengthened by a
global series of different-sized centres which then point to
the new centre and intensify its field effect”

Deep Interlock and Ambiguity “the way in which the in-
tensity of a given centre can be increased when it is at-
tached to nearby strong centres, through a third set of
strong centres that ambiguously belong to both”

Echoes “the way that the strength of a given centre depends
on similarities of angle and orientation and systems of
centres forming characteristic angles thus forming larger
centres, among the centres it contains”

Simplicity and Inner Calm “the way the strength of a cen-
tre depends on its simplicity - on the process of reducing
the number of different centres which exist in it, while in-
creasing the strength of these centres to make them weigh
more”

The Void “the way that the intensity of every centre de-
pends on the existence of a still place - an empty centre
- somewhere in its field”

Not Separateness “the way the life and strength of a cen-
tre depends on the extent to which that centre is merged
smoothly - sometimes even indistinguishably - with the
centres that form its surroundings”

Strong Centre “defines the way that a strong centre re-
quires a special field-like effect, created by other centres,
as the primary source of its strength”

These 15 separate properties address the same thing: the
manner in which centres interact to increase the overall co-
herence of the space. Our long term objective is to examine
how these properties, or analogous ones, might apply in the
context of the evolutionary development of complex systems
architectures. We start by examining two of these properties
in more detail: Positive Space and Levels of Scale.

Positive Space
“Positive Space” is conventionally used to describe “space
that is occupied by a filled shape or a positive form” (Wong,
1993). The positive space is the figure at the centre of atten-
tion; it is the part of the figure that the eye sees. In this sense
positive space is in contrast with the negative space that sur-
rounds the positive; it is the “figure” not the “ground”.

Alexander describes the space between the artefacts of a
built environment as ideally being Positive Space. This is
in contrast with the conventional use of the term negative
space where an artist “relies on the space that surrounds the
subject to provide shape and meaning” (Bar, 2009).

For Alexander, Positive Space is that space which, al-
though the space between other parts of a structure, itself
contributes towards the “wholeness”. That is, if the struc-
ture represents a coherent whole, then the space between the
built artefacts is itself (also) positive, in that it contributes
to the overall coherence rather than just being the (negative)
space between those artefacts. So the figure and the ground
are both positive, in a coherent whole.

An extreme example of this is the Escher wood-cut “Day
and Night” (Escher, 1938): the space between flying geese
is yet more geese, heading in the opposite direction. That
is, the “space” has its own positive structure. The same rela-
tionship appears in non-spatial examples, too. For example,
Tsur shows how the same concepts occur in areas such as
music and poetry (Tsur, 2000).
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Levels of Scale
Centres, the structural components of the architectural
space, are made more “coherent” by the presence of both
larger and smaller centres in the overall structure. A particu-
lar architectural space is overall more coherent if the various
structures, and indeed the non-structures that are the Positive
Space display a degree of gradation in their sizes. For ex-
ample, a large structure placed next to a collection of smaller
structures might represent an overall structure that was more
“whole”.

If the changes in scale are too extreme the centres would
not be seen as increasing each other’s coherence. Alexander
shows how coherent structures often contain a number of
levels of scale in the ratio of about 3:1 (Alexander, 2004,
vol.1). The same ratio appears elsewhere; Salingaros shows
levels of scale in the centres of a carpet design which appear
in the ratio 3:1 over eight levels of scale (Salingaros, 1995).

BlobWorld: Exploring the properties
We first examine the properties of Positive Space and Lev-
els of Scale. We do this in a very simplified simulation, of
“blobs” (round or square) being placed in a 2D environment
of previously placed blobs.

Our BlobWorld application generates simple diagrams
that have greater or lesser degrees of these properties, de-
pendent on various parameter values and the particular algo-
rithms used. These algorithms are designed in such a way
that, are far as possible, aspects of the desired properties
emerge as a result of the generative processes, rather than
being explicitly encoded.

Contingent Placement Algorithm
The first algorithm, contingent placement, attempts to pro-
duce emergent Positive Space. It attempts to place a blob
at a given position; if it is obstructed by existing blobs, the
new blob is moved along a randomly chosen direction until
it is no longer obstructed. So the placement is contingent on
the presence of pre-existing blobs. The algorithm is given in
figure 1, in which:

blobShape is “round” or “square”.

sizePDF is the probability distribution function (pdf) used
to generate blob sizes (see later).

visProb is the probability of a blob being visible. Early
versions of BlobWorld did not have this parameter and
blobs were always visible on the diagram. The addition
of “invisible” blobs (which are not visible but neverthe-
less affect the placement of other blobs) has a significant
effect on the appearance of Positive Space in the resulting
diagrams.

blobCount is the total number of blobs (both visible and
invisible).

1: blob[0] := new Blob(blobShape)
2: blob[0].setSize(sizePDF)
3: blob[0].setVis(boolean according to visProb)
4: blob[0].setPosition(origin)
5: blob[0].draw()
6: for i = 1..blobCount-1 do
7: blob[i] := new Blob(blobShape)
8: blob[i].setSize(sizePDF)
9: blob[i].setVis(boolean according to visProb)

10: blob[i].setPosition{blobs[0].getPosition()
| blobs[i-1].getPosition()
| blobs[random(0..i-1)].getPosition()}

11: blob[i].setDirection(rand in 0 . . . 360◦)
12: while not blob[i].isOverlapAcceptable(

allowedOverlap) do
13: blob[i].movePositionAlongDirection()
14: end while
15: blob[i].draw()
16: end for

Figure 1: Pseudo-code for the contingent placement algo-
rithm

allowedOverlap determines how much a blob is allowed to
overlap other blobs: when positive, blobs may overlap by
an amount determined by the magnitude of this param-
eter; when zero blobs just touch; when negative, blobs
have a small amount, determined by the magnitude of the
parameter, of clear space around them.

setPosition takes one of three arguments: the centre of the
initial blob, or the most recently placed blob, or a random
blob, to start off the current blob. (In this paper, the initial
blob position is always used.)

Every run creates a unique pattern of blobs which is
highly dependent on the various parameters. Although the
algorithm is simple, with appropriate parameter choices it is
capable of generating patterns that display a significant de-
gree of Positive Space. Three examples of generated patterns
are shown in figure 2.

In most cases where vis = 1, (that is, where all blobs are
always visible) the generated patterns show no significant
degree of Positive Space (for example, figure 2a where the
space is nothing more than a lack of blobs; it is ordinary
“negative space”).

The algorithm is more successful at generating Positive
Space when some blobs are invisible (for example, fig-
ure 2b). The invisible blobs generate additional space, which
enables the appearance of Positive Space. Figure 2b shows
the effect of the Positive Space : in the left of these pictures,
the observer gets a powerful impression of the space itself
constraining, for example, the curve of blobs at the lower
right corner. In many of the diagrams generated in this man-
ner, the Positive Space does not exactly align with the invis-
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a)

b)

c)

Figure 2: Results of the contingent placement algorithm
with blobCount = 20, sizePDF = gaussian, blobShape =
round, allowedOverlap = 0 : (a) vis = 1 ; (b) vis = 0.5 ; (c)
as b, but with the position of the “invisible” blobs shown

ible blobs. That is, although the invisible blobs are in some
way enabling the emergence of Positive Space, they are not
themselves that space (figure 2c).

This successful generation of positive space is not de-
pendent on using round blobs. The same effects are gen-
erated with square blobs (figure 3). Again, without the in-
visible blobs there is little sign of Positive Space (figure 3a),
but when invisible blobs are introduced they create Positive
Space (figure 3b).

With the square blobs, a further effect is visible. Here we
have used a negative allowedOverlap, to separate the blobs
from each other along their straight boundaries. Although
the blobs are all perfectly aligned squares, an optical illusion
makes some edges look slightly tilted or slightly bowed; this
adds a degree of Roughness (another of Alexander’s genera-
tive properties) to the picture.

a)

b)

c)

Figure 3: Results of the contingent placement algorithm
with blobCount = 28, sizePDF = gaussian, blobShape =
square, allowedOverlap < 0 : (a) vis = 1 ; (b) vis = 0.5 ; (c)
as b, but with the “invisible” blobs shown

Independent Placement Algorithm
In order to test whether Positive Space is manifested in any
diagram that merely contains “invisible” blobs a second al-
gorithm is also implemented by BlobWorld. This indepen-
dent placement algorithm positions blobs not as a conse-
quence of the positions of other blobs but as an initial step
of the algorithm. In essence, the contingent placement al-
gorithm positions blobs of a pre-determined size in a field
of other blobs as the diagram evolves from a single blob. In
contrast, the independent placement places blobs entirely in-
dependently of each other but then manipulates the size of
all of the blobs until the diagram, as a whole, achieves the
stated requirements for blob overlap.

The independent placement algorithm is described by the
pseudo-code in figure 4 in which:

growthPDF is the pdf used to generate the growth rate of
each blob (see later).
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for i = 0..blobCount-1 do
blob[i] := new Blob(blobShape)
blob[i].setGrowthRate(growthPDF)
blob[i].setSize(1)
blob[i].setVis(boolean according to visProb)
blob[i].setPosition(positionPDF)
blob[i].unfreeze()

end for
while exists an unfrozen blob do

for i = 0..blobCount-1 do
if blob[i] is unfrozen then

blob[i].setSize(
blobs[i].getSize * blobs[i].getGrowthRate)

blob[i].draw()
end if
if blob[i].overlapsOtherBlob(allowedOverlap) then

blob[i].freeze()
end if

end for
end while

Figure 4: Pseudo-code for the independent placement algo-
rithm

positionPDF is the pdf used to generate the initial position
of each blob. (Here it is a uniform distribution across the
drawing space.)

Examples of the independent placement algorithm are
shown in figure 5. (One of the effects of the algorithm is that
pairs of same-sized blobs occur often: if two nearby blobs
have the same growth rate, they both grow at this same rate
until they come into contact and become frozen.) Although
the diagrams generated with this algorithm do contain space,
it is not Positive Space. That is, space that is there does not
contribute to the overall coherence of the pattern; essentially,
it is merely a random collection of blobs of different sizes.

Positive Space appears in the results of the contingent
placement algorithm only when the invisible blobs are al-
lowed. However, invisible blobs do not result in Positive
Space in the independent placement algorithm (figure 6). It
is clear that the space does not have the same coherent influ-
ence as that seen in the results of the contingent placement
algorithm.

The essential difference between the two algorithms is
that the contingent placement algorithm places blobs in po-
sitions determined, to some extent, by the blobs that already
exist. That is, it is essentially generative in nature. In con-
trast, the independent placement algorithm pre-determines
the placement of the blobs. It naturally results in space
within the pattern: the blobs cannot enlarge to fill the en-
tire space given their fixed starting positions. But it does not
generate Positive Space.

Figure 5: Typical results of the independent placement algo-
rithm with blobCount = 34, growthPDF = gaussian, blob-
Shape = round, allowedOverlap = 0 ; vis = 1

Levels of Scale Algorithm
With BlobWorld we can also start to explore the Levels of
Scale property. As seen in the placement algorithms, the
blob sizes are chosen according to a pdf; there a guassian
(normal) distribution is used (with a user defined mean and
standard deviation). This generates a range of sizes (fig-
ures 2, 3), resulting in some Roughness, but does not exhibit
the 3:1 Levels of Scale property.

To investigate Levels of Scale we use bi-modal and tri-
modal pdfs for size, where the mean (size) and occurrence
likelihood (number) of blobs in the different modes have a
fixed ratio of 3:1 (figure 7).

Figure 8 shows three blob figures generated using the bi-
modal size distribution. The first and second examples show
little evidence of the Levels of Scale property. The sizes fol-
low the 3:1 distribution, but because that size has no effect
on blob placement there is little evidence of any coherence
in the size distributions spatially.

Our hypothesis is that to achieve the Levels of Scale prop-
erty the various blob sizes would need to be arranged in such
a way that changes in size are also, to some extent, reflected
in their positions. Such an arrangement seldom appears in
the context of either of the BlobWorld algorithms, as the
blob sizes are either pre-determined, as in the contingent
placement algorithm, or a consequence of the position of
only the nearest other blob, as in the independent placement
algorithm.

Occasionally, some degree of Levels of Scale is visible
in BlobWorld patterns, for example in figure 8c in the two
near-vertical “walls” at bottom centre, and in figure 9. This
suggests that a small modification to the algorithm might
well be capable of generated a suitable degree of Levels of
Scale. This leads to our generative size algorithm.

Generative size algorithm
Experience with the independent placement and contingent
placement algorithms shows that when blobs are positioned
generatively then a diagram that demonstrates Alexander’s
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a)

b)

Figure 6: Typical results of the independent placement algo-
rithm with blobCount = 34, growthPDF = gaussian, blob-
Shape = round, allowedOverlap = 0 ; vis = 0.5 (a) invisi-
ble blobs not shown; (b) as a, but with the “invisible” blobs
shown

Positive Space property appears. That, when the diagram
evolves from a small core in accordance then the result ap-
proximates a property that is observed in the end result of
human-developed architecture.

However, the initial contingent placement algorithm is
generative only with respect to the position of the blobs;
their size is determined independently according to the pdfs
discussed above.

A further algorithm exploits this observation by making
both position and the size of the blobs the result of a gen-
erative process. It is essentially a simple modification of
the contingent placement algorithm and the pseudo-code ap-
pears in figure 10 in which:

sizeRatio is the ratio is size between different “generations”
of blob.

That is, as the algorithm is searching for a valid position
for the blob it repetitively reduces the size of the blob in
accordance with some predefined ratio. The effect of this
is to make the size of each blob the result of a generative
process which is influenced by the “environment” of each
blob.

Results of executing this generative size algorithm are
shown in figure 11. These diagrams are initially strongly
reminscent of the diagrams Alexander shows as represen-
tative of the layout of cities and structures which are the

Figure 7: pdfs for investigating Levels of Scale. The x-axis
is the blob size; the y-axis is the probability of that size: (a)
single mode, gaussian distribution; (b) bi-modal, generating
(approximately) three blobs of size 1 for every blob of size 3;
(c) tri-modal generating (approximately) nine blobs of size
1 and three of size 3 for every blob of size 9

result of long-term human development (Alexander, 2004):
the blobs are positioned and sized in an generative manner
that is a consequence of the positioning and sizing of pre-
existing blobs as the diagram evolves. As can be seen from
the diagrams in the figure the blobs are now showing evi-
dence of the Levels of Scale property in that the blobs ap-
pear in a wide range of sizes but there are frequent clumps
of similarly sized blobs.

Conclusions
The results of these initial BlobWorld experiments are en-
couraging. Our contingent placement algorithm is capable
of generating diagrams that exhibit the Positive Space prop-
erty. That the alternative indepenedent placement algorithm
does not have this capability indicates that the effects ob-
served are more than mere chance.

It is likely that this capability of the contingent placement
algorithm is due to the combination of two aspects. Firstly,
the invisible blobs generate spaces that do indeed have a pos-
itive aspect, in that they contain blobs; the space is more than
mere empty space, there is actually something there: (invis-
ible!) blobs. Secondly, the algorithm is to some degree gen-
erative, in that blobs are placed in positions that are strongly
conditioned by the position of existing blobs. That is, the
pattern does in fact grow towards its final configuration.

Conversely, the independent placement algorithm does it-
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Figure 8: Attempts to generate Levels of Scale: contingent
placement algorithm, bi-modal size distribution with a small
standard deviation, vis = 0.5.

self naturally generate spaces. However, those spaces do not
jostle directly against the blobs; the blobs jostle against each
other. That is, the space is not positive, it is merely empty
(negative) space.

Our attempts at generating the Levels of Scale property
are also successful. The initial, somewhat explicit, attempt
does not succeed in generating this property. However, the
less explicit generative size algorithm shows that when blob
size is made a direct consequence of the underlying gener-
ative process (that is when the size is a consequence of the
evolution of the diagram) then the Levels of Scale property
appears naturally in the resulting diagrams.

There is, therefore, a complex interaction of size and po-
sition taking place as the diagram evolves. Futher work is
needed to establish the details of this interaction.

Future Work
This is the first step in a programme looking at Alexander’s
15 generative properties. It is sufficiently successful to indi-
cate immediately some further work, in particular on a gen-
erative algorithm that influences other properties. We have
already remarked that a degree of roughness has emerged in
the diagrams, as a consquence of optical effects and the in-
evitable quantisation of size and position due to the current
algorithms.

What is obviously missing from the current work is some
element of measurement. In particular, just because some di-
agrams appear to us to be more “whole” does not mean that

Figure 9: Attempt to generate Levels of Scale occasionally
work: contingent placement algorithm, bi-modal size distri-
bution, vis = 0.5.

blob[0] := new Blob(blobShape)
blob[0].setSize(sizePDF)
blob[0].setVis(boolean according to visProb)
blob[0].setPosition(origin)
blob[0].draw()
for i = 1..blobCount-1 do

blob[i] := new Blob(blobShape)
blob[i].setSize(sizePDF)
blob[i].setVis(boolean according to visProb)
blob[i].setPosition{blob[0].getPosition()

| blob[i-1].getPosition()
| blob[random(0..i-1)]. getPosition()}

blob[i].setDirection(rand in 0 . . . 360◦)
while not blob[i].isOverlapAcceptable(

allowedOverlap) do
blob[i].movePositionAlongDirection()
blob[i].reduceSize(sizeRatio)

end while
blob[i].draw()

end for

Figure 10: Pseudo-code for the generative size algorithm

that is objectively true. The Nature of Order includes some
work, in particular the “bead game” (Gabriel, 1996), that
shows that some aspects of the perception of “wholeness”
are universal. We will address this by means of a scoring
exercise in which a number of subjects will attempt to mark
different blob patterns. We will compare these scores with
the parameters used to generate the patterns.

What is at the moment more speculative, though, is the
relevance this work could have for that of complex systems
architectures. For example, if Positive Space is a particu-
larly advantageous aspect of building structures, what does
that imply for the complex systems that are the end target
of this work? We will start with flocking behaviour models
(Reynolds, 1987; Andrews et al., 2008), and draw an anal-
ogy between blobs and boids: for example, how might the
presence of “invisible” boids affect the observed emergent
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Figure 11: Typical results of the generative size algorithm
with blobCount = 106, sizePDF = gaussian, blobShape =
square, allowedOverlap = -3, vis = 0.5, sizeRatio = 1.4

flocking behaviour?
Additionally, the Levels of Scale property requires some

form of inhomogeneous agents.
Positive Space indicates that the environment can play

an imporant role in the development of the structure (re-
call that although “invisible blobs” are required to form
Positive Space in our system, they are not coincident with
it). This has led us to investigating the role of the envi-
ronment in complex systems simulation, including taking
an “environment-oriented” approach (Hoverd and Stepney,
2009) to modelling and implementation.

Alexander’s properties are rooted in the consideration of
structures in physical space. Design patterns (Gamma et al.,
1995) are structures that exist in an abstract design space.
The emergent properties of a complex system are structures
that exist in the execution space of that system, or at least of
a simulation of that system. We are investigating the extent
to which the ideas explored in the Nature of Order might
apply to these non-physical spaces.
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Extended Abstract

How a fertilized egg develops into a multicellular organism remains one of the most challenging questions in biology.
Novel techniques provides unprecedented high-resolution data on the spatiotemporal dynamics of the developing embryo.
However, interpretation of these data requires both wet lab experiments and computational modeling (Oates et al., 2009).
Here, we present a new modeling environment that is based on the following principles: Developmental systems (i) are
multiscale systems, (ii) are morphodynamic, and (iii) require a middle-out modeling approach.

(i) Embryogenesis unfolds as a dynamic interplay of gene regulation, cellular signaling, differentiation, proliferation, and
tissue mechanics. Developmental processes are coupled over multiple spatial and temporal scales and across structural
levels. Understanding developmental processes implies unraveling how these scales are coupled.

(ii) Two main components of development can be distinguished: (a) induction, change of cell state and (b) morphogenesis,
change in spatial distribution of cells. Although typically modeled as distinct processes, these mechanisms in fact occur
concurrently and are causally interdependent (Salazar-Ciudad et al., 2003). Such ’morphodynamic’ mechanisms enable a
rich variety of tissues and provide correction mechanisms and robustness.

(iii) Restraining complexity in models of multiscale morphodynamics is essential to gain explanatory potential. Bottom-
up approaches (from molecular kinetics pathways up) and top-down approaches (from tissue biophysics down), run into
difficulties when attempting to encompass all relevant scales. The alternative is a middle-out strategy in which the cell is
taken as a basic unit of modeling and only those molecular and tissue-level processes are included that are relevant to the
phenomenon under investigation (Noble, 2002).

Similar to the popular CompuCell3D package (Cickovski et al., 2007), our modeling environment uses the well-known
cellular Potts model (Glazier and Graner, 1993), reaction-diffusion solvers, a flexible plug-in architecture and an easy-
to-use model description language. Several subtle yet crucial differences render our software pre-eminently suitable to
model multiscale morphodynamics. Most prominently, the symbolic nature of description language enables the modeler
to symbolically link all processes over spatiotemporal scales and structural levels without programming. This makes
systematic exploration possible of the effects of multiscale and morphodynamic coupling. We demonstrate the conceptual
and computational framework in the context of pattern formation models on neurogenic differentiation.
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Abstract

Does the dynamical regime in which a system engages when
it is coping with a situation A change after adaptation to a
new situation B? Is homeostatic instability a generic mecha-
nism for flexible switching between dynamical regimes? We
develop a model to approach these questions where a simu-
lated agent that is stable and performing phototaxis has its vi-
sion field inverted so that it becomes unstable; instability ac-
tivates synaptic plasticity changing the agent’s simulated ner-
vous system attractor landscape towards a configuration that
accommodates stable dynamics under normal and inverted
vision. Our results show that: 1) the dynamical regime in
which the agent engages under normal vision changes after
adaptation to inverted vision; 2) homeostatic instability is not
necessary for switching between dynamical regimes. Addi-
tionally, during the dynamical system analyses we also show
that: 3) qualitatively similar behaviours (phototaxis) can be
generated by different dynamics; 4) the agent’s simulated ner-
vous system operates in transient dynamic towards an attrac-
tor that continuously move on the phase space; and 5) plastic-
ity moves and reshapes the attractor landscape in order to ac-
commodate a stable dynamical regimes to deal with inverted
vision.

Introduction
The concept of homeostasis coined by Cannon (1932) refers
to a condition in which coordinated physiological processes
maintain certain variables within limits. Though this con-
cept was introduced by Cannon, earlier work by Bernard
(1927) had already identified regulatory systems in the or-
ganism’s internal environment (milieu interieur). From
these pioneering works, research in animal physiology stud-
ied homeostatic mechanisms controlling body temperature,
heart rate, levels of blood sugar, breathing rate and others
(see Cooper (2008) for a historical review). Recently, Turri-
giano et al. (1998) observed that neurons also have a mecha-
nism of homeostatic regulation which increases or decreases
the strength of their synaptic inputs ensuring the mainte-
nance of their firing rates within boundaries. She has also
reported the presence of homeostatic regulations of activity
in cortical networks (Turrigiano, 1999; Turrigiano and Nel-
son, 2004).

Rather than working directly with physiology, Ashby
(1947, 1960) focused on more abstract dynamical system
models of homeostasis in the context of adaptive behaviour.
According to him, an animal behaviour is adaptive if it main-
tains essential variables within physiological limits. These
variables are closely related to survival; they can be lethal
(e.g. amount of oxygen in the blood), or only represent some
approaching threat (e.g. heat on the skin). When essential
variables cross certain boundaries a mechanism that changes
the system configuration is activated until these variables
return to homeostatic stable regions. The mechanism that
pushes the variables back to their viable regions selects those
configurations that not only recover stability at the current
moment, but also leave the system stable in the presence
of environmental conditions to which the system has previ-
ously adapted.

Figure 1: See text.
Adapted: Ashby (1960) p.116.

To illustrate the operation of
this mechanism, consider an an-
imal (A) interacting with its en-
vironment (E) (Fig. 1 represents
the dynamic of A and E over
time (T)). When the environment
changes (at t2) the animal’s dy-
namic becomes homeostatically unstable (the homeostatic
boundary is represented by the dashed line). Due to instabil-
ities the mechanism that changes the animal’s organization
is activated (downstrokes at M). The new organization found
by M leaves the animal stable in the presence of both envi-
ronmental conditions, as it is shown by the animal’s dynamic
(A) at t4 and t5.

Ashby also postulated that different environmental condi-
tions can move the state of the system to different regions in
phase space and at each region the system can have different
dynamics. This is roughly illustrated by different dynami-
cal regimes presented by the animal at t4 and t5. Summing
up Ashby’s main points in the context of our work, we can
say that: an adaptive system interacting with its environment
switches and engages in different dynamical regimes; when
homeostatic instability increases the system reconfigures it-
self so that it: 1) accommodates a stable dynamical regime
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that deals with the condition that triggered instability; and
2) maintains the stability of pre-existing dynamical regimes
that deal with conditions previously adapted.

The homeostatic characteristics of a system do not impose
constraints on the dynamics inside stable regions. As long
as the state of the system is inside a homeostatic region, the
system can be in an attractor or moving on a transient; it can
also be monostable, bistable, multistable, or even without
attractors inside stable regions. Thus, at the same time two
types of stability can be measured in a system: homeostatic
stability and Lyapunov stability1.

Figure 2: See text.

Both stabilities are illustrated in
Fig. 2. The axes X1 and X2 rep-
resent two generic variables; the
dashed line is the homeostatic sta-
ble region; P1 and P2 are point
attractors; continuous line around
P1 and P2 define two regions on
the phase space. On the border between these regions the
system is Lyapunov unstable; outside the dashed line the
system is homeostatically unstable. The point P3 is homeo-
statically stable and Lyapunov unstable. Both types of sta-
bility are important to studying mechanisms of behavioural
adaptation, but in this paper we focus exclusively on home-
ostatic stability.

Given this brief introduction about homeostatic stability
and adaptation, we present the questions we are tackling in
this paper.

• Q1: Does the dynamical regime in which the system en-
gages when it is coping with a situation A change after
adaptation to a new situation B?

Using the illustration presented in Fig. 1 we can restate
this question as: does the dynamical regime in which the an-
imal engages when it is coping with the environmental con-
dition presented at t1 change after adaptation to the new en-
vironmental condition presented at t2? We want to know the
difference between the dynamics at t1 and t4, as the system
has reorganized itself in order to accommodate a new stable
dynamical regime to cope with the environmental condition
presented at t2.

While the previous questions concerns the mechanism for
adaptation, the second one approaches the mechanism for
switching between dynamical regimes after adaptation.

• Q2: After adaptation, is homeostatic instability a generic
mechanism for flexible switching between dynamical
regimes?

Using the illustration presented in Fig. 1 we can restate
this question as: is homeostatic instability a generic mech-

1A fixed point x* is Lyapunov stable if all trajectories that start
sufficiently close to x* remain close to it for all time. For a formal
definition of Lyapunov stability see Strogatz (2000) p.141.

anism for flexible switching between dynamical regimes in
which the animal engages at t4 and t5?

In order to approach these questions we develop a compu-
tational model based on a related model implemented by Di
Paolo (2000). In his model, Di Paolo minimally replicated
a psychological experiment carried out by Taylor (1962)
where a human being adapts his behaviour to continuously
wearing spectacles that distorts his vision field. Di Paolo
replicated this experiment using an evolved simulated agent
that performs phototaxis. During the agent’s lifetime, he in-
verted the agent’s vision field (switching right and left sen-
sors) and studied the process of behavioural adaptation. The
agent’s mechanism of adaptation was implemented using
homeostatic stability and synaptic plasticity2.

Following Di Paolo we implement an agent performing
phototaxis using homeostatic stability and synaptic plastic-
ity. However, we replicate another experiment carried out
by Taylor where a subject adapts his behaviour to intermit-
tently (rather than continuously) wearing spectacles that dis-
torts his vision field. Besides, in our model the inversion of
the agent’s vision field is done both during its lifetime and
during evolution. Thus, our agent is evolved to adapt dur-
ing its lifetime to inverted vision, differing from Di Paolo’s
agent which was evolved exclusively to perform phototaxis
under normal vision.

The methodology to develop our computational model
is based on four assumptions. The first three assumptions
are grounded in Ashby’s theory in the context of Turri-
giano’s empirical findings on homeostasis in neuronal net-
works, they are: 1) an agent behaviour is adaptive if it main-
tains its simulated neuronal network homeostatically stable;
2) changes in synapse strengths is a mechanism to recover
homeostatic stability; and 3) a system conserves its condi-
tion of being adapted when synapse strengths are adjusted in
such a way that homeostatic stability of neuronal networks
is maintained in the presence of similar conditions that trig-
gered instability in the past. The fourth assumption, which
is supported by Ashby and Taylor3, is that: 4) conditions to
which the system is not adapted trigger homeostatic insta-
bility, that is, switching visual sensors triggers homeostatic
instability in a not-yet-adapted simulated nervous system.

Details of the methodology are presented on the next sec-
tion, followed by the Results where we study the dynamic
of the system and show that: 1) the dynamical regime in
which the agent engages under normal vision changes af-
ter adaptation to inverted vision; 2) homeostatic instability
is not necessary for switching between dynamical regimes.
Additionally, during the dynamical system analyses we also
show that: 3) qualitatively similar behaviours (phototaxis)

2For a theoretical discussion of Di Paolo’s model see Di Paolo
(2003).

3Taylor, in his experiment, uses Ashby’s theory to explain the
operation of the mechanism underlying the adaptive behaviour pre-
sented by the subject wearing distorted spectacles.
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can be generated by different dynamics; 4) the agent’s simu-
lated nervous system operates in transient dynamic towards
an attractor that continuously moves in the phase space; 5)
plasticity moves and reshapes the attractor landscape in or-
der to accommodate a stable dynamical regimes to deal with
inverted vision.

Methods
This methodology follows, as much as possible, that one car-
ried out by (Di Paolo, 2000). The main differences lie in the
number of nodes used to implement the controller and in the
evolutionary setup.

A genetic algorithm is used to evolve the parameters of
our model. The range of each parameter, which defines the
search space, is presented throughout the methodology to-
gether with the description of each variable.

Task. The task involves an agent that moves in a simulated
environment and has to perform phototaxis on a sequence of
light presentations (one by one) for 15000 secs. During its
lifetime, the agent’s right and left sensors are switched every
250 secs. The light is repositioned between 40 and 80 units
away from the agent when either the sensors are switched
or the agent spends 50 consecutive seconds close light (at a
distance smaller than 10 unit).

Figure 3: Agent.

Agent. The agent (Fig. 3) has a cir-
cular body of 8 units diameter, two
diametrically opposed motors that re-
ceive a continuous signal in the range
[-1,1] from the controller nodes (y2
and y3, respectively), and two light
sensors separated by 120 ◦ ± 10 ◦

whose output signal is given by Ik = 1/
√
dk, where k repre-

sents each sensor, d is the distance from sensor k to the light
source. Ik = 0 when the agent’s body occludes the light and
Ik = 1 if d < 1.

Plastic controller. The agent’s behaviour is controlled by
a fully-connected, 3 nodes, continuous-time recurrent neural
network (Eq. 1) (Beer, 1995).

τiẏi = −yi +

N∑
j=1

wjizj +

M∑
k=1

skiIk,

zi = 1
1+e−(yi+bi)

(1)

where y is the state of each node which is integrated
with time step of 0.1 using the Euler method , τ is its time
constant (range [0.4,4], N is the number of CTRNN nodes
(here 3); wj,i is the connection strength from the jth to ith

node (range [-8,8]), zj is the node output signal defined
by a sigmoid function, bj is a bias (range [-3,3]), M is the
number of inputs (here 2); Ik is the sensory output signal,
and ski is a constant that represents the sensory strength
from the kih sensor to ith node. The values for ski are:

s11 = s21 = α; s12 = s23 = β; s13 = s22 = γ, where
α, β and γ are in the range [0.01,10] (see Fig. 3). Each
connection between nodes (wj,i) is adjusted by one out of
four different homeostatic plastic rules (2). The rule used by
each connection is defined by the genetic algorithm.

R0 : ∆wji = δ ηji pi zj zi,
R1 : ∆wji = δ ηji pi (zj − zoji)zi,
R2 : ∆wji = δ ηji pi (zi − zoji)zj ,
R3 : ∆wji = 0,

(2)

where ∆wji is the change in wji, δ is a linear damping
function that constrains the weights between allowed values
([-8,8]), ηji is the rate of change (range [-0.9,0.9], and pi is
the plastic facilitation defined by the function shown in the
Fig. 4. Rule 0 is the Hebbian and anti-Hebbian rules (de-
pending on pi and nji); rules 1 and 2 potentiate or depress
the connection depending on how presynaptic or postsynap-
tic node activity relates to a threshold zoji. This threshold
linearly depends on wji (zoji = 0 if wji=-8 and zoji = 1 if
wji=8).

Figure 4: Local plasticity facilitation pi. When the node
activation minus its bias (yi − bi) is in the stable region
([−2, 2]) plasticity is not activated as pi = 0. Out of this
region pi changes either positively or negatively according
to the function.

Evolutionary setup. A total of 36 network parameters en-
coded in a genotype as a vector of real numbers in the range
[0,1] are evolved using the microbial genetic algorithm (Har-
vey, 2001) and linearly scaled, at each trial, to their corre-
sponding range. The genetic algorithm is setup as follows:
population size (100); mutation rate (0.05); recombination
(0.60); reflexive mutation; normal distribution for mutation(
µ = 0, σ2 = 0.1

)
; and trials for each agent (8). At the end

of the 8th trial the worst fitness (out of 8) is used as the fit-
ness of the agent.

The agent’s lifetime is 15000 seconds and its sensors are
inverted every 250 seconds. In total, sensors are inverted 60
times, where 30 times the agent is under normal vision and
30 under inverted vision. At each timeslot (250 secs) the
fitness of the agent is measured according to Eq. 3:

Ft =
Fb + Fs

2
(3)

where t is the timeslot (out of 60), Fb is the behavioural-
fitness (Eq. 4) and Fs is the stability-fitness (Eq. 5).
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Fb =

(
P +

(
1− df

di

))
R

T
(4)

where di and df are initial and final distances to the light
source, respectively, and df is clipped at 0 when df > di; P
is the number of times the agent approaches the light in the
current timeslot (the agent can approach the light more than
once as the light moves when the agent spends 50 seconds
near it); T is the timeslot length (250 secs) and R (250 secs)
is the required time given to the agent to approach a light
source. During evolution, as T=R the agent should approach
the light at least once in order to obtain Fb = 1. When the
agent approaches the light more than the number of times
required, Fb is clipped at 1.

Fs =
1

1 + e(
u
70−7)

(5)

where u is the number of times the nodes activate out of
the stable region (at each Euler step, it can be incremented
by 3 when the three nodes activate out of the stable region);
the constants 70 and 7 define the shape of the function.

The total fitness of the agent is given by the weighted
mean of the fitness at each timeslot.

F =
1

3K

K∑
t=1

qt; qt =

 Ft; if v = 1 ∧ ∀ t
2(1− Ft); if v = −1 ∧ t ≤ 30
2Ft; if v = −1 ∧ t > 30

(6)
where K is the number of timeslots (out of 60); Ft is de-

fined in Eq. 3; v is the vision state (1 normal, -1 inverted).
Under normal vision (v=1) the agent should get high fitness
(Ft) during its whole lifetime (∀ t). Under inverted vision
the agent should have low fitness (Ft) during the first 30 in-
versions (t ≤ 30) and high fitness during the last 30. Hence:
1) the agent should perform phototaxis maintaining homeo-
static stability under normal vision during the whole trial (30
timeslots); 2) the agent should be homeostatically unstable
and not perform phototaxis when its vision field is inverted;
and 3) over time, after a sequence of vision inversions (nor-
mal→ inverted→ normal→ inverted, and so on), the agent
should maintain stability and perform phototaxis under in-
verted vision (the last 30 timeslots).

After evolution the best agent of the population was se-
lected and run 10000 in order to generate statistical mea-
surements. The agent’s lifetime was changed to 30000 secs
and after 15000 secs of its lifetime its sensors were switched
at a different frequency (as shown in Fig. 5-D).

Attractor landscape. In order to find the attractors
of the controller while the agent is interacting with
its environment, a snapshot of the system is taken at

each Euler step of the agent’s lifetime and the limit
limt→∞ 〈y1(t), y2(t), y3(t)〉 is numerically estimated. This
snapshot consists of states of each CTRNN node (y1,y2,y3),
which are the initial conditions to find the limit; connection
weights (wji); inputs (I1 and I2), which are maintained fixed
during the numerical estimation; sensor strengths (ski), bi-
ases (bi); and time constants (τi).

The limit is found using Euler integration with time step
0.1 and 900000 steps. When the system does not converge
to a point attractor, the Euler integration runs for a further
100000 steps in order to capture at least some points of either
the limit cycle or the strange attractor the system is assumed
to be following.

Results
Evolution. The mean fitness of the population after evolu-
tion is 0.77 and the fitness of the best agent is 0.86. In Fig.
5-A and B (see caption) we present how the behavioural-
fitness and stability-fitness of the best agent change during
its lifetime.

Under normal vision the behavioural-fitness and the
stability-fitness are maintained near 1 over the whole sim-
ulation. At the beginning of the agent’s lifetime and un-
der normal vision, the number of unstable activations is near
200. Despite these unstable activations the stability-fitness
is still high due to the shape of the function defined in (5).
Under inverted vision, the behavioural-fitness starts near 0
and linearly increases during the first 10000 secs; while the
stability-fitness increases mainly between 5000 secs. and
10000 secs. These fitnesses increase at a different rate be-
cause while the activations of the nodes move towards the
stable region, the behavioural-fitness increases; on the other
hand, the stability-fitness only increases when the activa-
tions actually cross the boundaries (range [-2,2]), which
starts after 5000 secs.

Behaviour. The distances from the agent to the light
source before and after adaptation are presented in Fig. 6-
A and B, respectively. After the first inversion (Fig. 6-A,
t = 251 secs) the agent keeps turning around itself and
only slightly moves towards the light until its sensors are
switched back to the normal position (t=500 secs). After
adaptation the agent approaches the light under both condi-
tions.

Dynamics. The dynamical patterns in which the agent en-
gages are represented in 6 dimensions (S1, S2: sensors; M1-
M2: motors; y1, y2, y3: CTRNN nodes) by each pair of
graphs in Fig 7 (see figure caption). From now on the dy-
namics of the CTRNN nodes presented in Fig 7-A, B, C and
D will be referred as ρ1, ρ2, ρ3 and ρ4, respectively.

At the beginning of its lifetime, the agent engages in a
homeostatic stable dynamical pattern (ρ1) while performing
phototaxis. Just after the first inversion the agent switches
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Figure 5: A and B show how behavioural-fitness and
stability-fitness change over the agent’s lifetime. Each point
in those graphics represents the fitness for a specific times-
lot. C depicts the number of node activations out of the
stable region. D depicts the frequency of sensor switch-
ings. These plots were generated running the best agent over
10000 trials. The vertical bars represent the standard devia-
tion.

to the unstable ρ2. After a sequence of inversions and plas-
tic changes, the dynamical pattern instability under inverted
vision decreases and changes from the unstable ρ2 to the sta-
ble ρ4. While instability under inverted vision decreases, the
stability under normal vision is maintained (as shown in Fig
5-B); however, even while maintaining stability the dynam-
ics under normal vision qualitatively changes from ρ1 to ρ3
as a side effect of adaptation to inverted vision.

While plasticity is activated during adaptation to inverted
vision (from t=250 to t= 15000(s)), the dynamical patterns
under normal vision smoothly change from ρ1 to ρ3. In be-
tween these patterns there are other slightly different dynam-
ical patterns and all of them generate phototatic behaviour
(as shown by the behavioural-fitness - Fig 5-A). Besides the
dynamical patterns under normal vision, ρ4 under inverted
vision also generates phototaxis. This shows that qualita-

Figure 6: Distance from the agent to the light source before
and after adaptation (A and B , respectively).

tively the same behaviour can be generated by different dy-
namics.

The dynamical patterns in which the agent engages are
generated by an attractor that continuously moves in the
phase space. This continuous movement of the attractor
leaves the agent in a transient state while interacting with its
environment (see Fig. 8). The transient dynamic is obtained
because different sensor values define different set of param-
eters for the CTRNN equations which in turn gives different
point attractors at each iteration. In other words, the agent’s
behaviour (movement in the environment) changes its sensor
values which in turn moves the attractor in the phase space.
The direction to which the attractor pulls the system gen-
erates new motor outputs that change the agent’s position
and consequently its sensor values. The resulting dynami-
cal patterns involving the controller, body and environment
generate the coordinated movement of the agent towards the
light source.

While sensors values are changing and the rate of plas-
tic changes is low, that is, when the agent is engaged in a
stable dynamical pattern while interacting with its environ-
ment, the point attractor moves on a fixed 3D surface. At
the beginning of the agent’s lifetime this surface resembles
a rectangle with attractors lying on its corners (see Fig.9 -
gray dots). After adaptation, this surface moves to a differ-
ent position and is reshaped (see Fig.9 - black dots). This
new position and shape of the attractor landscape accom-
modates the stable dynamical patterns under normal and in-
verted vision, that is, both dynamical patterns ρ3 and ρ4 are
generated by the same attractor landscape.

A quantitative difference between surfaces of attractors
for each dynamical pattern (ρ1, ρ2, ρ3 and ρ4) is shown by
the positions of clusters of attractors4 (see Fig. 10-A1, B1,

4We used the K-means method (MacQueen, 1967) to identify
clusters of attractors and their centroids.
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Figure 7: A) Stable dynamical pattern under normal vision
before the first inversion; time: 85.7 to 137.0 secs; initial
distance di= 40.17; final distance df= 20.2. B) Unstable
dynamical pattern during the first inversion; time: 250.2 to
300.0 secs; di= 57.75; df= 57.84. C) Stable dynamical pat-
tern under normal vision after adaptation; time: 14569.9
to 14650.2 secs; di= 40.06; df=20.09. D) Stable dynam-
ical patterns under inverted vision after adaptation; time:
14749.7 to 14818.5 secs; di= 40.02; df=20.01.

C1, and D1). Comparing the centroid positions for ρ1 and
ρ3 we see how the surface changed for normal vision af-
ter adaptation to inverted vision. Comparing the centroid
positions for ρ3 and ρ4 we see that the surfaces after adap-
tation are qualitatively the same under normal and inverted
vision. The new shape and position of the attractor surface

Figure 8: Four snapshots depicting the agent’s transient
internal dynamic while engaged in ρ4. (time interval:
[14753.0, 14761.9] secs.). P(y1-b1, y2-b2, y3-b3) indicates
the attractor position.

Figure 9: Surfaces defined by the movement of point attrac-
tors when the agent is doing phototaxis under normal vision
before (gray) and after adaptation (black). Time intervals
[85.7,137.0] and [14569.9, 14650.2] secs, respectively.

after adaptation is caused by plastic changes that are acti-
vated when the system is homeostatic unstable.

Though the attractor surfaces are qualitatively the same
after adaptation, the way the attractors move on the surface
is different under normal and inverted vision. That is the
reason why ρ3 and ρ4 are different (see Fig. 10-A2, B2,
C2, and D2). While ρ3 is generated by the movement of an
attractor between the four clusters in the order 4 → 3 →
2→ 1, ρ4 is generated by 1→ 2→ 3→ 4.

Switching between dynamical regimes (e.g. switching
from ρ3 to ρ4) does not require homeostatic instability. At
the end of the agent’s lifetime, after many plastic activations,
the agent switches between the dynamical patterns without
activation out of its viable region (see Fig. 11).



Proc. of the Alife XII Conference, Odense, Denmark, 2010 401

Figure 10: Phase space (A1, B1, C1 and D1) depictions: dynamics of the internal nodes (gray lines); point attractors and
attractor layout (black dots); cluster centroids (numbering from 1 to 4). Temporal sequence of the movement of attractors (A2,
B2, C2 and D2) shows how the attractors move between clusters over time. The time intervals to generate these graphs are the
same as those in Fig 7
.

Figure 11: A and B depict dynamical patterns under normal
and inverted vision, respectively. C depicts the difference
between dynamic of attractors before and after inversion. D
depicts the number of activations out of the homeostatic sta-
ble region.

Discussion

We would like to point out some of the important implica-
tions of this model. First, it has practical importance for the
design of artificial neural network systems that can learn dif-
ferent behaviours. It is commonly believed that when a net-
work system learns a new behaviour, the activation of neu-

ral plasticity will perturb the existing weight configuration
of previously acquired behaviours and therefore will have a
detrimental effect on the systems overall performance. One
traditional way to address this so-called problem of neu-
ral interference is by taking inspiration from the modular
computer architecture, namely by dividing the neural sys-
tem into non-overlapping neuronal groups. However, here
we have demonstrated that this kind of structural modu-
larity is not the only way for one system to realize differ-
ent styles of behaviour. Even a completely integrated sys-
tem can achieve behavioural differentiation because the be-
haviours can be generated by different dynamical regimes
on the phase space.

Accordingly, the current model also has important impli-
cations for our scientific understanding of the nervous sys-
tem. It is a widely held belief in neuroscience that different
cognitive functions map onto distinct regions of the brain,
a belief reinforced by the advent of various brain imag-
ing methods. This appeal to structural localizability may
be valid to some extent. However, the model presented in
this paper is a proof of concept that this is not the only way
of realizing functional differentiation. Rather than focusing
on anatomical divisions alone, it is also possible to take the
nervous system as one integrated system which can realize
a multiplicity of behaviours by transiting between different
dynamical regimes.
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Conclusion
We minimally replicated the psychological experiment de-
scribed by Taylor based on assumptions drawn from Ashby’s
and Turrigiano’s works. While Taylor’s experiment shaped
the desired behaviour, our assumptions constrained the dy-
namics of the mechanism underlying behaviour. Thus, the
methodology to obtain the model we wanted to investigate
incorporated restrictions on the task and on the agent’s in-
ternal dynamic. Once the model was obtained we studied its
dynamic in order to suggest answers to the questions Q1 and
Q2 (detailed in the introduction).

In order to answer the question Q1, we showed that the
dynamical regime in which the system engages under nor-
mal vision changes after adaptation to inverted vision (ρ1
changed to ρ3). As the system is relatively simple (only 3
CTRNN nodes) and fully-connected, even small reorgani-
zations to accommodate new stable regimes are expected to
affect pre-existing dynamics. Hence we can not generalize
and say that pre-existing stable regimes always change when
the system adapts to a new condition. More complex system,
such as the brain, probably engages in independent dynami-
cal regimes under different environmental conditions.

In order to answer the question Q2, we showed that home-
ostatic instability is not necessary for switching between
dynamical regimes. This result contributes to research on
brain dynamics as it complements the theoretical claim that
Lyapunov instability is one generic mechanism for flexible
switching among multiple attractive states; that is, for enter-
ing and exiting patterns of behaviour (Kelso, 1995). Indeed
Ashby has already demonstrated that a system can switch
between dynamical regimes without homeostatic instabil-
ity. The difference is that, while Ashby uses the homeo-
stat we use a more complex model where the homeostatic
mechanism is intertwined with the mechanism that coordi-
nates the movement of an agent that is continuously interact-
ing with its environment. Thus, our investigation confirms
Ashby’s demonstration in a more complex environment and
also complements Kelso’s hypothesis about the importance
of Lyapunov instability as a mechanism for switching dy-
namics.

We have also shown that qualitatively similar behaviours
(phototaxis) can be generated by different dynamics; the
agent’s simulated nervous system operates in transient dy-
namics towards an attractor that continuously moves in the
phase space; and plasticity moves and reshapes the attrac-
tor landscape in order to accommodate a stable dynamical
regimes to deal with inverted vision.
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Abstract

This paper discusses asynchronous parallel universal com-
putation and self-replication based on a computation model,
called a logic molecular model, or a parallel production sys-
tem (PPS). The program in this model consists of extended
Horn clause rules, which are used for forward deduction of
unit clauses, called molecules, from unit clauses in work-
ing memory. All possible deductions in the system are asyn-
chronously executed in parallel. This formalism is also effec-
tive in representing a broad class of speed-independent asyn-
chronous computation and systems including parallel parsing
and cellular automata. It is shown that for any PPS program
P , there is a set of molecules that contains the coded program
of P , which replicates itself by asynchronous parallel compu-
tation in time proportional to log n, where n is the number of
rules in P .

Introduction
The self-replication of complex systems is universal in biol-
ogy, as cell division and propagation are essential to living
organisms. Many biologists believe that the appearance of
self-replicating molecules marked the origin of life. Several
hypothetical models of the first self-replication have been
presented and discussed in evolutionary biology (Dawkins,
2004). In information science, there have been several theo-
retical models of self-replication intended to clarify the prin-
ciples and conditions of self-replication (Hutton, 2003; Sip-
per, 1998). Some of these models can be applied to artificial
self-organization in complex systems including amorphous
computing (Abelson et al., 2007) and molecular computing.

Von Neumann adopted a cellular automaton (CA) model
of self-replication and presented a two-dimensional (2-D)
29-state CA with universal computation power and self-
replicating processes in his last note titled “Theory of Self-
Reproducing Automata” (von Neumann, 1966). A CA is es-
sentially a parallel system used as a model of parallel com-
putation. Transitions in von Neumann’s CA, however, are
serial and sequential because the universal computation and
self-replication are based on a universal Turing machine.
After von Neumann, lot of work focused on the parallel
computation power of CAs and self-replication on CAs (Sip-

per, 1998). Nevertheless, there has been little work on par-
allel universal computation and parallel self-replication, not
only using CAs but also with other computation models. Al-
bert and Culik (1987) showed a 1-D CA with parallel uni-
versal computation power in the sense that the CA can sim-
ulate any 1-D CA in linear time. Nakamura (1997) showed
a 1-D CA with parallel self-replication processes and paral-
lel universal computation power in a similar sense. Nehaniv
(2002) showed an asynchronous cellular automaton with a
self-reproducing pattern known as “Langton’s loop.”

This paper proposes a parallel computation model, called
a logic molecular model, or a parallel production system
(PPS), and shows that this simple formalism is effective in
modeling a broad class of asynchronous parallel computa-
tions and biological systems. This model is intended to be a
simple and general basis not only for parallel universal com-
putation such as universal Turing machines for serial com-
putation but also for the modeling of self-replication in bio-
logical systems.

The logic molecular model proceeds as follows.

1. Every global state of the system is represented by a multi-
set of molecules, which are data tokens in working mem-
ory from the point of parallel computation.

2. A program in PPS is a set of production rules, or simply
rules. The rules specify the interactions of the molecules
by forward, data-driven deduction. Deduction by the rules
is a kind of hyper-resolution (Robinson, 1992); each rule
is described as an extended Horn clause rule and every
molecule in the system as a unit clause.

3. All applicable deductions are asynchronously executed in
parallel. Therefore, the computation needs to be speed-
independent to reach a definite result in spite of the indef-
inite orders of the transitions of the elements.

Since the pioneering work of von Neumann, CAs have
been used for modeling not only biological systems but also
other complex systems. However, modeling using CAs has
the following limitation.
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• In a CA model, the arrangements of the cells and the in-
terconnections among cells are strictly regular and fixed.
This restriction prevents us not only from using CAs to
model general parallel systems but also from applying
CAs to parallel computers.

• Most standard CA models are synchronous systems. Syn-
chronization generally simplifies the construction of de-
terministic systems. Nevertheless, it is a fundamentally
accepted principle that asynchronous systems are gener-
ally faster than synchronous systems in large scale paral-
lel systems, because the synchronization period is deter-
mined by the maximum delay in the system. As there
are no specific synchronous biological systems, asyn-
chronous systems are more appropriate for modeling self-
replication.

There has been some researches into extensions of CAs. The
Lindenmayer system (or L-system) (Lindenmayer, 1968)
is an extended CA where every cell can propagate itself;
the L-system is intended to model biological development.
Nakamura (1981) showed that any synchronous d-D CA
(d = 1, 2, · · · ) can be transformed into an asynchronous d-D
CA while preserving its parallel computation power.

Recently, there have been several models other than CAs
called biologically-motivated systems or natural computing.
The chemical abstract machine (CHAM) (Berry and Boudol,
1992) and the GAMMA language (Baâtre and Métayer,
1993) based on multiset transformation have some proper-
ties similar to our model. In these formalisms as well as in
the logic molecular model, every global state of the system
is a multiset of data elements. In CHAM, the global state
can be considered a solution of molecules that interact with
each other. CHAM and GAMMA, in which no data element
is deleted from the global states, are intended to provide a
simple paradigm of parallel computation. They are not in-
tended to describe speed-independent asynchronous parallel
processes as does the logic molecular model.

The logic molecular model integrates several paradigms
including logic programming, production systems, and
functional data-flow programming. Some explanation of
the relations between these paradigms is essential. Hyper-
resolution (Robinson, 1992) is closely related to unit res-
olution (Chang, 1970) and, has been studied for bottom-
up computation with large data sets including deductive
databases. The current work is intended to use deduction
in logic programming to represent a broad class of asyn-
chronous parallel computation.

In contrast to logic programming, most production sys-
tems, such as OPS-5 (Cooper and Wogrin, 1988), mainly
employ forward deduction. Although the purpose and the
control mechanisms are essentially different, our computa-
tion model has some similarities to production systems: the
unit clauses in the global state correspond to data tokens in
the working memory, unification to pattern matching and the

extended Horn clause rules to production rules for forward
deduction.

The control of our computation model is closely related
to that used in data-flow programs (Dennis, 1975), as the
operations are evoked by data tokens. Our PPS programs
are more general and more powerful than the data-flow pro-
grams because each rule represents a general pattern of sym-
bolic operations based on unification and unit resolution.

This paper is organized as follows. The next section
describes the basic model and its asynchronous transition.
The rules and their application to data are defined by us-
ing the notions in logic programming. The transitions of
the global states are based on asynchronous circuit theory.
The third section describes the decomposition of general
rules into simpler rules, and extensions of the basic rules
so that we can use the models for parallel functional pro-
cesses. The fourth section shows a PPS that simulates a 1-
D bounded synchronous CA. This result is closely related
to the synchronous-to-asynchronous transformation of CAs.
The fifth section describes a universal computation by the
PPS. Based on this universal computation, the sixth section
shows several parallel self-replicating molecules and self-
replicating programs. The final section gives brief conclud-
ing remarks.

The Basic Model and Parallel Derivation
We use basic notions of logic programming such as unifica-
tion and most general unifier to describe the pattern match-
ing and application of the rules.

Parallel Production Systems
We use the notations and syntax of standard Prolog for vari-
ables, terms, lists and operators. A constant is either a num-
ber or an identifier (an atom in Prolog) that starts with a
lower-case character, and a variable starts with an upper-case
character and the underscore “ ”. A term is either a constant,
a variable, or a complex term of the form f(t1, · · · , tk),
where f is an identifier (a function or predicate symbol),
and each ti is a term. An atom is a term of the form ei-
ther p(t1, · · · , tk), or p when k = 0, where p is a predicate
symbol, and each ti is a term.

A substitution θ is a mapping from a set of variables to
a set of terms. For any term t, an instance tθ is a term in
which each variable X defined in θ is replaced by its value
θ(X). For any terms s and t, we say that s and t are variants
of each other, if t is an instance of s and t is an instance of s.
A unifier for two terms s and t is a substitution θ, such that
sθ = tθ. The unifier θ is the most general unifier (mgu), if
for every other unifier σ of s and t, sσ and tσ are instances
of sθ and tθ, respectively.

A parallel production system (PPS) is defined by its pro-
gram and its initial global states. The program is a set of
rules of the form

B1, · · · , Bm → C1, · · · , Cn, m, n ≥ 0, m + n ≥ 1.
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where each of Bi and Cj is either an atom or a variable. The
variable in a rule is instantiated to an atom, when the rule
is applied as will be described later. The global state, or the
working memory, of the PPS is the multiset of unit clauses
(or atoms) called molecules. The initial global set generally
contains the input information.

A rule R = (B1, · · · , Bm → C1, · · · , Cn) is applicable
to molecules A1, · · · , Am in a global state W , if and only if
there is a most general unifier θ such that: Aiθ = Biθ for all
1 ≤ i ≤ m. In this case, we write W ⇒ W ′ for the result
W ′ of the application defined by

W ′ = (W − {B′
1
θ, · · · , B′

mθ}) ∪ {C ′
1
θ, · · · , C ′

nθ}.

The relation ⇒∗ denotes the reflective and transitive closure
of “⇒”. For any initial global state W0, every global state
W with W0 ⇒∗ W is called a derivable global state of S.

The application of rule R to molecules A1, · · · , Am is
equivalent to the simultaneous hyper-resolution of n Horn
clause rules,

C1 ← B1, · · · , Bm, · · · Cn ← B1, · · · , Bm,

and the m unit clauses A1, · · · , Am, except that these unit
clauses are deleted from the global state. Hence, each resul-
tant unit clause is a logical consequence of the unit clauses
in the global state and the Horn clauses.

Asynchronous Transition and Speed-Independence
Asynchronous systems generally must be speed-
independent to achieve definite computation results in
spite of the indefinite order of operations. We represent
asynchronous transition in PPSes by applying the termi-
nology of asynchronous circuit theory (Muller and Burtky,
1959) as in defining asynchronous cellular automata (Naka-
mura, 1981). As several different terms are used for similar
notions in term rewriting system (TRS) theories, we have
added some comments on these terms in parentheses.

An allowed sequence in a PPS is a finite or infinite se-
quence W0,W1,W2, · · · of the global states such that Wi ⇒
Wi+1 for i = 0, 1, 2, · · · and there is no subscript i0 ≥ 0
such that a rule is applicable to a subset of molecules in Wi

for all i ≥ i0. (This notion corresponds to fair computa-
tion in TRS.) This condition states that all the delays in the
application of the rules are arbitrary but finite.

The class G of global states in a PPS is partitioned into
subclasses by the equivalence relation W ⇒∗ W ′ and
W ′ ⇒∗ W for any W,W ′ ∈ G. The equivalence class
(“strongly connected components” in TRS) is partially or-
dered by the relation ⇒∗. A PPS S is speed-independent,
if and only if for all allowed sequences W0,W1,W2, · · ·
starting with an initial global state W0, there is an integer
j0 such that all global states Wj , j ≥ j0 are in a common
equivalence class. In a speed-independent system, if there is
a finite allowed sequence W0, · · · ,Wt, then all the allowed

sequences starting with W0 terminate with Wt, which we
call the terminal state.

A PPS S is race-free, if and only if for any derivable
global states W and W ′ such that a rule R is applicable to
some molecules in W and W ⇒ W ′, either W ′ has the re-
sult of the application of R, or R is still applicable to the
same molecules in W ′.

A PPS S has the Church-Rosser (diamond) property, if
and only if for any derivable global states W,X and Y with
W ⇒ X and W ⇒ Y , there is a global state Z such that:

W

Y Z.

X=⇒

=⇒
‖∨ ‖∨

Proposition 1 Any race-free PPS is Church-Rosser, and
any Church-Rosser PPS is speed-independent. The con-
verses of these relations do not hold.

Proof It is obvious from the definitions that any race-free
PPS is Church-Rosser. We omit the proof that any Church-
Rosser PPS is speed-independent because it is similar to the
corresponding propositions in asynchronous circuit theory
(Muller and Burtky, 1959) and in the theory of TRS.

To prove that the converse does not hold, consider the PPS
with program, p, q → s; s, r → u; q, r → t; p, t → u,
and initial global state {p, q, r}. This system is Church-
Rosser but not race-free. Consider another PPS with pro-
gram, p, q → s; s, r → u; p, q, r → u, and initial global
state {p, q, r}. This system is speed-independent, but not
Church-Rosser. 2

Synchronous Transition
A synchronous transition sequence of a PPS is a subse-
quence W0,W1,W2, · · · of an allowed sequence such that
all applicable rules in Wi, and no other rule, have applied
in Wi+1 for i = 0, 1, 2, · · · . In any race-free PPS, there
is a unique synchronous transition sequence for any initial
global state. The length of the synchronous transition se-
quence represents the number of steps, or time, of asyn-
chronous computation where all applications of the rules re-
quire a constant time.

Example: Parallel Parsing of a CFL
The first example is parallel bottom-up parsing of the paren-
thesis languages, i.e, the set of strings with the same number
of a’s and b’s such that no prefix contains more b’s than a’s.
Each rule in the following program represents a production
rule for a context free grammar, as in definite clause gram-
mars (DCGs) (Imada and Nakamura, 2010).

[Parsing parenthesis language]
a(I,J), b(J,K)→ s(I,K,s(a,b)).
s(I,J,P),s(J,K,Q)→ s(I,K,s(P,Q)).
a(I,J),s(J,K,P),b(K,L)→ s(I,L,s(a,P,b)).
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Suppose that the initial global state contains the following
molecules representing the string aababb.

a(0,1).a(1,2).b(2,3).a(3,4).b(4,5).b(5,6).

The computation proceeds as follows and terminates with a
molecule that has a term representing the derivation tree.

a(0,1),a(1,2),b(2,3),a(3,4),b(4,5),b(5,6)
⇒ a(0,1),s(1,3,s(a,b)),a(3,4),b(4,5),b(5,6)
⇒ a(0,1),s(1,3,s(a,b)),s(3,5,s(a,b)),b(5,6)
⇒ a(0,1),s(1,5,s(s(a,b),s(a,b))),b(5,6)
⇒ s(0,6,s(a,s(1,5,s(s(a,b),s(a,b))),b))

This computation is speed-independent and terminates with
a single molecule having the definite derivation tree for any
initial state representing a string in the language. As the
grammar is ambiguous, the computation with other initial
global states, for example, those for parsing a string ababab,
cannot be speed-independent. Nevertheless, parsing termi-
nates with a final molecule containing one of the possible
derivation trees.

Extensions of the Basic Model
This section describes transformations and extensions of the
rules in the basic model. Transformed PPSes simulate the
original PPSes in the following sense. A PPS S′ simu-
lates a PPS S, if and only if there is a computable func-
tion c : U ′ → U , where each of U and U ′ is the class
of global states of S and S′, respectively, such that if for
any allowed sequence W0,W1,W2, · · · in S′, the sequence
c(W0), c(W1), c(W2), · · · is an allowed sequence in S, pro-
vided that we ignore any repetitions.

Decomposition of Rules

Any rule B1, · · · , Bm -> C1, · · · , Cn with m > 2 and/or
n > 2 can be decomposed into simpler rules with at most
two atoms on each of the left and right hand sides. First
we recursively transform a rule B1, · · · , Bm → C1, · · · , Cn

with m > 2 into the following three rules.

B1, · · · , Bm/2 → r1(X1, · · · , Xk),

Bm/2+1, · · · , Bm → r2(X1, · · · , Xk),

r1(X1, · · · , Xk), r2(X1, · · · , Xk) → C1, · · · , Cn

where r1 and r2 are unique predicate names and
X1, · · · , Xk is a list of all the variables in the rule. Secondly,
we recursively decompose the rule of the form B1, B2 →
C1, · · · , Cn with n > 2 into the three rules with unique
predicate names q1 and q2:

B1, B2 → q1(X1, · · · , Xk), q2(X1, · · · , Xk),

q1(X1, · · · , Xk) → C1, · · · , Cn/2,

q2(X1, · · · , Xk) → Cn/2+1, · · · , Cn.

Non-Deleting Molecules
We can extend the basic rule so that any molecule matching
with an atom on the left side of the rule remains undeleted
from a global state. Any molecule unifying the atom with
the prefix operator *, as in

B1, · · · , ∗Bi, · · · , Bm → C1, · · · , Cn,

is the non-deleting molecule, which is not deleted from the
global states when this rule is applied. The asterisk can be
prefixed in any atoms on the left-hand side. This rule can be
replaced by the rule

B1, · · · , Bi, · · · , Bm → Bi, C1, · · · , Cn.

We can apply this transformation to any number of non-
deleting molecules in the program. Note that any PPS in
which all atoms are non-deleting is race-free.

Evaluable Predicates and Terms
We can extend the use of programs in PPS from pure logical
deduction to functional computation by adding some func-
tions to test conditions and evaluate the arithmetic expres-
sions. For the first extension, atoms on the left side can be
terms with “external predicates” to test conditions and con-
verting data term. In this paper, we represent these atoms by
deterministic Prolog goals with the prefix operator #, e.g.,
the term #(X > Y+1), where operator > is the external
predicate. These terms are evaluated after all necessary vari-
ables in the condition have been instantiated. We consider
the term to be a non-deleting atom and the system to have an
implicit model of the external predicate, a possibly infinite
set of ground unit clauses.

For the second extension, we allow the rules to contain
evaluable terms of arithmetic expressions with the prefix $
in the atoms, e.g., $(2.0*X+1.0). The arithmetic expres-
sion can be placed on both the left and right hand sides of a
rule, and it is evaluated and replaced by its value when the
rule is applied.

Simulating 1-D Cellular Automata
This section shows a PPS that simulates a 1-dimensional
synchronous cellular automaton (1-D CA) and has an identi-
cal computational result. We suppose that the CA is bounded
in the sense that the leftmost and rightmost cells are fixed
and have the special boundary state \. The CA with three
neighbors is defined by a set Q of cell states including \ and
a local function f : Q3 → Q. We represent n cells by
the numbers 1, 2, · · · , n and each configuration at time i by
\qi

1
qi
2
· · · qi

n\.
We construct a PPS PZ simulating a 1-D CA Z as follows.

1. For all even time points t ≥ 0, the state qt
j of each cell

j, 2 ≤ j ≤ n − 1 is represented by three molecules
c(j, qt

j), l(j, q
t
j), r(j, q

t
j), and the state of the leftmost
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Figure 1: A hypothetical data flow diagram of PPS PZ for
simulating a 1-D CA.

and rightmost cells 1 and n by cl(1, qt
1
), l(1, qt

1
), and

cr(n, qt
n), r(n, qt

n), respectively. For all odd time points
t, the state qt

j of each cell is represented similarly, except
that the predicate symbols c, l and r are replaced by c′, l′

and r′, respectively.

2. The initial global state is the set of the following
molecules, which represents the initial configuration
\q0

1
q0

2
· · · q0

n\.

(a) cl(1, q0

1
), l(1, q0

1
).

(b) l(j, q0

j ), c(j, q0

j ), r(j, q0

j ), 2 ≤ j ≤ n − 1.

(c) r(n, q0

n), cr(n, q0

n).

3. The program of PZ is the set of the following rules, where
(V is f(L,C,R)) is a Prolog expression that unifies V
with the value of the local function f .

[Program of PZ for simulating 1-D CA]

cl(1,C),r(2,R),#(V is f(\,C,R))→
cl′(1,V),l′(1,V).

c(J,C),#(2 ≤ J ≤ n − 1),l($(J-1),L),
r($(J+1),R),#(V is f(L,C,R))→

r′(J,V),c′(J,V),l′(J,V).
cr(n,C),l(n − 1,R),#(V is f(L,C,\))→

cl′(n, V),r′(n,V)).
cl′(1,C),r′(2,R),#(V is f(\,C,R))→

cl(1, V),l(1,V).
c′(J, C),#(2 ≤ J ≤ n − 1),l′($(J-1), L),

r′($(J+1),R),#(V is f(L,C,R) →
r(J,V),c(J,V),l(J,V).

cr′(n,C),l′(n − 1,R),#(U is f(L,C,\))→
cl(n,V),r(n,V).

Fig. 1 shows a hypothetical data flow diagram for transi-
tions in PZ .

Proposition 2 If the synchronous transition in the 1-
D CA Z terminates at time t with the configuration
\qt

1
qt
2
· · · qt

n\ = \qt+1

1
qt+1

2
· · · qt+1

n \, then all the allowed
sequences in the PPS PZ fall into the final equivalence class,
in which every global state represents this configuration.

Proof (Outline) We can prove the following two lemmas by
mathematical induction on the number of applications of the
rules.

1. The proposition holds, if we restrict the allowed se-
quences to one that includes the synchronous transition
sequence.

2. The PPS PZ is race-free, i.e., all the applications of rules
to two molecules and three molecules are not affected by
the other operations.

These lemmas imply that the proposition is true for all al-
lowed sequences by Proposition 1. 2

We restrict the 1-D CA to the bounded CA in order to
simplify the construction of PZ . It is not difficult to extend
the CA model to a more general one such that the boundaries
expand with time.

Parallel Universal Computation
A universal program U for PPS is an interpreter such that
for any program P , U inputs molecules for a coded pro-
gram of P and (coded) data molecules D and outputs the
molecules that are equivalent to the result of the computa-
tion of P for D. The universal program not only describes
how the programs are computed, but also makes it possi-
ble to easily extend the language. Furthermore, using the
universal program, PPS programs can generate programs to
be executed later. In particular, the universal program for
PPS provides an environment with fixed interaction rules, in
which the codes of rules are active molecules that interact
with the data molecules.

In this section, we show a universal program for race-
free PPSes. We represent the internal code of a rule
B1, · · · , Bm → C1, · · · , Cn without evaluable predicates
by the molecule,

rbc([B1, · · · , Bm], [C1, · · · , Cn]),

where the list can be an empty list [ ] when m = 0 or n = 0
and [B1] or [C1] are also written B1 and C1. For example,
*rbc(B,C) and *rbc(B, [ ]) are codes for B → C and
B →, respectively. We represent a rule having an atom #P
with an evaluable predicate by

rbpc([B1, · · · , Bm], P, [C1, · · · , Cn]),

The following universal program uses list operations in
Prolog to process sequences of atoms.

[Parallel universal program]
*rbc([B|L],CL),B → rbc(L,CL).
rbc([],[]) →.
rbc([],[C|L]) → C, rbc([],L).
rbc([B|L],CL),B → rbc(L,CL).

*rbpc([B|L],P,CL),B → rbpc(L,P,CL).
rbpc([],P,[C|L]), #P → C, rbc([],L).
rbpc([B|L],P,CL),B → rbpc(L,P,CL).
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Consider that the global state contains a coded rule
rbc([B1, · · · , Bm],[C1, · · · , Cn]) and molecules
B′

1
, · · · , B′

m. If Bi unifies with B′
i for each i by an

mgu θi, the universal program generates molecules
(C1, · · · , Cn)θ1 · · · θm. This process proceeds correctly in
race-free computation of a PPS.

Self-Replication
In this section, we show not only small simple self-
replicating sets of molecules, but also self-replication
of coded programs composed of a number of labelled
molecules, such that each replicated molecule is a variant of
the original molecule except that the label is different from
that of the original. By labeling groups of molecules, the
global state can have two or more groups of equivalent coded
programs working independently. We add a common label
to either the first element of coded rules or the first argument
of molecules in a group.

A set S of molecules is self-replicating, if and only if there
are a simple “start command” molecule p and a set S′ of
molecules such that:

1. S ∪ {p} ⇒∗ S ∪ S′, and S ∪ S′ is a terminal state; and

2. each member in S′ is either a variant, or a variant with dif-
ferent label, of a member of S and vice versa, and hence,
S′ is also a self-replicating set.

In this section, we represent the coded rules using the
more readable form ([B1, · · · , Bm], #P → [C1, · · · , Cn]) in
stead of the form rbpc([B1, · · · , Bm], #P, [C1, · · · , Cn]).

Simple Self-Replicating Molecules
One common method of self-replicating programs is based
on the doubling of a part within a program.

[Self-replication by doubling a term]
rep → p((p(R)→[(rep → p(R)),R])).
p(R)→ (rep → p(R)), R.

When the molecule rep is given, the first rule generates
the molecule p((p(R)→[(rep→p(R)),R])). From this
molecule, the second rule generates a pair of molecules,
which is a variant of the coded program.

Self-Replicating Molecules with Labels
We can transform the simple self-replicating program above
to a self-replicating set of molecules identified by a unique
label.

Because of the restriction known as single assignment
rule in logic programming, it is not straightforward to
change part of a term without reconstructing the term. To
assign the labels in the molecules to different labels, we use
mutable terms, which are proposed to realize global vari-
ables in Prolog (Nakamura, 2009). We consider the muta-

ble term as a variable with assignable values1. We repre-
sent mutable terms with a value v by $mt(v), and suppose
that its value can be changed to v′ by evaluating the term
alter($mt(v), v′).

The following rules constitute self-replicating molecules
with label l.

[Self-replication with labels by doubling a term]
rep($mt(l),L1) → p($mt(l),L1,

(p($mt(l),L1,R), #alter($mt(l),L2) →
[(rep($mt(l),L2)→ p($mt(l),L2,R)),R])).

p($mt(l),L1,R),#alter($mt(l),L1)→
(rep($mt(l),L2)→ p($mt(l),L2,R)),R.

For the starting molecule rep($mt(l),m), this program
generates two molecules that are equivalent to the original
program except that the mutable term $mt(l) is changed
to $mt(m). We can repeat this self-replication process by
giving the starting command rep($mt(m),n).

Self-Replication by Copying Molecules
Another common method for self-replicating programs is
copying such that each part of the program alternately copies
the other parts or a program code exists with the capability
to inspect and copy itself (Laing, 1976; Ray, 1992; Hutton,
2003).

In the following self-replicating program, two coded rules
copy each other.

[Self-replication by copying]
rep,*([rpl|B]→D)→([rpl|B]→D),rpl
rpl,*([rep|B]→D)→([rep|B]→D).

Note that the term ([rpl|B]→ D) on the left side of the
first rule unifies with the second rule. For the starting com-
mand rep, the first rule generates a replicated coded rule
of the second rule and the molecule rpl, which starts the
second rule. The second rule generates a copy of the first
rule.

There is also another type of self-replicating molecules
that use copying.

[Parallel self-replication by copying]
rep → rpa,rpb.
rpa,*([rpb|B]→D)→([rpb|B]→D).

rpb,*([rpa|B]→D),*([rep|B1]→D1) →
([rpa|B]→D),([rep|B1]→D1).

For the starting command rep, the first rule generates two
molecules rpa and rpb, which start the second and third
rules, respectively. The second and third rules generate
copies of the third and second rules. As this process can
run in parallel, the second and third molecules can be used

1The mutable terms can be realized by using lists terminated by
variables so that the last element Ek of the list [E1, · · · , Ek|X]
represents the value. This method is simple but not efficient.
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%%%%%%%%%%%%%% Rule 1 %%%%%%%%%%%%%%%%%%%
repj($mt(l),L)→

rpaj($mt(l),L),rpbj($mt(l),L).

%%%%%%%%%%%%%% Rule 2 %%%%%%%%%%%%%%%%%%%
rpaj($mt(l),L),
*([rpbj($mt(l),L)|B],#P → D),
*([rule2j−1,$mt(l)|B1]→D1),
*([rule2j,$mt(l)|B2]→D2),
#alter($mt(l),L)
→
([rpbj($mt(l),L1)|B],#alter($mt(l),L1)→D),
([rule2j−1,$mt(l)|B1]→D1),
([rule2j,$mt(l)|B2]→D2),
rep2j($mt(l),L), rep2j+1($mt(l),L).

%%%%%%%%%%%%%% Rule 3 %%%%%%%%%%%%%%%%%%%
rpbj($mt(l),L),
*([repj($mt(l),L1)|B] →D),
*([rpaj($mt(l),L1)|B1],#P →D1),
#alter($mt(l),L)
→
*([repj($mt(l),L1)|B],#alter($mt(l),L1)→D),
([rpaj($mt(l),L1)|B1],#alter($mt(l),L1))→D1).

Figure 2: Three rules in module Mj for self-replication of
the coded program.

simultaneously as rules and objects of the operation. There-
fore, the second and third rules should be non-deleting to
keep this PPS race-free.

Self-Replication of Coded Programs
Based on the self-replication by copying shown in the last
subsection, we can transform a labelled PPS program to a
self-replicating set of molecules.

Let P be any program of N rules. We sup-
pose that each j-th rule in P is unified with the term
([rulej ,$mt(l)|B]→D) with the initial label l. The
transformed program is the union of M1,M2, · · · ,MN/2

and P , where Mj is a module of the three rules in Fig. 3
for 1 ≤ j ≤ N/2, and the second rule contains:

1. the term ([rule2j ,$mt(l)|B2]→D2) in both sides
of the rule, if and only if 2j ≤ N ; and

2. the terms in the right hand side rep2j($mt(l),L)and
rep2j+1($mt(l),L), if and only if j ≤ N/2.

For the starting command repj($mt(l),m), each rule
in Mj works as follows:

1. The first rule generates molecules rpaj($mt(l),m)
and rpbj($mt(l),m);

2. The second rule replicates the (2j − 1)-th rule and the
2j-th rule of P , if 2j ≤ N , and generates the molecules
rep2j($mt(l),m) and rep2j+1($mt(l),m), if j ≤
N/2; and
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Figure 3: A data flow diagram for the self-replication of a
coded program with 20 rules. Each of 10 modules replicates
two program rules and three rules of the module itself.

3. The third rule replicates the first and second rules.

Fig.3 illustrates the data flow in the self-replication of
program T for the case N = 20. Each modules
Mj , with 1 ≤ j ≤ 4 generates two molecules
rep2j($mt(l),m)and rep2j+1($mt(l),m), while
M5 generates only rep10($mt(l),m). Every module
replicates two rules in P and three rules of the module.

The following proposition summarizes the discussion in
this section.

Proposition 3 For any PPS program P , we can construct a
set T of labelled molecules such that

1. |T | ≤ 2.5 · |P |.

2. T contains a coded program equivalent to P .

3. T replicates itself in time O(log |P |) by race-free compu-
tation of T and the start command molecule: it generates
all the modules each of which is a variant of the corre-
sponding element in T with a different label .

We can reduce the factor of 2.5 for the size |T | to less than
2 by changing the module to copy three or more rules.

Concluding Remarks
In this paper, we discussed asynchronous parallel univer-
sal computation and self-replication based on a computation
model, called the logic molecular model, or the parallel pro-
duction system. The model is based on the parallel applica-
tion of production rules, which is forward deduction based
on extended Horn clauses.

We showed that for any PPS program, there is a set of
molecules that contains the coded program, which repli-
cates itself by asynchronous parallel computation in time
proportional to log n, where n is the number of rules in
the program. This type of self-replication is important for
a theoretical model of biological systems, in which the most
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processes including self-replication seem asynchronous and
parallel.

The essential features of the molecular model are summa-
rized as follows.

• The PPS is a simple model for parallel functional compu-
tation as well as for parallel logical deduction.

• The programs in the PPS are compact, as the rules repre-
sent patterns of deductions and do not specify the order of
the deductions. The PPS is effective for specifying several
parallel computations, including parallel parsing, simulat-
ing 1-D CA and universal computation.

• As a universal Turing machine and universal programs
for sequential computation, the parallel universal program
suggests the generality and the computation power of the
parallel computation model. By the universal program,
the molecules are not only data tokens but also coded
rules that can generate other molecules of coded rules.
The coded rules are similar to enzymes in biological sys-
tems because these molecules control the interactions of
other molecules.

We tested several PPS programs including parallel sorting
using bitonic sort in addition to the example programs in this
paper by using a serial interpreter of PPS in Prolog.

An interesting question regarding self-replication is the
cost required to transform a coded program into a self-
reproducing set of molecules. The transformed self-
replicating coded program in the previous section requires
extra 1.5N rules for a program with N rules. Reducing the
number of rules in parallel self-reproducing programs is a
topic for future work to address. Other future problems in-
clude:

• implementation of PPS in a concurrent environment;

• machine learning of self-replicating PPSes by extending
methods of learning definite clause grammars (DCGs)
(Imada and Nakamura, 2010); and

• application of this paper’s approaches to amorphous com-
puting (Abelson et al., 2007), to DNA and molecular com-
puting and to chemical kinematics.
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Extended Abstract

The Collatz problem, also known as the 3x+1 problem (Lagarias 1985), discusses the behavior of a series that starts with
an arbitrary positive integer x0 and develops according to the following rule:

xt+1 =
{

3xt + 1 if xt is odd
xt/2 if xt is even

The Collatz conjecture asserts that this series always falls into a 4 → 2 → 1 cycle regardless of x0, which is believed to
be true by many but has defied any formal proof for more than 70 years (Lagarias 2003; Lagarias 2006).

Here I propose a new perspective on the Collatz problem by considering it an ecological process of artificial organisms
(1’s in bit strings) and studying the spatio-temporal dynamics of their patterns. To make this approach easier, I ignore the
second condition of the rule because it only right-shifts bit strings with no influence on their patterns. Ignoring it converts
the series into a simpler iterative map with no ifs:

xt+1 = 3xt + LSNB(xt)

Here LSNB(x) is the Least Significant Nonzero Bit of x (e.g., LSNB(172) = LSNB(10101100 ) = 100 = 4; italics are
binary representations).

The above formula can be interpreted in ecological terms. A bit string of xt represents the population distribution at time
t, where 1’s are living organisms and 0’s are empty sites. 3xt represents the replication of those organisms because it
literally replicates each single bit (Fig. 1(a)). This causes leftward growth of the bit string as well as overcrowding of
bits whose effects propagate leftward, depending on the carry rule. Also, LSNB(xt) represents an external perturbation
continuously introduced to the population, which causes extinction of the living organisms residing at the rightmost end,
making the non-zero region of the bit string shrink from the right (Fig. 1(b)).

These interpretations suggest that the Collatz problem is about a competition between growth and extinction of the non-
zero region in their speeds (Fig. 1(c)). The maximal speed of the leftward growth of the non-zero region is 2 bits/step,
which can be sustained only if the population consists of a single 1, while its average speed is approximately log2 3 ≈ 1.58
bits/step. In the meantime, there is no maximum regarding the speed of extinction of the non-zero region from the right.
Assuming the equal probability of 0’s and 1’s in bit patterns, the average speed of extinction is analytically calculated to
be 2 bits/step, which was confirmed by computer simulations. This indicates that the extinction from the right is “faster”
than the population growth to the left, providing an ecological explanation of why the series always fall into a single-bit
cycle.

Note that the above argument is still not a rigorous proof because it assumes stochasticity in bit patterns. The Artificial
Life community could also contribute to this problem by attempting to design counter-examples to the conjecture. It may
be possible to create, or even evolve, specific bit patterns that are able to “slow down” the extinction by continuously
producing “barriers”, which might be possible with very large initial conditions.
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Figure 1: The Collatz problem as an ecological process of artificial organisms represented in bit strings. (a) Replication of
1’s (gray cells) and growth of the non-zero region caused by 3xt. (b) Extinction from the right caused by LSNB(xt). (c)
Spatio-temporal dynamics of a sample series (x0 = 111111111) visualized as bit patterns.
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Abstract 
The Game of Life (LIFE) is one of the two-dimensional cellular automata (CA) and has a propagating pattern called “glider”. LIFE 
is able to emulate a conventional digital computer by considering a glider as a signal in a digital circuit. From the viewpoint of 
computability theory, LIFE is called computationally universal. Another distinguishing characteristic of LIFE is 1/f noise. The 
power spectrum calculated from the time evolution of cells starting from a random initial configuration exhibits 1/f characteristics 
(Ninagawa et al., 1998). Another example of CA exhibiting both computational universality and 1/f noise is found in elementary 
CA rule 110. Rule 110 was proved to be computationally universal (Cook, 2004) and exhibits 1/f noise (Ninagawa, 2008). These 
results suggest a relationship between computational universality and 1/f noise in CA. In this study we search two-dimensional 
three-state nine-neighbor CA rule space for a rule exhibiting a 1/f spectrum by means of genetic algorithms to find computationally 
universal rules. 

The transition function of a CA is encoded into a 134 ternary digit string. Power spectrum is calculated from the discrete Fourier 
transform of a time series of states of a site and the power is summed up over all cells in the array. The fitness of a rule is given by 
the exponent estimated by the least squares fitting of the power spectrum divided by the residual sum of squares. The array consists 
of 100 * 100 sites and periodic boundary conditions are used. The array is started from a random initial configuration. We randomly 
generate initial rules whose value of lambda parameter is uniformly distributed between 1/135 and 90/135. We observed the 
evolution for 7200 and 8000 time steps. Since the calculation of the power spectrum needs a lot of computation time, we carry out a 
preliminary selection from initial rules to remove rules whose spectrum is far from a 1/f spectrum. In the preliminary selection the 
power spectrum of the evolution for 1024 time steps are calculated and we pick the rules with the exponent of the power spectrum 
equal to -0.3 or less. The selected rules are gathered as an initial population of 180 rules. 20 rules with the highest fitness are copied 
without modification to the next generation. The remaining 160 rules for the next generation are formed by uniform crossovers with 
a probability of 0.6 between pairs in the population chosen by roulette wheel selection. Every bit of the offspring from each 
crossover is mutated with a probability of 0.03. 

Up to now we have performed the experiments for a total of 18789 generations in 80 runs in 7200 time steps and a total of 7881 
generations in 100 runs in 8000 time steps. Although the search is in progress, we have found several rules with 1/f spectrum. Some 
of these rules exhibit stationary, periodic, and propagating patterns which are necessary for supporting universal computation. 

This study was supported by a Grant-in-Aid for Scientific Research (C) (20500216) of JSPS and the ISM Cooperative Research 
Program (2010-ISM-CRP-0006). 
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Abstract

Many of the most profound works of artificial life have
emerged through the composition of physical simulation and
generative representations. And yet, while physics engines
are becoming more realistic, and generative representations
are growing more powerful, they are still predominantly used
to simulaterigid objects. The natural world and its organisms
are, by contrast,soft, and full of much more interesting (and
complex) interactions than those which can be faithfully re-
produced by rigid body dynamics. In this work we describe
and implement a grammatical encoding capable of generat-
ing large, complex, and multi-resolutionsoft structureswhich
can be natively simulated by the state-of-the-art hardware-
accelerated physics engines. The structures generated by the
encoding exhibit all the benefits (structural modularity, large-
scale co-ordinated change) of more conventional rigid-body
generative encodings.

Introduction
The generative encoding of morphology embedded within
physical simulation has a long and rich history in arti-
ficial life, tracing back to Karl Sim’s seminal work on
evolved virtual creatures (1994) and to Lindenmayer and
Prusinkiewicz’s L-system-based plants (1990). More recent
notable contributions include the evolution of satellite an-
tennae (Lohn et al., 2005), robots (Pollack et al., 2001), and
tensegrity structures (Rieffel et al., 2009).

A unifying property of these contributions is that they all
producerigid objects. This is largely due to the limitations
imposed by popular off-the-shelf physics engines, such as
the Open Dynamics Engine (ODE) which, although capable
of smoothly simulating the interaction of thousands of rigid
bodies , lack the ability to effectively simulate softer mate-
rials such as cloth or rubber. Finite Element Analysis (FEA)
and Computational Fluid Dynamics (CFD), are incredibly
accurate, but too computationally intensive to be practical
for Artificial Life purposes.

Of course, most biological organisms are quite soft, and
the complex dynamical interactions which arise from this
softness are beyond what can be realistically reproduced
by simpler rigid body dynamics. Recently, off-the-shelf
hardware-accelerated physics engines, such as NVidia’s

PhysX, have added to ability to simulate soft shapes, open-
ing the door to a much more dynamic range of virtual crea-
tures.

Taking full advantage of this functionality, however, re-
quires a grammatical encoding capable of generating large,
open-ended, and incredibly complex soft structures. In this
paper we introduce a face-encoding grammar which oper-
ates upon tetrahedral meshes like the one shown in Figure 1.
Meshes such as these are used to describe deformable ob-
jects in computational methods such as FEA, as well as in
physics engines such as PhysX. By operating directly within
the representational substrate of soft bodies (avoiding post-
hoc methods such as generating a more generic CAD file
and then computing a near-matching mesh) we avoid design
bias and have a more nuanced control over the final product.

As we show, the face-encoding grammar we introduce is
able to generate arbitrarily large, and incredibly complex
tetrahedral meshes. Furthermore, like other grammatical en-
codings, our process exhibits implicit modularity and allows
small changes in the underlying grammar to produce large-
scale co-ordinated changes in the final product. The results
of this paper open the door to a whole new dimension of the
artificial life: softvirtual creatures, andsoftrobots.

Generative Encodings

Generative encodings come in a variety of styles: Arti-
ficial Ontogeny (Bongard and Pfeifer, 2003), Generative
and Developmental Systems (Stanley, 2008), and Linden-
meyer Systems (L-Systems) (Prusinkiewicz and Linden-
mayer, 1990)(to name a few), but all have a common set
of features, and all offer a variety of advantages. Using the
the biological processes of growth and development as in-
spiration, generative encodings grow large complex objects
by applying a simple set of re-write rules to an initial “seed”.
In the case of L-Systems, the seed is a small starting string
of characters, grammatical production rules determine the
order of growth. Gene Regulatory Networks Bongard and
Pfeifer (2003) model the interaction between transcription
factors and gene expression, and can be used to grow both
morphologies and neural networks.
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Figure 1: A large soft robot within the PhysX physics engine.Soft bodies are represented as tetrahedral meshes. This particular
mesh was created in a top-down fashion: hand-designed by an engineer in CAD, and then manually converted into a tetrahedral
mesh. This paper describes an alternative bottom-up approach: a grammar for automatically generating arbitrarily large and
complex structured tetrahedral meshes.

Regardless of implementation, the benefits of generative
representations, particularly in the context of Genetic Algo-
rithms, stem from their ability to implicitly encode structural
modularity and reuse, and the ability for small changes to the
rule set to produce corresponding large-scale co-ordinated
changes in the final result (Hornby and Pollack, 2001). As
an example, when representing a table, unlike a direct en-
coding, a generative encoding is able to change the length of
all four legs simultaneously.

Generative encodings are particularly popular in evolu-
tionary design tasks, in which they are used to specify the
structure (morphology) of objects and creatures. Karl Sims’
early work (1994) on artificial life used a simple grammar to
grow virtual creatures within a simulated environment, Lohn
et al used L-Systems to design the satellite antennae (2005)
and Hornby used a variety of L-System to develop the mor-
phology of virtual robots (2001).

Physics Simulation
Generative encodings of morphology really come to life
when they are embedded within realistic physical simula-
tions. Karl Sim’s virtual creatures were evaluated within
a simple but quite effective quasi-static physical simula-
tor (1994). Later work, such as Lipson’s GOLEMs (2001)
and Hornby’s GenoBots (2003) also involved quasi-statics
-static simulations. More recently, the advent of off-the-
shelf physics engines such as the Open Dynamics Engine
(ODE), has led to more dynamical simulations, such as
Bongard’s virtual creatures (2003) and Rieffel’s tensegrity
robots (2010).

Conventionally, the only means of simulating the dynamic
behavior ofsoftobjects was through computationally inten-
sive tools such as Finite Element Analysis (FEA) and Com-
putational Fluid Dynamics (CFD). While these methods are

quite powerful, they are computationally intensive, and op-
erate on small enough time scales (usually simulating only
seconds at a time) as to make them impractical for common
Artificial Life techniques such as evolutionary algorithms.
Recently, however, following in the footsteps of modern
advances in computer graphics (Jakobsen, 2001), commer-
cial video-game physics engines, such as Intel’s Havok, and
NVidia’s PhysX, have added the ability to simulate cloth as
well as three-dimensional soft bodies. What makes these en-
gines particularly appealing to the artificial life community
is their ability to use General Purpose Computing on Graph-
ics Processing Units (GPGPU) interfaces in order to achieve
significant hardware acceleration of simulations – providing
speedups of several orders of magnitude (Banzhaf and Hard-
ing, 2009).

A way of grammatically generating soft morphologies
and testing them in simulation would be a valuable tool for
further exploring these issues. The remainder of this paper
describes one such implementation.

A Face-Encoding Grammar for Tetrahedral
Meshes

Central to our approach is the use of tetrahedral meshes to
represent soft bodies. While our examples below are within
the context of NVidia’s PhysX simulator, it is worth empha-
sizing that tetrahedra meshes are commonly used in other
systems as well, such as Finite Element Analysis.

Figure 2 illustrates a single tetrahedron. The ”softness” of
a material within PhysX can be changed by varying a set of
constraints placed upon the tetrahedron. The first constraint
treats each edge of the tetrahedron as a spring-and-damper
system, which resists both stretching and compression. A
second constraint attempts to maintain each tetrahedra at
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Figure 2: Soft bodies in PhysX are built out of tetrahedral
meshes. Each tetrahedron is defined by four vertices and
four corresponding faces

a constant volume. Changing the value these parameters
changes the softness of the tetrahedron. These tetrahedra are
then woven into a larger “mesh”, in which neighboring tetra-
hedra are connected at their common vertices. By uniformly
varying the parameters of the tetrahedral mesh, PhysX can
simulate a wide range of soft materials, from rubbery Jell-O
to semi-rigid plastics.

Since there are no known grammatical encodings which
operate upon tetrahedral meshes, we will create our own.
We use as inspiration the Map L-Systems, a special form
of L-system whose rewrite rules operate upon the edges of
2-D graphs (Luke and Spector, 1996). Map L-Systems have
been used to grow both 3-D surfaces(Hemberg and O’Reilly,
2004) and large tensegrity structures Rieffel et al. (2009).

Drawing an analogy between the edges of a graph (in 2-
D) and the faces of a tetrahedron (3-D) ourface-encoding
grammar operates upon tetrahedral faces in much the same
way that a Map L-system operates upon graph edges.

Assuming that each face of a tetrahedron can be given a
label, there are three obvious operations which you can per-
form upon the faces of a tetrahedron, as illustrated in Fig-
ure 3. We will assume that operators can only be applied to
exposedfaces – that is, those which are not shared by two
tetrahedra.

A → relabel(B) will replace a face labeled ’A’ with a
new face labeled ’B’

A → grow{BCD} replaces a face labeled ’A’ with a new
tetrahedron, labeling the new exposed faces as ‘B’,’C’,
and ’D’.

Figure 3: An illustration of the three rules which can be ap-
plied to the face of a tetrahedron. Clockwise from top left:
the original tetrahedron with face labeled “A”,relabel re-
places “A” with “B”, subdivide replaces the face with four
smaller faces (this requires subdividing the entire tetrahe-
dron), andgrow adds a new tetrahedron with face labels
“B”,”C”,”D”

A → divide[BCDE] subdivides a face ’A’ into four
smaller faces, ’B’,’C’,’D’, and ’E’. The underlying tetra-
hedron must also be subdivided into eight component
tetrahedra in to provide attachment points for the new
faces and vertices.

Armed with these rules, we can now grow tetrahedral
meshes of arbitrary size by iteratively applying them to an
initial ”seed” tetrahedron.

Each exposed face of the soft body kept in a queue, and is
associated with three vertices (in counterclockwise orderso
that we can calculate surface normals) and exactly one tetra-
hedron. (A face can be shared by two tetrahedra, but then
it wouldn’t be exposed). For every generation of growth,
the open faces are iteratively removed from the queue and
the appropriate rule is applied. Forrelabel, a new face with
the new label is enqueued. Forgrow anddivide, new ver-
tices and tetrahedra are computed and added, and then the
resulting three (grow) or four (subdivided) new faces are
enqueued.

This entire cycle is repeated a fixed number of times to
create progressively larger and more complex soft bodies.
Figure 4 shows the iterative application of rewrite rules to
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Figure 4: The growth of a larger tetrahedral mesh by iteratively applying a face-encoding grammar to an initial “seed” tetrahe-
dron.

Figure 5: A small change in the grammar underlying the
production of a tetrahedral mesh can produce profound and
co-ordinatd change in the final result. The above figure was
produced with a single mutation to the grammar which pro-
duced the mesh in Figure 4.

a single starting tetrahedron. Like in other grammatical en-
codings, a small change in a single production rule can have
profound and co-ordinated effects upon the final product.

Technical Challenges

Although the rules may seem simple, there are several tech-
nicalities which may the implementation of a face encod-
ing grammar difficult. First, as previously mentioned, when
subdividing faces we also subdivide the associated tetrahe-
dron. This is necessary because the new, smaller faces need
new vertices and their own tetrahedra to attach to. While in
principle it may be possible to subdivide less than the entire
tetrahedron, during a divide, it requires more complicated
bookkeeping, and the symmetry of our solution is appeal-

ing.

Figure 6: Subdividing a face “A” on the left hand tetrahe-
dra actually requires splitting the entire tetrahedron. The re-
maining faces, such as “B” remain defined in terms of their
original three vertices, and are left alone. Book-keeping
must be maintained to ensure that any subsequent call to di-
vide the original face “B” is aware that the underlying tetra-
hedron has already been split.

However, subdividing the full tetrahedron when a single
face is divided raises the question of how to treat the remain-
ing faces. In principle, we want to act as if the remaining
faces still exist and are still associated with the originaltetra-
hedron, even though the tetrahedron they belonged has been
subdivided into smaller tetrahedra, as illustrated by Figure 6.
This works fine as long as the other faces want to grow or
relabel – they can proceed as usual, because to do either of
those things doesn’t rely on the underlying tetrahedron. A
special case arises if a second original face wants to subdi-
vide, in order to ensure the work isn’t duplicated.
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A similar scenario occurs when we want to subdivide two
adjacent tetrahedra. Before subdivision they are connected
only at their corners, but after subdivision they should be
connected in the middle of each of the edges they share as
well, where the smaller, subdivided tetrahedra are now ad-
jacent to each other. We solve this problem and other sim-
ilar special cases largely by ignoring them during growth,
and then removing duplicate and redundant vertices during
a post processing stage.

Examples

As an example of the complexity of features achievable
with this grammatical encoding, consider the rule set shown
in Table 1, and the soft body which results by iterating
the grammar over a single “seed” tetrahedron 10 times, as
shown in Figure 7.

A → grow {DBF}
B → grow {ADF}
C → grow {EDF}
D → relabel (D)
E → grow {DCF}
F → divide [DDDG]
G → grow {DDG}

Table 1: The rule set used to grow Figure 7.

At each iteration, faces labeled with an A, B, C, E, or
G are grown, and the three new faces created are labeled
as shown. For example, the faces of the tetrahedron grown
from any A face will be labeled as D, B, and F faces. Face
D, meanwhile, is relabeled as itself. This serves effectively
as a no-op, and is a dead-end for growth. Face F is subdi-
vided,into three dead-end D faces and one G face. In the
final soft body, faces A, B, C, and E work together to grow
the ”legs” of the soft body, while the F and G faces work to-
gether to grow the smaller ”tentacles” that protrude at every
angle.

Figure 8 illustrates how further iterating the grammar in
Table 1 20 times produces a structure which can be consid-
ered an elaboration of the smaller 10-step mesh of Figure 7

Discussion: Applications to Soft Robotics
Soft bodies, both natural and virtual, bring with them fas-
cinating new questions about the relationship between mor-
phology and control. Soft and deformable objects can pos-
sess near-infinite degrees of freedom, and elasticity in the
system means that local perturbations can propagate to dis-
tal regions with interesting consequences. One might be
inclined to think that this would create intractable control
challenges, and yet the animal kingdom is full of soft and
deformable animals. TheManduca sextacaterpillar, for in-
stance, which might seem a relatively simple organism, is

in fact rife with non-linearities and complex dynamics im-
posed by the interaction of hydrostatics, an elastic body wall,
and nonlinear muscular behavior. New insights from biome-
chanics and neuro-ethology (Trimmer, 2007) suggest that
rather than being hobbled by these complex dynamics, soft
creatures in fact are able to exploit them as an advantage,
via a formmorphological computation(Valero-Cuevas et al.,
2007; Pfeifer and Bongard, 2006).

This is particularly relevant to the budding field of soft
robotics. Imagine a machine that can squeeze through holes,
climb up walls, and flow around obstacles. Though it may
sound like science fiction, thanks to modern advances in ma-
terials such as polymers (Huang et al., 2007), and nanocom-
posites (Capadona et al., 2008) such a “soft robot” is becom-
ing an increasing possibility.

The largest outstanding problem in soft robotics is that
while we possess the means to build them, no principled
method exists to design or control them. There are no text-
books on soft robot design and control. And, while intu-
ition suggests that the best way to control soft structures is,
like caterpillars, to exploit their complex body dynamics via
morphological computation, the dynamics are too complex
to hand-code a solution.

The most promising approach is probably body-brain co-
evolution (Pollack et al., 1999). The grammatical encoding
we have presented here is a vital tool for the the co-evolution
soft robotic design and control.

Conclusion
The face-encoding grammar presented in this paper provides
us with a principled way of generating large and complex
structuredsoft objects. The ability to generate complex and
life-like soft structures (via this face encoding grammar)
and to efficiently simulate them (via hardware-accelerated
physics simulators) broadens the horizons of artificial life
research, and provides entire new sources of bio-inspiration.
Instead of mimicking (relatively) rigid vertebrates such dogs
and horses, we can now begin to create artificial creatures
which resemble octopii, squid, slugs and caterpillars.
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Figure 8: Continuing the growth of the grammar in Table 1 for another 10 cycles produces a mesh which is more elaborate that
the earlier one in Figure 7, but which maintains much of the coarse structure.
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Abstract 
Growing cellular automata (CA) can generate diverse patterns 
such as flowers and snow crystals, especially when one-rule 
firing scheme is employed. In the present paper, hexagonal 
CAs on 2D plane is used to investigate the patterns generated 
under the one-rule firing scheme. Rules define the state of an 
empty cell in the next time-step as a function of the present 
states of its six neighborhood cells. Among the empty cells 
currently subject to the update condition, only one-rule is fired 
in a given time step, which causes differential growth of the 
patterns and, as a result, the emergence of many interesting 
patterns. An efficient method to identify the rule-set, or 
equivalently the patterns, is presented, which is just a list of the 
Fired color codes(F-codes) to make the specific pattern. 
Numerical simulation showed that such patterns can have F-
codes of various lengths, ranging from one to a few hundreds. 
When we imagine the F-code as a genetic code for the pattern 
generated, the F-code system suggests an ecological system 
composed of a complete atlas of species. It will be interesting 
to investigate the complexity of the species, considering the 
length of the F-codes as a measure of complexity. For example, 
consider the complexity of patterns generated in random 
situation. It is found that the number of possible F-codes for a 
given length increases with the length. On the other hand, 
patterns with longer F-codes are the less likely to be obtained in 
random simulations. Why is the complex patterns rare than the 
simpler one when the former can have the larger number of 
variations? The present paper tries to answer this question 
theoretically.  

Introduction 

Cellular automata (CA) have been widely used in the 
study of physical, biological and social systems[ Wolfram 
1984]. Recently the author presented a new firing scheme on 
2D cellular automata[Shin 2010]. In this new firing scheme, 
only one rule is fired at a given iteration. A system composed 
of 2D hexagonal cells is used to study growing patterns from a 
single seed cell. A one-rule firing scheme is found to generate 
myriad of patterns not reported in the CA literatures. In 
addition to the simple geometric patterns, the natural patterns 
such as snow flakes and flower-like ones emerged depending 
on the rule sets used. An efficient method of identifying the 
patterns, called an F-code, is suggested. Being composed of 
the rule values fired for generating the specific pattern, the F-
code is decodable. Patterns were identified to have F-codes of 
length a few to a few hundreds. The length of the F-code 
suggested a natural measure of the complexity of patterns. 

Because the F-code looks like a genetic code and each of the 
F-codes corresponds to a pattern in two dimensional space, the 
F-code system suggests a complete set of an artificial ecology 
composed of almost an infinite number of species of varying 
complexities. During numerical study, it were found that the 
complex patterns with longer F-codes are the less likely to be 
found under random simulations, while the number of possible 
patterns increases with the length. This seems to be a 
contradiction. Why is the complex patterns rare than the 
simpler one when the former can have the larger number of 
variations? The present paper tries to answer this question 
theoretically. 

One-rule firing cellular automata 

CA system in the present study is composed of 
hexagonal array of cells on 2-D plane. An occupied cell has 
values or color codes from 1 to m and is called an element. 
For convenience, an empty cell is defined to have color code 
of 0. Thus a cell can be in any of the M=m+1 possible cell 
states. Only six-color problem with m=6 and M=7 is 
considered in the present study, unless stated otherwise. Once 
defined, an element does not change its value nor return to 
empty cell. A cell has a set of neighborhood cells composed of 
six nearest cells. An empty cell is called a surface cell if it has 
at least one element in its neighborhood. A rule determines the 
value(or color code) of a surface cell at the next time step as a 
function of the states of the neighboring cells at the present 
time step.  

The number of neighborhood states possible is 
6M and the number of rule sets, without any symmetry 

condition, will be 
6MM . Throughout the present study, 

symmetric rule sets are considered. Thus two neighborhood 
conditions that are equivalent under cyclic rotation are 
equivalent. In typical CAs with synchronous updating, the 
rules are applied to all of the candidate cells at the given time 
step. In the present paper, only one rule is fired in a time step. 
Among the many different ways to choose a single rule to be 
fired in each step, ‘the last nonzero rule firing’ scheme is 
discussed in the present study. This will be explained below. 
Numbering of elements and surface cells are important for a 
standard implementation of the firing scheme. Elements are 
numbered in the order of their birth. The numbering of the 
neighborhood cells on an element is always starts from the top 
and counted clock-wise. The surface cells are numbered 
element-wise first and then neighborhood-wise(See Fig. 1).  
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To explain key concepts of the present paper, let us 
start with a single seed element at time step 0 (See Fig. 2). 
Without loss of generality, the color of the first element, e1, is 
set to be 1.  Now the first element has six neighbors. Each of 
the six neighbor cells has the same neighborhood state of 
000001. Assume, for example, the rule value is 
rule(000001)=3. Applying the rule to the six surface cells will 
end the iteration 1. Even though the updating is synchronous, 
we should consider the order of the updating, as it determines 
the element number. Thus rules should be applied from the 
surface cell number 1, or from the lower numbered surface 
cells in general. After iteration 1 we reach at Fig. 2. Elements 
are denoted by shaded cells whose numbers are marked at the 
centers of the cells. They are numbered in the order of their 
birth. Small numbers in each of the element cells represent the 
colors of the elements. The color(=3) of e2 to e7 was 
determined from the application of the rule number 000001. 
After the first iteration, the system has total of 12 surface 
cells , s1 to s12, as shown in the Fig. 2. The surface cells are 
numbered element-wise first and then neighborhood-wise. The 
numbering of the surface cell is scratched after each of the 
iterations and restarts in every iteration. On the contrary, for 
the elements, the numbers once defined are maintained 
throughout the later time steps.  

   
 

Figure 1. Six neighbors of an element.(Left) 
Figure 2. Numbering of elements and surface cells, 
rule(000001)=3 is applied. 

 
 

After time step 1, we have twelve surface cells, s1 to s 
12, as shown in Fig.2. Depending on the neighborhood 
conditions, the twelve surface cells can be sorted into two 
groups. The neighborhood condition of surface cells s0, s1, s4, 
s6, s8, and s12 is equivalent to 000003. For the remaining 
surface cells, it is 000033. Among the two rules, we fire only 
the rules for the last surface cell which is s12 in this case. 
Assuming rule(000003)=4, the six surface cells s0,s1, etc will 
be occupied by an element of color code 4. On the contrary, 
surface cells s2, s3, s5, s7, s9 and s11 will still remain as 
empty cells even after the iteration 2. Before starting the third 
iteration, we should renumber the surface cells from the 
scratch, while the numbering of the elements should be 
inherited from the previous iteration. The efforts we have to 
pay for keeping track of the numberings of elements and 
surface cells got rewarded by the efficient coding scheme of 
the patterns. The patterns generated can be completely defined 
form the sequence of the fired codes. For example, two codes 
were fired up to two iterations. The rule values or fire codes 
were 3 and 4 respectively. Thus a code f=34 is enough to 
define the pattern. This code is called an F-code, for 

convenience. There’s no need to remember the rule number 
such as 000003 or 000033, etc. The rule number is embedded 
in the pattern itself. If a rule is already fired in earlier time 
step(s) and appears again to be fired in later time step(s), it 
does not enter into the F-code again.  

The F-code is very efficient to define patterns 
generated. There remains one thing to be treated. What if the 
code(rule value) for the last surface cell is 0. For example, 
assume rule(000003)=0 in the above example. When the rule 
for the last surface cell is 0, then we chose next to the last 
surface cell to be fired. In the above example, assume 
rule(000033)=6. Then we fire this rule on the surface cells s2, 
s3, etc. In this case the f code looks like f=306. Observe that 
the 0 is inserted to remember that the rule for the 0 value has 
been skipped.  

 

Atlas of patterns 

In Fig.3, a few example patterns are shown with 
corresponding F-codes. As iteration proceeds, the patterns 
grow and the length of the F-codes can increase as new rules 
appear to be applied. For this reason, the patterns and the F-
codes should be described with the number of iterations at the 
same time. The simplest pattern of code F=1 is the well 
known Packard’s snowflake as shown in Fig. 3(a) [Levy 
1992]. To generate this pattern only one rule is necessary. At 
least in principle, the pattern can grow infinitely if we 
continue the iteration. But in some cases the patterns stop 
growing at some iteration as shown in Fig. 3(b). This happens 
when all the rules for the surface cells have value of 0 at the 
same time. Figure 3(c) shows a geometric pattern which has a 
relatively short F-code. The F-codes for the first two patterns 
are finished in the sense that they do not grow because the 
patterns is dead at some iteration or same rules apply 
infinitely. A finished F-code is represented by an uppercase 
letter F, while that for the unfinished is by lowercase letter f. 
Thus the code f=2403606605344425200615 for Fig. 3(d) 
means that the f-code is not finished up to the iteration 150. If 
the iteration is continued, the f-code increases. Because every 
F-code must have finite length, the unfinished F-codes happen 
because we stopped the iteration at a certain number. Due to 
the computation time, we cannot continue the iteration long 
enough to identify an F-code to its full length in many cases. 
Furthermore, except for some cases, we cannot prove that the 
F-code is finished or unfinished at the present iteration. But in 
some case, we can prove that the F-code is finished at the 
present time step. For example, the F-code shown in Fig. 3(e) 
is a finished one. In actual, the complex pattern in Fig.3 (e) 
shows a most frequent mechanism by which a pattern stops 
growing in its F-code. This pattern has a finished F-code of 
length 304F . If iteration continues from the point shown 
in this figure, only the outermost lines grow out. Because this 
growing process is not interrupt by anything, it will repeat 
endlessly while keeping the length of F-code at the present 
value. In general, the finished F-codes happen when the rules 
apply periodically, as in the case of Fig. 3(e). If we cannot 
prove that an F-code is finished or not at the present iteration, 
we treat that it is unfinished. 
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(a) Packard’s snowflake. F=1 (iter=60)(upper left).                   
(b) Pattern dying at iteration 80(upper middle). 
F=320110132021010133031…2101123103023(42 digts) 
(c) Geometric pattern. f=606302400540232063452002(24 
digits, iter=390).  
(d) Flower like pattern. f=2403606605344425200615(22 
digits, iter=150). (lower left) 
(e) Complex pattern. F=3603606…3625626(304 digits, 
iter=3900)(lower right) 
 

Figure 3 Sample patterns. 
 
 

 
Table 1 Number of patterns with given length of F-codes up to 

iteration 30. 
 

F  
No. of 

patterns 
(a) 

Early 
death 

Total 
enumerated 
(=  )(b) 

Prob.=a/b

1 1 0 7 0.142857
2 10 0 49 0.204082
3 70 5 343 0.204082
4 305 25 2,401 0.12703 
5 875 45 16,807 0.052062

6 4,115 560 117,649 0.034977

7 22,360 240 823,543 0.027151
8 121,350 1,825 5,764,801 0.02105 
9 579,745 10,920 40,353,607 0.014367
10 1,461,880 153,720 282,475,249 0.005175

Sum 2,190,711 0.832832
 

 
In search of life-like properties in CA, self-replicating 

shapes are widely studied in the literature[Neumann 1966, 

Langton 1984, Sayama 1999, Wuensche 2004, Pan and Regia 
2010]. Self-replication is also frequently found in the present 
study. Figure 4 shows a pattern growing through self-
replicating loops. This kind of repeating pattern frequently 
happen for complex shapes characterized by its long F-codes, 
say 30f , based on an iteration number of 60. These 
numbers are not meant to be precise. To identify these 
numbers more rigorously, we need more study. The self-
replication patterns from the present model suggest a 
hypothesis, that complex patterns are composed of hierarchy 
of simple repeating substructures. Classifying the patterns 
depending on the periodicity of the applied rules, on the 
existence of hierarchical structures as well as on the length of 
their F-codes will be also a topic of a future study. 

It is an interesting question to ask how many patterns 
can there be at a given length of F-codes. This question can be 
answered, at least for relatively short lengths of the F-codes, 
by numerical search. The result is shown in Table 1. To obtain 
this table, all the possible F-codes of up to length 10 are 
generated and decoded exhaustively to see if the patterns exist 
for each of the given F-codes. As a result, we have 1,461,880 
of patterns of F =10 up to iteration 30. As can be seen from 
the last row of Table 1, about 83% among all the possible 
combination of f-codes of length 10 did not need additional 
rules, or codes. But for the remaining 17%, additional rules 
(and codes) are required to finish the iteration 30. For 
example, we find f-Codes of f=243562678000(12 digits) up to 
iteration 30. Then the first 10 digits of this code 
f=2435626780 is counted among the 17% discussed above. 
Table 1 shows a general tendency that the number of patterns 
increases with the increase in F . An important thing to be 
noted is that this table is compiled from the data obtained 
through a simulation of up to iteration 30. The specific 
numbers may change under different setting of the iteration 
number. 
 

 
 
 
 

 

 
Fig. 4 A complex pattern composed of self replicating 
loops(shown in different scales).  
Left :  f=350101400…51465(88 digits, iter=481)  

 Right : f=350101400…514652000(92 digits, iter=780) 
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Fig. 5 Seven patterns having F-codes starting with 
F=2024155. Depending on the 8-th F-code, the patterns vary 
diversely. This looks like a speciation through mutation of the 
genetic codes. All patterns are up to iteration 90. F-codes and 
lengths are from top left to right: X5( F =8), X0(13), X1(9), 
X2 (12), X3(19), X4(25),X6(19) with X=2024155. 
 

The F-codes can be imagined as representing genetic 
codes for the patterns implied. For example, Fig. 5 shows 
patterns whose first 7 codes are the same in their F-codes, 
represented by an X(=2014155). The change, or mutation, in 
8-the gene(code) can lead to a speciation-like change in their 
patterns. For the last pattern, the length of the F-code grows to 
19 up to iteration 90. All the following codes not shown in 
Fig. 5 are set to 0. Thus the full F-codes for the case last 
pattern is f=X600000000000. The length of an F-code 
suggests a natural measure of complexity of the pattern, as it 
means the number of different rules applied to generate the 
pattern. The result in Table 1 shows that the number of 
possible patterns increases with the increase in the complexity 
of the patterns. But the increase in the number does not mean 
that we can find complex patterns easily than the simpler 
patterns. Figure 6 shows the frequency of patterns as a 
function of F . This graph is obtained through 100,000 
random patterns obtained using random rule-sets up to 
iteration 100. It is clear that the longer the F-codes are, the 
lesser probable they can be met in random simulations.  

Why is the complex patterns rare than the simpler ones 
when the former can have the larger number of variations? 
This may be best explained through the schematic diagram 
shown in Fig. 7. The abundance of F-codes are illustrated for 
three color case up to F =5. Each box in each of the 
columns corresponds to a gene(code) in the F-code. The three 
boxes in the first column represents color code 0, 1 and 2 
respectively. Of course, the size of the box has no meaning. If 
an F-code is finished at a given length, the corresponding part 
of the column is left as a blank. The number of boxes just 
ending in a specific column represents the number of F-codes 
by that length. For example, there 1, 2 and 4 boxes ending in 
the columns 2, 3 and 4, respectively. The number of boxes is 
like the one shown in column (a) in Table 1. The increasing 
number of the smaller boxes with increasing F implies the 
increase in the number of patterns with longer F-codes. But it 
should be remembered that those seemingly finished rows 
may not be finished forever. They maybe continued if we 
increase the number of iterations, as explained above. Thus 
the diagram shown in Fig. 7 should also be understood in 
terms of an iteration number. Assume the total height of the 

figure shown in Fig. 1 is 1.0. Then the sum of the heights of 
the smaller boxes in each column denotes the probability that 
the F-codes are of length greater or equal to the column 
number, when simulated with random set of rules. When F  
goes to infinity, the set of boxes shown in the last column of 
Fig. 7 reminds us the Canto set [http://en.wikipedia.org/wiki/ 
Cantor_set]. It is known that the Canto set is of measure zero. 
There are infinitely many smaller boxes (F-codes) but the 
probability to obtain them in random simulation is zero, as 
implied by the measure 0. Because the length of F-codes 
cannot go to infinity and the fraction of the eliminated parts in 
each of the columns are not constant, the present case does not 
exactly match the definition of the Cantor set. But it will be a 
convenient concept to explain the present issue here. The 
decrease in the probability is calculated in the last column of 
the Table 1.                
 

 
 

Fig. 6 Relative frequency of patterns obtained in a random 
generation of 100K cases(iteration=100).  
 

 
Fig. 7 Canto-like set diagram can explain the relation between 
the complexity(Length of F-code) and relative frequency of 
the patterns found in random simulations.  
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The complexity-frequency issue treated in the present 
study could be applied, for example, to explain the species 
abundance in real ecological space. It is known that the body-
size distribution of mammals show a right-skewed distribution 
such that the larger animal is rare compared to the smaller 
ones. In a theoretical model, for example, the shape of these 
curve is explained only in terms of the body-size itself 
[Clauset and Erwin 2008]. No attention is paid on the nature 
of the possible space of the genetic codes, or in terms of the 
present study, space of the F-codes itself. To illustrate this, let 
us look at the mutations shown in Fig. 5 again. Consider a 
species represented by the last pattern shown in Fig. 5. If there 
happen a mutation in the eighth gene such that the F-code 
changes from X6 to X5, the mutation causes a serious 
reduction in its complexity, which probably mean that the 
corresponding mutation cannot survive. But at the present, this 
is just an imagination. Applying the present model to 
investigate the concept of complex systems will be a topic of 
our future study. 

Conclusions 

 Patterns emerging from a one-rule firing scheme are 
investigated. Through an exhaustive numerical simulation, it 
was shown that a more complex system has the larger number 
of variations. But in random simulation, it was found that the 
complex system is the less likely to be found. This situation is 
explained in terms of a Cantor-like set proving schematically 
why the more complex system is rare when there are a larger 
number of variations for the complex patterns.  
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Abstract

Since Bedau et al. identified the simulation of open-ended
evolution in digital life media as one of the key problems
in the field of Artificial Life (Bedeau et al., 2000, Artificial
Life 6, p.363), no attempt has convincingly solved the prob-
lem until this day. Creating open-ended evolution ultimately
boils down to creating niches: A new evolutionary feature
can only be retained if there is an ecological niche in which
it becomes an innovation. An environment with a limited
potential for hosting niches is inherently restricted as far as
evolutionary innovations and open-ended evolution are con-
cerned. Moreover, static niches, even in a very large number,
are not enough to enable open-ended evolution, they need to
appear persistently.

Here, we present an in-silico system in which ecological
niches are not explicitly defined, but arise as the consequence
of the combination of the environmental layout and the adap-
tation of its resident population. The population consists of
three-dimensional, autonomously foraging, blocky creatures
(Sims, 1994, Artificial Life 1, p.353)(Chaumont et al., 2007,
Artificial Life 13, p.139) with sensory-motor capabilities that
are controlled with a neural network, coexist in the world,
and compete for its resources. In this implementation they
reproduce asexually, and the genome that codes for its mor-
phology and behavior (via the neural network that controls
its motions) undergoes mutations during reproduction. The
world in which the creatures live is a three- dimensional,
physically simulated environment where energy resources are
continuously replenished, decay, and eventually absorbed by
foragers. Creatures die if their energy is depleted, and are
born from a parent that has accumulated enough energy to re-
produce. There is no explicit fitness function in this system;
however since poor foragers quickly die out, we witness a
strong selective pressure to pass on genes for increasingly so-
phisticated foraging behavior to the offspring. Niches are not
explicitly defined either. Since there is a wealth of possible
foraging behaviors, the actual number of niches is impossible
to determine. Moreover, as the population changes in num-
ber and in foraging strategies, the opportunities for any indi-
vidual organism change as well, creating or removing niches
dynamically as the population evolves in time.

In the initial construction of the world, we included several
types of food sources placed at varying heights on pedestals,
in addition to food sources distributed at ground level (See
Figure 1). We believe that specialized morphological traits or
behaviors that are necessary to exploit a particular resource
can, if coupled with sexual recombination, allow disruptive

selection to split the initial population into two or more mor-
phologically distinct groups that will become increasingly
isolated post-zygotically (Via, 2001, Trends Ecol. Evol., 16,
p.381). Thus, in such an Artificial Life system new species
can in principle emerge by speciating in sympatry, parapatry,
or allopatry.

We believe that in such a system, open-ended evolution as
understood by the Artificial Life community (Bedeau et al.,
2000, Artificial Life 6, p.363) can ultimately be observed. A
number of as yet un-implemented features are possible that
will aid in open-ended evolution, such as the definition of
chemical pathways that dictate a creature’s affinity to metab-
olize specific food sources, and the possibility of emergence
of trophic levels, by specifying that the blocks from which the
creatures are created have nutritional value, and can either be
scavenged, or hunted.
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Figure 1: A snapshot of a world with three types of resources (green, red, and blue spheres) that require different morphologies
or behaviors access. 3D organisms are yellow. In the inset, a virtual creature is toppling a pedestal to reach a red resource
sphere.The blue resources are on inclines and require a form of locomotion that can counteract the low friction of the surface.
Standard organisms cannot climb this incline.
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Extended Abstract 

Understanding how heritable and selectively relevant phenotypes are generated is fundamental to understanding evolution in biotic 
and artificial systems. With few exceptions (e.g. viral evolution), the generation of phenotypic novelty is predominantly discussed 
from two perspectives. The first perspective is organized around the concept of fitness landscape neutrality and emphasizes how the 
robustness of fitness towards mutations can facilitate the discovery of heritable adaptive traits within a static fitness landscape 
(Wagner 2008).  
 
A somewhat distinct perspective is organized around the concept of cryptic genetic variation (CGV) and mostly emphasizes the 
importance of particular population properties within a dynamic environment (Gibson and Dworkin 2004). CGV is defined as 
standing genetic variation that does not contribute to the normal range of phenotypes observed in a population, but that is available 
to modify a phenotype after environmental change (or the introduction of novel alleles). In short, CGV permits genetic diversity in 
populations when selection is stable yet exposes heritable phenotypic variation that can be selected upon when populations are 
presented with novel conditions. Both pathways to adaptation (genetic and environment-induced phenotypic variation) are likely to 
have contributed to the evolution of complex traits (Palmer 2004) and theories of evolution that cannot account for both pathways 
are either fragile to or reliant upon environmental dynamics.  
 
Here we use requirements from these pathways to evaluate the merits of a new hypothesis on the mechanics of evolution. In 
particular, Gerald Edelman has proposed that degeneracy – the existence of structurally distinct components with context dependent 
functional similarities – is a fundamental source of heritable phenotypic change at most/all biological scales and thus is an enabling 
factor of evolution (Edelman and Gally 2001) (Whitacre 2010). While it is well-documented (and intuitive) that degeneracy 
contributes to trait stability for conditions where degenerate components are functionally compensatory (Whitacre and Bender 
2010), Edelman argues that the differential responses outside those conditions provide access to unique functional effects, some of 
which can be selectively relevant given the right environment. 
 
We recently reported evidence that degeneracy supports the first pathway by creating particular types of neutrality in static fitness 
landscapes that can increase mutational access to heritable phenotypes (Whitacre and Bender 2010), and fundamentally alter a 
system’s propensity to adapt (Whitacre et al. in press). 
 
Using models from (Whitacre et al. in press), here we present findings that degeneracy within evolving multi-agent systems may 
create characteristic features of CGV at the population level; thereby allowing the model to also exploit an environment-induced 
pathway to adaptation.  In particular, we show that for static environments, degeneracy facilitates high genetic diversity in 
populations that is phenotypically cryptic, i.e. individuals remain similar in fitness (Figure 1).  When the environment changes, trait 
differences across the population are revealed and some individuals display a phenotypically plastic response that is highly adaptive 
for the new environment. These CGV features are not observed in populations when degeneracy is absent from our model.  We 
discuss the theoretical significance of a single mechanistic basis (degeneracy) for complementary pathways to adaptation.  
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Figure 1: Top-Left Panel) Multi-Agent System (MAS) encoded within a genetic algorithm. Agents perform tasks to improve MAS 
fitness in its environment, see (Whitacre et al., in press). Top-Right Panel) Illustration of genetic architectures for degenerate and 
non-degenerate MAS. Each agent is depicted by a pair of connected nodes, with the two nodes representing two types of 
(genetically determined) tasks that the agent can perform. Bottom-Right Panel) The number of task type combinations (alleles) 
possible in a degenerate MAS is larger than non-degenerate MAS so it is necessary to artificially restrict experiments to similar 
genotype space sizes as illustrated here; for more details see mutation operator description in (Whitacre et al., in press).  Bottom-
Left Panel) Genetic diversity (Hamming distance in genotype space between population members) plotted over 3000 generations of 
evolution within a static environment. Bottom-Middle Panel) Fitness of population members at generation 3000 is recorded and 
then reevaluated within a moderately perturbed environment.  In these results, we observe high genetic diversity in the degenerate 
population that is cryptic (negligible fitness differences) within the stable environment, but that is released/exposed when the same 
population is presented with a new environment. Some of the observed plastic phenotypic responses are found to be highly adaptive 
in the new environment. CGV was largely absent in the evolution of non-degenerate MAS, even when environments are modified 
to increase mutational robustness (not shown). Optimal fitness = 0 for original and perturbed environments.  
 

Acknowledgements: This research was partially supported by DSTO and CERCIA. 

References 

Edelman, G. M. and J. A. Gally (2001). "Degeneracy and complexity in biological systems." Proceedings of the National Academy of Sciences, USA 

98(24): 13763-13768. 

Gibson, G. and I. Dworkin (2004). "Uncovering cryptic genetic variation." Nature Reviews Genetics 5(9): 681-690. 

Palmer, A. (2004). "Symmetry breaking and the evolution of development." Science 306(5697): 828. 

Wagner, A. (2008). "Robustness and evolvability: a paradox resolved." Proceedings of the Royal Society of London, Series B: Biological Sciences 275: 91-

100. 

Whitacre, J. M. (2010). "Degeneracy: a link between evolvability, robustness and complexity in biological systems." Theoretical Biology and Medical 

Modelling 7(6). 

Whitacre, J. M. and A. Bender (2010). "Degeneracy: a design principle for achieving robustness and evolvability." Journal of Theoretical Biology 263(1): 

143-153. 

Whitacre, J. M. and A. Bender (2010). "Networked buffering: a basic mechanism for distributed robustness in complex adaptive systems." Theoretical 

Biology and Medical Modelling 7(20). 

Whitacre, J. M., P. Rohlfshagen, X. Yao and A. Bender (in press). The role of degenerate robustness in the evolvability of multi-agent systems in dynamic 

environments. 11th International Conference on Parallel Problem Solving from Nature (PPSN 2010), Krakow, Poland. 

 



Proc. of the Alife XII Conference, Odense, Denmark, 2010 433

On the Interplay of Kinetics, Thermodynamics, and Information in Simple
Replicating Systems

Bernat Corominas-Murtra1, Harold Fellermann1,2, Ricard Solé1,3,4, and Steen Rasmussen2,3
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Extended Abstract

Life uses energy to acquire and process information. The process of gaining information through evolutionary search
cannot be uncoupled from its physico-chemical embodiment and the energetic needs and entropic constraints of the latter
(Morowitz (1979); Smith (2008)). Therefore, a serious study of biological as well as prebiotic information processing re-
quires: (i) an explicit accounting of the thermodynamics underlying replication, mutation, and selection of self-replicating
systems, and (ii) an explicit treatment of the influence of information on the metabolism and kinetics of the replicating sys-
tem, (iii) an explicit description of the thermodynamic instability that drives replication, and (iv) a concept of information
that explicitly takes into account the evolutionary path through a fitness landscape.

Because this approach clearly exceeds the current description of contemporary living organisms, we develop our frame-
work for a minimal coupled container-information-metabolism system (protocell) that is presumably able to self-replicate
and evolve (Rasmussen (2003)). Thanks to the simplicity of this system, it is possible to gain a detailed understanding
of the atomistic processes that underlie information replication, metabolic regulation, aggregate replication, as well as
mutation and selection.

To study (i), we take into account the detailed thermodynamic needs for replication of the entire protocell and possible
mutation of its information component. The simplicity of the protocell allows us to define reasonable estimates for a
quantitative fitness function, i.e. kinetic rate influence of the information component on the metabolic rate, which accounts
for point (ii). By further estimating the thermodynamic container stability depending on composition (point (iii)) we derive
a Master equations governing protocell population dynamics in information as well as container fitness spaces.

To deal with (iv), we propose a concept of information that overcomes the explicit treatment of genetic sequences but
focuses instead on the complexity of the evolutionary path. This is achieved by identifying a genetic lineage, i.e., a
sequence of cell duplications and possible mutations, as a decision making process (where the outcome of each decision
is evaluated depending on whether the offspring has a higher or lower fitness). This enables us to express the evolutionary
path as a chain of decisions, i.e. evolutionary improvements, stagnations or aggrevations. Under suitable units, the
sequence of decisions can be identified as a symbolic string, whose information content is its associated Kolmogorov
Complexity – a conceptual, more powerful precursor of statistical information (Li and Vitányi (1993)).

Equipped with this framework, we are able to analyze the interplay of thermodynamics, kinetics, and information in a
quantitative manner. In particular, we can quantitatively derive the maximum power principle (MPP) (Lotka (1922); Cai
(2004)) that postulates a connection between evolutionary acquired information and the underlying kinetics of life, and we
derive a quantitative analogue of the Landauer principle (Landauer (1961)) for evolving replicators (LPER), that postulates
a relation between thermodynamics and acquirable information in a physical system. We explore the outcome of these
relations for several limiting cases, as well as for the particular protocell design under consideration.
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In nature, adaptation occurs at multiple levels (learning, multiple levels of evolution). Adaptation processes at different levels are 
known to interact in various ways. Especially the mechanism by which learning guides evolution (the Baldwin effect) has become a 
common theme in Artificial Life (see e.g. Suzuki and Arita, 2004, 2008). This research focuses on the opposite direction: how 
evolution facilitates learning by devising innate structures that guide learning processes. 

In the computational model presented here, weight and plasticity structure of simple artificial neural networks are evolved in an 
environment with a cyclic dynamic, switching through 3 phases (or “seasons”), each requiring a distinct behaviour. To allow 
evolution to shape the networks’ weight dynamic, the genotype contains a separate plasticity (learning-rate) gene for every individual 
connection. It is shown that in response to the environmental dynamic, evolution devised a modular network structure, containing one 
rigid behaviour module for each phase, and a flexible module governing the switching between behaviours. The evolution process 
shows a pronounced Baldwin effect, indicating that the evolution of the innate structures guiding learning is itself guided by the 
presence of learning ability. The evolved networks show a highly structured plasticity differentiation. Comparison with networks 
using only a single global plasticity gene reveals that this differentiation facilitates learning by allowing the nets to learn without 
deteriorating their modular structure. 

Both a functional and a mathematical interpretation of the evolved network structure are given. Mathematically, plasticity 
differentiation induced a large reduction in dimensionality of the networks’ active weight-space, and a high degree of consistency in 
weight-configuration between subsequent environmental cycles. Functionally, we find that through internalization of environmental 
structure, the networks gain an ability to improve their responses to unseen stimuli, in a way that similarity-based generalization alone 
cannot account for. The alignment of internal (network) structure with external (environmental) structure enables the nets to process a 
given piece of learning data as evidence for being in a particular environmental phase, and to adjust the whole of their behaviour 
accordingly. This feature might be understood as a primitive analogue of “latent learning” (see e.g. Gould and Gould, 1994) or the 
“poverty of the stimulus” phenomenon (Chomsky, 1980). 

To further investigate the role of internalization, we compare performance of networks with varying numbers of hidden nodes. 
Reducing this number below the minimum necessary for successful internalization causes a marked drop in performance, while 
increasing the number beyond this minimum has virtually no effect. Next, as internalization should show as improved robustness 
against noise, we compare performance of networks with and without plasticity differentiation in a noisy environment. We find that 
the difference in performance is indeed increased in the noisy environment. 

These findings are considered in the context of evolution of cognition, and linked to the idea that cognition is to be understood as 
adaptation to structured environmental heterogeneity (Spencer, 1855; Godfrey-Smith, 1994, 2002). Finally, extension to larger 
networks and more complex tasks is discussed. 
 

 
Comparison of connection weight dynamics of lop layer connections in networks with (a) and without (b) plasticity differentiation, 

over the course of 8 environmental cycles of 3 phases each. The clusters in (a) each correspond to one of the environmental phases,  

while in (b), subsequent occurences of the same phase fail to produce identical weight configurations. 



Proc. of the Alife XII Conference, Odense, Denmark, 2010 436

 

References 

 
Chomsky, N. (1980). Rules and representations. Oxford: Basil Blackwell. 

 

Godfrey-Smith, P. (1996). Complexity and the Function of Mind in Nature. Cambridge University Press. 

 

Godfrey-Smith, P. (2002). Environmental Complexity and the Evolution of Cognition. In Sternberg, R. J. and Kaufman, J. C. (Ed.), The Evolution of  

Intelligence, pp. 233-249. Mahwah: Lawrence Erlbaum. 

 

Gould, J. L. and Grant Gould, C. (1994). The Animal Mind. Scientific American Library. 

 

Spencer, H. (1855). The Principles of Psychology. Longman. 

 

Suzuki, R. and Arita, T. (2004). Interactions between learning and evolution: Outstanding strategy generated by the Baldwin effect. Biosystems,77(1-3):57–71. 

 

Suzuki, R. and Arita, T. (2008). How learning can guide evolution of communication. In S. Bullock, J. Noble, R. Watson, and M. A. Bedau (eds.) Artificial  

Life XI: Proceedings of the Eleventh International Conference on the Simulation and Synthesis of Living Systems, pp. 608-615. MIT Press, 

Cambridge, MA. 



Proc. of the Alife XII Conference, Odense, Denmark, 2010 437

Evolution of Cooperation and Developmental Constraints: a GA-driven Approach
Moritz Buck and Chrystopher L. Nehaniv

Adaptive Systems Research Laboratory
University of Hertfordshire

Hatfield, Hertfordshire
AL10 9AB

United Kingdom
m.buck@herts.ac.uk

Abstract

In this paper we present a model of evolution of coopera-
tion driven by a Genetic Algorithm (GA) and a two-level fit-
ness function representing cooperative and individualistic be-
haviours. The GA drives the evolution of artificial Genetic
Regulatory Networks (GRNs) that controls colonies of arti-
ficial cells in a grid. This set-up is used to study the effect
of computational complexity on the evolution of cooperation.
Computational complexity being linked to the concept of de-
velopmental constraints in evolution. We show that there is a
trade of between the computational complexity of a behaviour
and the increase in fitness it bestows. Cooperation (being
a more complicated behaviour than the individualistic one)
will only (stably) evolve if the fitness reward of it is above a
certain threshold. We also argue the importance of Artificial
Life models (as opposed to mathematical ones) for the study
of dynamical aspects of evolution.

The study of evolution is a fascinating yet very complex
field. The main concepts of evolution are very simple but
the very nature and time scales of it makes it very difficult
to study in vivo. From biology one can only “easily” study
the genotypical and phenotypical snapshots of the organisms
alive nowadays (and the few ones we have palaeontological
data from). And depending on which perspective one looks
at a problematic in Evolution one can get very different anal-
yses. As can be seen in the big debates between Richard
Dawkins and Stephen Jay Gould (Sterelny, 2001), and par-
ticularly the debate about the importance of developmental
constraints (Gould and Lewontin, 1979). The idea of devel-
opmental constraints is that every organism carries a certain
evolutionary baggage, and this baggage influences how the
species can evolve. For example a mountain lion might be
fitter with an extra pair of legs, but the evolution of an extra
pair of legs is very improbable due to the developmental his-
tory of the lion. The debate about developmental constraints
is not so much about the existence of them in evolution, but
about their power to shape it (Beatty, 1997). This kind of
debate is very difficult to solve due to the issue of lacking
quantifiable data.

Developmental constraints are linked to a known aspect
optimisation: the fitness landscape. In an optimisation prob-
lem a fitness landscape describes the fitness of each solution.

If one uses algorithms like Genetic Algorithms (GAs) to
solve such a problem, each solution is encoded in a genome,
and the phenotypical expression of that genome has a cer-
tain fitness. A problem can have multiple local optima, and
the difficulty of going from one optima to another can be
likened the difficulty of overcoming certain “developmen-
tal” constraints.

In this paper we present a methodology to study certain
constraints linked with the evolution of cooperation. As a
first approximation the nature of the evolution of coopera-
tion is a classical problem of optimization. It can be repre-
sented as a fitness landscapes with two main fitness peaks:
one of individualistic cell behaviour, and one of coopera-
tive cell behaviour. The main question being: “how to get
from one peak to another?”. This depends a lot on the shape
of the fitness landscape, and in the case of a GA the shape
of the genotype-phenotype mapping. The dependency on
the fitness landscape is quite trivial, but the importance of
genotype-phenotype mapping might need some explanation.

What is meant by genotype-phenotype mapping? In our
model the genotype is a string of booleans, and the pheno-
type is a network. We use this to illustrate the notion of
phenotype-genotype mapping. If one mutates booleans in
the genotype, it can have an impact on the network, but not
every mutation will have the same impact, and also the way
the genotype maps the phenotype influences the impact of
mutations. The effects can be of various amplitudes, chang-
ing the dynamics of the network gradually or directly. Also
their can be imbalances in the effect of mutation: the effects
of mutations can be similar for every boolean of the geno-
type, or very different for certain positions.

The ease with which one can go from one fitness peak
to the next one depends directly on the shape of the fitness
landscape and the genotype-phenotype mapping. In this ex-
periment, we implemented two levels of fitness, one requir-
ing a higher level of organization requiring inter-cellular co-
operation (the formation of a checker-board pattern), and an
individualistic behaviour. The peak for individual behaviour
is very flat and lower (or equal, the height of this peak is
a parameter) than the cooperative behaviour peak which is
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narrower and higher. This is the case because the individu-
alistic part of the fitness is very simple for the cells to com-
pute, the cells just need to stay in a stable state independent
from their neighbours, for the cooperative behaviour all the
cells need to have some communication with their neigh-
bours so to synchronise their states, which is much more
complicated for the cells to evolve. In this situation if the
genotype-phenotype mapping is too “soft” (effect of muta-
tions are small) evolution might never leave individuality,
whereas if it is to “rugged” (mutations have dramatic ef-
fects), the risk is that evolution finds the peak for cooper-
ation but loses it again before stabilizing correctly. So we
hope that our genotype-phenotype mapping have some ele-
ments of both types: the capacity of moving around across
the fitness landscape with mutations that have a big effect on
the phenotype, yet not every mutation should have these big
effects so that the GA can explore the area around interesting
phenotypes without risking to lose the peak.

To do this study, we use a GA to evolve Genetic Regula-
tory Networks (GRNs). To measure the fitness of a genome
the GRN controls artificial cells in a six by six grid, all the
cells having the same GRN. We then use a two-level fitness
function to measure the quality of that genome, each of the
two levels representing one of the peaks in the fitness land-
scape. Each of the peaks represent one behaviour that can
evolve (individualistic and cooperative), each behaviour be-
ing qualitatively of different computation complexities (in-
dividualistic: very simple and no need to communicate, co-
operative: more complex and necessity to communicate).
We vary the height of the peaks and the population size
of the GA. With this set-up we can find out under which
circumstances evolution will go towards the higher peak of
cooperation and when not, hence see how the difference in
complexity between the two solutions limit the evolution of
new behaviours.

Models
Artificial Cell
The main part of our model is an artificial cell. It is reason-
ably simple and composed of two main elements: a genome
and a genetic regulatory network, the genome encoding for
the network. The GRN being based on Boolean Networks.

Genetic Regulatory Network The GRNs used for this ex-
periment operate as Boolean control networks. The same
model has been used in (Buck and Nehaniv, 2006a, 2007),
and is similar to Kauffman’s random Boolean networks
(Kauffman, 1993), but our networks interact continually
with their ambient environment (cf. (Quick et al., 2003;
West-Eberhard, 2003)), and the GRN-controlled cells inter-
act with each other in a manner similar to that in Bull and
Alonso-Sanz (2008). The structure of a single genome is
shown in Figure 1. Inside a cell there are n different pro-
teins, the level of each protein is modelled by a Boolean

value reflecting its presence (true) or absence (false). The
network structure is derived from the genome as described
in section . The cell’s genome consists of a string of genes,
with each gene composed of a regulatory part and a part
specifying its protein product as in nature (Watson et al.,
2003; Davidson, 2001b).We use a two-level genetic regu-
latory structure (see Schilstra and Nehaniv (2008) for other
models genetic control logic). The regulatory part represents
the inbound connections of the gene in the network whereas
the product part represents the outbound. The inbound part
(regulatory part) is structured in so-called cis-sites, which
themselves each consist of a number of binding sites. A
binding site returns a Boolean value depending on the pres-
ence in the cell of the protein it is supposed to bind. The val-
ues returned by all the binding sites of a cis-site are joined
by an AND operator. The obtained value is then negated if
the cis-site is an inhibitory one. Then all the values returned
by the cis-sites of a gene are joined by an OR operator. This
value is then finally negated if the gene is default on, if the
final value of this operation is true then the protein encoded
by the gene will be produced, i.e. the value indicating the
presence of this protein in the cell will be set to true. If more
than one gene can produce the same protein, to set the value
for that protein to true for the cell, any one of them suffices.
The system has a one time step ‘memory’; at every simula-
tion time step it takes the protein state vector of the cell in
the previous step and creates a new protein state vector for
the next time step using the genetic regulatory network.

Formally, for each gene of a cell’s genome, we have for
each protein-binding site i, potentially binding some protein
p`, the present binding value bi,

bi =

{

true if binding protein p` is present
false if binding protein p` is not present.

The expression value cj of a cis-site j,

cj =















∧

all i

bi if j is activatory

¬
∧

all i

bi if j is inhibitory

where the logical AND-operation is taken over all binding
sites bi of the given cis-site cj . The final protein production
pk of the gene k is

pk =















∨

all j

cj if k is default off

¬
∨

all j

cj if k is default on

where the logical OR-operation is taken over all cis-sites cj
of gene k. The new value of pk for the cell will be true if
and only if at least one gene produces pk. It can be shown
that this system is complete in the sense of combinatorial
logic: given a Boolean vector of size n (the vector of the



Proc. of the Alife XII Conference, Odense, Denmark, 2010 439

Vector of free proteins

Genome : Vector of Genes

Gene : Vector of cis sites + gene product

cis site : vector of binding sites

product

And( )

Or +/- +/- +/- +/-( ) +/-

Figure 1: Schematic of the Boolean genetic regulatory network model

n proteins of the cell) there always exists at least one net-
work computing every one of the (2n)(2

n) possible Boolean
functions. (This can be easily seen by writing the logical
function to determine the presence or absence of each pro-
tein in conjunctive normal form as function of the activation
levels of all proteins in the cell, and translating this form into
a genome with n default-on genes.).

This model has also some other interesting characteris-
tics. It is quite robust to mutation, at least in principle, for
example if you duplicate one gene the function represented
by the network is not altered, which is not the case for most
continuous GRN models (Buck and Nehaniv, 2006b; Knabe
et al., 2006).

Simulation
The simulations take place in a 2D toroidal grid, with a von-
Neumann neighbourhood. Each position of the grid is oc-
cupied by an agent (cell) controlled by a GRN. All of the
cells in the grid have the same controlling GRN. We use in
this experiment GRNs with 16 different proteins, therefore
each cell can be in one of 216 different states, but not all of
these proteins have an actual effect on the environment most
of them are internal states used to control the cells.

This architecture gives the cells the potential to communi-
cate. The communication is controlled by five proteins. Four
proteins control with which neighbouring cells will be com-
municated and one is the protein to be “sent” to those neigh-
bours. If the protein to be sent is present the neighbouring
cells with which the cell communicates “will be given” the
protein (e.g. set to true).

The cell can be in three possible “visual” states, two of
them being “cooperative” and one “individualistic” state.
One protein controls the “individualistic” state, if it present
in the cell this cell is in that state, if it is not it is in one
of the “cooperative” states. Those states are controlled by
another protein, if it is present the state will be “red” else
“green”. Those different states are independent of the com-

munication, an “individualistic” cell can still communicate
and receive communication, the “visual” states are used dur-
ing the computation of the fitness function.

The regulation networks, the communication and the “vi-
sual” states are updated in a random synchronistic way.
The cells are updated in a random order but each cell only
one time during each time step. This is the only non-
deterministic component of the simulation. Each simulation
has a finite fixed number of time steps.

The Genetic Algorithm
The Genetic Algorithm (GA) used in this experiment is quite
standard. We only use bit flips as th only source of variation
and tournament selection as selection routine. No elitism
has been used.

Encoding The encoding we chose for the networks is a
highly simplified version of the encoding of GRNs in real
biology (Hawkins, 1996; Davidson, 2001a). We wanted
to keep a certain number of characteristics of the double-
stranded DNA helix which encodes the regulatory networks
of all living organisms on earth. Our genome as in biology
is composed by a very small alphabet: in nature the four
nucleotides: adenine, thymine, guanine and cytosine; in our
genome only two bases, 0 and 1. Our genome is sectioned
as in biology by different tags which are recognised by the
cellular machinery: certain combinations of bases have a
certain specific meaning for the genome. There are some
main differences between the encoding we use and the natu-
ral one. First our encoding is deterministic. For example, the
fact that biological genomes are situated in a three dimen-
sions, which can bring a high amount of modulation into the
expression patterns. Another point to notice that our genome
is of the single stranded sort.

The genome is sectioned in genes. A gene is tagged
by a so-called gene tag a pattern composed by four ones
(‘1111’). This tag is followed by one bit to set the type
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of gene (‘1’ for default on, ‘0’ for default off gene) and
a certain amount of bits to define the produced protein (in
our experiment we used a 64 protein system so six bits are
necessary to encode the binary representation for each pro-
tein). Preceding a gene tag is the regulatory region of that
gene, that region is separated into cis-sites each one of those
starting with a cis-site start pattern consisting of a double
zero (‘00’) followed by a bit for the type (inhibitory or ac-
tivatory) and a certain number of binding sites (each of six
bits to characterise the protein to bind at the site). Using a
certain set of predetermined rules (minimum space between
cis-site start tags, minimum space between two gene tags,
ordering and precedence rules, ...) we can give to each bit
of the genome a certain unequivocal function (even if this
is merely to identify the bit as uninterpretable other than as
“junk”) so as to build the GRN represented by that genome.
This structure allows a genetic regulatory network to be un-
ambiguously constructed from the genome.

The encoding is illustrated in Figure 2, which shows the
encoding of a single gene. A genome consists of a string
of such genes. The number and lengths of genes may vary
between genomes in the evolving population. In the present
model a gene encodes at most one protein product.

Fitness Developing an environment with a natural (im-
plicit) fitness is not easy and usually needs many parameters.
Therefore we chose to work with an explicit fitness function.
This fitness here has the particularity to be actually two fit-
ness functions representing two levels of selection, one try-
ing to reach a high level goal needing cooperation and one
representing a low level single cell goal, both goals being
exclusive, so both goals are in competition.

The lower level fitness is simply to stay as long as possible
in the “individualistic” state. We check for each cell in the
grid which cell has stayed longest in that state and normalise
that time to 1. If tind(i) is the time cell i has spend in the
“individualistic” state the “individualistic” fitness Find of a
GRN in a certain simulation is

Find =
max

all cells i
tind(i)

tsim
,

where tsim is the length of a simulation.
The higher level goal is to create a checker-board with the

“red” and “green” cells. At each time step of a simulation,
for each cell of the grid in a “cooperative” state we check
the neighbourhood, for each of the neighbouring cell which
is in a different state but not individualistic that cell gets a
score of 0.25 (remark : 0.25 is 1 divided by the number of
neighbours 4). So at each time step each cell can get a score
between 0 and 1. Those scores are then summed for each
time step over all cells and normalized to 1. If ni(j, t) is
equal to 0.25 if the jth neighbour of cell i is in the same
state than cell i but not the individual one at time t, else 0,

fgroup(i) the fitness of cell i is

fgroup(i) =











1
tsim

tsim
∑

t=1

neighbours
∑

j=1

ni(j, t) if i cooperative

0 if i individualistic

,

hence the higher level fitness of the GRN after a simulation
Fgroup is the average of fgroup over the colony

Fcheck =
1

ncells

∑

all cells i

fcheck(i),

where ncells is the total number of cells in the grid.
The final fitness of a GRN is the maximum between the

higher level and the lower level fitness weighted by α ∈
[0, 1], a parameter weighting the advantage/disadvantage of
being individualistic. So the fitness F of a GRN lies in the
interval [0, 1] and is

F = max(Fcheck, α · Find).

Experimental Investigation
We have for this experiment run a 10 GAs (mutation rate:
0.002, cross-over rate: 0.5, starting genome size: 1000, size
of tournament: 25, size of the grid: 6 × 6, length of simu-
lation: 30 ). The values of α studied were between 0 and 1
included in steps of 0.1, and the population sizes 125, 250,
500, and 1000. If α is set to zero, there is no contribution to
fitness from the individualistic fitness, the evolution is only
driven by the high level fitness. We have done the same ex-
periment for three different length of GA, 200 and 1000 gen-
erations, and an experiment with 200000 fitness evaluations
(which is equivalent to 1600 generations for population size
125, 800 for population size 250, 400 for population size
500, and 200 generations for a population size of 1000).

The smaller α, the higher the incentive for the cellular
colonies to evolve cooperation because the reward of coop-
eration is so much greater than the simple non-cooperation.

Also we have used the OR-unconstrained communication
protocol (a problem independent communication protocol,
where a cell communicates only with their direct neighbour)
described in (Buck and Nehaniv, 2008) with six communi-
cation proteins.

In this experiment we are not directly interested in the
actual fitness achieved, rather we are interested in the lo-
cal optimum in which an evolutionary run stabilizes. There
are, as mentioned earlier, two local optima, one for individ-
ual behaviour (shallow peak), one for cooperative behaviour
(steep peak), the steep peak being always higher or equal to
the shallow one. The shallow peak’s height is characterized
by the parameter α, so any GA run that has stabilized on
a fitness value above α has certainly achieved some degree
of multicellular cooperation. So for each set of 10 GA-runs
we have computed the proportion of runs that have achieved
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000 1 1010 0011 000 0 1100 0 1111 0 1111

cis-site start pattern gene tag

binding sites

junk bit
(bi t  without funct ion)

produced protein

act ivatory bi t inhibi tory bit
default off

Figure 2: Example of the gene structure. This gene encodes a product protein 1111 and has a two cis-site regulatory region.
The first cis-site is activatory and comprised of two binding sites, while the second is inhibitory and has a single binding site.
The gene is off by default. Genomes are concatenations of such genes. The logical function computed by this example is
pt+1
15 = (pt6 ∩ pt3) ∪ ¬(pt12), where pti is the Boolean value attributed to the protein i at time step t.

this, we call this the proportion of multicellularity, and this
is the value plotted on the graphs of Figure 3 to 8. This pro-
portion of multicellularity is an approximation of the prob-
ability that an evolutionary run with a set population size
will stabilize on multicellular behaviour in a set number of
generation.

Results
Figures 3 to 8 are the results of this experimental set-up.

The first remark is that for most of the plots one can notice
a non-linear transition. Only for the plots with a population
size of 125 it is not obvious (which is probably due to the
fixed-sized tournament selection). This signifies that there
is a tipping point at which the behaviour of the evolutionary
algorithm changes. Before that point evolution has a very
high probability of reaching a multicellularity and then, for
a very small increase of α this probability drop very close to
null. The dependence of the tipping point on the population
size is slightly unclear, in figures 3, 4, and 5, one can see that
the tipping points for population sizes 250 and 500 are very
close, yet for population sizes 125 and 1000 they are respec-
tively lower and higher. One has to be slightly careful, with
the analysis of figures 3 and 4, because as the number of
generations is fixed and the population size in not the same
for every line, the number of fitness evaluations for each line
of the plots are different. Naturally a GA with a smaller pop-
ulation size will take more time (generation-wise) to explore
the fitness landscape. For this purpose we have included the
results of figure 5, where all the GAs could take the same
amount of sample points in the fitness landscape (the same
number of fitness evaluations), but one can see that the re-
sulting plot is qualitatively similar to the two previous ones.

In figures 6 and 7, we have presented some of the same
results but with a fixed population size, and varying number
of generations. We can see that qualitatively the lines are

the same, hence the number of generations does not mat-
ter for the transition, or at least for the explored parameter
space. This means that the minimum number of generations
we have picked (200) is enough for the GA to get to a stable
point.

This result allows us to compute figure 8, which is a com-
bination of the previous graphs. We recomputed every point
of the graph using the data from figures 3 to 5, without con-
sidering the number of generations (basically, supposing that
all the GA-runs had been stopped at the same number of
generation, or at stabilization). This allows figure 8 to have
a better definition on the vertical axis.

We can still, in figure 8, notice the transition, the two
curves for population sizes 250 and 500 that are very close,
the line for a population of 1000, that drops a bit later, and
the one for a population of 125 that starts to drop already for
small values of α.

Conclusion
First, there is a non-linear shift of the evolutionary be-
haviours of the GAs. Both evolutionary attractors (individ-
uality and cooperation) have clearly defined domains of at-
traction depending on α, which parametrizes the contribu-
tion of organismal vs. cellular levels fitness. We are sup-
posing that a colony’s fitness can always be higher if coop-
erating, then if not, this transition shows, that even though
the higher fitness would always push towards cooperation,
due to the combination of a complex fitness landscape and
genotype-phenotype mapping, this high fitness is not always
achieved. Even more the behaviour on which the evolution-
ary runs stabilize seem to be in an almost deterministic way
depending on a set of parameters. One could consider α
an environmental parameter defining the difficulty of coop-
eration in that environment (or the fitness gain of being a
cooperative colony). In that case one could say that evolu-
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Figure 3: Proportion of evolutionary runs that have stabi-
lized on the multicellular state after 200 generations, for dif-
ferent values of α.

Figure 4: Proportion of evolutionary runs that have stabi-
lized on the multicellular state after 1000 generations, for
different values of α.

Figure 5: Proportion of evolutionary runs that have stabi-
lized on the multicellular state after 200000 fitness evalua-
tions, for different values of α.

Figure 6: Proportion of evolutionary runs that have stabi-
lized on the multicellular state for varying number of gen-
erations, for different values of α, for a population size of
250.
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Figure 7: Proportion of evolutionary runs that have stabi-
lized on the multicellular state for varying number of gen-
erations, for different values of α, for a population size of
500.

Figure 8: Proportion of evolutionary runs that have stabi-
lized on the multicellular state for varying number of gener-
ations, for different values of α (full data).

tion is not only quantified by absolute fitness, but also by
the computational complexity of the way of achieving this
fitness.

So in a certain sense we can “see” the effect of devel-
opmental constraints on the evolution of cooperation. Co-
operation can only evolve when the benefits of cooperation
“compensate” for its complexity. To compare this result with
the example we presented in the introduction: the mountain
lion could eventually evolve a third pair of legs if the fitness
reward of this extra pair of legs would “outweigh” its cost in
complexity.

This kind of results are not easily discovered through
classical models of evolution. In most mathematical or
game theoretical approaches the system will always sta-
bilize at the stable point of highest pay-off, which in the
case of this model design would have been the multicellu-
lar peak. Of course one could design a model to take into
account a parameter representing computational complexity
and complexity of the genotype-phenotype mapping, but as
for the purposes of identification of new hypotheses tradi-
tional models of population genetics and game theory would
not have been able to show this kind of behaviour. Also,
in mathematical or game theoretical approaches, the coop-
erative or individualistic behaviours are fixed by the geno-
type, in the model we presented in this article, they are par-
tially determined by the genotype but through a complex
genotype-phenotype mapping, hence the cells can switch
their behaviour during their lifetime. This is very important
to study, and cannot be done with more classical models. Of
course this is mostly a toy model, neither of both behaviours
are very complex, and this kind of effect could be even more
dramatic in more complex environments, yet it can be a first
step to a different way of the study of diverse aspects of evo-
lution.
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Abstract

The evolution of cooperation has been a perennial problem
for evolutionary biology because cooperation is undermined
by selfish cheaters (or “free riders”) that profit from cooper-
ators but do not invest any resources themselves. In a purely
“selfish” view of evolution, those cheaters should be favored.
Evolutionary game theory has been able to show that under
certain conditions, cooperation nonetheless evolves stably.
One of these scenarios utilizes the power of punishment to
suppress free riders, but only if players interact in a structured
population where cooperators are likely to be surrounded by
other cooperators. Here we show that cooperation via punish-
ment can evolve even in well-mixed populations that play the
“public goods” game, if the synergy effect of cooperation is
high enough. As the synergy is increased, populations tran-
sition from defection to cooperation in a manner reminiscent
of a phase transition. If punishment is turned off the critical
synergy is significantly higher, illustrating that indeed pun-
ishment aids in establishing cooperation. We also show that
the critical point depends on the mutation rate so that higher
mutation rates actually promote cooperation, by ensuring that
punishment never disappears.

Introduction
”Tragedy of the commons” is the name given to a social
dilemma (Hardin, 1968) that occurs when a number of indi-
viduals maximize their self-intertest by exploiting a public
good, and by doing so harm their (and other’s) own long-
term interest. This is but one dilemma (Frank, 2006) that can
be described within the framework of Evolutionary Game
theory (Smith, 1982; Axelrod, 1984; Dugatkin, 1997; Hof-
bauer and Sigmund, 1998; Nowak, 2006). While the tragedy
of the commons is important in social science and politics
(overfishing and the destruction of the environment in gen-
eral come to mind), it also plays an important in role in bi-
ology: both the evolution of virulence (Frank, 1996) and the
manipulation of a host by a group of parasites (Brown, 1999)
can be viewed as a dilemma of the public goods type.

An environment where cooperators provide goods and
share synergy is vulnerable to defectors. It has been shown
that punishment is an effective way to counteract defec-
tors (Fehr and Gachter, 2002; Fehr and Fischbacher, 2003;

Hammerstein, 2003; Nakamaru and Iwasa, 2006; Camerer
and Fehr, 2006; Gürerk et al., 2006; Sigmund et al., 2001;
Henrich and Boyd, 2001; Boyd et al., 2003; Brandt et al.,
2003; Helbing et al., 2010). Because punishment involves
an additional cost to the co-operators that already invest
into the public good (Yamagishi, 1986; Fehr, 2004; Colman,
2006), these cooperators (termed “moralists” by Helbing et
al. 2010) are themselves vulnerable to the invasion of non-
punishing cooperators called “secondary free-riders”. As a
consequence, we might expect that moralists ultimately be-
come extinct, either because they were outcompeted by de-
fectors, or by cooperating free-riders who benefit from the
punishment without the associated cost. Alternatively, if
moralists are ultimately successful in eliminating defectors,
the punishment gene stops to be under selection and should
drift, again resulting in the demise of moralists.

It has recently been shown that, instead, in simple spatial
games, moralist can win direct competitions (Helbing et al.,
2010) if the environmental conditions are favorable, namely
if the cost to benefit ratio of punishment favors moralists
over defectors. Spatial games, where the offspring of suc-
cessful strategies are placed near the parent, and where as
a consequence strategies are more prone to play against kin
strategies, give rise to spatial reciprocity (Sigmund et al.,
2001). This appears to be the advantage that moralists need
to gain superiority. In the simulations of Helbing et al., evo-
lution proceeded by the imitation of successful neighboring
strategies rather than Darwinian evolution, but the dynamics
are similar. However, because strategies in those simulations
are deterministic (limiting genetic space to four genotypes),
large grids had to be used in order to prevent premature ex-
tinctions.

Here, we show that spatial reciprocity is in fact not a nec-
essary condition for the evolution of cooperation via punish-
ment and the dominance of moralists, if stochastic strategies
can evolve via Darwinian dynamics in a framework where
decisions are encoded within genes that adapt to their en-
vironment. There are conditions where cooperation evolves
even without punishment, but absent those, punishment can
promote the evolution of cooperation, as long as punishment



Proc. of the Alife XII Conference, Odense, Denmark, 2010 446

is effective and cheap, in well-mixed populations. If coop-
eration becomes so dominant that defectors are brought to
extinction, the punishment gene drifts to neutrality. Finally,
we also observe that stable environments that are believed
to be more predictable for players also increase the chance
for cooperators to evolve and to be stable, as observed ear-
lier within the iterated Prisoner’s Dilemma (Iliopoulos et al.,
2010).

Experimental Design
We evolve stochastic strategies playing the public goods
game with punishment. Each individual in a group of k
players (k = 5 in the present implementation) can decide
to cooperate by making a contribution of 1 unit to the public
good, while defecting individuals do not contribute. We en-
code this choice as a probability pC , which can be thought
of as the outcome of a network of genes that encode this
decision. When mutating strategies, instead of mutating the
individual genes that make up the decision pathway, we sim-
ply replace the parental probability pC by a uniformly drawn
random number in the offspring. We will call the locus en-
coding the probability pC simply the “C gene”.

The sum of all contributions from cooperating players is
multiplied by r (the synergy factor) and divided among all
players. In addition, each player has the option to punish
players who do not contribute. This decision is encoded by
an independent probability pP , called the “P gene”. Fol-
lowing Helbing et al. 2010, those players who defect suffer
a fine β/k levied by the punishers in the group, whereas
the punishers suffer a penalty of γ/k. At each update,
every player engages in a game with all its assigned op-
ponents. The number of cooperators NC , defectors ND,
moralists NM and immoralists (players who defect but also
punish Helbing et al. (2010))NI is computed, and the payoff
is assigned as follows: A cooperator receives

PC = r
(NC +NM + 1)

k + 1
− 1 , (1)

while a defector takes away

PD = r
(NC +NM )

k + 1
− β

(NM +NI)
k

. (2)

Moralists receive

PM = PC − γ
(ND +NI)

k
, (3)

while immoralists earn

PI = PD − γ
(ND +NI)

k
. (4)

The population consists 1,024 individuals who each have
four assigned opponents. Since all opponents are also play-
ers, each individual plays five games per update. The

choices of each individual are determined by their prob-
abilities to cooperate pC and to punish pP . After each
round, 2 percent of the population is replaced using a Moran-
process (Moran, 1962) in a well-mixed fashion, that is, the
identity of the players in the group is unrelated to their an-
cestry. Players that are not replaced are allowed to accumu-
late their score, which is used to calculate the probability
that this player’s strategy will be chosen to replicate and fill
the spot of a player that was removed in the Moran process.
Every individual’s genes mutates with a probability µ when
replicated. As mentioned earlier, the mutation of a gene re-
places the probability with a uniformly distributed random
number. After 500,000 updates, the line of descent (LOD)
of the population is reconstructed, by picking a random or-
ganism of the final population and following its ancestry all
the way back to the starting organism, which has pC = 0.5
and pP = 0.5. Because there is only one species in these
populations, the LOD of the population coalesces to a single
LOD (which is why it is sufficient to pick a random geno-
type for following the LOD).

As the strategies adapt to the environmental conditions
(specified by the parameters that define the game, as well
as the spatial properties, the mutation rate, and the replace-
ment rate), the probabilities that appear on the LOD tell the
story of that adaptation, mutation by mutation. While the
LOD in each particular run can show probabilities varying
wildly, averaging many such LODs can tell us about the se-
lective pressures the populations face. In particular, aver-
aging the probabilities on the LODs after they have settled
down (from the transient beginning at the random strategy
(pC , pP ) = (0.5, 0.5)) can tell us the fixed point of evolu-
tionary adaptation (Iliopoulos et al., 2010). We determine
this fixed point by discarding the first 250,000 updates of
every run (the transient), along with the last 50,000 (in order
to remove the dependence of the LOD on the randomly cho-
sen anchor genotype) and averaging the remaining 200,000
updates. Note that this fixed point is a computational fixed
point only: we do not mean to imply that the population’s
genotypes all end up on this exact point. Rather, due to the
nature of the game, the evolutionary trajectories approach
this point and then fluctuate around or near it. Thus, the
fixed point reflects the mean successful strategy given the
conditions of the game.

Results
When mapping the possible parameters β (fine) and γ (cost)
each in the range from 0.0 to 1.0 and at low synergy r =
3.0, we find that defection is the most prevalent strategy
on the LOD (see Figures1 a and b), as was found previ-
ously (Brandt et al., 2003; Helbing et al., 2010). When β
and γ vanish, punishment has no effect, nor is there a cost
associated with that punishment. At this point, the P gene is
not under selection and drifts. A drifting gene can be recog-
nized by a mean of 0.5 and a variance of 1/12 ≈ 0.083 at
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Figure 1: Mean probabilities for pC (a) and pP (b) measured
on the LOD, for β and γ ranging from 0.0 to 1.0 in 0.2 in-
crements, at r = 3.

the fixed point, as expected for the average and variance of a
uniform random number on the interval (0,1). Thus, for this
value of synergy (and lower), we find that the strategy fixed
point is defection without punishment, except for the values
γ=β=0, where punishment is random.

As the degree of synergy increases to r = 4, cooperation
starts to appear even in this well-mixed population (while it
appears as early as r = 2 for sufficiently high β and low γ
in the spatial version of the game Brandt et al., 2003; Hel-
bing et al., 2010). We find players cooperating (pC ≈ 0.8) at
high β and low γ (see Figure 2a), which indicates that under
conditions where punishment is not very costly or even free,
punishment pays off. In addition we notice that the probabil-
ity to punish increases under the same conditions that allows
cooperation (high β and low γ, that is high impact, low cost
of punishment), indicating that punishment is indeed used to
enforce cooperation (Fig. 2b). The mean punishment proba-
bility grows to 0.5, but at the same time the variance shows
that this gene is not under drift (data not shown). Still, the
distribution of probabilities on the LOD is fairly broad, indi-
cating that periods of strong punishment give way to periods
where agents are much more forgiving. Thus, it appears that
punishment under these conditions is effective even if it is
engaged in only intermittently.
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Figure 2: Mean probabilities for pC (a) and pP (b) measured
on the LOD, for β and γ ranging from 0.0 to 1.0, in incre-
ments of 0.2, at r=4.

Increasing the synergy level even higher towards
r=4.5 shows the emergence of dominance of cooperation
(pC >0.5) for most of the range of punishment cost and
effectiveness, see Figure ??a. At the same time the punish-
ment probability reaches 0.5 for a larger range of parameters
(Fig. 3b), but the mean payoff probability on the LOD never
exceeds 0.5, implying that full persistent punishment is not
stable. Increasing synergy to r = 5 reveals a population
that engages in cooperation for almost all parameter settings
(see Figure 4), even at conditions where punishment is costly
without much impact (β < 0.5, γ > 0.5) but the variance
suggests that at high punishment effect and low cost, this
gene may be drifting (as it is only selected for if defectors
are prominent). This outcome is expected because at r = 5,
the cooperators’ payoff is equal to or higher than the defec-
tors, and exactly equal in the absence of punishment. Thus,
defectors should disappear and punishment become random.

Critical Behavior
Previously, a phase transition between cooperative and de-
fective behaviour in the public goods game was observed for
the spatial version Szabo and Hauert (2002); Brandt et al.
(2003) of the game (but not the well-mixed version). In
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Figure 3: Mean probabilities for pC (a) and pP (b) measured
on the LOD, for β and γ ranging from 0.0 to 1.0 in 0.2 in-
crements, at r=4.5

Fig. 5 we show the mean probability at the evolutionary
fixed point of both the C gene (black lines) and the P gene
(grey lines) as a function of the synergy level r, for differ-
ent mutation rates (dotted lines: µ = 0.001, dashed lines:
µ = 0.01 and solid lines: µ = 0.02, which is the mutation
rate we used in Figs 1-4). We note the sudden emergence
of cooperation at a critical synergy level, but that this level
depends on the mutation rate. For the highest mutation rate
(black solid line in Fig. 5) cooperation emerges the earliest.
As the mutation rate is lowered, the critical point moves to
the right and the fixed point probability is higher. The emer-
gence of punishment (grey lines in Fig. 5) follows the same
trend, and again we notice that the mean never exceeds 0.5.

It is instructive to study how punishment affects the crit-
ical point. To do this, we ran a control of the experiment
where punishment did not exist. In that case, we observe
a critical r that is significantly higher that what we observe
with punishment (see Fig. 6, showing again how punishment
aids in the establishment of cooperation. Note also that the
levels of cooperation achieved are significantly higher when
punishment exists.

We can calculate approximately the point at which coop-
eration is favored in a mean-field approach that does not take
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Figure 4: Mean probabilities for pC (a) and pP (b) measured
on the LOD, for β and γ ranging from 0.0 to 1.0 in 0.2 in-
crements, at r=5

mutation and evolution into account, by writing Eqs. (1-2)
in terms of the density of cooperators ρC in the population.
Both naked cooperators and punishing cooperators (moral-
ists) contribute to this density, i.e., ρC = (NC + NM )/N ,
where N is the total number of players in the population.
We can also introduce the mean density of punishers ρP =
(NM + NI)/N . Because the mean density of cooperators
and punishers is the same for both cooperators and defectors
in a well-mixed scenario (but not for spatial play!), we can
then write

PC = r
kρC + 1
k + 1

− 1 (5)

and

PD = r
kρC

k + 1
− βρP , (6)

and we expect cooperation to be favored if

PC − PD =
r

k + 1
− 1 + βρP > 0 (7)

or

r > (k + 1)(1− βρP ) . (8)
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Figure 5: Mean probability of cooperation pC (black lines)
and punishment pP (grey lines) at the evolutionary fixed
point of the trajectory, as a function of the synergy r for
three different mutation rates: dotted: µ = 0.001, dashed:
µ = 0.01, and solid: µ = 0.02. [Note: Statistics for the
lowest mutation rate will be improved for camera-ready ver-
sion]

This equation implies that the emergence of cooperation
depends crucially on the density of punishers. In fact, the
mean-field theory predicts that cooperation in the absence of
punishment emerges only at r = 5, while we see it emerge
quite a bit earlier than that (see Fig. 6, dashed lines). Note,
however, that the critical point moves towards the predicted
value r = 5 as the mutation rate is lowered, which would
not be surprising as the theory holds strictly only for van-
ishing mutation rate. Because we expect that the density
of punishers increases as the mutation rate increases (be-
cause mutations can introduce defectors at an elevated rate,
necessitating a more pronounced punishment response), we
can also expect the critical mutation rate to drop commen-
surately, but it is clear from the previous comment that there
are mutation rate effects in the dynamics of the population
that are independent of punishment.

Because of the critical importance of punishers in deter-
mining the synergy level at which cooperation emerges, the
public goods game with a genetic basis implies a curious dy-
namics close to the critical point. Below the critical point,
defection is a stable strategy, and punishment is absent.
Only when cooperation emerges as a possibility, punishment
becomes more and more important, leading to a lowering
of the critical synergy for cooperation. Thus, cooperation
emerges rapidly and decisively once a critical level has been
achieved. Once cooperation is dominant and defectors all
but driven to extinction, punishment becomes irrelevant and
the gene begins to drift. As this happens, the fraction of
punishers drops, raising the critical synergy. Thus, a drift-
ing punishment gene can lead to the sudden re-emergence
of defectors as stable states. Once those have taken over,

pC
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Figure 6: Mean probabilities for pC measured on the LOD,
for cost of punishment β = 0.8 and effectiveness of punish-
ment γ = 0.2, as a function of synergy r. Solid line is the
standard protocol, while dashed line represents experiments
with punishment turned off (pP = 0).

the reverse dynamics begins to unfold. In other words, we
should observe periods of cooperation and defection follow
each other closely as the synergy is near the critical point.
An investigation of the population dynamics at the critical
point will be the subject of a subsequent investigation.

Discussion
We studied Darwinian evolution of stochastic strategies in
the public goods game for a well-mixed populations, using
genes that encode the probabilities for cooperation and pun-
ishment. It is known that punishment can drive the evolution
of cooperation above a critical synergy level as long as there
is a spatial structure in the environment (Brandt et al., 2003;
Helbing et al., 2010). It was also previously believed that in
well-mixed populations cooperation can only become suc-
cessful if additional factors like reputation (Sigmund et al.,
2001) are influencing the evolution. Here we show that
cooperation readily emerges in a well-mixed environment
above a critical level of synergy. This critical level is influ-
enced by a number of factors, such as the rate of punishment
and the mutation rate.

If the conditions for punishment are good (that is, the cost
for punishment is low and the effect is high) we find cooper-
ative strategies that also have elevated probabilities to pun-
ish, that is, they are moralists. But if punishment is cheap
and effective, we also see that defectors practically vanish,
which in turn obviates the need for punishment, so much so
that the punishment gene begins to drift. This effect, how-
ever, is also mutation rate dependent, because higher muta-
tion rates will automatically create a higher influx of defec-
tors even if they cannot be maintained by selection.

We conclude that in well-mixed populations cooperation
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can emerge if the synergy outweighs the defectors’ reward.
If the mutation rate is low enough, the loss of defectors
makes punishment obsolete, that is, the selective pressure
to punish disappears. Naturally, once this has occurred de-
fectors can again gain a foothold, and the balance of power
between cooperators and defectors could shift. Such a shift,
however, reinstates the selective pressure to punish, leading
to a re-emergence of moralists that can drive defectors out
once more. Thus, for synergy factors near the critical point,
we can expect oscillations between cooperators and defec-
tors, and no strategy is ever stable (Hintze et al., 2010).
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Abstract

Evolutionary robotics is a promising approach to overcom-
ing the limitations and biases of human designers in pro-
ducing control strategies for autonomous robots. However,
most work in evolutionary robotics remains solely concerned
with optimizing control strategies for existing morphologies.
By contrast, natural evolution, the only process that has pro-
duced intelligent agents to date, may modify both the control
(brain) and morphology (body) of organisms. Therefore, co-
evolving morphology along with control may provide a better
path towards realizing intelligent robots. This paper presents
a novel method for co-evolving morphology and control us-
ing CPPN-NEAT. This method is capable of dynamically ad-
justing the resolution at which components of the robot are
created: a large number of small sized components may be
present in some body locations while a smaller number of
larger sized components is present in other locations. Ad-
vantages of this capability are demonstrated on a simple task,
and implications for using this methodology to create more
complex robots are discussed.

Introduction
There are many reasons why it would be useful to have au-
tonomous robots operating in our homes and offices. These
range from freeing people from repetitive tasks to the ability
to perform actions that humans are incapable of. However,
with the exception of a few robots designed to accomplish
simple tasks, the vast majority of autonomous robots cur-
rently in use operate only in factories and other highly struc-
tured environments. In order to make the migration out of
the factories and into our everyday lives robots will need to
be adaptive and exhibit intelligent behavior.

There has been much work in recent years in the area
of embodied artificial intelligence (Brooks, 1999; Ander-
son, 2003; Pfeifer and Bongard, 2006; Beer, 2008) which
has led to the conclusion that such intelligent behavior must
arise out of the coupled dynamics between an agent’s body,
brain and environment. This means that the complexity of an
agent’s controller and morphology must increase commen-
surately with the task or tasks that it is required to perform.
However, when designing complex autonomous robots it is
often not clear how responsibility for different behaviors

should be distributed across an agent’s controller and mor-
phology. A good example of this is that if a robot is solely
tasked with moving over flat terrain while following a light
source then wheels and a direct sensory motor mapping are
an appropriate solution (Braitenberg, 1986), but if the robot
must be able to navigate over varied terrains while perform-
ing more complicated tasks a more complex control strategy
and/or morphology are required. This issue of scaling up
morphological and control complexity has been a major ob-
stacle in developing autonomous robots capable of operating
in most real world situations.

Background

The only truly intelligent agents to have yet existed, as far as
we are aware, are biological organisms. Therefore the only
known pathway to creating intelligent agents is evolution by
natural selection. Guided by this observation, the field of
evolutionary robotics (Harvey et al., 1997; Nolfi and Flore-
ano, 2000) attempts to realize intelligent agents by means of
artificial evolution. Generally how this methodology works
is that control policies for human designed or bio-mimicked
robots are optimized to perform a desired task via evolution-
ary algorithms. This has allowed for the creation of robust,
non-liner control strategies for autonomous agents that are
not bound by the limits of human intuition. However, nat-
ural evolution does not operate on one part of an organism
(brain) to the exclusion of others (body). In fact under evo-
lution by natural selection any and all parts of an organism
may be, and at some point in the past necessarily were, mod-
ified. This allows for the realization of organisms whose
brains and bodies are co-optimized for specific ecological
niches.

Luckily, artificial evolution is not necessarily limited to
acting solely on a robot’s brain or control strategy. Evo-
lutionary frameworks in which the morphology and con-
trol of simulated machines are co-optimized in virtual en-
vironments are possible and indeed have been created, start-
ing with Sims (1994) and followed by various other studies
(Dellaert and Beer, 1994; Lund and Lee, 1997; Adamatzky
et al., 2000; Mautner and Belew, 2000; Lipson and Pol-
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lack, 2000; Hornby and Pollack, 2001a,b; Stanley and Mi-
ikkulainen, 2003; Eggenberger, 1997; Bongard and Pfeifer,
2001; Bongard, 2002; Bongard and Pfeifer, 2003). With this
approach body plans and control policies uniquely suited for
a machine’s task environment may be found. This offers a
substantial improvement over relying on body plans created
by human designers who have inherent biases or copying
animal body plans more suited to a given ecological niche.

The current work continues in this tradition while present-
ing several important advantages over previous approaches.
First, the genomes of evolved agents are represented by
compositional pattern producing networks (CPPNs) (Stan-
ley, 2007), a form of indirect encoding that have been shown
able to capture geometric symmetries appropriate to the sys-
tem being evolved, are capable of reproducing outputs at
multiple resolutions (Stanley et al., 2009), and have shown
promise in producing neural network control policies for
legged robots (Clune et al., 2009a,b). Second, through novel
extensions of the CPPN outputs evolution can differentially
optimize the resolution of the simulated robots such that a
larger number of smaller sized components may be present
in some body locations while a smaller number of larger
sized components is present in other locations. To see why
this is desirable consider evolving a creature capable of lo-
comoting and grasping different objects. In this case evolu-
tion may choose to increase the resolution of the hands or
grippers in order to achieve more fine grained control of the
object to be grasped while at the same time using a lower res-
olution model of the trunk which will result in fewer compo-
nents keeping the morphology from becoming unnecessarily
complex and therefore providing faster simulations without
sacrificing performance.

This paper extends the work presented in (Auerbach and
Bongard, 2010) to allow for evolution of control as well as
dynamic resolution as just discussed. The paper is organized
as follows: the next section describers the CPPN encodings
used, describes how they are evolved and presents how these
encoding are used to grow actuated robots. Following that a
description of two experiments is presented which compare
this dynamic resolution method with a similar method lack-
ing this ability. Some observations of how evolution makes
use of the dynamic resolution capability are discussed, and
finally some conclusions and directions for future work are
presented.

Methods

This section presents a brief description of CPPNs and the
evolutionary algorithm used to evolve them. This is fol-
lowed by a description of the methods used for generating
actuated robots from evolved genotypes. After this a de-
scription is presented of the fitness function used for evalu-
ating these robots.

CPPNs
Compositional Pattern Producing Networks (CPPNs) are a
form of artificial neural network (ANN). Unlike most ANNs
where each internal node uses a form of sigmoid function,
each internal node of a CPPN can have an activation func-
tion drawn from a diverse set of functions. This function
set includes functions that are repetitive such as sine or co-
sine as well as symmetric functions such as gaussian. By
composing these functions CPPNs can produce motifs seen
in the majority of natural systems such as symmetry, repe-
tition, and repetition with variation. It is important to note
that these motifs come out of this encoding for free without
the need for a human expert to explicitly enforce or select
for them.

CPPN-NEAT
In this work the CPPNs are evolved via CPPN-NEAT
(Stanley, 2007). CPPN-NEAT uses the NeuroEvolution
of Augmenting Topologies (NEAT) method of neuro-
evolution (Stanley and Miikkulainen, 2001) to evolve in-
creasingly complex CPPNs. An extension of CPPN-NEAT
—HyperNEAT— has been used (Stanley et al., 2009; Clune
et al., 2009a,b) to evolve traditional ANNs, where each node
of the ANN is embedded in a geometric space and whose
coordinates are fed to an evolved CPPN to determine the
presence and weights of connections. In effect these con-
nections are “painted” on to the network from the output
patterns produced by the CPPN. As shown by Stanley et al.
(2009) this has the crucial benefit that a CPPN evolved to
produce the connectivity patterns of small ANNs can be re-
queried at a higher resolution to produce the connectivity
patterns of larger ANNs without needing to re-evolve these
large ANNs. Similarly as shown in (Auerbach and Bongard,
2010) it is possible to change the resolution at which CPPNs
grow physical structures.

Growing Actuated Robots from CPPNs
In this work actuated robot morphologies and control strate-
gies are grown from evolved CPPNs. Each robot is com-
posed of many spherical cells which connect to each other
either rigidly or via single degree of freedom rotational
joints. For an example of robots produced in this way see
Figure 1.

The growth procedure begins with a single cell, hence-
forth referred to as the root, with a predefined radius rinit lo-
cated at a designated origin. A cloud composed of n points
is cast around this cell with the n points being evenly dis-
tributed on the surface of the root sphere (all n points are at
distance r from the center of the root). In the current work,
n is restricted to 2, such that the points are directly opposite
each other along the y-axis. In the coordinate system used
here z is the vertical axis, and so the y-axis represents a hor-
izontal axis that passes through the center of each cell. It is
convenient to think of this as a cloud of points though, as is
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Figure 1: A few samples of robots evolved for directed lo-
comotion.

the case in (Auerbach and Bongard, 2010), because in future
work this restriction will once again be lifted allowing for a
greater number of morphologies.

Once this cloud is cast, every point in the cloud is used
to query a CPPN. The CPPN is queried by providing as in-
put the Cartesian coordinates (x, y, z) of the point in ques-
tion, the radius rparent of the sphere to which it will attach
(rparent = rinit when considering points around the root), and
a constant bias input. These values are propagated through
the CPPN to produce multiple output values. The first of
these outputs is m. This output value can be thought of as
a concentration of matter at that point, such that when m is
over a certain matter threshold, Tmatter, a cell will be placed
at that point. The more that m exceeds the matter threshold
the denser the cell placed at that point will be. This creates a
continuum from no cell existing at that location up to having
a very dense cell at that location with all intermediate levels
of density in between being possible. The second of these
outputs is a radius scaling factor rscale which will determine
the size of the cell to be added at that location.

Once the m and rscale values have been determined for all
n points in the cloud the points are sorted in descending or-
der of the matter outputm. The sorted points are then looped
through and the algorithm considers adding a cell centered
at each point in turn. Specifically a cell, centered at point p
is added to the structure if (a) the output value of point p is
above the threshold Tmatter and (b) no other cell, besides the
one to which this new cell will be attached (its parent) has
previously been added to the structure with center located at
distance < r away from p.

1. GrowRobot(CPPN)
2. Initialize priority queue q, with priority based on

cell density
3. Create cell c at origin with full density and radius rinit,

add to morphology M and flag its coordinates
‘discovered’

4. Enqueue c in q
5. WHILE ∼ q.isEmpty
6. c← q.front
7. Cast point cloud C centered at c
8. Initialize vector V of neighboring cells
9. FOR EACH point p in C

10. Query CPPN at p to get output valuesm and rscale
11. Add p with values m and rscale to vector V
12. Sort V by descending value of m
13. FOR EACH point p with valuem in sorted vector V
14. IF coordinates of p not yet ‘discovered’
15. Flag p ‘discovered’
16. IF CanAdd(p,m,c,r)
17. Add cell centered at p with density

∝ m and radius r = rparent ∗ rscale
to morphology M

18. Re-query CPPN at c+p
2 to get output values

j, θ and ∆.
19. IF j > Tjoint
20. Determine joint normal ~n from θ
21. Connect cell with 1-DOF rotational joint

with normal ~n, range ∝ j actuated by
CPG with phase offset ∝ ∆

22. ELSE
23. Connect cell rigidly
24. Enqueue (p, v) in q

25. CanAdd(p,m,c,r)
26. IFm > Tmatter AND

∀ cells d ∈M,d 6= c dist(p,d) ≥ r AND
p is within bounding cube

27. Return true
28. ELSE
29. Return false

Figure 2: Grow Robot pseudo code. The growth procedure
starts with a root cell at the origin (line 3). Then, as long as
there are cells in the queue to consider it takes the cell at the
front of the queue, casts a point cloud around it and consid-
ers adding a cell at each point in turn (lines 5-17). A cell
is added at a given point if all of the following hold: it does
not conflict with a previously added cell, the CPPN outputs a
value above the threshold Tmatter when queried at that point,
and the point is within the bounding cube (lines 25-29). If a
cell is to be added the CPPN is queried once again to deter-
mine connectivity and control parameters (lines 18-23).
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The radius r of a cell is determined from the radius of its
parent rparent and the output value rscale. Specifically

r =


rparent ∗ rscale rmin ≤ rparent ∗ rscale ≤ rmax

rmin rparent ∗ rscale < rmin

rmax rparent ∗ rscale > rmax

That is, the cell to be added will have radius equal to that of
its parent scaled by a factor determined by the CPPN output
capped by a minimum and maximum possible radius.

If a cell has been selected for addition to the robot the
CPPN will be queried once more to determine connectivity
and control parameters. In particular the CPPN will be fed
the coordinates where a joint may be added: a cell centered
at point p connecting to a parent cell centered at point pparent
may be connected by a single degree of freedom (DOF) ro-
tational joint located halfway between p and pparent (p+parent

2 ).
These coordinates are input to the CPPN along with rparent
to retrieve additional outputs: a joint “concentration” j, an
angle θ and a phase offset ∆.

If the output j exceeds a joint threshold Tjoint the cell will
attach to its parent with a 1-DOF rotational joint. The more
j exceeds this threshold the greater the range of motion of
the connecting joint will be. Similar to the matter case this
creates a continuum from connecting rigidly when j ≤ Tjoint
to connecting via a joint with a very narrow range to con-
necting via a joint with a large range of motion.

If indeed a given cell will connect to its parent via a joint
there are two more important properties of this connection
to be determined. First, the direction of motion of this joint
is defined by a normal vector ~n. This vector will be normal
to the axis ~a defined by the center of the cell and the center
of its parent. To choose one vector out of the infinitely many
such vectors the cross product of ~a and a default vector ~d
is taken. This results in a single vector normal to ~a which
is then rotated around ~a by angle θ. In this way all possible
vectors normal to~amay be used in constructing the joint and
it is left up to the CPPN to output a single angle to choose a
specific normal vector.

The second property to be determined in the case where
a cell connects via a joint is what control signal drives the
motor actuating this joint. In this work all motors are con-
trolled by time dependent harmonic oscillators. A central si-
nusoidal oscillation is used, but each individual motor is al-
lowed to be out of phase with this central control signal. The
phase offset of each motor is determined by the final CPPN
output ∆ when queried at the joint’s location. In this way the
CPPN also determines the control policy of the robot being
grown in addition to its morphology.

Once a cell is added to the structure and its connectivity
and control have been determined it gets placed into a prior-
ity queue whose priority is based on its matter concentration
m. When all points from the current cloud have been con-
sidered the algorithm takes the cell at the top of the priority

queue and casts a point cloud around it, and this process
continues until there are no valid possible points at which
to place cells. Points are valid if they are within a bound-
ing cube with side lengths l. This bounding cube constraint
was imposed so that in the future it will be possible to phys-
ically fabricate the entire evolved robots within the confines
of a 3D-printer. Figure 2 gives pseudo code for this growth
procedure.

There are several reasons why it is desirable to have a
growth procedure such as this. Merely querying CPPNs
over a sampling of three-dimensional space may lead to dis-
connected objects. Even if all but one of these objects are
thrown out much computational resources will have been
wasted querying these regions of space. Additionally, im-
posing a grid over space to determine which points to query
imposes a specific resolution on the morphology and thus
removes much of the benefit of the dynamic resolution (ra-
dius) method used in this work because the spacing of the
cells will have been predetermined by the grid.

Selecting for robots with desirable properties
This paper aims to demonstrate that CPPN-NEAT coupled
with the growth procedure just presented is capable of evolv-
ing actuated robot morphologies and control policies for a
given task. In particular the property selected for in this
work is maximum directed displacement of the robot in a
fixed amount of time.

To select for this property, an evolved virtual robot is
placed in a physical simulator1 for that set amount of time.
The fitness of this robot (and hence its encoding CPPN)
that CPPN-NEAT attempts to maximize is simply the y-
coordinate of the robot’s center of mass after the simulation
completes subject to a few conditions. The first of these
conditions is to prevent robots from exploiting simulation
faults. There are a number of ways these faults could be
avoided such as reducing the step size used in running the
simulation, but this would lead to increased simulation run-
times. The technique used here is to throw out any solution
where the robot’s linear or angular acceleration exceed pre-
defined thresholds by giving 0 fitness. The second condition
is to prevent solutions where the robot moves by rolling on
a subset of its cells. These solutions tend to be common but
are less interesting than other solutions that may be found,
therefore any robot that has a subset of its cells remain in
contact with the ground for over 95% of the time is discarded
and given a fitness of 0 once again.

Results
This section presents experiments comparing how the dy-
namic resolution method presented above performs is com-
parison to a similar method restricted to using cells with a

1Simulations are conducted in the Open Dynamics Engine
(http://www.ode.org), a widely used open source, physi-
cally realistic, simulation environment



Proc. of the Alife XII Conference, Odense, Denmark, 2010 455

Figure 3: Each column shows the behavior of a different dynamic resolution robot evolved for directed locomotion (with time
going from top to bottom). Three different robots are shown. Red cells are attached to two joints while the darker blue cells
attach to a single joint. The lighter blue cells all connect rigidly. Enlarged pictures of each of these robots are shown in Fig. 1.
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fixed radius. It should be noted that using a fixed radius in
this case would be equivalent to omitting the growth proce-
dure and merely querying the evolved CPPN over a gridded
region of space and then taking those cells which connect
to the cell at the origin as the resulting morphology, how-
ever as mentioned above this procedure would require more
computational resources than using the growth procedure to
accomplish the same result.

Specifically, two experiments are conducted each consist-
ing of a set of 30 evolutionary trials. All experiments attempt
to evolve simulated robots with CPPN-NEAT capable of di-
rected locomotion using the fitness criteria presented above.
Moreover, all experiments are configured to use a popula-
tion size of 150, and run for 500 generations with each fit-
ness evaluation given 2500 time steps. Additionally in all
experiments the values Tmatter and Tjoint are both fixed at 0.7,
and each cell of the structure is restricted to having its center
initially located in interval (0, [−2, 2], 0) (coordinates all in
meters). Before being placed in the simulator the morpholo-
gies are translated vertically such that the largest component
is resting on the ground. The CPPN internal nodes are al-
lowed to use the signed cosine, gaussian, and sigmoid ac-
tivation functions. All other parameters of the evolutionary
algorithm are kept at the default values provided with the
C++ implementation of HyperNEAT2.

The trials in the first experiment grow structures using the
dynamic resolution method introduced in this paper. In this
case rinit was set to 0.1 meters, rmin set to 0.01 meters, and
rmax set to 0.5 meters. Additionally the output value rscale
is normalized to the range [0.5, 1.5]; that is, a newly added
cell can have radius at the most 50% larger and at the least
50% smaller than its parent. Figure 3 demonstrates the be-
havior of a few of the more successful robots to evolve in
evolutionary trials in this experiment.

The second experiment is exactly the same as the first one,
but it is restricted to growing robots composed of cells with
a fixed radius. CPPN-NEAT is still used to evolve CPPNs
which are used to grow the morphologies and control strate-
gies under the procedure outlined above, but the rscale output
is not included in the CPPNs. In lieu of determining cell size
from this output this experiment builds robots from cells all
having radius rfixed = 0.1 meters.

Discussion
One advantage of using the dynamic resolution method over
keeping resolution fixed is that it allows evolution to explore
a greater variety of possible solutions. The first evidence of
this is observational. Looking at the behavior of the three
robots shown in Figure 3 a variety of dynamics can be ob-
served. The left most robot resembles a whip in that it has
one thicker end and tapers off to a thinner end. Additionally

2Available at
http://eplex.cs.ucf.edu/hyperNEATpage/
HyperNEAT.html

we see that the thin end is rigid. This can be inferred from
the light blue coloring of the cells at that end which repre-
sent cells that are not connected to any joint (while red cells
connect to two joints and dark blue cells to a single joint).
Scanning down the panels one can see that this rigid end is
utilized as a paddle to propel the robot forward while curling
over at the other end.

The middle robot on the other hand has no rigid connec-
tions. This robot moves by coiling and uncoiling to move
itself in the desired direction. The right most robot has yet a
different morphology and movement pattern than the other
two. While it has one rigid end like the left most robot this
end is composed of fewer spheres and actually includes cells
that are larger than those in the middle of its body, flaring
back out like a baseball bat. This configuration is actually
the most successful one discovered and its movement pat-
tern is different from the other two robots.

Figure 4: Top: Mean number of cells of best individual
in each generation across the 30 evolutionary trials for the
dynamic resolution set (black) and the fixed resolution set
(light blue). Bottom: Standard deviation from the mean
number of cells by generation.

Additional evidence of the dynamic resolution runs ex-
ploring a greater variety of morphologies is shown in Figure
4. The top part of this figure shows the mean number of cells
used by the best individual from each generation across the
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30 evolutionary trials from both the dynamic resolution set
and the fixed resolution set. The bottom portion of this figure
shows the standard deviation from the means shown in the
top. One can see here that the trials in the dynamic resolu-
tion set tend to explore morphologies with a large number of
small cells early on, followed by exploring a fewer number
of cells on average later on in the trials. However, while the
fixed resolution robots tend to converge to a narrow range of
cell numbers as exemplified by the constant mean and small
standard deviation, the dynamic resolution robots continue
to explore a wide array of different number of cells and cell
sizes which can be inferred by observing that their standard
deviation never comes back down.

Figure 5: Mean (black) and standard deviation from the
mean (red) of cell radii within each best of generation indi-
vidual from the dynamic resolution set averaged across the
30 evolutionary trials.

This evidence is corroborated by Figure 5 which plots the
mean and standard deviation of cell radii within each best
of generation individual averaged across the 30 evolutionary
trials. Here it is shown in a different way how the dynamic
runs tend to explore smaller cell sizes early on in the evolu-
tionary trials followed by larger cell sizes later. While this is
the case on average, by looking at the standard deviations we
see that as evolution progresses morphologies with a wide
variety of cell sizes come into being (the standard deviation
trends upwards). This means that the dynamic resolution
runs are exploring the space of solutions with variable cell
sizes which is not possible in the fixed resolution case.

Conclusion
This paper has demonstrated how one can implement a
growth mechanism that can generate robots composed of
variable sized components. This ability was then shown to
be actually utilized by demonstrating how evolutionary trials
that incorporate this dynamic resolution mechanism explore
a greater variety of possible solutions than evolutionary tri-
als that are restricted to constructing robots out of fixed sized
components.

While it is not directly evident what performance advan-
tage using dynamic resolution offers on a task as simple as
the one utilized in this work, intuitively one can see the ben-
efit of such a mechanism when generating more complex
robots for more complex tasks. Specifically in any task that
requires object manipulation it will be useful to adapt the
component sizes of the parts of the morphology that will
be in contact with external objects while not creating overly
complex morphologies as would be the case if such a high
resolution were employed for the entire robot. Additionally,
it may not be possible to know the ideal component size a
priori, and so using a dynamic resolution method such as
this can help steer evolution towards constructing robot mor-
phologies with the proper component sizes.

Much work remains to be done in exploring the possibil-
ities of this methodology. The logical next step will be to
relax some of the restrictions imposed in this work such as
allowing robots to grow in arbitrary trajectories as opposed
to along only a single axis. The authors additionally plan
to tackle more complex tasks including object manipulation
to test whether using dynamic resolution will result in the
additional predicted advantages discussed here. This will
require the use of more complex control strategies such as
neural networks, and the inclusion of a mechanism for en-
dowing the robots with sensors in order to close the control
loop. The methods used here for generating joint and mo-
tor parameters via additional CPPN outputs seem promising
and the authors plan to further leverage this technique for
determining sensor and neuron positions and parameters.
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Extended Abstract

Viruses are the most abundant replicating entities on Earth, with an estimated 1030 virus particles in Earth's oceans alone 
(Suttle, 2005). Viruses play an important role in the marine carbon cycle, by viral mortality effects on the food web and by  
the  `viral  shunt'  of  material  from  higher  to  lower  trophic  levels  (Fuhrman,  1999).  Understanding  the  ecological  and 
evolutionary interactions between viruses and their hosts is thus an important challenge if we are to understand the marine  
ecosystem and the global carbon cycle. Viruses are obligate parasites that replicate by taking control of infected cells and  
forcing them to create new virus particles, which are released during cell lysis. Each lysis (cell burst) event may release ~101-
102 new virus  particles.  Growth  rate  asymmetries  and  time-lags  during  viral  infection  mean that  virus-host  population 
dynamics are hard to model as a standard predator-prey interaction. Furthermore, population-based and analytical approaches 
to modelling host-virus coevolution are problematic due to massive viral diversity and rapid evolution. Here I describe a  
novel individual-based simulation model of host-virus coevolution in a spatial aquatic environment. Individual host cells 
grow at a density-dependent rate up to a parameterised carrying capacity. Virus particles may adsorb to and infect host cells  
with which they come into contact. After a latent period during which virus particles are replicated inside an infected cell,  
lysis of the infected cell releases a large number of new virus particles into the environment. This asymmetric and time-
lagged interaction results in boom-bust cycles of virus and host abundance, in which uninfected host populations grow until  
they are infected and destroyed, with associated exponential growth and collapse of viral abundance. To explore virus-host  
coevolution, the model focuses on the process of adsorption, in which virus tail-fibres bind to nutrient uptake receptors on  
the  cell  surface,  allowing viral  DNA to be  injected  into the cell.  The  `fit'  between receptors  and  tail-fibres  is  thus an  
important  locus for  coevolution.  The model  represents  this  interaction  in  abstract  form using  evolvable  bit-strings that  
represent nutrient uptake receptor configuration of host cells and tail-fibre orientation of viruses; infection occurs when these  
bit-strings match. This creates a coevolutionary pursuit in which hosts evolve novel strings to avoid infection, while viruses  
evolve strings that match their host. The need for host nutrient uptake receptors to fulfil their primary function of nutrient  
acquisition  limits  the  ability  of  hosts  to  evade  viral  attack  and  creates  an  evolutionary  trade-off  between  growth  rate 
maximisation and defence.  Results from the model support  and quantify a theoretical  prediction known as the `kill-the-
winner' hypothesis (Thingstad et al, 1997), in which hosts that become abundant due to uptake efficiency become targets of  
viral attack. This negative density-dependent selection leads to increased host diversity. The coevolutionary dynamics of the 
model are characteristic of the well known `Red Queen' effect (Van Valen, 1973), whereby both viruses and hosts show  
continual evolutionary adaptation while maintaining broad constancy in relative fitness. Interestingly, the Red Queen effect  
is most pronounced in abundant host populations, while scarce host populations can achieve progressive fitness increase by  
improving uptake efficiency until they reach a critical abundance at which viral mortality becomes significant. 
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Abstract

Biologists have long been fascinated by the exceptionally high diversity displayed by some evolutionary groups (e.g.,
Darwin’s finches, Anolis lizards, cichlid fishes of the African Great Lakes). Adaptive radiation in such clades is not only
spectacular, but is also an extremely complex process influenced by a variety of ecological, genetic, and developmental
factors and strongly dependent on historical contingencies. Using large-scale spatially and genetically explicit individual-
based simulations, we identify a number of general patternsconcerning the temporal, spatial, and genetic/morphological
properties of adaptive radiation. Some of these are strongly supported by empirical work, whereas for others, empirical
support is more tentative. In almost all cases, more data areneeded. Future progress in our understanding of adaptive
radiation will be most successful if theoretical and empirical approaches are integrated, as has happened in other areas of
evolutionary biology.
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Abstract

Traditional ecological models assume well-mixed popula-
tions, where all members are equally likely to interact with
one another. These models have been used successfully to ex-
plain competitive interactions; however, positive interactions
such as intraspecific cooperation and interspecific facilitation
cannot readily be captured. Previous work has highlighted
the importance of spatial structure in explaining these behav-
iors as well as its role in maintaining biodiversity. These spa-
tial structures have frequently been modeled using lattices,
where all organisms have an equal number of interactions.
Although these models capture the spatiality of interactions,
natural populations are unlikely to follow such rigid patterns.
There has been little work investigating the dynamics of pop-
ulations with levels of social interactions that occur between
these two extremes.

In this work, we investigate the dynamics of a 3-strategy non-
transitive system in populations with different social struc-
tures. We first describe how extending the neighborhood of
interactions in traditional lattice models diminishes a popu-
lation’s ability to maintain diversity. Populations are then
moved to graphs where interactions are limited to cells within
a defined distance of each other in Cartesian space. This
method allows for a more fine-grained examination of the
effects that increasing interactions have on maintaining di-
versity. Finally, we examine small world topologies and find
that the introduction of random edges into the graph quickly
disrupts the maintenance of diversity.

Introduction
The maintenance of biodiversity has long bemused ecolo-
gists. Under most models, the number of species that can
coexist within a given ecosystem is significantly less than
that observed in nature. Traditional differential-equation-
based models, which assume well-mixed populations, often
lead to the single species with the fastest growth outcom-
peting all others, as demonstrated in Kerr (2007). Further,
these models have difficulty capturing cooperative interac-
tions among organisms, as these behaviors have associated
fitness costs, which slow growth rates and hinder a species’
ability to compete.

Ecological models that incorporate spatial structure and
local interactions, such as that developed by Durrett and

Levin (1994), have been shown to more accurately describe
the interactions of organisms. In these models, spatial struc-
ture is imposed by limiting the interactions of an organism to
its surrounding neighbors instead of all organisms in the sys-
tem. This can enable rare mutations to persist, especially if
a number of these mutants exist together in close proximity.
Further, if costly but beneficial behaviors are localized, the
benefits of these interactions on its recipients may outweigh
their costs, allowing them to spread in the population.

Allelopathic bacteria are a natural system that is fre-
quently used to study the effects of spatial structure and
cooperation, and localized interactions have been shown to
contribute significantly to the coexistence of multiple strains
(Kerr et al. (2002); Iwasa et al. (1998); Czárán et al. (2002)).
In these systems, bacteria produce toxins called bacteri-
ocins, which cause surrounding cells that do not express
resistance to lyse. In the process, the toxin producer is
killed. However, this act makes the newly-freed space and
resources available to neighboring cells (ideally, the kin of
the producer). Toxin production is genetically linked to re-
sistance, so producer strains are also resistant to the toxin
they produce. It is possible, however, to evolve resistance
independent of production. Because such resistant strains
do not pay the cost associated with production, they are able
to grow faster than producer strains, while still maintain-
ing their immunity. These strains, however, still grow more
slowly than a susceptible strain that neither produces toxin
nor is resistant. Therefore, in the absence of toxin, a resistant
strain will be outcompeted by a susceptible strain. This com-
bination of three strategies is considered a non-transitive
system, where each strain dominates another strain, but is
dominated by a third. These dynamics are captured in the
classic rock-paper-scissors (RPS) game, where rock crushes
scissors, scissors cuts paper, and paper covers rock.

Traditionally, spatial models of such systems have used
lattices containing a fixed number of vertices, or cells, dis-
tributed uniformly in space. A cell is typically connected
to its eight nearest cells (Moore neighborhood) by an undi-
rected edge. To prevent boundary effects, periodic bound-
aries are often used, which form a toroidal grid by creat-



Proc. of the Alife XII Conference, Odense, Denmark, 2010 462

ing edges between cells on the periphery of the graph. This
results in regular graphs in which each cell has the same
number of neighbors, and the distance between any cell and
its farthest neighbor is the same for all cells. This regular-
ity indicates that any cell in the grid interacts with as many
other cells as any other cell. Further, this distance property
indicates that no matter where a dominant strategy begins,
it must interact with the same minimum number of cells in
order to spread throughout the population.

In this paper, we examine the role social structure plays
in the maintenance of biodiversity by studying the above
non-transitive system on graphs with differing vertex de-
grees, and hence different patterns of social interactions. We
use the terms spatial- and social structure interchangably, as
an organism’s potential social interactions are limited to its
neighbors. Our intent is to observe the dynamics of pop-
ulations in the space between the regular graphs used in
lattice models and well-mixed populations to determine at
what point diversity breaks down. To accomplish this, we
describe three models. First, we adopt the use of lattices, and
the number of interactions is increased by expanding the ra-
dius of interactions surrounding each cell. This model gives
us a high-level overview of the social structures in which di-
versity can be maintained. To achieve a more fine-grained
control over a cell’s interactions, we develop a method for
creating graphs from a set of points in Cartesian space. Fi-
nally, we examine diversity on small world graphs, where in-
teractions are primarily localized with the exception of some
potential long-range interactions.

The spread of a two-strategy system on graphs with dif-
ferent properties was previously studied by Ohtsuki et al.
(2006), who formulated a simple rule for the maintenance
of diversity. Our work differs in that we are using a three-
strategy system, and the benefits of a particular strategy are
not fixed, but rather depend on the composition of each cell’s
neighborhood. More similar to our work, Károlyi et al.
(2005) studied increases in social interactions through im-
perfect mixing of the spatial structure on a lattice. The
primary difference is that their work used some measure
of mixing, while the work presented here maintains fixed
neighborhoods while differing the number of potential in-
teractions. Finally, Buckley and Bullock (2007) used an in-
formation theoretic approach to investigate how space con-
tributes to the complexity of a system. Although the focus
of their work was different, complexity can play a large role
on a population’s ability to maintain diversity.

Methods
To study the effects of social structure on biodiversity, we
developed a model based on graphs. This model consisted
of cells, which were connected to each other by undirected
edges, making both cells neighbors of each other. Inter-
actions in this system were limited to a cell and each of
its neighbors. In all experiments, populations consisted of

90 000 cells. Each cell exhibited one of four possible strate-
gies:

1. Susceptible cells produced no toxin, nor were they resis-
tant to toxin production by neighboring cells. Because
susceptible cells did not pay any cost to maintain such be-
haviors, their growth was faster than other strategies.

2. Producer cells produced toxin which could kill neighbor-
ing susceptible cells. Additionally, since resistance is a
trait that is genetically linked with production, producer
cells were also resistant to toxin produced by neighboring
producer cells.

3. Resistant cells can be viewed as producers that cheat.
They reaped the benefits provided by adjacent producer
cells without themselves paying the costs of toxin produc-
tion. As such, they exhibited faster growth than producer
cells, but slower growth than susceptible cells due to the
added cost of resistance.

4. Empty cells had no effect on their neighbors. When cho-
sen, an empty cell adopted the strategy of a randomly-
selected neighbor.

We refer to these different cell types as “strategies”, how-
ever they can easily be viewed as species, strains, or sub-
species. At the beginning of each experiment, cells were
randomly assigned one of these strategies.

Importantly, the growth of each strain was controlled by
its rate of mortality. All strategies shared an intrinsic death
rate, and the costs associated with resistance and toxin pro-
duction manifested themselves as increases in death rate.
This means that at any given time, a producer cell was more
likely to die than a resistant cell, and a resistant cell was
more likely to die than a susceptible cell. When a cell died,
it became empty. For a cell to change from one strategy to
another, it had to first die and then later adopt a neighboring
strategy.

Populations were run for 10 000 epochs. During each
epoch, 90 000 cells were chosen at random, and their states
were updated asynchronously according to the rules de-
scribed below. Following Kerr (2007), the probabilities of
a resistant or producer cell dying during one of these up-
dates were 0.312 and 0.333, respectively. Because the fate
of a susceptible cell was tied to the presence of neighboring
producer cells, its chance of death was modeled according to
Equation 1, where ∆0

S is the intrinsic death rate for suscep-
tible cells (0.250 in this work), τ is the toxicity of producers
(0.65), and fp is the fraction of producers in the cell’s neigh-
borhood.

∆S = ∆0
S + τfp (1)

Studies examining the maintenance of cooperative behav-
iors often compare the fitness cost of a strategy with the ben-
efits it provides (e.g., Axelrod and Hamilton (1981); Ohtsuki
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et al. (2006)). In most game theoretic models, these costs
and benefits are explicitly defined in payoff matrices. In our
model, the costs can be viewed as the increase in mortality
seen by resistant and producer cells. In this sense, the cost
of each strategy is fixed and continually incurred. However,
due to the spatial nature of this and most other biological
systems, the benefits depend on the current distribution of
strategies in a cell’s neighborhood. For example, toxin pro-
duction may be highly beneficial when surrounded by sus-
ceptible cells, but have no benefit when all neighbors are
producers. Likewise, resistance is beneficial in the presence
of producer cells, but not in the presence of susceptible or
resistant cells.

Lattice Models with Increasing Interactions
To examine the effects of increasing social interactions in
populations, we began by adopting the lattice model as used
in previous work (e.g., Iwasa et al. (1998); Czárán et al.
(2002); Kerr (2007)). In these models, 90 000 cells were
arranged in a 300x300 grid, with each cell interacting with
its 8 surrounding neighbors. Periodic boundary conditions
were used in order to prevent edge effects, producing 8-
regular graphs.

As a simple method for expanding a cell’s interactions, we
first used lattices with increasing radii of interactions. That
is, with radius 1, a cell was connected to its 8 surrounding
neighbors. With radius 2, a cell’s neighbors were the 24
cells within a 2-hop radius. This process continued with in-
creasing radii until diversity was no longer maintained in the
populations.

Cartesian Topology
Lattice models are well suited for studying spatial effects,
but the geometric growth of neighborhood size is too fast
and not necessarily representative of natural systems. In
order to investigate the effects of increased neighborhood
size on a finer scale, we moved from using lattice models to
randomly-generated graphs that still accounted for the spa-
tial relationships among cells.

To build these graphs, we uniformly placed 90 000 points
in a unit Cartesian plane. Each point in this plane repre-
sented a cell in the world, and its neighbors consisted of the
other points that fell within a circle of specified radius. Since
a unit plane was used, the area of the circle was proportional
to the expected number of points that it encompassed. That
is, the area of a particular circle divided by the area of the
plane represented the proportion of points which should, on
average, fall within the circle. This construction was similar
to that reported by Barnett et al. (2007), who examined how
embedding space on random graphs affected various graph
properties.

a

1
=

K

|V | − 1
(2)

0 1

1

r 2r ...

r

2r

..
.

Figure 1: Unit Cartesian plane split into bins. Circles show
the area where neighbors may fall, and the shaded region is
the Moore neighborhood of the central bin.

In Equation 2, a is the area of a circle, 1 in the left-hand
denominator represents the area of a unit plane, K is the ex-
pected average number of points within the circle (expected
neighborhood size plus one for the cell the circle is cen-
tered on), and |V | is the number of cells in the world, where
|V | − 1 is the number of potential neighbors for a particular
cell. Since a is the area of a circle with radius r, we can solve
for the particular radius that will, on average, encompass K
cells, as shown in Equation 3.

r =

√
K

π(|V | − 1)
(3)

This treatment also used periodic boundaries, which are
achieved by allowing this circle to wrap around the edges
of the plane. To reduce the running time for distance cal-
culations, we partitioned the plane using a grid of two-
dimensional bins, where each bin contained points that fell
within a square area with side length r. Since the bins were
r∗r sized, any point that may have fallen in a circle of radius
r around a single point could not be outside of the immedi-
ate eight bin neighbors. Figure 1 shows the bin structure
overlaying the Cartesian plane and several of the extreme
circles with radius r, illustrating the fact that all neighbor-
ing points must fall within the Moore neighborhood of the
bin. This method dramatically reduced the number of points
considered as potential neighbors. Additionally, since edges
were undirected and the neighbor relation was reciprocal,
once the neighbors of a point had been found, that point no
longer needed to be considered. This property allowed us to
proceed bin-by-bin, eliminating all points contained within
the bin from further consideration after exhausting it.

Figure 2 shows the average distribution of neighborhood
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Figure 2: Histogram of the average neighborhood sizes from
20 replicates for different radii yielding expected neighbor-
hoods from 10 to 70 cells in increments of 10

sizes when varying the expected number of neighbors from
10 to 70. The mean number of neighbors for each treat-
ment was equal to the expected neighborhood size calcu-
lated. This method provides fine-grained control over neigh-
borhood size while maintaining spatial interactions similar
to those of lattices. Random graphs created in this way are
arguably more representative of biological systems than lat-
tice models, since the number of interactions for each or-
ganism in a population is not likely to be regular, even with
explicit spatial structuring. This model allows for a distri-
bution of neighborhood sizes around a specified expected
value, as opposed to a fixed uniform neighborhood. We used
this Cartesian method to generate random worlds with ex-
pected neighborhood sizes from 10 to 70 neighbors.

Biodiversity in Small World Networks
Finally, we examine the stability of these strategies in small
world networks, which consist primarily of localized inter-
actions with some long-range interactions, as defined by
Watts and Strogatz (1998). These interactions often result
in graphs where the number of interactions separating any
two cells is surprisingly small. This property is familiar to
those who have played the “Six Degrees of Kevin Bacon”
game, where players are able to connect any person to ac-
tor Kevin Bacon through at most six social interactions, as
described in Collins and Chow (1998). Although these net-
works likely do not capture the highly-localized interactions
of microbial populations, they have been observed to cap-
ture several natural phenomena and may offer some insight
into the maintenance of biodiversity in the presence of gene
flow through these long-range interactions.

To construct these graphs, 90 000 cells were arranged on

a ring, and each cell was connected to its nearest 8 neigh-
bors. For each cell, additional interactions were created by
probabilistically adding an edge to a randomly-chosen cell.
At probability 0, these graphs were regular and had a di-
ameter equal to the number of cells divided by the neigh-
borhood size. At probability 1, the resulting graphs become
random, mimicking interactions in well-mixed populations.
For this work, we examine the effect that long-range inter-
actions have on maintaining the biodiversity of this system.

Graph Metrics
In order to compare the structure of the different graphs used
in this work, their clustering coefficients and diameters were
calculated using the NetworkX package from Hagberg et al.
(2008). The local clustering coefficient of a particular cell,
defined by Watts and Strogatz (1998), measures how well
connected that cell is in its particular network, and is defined
in Equation 4, where i is the vertex (cell) in question, ki is
the number of neighbors of i, Ni is the set of i’s neighbors,
and E is the set of edges.

Ci =
2|{ejk}|

ki(ki − 1)
: vj , vk ∈ Ni, ejk ∈ E (4)

A clustering coefficient of 0 indicates that none of a cell’s
neighbors are connected to each other, while a clustering
coefficient of 1 indicates that all of a neighbor’s cells are
connected to one another. The graph’s clustering coefficient
is defined as the average of the clustering coefficients of its
cells. This property is important in this system, as an area
with a higher clustering coefficient allows for indirect inter-
actions such as “the enemy of my enemy is my friend”. The
diameter of a graph is defined as the longest shortest path
between any two cells. The diameter therefore provides an
indication of how long it would take for a dominant strategy
to spread to all cells in the graph.

For each of the treatments described above, 20 replicate
populations were studied. Each replicate started with a dif-
ferent random seed, which led to differences in the structure
of the graphs used in the Cartesian and small world treat-
ments, the initial distributions of strategies, the stochastic
processes of cell death, and the selection of random replace-
ments for empty cells. These differences allowed popula-
tions to follow different trajectories.

Results
In all treatments, we found that diversity quickly declined
with increasing neighborhood size. Increasing the radius
of interactions in Moore graphs allowed us to observe this,
however at a coarse granularity. The generated Cartesian
graphs provided more insight into the maintenance of di-
versity, most importantly in intermediate ranges. Finally,
small world graphs highlighted the significant effect that
long-range interactions can have in these systems. Next, we
discuss each of these results in detail.
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Expanded Radius of Interaction on Lattices
As the radius of interaction was increased in lattices, diver-
sity quickly diminished. As Figure 3 shows, at radius 3, sev-
eral populations were unable to maintain all three strategies,
while at radius 4, none did.

Due to the nature of this system, the loss of one strategy
will break the non-transitivity of the system, which quickly
leads to the loss of a second strategy. As an example in rock
paper scissors, if no paper remained, rock would outcompete
scissors, as rock no longer faced competition. Alternatively,
if scissors were lost, paper would dominate rock.

As is common in this type of system, in cases where all
three strategies were able to coexist, the strategies remained
in patches, as is shown in Figure 4.

Figure 4: Spatial patterns observed in typical populations.
When diversity is present, strategies exist in clusters. Sensi-
tive cells are colored blue, resistant are green, and producer
cells are red.

Although these experiments allowed us to investigate the
role that the number of interactions has on diversity, the ge-
ometric increases in neighborhood size prohibited studying
these features in detail. Table 1 highlights the effects that in-
creasing the radius of interactions in a Moore neighborhood
has on the structure of the resulting graphs. The sharp de-
crease in diameter allows a faster-growing strategy to spread
quickly, outcompeting competitors regardless of their capa-
bilities. This corresponds with Figure 3(d), where the sensi-
tive strategy quickly eliminates the other strategies.

Increasing Interactions in Cartesian Space
The Moore topology provided only one treatment in which
some runs maintained all three strategies while others col-
lapsed to a single strategy, and the spread between condi-
tions did not allow us to more closely examine the rate at

Table 1: Properties of Lattice Graphs Studied

Neighbors Diameter Clustering Coefficient
8 (r=1) 150 0.429
24 (r=2) 75 0.522
48 (r=3) 50 0.543
80 (r=4) 38 0.551
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Figure 5: Fraction of runs (out of 20 replicates) that col-
lapsed to a single strategy across different expected neigh-
borhood sizes - F value 247.62 (p � 0.001), adjusted R2

0.985

which biodiversity was lost. With just these data points, any
number of possible curves could be drawn with equally good
fit. The Cartesian topology allowed us to more closely in-
vestigate the effect of neighborhood size on the proportion
of populations that lost biodiversity. The properties of the
resulting graphs are listed in Table 2. It should be noted that
several of the graphs generated with expected neighbor size
of 10 were disconnected, as one might expect in a natural
population with limited interactions. Figure 5 plots these
proportions for a range of neighborhood sizes, where we fo-
cused on the range that produced intermediate loss of bio-
diversity. The logistic curve of best fit is highly significant,
with an F statistic of 247.62 (p � 0.001), and an adjusted
R2 of 0.985.

The cell count plots for varying radii of this topology look
similar to those in Figure 3, thus they are not included. In-
stead, we provide simplex phase planes for runs with differ-
ent radii. A simplex phase plane depicts the proportion of
strategies that were in the population at a given time and the
trajectory the population took over all. The three corners of
the triangle represent the three strategies, producer (P), sen-
sitive (S), resistant (R), and the relative distance from each
corner depict the proportion of the population the strategies
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(b) radius = 2
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Figure 3: Strategy counts over time for different neighborhood sizes from sample runs. All three strategies remain in all
replicates when neighborhood radius is 1 (a) or 2 (b). At radius 3 (c), diversity was maintained in 13/20 replicates, while
diversity did not persist at radius 4 (d).

Table 2: Properties of Cartesian Graphs Studied

Expected Neighbors Diameter Clustering Coefficient
10* 45.5 0.585
20 83.25 0.587
30 57.25 0.588
40 51.5 0.589
50 59.0 0.588
60 53.0 0.586
70 49.0 0.587
80 45.0 0.587
90 38.0 0.591

comprise. Thus, a point in the center of the simplex would
have equal frequency of each strategy, and a point at the
P corner of the triangle would represent a population com-
pletely composed of producers.

Figure 6 depicts four simplex phase planes for different
neighborhood sizes roughly corresponding to those from the
Moore topology. The oscillatory dynamics observed in Fig-
ure 3 are also present in this topology, and are distinguish-
able by the circular path within the phase plane in Figure
6(a). Similarly, the large swings in cell counts with in-
creased neighborhood sizes form the larger circular paths
depicted in Figure 6(b) and 6(c).

Several runs that maintained biodiversity despite having
larger neighborhood sizes (such as in Figure 6(c)) exhibited
drastic transient dynamics, where the population of one or
more strategies came dangerously close to being eliminated.
It is these initial transient dynamics that stochastically led
to population collapse as the mean neighborhood size in-
creases. That is, in those runs that survive the transient dy-
namics, the population ends up in a safer region of phase
space, one that is less susceptible to stochastic extinction.
Of course, as the neighborhood size continues to increase, so
does the magnitude of oscillations, and eventually all pop-
ulations will collapse to a single strategy as the others are
driven to extinction, as is shown in 6(d).

These transient dynamics are due to initial conditions
where each cell strategy (including empty cells) is uniformly
distributed throughout the world. As depicted in Figure 4,
clusters of strategies emerge, and it is during the transition
between the initial and self-organized states that populations
often collapse. Essentially, we are starting the population in
a random state with respect to clusters of strategies. While
this approach biases the population towards larger cycles, it
means our estimates for the collapse of biodiversity are con-
servative.
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(a) 10 neighbors (b) 30 neighbors

(c) 50 neighbors (d) 80 neighbors

Figure 6: Simplex phase planes for Cartesian topology runs
with increasing number of neighbors. The initial distribution
of strategies is indicated with a dot.

Interactions in Small World Graphs
Finally, we evaluated the effect of long-range interactions on
diversity. As shown in Figure 7, even a small probability of
such interactions had a dramatic effect on the system. We
found that diversity quickly waned when the probability of
adding these interactions was between 1% and 2%, which
resulted in an additional 900 and 1800 pairs of interactions,
respectively, on average. These additional interactions de-
creased the diameter of the resulting graphs to an average of
54.5 when the probability was 1% and 32.3 when the prob-
ability was 2%. The clustering coefficients for these config-
urations were uniformly 0.631 and 0.620, respectively. The
difference in dynamics between systems at 1% and 2% edge
creation possibility is shown in Figure 8.

Considering the small diameters typical of small world
graphs, it is perhaps not surprising that diversity is quickly
lost when long-range interactions are added. In the ab-
sence of these long-range interactions, the diameter of these
graphs is 11 250. Adding additional edges with probabil-
ities between 1% and 2% quickly shrank the diameters in
these environments, which made the formation of clusters of
strategies difficult. Nonetheless, these experiments provide
a dramatic insight into how small increases in interactions
can hinder diversity.

Conclusions
Understanding how the interactions among organisms af-
fects biodiversity is critical to building a more complete
picture of the forces that shape ecosystems. As such,
this knowledge can inform conservation efforts and help to
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Figure 7: Fraction of runs (out of 20 replicates) that col-
lapsed to a single strategy in small world networks with in-
creasing probabilities additional random interactions

understand the ramifications of living in an increasingly-
connected world.

This work has demonstrated the strong effect social struc-
ture has on the maintenance of biodiversity in a model non-
transitive system. Specifically, we have seen in three differ-
ent models that as the number of interactions among cells
increases, the magnitude of oscillations between the differ-
ent strategies increases and quickly leads to the loss of diver-
sity. Further, we have observed in small world networks that
when a small number of long-range interactions are added,
diversity is quickly lost, perhaps necessitating the use of kin
discrimination or other mechanisms to promote the mainte-
nance of diversity and cooperative behaviors in higher-order
species.

Extending this model to include independent subpopula-
tions and migration between them would allow the effects of
gene flow to be examined, which could significantly change
the dynamics of these populations. For example, this flow
could enable the persistence of so-called “fugitive” species,
which are not able to outcompete other species, but are able
to persist through quick reproduction and constant migra-
tion. Although we claim that the long-range links in the
small world networks studied in this work could represent
gene flow between clusters of cells, this feature does not
necessarily capture the effects of having multiple indepen-
dent subpopulations.

It is worth noting that this work examined the main-
tenance of biodiversity from a purely ecological perspec-
tive. Allowing cells to mutate and change their strategies
through the evolutionary process can have significant ef-
fects on a population’s diversity. Previous work has exam-
ined the effects on populations when mutations allow a cell
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Figure 8: Strategy densities over time in small world net-
works. (a) At 1% probability of creating a random edge,
biodiversity is maintained. (b) At 2%, diversity is lost.

to change its investment in a particular strategy (Prado and
Kerr (2008),Czárán and Hoekstra (2009)) or to change its
strategy completely (Mobilia (2010)). These works exam-
ined biodiversity in regular and well-mixed populations, re-
spectively. Variations to social structure, as presented in this
paper, could present different dynamics in evolutionary stud-
ies, and therefore lends itself to investigation in the presence
of evolution.
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Extended Abstract

To clarify how selection operates in social aphids, and to disentangle direct and indirect fitness components, we present
a model (Bryden and Jansen, 2010) of the life cycle of a typical colony-dwelling aphid (characterised in Figure 1). The
model incorporates ecological factors and includes a trade-off between investing in social behaviour and investing in
reproduction.
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Figure 1: The typical aphid life cycle showing the movement of aphids between different habitats. The
eggs hatch on the primary host producingfundatrices (colony founder aphids) which find suitable colony
sites where they reproduce parthenogenetically for several generations. After a period of several weeks, the
colonies open andalatae (winged aphids) are released. In most species, population growth continues on a
second host before the aphids eventually lay eggs at the over-wintering site.

Altruistic or cooperative behaviour can be worthwhile for an ‘acting’ individual if the ‘recipient’ is more likely thanan
average member of the population to have the same trait. Conditions which are beneficial to such biased interractions can
occur when there is population structure - i.e., when an individual only interracts with a subset of the population. These
subsets can be observed in social aphid populations in the form of colonies which grow on plant leaves. These colonies
produce soldier aphids that are prepared to die for the good of their colonies.

Reports of substantial clonal mixing measured in social aphid colonies (Abbot, 2009) seem, however, to rule out population
structure as an explanation of this enigmatic insect’s social behaviour. The mean proportion of immigrants per colony can
be as high as 25% for some species.

Our model of the aphid life cycle approaches this problem by deriving a variant of Hamilton’s (1964) rule. We are then
able to demonstrate a simple relationship between the colony carrying capacity and immigration rates into colonies. The
results indicate that the levels of clonal mixing reported are not inconsistent with social behaviour.
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We discuss our model in terms of the evolutionary origins of social behaviour in aphids, social insects and arficial or-
ganisms in general. We also appraise our modelling approach, of deriving Hamilton’s rule, in light of the results of the
study.
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Abstract

Roles of ecological processes in evolution are attracting much
attention in evolutionary studies. Learning and niche con-
struction are regarded as ecological processes that can affect
the course of evolution directly or indirectly. However, the
effects of mutual interactions between them on evolution are
still poorly understood. Our purpose is to provide insight into
the coevolutionary dynamics of learning and niche construc-
tion. For this purpose, we constructed a simple individual-
based model in which individuals can perform both a niche
construction of their shared environmental factor and an ac-
quisition of the adaptive phenotype through their lifetime
learning. In particular, we focus on the effects of the tem-
poral locality of ecological processes, which is the degree of
simultaneous occurrence of ecological processes performed
by individuals. We report that a cyclic coevolution of genes
for learning and niche construction can occur when the tem-
poral locality of ecological processes is low.

Introduction
In the standard view of the modern evolutionary synthesis,
organisms are basically regarded as passively evolving en-
tities based on selection and mutations. However, there are
two ways, based on ecological activities, for modifying the
selection pressure as conceptualized in Fig. 1. One is for
individuals to change their own phenotype called learning,
and the other is to change their environmental condition,
called niche construction (Odling-Smee et al., 2003). Re-
cently, the roles of these ecological processes in evolution
are attracting much attention in evolutionary studies called
Evo-devo (West-Eberhard, 2003) or Eco-devo (Gilbert and
Epel, 2009).

A wide variety of species have abilities to modify their
own traits to make themselves more adaptive in their exist-
ing environments. It has been controversial how this eco-
logical process, called individual learning, or ontogenetic
adaptation based on phenotypic plasticity, can affect evolu-
tion indirectly. Since Hinton and Nowlan’s pioneering work
(Hinton and Nowlan, 1987), ALife researchers have focused
on the Baldwin effect (Baldwin, 1896; Weber, 2003), which
is typically interpreted as a two-step evolution of the genetic

organisms environment

selection (standard view)

niche construction

learning

evolution

Figure 1: Two processes affecting the selection.

acquisition of a learned trait without the Lamarckian mech-
anism (Turney et al., 1996). An important finding is that the
balances between the benefit and cost of learning can modify
the shape of the fitness landscape, and can either accelerate
or decelerate adaptive evolution (Paenke et al., 2009). A re-
cent study has also discussed effects of the ruggedness of
the fitness landscape (Suzuki and Arita, 2007). This study
showed that if the shape of the fitness landscape is rugged,
the learning can bring about a complex three-step evolution
through the Baldwin effect.

Niche construction is another ecological process, per-
formed by organisms that modify their own niches or the
niches of others, altering selection pressures through their
ecological activities by changing their external environ-
ments (Odling-Smee et al., 2003). Such niche-constructing
processes are observed in various taxonomic groups such as
bacteria (decomposition of vegetative and animal matter),
plants (production of oxygen), non-human animals (nest
building) and humans (cultural process).

Recently, conditions for niche-constructing traits to
evolve have been analyzed using theoretical or constructive
approaches, in some cases leading to stable polymorphism
(Laland et al., 1996), co-evolutionary dynamics of multi-
ple species induced by their niche constructions (Suzuki and
Arita, 2005), and so on. Self-regulation mechanisms of the
environment caused by niche-constructing behaviors of in-
dividuals has also been investigated using several versions
of the Daisyworld model (Harvey, 2004; Dyke, 2008).

So far, the effects of individual learning and niche con-
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struction on evolution have typically been analyzed sepa-
rately. We can interpret them as different processes in that
the former is a change in the phenotype of the learning in-
dividual itself and the latter is the change in the surrounding
environment of the niche-constructing individual. However,
it is clear that both processes can interact indirectly with
each other through changes in the relationship between the
environmental conditions and individual phenotypes, sug-
gesting that both processes can co-evolve in complex ways.
That is, a niche construction can change an environmental
factor, which can in turn modify the selection pressures on
individuals that share the modified environment. Such an
environmental change can further affect their learning pro-
cess. Both gene-culture coevolution and language evolution
appear to exemplify such situations, in that their mutual in-
teractions were implicitly incorporated. In addition, it was
recently pointed out that evolutionary developmental biol-
ogy and niche-construction theory have much in common,
in that both place emphasis on the role of ontogenetic pro-
cesses in evolution, despite independent intellectual origins
(Laland et al., 2008). However, as far as we know, there are
still few approaches that have focused on interactions be-
tween learning and niche construction explicitly, in spite of
their importance as ecological activities that can affect evo-
lution.

Locality of ecological processes is an important factor for
evolution of ecological traits in general, because it can af-
fect the difference in the fitness between the performing in-
dividuals and the other individuals. One can distinguish two
different kinds of locality: spatial and temporal locality of
ecological processes. For example, it has been reported that
the strong spatial locality of the effects of niche construction
can contribute to the evolution of niche-constructing traits
(Suzuki and Arita, 2006; Silver and Di Paolo, 2006), be-
cause it leads to difference in the fitness between the niche-
constructing individuals and other, non-niche-constructing,
individuals in distant locations. Temporal locality of eco-
logical processes has received much less attention.

Our purpose is to consider whether and how learning
and niche construction can interact with each other (Suzuki
and Arita, 2009). For this purpose, we construct a simple
individual-based evolutionary model in which the individ-
uals can perform both a niche construction of their shared
environmental factors and acquire an adaptive phenotype
through their lifetime learning. Especially, we focus on the
temporal locality of ecological processes, which is defined
as the degree of simultaneous occurrence of ecological pro-
cesses performed by individuals. There could be two ex-
treme situations. One is a case in which individuals per-
form their ecological activities one by one, and the other
is a case in which all individuals perform their ecological
processes at the same time. The former corresponds to the
situation in which the temporal locality is lowest, and the
latter corresponds to when temporal locality is highest. It is

not clear what aspects of these situations will contribute to
the evolution of learning and niche construction. Through
computational experiments with these two types of ecolog-
ical processes, we show that temporal locality can strongly
affect the evolutionary dynamics of learning and niche con-
struction. Especially, we show that a cyclic coevolution of
genes for niche construction and learning may occur in ex-
periments with serial processes of ecological activities.

Model
Environment and genetic description of individuals
In our model, an environmental state shared by all N in-
dividuals is represented as a single real value e (∈ [0, 1]).
Each agent has a real-valued phenotype p (∈ [0, 1]) whose
initial value is determined by its genotype gp (∈ [0, 1]). The
fitness contribution of p depends on e, and is determined by
the following triangular shaped function f(p, e):

f(p, e) =

{

1 � |p � e|/L if |p � e| � L,
0 otherwise.

(1)

Fig. 1 shows an example situation of the model. This func-
tion has a peak value 1 at e. Its value decreases linearly from
the peak, and reaches 0 when the distance between p and e
becomes L. Thus, the closer each agent’s p is to e, the more
fit it is.

Learning and niche construction
Each agent also has real-valued genes for learning gl (∈
[0, 1]) and niche construction gn (∈ [�1, 1]).

A learning process of each individual moves its pheno-
typic value p closer to e by (at most) gl so as to increase its
fitness contribution. Note that we assume that gl can take a
positive value because learning is a process that can increase
the current fitness in general. The actual phenotypic value of
an agent after its learning process p′ is calculated from the
equations as follows:

p′ =

{

e if |e � p| < gl,
p � sgn(p � e) × gl otherwise.

(2)

sgn(x) =







1 if x > 0,
0 if x = 0,

�1 if x < 0.
(3)

This means that if the distance between the phenotype p of
the focal individual and the environmental value e is smaller
than its gl, it can make its own p the same value as e com-
pletely. Otherwise, it can move its own p closer to e by gl.

In addition, each individual can perform either positive or
negative niche construction, which means that a niche con-
struction can increase or decrease the fitness of the perform-
ing individual. This is because that niche construction is not
always beneficial for performing individuals (i.e., there may
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Figure 2: A learning and a niche construction in the pro-
posed model.

be environmental pollution). If gn of an individual is pos-
itive (or 0), its niche construction is positive and the actual
environmental value e′ after its niche-constructing process
is calculated from the equation as follows:

e′ =

{

p if |e � p| < gn,
e � sgn(e � p) × gn otherwise.

(4)

On the other hand, if its gn is negative, its niche construction
is negative, and e′ is calculated as follows:

etemp = e � sgn(e � p) × gn, (5)

e′ =







0 if etemp < 0,
etemp 0 � etemp � 1,

1 if etemp > 1.
(6)

When gn is positive, a niche construction moves e closer to
its p (at most) by gn. That is, a positive niche-constructing
process is basically similar to a learning process except that
it shifts the environmental value e rather than its own pheno-
type p. On the other hand, if gn is negative, it makes e more
distant from its p by |gn| within the range of the domain of
e ∈ [0, 1]. If gn is negative and p is exactly the same as e,
we randomly add gn or -gn to e.

Ecological processes and evolution
In each generation, there are T sets of ecological processes,
in each of which there are N steps. In each set, the indi-
viduals randomly decide which kind of ecological process
to perform. We assume the two extreme types of temporal
locality of ecological processes as follows:

Serial processes (low temporal locality) The individuals
perform ecological processes serially in each set as shown
in Fig. 3. In each set, an individual who has not done
its ecological process yet in the current set is randomly
selected and performs an ecological process. After the
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fitness evaluations

step
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Figure 3: Serial and parallel processes of ecological activ-
ities. “L” or “N” represents an occurrence of learning or
niche construction performed by an individual with the cor-
responding ID.

phenotypic value of the learning individual or the envi-
ronmental value is modified, the fitness contribution of all
individuals’ phenotype are evaluated independently. This
situation corresponds to the low temporal locality of eco-
logical processes.

Parallel processes (high temporal locality) All individu-
als perform ecological processes at the same time at the
initial step in each set as shown in Fig. 3. Before they ac-
tually modify the phenotypic and environmental values,
they determine the amount of change in them using the
current environmental value. Then, they update their phe-
notypic values, and the average amount of change in the
environmental value determined by niche-constructing in-
dividuals is added to the current value. This situation cor-
responds to the high temporal locality of ecological pro-
cesses.

The final fitness of each individual is defined as the aver-
age fitness contribution evaluated in all T × N steps. The
evolutionary process is based on a “roulette wheel selection”
according to fitness. For each gene, a mutation occurs with a
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small probability pm, which randomly determines its geno-
typic value.

The model incorporates a mechanism called ecological in-
heritance. This means that an environmental state can be
passed on to the next generation. In this model, the value
of e at the last step in the previous generation is used as the
initial value in each generation.

Results

Serial processes of ecological activities

We examined evolution based on serial processes of ecolog-
ical activities. We conducted evolutionary experiments for
2000 generations using the following parameters: N=250,
T=300, L=0.1, pm=0.05. In the initial population, the values
of genotypes gp, gl and gn were randomly decided within
their domains, and the environmental state e was set to the
intermediate value 0.5.

So as to clarify a possible dynamics of interactions be-
tween learning and niche-constructing processes, we fo-
cused on the evolutionary trajectory of gl and gn shown in
Fig. 4. The horizontal axis is the average gn and the vertical
axis is the average gl among all individuals at each genera-
tion. Although there were large fluctuations, we could see a
cyclic evolutionary behavior of both indices, in which four
typical states from (i) to (iv) (in Fig. 4) were traversed in a
clockwise fashion. This means that the evolutionary trend of
learning behaviors was strongly affected by existing niche-
constructing behaviors and vice versa. Essentially, this evo-
lutionary scenario was observed when N and T were rela-
tively large and L was sufficiently small.

More detailed analyses, described later, clarified that the
transitions between these states shown in Fig. 4 could be
summarized as follows: (i) → (ii) the nearly neutral evo-
lution of niche-constructing behavior, which brought about
large fluctuations of the environmental state, (ii) → (iii)
the adaptive evolution of learning behavior in dynamically
changing environment, (iii) → (iv) the adaptive evolu-
tion of positively niche-constructing behavior, which made
the environment stable, and (iv) → (i) the adaptive evolu-
tion of non-learnable individuals due to the implicit cost of
learning (a kind of over-learning) in the stable environment.
This cyclic behavior implies that the change in the stabil-
ity of the environmental state arising from positive and neg-
ative niche constructions dynamically altered the balances
between benefit and cost of learning behaviors. So as to clar-
ify the universal mechanism of interactions between learn-
ing and niche construction inherent in this behavior, we in-
vestigated in more detail the dynamics of the observed evo-
lutionary process by focusing on the effects of the environ-
mental changes on evolution, and on the benefit and cost of
learning.

(iii) (iv)

(ii) (i )
niche construction

le
a

rn
in

g

gn

gl

Figure 4: An example evolution of the average gl and gn

through 2000 generations in the case of serial processes of
ecological activities.

The detailed analyses of coevolution of learning
and niche construction
Fig. 5 shows the evolution of the average and standard de-
viation of gn, gl, gp and e through the initial 1000 genera-
tions in the same experiment as that shown in Fig. 4. Each
value of gn, gl and gp is derived from the values of all indi-
viduals in each generation, which means that their standard
deviation represents their genetic variation in the population.
Each value of e is derived from the values in all steps in each
generation, which means that its standard deviation repre-
sents its temporal variation through steps in the generation.

Let us start from a situation around the state (i) near
the 500th generation in Fig. 4 in which positively niche-
constructing but non-learnable individuals dominated the
population. As shown in Fig. 5, the standard deviation of gp

was relatively small (less than 0.2), which means that most
individuals had basically the same, intermediate phenotypic
value gp. In this situation, there was nearly neutral selec-
tion pressure on the niche-constructing gene gn because it
could increase or decrease the fitness contribution of all in-
dividuals’ phenotypes equally. Thus, the average gn reached
0.0 and fluctuated around it because of the relatively small
population size.

When the average gn became negative as in the state (ii) at
around the 600th generation, the environmental state e began
to fluctuate by often taking either extreme value 0.0 or 1.0
and its standard deviation increased to higher values (around
0.4). Note that collective behaviors with positive and nega-
tive niche construction tend to make the environment state
stable and unstable, respectively. In this case, the learn-
able individuals became adaptive because they can catch up
with such environmental changes through their learning pro-
cesses. Thus, the individuals with larger gl and negative gn
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Figure 5: The evolution of the average and standard devia-
tion of gl, gn, gp and e through the initial 1000 generations
in the case of serial processes of ecological activities.

rapidly occupied the population by keeping and even de-
creasing the stability of the environment. As a result, the
average gl increased quickly, and the population reached the
state (iii) at around the 650th generation.

In the state (iii), individuals were changing their own phe-
notypic values dynamically so as to keep them closer to
the fluctuating environmental values, which brought about
a large variation among their phenotypic values. In such a
situation, the positively niche-constructing individuals occu-
pied the population because they can keep the environmental
values close to their own phenotypes dynamically changed

by learning. Thus, the population reached the state (iv) at
around the 840th generation. During this period, the stan-
dard deviation of gp remained high because learning reduced
the selection pressure on the initial phenotypic values. This
effect of learning on genetic evolution is sometimes called a
hiding effect (Mayley, 1997).

Finally, when the number of such individuals increased
enough, the standard deviation of the environmental value
began to decrease and the environmental value come to fluc-
tuate around the intermediate value (around 0.5) as a result
of a “tug-of-war” between positively niche-constructing in-
dividuals. It should be noticed that the environmental value
still takes the extreme values 0.0 or 1.0 even in this situation.
If individuals with the larger gl modify their own pheno-
type to either extreme value, that individual’s fitness tends
to become quite small in the remaining steps because the
environmental value stays around the intermediate value or
sometimes takes the other extreme value. Such a negative ef-
fect, caused by a kind of over-learning, could be interpreted
as an implicit cost of learning, in that the learning behavior
made the individual’s fitness smaller than the one’s with less
ability to learn, even under the assumption of no explicit
cost of learning, such as an energetic cost for performing
the learning behavior itself. On the other hand, the indi-
viduals with the smaller gl and the intermediate gp can ob-
tain relatively high fitness consistently by keeping its pheno-
typic value around the intermediate value. Thus, these posi-
tively niche-constructing individuals without learning could
occupy the population quickly by keeping or even increas-
ing the environmental stability. As a result, the population
got back to the state (i).

Parallel processes of ecological activities
We also conducted the experiments under the condition of
parallel processes of ecological activities. The experimen-
tal setting was the same as the one in the previous section
except for updating process. Fig. 6 shows the evolutionary
trajectory of gl and gn in an example trial, and Fig. 7 shows
the evolution of the average and standard deviation of gn, gl,
gp and e through initial 1000 generations.

Fig. 6 clearly shows that the evolutionary dynamics of
the population was quite different from the one with serial
processes. There was no clear correlation between the genes
for learning and niche-constructing traits. More specifically,
Fig. 7 shows that gn largely fluctuated between -0.2 and
0.2 through generations, which means that the evolution of
niche-constructing trait was neutral in this case. This is ex-
pected to be due to the fact that niche-constructing behav-
ior by an individual was cancelled, on average, by niche-
constructing behaviors of others performed in parallel. Be-
cause this neutral evolution made the environment unsta-
ble, the learning behavior was always beneficial, and thus
gl stayed around 0.6, as shown in Fig, 7.

As a whole, under the condition of parallel processes of
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Figure 6: An example evolution of the average gl and gn

through 2000 generations in the case of parallel processes of
ecological activities.

ecological activities, there is basically no selection pressure
on the niche-constructing trait, but its neutral evolution can
cause selection pressure on the learning trait.

Conclusion
We studied the general nature of coevolution of learning and
niche construction by using a simple evolutionary model
of learning and niche-constructing genes. By comparing
the cases with different temporal locality of ecological pro-
cesses, we found that the adaptive benefit of learning and
niche construction can change, and this strongly affects their
coevolutionary dynamics. In the case of the low temporal
locality of ecological processes, the positive effect of niche-
construction directly affected the adaptivity of the niche-
constructing individuals, which brought about a cyclic co-
evolution of genes for learning and niche construction. The
detailed analyses showed that the changes in the stability of
the environmental state arising from positive and negative
niche constructions is a key factor that dynamically deter-
mines the benefit and cost of learning behaviors. On the
other hand, in the case of the high temporal locality, the
neutral evolution of niche-constructing traits led to adaptive
evolution of the learning trait.

One of the controversial topics that relates to this discus-
sion is the interaction between evolution and learning in the
context of language evolution, in that the fitness of each in-
dividual is determined by its linguistic niche composed of
the other individuals’ linguistic abilities based on learning.
Yamauchi showed that the accumulated linguistic informa-
tion through an ecological inheritance masks selection pres-
sure on the innate linguistic traits acquired through the Bald-
win effect (Yamauchi, 2007). Suzuki and Arita also showed
that the Baldwin effect can occur repeatedly on dynamically
changing fitness landscapes (linguistic niches) which arise
from communicative interactions among individuals, and

gp
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gn

Figure 7: The evolution of the average and standard devia-
tion of gl, gn, gp and e through the initial 1000 generations
in the case of parallel processes of ecological activities.

facilitates genetic evolution as a whole (Suzuki and Arita,
2008).

If we regard the horizontal axis in Fig. 2 as a space of
possible language and each agent has a specific language
determined by its p, the value of the environmental state e
can be regarded as the most adaptive language due to the ac-
cumulation of its linguistic resources, which can contribute
to its fitness increase, for example. In this case, a learn-
ing behavior corresponds to the process in which each agent
changes its own language to a more adaptive one in its cur-
rent linguistic environment, and a positive or negative niche
construction corresponds to the production of linguistic re-
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sources which can make its own language more or less adap-
tive. Our results with the low temporal locality of ecological
activities imply that the intrinsic dynamics of coevolution of
the abilities of learning language and constructing linguis-
tic niche can bring about the dynamic and diverse aspects of
language evolution even without any effects from external
environments.
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Extended Abstract 
 Aipotu (“utopia” reversed; pronounced “ay poh too”) is an in silico microworld based on a highly realistic model of gene 
expression and protein folding.   

 Aipotian organisms are sexually-reproducing diploid organisms with DNA genomes.  Their genes are expressed by transcribing 
from a promoter sequence until a transcription terminator is reached.  The resulting pre-mRNA is then spliced based on intron start 
and end sequences.  The mature mRNA is then translated using the standard genetic code.  Proteins produced are folded on a 2-
dimensional hexagonal lattice using realistic non-covalent interactions (hydrogen bonds, ionic bonds, and the hydrophobic 
interaction).  The shapes and compositions of these proteins then determine their effect on the phenotype of the organism. In the 
current prototype version, the phenotype color is determined in a manner analogous to Green Fluorescent Protein: most proteins are 
colorless (white); a protein with a particular shape can be colored; the particular color depends on the amino acids present. 

 When the genomes of a population of these organisms are subjected to random mutation and selection based on color, the 
organisms show a variety of interesting evolutionary behaviors.  These include: heterogeneity between runs with the same starting 
conditions; evolution of one color from another; loss of color in the absence of selection; convergent evolution of proteins with the 
same color; and evolution of colored from colorless starting proteins. 

 I have used Aipotu to teach evolution to undergraduate Biology students; I am currently evaluating its impact on students’ 
understanding of evolution.  Because it is based on a familiar and biologically reasonable underlying mapping of genotype to 
phenotype, it is likely to be more effective than other alife simulations used for teaching.  

 Because the underlying model involves realistic gene and protein sequences, Aipotu also has potential as a research tool.  For 
example, it would be possible to explore and test the assumptions of molecular phylogeny by comparing the actual ancestry of 
Aipotian organisms with molecular phylogenetic reconstructions under different mutation regimes.  Furthermore, because all of the 
key features of the underlying model of gene expression and mutation are variable, it will be possible to explore the evolutionary 
effects of changing these parameters.  For example, currently, the mutations are only point mutations; the mutational spectrum 
could be expanded to include insertions, deletions, and gene duplications.  It would be possible to add other structure to phenotype 
mappings besides color.  For example, proteins with certain shapes could act as regulators of other genes, encode other phenotypes, 
or contribute to multi-protein pathways; entire organisms with hundreds of genes are possible.  Finally, it would be possible to 
observe the effects of changing the genetic code or even the rules of protein folding.  The underlying molecular genetic engine is 
fully functional; extensions are only limited by the imagination of the investigator. 

 Aipotu is open source and freely-available from http://intro.bio.umb.edu/aipotu/ 
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Abstract

The organization of genomes shows striking differences
among the different life forms. These differences come along
with important variations in the way genomes are transcribed,
operon structures being frequent in short genomes and the
exception in large ones, while ncRNAs are frequent in large
genomes but rare in short ones. Here, we use the digital ge-
netics model “aevol” to explore the influence of the mutation
rates on these structures, showing that their diversity can be
accurately reproduced when varying the rearrangement rate.
This result points us to the mutational burden hypothesis as
one of the main explanation. In this view, a specific level
of mutational robustness indirectly leads to genome and tran-
scriptome streamlining.

Introduction
Genome organization is well known to be very different
throughout the different domains of life. On one extreme,
viral genomes can be as short as 400 base-pairs long (Gago
et al., 2009) and are usually very dense, with nearly no
non-coding sequences and a lot of overlapping genes, al-
though some exceptions were reported (Raoult et al., 2004).
Eukaryotic multicellular organisms on the other extreme,
have very long genomes (billions of base-pairs), a huge
proportion of which is composed of non-coding sequences.
These differences come along with variations in the way the
genome is transcribed: On the one hand, short genomes, that
are almost entirely transcribed, are commonly transcribed
into long RNAs that can contain several genes. In extreme
cases, the whole genome can be transcribed in only a couple
of RNAs (Zheng and Baker, 2006). On the other hand, long
genomes usually give rise to short RNAs (after splicing),
very few of which contain more than one single gene and
most containing no genes at all. These non-coding RNAs
have received a great deal of attention in the last few years
(Ponjavic et al., 2007; Will et al., 2007), in particular micro-
RNAs that are thought to play a major role in the regulation
of gene expression (Mattick and Makunin, 2006; Kapranov
et al., 2007).

What mechanisms are responsible for these variations
in the organisation of transcripts and their relative impor-
tance remain open questions. Most efforts in these matters

have been focused in understanding the evolution of operon
structures. Operons are very interesting RNA structures
where several coding sequences (often functionally-related)
are packed together on a single RNA. Operons have been the
subject of a great number of studies resulting in a set of theo-
ries that try to explain their assembly and maintenance. The
following summarizes the most defended of these theories:

• The coregulation model is the original theory that came
along with the discovery of the operon structure (Jacob
et al., 1960). It claims that packing several functionally
related genes together on the same RNA is beneficial be-
cause they share their regulation sites, which means that
mutations on the promoter will preserve the relative ex-
pression levels of the gene products. According to this,
genes within an operon should be likely to be function-
ally related.

• The selfish operon theory postulates that clustering genes
for weakly selected functions together is beneficial for
the genes themselves as it allows them to be horizontally
transferred as a whole (fully functional unit), hence con-
ferring a better advantage to the receiver than they would
have provided individually (Lawrence, 1999). In the light
of this theory, horizontal transfer is a necessary condition
for the emergence of operons, which should contain pref-
erentially genes that are functionally related.

• Finally, the mutational burden theory propounds that it is
the mutational hazard that constrains the total amount of
DNA: The larger the amount of excess DNA (intergenic
DNA, 3’ and 5’ UTRs, ...), the higher the probability of
a mutation (or rearrangement) to occur within it, poten-
tially inactivating coding sequences or else disturbing the
dynamics of existing genes. Following this idea, a pop-
ulation subject to high mutation rates will face a pres-
sure for making genomes denser (Lynch, 2006; Knibbe
et al., 2007). In some cases, this densification may reach
a point where transcribed regions can actually merge or
where a transcribed region can contain several translated
sequences thus composing an operon. In extreme situa-
tions, genes can even share a part of their sequence and
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overlap. This further reduces the size of the mutational
target of the phenotype. This second order selective pres-
sure for “streamlining” makes no assumption regarding
gene function or horizontal transfer, operons should then
be able to arise in the absence of transfer, putting together
genes “working together” as well as functionally unre-
lated genes. In this view, the presence of operons must
depend on the mutation rates, the selection strength and
the population size.

Each of these theories have received evidence both for
and against it. For instance, Pál and Hurst (2004) argue that
the gene composition of operons in E. Coli is incompatible
with the selfish operon theory but Hershberg et al. (2005)
and Rensing (2002) suggest that it can explain at least some
operon structures. As a matter of fact, it is very difficult
to validate any of these models either in vivo or in vitro as
the underlying processes are complex and act on a very long
time scale. Comparative genomics approaches are a way to
circumvent this difficulty. However, they are based upon the
static snapshots of the contemporary sequences and have to
infer their evolutionary past.

Artificial life and in silico simulations have shown to be
very useful in such cases, providing us with insights into
complex mechanisms and shedding light onto second-order
pressures that would have been difficult to identify other-
wise (Wilke et al., 2001; Adami, 2006; Misevic et al., 2006;
Knibbe et al., 2007; Beslon et al., 2009). They provide a dy-
namic view of the evolutionary process in a reasonable time
and with a near-to-absolute control over parameters. In this
paper, we propose to investigate the organization of tran-
scripts using a modelling-simulation approach.

Aevol: A digital genetics model
To study the evolution of genome structure, we have devel-
oped an integrated model, Aevol, that simulates the evolu-
tion of a population of N artificial organisms. Although a
description of the model has already been published (see
Knibbe et al. (2008) and its supp. mat.), we provide here
an overview of the most important principles that are neces-
sary to have a good understanding of the results presented
here.

Overview
In Aevol, each artificial organism owns a genome whose
structure is inspired by prokaryotic genomes. It is organized
as a circular double-strand binary string containing a vari-
able number of genes separated by non-coding sequences
(figure 1). At the beginning of the run, all organisms are ini-
tialized with a same random sequence (of 5,000 base-pairs
here) containing at least one gene. Genes are identified and
decoded thanks to predefined signalling sequences and to
an explicit transcription-translation process. Then, an ab-
stract “folding” process gives rise to artificial “proteins” that

are able to realize or deflect a particular range of abstract
“biological functions”. The interaction of all these proteins
yields the set of functions the organism is able to perform,
which will in turn be compared to an environmental target
to determine how well-adapted this individual is.

Double stranded genome 
with scattered genes

Shine-Dalgarno

START

STOP

Coding DNA Sequence

Promoter

Terminator

Figure 1: In Aevol, each individual owns a circular double-
stranded binary genome upon which coding sequences are
identified thanks to predefined signalling sequences: Pro-
moters and terminators mark the boundaries of transcribed
sequences and, inside these transcribed regions, coding se-
quences can exist between a START signal and an in-frame
STOP codon (see figure 2 for the genetic code).

The best adapted individuals have higher chances of re-
production: At each generation, N new individuals are cre-
ated by reproducing preferentially the best individuals of
the parental generation which is then completely replaced.
During the replication process, the chromosome can un-
dergo different kinds of modifications: local mutations (sin-
gle base substitutions, small insertions and small deletions),
but also large chromosomal rearrangements (duplications,
deletions, translocations and inversions).

From genotype to phenotype
The way a genotype is mapped to a phenotype in Aevol has
been inspired by the prokaryotic transcription and transla-
tion processes. We defined a set of signalling sequences that
enable us to identify the sequences that will be transcribed
into RNAs and those that will be translated into proteins.
Besides, a simple “folding” process was defined that allows
us to interpret a protein’s primary sequence as a set of “bio-
logical functions”.

Transcription In prokaryotes, transcription initiates at
particular sites, called promoters, where the RNA-
polymerases recognize a consensus sequence to which they
can bind and begin the RNA synthesis process. In Aevol,
we defined a long consensus sequence, a promoter being a
sequence whose Hamming distance d with this consensus is
less than or equal to dmax. In the experiments presented
here, the consensus was the 22-base-pairs (bp) sequence
0101011001110010010110 and up to dmax = 4 mismatches
were allowed. This consensus sequence is long enough to
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ensure that random, non-coding sequences have a low prob-
ability to become coding by a single mutation event. It is
not a palindrome, meaning that a given promoter can initiate
transcription on only one strand.

When a promoter is found, the transcription goes on until
a terminator is reached. Terminators must be more frequent
than promoters to limit the overlapping of transcribed se-
quences. Thus, if we had used a consensus sequence as for
promoters, this sequence would have had to be very short.
This would have forbidden this short motif to be present in
any coding sequence, hence heavily constraining the evo-
lutionary process. We therefore defined terminators as se-
quences that would be able to form a stem-loop structure,
as the ρ-independent bacterial terminators do. In these ex-
periments, the stem size was set to 4 and the loop size to 3,
terminators thus had the following structure: abcd∗∗∗dcba,
where a, b, c, d = 0 or 1.

The probability of a random 22-bp long sequence to be a
promoter (i.e. of being at most 4 mismatches away from the
consensus) is of roughly 1/460, which means that the av-
erage distance between two promoters that can be expected
in a random double-stranded sequence is of 230 bases. Ter-
minators should be much more frequent: An 11-bp long se-
quence has a probability of 1/16 to be a terminator.

The expression level e of an RNA is determined accord-
ing to its promoter sequence. The closer the promoter is
from the consensus, the higher the expression level: e =
1− d

dmax+1 . This modulation of the expression level models
in a simplified way the basal interaction of the RNA poly-
merase with the promoter, without additional regulation. It
provides duplicated genes with a way to reduce temporarily
their phenotypic contribution while diverging toward other
functions. It also induces a link of co-regulation between
the coding sequences of a same transcribed region, which is
a necessary property to test the coregulation hypothesis.

Translation Transcribed sequences (RNAs) do not neces-
sarily result in a protein. The translation process of an RNA
takes place when a Shine-Dalgarno-like sequence is found,
followed, a few base-pairs away, by a START codon (see
genetic code on figure 2). We thus defined the translation
initiation signal as the motif 011011 ∗ ∗ ∗ ∗000. When-
ever this signal is found, the following sequence is read three
bases (one codon) at a time until the termination signal (the
STOP codon 001) is found on the same reading frame. Each
codon lying between the initiation and termination signals is
translated into an abstract “Amino-Acid” using an artificial
genetic code, therefore giving rise to the protein’s primary
sequence (figure 2).

As in real organisms, and because we read our genetic
sequences three bases at a time, genes can be found on six
different reading frames (three on each strand), giving the
possibility for the organisms to evolve out-of-phase overlap-
ping genes, which are commonly found in bacterial operons

Genetic code

000 START
001 STOP
100 M0
101 M1
010 W0
011 W1
110 H0
111 H1

…001…0101…0110…0010…0110110011000101111011101110011010001…

…100…1010…1001…1101…1001001100111010000100010001100101110…

M1-H1-W1-M1-H0-W1-W0

Promoter 5’ UTR

Shine-Dalgarno

START STOPCoding sequence

11

110

10

Bin code M :

Bin code W :

Bin code H :

0,66

0,07

0,33

Norm.

Expression

level = e

M
W

e.|h|

Possibility

degree

Function

Figure 2: Overview of the transcription-translation-folding
process in Aevol. Transcribed sequences are those that start
with a promoter (consensus sequence) and end with a ter-
minator sequence (hair-pin), not shown on the figure. Cod-
ing sequences (genes) are searched within the transcribed
sequences; They begin with a Shine-Dalgarno-START se-
quence and end with a STOP codon. An artificial genetic
code (right) is used to convert a gene into the primary se-
quence of the corresponding protein and a “folding process”
enables us to compute the metabolic activity of this protein
(functional abilities).

(Johnson and Chisholm, 2004; Palleja et al., 2008).

Protein “folding” and phenotype computation To
model the activity of proteins and the resulting phenotype,
we defined a simple “artificial chemistry” (Dittrich et al.,
2001) that describes the organism’s metabolism in a mathe-
matical language. In our simplified artificial world, we as-
sume that there is an abstract, one-dimensional space Ω =
[0, 1] of possible metabolic processes (that is, in this model,
a metabolic process is just a real number). In this “metabolic
space”, each protein is involved in a subset of processes (ei-
ther realising it or preventing other proteins from realising it)
which is described using the fuzzy set formalism: A given
protein can be involved in a metabolic process with a possi-
bility degree lying between 0 and 1. A protein is thus fully
characterized by a mathematical function that associates a
possibility degree to each metabolic process. For simplic-
ity, we use piecewise-linear functions with a symmetric, tri-
angular shape (figure 2). In this way, only three numbers
are needed to characterize the metabolic activity of a pro-
tein: The position m (m ∈ Ω) of the triangle on the axis,
its half-width w and its height h (positive when realizing a
function, negative when inhibiting it). This means that the
protein contributes to the range [m−w,m+w] of metabolic
processes, with a preference for the processes closest to m
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(for which the highest efficiency, h, is reached). Thus, vari-
ous types of proteins can co-exist, from highly efficient and
highly specialized ones (small w, high h) to polyvalent but
poorly efficient ones (large w, low h).

In this framework, each protein’s primary sequence is de-
composed into three interlaced binary subsequences that will
in turn be interpreted as the values for them,w and h param-
eters. For instance, the codon 010 (resp. 011) is translated
into the single amino acid W0 (resp. W1), which means
that it contributes to the value of w by adding a bit 0 (resp.
1) to its binary code. Small mutations in the coding se-
quence (substitutions, indels, possibly causing frame shifts)
will change these parameters, resulting in a modification of
the protein’s metabolic activity.

Once all the proteins encoded on the genotype of the
organism have been identified and characterized, their ac-
tivities are combined into a fuzzy set representing the in-
dividual’s phenotype P , using Lucasiewicz’ fuzzy opera-
tors. This phenotype indicates to what extent the individual
can realize each metabolic process in our abstract metabolic
space.

Environment, adaptation and selection
In Aevol, the environment is represented by a phenotypic
target: The fuzzy set E defined on Ω that represents the op-
timal degree of possibility for each “biological function”.
To evaluate an individual, we compare its phenotype P to
the optimal phenotype E. The “metabolic error” g is com-
puted as the geometric area between these two sets (figure
3). The lower the metabolic error, the better the individual.
This measure penalizes both the under-realization and the
over-realization of each function.

Figure 3: Measure of an individual adaptation. Dashed
curve: Environmental targetE. Solid curve: Phenotypic dis-
tribution P (resulting metabolic profile obtained after com-
bining all the proteins). Dark grey filled area: Metabolic
error g. The part of the phenotype that is located inside the
neutral zone (light grey) is not considered as being part of
the gap. This allows for the evolution of non-essential genes.

In the current version of Aevol, the population size is con-
stant (here N = 1, 000 individuals) and the population is

entirely renewed at each generation. A probability of re-
production is assigned to each individual according to its
metabolic error and a multinomial drawing determines the
actual number of offsprings each individual will have. In the
experiments presented here, we used an exponential ranking
selection (Blickle and Thiele, 1996). The individuals are
sorted by decreasing metabolic error so that the worst indi-
vidual has rank r = 1 and the best r = N . The probability
of reproduction of an individual is then given by s−1

sN−1
sN−r,

with s = 0, 998 being the intensity of selection in all the ex-
periments presented here.

Genetic operators
During their replication, genomes can undergo seven differ-
ent kinds of modifications, three of which are local muta-
tions (single nucleotide substitutions and insertions or dele-
tions of 1 to 6 bp) and the four others, chromosomal rear-
rangements (duplications, deletions, translocations and in-
versions). The breakpoints for these rearrangements are ran-
domly chosen on the chromosome.

Mutations and rearrangements affect the genome but do
not necessarily have a phenotypic effect. For instance, a
mutation that takes place in an untranscribed region will be
completely neutral unless it creates a new promoter, which
is reasonably rare given the size of the consensus sequence.

The rates at which each type of genetic modification i oc-
curs (µi) are parameters of the model. They are defined
as the per-base, per-replication probability of each type of
modification to take place. Although horizontal transfer is
possible in Aevol, we disabled it entirely in these experi-
ments to avoid the assembly of operons due to the selfish
operon effect.

Aevol is hence a digital genetics model in which the struc-
ture of the genome is free to evolve. It integrates major ge-
netic features and mechanisms, introducing a transcription-
translation level between the genetic and the phenotypic lev-
els and allowing both local mutations and large chromo-
somal rearrangements. These particularities make Aevol a
model that is particularly suited for the study of genome or-
ganization.

Results
The typical use of digital genetics models is very close to ex-
perimental evolution procedures (Elena and Lenski, 2003):
Populations of organisms are initialized and left to evolve
in controlled conditions. By observing the products and the
dynamics of the evolutionary process in different conditions
and by comparing them, we can unravel the direct or indirect
pressures that constrain the structure of the organisms.

We let 147 populations of 1,000 individuals evolve dur-
ing 20,000 generations in near identical conditions where
the only changing parameters were the mutation rate and the
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rearrangement rate (one common rate µm for the three dif-
ferent types of local mutations and one, µr, for the four types
of rearrangements) for which values ranged from 1.10−6 to
1.10−4 per base-pair (7 rates tested). Each combination of
mutation and rearrangement rates was tested with 3 indepen-
dent seeds.

These populations evolved in identical environments
composed of a single Gaussian curve placed on the right
hand side of the metabolic axis (figure 3). The central
zone of the axis was neutralized, meaning that the organ-
isms receive no penalty for evolving proteins in that zone
(even though they are of no use). This will enable us to
test whether non-essential genes can be packed together with
other genes in an operon structure.

This experiment was designed as a null-experiment for the
selfish operon theory: The populations evolved in a strictly
clonal framework where no horizontal transfer was allowed.
According to the selfish operon theory, operons should not
be observed in such conditions. Operons that would arise
nevertheless could be explained by either the co-regulation
or the mutational burden hypotheses. The variations of mu-
tation and rearrangement rates will enable us to test the mu-
tational burden hypothesis, and the co-regulation theory can
be tested by analysing the functional relatedness of genes
organized in operons.

Evolution of the structure of the genome
During the evolutionary process, the organisms progres-
sively acquire new genes and modify them in such a way
that the whole gene repertoire fulfils the task the organisms
are selected for. All the simulations proceed qualitatively in
a similar way, evolving quickly in the first stage of evolution
(rapid gene acquisition mostly by duplication-divergence)
then slowing down the process of gene acquisition while
optimizing the sequence of existing genes and promoters.
However, looking at the evolution of the size of the genome
and the number of genes, we can see a clear trend for in-
dividuals evolving under lower rearrangement rates to have
larger genomes containing both more genes and a greater
proportion of non-coding sequences (figure 4). The rate of
rearrangements is the major factor explaining the variability
of genome compactness, the rate of small mutations has a
much lower effect. Interestingly, the genome size stabilizes
even though there is no direct cost for neither the replication
of the genome nor for its expression.

As we have already shown, these effects are the conse-
quence of the long-term selection of a specific level of muta-
tional robustness (Knibbe et al., 2007). Indeed, we have esti-
mated the fidelity of the replication for each of the 147 final
best individuals, by a mutagenesis-like experiment: We let
each of them reproduce 10,000 times and counted the num-
ber of offspring that had retained the ancestral fitness, in or-
der to estimate the fraction of neutral offspring, Fν . Figure
5 shows that in all cases, the genome had evolved in such

a way that Fν was greater than 1/2.31. Thus, on the 2.31
offsprings expected for the best individual during the runs
(given the selection intensity), at least 1 of them would re-
tain the ancestral fitness, while the other ones would explore
other phenotypes. This reflects the indirect selection of an
appropriate trade-off between exploitation and exploration:
under a high mutation rate per base-pair, the only way to
reach a good trade-off is to keep the genome small. This
phenomenon, known as an “error threshold” effect (Eigen,
1971), sets an upper bound to the total coding length, but
also, here, on the non-coding length. Indeed, when rear-
rangements are taken into account, non-coding sequences
are actually mutagenic for the genes they surround, because
they provide breakpoints for large duplications or deletions
(Knibbe et al., 2007).
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Figure 4: Genome size, proportion of excess DNA, number
of genes and metabolic error for the best individual of each
simulation after 20,000 generations. The fittest individuals
are those with the lowest metabolic errors. Excess DNA in-
cludes here the intergenic DNA (between two coding RNAs)
and the untranslated regions of the RNAs.

Evolution of the structure of transcripts
Looking more specifically at transcription-related features,
our attention was drawn by the clear trend for higher re-
arrangement rates to favour long RNAs (figure 6(a)). The
dynamics that leads to this lengthening of transcripts is very
interesting: Indeed, as figure 7 shows, only the terminators
seem to be gotten rid of during the whole evolutionary time,
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Figure 5: Fraction of neutral offspring estimated for the final
best individual, after 20,000 generations of evolution.

the promoter density remaining stable after the first stage of
evolution.
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Figure 6: Evolution of the average size of RNAs (regardless
of whether they are coding or non-coding) and the average
number of genes per coding RNA (RNAs containing at least
one CDS). For clarity purpose, the data displayed here has
been averaged over the different small mutation rates and
seeds. Each line is hence the average value of the 21 simu-
lations that were run under the same rearrangement rate.

Selection against terminators under high rearrangement
rates leads to a lengthening of RNAs. But why are long
RNAs selected for? What are the benefits of postponing
transcription termination? The answer apparently resides in
the packing of coding sequences: On average, RNAs be-
longing to organisms that evolved under high rearrangement
rates own way more genes than those under low rates (figure
6(b)).

Figures 8 and 9 show the translation and transcription or-
ganization of the best individuals (after 20,000 generations)
of 2 typical simulations with respectively high and low mu-
tation and rearrangement rates. Under low rearrangement
rates, almost every single CDS is transcribed by a different
RNA. On the contrary, the individual that evolved under high
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Figure 7: Evolution of the average density of promoters
(a) and terminators (b) for the different rearrangement rates.
See figure 6 for details about data aggregated.

rearrangement rates has but one RNA containing only one
gene, all the other transcripts carrying at least two. These
figures also show a great difference regarding non-coding
RNAs. At high mutation rates, a huge proportion of RNAs
are ncRNAs whereas they become rare at high rearrange-
ment rates, this reproduces what is observed in real organ-
isms, eukaryotes having way more ncRNAs than prokary-
otes have. Putting the focus on this aspect of our data, we
found a clear scaling law between the rearrangement rate
and the proportion of ncRNAs (data not shown). This scal-
ing is a direct consequence of the proportion of non-coding
sequences on the genome.

(a) RNAs (b) CDSs

(c) Zoom on operon (1) with its 5 genes

Figure 8: Genome of the best individual of generation
20,000 of a typical simulation with mutation and rearrange-
ment rates of 1.10−4 per base-pair. In subfigure (a), coding
RNAs are represented in black and ncRNAs in grey.

Discussion
In the experiments presented here, the organization of the
genomes after 20,000 generations of evolution reproduces
the whole range of genome organizations observed in real
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(a) RNAs (b) CDSs

Figure 9: Genome of the best individual of generation
20,000 of a typical simulation with mutation and rearrange-
ment rates of 1.10−6 per base-pair. In subfigure (a), coding
RNAs are represented in black and ncRNAs in grey.

organisms. In our simulations, we observed a clear tendency
for organisms having evolved under low rearrangement rates
to have a eukaryote-like genome and for those under high
mutation rates to resemble prokaryotic genomes.

Although a very small proportion of eukaryotic genomes
is translated into proteins, a substantial fraction of these
genomes is transcribed into non-coding RNAs. Not all of
these ncRNAs have a known function and a great deal of
effort is put into identifying these putative functions. In
our model, ncRNAs have absolutely no function, yet they
are very common when rearrangement rates are low. Inter-
estingly, they are found at a proportion close to that which
would be expected in a random sequence. Hence, it seems
that ncRNAs are naturally present in intergenic regions mak-
ing them available for acquiring new functions. It is tempt-
ing to suggest that these RNAs constitute a good substrate
for the appearance of novel genes but this question will re-
quire a precise analysis of the dynamics of gene acquisition.

Another interesting feature we have observed is the emer-
gence, under specific conditions (i.e. under high rearrange-
ment rates), of operon structures.

Since operons appeared in a total absence of horizontal
transfer, the selfish operon theory can easily be discarded as
an explanation of the emergence of these operons. Indeed,
horizontal transfer is a central and necessary feature of the
selfish operon theory.

One of the remaining candidates to account for the emer-
gence of the observed operons is the co-regulation model,
under which hypothesis genomes should be more modular
than expected at random. To compute the functional mod-
ularity of a genome, we conducted a pairwise comparison
of the proportion of functionally related genes within oper-
ons and on the whole genome. Two genes were considered
functionally related when they shared a subset of metabolic
functions, i.e. when their corresponding phenotypic trian-
gles overlapped. Given that the individuals evolved in a sta-
ble environment, no regulation is needed whatsoever. Mod-

ularity was shown to promote evolvability in the presence
of inter-individual recombination (Pepper, 2000). However,
here, reproduction was strictly clonal, which makes it diffi-
cult to imagine how the modularity of a genome could im-
prove a lineage’s evolutionary fate.

Yet, the results show a moderate tendency to pack func-
tionally related genes together on the same operon: The pro-
portion of pairs of functionally-related genes within operons
was 1.26-fold higher (median value) than the same propor-
tion on the whole genome. Although the effect is small, the
ratio is significantly different from 1 (non parametric sign
test, p-value = 7.10−4).

These results do not allow us to conclude either in favor of
or against the co-regulation theory and further experiments
and analyses will be necessary to tackle this question.

According to the results presented in figure 6(b), there
seems to be a threshold in the rearrangement rate above
which operons become the rule rather than the exception.
This is relevant when considered in the light of the muta-
tional burden theory: As we have previously stated, the se-
lection for a correct level of mutational robustness that was
unravelled by Knibbe et al. (2007) leads to a strong pres-
sure on the genome size. The higher the rearrangement rate,
the smaller the genome must be to be transmitted faithfully
to the offspring. Besides, the selection of the individuals
that best fulfil the metabolic task (i.e. approximate the tar-
get) gives rise to a pressure for having many genes. Taken
together, these two pressures result in the emergence of a
composed pressure on the density of genes.

At medium rearrangement rates, the optimal gene density
can be achieved by simply reducing the proportion of non-
coding sequences, the coding sequences themselves remain-
ing mostly unaffected. However, when the rates are really
high, the amount of excess DNA (inter-RNA sequences, 3’
and 5’ UTRs, ncRNAs) shrinks to nearly nothing. At high
rates, a further compaction can be done by several means
such as making genes overlap (either on the same strand or
on both strands) or getting rid of some of the transcription
signals (promoters and terminators), hence merging consec-
utive RNAs into one single RNA (thus creating an operon).

We therefore expected to observe both overlapping genes
and a lengthening of transcript length under high rearrange-
ment rates. We indeed observed both of these phenomena
(figures 8 and 6(a)) but were surprised by the dynamics lead-
ing to RNA lengthening: When the density of promoters ap-
pears to be stable over time, suggesting that they are not
selected against, the density of terminators is constantly de-
creasing. Terminators fragment the genome, forbidding the
sequences directly downstream from them (on both strands)
to be translated, until a promoter is found. There is hence
unmistakably a loss of gene density for each terminator on
the genome. The solution that evolution found to efficiently
pack genes together is then to limit this loss by decreas-
ing the number of terminators on the genome, leading to a
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lengthening of the average size of RNAs which in turn facil-
itates the emergence of operons.

Conclusion
In this paper, we have presented results that clearly repro-
duce features of genome organization that are observed in
real organisms, in particular the structuration of genes in
operons. The emergence of these operons specifically un-
der high rearrangement rates points us to the mutational bur-
den hypothesis, where a second-order pressure for a specific
level of mutational robustness leads to genome streamlin-
ing. We now plan to conduct further experiments to investi-
gate the role of horizontal transfer and how it interacts with
this second-order pressure. We also plan to determine to
what extent the co-regulation model can participate in the
creation and maintenance of operon structures. Finally, we
would like to analyse the role of non-coding RNAs in gene
acquisition and to test whether they are innovation hot spots.
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Abstract

The maintenance of recombination is among the most important unsolved problems of evolutionary biology. The Hill-
Robertson effect, which states that the interaction between genetic drift and selection generates unfavorable linkage dise-
quilibria (hence favoring recombination), offers one of the most promising hypotheses to solve this problem. In particular,
it has been argued that this hypothesis works independently of epistatic interactions. However, this result has been derived
on the basis of smooth fitness landscapes, which may be unrealistic (Otto and Feldman (1997)). We estimated the fitness
effects of 1’857 single mutations and of 257’536 pairs of mutations found in a 60’000 HIV-1 B pol-genotypes assayed for
in vitro replication capacity (Hinkley et al. (2010)) to develop a reasonably realistic model of a fitness landscape on which
we run a genetic algorithm to mimic the evolution of HIV populations. By adding a recombination rate modifier to the
genome, we address the question of whether genetic drift outweighs epistasis as a factor for the evolutionary maintenance
of recombination in the case of the fitness landscape of our model. Despite the fairly rugged nature of the fitness landscape,
which could be characterized by the presence of a large number of local optima, we find that recombination is robustly
favored in finite populations. This result suggests that the Hill-Robertson effect provides a powerful explanation for the
evolutionary maintenance of recombination even if fitness landscapes are rugged.
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Abstract 
The role of aneuploidy (the cellular state of having an abnormal 
number of chromosomes) in cancer is not well understood. A 
recent theory suggests that aneuploidy may be an initial step 
towards the generation of variation in cancer. This theory 
however is very difficult to test in biological experiments. To 
address this theory and explore the role that aneuploidy has on 
the development of cancer, a computational model of cancer 
evolution has been developed. Results show that, depending on 
the arrangement of tumour suppressors, proto-oncogenes and 
regulators of chromosome segregation in the genome, 
aneuploidy induces distinct pathways for the generation of 
novel genotypes leading to emergent cancer-like behaviour. 

1 Introduction 
Cancer is a disease through which a group of cells proliferate 
beyond the normal limits of division, destroying adjacent 
tissue and sometimes spreading to other locations in the body. 
Tumours evolve in the body behaving almost like infecting 
pathogens with the cells undergoing a sequence of genetic 
mutations until they are able to proliferate almost without 
limit. Cancer affects people of all ages and ethnicities, with 
risk increasing with age. Cancer is one of the leading causes 
of death worldwide, with cancer deaths projected to continue 
rising (Parkin et al. 2005). To tackle this disease, efforts are 
being made to generate knowledge about the causes of cancer 
and the management of the disease. Cancer research, a field 
ranging from molecular bioscience to clinical trials, seeks to 
increase our understanding of the fundamental principles of 
cancer. Through this kind of research, we have been able to 
identify many of the key factors that influence cancer and the 
development of treatments and prevention strategies. Because 
of the complexity of cancer development, which involves the 
evolution of somatic clones with increasingly aggressive 
behaviour that eventually undergo metastasis, computational 
modelling has become a very valuable tool for refuting or 
supporting theories that explain the underlying individual cell 
behaviour in tumours (Nagl et al. 2007).   
 
In the field of Artificial Life, efforts are being made to 
simulate and understand the properties of cancer systems. 
These contributions are an important part in the development 
of a more general theory of cancer (Abbott et al. 2006). They 

have inspired new ways of thinking and revolutionized the 
way we explore, describe and explain complex biological 
phenomena.  One such phenomenon, aneuploidy, has recently 
gained much interest in the cancer community.  
 
In the absence of sexual recombination, the path to cellular 
evolution is through mutation, the generation of chromosome 
aberrations and aneuploidy– the cellular state of having an 
abnormal number of chromosomes. Evolutionary pressure 
selects for genetic changes that enable cells to avoid death and 
over proliferate. This can be achieved by the overexpression 
of growth signals, adaptation to hypoxia and evasion of 
reproductive limits amongst others (Gibbs 2003). 
Unfortunately it is extremely difficult to devise biological 
experiments to isolate the effects of aneuploidy in cancer 
(Weaver and Cleveland 2007). Because of the extreme 
difficulties encountered when trying to devise this kind of 
biological experiment, in this work we propose a 
computational model to address some of the fundamental 
questions of tumour formation and help further guide 
experiment and theory.  
 
The aim of this work is investigate the role of aneuploidy and 
its effect on the dynamics in cancer. By making abstractions 
of current biological knowledge, data and theories that 
describe the behaviour of cancer, a computational model that 
addresses this theory is presented. The model explores the role 

Figure 1- Schematic of normal cell division (top) and the 
missegregation of chromosomes during mitosis (bottom). 
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that aneuploidy plays as a main driver for the origin and the 
subsequent stages of cancer. It is an individual-based 
evolutionary model, similar to models used in ALife work for 
other population-based simulation studies (Gras et al. 2009). 
 
In the next section, the essential theories of the origins of 
cancer are summarised. Section 3 presents the details of the 
computational model. Section 4 continues with a discussion of 
the different simulations carried out. Conclusions and future 
work are provided in the final section.  

2 Background 
What we currently consider to be cancer includes, in reality, a 
very broad spectrum of diseases known as malignant 
neoplasms. Biological systems are complex, and cancer in 
particular may be best described as an emergent behaviour of 
a complex system (Nagl et al. 2007). Because it is very 
difficult to understand a complex system by examining only 
its components, the exact mechanisms by which cancer can 
arise are a matter of heated debate (Basanta and Deutsch 
2008).  

 
There are two predominant theories regarding the origins of 
cancer. The first theory suggests that DNA damage over 
decades leads to many thousands of random mutations in the 
cell’s genome that confers on the cell new proliferative 
capabilities (Chin et al. 2006). Chemical carcinogens such as 
ionizing radiation (x-rays, etc) may cause chromosomal 
breaks and translocations that contribute to cancer 
development. This kind of damage is largely stochastic and 
raises the question of how can such a comprehensive genome 
reprogramming be carried out so consistently for the 
development of a cancer genotype by means of random 
mutations. 
 
The second theory suggests that damage to a few “cancer 
genes”, such as those depicted in Table 1, would activate 
pathways that would lead to tumourigenesis by means of 
accumulative changes (Hanahan and Weinberg 2000). This 
theory suggests that the accumulation of very particular 
alterations (also known as “gate-keeper” mutations) in proto-
oncogenes (genes that contribute to cancer because of their 
increased expression) and tumour suppressor genes (genes 
that contribute to cancer when its function is reduced) could 
be a main driver for many cancers (Gatenby et al. 2007). This 
theory does not directly address the underlying evolutionary 
and selective forces that play an important role in cancer 
development, nor the interaction with a particular 
microenvironment in which phenotype selection takes place.  
 
A third theory, proposes that an abnormal number of 
chromosomes, or aneuploidy (described in Figure 1), in a cell 
may be a first step towards generating malignant genotypes 
(Gibbs 2003). This theory (as first proposed by Boveri in 
1914) has recently gained support due to many recent articles 
that describe the presence of aneuploidy and chromosomal 
instability in many types of cancers (Rajagopalan and 
Lengauer 2004). More significantly, mutations leading to 
chromosome instability lead to a genetic predisposition to 

cancer (Hanks et al. 2004). The high number of different 
cellular states that are considered as aneuploid and the 
different behaviours and interactions that these cells may 
exhibit make it difficult to trace an evolutionary pathway 
through this complex system. Because of a lack of a clear 
pathway, the contribution of aneuploidy as a cause or a 
consequence of malignant transformation, remains unknown 
(Holland and Cleveland 2009).  

3 The Model 
In order to investigate the theory of aneuploidy as a driver for 
the development of malignant cancer, a model was created. 
The computational model consists of individual agents that 
are abstractions of individual cells, incorporating a set of 
biologically-inspired features dealing with cell division and 
more specifically chromosome segregation.  
 
The model abstracts biological behaviour at the genetic level, 
and studies the behaviour at a tissue level that emerges 
through the interaction of the individual cells under diverse 
conditions. In the model, abstractions of genes known to play 
a relevant role in tissue homeostasis are considered. This kind 
of model could not only provide us with an insight as to the 
origins and the evolution of cancer, but also with a new tool 
for developing new cancer therapies. 
 

Gene Role in Cancer Biological Function 
BUB1 Aneuploidy Chromosome segregation 
MYC Proto-oncogene Promotes growth 
PTEN Tumour suppressor Inhibits growth 

RAS Proto-oncogene 
Promotes growth, cell cycle 
progression 

RB1 Tumour suppressor Inhibits cell cycle progression 
P53 Tumour suppressor Promotes cell death 
NF2 Tumour suppressor Regulates contact inhibition 

Table 1- Known human cancer genes considered. The function of 
the genes as given is a broad summary and approximation of their 
true behaviour, which is still the subject of research. 

 
3.1 Biological Abstractions 
In order to develop a computational model to study the 
biological phenomenon of aneuploidy, it was decided to 
investigate the behaviour of a few known cancer genes 
(Futreal et al. 2004), as seen in Table 1. Although alterations 
in these cancer genes may account for specific cellular 
misbehaviours, the genetic evolutionary pathway that cells 
follow when they become cancerous remains unknown. To 
address this question, behaviour was abstracted from genes 
that regulate cell death, proliferation, and fidelity during 
chromosome segregation.  
 
The core of the model is an abstraction of individual cells and 
their genomes. Each simulated genome is composed of 3 
types of genes in diploid chromosomes (pairs of 
chromosomes, the chromosomes of each pair having identical 
genes) as the normal state within cells, as seen in Figure 2. 
The collection of individual cells comprises a simulated 
tissue, whose population size is determined for each 
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experiment through an allocated space parameter, whose 
dynamics are determined by the gene expression of the 
individual cells across time. Although the effects of 
differences in chromosome number on gene expression 
patterns in biological systems are only beginning to be 
assessed (Huettel et al. 2008), the model assumes the up and 
down regulation of behaviour to be proportional to the number 
of copies of genes available.  Each of the three genes code for 
corresponding actions at a cellular level, inspired by 
biological systems. The genes present and their functions, 
described below, are: 
• Tumour Suppressors- Apoptosis Regulatory Genes (A) 
• Proto-oncogenes- Cell Division Regulatory Genes (D) 
• Aneuploidy- Chromosome Segregation Regulatory 

Genes (S) 
 

Apoptosis regulatory genes are an abstraction of tumour 
suppressor genes that regulate cell death by mechanisms such 
as contact inhibition. Contact inhibition is the natural process 
by which, when two or more cells come into contact with each 
other, there is an arrest of the cell growth and division, which 
is used by the system to maintain homeostasis. (Zeng and 
Hong 2008). The abstracted genes are used to compare a 
measurement of the overall number of cells and, if this 
number exceeds the carrying capacity of the tissue 
(predefined by the initial conditions of the simulation), it stops 
proliferation and raises the probability of cell death. 
Malignant cells usually have lost this important homeostatic 
property (Carmona-Fontaine et al. 2008). Although based on 
global cell counts, this model is not spatially explicit, but 
rather of the “well-stirred” kind, akin to the more abstract 
theoretical models used to describe artificial chemistries 
(Dittrich et al. 2001). 
 

To balance cellular death and maintain homeostasis, cell 
division regulatory genes provide an abstraction of proto-
oncogenes that promote growth and progression through the 
cell cycle. Apoptosis regulatory genes and cell division 
regulatory genes together maintain a constant population of 
cells close to the carrying capacity of the simulated tissue 
(homeostasis).  
 
The inclusion of the concept of aneuploidy generates variation 
amongst the cell population (no other form of mutation is 
modelled in the system). Inspired by genes that limit 
chromosome missegregation events, chromosome segregation 
regulatory genes, when up regulated, help maintain 
homeostatic conditions for a prolonged period of time. The 
role that the up or down regulation of these kinds of genes has 

in cancer progression is currently unknown (Rajagopalan and 
Lengauer 2004).  
 
The model contains a population of individual cells, where 
each cell is initialized with 2 copies of each gene, within 
diploid chromosomes, as shown in Figure 2. When dividing, 
the genome of each cell is duplicated and one set of genes 
then segregated into a daughter cell. It is during this stage that 
chromosome missegregation events can occur. The behaviour 
generated by the gene expression is dependent on the number 
of copies of a given gene within the genome of each 
individual cell. The algorithm is described in the following 
section. 

3.2 The Algorithm 
Inspired by the processes in biological cellular behaviour 
through which homeostasis is maintained in organisms, the 
algorithm is as follows:  
 
1. An initial population of 100 cells is created, each with 

diploid chromosomes, each chromosome with 1 copy of 
each type of gene (Figure 2). The normal carrying 
capacity of the tissue is fixed at 200 cells. 

2. For each time step, the total number of cells is measured 
and is not updated until the next time step. 

3. For each cell during each time step, if the cell has less 
than 2 chromosomes in its entire genome, the cell dies.  

4. If the cell has not died and if the measurement of the 
number of cells is greater than the predefined tissue’s 
carrying capacity, then the probability of cell death is 
calculated. The probability of death is dependent on the 
number of available copies of the apoptosis regulatory 
genes, NA, within each cell’s genome. The probability of 
apoptosis, PA, is determined by: 

PA =NA / rA  
Where rA is a parameter for the rate of apoptosis. The cell 
is then killed with a probability of PA. 

5. If the cell has not died, it has a chance to divide. The 
probability of division depends on the number of 
available copies of the division regulatory genes, ND, and 
a parameter that determines the rate of division, rD. The 
probability that a cell divides, PD, is: 

PD =ND / rD  
6. If dividing, the probability of chromosome 

missegregation is calculated. The probability of 
chromosome missegregation, PS, in the model is: 

PS = rS / (NS +1) 
 
Where NS is the number copies of the chromosome 
segregation regulatory genes within the cell’s genome, 
and rS is a parameter for the rate of chromosome 
missegregation.  
 

If there is no chromosome missegregation, the genome is 
duplicated and copied with fidelity, thus generating two 
identical daughter cells. Otherwise, one chromosome chosen 
at random is misseggregated during cell division. As the 
mother cell divides into two daughter cells, this results in two 
daughter cells with a different number of chromosomes, as 
seen in Figure 1. 

Chromosome 
1 

A Gene 

D Gene 

Chromosome 
1 

A Gene  

D Gene!

Chromosome 
2 

S Gene 

Chromosome 
2 

S Gene 

Figure 2- Abstracted Genes in Diploid Chromosomes for 
Gene Configuration A. 
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4 Experiments 
To investigate the properties and the dynamics of the system, 
and specifically the role that chromosome segregation 
regulatory genes have, three genome configurations were 
considered. The parameter settings were determined through a 
series of preliminary experiments, in order to ensure that the 
behaviour of the system was both biologically plausible and 
computationally feasible. Simulations were carried out with 
the following initial parameters: 
 

• Initial population: 100 cells 
• Carrying capacity of the tissue: 200 cells 
• Number of time steps: 100 
• rA =10, rD =10, rS =0.03 

 
For the analysis of the simulations, the emergent genotypes 
were assessed. By quantifying the number of chromosomes 
that a cell has at a given time, a genotype state GT is defined 
as: 

GT=(NA, ND, NS) 
 

Where NA, ND and NS are the number of copies of Apoptosis 
Regulatory Genes, Cell Division Regulatory Genes and 
Chromosome Segregation Regulatory Genes respectively. The 
initial genotype consists of two functional copies of each 
chromosome: genotype state (2, 2, 2). 
 
Three different gene configurations (Figure 2, 5 and 7), 20 
simulations were investigated for each experiment. As will be 
shown, although the systems tended to converge on similar 
results, the evolutionary trajectories were usually different. 
For this reason a representative simulation for each 
configuration is given in the results sections rather than an 
average. Future work will investigate an appropriate statistical 
analysis of the distribution of evolutionary pathways across 
simulations. 

4.1 Gene Configuration A 

4.1.1.Objective and Setup 
To investigate the role of the chromosome segregation 
regulatory genes, the following configuration was used:  
 
• Chromosome 1: apoptosis regulatory genes (A) and cell-

division regulatory genes (D) 
• Chromosome 2: chromosome segregation regulatory 

genes (S) 
 

This gene configuration, as seen in Figure 2, isolates the 
effects of the loss or gain of Chromosome 2 to those caused 
by the loss or gain of the chromosome segregation regulatory 
genes.  
 

4.1.2.Results 
Homeostatic behaviour can be observed in Figure 3. In normal 
conditions this kind of homeostatic behaviour provides the 
tissue with robustness if there were a sudden loss of cells 
(wound-healing capabilities), maintaining the total number of 
cells close to that of the carrying capacity of the tissue (200 
cells). For 20 simulations of Configuration A, the average 

total number of cells at the last time step (t=100) was 210 
cells, with a standard deviation of 17. 
 
 
4.1.3 Analysis 
As expected, a comparison of the plot of the total number of 
cells across the simulations of Configuration A reveals the 
high variability of the simulation outcomes, as seen in Figure 
4. Thus, it is difficult to distil meaningful information with 
traditional statistical methods. Despite the stochastic nature of 
the final cell number across experiments, an invariant 
qualitative behaviour can be observed for each configuration. 
Although the actual evolutionary pathway exhibits a high 
degree of variation, a representative simulation captures 
qualitatively the kind of evolutionary pathway that most of the 
simulations follow.  

 
The initial genotype, genotype state (2, 2, 2), contains 2 
functional copies of each gene. For there to be cancer-like 
behaviour, oncogenes need to have their function reduced and 
tumour suppressor genes in turn must have an increase in their 
expression. Because the abstracted genes that model the role 
of oncogenes and tumour suppressor genes are found in the 
same chromosome, they become self-regulated. As the system 
evolves however, novel genotypes emerge but, because of the 
self-regulation of the cancer genes, the overall behaviour 
generated by the new genotypes is not dissimilar to that of the 
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Figure 3- Total number of cells in a 100-time step 
simulation with Gene Configuration A. 

Figure 4- Distribution of the total amount of cells of 5 100-
time step simulations with Gene Configuration A. 
Variability across experiments can be observed. 
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original cell population, as depicted in Figure 9a. This leads to 
a micro diversity of homeostatic genotypes. However, it is of 
interest that the more successful genotypes naturally acquire 
more resistance against chromosome missegregation.  In this 
representative simulation, genotype state (2, 2, 3) accounts for 
more than 30% of the population at the last time step (t=100), 
as seen in a quantification of the distribution of genotypes  
(Table 2).  
 
 

Genotype 
t=0 
(%) 

t=25 
(%) 

t=50 
(%) 

t=75 
(%) 

t=100 
(%) 

(2, 2, 2) 100 93.56 79.90 70.76 58.88 
(2, 2, 3) 0 1.72 8.76 20.34 31.47 
(3, 3, 2) 0 0 4.12 4.66 0.51 
(1, 1, 2) 0 0.43 3.09 2.97 5.58 
(2, 2, 1) 0 3.00 2.06 0 0.51 
(1, 1, 1) 0 0.43 1.55 0.42 1.02 

(2, 2, >3) 0 0 0.52 0.85 1.02 
(1, 1, 3) 0 0.86 0 0 0 

(>3, >3, 2) 0 0 0 0 1.02 

Table 2- Distribution of genotypes at 4 time intervals (0, 25, 50, 
75 and 100) for a representative simulation of Gene 
Configuration A.  

 

4.2 Gene Configuration B 

4.2.1.Objective and Setup 
To better understand the role of the distribution of the genes in 
the chromosomes, the initial configuration was modified to:  
 
• Chromosome 1: apoptosis regulatory genes (A) 
• Chromosome 2: cell-division regulatory genes (D) and 

chromosome segregation regulatory genes (S)  
 
This gene distribution is depicted in Figure 5. 
 
4.2.2.Results 
During the 100-time step experiment, a stable homeostatic 
behaviour can be observed for a period of time. After that 
homeostatic period however, an uncontrolled proliferative 
behaviour follows. The total number of cells increases 
exponentially, reaching the values of the order of thousands in 
a very short period of time, as shown in Figure 6. This kind of 
behaviour is obtained across simulations. For 20 simulations 
of Configuration A, the average total number of cells across 
simulations at the last time step (t=100) was 59,388 cells, with 
an expected high standard deviation of 87,215. The 

representative simulation shown, ignoring the limits set by 
carrying capacity of the tissue, had a final number of 49,765 
cells.   
 
4.2.3 Analysis 
An analysis of the emergent genotypes reveals that a newly 
evolved genotype takes over the population: Genotype state 
(1, 2, 2). From this novel genotype, two different kinds of 
genotypes are further evolved: an apoptosis-resistant genotype 
(0, 2, 2) and an over-proliferative genotype (1, 3, 3), which 
can be appreciated on Figure 9b.  
  
The loss of function of the tumour suppressor-inspired 
Apoptosis regulatory genes through chromosome 
missegregation leads to the generation of a niche of these 
mutants. However, because of the low levels of chromosome 
missegregation, this population remains relatively homeostatic 
until the emergence of two cancer-like genotypes, as 
described by Table 3. 

 

Table 3- Genotype distribution (percentage) for a representative 
simulation of Gene Configuration B. 

 
The evolution of the system with low levels of aneuploidy 
resulted in the generation of few very successful mutants that 
quickly dominated the entire population as seen in Table 3, 
suggesting a counterintuitive pathway for cancer-like 
behaviour with low aneuploidy. This kind of mutations are 
seen in leukemias, lymphomas and some mesenchymal 
tumours, where there are simple, disease-specific 
abnormalities (Johansson et al. 1996). 

Genotype 
t=0 
(%) 

t=25 
(%) 

t=50 
(%) 

t=75 
(%) 

t=100 
(%) 

(2, 2, 2) 100 75.85 9.74 0.72 0.14 
(1, 2, 2) 0 19.81 88.24 88.50 44.42 
(0, 2, 2) 0 0 0.41 4.50 24.14 
(1, 3, 3) 0 0 0 4.90 21.23 
(2, 3, 3) 0 2.42 1.42 0.72 0.15 
(0, 3, 3) 0 0 0 0.17 9.04 
(3, 2, 2) 0 0.97 0 0 0 
(1, 1, 1) 0 0 0.20 0.49 0.36 
(2, 1, 1) 0 0.97 0 0 0 
(1, >3, >3) 0 0 0 0 0.36 
(0, >3, >3) 0 0 0 0 0.14 
(0, 1, 1) 0 0 0 0 0.02 
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Figure 5- Distribution of Genes in Gene Configuration B 

Figure 6- Total number of cells in a 100-time step 
simulation with Gene Configuration B. 
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4.3 Gene Configuration C 

4.3.1.Objective and Setup 
To further study the role of the distribution of the genes in the 
chromosomes in a third configuration (Figure 7): 
• Chromosome 1: cell-division regulatory genes (D) 
• Chromosome 2: and apoptosis regulatory genes (A) and 

chromosome segregation regulatory genes (S)  
 

 

 

 

 

4.3.2.Results 
Although this new genetic configuration yields a similar over-
proliferative behaviour to that obtained through the 
simulations with Gene Configuration B, as seen in Figure 8, 
there are significant differences. The emergence of novel 
genotypes is less gradual, as can be appreciated in Figure 9c. 
In the representative simulation presented for this 
configuration, the total number of cells obtained at the last 
time step was 61,836 cells. The average final number of cells 
of the simulations carried out was 74,201, with a standard 
deviation of 114,736. 

 

 

4.3.3 Analysis 
An analysis of the genotype evolution sheds some light onto 
the emergence of the proliferative, cancer-like genotypes, as 
depicted in Figure 9c. Although the behaviour is similar to 
that of Gene configuration B, the evolution of a genotype that 
produces the cancer-like behaviour is significantly different. 
The analysis of the emergent genotypes reveals that the first 
mutation leads to an increase in the function of genes that 
model proto-oncogenes, increasing proliferation. However, 
contact inhibition induced cell death (the tumour suppressor 
genes) heavily restrict the mutant genotype from dominating 
the entire population. By acquiring mutations that reduce the 

contact inhibition forces, chromosomal instability is also 
induced. This instability leads to an explosion of genotypic 
diversity, as seen in Table 4, making it easier for cells to 
acquire mutations that lead to cancer-like behaviour. 
 
This pathway may help shed some light on the reports of 
increasing levels of chromosome instability during 
premalignant neoplastic progression (Lai et al. 2007) and the 
development of tumours characterized by multiple and 
nonspecific aberrations, similar to most epithelial tumour 
types (Johansson et al. 1996) 
 
 

Genotype 
t=0 
(%) 

t=25 
(%) 

t=50 
(%) 

t=75 
(%) 

t=100 
(%) 

(2, 2, 2) 100 92.38 40.88 3.43 0.11 
(2, 3, 2) 0 6.19 40.25 31.17 2.22 
(1, 2, 1) 0 1.43 16.35 31.93 6.82 
(2, >3, 2) 0 0 2.31 17.71 24.70 
(1, 3, 1) 0 0 0.21 13.90 21.71 
(1, >3, 1) 0 0 0 1.09 24.80 
(0, 3, 0) 0 0 0 0.22 7.44 
(0, >3, 0) 0 0 0 0 11.22 
(0, 2, 0) 0 0 0 0.11 0.65 
(1, 1, 1) 0 0 0 0.33 0.05 
(3, >3, 3) 0 0 0 0 0.27 
(3, 3, 3) 0 0 0 0.11 0.02 
(0, 1, 0) 0 0 0 0 0.00 

Table 4- Genotype distribution at different time intervals for 
Gene Configuration C. 

 

5 Conclusions and Future Work 
In this a work a computation model was created in order to 
investigate the role of chromosome missegregation in tumour 
evolution. By integrating the concept of chromosome 
missegregation in an otherwise homeostatic model, new 
genotypes were evolved. From the resulting novel genotypes, 
those that had acquired mutations that enabled them to express 
higher levels of cell division and lower levels of cell death 
quickly spread through the population. This gave rise to even 
more malignant genotypes exhibiting emergent cancer–like 
behaviour. 
 
Although the model makes a number of assumptions 
including the assumption that the number of copies of a gene 
has a direct effect on the up or down regulation of that gene, 
the interactions and results can be interpreted in terms of 
actual biological behaviour (i.e, the up or down regulation of 
an oncogene or a tumour suppressor gene). The model 
suggests that through chromosome missegregation, the 
arrangement of genes on chromosomes has a profound effect 
on genetic diversity, giving rise to different kinds of cancer-
like behaviours, which resemble key differences observed in 
real cancers (Cahill et al. 1999).  
 
The role that chromosome segregation regulatory genes play 
in this model is largely determined by its position with respect 
to the other genes in the chromosomes. The model suggests 
that high levels of chromosome missegregation lead to a 
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Figure 8- Total number of cells in a 100-time step Simulation 
with Gene Configuration C. 
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 a) 

b) 

c) 

Figure 9. Genotype state population analysis for a) Gene Configuration A b) Gene Configuration B c) Gene Configuration C. The 
genotypes populations are stacked for each time step according to the percentage of the total population that they account for. 
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genetic diversity that help cells overcome the low probability 
of oncogenic mutations, as shown in the analysis of Gene 
Configuration C. Surprisingly, low levels of chromosome 
missegregation may also give rise to a different kind of 
cancer-like behaviour, as shown in the simulations of Gene 
Configurations B. By maintaining a relatively uniform 
population, specific mutations are conserved and spread 
throughout the population until a cancer-like genotype is 
reached. To determine the precise role of that chromosome 
segregation regulatory genes have in cancer systems, the 
development of appropriate tools for statistical analysis and 
further experiments are needed.  
 
It is of interest to consider the real locations of known cancer 
genes to incorporate in an extension of the model. This could 
yield more realistic behaviour and may better inform theory 
and experiment. Mutations in oncogenes or tumour suppressor 
genes are not the only key players in real cancer systems 
though. Because microenvironment selection may also 
cooperate with aneuploidy to promote tumour progression 
(Anderson et al. 2006), it is also of interest to incorporate a 
more realistic version of the environment into the model. 
 
Through computational models such as the one presented in 
this article, we anticipate that we may gain a deeper 
understanding of the effects of aneuploidy on cancer 
initiation. Identifying the key events in cancer progression 
may help us devise new cancer treatments that account 
aneuploidy and its dynamics. 
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Abstract

We demonstrate artificial evolution in a system that combines
physical simulation with competition between creatures. The
simulated creatures are constructed using point masses that
are connected by oscillating springs. The creatures pull them-
selves across their 2D environment by varying the amount
of friction at different point masses, giving them sticky feet.
Creatures combat one another, and the victor of such an en-
counter earns the right to reproduce, possibly with mutation.
Rather than testing one individual against another in pairs, as
many as 100 creatures move and interact with each other in
the same 2D environment. Over time, the initial creatures are
replaced by new creatures that are more agile and better at
combating others. The evolved creatures from such simula-
tions exhibit a wide array of body plans, locomotion styles,
and interaction behaviors.

Introduction

The animal kingdom displays an astonishing variety of crea-
ture body plans, methods of locomotion, and styles of in-
teractions between individuals. The engine that produces
this seemingly endless array of forms and behaviors is Dar-
winian evolution. One of the goals of Artificial Life is
to demonstrate that a similar degree of richness can be
produced by unguided evolution in a computer-simulated
world. Success in creating rich simulated worlds can inform
our understanding of real-world evolution and may also be
a valuable teaching tool, allowing students to witness a pro-
cess that is slow in nature.

Our research is inspired by prior work in Artificial Life, and
in particular, by simulated creature evolution through the use
of physical simulation. A particular goal of our work is to
create a single environment in which many creatures interact
with one another, reproduce and evolve. We wish to simulate
as many creatures at one time as possible in order to have a
sufficiently large population in the environment. This led
us to seek the most simple virtual bodies that would still
exhibit a variety of shapes and behaviors. We selected point
masses that are connected by springs as our representation
of a creature’s body. Each virtual spring may change its rest
length in a cyclic manner. By changing the friction on either
end of such an oscillating spring, a creature uses its sticky
feet to pull itself through the environment. The creatures live
in a 2D world that has no gravity and no ground plane, so

the creatures may crawl in any direction. Although this is a
simple virtual physics model, the evolved creatures based on
this model show a considerable variety in their body shapes
and motions.

In our experiments, just one small moving creature is intro-
duced into the virtual environment. This ancestral creature
is initially surrounded by stationary creatures that cannot de-
fend themselves, and these act as food for moving creatures.
The lone moving creature “eats” the stationary ones, and it
replicates after doing so. After a while, many of these small
moving creatures are crawling through the environment. An
occasional mutation occurs during replication, and the envi-
ronment is soon filled with a variety of creature types. Some
of these new creatures are more successful at combat and
reproduction, and eventually the ancestral creature is sup-
planted by its more agile descendants. Different simulation
runs have exhibited a wide variety of successful creature
body plans and modes of locomotion.

The remainder of the paper is divided as follows. After dis-
cussing related work, we then describe the creature bodies
and the physics simulator in detail. Next, we describe the
mechanism by which creatures interact and reproduce, fol-
lowed by a description of the allowed creature mutations.
We then present the results of our simulation runs, followed
by a discussion of future work.

Related Work

There are two main lines of research that are closely re-
lated to our own, and we review the research in each area
in turn. The first area of research that is related to ours is
simulated physics for creature locomotion. In 1993, two
research groups demonstrated the evolution of creature lo-
comotion that is based on simple virtual physics. Van de
Panne and Fiume constructed creatures from rigid segments
in 2D that use linear and angular actuators in order to move.
They use simulated annealing to search for control networks
that lead to efficient locomotion, such as walking and jump-
ing, for a given creature body (Van de Panne and Fiume,
1993). Ngo and Marks simulate 2D creatures that are com-
posed of rigid linear elements and creature-controlled angu-
lar joints, and they use a genetic algorithm to evolve more
efficient locomotion. Their approach produces a variety of
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walking, crawling and jumping creatures (Ngo and Marks,
1993). These initial approaches were used to develop con-
trollers for a fixed creature body plan. Sims extended this
work by evolving the creature bodies as well as their con-
trollers using a genetic algorithm (Sims, 1994b). His virtual
creatures are entirely 3D, and they are composed of blocks
that are connected with joints that are controlled by the crea-
ture. This approach produces compelling examples of crea-
ture motion for creatures that walk, jump and swim. Ko-
mosinski and Rotaru-Varga use a physical simulator to in-
vestigate the effectiveness of different genotype encodings
to explore the space of locomotion strategies (Komosinski
and Rotaru-Varga, 2001). Lipson and Pollack use physical
simulation to evolve crawling creatures made of rods that
they then manufacture using rapid prototyping (Lipson and
Pollack, 2000). Taylor and Massey give an excellent review
of much of the research that has been done using physical
simulation (Taylor and Massey, 2001).

The second area related to our research is the study of vir-
tual creature interactions. In most of this research, the crea-
ture’s bodies are simple and fixed, and the creature motions
are the result of simple steering. Many of the Artificial Life
models for creatures that sense and move have been inspired
by the essays of Braitenberg on vehicles whose behaviors
are governed by simple neural circuitry (Braitenberg, 1984).
Yeager’s PolyWorld simulator consists of creatures with a
simple body, but with complex neural circuitry to control be-
havior (Yaeger, 1994). A large number of PolyWorld crea-
tures compete for food, mate, and reproduce in a single envi-
ronment that allows any creature to interact with each other.
Reynolds uses the game of tag to co-evolve creatures that are
good at pursuit and evasion (Reynolds, 1994). He evolves
more skilled creatures using a genetic algorithm, and eval-
uates a fitness function by playing creatures against one an-
other in pairs. Miller and Cliff argue that co-evolving pur-
suit and evasion strategies is an important topic for robotics
and other applications (Miller and Cliff, 1994). Ventrella
demonstrates evolution of swimming creatures in a simu-
lated environment in which many creatures interact (Ven-
trella, 1996). His swimmers compete for food and then mate
in order to reproduce. Miconi simulates a micro-world of
block creatures that inflict damage on one another and that
reproduce based on their health status (Miconi, 2008). The
systems of Ventrella and Miconi are similar to our own in
combining physical simulation with a multi-creature envi-
ronment that fosters between-creature competition.

Creature Locomotion

A main goal of our research is to create a simulated environ-
ment in which many creatures can interact with one another.
Because we wanted to simulate many creatures at once, we
use an artificial physics that is computationally inexpensive,
yet still capable of creating a wide range of motions. Our
creatures are made of a collection of point-masses that are

connected by segments that are each linear springs. Each
of these segments can be directed to change its rest length
in a periodic manner, which causes the segment to oscillate
in length. These creatures live on a 2D plane that has no
gravity, so that there is no preferred orientation. This means
that a given creature can approach another creature from any
direction.

The equations that govern the motion of these creatures are
those of a damped spring. For a segment that connects points
with positions Pi, Pj and velocities Vi, Vj , the spring force
F spring
i acting on mass i is given by:

L = Pi − Pj

L̇ = Vi − Vj

F spring
i = −(ks(L− Lrest) + kd

(L̇ · L)
|L|

)
L

|L|

In the above equations, after (Baraff et al., 1999), the spring
strength ks and spring damping coefficient kd are set to be
the same across all springs of all creatures. Lrest is the rest
length of a particular segment, and it can vary periodically.
For a segment with an original length Lseg , oscillation am-
plitude a, frequency f , and phase p, the change to its rest
length is given by:

Lrest = Lseg(1 + a sin (ft+ 2πp))

The most simple creature that can move is composed of two
point masses that are connected by a single segment. If this
segment oscillates in the absence of other external forces,
the creature’s center of mass will remain unchanged. In or-
der for such a creature to move, this creature must have a
way to gain traction. Miller solved the traction problem by
used directional friction in order to simulate the motion of
worms and snakes (Miller, 1988). Our simulated creatures
gain traction in a similar manner, by periodically changing
the coefficient of friction at the two endpoints of the spring
in synchrony with the oscillation of the segment itself. That
is, each point alternates being sticky or slippery. Figure 1
shows a one-segment creature where the leading point is on
the top and the trailing point is on the bottom. When the
segment is elongating, the lead point is frictionless (shown
using a smaller radius) and the trailing point is given a high
friction coefficient (shown with a larger radius). This pushes
the creature in the direction of the leading point. When the
segment is shortening, the leading point is sticky and the
trailing point is allowed to slide, and this pulls the crea-
ture towards the leading point. This single-segment creature
moves along much like an inchworm.

To modify the stickiness of a given point-mass i, a per-point
friction force is calculated that is proportional to the point’s
velocity and a global friction coefficient kf :
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Figure 1: A simple one-segment creature that moves up-
wards. The creature’s initial state is shown at the left, and
subsequent positions in time are shown to the right of this.
Points with high friction have a large radius, and the smaller
points have lower friction.

F friction
i = −kffiVi

This per-point friction is modulated based on the phase of
any spring segment that is attached to point i. We define a
coefficient fk for a given spring that is based on a per-spring
friction magnitude mk and the phase of the oscillation:

fk =

{
−mk if cos (ft+ 2πp) ≤ 0
mk if cos (ft+ 2πp) > 0

If a given spring k connects particles i and j, the friction co-
efficient fk is added to particle i’s friction accumulation fi,
and fk is subtracted from particle j’s friction accumulation
fj . Thus a spring will cause one of its particles to become
more sticky and will cause the particle on its other end to
be more inclined to slide. Once the friction accumulation fi
for a given particle has been modified by all of the attached
springs, the value of fi is then clamped to the range [0, 1].
Freely sliding particles have a value for fi at or near zero,
and points with larger values of fi are “sticky”, and resist
motion.

Figure 2 shows a more complicated creature body, consist-
ing of three point-masses and three segments that form a
triangle. Assume that two of the segments oscillate out of
phase with each other, so these sides of the creature lengthen
and shorten alternately. Further assume that the third seg-
ment does not oscillate. If the friction magnitudes m of the
two changing segments are the same, then the two sides take
turns pushing the creature forward. Such a creature moves
forward with a locomotion gate that looks like a waddle.

Our use of oscillating springs was partly inspired by the
SodaPlay mass-spring simulator (Burton, 2007). Construc-
tions in SodaPlay consist of point masses that are connected
by springs. Any spring may be set to vary its length in a
periodic manner, and constructions from such springs and
point masses move around in a 2D environment. Unlike our

model, SodaPlay constructions live in an environment with
gravity and a floor.

Competition and Sensing

Pursuit and evasion contests are among the most common
types of creature interactions in nature. Predators chase their
prey, and the prey try to evade capture. Creatures of the same
species chase each other when they are competing for food
or mates. Because of the real-world importance of these
behaviors, several researchers have made convincing argu-
ments in favor of studying pursuit and evasion in artificial
simulations (Reynolds, 1994; Miller and Cliff, 1994). Our
own work takes inspiration from this prior work, and the ar-
tificial evolution in our simulator is driven by the success
that the creatures have in pursuing one another.

Because our simulated creatures are composed of multiple
point masses and segments, we must define what it means
for one creature to capture another. Each creature has one
of its point masses designated as its mouth, and a different
point-mass as its heart. One creature successfully captures
another when the mouth of the first creature comes within a
specified radius of the heart of the second creature. There are
several consequences of this model of competition. First, it
means that any creature may be the aggressor or the chased.
Second, it is very unlikely that a pair of creatures simultane-
ously capture each other. Finally, it allows the morphology
of a creature to be tailored to the nature of the mouth and the
heart. For instance, a successful creature is likely to have its
mouth placed forward relative to its direction of motion.

All of our virtual creatures live together in one large 2D
world, and a typical population consists of 100 creatures.
Creatures encounter each other as they crawl forward in this
world. When one creature successfully captures another, the
victor of the encounter is rewarded by being copied (repro-
duction), and the loser of the encounter is removed from the
simulation. In this manner, the creatures that are more suc-

Figure 2: A simple triangular creature with three point-
masses and three segments. Two of the segments have sen-
sors attached to them that extend in front of the creature. The
mouth of this creature faces its direction of motion, and its
heart is in a trailing position.
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cessful at pursuit become more numerous, and the creatures
that often lose such competitions are eventually eliminated
from the population. In most cases, the winner of the com-
petition is duplicated exactly, but on occasion there may be
one or more mutations that occur during reproduction. In
this way, new creature body plans and behaviors can emerge.

This mechanism of closely tying competition with reproduc-
tion is similar to a steady-state genetic algorithm, since ex-
actly one member of the population is replaced at a given
time. In our simulations, the fitness evaluation is the out-
come of a single encounter. This is a departure from much
of the prior work on artificial creature evolution, where the
fitness function for a creature is usually determined by mini-
tournaments between pairs of creatures (Reynolds, 1994;
Miller and Cliff, 1994; Sims, 1994a). We believe that having
all the creatures in one large environment is closer to model-
ing the real world than the alternative of mini-tournaments.
In addition, placing all of the creatures in a single environ-
ment allows for a richer set of encounters. A creature has to
select its own prey, and may change to another creature tar-
get mid-way through an attack. It is possible for one creature
to be both the pursuer of a second creature, and to simulta-
neously be chased by a third creature.

In order for a creature to recognize the presence of an-
other creature, each creature can modulate the motion of its
segments based on the output of proximity sensors. More
specifically, each segment can have one sensor that is tied to
that particular segment. Thus a creature that is composed of
three segments may have up to three sensors, one for each of
its segments. Each sensor recognizes the presence of either
a heart or a mouth of another creature. A sensor is defined
by several attributes: its position relative to the segment, its
sensing radius, what body part it senses (heart or mouth), its
modulation strength, and the type of modulation that it uses
to affect its segment.

A sensor has an all-or-nothing response, depending on
whether another creature’s heart or mouth is inside the sen-
sor’s radius. Each sensor has a modulation strength m that
can be positive or negative. If a sensor is triggered, it
changes the property of the oscillating segment that it is tied
to in one of three ways. When triggered, the sensor mod-
ulation strength m may be added to the amplitude of the
segment’s length a, it may be added to the friction force fk
of the segment, or it may be added to the friction magnitude
mk of the segment. Thus a sensor may cause a spring to os-
cillate more or less, it may cause points to become more or
less sticky, or it may alter which of the endpoints of a spring
are sticky at a given time (possibly slowing or reversing the
direction of motion).

Figure 2 shows a three-segment creature that has two sen-
sors that are positioned forward of the creature’s direction
of motion. Assume that each of these sense the proximity of
another creature’s heart, and that upon doing so, this causes

the magnitude of the spring oscillations to decrease. If the
presence of another creature’s heart sets off the right-hand
sensor, this will cause the creature to be pushed forward
more weakly on its right side. This makes the creature turn
towards the creature that triggered its sensor. In this way, a
simple creature can sense and pursue other creatures. This
method of steering based on sensors and motors is in the
spirit of Braitenberg’s vehicles (Braitenberg, 1984).

Both proximity sensing and the determination of creature
capture require testing whether one point is within a given
radius of another point. In a naive implementation, testing
whether each creature’s mouth is near any other creature’s
heart requires O(n2) operations for n creatures. We speed
up this test by first noting that each creature’s heart has a
fixed radius r. To rapidly determine mouth/heart proximity,
we first create a grid of square cells with side lengths r that is
superimposed on the 2D environment in which the creatures
live. Each cell in this grid maintains a list of the hearts that
fall within the cell at the current time-step. To test whether
a creature mouth is near to any hearts, only nine cells need
to be checked, namely the cell that the mouth is currently in
and the eight neighboring cells. Testing whether a sensor is
close to a mouth or a heart is similar, but in this case the cell
size is given by the maximum radius of all sensors.

Creature Reproduction

When one creature captures another, it is rewarded by being
replicated, possibly with mutation. In our simulations we
used a mutation rate of 0.1, so that one out of ten creature
replications occurs with mutation. This is a much higher
mutation rate than is typically used in a genetic algorithm.
Note that in a genetic algorithm, most of the variation is gen-
erated by crossing-over, and we do not have such a mecha-
nism in our simulator. We also have a fairly high probability
of multiple mutations during reproduction. If a creature is
to be mutated, there is a probability of 0.4 that it will have a
second mutation, 0.42 that it will have three mutations, 0.43

for four mutations, and so on. Mutations can be grouped
into three categories: per-segment physical parameters, sen-
sor parameters, and creature body shape.

Per-segment mutations alter parameters that are specific to
a segment that is chosen at random. The possible mutated
parameters are segment length, amplitude of oscillation, fre-
quency of oscillation, phase of oscillation, and the magni-
tude of change that the segment uses to alter the friction of
its endpoints.

A sensor mutation alters one of the parameters that guides
the action of a creature. For most of these, a segment is cho-
sen at random and the parameters of the segment’s sensor
is altered. Potential changes include the angle of the sen-
sor relative to the segment’s orientation, the distance of the
sensor from the segment, the radius of the sensor, and the
sensor type (senses mouth or heart). There are three other
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mutations that change what the sensor modifies (segment
length amplitude a, friction force fk, or friction magnitude
mk). When one of these three mutations occurs, the sen-
sor is switched to modifying a particular segment parame-
ter, and a new sensor modulation strength m is chosen. A
final type of behavioral change that can occur is the verba-
tim copying of all the sensor parameters from one segment
to another. This mutation was designed in recognition of the
fact that many advances in biological evolution occur due to
duplication and divergence.

The final class of mutations are changes to the creature’s
body plan. One such mutation modifies the position of ei-
ther the heart or the mouth at random. Another body mu-
tation deletes a segment at random. This mutation is only
deemed valid if deleting the segment would not separate the
creature into disjoint components. Another mutation adds a
segment that is attached to the other segments only at one
end, producing a dangling segment. Note that such dangling
segments can still contribute to a creature’s motion. One mu-
tation fuses two such dangling segments, and another con-
nects two dangling ends with a new segment. Finally, one
mutation attaches two new segments to an already existing
segment in a manner that forms a new triangle.

When a creature is replicated, regardless of whether or not
it is a mutation, the new creature is placed in the 2D envi-
ronment at a random position and orientation. The place-
ment algorithm makes sure that the creature’s segments do
not overlap with any already existing creatures. This is done
by repeated attempts to place the new creature at random lo-
cations in a non-overlapping manner. The placement algo-
rithm can in rare cases terminate unsuccessfully after a fixed
number of placement attempts, and the maximum number of
placement trials is set to 40 in our simulations. Such place-
ment failures are an indication that the creatures are develop-
ing substantially larger bodies, and in such cases the popu-
lation size gradually decreases (through placement failures)
to accommodate this change in creature body size.

Simulation Results

We ran three classes of simulations, namely lone ancestor
runs, between-generation contests of evolved creatures, and
a tournament across creatures from many different simu-
lation runs. We report on each of these kinds of simu-
lations in turn. (Video of these results can be found at
http://www.cc.gatech.edu/∼turk/stickyfeet/)

All of the lone ancestor simulations were conducted using
the same initial conditions, with the only difference between
runs being differences in the random number seeds. In each
of these runs, the simulation begins with 100 creatures. All
but one of these initial creatures are motionless one-segment
creatures with hearts but without mouths. By design, these
static creatures cannot win an encounter with another crea-
ture. In effect, these 99 motionless creatures act as a poten-

tial food source for other creatures. The one moving creature
had a one-segment body, and it moves by changes to its seg-
ment length and by synchronized changes in friction to its
two point-masses. This forward motion is illustrated in Fig-
ure 1. The forward point-mass of this creature is its mouth,
and the back point is its heart. Sensors are not shown in this
and later figures to avoid visual clutter.

At the start of the simulation, the lone moving creature

Figure 3: The initial state of the simulator, with a single
green moving creature (top), and later snapshots of such a
simulation run (middle, bottom).
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crawls through an environment that is filled with stationary
creatures, as in Figure 3 (top). This moving creature will
be the ancestor of all the subsequent creatures in the simula-
tion. At some point, this ancestral creature strikes the heart
of a static creature. The static creature dies, and the an-
cestral creature is replicated. Further encounters with static
creatures occur, and more single-segment creatures are born.
All of these early creatures only travel in a straight line. The
2D environment is a rectangle with toroidal boundary con-
ditions, so that a creature that wanders off one side of the
world re-appears on the opposite side.

At some point, one of the early creatures is replicated with
mutation, and then there is variation in the creature pop-
ulation. As the proportion of moving creatures increases,
encounters between pairs of moving creatures start to oc-
cur. Encounters between identical one-segment creatures
are won based on their relative positions and orientations
(that is, essentially at random). Encounters between crea-
tures with different body plans are more interesting, since
there is the possibility that one of the creatures is more likely
to win based on its body plan and behavior.

The creatures that evolve are different each time a lone an-
cestor simulation is run, due to using different random num-
ber seeds. (A typical simulation to 2,000,000 time steps re-
quires roughly 4 hours of simulation time on a single 2.8
GHz processor.) Some general trends in creature success be-
come apparent by observing the creatures in such runs. First,
it is an advantage for a creature to move fast. Faster motion
implies more frequent encounters with other creatures, and
thus more opportunities to reproduce by winning such en-
counters. A pair of commonly successful features is to have
the mouth near the front of the creature and have the heart
near the back with respect to the direction of motion. Having
a forward-positioned mouth means that this creature will be
more likely to strike another creature’s heart first, before that
other creature has an opportunity to do so. A similar reason-
ing holds for the advantage of having a rear-positioned heart.
Related to this is that many successful creatures cause their
mouth to wave back and forth rapidly. This is an advantage
because such a moving mouth is more likely to strike an-
other creature’s heart. Conversely, the motion of the heart in
a successful creature is typically quite damped in compar-
ison, and the heart is often dragged by a segment that has
little or no oscillatory motion.

There is remarkable variation in body plans for fast moving
creatures. In order to get a sense of the variation between
runs, we performed 100 such lone ancestor simulations. Fig-
ure 4 shows the bodies of the most successful creatures from
these 100 lone ancestor runs. Some creatures have elongated
worm-like bodies, and they coordinate their segment oscil-
lations to make rapid forward progress. Other creatures are
composed of one or more triangles, and often such creatures
seem to pulse in a manner that helps their forward progress
while at the same time causing their mouth to swing back

Figure 4: The most successful creatures from 100 different
lone ancestor simulations. Each represents the most numer-
ous type of creature at time step 2,000,000 for a particular
simulation.

and forth. Some creatures do not move in a straight line, but
instead rotate in a circle, usually quite rapidly. Some crea-
tures have triangles that form a compact body, but also have
one or more “legs” that help to push them forward. Some of
these legged creatures move with a limping gate, while oth-
ers move in a smoother manner. One effective mode of lo-
comotion is to have two trailing segments whose oscillation
periods are offset from each other, so that while one segment
is shortening and pushing the body forward, the other seg-
ment is elongating in the recovery phase of its duty cycle.
The trails of creatures in Figure 3 (middle) illustrates some
of the variations in motions of different creatures.

There is a limit to how fast a creature can move, given that
there is a limit on segment lengths and on the frequency and
magnitude of segment oscillations. There is, however, an-
other avenue for creature evolution, and that is the ability
to sense and react to other creatures. In many lone ancestor
simulations, eventually some creatures arise that will turn
their bodies towards the heart of another creature. This is
the beginning of hunting behavior. Early in the development
of this trait, a creature typically can only sense and turn to
one side (e.g. just towards the right). Even more successful
creatures are ones that can sense and turn towards creatures
on either side. There is considerable room for fine-tuning
this hunting behavior, including adjusting the placement and
radius of the sensors, and modifying the magnitude of the
turning response when a sensor is triggered. Figure 3 (bot-
tom) shows creatures that have evolved hunting behaviors.
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Figure 5: Results from 100 between-generation creature
contests. The horizontal axis is the number of captures by
the earlier generation creature (time step 0.5 million), and
the vertical axis is the capture count for the later generation
creature from the same simulation run (time step 2 million).

Contests Between Generations

Although it appears to a human observer that later genera-
tions of creatures are more successful than earlier creatures,
we used between-creature contests to determine whether this
is in fact the case. Specifically, each of these contests is
between two creatures that both evolved in the same sim-
ulation run. In a given contest, one of the creatures is the
most numerous from time step 500,000 and the other is the
most abundant creature from the same simulation run at the
later time of 2,000,000. The goal is to see which of the two
creatures can score the most captures in a fixed number of
time steps. We ran 100 of these contests, one for each lone
ancestor simulation run.

At the start of each between-generation contest, there are
50 copies of each creature. The rules of reproduction are
modified so that this 50-to-50 ratio is always maintained
throughout the contest. Instead of reproducing the victor of
a creature encounter, the loser is removed from its current
location and placed at a random location elsewhere in the
environment. This transportation of the loser is performed
regardless of whether a creature captures a different kind of
creature, or whether it captures a replica of itself. There is
also no mutation during the contest. A count is kept of the
number of captures for each of the two types of creatures,
and this count ignores same-type captures.

Figure 5 reports on the results of the 100 between-generation
contests. Each point represents one contest. The horizontal

axis is the number of creature captures by the 0.5 million
time step creature (the earlier creature) and the vertical axis
is the number of captures by the 2 million time step creature.
Points below the diagonal line indicate more captures by the
earlier creature, and points above the diagonal indicate that
the later creature had more captures. There were 11 contests
that were won by the earlier creature, 87 won by the later
creature, and 2 ties. Note that later generations often made
substantially more captures in many of the contests. We take
this as verification that our rules for capture and reproduc-
tion are indeed effective at evolving creatures that are better
suited for survival in a multi-creature environment.

Tournament Across Simulations

Although all of the creatures that evolved from the lone an-
cestor runs appeared to have adaptations for survival, there
was a considerable variation in their modes of locomotion
and their behavior. We wanted to find how these creatures
from different simulations compared to each other when
placed in the same environment. In order to explore this, we
created a two-tier creature tournament. The first tier con-
sisted of 10 contests, with 10 creatures in each contest. The
10 winners from these contests advanced to the second tier,
where these creatures competed in a final contest that had a
single victor. Figure 6 shows a frame from such a second
tier tournament.

Each of the contests in the tournament began with 10 differ-
ent types of creatures, and 10 copies of each of these crea-
ture types. The contest rules in this tournament differ from
the between-generation contests. In particular, the winner
of each encounter is copied, causing some creature types to
become less or more numerous over time. No mutations oc-
cur during these contests. A contest ends when one type of
creature is the lone survivor.

The bright green creature in Figure 6 is the tournament win-
ner. As judged by these tournament, this is the most effective
predator from the 100 lone ancestor simulation runs. This
creature has 10 mass points and 13 segments. The body of
this creature exhibits several innovations that evolved in or-
der to make it a success. These innovations include a mouth
that swings from side-to-side, a heart that is positioned on
a “tail” that is dragged behind, the overall coordination be-
tween the oscillating segments that propels it forward, and
sensors on both sides that steer it towards prey. The creature
had been molded into this form by its numerous encounters
with other creatures. In its own simulation environment, this
creature is more deadly than all of its rivals. Nevertheless,
the most simple real-world bacteria cell is still vastly more
complex than this artificial creature. Despite this wide gulf
in complexity, we believe that our results give an indication
that multi-creature physical simulations can bring Artificial
Life closer to simulating open ended complexity.
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Figure 6: Tournament between the best 10 creatures. For
better visibility, only three of each creature has been placed
into the environment. The bright green creature is the tour-
nament winner.

Conclusion and Future Work

We make two claims of novelty in our approach to simulated
evolution:

• We simulate locomotion by dynamically changing the
friction at either end of an oscillating spring.

• Our simulator combines pursuit/evasion behavior with the
ability to evolve new physical configurations for locomo-
tion.

A third important attribute of our simulator, shared by other
researchers (Ventrella, 1996; Miconi, 2008), is that our sim-
ulated life-forms evolve in a large multi-creature environ-
ment that is driven by a simple physics engine. Taken to-
gether, these attributes create a rich synthetic environment
for the evolution of artificial creatures.

There are several logical avenues for future research. First,
there are other physical attributes that the virtual creatures
could use to broaden their styles of locomotion even further.
Oscillating torsional springs is one such possible addition.
Another direction would be to add a more realistic energy
model to the simulator. Still another fruitful avenue would
be to replace the asexual reproduction model with sexual re-
production. Finally, it would be interesting to add a develop-
mental process to our creatures, since some researchers have
found that more successful body plans can result (Komosin-
ski and Rotaru-Varga, 2001).
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Abstract
This  paper presents an abstract computation model of the evolu-
tion of camouflage in nature. The 2d model uses  evolved tex-
tures for prey, a background texture representing  the environ-
ment and a visual predator. In  these experiments, the predator’s 
role is played by a human  observer. They  are shown a cohort  of 
ten evolved textures overlaid on the background texture. They 
click on the five most conspicuous prey  to  remove (“eat”) them. 
These lower fitness textures  are removed  from the population 
and replaced with newly bred textures. Biological morphogene-
sis  is represented  in this  model  by procedural texture synthesis. 
Nested expressions of generators and  operators  form a texture 
description  language. Natural evolution  is represented by  ge-
netic programming, a variant  of the genetic algorithm. GP 
searches the space of texture description programs for those 
which appear least conspicuous to the predator.

Introduction
That animals often resemble their environment has been ob-
served since ancient times. This sometimes incredible visual 
similarity highlights the adaptation of life to its environment. 
Since the earliest publication on evolution, camouflage has 
been cited as a key illustration of natural selection’s effect:

When we see leaf-eating insects green,  and bark-feeders 
mottled-gray; alpine ptarmigan white in winter, the red-
grouse the colour of heather, and the black-grouse that of 
peaty earth, we must believe that these tints are of service 
to these birds and insects in preserving them from danger.
– Charles Darwin, 1859
   On the Origin of Species by Means of Natural Selection

Natural camouflage appears to result from coevolution be-
tween predator and prey.  Many predators use vision to locate 

their prey, so prey have a survival advantage if they are harder 
to see. Predators with superior vision are better able to find 
prey, giving them a survival advantage. Over time this leads to 
well camouflaged prey and to predators with excellent eye-
sight and a talent for “breaking” camouflage.

The hypothesis for these experiments was that selection 
pressure from a visual predator will gradually eliminate the 
most conspicuous (least well camouflaged) prey from the 
evolving population.  Prey would then converge on more ef-
fective camouflage. The results presented here lend support to 
this idea and point the way to more powerful human-computer 
hybrid systems as well as future simulation studies of the co-
evolution of prey camouflage and predator vision.

As defined in (Stevens and Merilaita,  2009) the term cam-
ouflage includes all strategies of concealment. To distinguish 
from hiding,  this is taken to mean reducing the chance of rec-
ognizing an animal which is otherwise in plain sight. (Thayer, 
1909) describes a bird “in plain sight but invisible.” The more 
specific term crypsis refers to preventing initial detection, 
including the sort of cryptic coloration commonly implied by 
the term camouflage. For comparison, crypsis helps prey 
avoid detection while mimicry protects by leading predators to 
misclassify prey after detection.

A common misconception about camouflage is that ideally 
it should match the background. This is generally untrue ex-
cept for homogenous environments like white snow or green 
leaves.  Consider a color-matched and borderless photographic 
print of an environment, say the surface of a rock.  If the print 
is placed on the rock it will not be perfectly cryptic. Disconti-
nuities at the edge of the print stimulate low level edge detec-
tors in the visual system, causing a strong perception of a rec-
tangle. Moving the print to another location on the rock will 
also reveal subtle variations in color and texture which add 
additional contrast at the edge of the print.

Much recent work on camouflage (see next section) has 
focused on the importance of disruptive camouflage.  While 
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Figure 1: camouflaged “prey” overlaid on the background image for which they were evolved
(a) tree bark, (b) twisty wire, (c) flowers, (d) serpentine, (e) Yosemite granite
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these patterns often echo colors and textures from the envi-
ronment,  their effectiveness comes from their ability to visu-
ally disrupt the visual silhouette of an animal. This can pre-
vent a predator from recognizing that an object is an animal, 
or even prevent the detection of an “object” in the first place, 
see (Schaefer and Stobbe, 2006). Paradoxically,  camouflage 
that does not match the background can be more effective 
through the use of strong visual features (false edges) that 
intersect the object’s real edges (Stevens and Cuthill,  2006). 
Most of the effective camouflage patterns evolved in these 
experiments appear to have disruptive qualities.

The work described here lies between computer science and 
evolutionary biology. This multidisciplinary middle ground is 
variously called theoretical biology,  mathematical biology or 
artificial life. Research in this middle area has the potential to 
benefit all related fields. From a computer graphics perspec-
tive, this could be seen as a special case of goal-oriented tex-
ture synthesis where new textures can be created from a de-
scription of desired image properties.  To biologists,  a compu-
tation model of camouflage evolution could allow new types 
of theoretical experiments to be conducted in simulation 
which are not subject to constraints imposed by working in 
the field, or with live animals, and in general is not limited to 
examples found in Earth’s biosphere.

Related Work
Over the last century several seminal works have surveyed the 
broad topic of camouflage in nature. These include (Beddard, 
1895), (Thayer, 1909) and (Cott, 1940).  The latter two con-
tinue to be widely cited today. Over the last 20-30 years there 
has been a significant renaissance in the study of camouflage. 
Before that,  work in this area tended to be more descriptive 
than experimental. It is challenging to design well-controlled 
studies of the effectiveness of camouflage in either the field or 
the laboratory. Still with careful design and patient experimen-
tation,  studies providing new insights have appeared regularly 
in the biological literature. For an excellent recent survey, see 
(Stevens and Merilaita, 2009).

Of particular relevance to the work presented here are vari-
ous experiments offering artificial prey to real predators. 
Many valuable results have been obtained with a similar ex-
perimental design involving “cardboard moths” (Cuthill, et al. 
2005) and avian insectivores: wild birds that naturally prey on 
moths. During the day these nocturnal moths rest on tree 
trunks protected by their cryptic wing coloration. Artificial 
moths are constructed with cardboard wings decorated with a 
color printer, a worm is attached to serve as an edible “body,” 
and the “moth” is attached to a tree trunk. A missing worm is 
taken to indicate that a wild bird detected and attacked the 

moth.  This technique has shown the key important of disrup-
tive coloration (Schaefer and Stobbe, 2006), measured the 
disadvantage of symmetrical camouflage (Cuthill, et al. 2006), 
and several related topics.

Other experiments have used live captive birds (Bond and 
Kamil,  2002) and humans (Sherratt, et al.  2007) as predators 
of “virtual artificial prey” on a display screen. In both cases 
this predation was used to drive a evolutionary computation 
like in the work described here. In (Merilaita, 2003) artificial 
predators learn to detect artificial prey whose camouflage 
evolves to avoid detection.  However the textures used are 
quite small, 4 to 8 symbolic pixels. A recent simulation-based 
study looked at a unique three-player camouflage game based 
on evolution of flower color (Abbott, 2010).

The original idea of using an interactive task as the fitness 
function for an evolutionary computation goes back to the 
Blind Watchmaker software that accompanied (Dawkins, 
1986). That application displayed a grid of biomorphs, small 
tree-structured line drawings with a genetic description.  The 
user picked a favorite which was mutated several times to 
produce a new generation. Dawkins introduced the idea of 
intentionally evolving toward a goal,  a biomorph he called the 
“holy grail.” Karl Sims combined a similar approach with 
genetic programming and a rich set of image processing func-
tions to create an interactive system for aesthetic evolution of 
texture patterns (Sims,  1991).  In (Funes, et al. 1998) and other 
papers,  Jordan Pollack’s DEMO group describe their TRON 
project where game-playing agents were evolved in competi-
tion with each other and then in competition with human 
players over the web. A survey of related techniques used to 
create game content is presented in (Togelius, et al.  2010). A 
deep survey of the whole field of interactive evolutionary 
computation is found in (Takagi, 2001).

This work conceptually overlaps the large body of work in 
example-based texture synthesis, also known as texture exten-
sion,  which creates arbitrarily large texture patterns to match a 
small exemplar texture (Wei,  et al.  2009). Using this technique 
to generate camouflage image puzzles is described in (Chu, et 
al.  2010). In contrast, the synthesis of camouflage texture 
described in this paper does not “see” or otherwise access the 
input texture.  Instead the background can only be inferred 
from the indirect evidence of predation,  as it is in evolution of 
natural camouflage.

Texture Synthesis
In nature, patterns of surface coloration on plants and animal 
result from complex genetic and developmental processes 
collectively called morphogenesis (see for example, (Eizirik,  
et al.  2010)).  In this simulation model,  pattern formation is 

Figure 2: these camouflaged prey are only partially or occasionally effective, features in this peppers background were too large to “solve”
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represented by procedural texture synthesis (Ebert, et al. 
1994). More specifically, this work uses programmatic texture 
synthesis. Textures are defined by nested expressions of gen-
erators and operators, forming a programming language for 
textures. Generators produce results of type Texture from 
simple types (numbers, 2D vectors and RGB colors). Opera-
tors are similar but have one or more Texture parameters. 
These nested expressions look like composition of functions 
(see Figures 12 and 13) although in this implementation they 
are specifically constructors for C++ classes representing the 
various types of procedural textures.  Once the tree of proce-
dural texture objects is constructed,  its root provides an inter-
face for rendering pixels.

This texture synthesis library (Reynolds, 2009) brings to-
gether several preexisting techniques. Its generators include 
uniform colors and simple patterns like spots and color grada-
tions. There are a collection of gratings (e.g.  a sine wave grat-
ing) and an assortment of noise patterns such as noise and 
turbulence (Perlin, 1985) plus variations on these. The li-
brary’s collection of texture operators include simple geomet-
rical transformation (such as scale, rotate and translate), sim-
ple image processing operations (add, subtract,  multiply, ad-
justment of intensity, hue, saturation), convolution-based op-
erations (blur, edge detect, edge enhance),  operators to pro-
duce multiple copies of a texture (row, array, ring),  and a col-

lection of image warping operators (stretch, wrap, twist,  ...). 
Several operators use a 1D “slice” of a texture, such as color-
izing one texture by mapping its brightness into colors along 
the y=0 axis of another texture.  Only convolution-based tex-
ture operators have fixed pixel resolution,  all others use float-
ing point coordinates. The complete texture synthesis API 
used in these experiments is listed in Appendix 1. Missing 
from the library are reaction-diffusion and other compute 
heavy textures, awaiting a GPGPU implementation.

Evolutionary Computation
The texture synthesis library described in the previous section 
was designed for use with genetic programming  (Koza, 1992). 
Like the closely related genetic algorithm (Holland, 1975), 
GP is a stochastic technique for population-based (parallel) 
search and optimization in high dimensional spaces. These 
evolutionary computation (EC) techniques are inspired by 
evolution in the natural world and share some of its attributes. 
While GP is used in this work as a model of natural evolution 
it is important to keep in mind the vast differences between 
the two.  For example,  natural  evolution works with very large 
populations and very long time scales. Much of the engineer-
ing in evolutionary computation has to do with getting useful 
results without requiring billions of individuals or waiting 
millions of years.

A genetic programming system maintains a population of 
individuals, each of which represent a program expressed in a 
given grammar. In this work, each individual is a program that 
defines a procedural texture. These programs can be thought 
of as nested expressions of composed functions, or as a tree of 
functional nodes. The GP population is initialized to randomly 
generated programs. GP uses a given fitness function (objec-
tive function) to evaluate each individual. Fitness is used to 
select which individuals will reproduce to create new off-
spring programs to replace lower fitness individuals in the 
population.  New individuals are created by genetic operators 
such as crossover and mutation. GP crossover involves replac-
ing a sub-node of one program with a sub-node of another 
program. It is essentially “random syntax-aware cut-and-
paste” between programs. Over time, programs containing 
beneficial code fragments become more numerous in the 
population.  Crossover tweaks these programs, juxtaposing 
code fragments in new ways. Some changes improve fitness 
and some reduce fitness, but the population is biased to collect 
the good and discard the bad.

For these experiments,  genetic programming was imple-
mented with the excellent open source library Open BEAGLE 
(Gagné and Parizeau, 2006),  (Open BEAGLE, 2002). This 
flexible framework provides support for many common types 

Figure 3:  progression of camouflage patterns during a run with the granite environment

Figure 4: “random” textures automatically evolved with genetic 
programming using a non-interactive ad hoc fitness function
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of evolutionary computation while also allowing customiza-
tion of all  aspects of the process.  For example Open BEAGLE 
supports the variation on GP used here that allows mixtures of 
data types known as strongly typed genetic programming or 
STGP (Montana,  1995). In addition Open BEAGLE’s struc-
ture allows changing its population replacement strategy op-
erator and fitness evaluation operator to implement the novel 
cohort fitness used for interactive evaluation of relative cam-
ouflage effectiveness.

In these experiments GP populations consist of 100 or 120 
individual texture programs.  These are run, on average, for the 
equivalent of 100 generations using steady state replacement. 
So roughly 10000 individuals are bred and have their fitness 
tested in 1000 cohorts of 10 individuals each.  The population 
is divided into 4 or 5 demes (islands, isolated breeding popula-
tions, with occasional migration) of 20 or 30 individuals each. 
In addition to GP  crossover between programs,  the floating 
point constants in each program were subjected to incremental 
(“jiggle”) mutation. Figure 4 shows early tests (before the 
interactive camouflage experiments) of evolved textures using 
using an ad hoc fitness function. This fitness function merely 
measures simple image properties such as a somewhat uni-
form brightness histogram and some color variation. These 
textures were created automatically with no human in the 
loop, then interesting results were hand selected for Figure 4.

Interactive Evaluation of Camouflage
The role of predator in these experiments is played by a hu-
man observer who visually compares the quality of evolved 
camouflage patterns.  This happens in a simple graphical user 
interface. The user sees a blank window and clicks the mouse 
or trackpad to begin a “round” of the camouflage game. The 
window is redrawn to show a background texture on which is 
overlaid a cohort of circular prey objects, each with an 
evolved camouflage texture, see Figure 5. In these experi-
ments a cohort contains ten individuals. Prey are placed on the 
background in random non-overlapping positions.  They were 
allowed to extend partially outside the window,  perhaps a 
poor choice.

The user’s task is to inspect the scene, locate prey objects, 
and select the one that appears most conspicuous—that con-
trasts most strongly with the background.  This selection is 
indicated with a mouse click on the prey object,  signaling the 
act of abstract predation. In response the GUI records the se-
lection, removes the selected prey from the cohort and redis-
plays, erasing the prey.  Now the scene consists of the back-
ground with n-1 prey objects and the user selects the next 
most conspicuous. This process is repeated five times, leaving 
five survivors from the original cohort of ten.  (Cohort size and 
the number “eaten” can be varied, 10 and 5 seemed to work 
well in these experiments.) The window returns to its blank 
state and awaits the next round.

In typical GA/GP application, fitness conveys fine grada-
tions of quality. In this model,  fitness is binary: life or death. 
Individuals selected by the predator are removed from the 
population.  This is similar to the selective breeding of (Unemi, 
2003). Survivors, spared by the predator, retain their high 
fitness and pass into the next generation (called elitism in evo-
lutionary computation).  For each “round” of the camouflage 
game,  the predator looks at a cohort of ten textured prey. 

These are drawn randomly from a deme population which is 
half newly bred and half survivors from earlier generations. 
From this cohort of 10 new and old prey, the predator “eats” 
those with the least effective camouflage in the cohort.  This 
culls out both ineffective new prey and old obsolete prey. Im-
provement during one run is shown in Figure 3.

Figure 5: screen shots showing interactive sessions with
“serpentine” (top) and “twisty wires” (middle) and “flowers” 

(bottom) environments. In all three, a new cohort of ten evolved 
textures is shown overlaid on the background.
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The original plan was that a static image of prey over back-
ground would be presented to the user who would then click 
on the prey in order of conspicuousness. However it seemed 
the user might lose track of which prey had already been se-
lected.  Some sort of mark could be drawn to indicate which 
had been selected.  But the presence of those already selected 
(more conspicuous) prey, if not the marks themselves, might 
interfere with finding the nth most conspicuous prey. Erasing 
prey as they are selected removes this potential distraction. It 
gives the user a less demanding cognitive task: scan the image 
and identify the most conspicuous remaining prey.  This kind 
of salience detection seems to happen at a low level in the 
vision system and requires little or no abstract reasoning (Itti, 
et al. 1998).

Still this task can be ambiguous for the human observer. 
Given a green background and a collection of red, purple and 
checkerboard prey textures—as might happen in the early 
stages of an evolution run—it can be hard to decide which of 
the conspicuous prey is the worst match to the background.

Results
While not all evolutionary runs found convincing results, 
some produced effective camouflage. In fact some evolved 
camouflage was so effective that they were missed in the 
user’s initial scan for prey. They were overlooked until a count 
revealed a “missing prey” and a second, more careful, visual 
search was made. That a jaded experimenter was actually 
fooled by evolved camouflage is a significant success. This 
happened with the “bark” background in Figure 1a.  Similarly 
it was very hard to pick out some of the prey in the run with 
the “serpentine” background shown in Figure 5.

In these experiments, the evolving prey population usually 
moved toward matching the typical color or texture of the 
background. Matching on multiple characteristics was appar-
ently harder. Sometimes a run would find the exact color but 
never really get the pattern right (see Figures 10(right) and  
11) and vice versa (Figure 10(middle)). A few times both 
came together to produce a compelling result. Combinations 
of multiple colors seemed a much harder target for adaptation. 
This was especially true when features in the background 
were larger than the prey (as for example with “berries” (Fig-
ure 6) and “peppers” (Figures 2 and 7)).  Prey size implies an 
upper bound on the size of features (lower bound on spatial 
frequencies) that can be matched. In the extreme, an environ-
ment made up of large areas of uniform appearance allows no 
effective camouflage for small prey.

Evolutionary computation commonly produces a mix of 
successful and unsuccessful runs. Some variability is inevita-

ble using a stochastic optimization technique. When too many 
bad runs are seen, a typical fix is to run the evolutionary com-
putation with a larger population.  For a standard EC applica-
tion this is just a matter of investing more processors or time. 
With an interactive fitness function there is a trade-off be-
tween bigger populations and the limits of human endurance. 
In these experiments,  a typical run has 1000 cohorts, so re-
quires about 5000 mouse clicks. If the user can keep up a blis-
tering pace of one evaluation and click per second, a run costs 
about 1.5 hours of mind numbing work. My rate is signifi-
cantly slower, plus I cannot work steadily at it for more than 

Figure 6: accidental “blue” berries

Figure 7: pattern on prey similar to stem on red pepper above it.

Figure 8:  progression of camouflage patterns during a run with the pebbles environment
(nice color-matched texture, followed by better frequency matching, then something like feature matching)

Figure 9 lentils
(near feature size limit)



Proc. of the Alife XII Conference, Odense, Denmark, 2010 509

15-30 minutes at a sitting. See Future Work about addressing 
this problem with distributed human computation.

These experiments are based on the hypothesis that camou-
flage can be evolved,  given only that an observer can identify 
the most conspicuous prey in a group. While effective camou-
flage patterns have been found,  this idea is not clearly proved. 
The methodology used here presents a risk of experimenter 
bias.  The same person advances the hypothesis and serves as 
the subject in an experiment to test it. With knowledge of how 
the interactive task is mapped into fitness,  it is possible to 
“game” the task, using it for aesthetic selection as in (Sims, 
1991). For example,  the user might be reluctant to “eat” a prey 
with a particularly interesting camouflage pattern, even if it 
were more conspicuous than others in the cohort.

It would be inappropriate to call it an instance of “mimicry” 
but some interesting shapes evolved in a run using the mixed 
berries background (see Figure 6). While the colors are wrong 
and the shapes and textures are off, some of the prey looked a 
bit like blueberries with a frosted white surface and a sugges-
tion of the “crown” (remains of the flower) at the end of a 
blueberry.  Similarly in a “peppers” run a prey was found that 
looked a lot like the top of a red bell pepper with its green 
stem (see Figure 7).  These chance similarities do not say 
much about mimicry in nature, except that one can see how 
easily it can arise and then be amplified and refined by even a 
small survival advantage. 

See http://www.red3d.com/cwr/iec/ for additional results.

Future Work
These initial experiments were intended as the first steps in a 
more comprehensive study of camouflage evolution. Beyond 
refining this technique, two new research directions are 
planned.

Refinements on the current approach include improvements 
to the texture synthesis library and modified user interaction. 
Cohorts now contain a fixed number of camouflaged prey. It 
may be helpful to vary this number to remove a clue that well 
camouflaged prey have been overlooked.  (Kashtan, et al. 
2007) suggests that periodically changing evolutionary goals 

provides better results. For camouflage evolution, this might 
equate to periodically cycling between several related back-
ground images, perhaps several photographs of a similar envi-
ronment.

The first new research direction is to use distributed human 
computation over the Internet to allow using larger genetic 
populations. This should provide stronger results and allow 
tackling more challenging kinds of background images. One 
approach is simply to pay people to perform the interactive 
fitness test. Utilities like Amazon Mechanical Turk (Amazon, 
2005) provide infrastructure to crowdsource small tasks like 
these requiring human judgement.  Another approach is to 
entice people to participate voluntarily by casting the task as a 
game—a “game with a purpose” like the Google Image La-
beler (Google,  2006) and other examples at gwap.com. Sev-
eral techniques have been identified to change a mundane task 
into a game, such as scores, time limits, leader-boards and live 
competition against other human players, see (von Ahn and 
Dabbish, 2008).

The second new research direction is to investigate syn-
thetic predators  to allow evolving camouflage without a hu-
man in the loop. Using techniques from machine vision and 
machine learning, the goal would be to train an agent to 
“break” camouflage.  It would need to analyze an image,  iden-
tify unusual salient regions (Itti, 1998), and classify them as 
being either part of the background or potential camouflaged 
prey. Such an agent could then be coupled with the texture 
synthesis and evolutionary computation components of the 
current work to form a closed co-optimization loop (see (Wil-
son, 2009) for a similar proposal). Camouflaged prey would 
demonstrate fitness by avoiding detection while predator vi-
sion agents would demonstrate fitness by detecting camou-
flage prey. Such a system would provide a useful computation 
model of the coevolution of camouflage.
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Appendix 1: Texture Synthesis Details
One input to Strongly Typed Genetic Programming (Montana, 
1995) is a description of a set of functions and the types asso-
ciated with their inputs and outputs.  The texture synthesis 
library used in this work included types for procedural tex-
tures, 2d Cartesian vectors, RGB colors and numbers. There 
are five numeric types,  all floating point, with unique ranges 
(and so whether negative or zero values are included).  Ran-
dom constants (GP calls them ephemeral constants) are gen-
erated according to these types. 

The texture synthesis library contained 52 texture produc-
ing elements.  Some of the names are self-descriptive, for oth-

ers, and for description of parameter types for each,  see (Rey-
nolds, 2009). Texture generators: UniformColor,  Soft-
EdgeSpot,  Gradation, SineGrating,  TriangleWaveGrating, 
SoftEdgedSquareWaveGrating, RadialGrad, Noise, Color-
Noise, Brownian, Turbulence, Furbulence, Wrapulence and 
NoiseDiffClip. Texture operators: Scale, Translate,  Rotate, 
Mirror, Add,  Subtract, Multiply,  Max, Min, SoftMatte,  Ex-
pAbsDiff,  Row, Array,  Invert, Tint, Stretch, StretchSpot, 
Wrap,  Ring, Twist, VortexSpot, Blur, EdgeDetect, EdgeEn-
hance, SliceGrating, SliceToRadial,  SliceShear,  Colorize, 
Gamma, AdjustSaturation, AdjustHue, BrightnessToHue, 
BrightnessWrap, BrightnessSlice4,  HueIfAny,  SoftThreshold, 
SpotsInCircle and ColoredSpotsInCircle.
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Extended Abstract

Homeostasis is a critical property of living beings that involves the ability to self-regulate in response to changes in the
environment in order to maintain a certain dynamic balance affecting form and/or function. The importance of homeostasis
is pronounced in multi-cellular organisms where function and structure needs to be regulated at ever increasing levels of
organisation (Cunliffe, 1997).

In this talk we will address the evolution of homeostasis in a computational framework and investigate structural home-
ostasis in the simplest of cases, a tissue formed by a mono-layer of cells. To this end, we made use of a 3-d hybrid cellular
automaton, an individual-based model in which the behaviour of each cell depends on its local environment (Gerlee and
Anderson, 2009). This was implemented by using a response network, which for each cell takes extra-cellular cues as
input, and whose output determines the phenotype or behaviour of the cell (cell division, movement, death).

Instead of dictating a given mapping from environment to phenotype, we made use of an evolutionary algorithm (EA) to
evolve cell behaviour which gives rise to a homeostatic tissue (Streichert et al., 2003; Stanley and Miikkulainen, 2003;
Andersen et al., 2009). The fitness of a genotype (response network) was evaluated by running the cellular automaton
seeded with a single cell for given number of time steps. Cell types which can fill the domain with a mono-layer of cells
are given the highest fitness, while those which either over-grow or fail to fill the domain are punished. We made use of
two different fitness functions, one which uses a constant fitness evaluation where each cell type is tested for 200 time steps
(constant), and another which increases the evaluation time for each successive generation (incremental). An example of
run with a constant fitness evaluation scheme is shown in fig. 1.

Analysis of the solutions provided by the EA shows that the two evaluation methods gives rise to different types of solutions
to the problem of homeostasis. The constant method leads to almost optimal solutions, which rely on a very high rate of
cell turn-over, and this is achieved by fine-tuned balance between cell birth and death. The solutions from the incremental
scheme on the other hand behave in a more conservative manner, only dividing when necessary, and generally have a lower
fitness.

In order to test the robustness of the solution we subjected them to environmental stress, by wounding the tissue, and to
genetic stress, by introducing mutations. The cell types with high turn-over were more robust with respect to wounding,
healing faster and more accurately. The sensitivity to genetic perturbations depends on what type of mutations we con-
sider. Copy mutations, which only occur when the cells divide, affect the tissues with a high turn-over, while cosmic ray
mutations, which occur at a constant rate, are more detrimental to the conservative cell types.

The two evolved cell types analysed present contrasting mechanisms by which tissue homeostasis can be maintained. This
compares well to different tissue types found in multi-cellular organisms. For example the epithelial cells lining the colon
in humans are shed at a considerable rate (Podolsky and Babyatsky, 2003), while in other tissue types, which are not as
exposed, the conservative type of homeostatic mechanism is normally found (Hooper, 1956).

These results will hopefully shed light on how multi-cellular organisms have evolved and what might occur when home-
ostasis fails, as for example in the case of cancer (Preston-Martin et al., 1990).
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Figure 1: Time evolution of the EA. (a) shows the most fit genotypes at different generations in the run, where the process
converges on a genotype which predominately proliferates. The time evolution of the average and maximum fitness is shown
in (b), which, because of a weighted multi-objective fitness function, does not necessarily increase over time (Bentley and
Wakefield, 1998). The cell density of the final genotype (T = 19) is shown in (c), and reveals that the solution arrived upon by
the EA forms a mono-layer, and thus satisfies our criteria for a homeostatic genotype.
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Abstract

The weakly electric fish use their electric organ discharge
(EOD) and electroreceptors to identify their prey, explorein
their surrounding environment, and communicate with their
members in the same species. They are specialized in active
electrolocation. They can detect the distortion of the self-
generated electric field, which is caused by a target object.
There are two types of electric signals, wave-type and pulse-
type, that the weakly electric fish can generate. In this paper,
we suggest that periodic EOD signals are helpful to extract
localization features from noisy electrosensory signals.The
cross-correlation between an efference copy signal and the
sensory afferent signals in the waveform can produce accu-
rate relative slope in noisy environment. This process has
two-phase filtering. The noise-filtering with cross-correlation
with respect to the temporal axis and additional filtering with
respect to rostrocaudal spatial axis can effectively remove
noise, and thus this process provides accurate informationof
the distance of a target object.

Introduction
Weakly electric fishes localize a target object by their elec-
trolocation system. They are known as only creatures that
use active electrolocation with their self-generated electric
field (Lissmann, 1958). Electric organ (EO) consists of a
modified nerve and muscle cells, and is generally located
in caudal area (Kramer, 1999). The EO composed of elec-
trocytes produces an EOD. EODs have waveform character-
istics. There are two types of waveforms, pulse-type and
wave-type. A lot of Gymnotiformes and all of Mormyri-
formes (exceptGymnarchus niloticus) generate a pulse-type
of EOD. The pulse-type waveform has short pulses with
large intervals between pulses. It is believed that electric
fish use a waveform of EOD to recognize another electric
fish (Bastian, 1994). In this paper, we focus on the electrolo-
cation of weakly electric fish and an advantage of periodic
characteristics of EOD waveform in noisy environment.

There are two types of electroreceptors, tuberous and am-
pullary electroreceptors (Nelson et al., 2000; von der Emde
and Fetz, 2007). These electroreceptors respond to elec-
tric stimuli. Usually, ampullary electroreceptors are found
in elasmobranch, such as sharks and rays, and they lack

in active electric organ. Elasmobranch do not generate the
electric field, but just detect the bio-electric signals gener-
ated by another creatures. All living animals produce bio-
electric signals generated by activation of their muscle and
nerve cells. Weakly electric fish have another type of elec-
troreceptors. They detect the change of their own electric
signal by tuberous electroreceptors through active sensing
(Nelson et al., 2000). About14, 000 tuberous electrorecep-
tors are distributed all over the body surface ofApteronotus
albifrons, a species of weakly electric fish. Sensor readings
of electroreceptors can provide information to localize their
prey, navigate in space, and communicate with conspecifics.

The localization of a target object is very important to cap-
ture a prey, avoid their predators, or navigate in the environ-
ment. Weakly electric fish produces the electric field and
senses the distortion of electric field with many electrore-
ceptors on the whole skin surface. These sensor readings
are considered as ‘a stimulus image’ observed at the set of
electroreceptors and it is called ‘electric image’ (Caputiand
Budelli, 2006; von der Emde, 2006). The intensity value of
sensor readings are inversely proportional to the distancebe-
tween a target object and the sensor location on the surface.

When a target object is located near the weakly electric
fish, sensor readings of electroreceptors draws a bell-shaped
curve. The rostrocaudal (from head to tail) position of a
target object can be easily measured with maximal ampli-
tude of an electric image(Rasnow, 1996; Chen et al., 2005).
When the target object becomes far away from the electric
fish, the maximal value of sensor readings decreases. The
maximum amplitude of the electric image is also affected
by the size and conductivity of the target object. To measure
the lateral distance of a target object from the midline axisof
weakly electric fish, the relative slope and full-width at half-
maximum (FWHM) have been suggested as a distance mea-
sure (Schwarz and von der Emde, 2001; Chen et al., 2005).

If we have a clean electric image without noise, it is not
difficult to get the lateral distance by the relative slope or
FWHM. The relative slope is the ratio of the maximal slope
to the maximal amplitude of sensor readings in the rostro-
caudal axis (Schwarz and von der Emde, 2001). The FWHM
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Figure 1: Electric field generated by the EO of weakly electric fish
(solid contour lines indicates equipotential lines)

is the width of the bell-shaped curve at half of the maximal
amplitude (Chen et al., 2005). The change of electric signal
is affected by the size and lateral distance of a target object.
The width becomes larger when the size of a target object
increases. Thus the ratio between maximum amplitude and
width, or the ratio between maximum amplitude and slope
can be a cue for the lateral distance without considering an-
other properties of the target object, for example, size and
conductivity. However, when electric potentials at the elec-
troreceptors include noisy signals, the preprocessing step is
needed to extract noise-free signals. We suggest a method
using a waveform of EOD to extract the denoised electric
image and measure the lateral distance of a target object.

In the previous researches, it has been pointed out that
electric properties of a target object can be measured by the
distortion of EOD waveform (von der Emde, 1998). Yet,
how to handle noisy signals for the relative slope informa-
tion has not been studied so far. In this paper, we observe a
waveform of EOD to measure the lateral distance, and then
the filtering process with respect to time axis as well as spa-
tial axis is applied to obtain noise-free signals. Ultimately
we can estimate the distance of a target object very accu-
rately. Here, we use the cross-correlation between an effer-
ence copy signal and the sensory afferent signals to obtain
the filtered output in the temporal axis and then apply a low
pass filter to the output of electroreceptors along the rostro-
caudal axis.

Localization of a target object

Fig. 1 shows electric field generated by the EO of weakly
electric fish. We use an electric field model ofA. alb-
ifrons which belongs to Gymnotiformes species established
by Rasnow (1996) and Chen et al. (2005). The electric field
is radically spread to every direction of the body of weakly
electric fish.

Gymnotiform fishes generate continuous periodic wave-
form which has symmetric maximum and minimum point
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Figure 2: EOD waveform (a) original self-generated waveform (b)
noisy waveform)

with respect to the zero point (Fugere and Krahe, 2010).
Fig. 2 shows the simulated EOD waveform that has fre-
quency1kHz. It is known thatA. albifrons generates such
EOD waveforms which have about1kHz frequency (Nel-
son and MacIver, 1999).

Electric field modeling
The EO is modeled as a collection of electric poles (Rasnow,
1996; Chen et al., 2005). Then the electric potential can be
calculated as a total sum of potential from each electric pole.
When there aren electric poles,n − 1 positive poles and
one negative electric pole, arranged along the midline of the
weakly electric fish, the electric potential,V (~x), derived as

V (~x) =

n−1
∑

i=1

q/(n − 1)

|~x − ~xi
p|

−
q

|~x − ~xn
p |

(1)

where~x is the position of measured position,~xi
p the position

of i-th electric pole,~xn
p lastn-th negative pole. The value of

q means the normalized potential magnitude which ranges
from 8mV to 20mV (Chen et al., 2005). The total sum of
potential magnitude of the whole electric poles including the
negative pole should be zero. Thus, the magnitude of a pos-
itive pole isq/m and a negative pole−q. The electric field
E(~x) at the position of~x is derived as the gradient of the
electric potential as

E(~x) =

n−1
∑

i=1

q/(n − 1)

|~x − ~xi
p|

3
(~x−~xi

p)−
q

|~x − ~xn
p |

3
(~x−~xn

p ) (2)

To consider the component of the incident electric field
vertical to the surface of a weakly electric fish, the transder-
mal potential difference,Vtd(~x), is calculated as

Vtd(~xs) = E(~xs) · n̂(~xs)
ρskin

ρwater

(3)

wheren̂(~xs) is the normal vector at the electroreceptor on
the skin, andρskin andρwater resistivity of skin surface and
water, respectively.
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Figure 3: Electric image distorted by a neighboring target object
along the rostrocaudal line on the surface of weakly electric fish
with varying (a) the rostrocaudal position (b) the lateral distance
(c) the size of a target object (modified from (Sim and Kim, 2010))

Rasnow (1996) and Chen et al. (2005) show the effect of
a simple spherical object as a targt object. The distortion of
electric field caused by a neighbor target object,∆V (~x), is
calculated as

∆V (~x) = χ
a3E(~xobj) · (~x − ~xobj)

|~x − ~xobj |3
(4)

wherea is the radius and~xobj the center of a spherical tar-
get object. The transdermal potential difference of an object
perturbation∆Vtd(~xs) is given by

∆Vtd(~xs) = −∇(∆V (~x)) · n̂(~x)
ρskin

ρwater

(5)

Electric image
The change of transdermal potential value (equation (5))
due to a target object along the rostrocaudal axis draws a
bell shaped curve (see Fig. 3) when the position and size
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Figure 4: Relative slope when the lateral distance of the target ob-
ject changes with varying object sizes (each marker represents a
radius of0.4, 0.8, 1.2, 1.6, 2.0cm) (modified from (Sim and Kim,
2010))

of the object change. It forms one-dimensional electric im-
age. Fig. 3 (a) shows the variation of electric images when
the rostrocaudal position of the target object changes. The
maximal amplitude of the electric image is found at the ros-
trocaudal position of the target object. The level of intensity
depends on the interaction with positive and negative poles.
If the object is closer to the tail, the stronger intensity can be
observed for the same lateral distance. In Fig. 3 (b) and (c),
the rostrocaudal position of the target object is fixed, and
thus the location of the maximum amplitude has no shift,
but only changes of maximal amplitudes are observed at a
fixed rostrocaudal position. The intensity is affected by not
only the lateral distance but also the size of the target object.
Therefore, the intensity is not a direct cue for the distance.

In a three-dimensional space, we can consider rostrocau-
dal, lateral, and dorsoventral axis (from dorsal to ventral
side) with respect to the fish body. The rostrocaudal and
dorsoventral position of a target object can be determined
directly from the location of the maximum intensity. The
maximal amplitude can be observed at the point close to the
target object. In contrast, the lateral distance can be esti-
mated by the ratio between the maximal value, slope, and
width of the electric image.

We use the relative slope to measure the lateral distance
of a target object. To extract proper features from noisy sig-
nals, we need to consider filtering process. Here, we suggest
spatiotemporal filtering process over noisy electric signals.

Relative slope
The relative slope is the ratio of the maximal slope to the
maximal amplitude of the object perturbation curve (electric
image) and it is not affected by size and conductivity of the
target object. Fig. 4 shows the change of relative slope when
the target object moves away along the lateral axis with vary-
ing object sizes. The relative slope is not affected by the
conductivity, either.
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Figure 5: Electric image when noise is distributed uniformly from −5 × 10−6 to 5 × 10−6; (a) and (c) lateral distance of a target object is
2cm; (b) and (d)4.8cm (solid : electric image without noise, dotted : distorted electric image, dashed : filtered image with cut-off frequency
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Figure 6: Denoised electric image using low pass filter when there exist Gaussian noise with variance5 × 10−6; (a) and (c) lateral distance
of a target object is2cm; (b) and (d)4.8cm (solid : electric image without noise, dotted : distorted electric image, dashed : filtered image
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We use relative slope to measure the lateral distance.
However, in the natural environment, noisy signals are in-
evitably observed in electric images. Pure electric signals
of object perturbation are mixed up with noise. It is diffi-
cult to estimate the relative slope accurately with the two
noisy parameters, amplitude and slope in the electric im-
age. Thus, we suggest a possible noise-filtering analysis
over the spatiotemporal sensor readings. To smooth these
distorted electric signals, we take two phase of filtering pro-
cess, cross-correlation with self-generated EOD waveform
and low pass filter over a collection of sensor readings along
the rostrocaudal axis.

Method1 : Low pass filtering

We use a fifth order butterworth filter as a low pass fil-
ter. Generally, the noise has high frequency characteristics.
Fig. 5 shows the result of that filter application. The cut-off
frequency determines the frequency range of filtered electric
signal. The sensor readings of electroreceptors are spatially
distributed along the rostrocaudal axis. The filter is applied
to the spatial distribution of the electric signals which isthe
result of object perturbation.

Fig. 5 shows the noisy electric image and the filtered im-
age when the lateral distance of a target object is2.0cm in
Fig. 5 (a) and (c), and4.8cm in Fig. 5 (b) and (d). Here, we
assume random noise. The range of uniform random noise
is 10 × 10−6 and it is about8% noise level of the maximal
amplitude observed when the lateral distance of the target
object is3cm. The cut-off frequency is set to20% and10%
of the spatial sampling rate, respectively. When a target ob-
ject moves away from the weakly electric fish, the intensity
decreases radically. With the filtering process, the original
electric signal can be hardly restored. In Fig. 5 (b) and (d),
the low pass filtering is applied with different cut-off fre-
quencies. The smaller cut-off frequency is more effective to
smooth the noisy electric signal, but the filtered signal is a
little deviated from the original signal purely depending on
the lateral distance.

Fig. 6 shows the noisy and denoised electric images when
the noise is modeled as Gaussian noise with variance5 ×
10−6 and zero mean. In Fig. 6, the noise level is about8%
when the lateral distance of the target object is3cm. The
distortion of electric image is similar to that with uniform
random noise. In this case, the cut-off frequency20% of
the spatial sampling rate is appropriate to obtain the desired
filter output.

Method2 : Cross-correlation

The self-generated EOD waveform at the tail produces the
sensory afferent signals at each electroreceptor. If thereis
any object near the fish body, the distorted afferent signals
can be measured. Reafference cancellation process can be
expected in the sensory-motor loop. Here we consider an-
other aspect of motor signal feedback.
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Figure 7: Process of denoising electric image using cross-
correlation

The cross-correlation between an efferency copy signal
and the sensory afferent signals in the waveform can lead
to an interesting feature of noise removal. The cross-
correlation equation is given below :

a ∗ b = max
k

{
∑

i

a[i]b[k + i]} (6)

wherea[i] is thei-th efferency copy signals andb[i] is sen-
sory afferent signal. Normally the cross-correlation has been
applied for template matching or for sound localization in
the auditory system. We suggest this correlation method can
estimate the level of sensory afferents depending on the ef-
ference command signals. The electroreceptors can reflect
the perturbed signal by neighboring objects. The senosr
readings disturbed by other factors should be taken as noise.
Thus, the cross-correlation with a sinusoidal waveform of
efference copy signals can obtain the noise cancellation. In
simulation experiments, noise is modeled as uniform ran-
dom noise or Gaussian noise to reflect the real electrorecep-
tion.

Each electroreceptor can process the cross-correlation
over the two waveform signals, the common self-generated
EOD waveform and the distorted electric signal affected by
a target object and noise. Fig. 7 shows the diagram and the
result along the rostrocaudal position. Fig. 8 shows the result
of the denoised electric signal by cross-correlation.

Method3 : Filtering after cross-correlation
After applying the cross-correlation, we obtain noise can-
cellation for each electroreceptor along the temporal axis.
However, the electric image is still noisy along the rostro-
caudal line. For accurate localization of a target object, we
need to calculate the relative slope, that is, the two param-
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Figure 10: Relative slope (a) uniform noise with range from−5 × 10−6 to 5 × 10−6 (b) Gaussian noise with variance5 × 10−6 (solid :
relative slope without noise, dotted : using low pass filter,dashed : cross-correlation, dashed dot : filtering after cross-correlation)

eters, maximal amplitude and maximal slope. The maxi-
mal amplitude can be estimated with the temporal cross-
correlation result. However, the maximal slope is involved
with the sensor readings along the rostrocaudal spatial axis.
We apply a low pass filter over the electric image obtained

from the cross-correlation method.

Fig. 9 shows a noise-free original electric image, and the
denoised image by cross-correlation over temporal wave-
forms (method2) and by low pass filtering over the cross-
correlation result along the rostrocaudal axis (method3).
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Amount (1) (2) (3) (4) (5) (6)

RMS 0.0177 0.0054 0.0014 0.0530 0.0047 0.0020
Method1

STD 0.0091 0.0037 0.0009 0.0212 0.0032 0.0015

RMS 0.0130 0.0065 0.0027 0.0308 0.0045 0.0032
Method2

STD 0.0038 0.0020 0.0004 0.0099 0.0014 0.0008

RMS 0.0015 0.0014 0.0014 0.0016 0.0014 0.0014
Method3

STD 0.0007 0.0003 0.0001 0.0011 0.0002 0.0001

Table 1: Performance comparison of two method as a mean of error that is difference between relative slopes acquired fromclean electric
image and denoised image and a mean of standard deviation when the target object moves from2.0cm to 5.0cm with interval0.2cm and trial
number is100 (distribution range of uniform noise (1)10 × 10−6 (2) 5 × 10−6 (3) 1 × 10−6 and variation of Gaussian noise (4)5 × 10−6

(5) 1 × 10−6 (6) 5 × 10−7 (RMS: root mean square of difference, STD: standard deviation)

When the target object is at a far distance, the cross-
correlation outputs over a set of electrosensors still showa
rugged pattern of electric image along the spatial axis. The
combination of the cross-correlation and low pass filter pro-
duces smooth electric image close to the original electric im-
age. It indicates the two-phase filtering process can restore
the original electric image from very noisy signals.

The method takes two steps in spatiotemporal dimen-
sions. The electric image is first denoised in the tempo-
ral axis and then noise is removed along the spatial axis
again. The two-phase filtering process in the spatiotemporal
provides desirable slope information along the rostrocaudal
axis, and we can extract most accurate relative slope.

Distance measure in noisy environment
From electric images, we can extract the relative slope and
Fig. 10 shows the result. The relative slope is dependent on
the lateral distance of a target object. The simulation with
random noises is repeated fifty times and the performance
has been measured. Fig. 10 (a) shows relative slope when the
noise is distributed uniformly from−5 × 10−6 to 5 × 10−6

and Fig. 10 (b) shows the result with Gaussian noise whose
variance is5 × 10−6. When the noise level decreases, we
can acquire more similar curves to the relative slope curve
in noise-free environment.

When we use low pass filtering after cross-correlation, we
can acquire most similar relative slope to the relative slope
obtained from noise-free electric signals. Table. 1 shows the
performance comparison of three methods to remove noise
when uniform and Gaussian noise are tested. The root mean
squared error between noise-free relative slope and the fil-
tered relative slope has been measured. We can easily see
that the spatiotemporal filtering process greatly improvesthe
performance.

Fig. 11 shows the relative slope changes for each filtering
method. When the noise level increases from1% to 20%
of the maximal amplitude, only cross-correlation along the
temporal axis, or only low pass filtering along the spatial
axis is not much effective to obtain the desired relative slope.
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Figure 11: Relative slope when the noise level changes with afixed
target object (solid : relative slope without noise, dotted: using low
pass filter, dashed : cross-correlation, dashed dot : filtering after
cross-correlation)

It would be difficult to extract the accurate information of the
object distance. We note that the cross-correlation can find
the appropriate electric signals even for40% of noise level
signals. Weakly electric fish generate periodic EOD signals
and we suggest that the self-generated electric signals help
obtain the accurate information of distance of a target object
in noisy environment.

Conclusion
Noisy signals are inevitable in the underwater environment.
The electric signals generated by other underwater animals
may be mixed up with the signals that the electric fish pro-
duces. In that environment, it is important to extract pure
information of its own electric signal in the sensor readings.

An easy and simple method to remove noise in electric
image is the filtering method. In this paper, it is shown that
an electric image can be restored by low pass filter along
the rostrocaudal axis when the noise level is small enough to
remove. However, when the maximum amplitude of an elec-
tric signal decreases, the electric signal is distorted severely.
The distance range in which the weakly electric fish can de-
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tect an object is very narrow, and it is known that weakly
electric fish use the electrolocation based on distance (Nel-
son and MacIver, 2006; Babineau et al., 2007). Direct mea-
surement of relative slope over raw electric signals can pro-
duce wrong estimation of the distance of a target object.

We use cross-correlation as an alternative method to ob-
tain denoised electric image. Cross-correlation is generally
used to measure the similarity of two signals. The cross-
correlated sum becomes maximal when the frequency and
phase of the two waveforms exactly matches. It is known
that individual weakly electric fish discriminate electricsig-
nals that are characterized by species, sex, and another mem-
ber of conspecifics (Kramer, 1994). If frequencies of EOD
waveforms are different, then the cross-correlated sum has
small value. Consequently, the cross-correlation has advan-
tage to separate their own electric signals from another elec-
tric signals.

As shown in Fig. 10, we notice that the desired relative
slope can be obtained when we take two steps for elimina-
tion of noise, cross-correlation and low pass filtering in spa-
tiotemporal dimensions. The root mean square of difference
and variance become much smaller even when a target ob-
ject is far away from the weakly electric fish. The periodic
efference copy signal used in the cross correlation is critical
to remove a high level of noise. We suggest that the periodic
waveform of EOD signals help localization of a target object
such as prey or predator.

The electroreception of weakly electric fish can be applied
to a robotic system to localize a target object in the under-
water. The electric field can spread to every direction and it
can be used to detect not only the location of a target object
but also shape and size (Schwarz and von der Emde, 2001).
These characteristics of the electroreception can be useful in
the dark underwater environment. For the future work, we
will test the electrolocation system with a robotic fish and
show the possibility of application of electrosensors in the
submarine system.
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Abstract

We address the question of how processes from evolution-
ary biological ecosystems can be abstracted and beneficially
applied in creative domains. Evolution is a process capa-
ble of generating appropriate (fit) novelty in biological sys-
tems, so it is interesting to ask if it can do so in other, non-
biological systems. Past approaches have focused on optimi-
sation via fitness evaluation (either machine representable or
human evaluated), but this is ill-suited to creative systems,
as creativity is not necessarily an optimisation process. Our
approach is to consider the creative system as a virtual evolu-
tionary ecosystem, specifically adopting the process of niche
construction. We show how the abstracted niche construction
process can be applied to an agent-based line drawing sys-
tem, enhancing the diversity and heterogeneity of drawings
produced over a version without niche construction.

Introduction
Two well known systems exhibiting creativity are the hu-
man brain and evolution. While advances in neurological
understanding of creative processes and aesthetics are on-
going (Perlovsky, 2010; Griffiths, 2008; Ramachandran and
Hirstein, 1999), both the cognitive and social processes that
lead to creative outcomes remain difficult to quantify, and
hence, to simulate. Evolutionary processes, on the other
hand, are far better understood and continue to be success-
fully studied using a variety of simulation methods.

In this paper we explore the adaptation of evolutionary
ecological processes to problems in creative design. As a
process, evolution is eminently capable of novel design, hav-
ing innovated things such as prokaryotes, eukaryotes, higher
multicellularity and language, through a non-teleological
process of replication and selection (Maynard Smith and
Szathmáry, 1995; Nowak, 2006). While much exists on
what constitutes human creativity – e.g. Boden (2004);
Sternberg (1999)) – for the purposes of this paper we con-
sider creativity more generally as the appropriate novelty
exhibited by a system. ‘Appropriate’ in that the artefacts
produced are fit or useful in some domain, and ‘novel’ in

that the system is capable of repeatedly producing artefacts
that it has not produced before1.

Darwinian processes of selection and replication with dif-
ference only provide a simplified picture of natural evolu-
tion. Many have argued that explaining the growth of com-
plexity that typifies the creativity of evolution requires a
broader consideration of the systems of the natural world
(Maynard Smith and Szathmáry, 1995; Laland et al., 1999;
Gould, 2002). In recent years, that has meant, for exam-
ple, increasing our understanding of (i) the effects of evolu-
tion on the processes of ontogenetic development (Carroll,
2005) (ii) the interdependent relationships between species
and their environment: ecosystems. This second approach is
the one adopted in the work described here.

Evolution and Aesthetic Creativity
The field of Evolutionary Computing (EC) has adopted the
metaphor of genetic evolution to successfully solve prob-
lems in search, optimisation and learning. Where EC has
been less successful, however, is in tackling problems of
creativity, in particular artistic creativity, as it is difficult to
conceptualise creative artefacts in terms of a single (or multi-
objective) optimisation or general machine-representable fit-
ness evaluations.

A popular EC approach to using evolution in creative con-
texts is the Interactive Genetic Algorithm (IGA), in which
the fitness evaluation of a standard genetic algorithm is per-
formed by a human, who may use any (subjective) criteria to
assign fitness to individuals in a population (Takagi, 2001).

In the context of the application presented in this pa-
per (line drawing) the system of Baker and Seltzer (1994)
used variable length genomes representing an ordered set of
strokes to define a line drawing. Each stroke included pa-
rameters in the genome to affect the way drawing is inter-
preted, including space enclosing, relation to the next stroke
(e.g. separate or joined) and symmetry operations. Drawings
were evolved using an IGA. The system could be seeded
with random genotypes or genotypes created by interpret-

1For a more formal specification of this relatively informal def-
inition, see McCormack (2010).
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Figure 1: Example organism viability curves for reproduction, growth and survival, from (Begon et al., 2006).

ing the strokes of a human artist. The Drawbots system of
Bird et al. (2008) attempted to create a line-drawing robot
using evolutionary robotics. They defined “implicit” fitness
measures that did not restrict the type of marks the robot
drawer should make, including an “ecological model” in-
volving interaction between environment resource acquisi-
tion and expenditure through drawing. However, the results
demonstrated only minimal creativity, and the authors con-
cluded that fitness functions that embodied “artistic knowl-
edge about ‘aesthetically pleasing’ line patterns” would be
necessary if the robot were to make drawings worthy of ex-
hibition.

Formalised “aesthetically pleasing” fitness measures of
any generality have been difficult to find, despite a num-
ber of attempts (see e.g. Birkhoff (1933); Staudek (2002);
Ramachandran (2003); Svangåard and Nordin (2004);
Machado et al. (2008)), hence the use of the IGA. While
the IGA has achieved some success in a variety of domains,
in general it suffers from a host of problems, particularly
for creative applications (McCormack, 2005). The most
commonly cited of these is “user fatigue”, where human
users quickly tire of the repetitive act of phenotype evalu-
ation (Takagi, 2001), limiting the range of evolutionary ex-
ploration possible. In general, IGAs are more valuable to
non-experts, who may lack the sophisticated understanding
of how to design and manipulate a medium for creative pur-
poses.

More importantly, for most creative domains the idea of
evolving towards a single optimum is counterintuitive, as an
artist or designer normally produces many new artefacts over
their professional lifetime. New designs often ‘evolve’ from
previous ones, offspring of both the originating artist and her
peers (Basalla, 1998). Indeed, as Basalla (1998) and others
have pointed out using the example of technological evo-
lution, the Western emphasis on individual creativity (rein-
forced socially through patents and other awards) obscures
the important roles played in the evolutionary ecosystem of
interactions between environment and prior work of many
individuals.

Thus, an alternate approach to the narrow individual op-
timisations of standard EC methods, is to consider the in-

teraction of components in an evolutionary ecosystem, as
such a system can potentially exploit facets of evolution
other than single optimisations. In the research presented in
this paper, we examine the biological process of niche con-
struction, whereby organisms modify their heritable envi-
ronment. The concept of niching has been successfully used
in EC previously, particularly in problems requiring multi-
ple solutions (Mahfoud, 1995). However, niching in EC is
primarily about maintaining stable sub-populations to im-
prove the efficiency and efficacy of search – in general these
methods do incorporate the biological concept of niche con-
struction in their methodology, as is the case with the meth-
ods described in this paper. Before explaining the concept
in more detail, we give a brief overview of the concept of a
niche and niche construction.

Niches

In broad terms, biological environments have two main
properties that determine the distribution and abundance of
organisms: conditions and resources. Conditions are phys-
iochemical features of the environment (e.g. temperature,
pH, wind speed). An organism’s presence may change the
conditions of its local environment (e.g. one species of plant
may modify local light levels so that other species can be
more successful). Conditions may vary in cyclic patterns
or be subject to the uncertainty of prevailing environmental
events. Conditions can also serve as stimuli for other or-
ganisms. Resources, on the other hand, are consumed by
organisms in the course of their growth and reproduction.
One organism may become or produce a resource for an-
other through grazing, predation, parasitism or symbiosis,
for example.

For any particular condition or resource, an organism may
have a preferred value or set of values that favour its survival,
growth and reproduction. Begon et al. (2006) define three
characteristic curves, which show different “viability zones”
for survival, growth and reproduction (Fig. 1).

The complete set of conditions and resources affecting an
organism represent its niche, which can be conceptualised
as a hypervolume in n-dimensional space. As an example,
for two conditions c1 and c2, two different types of species
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Figure 2: Example exclusive and overlapping niche areas for
a two-dimensional set of conditions.

relationships are shown in Fig. 2. The shaded area repre-
sents the viability zone for the species. A species will only
survive if conditions are maintained within this shaded area.
A relatively large distance in any single dimension denotes
a generalist in that dimension (s1 is relatively generalist in
c2), specialists have small distances (s3 is more specialised
in both c1 and c2). This size is referred to as niche width, and
may vary for each dimension. If the mean viability zones
overlap in a particular dimension, multiple species can co-
exist within the range of overlap.

Competition and other species interactions are important
in determining habitat distribution. Niche differentiation can
permit coexistence of species within a biotope. Higher num-
ber of species can coexist by utilising resources in different
ways. It is reasonably well understood in Biology how these
mechanisms give rise to species diversity and specialisation.

The challenge addressed in this paper is to devise use-
ful ways of employing these mechanisms in non-biological
contexts. An important problem is in devising appropriate
mappings between conditions and resources, and establish
trade-offs for an individual’s survival based on tolerances to
specific conditions in order to enhance the quality and diver-
sity of output in a creative generative system.

Niche Construction
Niche construction is the process whereby organisms change
their own and each other’s niches. They do this by modify-
ing or influencing their local environment. Proponents of
niche construction argue for its importance in understand-
ing the feedback dynamics of evolutionary process in nature
(Odling-Smee et al., 2003). By modifying their niche, either
reinforcing or degrading it, organisms provide a heritable
environment for their offspring. Hence niche construction
can create forms of feedback that modify the dynamics of
the evolutionary process, because ecological and genetic in-
heritance co-influence the evolutionary process. Computa-
tional models of niche construction show that it can influ-
ence the inertia and momentum of evolution and introduce
or eliminate polymorphisms in different environments (Day

et al., 2003). Other models have demonstrated that a simple
niche constructing ecosystem can support homeostasis and
bi-stability similar to that of Lovelock’s popular Daisyworld
model (Dyke et al., 2007).

Whereas standard evolutionary algorithms tend to con-
verge to a single (sub)-optimum, niche construction can
promote diversity and heterogeneity in an otherwise fixed
and homogeneous evolutionary system. In creative systems
where the design of an explicit fitness function may be diffi-
cult or impossible, niche construction provides an alternate
mechanism to explore a generative system’s diversity over
more traditional methods, such as the IGA. An “ecosys-
temic” approach to creative systems recognises that multiple
designs may be equally valid and interesting, the emphasis
shifting from single optimised solutions to the exploration of
appropriate novelty offered through the feedback dynamics
of an evolutionary ecosystem (McCormack, 2007).

Processes such as niche construction may serve as a type
of “design pattern” (Gamma, 1995) that facilitates the build-
ing of creative evolutionary systems. To illustrate the utility
of niche construction, we will describe a series of experi-
ments where niche construction influences the structure and
variation of the creative artefacts produced in an agent-based
line drawing system.

Case 1: Line Drawing Agents
We will consider a simple creative system that au-
tonomously draws lines with ink on a page. This system
is inspired by Mauro Annunziato’s The Nagual Experiment
(Annunziato, 2002), which consisted of simple line draw-
ing agents controlled by stochastic processes. In Annunzi-
ato’s original system he changed the global characteristics of
the drawings produced through manual adjustment of line-
drawing probability parameters, such as fecundity, mortality
and curvature. The resulting drawings have been acknowl-
edged as artistically interesting and demonstrate the richness
of creative output possible from a relatively simple genera-
tive specification.

Our system consists of a population of haploid line-
drawing agents who inhabit a two-dimensional drawing sur-
face or canvas. The canvas is initially blank (white). Agents
roam over the surface, leaving a trail of black ink that marks
out the path they travel. If a drawing agent intersects with an
existing line, drawn either by itself or another agent, it dies.
An agent may undergo reproduction during its lifetime, with
offspring placed adjacent to the parent. The canvas is seeded
with a small initial population of founder agents, initialised
with uniformly distributed random genomes, that proceed to
move, draw and reproduce. There is no limit to the number
of offspring an agent may have, but in general the lifespan of
agents decreases as the simulation progresses since the den-
sity of lines becomes greater, making it increasingly difficult
to avoid intersection with existing lines. Eventually the en-
tire population dies out (predominantly due to the intersec-
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tion rule), and the image is finished. This finished drawing
represents the “fossil record” of all the generations of lines
that were able to live over the lifetime of the simulation.

In this first experiment, agents have no sensory informa-
tion about their environment, for example they cannot detect
proximity to an existing line or other agent. Thus, the char-
acteristics of the line an agent draws are determined by ge-
netics, with the genome serving as the control parameters of
a stochastic process. An agent’s genome is specified by the
following alleles, each represented as a normalised floating
point value:

curvature (σ), controls the rate of curvature of the line (dθdt ,
where θ is the heading direction). Curvature varies from
a straight line (0) to a maximum curvature rate (1);

irrationality (r), controls the rate and degree of change in
the rate of curvature according to a stochastic algorithm
(detailed below, see also Fig. 3);

fecundity (f ), the probability of the agent reproducing at
any time step. New agents are spawned as branches from
the parent;

mortality (m), the probability of the agent dying at any
time step;

offset (φ), the offset angle of child filaments from the par-
ent;

Figure 3: Individual line drawing agents with different mea-
sures of irrationality. Note that the ‘die if intersect’ rule has
been turned off for these examples.

In addition each agent maintains state information which
includes the current position on the canvas, heading direc-
tion, speed and current rate of curvature. Changes to the
rate of curvature are determined by the curvature and irra-
tionality alleles, with the overall rate of change given by

dθ

dt
= σ + fracSum(p, k · r)0.89r

2

, (1)

where p is the agent’s current position, k a constant known
as the octave factor, and fractSum a function that sums oc-
taves of Perlin (2002) 2D noise. This function was chosen
as it gives band limited, continuous stochastic variation with

second order continuity, and is statistically invariant under
affine transformation. Increasing r (irrationality) increases
the octaves of noise, changing the rate of change in direc-
tion in increasingly finer detail. Fig. 3 shows the effects of
varying the irrationality allele, r, over its normalised range.

This system was run a number of times varying the ran-
dom number seed and location of founder agents on the
blank canvas. At each time step the fecundity and mor-
tality alleles determine probabilistically if an agent will die
or reproduce. In the case of reproduction, child agents are
placed next to the parent line, with their heading determined
by the offset allele (φ). A child agent’s genome may un-
dergo mutation (modification of an allele by adding a Nor-
mally distributed random number with mean 0). Addition-
ally, children have a short gestation period before they begin
to draw, allowing the parent to continue drawing past the
point where reproduction took place, avoiding intersection
with their offspring.

The images that emerge from this process demonstrate a
wide variety of output possible from this system (two sample
images are shown in Fig. 4). While there is no explicit fitness
function or evaluation, implicit agent fitness is determined
by a combination of genetics and environment. Importantly,
the environment is constantly changing. As drawing pro-
gresses, it becomes increasingly difficult to reproduce and
live, since the probability of intersecting with an existing
line typically becomes higher as more lines crowd the can-
vas.

While the images produced by this system are interesting,
in general they lack a changing dynamic or visual counter-
point, that is, they are largely homogeneous in structure, or
have progressive changes that take place as genes mutate
through drift. Much of the overall structure is determined
by the founder lines, who can carve up large areas of blank
canvas for themselves and their offspring, preventing other
lines from entering. Genetically similar offspring continue
to reproduce inside these boundaries until the space is filled.

Case 2: Line Drawing with Niche Construction
In a second experiment we tested the hypothesis that by in-
troducing an ecosystemic process of niche construction into
the system, the overall diversity and heterogeneity of images
produced by the system could be significantly enhanced.
To do this, each agent was given an additional allele in its
genome: a local density preference δi (a normalised float-
ing point value). This defines the agent’s preference for the
density of lines already drawn on the canvas in the imme-
diate area of its current position, i.e. its niche (Fig. 5). In
a preferred niche, an agent is more likely to give birth to
offspring and has a better chance of survival. As children
inherit their parent’s genes they are more likely to survive as
they have a similar density preference. So in a sense, parents
may construct a niche and pass on a heritable environment
well-suited to their offspring.
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Figure 4: Two sample outputs from the line drawing system (without niche construction).
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Figure 5: The niche construction mechanism for drawing
agents, who try to construct a niche of local density that sat-
isfies their genetic preference.

For each agent, i, δi defines it’s preferred niche. Local
density, defined as the ratio of inked to blank canvas per unit
area, is measured over a small area surrounding the agent at
each time step. Proximity to the preferred niche determines
the probability of reproduction, given by

Pr(rep) = fi · cosω(clip(2π(∆pi − δi)),−
π

2
,
π

2
), (2)

where ∆pi is the local density around the point pi, the
agent’s position, ω a global parameter that varies the effec-
tive niche width, fi is the agent’s fecundity and clip is a
function that limits the first argument to the range specified
by the next two. Being in a non-preferred niche similarly
increases the probability of death.

Founder agents begin with a low density preference, uni-

formly distributed over [0, 0.2]. Beginning the drawing on a
blank canvas means that only those agents who prefer a low
density niche will survive. As the drawing progresses how-
ever, more ink is added to the canvas and agents who prefer
higher densities will prosper. As with the previous experi-
ment, at birth the agent’s genome is subject to the possibil-
ity of mutation (proportional to the inverse of the genome
length), allowing offspring to adapt their density preference
and drawing style as the drawing progresses. Eventually the
population becomes extinct, since higher density favouring
agents don’t have much room to move, and the drawing fin-
ishes. Some example drawings are shown in Fig. 6. Notice
the greater stylistic variation and heterogeneity over the im-
ages shown in Fig. 4.

Analysis and Discussion
Visually, the examples appear to show that by adding niche
construction, the line drawing system is capable of produc-
ing images with greater heterogeneity, variation in density,
counterpoint and overall visual interest (Fig. 7). We might
even be tempted to say it is more creative.

To support this intuition, a number of images produced
using the niche constructing and non-niche constructing ver-
sions were analysed statistically. A total of 40 images
were sampled: 20 niche constructed and 20 non-niche con-
structed. For each image, the mean density (∆̄) and vari-
ance of density over the entire image was computed. Then
for each set (non-niche constructed, niche constructed) the
variance of mean density and the mean density variance was
calculated. Table 1 summarises this analysis. p-values were
calculated using a Welch t-test. As shown in the table, niche
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Figure 6: Two sample outputs from the line drawing system with niche construction.

Figure 7: Detail from two drawings, showing density varia-
tion (left) without niche construction, and (right) with niche
construction.

constructed images exhibit a far greater variation in overall
density (by a factor of 3.83). Significantly, the density vari-
ation over each image is, on average, 4.31 times greater for
the niche constructed over non-niche constructed drawings.

Non NC NC p-value
Number of Images 20 20 –

Variance of ∆̄ 0.00298 0.0114 0.0634
Mean Variance 0.0140 0.0604 1.57 × 10−10

Table 1: Density variation between non-niche constructed
and niche constructed drawings.

Analysis of the mean agent density preference, δ̄ =
1
n

∑n
i=1 δi, at each epoch shows an overall adaption to the

mean image density (∆̄) over the lifetime of the drawing,

indicating that agents evolve to fit niches (Fig. 8). On aver-
age, agents favour slightly denser niches than currently exist
(the line in the figure is always positive), we infer this is be-
cause an agent’s density measure is always centred around
the agent’s current location, and this will necessarily include
parts of the images with lines drawn (even if only the agent’s
own trail). The value of ∆̄ tends to increase over the life of
the drawing. This is not surprising, as there is no mechanism
for an agent to reduce the density of its niche2. The best any
parent can do is carve out the largest possible border around
empty space, so that its offspring can grow without fear of
intersecting with other parents or their offspring.

Conclusions and Future Work
We have demonstrated how the ecological “design pattern”
of niche construction can be used to enhance the creative
output of a generative line-drawing system. Elsewhere, (Mc-
Cormack and Bown, 2009), we have also applied a similar
process in the sound domain, leading to on-going change
in an agent-based sound generation system. While it may
be premature to suggest the generality of this method, our
on-going experiments demonstrate that with the appropriate
design, niche construction can introduce heterogeneity and
useful variation into creative generative systems.

The line-drawing agents described in this paper have only
one way to sense their environment: through their density
preference. A more sophisticated system might give agents
greater sensory capabilities so that they can better optimise

2An observed (short-lived) strategy is to draw a closed circular
area and not place any offspring in it, but this only generates a low-
density niche after death!
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Figure 8: Difference between mean image density and mean
agent density preference averaged over 40 runs. The stan-
dard deviation is shown in light blue.

their niche construction to their environment. For example
being able to sense proximity to another line would allow
more graphically complex strategies to evolve.

Additionally, the agents are limited in their productive
utilisation of evolution, as any adaptation must take place
over the life of a single drawing. Typically, 103 – 105 off-
spring may be produced in a single image, but less than
10 – 30 generations from the initial parent. Essentially,
all lines are of the same species. An improved strategy
would be to allow different species of line-drawing agents
to be pre-evolved on test canvases, permitting better optimi-
sation for different density niches and inter-species interac-
tions. These pre-evolved species could then share a com-
mon drawing canvas in order to produce a more complex
finished drawing, better adapted to their specific niche re-
quirements. We are currently exploring this idea. One can
imagine that the next generation of artist’s drawing systems
could incorporate such pre-evolved drawing agents as “in-
telligent brushes”; the artist selecting from a palette of pre-
evolved styles and applying them to the canvas at various
stages. Agents with different niche density preferences try
to draw in order to construct their preferred niche, but their
interactions with each other could result in the emergence of
competitive or cooperative strategies.

In summary, we believe that niche construction is a useful
technique that can be successfully exploited in generative
creative systems to enhance the dynamics and heterogene-
ity of output produced. The ecosystemic approach favoured
in this paper is in contrast to previous IGA or fitness-based
GA systems aimed at search or optimisation to singular
outcomes or subjective criteria. The complex dynamics of
ecosystem processes are a source of rich and varied inspira-
tion that has much to offer as we develop autonomous cre-
ative systems.
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Abstract 

One of the ecological theories has proposed that high species 
diversity can be maintained by predation, and several 
experimental studies showed that a few predator individuals 
with positive frequency-dependent behavior were able to 
maintain the coexistence of two prey types. However, in a 
natural environment, when a single predator species regulates 
the diversity of prey species, it is likely to be a full population 
of predators, not just a few individual predators. The role of a 
predator population in maintaining species diversity has not 
been carefully investigated in laboratory experiments but has 
been seriously questioned by computer simulations. In this 
paper, we introduce predation into the Tierra system and the 
dynamic relationship between prey and predator populations is 
examined. The robust appearance of the “Lotka-Volterra-like” 
cycle in Tierra suggests that the digital creatures may follow 
the same fundamental principles as their organic counterparts. 
Moreover, when each predator in a large predator population 
searches for prey in its neighboring area and performs positive 
frequency-dependent predation based on local prey abundance, 
a global pattern of coexistence of prey species emerges. This 
suggests that positive frequency-dependent predation may be a 
reasonable mechanism to maintain species diversity in nature. 

Introduction 

Species diversity is one of the most ubiquitous and spectacular 
phenomena in nature, but how it may arise, persist and shape 
the evolutionary process is poorly understood.  One of the 
ecological theories has proposed that high species diversity 
can be maintained by predation. A few dominant species grow 
rapidly and crowd out many of the other species, but this 
reduction of species diversity due to competitive exclusion 
can be avoided by the presence of predators. Predators limit 
the populations of dominant species and thus more resources 
become available to support the survival of other prey species. 
Several experimental studies demonstrated that the presence 
of predator species prevented the diversity of prey species 
from declining (Paine, 1974; Morin, 1981). At the same time, 
the coexistence of multiple prey species provides more 
feeding options for predators. To avoid competing for the 
same resource, predator species may specialize to adapt to 
different prey types (Stanley, 1973). Therefore, predation may 
facilitate the increase of diversity in both prey and predator 
species. 

Further experimental studies on predation mechanisms 
revealed that a predator may switch among different prey 
types in response to their abundance and positive frequency- 

dependent predation was executed by predators. This means 
that predators disproportionately consumed the more abundant 
prey type, maintaining the coexistence of two prey types 
(Allen, 1988; Murdoch, 1969; Murdoch et al., 1975). 
Although only a few predator individuals were used to 
conduct the experiments, based on the assumption that a 
population would have an equivalent behavior as a few 
individuals, it was concluded that a population of such 
predators in a natural environment would also be able to 
maintain the diversity of prey species. But this conclusion was 
seriously questioned by computer simulations of an 
individual-based model which showed that over a variety of 
parameter settings, the duration of the coexistence of two prey 
phenotypes dramatically decreased as the number of predator 
individuals increased (Merilaita, 2006). 

In this study, we conduct simulations in the well-known 
Tierra system to explore the predation mechanism for 
maintaining species diversity in an ecological scenario. In 
Tierra, self-replicating computer programs continuously 
evolve in a resource-limiting environment (Ray, 1991). This 
system of Darwinian evolution inside a computer, besides 
being applied to many evolutionary challenges (Wilke and 
Adami, 2002), can also be used to study intriguing ecological 
problems when we set all the mutation rates to zero.  With fast 
generation times (on the order of seconds) and precise 
measurements, the ecological processes in Tierra can be 
accurately repeated and thoroughly examined under various 
parameter settings. Therefore, the Tierra system provides an 
alternative but powerful experimental method to explore the 
general principles in ecology.    

In order to investigate the maintenance of species diversity 
by positive frequency-dependent predation, we first design a 
digital predator which is able to capture multiple prey and 
acquire energy (CPU time) from them. Then we evaluate our 
design by comparing the dynamic relationship between the 
prey and predator populations in Tierra with that in nature. 
The simulation results show that a cyclic oscillation, similar to 
the “Lotka-Volterra” cycle (a fundamental pattern displayed 
by natural prey and predator populations), robustly appears in 
Tierra. Next, we apply a set of simple rules to specify the 
behavior of digital predators as they encounter different prey 
types and verify that the predation in Tierra is essentially the 
same as positive frequency-dependent behavior exhibited by 
real predators in laboratory experiments (Merilaita, 2006). 
Then we allow each digital predator to search for prey in its 
neighboring area and perform predation based on local prey 
abundance. We then explore the conditions under which the 
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presence of a predator population supports the coexistence of 
two different types of prey. This mechanism of positive 
frequency-dependent predation for the persistence of species 
diversity is further examined as we increase the number of 
prey species from two to three. 

Methods 

The predator is 100 instructions long and shares the same 
basic structures of self-examination, reproduction loop and 
copy procedure as the ancestral creature in the original Tierra 
implementation (Ray, 1991). However, the predator has an 
additional predation loop inserted before reproduction. This 
loop is used to search for multiple prey in the predator’s local 
area. If the predation template in a prey is complementary to  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

the one in the predator and that prey has not been eaten by 
other predators yet, the predator eats that prey, that is, a 
certain percent of the prey’s CPU time is delivered to the 
predator and the prey’s CPU time is reduced to a small 
amount. In Tierra, each digital creature is a self-replicating 
computer program whose execution requires CPU time. 
Therefore, the survival and reproduction of a digital creature 
depend on the amount of CPU time that the creature possesses, 
similar to the energy requirement for the survival and 
reproduction of an organic creature in nature. After the 
predator acquires energy (CPU time) from its prey, it finds a 
space for its daughter and enters the copy procedure for 
replication. Following the release of its mature daughter, the 
predator enters the predation loop again to accumulate more 
energy for future reproduction. This loop of predation and  
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FIGURE 1 Algorithmic flow chart for the predator and prey in the Tierra system. The predation template in the predator (0110) is 

complementary to the one in the prey (1001), which allows the predator to catch the prey and acquire CPU time from it. 
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then reproduction repeats until death (Figure 1). We also 
design two types of prey which are the same as the ancestral 
creature in the original Tierra system except for the predation 
template before the reproduction loop (Figure 1). The two 
prey types differ only in their genome lengths and the predator 
can detect both of them by matching the predation marker. A 
type-A prey with the length of 86 instructions reproduces 
faster than a type-B prey with the length of 96 instructions. 
The Tierra system assigns a standard amount of CPU time to 
each prey, but a predator receives only a very small amount of 
CPU time from the system which supports the predator to 
execute its first predation loop to try to capture a prey. If the 
predator fails to capture a prey, it does not have CPU time to 
execute more instructions. Therefore, predators have to catch 
prey to obtain energy for survival and reproduction. 

The dynamics of the interactions of the predators and prey 
are examined in ecological simulations, in which Tierra is run 
without mutation. We seed the soup with 300 predator 
individuals evenly distributed among 3000 individuals of 
type-A prey. Each predator is allowed to search for prey in its 
local area, about 10 creatures long on either side of the 
predator. In each predation loop, a predator can eat at most 𝑚 
(𝑚 = 6) prey and it receives 15% of CPU time from each prey. 
The amount of CPU time of a captured prey is reduced to 15% 
of its original value. In a simulation run, we use the number of 
instructions that have been executed to measure the passage of 
time. The runs in this experiment last until 1000 million 
instructions have been executed. Then we use exactly the 
same parameter settings, except replacing type-A prey with 
3000 individuals of type-B prey, to explore the relationship 
between the predator and type-B prey populations. To confirm 
that the dynamic pattern between the predator and its prey 
population results from the predation, rather than random 
fluctuations in the Tierra system, we design a type-A* prey 
which shares the same genome length as a type-A prey. 
Because each prey receives, on the average, the same amount 
of CPU time from the system, the two prey types with the 
same length theoretically have the same reproduction rate and 
thus their population sizes should be maintained at a constant 
level. Therefore, the variations of the population sizes of type-
A and type-A* prey reflect the randomness in the system. We 
seed the soup with 300 individuals of type-A* prey evenly 
distributed among 3000 individuals of type-A prey and run the 
simulation until 1000 million instructions have been executed. 
Then we compare the population dynamics between type-A 
and type-A*

 
prey with those between type-A prey and 

predators.  
To investigate positive frequency-dependent behavior of a 

predator population, we apply the following rules to each 
predator as it encounters two types of prey in its neighborhood. 
(1) Initially, each predator is assigned an equal probability to 

eat type-A and type-B prey when encountered, that is 
𝑃𝐴 = 𝑃𝐵 = 0.5 

(2) If the predator eats a type-A prey, its probability to eat 
type-A prey is increased by ∆𝑃 and to eat type-B prey is 
decreased by ∆𝑃, that is, 

𝑃𝐴 = 𝑃𝐴 + ∆𝑃               𝑃𝐵 = 𝑃𝐵 − ∆𝑃 
(3) If, instead, the predator eats a type-B prey, its probability 

to eat type-A prey is decreased by ∆𝑃 and to eat type-B 
prey is increased by ∆𝑃, that is, 

       𝑃𝐴 = 𝑃𝐴 − ∆𝑃               𝑃𝐵 = 𝑃𝐵 + ∆𝑃 

(4) All eating probabilities are bounded by 𝑃𝑚𝑖𝑛  and 𝑃𝑚𝑎𝑥  , 
that is, 

0 ≤ 𝑃𝑚𝑖𝑛 ≤ 𝑃𝐴 ,𝑃𝐵 ≤ 𝑃𝑚𝑎𝑥 ≤ 1 
The simulation results reported in this paper are obtained 
when ∆𝑃 = 0.1,𝑃𝑚𝑖𝑛 = 0 and 𝑃𝑚𝑎𝑥 = 1 , if not otherwise 
mentioned. 

In a laboratory experiment, positive frequency-dependent 
behavior of a predator is revealed by computing the 
percentage of one type of prey in the predator’s diet as the 
percentage of that prey type in environment increases from 0 
to 100%. In our simulations, the behavior of a predator 
population in which each predator obeys the above predation 
rules is examined through the following setup: we run nine 
separate simulations and in each simulation, we seed the soup 
with 3000 prey individuals and 300 predator individuals. In 
each predation loop, a predator can eat at most 𝑚 (𝑚 = 4) 
prey and acquire 35% of CPU time from each prey and the 
CPU time of a captured prey is reduced to 40% of its original 
value. The only difference among the nine simulations is the 
proportion of two prey types, that is, the percentage of type-A 
prey in the 3000 prey individuals increases from 10% to 90% 
in 10% increments. Ideally, we should calculate the 
percentage of type-A prey in the predators’ diet while the ratio 
of type-A in environment remains constant. However, in our 
simulations, as the predators start to consume different prey 
types, the proportion of two prey types changes. We allow the 
predators to explore the prey populations sufficiently but not 
to appreciably modify the ratio between type-A and type-B 
populations. Typically, when the percentage of type-A prey 
differs from its initial value by 5%, we calculate the 
percentage of type-A prey in the predators’ diet. For example, 
one of the simulations starts with 600 individuals of type-A 
prey evenly distributed among 2400 individuals of type-B 
prey, that is, the percentage of type-A in the 3000 prey 
individuals is 20%. When type-A prey increase to 25%, we 
calculate the percentage of type-A prey in the predators’ diet 
(the number of type-A prey that have been eaten is divided by 
the total number of prey that have been eaten by the predator 
population).  

The maintenance of prey diversity by predators is explored 
by comparing the results of two simulations. In the control run, 
we seed the soup with a type-A population of 1500 
individuals and a type-B population of 1500 individuals and 
observe the dynamics of those two prey populations in the 
absence of predators. The simulation run stops when one of 
the prey types goes extinct. In the experimental run, we 
introduce a predator population of 300 individuals into the 
two initial prey populations used in the control run. Each 
predator searches for prey in its neighboring area and executes 
positive frequency-dependent predation based on the type of 
prey actually captured. In each predation loop, a predator is 
allowed to eat at most 𝑚 (𝑚 = 4) prey and acquires 35% of 
CPU time from each prey. The CPU time of a captured prey is 
reduced to 40% of its original value. The simulation run lasts 
until 1800 million instructions have been executed and we 
record the population sizes of the predator and two prey 
species during the run. 

To explore the robustness of positive frequency-dependent 
predation in maintaining the coexistence of type-A and type-B 
populations, we systematically vary the two parameters which 
affect the predation behavior of a predator, the adjustment rate 
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∆𝑃  and the adjustment range 𝑃𝑚𝑖𝑛 − 𝑃𝑚𝑎𝑥 , and the initial 
proportion of two prey types, respectively. The default setting 
of those three parameters is that ∆𝑃 = 0.1,  𝑃𝑚𝑖𝑛 − 𝑃𝑚𝑎𝑥 =
0 − 1  and the percentage of type-A prey in the 3000 prey 
individuals is 50% (1500 individuals of each prey type) and 
when one parameter is varied, the other two remain 
unchanged. We set ∆𝑃 = 0, 0.005, 0.01, 0.015, 0.02, 0.025, 
0.05, 0.1 and 0.2, respectively, to examine the effect of ∆𝑃 on 
the maintenance of prey diversity. Then we set ∆𝑃 back to 0.1 
and gradually shrink the adjustment range, 𝑃𝑚𝑖𝑛 − 𝑃𝑚𝑎𝑥 =
0 − 1, 0.1 − 0.9, 0.2 − 0.8, 0.3 − 0.7, 0.4 − 0.6, 0.5 − 0.5.  
Finally, after set 𝑃𝑚𝑖𝑛 − 𝑃𝑚𝑎𝑥  back to 0 − 1,  we increase the 
percentage of type-A prey in the 3000 prey individuals from 
10% to 90% in 10% increments. For each parameter setting, 
we record the duration (the number of instructions that have 
been executed) that the two prey types coexist.  

To further examine the role of positive frequency-dependent 
predation in maintaining species diversity, we add one more 
species, type-C prey with a length of 90 instructions. Except  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

that the initial prey populations in the control and 
experimental runs are type-A, type-B and type-C populations 
of 1000 individuals each, we use the same procedure and 
parameter settings as those used in the above case of two prey 
species. We compare the dynamics of prey populations in the 
absence of predators with those in the presence of predators. 

Results 

Lotka-Volterra-like Cycle between Digital Prey and 
Predator Populations 

In a natural environment, in order to survive and reproduce, 
predators have to catch prey and acquire energy from them. 
This energy transfer from prey to predators leads to the 
famous “Lotka-Volterra” cycle: an abundant prey population 
provides more food for predators and thus supports a larger 
predator population. But as the number of predators increases,  
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FIGURE 2 Coexistence of a predator population and a prey population in the Tierra system (a) The predator and type-A prey 

populations stably coexist. (b) The predator and type-B prey populations stably coexist. 
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FIGURE 3 (a) “Lotka-Volterra-like” cycle between the predator population and type-A prey population at the steady state from 800 

to 1000 million instructions executed in the Tierra system. (b) Population sizes of two prey species with the same genome length 

slowly drift from 800 to 1000 million instructions executed in the Tierra system. 
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the growing predation pressure depresses the prey population. 
When less prey are available, the predator population 
decreases which reduces the predation pressure and leads to 
the rebound of the prey population. In Tierra, each digital prey 
receives a certain amount of CPU time from the system but a 
digital predator, similar to its counterpart in nature, acquires 
energy only through predation. When a digital predator 
searches for multiple prey in its neighboring area and obtains 
a small amount of CPU time from each prey, the “Lotka-
Volterra-like” cycle between the prey and predator 
populations forms. As shown in Figure 2(a), after the transient 
initial stage, the type-A prey population rapidly reaches a 
constant level of about 2400 individuals and stably coexists 
with the predator population of about 900 individuals. As we 
examine the population dynamics at the steady state between 
800 and 1000 million instructions executed, as shown in 
Figure 3(a), we find that following the increase of type-A prey 
population, the predator population increases, which ceases 
the expansion of the prey population and causes it to decline. 
Likewise, the decrease of the prey population causes the 
predator population to decrease, which leads to the rebound of 
the prey population. In contrast, the population dynamics 
caused by the randomness in the Tierra system exhibit a 
completely different pattern. As shown in Figure 3(b), 
between 800 and 1000 million instructions executed, the 
population sizes of type-A and type-A* prey species slowly 
drift without visible cycling. Therefore, the coupled cyclic 
oscillation between the prey and predator populations in 
Figure 3(a) is not the result of random fluctuations in the 
system, but rather results from the energy dependence of the 
predators on their prey, the very critical component which 
supports the “Lotka-Volterra” cycle in nature. Similarly, in 
Figure 2(b), the type-B prey population of about 2200 
individuals steadily coexists with the predator population 
through the establishment of the “Lotka-Volterra-like” cycle. 
Moreover, as we vary the number of prey that a predator can 
eat in each predation loop in the range of 3 to 6(𝑚 = 3, 4, 5, 6) 
and adjust the amount of CPU time transferred from a prey to 
its predator in the range of 15% to 35%, the “Lotka-Volterra-
like” cycle robustly appears in Tierra. This suggests that our 
design of digital prey and predators may capture some 
essential properties of predation which allow the creatures in 
Tierra to follow the same fundamental relationship between 
prey and predator populations observed in nature.  

Positive Frequency-dependent Behavior of Predators 
at a Population Level 

Positive frequency-dependent predation means that the 
predation risk of a prey individual correlates positively with 
the frequency of that prey type in environment. That is, a 
predator is more likely to eat the common prey type than the 
rare one. In Tierra, each predator has a higher probability of 
eating a previously encountered prey type, as specified by the 
rules in the “Methods” section. As shown in Figure 4, when 
the percentage of type-A prey in the environment is less than 
50%, the predator population disproportionately eats less 
type-A prey and when type-A becomes the abundant prey type 
(>50%), the predator population disproportionately consumes 
more type-A prey. The switch of the preferable prey type 
occurs exactly when the type-A prey change from a rare type 
to a common one (50%). Therefore, although each digital 

predator exhibits prey preferences based on the prey types 
actually encountered, which may not agree with the relative 
frequency of prey types at a global scale, the predator 
population executes almost perfect positive frequency-
dependent predation on the prey populations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Maintenance of Two Prey Species by Positive 
Frequency-dependent Predation  

Many field experiments showed that in the absence of 
predators, two prey species which shared the same limiting 
resource could not coexist indefinitely. The more competitive 
prey species would gradually occupy more and more 
resources and drive the less competitive prey species to go 
extinct (Gause, 1934; MacArthur, 1958). This competitive 
exclusion is also observed in Tierra when type-A prey 
compete with type-B prey in the environment with limiting 
CPU time and space. Because a type-A prey (86 instructions 
long) is shorter than a type-B prey (96 instructions long), 
when both prey types receive, on the average, the same 
amount of CPU time from the system, type-A prey reproduce 
more offspring than type-B prey do. Therefore, although the 
two types of prey start with the same population size of 1500 
individuals, the more rapid replicating type-A prey gradually 
crowd out type-B prey and drive them to go extinct after 120 
million instructions have been executed, as shown in Figure 
5(a). 

However, after a predator population of 300 individuals 
which exhibits positive frequency-dependent behavior is 
introduced into the two prey populations of 1500 individuals 
of each type, the dynamics of the prey populations change 
dramatically. As shown in Figure 5(b), after the transient 
initial stage, the predator population reaches a steady level of 
about 600 individuals and the two prey populations stably 
coexist with approximately 1500 individuals of type-A and 
1100 individuals of type-B. The stable population size of each 
prey type indicates that the diversity of prey species may 
persist forever under positive frequency-dependent predation. 
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FIGURE 4 A predator population in the Tierra system exhibits 

positive frequency-dependent behavior. The dashed line 

indicates the hypothetical situation in which the relative 
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Robustness of Frequency-dependent Predation on 
Maintaining the Coexistence of Two Prey Species  

The adjustment rate ∆𝑃 directly affects the strength of positive 
frequency-dependent predation. When ∆𝑃 = 0 , a predator 
always has the same probability, 𝑃𝐴 = 𝑃𝐵 = 0.5, to eat type-A 
and type-B prey regardless of the abundance of those two prey 
types in its local area. As ∆𝑃 increases, a predator can more 
effectively adjust its probability of eating different types of 
prey based on the prey it actually captures. As shown in 
Figure 6(a), when ∆𝑃 ≥ 0.02 , the predator population has 
sufficient frequency-dependent behavior to maintain the 
coexistence of the two prey populations over the entire 
simulation run of 1800 million instructions executed. The 
adjustment range 𝑃𝑚𝑖𝑛 − 𝑃𝑚𝑎𝑥  specifies the lower and upper 
boundaries of the eating probability, which indirectly limits a  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
predator’s ability to prefer the more abundant prey type. For 
example, when 𝑃𝑚𝑖𝑛 − 𝑃𝑚𝑎𝑥 = 0.5 − 0.5 , a predator’s 
probabilities to consume different prey types are fixed at 
𝑃𝐴 = 𝑃𝐵 = 0.5 , that is, a predator fails to adjust its eating 
probabilities based on local prey abundance even if  ∆𝑃 = 0.1. 
However, this limitation is gradually relaxed as the adjustment 
range extends towards 𝑃𝑚𝑖𝑛 − 𝑃𝑚𝑎𝑥 = 0 − 1 . As shown in 
Figure 6(b), except for 𝑃𝑚𝑖𝑛 − 𝑃𝑚𝑎𝑥 = 0.5 − 0.5 , which 
eliminates the effect of positive frequency-dependent 
predation, the two prey populations coexist under all other 
adjustment ranges over the simulation run of 1800 million 
instructions executed. By disproportionately consuming more 
abundant prey type, positive frequency-dependent predation 
can maintain the coexistence of two prey types even when the 
initial sizes of the two prey populations vary dramatically. As 
shown in Figure 6(c), when the percentage of type-A prey in  
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FIGURE 5 Coexistence of two prey species is maintained by a predator population with positive frequency-dependent behavior 

(a) Competitive exclusion between two types of prey; type-B prey go extinct. (b) Type-A and type-B prey stably coexist under the 

predation from a predator population. 
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FIGURE 6 Robustness of positive frequency-dependent predation in maintaining the coexistence of two prey types (a) When the 

adjustment range is 0 − 1 and the percentage of type-A prey in the environment is 50%, type-A and type-B prey populations stably 

coexist as ∆𝑃 ≥ 0.02. (b) When ∆𝑃 = 0.1 and the percentage of type-A prey in the environment is 50%, type-A and type-B prey 

populations stably coexist under all the adjustment ranges except for 0.5 − 0.5. (c) When ∆𝑃 = 0.1 and the adjustment range is 

0 − 1, type-A and type-B prey populations stably coexist at nine different initial ratios of the two prey populations. 
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the 3000 prey individuals increases from 10% (300 
individuals of type-A prey and 2700 individuals of type-B 
prey) to 90% (2700 individuals of type-A prey and 300 
individuals of type-B prey), the two prey types coexist under 
each of the nine initial ratios of the two prey populations over 
the simulation run of 1800 million instructions executed. 
Those simulation results suggest that positive frequency-
dependent predation may robustly support the coexistence of 
two prey species. 

Maintenance of Three Prey Species by Positive 
Frequency-dependent Predation 

We increase the number of prey species by adding one more 
species, type-C prey which is 90 instructions long. In the 
absence of predators, three prey types compete with one 
another and the creatures with a shorter genome length 
reproduce faster than those with a longer genome length as 
each creature receives approximately the same amount of 
CPU time from the system. When the simulation run starts 
with 1000 individuals of each prey type, due to competitive 
exclusion, type-B prey go extinct after 144 million 
instructions have been executed and then type-C prey are  
crowded out by type-A prey after 504 million instructions  
have been executed, as shown in Figure 7(a). However, after a 
predator population of 300 individuals is introduced into the 
three prey populations of 1000 individuals of each type, as 
shown in Figure 7(b), all three prey types stably coexist. This 
result further supports the idea that positive frequency-
dependent predation is able to maintain the diversity of prey 
species. 

Discussion 

In the original Tierra implementation, a form of predation 
emerged through evolution of hyper-parasites which were able 
to reproduce themselves and steal additional CPU energy 
from parasites to enhance their reproduction rate (Ray, 1991). 
Because the survival of hyper-parasites did not rely on the  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
existence of parasites, the predation relationship between 
hyper-parasites and parasites may not be consistent with that 
between organic predator and prey populations. In nature, 
when a prey is caught by a predator, only a small amount of 
energy is transferred to the predator. A predator has to catch 
multiple prey in order to acquire sufficient energy. Similar to 
its counterpart in nature, a predator in Tierra catches multiple 
prey in its local area and obtains a small amount of energy 
from each prey. The simulation results show that the “Lotka-
Volterra-like” cycle robustly appears in Tierra over a wide 
range of parameter settings which suggests that the digital 
predators and prey may be suitable for exploring predator-
prey population dynamics. 

Positive frequency-dependent predation is one of the 
proposed mechanisms for maintaining species diversity in 
nature (Gendron, 1987). It has been supported by several 
laboratory experiments in which one or a few predators that 
constantly consumed the more common prey type were able to 
maintain the coexistence of two prey phenotypes (Allen, 
1988). But in a natural environment, it is likely to be a full 
predator population, rather than a few predator individuals, to 
regulate prey populations. In the paper (Merilaita, 2006), the 
author used an individual-based model to explore the 
dynamics of positive frequency-dependent predation at a 
population level with one predator species and two prey 
species. The simulation results showed that although one or 
two predator individuals could maintain the diversity of prey 
species, which was consistent with the laboratory experiment 
results, five or ten predator individuals failed to do so. 
Because the duration that two prey species coexisted 
decreased dramatically as the number of predator individuals 
increased, it was concluded that positive frequency-dependent 
predation may not be a sufficient mechanism to maintain 
species diversity in nature. However, the setup of the 
simulations in the paper (Merilaita, 2006) may not agree with 
the natural behavior of a predator population. In the laboratory 
experiment with one or two predator individuals, each 
predator was able to explore the entire populations of two 
prey types and switched to the common type based on the 
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FIGURE 7 Coexistence of three prey species is maintained by a predator population with positive frequency-dependent behavior 

(a) Competitive exclusion among three types of prey; type-B prey and then type-C prey go extinct. (b) Type-A, type-B and type-

C prey stably coexist under the predation from a predator population. 
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global abundance of different types. The author in the paper 
(Merilaita, 2006) also allowed each predator to obtain prey 
from the entire prey populations regardless of the number of 
predator individuals. It was found that a single predator 
individual maintained prey species diversity longer than ten 
predator individuals. This result was rationalized as follows: 
“when there were ten predators, the behavior of each 
individual predator was formed by only one tenth of the 
information about prey type frequencies in relation to the total 
number of consumed prey, compared to the one-predator case.” 
(Merilaita, 2006) Because each predator in the ten-predator 
case lacked global information on prey type frequencies, those 
ten predators could not maintain prey diversity as efficiently 
and accurately as a single predator individual. But in a natural 
environment, a predator individual can neither access the 
entire prey populations nor acquire complete information 
about them. Rather, each predator searches for prey only in its 
local area and switches to the common type based on the local 
prey abundance which may not be consistent with the 
frequency of the prey types at the global scale. This feature of 
local predation is elegantly executed in the Tierra system 
where a predator searches for prey in the range of 10 creatures 
on either side. Our simulation results show that when each 
predator in Tierra, similar to its organic counterpart, 
implements positive frequency-dependent predation based on 
the prey type actually encountered and does not have any 
information about the entire prey populations, a population of 
600 predator individuals maintains the coexistence of two 
prey types. This emergent global pattern of species 
coexistence from the local interactions between prey and 
predators is robust to the variations of the parameters that 
affect either the predation behavior of predators or the initial 
proportion of the two prey types in the environment. 
Furthermore, as we increase the number of prey types from 
two to three, the predator population also successfully 
maintains the coexistence of three prey species. Therefore, our 
results strongly suggest that positive frequency-dependent 
predation may be a reasonable mechanism to maintain species 
diversity in nature. 

The simulation results we report here are obtained under an 
ecological scenario in which all mutations are blocked. Our 
future research will explore the hypothesis that positive 
frequency-dependent predation may facilitate the increase and 
maintenance of species diversity in an evolutionary scenario. 
It is a more complex but more intriguing situation: when 
various types of random mutations are introduced into the 
Tierra system, the genomes of digital creatures will be 
modified and thus new types of prey and predator species will 
continuously emerge. Therefore, unlike the ecological 
scenario in which the prey types are known and the number of 
prey types is fixed, in the evolutionary scenario the prey types 
that can be detected by predators change over time. In the 
original Tierra system, when one or a few successful species 
emerged through mutation, they usually gained reproductive 
advantages either by effectively exploiting other creatures or 
by shortening their own lengths and rapidly crowded out other 
existing species. Thus, the soup was repetitively dominated by 
very few species. However, with the introduction of positive 
frequency-dependent predation, the dominant prey species 
may be depressed by predators. This may provide resources to 
support the populations of other prey species and thus more 

prey species may have the opportunities to evolve. With this 
increase in the number of coexisting prey species, more food 
sources may be available to predators which may promote the 
differentiation of predator species, with each specializing on a 
certain type of prey. Moreover, in order to produce more 
offspring, new prey species may evolve novel escape 
strategies to avoid being eaten and new predator species may 
develop innovative predation tactics to acquire more energy 
from prey. Therefore the co-evolution between prey and 
predator species may be observed in the Tierra system. 
Additionally, the introduction of predation may elongate an 
evolutionary process in Tierra. One of the causes of the 
cessation of evolution in the original Tierra system was that 
ecological interactions only emerged when selection favored 
smaller genomes (when all creatures received equal amounts 
of CPU time). Selection favoring smaller genomes eventually 
led to stasis when genomes reduced their sizes as much as 
possible, and no significant genetic variants were possible. 
Predation is a mechanism of allowing ecological interactions 
in the absence of selection for smaller genomes, and thus may 
allow evolution to continue longer. 
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Abstract

Scientists have used Richard Dawkins’ ideas of the extended
phenotype to postulate levels of selection higher than an indi-
vidual in evolution. Dawkins rejects this extension and insists
that there must be a reproductive bottleneck for the extended
phenotype, and thus, higher levels of selection to exist. In
this research, a model is presented that shows levels of se-
lection higher than the individual, without the reproductive
bottleneck insisted upon by Dawkins. A 2-dimensional cellu-
lar automata Daisyworld model is extended with a gene that
controls the rate of albedo mutation. A large number of runs
of the model are performed with a variety of different pa-
rameters, and the statistics for the runs are analyzed. The
results show that contrary to expectations, the mutation rate
does not stay low but instead rises to high levels. The reasons
for this are analyzed and it is shown that patch level selec-
tion pressures are acting upon the individuals. It is concluded
that selection pressures higher than the individual can exist,
mimicking the extended phenotype, without the need for a
reproductive bottleneck.

Introduction
The existence of multiple levels of selection in evolution has
been under much debate (Okasha, 2007; Sober and Wilson,
1999). Traditionally many biologists believed that selec-
tion could operate on a group of individuals of one species.
The justification for this belief was the apparent willing-
ness of one individual to put itself in danger for the good
of the group. However, in 1964 Hamilton published two ar-
ticles showing this behavior could be explained by a process
called kin selection, where individuals aid relatives based
on the probability of having shared genetic code (Hamilton,
1964a,b). Based on this work and others (Trivers, 1971),
Dawkins (1976) postulated the existence of the selfish gene,
describing a view where the gene is theunit of selection.
Genes, he argued, are inherently selfish – favoring behav-
iors that serve to help them reproduce. A gene that inspired
its carrier to commit suicide before reproduction, for exam-
ple, would not survive very long in the gene pool. Genes
together in the body of an individual are forced to work to-
gether by virtue of having to pass through the same repro-
duction event, and are thevehicleof selection. Dawkins’

“vehicle of selection” is analogous to the “level of selection”
used by other authors (Okasha, 2007), a phrasing I will use
in this paper.

Dawkins (1982) later recognized that some genes have in-
fluences outside their bodies, a concept which he called the
extended phenotype. Here genes in one individual can be
tied to genes existing in other bodies by way of environmen-
tal modifications – the classic example is the beaver dam,
where the genes for building & maintaining dams enhance
the survival of the immediate organism and others within its
colony. The genes still remain as the unit of selection, but,in
Dawkins’ terms, the group becomes the vehicle of selection.
Recently there has been debate on how far these effects ex-
tend beyond the organism and under what conditions (Bier-
naskie and Tyerman, 2005; Dawkins, 2004; Laland, 2004;
Jablonka, 2004; Turner, 2004; Whitham et al., 2003, 2005).
In particular, Dawkins (2004) insisted that there must be a
single reproductive event (a bottleneck) for all the genes in-
volved in the extended phenotype to force the genes to work
together.

Swenson et al. (2000) showed that it is possible for real
ecosystems to respond to artificial selection. They theo-
rized that such selection could happen in the natural world,
suggesting that small scale “microecosystems” could be se-
lected upon given the differential survival of such systems.
Also, they noted that discrete boundaries are not necessary
for an ecosystem to be a level of selection. The key is “lo-
calized interactions, such that one patch fares better thanan-
other on the basis of its properties, even when the boundaries
between patches are fuzzy” (Swenson et al., 2000). Penn
and Harvey (2004) showed a similar response to artificial
selection in non-evolving artificial ecosystems.

In this paper I use a cellular automata Daisyworld model
to show the existence of patch-level selection and I demon-
strate that it arises from the transfer of heat across the planet.
I introduce a heritable albedo mutation rate to the daisy
genotype and show that although its variation cannot be seen
on the individual level, it is subject to selection pressure.
This is because variations in the albedo mutation rate can be
seen by looking at groups of individuals in a larger popula-
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tion and because these groups compete among themselves
for space.

To give a brief view of how this paper is organized, in
the following section I describe the basic ideas of the Daisy-
world model. I describe the model in more mathematical
terms in the Model Description section, and then describe
the experiments and show the results in graphical and nu-
merical forms in the Results section. The Discussion section
deals with the explanations and implications of the results
and is followed by the concluding remarks of the paper.

Methodology
Watson and Lovelock (1983) presented the Daisyworld
model to address some of the more prevalent doubts about
the Gaia theory. This model has also proved useful in study-
ing evolution under the assumption that organisms affect
their own environment (Dyke et al., 2007). Recently the
idea of niche construction, where organisms exert influence
on environment has gained prominence in the discussion
of evolutionary theory (Odling-Smee et al., 2003). While
this influence on environment has been acknowledged pre-
viously (Dawkins, 1976), the implications for evolutionary
theory have not been obvious (Bardeen, 2009).

Daisyworld was a toy-world, intended as a proof of con-
cept of the Gaia hypothesis, rather than a model of a real
physical system. The idea behind it was simple – localized
interactions can affect global dynamics and generate home-
ostatic behavior. The model consisted of a “planet”, heated
by the sun and populated by black and white daisies. The
black daisies have a lower albedo (reflectiveness) than the
white daisies, and they absorb a greater amount of solar radi-
ation and raise the local temperature. The growth rate of the
daisies is linked to the local temperature, which is directly
influenced by albedo. This difference in growth rate causes
the area covered by black and white daisies to vary, causing
the overall temperature of the planet to vary in turn. This
creates a homeostatic response to external forces, such as
increasing incoming solar radiation (insolation) and keeping
the temperature of the planet relatively constant. This pro-
cess is mainly due to the niche construction aspects of the
individual daisies on their local environment.

I use a variant of the 2D cellular automata Daisyworld
model first described by von Bloh and Schellnhuber (1999).
The growth patterns of the daisies are given by a cellular
automata model. There is heat transfer between neighbor-
ing cells, so a daisy can affect its local neighborhood. This
model is useful in that all the effects seen are, by definition,
local. Any global effects that are seen must be emergent
properties of local interactions.

Another attraction of this model is the ability to “tune”
the diffusion rate, which permits experimentation with how
quickly and strongly effects of local daisies are transmitted
to their neighbors, and by extension, the global environment.
This will allow me to quantify the probability that group-

level selection will arise in the system based on the diffusion
rate of heat across the planet.

To this model I add a gene that affects the mutation rate
of the daisy albedo. This gene will not affect the fitness of
individual daisies immediately, but will allow the effectsof
a selection pressure at levels higher than an individual daisy.
There is biological evidence of different mutation rates be-
tween species, and even evidence of differential mutation
rates on the same genome (Wolfe et al., 1989), so this ex-
tension is not pure fantasy. When asked once about mu-
tation rates in natural systems, the eminent biologist John
Maynard-Smith replied that he expected them to be set as
low as possible (Bedau and Seymour, 1994; Maynard Smith,
1989). The reasoning is that, according to Travis and Travis
(2004): “..in constant environments, most mutations are
deleterious, hence mutation occurs at a low rate, constrained
only by the costs of error avoidance and error repair”.

The expected role of evolution by natural selection is that
of optimization and adaptation, and this should be no differ-
ent in the context of the Daisyworld (Ackland et al., 2003;
Ackland, 2004; Bardeen, 2009; Stöcker, 1995).

Model Description
The base model for this article is an extended version of the
Daisyworld model described in von Bloh et al. (1997).

The temperature fieldT (x, y, t) is represented by the en-
ergy balance equation:

C
∂T (x, y, t)

∂t
= DT (

∂2

∂x2
+

∂2

∂y2
)T (x, y, t) (1)

−σBT (x, y, t)
4 + S(1−A(x, y, t)),

whereDT is the heat diffusion constant andA(x, y, t) is
the space/time distribution of albedo. The diffusion uses the
von Neumann neighborhood (the four adjacent neighbors to
the cell). S is the current solar radiation, and atS = 917
the albedo which produces the optimal temperature for daisy
growth is around0.53.

Growth patterns for the daisies are generated using a cel-
lular automata (CA) model. If a cell is empty, then there is
a chance that a daisy in a neighboring cell (Moore neighbor-
hood) will produce offspring in the empty cell. This chance
is based upon the temperature of that cell and given by

β(T ) =
4

(Tmax − Tmin)2
(T − Tmin)(Tmax − T ) (2)

whereTmax andTmin are the maximum and minimum tem-
peratures at which the daisies can grow andT is the cur-
rent temperature of the cell.Topt is equivalent to12 (Tmin +
Tmax). In this paperTmax = 313 Kelvin andTmin = 278
Kelvin, meaningTopt = 295.5 Kelvin.

The chance a daisy will die is given by:

γ(T ) = 1−
4ρ

(Tmax − Tmin)2
(T − Tmin)(Tmax − T ) (3)
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whereρ ∈ [0, 1] and serves set the base mortality rate. Ifρ

is large, then the base mortality rate will be low.
Each daisy genotype consists of two floating-point val-

ues. The first is the color of the daisies albedo, which is in
the range of0 : 1 inclusive and has a 50% chance of be-
ing changed at birth by adding a random value to the parent
albedo, drawn from a Gaussian distribution with a standard
deviation ofr. If the parent albedo plus mutation falls out-
side the range of the albedo, the mutation is redrawn from
the Gaussian distribution.

The second value,r, is essentially the mutation rate of the
albedo, which is also in the range of0 : 1 inclusive and is
also mutated at birth by adding a random value drawn from
a Gaussian distribution with a standard deviation of0.001
(the mutation rate of the albedo mutation rate). If the parent
mutation rate plus the delta falls outside the range of the
albedo,r is redrawn from the same Gaussian distribution.

Results
The principal set of experiments in this chapter are designed
to test the long-term stable solution of the Daisyworld witha
heritable albedo mutation rate. To this end, a2002 cell world
is populated randomly (the chance of daisy in a given cell
is 10%) with daisies having uniform albedos of0.53 (near
optimal for the starting insolation) and initial albedo muta-
tion rates of0.01. This world is allowed to evolve for one
million timesteps with a constant incoming solar radiation
(S = 917), at which point the simulation is stopped. This
process forms one evolutionary run. Each run is repeated 50
times for each variation in parameter values; Tested are dif-
ferent diffusion constants (DT = 50, 100, 500, 1000, 1500,
2000, 2400). These experiments will show the adoption of a
high albedo mutation rate by most of the daisies under high
diffusion regimes.

Figure 1(a) shows the average planetary temperature over
two separate runs. In one, the planetary temperature oscil-
lates closely around the optimum for life on the planet. In
the other, the average planetary temperature climbs past the
optimum. The evolutionary trajectory of the mutation rate
shows the reason for this difference (Figure 1(b)). In the
first run the mutation rate stays low, as is expected, while in
the second the mutation rate climbs past0.2. As the muta-
tion rate climbs, the average albedo of the planet drops (seen
in Figure 1(c)). This has the effect of increasing the average
mortality rate and decreasing the average birth rate of the
daisies.

A closer look (Figure 2) reveals that the mutation rate is
not uniform over the entire planet, but rather is limited to
patches of daisies.

Figure 3 shows that the average final mutation rate is in-
fluenced both by the diffusion rate of heat between the cells
and the base mortality rate. Higher diffusion results in a

Figure 2:Snapshots of world state from one run, Insolation
L = 1.0, DiffusionDT = 1500, Mortality rate is 10% and
the mortality model is the variable mortality model. Black
is lower mutation, white is higher mutation, blue is dead.
World is mostly dominated by low mutation daisies with well
defined patches of high mutation daisies
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Table 1: Average number of children over 25 runs, Low mu-
tation =0.01, High mutation =0.4

High Diffusion Low Diffusion
DT = 2400 DT = 50

Low Mutation 0.424 0.420

High Mutation 0.417 0.410

higher final mutation rate, as does a higher base mortality
rate.

Inspecting the average number of children for runs with
fixed low (0.01) and high (0.4) albedo mutation rates shows
that there is little difference between the average number of
children for both (Table 1). The major difference between
the two strategies is that the temperature across the planet
has less variance under the high mutation daisies than un-
der the low mutation daisies (Figure 4). Under low diffu-
sion rates the difference between the variance in tempera-
ture caused by the two strategies is much less than under
high diffusion rates.

Discussion
The results of the experiments leave some questions:

• What is the cause of the increase in temperature?

• What are the implications of a high mutation rate?

• Why would a high mutation rate be a selective advantage
under certain circumstances and not under others?

• Is the selective advantage caused by an individual level
selection pressure or a higher level selection pressure?

In this section, I will answer these questions in turn, then
discuss the wider implications of the answers.

What is the cause of the increase in temperature?

The plots of temperature and the mutation rate (Figures 1(a)
and 1(b)) show that the increase in temperature is linked with
that of mutation rate, however it does not reveal the cause.
Inspecting the snapshot of the planet state shows that, un-
surprisingly, the albedos are very diverse when the mutation
rate is high.

In low diffusion environments, the heat is mainly retained
within a single daisy cell and there is little transfer to other
cells. In high diffusion environments the heat flows freely
across the cells, and a group of daisies with random albe-
dos will appear, at a higher level, to have the temperature
of a single gray daisy with an albedo of around0.5. Thus,
as more daisies adopt the high mutation rate strategy, the
average albedo of the planet becomes closer to0.5 and the
temperature rises away from the optimum.

What are the effects of a high mutation rate?

A high mutation rate causes a number of changes to the sys-
tem. Comparing two planets, one with a fixed high muta-
tion rate and one with a fixed low mutation rate, shows that
the high mutation rate planet has a lower average growth
rate, a higher average death rate, and lower number average
number of children per daisy. Another notable difference is
that the standard deviation of the cell temperature across the
planet is lower on the high mutation planet.

The high mutation rate also affects the heredity of the
daisy albedo. Lewontin (1978) gives the necessary condi-
tions of natural selection as: individuals within a species
differ, this variation is heritable, different variants leave dif-
fering amounts of offspring, and variations that favor an in-
dividual’s reproductive success will be preserved. In the sys-
tems with a high albedo mutation rate, the selection of indi-
vidual daisies seems to fail on the second of these principles
– the variation in albedo does not seem heritable from parent
to offspring.

Furthermore, it is unclear how the albedo mutation rate is
being selected upon. Identifying the variation between the
albedos of two individuals is easy. Identifying the variation
between the albedo mutation rate of two individuals is much
harder. The only way to measure this variation would be
to look at the range of variability in the albedos of the re-
spective offspring. However, with only an average of0.4
offspring per parent, the quality of this measure for natural
selection is limited. Thus the variation must be seen either
above the level of the individual or over a large period of
time.
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Why would a high mutation rate be a selective
advantage?
The previous subsection highlights a crucial question – why
would a high albedo mutation rate be a selective advantage
for the daisies bearing it, but only under certain circum-
stances? From the fact that the high mutation rate daisies
are only seen primarily under high diffusion rate worlds, we
can discard the idea that there is an unintended systemic ef-
fect from, for example, bias in the mutation operator (Bul-
lock, 2001). If there was such a systemic effect, it would
be seen in all parameter ranges, and not only under certain
conditions.

This leaves non-systemic causes to blame. Figure 2 shows
the existence of patches of daisies with similar mutation
rates. With low mutation rates, patches of daisies with sim-
ilar albedos are likewise seen. This is due to the cellular
automata rules, since a new daisy can only be born next to
another living daisy, they tend to clump into patches of sim-
ilar daisies.

This phenomenon is a hindrance when the albedos are
near identical – patches that have albedos higher or lower
than the optimal are inherently unstable. They become too
hot or too cold and die off, replaced by daisies bearing albe-
dos which are more suitable to the changed environment.
When they die, not only is their albedo gene lost, but their
albedo mutation rate gene is lost too.

Having patches of daisies with highly variable albedos
means that the patch temperature stays relatively constant,
though not optimal. Less environmental change in the daisy
patch signifies less change is needed by the genome. In this
case, the gene for albedo mutation rate “uses” the albedo
gene as a buffer between it and the environment. Its repro-
ductive environment becomes more stable and, as a result,
the high albedo mutation rate gene lasts longer – unchanged
– within the gene pool.

The experiments with fixed mutation rates support this
conclusion – the variability of the temperature on the planet
populated with a fixed high mutation rate is much less than
that of a planet with fixed low mutation rate daisies (Figure
4). It can be assumed that this same phenomena is seen on a
smaller scale within the patches.

Is the selective advantage an individual level or a
higher level selection pressure?
Now the question becomes on what level is the selective ad-
vantage operating – is it an individual level pressure or some
pressure operating on a higher level? Williams (1966) gives
the following guide: “Do these processes show an effective
design for maximizing the number of descendants of the in-
dividual, or do they show an effective design for maximizing
the number, rate of growth, or numerical stability of the pop-
ulation or larger system?”.

The unit of selection here is surely an individual daisy.
Daisies do not reproduce at the same time, nor do they share

genetic information with one another. However, the level at
which the selection pressure is operating is not clear.

If it was an individual level pressure, we would expect
to see the maximization of birth rate, the minimization of
the death rate, or a higher number of children born per in-
dividual. For this to happen, they should be at their optimal
albedo, since that will maximize their chances of producing
offspring and minimize their chances of dying. Likewise,
the mutation rate should be very low. As seen, this is indeed
the case under low diffusion environments.

However under high diffusion rates, we see the average
mutation rate start to rise, for the reasons discussed prior.

Patches

However, the previous explanation leaves a conundrum: If
having highly variable albedos is a such a wise strategy, then
why do patches of high and low mutation daisies appear on
the planet at the same time, as seen in Figure 2? Why don’t
all the daisies convert to high mutation rates?

The answer is that patches of daisies compete among
themselves – those that are more successful at maintain-
ing the high mutation rate gene have slower growth rates,
but higher gene stability. Thus the incidence of daisies with
high albedo mutation rates tends to increase within the pop-
ulation. But low mutation rate daisies with near optimal
albedos occasionally find purchase with their higher repro-
ductive rates and lower death rates, creating patches of their
own.

Thus there is competition between the two strategies on
the basis of their effect on the environment. Individual
daisies are linked to others by means of their geographical
vicinity. When the diffusion is high, those links are stronger
than when it is low. In low diffusion environments, daisies
with high albedo mutation rates are not competitive with
those that have low mutation rates.

Frank (1996) pointed out that in parasitism, we often see
selection between kin groups at high levels, but competi-
tion between individuals in lower levels. He says that “In
the population of parasites within the host, a mutant parasite
with a faster growth rate will usually increase in frequency.”
However if this growth rate causes host death before trans-
mission to neighboring hosts, the effective long-term fitness
of the mutant is non-existent. Thus there is a balance be-
tween exploitation of resources (individual level selection)
and cooperation (kin group selection).

This is essentially what is happening in the Daisyworld
model described here – competition between kin groups
leads to cooperation within the group in some cases. This
immediately calls to mind the example most used for the ex-
tended phenotype – beaver dams. Beaver dams are typically
shared between kin groups. Beaver families that build better
dams in more advantageous places are more successful than
those that do not. The shared phenotype in this example is
the dam. But can the beaver kin group be thought of as an
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organism or vehicle of selection?
Central to the idea of the organism in the extended phe-

notype was the insistence that there be a reproductive bot-
tleneck (Dawkins, 1982, 2004) to force cooperation. This
insistence can be seen again in Frank (1996). In the beaver
example, new dams are often created by a single breeding
pair – a reproductive bottleneck.

However, here the daisies reproduce in a random fashion
- there is no bottleneck. So what forces the cooperation be-
tween the daisies and causes high mutation rates? It can
be nothing more than the shared environment of the daisies.
The high diffusion rate links the fate of one daisy to the fate
of its neighbors, forcing cooperation. This is why high muta-
tion rates are only seen in high diffusion rate environments.

Furthermore. this is why the extended phenotype is
not limited by the reproductive bottleneck described by
Dawkins. If there is a tight enough coupling between differ-
ent organisms, such that the the fate of one is linked to the
fate of another, they will evolve as a group, rather than in-
dividuals. Further work is necessary to quantify how strong
the linkage needs to be and under what conditions this link-
age can come about.

Conclusion
The results of this study can be generalized relatively easily
– the “mutation rate” here really refers to the rate of pheno-
typic change in the daisies in comparison to the change in
environment. The diffusion rate is analogous to the impact
an individual has on its neighbors and competitors. With
high diffusion rates, the influence of individual daisies on
their local temperature is minimal. The variation part of evo-
lution as seen from the planetary perspective is no longer
one daisy, but clumps of daisies, since that is where most
of the phenotypic variation lies. Conversely when the dif-
fusion rate is low, the focus of evolution is on individual
daisies, since the selection method (birth rate/death rate) is
very much dependent on the individual daisy phenotype.

This idea has important consequences in evolution. One
can imagine how natural selection works on all levels si-
multaneously. Micro-organisms (like soil fungi) would be
subject to individual level selection at their own level since
their effects are more immediate and diffuse slowly in com-
parison to their reproductive speed. From higher levels (i.e.,
from a forest level) they could be selected upon as groups
since their effects appear to diffuse rapidly in relation tothe
reproductive speed of other organisms at the higher level.

In this work I have demonstrated the existence of patch-
level selection upon individuals in a model world. Neces-
sary conditions for this development were: a spatial struc-
ture, the modification of local environment by individuals,
the transmission of local effects to neighboring organisms,
and a gene that controls the rate of change in the phenotypic
property that modifies the local environment. These nec-
essary conditions can be found, without great difficulty, in

nature.
Furthermore, it shows that the reproductive bottleneck in

Dawkins ideas of the extended phenotype is more strict than
it needs to be. All that is really needed is the existence of
some force linking the fate of the genes in one organism to
the fate of genes in another. And if this is the case, then
the arguments presented by Laland (2004), Turner (2004),
and Whitham et al. (2003) for the extension of the extended
phenotype do indeed hold merit.
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Abstract

The Homeostat was a physical device that demonstrated
Ashby’s notion of ‘ultrastability’. The components interact
in such a way as to maintain sets of essential variables to
within critical ranges in the face of an externally imposed
regime of perturbations. The Daisystat model is presented
that bears a number of similarities to Ashby’s Homeostat but
which can also be considered as a higher dimensional version
of the Watson & Lovelock Daisyworld model that sought to
explain how homeostasis operating at the planetary scale may
arise in the absence of foresight or planning. The Daisystat
model features a population of diverse individuals that af-
fect and are affected by the environment in different ways.
The Daisystat model extends Daisyworld in that homeostasis
is observed with systems comprised of four environmental
variables and beyond. It is shown that the behaviour of the
population is analogous to the ‘uniselector’ in the Homeostat
in that rapid changes in the population allows the system to
‘search’ for stable states. This allows the system to find and
recover homeostatic states in the face of externally applied
perturbations. It is proposed that the Daisystat may afford
insights into the evolution of increasingly complex systems
such as the Earth system.

Introduction
This paper introduces a new model that demonstrates home-
ostasis in the face of external perturbations: the Daisys-
tat. The Daisystat is a hybrid of ‘Daisyworld’ and ‘Home-
ostat’ as it shares salient features with both models. The
Daisyworld model (Lovelock (1983); Watson and Love-
lock (1983)) was initially intended as a cybernetic proof
of concept for planetary homeostasis as formulated in
Gaia Theory which proposed that the Earth system (where
‘Earth system’ is defined as the Earth’s atmosphere, oceans,
cryosphere, lithosphere and biota) was a homeostatic entity
that maintained conditions to within the range that allowed
widespread life (Lovelock, 1979). The Homeostat was a
physical device that exhibited ultrastability - the ability to
respond to a particular regime of perturbations in such ways
as to maintain certain essential variables to within essen-
tial ranges (Ashby, 1960). While the spatial and temporal
scales of Daisyworld and the Homeostat are very different
(Daisyworld considers self-regulation at a planetary scale

over aeons whereas the Homeostat was built from four de-
commissioned Royal Air Force bomb aiming devices and
operated at millisecond speed) both systems exhibit very
similar behaviour that can be observed in the Daisystat.

In the following sections, the Homeostat and Daisyworld
models will be described. The Daisystat is then presented
and two sets of results shown. The first set shows how a
single-environmental-variable-Daisystat responds to a pro-
gressive driving perturbation, the second set shows how a
four environmental variable Daisystat responds to instanta-
neous shocking perturbations. The establishment and main-
tenance of homeostasis in both cases is given in terms of
‘rein control’. It will be shown that the behaviour of the pop-
ulation is analogous to the behaviour of the electromechan-
ical Homeostat in that the volume of possible connections
between elements of the system is ‘searched’ until new feed-
back values are found that produce homeostatic states. Such
a process is the result of natural selection operating on a
population of diverse individuals. No notions of higher level
selection, altruism or kin selection are required to explain
the homeostatic behaviour of the system. The ‘law of requi-
site variety’ (Ashby, 1956) is seen operating in the Daisystat
in that there are lower bounds for the amount of genetic and
phenotypic diversity in the population in order for homeosta-
sis to be established and maintained. It is proposed that the
Daisystat can be used as a tool to explore the evolution and
emergence of real world complex systems such as the Earth
system.

The Homeostat
The Homeostat was an electromechanical device designed
and constructed by W. R. Ashby. The Homeostat consisted
of four units. Each unit produced an output that was fed into
the inputs of the other units and back to itself via a recurrent
connection. Fig. 1 shows a schematic of the Homeostat units
and their connections. The inputs into the ith unit, Ii, are the
sum of the outputs of the other units multiplied by a set of
input weights:

Ii =
j=4∑
j=1

Ojωj,i (1)
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Unit 1 Unit 2

Unit 4Unit 3

Figure 1: Schematic of the Homeostat and the connections
between units. Double arrow headed lines represent the two
connections that link two units. Each unit has an output con-
nection to the other three units and one recurrent connection
to itself.

where ωj,i is the weight for the connection from the jth unit
to the ith unit. A weight can either increase or decrease
a connection input. Each unit has a target value, T . The
unit’s output, O, is the difference between the input and tar-
get value: O = T − I . This represents the first level of
homeostatic control in the Homeostat. The second level of
control is derived from the establishment of essential ranges
for the output of the units. If the output of a unit moves
outside of the essential range, then a uniselector component
randomly generates connection weights for that unit until the
unit output moves back within the essential range. For ex-
ample, if the essential range is [-0.5,0.5] and O = 0.6 then
the uniselector would generate new weights for all connec-
tions into that unit until the output moves back within the
essential range. The Homeostat demonstrated ultrastability
that was a consequence of Ashby’s law of requisite variety.
In order for the Homeostat to maintain stable states in the
face of perturbations, it must be able to reconfigure itself in
at least as many ways as these perturbations demand. Con-
sequently, the volume of possible connection weight values
must encompass all possible values that would be required
to produce stable states.

Homeostat simulations start by having the uniselectors for
each unit create random weights. This produces initially
chaotic behaviour whereby one unit drives another unit out
of its essential range which responds with new uniselector
values which may drive another unit of of its essential range
and so on. Given sufficient iterations of the uniselector pro-
cess, a set of weights will be generated that proves to be
stable in that the outputs of all units remain within their es-
sential ranges. An example Homeostat simulation is shown
in Fig. 2. The Homeostat finds a stable state and is then per-
turbed when Time = 200 by decreasing the output of one
unit by 1. This leads to all units moving out of their es-
sential range and a period of uniselector activity that creates
new random weights which produces a new attractor which
the system relaxes towards.
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Figure 2: Output of the four Homeostat units. The third
unit (second from bottom) is perturbed at Time = 200 by
decreasing its output by 1. This drives the unit outside of its
essential range of [-0.5,0.5] and actuates the uniselector that
creates a new set of random weights. This produces large
changes in all other units and actuation of their uniselectors
until a new stable state is achieved.

Daisyworld
While Daisyworld is a simple model of a planetary system,
it is more complicated than the Homeostat with a number of
different feedback mechanisms that feature non-linear func-
tions. However, at its heart it is similar in that two units
in the form of two species or type of plants (commonly re-
ferred to as ‘daisies’) exert unidirectional effects on a regu-
lated variable in the form of planetary temperature. These
effects stem from the different albedo of the daisies. Albedo
is a measure of the reflectivity of an object. Black daisies
have lower albedo than white daisies. Changing the relative
proportion of black and white daisies will affect the plane-
tary albedo and so the global temperature. The black and
white daisies share the same parabolic growth response to
temperature. Both grow at maximum rates when their local
temperatures are 22.5◦ Celsius with growth progressively
decreasing, until it is zero when the temperature is 5◦ or 40◦

Celsius.
Daisyworld simulations consist of seeding a grey planet

that has an intermediate albedo of 0.5 with black and white
daisy seeds. This planet orbits a star much like the sun
which over geological time scales increases in luminosity or
brightness. On a lifeless planet, as the star increases in lu-
minosity, the temperature increases approximately linearly
(the actual temperature response being a quartic function of
luminosity). The situation is markedly different when black
and white daisies are present in that the temperature rapidly
moves towards the maximum growth rate temperature and
then stays within the range that the daisies are able to grow
over as luminosity increases. This demonstrates how plan-
etary regulation may emerge as a consequence of biologi-
cal activity that is not the result of intentional design and
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in ways compatible with natural selection. Fig. 3 shows
planetary temperature being regulated when both daisies are
present and Fig. 4 show how this regulation is the result of
the change in the proportional coverage of the black and
white daisies.
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Figure 3: Temperature as a function of luminosity on Daisy-
world. The dashed line represent temperature on a planet
with no daisies. This increases approximately linearly with
increasing luminosity. The solid black line shows plane-
tary temperature with black and white daisies present. This
increases suddenly, after which it is maintained within the
growing range of the daisies for a range of luminosity val-
ues. There is a sudden increase in planetary temperature that
corresponds to the collapse of the daisy populations.
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Figure 4: Coverage of black (plotted with solid line) and
white daisies (plotted with dashed line) as a function of lu-
minosity on Daisyworld. There is a sudden increase then
progressive decline in black daisies that is mirrored by the
coverage of the white daisies.

The Daisystat Model
While the original Daisyworld demonstrated that planetary
homeostasis was at least conceivable, it was subject to a
number of quite limiting assumptions. Some of these have
been addressed in the literature. See Wood et al. (2008) for

a review. The Daisystat is intended to address one of these
more important limitations that was succinctly identified by
J. Kirchner:

“Daisyworld is a one-feedback model; there is only
one environmental variable and it is regulated by ex-
tremely strong feedback with the simplest possible bio-
sphere. Such a simple model necessarily exhibits sim-
ple behaviour. By contrast, on the real Earth many dif-
ferent environmental variables are coupled simultane-
ously, through many different feedback relationships,
with a highly complex biosphere composed of organ-
isms with diverse (and often incompatible) environ-
mental requirements. Such a complex system can ex-
hibit many kinds of behaviour that a simple Daisyworld
model cannot.” Kirchner (2003)

Daisystat features a number of environmental variables that
are regulated so that they remain within essential ranges
as a consequence of the effects of a diverse population of
individuals that respond to selection pressure in ways that
means they only ever ‘seek’ to increase their own abun-
dance with no selection for their effects on the environ-
mental variables. Daisystat can be understood as a devel-
opment of an individual-based Daisyworld model first pro-
posed in McDonald-Gibson (2006) and then analysed and
extended in: Dyke et al. (2007); McDonald-Gibson et al.
(2008); Dyke (2009). There are three important differences
between the Daisystat and these previous models. Firstly,
as already stated, Daisystat features multiple environmen-
tal variables. Secondly, mutation is not currently modelled
in the Daisystat so there is no change in the total amount
of genetic information in the population over time. Finally
there is no single carrying capacity for the population. Pre-
vious Daisyworld studies typically assumed that all individ-
uals within a population will be limited to a shared carry-
ing capacity amount. Consequently the rate of change of all
individuals is a function of the frequency of all other indi-
viduals. In Daisystat this assumption is relaxed in that all
individuals have separate carrying capacities. The interac-
tion between two individuals is then mediated only via their
dependence on shared environmental variables. A popula-
tion of K individuals are affected by and in turn affect their
environment. In all results shown, unless otherwise speci-
fied, K = 100. The individuals may represent individual
organisms, populations, species or guilds etc. All individu-
als experience the same environmental conditions in that the
environment is homogenous so that there are no local con-
ditions or micro-climates. The effect that any individual has
on the environment lead to changes in the environment that
all individuals experience in the same way. It is assumed that
an individual’s effect on this homogenous environment dif-
fuses instantaneously. The term ‘environmental resource’ is
used to denote those aspects or elements of the environment
that affect individuals and in turn are affected by individu-
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als. It is important to note that such environmental resources
do not produce monotonically increasing fitness in individ-
uals. It is possible to ‘have too much of a good thing’ so an
increasing environmental resource can lead to a decrease in
the fitness of an individual. This will be expanded on below.
The change over time of the ith environmental resource, Ri,
is given by:

dRi
dt

= αIi + βOi (2)

where Ii is the external perturbing input that is being applied
to the ith resource and Oi is the population’s effect on the
resource which is the sum of the individual’s effects:

Oi =
j=K∑
j=1

= Ei,j (3)

The effect, Ei,j , that the jth individual has on the ith re-
source varies over the range [-1,1] and is given with:

Ei,j = Ajεi,j (4)

where εi,j is the phenotypic effect which is multiplied by the
abundance, A, of the jth individual, where abundance could
be interpreted as numbers of individuals, total biomass, fre-
quency in the population, proportional coverage etc. α and
β are parameters that determine the relative strengths of the
perturbing input and population output. For all the results
shown α = β = 1. There is no momentum in environ-
mental resources, consequently their rate of change will be
zero when αI = −βO. The abundance of the jth individual
changes over time with:

dAj
dt

= Aj(kj −Aj)Fj −Ajγ (5)

where kj is the carrying capacity of the jth individual. This
equation is essentially identical to that used in Watson and
Lovelock (1983) and gives logistic growth towards the car-
rying capacity, k. In all results shown all k values are set to
unity. Therefore, the range of possible abundance values is
[0, 1 − γ], where γ is a fixed death rate and for all results
shown is fixed at 0.1. Fj is the ‘fitness’ function for the jth
individual and is the sum of the fitness function responses
for each environmental resource:

Fj =
i=Rmax∑
i=1

Fi,j (6)

where Rmax is the number of environmental resources and
Fi,j is a normal distribution response that determines the jth
individual’s response to the ith environmental resource:

Fi,j = e(−(Ri,j−Ti,j)
2)/2σ2

(7)

where Ti.j is the ‘target’ ith resource value for the jth indi-
vidual in that this is the resource values that gives the max-
imum fitness of unity. This is analogous to the growth re-
sponse to temperature in Daisyworld. As the resource in-
creases/decreases from this target value, fitness decreases at

a rate determined by the variance, σ2. For all results shown,
σ2 is set to unity.

Simulations consist of initialising a population of individ-
uals with random ε and T values. The method used is to
represent each individual as a two loci genome where each
locus has a floating point number over the range [0,1]. These
values are mapped to the ranges of [0,100] and [-1,1] for the
phenotypic traits of T and ε respectively. Resource values
are initialised at some value over the range [0,100]. The
change over time in resources and abundances of individu-
als are then numerically integrated.

Results
Two sets of results are presented. The first set demonstrates
Daisystat’s ability to perform Daisyworld-type regulation; a
system consisting of a single environmental resource is sta-
bilised at a series of particular values in the presence of a
perturbing driving input that would in the absence of the ef-
fects of the individuals increase the resource. The second set
demonstrates Daisystat’s ability to perform Homeostat-type
regulation or higher dimensional Daisyworld-type regula-
tion; a system consisting of four environmental resources is
subjected to a shock which the population responds to with
a period of rapid change until a new stable state is achieved.

Daisyworld-type regulation

Fig. 5 and Fig. 6 show changes in resource and abundances
over time for a system that consists of a single resource when
dI/dt = 3/τ , where τ = 2000 is the number of units of time
simulated. These results show the resource being maintained
at a number of values during a simulation. Decreasing the
rate of change of the perturbing input will typically lead to
homeostatic states in which the resource is held at one value
for the duration of the simulation. The perturbing input pro-
gressively seeks to drive the resource higher and higher. Fig.
7 shows that the population responds to this driving so as to
produce a counteracting force so that there is no change in
the resource: I = −O. This regulation proves to be robust
to a wide range of parameter values. K can be decreased to
approximately 20 and its only upper limit is computational
resources for numerically integrating the equations (maxi-
mum K value simulated is 10,000). The width of the fitness
functions which is determined by σ2 can be decreased or in-
creased by a magnitude with no significant effects. The rate
of change of the perturbing input, dI/dt cannot be set arbi-
trarily high. In the original Daisyworld study it was assumed
that the rate of change of the luminosity of the star was suf-
ficiently slow and the change in the population was suffi-
ciently fast so as to keep the luminosity value fixed while
the population was integrated to steady state. The Daisystat
can significantly relax this assumption, however there must
be sufficient time for the population to respond to perturba-
tions by changing the abundances of individuals.
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It is important to note that what value the resource remains
fixed at is not prescribed in the model. Moreover there ap-
pears to be no initial reason why the resource should remain
fixed at any level. Natural selection can be seen operating
on the population via the different target values that each
individual has. Individuals with target values nearer to the
current resource level would increase in abundance and their
effects on the resource would increase. Such effects range
over [-1,1] and are an incidental ‘by-product’ of the indi-
vidual in that there is no selection pressure for these effects.
As there is selection pressure for an individual’s response
to the environment but no selection pressure for an individ-
ual’s effect on the environment, it may appear strange that
the population responds to changes in perturbations that af-
fect the environment by changing the effects they have on
the environment while keeping their responses fixed. The
explanation for this behaviour can be given in terms of ‘rein
control’.
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Figure 5: Daisystat with a single environmental resource.
The resource is plotted with a solid line. The approximated
resource value in the absence of any individuals is plotted
with dashed line. This increases as the perturbing input is
increased over time whereas the simulation with individuals
present shows that the resource initially increases with in-
creasing perturbations but then remains approximately fixed
when it enters the range of values that produce non-zero fit-
ness. There are three periods of relatively rapid change in
the resource with homeostasis being recovered after the first
two periods.

Rein control
The term rein control was coined by M. Clynes in Clynes
(1969) within a discussion of unidirectional communica-
tion and control in biological organisms. Saunders et al.
(1998) and Saunders et al. (2000) developed the notion into
a mathematical description of regulatory systems that are
comprised of separate ‘reins’ that can only pull a controlled
variable in one direction. The notion of rein control has been
previously applied to the analysis of Daisyworld-type mod-
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Figure 6: Abundance of individuals changing over time. The
change in abundance is analogous to the change in the cov-
erage of black and white daisies in Daisyworld. As the per-
turbing input seeks to drive the resource higher, the popu-
lation responds by altering the proportion of increasing and
decreasing effect individuals.
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Figure 7: Population output changing over time. The ef-
fect that the population has on the resource is plotted with
a solid line. The driving perturbing force is plotted with a
dashed line. The increasing perturbing input produces an
equal magnitude, but opposite sign response from the pop-
ulation. At Time ≈ 800 and 900 there are rapid changes in
the population output before it is recovered so that I = −O
again.

els: Harvey (2004), Dyke and Harvey (2006), Dyke et al.
(2007), McDonald-Gibson et al. (2008), Wood et al. (2008),
Dyke (2009). The Daisystat extends the rein control notion
in that homeostatic states feature diverse populations that are
not necessarily dominated by two individuals/types/species.
Fig. 8 shows the establishment of a rein control stable state.
Two sub-populations can be seen in that a group of individ-
uals that have T values lower than the current R value will
collectively have an increasing effect on R, while a group
of individuals that have T values higher then the current R
value will collectively have a decreasing effect on R. The
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sum of the individual’s effect will equal that of the perturb-
ing input, I . As I changes, the abundance of individuals
and the net effect of the two sub-populations changes so that
I = −O and so R remains fixed.
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Figure 8: The origins of a rein control stable state when
K = 1000. The effects that the individuals have on the
resource are shown where these effects are the product of
the individual’s phenotypic effect on the resource, ε, and the
abundance of that individual, A. Individuals are ranked in
order of their T values. Individuals at the left hand side of
the horizontal axis have maximum fitness when R = 69
while individuals at the right hand side have maximum fit-
ness when R= 73. The resource, R, is being fixed around
the value of 70.9 which is denoted by the dashed lined la-
belled R∗. To the left of the dashed line, the sum of the
sub-population effects is positive. To the right of the dashed
line, the sum of the sub-population effects is negative. As
the perturbing input, I , alters, the population responds so
that the relative strengths of the two populations adjust such
that I = −O and hence R is maintained near R∗.

Homeostat-type regulation
The Daisystat exhibits Homeostat-type behaviour in re-
sponse to sudden perturbations. A Daisystat that was com-
prised of 4 environmental resources was allowed to relax to
a stable state in the absence of any perturbations (I = 0).
This was then subjected to a ‘shock’ in that one resource
value was instantaneously increased by 5 units. This lead
to a rapid change in the values of all other resource values
as the abundance and so population output on the resources
varied rapidly as shown in Fig. 9 and Fig. 10. The change in
the abundances continued until a new stable state was found.

Discussion
Daisystat displays the ability to resist external driving per-
turbations much the same way as the original Daisyworld
model. An important difference from the original Daisy-
world model is that the effects the individuals have on their
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Figure 9: Resource values are shown for a 4 resource Daisy-
stat. The system is perturbed at Time = 300 by increasing
R1 (the top line) by 5 units. This leads to a period of contin-
ual change in all environmental resources until Time ≈ 600
when a new set of stable resource values are established.
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Figure 10: Abundances of individuals are shown for a 4 re-
source Daisystat. The perturbation of R1 at Time = 300 pro-
duces a period of rapid change in the abundance of individ-
uals as the population ‘searches’ for a new stable state.

environment and how they are affected by their environment
are not prescribed. Consequently, homeostasis may be es-
tablished anywhere over the range [0,100]. The explanation
of homeostasis was given in terms of the rein control effects
of a population. This also produced uniselector-type be-
haviour in that if a resource is driven outside of the range of
the individuals that are currently regulating it, a sequence of
events leads to all resource values being similarly driven and
large changes in the population. Such changes continue until
a new set of population responses and effects emerges that
produce stability. The change in the abundances of individ-
uals in the population can be described in terms of selection
pressure, however there is no meaningful selection pressure
for a population’s effect on its resources. The homeostatic
behaviour of the Daisystat is not a result of higher level se-
lection.
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Increasing the number of environmental resources
demonstrated that the rein control system will operate in
higher dimensions, an observation first made in Saunders
et al. (2000). Regulation operating at planetary scales would
be a very high dimensional system with a wide range of time
and spatial scales. Daisystat can be considered as a first step
in exploring higher dimensional regulation that emerges via
population dynamics. In the Homeostat, as the number of
units increases and so the size of the matrix of weights in-
creases, the probability of randomly generating weight val-
ues that will produce a stable system decreases. Such ob-
servations resonate with the long-lasting debate surrounding
Gaian regulation, that as there is only a single Earth, plan-
etary homeostasis could not have evolved. While popula-
tion dynamics may provide a possible account for a biologi-
cal uniselector that can establish and recover stable states, it
cannot explain how high dimensional systems could emerge.
If we simplify the Daisystat into a network topology of feed-
back from and to environmental resources, then making the
network more complex by increasing resources leads to the
probability of it being stable reducing much in the same way
as formulated in May (1972). However, the Earth system did
not suddenly come into being 4.5 billion years as it is today.
The hypothesis is that an effectively intractable problem in
the form of determining a set of feedback values that will
lead to stability for a high dimensional system can be made
tractable by ‘growing’ such a system from initially low di-
mensions. In more concrete terms, this could involve incre-
mentally adding new environmental resources to currently
stable Daisystat systems. This may be seen as the emer-
gence of new ‘guilds’ of organisms that both exploit and af-
fect aspects of the environment that was either previously
separated from the biota or did not even exist. Such an ac-
count has been proposed for the increase in complexity for
the Earth system (Lenton et al., 2004)

Limitations and future work
The Daisystat is a very simple model intended as an ‘opaque
thought experiment’ (Di Paolo et al., 2000) much in the same
spirit as the original ‘parable’ of Daisyworld. Assumptions
concerning population dynamics were very basic. It is im-
portant to note they resulted in no individual completely
dying and being removed from the population. The num-
ber of individuals remained constant. Consequently biodi-
versity remained constant (if biodiversity is calculated as
simply the number of existent species). However the abun-
dances may be so small (approximately 10−5) that their ef-
fects on the resource values can be safely ignored. More-
over, many Daisyworld studies including the original Wat-
son & Lovelock model assumed a constant supply of either
daisy ‘seeds’ or floor for the coverage of daisies. However,
allowing species to go extinct in Daisystat could lead to a
significant decrease in homeostatic behaviour due to the ab-
sence of the ‘required’ rein control species for a particular

state of the system. Changing the total number of species
via extinction in the absence of mutation and so creation of
new species can be seen as reducing the Daisystat’s amount
of Ashbian variety. The connection between Ashby’s law
of requisite variety and biodiversity can be expressed as the
greater the variety of the system (species in Daisystat) the
greater the system’s ability to reduce variety in the environ-
ment via regulation. There is significant scope to explore the
relationship between biodiversity and stability in the Daisys-
tat and how it changes as the dimensions of the environment
changes.

A major assumption of the model is that all possible
genomes are specified at the start of a simulation. There
is no mutation of the alleles that determines an individual’s
effect on the environment and how it is affected by the envi-
ronment. Introducing mutation would allow a range of evo-
lutionary mechanisms to be explored and is a planned item
for future work. The current approach of randomly initialis-
ing a population of individuals is consistent with the notion
that ‘everything is everywhere, but the environment selects’
(see O’Malley (2007) for a historical review) which would
support the assumption that it may be sufficient to generate
sufficiently diverse simulated populations and then allow en-
vironmental conditions to select those individuals that will
survive and perish.

No significant assessment of altering the rates at which
individuals respond to and affect resources has been under-
taken. This corresponds to α = β = 1 in equation 2. These
values can be seen as analogous to the ‘viscosity’ term in
models of the Homeostat that modulates the rate of change
of a unit’s effect on the other units. There is much scope to
explore the parameter space of different rates of change in
Daisystat.

All the results presented featured Daisystats that were
completely connected; all individuals were affected by and
in turn affected all resources. Initial experiments that re-
laxed this assumption lead to more complex behaviour. For
example when the connections were made more sparse, sta-
ble states that featured oscillations and limit cycles were
observed. Exploring the effects of changing the density of
connections in Daisystat represents a fertile area of future
research.

Conclusion
A homeostatic model, the Daisystat, has been presented.
This shares certain features and behaviour of the Daisy-
world and Homeostat models. The Daisystat proved to be
robust to two types of perturbation: instantaneous changes in
one of the environmental resource values (analogous to one
element in the Homeostat being subject to a sudden jolt);
progressive driving of environmental resources (analogous
to increasing luminosity in Daisyworld). This has demon-
strated that Daisyworld-type homeostasis can be observed
under minimal assumptions and with numerous environmen-
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tal resources being subject to regulation (the original Daisy-
world featured a single environmental resource in the form
of planetary temperature). This has also demonstrated that a
population of diverse individuals can perform the same func-
tion as a Homeostat uniselector by generating rapid changes
in the feedback operating between the resources until new
stable states are found. A plan of future research was out-
lined that would investigate the ability to incrementally in-
crease the complexity of homeostatic systems and so pro-
vide a conceptual framework in order to understand how
real world complex systems such as the Earth system have
evolved from simpler states.
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Extended Abstract 

Engineering involves the design and assemblage of elements that work in specific ways to achieve a predictable purpose and 
function. In systems design, engineering takes a conceptual “top-down” approach to problem solving that aims to decompose a 
complicated problem into separable and more manageable sub-problems.  While this strategy has been successful in designing 
systems that deftly operate under predetermined conditions, these same systems are often notoriously fragile when conditions 
change unexpectedly.  
 
In contrast, biological systems operate in a highly flexible manner with no pre-assignment between components and system traits. 
Instead of relying on the prediction of future environments, biological systems (e.g. immune systems, cell regulation) quickly 
learn/explore appropriate responses to novel conditions and inherit new routines to remain competitive under persistent 
environmental change.  
 
Taking examples throughout biology, it has been proposed that degeneracy - the existence of multi-functioning components with 
context-dependent functional similarity - is a primary determinant of biological flexibility and a key differentiating factor in the 
robustness and evolvability of designed and evolved systems (Edelman and Gally 2001) (Whitacre 2010) (Whitacre and Bender 
2010) (Whitacre and Bender 2010). Degeneracy is routinely eliminated in engineering design and its role in the robustness of 
biological traits is well-documented, however the influence that degeneracy might have on the flexibility of engineered and artificial 
systems has only begun to be investigated (Whitacre et al. in press).  
 
Here we present evidence (Figure 1) that degeneracy enhances the robustness and evolvability (i.e. the rate and magnitude of 
heritable adaptive change) of multi-agent systems (MAS) that are taken from (Whitacre et al. in press) and modified to more closely 
reflect systems engineering problems subject to heterogeneous and unpredictable environments. First, we find degeneracy can 
increase MAS robustness toward a set of environments experienced during the MAS lifecycle. When robustness is important to 
fitness, we also find degeneracy can be selectively (not only passively/neutrally) acquired. However, and unbeknownst to myopic 
selection, this acquisition of degenerate robustness ultimately promotes faster rates of MAS design adaptation when the 
environment changes dramatically (at generation 3000, Figure 1), i.e. evolvability has been indirectly enhanced through the 
selection of degenerate forms of robustness. In contrast, robustness and evolvability are lower in MAS comprised of multi-
functioning agents that are never degenerate, i.e. agents do not exhibit partially overlapping functionality but instead are either 
identical or completely dissimilar to other agents. In a forthcoming article, we further show that many of these findings can be 
reversed if environments are simplified and decomposable, i.e. environments show little variability during the MAS lifecycle and 
those environmental variations that are experienced are separable/modular. 
 
In presenting these findings, we discuss how degeneracy might lead to new prescriptive guidelines for complex systems 
engineering: a nascent field that applies Darwinian and systems theory principles with the aim of improving flexibility and 
adaptation for systems that operate within volatile environments. We propose that versatile and functionally similar agents/sub-
systems/software/vehicles/machinery/plans may sometimes dramatically improve a system’s robustness to unexpected environments 
in ways that cannot be accounted for by economic portfolio theory.  
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Figure 1: Top-Left Panel) Multi-Agent System (MAS) encoded within a genetic algorithm; for details, see (Whitacre et al. in 

press). Agents perform tasks to improve MAS fitness in its environment. Top-Right Panel) Illustration of genetic architectures for 

degenerate and non-degenerate MAS. Each agent is depicted by a pair of connected nodes, with the two nodes representing two 

types of (genetically determined) tasks an agent can perform. Models are adapted from (Whitacre et al. in press) to reflect a systems 

engineering context that is to be fully described in a forthcoming article. Differences in modeling conditions, compared with 

(Whitacre et al. in press), include: larger MAS (120 agents), each agent takes on more tasks during its interaction with the 

environment (20 tasks), agent behaviors are simulated using an unordered asynchronous updating scheme, environments are defined 

by more types of tasks (20 types, 48000 tasks in total), and new constraints in function combinations within each agent (to be 

described in forthcoming paper). Bottom-Left Panel) Evolution of MAS Fitness under one set of environments and then (at gen. 

3000) evolution continues under a new set of environments. Optimal fitness = 0 for both original and new environments. Within the 

new environments, degenerate MAS appear to evolve more quickly while non-degenerate MAS evolve somewhat more gradually. 

Bottom-Right Panel) Degeneracy and fitness calculations for MAS in which degeneracy is permitted. Results show MAS evolved 

under random selection and MAS evolved to be robust within the environment. Here we see selection has increased degeneracy 

levels in the MAS (reported results are taken immediately after the first 3000 generations of evolution).  
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Abstract

Evolutionary Robotics (ER) is a powerful approach for the
automatic synthesis of robot controllers, as it requires little
a priori knowledge about the problem to be solved in order
to obtain good solutions. This is particularly true for collec-
tive and swarm robotics, in which the desired behaviour of
the group is an indirect result of the control and communi-
cation rules followed by each individual. However, the ex-
perimenter must make several arbitrary choices in setting up
the evolutionary process, in order to define the correct selec-
tive pressures that can lead to the desired results. In some
cases, only a deep understanding of the obtained results can
point to the critical aspects that constrain the system, which
can be later modified in order to re-engineer the evolutionary
process towards better solutions. In this paper, we presenta
case study about self-organising synchronisation in a group
of robots, in which some arbitrarily chosen properties of the
communication system hinder the scalability of the behaviour
to large groups. We show that by modifying the communica-
tion system, artificial evolution can synthesise behaviours that
properly scale with the group size.

Introduction
The synthesis of controllers for autonomous robots is a com-
plex problem that has been faced with a large number of
different techniques (Siciliano and Khatib, 2008). Among
the various possibilities, Evolutionary Robotics (ER) repre-
sents a viable approach for the automatic synthesis of robot
controllers requiring little a priori knowledge about the so-
lution of a given problem (see Nolfi and Floreano, 2000).
In fact, the evolutionary process proceeds in the bottom-up
direction, directly evaluating controllers for their suitability
to the requirements defined by the designer. When dealing
with collective or swarm robotics systems, the usage of au-
tomatic techniques like ER is even more compelling, in par-
ticular when the group behaviour should be the result of a
self-organising process arising from numerous interactions
among robots. In such conditions, in fact, there is an indirect
relationship between the desired group behaviour and the in-
dividual control rules. By evaluating the robotic system asa
whole (i.e., by testing the global behaviour that results from
the individual rules encoded into the individual genotype),

ER provides an automatic process for identifying the mech-
anisms that produce and support the collective behaviour,
and for implementing those mechanisms into the individual
controller rules that regulate the robot/environment interac-
tions (Trianni et al., 2008).

However, the advantages offered by Artificial Evolution
are not costless, as pointed out by Matarić and Cliff (1996).
In particular, it is necessary to identify the conditions that as-
sure theevolvabilityof the system, i.e., the possibility to pro-
gressively synthesise better solutions starting from scratch.
To do so, the experimenter has to make several choices in
setting up the evolutionary process. Some of these choices
are arbitrary if performed without anya priori knowledge of
the system features, and may have a strong impact on the so-
lutions found. This is often the case for the communication
abilities provided to a collective robotics system. In fact,
communication regulates the interactions among robots, and
should be rich enough to support the emergence of the de-
sired group behaviour. On the other hand, ER privileges
simple sub-symbolic communication forms, as it contextu-
ally develops the behavioural and communication strategies,
which co-evolve as a single whole. The selection of the best
communication protocol should therefore face this tradeoff,
and often only the experimenter intuition makes the differ-
ence between a valuable or an unfortunate choice.

Negative results should however be exploited to acquire
information on the system dynamics and re-engineer evo-
lution accordingly. In fact, by understanding the proper-
ties of unsuccessful systems it may be possible to recognise
which are the critical aspects that constrain the system in
sub-optimal solutions. In this paper, we present a case study
of such an approach. We have studied self-organising syn-
chronisation, in order to understand which are the minimal
behavioural and communication strategies that would allow
a group of robots to synchronise their periodic behaviour
(Trianni and Nolfi, 2009). In particular, we are interested
in the scalability property of the evolved behaviours to large
groups. By analysing the evolved behaviours, we discovered
that the arbitrary choice made in the communication proto-
col was hindering the evolved behaviour to suitably scale
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to large groups. This finding allowed us to re-engineer the
characteristics of the robots by identifying a new communi-
cation protocol, and to run further evolutionary experiments
that resulted in properly scalable behaviours.

Evolution of Self-Organised Synchronisation
Self-organised synchronisation is a common phenomenon
observed in many natural and artificial systems: simple cou-
pling rules at the level of the individual components of the
system result in an overall coherent behaviour (Strogatz,
2003). Probably, the most common synchronisation phe-
nomenon is related to the flashing behaviour of some fire-
fly species in South-East Asia, which aggregate at dusk and
engage in massively synchronous displays (Buck, 1988).
Models of this behaviour describe fireflies as a population
of pulse-coupled oscillators with equal or very similar fre-
quencies. These oscillators can influence each other by
emitting a pulse that shifts or resets their oscillation phase.
The numerous interactions among the individual oscillator-
fireflies are sufficient to explain the synchronisation of the
whole population (for more detail, see Buck (1988); Mirollo
and Strogatz (1990); Strogatz and Stewart (1993)). This
model has been often exploited to engineer systems capa-
ble of synchronous behaviour, also in collective and swarm
robotics (Wischmann et al., 2006; Christensen et al., 2009).
In this study, we have investigated which are the minimal
behavioural and communicative conditions that can lead to
synchronisation in a group of robots, in which each individ-
ual presents a periodic behaviour. For this purpose, we chose
to provide robots with simple reactive controllers and basic
communication abilities. The period and the phase of the
individual behaviour are defined by the sensory-motor coor-
dination of the robot, that is, by the dynamical interactions
with the environment that result from the robot embodiment.
We show that such dynamical interactions can be exploited
for self-organised synchronisation, allowing to keep a min-
imal complexity of both the behavioural and the communi-
cation level (for more details, see Trianni and Nolfi, 2009).

Experimental setup
The evolutionary experiments are performed in simulation,
using a simple kinematic model of thes-botrobot (see Fig. 1
and refer to Mondada et al., 2004, for details), and the results
are afterwards validated on the physical platform. The ex-
perimental scenario for the evolution of self-organising syn-
chronisation requires that each robot in the group displaysa
simple periodic behaviour, which should be entrained with
the periodic behaviour of the other robots present in the
arena. The individual periodic behaviour consists in oscil-
lations along they direction of a rectangular arena (see Fig-
ure 2). Oscillations are possible through the exploitationof a
symmetric gradient in shades of grey painted on the ground.
The gradient presents a white stripe for|y| < 0.2 m, and
black stripe for|y| > 1 m.

Figure 1: Thes-bot, the robot used in the experiments.

For the purpose of engineering the evolutionary system,
both the characteristics of the arena and the capabilities of
the robots give several constraints to the experimental setup.
According to these constraints, we select among the various
possibilities the minimal set of sensors and actuators thatare
required to accomplish the task, that is, individual periodic
oscillations over the grey gradient and synchronisation of
the oscillation phase. Certainly, the controller needs access
to the wheels’ motors, and we setωM ≈ 4.5 s−1 as the max-
imum angular speed of the wheels. The grey gradient of the
arena can be perceived by the robots through four infrared
sensors placed under their chassis (ground sensors), which
are appropriately scaled to encode the grey-level in the range
[0, 1], where0 corresponds to black and1 to white. The per-
ception of the gradient through these sensors provides the
robot with enough information to perform oscillations along
they axis. Additionally, robots need to use the infrared prox-
imity sensors placed around their cylindrical body, in order
to avoid collisions with walls or with other robots. These
choices, which are mainly constrained by the arena setup
and by the features of the physical robot, are sufficient for

y

x

Figure 2: Snapshot of a simulation showing three robots in
the experimental arena. The dashed lines indicate the refer-
ence frame used in the experiments.
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the individual behaviour.
For what concerns the group behaviour, instead, we need

to provide the robots with suitable interaction modalities
that can lead to synchronisation of their movements. The
choice of the communication system is the aspect we focus
on in this paper. In fact, thes-bot platform features vari-
ous communication devices, and we need to select among
them the one that fits our experimental scenario. Robots are
provided with speakers and microphones for sound commu-
nication. Moreover, robots can exploit coloured LEDs po-
sitioned around their turret to display a colour pattern that
can be perceived through the omni-directional camera. Fi-
nally, robots have wireless communication abilities. There-
fore, there is a large freedom in choosing the communica-
tion system. In order to maintain a minimal configuration,
we decided to provide the robots with aglobal andbinary
communication system:

s(t) = max
r

Sr(t), (1)

whereSr(t) ∈ {0, 1} is the binary signal emitted by robotr
at timet, ands(t) ∈ {0, 1} is the binary signal perceived by
all robots. In other words, each robotr can produce a signal
Sr(t). Signals produced by different robots cannot be distin-
guished, and result in a single signals(t) perceived by every
robot in the arena, including the signalling one. Signals are
perceived in a binary way: either there is someone signalling
in the arena, or there is no one. This communication proto-
col is probably the poorest one in terms of the amount of
information that can be conveyed. However, this is suffi-
cient for our purposes, as we will see in the following. Note
that this communication protocol can be easily implemented
with sound signals: a robot can emit a single frequency tone
with an intensity high enough to be perceived everywhere
in the arena. Note that, differently from the other sensors
and actuators, the choice of the communication system is
not constrained by the robotic hardware or by other aspects
of the experimental setup, but is only dictated by the com-
munication protocol we have chosen.

Evolutionary Setup
Evolution was carried out using homogeneous groups of
three robots, each controlled by a fully connected, feed
forward neural network—a perceptron network. The neu-
ral controller takes as input the information coming from
ground sensors, proximity sensors and perceived signals,
and it controls the two wheels of the robot’s differential
drive system and the emission of binary signals. Connec-
tion weights and bias terms are genetically encoded param-
eters. The evolutionary algorithm is based on a population
of 100 genotypes, which are randomly generated. This pop-
ulation of genotypes encodes the connection weights of 100
neural controllers. Each connection weight is represented
with a 8-bit binary code mapped onto a real number rang-
ing in [−10, +10]. Subsequent generations are produced by

a combination of selection with elitism and mutation. Re-
combination is not used. At each generation, the four best
individuals—i.e., theelite—are retained in the subsequent
generation. The remainder of the population is generated by
mutation of the 20 best individuals. Each genotype repro-
duces at most 5 times by applying mutation with 3% prob-
ability of flipping a bit. The evolutionary process runs for
500 generations.

The evolved genotype is mapped into a control structure
that is cloned and downloaded onto all the robots taking part
in the experiment, therefore obtaining a homogeneous group
of robots. During evolution, we use groups composed of
three robots only in order to obtain fast simulations. The
performance of a genotype is evaluated by a 2-components
function: F = 0.5 · F

M
+ 0.5 · F

S
∈ [0, 1]. The move-

ment componentF
M

simply rewards robots that move along
the y direction within the arena at maximum speed. This
component rewards the movements of the robot from the
observer perspective, without explicitly indicating how to
perform a periodic behaviour: the oscillatory behaviour de-
rives from the fact that the arena is surrounded by walls,
so that oscillations during the whole trial are necessary to
maximiseF

M
. The second fitness componentF

S
rewards

synchrony among the robots as the cross-correlation coef-
ficient between the distance of the robots from thex axis.
This component is therefore maximised by robots perform-
ing synchronous oscillations (either in-phase or anti-phase),
and it is null when robots are maximally desynchronised.
In addition to the fitness computation described above, two
indirect selective pressures are present. First of all, a trial
is stopped when a robot moves over the black-painted area,
and we assign to the trial a performanceF = 0. In this
way, robots are rewarded to exploit the information coming
from the ground sensors to perform the individual oscilla-
tory movements. Secondly, a trial is stopped when a robot
collides with the walls or with another robot, and also in
this case we setF = 0. In this way, robots are evolved to
efficiently avoid collisions. For more details on the fitness
computation, refer to Trianni and Nolfi (2009).

Design and Evolution

Before presenting the obtained results, it is useful to discuss
which are the features that are fixed by the experimenter,
and those that are adaptively set by the evolutionary pro-
cess. We have defined an experimental scenario that is in-
trinsically cooperative, because robots are homogeneous and
are explicitly rewarded to display a desired group behaviour.
We have also fixed the sensory-motor configuration and the
controller architecture. In particular, we have fixed the in-
teraction modality between different robots, which mainly
happens through the binary and global communication sig-
nal. Notwithstanding this, the motor and communicative be-
haviour is not at all pre-determined, but it is the result of the
evolutionary process. The individual behaviour and the syn-
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chronisation mechanisms are completely determined by the
parameters of the neural controller (i.e., connection weights
and biases). Individual behaviour and communication sig-
nals co-evolve and mutually influence: the individual be-
haviour determines how the robot moves and experience the
environment, which influences the signals emitted. In turns,
perceived signals change the way in which the robot reacts to
the environment. During evolution, the group behaviour is
shaped in order to maximise the user-defined utility metric,
within the constraints imposed by pre-determined features.
In the following, we will see how the communication proto-
col we have chosen influences the obtained results.

Behavioural and scalability analyses
We performed 20 evolutionary replications, each starting
with a different population of randomly generated geno-
types. Each replication produced a successful synchroni-
sation behaviour, in which robots display oscillatory move-
ments along they direction and synchronise with each other,
according to the requirements of the devised fitness func-
tion. In general, it is possible to distinguish two phases inthe
evolved behaviours: an initial transitory phase during which
robots achieve synchronisation, and a subsequent synchro-
nised phase. The transitory phase may be characterised by
physical interferences between robots due to collision avoid-
ance, if robots are initialised close to each other. The colli-
sion avoidance behaviour performed in this condition even-
tually leads to a separation of the robots in the environment,
so that further interferences to the individual oscillations
are limited and synchronisation can be achieved. The syn-
chronous phase is characterised by a stable synchronous os-
cillations of all robots, and small deviations from synchrony
are immediately compensated.

The individual ability to perform oscillatory movements
is based on the perception of the gradient painted on the
arena floor, which gives information about the direction par-
allel to they axis and about the point where to perform a U-
turn and move back towards thex axis, therefore avoiding to
end up into the black painted area. Each evolved controller
produces a signalling behaviour that varies while the robots
oscillate. The main role of the evolved signalling behaviour
is to provide a coupling between the oscillating robots, in
order to achieve synchronisation. In response to a perceived
signal, robots react by moving in the environment, changing
the trajectory of their oscillations. This results in a modu-
lation of the oscillation amplitude and frequency, which al-
lows the robots to reduce the phase difference among each
other, and eventually synchronise. In a previous work (Tri-
anni and Nolfi, 2009), we developed a mathematical model
and exploited dynamical systems theory to thoroughly anal-
yse the synchronisation behaviour. We invite the reader to
refer to that work for further details on the synchronisation
mechanisms, which are out of the scope of the present paper.

Once analysed the synchronisation behaviours evolved

using three robots only, we tested their ability to scale up
with the group size. To do so, we compared the perfor-
mance of the evolved behaviour varying the group size. To
avoid overcrowding, we performed the scalability analysis
in larger arenas, ensuring a constant density of robots across
the different settings. By ensuring a constant initial density
we limit the negative effects of overcrowding and we are
able to compare the performance of robotic systems with
varying group size. In order to keep a constant robot den-
sity equal to the one used in the evolutionary experiments,
we lengthened the arena in thex direction, trying to keep an
initial density of 0.25 robots per square meter. Despite the
increased arena length, we still keep the same communica-
tion protocol, that is, communication continues to be binary
and global, with all robots affecting each other. This choice
allows us to evaluate the scalability of a behaviour as it was
evolved, without modifying the features of the communica-
tion channel. We evaluated all best evolved controllers 100
times using six different group sizes (3, 6, 12, 24, 48 and 96
robots). The obtained results are presented in the top part of
Figure 3. It is possible to notice that most of the best evolved
controllers have a good performance for groups composed
of 6 robots. Performance degrades for larger group sizes
and only few controllers produce scalable behaviours up to
groups formed by 96 robots. The main problem that re-
duces the scalability of the evolved controllers is given by
the physical interactions among robots. Despite the constant
initial density we introduced in order to limit the disruptive
effect of collision avoidance, physical interactions neverthe-
less occur with a higher probability per time step, as the
group size increases. Every collision avoidance action pro-
vokes a temporary desynchronisation of at least two robots,
which have to adjust their movements in order to re-gain
synchronous oscillations with other robots. In such cases,
the whole group is influenced by the attempt of few robots
to re-gain synchronisation, due to the global and binary com-
munication.

To summarise, the above analysis showed that physical
interactions and collision avoidance have a disruptive effect
on the synchronisation ability of the robots, and this effect is
more and more visible as the group size increases. However,
the synchronisation mechanism evolved may scale with the
group size if we ignore physical interactions. To test this
hypothesis, we performed an identical scalability analysis,
but in this case we ignore the physical interactions among
the robots, as if each robot was placed in a different arena
and perceived the other robots only through communication
signals. The obtained results are plotted in the bottom part
of Figure 3. Differently from what was observed above, in
this case many controllers present good scalability, with only
a slight decrease in performance due to the longer time re-
quired by larger groups to perfectly synchronise (namely,
controllers evolved in replication number 2, 8, 10, 12, 14,
18 and 19). This result confirms the analysis about the neg-
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Figure 3: Scalability analysis. The boxplot shows, for eachevolved controller, the performance obtained in tests with3, 6, 12,
24, 48, and 96 robots. Each box represents the inter-quartile range of the data, while the black horizontal line inside the box
marks the median value. The whiskers extend to the most extreme data points within 1.5 times the inter-quartile range from the
box. Outliers are not shown. Top: scalability of the evolvedcontrollers under normal conditions. Bottom: scalabilityof the
synchronisation mechanism.

ative impact of physical interferences and collisions among
robots. In fact, removing the necessity to avoid collisions
leads to scalable self-organising behaviours.

Nevertheless, many other controllers present a strange be-
haviour (namely, controllers evolved in replication number
3, 4, 7, 9, 11, 13, 15, 16, 17, 20). It is possible to notice that
the performance presents a high variability up to a certain
group size. The variable performance indicates that in some
cases the robots are able to synchronise, and in other cases
not. With larger group sizes, the performance stabilises to
a low, constant value, independent from the initial condi-
tions and the number of robots used. This value, which is
characteristic of each non-scaling controller, represents the
performance of the robotic system trapped into the basin of
an incoherent attractor. In other words, the robotic sys-
tem always converges into a dynamical condition in which
no robot can synchronise with any other. By observing the
actual behaviour produced by these controllers, we realised
that the incoherent condition is caused by a communicative
interference problem: the signals emitted by different robots
overlap in time and are perceived as a constant signal (sig-
nals are global and are perceived in a binary way, prevent-
ing a robot from recognising different signal sources). If
the perceived signal does not vary in time, it does not bring

enough information to be exploited for synchronisation, and
the system remains desynchronised. This result is confirmed
by the dynamical system analysis that we performed, which
revealed how the individual signalling behaviour is respon-
sible for producing such communicative interference, allow-
ing also to predict which controllers present scalability just
looking at the individual behaviour (see Trianni and Nolfi,
2009, for more details).

Re-engineering for scalability
The analysis of the unsuccessful controllers revealed that
scalability cannot be always obtained, due to the physical
and communicative interferences among robots. In partic-
ular, the communication protocol we selected has a strong
impact on the scalability of the system. In fact, commu-
nication is global and binary, that is, the signal emitted by
a robot is perceived by any other robot everywhere in the
arena. Moreover, from the robot point of view, there is no
difference between a single robot and a thousand signalling
at the same time. Therefore, a single robot can influence the
whole group. This has no negative effect as long as robots
are synchronous, but can have severe consequences when a
robot modifies its behaviour due to collision avoidance fol-
lowing some physical interaction with other robots. Further-
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more, the binary communication channel generates the com-
municative interference we described above, which prevent
the group from synchronising in certain conditions.

The main problems are therefore related to the ab-
sence oflocality—i.e., signals are perceived everywhere in
the arena—and ofadditivity—i.e., signals overlap without
adding, preventing to recognise how many robots are con-
temporaneously signalling. The lack of locality and addi-
tivity is the main cause of failure for the scalability of the
evolved synchronisation mechanisms.1 We therefore de-
cided to re-engineer our evolutionary experiments changing
the communication protocol, which was arbitrarily chosen
in the first place. Given that we are interested in studying
global synchronisation, we decided to re-engineer our exper-
iments focusing only on the additivity of the communication
system. This allows us to make only minor changes to the
experimental setup and directly compare the effects of the
re-engineering approach.

Modified Experimental Setup
We evolved self-organising synchronisation behaviours ex-
ploiting exactly the same setup as above, but changing the
way robots signal and perceive emitted signals. Specifically,
we change the binary communication system with a contin-
uous one:

s̃(t) =
1

N

N
∑

r=1

S̃r(t), (2)

Now, robots always emit a signal̃Sr(t) ∈ [0, 1], encoding
a number in a continuous range. The emitted signals are
perceived as the averages̃(t) among all the perceived sig-
nals. By doing so, the influence of an individual robot on
the global perceived signal—which is equal for all robots in
the arena—depends on the signalling behaviour of the whole
group: the bigger the group, the smaller the influence of the
single individual. This communication protocol can be eas-
ily implemented on thes-bots. For instance, signals could
be sent as messages over the wireless network containing
a real number in [0,1]. On the basis of the analysis per-
formed so far, we expect that self-organising synchronisa-
tion behaviour can be evolved with such a communication
system, and that they are more scalable.

Analysis of the Obtained Results
Also in this case, we performed 20 evolutionary runs for
groups of three robots. All evolutionary runs were suc-
cessful, and produced synchronisation behaviours that are
qualitatively similar to those obtained with the binary com-
munication system: robots perform oscillations over the
painted gradient and react to the perceived signal by mod-
ifying the individual behaviour, in order to synchronise with
other robots. The scalability analysis was performed with

1However, as we have seen, this problem affects only some of
the analysed controllers.

the same modalities as described above, and the obtained
results are presented in Figure 4.

In the upper plot, scalability is tested including physical
interactions. Also in this case, we notice that collisions pre-
vent the scalability of some controllers, in which a good
avoidance behaviour was not evolved. Recall that when a
collision is detected, the group scores a null performance.
However, it is possible to notice that the usage of an addi-
tive communication system leads to better performance even
with large groups. Most controllers present good scalability
for every tested group size, and only collisions substantially
reduce the performance. Here, differently from what was
observed before, physical interactions and collision avoid-
ance do not have a severe impact on the performance of the
whole group. In fact, the signals of few non-synchronous
robots are averaged with those emitted by the rest of the
group. As a consequence, the influence on the group of a
robot attempting to synchronise decreases with increasing
group size. This leads to a quick convergence to synchrony
and to an improved group performance.

To better understand the effects of the re-engineering ap-
proach, we also performed a scalability analysis for the
evolved synchronisation mechanisms, again removing the
physical interactions among robots. The results plotted in
the lower part of Figure 4 show that all evolved synchronisa-
tion mechanisms perfectly scale, and they do not suffer from
the communicative interference observed with binary sig-
nals. In fact, the perceived signal brings information about
the average signalling behaviour of all robots. As a conse-
quence, synchronisation is always achieved, no matter the
group size. Notice also that all controllers present a linear
decrease in performance in correspondence to an exponen-
tial growth of the group size. This observation suggests that
the self-organising synchronisation mechanism is very effi-
cient, and is only slightly affected by the group size.

Discussion and Conclusions
In this paper, we have presented a case study about the evo-
lution of self-organising synchronisation in a robotic system.
In setting up the experiments, some characteristics of the
system were chosen arbitrarily, given that noa priori knowl-
edge was available about the possible solutions to the given
problem. The results obtained with the initial approach
proved that self-organising synchronisation can be actually
achieved with a minimal complexity at the level of the con-
trol and communication strategy. However, the analysis of
the scalability results also pointed to some characteristics of
the system that hindered the group from scoring a good per-
formance. We identified the problem in the communication
system being global and binary, and to the effects of phys-
ical and communicative interferences. To solve this prob-
lem, we re-engineered the arbitrarily-chosen communication
protocol exploiting the knowledge acquired by analysing the
evolved behaviours. The newly devised continuous signals
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Figure 4: Scalability analysis for the continuous communication system. Top: scalability of the evolved controllers under
normal conditions. Bottom: scalability of the synchronisation mechanism.

resulted in better synchronisation behaviours, and in an op-
timally scaling communication system.

The methodology described here may be generalised.
Evolutionary Robotics is actually very useful for the auto-
matic synthesis of controllers for robotic systems. However,
it does not exclude arbitrary choices. The advantage given
by ER is that, despite such arbitrary choices, it can find good
solutions to a given problem. However, much as in conven-
tional engineering methods, multiple design loops may be
needed to find optimal results. This paper demonstrates that
it is possible to engineer some features of a system under-
going artificial evolution on the basis of the outcomes of
the evolutionary process itself. Contrary to trial and error
methods without any guidance, we showed that an attentive
analysis of negative results conveys knowledge on how to
modify the system for evolving better solutions. Note that
this is not in contradiction with respect to the need of little
a priori knowledge in the design of the evolutionary experi-
ment, as mentioned in the introduction. The knowledge we
put into the system should not be related to the design of the
solution, which is left to the evolutionary process, but rather
to the preconditions required for obtaining good solutions.

We believe that it is necessary to formalise an engineer-
ing approach to Evolutionary Robotics, which can guide
the design of evolutionary experiments. This is particularly
true for collective and swarm robotics, in which the desired
behaviour of the group is an indirect result of the control

and communication rules followed by each individual. Let’s
consider here the case in which the robotic hardware avail-
able is fixed, and the problem to be solved is well defined,
as in any engineering application. In these conditions, it is
possible to identify four major issues in the design of the
evolutionary system: (i) the definition of the robot sensory-
motor configuration (ii) the definition of the genotype-to-
phenotype mapping, (iii) the definition of the fitness func-
tion, and (iv) the definition of the ecological selective pres-
sures. In this paper, we have just dealt with the robot config-
uration, and in particular with the communication protocol.
In the following, we briefly discuss the other issues.

With respect to the genotype-to-phenotype mapping, the
design choices concern mainly the type of controller to
be used, and the way in which the genotype is translated
into such controller. A widely used approach in the liter-
ature consists in encoding into the genotype a fixed num-
ber of parameters of the robot controller (typically realized
through an artificial neural network), while keeping con-
stant the controller structure. Other approaches are possible,
such as evolving the controller architecture (Stanley and Mi-
ikkulainen, 2002), or evolving controller programs instead
of neural networks (Koza, 1992). In collective robotics,
another characteristics that has to be determined concerns
the genetic relatedness between the individuals forming the
group, that is, whether they aregenetically homogeneous
(i.e., they are clones) orheterogeneous(i.e., they differ from
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each other). The advantage of homogeneous groups are
given by a very compact encoding for the parameters of the
controllers of the whole group, independently of its size.
This advantage comes at the cost of a higher difficulty in
obtaining roles that are well defined and differentiated. If
this is a requirement, then heterogeneous groups might be
more indicated. On the other hand, heterogeneous groups
lead to a larger search space, require to estimate each in-
dividual contribution to the group performance, or need to
identify in advance the role played by different individuals.

For what concerns the fitness function, it is difficult to
suggest general principles for properly engineering it, be-
cause it strongly depends on the particular experimental con-
ditions. Floreano and Urzelai (2000) propose the usage of a
three-dimensionalfitness space, in which the different di-
mensions refer to important features of a fitness function. In
a collective robotics setup, the definition of a fitness function
is more complex, due to the indirect relationship between in-
dividual actions and group organisation. A viable approach
is given by functions that reward the final outcome of the
collective behaviour, rather than the way in which the goal
is achieved. This can be done, whenever possible, by mea-
suring group variables that are available to the observer.

Finally, a typical problem of ER is the correct estima-
tion of the performance of a genotype. The fitness function
should evaluate the quality of the robot behaviour with re-
spect to some variability of the environment. Typically, the
behaviour must be robust with respect to varying initial po-
sition and orientation of the robot, and with respect to other
parameters that contribute to define theecological nichein
which the behaviour is evolved. In order to obtain a reason-
able fitness estimate, it is necessary to sample the space of
the possible ecological conditions in an appropriate way. In
a collective robotics setup, the problem is worsened by the
presence of multiple robots, which increase the variability
of the ecological niche. It is important to notice that indirect
selective pressures may be created through the definition of
the ecological niche and through the sampling employed to
estimate the fitness. Given that the group is evaluated for
presenting a robust behaviour within the parameter space of
the ecological niche, the choice of the sampling may influ-
ence the evolutionary path. For these reasons, a careful de-
sign is required.

In our view, these are the main methodological choices
that need to be performed when setting up an evolutionary
experiment. In future work, we plan to carefully analyse
these issues with both a theoretical and experimental work,
in order to better formalise an engineering approach to Evo-
lutionary Robotics
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Abstract

The concepts of life and intelligence almost require the sys-
tem to be adaptive. And adaptivity, in turn, is usually strongly
dependent on the continual generation of variations in the sys-
tem. The paper discusses various ways of producing the re-
quired variations, and how to support these production pro-
cesses.

Introduction
The property of being alive seems to almost require (if not
yet with scientific rigor, then at least intuitively) the exis-
tence of adaptational processes in the system – it is difficult
to imagine a lifeform whose internal processes and behav-
ior would not depend in any reasonable (fitness-linked) way
on the situation the organism is in. Adaptivity, in turn, has
strong, though less strict, ties with the generation of varia-
tions in / by the system.

The evolution theory inspired approaches to adaptation
consider it to be a process where variations of existing indi-
viduals are being generated and where selection operates on
those variants, probabilistically eliminating the less fit ones.
The variation-selection loop is not a strict requirement for
adaptation in general (because adaptive behavior can also
be displayed by a system that is able to accurately enough
estimate the required states and actions and generate them
in ”one shot”), but nevertheless a notable portion of adapta-
tional processes can be described as having such a character.

In cybernetics, too, the importance of variety for a sys-
tem’s ability to cope is emphasized, though in a slightly dif-
ferent sense: “The larger the variety of actions available to
a control system, the larger the variety of perturbations it is
able to compensate.” (Ashby’s (1956) idea of requisite vari-
ety, as summarized by Heylighen and Joslyn, 2001). Here,
the variants are not exactly competing with each other for
survival, but rather form an operational repertoire the sys-
tem can draw from as required by the circumstances.

The widespread usage of the concept of diversity in de-
bates about sustainability and problem solving furthermore
suggests that the existence of variations in a system may in-
crease its adaptivity as well as robustness.

And, finally, the need for some kinds of variations in a
system that is considered adaptive derives directly from the
essence of adaptation itself, which can be defined as “chang-
ing something (itself, others, the environment) so that it
would be more suitable or fit for some purpose than it would
have otherwise been” (Lints, 2010) – the term ‘change’ is
pretty much synonymous with ‘variation in time’, i.e., some-
thing is transformed from one state to another and there are
different variants of it at different time points (which, in turn,
may, or may not, depending on the system, be facilitated by
the existence of multiple simultaneously present variations
of system elements (components, processes, relations, etc.)).

All in all, then, it is of great import for adaptation re-
search, and, consequently, for ALife research, to study the
ways how variability can be stimulated. At least three issues
can be identified. Firstly, the very generation itself – what
are the ways to produce variations. Secondly, how to support
that generation, i.e., how to make it easier for the generative
processes to operate well in a system. And thirdly, how to
trigger the production of new relevant variations when the
mechanisms are already in place but latent or unguided. This
paper explores the first two of these issues. It should be
noted that the paper grew out of the author’s untested pon-
dering on the topic of adaptivity and does not attempt to sur-
vey the variability related research done so far (and, accord-
ingly, the given references are not representative of the main
research efforts of that direction; but, on the other hand, it
is exactly because of that why the paper might potentially
provide some perspectives, connections and summarizations
interestingly divergent from the usual).

Ways of Generating Variations
There exist several perspectives from which to dissect the
ways of producing variations. One might be called a “cre-
ativity perspective”, which lists the possibilities in accor-
dance with how (or if) the novelty is produced (surely, the
terms creativity and novelty are somewhat difficult to define,
but for our current purposes they serve mostly as referential
labels and thus the lack of rigorous definitions is not partic-
ularly problematic). The baseline would be having no nov-
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elty at all, from the system’s own perspective and (to keep
the current discussion within reasonable limits) with regard
to the set of variations, not the set of pairings of variations
with the situations. This would be the case when, for ex-
ample, all the possible variations already exist in some kind
of an internal repository and the system merely draws them
from this store.

Combinatorial novelty can be produced through, as the
name suggests, producing novel combinations of existing
elements, be they physical system parts or various signals,
processes, arrangements, etc. In genetics, a typical exam-
ple would be the crossover operation that basically takes
some DNA strands from two individuals and swaps some
of their sections with each other. But combinatorial nov-
elty is not limited to preserving the sizes or numbers of in-
puts, of course, and may in principle use any kind of ele-
ment pool to produce any other kind of element pool con-
structable from the (parts of the) initial material. If the ar-
rangement of the elements is important for the system, then
a mere rearrangement (permutation) can also be considered
to produce a novel variant from existing parts. Another note-
worthy possibility is the so-called bootstrapping where the
products of one generational cycle are used as elementary
building blocks in the next cycle (it is worth emphasizing,
though, that bootstrapping is a powerful method not limited
to combinatorial approach and can be used with most of the
other techniques as well).

To produce new alterations in a possibly noncombinato-
rial way (though it can also be used with the combinato-
rial method), the first approach would be incremental tun-
ing or modification of system’s parameters and parts, i.e.,
moving around relatively smoothly in the space of modifi-
ables. Whether this translates to the system moving around
smoothly in its state space as well depends on the mappings
from modifiables to system states and dynamics, as well as
on the general complexity and nonlinearity of the system. In
developmental systems the extent of the effect a modifica-
tion has is usually also strongly dependent on how early in
the development the modification was made – early changes
often have strong effects (which helps to explain why, espe-
cially in biology, early development often remains relatively
conservative in comparison to later development: the large
impacts of early alterations render, in most cases, the system
unfit (Bennett, 1997) and thus are selected against).

Moving up on the hypothetical creativity ladder we find
the revolutionary, “truly creative” change, the existence of
rigorous meaning and essence of which is somewhat ques-
tionable, but intuitively it implies the occurence of partic-
ularly noteworthy advances, strong originality and innova-
tion, and large unexpected (but clever, at least in hindsight)
changes in modifiables, as opposed to the more mundane
step-by-step tuning. In practice, though, the line between in-
cremental and revolutionary is blurry, and even more so with
the occasional distinction between truly creative and “just”

combinatorial, as it is actually common for the breakthrough
ideas to stem from intensive work with extensive presence of
both incremental and combinatorial methods. Also, in non-
linear systems the slight tuning of some system parameter
can lead to substantial changes in other variables.

A classification somewhat orthogonal to the previously
described one can be reached at when differentiating be-
tween the system being self-contained with regard to nov-
elty creation versus it drawing some variants, or elements
of them, from external sources. The most obvious situation
would be using an external knowledge repository, the form
of which can range from databases through helpful systems
/ agents up to the vast accumulated knowledge of the whole
human, or other, culture. Another possibility is the incor-
poration of (or merging with) external components that sup-
plement system’s own capabilities. This might be done tem-
porarily on the basis of need, or also permanently. In some
cases even the temporary inclusion of a component (say, an
employee) can permanently upgrade the system’s abilities
(say, in the form of idea exchange / extraction). Probably
the most complex, but accordingly with the highest poten-
tial payoff, way of acquiring variations from external world
is a (mutual, creative, constructive, temporally extended) in-
terchange process between the system and various external
agents.

Yet another perspective on producing variations can be
constructed by focusing on the spectrum of possible uses of
randomness and determinism in the system – whether the
search for new variations (or the act of retrieving existing
ones from some repository) is random or determined, guided
by previous experience or not, and what characteristics the
sources of randomness have.

A fully random search with a flat probability distribution
samples the search space, by definition, uniformly and with-
out any guidance from previous experience. A possibility to
be noted, though, is that if the search space is not the same
as the space of directly testable outcomes (e.g., genotypes
are being varied but the selection is based on final organ-
isms that develop under the guidance of those genotypes),
the probability distribution may well become skewed some-
where in the mappings from modifiables to testables (the
mappings can be very complex, involve generative rules,
randomness, context-dependence, emergent behavior, self-
organization, etc.). For the system this could be either a
problem or an opportunity.

As the probability distributions become less and less flat,
either through the changes in the aforementioned mappings
or directly at the source of randomness, there will be more
and more predictability (at least in principle) in the system,
finally in the limit reaching full determinism. The shaping
of distributions might be accidental, but a considerably more
interesting case is when it is used as a way to store previous
experience or externally acquired knowledge – those regions
of search space that have become known to be more likely
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to contain good solutions are searched more thoroughly and
preferentially earlier than other regions. One has to be care-
ful, though, to take into account the possibility of the cir-
cumstances changing or of the existence of special cases,
for both of which the solutions may lie in areas previously
experienced as solution-poor.

In some cases the search can also be exhaustive, generat-
ing all the possible variations of the modifiable(s). While ex-
haustive search is typically prohibitively costly, and purely
random search too unintelligent, the option to use them
should not be totally forgotten or immediately discarded, as
occasionally they may really turn out to be the most viable
ways to find good solutions (e.g., Wolfram, 2002, page 393).

As a fair share of interesting systems could be classified
as nonlinear and complex, there is one more potentially im-
portant source of variations: deterministic chaos. It can am-
plify minor fluctuations and deviations, both deliberate and
accidental, deterministic and random, into major changes in
system dynamics totally, and in practice quite unpredictably,
altering the system’s behavior in the long run.

For the probabilistic and deviation-amplifying methods to
work properly, it is necessary to have a source of random-
ness. This can be located either inside or outside the system,
and be truly random or pseudorandom. If the usage of the
source is deliberate, the values of the random variable might
be explicitly acquired from the source, but in most cases the
randomness kind of “leaks in” as noise in imperfect sensors,
signal channels, processing elements, actuators, etc., or in
the form of perturbations of the “normal” system behavior,
composition or organization.

One more informative way of classifying the variation-
producing methods rests on the sequential-parallel scale,
distinguishing between systems that create new variations
one by one in a row (and, in extreme cases, only allow the
existence of one variant at a time) and systems that either
spawn multiple simultaneously active variety generators or
just generate a number of alternatives more or less instanta-
neously (at least from the practical viewpoint).

While it is educative to be aware of all the described tech-
niques, it should be kept in mind that they are not mutually
exclusive – it can often be advantageous to combine vari-
ous approaches instead of relying on a single mechanism.
The partial orthogonality of the “perspectives” is relatively
obvious, but even within a single perspective there are pos-
sibilities for diversity, e.g., having both random and deter-
ministic, or both parallel and sequential variation generators
present in the same system. The different mechanisms can
be applied to altering different modifiables, be cooperating
on the same ones, act as backups for each other, and so on.

Supporting the Generation of Variations
For the various aforementioned methods to have a possibil-
ity to work well, the system they operate in should provide
some specific support in the form of having certain features

and resources. Some of the most important ways of help are
described in the following subsections.

Making the Modifiables Easy to Change
The job of a variation generator could be roughly described
as producing altered versions of the system, usually based on
the system’s previous state(s) or on some template or seed.
An alteration is basically a change of some modifiable fea-
tures of the system, executed either in the very same system
(component) or by fabricating a new altered copy instead.
It is quite straightforward to deduce, then, that making the
modifiables easy to change can make the job of the generator
much easier.

The specifics of how the effortlessness can be achieved
depend, obviously, on the particular system, but in general
the following keywords might give the first hints on the di-
rections to pursue: tunability, reconfigurability, rearrange-
ability, reroutability, flexibility, plasticity, elasticity, adjusta-
bility. The main connective idea here, almost by definition,
is to reduce the resistance to change. This includes reduc-
ing the cost of adjustment actions, increasing responsiveness
(the speed at which the changes can be made), relaxing con-
straints (except maybe the ones that directly support varia-
tion generation by keeping the corresponding mechanisms
functional, e.g., in genetic systems “the extremely high in-
ternal correlations underlying the transcription and transla-
tion mechanisms allow for a large ensemble of variants”
(Conrad, 1983, page 338)), removing various barriers, and
also increasing the number of options for each modifiable
feature (both by expanding the range and by upping the den-
sity of allowed positions in that range) as well as the number
of modifiables themselves. In addition to reducing the cost
of adjustment actions, the (meta-level) costs of maintaining
the flexibility are also important to be paid attention to and
reduced as much as possible or feasible.

As of increasing the number of options, an interesting
concept is neutral variation on a flat plateau of fitness land-
scape, meaning that something can be varied a lot with-
out affecting the measure of system’s current successfulness
much. In general this is not what we would like to have
when enlarging the set of options, because by definition the
added options on the same plateau give the same fitness re-
sult as those already existing there. However, there still ex-
ist potential ways to use it. One is to notice that although
different spots on the same plateau do have the same eleva-
tion, their neighboring areas might not, thus the new options
might provide better access to new interesting places on the
fitness landscape while being easy to reach themselves due
to neutrality (because of being similar to other variants there
is likely to be less resistance against moving into them) (e.g.,
Lenski et al., 2006). Another possibility is to look at some
kind of an “opposition to alterations” landscape instead (the
construction of which is trickier, though, as the resistance
to moving into a given point depends not only on the static
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paramater values of that point but also on dynamics, and is
typically not the same for different origins of alteration), find
plateaus there and define neutrality on such a basis. Then
the areas of interest would be plains of low resistance but of
useful variability in fitness-relevant dimensions.

A related concept, originating from physics, is referred to
as the system having glassy properties and means, among
other things, that there are “multiple low-energy minima in
the energy landscape of the system” (Menashe et al., 2000).
This, in turn, means that there is no uniquely predetermined
state to which the system would always try to fall, but in-
stead a variety of equi-energetic states to “choose” from.
And that possibility of choice would increase the system’s
potential capacity to adapt, and would move it closer to (or
further in) the domain of biology (Stec, 2004).

Yet another related idea for fostering variety is to keep the
system sufficiently far from equilibrium so that it has plenty
of stationary states to choose from (Heylighen, 2001).

Whereas neutral variation and ideas related to it definitely
deserve further research about how to apply them for sup-
porting variety generation, they are probably not the key
concepts and were given a somewhat disproportionate atten-
tion here mainly due to their intellectual appeal. A consider-
ably better studied and in all likelihood more important no-
tion is that of modularity – something consisting of change-
able pieces is typically a lot easier to modify than a mono-
lithic structure. Although modularity promptly associates
with some physical system or software being composed of
distinct components, the idea has a lot wider applicability.
To give a few examples, it is possible (and sometimes pos-
sibly enlightening) to talk about modularity in time, mod-
ularity of search space, state space, action space, or some
more exotic space, modularity of representations, behaviors,
signals, protocols, functionality, resources, and much more.

Linking the concepts of tunability and modularity, we can
arrive at the idea of having tunable and exchangeable com-
ponents. In general this is a thought too obvious maybe to
even mention, but in some areas it does not necessarily come
to mind that easily, yet is exceedingly useful nevertheless.
An example would be for a system to have switchable sets
of tunable behaviors where tuning improves the currently ac-
tive set and changeovers are triggered by context changes, as
opposed to having only a single tunable set that can slowly
become another (distant) one as is common in simpler arti-
ficial learning systems (Moorman and Ram, 1992).

An additional option for supporting variation generation
is to make the modifiables polyadjustable, that is, to have the
same feature be adjustable by a variety of different mecha-
nisms (Knoll and Järvenpää, 1994). Depending on the spe-
cific circumstances this can provide the system with the pos-
sibility to choose the most efficient change mechanism for
given situation, to have backup if some of the mechanisms
fail, to more effortlessly generate interesting and compli-
cated variations by playing around with several interacting

mechanisms, and so forth. But, assuredly, polyadjustabil-
ity may also make it more difficult to tune something if the
various mechanisms interact in a particularly intricate way.
Polygenic control is an example of natural use of polyad-
justability, where some characteristic of a biological organ-
ism is controlled by more than one gene.

Looking at the problem of reducing resistance to change
from the viewpoint of psychology adds yet another perspec-
tive to the discussion, one that is concerned with systems
being deliberate agents, or collections of them. In this view,
the topic is more commonly referred to as openness to new,
where “new” includes both the easier case of novel input
that agrees well with agent’s current worldview and the more
challenging situation of input that does not.

The main problem with regard to variation generation
(and to adaptivity in general) is that people and social
groups have a tendency, after initial developmental period,
to become quite fixed in their ways of thinking and doing.
We have cognitive predispositions to confirmation bias, fal-
lacy of centrality, hubris, normalization, typification, and
bottom-up salience of cues, as well as to lock-in and fix-
ation (Weick, 2005). Similarly, in social groups and insti-
tutions various behaviors and beliefs more or less sponta-
neusly emerge and form the “culture of the organization”,
which will then create a great deal of inertia to change
(Grisogono, 2005). To allow for novel variations to be intro-
duced into such systems it is thus necessary to offset those
cognitive predispositions (Weick, 2005), to induce openness
to conflicting inputs (Harvey et al. 1961, page 333, as re-
ferred to by Hunt, 1966), to break the addiction to listen and
accept only perspectives similar to one’s own (Holley, 2005),
etc. Whereas the common approach is to just inform people
about how it would be better to act and then expect or re-
quire them to follow the guidelines, it would be considerably
more effective to take the time and really help people (or
whoever / whatever the deliberate agents are in the system
of interest) break old behavioral habits in combination with
establishing new ones. Also, enough psychological safety
should be provided in order to combat the urge for closure
and certainty. This means it should be assured that “it is
much more important to be prepared to be wrong in order to
learn, than to always be right (and therefore either or both
risk-averse or in denial) and conversely, being prepared to
‘decriminalise’ others being wrong” (Grisogono and Ryan,
2007), as well as made sure that the group or organization
is safe for interpersonal risk taking (speaking up, offering
suggestions, critiques, expertise, advise) (Stagl et al., 2006).
The habits of constantly challenging one’s own thinking and
being prepared to look for both confirming and contradic-
tory evidence (Grisogono and Ryan, 2007), making explicit
(even vocalizing, for particularly critical processes and deci-
sions) the situation reviews, alternative diagnoses and plans
(Weick, 2007), and being tolerant of uncertainty and respon-
sibility (Ku, 1995, page 316) should be encouraged.
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Also aimed mainly at deliberate agents is the suggestion
to avoid various plans becoming too prescriptive (Holmqvist
and Pessi, 2006). By using an extended understanding of
what a plan is (can include blueprints, generative codes, var-
ious evolvable constraints, guidelines learned from experi-
ence, and much more) it can well be applied to most other
adaptive systems, too. Having plans is, assuredly, very often
beneficial, and the very process of planning itself can help a
lot with understanding and solving the problem at hand. But
if the plans are followed through rigidly, the adaptivity of the
system in general and the generation of (unplanned) varia-
tions in particular may suffer a lot. Multiple ways of achiev-
ing plan flexibility exist. One is to just keep revising the
plan dynamically, taking into account the new situational in-
formation (Burke et al., 2006). Another is to make the plans
themselves somewhat loose, for example to have strategies
suggesting boundaries on behavioral parameters rather than
precise values (Ram and Santamarı́a, 1997). And finally
there is a possibility to plain discard parts of the plan, or
the whole of it, as deemed necessary. In group situations the
latter option can be made easier by avoiding strongly bind-
ing contracts and building an ability to replace some of the
planning with on-time communication (Andersen, 2003).

Ending the current list of the ways of making the mod-
ifiables easy to change, but certainly not closing the set of
all possibilities, is the option of adding some form of re-
dundancy to the system. Having multiple copies of the same
components not only can increase the reliability of the whole
system, but also facilitates transformability and mutability
(Conrad, 1983, page 337): in addition to the straightforward
potential benefit of having more elements to target with al-
tering actions, the workings of the system do not depend
critically on single components anymore and thus the unsuc-
cessful variants of the elements do not immediately render
the whole system inoperative (except in some particularly
unfortunate cases of highly disruptive variants), which en-
courages more aggressive varying. A possibly even safer ap-
proach would be to decouple the exploration architecturally
and functionally from the rest of the system. The better vari-
ants could then either directly and forcefully substitute the
ones currently in effect in the main part of the system or, as
suggested by Grisogono and Ryan (2007), “to work provi-
sionally alongside established ways of doing things, with-
out relying on them, but using the parallel system enough to
identify and fix flaws with it until confidence in it grows suf-
ficiently that users start transferring to it in preference to the
previous system”. Finally, taking this direction of adding re-
dundancy and separating it from the main operational part to
its logical conclusion, we reach virtual variation generation
that is executed in models and simulations and thus poten-
tially allows for particularly rapid alteration production and
testing. But, surely, the use of models has various possible
drawbacks as well, e.g., a less than ideal match with reality
might lead to erroneous results and decisions.

Making the System Tolerant to Errors
In real life, variation generation almost inevitably produces
a significant number of unfit alterations along with the ac-
ceptable ones. If those mistakes have a strong negative ef-
fect on the system, either real or imaginary (e.g., psycho-
logical problems), then the whole variation generating pro-
cess may be considered undesirable and its activity reduced
to minimum, with potentially dire consequences to system’s
adaptivity. Thus, making the system tolerant to errors is an
important factor in supporting the generation of novel vari-
ations. For deliberate agents with psychological problems
that might involve making them aware of the near unavoid-
ability, or even desirability, of mistakes on the path of suc-
cess, but in general it is mostly about increasing robustness,
redundancy, reversibility and / or repairs, and actually also
adaptivity (regardless of the slight touch of circularity that it
seems to bring into our discussion) which would allow for
incorporating some of the errors in a way that transforms
them from mistakes into neutral or even useful features.

Robustness, as understood here, is the capacity to with-
stand various perturbations without needing an active, adap-
tive, response. It can come about in multiple ways, mostly
by having the important functionality being just plain in-
sensitive to disturbances (as in neutral variation discussed
earlier), by making the critical parameters very difficult to
change, or by having enough redundancy in the system so
that single failures cannot eliminate important functional-
ity. Redundancy can provide even more safety if it is im-
plemented not by simply having multiple copies of the very
same element, but by having different components with par-
tially overlapping functionalities, because this protects bet-
ter against systemic errors that affect all instances of some
element type (e.g., Edelman and Gally, 2001).

The more active side of error tolerance – reversing, re-
pairing, or adapting to mistakes – either tries to restore the
pre-mistake state of the component or reorganize the sys-
tem to now use what was previously considered a problem
as a useful feature instead. Reversibility can be fostered, for
example, by representing the targets of modification so that
each modification would be a simple flip of some bit (or a
switch between few alternatives), the undoing of which is
relatively straightforward (except only when the rest of the
system has already changed too much due to the unfit alter-
ation and will not restore itself appropriately after reverse
modification). Or, in some cases, the so-called system re-
store points can be occasionally created by saving the system
state in a recoverable way, up to producing full back-ups ev-
ery once in a while (especially before potentially dangerous
modifications). Usually this would require the implementa-
tion of several special reversibility-related mechanisms, but
sometimes there may also exist possibilities to achieve sim-
ilar effects with less effort. An example would be to have
the new variant just functionally override the previous one
without actually removing it from the system immediately,
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so that for recovery it would be enough to withdraw the new
element and thus allow the previous one to function again.
Genic occlusion is a natural instance of such a method: a
gene is suppressed through addition of a further “upstream”
gene to the epistatic set (a set of interacting genes), with
no actual change to the original locus itself (Brock, 2000,
page 245). As of repairing and readjusting, some options
(in a military context) are listed by Unewisse and Griso-
gono (2007): shifting of essential tasks from damaged to
undamaged elements, exploiting redundancy within system;
redistribution of tasks within system, exploiting multiroled
or multifunctioned elements; repair of damage, which re-
quires the capacity to detect damage, assess and repair it,
exploiting capacity for frontline repair and rapid mobilisa-
tion of logistic chains; redistributing tasks so that essential
ones are done vice non-essential; compensate for the dam-
age by changing the resources available to the system.

One has to be careful, though, with using the error toler-
ance increasing methods for supporting variability, because
more often than not the system will also be less sensitive to
the variations themselves, somewhat counteracting the ex-
pected positive effect. Occasionally the very opposite action
would be beneficial instead, as illustrated by yet another ex-
ample from genetics where one way to increase mutation
rate (in conditions calling for higher adaptivity) is through
inhibition of DNA repair processes (Hersh et al., 2004; De-
namur and Matic, 2006). The latter option is particularly
suitable for harsh situations where the survival of the system
(usually a population) is put into considerable danger and
the normal adaptational mechanisms are unlikely to be of
enough help – then the high occurence of (totally) unfit vari-
ants is outweighed by the increased probability of also find-
ing some new viable forms because the alternative would
likely be an irreversible extinction of the whole system.

Choosing Suitable Representations
A large share of nontrivial systems make use of various in-
ternal representations in order to process information and
store knowledge. In principle there can be a near infinite
number of different representations that refer to the same
“real” entities, and furthermore a near infinite number of
mappings both from the referenceable set to representations
and back. While equal in some ultimate respect, those alter-
native representations and mappings may present different
practical opportunities and constraints for the system, in-
cluding to the variation generation mechanisms. If the mod-
ifications executed in an adapting system target the very rep-
resentations themselves, then the influence of the choice of
representations on the variation generation is often obvious.
But even if they do not, the representations may be impor-
tant intermediaries in the chains from introduced modifica-
tions to systemic results and thus can still have a significant
impact on how easy it is to produce relevant variations.

When representations are looked at as yet another kind of

modifiables, then the general ideas discussed in current pa-
per apply to them just as well as to other modifiables and
are thus not repeated here. One problem worth a separate
mentioning is about whether to use distributed and possibly
implicit representations or not. Having “an ecology of co-
operating and competing models, each partially represent-
ing some aspects” (Ryan, 2006) may help variation gener-
ation both by providing a large set of different combinable
elements and possibly by making variations emerge even in
the course of “normal” system behavior without any explicit
generators in place. On the other hand, implicit, distributed
and inscrutable internal representations make it difficult to
use bootstrap learning processes (Provost, 2007, page 5), so
the variations may remain to be generated on a very low level
where it rarely leads to very complex solutions due to the
vastness of search space down there. Thus some balance
suitable for a given system should be searched for.

Regarding the mappings between entities and their repre-
sentations, there are several issues to be paid attention to.
If variation mechanisms are applied to representations (e.g.,
the genotype), but fitness is mainly dependent on the “real”
features deriving from those representations (e.g., the phe-
notype), then one of the main concerns is the question of
whether the representations and mappings allow the mecha-
nisms to properly explore the phenotype space.

The first problem is coverage – which and how big parts
of the phenotype are in principle derivable from the geno-
type. If no representations exist that lead to high-fitness phe-
notypes, then the variation generator cannot possibly reach
them. If, on the contrary, most of the representations lead
to only good solutions, then the generator is without much
effort very good at producing fit variants, but only as long as
the fitness landscape does not change radically with regard
to what is covered. Thus in the longer perspective it would
make sense to either have full coverage or, possibly even
better, to have adaptive representation (or mapping) struc-
ture that keeps the coverage on high fitness areas.

Secondly, in addition to the static correspondence be-
tween genotype space and phenotype space there is also cor-
respondence of dynamics – how does a movement in one
space get reflected in the other. If the mapping is relatively
straightforward (e.g., small movements of the modifiable in
a certain “direction” generally produce small movements of
the testable also in some certain “direction”), then variation
generating mechanisms will have the possibility to guide the
search in a systematic way. On the other hand, if the map-
ping is complicated and small changes in genotype space
cause significant and difficult to predict jumps in phenotype,
then the production of high diversity and large amount of
novelty is made easy. Which of these is preferred depends
on the particular system and / or situation. Similarly, there is
a trade-off involved in the amplification factor: small move-
ments in one space corresponding to small movements in
the other makes fine-tuning easy, but small movements cor-
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responding to large ones helps with the rate of exploration
in the phenotype space, especially if representations are for
some reason difficult to change in large steps.

The third point to be considered is somewhat related to
both previous ones: would it be a good idea to have the
representations together with mappings form nontrivial gen-
erative rules that produce the phenotype in a developmen-
tal, step-by-step fashion (as opposed to providing a fully
detailed blueprint from which the structures are directly
“copied” into reality)? If yes, then should they be deter-
ministic or probabilistic, and context-sensitive or not (or to
what extent)? The usage of generative rules can surely make
the correspondence between modifiables and testables more
complex and thus difficult to guide, but accordingly it can
facilitate the production of novel interesting variants that
would have been burdensome to explicitly encode in all de-
tail. Then again, if the generative rules make good use of
contextual information during execution, and possibly uti-
lize self-organization, they can in principle provide valuable
support in channeling the variants into high-fitness regions
of solution space, with the almost inseparable flip side of
reducing solution diversity. In less fortunate cases the chan-
neling might also occur into low-fitness regions.

And the fourth interesting issue with representations is
their abstractness. For example, psychology has observed
that the ability to generalize (i.e., to abstract) and transfer
knowledge and skills supports (or reflects) system’s ability
to adapt (Ployhart and Bliese, 2006), and that “greater ab-
stractness is associated with lower stereotypy and greater
flexibility in the face of complex and changing problem situ-
ations, toward greater creativity, exploration behavior, toler-
ance of stress, etc.” (Harvey and Schroder, 1963, page 134,
as referred to by Hunt, 1966). As of variability, the abstract-
ness could be viewed as increasing the scope, or applicabil-
ity, of each variant and thus reducing the number of different
internal alternatives required to cover the areas of interest in
phenotype and interaction space. On the other hand, though,
abstract representations may be more difficult to interpret,
therefore being better suited for advanced systems that pos-
sess enough processing capacity and knowledge for trans-
forming between abstract and specific.

Providing Various Internal and External Resources
The generation of variations can also be supported by pro-
viding the corresponding mechanisms with an adequate sup-
ply of all the necessary and helpful resources. Particularly
noteworthy among them are reservoirs of elements that can
be used for combinatorial purposes, of prefabricated vari-
ants, of ideas, and of accumulated knowledge and experi-
ence to be used either directly or more loosely in the form
of inspiration. These can be set up as, for example, reposi-
tories that can store the components or knowledge either in
an explicit and ready-to-use state or also in some more im-
plicit fashion where the full content is not readily extractable

but usable nevertheless. The resource pools can also exist
as secondary functions of some other subsystems, as well
as be totally external. The various ways of using external
resources for variation generation include obtaining / copy-
ing knowledge and ideas only, acquiring by incorporation of
or by merging with external objects, and executing a more
interactive process where there exists at least two-way com-
munication between the system and external entities. The
lines between these can occasionally be somewhat fuzzy, but
the first one is generally thought of as taking place through
system’s sensory channels, while the second is likely to in-
volve some special intake mechanism and the third can be
a combination of the first two with the addition of outward
communication. An obvious precondition for using external
resources is the very existence of these resources in combi-
nation with them being accessible to the system. The latter
could be supported by giving the system the necessary inter-
facing mechanisms, by having some external transportation
and communication infrastructure in place, and by other,
more elaborate, supportive systems.

Conclusion
Generating variations efficiently and wisely can sometimes
be the key for making a system adaptive enough with regard
to the goal at hand. And adaptivity, in turn, is one of the
key ingredients of life and intelligence. As described in this
paper, there are a lot of aspects to be paid attention to in this
seemingly simple process of variation generation, and thus
both further research of these issues and inventive applica-
tion of the found ideas can be considered an important part
of the fields of ALife and AI, as well as of the studies of
Complex Adaptive Systems in general.
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Extended Abstract

The potential of new technologies which emulate or exploit the unique properties of living systems is widely lauded.
Such technologies however, create new engineering challenges which must be addressed before they can become broadly
utilised (see for example, Braha et al. (2006); Bedau et al. (2010); Penn (2008)). Additionally, many pressing challenges
for society today are inherently concerned with gaining a better ability to understand and manage interacting living or
life-like systems upon which we rely. Well-documented examples include climate change, agricultural sustainability, city
dynamics, demographic change and chronic infections. Problems in all these areas demand a better ability to manage
complex biological systems than is currently available.

Conventional approaches to working with biological systems are, for the most part, brute force, attempting to effect
control in an input and effort intensive manner and are often insufficient when dealing with the inherent non-linearity and
complexity of living systems. Biological systems, by their very nature, are dynamic, adaptive and resilient and require
management tools that interact with dynamic processes rather than inert artifacts. Our novel engineering approach which
aims to exploit rather than fight those properties, presents a more efficient and robust alternative. Its essence is what I
will call systems aikido, the basic principle of aikido being to interact with the momentum of an attacker and redirect
it with minimal energy expenditure, using the opponents energy rather than ones own. In more conventional terms, this
translates to a philosophy of equilibrium engineering, manipulating systems own self-organisation and evolution so that
the evolutionarily or dynamically stable state corresponds to a function which we require.

I will discuss how we might move from this philosophy to a practical methodology for management of living systems and
technologies, covering a variety of approaches: Designing-in of tools for adaptive management given unexpected indirect
effects and continuous adaptation of living components; identification of appropriate points of intervention in particular
systems; and methods for steering adaptive systems by altering either the fitness landscape which they experience or the
attractor structure of their dynamics. Filling fitness valleys to escape local optima; expansion of basins of attraction of
difficult to access, but favourable attractors and manipulating the effective level of selection within the system.

Detailed illustration is provided by a practical application: Manipulating the level of selection within bacterial biofilms,
such that stable community species and genetic composition corresponds to a community function which we require( Penn
et al. (2008b,a)). Different levels of selection produce particular types of community composition. Higher-level selection
promotes co-operation and synergy useful for efficient bioremediation and bioproduction, whereas encouraging lower-
level selection might allow us to engineer a tragedy of the commons in problematic bacterial communities. I will present
methodology and results from ongoing experimental work with Psuedomonas aeruginosa biofilms in which direct or
indirect manipulation of parameters affecting group structure and dispersal mechanisms modify the effective level of
and hence response to selection. And will describe approaches to increase the robustness of the engineered community
Finally I will contrast this methodology with a spectrum of more or less brute-force interventions, from traditional biofilm
engineering approaches to imposition of higher-level selection( Swenson et al. (2000b,a); Penn (2006)).
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Abstract 

Languages change over time, as new words are invented, old 
words are lost through disuse, and the meanings of existing 
words are altered. The processes behind language change 
include the culture of language acquisition and the mechanisms 
used for language learning. We examine the effects of language 
acquisition and learning, in particular the length of the learning 
period over generations of robots. The robots form spatial 
concepts related to places in an environment: toponyms (place 
names) and simple prepositions (distances and directions). The 
use of spatial concepts allows us to investigate different classes 
of words within a single domain that provides a clear method 
for evaluating word use between agents. The individual words 
used by the agents can change rapidly through the generations 
depending on the learning period of the language learners. 
When the learning period is sufficiently long that more words 
are retained than invented, the lexicon becomes more stable and 
successful. This research demonstrates that the rate of language 
change depends on learning periods and concept formation, and 
that the language transmission bottleneck reduces the retention 
of words that are part of large lexicons more than words that 
are part of small lexicons.  

Introduction 

Language change is a ubiquitous property of natural 
languages. One characteristic of language change is the 
production of neologisms, with new words created or existing 
words modified, combined, or separated (Brinton & Traugott, 
2005). A shared language can be sustained within generations, 
while the words and concepts may change through 
generations. Although older generations are prone to deplore 
the language of younger generations, language change only 
becomes a problem when members of a population are no 
longer able to understand each other (Aitchison, 1991). 

There are three timescales on which language change 
occurs: individual learning, cultural transmission, and 
biological evolution (Kirby, Dowman, & Griffiths, 2007). 
Language change is driven by both external sociolinguistic 
and internal psycholinguistic factors (Aitchison, 1991). 
Constraints that shape language include sensorimotor factors 
(the noisiness and variability of signals), cognitive limitations 
(learning, processing, and memory), thought (concepts and 
categorization), and pragmatic constraints (Chater & 
Christiansen, 2009). Language acquisition mechanisms 
influence the nature of language change (Niyogi, 2006), with 

the transmission of language from one generation to the next 
involving the mechanisms of language learning and 
production (Brighton, Smith, & Kirby, 2005).  

Representation and culture influence the concepts that can 
be formed in a language and the ease with which agents learn 
these concepts. These factors are part of concept formation, 
language production, and language acquisition mechanisms. 
Together with learning mechanisms, representation affects 
how individual agents form concepts, which in turn affects the 
concepts that form in a population of agents. The cultural 
environment of the agents determines the words and concepts 
that agents are exposed to over their lifetimes.  

A variety of representations and learning mechanisms have 
been used in studies investigating language evolution in 
computational agents. Recent studies have investigated the 
use of visual perceptions and spatial representations in 
forming a language for regions in geographical space and 
generative grounding using spatial representations (Schulz, 
Prasser, Stockwell, Wyeth, & Wiles, 2008). When agents 
ground concepts generatively, by combining existing concepts 
to form new concepts, there is increased flexibility and hence 
also ambiguity in the association between words and 
concepts. 

In generational studies, agents start afresh with each new 
generation, learning the existing language and potentially 
expanding it. A reason that language is evolvable is that it is 
situated in a cultural environment that aids learning through 
generations, which can be implemented with iterated learning 
(Brighton, et al., 2005; Kirby & Hurford, 2002), in which 
agents learn language from the utterances of other agents. The 
strategies used by language speakers and hearers in 
determining what to talk about and how to talk about it are 
also a part of culture. 

One feature of culture that has been studied previously is 
the bottleneck of language transmission (Brighton, et al., 
2005; Kirby, 2002; Smith, 2007; Tonkes & Wiles, 2002). The 
bottleneck has been found to be important for the 
development of compositional and productive language. 
Previous spatial language studies have investigated how the 
rate at which agents enter and leave the population affected 
whether the agents were able to sustain a shared spatial 
language (Bodík & Takáč, 2003). These studies found that 
when the length of time agents spent in the population was 
sufficiently long (i.e. the bottleneck was sufficiently large), a 
shared spatial language was able to be sustained. These results 
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have also been found in language studies with arbitrary 
feature representations (Smith, 2007). 

Studies investigating the language transmission bottleneck 
have either considered a single class of words or analyzed the 
success of the whole language, with individual words used as 
examples. However, different classes of words, such as nouns 
and prepositions, play different roles in meaningful 
communication, and all classes of words may not be equally 
likely to pass through a language bottleneck.  

The challenge for this project is to determine how spatial 
languages can change through generations and to determine 
how the length of the learning period and lifetime of the 
agents affect language change. The main questions to answer 
include how to interpret spatial language change over 
generations and whether different types of spatial words have 
different rates of change. In particular we are interested in 
how learning by successive generations affects the turnover of 
individual words. The study described in this paper 
investigated the effect of the length of the learning period and 
the lifetime of the agents on the various spatial concepts that 
form and how the language changes throughout the 
generations. 

A Spatial Language with Cognitive Maps 

In language studies, the agent interactions influence the words 
and concepts that a language agent is exposed to and chooses 
to use throughout its lifetime. The specific games played 
determine which niches of concept space will be filled and the 
words chosen by the agents determine which words will 
survive through generations. In the study presented here, 
generations of simulated robots played language games to 
form concepts for toponyms (place names) and simple 
prepositions (directions and distances). The length of each 
generation was varied from four interactions per generation up 
to 1000 interactions per generation to investigate the affect of 
the length of the learning period and agent lifetimes on 
language change. The nature of the language change was 
investigated by comparing rates of word invention, retention, 
and persistence for the different concept types of toponyms, 
directions, and distances.  

Location Language Games 

The language games used in these studies are location 
language games (see Figure 1). To play a location language 
game, the agents require a representation of the world 
acquired through exploration carried out independently of 
other agents in the world. Shared attention for location 
language games is co-presence, that is, the agents are within 
hearing distance. While autonomously exploring the world, 
the agents intermittently send a “Hello” signal. If a “Hello” 
signal is heard, the hearing agent sends a “Hear” signal and 
the agents play a game. After shared attention is established, 
the speaker chooses a topic, which in a location language 
game relates to the current location of the agents or a location 
at a distance from the agents, depending on the game being 
played. After the topic is determined, the speaker uses its 
lexicon to determine which word should be used in the current 
situation and produces an utterance. Both agents then update 
their representations and lexicon. In the location language 

a)  

b)  

c)  

d)  

Figure 1. Referents used in the language games: a) The where-
are-we game involves a single location: the current location, A, 
of both robots. b) The how-far game involves two locations 
(current, A, and target, B) and a distance, d. c) The what-
direction game involves three locations (current, A, target, B, and 
orientation, C) and a direction, θ. d) The where-is-there game 
involves three locations (current, A, target, B, and orientation, C), 
a direction, θ, and a distance, d. The figures show the robots 
located in the open plan office of the simulation world, with gray 
lines representing walls and gray octagons representing desks. A 
star (*) indicates that the speaker may invent a new word and that 
both agents will update their lexicon for the marked word. 
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games played in this study the hearer receives the utterance 
and updates their representations, but does not explicitly 
evaluate the speaker’s utterance and no feedback is given to 
either agent. Repeated encounters enable coherent languages 
to form even without explicit feedback (a phenomenon 
reported in a variety of studies including Smith, 2007; and 
Vogt, 2004). 

In the study, the agents played where-are-we, how-far, 
what-direction, and where-is-there games. The premise of a 
where-are-we game is a location language game where the 
topic is the current location of the agents (see Figure 1a). The 
speaker produces a word for the current location and both 
agents update their lexicon based on the speaker’s utterance.  

The how-far game is based on naming two locations: Both 
agents are located at the first location (A) and they talk about 
the second location (B), specifying the distance between the 
two locations (see Figure 1b).  

The what-direction game is based on naming three 
locations: As in the how-far game, both agents are located at 
the first location (A) and they talk about the second location 
(B). The agents are both facing the third location (C), and the 
direction between the two distant locations is specified (see 
Figure 1c). 

The where-is-there game, adapted from previous spatial 
language games (Bodík & Takáč, 2003; Steels, 1995), extends 
the how-far and what-direction games and is based on naming 
three locations, as specified in the what-direction game (see 
Figure 1d). The agents describe the relationship between the 
locations with spatial words of distance and direction. The 
where-is-there game is interesting because it allows the 
grounding of toponyms relative to existing toponyms, and 
therefore allows agents to refer to places that they have never 
visited or can never visit.  

Cognitive Map 

To build a representation of the world, the simulated robots 
used RatSLAM, a method of Simultaneous Localization And 
Mapping (SLAM) that has been developed over the past 
decade to enable autonomous robots to explore and map their 
environments (Milford & Wyeth, 2007). RatSLAM is a 
computational model inspired by the rodent hippocampal 
complex. Through exploration of an environment, each robot 
constructs a unique representation of the world as a 
topological map of experiences, each with an estimate of 
global pose within an approximate x-y representation of the 
world. An active experience encodes the robot’s best estimate 
of its position (for more information see Milford, Schulz, 
Prasser, Wyeth, & Wiles, 2007). The experience map provides 
a cognitive map representation of the world (O'Keefe & 
Nadel, 1978). 

A simulation world was built to mirror the real world, with 
images from the real world used in constructing the views of 
the robot. The simulation world includes an open plan office 
in a university building. Exploration was performed by left 
and right wall following. The robots used a single forward 
facing camera. In real-world studies, language games between 
real robots were based on actual hearing distances (Schulz, 
Wyeth, & Wiles, submitted). The study in this paper was 
completed in the simulation world for computational 
tractability. The simulation world enables simulated robots to 

pass messages to other robots within a set distance of their 
current locations, allowing the hearing distance to be 
explicitly set. For the study reported here a hearing distance of 
3m was used. 

Toponymic Lexicon 

The associations between experiences and words are stored in 
distributed lexicon tables, a method inspired by the distributed 
nature of inputs to neural networks combined with the lexicon 
table structure (Schulz, et al., 2008). Forming concepts with a 
distributed lexicon table differs from most other 
conceptualization methods in that it is directly linked to the 
language formation, allowing concepts and words to have 
boundaries that are not explicitly defined. In many language 
game studies, concepts are formed using discrimination trees 
(Bodík & Takáč, 2003; Smith, 2007; Steels, 1997), which 
allows the agents to form concepts with well defined 
boundaries. The discrete concepts, formed through a 
discrimination tree or similar categorization method, may then 
be associated with words through a lexicon table. With a 
distributed lexicon table, concept formation and association 
with words occurs concurrently by increasing associations 
between experiences and words. An association value is 
stored for each experience–word pair, which is a value of 0.0 
or greater. Experiences are related to each other by their 
proximity, based on their global pose estimates. The 
association between an experience and a word is strengthened 
when they are used together. 

The toponymic lexicon data structures include the toponym 
lexicon, the toponym lexicon table, and toponym associations. 
The toponym lexicon comprises the set of words used as 
toponyms where each word is a unique string of consonants 
and vowels. The toponym lexicon table comprises a set of 
toponym associations between experiences and words. 

In both the where-are-we and where-is-there games, the 
toponym association value for the specified experience and 
the word used is incremented by 1.0. A word for a location is 
chosen by the speaker in both the where-are-we and where-is-
there games. For a specified location the word with the 
highest confidence value is chosen. The confidence value, hij, 
at the experience, i, for the word, j, is the relative association 
of the word within a neighborhood of size D compared to the 
total association of the word, calculated as follows:  
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where X is the number of experiences within D of the 
experience, i; a

T
ij is the association between an experience, i, 

and the word, j; dist
T

ki is the distance between experiences, k 
and i within the experience map of the robot; and E is the total 
number of experiences in the robot’s experience map. For the 
study presented here a neighborhood size, D, of 3m was used. 
In each interaction, words are invented with probability, p, as 
follows: 
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where hij is the confidence value of the experience-word 
combination; and T is a scaling parameter called the 
temperature, which effectively sets the invention rate for new 
words. Eq. 2 allows agents to use existing words when a word 
is associated with the current location with a high confidence, 
and to probabilistically invent words otherwise. Varying the 
temperature alters the rate of word invention, where a higher 
temperature increases the probability of inventing a new word. 
For the study presented here the temperature was decreased 
linearly from 0.3 to 0.1 over the course of each generation. 

Relational Lexicon 

In addition to locations, the simulated robots have words for 
directions and distances. The data structures include the 
distance and direction lexicons, elements, associations, and 
lexicon tables. The distance lexicon comprises the set of 
words used to refer to distances, and the distance lexicon table 
comprises a set of distance associations between distance 
elements and words.  Each distance element is a distance 
measured in meters in global pose space.  

Direction words used data structures similar to those for 
distance words. The direction lexicon comprises the set of 
words used to refer to directions (i.e. angular distances), and 
the direction lexicon table comprises a set of direction 
associations between direction elements and words.  Each 
direction element is an angle measured in radians.  

In each how-far game, the association values stored in the 
distance lexicon for the distance word used are updated. 
Experiences are grouped to the nearest distance element based 
on their distance from the current experience in global pose 
space. For the topic, j, of the interaction, a distance 
association value, a

D
ij, is calculated for each distance element, 

i ϵ 1..K
D
, by summing the target toponym associations for 

each experience grouped to that distance element, and 
smoothing using a distance neighborhood, as follows: 
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where Y is the number of distance elements within a 
neighborhood of size D

D
 from the distance element, i; X is the 

number of experiences grouped to the distance element, i; a
T

kw 
is the toponym association between the experience, k, and the 
toponym, w; and dist

D
mi is the distance between the two 

distance elements, m and i. For the studies reported here, 50 
distance elements were used in the range 0 to 25m and a 
distance neighborhood of 1.5m was used. 

In each what-direction game, the association values stored 
in the direction lexicon for the direction word used are 
updated. Experiences are grouped to the nearest direction 
element based on the direction from the agent’s facing at the 
current experience. For the topic, j, of the interaction, a 
direction association value, a

Θ
ij, is calculated for each 

direction element, i ϵ 1..K
Θ
, by summing the target toponym 

associations for each experience grouped to that direction 
element, and smoothing using a direction neighborhood, as 
follows: 
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where Y is the number of direction elements within a 
neighborhood of size D

Θ
 from the direction element, i; X is 

the number of experiences grouped to the direction element, i; 
a

T
kj is the toponym association between the experience, k, and 

the toponym, w; and dist
Θ

mi is the angular distance between 
the two direction elements, m and i. For the studies reported 
here, 50 direction elements were used in the range 0 to 2π, 
and a direction neighborhood of 3π/25 (21.6°) was used. 

For distances and directions, the word with the closest 
match to the current distance or direction concept is used. The 
probability of inventing spatial words is calculated as for the 
toponyms using the match, matchij, between the normalized 
vectors of the calculated, i, and stored, j, spatial associations, 
in place of the confidence value, calculated as follows: 























K

k K

m mj

kj

K

m mi

ki
ij

a

a

a

a
match

1

11

,min  (5) 

where K is the number of spatial elements; aki is the 
association for the spatial element, k, and the topic, i, 
calculated using Equation 3 or 4; and akj is the association 
stored in the lexicon table for the spatial element, k, and 
spatial word, j. 

Evolving Spatial Languages 

In the study described in this paper, agent populations evolved 
languages over generations of agents. Generations consisted 
of a set number of interactions. In the initial population two 
agents played negotiation games. In subsequent generations, 
the older agent was replaced by a new agent. The new agent 
was the hearer (student) in all language games. When the new 
agent replaced the older agent in the following generation, all 
language games were played as the speaker (teacher). Note 
that the agents do not have fitness awarded and do not 
compete to be part of the next generation. There are always 
two agents per generation, with the older agent coming from 
the previous generation and the younger agent forming the 
next generation. In this view of language change, evolution 
refers to the change in the language rather than to the agents. 
Note that this use of evolution is consistent with its original 
Darwinian meaning as “descent with modification”. Language 
change under this definition does not require direct 
competition of elements, rather it requires generations through 
which it is propagated, with features of the language affected 
by the generational transmission process. 

The order in which concepts are formed by the agent can be 
constrained by the games played by the agent and the concepts 
chosen to be used in each game. In this study, the agents play 
where-are-we games initially to allow the separate formation 
of a set of toponyms then play how-far and what-direction 
games to form a set of relational terms and finally play where-
is-there games. Agents play where-are-we games in all of the 
interactions of the generation, playing only where-are-we 
games for the first half of the interactions. In the third quarter 
of the interactions, agents may also play how-far and what-



Proc. of the Alife XII Conference, Odense, Denmark, 2010 585

direction games with equal probability, with the constraint 
that the agent must have at least two toponyms in order to 
play a how-far game and at least three toponyms to play a 
what-direction game. In the final quarter of interactions, the 
agents may also play where-is-there games, with the 
constraint that the agent must have at least one distance and 
one direction word. 

The Language Bottleneck 

The language transmission bottleneck refers to limited 
transmission of a language between generations. During its 
lifetime, a student may not be exposed to the entire lexicon of 
its teacher, or even when exposed to words, will learn its own 
grounded meaning and therefore will not perfectly learn the 
teacher’s language. In this simulation study, the language 
bottleneck is due to limits on both the number of interactions 
per generation, and also the number of locations in the world 
where the agents interact. The student must therefore 
generalize from its experience of the teacher’s language. How 
well the student can generalize depends on the number of 
interactions and the distribution of locations at which the 
interactions take place. The number of interactions per 
generation determines the proportion of the teacher’s 
language that the student experiences during its lifetime.  An 
initial investigation was performed with nine conditions based 
on 4, 8, 16, 32, 64, 128, 250, 500, and 1000 interactions per 
generation. The study comprised three runs of each condition 
with 20 generations per run. 

The size of the language increased as the number of 
interactions per generation increased (see Table 1). The size 
of each lexicon differed, with larger toponym lexicons and 
smaller distance lexicons for more than 16 interactions per 
generation. For 4, 8, and 16 interactions per generation the 
direction lexicon was the smallest of the three lexicons. For 
each of the types of words (toponyms, distances, and 
directions), there was a crossover between more words 
invented per generation and more words retained per 
generation (see Figure 2). The crossover point indicates the 
number of interactions per generation where the language 
transmission bottleneck is sufficiently wide that more words 
are retained than invented. If a student learns a comprehensive 
language from its teacher, then proportionately fewer words 
will need to be invented in the next generation. 

Language Change across Generations 

For the conditions in which more words were preserved than 
invented, the language change can be investigated further. The 
three conditions considered further were a) 250, b) 500, and c) 
1000 interactions per generation. The study comprised three 
runs of each condition to 20,000 interactions, consisting of a) 
80, b) 40, and c) 20 generations. 

In all three conditions, the simulated robots formed a 
shared set of toponyms, distances, and directions. The number 
of words in the lexicon of each agent for each type of word 
increased rapidly over the first few generations, and agents in 
all conditions continued to invent words for toponyms, 
distances, and directions throughout their lifetimes. The 
invention of words occurred at different rates in each 

a)  

 

b)  

 

c)  

Figure 2. Words invented and retained per generation for each 
condition (4, 8, 16, 32, 64, 128, 250, 500, and 1000 interactions 
per generation) for a) Toponyms, b) Distances, and c) Directions. 
For each condition, the number of words invented and retained in 
each generation was averaged over the final ten generations of 
the three runs. Note the crossover between more words invented 
and more words retained occurs between 32-64 interactions per 
generation for toponyms (a) and directions (c), and 16-32 
interactions per generation for distances (b).  
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condition and concept type (see Figure 3), with word loss 
closely matching word invention after the initial spurt of 
invention. The persistence of words in the lexicon through 
generations can be measured by considering when the words 
used in the final generation were initially invented. If a large 
proportion of the words were invented in earlier generations, 
then the words are persistent and the lexicon is stable. The 
persistence of words varied over the conditions and the 
concept types (see Figure 4).  

Table 1. Average toponym, distance, and direction lexicon 
size over generations 11 to 20 

Interactions 
per generation 

Lexicon Size (mean (standard deviation)) 

Toponym Distance Direction 

4 4.6 (1.1) 0.3 (0.5) 0.0 (0.0) 

8 6.3 (1.5) 0.6 (0.8) 0.1 (0.4) 

16 8.6 (2.2) 1.3 (0.8) 1.1 (0.7) 

32 10.6 (1.7) 1.8 (0.6) 2.1 (1.1) 

64 17.6 (2.8) 2.5 (0.8) 4.2 (1.2) 

128 23.5 (4.4) 3.7 (0.5) 5.4 (1.5) 

250 24.1 (3.1) 4.0 (0.7) 9.4 (1.3) 

500 31.9 (3.2) 5.0 (0.5) 13.6 (1.7) 

1000 40.4 (5.9) 5.8 (0.7) 19.3 (2.5) 

Discussion 

Learning with culture is different to inventing language from 
scratch. Agents begin their lives by learning words from older 
agents, and can later choose to use these words or invent new 
words. As agents start afresh in every generation, words that 
are no longer used do not remain in the lexicon. A change in 
language over time where one word or structure replaces 
another does not mean that the original is directly replaced by 
its replacement. Rather there may be an intermediate state in 
which either the old or the new word or structure may be 
chosen (Brinton & Traugott, 2005). In the studies presented 
here, an agent can learn a word for a location, but 
probabilistically also can invent a new word for the same 
location, while retaining representations for the old word. 

The results show that a major effect of the length of the 
learning period was on the size of the resulting lexicon for the 
toponyms and the simple prepositions of distances and 
directions. The number of words used increased with the 
number of interactions per generation, as each agent had more 
interactions in which to learn the existing lexicon and invent 
new words. With shorter generations, the agents do not play a 
sufficient number of language games for a stable shared 
language to emerge.  

The size of each lexicon is due to several factors, including 
the space of possible concepts, the neighborhood size used 
when choosing the appropriate word, the temperature used to 
set the probability of word invention and the opportunities to 
use words from that lexicon. The space of possible concepts is 
the size of the world for location and distance concepts and all 
directions for direction concepts. The neighborhood size for 
each word type is currently set to 3m for location concepts, 
1.5m for distance concepts and 3π/25 (21.6°) for direction 
concepts. The opportunities to use the words are in the 
number of games of each type played. 

 

a)  

 

b)  

 

c)  

Figure 3. Words invented per 1000 interactions for the three 
conditions for a) toponyms, b) distances, and c) directions, 
averaged over all runs for each condition. In all conditions the 
word invention rate began high as the agent’s lexicons developed 
over the first few generations. Distance words were more stable 
than direction words and toponyms, with fewer words invented 
and lost in each generation. The word invention rate for each 
type of word stabilized at a higher rate with a smaller number of 
interactions per generation. 



Proc. of the Alife XII Conference, Odense, Denmark, 2010 587

 

With small numbers of interactions per generation, the 
small size of each lexicon is due to insufficient opportunities 
to play games that involve all possible locations. With larger 
numbers of interactions per generation, there is a trend 
towards a large toponym lexicon and a small distance lexicon. 
Smaller lexicons form when there is no noise in transmission 
and therefore no concepts that cover the same region in 
concept space. Larger lexicons form when the full concept 
space is covered. The main reason for the small size of the 
distance lexicon is likely to be that the size of the world has 
constrained the possible distances referred to by the agents. 
Increasing the size of the directly experienced world would 
result in the formation of a greater number of location and 
distance concepts. Direction concepts are restricted to one full 
rotation.  

As shown by Smith (2007) and Bodík & Takáč (2003) a 
stable shared language can emerge in each longer generation, 
but the meaning of words may shift over generations, with 
new words entering the lexicon and old words forgotten. 
Bodík & Takáč (2003) found that more specific terms change 
faster than more general terms. If words enter and leave a 
language stochastically, the effect of the bottleneck would be 
the same for different classes of words. An alternative 
hypothesis is that unambiguous or frequently used words 
would pass through the bottleneck more easily than 
ambiguous or infrequent words. In the studies, we found 
differential rates of transmission for different classes of 
concepts, and saw the influence of the language transmission 
bottleneck on languages formed in conditions with both small 
and large numbers of interactions per generation. 

The distance words were found to be more stable 
throughout the generations than the direction words. The 
stability of the words may be due in part to the smaller size of 
the distance lexicon. However, we conjecture that an equally 
important reason for more stable distance words is that 
compared to direction words, the creation of distance words is 
less noisy with only two toponyms used rather than three, and 
therefore their use is more reliable. 

For the conditions explored in this study, in which word 
retention is higher than word invention, the bottleneck of 
language transmission is still evident in the trends for word 
age across the conditions and types of words. Proportionately 
more words were invented in later generations for all 
condition and concept types except for distance words in the 
conditions of 500 and 1000 interactions per generation. In 
these conditions, the early distance words pass through the 
bottleneck unchanged. In all other conditions and word types, 
the language transmission bottleneck reduces the retention of 
words through generations of agents. 

As discussed in the introduction, a variety of factors have 
been identified as contributing to language change (for 
example, see Aitchison, 1991; Kirby, et al., 2007; Niyogi, 
2006). Some factors contributing to language change have 
been demonstrated in the studies presented here. The size of 
the lexicon was affected by the social interactions and the 
period of individual language learning, and the rate of change 
for different concept types was affected by the concept 
formation for each word type. We have shown that learning 
periods and concept formation affect the rate at which words 
are retained, invented, and lost from the lexicon of the agent 
population. The key contribution of this research is a 

a)  

b)  

c)  

Figure 4. Word age in the final generation. The words used in the 
final generation are clustered into four eras based on the 
interaction in which each word was first used: 1. the early era 
(interactions 1 to 5,000), 2. the early-middle era (interactions 
5,001 to 10,000), 3. the middle-late era (interactions 10,001 to 
15,000), and 4. the late era (interactions 15,001 to 20,000). (a) 
For 250 interactions per generation few words were retained 
from earlier generations. (b) For 500 interactions per generation 
a higher proportion of distance words were retained from earlier 
generations. (c) For 1000 interactions per generation as well as 
retaining a higher proportion of distance words from earlier 
generations, the direction words in the final generation were 
invented more evenly across the generations, and a higher 
proportion of toponym words were invented in later generations.  
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demonstration of the impact of language acquisition (in the 
form of individual language learning, concept formation, and 
social interactions) on language change, in particular showing 
that the bottleneck of language transmission can still affect 
word retention between generations even when a stable shared 
language forms within each generation.  
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Extended Abstract

Categories are fundamental to recognize, differentiate and understand the environment. They are meant to provide a
coarse-grained description of the world we perceive. For instance, few “basic color terms”, present in natural languages,
coarse-grain the infinite number of different colors that humans can possibly perceive. An important question is whether
categories are a manifestation of an underlying structure of nature or an emergent property of the complex interactions
among individuals themselves as well as with the environment. The current work attempts to seek for an answer to this
question by modeling a population of individuals who co-evolve their form-meaning repertoire by playing elementary
language games.

The Category Game is a computational model designed to investigate how a population of individuals can develop a
shared repertoire of linguistic categories, i.e. co-evolve their own system of symbols and meanings, by playing elementary
language games (Puglisi et al., 2008). Consensus is reached through the emergence of a hierarchical category structure
made of two distinct levels: a basic layer, responsible for fine discrimination of the environment, and a shared linguistic
layer that groups together perceptions to guarantee communicative success. The only parameter of the model is the Just
Noticeable Difference (JND) of the agents defined as the average detectable difference between two stimuli. Remarkably,
the number of linguistic categories turns out to be finite and small, as observed in natural languages, even in the limit of
an infinitesimally small JND.

The Category Game also allowed to focus on the question of the origins of universal categorization patterns across cultures.
In this framework, it has recently been possible to reproduce the outcomes of the World Color Survey (WCS) (Baronchelli
et al., 2010). Through the Category Game model, a certain number of non-interacting populations has been simulated,
each one developing its own synthetic language. Universal categorization patterns have been discovered among popula-
tions whose individuals are endowed with the human JND function, describing the resolution power of the human eye to
variations in the wavelength of the incident light (Long et al., 2006). It turns out that a simple perceptual constraint shared
by all humans, namely the human Just Noticeable Difference (JND), is sufficient to trigger the emergence of universal
patterns that unconstrained cultural interaction fails to produce.

A wide open question about the emergence of linguistic categories, and more generally of shared linguistic structures,
concerns the role of the timescales. How to reconcile the apparent static character of most of the linguistic structures we
learn with the evidences of a fluid character of modern communication systems? Here we report about preliminary studies
that suggest how the structure of linguistic categories undergoes aging (Henkel et al., 2006): at relatively early stages
changes are very frequent but they become progressively more rare as the system ages; a phenomenon whose intensity
increases with the population size. From this point of view shared linguistic conventions would not emerge as attractors
of a language dynamics, but rather as metastable states.
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Abstract

This paper illustrates an agent-based simulation model fo-
cused on the acquisition of linguistic skills. Populations
of simulated agents controlled by dynamical neural net-
works are trained by artificial evolution to perfom two tasks:
the behaviour-production task which consists in accessing
and executing linguistic instructions; and the behaviour-
recognition task which consists in linguistically recognising
behaviours. During training the agent experiences only a sub-
set of all linguistic instructions/behaviours. Trained agents
successfully acquire an ability to perform both tasks. More-
over some of the successfull agents proved to be able to ac-
cess and execute also linguistic instructions not experienced
during training. However, none of the successfull agents
manage to linguistically recognise behaviours corresponding
to the execution of linguistic instructions not experienced dur-
ing training. We conclude by speculating on potential fac-
tors that may have inhibited the agents from developing fully
compositional semantics structures.

Introduction
The main objective of this study is to design neural mecha-
nisms to allow autonomous agents to develop the linguistic
skills necessary to perform both a behaviour-production task
and a behaviour-recognition task. The behaviour-production
task requires the agents to access linguistic instructions and
to correctly execute them. The instructions are made of
two parts: a part that defines the type of action, and a part
that defines the object on which to perform the action. The
behaviour-recognition task requires the agents to observe
their own behaviours during the successful execution of each
linguistic instruction and to generate the corresponding lin-
guistic instruction (i.e., the object label and the action label).

Successful agents will be further post-evaluated to learn
more about the semantics structures underpinning their lin-
guistic skills. We will look at how the development of be-
havioural and linguistic skills required for the comprehen-
sion and the generation of the linguistic instructions changes
the way in which the agents represent linguistic labels and
attach meaning to them. For example, in the behaviour-
production task, we are interested in whether, and eventu-
ally at which point in the learning phase, the agents per-

form the task by exploiting a flexible conceptual system in
which object labels and action labels are parsed in a way
that even never experienced object-action pair can be con-
ceived as a recombination of previously experienced linguis-
tic elements. In the behaviour-recognition task, we are also
interested in whether, and eventually when, the capability
of recognising the linguistic instructions associated with the
perceived behaviours is underpinned by a compositional se-
mantic system. Owing to this system, previously unexpe-
rienced behaviours are seen to be made of elementary be-
havioural units corresponding to already experienced ele-
mentary linguistic labels.

The broad objective of this study is to capture and to sys-
tematically investigate, through the use of simulated agent-
based modelling, phenomena related to language learning
observed in humans. Models of embodied (physical or sim-
ulated) agents focused on the study of phenomena related
to language learning have become more significant with
recent psychological and neuroscientific evidence of close
links between the mechanisms of action and those of lan-
guage (Glenberg and Kaschak, 2002; Gallese, 2008). This
is because embodied and situated agent-based models repre-
sent a suitable methodological platform to test or to gener-
ate various hypothesis concerning the relationship between
the development of motor and linguistic skills (Hutchins and
Johnson, 2009). In recent years, various types of agent-
based models have been employed to generate proof-of-
concept demonstrations on how language-like symbolic sys-
tems can be acquired by artificial agents through interactions
with a physical and/or social environment (e.g., Cangelosi
and Parisi, 2002; Steels, 2002; Roy, 2002; Cangelosi and
Riga, 2006).

Particularly inspiring for our work is a series of articles
specifically focused on the acquisition of a compositional
semantics (Sugita and Tani, 2005, 2008). That is, a com-
positional system grounded on the agent’s sensory-motor
skills (see Harnard, 1990, for the meaning of grounding in
language learning). In (Sugita and Tani, 2005, 2008), the au-
thors investigate this issue on tasks that require the shift from
rote knowledge to systematised knowledge. This work has
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Figure 1: The agent structure and its world. The vision sys-
tem of the agent is drawn only with respect to the arm ini-
tialised on the right initialisation area.

contributed evidence for a dynamical perspective on com-
positional semantic systems, an alternative perspective to
the one in which neural correlates of language are viewed
as atomic elements semantically associated to basic units of
the linguistics systems (see also Van Gelder, 1990, on this
issue).

This study complements previous research on the devel-
opment of compositional semantics by looking at circum-
stances in which the development of linguistic skills con-
cerns both the domain of language comprehension and lan-
guage production. The analysis of the obtained results in-
dicatates that the agents successfully develop a semantic
space, grounded on their sensory motor capability and or-
ganised in a way that enable linguistic compositionality and
generalisation in the case of behaviour generation but not in
the case of behaviour recognition. That is, the recognition
of behaviour through the production of linguistic instruction
seems to be acquired by rote knowledge. We conclude by
speculating on potential factors that may have inhibited the
agents from developing fully compositional semantics struc-
tures.

The task and the agent
Each agent lives in a two-dimensional world and is com-
posed of an arm with two segments referred to as S1 (100
cm) and S2 (50 cm), and two degrees of freedom (DOF).
Each DOF comprises a rotational joint which acts as the
fulcrum and an actuator. One actuator causes S1 to rotate
clockwise or anticlockwise around point O, with the move-
ment restricted within the right (−30◦) and the left (210◦)
bound. The other actuator causes S2 to rotate within the
range [−90◦, 90◦] with respect to S1. Friction and mo-
mentum are not considered (see Fig. 1). In the environment
there are three rounded objects of different colours (i.e., a
blue, a green, and a red object). The objects are placed at

Table 1: The linguistic instructions. In grey the non-regular
instructions, that is, those not experienced during training.

MOVE InstMo
Object Action

I15 I16 I17 I18 I19 I20

Blue 1 1 0 0 1 1
Green 1 0 1 0 1 1
Red 0 1 1 0 1 1

TOUCH InstTo
Object Action

I15 I16 I17 I18 I19 I20

Blue 1 1 0 1 0 1
Green 1 0 1 1 0 1
Red 0 1 1 1 0 1

INDICATE InstIo
Object Action

I15 I16 I17 I18 I19 I20

Blue 1 1 0 1 1 0
Green 1 0 1 1 1 0
Red 0 1 1 1 1 0

150 cm from point O with their centre placed anywhere on
the chord delimiting their corresponding Init. sector (see
Fig. 1). The objects do not move unless pushed by the arm.
The agent is equipped with a linear camera with a recep-
tive field of 30◦, divided in three sectors, each of which has
three binary sensors (CB

i for blue, CG
i for green, and CR

i

for red, with i ∈ [1, 2, 3] sectors). Each sensor returns 1 if
the blue/green/red object falls with the corresponding sector.
The camera and S1 move together. The experimental set up
is built in a way that at each time step there can be only one
object in the camera view. If no coloured object is detected,
the readings of the sensors are set to 0. The agent is also
equipped with right and left bound binary sensors (Br and
Bl) which activate (i.e., their reading is set to 1) whenever
S1 reaches the right or the left bound, respectively. Finally,
three binary touch sensors (i.e., T r, T f , T l) are placed on
the right, front, and left side of S2. Collisions between the
agent and an object are handled by a simple model in which
whenever S2 pushes the object the relative contact points
remain fixed.

Agents are trained on both a behaviour-production task
and on a behaviour-recognition task. The behaviour-
production task consists, for the agents, in the execution
of the following instructions (which will be referred to in
the remaining part of the paper as regular instructions):
TOUCH BLUE object (InstTblue), TOUCH RED object
(InstTred), MOVE GREEN object (InstMgreen), MOVE RED
object (InstMred), INDICATE BLUE object (InstIblue), IN-
DICATE GREEN object (InstIgreen), and INDICATE RED
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object (InstIred, see also Table 1). TOUCH and MOVE re-
quire the agent to rotate S1 and S2 until S2 collides with the
target object. TOUCH requires an agent to remain in con-
tact with the target object with the right side of S2 (that is,
by activating the touch sensor T r) for an uninterrupted in-
terval of 100 time steps. During this interval, S1 must not
rotate. MOVE requires an agent to rotate S1 more than 35◦

while S2 is touching the object with its right side. The ro-
tation of S1 while S2 is touching the object determines the
movement of the object. INDICATE requires an agent to ro-
tate S1 until the angular distance between S1 and the object
is less than 30◦. INDICATE is correctly executed only if
S1 remains at less than 30◦ from the target object for more
than 100 time steps. During the execution of INDICATE, an
agent must not collide with any object. During the execu-
tion of TOUCH and MOVE, an agent must not collide with
the non target objects (i.e., the objects not mentioned in the
current linguistic instruction).

The behaviour-recognition task consists, for the agents,
in recognising and correctly labelling own behaviours per-
ceived through sequences of α, β duplet. Each duplet cor-
responds to the angular rotation of the two segments of the
arm. In particular, α corresponds to the normalised clock-
wise angle from S1 to the axis from O to the lower end po-
sition of the blue object Init. sector. β corresponds to the
normalised relative rotation of S2 with respect to S1 (see
Fig. 1). The duplets are recorded during the successful exe-
cution of the behaviours at the behaviour-production task.

We run two different series of simulations (referred to as
Exp. A and Exp. B) which differ in the training schema.
In Exp. A, the agents are evaluated on the behaviour-
recognition task only if they successfully perform all the
regular instructions during the behaviour-production task.
In Exp. B, each agent performs the behaviour-recognition
task as soon as it successfully executes at least one reg-
ular instruction at the behaviour-production task. In this
case, the behaviour-recognition task is limited only to those
regular instructions successfully executed at the behaviour-
production task. After training, all the agents are evaluated
for their capability to access regular and non-regular linguis-
tic instructions and to execute the corresponding behaviours
and also for their capability to label behaviours correspond-
ing to the execution of regular and non-regular instructions.

The agent controller and the evolutionary
algorithm

The agent controller is composed of a continuous time re-
current neural network (CTRNN) of 22 sensor neurons, 8
inter-neurons and 10 output neurons (Beer and Gallagher,
1992). During the behaviour-production task, at each time
step, sensor neurons from 1 to 20 are activated using an in-
put vector Ii with i ∈ [1, .., 20] corresponding to the sensors
readings indicated in Fig. 2, and the input to sensor neuron
21 and 22 is set to 0. During the behaviour-recognition task,

Figure 2: The neural network. Continuous line arrows in-
dicate the efferent connections for the first neuron of each
layer. Underneath the input layer, it is shown the correspon-
dences between sensors/linguistic instructions, the notation
used in equation 1a to refer to them, and the sensory neu-
rons.

at each time step, the input to sensor neurons 1 to 20 is set to
0, and sensor neurons 21 and 22 are activated using an input
vector Ii with i ∈ [21, 22] corresponding to the α, β gener-
ated by successfully executing the linguistic instructions at
the behaviour-production task.

The inter-neuron network is fully connected. Addition-
ally, each inter-neuron receives one incoming synapse from
each sensory neuron. Each output neuron receives one in-
coming synapse from each inter-neuron. There are no direct
connections between sensory and output neurons. The states
of the output neurons are used to control the movement of
S1 and S2 as explained later. The states of the neurons are
updated using the following equations:

∆y

∆T
=



(
− yi + gIi

) 1
∆T

; (1a)(
− yi +

30∑
j=1

ωjiσ(yj + βj)
) 1

τi
; (1b)

(
− yi +

30∑
j=23

ωjiσ(yj + βj)
) 1

∆T
; (1c)

for i ∈ {1, .., 22} in eq. 1a, for i ∈ {23, ..., 30} in eq. 1b, for
i ∈ {31, .., 40} in eq. 1c, and with σ(x) = (1 + e−x)−1. In
these equations, using terms derived from an analogy with
real neurons, yi represents the cell potential, τi the decay
constant, g is a gain factor, Ii the intensity of the pertur-
bation on sensory neuron i, ωji the strength of the synap-
tic connection from neuron j to neuron i, βj the bias term,
σ(yj +βj) the firing rate (hereafter, fi). All sensory neurons
share the same bias (βI ), and the same holds for all output
neurons (βO). τi and βi with i ∈ {23, ..., 30}, βI , βO, all
the network connection weights ωij , and g are genetically
specified networks’ parameters. At each time step the an-
gular movement of S1 is 2.9H(f31 − 0.5)sgn(0.5 − f32)
degrees and of S2 is 2.9H(f33 − 0.5)sgn(0.5 − f34) de-
grees, where H is the Heaviside step function and sgn is the
sign function.
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A generational genetic algorithm is employed to set the
parameters of the networks (Goldberg, 1989). The popula-
tion contains 100 genotypes. Generations following the first
one are produced by a combination of selection with elitism,
recombination and mutation. For each new generation, the
five highest scoring individuals from the previous generation
are retained unchanged. The remainder of the new popula-
tion is generated by fitness-proportional selection from the
70 best individuals of the old population. Each genotype is
a vector comprising 340 real values. At the beginning of the
evolutionary process, each gene is chosen randomly from a
uniform distribution in the range [0, 1]. Cell potentials are
set to 0 when the network is initialised or reset, and circuits
are integrated using the forward Euler method with an inte-
gration time step ∆T = 0.1.

The fitness function
During evolution, each genotype is translated into an
arm controller and evaluated more than once for all the
object-action regular instructions by varying the starting
positions. The agent fitness is computed on both the
behaviour-production task and the behaviour-recognition
task (F total = F production + F recognition, see below for
details).

The behaviour-production task
During the behaviour-production task, the agents perceive
regular instructions and they are required to execute the cor-
responding behaviours. Agents are evaluated 14 times ini-
tialised in the left and 14 times in the right initialisation area,
for a total of 28 trials. For each initialisation area, an agent
experiences 2 times all the regular linguistic instructions.
The linguistic instructions InstMblue and InstTgreen are never
experienced during the training phase. At the beginning of
each trial, the agent is randomly initialised in one of the two
initialisation area, and the state of the neural controller is re-
set. A trial lasts 12 simulated seconds (T = 250 time steps).
A trial is terminated earlier in case the arm collides with a
non target object.

In each trial k, an agent is rewarded by an evaluation func-
tion which seeks to assess its ability to execute the desired
action on the target object. The final fitness F production at-
tributed to an agent is the sum of two fitness components
F 1

k and F 2
k . F 1

k rewards the agent for reducing the angular
distance between S1 and the target object. F 2

k rewards the
agent for performing the required action on the target object.

F production =
1
28

28∑
k=1

(F 1
k + F 2

k ); (2)

F 1
k and F 2

k are computed as follows:

F 1
k = max

(
0,

di − df

di
· P 1

k ,1df <4.6◦

)
; (3)

where di and df are respectively the initial (i.e., at t =
0) and final (i.e., at the end of the trail k) angular dis-
tances between S1 and the target object and 1df <4.6◦ is 1
if df < 4.6◦, 0 otherwise. P 1

k is the penalty factor, which
is set to 0.6 if the agent collides with a non target object,
to 1.0 otherwise. The angle between S1 and the target
object o can be measured clockwise (αclock

o ) or anticlock-
wise (αanti

o ). In equation 3, di and df are the minimum
between the clockwise and anticlockwise distance, that is
d = min

(
αclock

o , αanti
o

)
.

F 2
k =


steps-on-target

max-steps-on-target
· N · P 2

k ;
for TOUCH

or INDICATE (4a)

∆θ

max-angular-offset
· N · P 2

k ; MOVE (4b)

where max-steps-on-target = 100, P 2
k = 0 if F 1

k < 1 oth-
erwise P 2

k = 1, max-angular-offset = 34.4◦, N = 2 for
TOUCH and MOVE, and N = 1 for INDICATE. For the ac-
tion INDICATE, steps-on-target refers to the number of time
steps during which F 1

k = 1, and S2 does not touch the tar-
get object. For the action TOUCH, steps-on-target refers to
the number of time steps during which F 1

k = 1, S2 touches
the target object by activating the touch sensor T r, and S1

does not change its angular position. ∆θ is the angular dis-
placement of the orientation of S1 recorded while F 1

k = 1,
and S2 is touching the target object by activating the touch
sensor T r. A trial is terminated earlier if steps-on-target =
max-steps-on-target during the execution of INDICATE or
TOUCH and when ∆θ = max-angular-offset during the ex-
ecution of MOVE.

The behaviour-recognition task
During the behaviour-recognition task, the agent is evalu-
ated for labelling its behaviours corresponding to the suc-
cessful execution of each of the regular instructions. That is,
the arm of the agent is moved so as to display a behaviour
previously exhibited during the behaviour-production task
by the agent itself, and it is asked to produce the correspond-
ing linguistic instruction (without receiving it as input).

In Exp. A, an agent moves on to the behaviour-
recognition task only if it successfully completes all the tri-
als of the behaviour-production task (i.e., F production >
2.57) . In Exp. B, an agent moves on to the behaviour-
recognition task as soon as it successfully completes at least
one trial at the behaviour-production task (i.e., ∃k|(F 1

k +
F 2

k ) > 2.57 ). The behaviour-recognition task com-
prises only the trial/s successfully executed at the behaviour-
production task. In other words, in Exp. A, the evolution
of the mechanisms to accomplish the behaviour-recognition
task follows the evolution of the mechanisms to successfully
execute the behaviour-production task. In Exp. B, the evo-
lution of the mechanisms for the behaviour-production task
and the behaviour-recognition task evolve simultaneously,
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since it suffices for an agent to successfully complete a sin-
gle trial of the behaviour-production task to move on to the
behaviour-recognition task.

In each trial k, the functions F obj
k and F act

k reward the
agents for matching with the firing rate of the output neu-
rons 35, 36, 37, 38, 39, and 40 the six digit regular instruc-
tion that triggered the currently experienced successful be-
haviour. F obj

k and F act
k are computed as follow:

F recognition =
1
28

K∑
k=1

(F obj
k + F act

k );

F 3
k =

T∑
t=T−5

(
2−2·rankk,t +

2(1 − fr
k,t) +

∑
i∈Wk,t

fi

4

)
2 · 5

;
(5)

with F obj
k = F 3

k with Wk,t the subset of output neurons
defining the object label (i.e., neurons 35, 36, and 37) whose
activation should be 1, fr

k,t the firing rate of the neuron defin-
ing the object label whose activation should be 0, rankk,t

the rank of fr
k,t when the output neurons defining the ob-

ject label are ranked in ascending firing rate order. F act
k

is computed as F obj
k considering the output neurons defin-

ing the action label (i.e., neurons 38, 39, 40). F 3
k = 0 if

(F 1
k + F 2

k ) < 2.57 (i.e. if the behaviour at trial k has not
been correctly executed).

Results
For each experimental condition (Exp. A, Exp. B), we run
ten evolutionary simulations for 10000 generations, each us-
ing a different random initialisation. Recall that our ob-
jective is to generate agents that are capable of success-
fully performing both the behaviour-production task and the
behaviour-recognition task. Moreover, we are interested in
investigating whether successful agents develop semantic
structures that are functionally compositional. Agents en-
dowed with a functionally compositional semantics should
be able to access and execute linguistic instructions never
experienced during training (i.e., from non-regular instruc-
tions to the execution of the corresponding behaviours).
They may also be able to linguistically describe a behaviour
never performed/experienced during training (i.e., from the
perception of behaviours never executed during training to
the generation of non-regular instructions). We run two dif-
ferent series of simulations (i.e., Exp. A and Exp. B) to see
whether a different training bears upon the development of
functionally compositional neural structures.

The best agents of each generation in both experimental
conditions have been post-evaluated by first running sets of
80 trials for each regular and non-regular linguistic instruc-
tion in which the agents are asked to perform the behaviour-
production task. Hereafter, we refer to this first phase of the

Table 2: Result of post-evaluation tests performed on the
best agents of each generation for four runs of Exp. A, and
for two runs of Exp. B. The tables show the number of suc-
cessful agents at the behaviour-production task on regular
linguistic instructions, and the percentage of them also suc-
cessful on the non-regular instructions. The tables also show
the number of successful agents at the behaviour-recognition
task on regular linguistic instructions, and the percentage of
them also successful on the non-regular instructions.

Exp. A
run 1 8 9 10

Num. b-successful 5310 414 2079 6588
InstMblue 0.00 0.00 6.54 37.66
InstTgreen 0.00 0.00 33.57 0.00

InstMblue and InstTgreen 0.00 0.00 0.00 0.00
Num. l-successful 0 0 0 0

InstMblue 0.00 0.00 0.00 0.00
InstTgreen 0.00 0.00 0.00 0.00

InstMblue and InstTgreen 0.00 0.00 0.00 0.00

Exp. B
run 5 7

Num. b-successful 3183 9613
InstMblue 0.00 17.07
InstTgreen 8.83 19.08

InstMblue and InstTgreen 0.00 21.49
Num. l-successful 0 1753

InstMblue 0.00 0.00
InstTgreen 0.00 0.00

InstMblue and InstTgreen 0.00 0.00

post-evaluation test as behaviour-production test. In half of
the trials the agents are randomly initialised in the right ini-
tialisation area and half of the trials in the left one (see Fig 1).
We considered those agents successful at the behaviour-
production test (hereafter, referred to as b-successful) that
manage to obtain a success rate higher than 80% in perform-
ing the behaviours corresponding to the execution of the
regular linguistic instructions (i.e., those experienced dur-
ing evolution). b-successful agents have been further clas-
sified into i) b-non-compositional agents, referring to those
b-successful agents that proved to be less than 80% success-
ful at performing the behaviour corresponding to the ex-
ecution of both the non-regular instructions, InstMblue and
InstTgreen; ii) b-partially-compositional agents referring to
those b-successful agents that proved to be more than 80%
successful at performing the behaviour corresponding to the
execution of only one of the two non-regular instructions,
InstMblue or InstTgreen; iii) b-fully-compositional agents re-
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ferring to those b-successful agents that proved to be more
than 80% successful at performing the behaviour corre-
sponding to the execution of both the non-regular instruc-
tions, InstMblue and InstTgreen.

During the second phase of the post-evaluation test,
b-successful agents are asked to perform the behaviour-
recognition task. That is, they are required to produce as
output the regular and non-regular linguistic instructions
that, during the behaviour-production test, triggered their
successful behaviour. Hereafter, we refer to this second
phase of the post-evaluation test as behaviour-recognition
test. Recall that, behaviour-recognition test on non-regular
instructions is performed only on b-partially- or b-fully-
compositional agents. Moreover, recall that the agents per-
ceive their successful behaviours through sequences of du-
plet α, β, recorded during successful post-evaluation tri-
als of the behaviour-production test. As for the behaviour-
production test, we considered those agents successful at
the behaviour-recognition test (hereafter, referred to as l-
successful) that manage to obtain a success rate higher that
80% in generating the regular linguistic instructions. Note
that, the object label generated by the agent controller is
considered “blue” if the neuron with the lowest firing rate
is neuron 35, “green” if it is neuron 36, “red” if it is neu-
ron 37. The action label generated by the agent controller
is considered “touch” if the neuron with the lowest firing
rate is neuron 38, “move” if it is neuron 39, “indicate” if
it is neuron 40. L-successful agents have been further clas-
sified in i) l-non-compositional agents, referring to those l-
successful agents that proved to be less than 80% successful
at generating non-regular linguistic instructions, InstMblue

and InstTgreen; ii) l-partially-compositional agents referring
to those l-successful agents that proved to be more than 80%
successful at generating only one of the two non-regular in-
structions, InstMblue or InstTgreen; iii) l-fully-compositional
agents referring to those l-successful agents that proved to be
more than 80% successful at generating both the non-regular
instructions, InstMblue and InstTgreen.

Table 2 shows the results of post-evaluation tests on those
evolutionary runs in which we recorded the presence of
b-successful agents. First, only four out of ten runs in
Exp. A, and two out of ten runs in Exp. B produced b-
successful agents. Second, only run 7 in Exp. B produced
agents that are both b-successful and l-successful. This re-
sult indicates that, given our methodological setup, it is
extremely difficult to design the mechanisms to allow au-
tonomous agents to perform both the behaviour-production
task and the behaviour-recognition task as described in pre-
vious Sections. The experimental condition in which the
mechanisms to perform the behaviour-production task and
the behaviour-recognition task co-adapt simultaneously (i.e.,
Exp. B) seems to contain the necessary “ingredients” to
accomplish the objective of this study. However, the fact
that only one out of ten runs produced both b-successful

and l-successful agents suggests that there are elements that
severely hindered the evolution from generating the neural
structured required by the agents to accomplish their ob-
jective. What are these elements? At this stage of our in-
vestigation, we have evidence to claim that the number of
hidden neurons of the neuro-controllers has a bearing on
the evolution of b-successful agents. In a previous study
described in (Tuci et al., 2010), we have evolved agents
to perform only the behaviour-production task in evolu-
tionary circumstances identical to those illustrated in this
study. In (Tuci et al., 2010), agents were controlled by
neural controllers with only three hidden neurons. Almost
all the evolutionary runs generated b-successful agents. It
seems that smaller neural controllers corresponding to a
smaller evolutionary search space facilitates the evolution
of the mechanisms to accomplish the behaviour-production
task. However, when employed in this study, three-hidden-
neuron controllers proved to be insufficient to perform both
the behaviour-production task and the behaviour-recognition
task. We had to progressively increase the number of hid-
den neurons from three to eight to generate b-successful and
l-successful agents. Further tests are certainly required to
isolate other elements of our model that may have a strong
bearing on the capability to generate b-successful and l-
successful agents.

Table 2 also shows the results concerning compositional-
ity. Only run n. 7 in Exp B produced agents that turned out to
be b-fully-compositional. b-partially-compositional agents
can be found in run 9 and 10 of Exp. A, and in both runs of
Exp. B. None of the runs produced l-partially-compositional
or l-fully-compositional agents. It is worth noting that the
mechanisms to access non-regular instructions and to gener-
ate the corresponding behaviours do not underpin the inverse
process, that is, from the perception of behaviours never ex-
ecuted during training to the generation of the correspond-
ing non-regular instructions. This suggests that linguistic
skills related to the capability to comprehend and to gen-
erate linguistic instructions in b-fully-compositional and l-
successful agents are underpinned by different neural mech-
anisms. The mechanisms concerning the capability to be
b-fully-compositional work as a functionally compositional
semantic structure. The mechanisms concerning the capa-
bility to be l-successful allow the agents to learn by rote the
association between the perception of sequences of α, β du-
plet and regular instructions.

Figure 3 show several graphs which tell us more about
the evolutionary dynamics which led to the emergence of b-
successful and l-successful agents in run 7 of Exp. B. These
graphs show for each best agent of each generation of run
n. 7 the percentage of success for each instruction of the
behaviour-recognition test (see dotted, dashed, and contin-
uous lines in Figure 3) as well as the generations in which
the agents turned out to be b-successful, and the generation
at which the agents turned out to be b-fully-compositional
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Figure 3: Graphs showing for each best agent of each generation of run n. 7 the percentage of success for each instruction of
the behaviour-recognition test. Dotted lines refer to the percentage of success in generating the labels for both the object and
the action. Continuous lines refer to the percentage of cases in generating the correct label for the object and the wrong one for
the action. Dashed lines refer to the percentage of cases in generating the correct label for the action and the wrong one for the
object. At the bottom of each graph, the thin horizontal continuous line indicates the generations in which the agents turned out
to be b-successful. The tick horizontal line over-imposed on the thin one, indicates the generations in which the agents turned
out to be b-fully-compositional (see text for details). Data are smoothed with a moving average of window size 20.

(see thin and thick horizontal lines below zero in Figure 3).
First, we notice that b-fully-compositional agents keep on
appearing and disappearing during evolution, while success-
ful agents once generated, are almost never lost. These data
suggest that compositionality is not automatically associated
with, and is not a prerequisite for developing the capability
of successfully performing the behaviour-production task.
Second, l-successful agents appear very late in evolution. In
particular, the agents seemed to have hard time to correctly
label behaviours triggered by instructions concerning the red
object (see continuous and dashed lines in Figure 3g, 3h, 3i).
l-successful agents appear after generation 6000, definitely
later than the appearance of b-fully-compositional agents
(see dotted lines and the tick horizontal lines below zero
in Figure 3a, 3c, 3e, 3f, 3g, 3h, 3i). This suggest that the
emergence of a functionally compositional semantics is not
determined by the evolution of the mechanisms to success-
fully perform the behaviour-recognition task. Third, the

graphs concerning non-regular instructions tell us that the
agents are not completely unable to deal with these circum-
stances. For example, as far it concerns InstMblues (see Fig-
ure 3b), several agents during evolution proved to be up to
50% successful in correctly labelling the object on which
the action was performed. As far it concerns InstTgreen (see
Figure 3d), up to generation 6000, the agents seemed to be
more effective in labelling the object, while after generation
6000 they proved to be at least 50% effective in correctly
labelling both the object and the action given the behaviour
corresponding to the execution of this instruction.

Conclusions
We have described a set of simulations which generated au-
tonomous agents, controlled by a single non a priori mod-
ularised neuro-controller, capable of successfully executing
both a language comprehension and a language production
task. Post-evaluation tests revealed that, successful agents
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display a form of compositional semantics which allow them
to access linguistic instructions not experienced during train-
ing and to execute the corresponding behaviours also no ex-
perienced during training. That is, we observed generali-
sation capabilities in the behaviour-production task. The
same successful agents proved not capable of correctly la-
belling their own behaviours not experienced during train-
ing. That is, we did not observe generalisation capabilities
in the behaviour-recognition task. Although at this stage we
do not have enough empirical evidence to account for this
result, we can definitely formulate a number of not mutually
exclusive hypothesis that we will consider to identify future
directions of work.

Why successful agents show generalisation capabilities
at the behaviour-production task and no generalisation ca-
pabilities at the behaviour-recognition task? First, we can
hypothesise that, the agents have enough computational re-
sources (e.g., hidden neurons) to learn by rote the associa-
tion between behaviours represented by sequences of α, β
duplet and linguistic labels. Alternatively, it could be that
the behaviour-recognition task did not produce sufficiently
selective evolutionary pressures to generate the mechanisms
required to shift from rote knowledge to a more flexible
conceptual system. Second, from the agent point of view,
the behaviour-production task and the behaviour-recognition
task are mostly uncorrelated tasks. This becomes clear if
we consider that the agent has two groups of input-output
neurons: one (comprising input neurons 1 to 20 and output
neurons 31 to 34) that is only used during the behaviour-
production task; the other (comprising input neurons 21 and
22 and output neurons 35 to 40) that is only used during the
behaviour-recognition task. Due to the different nature of
the two input-output groups, the input received during the
behaviour-recognition task is completely different from the
motor output and from any other input experienced during
the behaviour-production task. This may make it difficult
for the agent to develop a coherent internal structure, com-
mon to the language comprehension and language produc-
tion task. To try to cope with this problem we plan to ex-
plore two possibilities: one is to modify the agent body and
neural architecture, the other is to slightly modify the task.
As far as the agent is concerned, one possibility could be to
change the way the output controlling the arm movement is
encoded, so to have at least similar kinds of input and out-
put signal. Another possibility could be to feed the α and β
input neurons also during the behaviour-production task (as
if the agent could “see” himself doing the task). On the task
side, we plan to implement setups in which the two abili-
ties have to be used together. For example, we could ask the
agent to produce the correct linguistic instruction during the
behaviour-production task. Even though this is a rather easy
task (the correct instruction is already present in the input
units), it could nonetheless favour the emergence of com-
mon structures underpinning both the language comprehen-

sion and language production task.
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Abstract

We consider two agents, each equipped with a controller.
When they achieve a joint goal configuration, their coordi-
nation can be measured informationally. We show that the
amount of coordination that two agents need to configure in
a certain way depends on the amount of information they ob-
tain from their environment. Furthermore the environment
imposes a coordination pressure on the agents that depends
on the size of the environment. In a second scenario we in-
troduce a shared centralized controller which leads to a syn-
chronisation of the agents’ actions for suboptimal policies.
However, in the optimal case this intrinsic coordination van-
ishes and the shared centralized controller can be split into
two individual controllers.

Introduction
When one considers biology, many phenomena require that
subentities perform actions in a coordinated way. This phe-
nomenon is so prevalent that it requires pivotal treatment. It
is seen in swarms, morphogenesis as well as in the actions of
different parts of a single organism. We wish to study some
principles behind this central phenomenon in an Artificial
Life setting. In the sense of a ‘life that could have been’
(Langton, 1997) we are interested in what minimal assump-
tions have to be made to investigate coordination and auton-
omy within a collective of two agents. For this purpose we
use the framework of information theory. We do not assume
a particular metabolism and intrinsic dynamics but have the
choice of certain limitations on information processing. This
makes it possible to develop necessary and sufficient condi-
tions for life-like scenarios and to find invariants for Artifi-
cial Life in any type of environment.

Nonetheless a physically consistent model can be plugged
into the framework. Furthermore, studying coordination in
a scenario that approximates nature has many applications:
In ethology the understanding of collective tasks like for-
aging, flocking or group decision-making is active research
(Deneubourg and Goss, 1989; Couzin et al., 2005; Nabet
et al., 2009). Social interactions and coordination in robotics
have been first studied by Walter (1950) and these issues
in natural and artificial agents have received more atten-
tion lately (Dautenhahn, 1995, 1999; Ikegami and Iizuka,

2007; Di Paolo et al., 2008), for a review see (Goldstone
and Janssen, 2005). Furthermore agent based and cellular
models of morphogenesis have been studied with respect to
coordination: Deneubourg et al. (1991) investigated the dy-
namics of ant-like agents that were not able to communi-
cate directly but could pick up and drop objects of different
types, leading to coordinated behaviour, called stigmergy,
among the agents and clustering of objects of the same type.
In an effort to understand morphogenesis of a certain slime
mold, coordination between cells was modelled on a sub-
cellular level, resulting in a simulation of the self-organised
migration of the mold via an emergent level of photo- and
thermotaxis (Marée and Hogeweg, 2001).

Stigmergy and local observation are common ways to
model agent communication to get coordinated behaviour
(Beckers et al., 1994; Castelfranchi, 2006). In both cases
the communication is ‘routed’ through the environment, in
the case of stigmergy in a very explicit way by altering the
environment. In these models communication is spatially
bound and limited by the amount of information that can be
‘stored’ in the environment.

When we talk about information, we specifically mean
Shannon information (Shannon, 1948). The theory that
comes with it allows to compare and quantify relations be-
tween random variables which can be used to model causal
relationships in Bayesian graphs. Information theory gives a
universal language to quantify conditions and invariants for
a large class of models in very general way. Furthermore,
this allows to compare quantities of models that are other-
wise not directly comparable.

To study agent coordination from an information-
theoretic perspective towards a predictive and quantitative
theory of agent interactions we will look at embodied agents
in a grid-world that is underlain by certain ‘physical laws’,
like movement and blocking by other agents. To isolate the
influences that a constraint of the agent’s information pro-
cessing capabilities has on the agents’ coordination, we will
neither impose an environmental constraint on the commu-
nication between them, nor a constraint on their sensors. The
agents will have a shared controller, but we will limit their
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information processing capabilities. Using the information-
theoretic quantification of coordination, we will investigate
how much they need to coordinate to achieve a given goal
in the grid-world and compare this to the coordination in
the case where the agents have independent controllers. Ob-
viously the size of the environment has an impact on the
amount of coordination as in large grid worlds with few
agents there is a smaller chance of collision and less ne-
cessity to deal with this situation in an optimal way. For
a shared controller we will investigate when the actions are
coordinated in a way such that it is not possible to split the
controller into two independent controllers which we inter-
pret as both agents ‘acting as one’.

Information theory has been successfully employed to
models of embodied agents in a growing body of scientific
literature starting from Ashby (1956). The idea that infor-
mation is a main resource for organisms, but at the same
time costly to process, is reflected in the evolution of sen-
sors (Nehaniv et al., 2007) and affects the way information
theoretic models of agents are investigated (Polani et al.,
2007). Lately this idea received increased attention due to
new techniques (Touchette and Lloyd, 2000; Klyubin et al.,
2004a, 2007; Ay et al., 2008) and there are now broad appli-
cations of information theory to Artificial Life related fields
(Linsker, 1988; Shalizi and Crutchfield, 2002). Recent re-
sults showed that information theoretic learning principles
can lead to higher coordination between linked agents (Za-
hedi et al., 2009) though a different notion of coordination
than in this paper is used. In the context of the Information
Bottleneck (Tishby et al., 1999) the concept of relevant in-
formation was introduced by (Polani et al., 2001) and later
extended to the perception-action loop (Polani et al., 2006).
Here it will be set in relation to an information theoretic
quantification of coordination as the mutual information be-
tween actions. Sperati et al. (2008) already used the mutual
information between actions as a measure of coordination to
evolve maximally coordinated agents.

When agents socially interact, or coordinate in an envi-
ronment they sometimes seem to act as a single entity (e.g.
bee hives, ant colonies, multicellular organism), at the same
time they are individuals acting at a ‘lower’ level. In our ex-
periment we will study under which constraints the agents
can still be considered as autonomous with respect to the
other agents and whether acting as a single entity helps to
perform better to achieve a given configuration. Therefore
we will introduce a measure of intrinsic coordination be-
tween two agents which vanishes if both agents have an in-
dependent controller and attains its maximum if the action
of one agent is fully determined by the action of the other.
We will then analyse how much intrinsic coordination is ac-
tually needed when acting optimally under an information
processing constraint.

Information Theory
Information Theory was introduced by Shannon (1948). We
will give a brief introduction: In information theory, entropy
is given by H(X) = −

∑
x p(x) log p(x) where X denotes

a finite-valued random variable with values in X and p(x)
the probability that X takes on the value x ∈ X . Entropy
measures the uncertainty of the outcome of a random vari-
able. Given a second random variable Y the conditional en-
tropy is

H(Y |X) = −
∑
x,y

p(x)p(y|x) log p(y|x)

and measures the uncertainty of Y knowing the outcome
of X . To relate these, mutual information is defined by
I(X;Y ) = H(Y ) − H(Y |X). Hence, mutual information
is a measure of how much the uncertainty of Y is reduced
if we know the value of X . Again, this can be conditioned
on a third random variable Z which gives the conditional
mutual information I(X;Y |Z) = H(Y |Z) − H(Y |X,Z).
For a detailed account on information theory, see Cover and
Thomas (2006).

Coordination
We propose measures of coordination that are independent
of the topology of the environment and only depend on dis-
tributions of states and actions. Let S denote the random
variable of the world states and A the random variable rep-
resenting its actions where the actions only depend on the
current state of the environment.

An important quantity in this context is Relevant Informa-
tion: it is the minimal amount of information an agent needs
to process to perform optimal actions (Polani et al., 2006),
denoted by

I(S;A∗) = min
p(a|s):p(a|s)p(s)>0⇒a optimal fors

I(S;A).

This minimises the mutual information between states and
actions but still requires that in each state with positive
probability the optimal action is taken. Relevant informa-
tion reflects, as mentioned in the introduction, the infor-
mation parsimony principle that processing information has
a metabolic cost (Polani et al., 2007) and complies with
findings that certain neurons work at information limits,
minimising the bandwidth to just maintain their function
(Laughlin, 2001).

In theory the relevant information can be much lower than
the bandwidth of the sensor, that is, different sensory inputs
lead to the same distribution of actions. Moreover, one can
ask the converse question: how well can a policy perform if
I(S;A) is limited? To do this a utility in terms of a reward
structure will be used and the trade-off will be calculated
with an algorithm introduced by (Polani et al., 2006).
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Figure 1: Bayesian network of the perception-action loop for
a) independent actions b) joint actions. Here A(1) and A(2)

denote the random variable of the action of each agent, A
denotes the random variable of the joint action (a(1), a(2))
and t is the time index. In both cases the actions are fully
determined by the current state of the environment.

Suppose now there are two agents; the coordination is
then defined as the mutual information between their ac-
tions I(A(1);A(2)) where A(1) is the random variable rep-
resenting the actions of the first agent and A(2) the ran-
dom variable representing the actions of the second agent.
In the case of independently embodied agents, that is, if
p(a(1), a(2)|s) = p(a(1)|s)p(a(2)|s) the coordination is lim-
ited by the relevant information of each agent

I(A(1);A(2)) ≤ min{I(S;A(1)), I(S;A(2))}.

This follows easily from the data processing inequality
(Cover and Thomas, 2006, p. 34). If the agents however
have a joint policy p(a(1), a(2)|s) the coordination is only
limited by the entropy of the actions. See Figure 1 for the
perception-action loop of the whole system in the case of a)
independent controllers and b) one shared controller.

For such an agent pair that has one shared controller it is
interesting to see whether there is any intrinsic coordination
or whether the controller could be split into two independent
controllers. We define intrinsic coordination as the condi-
tional mutual information I(A(1);A(2)|S) which vanishes if
p(a(1), a(2)|s) = p(a(1)|s)p(a(2)|s), that is, the agents come
to independent decisions given the state of the environment.
By definition intrinsic coordination can be higher or lower
than the coordination. In the case that the actions are in-
dependent of the state, that is, H(A(1)|S) = H(A(1)) and
H(A(2)|S) = H(A(2)), coordination equals intrinsic coor-
dination, however, the converse is not always the case.

Experimental Setup
We want to study how much (intrinsic) coordination the
agents have when they follow an optimal policy to achieve
a particular goal configuration (under information process-
ing constraints). Furthermore the amount of coordination
will be compared to the coordination in the case where the
agents have independent controllers.

The setup consists of two agents, determined by a joint
state s = (s(1), s(2)) ∈ S in the state space S =W×W−∆
whereW is a n×m grid-world and ∆ = {(w,w)|w ∈ W}
the diagonal. Hence only one agent is allowed to occupy
a particular grid cell per time step. As before, the random
variable representing the state of the environment is denoted
by S. The goal is given by two particular adjacent cells in
the centre of the grid-world and it is not relevant which agent
occupies which goal cell, hence there are two goal states in
the state space S.

Each agent has five possible actions {N,S,W,E,H}, go
to one of the four neighbouring cells or halt. The actions
are denoted by the random variables A(1), A(2), and their
joint action a = (a(1), a(2)) by the random variable A. The
distribution of the actions only depends on the location of
the two agents. In this scenario the transitions to the next
step are deterministic p(st+1|at, st) ∈ {0, 1} and reflect the
movement of the two agent in the grid-world, blocked by the
walls and blocking each other symmetrically (see Figure 2).
The agents are blocked if they try to move to the same field
or if one agent moves to a field where the other agent stays.

For every step the agents get a reward that is determined
by a reward function r(st+1, at, st) which depends on the
current state, the action taken and the state of the world af-
ter the action was executed. A negative reward is given un-
less both agents occupy a goal cell in which case no reward
or penalty is given. Thus, a policy that maximises the ex-
pected reward over the lifetime of the agent is one that takes
the shortest way to the goal configuration. This defines a
Markov Decision Process (MDP), for which reinforcement
learning can be used to find such a policy. Given the MDP
we can define a state value function V π(s) that gives the ex-
pected future reward at some state s following the policy π
and a utility functionUπ(s, a) that gives the expected reward
incorporating the action chosen at state s and then following

Figure 2: In this 6 × 5 grid-world, the two dark-grey rect-
angles show the goal configuration, the light-grey rectangles
show a configuration where the agents block each other if
they move in the directions of the arrows. This causes that
the agents stay at their current position.
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the policy π:

V π(s) =
∑
a

π(a|s)
∑
s′

p(s′|a, s) (r(s′, a, s) + V π(s′)) ,

Uπ(s, a) =
∑
s′

p(s′|a, s) (r(s′, a, s) + V π(s)) .

The definition of the state value function is recursive and
the correct value function is a fixed point of this equation.
Iterating the recursive definition of the value function con-
verges to the correct value function for a given policy. If
the policy is updated to be greedy with respect to the current
utility in every step, the iteration, called optimistic policy
iteration, results in an optimal policy for the MDP (Sutton
et al., 1999).

If the agents’ actions are independent, that is, if
p(a(1), a(2)|s) = p(a(1)|s)p(a(2)|s), the problem breaks
down to two dependent MDPs that are not deterministic any-
more but whose transition probabilities depend on a predic-
tion of the other agent’s action p̃(a(i)|s). For instance when
agent i expects j to act according to p̃(a(i)|s), then the pre-
dictor for the transition of i is:

p̃(st+1|a(i)t , st) =
∑
a(j)

p̃(a(j)|st)p(st+1|a(i), a(j)t , st),

where i, j ∈ {1, 2} and i 6= j. In this paper we will update
the predictor in every iteration to be the same as the policy
of the other agent: p̃(a(i)|s) = π(a(i)|s). That means the
agents can do the best possible prediction of the action of
the other agent in every step.

Given a scenario where agents do not know anything
about each other, it is possible to set the predictor to a uni-
form distribution. But we want to study how the perfor-
mance of a split controller compares to the shared controller
and will use the policy of the other agent to make the best
prediction about the action of the other agent as possible.

The performance of a policy π is measured by the
expected utility over all state action pairs, denoted
E[Uπ(S,A)]. To compare both cases a different reward is
used in each case: For the shared controller a reward of
−2 is given whenever the agents do not enter a goal state.
For the independent controllers a reward of −1 is given to
each of the agents if it does not enter a goal state, so in each
case the summed reward per step is −2 if the goal is not
reached. Using the current policy as the predictor p̃ gives
another advantage: For the joint policy π(a(1), a(2)|s) =
π(a(1)|s)π(a(2)|s), now the following holds

E[Uπ(S,A)] = E[Uπ
1

(S,A(1))] + E[Uπ
2

(S,A(2))],

where Uπ is the utility consistent with the joint policy
and Uπ

1

, Uπ
2

are the utilities consistent with the policies
π(a(1)|s), π(a(2)|s). Thus we have a common scale for the
expected utilities.

Algorithm
As introduced before, the relevant information is the mutual
information between sensor and actions, minimised over all
optimal policies. Minimising mutual information under the
constraint of a distortion measure can be done using the
Blahut-Arimoto algorithm (Blahut, 1972). To obtain a pol-
icy that is optimal and minimising, Polani et al. (2006) used
a Blahut-Arimoto iteration with the utility Uπ(s, a) as a dis-
tortion measure. The Blahut-Arimoto iteration is given by

πk+1(a|s) =
pk(a)

Zk(s, β)
exp(βUπ(s, a)),

pk+1(a) =
∑
s

pk(s)πk(a|s),

where k denotes the iteration step, Zk(s, β) is a normali-
sation term and β > 0 a trade-of between optimality and
relevant information. Now the iteration is alternated with an
update of the state probabilities and a value iteration to get a
consistent utility Uπk .

The agents act only until they reach the goal configura-
tion, the task is episodic. The probability to be in state s
after t steps is given by

p(s|t) =
1

|S|
∑
s′

P t(s, s′)

where P is the state transition probability matrix and a uni-
form distribution for t = 0 is assumed. Let sg1 , sg2 denote
the two goal states. Now the probability that the agent is in
state s and it has not reached the goal, denoted as living, is

p(s|living) = lim
T→∞

∑T
t=0 δ(s)p(s|t)∑T

t=0 1− p(sg1 |t)− p(sg2 |t)
,

where δ is zero if s is a goal state and one otherwise. Now
we set p(s) = p(s|living). Updating the state probabilities is
important as a correct state distribution is essential for good
convergence of the algorithm.

For the whole iteration the iterations steps are then done
in the following order

πk → pk(s)→ V πk → Uπk → πk+1.

The algorithm then minimises the functional

L[p(a|s)] = I(S;A)− β E[Uπ(S,A)].

As an optimal policy maximises the expected utility, the La-
grange multiplier β determines a trade-of between an opti-
mal policy and limited relevant information. Iterating the
algorithm for small β results in optimal policies given a lim-
itation on the relevant information, which is of particular
interest as many real world agents especially in collectives
have very limited information processing capabilities. For
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β →∞ the resulting policy is optimal and at the same time
minimises the mutual information I(S;A).

Recent work shows that extending relevant information to
multiple steps, results in a similar algorithm that unifies the
value iteration and the Blahut-Arimoto iteration and gives
a new framework for minimising information quantities in
Bayesian graphs under optimality constraints (Tishby and
Polani, 2010). A proof of convergence for these algorithms
is work in progress.

Having two agents with independent actions will change
the algorithm. The iteration is now alternated between the
two agents. For each agent a value iteration and a Blahut-
Arimoto iteration is done using the current policy of the
other agent as a predictor in the utility update. This gives
the following scheme of iterations:

π1
k, π

2
k → pk(s) → V π

1
k → Uπ

1
k → π1

k+1 → ...

... → V π
2
k → Uπ

2
k → π2

k+1.

First, we have the two policies for each agent from which
the common environmental state distribution is calculated.
This is followed by a value iteration step for the first policy
and a Blahut-Arimoto update that gives the new policy for
the first agent. Using this policy as a predictor the value iter-
ation step for agent two is done, again followed by a Blahut-
Arimoto step.

For most samples the algorithm converged very fast, but
for certain values of β this is not the case, however, these
values can be detected by taking a fine distribution of sam-
ples for β.

Results
Iterations were performed with different environment sizes
(6 × 7,6 × 5,4 × 5, 4 × 3, 4 × 2 and n × 1 with n =
5, 6, 7, 8). Samples were taken for different values of β
ranging from 0.05 to 10.0 with steps ranging from 0.005
to 0.1, greater worlds required a larger step size due to
computational limitations. Each value β leads to a policy
and a state distribution, the performance of the policy can
be plotted against the mutual information between actions
and states (see Figure 3). At the upper limit of β = 10.0
the trade-of was already completely in favour of an opti-
mal policy. For each sample the iteration was stopped when∑
s |V πk+1(s)− V πk (s)| < 10−6. In all runs the setup with a

shared controller/policy outperforms the case where the ac-
tions are independent (see Figure 3). However the optimal
(β → ∞) shared controller shows almost no intrinsic coor-
dination, that is I(A(1);A(2)|S) vanishes. Here the agents
perform equally well with a shared controller as with inde-
pendent controllers (see Figure 3 and 4). This suggests that
in the optimal limit intrinsic coordination does not help to
perform better. Similarly Zahedi et al. (2009) showed that

for linked robots, those performed better that had split con-
trollers for their motors, although this was in the context of
maximising predictive information.

In the suboptimal region, especially small values of β, the
shared controller performs better with the same amount of
relevant information. In this region the coordination behaves
differently depending on the kind of controller. With inde-
pendent controllers the coordination tends to zero, as less
relevant information is processed (see Figure 5). While this
was expected due to coordination limited by relevant infor-
mation, the coordination is not even close to the possible
limit. The shared controller shows the opposite behaviour:
the coordination increases as less relevant information is
processed. This is also valid for the intrinsic coordination,
which vanishes in the optimal limit (see Figure 4).

The maximum of coordination of the shared controller de-
pends closely on the size and geometry of the world (see
Figure 6). The spikes in the graph are due to convergence
problems for certain values of β. For larger worlds the co-
ordination still increases for β → 0, but by a significantly
smaller amount: In a 6 × 7 grid world the difference be-
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Figure 3: Performance of agents, dotted line – shared con-
troller, solid line – individual controllers with summed ex-
pectation of utility per agent and relevant information for the
joint distribution of (a(1), a(2)). Both graphs show the same
features but the scales differ.
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Figure 4: Coordination of agents with shared controller on a
6 × 1 field, dotted line – intrinsic coordination, solid line –
coordination.

tween the coordination for small and large values of β is
only ≈ 0.05 bit whereas in a 4 × 5 world the difference
is ≈ 1.54 bit. For very narrow worlds (size n × 1) the
coordination even reached its maximum maxH(A(1)) =
maxH(A(2)) = 1 bit. It may seem unintuitive that this can
happen while the relevant information is positive, as it means
that one action fully determines the other and each of the
two possible actions is chosen with probability 1

2 . However
the coordination takes the expectation over all states: the ac-
tions can be totally synchronised, that is, H(A1|A2) = 0
while H(A1|S) is not maximal. Thus the distribution of the
possible two synchronous actions is not uniform, but this ef-
fect can vanish when the expectation over all states is taken,
which can also be seen by that fact that the intrinsic coor-
dination does not equal the coordination and therefore the
actions cannot be independent of the states.

The distribution of the states is not uniform and S has
rather low entropy as the cells that are closer to the goal are
visited more often by the agents. To ensure that the observed
behaviour of coordination is prevalent over the whole state
space and not just appearing close to the goal the resulting
policies were also analysed assuming a uniform distribution
of S, which resulted in insignificant differences.

Discussion
We introduced intrinsic coordination as a measure how
much different agents’ actions are correlated given the state
of the environment. The setting we investigated is a grid
world with two agents and a goal to configure in a certain
way. As both agents have the same possible two goal states,
they have to cooperate to reach the goal in an optimal way.
The actions only depend on the current location of the agent
(the agents are memoryless) thus the joint intent to move to
the goal states is explicitly encoded in the controllers. Us-
ing an alternated fixed point iteration method we computed
optimal policies for the agents under information processing
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Figure 5: Solid line – coordination of agents with individual
controllers on an 6×1 field, dotted line – limit given by each
controllers relevant information.

constraints.
The results show that agents use intrinsic coordination to

overcome limitations of their environment. This coordina-
tion is not needed in the optimal case where every agent can
get all the relevant information from the environment that it
needs to choose an optimal action. Though plausible, this
is not entirely obvious a priori. One could think of various
scenarios where the controllers are stochastic and the precise
knowledge of the others agent action would lead to a better
performance.

Now, large agent collectives will usually perform subopti-
mal policies as each agents’ abilities will be limited: In real
environments, the size of the agent and its supply of energy
are just some limiting factors to information processing ca-
pabilities. Furthermore having many agents acting in the en-
vironment leads to spatial limitations that were here matched
by the situation of narrow grid-worlds. In these cases in-
trinsic coordination performs better than just prediction of
the other agents’ behaviour: The shared controller cannot be
split into two independent controllers, this is what we under-
stand as ‘acting as one’. The intrinsic coordination gives a
measure of how strong this behaviour is. In the case of the
6×1 world and a small β the actions of the agents are always
in the opposite direction, but with a small bias whether the
agents move towards each other or away from each other.
Despite being a feature of the controller the synchronisa-
tion does not depend on the state and there is no information
needed to decide whether to act synchronised or not. The
agents perform even better with this strategy. This could be
interpreted as a kind of morphological computation (Pfeifer
and Bongard, 2006) where the synchronisation is a feature
of the embodiment of the agents used to perform better in
reaching the goal configuration. Due to the symmetry of the
present environment and the embodiment of the agents there
is also a symmetry in the shared controller. However, intrin-
sic coordination does not specifically depend on symmetries
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Figure 6: Coordination of agents with shared controllers on
a,medium thick line – 6 × 7, thin dotted line – 6 × 5, thick
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and can occur in any scenario within this formalism.
In the setup the intrinsic communication is not limited:

the two agents share a common ‘brain’. But often coor-
dination is only ‘routed’ through the environment: In the
case of stigmergy the environment takes the role of the com-
munication channel (Klyubin et al., 2004b). Other ways
of communication that have low interference with the en-
vironment like sound, dissolving molecules or radio signals
qualify more to be modelled as intrinsic coordination, al-
though their limited channel capacities must be considered.
In our experiment intrinsic coordination was not modelled
using directed communication and the agents came to a in-
stantaneous joint decision. What we have not done here, but
to what the formalism could be changed, is a dependence
of A(2) on A(1), which would model connected controllers
where the first agent can express an intent to which the sec-
ond can react. This would be a more restrictive model than
the shared controller. Moreover this framework can be fur-
ther elaborated to take issues of time shifts and turn taking
during the decision process into account. Examples where
collectives of cells use molecular signalling, with almost no
interference, to activate a certain behaviour in the whole col-
lective (Marée and Hogeweg, 2001) could then be modelled
as intrinsic coordination. One can argue that the molecular
signalling should be modelled with each cell having an in-
dependent controller and a sensor for these molecules, but
a model allowing intrinsic communication could lead to a
simpler description and therefore be more preferable.

Furthermore it is not necessarily obvious whether a par-
ticular collective of agents is just a collection of individuals
or acts as one individual. If there is a simpler model al-
lowing intrinsic coordination does that automatically mean
that it acts as a single entity? Ant colonies are sometimes
called super-organisms (Theraulaz and Bonabeau, 1999) and
were recently found to fulfil certain laws that apply for an-
imals (Hou et al., 2010), melting the boundary between the

individual and the collective. If two agents have the possi-
bility of maximal intrinsic coordination they can hardly be
viewed as individual agents as their actions are completely
synchronised. Thus having non-maximal intrinsic coordina-
tion gives each agent a certain degree of freedom to decide
for an action solely on its own perception of the environ-
ment. This means that a collective with a shared centralized
controller still can undertake actions that conflict each other,
especially in the suboptimal case, but intrinsic coordination
can be used to avoid this to a certain degree. In the spirit of
defining autonomy for a system in an information theoretic
way (Bertschinger et al., 2008), intrinsic coordination could
function as another measure of individuality or autonomy
with respect to other agents.
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Abstract

The fact that humans and animals have several sensory
modalities and use them together to make sense of the world
imbues their behaviour with an immense richness and robust-
ness. In this study, recurrent neural networks and minimal
agents with active vision are evolved for a perceptual dis-
crimination task (unimodal and bimodal). The purpose of this
study is mainly exploratory: to test which of the characteris-
tics of human perceptual discrimination evolve easily (with
a focus on statistically optimal integration), how they arere-
alised and what active perception does in this process. Whilst
some of the systems evolved to perform perceptual discrim-
ination well, they did not conform to the predictions from
statistical optimality. Analyses of the systems point towards
a number of relevant issues, noticeably towards the lack of
a good account of ‘unimodality’ in existing models of multi-
sensory perception.

Introduction
Humans and animals use several sensory modalities to make
sense of the world and to judge on and distinguish objects
in the environment. For instance, the size of an object can
be judged both by touching the object or by looking at it,
or by doing both at the same time. In humans, it could
be shown that subjects, when estimating object size, inte-
grate visual and tactile cues in a statistically optimal fashion
to decrease uncertainty (Ernst and Banks, 2002). Similar
findings were reported from other multisensory tasks, e.g.,
audio-visual sound localization (Alais and Burr, 2004).

These kinds of results are usually obtained using a psy-
chophysics approach, where subjects are asked to perform
perceptual judgments on stimuli that are varied systemati-
cally along a physical dimension. Comparing the human be-
haviour to that of an ‘ideal observer’ using maximum like-
lihood estimation (MLE), the mentioned findings of opti-
mality are derived. This approach isprima faciebehaviour-
based; the underlying mechanisms of (optimal) multisensory
integration are not yet well understood. Under the domi-
nant representationalist paradigm, we would expect a ded-
icated internal neural mechanism to implement MLE. Ac-
cordingly, Knill and Pouget (2004) rephrase the problem of
statistically optimal multisensory integration as follows: “(i)

how do neurons, or rather populations of neurons, represent
uncertainty, and (ii) what is the neural basis of statistical in-
ferences?” and review candidate neural correlates.

By contrast, Artificial Life and dynamical approaches in
cognitive science have repeatedly shown that efficient, ro-
bust or plausible models exist that do not rely on local com-
putation but on agent morphology, contingencies in agent-
environment interaction or on non-linear dynamics in neural
control. Examples of such models in perception research in-
clude active vision to solve a non-Markovian visual discrim-
ination task with feed-forward control (Floreano et al., 2004;
Izquierdo-Torres and Di Paolo, 2005), agency detection by
emergent behavioural coordination (Di Paolo et al., 2008) or
olfactory perception through chaotic neural dynamics (Free-
man, 1987). These models do not just point out alternatives,
they also show that, if global dynamics are taken into con-
sideration, many phenomena that appear complex emerge
effortlessly.

For the study presented, recurrent neural network con-
trollers and minimal agents with an active vision system
were evolved to solve a size discrimination task. Such
an evolutionary robotics (ER) approach has been argued to
minimise prior assumptions about underlying mechanisms
by outsourcing the design to an automated search procedure
(Harvey et al., 2005). The purpose was mainly exploratory:
if no constraints of optimality are imposed, which, if any of
the hallmarks of MLE optimal integration evolve? How do
the systems realize perceptual discrimination? How do they
integrate their senses and how do they deal with varying lev-
els of uncertainty? Comparing a disembodied network and
an embodied agent, what are the differences and commonal-
ities? Are there advantages associated with active perception
in this task?

The results presented can be seen as work in progress.
They point out issues that require a rethinking of the ap-
proach taken here. While some of these difficulties are of a
more technical nature, others proved to be insightful with re-
spect to the overarching question of (optimal) multisensory
integration. In particular, the question of what unimodal-
ity means in a system with several sensory channels is of
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Figure 1: Evolved networks for the direct condition (1.1)
and for the active vision condition (1.2).

potential importance for the study of multisensory integra-
tion in general. The results confirm that emphasizing the
non-obvious is one of the key characteristics and merits of
generative ER modelling.

Methods
Simulation and Genetic Algorithm
Continuous-time recurrent neural networks (CTRNNs; e.g.,
Beer, 2003) are evolved to solve a two-alternative forced-
choice (2AFC) size discrimination task. The decision, which
of two objectsox, oy ∈ [1, 2.5] is larger is either generated
by an agent controlled by a CTRNN or by a CTRNN di-
rectly. The dynamics of units in a CTRNN is governed by

τi

dai(t)

dt
= −ai(t) +

N
∑

j=1

wijz(aj(t) + θj) + Ii(t) (1)

where z(x) is the standard sigmoidal function
z(x) = 1/(1 + e−x), ai(t) is the activation of uniti at
time t, θi is a bias term,τi is the activity decay constant,
wij is the strength of a connection from unitj to unit i.
The structure of the network is partially layered, network
sizes vary between conditions (see Fig. 1). Neural and
environmental dynamics were simulated using the forward
Euler method with a time step ofh = 1ms.

For all controllers, input signals are fed into input units
ni by Ii(t) = Sgi · inp + νǫ, whereSgi is the evolved
sensory gain,inp is the input signal,ǫ is a normally dis-
tributed random variable andν ∈ [0, 3, 6, 9, 12] is the level
of sensory noise that modulates channel reliability acrosstri-
als. In the network condition, the inputsinp = ox, oy are
fed directly into the network (see Fig. 1, 1.1). The active
vision agent, inspired by (Beer, 2003), can move left and
right by v = Mg · (z(nl) − z(nr)) units/s in an arena

of random widtharw ∈ [3.5, 4] and depthard ∈ [4.5, 5]
(see Fig. 1, 1.2). The agent has a vision system comprised
of four rays with angles[−7.5◦,−2.5◦, 2.5◦, 7.5◦] and per-
ceives distance byinpi = di/5 wheredi is the distance
at which a rayi is intercepted. All controllers are evolved
for both a ‘unimodal’ and a ‘bimodal’ condition. In the bi-
modal condition, controllers are given a redundant direct in-
put channel and two additional hidden units (see Fig. 1).

An output unit np generates a perceptual estimate:
z(ap) > 0.5 means a perceivedox > oy at the end of a
trial. This leads to the following performance criterion for
pairs of objects(ox, oy)

P (ox, oy) =

{

1 if (z(ap) > 0.5) = (ox > oy)
0 else

(2)

Fitness for individual controllers is computed according to

F =
(1 − RB)

16

16
∑

i=0

P (ox, oy) · P (oy, ox) (3)

whereox, oy ∈ [1, 2.5] are drawn from a uniform distribu-
tion. As pairs are presented in both orders forF , evaluation
involves2×16 = 32 trials. The response biasRB ∈ [0, 1] is
proportional to the amount by whichz(ap) > 0.5 has a bias
stronger than75% to either side. The multiplicative term and
the punishment for response bias were included after pilot-
ing because evolved systems tended to be very accurate but
strongly biased towards one side. Object presentation lasts
T ∈ [3000, 4000ms] for networks (+tpre ∈ [100, 500ms]
without stimulus) andT ∈ [16000, 18000ms] for agents.
Networks are initialised randomly and agents are positioned
on the mid point of the line along which they can move.

CTRNNs are evolved using a generational GA with a
population of 30 and are selected using truncation selec-
tion (1/3). Genes are real-valued∈ [0, 1] with vector mu-
tation r ∈ [0.3, 0.5] and reflection at gene boundaries.
Evolved gene values are linearly mapped onto the target
range forwij ∈ [−8, 8], θi ∈ [−3, 3] and exponentially for
Sg ∈ [0.1, 20], Mg ∈ [0.1, 100] and τi ∈ [30, 3000ms]
(networks) orτi ∈ [30, 10000ms] (agents) respectively. For
the hidden and output layer,θi = −0.5

∑N

j=0
wij (center-

crossing).
ν is drawn randomly each trial from the available range of

noise levels. Evolution starts noiseless (ν=0) and the maxi-
mum level of noise is increased every time average top per-
formance over 50 generation exceedsF̄ = 0.5 till the full
range (ν ∈ [0, 3, 6, 9, 12]) is reached. In the bimodal con-
dition, two quarters of the trials were unimodal trials (one
quarter for each channel) to avoid specialization. This means
that one modality received no signal but instead strong noise
with ν = 15. Otherwise, noise in the first channel was ran-
dom as in the unimodal condition, whereas noise in the sec-
ond channel was fixed atν = 6.
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Analysis
Perceptual discrimination and integration is analysed just as
in human psychophysics (e.g., Ernst, 2005). Perceptual re-
sponse probability is described as a cumulative probability
function (‘psychometric curve’) of real differences in ob-
ject sizes. Evaluation is performed presenting a standard
stimulusos = 1.75 to one side and a comparison stimu-
lus oc ∈ [0.3os, 1.7os] to the other side. Each measurement
is repeated 20 times. This procedure is repeated for both
sides and for all levels of noiseν. Cumulative Gaussians are
fitted to the responses using the Matlab toolbox psignifit for
maximum likelihood fitting (Hill, 2005). The50% level of
a psychometric curve is called the PSE (point of subjective
equality) and corresponds to the mean of the fitted Gaussian.
It indicates perceptual bias. The difference between the50%
and the84% is called the JND (just-noticeable-difference)
and corresponds to

√
2σ of the underlying Gaussian. It indi-

cates perceptual accuracy.
Optimal integration is assessed by comparing the evolved

system’s perceptual discrimination with an ideal observer
model using MLE and an independent channel model. In
such a model, a bimodal perceptual estimateS∗ is gen-
erated as a weighted sum of unimodal estimates (i.e.,
S∗ = w1S1 + w2S2) in a way that minimizes uncertainty.
MLE generates the following testable predictions (cf. Ernst,
2005; Ernst and Banks, 2002):

w1 + w2 = 1 wi =
1/σ2

i

1/σ2

1
+ 1/σ2

2

σ∗2 =
σ2

1
σ2

2

σ2

1
+ σ2

2

(4)

The first term indicates multisensory integration in gen-
eral, whereas the second and third term are characteristic of
optimal integration in particular. These criteria also clar-
ify the significance of the noise levelν as the parameter
that should modulateσi. According to the predictions, the
weightswi andσ∗ should change withσi (in particular, bi-
modal discrimination should be more accurate than each of
the unimodal discriminations).

To compute the weights, crossmodal conflicts
c ∈ [−.25os, .25os] are introduced during testing, i.e.,
for one modalityo1

s = os − 0.5c and for the other modality
o2

s = os + 0.5c. Integration occurs if, in the presence of
conflicts, PSEs are shifted along the[os − 0.5c, os + 0.5c]
interval according to the weights.σi can be computed by
JND =

√
2σi.

Perceptual Discrimination in Recurrent
Neural Networks

Evolving perceptual discrimination in recurrent neural net-
works is a less biased approach to the study of perceptual
integration because it allows for the evolution of dynami-
cally complex solutions and functional intertwinement: so-
lutions evolved may not employ separate populations of neu-
rons to perform different tasks, such as unimodal estimation,
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Figure 2: Unimodal networks. Psychometric curves for the
different noise levelsν, data pooled from all 7 networks and
both orders. Inlay: mean and s.e.m. for fitting parameters
PSE (bias) and JND (accuracy) from individual fits (average
of both stimulus orders;N = 7).

integration and measuring uncertainty. Also, given that the
fitness function Eq. (3) does not require optimal integra-
tion, there is the possibility that optimality spontaneously
emerges.

Unimodal Networks

The purpose of the unimodal condition was primarily to ver-
ify that the task is suitable for the study of perceptual dis-
crimination. In order to allow the evolution of optimal inte-
gration, controllers have to perform perceptual discrimina-
tion sufficiently well. Their accuracy should decrease with
the level of noise (JND should increase) to make it possible
to test for statistically optimal integration.

CTRNNs were evolved in 20 evolutionary runs with 1000
generations. 7 of the 20 networks evolved performed suf-
ficiently well according to these criteria. The main exclu-
sion criterion pointed towards a very successful but trivial
local maximum for this task (up toF ≈ 0.6): 7 networks
were excluded because they considered only one stimulus
and judged if it is ‘big or not’, which means that perfor-
mance is good during testing for the standardos on one side,
but at chance level or substandard for the other side.

Figure 2 depicts the psychometric curves for the differ-
ent noise levelsν for all 7 successful networks together, as
well as the JNDs and PSEs from individual fits. Increase
in ν leads to a clear increase in JND (1 factor ANOVA:
F (4, 2) = 7.55, p < 0.001), while PSEs are not influenced
by noise (F (4, 2) = 0.25, p = 0.91). The successfully
evolved networks show that, given the task and the fitness
criterion, artificial systems can evolve to generate behaviour
and simulated data that can be compared to human data and
that can be analysed the same way.
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Figure 3: Unimodal, bimodal and predicted PSE (top) andσ
(width of fitted Gaussians, bottom) for all networks evolved
to perform (partial) bimodal discrimination.

Bimodal Networks

In the bimodal condition, the emphasis is on the kind of in-
tegration behaviour that the networks exhibit and if it con-
forms to the predictions from MLE in Eq. (4).

Controllers for the bimodal condition were evolved in 20
evolutionary runs with 2000 generations. Only one network
evolved to successfully discriminate between objects for all
orders in both the unimodal and the bimodal conditions.
The simulated data was fitted and analysed like in the previ-
ous simulation. When comparing the JND of the unimodal
and the bimodal condition for the successfully evolved net-
work, at first glance it appeared to exhibit the most impor-
tant hallmark of MLE, i.e., that the probability distribution
of bimodal estimates was more accurate than either of the
unimodal estimates. However, testing the exact predictions
from MLE (Eq. (4)) on this controller, the network proved
to besuper-optimal, i.e., the accuracy (in terms ofσ of the
fitted Gaussian) was dramatically better than expected from
MLE (Fig. 3, bottom left).

7 of the other controllers evolved performed satisfactorily
for both modalities if the standardos was presented to one
side only. They were analysed and compared to the predic-
tions of MLE as well. Even if lateral specialization is un-
satisfactory concerning the main question, it involves some
degree of integration. Figure 3 (bottom) depictsσ for the
bimodal condition, averaged over noise levelsν, in compar-
ison to the lower of the unimodalσ and the predictedσ using
Eq. (4). All controllers were either grossly super-optimalor
less accurate than the better of the uni-modal conditions, i.e.,
there was no evidence for optimal integration.

Why is it so easy to be ‘better than optimal’? Is it be-
cause of the noiseν = 15 of the inactive channel disturbs
the network in the unimodal condition? Controllers were
tested again withν = 0 in the unimodal condition to test
this assumption. Contrary to the expectations, taking out the
noise, in most cases (5 of the 8 networks), did not improve
unimodal accuracy, but led to a complete break-down of uni-
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Figure 4: Example psychometric curves for the most suc-
cessful network withν = 0 in the silent channel.c = −0.25,
all noise levelsν. Data pooled forcs left/right. Unimodal
curves are shifted along the x-axis according to the conflict.

modal discrimination. This indicates that the noise serveda
functional purpose in integration.

Defining the unimodal condition as noise withν = 15
and the absence of a signal had been an arbitrary design de-
cision. However, as it is the case in biological evolution,
the GA worked with what was there and thus incorporated
this noise functionally into the solution, with surprisingef-
fects on perceptual accuracy across conditions. This result
raises the question of what ‘uni-modality’ means in a multi-
modal system which will be picked up in the discussion. For
those networks that also worked in the absence of noise, dis-
crimination during unimodal trials became better than dur-
ing bimodal case, eliminating the super-optimality. This re-
sult supports the hypothesis that noise in the silent channel
is the reason for bimodal super-optimality.

Maybe more surprising still is the fact that the controllers
did not evolve to integrate the two estimates. Introducing a
cross-modal conflict, networks would be expected to gener-
ate PSEs in between the PSEs that the unimodal data pre-
dicts. Figure 3 (top) shows that, in the large majority of
cases, the PSE of bimodal networks is far outside this range
and, therefore, also far away from the PSE predicted from
MLE. Figure 4 shows this behaviour for the most success-
ful network (with ν = 0 in the inactive channel): the dis-
crimination is successful for all noise levels for both the uni-
modal and the bimodal stimuli. Accuracy for the bimodal
trials is comparable to the unimodal trials. However, the
PSE is far outside the range that would indicate integration.
Rather than to integrate uni-modal estimates, the networks
had evolved to perform a different and comparably viable
way of discriminating size in the presence of redundant sig-
nals. The result indicates that multi-modal integration, as
it is characteristic of humans, is not a process that simply
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emerges as an epiphenomenon of the existence of redundant
sensory channels but probably evolved due to more specific
adaptive needs. The previously mentioned tendency of net-
works to evolve solutions with strong perceptual biases in
this task is likely to also play a role in this result.

The solutions evolved do not make use of the dynamic
complexity afforded by the recurrent network structure -
they rely mainly on feed-forward principles. The passive
open-loop nature of the task for disembodied recurrent net-
works does not encourage the use of dynamic complexity.

Perceptual Discrimination in Simple Agents
Living organisms are always in dynamic interaction with the
environment. The surge of sensorimotor approaches in per-
ception research (e.g., O’Regan and Noë, 2001) reflects an
increasing awareness that such closed-loop dynamics afford
alternative and clever ways of solving perceptual tasks. Ex-
isting models of optimal integration assume that integration,
as well as estimation of channel certainty and weight ad-
justment are performed internally. The objective of evolving
simple vision agents for this task was to explore if and how
active perceptual strategies can play a role in multisensory
integration and perceptual discrimination.

To bootstrap the evolution of active perceptual strategies,
the performance criterion Eq. (2) was amended such that
agents receiveP = 0.1 if their visual system perceives both
objects at least once, even if the wrong decision is made. If
they do not move to see both objects, they receiveP = 0,
even if the right decision was made. In 20 evolutionary runs
with 1000 generations, not one controller evolved that could
reliably distinguish objects of different sizes for the whole
problem space: local maxima, in most cases the mentioned
solution to only pay attention to one of the stimuli, could not
be overcome. Variations of the task were explored to miti-
gate this problem, including a punishment for lateral special-
ization and the administration of an extra position sensor,but
performance never exceeded the stable local maximum, i.e.,
to focus just on one side. This suggests that a more radical
change of fitness criterion/task may be necessary.

Controllers were also evolved for the bimodal condition
in 16 runs for 2000 generations. The possibility exists that
the presence of a direct sensory channel serves as a guid-
ance for the evolution of active visual discrimination. In-
stead, the agents evolved rely heavily on their second (di-
rect) input channel (see Fig. 1) and did not evolve to use
their active sense according to demand. Where partially vi-
able behaviour evolved, it replicates the general results from
disembodied networks.

While these performance deficits mean that the predic-
tions of the ideal observer model could not be tested, it is
still interesting to test whether the partial solutions evolved
exhibit sensorimotor strategies for sub-parts of the problem
space. If agents evolve to base their decision on one input
only, they could just evolve to move over to one side (pass-
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ing the other side briefly to fulfill the revised performance
criterion) and, otherwise, act as if they had a direct input
channel. Instead, nearly all agents exploit their capacityto
act in the closed-sensorimotor loop in order to make the ‘big
or not’ strategy more effective. The remainder of this section
presents examples of such active sub-strategies.

Active decision making.Figure 5 depicts the motion, in-
puts and decision output over time for an agent evolved. The
agent evolved, under some circumstances, to steer towards
the smaller of the two objects and to then make the decision
contingent on the output velocity (using internal activation
like an efference copy). This active decision making capac-
ity is the most straight-forward one of the ones evolved and
is an exception to the trend to pay attention to one input only.

Active decision expression.The agent depicted in Fig. 6
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evolved to only pay attention to the second inputoy . If the
agent deems it large (Fig. 6 left), it comes to a halt and
constantly outputs its decision (z(ap) < 0.5). If, however,
it deems the object small (Fig. 6 right), it initiates an os-
cillation towards and away from the object. Driven by this
oscillation, the decision output starts oscillating around the
decision boundary atz(ap) = 0.5. This kind of behaviour
evolved very frequently. It provides the agents with a way
of expressing uncertainty: depending on when the trial ends,
the same input would lead to different answers, and slight
differences in object size may bias the proportion of such de-
cisions by modulating the oscillations. Probably, such strate-
gies evolved at least partially in response to theRB term in
the fitness function Eq. (3) that punishes a strong response
bias: if some of the decisions are random, it is unlikely that
more than 75% of decisions would be of one kind.

Temporal decision making.Figure 7 depicts an agent’s
dynamics during the presentation of a single pair of objects.
The agent’s strategy makes active use of the time allocated
for making a decision. One hidden unit (Fig. 7, third) con-
trols the position of the agent: it decreases activity dramati-
cally in the beginning (steering to the right) and then slowly
increases. When it reaches a certain threshold, the agent
starts moving to the left. Reaching the gap between the ob-
jects, the agent starts oscillating between the two objects,
which is reflected in the activity of the hidden unit, too. The
output unit always decidesox is larger (z(ap) > 0.5), un-
less the oscillations pull it below this threshold. Therefore,
oscillation stands in correlation with the decision thatox is
smaller. The oscillation can only be stopped in time before

the trial ends if the second object is small enough, otherwise
it will go on indefinitely or at least till the end of the trial.
In that sense, this controller can be seen as a variant of the
oy only strategy. The length of the oscillatory phase is, how-
ever, not just contingent onoy. The size ofox appears to
take influence on the time of onset of the oscillations as well
as its offset in ways that are not obvious.

These are just three examples of the ways in which agents
used their motion capacities in their size discrimination ac-
tivity, not all of which are easy to understand. In depth anal-
ysis of only partially functional agents is an endeavour of
limited value. The fact that an abundance of active strategies
evolved, however, is a result worth mentioning. In systems
that discriminate stimuli exploiting the agent-environment
interaction dynamics, processes of multisensory integration
would rely on these closed-loop dynamics. How (optimal)
integration could work in the absence of explicit represen-
tation of perceptual estimates remains an intriguing open
question.

Discussion
Using ER for this kind of multisensory perceptual discrim-
ination task is a novel approach and as such the research
presented has mainly exploratory character. Both technical
and conceptual difficulties were encountered. Most dramat-
ically, minimal agents could not be evolved to perform per-
ceptual discrimination and the predictions from MLE could
not be tested for the second part of the project. ER simula-
tion modelling serves as a tool for thinking, and as such, the
simulation results here presented have pointed out a number
of issues that are worth reporting.

Unimodality in a Bimodal System
Possibly the most important insight gained from the simu-
lation models is that existing models of optimal integration
have a gap to fill: as humans, it is obvious for us what a uni-
modal and what a bimodal stimulus is. It is, however, not
clear how the MLE circuits proposed (e.g. Knill and Pouget,
2004; Ernst and Banks, 2002; Alais and Burr, 2004) or a lo-
calized brain area would be able to recognise the absence
of a signal in one channel and what possible noise entering
through that channel can do to the decision making process.
MLE assumes independent channels and independent pro-
cesses of unimodal estimation and multisensory integration
(cf. Method section). How the same process of generating
perceptual judgments in human observers can be indicative
of either of the stages is not made clear in existing mod-
els. In the model presented, the administration of random
noise in the silent channel led to the evolution of apparent
‘super-optimality’ in bimodal trials: not because networks
accurately estimate the levels of noise present, but just be-
cause additional noise sources were absent during bimodal
trials. The fact that performance breaks down in most con-
trollers when the noise is removed shows that the definition
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of what ‘uni-modal’ means in a system is not an arbitrary
one. Existing models of optimal integration would benefit
from making explicit the behaviour of the inactive channel
during unimodal trials and incorporating mechanisms into
their models that distinguish between multimodal and bi-
modal trials. Testing for their existence can then confirm
that the reported increase in accuracy in bimodal trials is not
due to the influence of the silent channel during ‘unimodal’
trials.

Perception vs. Perceptual Judgments

Unlike humans, the evolved systems were surprisingly inca-
pable to integrate their senses in a coherent way. This prob-
lem may well be due to the fact that the controllers were
evolved for a laboratory task. 2AFC perceptual discrimina-
tion tasks, like the size discrimination task used here, make
it possible to measure perceptual accuracy, as well as per-
ceptual bias. The fitness criterion Eq. (3) emphasises this
accuracy component. Therefore, the systems evolved tend
to favour being accurate over the absence of perceptual bi-
ases (as evident from the large and variable PSEs in Fig. 3)
and are rewarded for this tendency. Humans, on the other
hand, develop their perceptual skills not for this kind of psy-
chophysics task, but in real-world situations, where percep-
tion has behavioural relevance. In many real-world contexts,
strong or variable perceptual biases would be extremely dis-
advantageous. In future research, therefore, systems willnot
be evolved for 2AFC tasks exclusively, but for perceptual ca-
pacities more generally (e.g., the approach taken here can be
combined with a magnitude estimation task or with a senso-
rimotor control task that involves perceptual decision mak-
ing).

Ideal Observing vs. Active Sensing

Ideal Observer Models of perceptual integration strongly
draw on the assumptions of the dominant representationalist
paradigm in cognitive science: MLE is a dedicated process
that combines unimodal estimates and noise estimates. Even
though behavioural approaches (e.g. Ernst and Banks, 2002;
Alais and Burr, 2004) areprima facieagnostic about the un-
derlying mechanisms, it is easy to jump to conclusions and
assume that internal dedicated neural process perform MLE,
represent the noise, represent the unimodal estimates, etc.
(e.g. Knill and Pouget, 2004). Evolving embodied agents
to integrate their senses optimally (on a behavioural level)
can potentially challenge such underlying assumptions (on
the level of the underlying mechanism). The active vision
agents presented here did not arrive at a level of behaviour
that would allow drawing strong conclusions about multi-
sensory integration. However, even superficial analysis of
their behaviour revealed an abundance of active sensing in
the accomplishment of aspects of perceptual discrimination,
including but not limited to active decision making and the
expression of uncertainty through motion patterns.Thinking

of the human hand and the human eye as agents, it is not
unlikely that active sensing principles are exploited in a task
like visuo-haptic size estimation. It is by no means clear that
the introduction of noise or the variation of physical param-
eters, like in psychophysics, would have the same impact on
such embodied processes as they have on decoupled systems
that are passively cruncing representations. Even though
limited in their own significance, the present results provide
a good incentive to proceed with a revised version of the
research on perceptual discrimination in simulated agents.

Noise and Uncertainty
The question of noise estimation, independent noise sources
and reduction of uncertainty is one of the cornerstones of
optimal multisensory integration research. Given that no
system evolved to confirm the predictions from MLE, this
question could not be direclty addressed. The first simu-
lation confirmed that the introduction of different levels of
Gaussian noise led to the expected deterioration of percep-
tual accuracy (cf. Fig. 2). It is arguable if adding Gaussian
noise at any time step to a signal that is then fed into a rate
code neural network is the most suitable approach for the
evolution of systems whose behaviour is contingent on lev-
els of noise. As a lot of the noise is filtered directly by the
neurons, that have a minimal time constant ofτ = 30ms,
such systems may have a hard time to develop sensitivity to
levels of noise. In future models, noise may instead be added
to a physical stimulus, which, at least in theory, would allow
agents to use active strategies not just to perform perceptual
discrimination, but also to perform noise estimation. Gen-
erally, it was a long shot to expect that optimal integration
would evolve in evolved systems by merely adding the re-
quirement to be accurate in perceptual discrimination. Even
if the outlined technical and conceptual problems can be
solved in future research, it may be necessary as a next step
to explicitly require agents to integrate optimally in order to
tackle this question.

Conclusion
The ambitious goal to evolve optimal multisensory integra-
tion in networks and agents has not been met in the cur-
rent research. However, the difficulties encountered were
informative about hidden prior assumptions on several lev-
els: about ideal observer models (what is ‘unimodal’ in a
bimodal system? Can noise in the silent channel explain
an increase in bimodal perceptual accuracy?), about using a
psychophysics task for evolution (does success in a 2AFC
task equal perceptual capacity?) and about the role of action
in perceptual discrimination (if active sensing is beneficial
for perceptual discrimination, how does it figure in multi-
sensory integration?). Rather than answering one question,
the study generated more digestible sub-questions, which is
characteristic of generative ER models. The outlined av-
enues for future research will be pursued to further elucidate
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the relevant question of (optimal) multisensory integration
from an embodied and Artificial Life point of view.
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Extended Abstract
To have a theory of mind (ToM) is to anticipate the behaviour of other agents by considering what they want and what they
know. It requires a representation of the environment that includes the internal states (e.g., beliefs) of other agents. Adult
humans generally possess a ToM ability, demonstrated by reasoning like “he did not see the chocolate being switched
from the red box to the blue one, so I predict he will choose the red box.” Note the distinction between what the speaker
believes to be true, and what the speaker believes about the other agent’s belief states. ToM is of interest in developmental
psychology (when and how do children acquire it?) and primatology (do our near relatives possess it?).
In this project we ask: in an evolving population of social agents, under what circumstances would a ToM ability be
selected for? Using simulation to identify the ecological niches that produce selection pressure for ToM should cast light
on its origin in humans and on when we should expect to see it in other animals. We build on earlier work by Takano and
Arita (2006).
To operationalize ToM we borrow a hierarchy of cognitive architectures from Dennett (1987). A zero-order intentional
agent (often seen in ALife work) is purely reactive to its perceptual inputs. A first-order agent builds on this by including
internal state that has a mapping relation with the environment, e.g., remembering where a predator was last seen. A
second-order agent has basic ToM, i.e., it is equipped with a world-model that includes the internal states of other agents
(e.g., “there’s a predator behind that tree, but my friend hasn’t seen it yet.”). Third- and higher-order agents include a
recursive aspect, i.e., a model of what I think he thinks I am thinking.
Low-order agents are logically prior, but the evolution of higher-order agents like ourselves is not inevitable. ALife
and related work (Braitenberg, 1984) have shown that outwardly sophisticated behaviours can be produced by simple
underlying mechanisms. The evolutionarily stable strategy will sometimes remain zero- or first-order and this will depend
on aspects of the ecological niche, such as the nature of the payoff matrix for agent interactions and the degree of perceptual
overlap between agents. We tested these ideas in simulation by constructing a range of different social environments and
running invasion studies, in which a population of (n)-order agents is exposed to an infrequent (n+1)-order mutant. If the
higher-order mutant is fitter and thus able to invade, this indicates selection pressure for more advanced ToM abilities.
Results confirm that fragmented perception (not all agents see the same things) and socially relevant payoff matrices (my
payoff depends on both our actions) are necessary for ToM to evolve. More specifically, competitive rather than cooperative
interactions produce greater selection pressure for ToM. This finding is a challenge for the common association between
ToM and human language (Grice, 1969) as the latter requires a cooperative context. Something about the early human
ecological niche must have combined cooperative and competitive contexts in a near-unique way.
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Abstract

This work describes the application of the Baars-Franklin
Architecture (BFA), an artificial consciousness approach, to
synthesize a mind (a control system) for an artificial creature.
The BFA was reported in the literature as a successful control
system to different kinds of agents: CMattie, IDA and CTS.
In this paper, BFA is for the first time applied for controlling
an artificial (virtual) creature. Firstly we introduce the the-
oretical foundations of this approach for the development of
a conscious agent. Then we explain the architecture of our
agent and at the end we discuss the results and first impres-
sions of this approach.

Keywords: artificial consciousness, intelligent systems,
autonomous vehicle, multi-agent systems

Introduction
In the last ten years there has been an intensive growth in
the scientific study of consciousness (Atkinson et al., 2000;
Blackmore, 2005). A technological offspring of these stud-
ies is the field of artificial consciousness (Aleksander, 2007;
Bogner, 1999; Cardon, 2006; Chella and Manzotti, 2007;
Gamez, 2008). In this work we concentrate in what we call
here the Baars-Franklin architecture (BFA). The BFA is a
computational architecture being developed by the group of
Stan Franklin, at the University of Memphis (Franklin and
Graesser, 1999; Bogner, 1999; Negatu and Franklin, 2002;
Negatu, 2006), based on the model of consciousness given
by Bernard Baars, called Global Workspace Theory (Baars,
1988).

The BFA has already been applied to many different kinds
of software agents. The first application of BFA was CMat-
tie (Franklin and Graesser, 1999; Bogner, 1999), an agent
developed by the Cognitive Computing Research Group
(CCRG) at the University of Memphis, whose main activ-
ities were to gather seminar information via email from hu-
mans, compose an announcement of the next week’s semi-
nars, and mail it to members of a mailing list. Through the
interaction with human seminar organizers, CMattie could
realize that there was missing information and ask it via
email.

The overall BFA received major improvements with sub-
sequent developments. One remarkable implementation of it
was IDA (Intelligent Distribution Agent) (Franklin, 2005),
an application developed for the US Navy to automate an
entire set of tasks of human personnel agent who assigns
sailors to new tours of duty. IDA is supposed to communi-
cate with sailors via email and, in natural language, under-
stand the content and produce life-like messages.

The BFA was also used outside of Franklin’s group.
Daniel Dubois from University of Quebec developed CTS
(Conscious Tutoring System) (Dubois, 2007), a BFA-based
autonomous agent to support the training on the manipula-
tion of the International Space Station robotic control system
called Canadarm2.

Nevertheless, up to our knowledge, BFA was never used
to implement a mind (a control system) for an artificial
virtual creature. Artificial Creatures are a special kind of
agents, embodied autonomous agents which exists in a cer-
tain environment, moving itself in this environment and act-
ing on it (Balkenius, 1995). Artificial creatures may be real
or virtual. Examples of real artificial creatures are robots
acting in the real environment. Virtual Artificial Creatures
are software agents living in a virtual world, where they are
able to sense and actuate by means of an avatar (a virtual
body). One example of a virtual artificial creature is an in-
telligent opponent in a computer game, where an intelligent
control system must decide the actions to be performed by
the agent in order to foster a good entertainment to the sys-
tem user, simulating with realism the behavior of a human
opponent. Other examples of virtual artificial creatures in-
clude ethological simulation studies, in artificial life, where
tasks such as foraging and sheltering are very common.

Virtual artificial creatures pose some interesting research
problems when compared to other kinds of software agents
where BFA has already been tested. In the original applica-
tions where BFA was tested, the perception system is based
on the exchange of e-mail messages (the case of CMattie
and IDA), and interactions in a HCI (human-computer in-
terface), in the case of CTS. In a virtual artificial creature,
perception must rely on remote (e.g. visual, sonar, etc)
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and/or local (e.g. contact) sensors, capturing properties of
the scenario and interpreting them in order to create a world
model. The behavior generation module is also different, as
the agent must act on itself (its body) and over things on the
environment. The main motivation for the research reported
in this work is though to investigate how the use of BFA
may impact the control of a virtual artificial creature, and
what are the benefits which can be expected.

In the next section, we introduce briefly Baars’ theory of
consciousness, Global Workspace Theory, and then we de-
scribe how we customized BFA in order to deal with virtual
artificial agents. After that, we introduce CAV (Conscious
Autonomous Vehicle), the artificial creature we used in our
study and its environment, and a brief analysis of the results
of our simulations using CAV.

Global Workspace Theory and BFA
Bernard Baars has developed the Global Workspace The-
ory (GWT) (Baars, 1988, 1997) inspired by psychology and
based on empirical tests from cognitive and neural sciences.
GWT is an unifying theory that puts together many previous
hypothesis about the human mind and human consciousness.

Baars postulates that processes such as attention, action
selection, automation, learning, meta-cognition, emotion,
and most cognitive operations are carried out by a multi-
tude of globally distributed unconscious specialized proces-
sors. Each processor is autonomous, efficient, and works
in parallel and high speed. Nevertheless, in order to do
its processing, each processor may need a set of resources
(mostly information of a specific kind), and at the same time,
will generate another set of resources after its processing.
Specialized processors can cooperate to each other forming
coalitions. This cooperation is by means of supplying to
each other, the kinds of resources necessary for their pro-
cessing. They exchange resources by writing in and reading
from specific places in working memory. Coalitions may
form large complex networks, where processors are able to
exchange information to each other. But processors within
a coalition do have only local information. There may be
situations, where the required information is not available
within the coalition. To deal with these situations, and al-
low global communication among all the processors, there
is a global workspace, where processors are able to broad-
cast their requirements to all other processors. Likewise,
there may be situations where some processor would like
to advertise the resource it generates, as there may be other
processors interested in them. They will also be interested
in accessing the global workspace and broadcasting to all
other processors. In the broadcast dynamics, only one coali-
tion is allowed to be within the global workspace in a given
instance of time. In order to decide which coalition will go
to the global workspace in a given instant of time, a whole
competition process is triggered. Each processor has an ac-
tivation level, which expresses its urgency in getting some

information or the importance of the information it gener-
ates. A coalition will also have an activation level which is
the average of activation levels of its participants. At each
time instant, the coalition with the highest activation level
will win the access to the global workspace. Once a coali-
tion is within the global workspace, all its processors will
broadcast their requests and the information they generate.
The broadcast mechanism do allow the formation of new
coalitions, and also some change in working coalitions.

For Baars, consciousness is related to the working of this
global workspace. Processors are usually unconscious, hav-
ing access only to local information, but in some cases they
may require or provide global information, in which case
they request access to consciousness, where they will be
able to broadcast to all other processors. This is the case
when they have unusual, urgent, or particularly relevant in-
formation or demands. This mechanism supports integration
among many independent functions of the brain and uncon-
scious collections of knowledge. In this way, conscious-
ness plays an integrative and mobilizing role. Moreover,
consciousness can be useful too when automatized (uncon-
scious) tasks are not being able to deal with some particular
situation (e.g. they are not working as expected), and so a
special problem solving is required. Executive coalitions,
specialized in problem solving will be recruited then in or-
der to deal with these special situations, delegating trivial
problems to other unconscious coalitions. In this way, con-
sciousness works like a filter, receiving only emergency or
specially relevant information.

Inspired by Baars description of his theory of conscious-
ness, and also by previous work in the computer science lit-
erature, Franklin proposed a framework for a software agent
which realized Baars theory of consciousness, in terms of a
computational architecture, constituting so what we are call-
ing here the Baars-Franklin architecture. In specifying BFA,
Franklin used the following theories as background, among
others not detailed here: Selfridge’s Pandemonium (Self-
ridge, 1958) and Jackson’s extension to it (Jackson, 1987),
Hofstadter and Mitchell Copycat (Hofstadter and Mitchell,
1994) and Maes’ Behavior Network (Maes, 1989).

From Hofstadter’s Copycat, Franklin borrowed the notion
of a “Codelet” (and also the Slipnet, for perception). He no-
ticed that these codelets were more or less the same thing
as Selfridge’s “demons” in Pandemonium theory and also
a good computational version for Baars processors. Jack-
son’s description of an arena of demons competing for se-
lection will fit as well Baars description of processors com-
peting in a Playing Field for access to consciousness. Using
these similarities, Franklin set up the basis of BFA: cogni-
tive functions are performed by coalitions of codelets work-
ing together unconsciously, reading and writing tagged in-
formation to a Working Memory. Each codelet has an ac-
tivity level and a tagged information. A special mecha-
nism, the Coalition Manager will manage coalitions and
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calculate the activity level of each coalition. Another spe-
cial mechanism, the Spotlight Controller, will be evaluating
each coalition activity level, and defining the winning coali-
tion. Also, the Spotlight Controller will be responsible for
performing the broadcast of the tagged information of each
codelet in the winning coalition, to all codelets in the system.
The agent behavior is decided using a Behavior Network,
whose propositions are related to the tagged information in
the Working Memory.

Unfortunately, a full description of BFA is beyond the
space available in this text. We refer the interested reader
to (Bogner, 1999; Negatu, 2006; Dubois, 2007; da Silva,
2009), where a more detailed description of BFA is avail-
able. Some background in the auxiliary theories we men-
tioned above is provided next.

Pandemonium Theory
Selfridge’s Pandemonium Theory is a connectionist archi-
tecture originally used for pattern recognition. Selfridge
(Selfridge, 1958), influenced by the parallelism of human
data processing, suggested a parallel architecture composed
of multiple independent processes called demons. Each de-
mon works simultaneously recognizing specific conditions
(or a set of them). Demons have links that allows them to
“call” other demons.

John Jackson extended the original Pandemonium theory
of perception by creating the stadium metaphor, organizing
demons in two different locations, the equivalent of stands
and arena of a stadium. Jackson (Jackson, 1987) proposed a
system consisted of a crowd of usually dormant demons lo-
cated at the stands, from where a few demons could go down
to the arena and start exciting the crowd. Some demons in
the crowd gets more excited and starts to yell louder. If
the activity of demons in the arena drops below a thresh-
old they may return to the stands and the loudest demons in
the crowd replace them. Besides the crowd getting excited
watching the demons in the arena, the last ones can spread
activation to the former through links. These connections
between demons are created or strengthened according to
the time they are together on the arena, following a Hebbian
learning scheme.

Copycat Architecture
Copycat is a hybrid symbolic-connnectionist architecture
that is intended to model analogy making along with recog-
nition and categorization. It was developed by Hofs-
tadter and Mitchell (Hofstadter and Mitchell, 1994) with the
premise that analogy making is a process of high-level per-
ception. Copycat makes and interprets analogies between
situations in a predefined and fixed domain like letter-string
analogy problems.

Those analogies emerge from the activity of many in-
dependent processes, called codelets, running in parallel,
sometimes cooperating, sometimes competing with each

other. Copycat starts with a fixed number of codelets in a
codehack, predetermined by the designer.

Codelets count with an associative network (the Slipnet)
that contains interrelated concept types (nodes) and links be-
tween them. Codelets look for specific words or parts of
words and if they find them they activate some nodes of the
Slipnet. Nodes can vary in their level of activation which
is a measure of relevance to the current situation. They
spread some activation to neighbors and lose activation by
decay. The Slipnet is a long-term memory and represents
what Copycat knows. It does not learn anything during exe-
cution.

Finally, Copycat has a working memory where percep-
tual structures are built and modified. At each moment the
content of the working memory represents Copycat’s current
perception of the situation it is facing.

Behavior Network
Pattie Maes (Maes, 1989) developed a behavior-based action
selection mechanism, built as a society of behaviors or com-
petence modules in a distributed, recurrent, non-hierarchical
network. This network is formed by four kinds of nodes.
The first kind of node (and the most important) represents a
low level behavior (e. g. approach food, drink water, walk
around). The second kind of node represents propositions
(or predicates e.g. glass-on-hand, glass-with-water-inside,
glass-empty), which can be true or false. The third kind of
node represents goals (or motivations). The fourth kind of
node represents sensors from the environment.

Sensor nodes are linked to proposition nodes. Behav-
ior nodes are input linked from preconditions propositions
which must be true for the behavior to be executable. In its
output, they are linked to two possible kinds of propositions:
add propositions, which are expected to become true af-
ter the behavior is executed, and delete propositions, which
should be set to false after the behavior is executed. For ex-
ample, a behavior “drink water” could have the precondi-
tions glass-on-hand and glass-with-water-inside. Its add list
could contain glass-empty and the delete list would contain
glass-with-water-inside. Goal nodes are linked to proposi-
tion nodes, which are backward linked to behavior nodes.
See figures 3 and 4, further, for an example of the connec-
tion among links. In these figures, triangles are proposition
nodes, ovals are behavior nodes, round squares are sensor
nodes and pentagons are goal nodes.

The network executes as follows. Each behavior has an
activation level, which is changed by two waves of spread-
ing activation: one from sensor nodes forward and the other
from goal nodes backwards. The first one spreads activation
forward from sensor nodes to propositions which are evalu-
ated (true or false) according to the environmental situation
and from them forwards to behavior nodes which need these
predicates to be true to be fired. The second spreads ac-
tivation backwards from goal nodes to predicate nodes and
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Figure 1: Sensory-motor structure of the creature

then to behaviors which can satisfy these goals. More details
on the spreading mechanism can be found in (Maes, 1989;
Negatu, 2006). At the end, after all the energy is spread-up,
the behavior which remains with the highest activation level
is chosen to be executed. Only one behavior is chosen to be
executed at each operational cycle.

Our implementation of BFA
In our experiment, we developed an artificial mind (a con-
trol system), which we call CAV - Conscious Autonomous
Vehicle, to control an artificial creature in a virtual environ-
ment (see figure 1). The creature and its environment were
originally presented in (Gudwin, 1996) (where more details
on its characteristics can be obtained) and were adapted for
our current studies. In this environment, the creature is
equipped with sensors and actuators, which enable it to nav-
igate through an environment full of objects with different
characteristics. An object can vary in its “color” and each
color is linked to: a measure of “hardness” which is used
in the dynamic model as a friction coefficient that can slow
down the creature’s movement (or completely block it), a
“taste” which can be bad or good, and a feature related with
“energy” which indicates that the object drains/supplies en-
ergy from/to the creature’s internal rechargeable battery.

The creature connects to its mind through sockets. In this
sense, the artificial mind is a completely separate process,
which can be run even in a different machine. So, different
minds can be attached to the creature and tested for the exact
same situation.

When the simulation is started, the creature builds an in-
cremental map of the environment based on the sensory in-
formation. Our agent adds landmarks to this map and uses
them to generate movement plans. It has two main motiva-
tions: it should navigate from an initial point up to a target
point, avoiding collisions with objects; and it should keep
its energetic balance, taking care of the energy level in the
internal batteries.

Our architecture (see figure 2) is essentially rooted in the
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Figure 2: CAV’s Architecture

BFA implementation as in (Bogner, 1999) (consciousness)
and (Negatu, 2006) (behavior network). CAV brings some
modifications in the implementation related with the appli-
cation domain, and the interaction among consciousness and
behavior network. The following sections contain a brief de-
scription of CAV’s modules.

Codelets
CAV is heavily dependent on small pieces of code run-
ning as separate threads called codelets (BFA borrows this
name from Hofstadter’s Copycat). Those codelets corre-
spond pretty well to the specialized processors of global
workspace theory or demons of Jackson and Selfridge.

BFA prescribes different kinds of codelets such as atten-
tion codelets, information codelets, perceptual codelets and
behavior codelets. In addition to that, it is possible to cre-
ate new types of codelets depending on the problem domain.
CAV’s domain does not require string processing as do most
other BFA applications. Instead of that, the creature state is
well divided in registers at the working memory. It is pos-
sible to have access to all variables anytime. Because of
this, CAV does not use information codelets which in BFA
are used to represent and transfer information. We have two
kinds of behavioral codelets: the behavior codelets, linked
with the nodes of the Behavior Network and responsible for
“what to do”, and motor codelets, which know “how to act”
on the environment. With this in mind CAV has the taxon-
omy of codelets presented at Table 1.

Working Memory
The working memory consists of a set of registers which are
responsible for keeping temporary information. The major
part of the working memory is related to the creature sta-
tus. The communication codelet constantly overwrites the
registers like speed, wheel degree, sensory information and
creature position. CAV’s working memory works also as an
interface among modules, for example, between conscious-
ness and the behavior network. Some codelets, including at-
tention codelets watch what is written in the working mem-
ory in order to find relevant, insistent or urgent situations.
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Table 1: CAV’s Codelets Taxonomy

Type Role
Communication Perform the communication with the simulator, bringing

novel simulation information
Perception Give an interpretation to what the agent senses from its

environment
Attention Monitor the working memory for relevant situations and

bias information selection
Expectation Check that expected results do happen
Behavior Alter the parameter of the motor codelet
Motor Act on the environment

When they find something, they react in order to compete
for consciousness. Whenever one of then reaches conscious-
ness, its information will influence the agent’s actions.

Consciousness mechanism

The consciousness mechanism consists of a Coalition Man-
ager, a Spotlight Controller, a Broadcast Manager and at-
tention codelets which are responsible for bringing appropri-
ate contents to “consciousness” (Bogner, 1999). In most of
the cases, codelets are observing the working memory, look-
ing for some relevant external situation (e.g. a low level of
energy). But some codelets keep a watchful eye on the state
of the behavior network for some particular occurrence, like
having no plan to reach a target. More than one attention
codelet can be excited due to a certain situation, causing a
competition for the spotlight of consciousness. If a codelet
is the winner of this competition, its content is then broad-
cast to the registered codelets in the broadcast manager. We
have three main differences between standard BFA and CAV,
related to this module. The first one is that we don’t use in-
formation codelets. The second is that not all of the codelets
are notified like in BFA, just the registered ones. Finally,
some codelets can be active outside of the playing field. In
this case their contents will never reach consciousness.

Behavior Network

CAV’s behavior network is based on a version of Maes’ ar-
chitecture (Maes, 1989) modified by Negatu (Negatu, 2006).
Negatu adapted Maes’ behavior network so each behavior
is performed by a collection of codelets. Negatu’s imple-
mentation also divided the behavior network in streams of
behavior nodes.

The behavior network works like a long-term procedu-
ral memory, a decision structure and a planning mecha-
nism. It coordinates the behavior actions through an “un-
conscious” decision-making process. Even so it relies on
conscious broadcasts to keep up-to-date about the current
situation. This is called “consciously mediated action selec-
tion” (Negatu, 2006).

CAV uses two main behavioral streams, the Target stream
and the Energy stream, as in figures 3 and 4.

Figure 3: Behavior Network - Target Stream

Cognitive Cycle

In GWT, all codelets and the consciousness mechanism are
asynchronous and parallel processes. In the first implemen-
tations of BFA, these were all implemented by completely
asynchronous threads. Nevertheless, due to many synchro-
nism problems among codelets, further implementations of
BFA prescribed the creation of a Cognitive Cycle. This cy-
cle imposes some synchronism points on codelets threads,
and organizes the interaction among BFA’s components in
the form of an operational cycle. This solved synchronism
issues of the multi-thread environment and made less diffi-
cult the computational implementation without detriment of
the main ideas in GWT.

CAV’s cognitive cycle (CCC) brings significant differ-
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Figure 4: Behavior Network - Energy Stream

ences when compared to standard BFA’s one. For a detailed
account on how CCC is modified compared to the standard
BFA cycle, see (da Silva, 2009).

For the standard BFA’s cognitive cycle see (Baars and
Franklin, 2003).

We removed the first three original steps: perception
(interpretation of sensory stimuli), percept to preconscious
buffer (the percept is stored in working memory), local asso-
ciations (retrieve local associations from transient episodic
memory (TEM) and long term associative memory (LTM)).
This last one is quite obvious as CAV does not have an im-
plementation of TEM or LTM. In the other cases, the re-
moval of the two first steps is related to the problem do-
main. CAV does not process streams of characters like IDA.
So CAV does not need a Slipnet. Moreover, the input data
of CAV is well structured, as working memory’s registers
can be updated anytime. It guarantees that all codelets will
handle the most possible up-to-date input data. The “recruit-
ment of resources” step has also been removed, because the
“answer” of all listening codelets happens in parallel with
the cycle, not inside it.

The remaining CCC five steps are summarized below
(adapted from (Baars and Franklin, 2003). We will indi-
cate major accordances with standard BFA with sentences
written in italics):

Competition for consciousness Attention codelets, whose
job is to bring relevant, urgent, or insistent events to con-
sciousness, access working memory and the behavior net-
work state. Some of them gather information and actively
compete for access to consciousness. The competition may
also include attention codelets from recent previous cycle.

Conscious broadcast A coalition of codelets (possibly
with just a single codelet) gains access to the global
workspace and has its contents broadcasted. This broadcast
is hypothesized to correspond to phenomenal consciousness.
Not all CAV’s codelets are registered at the Broadcast Man-
ager (e.g. the behavior codelets). So the information be-
tween Behavior Network and consciousness pass through
attention codelets when those codelets gain consciousness
access (see figure 2). In doing so, the propositions added
to the behavior network state by behavior codelets can be
known by all registered codelets.

Setting goal context hierarchy At this stage CAV updates
all the new propositions which were added since the last cy-
cle and incorporates new and more accurate information to
the behavior network. The goals are checked and updated. It
is also possible to add or remove a goal following the current
situation.

Action chosen The behavior net chooses a single behav-
ior. This choice is heavily affected by the update of the past
stage. It is also affected by the current situation, external
and internal conditions, by the relationship among behav-
iors and by the residual activation values of various behav-
iors.

Action taken The execution of a behavior results in the
behavior codelets performing their specialized tasks, which
may have external or internal consequences. The acting
codelets also include an expectation codelet whose task is to
monitor the action and bring to consciousness any failure in
the expected results. CCC does not wait for the running end
of a behavior codelet. CAV keeps a list of active behavior
codelets and, if some particular codelet is already running,
it does not start another instance of it. But it can abort a
running behavior codelet, if it is necessary. For example, if
a new perception makes a plan unfeasible, during the exe-
cution of a behavior codelet (let’s say the vehicle is going
from a point A to a point B and a new obstacle is detected),
then the behavior codelet is aborted, as a new plan must be
generated.

A Brief Analysis of CAV’s implementation
A running simulation of CAV’s performance is illustrated in
figure 5. The main experiment worked as expected. The
creature was able to pursue its main objectives: to avoid col-
lision with obstacles while exploring the environment, and
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Figure 5: Example of Simulation

at the same time maintaining an energy balance. While ex-
ploring the environment, if the energy level decreased to a
critic limit, CAV correctly postponed its exploratory behav-
ior, looked for the closest source of energy and traced a route
to it to feed itself. After refreshing its batteries, it returned
to its exploratory behavior. As we said before, though, our
main goal was not simply related to the achievement of these
tasks (something which could be achieved by more tradi-
tional methods, as e.g. in (Gudwin, 1996)), but understand-
ing how “consciousness” could be used in such an applica-
tion.

By applying BFA to this application, we would like to
evaluate the value of “consciousness” (as in BFA) to the con-
struction of a new generation of cognitive architectures to
control artificial creatures. Pragmatically, we would like to
understand what exactly it is this “consciousness” technol-
ogy, and what the benefits to expect while applying it as a
mind to an artificial creature. This goal was also achieved
while we had the experience of studying BFA and applying
it to the current application. Our findings are summarized in
the next subsections.

A Qualitative Analysis
Two important findings of our investigation are the qualita-
tive understanding of what is “consciousness” (in BFA) and
an abstraction of what may be its main benefits as a technol-
ogy. The philosopher Daniel Dennet has already stated that:
”Human consciousness (...) can best be understood as the
operation of a “Von Neumannesque” virtual machine imple-
mented in the parallel architecture of a brain”. Even though
Baars and Franklin do not explicitly point this out, this is
what BFA provides. It implements a (virtual) serial ma-
chine on top of a parallel machine. The overall structure of
codelets reading and writing on the Working Memory config-
ures a fully parallel multi-agent system. The constraints of
the SpotlightController and the broadcast mechanism imple-

ments on top of it the emergence of a serial stream which is
the consciousness. But this serial stream is not just any serial
stream. It focuses attention on the most important kind of in-
formation in each time step. It builds what Koch called an
executive summary of information (Koch, 2004). This is one
of the main advantages of this technology: to focus attention
on what is most important and spreading this to all agents in
the multi-agent system. Now, this interplay between a serial
and parallel components opens a large set of opportunities to
future research. Among other things, we envision the oppor-
tunity of new learning schemes (using the broadcast to form
new connections among codelets) and many other enhance-
ments.

A Quantitative Analysis
Some data related to the experiment can be viewed in figures
6, 7 and 8. Figure 6 shows the number of active threads at
each instant of time. We can see that an average of 8 threads
are working at the same time. Figure 7 shows the number
of codelets running at the same time at the playing field. An
average of 1 or 2 codelets were at the playing field at the
same time. The maximum of codelets at the playing field at
the same time was 3. Finally, figure 8 shows the different
types of codelets accessing the consciousness at each time.
We can see that most of the time the codelet ObstacleRe-
corder was at consciousness. The second more frequent was
PlanGenerator. The other three, TargetCarrier, Collision-
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Detector and PathChecker were less frequently at the con-
sciousness.

These data refer to 1 minute of simulation. The subse-
quent instants of time show more or less the same behavior.
Other codelets, like e.g. LowEnergy, also appear from time
to time, but they didn’t appear in the time-frame shown in
the figure.

Conclusion
BFA is shown to be a very flexible and scalable architecture,
due to its consciousness and behavior network mechanisms
implemented through independent codelets. Newer features
can be easily included by means of newer codelets perform-
ing new roles. Consciousness mechanism makes possible
a deliberation process that enables the perception of most
relevant information for the current situation, building what
Koch called an executive summary of perception. Much
work remains to be done, especially related to a better model
formalization and a better understanding of the overall role
of coalitions. However, seen as an embryo of a conscious
artificial creature, the first results of this study show the fea-
sibility of such techniques, motivating our group to continue
on this line of investigation.
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Extended Abstract

It is time to bring artificial life in silico into the real world. Different from artificial or simulated environments, the
real world presents many unexpected and complex encounters; and living systems essentially adapt to the real world’s
complexities. Any agent must deal simultaneously with various kinds of sensory flows while sustaining its own identity
and autonomy. In this paper we introduce our recent project of making a special machine that self-organizes its own
“subjective” timescape in an open environment.

We made a machine called MTM (Mind Time Machine), which runs in the real world all day long without losing its
complex dynamics. As the result of this longtime sustainability, we argue that the system’s own temporal structure is
organized.

We presented this MTM for the first time at the Yamaguchi Center for Arts and Media in March, 2010. The machine
consists of three screens: right, left and above, displayed at the corner of a cubic skeleton 5.400 meters per side. Fifteen
cameras attached to each pole of the skeleton photograph things that happen in the venue. These images are decomposed
into frames and chaotic neural dynamics control other macro processes that combine, reverse and superpose them to make
new frames. We presented the MTM as artwork, but at the same time we recorded data from the system daily to monitor
the diversity of the system’s behavior.

The operating principle is to process timeframes of the visual inputs by combining chaotic instabilities from neural dy-
namics and optical feedback, in order to make autonomous “time-organizing” phenomena. Intake images from cameras
were progressively embedded into the network’s connections as a memory of the patterns. Visual images are taken in
and re-played again and again with recursive modifications. The system itself is completely deterministic and uses no
random numbers, but it shows different images depending on its inherent instabilities, environmental lighting conditions,
movement of people coming into the venue and the system’s stored memory.

This is not a large chaotic dynamical system that updates the visual inputs randomly. Different from the mere chaotic
system, MTM is designed as life-like system since its dynamics are controlled by an environment and system has a short
and long term memory to sustain its dynamics. Namely, we claim that MTM is “artificial life”, since we design it to
i) retrieve information from its environment, ii) memorize it in the form of the Hopfield type learning which tunes the
parameters of the overall dynamics, iii) generate “episodic memory” , vi) change the network structure by the way of the
Hebbian dynamics continuously and v) organize its overall dynamics as adaptation to the environmental changes.

At the conference, we will report how MTM’s daily dynamics are varied by weather conditiosn and argue how it is difficult
to sustain its autonomy, i.e. both sensitivity to the environment and inherent dynamics, for long periods of time.
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Figure 1: Outlook of MTM displayed at Yamaguchi Center for Art and Media, 2010. ( Photo taken by Kenshu Shintsubo)
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Abstract

In recent years several bee inspired optimization techniques
have been proposed. These methods are either based on the
bees’ foraging or mating behavior. Both foraging and mating
regulate distributions outside (foraging) or within a colony
(mating). Foraging determines the ratio of individuals that
explore the surroundings for new food sources and those that
exploit known food sources, while mating determines the dis-
tribution of genotypes within a colony. In contrast, nest-site
selection is a processes that constitutes a decision-making
process and enables a colony to identify and converge towards
one best solution. We therefore propose to use the bees’ nest-
site selection behavior as the basis for developing new bee
inspired optimization techniques. Using a model of the nest-
site selection process of real bees, we empirically investigate
its optimization potential. In particular, we determined if this
model works in dynamic and noisy environments. Our re-
sults are promising and suggest that nest-site selection can be
indeed useful in the context of optimization.

Introduction
Identifying and mimicking concepts underlying natural phe-
nomena and applying them to solve problems in fields
such as computer science, material science and engineer-
ing, has grown into a research field in itself. So-called
nature inspired computation has given rise to computa-
tional concepts which are almost ubiquitous in computer sci-
ence such as neural networks (Haykin (1999)), evolutionary
computation (Eiben and Smith (2003)), and swarm intelli-
gence (Bonabeau et al. (1999)).

Swarm intelligence tackles problems of various compu-
tational domains (e.g., robotics and optimization (Blum and
Merkle (2008))) using the collective behavior of simple de-
centralized, self-organized systems. The result has been
the emergence of several prominent meta-heuristics e.g., ant
colony optimization (for an overview see Dorigo and Stützle
(2004)) and particle swarm optimization (for an overview
see Poli et al. (2007)).

Due to their decentralized collective behavior, honey bees
have become an important model system in the field of
swarm intelligence. Honey bee colonies tackle several com-
plex tasks such as maintaining a constant hive tempera-

ture (Jones et al. (2004)), adapting to changing foraging con-
ditions (Beekman et al. (2007)) or deciding on the best pos-
sible nest site available (Seeley and Buhrman (2001)). Sev-
eral algorithms based on the honey bees’ collective behavior
have been developed and applied to various domains such
as network routing, robotics, multi-agent systems, and opti-
mization (see (Karaboga and Akay (2009)) for a recent re-
view on bee inspired algorithms). Existing optimization al-
gorithms based on principles of honey bee behavior usually
mimic either foraging or mating behavior.

Mating-inspired optimization algorithms are closely re-
lated to methods found in evolutionary computation. They
are based on the fact that genetic heterogeneity among work-
ers typically increases a colony’s fitness (Fuchs and Schade
(1994)). In honey bees genetic heterogeneity is achieved
via the queen mating with several males (polyandry). While
some mating inspired methods constitute new operators for
existing methods in evolutionary computation (e.g., Sato and
Hagiwara (1997); Jung (2003); Karci (2004)), others try to
mimic the mating flight both on a behavioral and genetic
level (see, Abbass (2001)).

Foraging-inspired optimization algorithms make use of
the bees’ decentralized foraging behavior. During foraging
honey bees balance the trade-off between exploiting known
food sources and scouting for new food sources in a dynamic
environment (Beekman et al. (2007)). Bees use a communi-
cation mechanism called the “waggle dance” which enables
them to transfer information about found food sources to
other colony members. The dance encodes the distance and
direction to a food source as well as its quality. On the basis
of available dances, bees entering the foraging process de-
cide to become dedicated to a specific source (exploit) or to
start searching for new sources (explore). Optimization al-
gorithms based on the foraging concept consist of a number
of agents, so-called artificial bees. As in nature, the purpose
of the agents is twofold. On the one hand they search for
new solutions (i.e., food sources) in problem space, on the
other hand they try to improve (i.e., exploit) existing solu-
tions using local search. The ratio between exploration and
exploitation behavior depends on the number and quality of
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available solutions. Several foraging based algorithms have
been proposed such as the artificial bee colony optimization
(ABC) (Karaboga (2005)), the bees algorithm (BA) (Pham
et al. (2006)), the bee colony optimization (BCO) (Teodor-
ovic and Dell’Orco (2005)) or the bee colony optimization
algorithm (BCOA) (Chong et al. (2006)).

Here we introduce a third possible class of optimization
algorithms which is based on the bees’ nest-site selection be-
havior. After a colony produces new queens, the old queen
will leave the nest with approximately a third of the colony
members while a young queen perpetuates the old colony.
The homeless swarm now has to find a new nest-site (de-
tailed information on the underlying biological mechanisms
are provided in the next Section). This is not an easy task
as a swarm needs to select the best site out of many possi-
ble sites. While during foraging typically several resources
are exploited simultaneously, nest-site selection constitutes
a decision process, as a swarm has to decide on one nest
site by solving the best-of-n-problem (Seeley and Buhrman
(2001)).

Bees face a speed-accuracy trade-off when trying to find
a new nest site. A decision needs to be made quickly as a
swarm is vulnerable to predation and inclement weather, but
not too fast which could lead to the swarm settling for a sub-
optimal nest site. Hence, the decision-making process has
to account for temporal delays in nest site discoveries and
needs to exhibit sufficient flexibility in order to incorporate
late discovered nest sites into the decision-making process.

In terms of optimization, the principles underlying nest-
site selection seem of particular interest for dynamic opti-
mization problems, where the problem space changes during
the optimization process. We use a biological model of nest-
site selection to test the applicability of nest-site selection in
the context of optimization. We do this by testing nest-site
selection in situations innate to dynamic optimization prob-
lems. Additionally we will demonstrate how iterative nest-
site selection can lead to function optimization.

This article is structured as follows. Section 2 briefly out-
lines the biological principles underlying nest-site selection
in honeybees. In Section 3 we introduce a biological model
of nest-site selection. Based on this model we present var-
ious experiments on the applicability of the nest-site selec-
tion process to optimization in Section 4. We finish with a
summary and conclusions in Section 5.

Nest Site Selection in Honey Bees
One of the most impressive examples of decentralized
decision-making in animals is how bees decide on a new
home. When a bee colony reaches a certain size it will start
to reproduce and rear new queens. Once the young queen is
nearly mature, the old queen leaves the old nest in order to
give way for her daughter queen (Winston (1987)).

After leaving the nest the homeless swarm temporarily
settles on a branch of a tree or on an overhang forming a

tight cluster around the queen. Scouts now leave the swarm
to search for potential nest sites such as tree hollows or
crevices in buildings. Only about 5% of the bees engage in
the nest-site selection process while the rest will stay clus-
tered around the queen (Seeley et al. (1979)). If a scout has
found a suitable cavity, it will assess its quality (i.e., volume,
height, aspect of the entrance, and entrance size) (Seeley and
Morse (1978)).

If the site is of sufficient quality, the scout returns to the
swarm cluster and performs a waggle dance to advertise the
site. The dance encodes the direction and distance to the site.
The number of dance circuits in the first dance performed by
a returning scout is positively correlated with the scout’s per-
ception of the site’s quality. By following a dance, bees can
learn about the nest-site’s location, visit it and then indepen-
dently evaluate its quality.

After finishing its dance, the scout revisits the site for
re-evaluation, which is again followed by returning to the
cluster and advertising the site. The number of dances a
scout performs for the same nest-site over consecutive vis-
its decreases by around 16 dance circuits (Seeley and Viss-
cher (2008)) per visit regardless of the site’s quality (Seeley
(2003)). This implies that sites of high quality will be adver-
tised for longer than sites of poor quality due to the higher
number of initial circuits. Thus over time more individuals
are recruited to high quality sites compared to sites of lower
quality.

While inspecting a potential nest site, a scout also assess
how many other scouts are present at that site. A specific
site is chosen if the number of scouts present exceeds a cer-
tain threshold (“quorum”). Scouts then return to the swarm
and start “piping” on the swarm cluster. Piping constitutes
an auditory signal produced by wing vibration (Seeley and
Visscher (2003)), it informs the swarm members that a deci-
sion has been made and prepares them for lift off (Visscher
and Seeley (2007)).

Once a swarm is airborne it will fly towards the chosen
site. The exact mechanism underlying the guidance pro-
cess is still debated. A well established hypothesis is that
informed scouts guide the swarm towards a new location by
flying rapidly through the swarm in the direction of the nest
site (Schultz et al. (2008); Latty et al. (2009)). Finally after
reaching the new nest-site the bees move in and establish a
new colony.

Bee Nest Site Selection as an Optimization
Process

This section introduces a model of the honeybees’ nest-site
selection process. It extends a previous model developed
by Janson et al. (2007) by including spatial features of nest
sites in the model. This extension allows studying the im-
pact of different spatial nest-site distributions. We also intro-
duced noise in the system that affects the scout’s perception
of the site’s quality. We use our model to test the applica-
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bility of nest-site selection to optimization problems. The
reader should be aware that any observed optimization will
be coarse and slow. This is because the presented model
is intended for biological simulations and has not been ad-
justed for optimization. Nevertheless it will allow us to as-
sess the optimization potential of the nest-site selection pro-
cess.

The model only simulates a fraction of the swarm i.e., the
bees involved in the decision-making process during nest-
site selection. The model operates in discrete time-steps
with each time step corresponding to 1 second of real time.
As bees need to find potential nest sites in a spatial environ-
ment such a fine temporal resolution is crucial. Real bees
are able to travel with a maximum speed of 5 meters per
second (Beekman et al. (2006)), thus any coarser time res-
olution would lead to scouts missing potential nest sites by
simply flying over it.

At every simulation-step each bee is in a behavioral state
associated with nest-site selection and will act accordingly.
Some states E have an associated specific mean duration
time TE . The exact duration is determined by T (E) = λ ·
TE , where λ = µ/10 is a scalar factor, with µ being drawn
from a chi-square distribution with mean value 10 ( χ2(10)).
Note that this leads to an expected value of 1 for λ. There
are 8 possible behavioral states:

• REST: The bee is on the swarm but currently not involved
in nest-site selection

• SEARCH: The bee is on the swarm and tries to find a
dance to follow

• SCOUT: The bee searches the surroundings for potential
nest sites

• ASSESS: The bee is at a potential nest site and assesses
its quality

• DANCE: The bee is on the swarm and dances for its pre-
ferred site

• FOLLOW: The bee is on the swarm and has found a dance
and follows it

• RECRUITED: The bee flies to the nest site advertised in
the dance it followed

• MISS: The bee misread the dance and searches the sur-
rounding of the swarm unsuccessfully before returning to
the swarm

Figure 1 depicts a state diagram that outlines a bee’s state
transitions in the model. In the following the behavior that
corresponds to the different states will be explained in more
detail.

Figure 1: State diagram of individual behavior underlying
nest-site selection. Reprint from Janson et al. (2007)

Resting A resting bee will engage in the nest-site selection
process by starting to search for a dance to follow with a
probability of Prest = 0.002 per second (Beekman et al.
(2007)). A searching bee will switch to the resting state with
the same probability.

Searching The number of dances that are performed on
the swarm for potential nest-sites affects the likelihood of
a searching bee finding and joining a dance. Let D be the
number of dances currently performed on the swarm. The
probability that a searching bee will locate a dance is given
by Pfind = 0.005 · D. If it is able to find a dance it is
randomly assigned to one of the available dances. Exper-
imental studies have shown that dances comprised a max-
imum of 7 followers. The probability that a bee will start
to follow the dance it was assigned to is thus given by
Pfollow = 0.2min{2,f}, with f denoting the number of bees
already following the dance.

The longer a searching bee is unable to find and join a
dance, the more likely it becomes that it will switch to proac-
tive scouting behavior and try to find a suitable nest-site it-
self. The probability that a bee switches from searching to
scouting behavior is given by Pscout(t) = t2/t2 + θ2 where
t denotes the number of time steps of unsuccessful searching
and θ = 4000. Note that this switching mechanism modu-
lates the exploration/exploitation rate of the swarm. Scout-
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ing is very likely when only few or low quality nest-sites
have been found and thus only a few dances are available.
When many sites have been found and dances are abundant,
a searching bee is likely to find a dance to follow and will
become a recruit instead of a scout.

Scouting Lindauer observed that bees usually scout the
surroundings for about 20 minutes before returning to the
swarm (Lindauer (1955)). We thus used a mean scout du-
ration time of Tscout = 1200. While scouting the virtual
bees move through a 2-dimensional environment in search
of potential nest sites. This is a major difference to the pre-
vious model where scouting was modeled probabilistic. The
scouting process can be divided into two phases:

1. scouting: a bee will scout as long as it is able to be back
at the swarm after Tscout time steps.

2. returning: if the remaining scouting time is smaller or
equal to the time needed to return to the swarm a scout
returns to the swarm.

In nature a bee can spot a target if the target subtends
the bee’s visual angle αmin which can range between five
and fifteen degrees (Giurfa et al. (1996)). The diameter
of nest boxes normally used in nest-site selection experi-
ments is around 40cm. Given an assumed minimal angle
of αmin = 8 degrees, a scout can spot a nest site up to a
distance of approximately 280cm. After a successful dis-
covery a scout will immediately start to assess the site and
thus change its state.

Scouting Strategy Please note that the exact way scouts
search the environment is still unknown. Some studies sug-
gest that bees search in a scale-free fashion (Reynolds et al.
(2007)) but this is still debated (Benhamou (2008)). In this
model the scouts’ search strategy is realized as an intermit-
tent search strategy (Benichou et al. (2005)). When starting
to scout a bee will choose a random location within a search
area that is defined by the range of locations that are reach-
able within one third of its available scouting time Tscout.
After reaching the chosen location a scout will start to search
the surrounding for potential nest-sites using a correlated
random walk (CRW) (Bartumeus et al. (2005)) with a fixed
movement length of 1m per step and a correlation parameter
value of ρ = 0.5 resulting in slightly correlated movement
steps.

Flying towards a destination Scouts fly towards a desti-
nation with a travel-speed of 5m/sec. A scout is placed on its
destination (i.e., reaches it) when its distance to the destina-
tion is less than 5m. Angular noise from a uniform random
distribution ηfly (−22.5 ≤ ηfly ≤ 22.5) was added to pre-
vent bees from flying in straight lines.

Site assessment After locating a potential nest site a scout
will immediately start to assess it. In nature nest-site as-
sessment usually lasts for about 10 minutes Lindauer (1955)
which corresponds to mean assessment duration time of
Tassess = 600. In the model each nest site S is associated
with a certain quality QS (0 ≤ QS ≤ 100). When assessing
a nest site a bee will perceive the quality. Quality is always
perceived with some noise, thus Q(S) = QS + δ, with δ
drawn from a normal distribution N(0, σ2) with a standard
deviation of σ = 10. A bee will only dance for a given nest-
site S if the perceived quality Q(S) exceeds a bee’s quality
threshold Φ. Otherwise the bee will switch to search behav-
ior after returning to the swarm. Here a uniform threshold
value Φ = 50 is used for all individuals.

Dancing If a bee discovered a suitable nest site S while
scouting it will advertise it after returning to the swarm by
means of a waggle dance. The number of waggle runs per-
formed during a dance depends on the perceived quality of
the site Q(S) and the number of consecutive visits to the
site. Based on empirical data (Seeley (2003)), the virtual
bees perform Q(S) waggle runs after their first visit to the
site and Q(S)−16(k−1) after the kth return. Bees will stop
promoting a site (i.e., stop dancing) and switch to searching
and if Q(S)− 16(k − 1) ≤ 0 .

A waggle run encodes the distance and the direction to the
potential nest site. This has also been incorporated into the
model’s dance behavior. Based on empirical data (Gardner
et al. (2008)) we assume that a waggle phase lasts 2.4sec per
kilometer of distance to the potential nest site plus 1.5 sec
for the return phase.

Following A bee following a dance will follow the dance
until the dancer ceases dancing. If the follower had previ-
ously visited the advertised site, it will find that site again.
Otherwise the probability of correctly locating the adver-
tised site depends on the number of waggle runs w the
bee followed. Based on experimental data (Mautz (1971))
the probability of finding a nest site is PfindSite(w) =
s(w)/1.5 · u(w) + s(w) where w denotes the number of fol-
lowed waggle runs, u(w) = 1−1/

√
(w + 1) represents the

distribution of unsuccessful bees and s(w) = w2/(w2 + θ)
with θ = 60 represents the distribution of successful bees.

Successfully recruited to nest site A successfully re-
cruited bee flies towards the proposed nest site and assesses
its quality. If it finds its quality sufficient (i.e., Q(S) > Φ),
the bee will advertise the site after returning to the swarm.
Otherwise it will search for new dances after its return to the
swarm.

Missing the advertised nest site If a bee is not able to
read a dance correctly it will not be able to find the adver-
tised site. In such cases, the bee flies the same distance as
the advertised site, but in a slightly wrong direction. In the
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model this is achieved by adding a maximum of 5 degree
noise drawn from a uniform random distribution to the ac-
tual direction towards the advertised nest site. After reach-
ing the wrong location a bee searches the surroundings for
400sec.

Experiments
To investigate the optimization potential of the honeybee’s
nest-site selection process, we performed three experiments
using the model described above. Unless stated otherwise
we used the parameter values mentioned in the last section.
We present the results as average values obtained from 10
independent runs. The number of individuals used in the
experiments was set to n = 500, which corresponds to the
number of bees involved in nest-site selection in real honey
bees.

Experiment 1: Nest-site selection in a dynamic environ-
ment This experiment was performed to test how the nest-
site selection process performs in a dynamic environment.
While a change in a site’s quality during the selection pro-
cess is unlikely to occur in nature, changing or moving op-
tima are ubiquitous in dynamic optimization problems.

The environment contains two potential nest sites n1, n2
that are located in opposite directions 150m away from the
swarm’s position. Initially site n1 is of good quality qgood =
75 while n2 is of bad quality qbad = 45. The sites qualities
however switch during the course of the simulation i.e., at
every interval of 28800 simulation steps (i.e., every 8 hours)
the qualities of the nest sites are swapped. A simulation runs
for 32 hours corresponding to 115200 simulation steps and
thus a total number of 3 quality switches occur during one
run.

As the search process is performed in a spatial environ-
ment it is likely that a swarm only discovers one nest site or
even none. Additionally a swarm might forget a low quality
nest-site as dances might not sustain during the low quality
period. In order to ensure that the swarm is aware of both
sites each time a quality change occurs, a randomly chosen
bee will start dancing for the nest site that was of low quality
but switched to high quality.

Figure 2 depicts the time evolution of the number of bees
at each nest site. As can be seen the swarm is able to quickly
adapt to changes in nest-site quality. The number of bees at
a given nest-site will not exceed ≈ 400 because a fraction
of the swarm is resting, very few will still scout for differ-
ent nest-sites and bees at a given nest-site will return to the
swarm to promote it. In terms of optimization this process is
still rather slow as it takes the swarm approximately 2 hours
to adapt to the change in quality. Slow adaption is not nec-
essarily a disadvantage as it makes a swarm resilient against
noise. As pointed out before quality changes are unlikely
to happen in nature, however discovering new sites in the
course of the selection process constitutes a similar change
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Figure 2: Time evolution of the number of bees assessing a
nest site where the site qualities change occur every 28800
simulation steps. Error bars represent the standard deviation.

in the swarm’s environment. Without the ability to react to
changes in the environment, a swarm can get stuck in a sub-
optimal solution if it finds a nest site of mediocre quality
early in the decision-making process. In terms of optimiza-
tion, adapting to a dynamic environment is an interesting
aspect, as it can be applied to the detection of changing lo-
cations of the optima in problems with dynamic fitness func-
tions.

Experiment 2: Nest-site selection in a noisy environment
Here we tested whether the swarm is capable of selecting
a stable mediocre quality nest site and disregard a site of
sometimes high but very unstable quality.

The number of bees and the number and position of the
potential nest sites is the same as in Experiment 1, however
here the quality of nest site n2 is kept constant at mediocre
level qmediocre = 55 whereas the quality of site n1 changes
at an interval of 1800 simulation steps (i.e., every 30 min-
utes) alternately between good qgood = 75 and very bad
qvbad = 35. A simulation again lasted for 115200 simu-
lation steps corresponding to 32 hours. To ensure that the
swarm is aware of both sites, a random bee starts dancing
for each site in the first simulation step.

Figure 3 depicts the time evolution of number of bees at
the two nest sites. Clearly the majority of the swarm selects
the stable mediocre nest site. At the start of a simulation the
number of bees builds up quickly at both nest sites, due to
the fact that one bee starts to dance for each site at the first
simulation step. However, over the course of revisiting the
sites, more bees get recruited towards the mediocre stable
site. The revisit behavior of honeybees plays a key role in
that respect. Initially site n1 will be promoted stronger than
site n2 due to the quality difference. The ongoing revisita-
tion will cause recruited and dedicated bees to abandon the
unstable site and choose the stable site as it makes it pos-
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Figure 3: Time evolution of the average number of bees as-
sessing a nest site when the nest site of high quality is very
unstable. The quality of nest site n1 changes each 1800 sim-
ulation steps between qgood = 75 and qvbad = 35, whereas
the quality of nest site n2 is kept constant at qmediocre = 55.
Error bars represent the standard deviation.

sible for the individuals to gain awareness of the changing
quality. Site n1 will never be completely abandoned sim-
ply because some visiting bees will always experience it as
a very good nest site and thus promote and revisit it. In gen-
eral this experiment demonstrates that the nest-site selection
mechanism is to some extent resilient towards noise.

Experiment 3: Function optimization via iterative nest-
site selection The European honey bee Apis mellifera has
very specific requirements regarding its nest site. This is
because once a decision is made it is final (i.e., a swarm is
very unlikely to relocate after moving into a new nest site).
In contrast open nesting bee species such as the Asian Dwarf
honey bee Apis florea are quite flexible and a swarm might
relocate if its initial decision was suboptimal (Oldroyd et al.
(2008)).

R

Sphere fsp(~x) =

n∑
i=1

x2
i [−25; 25]n

Booth fbt(~x) = (x1 + 2x2 − 7)2 + (2x1 + x2 − 5)2 [−10; 10]n

Table 1: Test functions and domain space range (R). The
dimension of each function is 2.

Such an iterative selection process as found in Apis florea
can lead to an optimization in an environment with many
potential nest sites. In this experiment it is assumed that the
swarm’s environment corresponds to the search space of a
continuous function that needs to be minimized. Each posi-
tion in the search space corresponds to a potential site, and
its quality corresponds to a value of the function at that posi-
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Figure 4: Boxplots of the quality of the occupied nest site
over several relocations for the two test functions.

tion. The test functions used in the experiment and their as-
sociated parameter values are given in Table 1. Initially the
swarm is placed at position [-20,-20] for the Sphere function
and [-10,-10] for the Booth function.

For this experiment we changed the bees’ scouting behav-
ior because the first version of the extended model is mod-
eled on the behavior of the European honey bee Apis mel-
lifera where a scout assesses a nest site for a certain period
of time before returning to the swarm. As each location cor-
responds to a potential nest site, scouts would immediately
start to assess sites after a single scouting step. To overcome
this, a scout will advertise the best position it found during
its scouting period, if the quality of that position is better
than quality of the swarms current location.

The quality of a newly discovered site depends on the
quality difference regarding the current location of the
swarm. If a scout discovers a nest site that is X% better than
the swarm’s current location this site is assigned quality X.

While recruits fly towards a site that was advertised by
a dancing bee, they will actively monitor the quality of the
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locations they fly over. If they encounter a better site on their
way, they abandon their initial choice and become scouts.
Recruits that fail to locate an advertised site also become
scouts.

Nest sites are assessed by recruits and returning bees for a
certain amount of time. During that time each assessing bee
counts the number of other bees present at the site. If the
number of bees at the site reaches a given quorum q = 10
the swarm is placed on this new site and the nest-site se-
lection process is restarted. The parameter values used in
this experiment are: step size step = 0.1, scouting time
Tscout = 100, and assessment time Tassess = 20. A simu-
lation run is stopped when a swarm does not relocate within
3600 simulation steps.

The changes in the quality of the found sites for both
test functions over several nest-site relocations is depicted
in Figure 4. The bees are able to iteratively optimize the
position of the swarm within the search space (i.e., mini-
mize the function value). However the optimization process
is limited by several factors: as scout time Tscout and step
size step are fixed, scouts are only able to explore a cer-
tain range around the swarm’s current location whereas a
fixed step size prevents scouts from finding better solutions
as they are likely to fly over them. This is critical when the
swarm is close to the global optimum and scouts would need
to search on a finer scale in order to find better positions.
Another limiting factor is the quality assignment. As the
quality difference between solutions decreases around the
global optimum the model will always reach a point were
better solutions are not selected any more as the quality dif-
ference between them is too low. The performance of the
nest-site selection process in function optimization is yet by
no means comparable to the performance of other optimiza-
tion algorithms (e.g., Aderhold et al. (2010)). In order to
use the nest-site selection paradigm in an algorithm for real
optimization problems, the swarm needs to become more
sensitive to small quality differences to identify better po-
tential sites when the swarm comes closer to the location of
an optimum.

The speed of the decision-making process depends on the
quorum q used. The higher q the more bees are needed at a
potential nest before the swarm changes its location and the
slower the optimization process. The quorum mechanism
can however also prove to be useful in terms of optimiza-
tion, as the existence of a quorum prevents a premature con-
vergence onto local minima, as it gives the bees time to find
better sites. Another potential benefit of the quorum is that
it requires bees to revisit and reassess a given site several
times which is important for dynamic or noisy optimization
functions.

Conclusion
Recently bee inspired optimization techniques have become
popular within the optimization community but have been

restricted to using the bees’ foraging behavior and mating
behavior. Here we proposed to use the bees’ nest-site selec-
tion behavior for developing bee inspired optimization tech-
niques. Nest-site selection involves the active discovery of
potential sites by scout bees and a decision on the best site.
In nature it enables bees to solve the best-of-n-problem (i.e.,
deciding on the best nest-site). Nest-site selection is thus a
decision-making process that has a clear optimum which is
in contrast to foraging which mainly regulates the distribu-
tion of foragers over available food sources.

We used a model of the nest-site selection process of real
bees to investigate its optimization potential. Using this
model, we performed three optimization experiments. Our
results suggest that the nest-site selection process is able to
make the best decision even in dynamic and noisy environ-
ments and that the process can detect and decide on the best
stable solution even when better but noisier solutions are
present. The final experiment demonstrated how an itera-
tive application of the nest-site selection process could be
used for function optimization.

Our results corroborate that the honey bee’s nest-site se-
lection process is indeed useful in the context of optimiza-
tion. Future work will involve developing an bee inspired
optimization scheme that is based on nest-site selection.
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Abstract

An agent controlled by a single developmental neuron is
trained to play arcade game. Genetic programming is used
to find the DNA of neuron such that it can learn and store the
learned information in the form of development in its archi-
tecture and updates in chemical concentration. The develop-
mental neuron consists of dendrites, axons, and synapses that
can grow, change and die. The structure of this neuron com-
plexify itself at runtime as a result of game scenarios. The
network is tested in arcade game environment of checkers.
The agent has to recognize the patterns of the board and use
this information to learn how to play the game better. The
network is evolved against a professional checker program
for its capability to learn. Input from the board is provided
using sensory neuron through synapses. The developmen-
tal neuron process these signals and send output to the mo-
tor neurons to make a move. The structure of the neuron is
also modified during signal processing. The developmental
neuron successfully defeated the professional minimax based
checker program during evolution by a large margin. We also
tested the agent against some other opponents (not seen dur-
ing evolution) of various levels for its generality and it proves
to outperform them.

Introduction
In this paper we present the idea of developmental neuron
capable of learning and adaptation. We have adopted the
view that the intelligent behaviour of human being is the
consequence of the special DNA. It is the DNA that is re-
sponsible for development of human body and brain. DNA
of humans are different from other organisms that is why hu-
man can interact with each others. We beleive if we some-
how manage to identify the functionality of human DNA and
provide it with a neuron like structure we will be able to pro-
duce intelligent behaviour. Learning in brain is the conse-
quence of biological development thus if we somehow man-
age to identify the rules for development we would be able
to produce a learning system. DNA does not in itself encode
learned information. Recent results demonstrated that even a
single neuron has the capability of learning and adaptation as
evident from the experimental results on snail aplysia (Kan-
del et al. (2000)). We have used Cartesian Genetic Program-
ming (CGP) to develop a neuron having branching structure

(Miller and Thomson (2000)). CGP represent the genotype
(DNA) inside neuron responsible for development and sig-
nal processing. We evolved genotypes that encode programs
that when executed gives rise to a neuron with developmen-
tal structure that can play checkers at higher level. The de-
velopmental and signalling functions are distributed at var-
ious segments (soma, axon, dendrite) inside neuron similar
to biology (Zubler and Douglas (2009)).

We have produced an artificial agent that used this de-
velopmental neuron as its computational system. The agent
receive information from checkers board using sensory neu-
rons. Sensory neuron has a number of axonal branches that
are distributed in the vicinity of CGP neuron and provide
signal to them by making synapse. Synaptic transformation
of signal is done using a CGP program similar to the one in-
side DNA of CGP neuron. CGP neuron recieves the external
information in the form of its dendrite branches potential up-
dates. This signal is then processed by CGP neuron using its
DNA and a decision signal is transferred in forward direction
to the motor neuron having dendrite branches distributed in
the vicinity of CGP neuron.

The genotype inside CGP developmental neuron is a set
of computational functions that are inspired by various as-
pects of biological neurons. Each agent (player) has a geno-
type that grows a computational neural structure (pheno-
type). The initial genotype that gives rise to the dynamic
neural structure is obtained through evolution. As the num-
ber of evolutionary generations increases the genotypes de-
velop structure that allow the players to play checkers in-
creasingly well.

We have used an indirect encoding scheme in which the
rules of network (CGP Neuron) are evolved instead the net-
work directly. When we run these evolved programs they
can adjust the network indefinitely. This allows our network
to learn while it develops during its lifetime. The network
begins as small randomly defined structure of neuron with
dendrites and axosynapses. The job of evolution is to come
up with genotypes that encode programs that when executed
develop into mature neural structures that learn through en-
vironmental interaction and continued development. So the
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complexity of the evolved programs is independant of the
complexity of the task. The network continue to develop and
complexify itself based on the environmental conditions.

A number of indirect methods are used in ANNs that
evolve the rules for development of the network. ANN al-
though inspired by biological nervous system has only few
notions of biological brain. Here we have extended the
view and identified a number of other important features
that need to be added to individual neuron structure. These
features prove to be extremly important for learning and
memory. Memory and learning in brain is caused by many
other mechanisms. Synaptic weights are only responsible
for extremely short term memory (Kleim et al. (1998)), long
term memory is stored in the structure of the neuron (Terje
(2003)). The network presented here is an inspiration of bi-
ology, not the implementation of biology.

We have evolved the genetic programs inside CGP neuron
that develop during the course of the game playing against
a fixed level minimax program that plays checkers. At the
start, the genes of neuron were random so the neuron be-
haviour was not that good during the course of game. As
evolution progresses, the genes started to develop the neuron
from an initial random structure such that it can understand
the pattern of the board and use this information to make
various intelligent moves such that it can beat a human intel-
ligent based computer program. The opponent make moves
based on the intelligence of humans who developed the pro-
gram whereas the CGP developmental neuron evolved the
inteligent genes that can cause a developmental neural struc-
ture that is capable of understanding the pattern of the board
and play a move. The agent with a single neuron make a
number of intelligent moves before it beat the opponent.
These results prove that it is possible to evolve the genes
that can produce networks capable of learning and intelli-
gent decision making. To date, not a single developmental
system proved to be capable of learning behaviour. This is
the first time in the history of computational evolution that
learning genes are evolved. The neuron structure continue to
develop and change during the game. The results presented
in paper clearly demonstrate that the learning capability of
the agents improves over the course of evolution.

Cartesian Genetic Programming (CGP)
CGP is a well established and effective form of Genetic Pro-
gramming. It represents programs by directed acyclic graphs
(Miller and Thomson (2000)). The genotype is a fixed length
list of integers, which encode the function of nodes and the
connections of a directed graph. Nodes can take their in-
puts from either the output of any previous node or from a
program input (terminal). The phenotype is obtained by fol-
lowing the connected nodes from the program outputs to the
inputs. We have used function nodes that are variants of bi-
nary if-statements known as 2 to 1 multiplexers (Miller and
Thomson (2000)). Multiplexers can be considered as atomic

in nature as they can be used to represent any logic function
(Miller and Thomson (2000)).

In CGP an evolutionary strategy of the form 1 + λ, with λ
set to 4 is often used (Miller and Thomson (2000)). The par-
ent, or elite, is preserved unaltered, whilst the offspring are
generated by mutation of the parent. If two or more chromo-
somes achieve the highest fitness then newest (genetically)
is always chosen.

Developmental Models of Neural Networks
A number of developmental techniques are introduced to
capture the learning capabilities by having time dependent
morphologies. Nolfi et al presented a model in which the
genotype-phenotype mapping (i.e. ontogeny) takes place
during the individual’s lifetime and is influenced both by
the genotype and by the external environment (Nolfi et al.
(1994)).

Cangelosi proposed a related neural development model,
which starts with a single cell undergoing a process of cell
division and migration until a neural network is developed
(Cangelosi et al. (1994)). The rules for cell division and
migration is specified in genotype, for a related approach
see (Gruau (1994)).

Rust and Adams devised a developmental model coupled
with a genetic algorithm to evolve parameters that grow into
artificial neurons with biologically-realistic morphologies.
They also investigated activity dependent mechanisms so
that neural activity would influence growing morphologies
(Rust et al. (1997)).

Federici presented an indirect encoding scheme for de-
velopment of a neuro-controller (Federici (2005)). The
adaptive rules used were based on the correlation between
post-synaptic electric activity and the local concentration of
synaptic activity and refractory chemicals.

Roggen et al. devised a hardware cellular model of devel-
opmental spiking ANNs (Roggen et al. (2007)). Each cell
can hold one of two types of fixed input weight neurons, ex-
citatory or inhibitory each with one of 5 fixed possible con-
nection arrangements to neighbouring neurons. In addition
each neuron has a fixed weight external connection. The
neuron integrates the weighted input signals and when it ex-
ceeds a certain membrane threshold it fires. This is followed
by a short refractory period. They have a leakage which
decrements membrane potentials over time.

In almost all previous work the internal functions of neu-
rons were either fixed or only parameters were evolved.
Connections between neurons are simple wires instead of
complicated synaptic process. The model we propose is in-
spired by the characteristics of real neurons.

Key features and biological basis for the model
Features of biological neural systems that we think are im-
portant to include in our model(Cartesian Genetic Program-
ming Developmental Neuron (CGPDN)) are synaptic trans-
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mission, and synaptic and developmental plasticity. Sig-
nalling between biological neurons happens largely through
synaptic transmission, where an action potential in the pre-
synaptic neuron triggers a short lasting response in the post-
synaptic neuron (Shepherd (1990)). In our model signals
received by a neuron through its dendrites are processed and
a decision is taken whether to fire an action potential or not.

Neurons in biological systems are in constant state of
change, their internal processes and morphology change all
the time based on the environmental signals. The develop-
ment process of the brain is strongly affected by external
environmental signals. This phenomenon is called Develop-
mental Plasticity. Developmental plasticity usually occurs in
the form of synaptic pruning (Van Ooyen and Pelt (1994)).
This process eliminates weaker synaptic contacts, but pre-
serves and strengthens stronger connections. More common
experiences, which generate similar sensory inputs, deter-
mine which connections to keep and which to prune. More
frequently activated connections are preserved. Neuronal
death occurs through the process of apoptosis, in which in-
active neurons become damaged and die. This plasticity en-
ables the brain to adapt to its environment.

A form of developmental plasticity is incorporated in our
model, branches can be pruned, and new branches can be
formed. This process is under the control of a ‘life cy-
cle’ chromosome (described in detail in section 6) which
determines whether new branches should be produced or
branches need to be pruned. Every time a branch is active,
a life cycle program is run to establish whether the branch
should be removed or should continue to take part in pro-
cessing, or whether a new daughter branch should be intro-
duced into the network.

Starting from a randomly connected network, we allow
branches to navigate (Move from one grid square to other,
make new connections) in the environment, according to the
evolutionary rules. An initial random connectivity pattern is
used to avoid evolution spending extra time in finding con-
nections in the early phase of neural development.

Changes in the dendrite branch weight are analogous to
the amplifications of a signal along the dendrite branch,
whereas changes in the axon branch (or axo-synaptic)
weight are analogous to changes at the pre-synaptic level
and post-synaptic level (at synapse). Inclusion of a soma
weight is justified by the observation that a fixed stimulus
generates different responses in different neurones.

Through the introduction of a ’life cycle’ chromosome,
we have also incorporated developmental plasticity in our
model. The branches can self-prune and can produce new
branches to evolve an optimized network that depends on
the complexity of the problem (Van Ooyen and Pelt (1994)).

The CGP Neuron
This section describes in detail the structure and processing
inside the CGP Neuron and the way inputs and outputs are

interfaced with it.
The CGP Neuron is placed at a random location in a two

dimensional spatial grid (as shown in figure 1). It is initially
allocated a random number of dendrites, dendrite branches,
one axon and a random number of axon branches. Neurons
receive information through dendrite branches, and transfer
information through axon branches to neighbouring dendrite
branches. The branches may grow or shrink and move from
one grid point to another. They can produce new branches
and can disappear. Axon branches transfer information only
to dendrite branches in their proximity. Electrical potential
is used for internal processing of neurons and communica-
tion between neuron and is represented by an integer.

Health, Resistance, Weight and Statefactor
Four variables are incorporated into the CGP Neuron, repre-
senting either fundamental properties of the neuron (health,
resistance, weight) or as an aid to computational efficiency
(statefactor). The values of these variables are adjusted by
the CGP programs. The health variable is used to govern
replication and/or death of dendritic and axonal connections.
The resistance variable controls growth and/or shrinkage of
dendrites and axons. The weight is used in calculating the
potentials in the network. Each soma has only two vari-
ables: health and weight. The statefactor is used as a pa-
rameter to reduce computational burden, by keeping neuron
and branches inactive for a number of cycles. Only when
the statefactor is zero are the neuron and branches are con-
sidered to be active and their corresponding program is run.
Statefactor is affected indirectly by CGP programs.

Inputs, Outputs and Information Processing
The signal is transferred to and taken from this neuron us-
ing virtual axon and dendrite branches by making synaptic
connections.

The signal from the environment is applied to CGP neu-
ron using virtual input axo-synaptic connections. There are
also virtual output dendrite branches used as the output of
the system. The virtual axo-synaptic branches are allowed
to not only transfer signals to the dendrite branches of pro-
cessing neuron (CGP Neuron) but also to the output virtual
dendrite branches which is the output of the system. The
CGP Neuron transfers signals to the virtual output dendrite
branches using the program encoded in the axo-synaptic
chromosome.

Information processing in the CGP Neuron starts by se-
lecting the list of dendrites and running the electrical den-
drite branch program. The updated signals from dendrites
are averaged and applied to the soma program along with
the soma potential. The soma program is executed to get
the final value of soma potential, which decides whether a
neuron should fire an action potential or not. If soma fires,
an action potential is transferred in forward direction using
axo-synaptic branch programs.
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External output

External Input

Figure 1: On the top left a grid is shown containing a single
neuron. The rest of the figure is an exploded view of the
neuron is given. Electrical processing parts containing den-
drite (D), soma (S) and axo-synapse branch (AS) is shown
as part of neuron. Developmental programs responsible for
the ’life-cycle’ of neural components (shown in grey) are
also shown. They are dendrite branches (DBL), soma (SL)
and axo-synaptic branches (ASL). The weight processing
(WP) block shown is used to adjusts synaptic and dendritic
weights.

Functionality of CGP Neuron
Neural functionality is divided into three major categories:
electrical processing, life cycle and weight processing.
These categories are described in detail below.

Electrical Processing
The electrical processing part is responsible for signal

processing inside neuron and communication between neu-
rons. It consists of dendrite branch, soma, and axo-synaptic
branch electrical chromosomes.

The dendrite program D, handles the interaction of den-
drite branches belonging to a dendrite. It take active dendrite
branch potentials and soma potential as input and updates
their values. The Statefactor is decreased if the update in
potential is large and vice versa. If any of the branches are
active (has its statefactor equal to zero), their life cycle pro-
gram (DBL) is run, otherwise D continues processing the
other dendrites.

The soma program S, determines the final value of soma
potential after receiving signals from all the dendrites. The
processed potential of the soma is then compared with the
threshold potential of the soma, and a decision is made
whether to fire an action potential or not. If it fires, it is kept
inactive (refractory period) for a few cycles by changing its
statefactor, the soma life cycle chromosome (SL) is run, and
the firing potential is sent to the other neurons by running the
AS programs in axon branches. AS updates neighbouring
dendrite branch potentials and the axo-synaptic potential.
The statefactor of the axosynaptic branch is also updated.
If the axo-synaptic branch is active its life cycle program
(ASL) is executed.

After this the weight processing program (WP) is run
which updates the Weights of neighbouring (branches shar-
ing same grid square) branches.

Life Cycle of Neuron
This part is responsible for replication, death, growth and

migration of neurite branches. It consists of three life cy-
cle chromosomes responsible for the neurites development.
The two branch chromosomes update Resistance and Health
of the branch. Change in Resistance of a neurite branch is
used to decide whether it will grow, shrink, or stay at its cur-
rent location. The updated value of neurite branch Health
decides whether to produce offspring, to die, or remain as it
was with an updated Health value. If the updated Health is
above a certain threshold it is allowed to produce offspring
and if below certain threshold, it is removed from the neu-
rite. Producing offspring results in a new branch at the same
grid square connected to the same neurite (axon or dendrite).
The soma life cycle chromosome produces updated values of
Health and Weight of the soma as output.

The Game of Checkers
Throughout the history of AI research, building computer
programs that play games has been considered a worthwhile
objective. Shannon developed the idea of using a game tree
of a certain depth and advocated using a board evaluation
function (Shannon (1950)) that allocates a numerical score
according to how good a board position is for a player. The
method for determining the best moves from these is called
minimax (Dimand and Dimand (1996)). Samuel used this
in his seminal paper on computer checkers (Samuel (1959))
in which he refined a board evaluation function. The cur-
rent world champion at checkers is a computer program
called Chinook (Schaeffer (1996)), which uses deep mini-
max search, a huge database of end game positions and a
handcrafted board evaluation function based on human ex-
pertise.

More recently, board evaluations functions for various
games including Checkers have been obtained through Arti-
ficial Neural Networks (ANNs) and often evolutionary tech-
niques have been used to adjust the weights (Chellapilla and
Fogel (2001)).

Although the history of research in computers playing
games is full of highly effective methods (e.g. minimax,
board evaluation function), it is highly arguable that human
beings use such methods. Typically they consider relatively
few potential board positions and evaluate the favourability
of these boards in a highly intuitive and heuristic manner.
They usually learn during a game, indeed this is how, gener-
ally, humans learn to be good at any game. So the question
arises: How is this possible? In our work we are interested in
how an ability to learn can arise and be encoded in a geno-
type that when executed gives rise to a neural structure that
can play a game well.
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Experimental Setup
The experiment is organized such that an agent is provided
with CGPDN as its computational network. It is allowed to
play against a minimax based checker program (MCP). The
initial population of five agents, each starting with a small
randomly generated initial network and randomly generated
genotypes. The genotype corresponding to the agent with
the highest fitness at the end of the game is selected as the
parent for the new population. Four offspring formed by mu-
tating the parent are created. Any learning behaviour that is
acquired by an agent is obtained through the interaction and
repeated running of program encoded by the seven chromo-
somes within the game scenario.

The MCP always plays the first move. The updated board
is then applied to an agent’s CGPDN. The potentials repre-
senting the state of the board are applied to CGPDN using
the axo-synapse(AS) chromosome. The agent CGPDN is
run which decide about its move. The game continues until
it is stopped. It is stopped if all its or opponent players are
taken, or if the agent or its opponent can not move anymore,
or if the allotted number of moves allowed for the game have
been taken.

Inputs and outputs of the System
Input is in the form of board values, which is an array of 32
elements, with each representing a playable board square.
Each of the 32 inputs represents one of the following five
different values depending on what is on the square of the
board (represented by I). Zero means empty square. I =
M = 232 − 1 means a king, (3/4)M means a piece, (1/2)M
an opposing piece and (1/4)M an opposing king.

The board inputs are applied in pairs to all the sixteen lo-
cations in the 4x4 CGPDN grid (i.e. two input axo-synapse
branches in every grid square, one axo-synapse branch for
each playable position) as the number of playable board po-
sitions are 32 as shown in figure 2. Figure 2 shows how
the CGPDN is interfaced with the game board, input axo-
synapse branches are allocated for each playable board posi-
tion. These inputs run programs encoded in the axo-synapse
electrical chromosome to provide input into CGPDN (i.e.
the axo-synapse CGP updates the potential of neighbouring
dendrite branches).

Input potentials of the two board positions and the neigh-
bouring dendrite branches are applied to the axo-synapse
chromosome. This chromosome produces the updated val-
ues of the dendrite branches in that particular CGPDN grid
square. In each CGPDN grid square there are two branches
for two board positions. The axo-synapse chromosome is
run for each square one by one, starting from square one
and finishing at sixteenth.

Output is in two forms, one of the outputs is used to select
the piece to move, and second is used to decide where that
piece should move. Each piece on the board has an output
dendrite branch in the CGPDN grid. All pieces are assigned

AS

ASASAxo-synapse Electrical CGP

AS

Figure 2: Interfacing CGPDN with Checker board. Four
board positions are interfaced with the CGPDN such that
board positions are applied in pair per square of CGPDN.

a unique ID, representing the CGPDN grid square where its
branch is located. So the twelve pieces of each player are
located at the first twelve grid squares. The player can only
see its pieces, while processing a move and vice versa. Also
the location of output dendrite branch does not change when
a piece is moved, the ID of the piece represent the branch
location not the piece location. Each of these branches has a
potential, which is updated during CGPDN processing. The
values of potentials determine the possibility of a piece to
move, the piece that has the highest potential will be the one
that is moved, however if any pieces are in a position to jump
then the piece with the highest potential of those will move.
In addition, there are also five output dendrite branches dis-
tributed at random locations in the CGPDN grid. The aver-
age value of these branch potentials determine the direction
of movement for the piece. Whenever a piece is removed its
dendrite branch is removed from the CGPDN grid.

CGP Developmental Neuron (CGPDN) Setup
The experiment parameters are arranged as follows. Each
player CGPDN has a neuron with branches located in a 4x4
grid. Maximum number of dendrites is 5. Maximum num-
ber of dendrite are 200 and axon branches is 50. Maximum
branch statefactor is 7. Maximum soma statefactor is 3.
Mutation rate is 2%. Maximum number of nodes per chro-
mosome is 200. Maximum number of moves is 20 for each
player.

Fitness Calculation
The fitness of each agent is calculated at the end of the game
using the following equation:

Fitness = A + 200(KP −KO) + 100(MP −MO) + NM ,
Where KP represents the number of kings, and MP rep-

resents number of men (normal pieces) of the player. KO

and MO represent the number of kings and men of the op-
posing player. NM represents the total number of moves
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Figure 3: Fitness of CGPDN based player against MCP

played. A is 1000 for a win, and zero for a draw. To avoid
spending much computational time assessing the abilities of
poor game playing agents we have chosen a maximum num-
ber of moves. If this number of moves is reached before
either of the agents win the game, then A =0, and the num-
ber of pieces and type of pieces decide the fitness value of
the agent.

Results and Analysis
We have evolved agents against MCP in a number of evo-
lutionary runs for 1500 generations and plotted it in figure
3. From the fitness graph, it is evident that the agent plays
poorly at the early stage of evolution, but as the evolution
progresses, the agent starts playing increasingly better and
after 1250 generations, it begins to beat the opponent by
three and four pieces margin. MCP is using minimax at ply
level of 5. Agent plays with different strategy every time and
finally manages to beat the opponent. It is worth mentioning
here that the agent does not have any clue of what it is doing.
It just receives signals from the board and produce moves
accordingly, but as evolution progresses, the agent begins to
understand the board and plays better. This is evident from
the fitness graph shown in figure 3. Keeping in view that
the agent is using a single neuron as a computational sys-
tem and still manages to beat a program based on human
(having trillion of neurons) intelligence is a big achievement
demonstrated by any learning developmental system to date.
Table 1 shows a game played between the well evolved agent
and MCP. This is presented to demonstrate the level of play
that the two players play. Figure 5 shows various stages of
the game along with the corresponding neuron structure up-
dated as a result of game scenario. Figure 4 shows the vari-
ation in the number of axon and dendrite branches of the
CGP neuron during the game. Table 1 and figure 5 shows
the complete game, the game start with black (MCP) mak-

Black Move White Move

B1 12 - 15 W2 21 - 17
B3 10 - 13 W4 17 - 10
B5 5 - 14 W6 23 - 20
B7 1 - 5 W8 25 - 21

B9 14 - 19 W10 29 - 25
B11 5 - 10 W12 20 - 16

B13 10 - 13 W14 28 - 23
B15 19 - 28 W16 32 - 23
B17 13 - 17 W18 16 - 12
B19 7 - 16 W20 23 - 19

B21 15 - 20 W22 24 - 15
B23 11 - 20 W24 22 - 18
B25 8 - 12 W26 26 - 22

B27 17 - 26 W28 30 - 21
B29 9 - 13 W30 18 - 9
B31 2 - 5 W32 9 - 2

W33 2 - 11
B34 20 - 23 W35 27 - 20
B36 16 - 23 W37 22 - 18
B38 12 - 16 W39 11 - 14
B40 16 - 20 W41 19 - 15

Table 1: The first 41 moves of a game between a high
evolved player (white) against MCP(black)

ing the first move by forwarding its piece from square 12 to
15. The updated board is applied as input to the CGPDN
causing white(CGPDN) to forward a piece from square 21
to 17 as a result of signal received from CGPDN to motor
neuron. Motor neuron receive signal using virtual dendrite
branches distributed in the CGPDN Grid. Initially neuron
has a small branching structure as evident from the first neu-
ron image in figure 5 (Row-2, Column-1). Mutual exchange
of pieces occur at various stages of the game and the neu-
ral branching structure continue to develop. The important
break through occurs when black make a blunder at move-
31 causing white to not only take two black pieces in one
move but also becoming a king so that it can move both in
forward and backward direction. Figure 5 show the move on
the third row and last column. At this stage the CGPDN has
the maximum dendrite branching structure so it can sense
the signal from the board through its branches and act ac-
cordingly as evident from figure 5 and figure 4. The game
continue until the aloted number of moves (40) are taken
with white (CGPDN) having one king and a piece advan-
tage over black(MCP).

Generality
In order to test the generalization property of the agent, we
have conducted a number of experiments by allowing the
agent to play against five different opponents with various



Proc. of the Alife XII Conference, Odense, Denmark, 2010 640

Figure 5: Various move played by CGP Neuron based agent and MCP with Agent playing white and MCP Black. Figure also
shows the variation in neural structure during the game at various stages

Game Winning Margin Level of Number of
Number of CGPDN Agent opponent Moves to win

1 2 MEN and 1 King 50 76
2 2 MAN and 1 King 100 83
3 1 King 1000 111
4 1 MAN and 1 King 1200 120
5 lost by 1King 1300 59

and 4Men

Table 2: Results of Evolved agent against various opponents
not seen during evolution

playing levels. The neuron inside the agent starts with a ran-
dom branching structure with the evolved genotype and con-
tinues to develop during the game. The agent was playing
against completely new opponents that he has never played
before during the course of evolution. Opponent’s level of
play is evident by the number of generations for which it
is evolved. It beats the 50th generation agent by one King
and two Men(normal peices) within 76 moves. An agent
evolved for 100 generations also by one King and two Men
but in 83 moves, the 1000th generation agent by one King
in 111 moves and finally the 1200th generation by one Man
and a King in 120 moves. In final case, the agent lost the
game to a 1300 generations evolved player by one King and
4 Men in 59 Moves. It is worth mentioning that the agent
was trained (evolved) to play forty moves. It never played
a game beyond forty moves during evolution. From the re-
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Figure 4: Variations in the number of Dendrite and Axon
branches during the game

sults shown in table 2 it is evident that as the level of play of
the opponent increases, the winning margin decreases, thus
demonstrating clearly that we are able to obtain a DNA using
CGP such that when used inside neuron produce a structure
that can play game intelligently.

Conclusion
We have investigated the evolution of checkers playing
agents that are controlled by a single developmental neu-
ron. The development and signal processing inside neuron is
controlled by a number of CGP programs working as DNA
of the agent. The branching structure of neuron develops
during the course of game. The agent demonstrated that it
can play intelligently and beat a human intelligence based
agent by a large margin. We have also tested a single neuron
based agent for its generality. It beated the low level players
with big margins in lesser time and tends to have problems
beating high level players. From the results, it appears that
we have successfully evolved CGP programs that encode an
ability to learn ’how to play’ checkers. In the future, we are
planning to run the programs for longer, and against high
level professional checkers agents to have more experience.
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Abstract

The compositional nature of human language is a remark-
able adaptation that solves the problem of generalizing our
communications to novel experiences. The Iterated Learning
Model of agent interaction has proven to be a useful tool for
exploring the emergence of this phenomenon of generaliza-
tion. Recently, a Bayesian interpretation of this model has
been proposed and analyzed in the literature. The work here
combines the Bayesian approach with the traditional goal of
iterated learning, the emergence of compositional commu-
nication. Two methods of measuring language likelihood
are investigated, one based on agent comprehension and the
other on production scope. Calculating likelihood based on
agent comprehension is shown to result in the emergence of
significantly better generalization. The beneficial effect of
a description-length based prior probability is also demon-
strated.

Introduction
The ability to generalize our knowledge to novel experiences
is a fundamental capability of the human mind. Nowhere
has this faculty had more impact than on how we commu-
nicate. Our languages have developed to be massively com-
positional. As children, we learn a set of components and
rules for combining those components in a way that allows
us to express an infinite number of utterances. Likewise, we
can understand those utterances by breaking them down into
their components and rules. Thus the compositional nature
of our languages has given us tremendous ability to general-
ize our communications.

In this paper, we look at how this compositional na-
ture emerges through communicative interactions between
agents that are finite-state transducers. In order to model
these interactions, we use the Iterated Learning Model
(ILM) of Kirby and colleagues (Kirby, 2001; Smith et al.,
2003). ILM originated as way to model this kind of lan-
guage emergence and evolution, but has since been used as
a more general model of knowledge change in domains with
a teacher and a learner (Kalish et al., 2007).

Iterated learning can involve many agents, but in its purest
form involves a single teacher and a single learner. Ini-
tially, the teacher agent imparts some of its knowledge to

a learner. Since the teacher is not revealing all of its knowl-
edge, the learner must fill in the blanks according to some in-
ference algorithm. Typically, the inference algorithm looks
at the knowledge the learner already has and infers from
that. The learner then becomes a teacher and instructs a new
learner in the same fashion and this continues for many it-
erations. Eventually this process of knowledge transfer and
self-organization converges to an equilibrium in a manner
similar to the transfer and self-organization of genetic infor-
mation in an artificial life simulation.

Language evolution models usually operate with a space
of idealized meanings that agents need to communicate to
each other. These meanings take the form of vectors of fea-
tures, each having some range of values. The agents then
turn these meanings into some form of signal, creating a
meaning-signal mapping. In iterated learning models, the
agents can be broadly defined to fall into two categories.

The first type of agent we will call grammatical inducers.
These grammatical inducers keep track of any correlations
between features in the meaning space and the received sig-
nals. These correlations are kept track of with a context-free
grammar, neural network, or matrix. The agents induce a
signal for a novel meaning by making use of any noticed cor-
relations between the features of the meaning and portions
of earlier signals. Those correlations are typically combined
with a randomly generated signal portion that represents the
rest of the uncorrelated features to create a final signal for
the novel meaning. The success of these agents is judged
by how compositional their signals are after a number of
generations. Originally this was measured through subjec-
tive analysis of the signals (Batali, 1998), but more recently
is often measured by expressivity (Kirby, 2007; Brighton,
2005). Expressivity is defined as the number of meanings
that can be distinctly expressed.

The second type of agent is the more recent Bayesian
agent that was analyzed in detail by Griffiths and Kalish
(2005, 2007). Griffiths recognized that the learner in ILM
is essentially using a form of Bayesian inference to infer the
language from the teacher’s instruction. The learner con-
siders many hypotheses about the language before picking
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the one that it feels is most probable. The probability of a
hypothesis is calculated based on how closely a hypothesis
matches the data from the teacher, the likelihood, and by the
agent’s inductive biases, the prior. This relationship allows
iterated learning to be formulated as a mathematical process
that can be rigorously analyzed. One of the results of Grif-
fiths’ analysis is that over generations of iterated learning
the posterior probability distribution converges to the prior
probability distribution. Essentially, the languages the in-
ductive biases favor are the languages that will emerge over
the course of the process.

The convergence of the Bayesian agent form of ILM has
been rigorously analyzed (Rafferty et al., 2009; Ferdinand
and Zuidema, 2009). However, these studies have used arbi-
trary priors and were not looking for evidence of composi-
tionality in agent signals. The work here combines the goals
of the grammatical inducers with the method of the Bayesian
inducers. To do this we need to characterize what informa-
tion our prior is to use and how to calculate likelihood.

Bayesian inference, Equation (1), has long been known
to be related to the mathematical model selection criterion
of Rissanen (1978) called the Minimum Description Length
Principle (MDL) and the closely related Minimum Mes-
sage Length (MML) measurement of Wallace and Boulton
(1968). A detailed discussion of this relationship is in Vi-
tanyi and Li (2000), but we will discuss the nature of the
correspondence here.

P (Model|Data) =
P (Data|Model)P (Model)

P (Data)
(1)

Both MDL and MML measure the success of a mathe-
matical model of data. A successful model is one that is
simple and compactly expresses the data. By combining
a measure of the size of the model and a measure of the
size of the data as encoded by the model the total informa-
tion load can be quantified. The essence of the relationship
with Bayesian inference is that the amount of information
can be viewed as the amount of Shannon entropy. A higher
information load corresponds to a model with lower poste-
rior probability, P (Model|Data). The relationship extends
to the two primary components of Bayesian inference, the
likelihood and the prior. The likelihood, P (Data|Model),
corresponds to the size of the data as encoded by the model
and the prior, P (Model), corresponds to the complexity of
the model.

The selective pressures of minimizing description length
on a model are not very different from the selective pres-
sures on a language. Language is a model that uses syntax
to represent semantics. A successful language is one that can
express everything we want to talk about but is also simple
to learn and use. This correspondence provides us with a
way to formulate the Bayesian inference components of our
agents. The likelihood needs to measure how successful we

are at expressing ourselves and the prior needs to measure
how simple our manner of expression is.

This is not the first time MDL is used as a way to en-
courage to the emergence of generalization without directly
selecting for it. Schrementi and Gasser (2010) used it as
a fitness metric for a genetic algorithm. Brighton (2005,
2003, 2002) used description length as a hypothesis selec-
tion measure in an iterated learning model that used a mod-
ified form of transducers called finite-state unification trans-
ducers. Brighton’s work was not specifically Bayesian and
stayed close to the original formulation of the likelihood in
MDL; that likelihood was the size of the data as encoded by
the model. The focus of the work here is to investigate like-
lihood as a measure of the probability that a signal can be
decoded to its original meaning. We investigate two meth-
ods of formulating likelihood as a probability, one based on
expressivity and the other comprehension.

Iterated Learning Framework
Our implementation of the iterated learning model uses
agents that are simple finite-state transducers. These trans-
ducers sequentially process input strings and encode them
into output strings. Each edge between states in the trans-
ducer reads in an input character and writes an output char-
acter. This encoding process provides a simple way to model
linguistic production, the translation of meaning into signal.

Notably, the same transducer can be used for the other
half of a linguistic interaction, comprehension, by reversing
what is read and what is written for each edge. This inverted
transducer will be able to translate the output strings back
into the original input strings, with an important caveat. The
inversion process can introduce ambiguity in the transducer
that didn’t exist before. A state that has two edges leaving it
that output the same character will after inversion have two
edges leaving it that read the same character. This ambi-
guity results in a non-deterministic transducer that can have
multiple paths that read the same input string.

The algorithm starts with a state-minimal finite-state au-
tomaton that recognizes the entire set of input training
strings. A transducer recognizes a string if it finishes in
an end state after reading the string. A state-minimal trans-
ducer is one that has been compressed to have the fewest
states needed to recognize the input set and only the input
set. Each edge in the automaton is then randomly assigned to
write one of the output characters. This transducer is the first
teacher in the iterated learning process. The learner starts
out as an empty transducer, with just a start state and an end
state.

The learning process begins with the teacher going
through a random selection of the input training strings and
producing an input-output pair. The learner adds each of
these input-output pairs to its transducer, such that there is
a path from the start state to the end state that reads the in-
put string and writes the output string. Any remaining input
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training strings are added to the learner but not paired with
any output. The learner’s transducer is then compressed to
be state-minimal. This results in a learner that has the same
transducer structure as the teacher but some of the edges may
not write anything.

The edges that have no output form the basis for the in-
vention part of the iterated learning model. Invention refers
to the process of inferring outputs for inputs which were not
presented to the agents as input-output pairs by their teacher.
Our invention method uses Bayesian inference to select the
output characters for the edges that lack them. The set of
sets of possible outputs to fill in the blanks forms a search
space whose size is determined by the number of blanks,
n, and the size of the output character space. For each of
the experiments in this paper, there are two possible output
characters, resulting in a space of 2n.

Each set of output characters in the search space is a
hypothesis of the optimal language. This hypothesis cou-
pled with the learned transducer completely specifies all the
input-output mappings of the agent for the training strings.
The transducer can now be further compressed following a
compression criterion from Brighton (2002). The criterion
is that any two states can be combined if the change doesn’t
affect the input-output mappings of the training strings. We
have added two additional criteria. The first is that the two
states don’t have conflicting output edges, e.g. two edges
reading the same character but writing a different character,
which prevents production ambiguity. The second is that the
two states to be combined must also be at the same depth
from the initial state, in order to prevent cycles and to allow
the compression to be done iteratively.

The further compressed transducer now recognizes and
encodes additional strings beyond those that it was trained
on. In essence, this compression allow the transducer to gen-
eralize its knowledge about the training set to a wider range
of input strings. Each hypothesis results in a transducer that
can be compressed in this way to different degrees. The size
of this compressed transducer will form the basis of our cal-
culation of the prior probability of a hypothesis. Addition-
ally, we can now measure how well a given language, as
specified by the transducer, generalizes to novel test strings.

The posterior probability of each hypothesis in the search
space is calculated according to our formulation of its prior
probability and likelihood, the specifics of which are dis-
cussed in the next section. The set of output characters with
the highest posterior probability is selected by the learner to
fill in its blanks. In case of a tie, the set that is closer to
the teacher’s edge outputs is chosen. After the learner com-
pletes this inference process, it is ready to become a teacher.
A new learner agent is created and the cycle repeats with the
old learner as the new teacher. This process continues for a
set number of generations.

Bayesian Inference Formulation
Bayesian inference has two primary components, the prior
probability of a hypothesis, and the likelihood of the hy-
pothesis given the data. There is also a third component,
the marginal probability of the data. However, this compo-
nent is constant and in the interest of simplification we will
drop it in our calculations.

Our investigation of methods of calculating likelihood
looks at three different measures. The first is a control like-
lihood that is always one, Equation (2). The second is a like-
lihood measure based on expressivity. Expressivity makes a
plausible likelihood measure because the more distinct sig-
nals a hypothesized transducer is able to make the more
likely that its signals can be decoded back into the correct
meaning. Our measurement of expressivity looks at the list
of output strings produced for the training input strings and
simply divides the number of different strings by the total
number of strings, Equation (3).

The third likelihood calculation is based on comprehen-
sion; how likely a transducer is able to decode, when re-
versed, its encodings of the training set. A hypothesis that
results in a transducer that has this internal consistency is
considered more likely. Essentially, an agent checks whether
a hypothesized language allows the agent to talk to itself
as in Mirolli and Parisi (2006). The likelihood for a given
input-output mapping is calculated by counting the number
of paths through the reversed transducer that read the out-
put characters and write the correct input characters divided
by the total number of paths that read the output charac-
ters. The likelihood is never zero because there is always at
least one path that will write the correct characters. The fi-
nal likelihood for the hypothesis is the average over all of the
input-output mappings drawn from the input training strings.
Equation (4) shows this calculation, with R being the set of
training strings and |R| the size of the training set. Each
input training string is equally likely, so the average is not
weighted.

P (H|D) = 1 (2)

P (H|D) =
DifferentOutputs

TotalOutputs
(3)

P (H|D) =

∑
s∈R

SuccessfulDecodingPathss

TotalDecodingPathss

|R|
(4)

DL(Transducer) = NEdges ∗ (2 ∗ dlog2(NStates)e) (5)

Our prior calculation weights hypotheses by how much
the resulting transducer can be compressed. The size of the
transducer is measured as description length in bits by cal-
culating the cost of storing each edge based on the num-
ber of states, Equation (5). The compressed size, DLc, is
compared to the size of the transducer before compression,
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DLu. Equation (6) shows the formula that calculates the
prior such that the more a transducer is able to be com-
pressed the higher the probability. DLu + 1 is used in the
calculation to ensure that the prior is never zero. A second
control prior that is always one is also used, Equation (7).

P (H) =
(DLu + 1)−DLc

DLu + 1
(6)

P (H) = 1 (7)

Results
We demonstrate the results of two experiments that inves-
tigate the generalization performance of the likelihood and
prior measures. For each experiment, the input and output
alphabets are both of size two. The length of every input
string is 8 and consequently the length of every output string
is 8. Each experiment has a training set of a specified size
and the test set is all 256 strings of length 8, so the training
set is a subset of the test set. Generalization performance
is measured using the expressivity metric across the entire
test set, rather than just the training set as it is used in the
learning process.

Experiment One
The first experiment uses a training set of 16 input strings
with one of the strings randomly chosen each generation to
not have its corresponding output conveyed to the learner.
This results in average of 3.3 blanks, with a standard devia-
tion of 2.2, to be inferred by the learner out of total of 53.74
edges on average. The results shown here are the average
expressivity across 50 trials each with a different randomly
chosen training set. The experiment runs for 200 generations
of teacher-learner interactions.

Figure 1 shows a plot of the expressivity over time, with
standard deviation bars, using the description-length prior
and each of the three likelihood measures: flat, expressivity-
based and comprehension-based. We see that all three mea-
sures start with similar levels of expressivity but the com-
prehension measure quickly jumps ahead of the other two
measures. It continues this rapid ascent before plateauing
at slightly over 90% expressivity. The expressivity-based
measure also ascends but much more slowly and settles in
slightly above 26%. This isn’t bad considering that the train-
ing set is only 6.25% of the test set, but it falls well short of
success of the comprehension-based measure. The flat mea-
sure establishes a baseline that ends around 15%.

Figure 2 compares the expressivity when using the
description-length prior versus the flat prior under the
comprehension-based likelihood. The description-length
prior results in clear improvement in expressivity. But, the
flat prior turns in a respectable performance that ends at al-
most 70%.

Experiment One shows that agents that try to maximize
comprehension are much better at generalizing than agents
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Figure 1: Likelihoods, 16 Training Strings

that try to maximize expressivity. The results from the anal-
ysis of the priors indicate that seeking to maximize com-
pression in addition to maximizing comprehension results in
even better generalization. The verdict on expressivity as a
likelihood measure doesn’t look good, but we want to make
sure that the small training set isn’t setting up expressivity
to fail.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200

E
xp

re
ss

iv
ity

Generation

DL
Flat

Figure 2: Priors, 16 Training Strings

Experiment Two
The second experiment uses a training set of 64 input strings,
four times larger than the first experiment. Again, one of the
strings is randomly chosen each generation to not have its
corresponding output conveyed to the learner. The results
shown here are the average expressivity across 50 trials each
with a different randomly chosen training set.
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Figure 3: Likelihoods, 64 Training Strings
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Figure 4: Priors, 64 Training Strings

Figure 3 shows the plot of the three likelihood measures.
The comprehension-based measure is at the top ending again
at slightly over 90%. The expressivity-based measure gets a
boost from the larger training size and reaches slightly be-
low 50%. The flat likelihood doesn’t do much better than
before settling in at around 20%. Once again, maximizing
comprehension results in significantly better generalization
than trying to maximize expressivity.

The analysis of the priors, using the comprehension-based
likelihood, for Experiment Two is in Figure 4. Interestingly,
we see that the that there isn’t a significant benefit to maxi-
mizing compression with the larger training set. The training
set is now large enough that seeking to maximize likelihood
is sufficient to achieve high expressivity.

Conclusions
The capability to generalize is the hallmark of a composi-
tional system. The Bayesian agents’ ability to generalize
their encodings to novel strings means that their communi-
cations are compositional. From the low expressivity at the
start we can see that the compositionality emerges during
training.

The success of the comprehension-based likelihood mea-
sure over the expressivity-based one demonstrates the value
of including comprehension in the process. It is not suffi-
cient to concentrate just on production and how many sig-
nals an agent can make. The pressure of being forced to ac-
tually decode those signals back into meanings is necessary
to drive the emergence of a generalizable grammar.

The benefit of the description-length prior reaffirms the
value of simplicity-based metrics like MDL. The added
pressure to compress the grammar allowed the agents to ex-
press a large majority of the test set even with a very small
training set. However, the prior’s value decreases as the
agents access more information. Large training sets mean
that prior knowledge is no longer necessary to master the
test set.

The iterated learning model again proves to be a powerful
method of modeling the emergence of compositional gram-
mars. The Bayesian version provides us with new ways of
analyzing the process with the clear delineation of the role
of the prior and the likelihood. The experiments here show
that choosing a successful likelihood measure is not as sim-
ple as it might seem. A metric like expressivity seems like a
good candidate but turns out to be rather poor. Likewise, the
prior should be carefully chosen; a good prior can make the
difference when knowledge is scarce. Finding two that work
together, in this case the likelihood’s pressure to be compre-
hensible and the prior’s pressure to be simple, is the key to
successful Bayesian inference and might be the key to our
ability to generalize as well.
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Abstract

In swarm robotics, robots with only poor computational
equipment are often used. Additionally, the precision of their
actuators and sensors is rather poor. This causes a challenge
in the construction of controllers able to achieve complex be-
haviors on such robotic systems. Here we describe a novel
bio-inspired concept of a robot control paradigm, which is
inspired by the information-processing of simple microorgan-
isms. The basic idea is that we use a roughly abstracted model
of inter-cellular signal emission and signal processing to con-
trol the movement behavior of a two-wheeled autonomous
robot. Many unicellular organisms are able to perform taxis-
behavior (phototaxis, chemotaxis, etc.) without having so-
phisticated sensor equipment and without possessing neu-
ronal structures. Our Artificial Homeostatic Hormone System
(AHHS) mimics primitive chemical signal networks and is
able to achieve taxis-behavior with little computational cost.
In this article the controller is analyzed in a simple mathe-
matical model and additional tests are performed on a more
sophisticated multi-agent simulation of robotic hardware and
the controller is implemented on real robotic hardware.

INTRODUCTION
In swarm robotics (Beni, 2005; Şahin, 2005) simple and in-
expensive robotic hardware is used frequently. Such robotic
systems often have limited computational abilities and their
sensors and actuators are rather imprecise. Also memory
is often limited and therefore the minimal hardware equip-
ment cannot easily be compensated by extensive software
concepts such as data filtering, managing a world-model or
by simultaneous localization and mapping (SLAM) of the
environment. Thus, it is a challenging task to generate con-
trollers that allow the generation of adaptable complex be-
haviors. In addition, evolutionary robotics (Floreano et al.,
2008) is a concept to automatically design ‘simple’ robot
controllers with algorithms of evolutionary computation,to
explore the behavior space of the robots and to generate the
desired behaviors.

Many microorganisms, that have only limited sensor pre-
cision and do not have neuronal systems to process informa-
tion, show an impressive ability to perform complex and/or
target-oriented behaviors (taxis). For example, a unicellu-
lar algae (Bound and Tollin, 1967) performs phototaxis with

Figure 1: Five robots showing phototactic behavior with
AHHS controller.

just one photo-sensitive eye-spot and just a single actuator
(flagellum). Similar capabilities are found in many bacteria
(Khan et al., 1995; Darnton et al., 2007). Also, multi-cellular
aggregation (colonies) of simple cells are able to coordinate
their joint motion to collectively approach the source of a
stimulus (e.g., phototaxis inVolvox, Holmes (1903)).

The internal processes of cells can be interpreted as com-
putational processes as reported by Bray (2009). This ‘non-
cognitive’ method (i.e., single cells have no neurons, hence,
it is an anti-connectionist approach) of information process-
ing was applied many decades ago by Grey Walter (Grey
Walter, 1950, 1951) to control a simple robot. The behav-
iors reported in these papers are similar to this work, only
we are modeling internal cell processes explicitly. In previ-
ous studies (Schmickl and Crailsheim, 2009; Hamann et al.,
2010b,a), we suggested a simple difference-equation based
model of the internal signal processing of uni-cellular organ-
isms, which we call Artificial Homeostatic Hormone System
(AHHS). In such systems, representing rough abstractions
of biological physiological models, the difference-equation
model controls the way of how a robot acts based on sensory
input.

In the model we assume that the inner body of the robot
is compartmentalized. Specific compartments are associ-
ated with certain components of the robot’s real body. In
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each compartment, the model tracks the dynamics of virtual
chemical substances, which represent chemical cell signals
in real organisms. These chemical substances can diffuse
to neighboring compartments and they decay proportion-
ally to their current concentration over time. Some of them
are produced at constant rates as well, leading to homeo-
static set points (equilibria) that are approached after anini-
tial transient. Some of these signals affect actuators (e.g.,
wheels), leading to unstimulated behavioral modes of the
organism. Sensor excitation by environmental stimuli result
in local disturbances in the hormone equilibria, for exam-
ple, by sudden secretion of one of the chemical signals (hor-
mones). As hormone levels affect actuators, changing hor-
mone concentrations may change the robot’s behavior. This
stimulated behavior lasts until the ‘abnormal’ sensor excita-
tion has ceased and the hormone levels have approached the
previous homeostatic settings again. A set of hormone-to-
hormone interactions can enhance the behavioral repertoire
of the robot by providing more complex forms of sensor-to-
actuator linkage via the virtual hormone reaction networks.

To demonstrate the abilities of AHHS controllers in pro-
ducing interesting behavioral patterns even with limited
computational and with limited sensor equipment, we aimed
to mimic taxis behavior that is found in very primitive life-
forms (e.g., some bacteria).

The bacteriumEsherichia colishows interesting behavior
in finding attractive habitats by chemotaxis. The bacterium
is propelled by several flagella (actuators), which have two
modes of turning: clockwise (CW) and counter-clockwise
(CCW). The CCW motion allows the organism to swim al-
most in straight trajectories and the CW motion of some
flagella disturb the synchrony among the bundle of all flag-
ella. This leads to a so called ‘tumbling mode’ of movement,
where the organism almost randomly changes its direction
(Khan et al., 1995; Darnton et al., 2007). Chemoreceptors
that react to attractants in the environment suppress those
cell-internal chemical signals which finally alter the rotation
of flagella to the CW mode. In absence of these attractants,
the CW mode is not suppressed that much, which leads to
a higher probability and longer duration of the ‘tumbling
mode’.

This way, the organism is able to ascend in an attractive
chemical gradient in a way that was found to be a very robust
control mechanism (Alon et al., 1999; Yi et al., 2000). This
approach of taxis is rather different from those approaches
frequently used in mobile robotics, for example the famous
Braitenberg vehicles (Braitenberg, 1984). For example, us-
ing just one single sensor is comparable to ‘vehicle 1’. But
the functionality of the taxis-behavior is not existent in ‘ve-
hicle 1’, which rather speeds up or slows down depending
on the current sensor intensity. When searching for the func-
tionality of taxis, which is provided in our approach, a com-
parison with ‘Braitenberg vehicles 2 and 3 (fear, aggression
and love)’ makes more sense. But here, the inner structure of

the controller does not correspond. In contrast to these Brait-
enberg vehicles, our AHHS controller uses just one sensor,
thus no gradient-ascent based on differences between paral-
lel sensor values is used. Furthermore, there is no explicit
implementation of any kind of ‘seeking-behavior’: Neither
does the robot rotate with a directional sensor measuring
light intensity until it finds a maximum in a particular di-
rection that it then approaches directly, nor does it use any
explicit memory storage of past sensor values or an explicit
‘world model’. In contrast, we claim that in our solution,
the robot, its position in the world (relative to the light opti-
mum) and the trajectory itself serve as some kind of memory
and as some kind of world model. This approach is rather
unique.

In the study presented here, we investigate how an AHHS
controller can be programmed to perform a comparably sim-
ple behavior with similar simple mechanisms. As most
cheap robots are lacking real gas detectors (chemo-sensors)
we wanted our focal robot to pursue a different but compa-
rable task, that is phototaxis:

Our focal robot is equipped with two wheels and just one
sensor on the right hand side of the robot. In this first con-
troller example, this sensor is discrete and either passes a1
(light perceived) or a0 (no light perceived) to the controller.
This ‘binary’ controller is able to detect whether it pointsto-
wards the light or not, thus offering some directionality. In
a second controller, we assumed that the sensor cannot de-
termine this directionality, instead it can just report thelocal
illuminance at the robot’s current position. In contrast tothe
first controller, here the sensor reports a graduated output
value proportionally to the current local illuminance. The
task for the robot is to drive towards a light (phototaxis).

For a fixed topology with two wheels and a sensor on the
right side of the robot, there are four potentially reasonable
ways of programming a reactive agent: Without any sensory
input the robot moves in right turns and sensory input either
reduces the radius of the turns or it increases the radius. The
other option is to let the robot move in left turns without sen-
sory input and sensory input either reduces the radius of the
turns or it increases the radius. The methods with standard
right turns are gradient descends and the left turns lead to
gradient ascends. The method of decreasing the turn radii
leads to trajectories with many loops. We call this method
positive steeringbecause the robot steers by intensifying the
standard turn direction. The method of increasing the turn
radii or even changing the turn direction leads to waved or
straight trajectories. We call this methodnegative steering
because the robot steers by decreasing or inverting the stan-
dard turn.

AHHS controllers
In both of the reported controllers, we assumed that a basic
’forward-driving’ hormoneHf is produced (in the follow-
ing: forward hormone) in both compartments of the robot
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at rateα. This hormone activates the motors. The main
difference between these two controllers is the asymmetric
production rate (αl in the left compartment,alphar in the
right compartment, withαl 6= αr) in case of the first con-
troller. The second controller has a symmetric production
rate (αl = αr = α). Thus, the levels of the forward hormone
are equal in the ‘normal’ state, the robot basically drives in
straight lines. Such an AHHS controller can easily be com-
bined with a collision-avoidance system, as it was discussed
in (Schmickl and Crailsheim, 2009; Stradner et al., 2009).

First AHHS controller

In our first AHHS controller, we assumed that the robot is
equipped with a sensor that is able to determine whether it
points towards the light source (within an angular threshold
of ±90o around the sensor center). If this is the case, the
sensor triggers the production of a light-dependent hormone
H l (in the following: light hormone). The light hormone
interacts with the forward hormoneHf by blocking (de-
creasing) it. Thus, the hormone level in the compartment,
that corresponds to the side of the light-sensor, is decreased
by the light hormone and the robot starts to turn in curves
towards this side. This first approach was inspired by the
phototactic behavior ofEuglena gracilis(Bound and Tollin,
1967), which rotates around its axis until a shading pigment
shades the organism’s eyespot. This is only the case, if the
organism is oriented correctly towards the stimulus (light)
source. In this case, all phobic responses disappear and the
organism moves towards its target. In our case, also just one
binary and directional sensor is available and the ’body’ of
the robot acts as a shading device.

We chose a system of difference equations to model the
agent. It is assumed that the agent moves in a plane. The
agent’s position is given byx and updated by

∆x

∆t
=

(

cos φ(t)
sinφ(t)

)

v, (1)

for the agent’s headingφ and a constant velocityv > 0. The
change of the heading is defined by

∆φ

∆t
=
(

(HF
l (t) − HL

l (t)) − (HF
r (t) − HL

r (t))
)

θ, (2)

for the value of the forward hormone in the left compartment
HF

l (right compartmentHF
r ), the value of the light hormone

in the left compartmentHL
l (right compartmentHL

r ), and a
parameterθ called steering intensity that defines the inten-
sity of the turns related to the difference in hormones in the
tow compartments. The dynamics of the forward hormone
HF are given by

parameter value
hormone production leftαl 0.11 [1/time unit]
hormone production rightαr 0.1 [1/time unit]
hormone decayβ 0.04 [1/time unit]
hormone diffusionD 0.001
agent velocityv 0.01 [space unit/time unit]
sensor scale factorσ 0.03
steering intensityθ 0.1
sensor offsetδ 45o

Table 1: Standard parameters for the model of the first con-
troller.

∆HF
l

∆t
= αl − βHF

l (t) + D(HF
r (t) − HF

l (t)), (3)

∆HF
r

∆t
= αr − βHF

r (t) + D(HF
l (t) − HF

r (t)), (4)

for hormone production ratesαl (left compartment) andαr

(right compartment), decay rateβ, and diffusion constantD.
The update rule of the light hormoneHL is

∆HL
l

∆t
= −βHL

l (t) + D(HL
r (t) − HL

l (t)), (5)

∆HL
r

∆t
= −βHL

r (t) + σS(t) + D(HL
l (t) − HL

r (t)), (6)

for a sensor inputS(t) and the sensor scale factorσ.
The sensor returns a 1, if it points towards the light source

(within an angular threshold of±90o around the sensor cen-
ter). Otherwise it returns a 0. This is defined by the scalar
product:

S(t) =










1 if

∣

∣

∣

∣

∣

arccos

(

‖x(t)‖ ·

(

cos(φ(t) + δ)

sin(φ(t) + δ)

))∣

∣

∣

∣

∣

> 90o

0 else.
(7)

The standard parameters, that were used, if not stated ex-
plicitly, are given in Table . With this model we generated
examples of trajectories by solving it numerically. Examples
of three trajectories are shown in Fig. 2. These trajectories
clearly show the two different strategies of positive and neg-
ative steering by changing the steering intensity parameter θ
(a convoluted trajectory compared to waved and straight tra-
jectories).

The model was also used to do extensive scans of parame-
ter intervals. For example, an interesting behavior was found
for the sensor scale factorσ that indicates complex behavior.
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Figure 2: Examples of three trajectories with different pa-
rameter settings. The agent starts atx = (−1, 1) with head-
ing φ = 90o (north). The maximum of the light gradient
is located at(0, 0). The blue trajectory is an example of
positive steering (θ = 0.1). The green (σ = 0.25) and red
(σ = 0.01) trajectories are examples of negative steering
(θ = −0.1).

The sensor scale factor influences the radius of the circular
behavior to which the robot converges to (i.e., the period
length). Results are shown in Fig. 3 that indicate a com-
plex relation (double exponential increase) between the sen-
sor scale factor and the period length.

Second AHHS controller
In this example, we assumed a photo-receptor which is
mounted on top of the robot, so that it has no directional-
ity at all. It just can report the local luminance in a grad-
uated manner: The higher the local luminance, the higher
is the reported sensor value. This sensor value produces a
light-dependent hormone in one of the two compartments
of the AHHS controller, which breaks down the forward-
driving hormone. As the sensor produces this hormone pro-
portionally to the local illuminance, the forward-drivinghor-
mone level is lowered also in a proportional level, lead-
ing to smaller curve radii in higher illuminated areas. This
rotation-behavior, changing the orientation of the robot fre-
quently and decreasing the net movement speed of the robot,
is inspired by the mechanisms of chemotaxis reported with
Esherichia coli.

The agent’s position update of this second controller is
defined as in Eq. 1. The dynamics of headingφ is now given
just by the difference of the forward hormone:

∆φ

∆t
= (HF

l (t) − HF
r (t))θ. (8)

The update rule of the forward hormone is similar to the
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Figure 3: Scan over the sensor scale factorσ showing its
influence on the length of the asymptotic period length. The
green points correspond to the smallest possible period, red
points correspond to rather complex periodic behaviors. The
fitted blue curve is double exponential.

definition above, except that now it is reduced by the light
hormoneH l:

∆HF
l

∆t
= α − βHF

l (t) + D(HF
r (t) − HF

l (t)) − γHL
l (t),

(9)

∆HF
r

∆t
= α − βHF

r (t) + D(HF
l (t) − HF

r (t)) − γHL
r (t),

(10)

for production rateα (now symmetrically defined), dif-
fusion constantD, decay rateβ, and hormone-induced de-
cayγ.

The update of the light hormone is defined as given by
Eq. 6. The sensor input is now a continuous value which is
a direct measurement of the local light intensity. The light
gradient is simply defined by the reciprocal of the distance
of the agent to the origin which is here the position of the
light source:

S(t) = 1/‖x(t)‖, (11)

for agent positionx. The standard parameters, that were
used, if not stated explicitly, are given in Table . An example
of an agent’s trajectory for this second controller is shownin
Fig. 4.

We used this model to do extensive parameter interval
scans. Such scans are the specialty of such abstract mathe-
matical models due to the small computational cost of solv-
ing them. We just need a valid metric to (automatically)
measure the performance of the parameter set. One possible



Proc. of the Alife XII Conference, Odense, Denmark, 2010 652

parameter value
hormone production leftα 0.1 [1/time unit]
hormone decayβ 0.04 [1/time unit]
hormone diffusionD 0.03
agent velocityv 0.01 [space unit/time unit]
sensor scale factorσ 0.2
steering intensityθ 0.3
hormone-induced decayγ 0.003 [1/time unit]

Table 2: Standard parameters for the model of the second
controller.
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Figure 4: An example of an agent’s trajectory for the second
controller.

measure of the quality of the gradient ascent is the distance
to the maximum during the asymptotic and periodic behav-
ior of the agent. In Fig. 5 we present scans over the diffu-
sion constantD, the steering intensityθ, and the hormone-
induced decay rateγ for three different initializations of the
agent position. For each parameter value six distances of the
trajectory to the maximum of the light gradient during the
last 3000 time steps are plotted (3000, 2500, . . . , 500, 0 time
steps before the numerical integration was stopped). Clearly
two phases are detected. The distances above a distance of
100 correspond to the maximal possible distance that can
be obtained by a robot (by driving in a straight line). Close
to optimal parameter settings are found by choosing param-
eters with low distances. However, the parameters are not
fully mutually independent.
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(a) Scan over the diffusion constantD.
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(b) Scan over the steering intensityθ.
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(c) Scan over the hormone-induced decay rateγ.

Figure 5: Scan over different parameters showing the dis-
tance to the maximum of the gradient of 6 time steps dur-
ing the asymptotic behavior (3000, 2500, . . . , 500, 0 steps
before stopping to iterate) for three different initializations
of the agent’s positions (indicated by different colors). The
distances above 100 correspond to the maximal possible dis-
tance that is obtained by driving in a straight line. Clearly
two phases are detected.
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Multi-agent implementation of the second AHHS
controller

We tested the second AHHS controller in a multi-agent sim-
ulation of real robotic hardware, because we think that this
controller is especially interesting for robotics: It allows a
gradient ascent without any explicit memory of past sensor
values and without any directionality of the used sensor. To
test whether this concept works also in a more realistic en-
vironment (walls, obstacles, collision avoidance of robots)
compared to the mathematical model described above, we
implemented the AHHS controller in an individual based
multi-agent simulation as well. In our multi-agent simula-
tion, each robot can detect nearby obstacles through 2 IR
sensors which are mounted laterally. These distance sensors
emit a ‘collision stress’ hormone, which additionally acti-
vates the motor on the ipsi-lateral side. This leads to a turn-
ing away from the obstacle. This collision-avoidance behav-
ior was implemented in an AHHS controller in (Schmickl
and Crailsheim, 2009) where it is described in more detail.
The focal questions for our experiment described here are:
Will the collision-avoidance interfere with the phototactic
behavior of our above-mentioned second AHHS controller?
Will the phototactic behavior be adaptive to environmental
fluctuations? Will sensor noise affect the system? To inves-
tigate these questions we tested the combined AHHS con-
troller (collision avoidance and phototaxis) in a simulated
robotic arena which was bound by an arena wall. All sensor
data was affected by±25% uniform random noise. To test
the adaptability of the robots, we switched the position of
the simulated light source to the other side of the arena, as
soon as the robot approached the first optimum.

As can be seen in Fig. 6(a), the robot performs ‘normal’
collision avoidance behavior successfully when no light spot
is present in the arena. As soon as the light spot is forming a
gradient pointing towards the lower left corner of the arena,
the robot starts to approach it with its characteristic photo-
tactic behavior, see Fig. 6(b). After the robot approached
the light spot, we switched the lightspot’s position at a sud-
den and the robot changed its behavior and started to ap-
proach the new optimum, see Fig. 6(c). Fig. 7 shows the
dynamics of the forward-driving hormone and of the light-
induced hormone in the last two phases of the experiment.
It is clearly visible how the robot maximizes the light hor-
mone, thus it approaches the light spot, which, in turn, leads
to a lowering of the forward-driving hormone.

To perform a further test of this controller in the multi-
agent simulator, we performed additionally a test run, which
is shown in Fig. 1. In this run, the light spot was placed at
the right side of a lengthy arena and 5 robots started simul-
taneously at the left side of the arena. A wall narrows down
the possible paths from the left to right side of the arena
and the robots had to avoid each other, as well as the sur-
rounding outside wall. As the trajectories in Fig. 1 demon-
strate the robots successfully managed to approach the light

(a) No light spot in the habitat.

(b) Light spot in the lower left corner.

(c) Light spot moved to the upper right spot.

Figure 6: Trajectories of robots in three phases of our ’dis-
turbance’ experiment. Without any light spot, the robot per-
forms only collision avoidance. As soon as the light spot is
in the left lower corner, the robot approaches it in the char-
acteristic phototactic behavior. As soon as the light spot is
shifted to the right upper arena corner, the robot changes its
behavior and approaches the new optimum.

spot. The robot-to-robot interactions led to even more com-
plex trajectories compared to those of the single-robot runs.
We assume that such swarm effects can be exploited to kick
robots out of circular trajectories that surround local optima.
This will be tested in future studies.
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Figure 7: Hormone values in the AHHS controller that gov-
erned the robot’s behavior in the ‘disturbance’ experiment,
which is depicted in figure 6.

Implementation of the AHHS in robotic hardware
Based on the results we obtained from our simulation stud-
ies, we implemented the algorithm of the second AHHS con-
troller (described above) on a robotic platform. We used an
‘e-puck’ robot (Mondada et al., 2009) for this experiment.
The robot was equipped with only one light-sensor on top,
pointing upwards. Therefore, the light sensor reports local
luminance without any directional information. Also, the
robot is equipped with two wheels (differential drive). The
‘forward hormone’ is steadily produced and decays propor-
tionally, establishing an equilibrium that in turn determines
the robots general forward speed. The ‘light hormone’ of
the AHHS is emitted in response to light sensation, increas-
ing the decay rate of the ‘forward hormone’ to slow the right
wheel, thus inducing a curved trajectory. For the AHHS, we
used the following parameterization:β1 = 0.04, β2 = 0.04,
D = 0.015, α = 0.1, γ = 0.03, andσ = 0, 055. The
light sensor reports sensor values between0 (absolute dark-
ness) and1 (maximum luminance) with a noise factor of
about0.2. Because the arena was bounded by a wall, we
implemented a collision-avoidance behavior based on the
8 IR proximity sensors of the e-puck robot. This behavior
overruled the AHHS control when the robot approached a
wall. In (Stradner et al., 2009), we showed that this kind
of collision-avoidance behavior can also be built using an
AHHS control.

For this experiment, we used an arena (2.0m× 1.8m) with
two light emitters in opposing corners (top left and bottom
right). At first, only one emitter (top left) was switched on.
The robot was placed directly under the other, switched off,
light source with a heading pointing away from the light op-
timum. The robots objective was to navigate to the brightest
spot in the arena, directly under the light emitter (top left).
After the robot had reached the light spot, the light emitter
was switched off, while the other emitter was switched on

Figure 8: Composite image of the robotic implementation of
the light-seeking AHHS in an e-puck robot. The two light
emitters can be seen in the top left and bottom right corners.
The robot trail, here captured using a phosphorescent paint,
shows the spiral-way approach to the top left corner and the
bottom right corner.

(bottom right). The robots task was now to locate and navi-
gate to the new light optimum.

Figure 8 shows, that the robot (running the AHHS) per-
forms the spiral-way target approach towards the light gradi-
ent successfully. It can be seen that the light sensor’s noise is
significantly reduced in both hormone levels, thus enabling
the smooth spiraling movement of the robot.

CONCLUSIONS AND FUTURE WORKS
Conclusions
We have successfully demonstrated that a simple bio-
inspired AHHS controller can be used to achieve phototactic
behavior in autonomous robots. The controller is simple, so
that it can be easily analyzed and studied with mathemat-
ical differential-equation models. Using this technique we
analyzed the emerging phototactic behavior of two different
controller setups, both based on different AHHS configu-
rations. Both setups managed to perform phototaxis with
just one single illuminance sensor, having a different sen-
sor characteristic in each setup. Our mathematical anal-
ysis shows that the more interesting (and more complex)
behavioral patterns can be produced with the second con-
troller. This is especially interesting, because in this con-
troller setup, the sensor offers no directionality and pastin-
formation is never explicitly stored in a memory system.
This means that the robot does not simply compare old and
new sensor data and performs no memory-based gradient as-
cent. The behavior also differs significantly from classical
Braitenberg vehicle approaches (Braitenberg, 1984).

One important aspect of simple mathematical models is
that they allow exhaustive parameter sweeps in reasonable
computational time. From our performed parameter sweeps
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we conclude that the modeled AHHS controllers have a de-
fined, but wide, range of parameters that lead to the desired
phototactic behavior. The tests in the multi-agent simulation
show, that this phototactic behavior can be performed, even
with an underlying obstacle avoidance, with a more realis-
tic robotic habitat and with a huge amount of sensor noise.
And even multiple and frequent robot-to-robot interactions
did not significantly impair the robot’s ability to approach
the desired target. In addition, the ‘disturbance experiments’
showed that the emerging phototactic behavior is stable on
the one hand and flexible on the other hand. The AHHS
controller has also been shown to work on real robotic hard-
ware, in our case the e-puck robot. It performed a smooth
spiral-way target approach similar to those in the multi-agent
simulation. Furthermore it could adapt to the changing en-
vironment, when the light source switched places.

Future Works
In the future, we plan to use Evolutionary Computation
to optimize parameter sets of our AHHS systems. We
plan to implement a novel way of Artificial Evolution, so
that evolutionary operators can ‘create’ new hormones and
new sensor-to-hormones and hormones-to-actuator links. In
addition, we plan to extend the system to multi-modular
robotics, so the virtual hormones can be exchanged by
linked robotic modules. This way, we plan to mimic the
evolutionary step from uni-cellular to multi-cellular organ-
ism, like it happened several times in the natural evolution
of life forms.
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Abstract 
Simple distributed strategies that modify the behaviour of 
selfish individuals in a manner that enhances cooperation or 
global efficiency have proved difficult to identify. We consider 
a network of selfish agents who each optimise their individual 
utilities by coordinating (or anti-coordinating) with their 
neighbours, to maximise the pay-offs from randomly weighted 
pair-wise games. In general, agents will opt for the behaviour 
that is the best compromise (for them) of the many conflicting 
constraints created by their neighbours, but the attractors of the 
system as a whole will not maximise total utility. We then 
consider agents that act as 'creatures of habit' by increasing 
their preference to coordinate (anti-coordinate) with whichever 
neighbours they are coordinated (anti-coordinated) with at the 
present moment. These preferences change slowly while the 
system is repeatedly perturbed such that it settles to many 
different local attractors. We find that under these conditions, 
with each perturbation there is a progressively higher chance of 
the system settling to a configuration with high total utility. 
Eventually, only one attractor remains, and that attractor is very 
likely to maximise (or almost maximise) global utility. This 
counterintutitve result can be understood using theory from 
computational neuroscience; we show that this simple form of 
habituation is equivalent to Hebbian learning, and the improved 
optimisation of global utility that is observed results from well-
known generalisation capabilities of associative memory acting 
at the network scale. This causes the system of selfish agents, 
each acting individually but habitually, to collectively identify 
configurations that maximise total utility.  

Selfish Agents and Total Utility 
This paper investigates the effect of a simple distributed 
strategy for increasing total utility in systems of selfishly 
optimising individuals. The broader topic concerns many 
different types of systems. For example, in technological 
systems, it is often convenient or necessary to devolve control 
to numerous autonomous components or agents that each, in a 
fairly simple manner, acts to optimise a global performance 
criterion: e.g. communications routing agents act to minimise 
calls dropped, or processing nodes in a grid computing system 
each act to maximise the number of jobs processed (1,2). 
However, since each component in the network acts 
individually, i.e., using only local information, constraints 
between individuals can remain unsatisfied, resulting in 

poorly optimised global performance. In an engineered system 
one could, in principle, mandate that all nodes act in accord 
with the globally optimal configuration of behaviours 
(assuming one knew what that was) – but this would defeat 
the scalability and robustness aims of complex adaptive 
systems. The question for engineered complex adaptive 
systems then, is the question of how to cause simple 
autonomous agents to act ‘smarter’ in a fully distributed 
manner such that they better satisfy constraints between 
agents and thereby better optimise global performance.  

Meanwhile, in evolutionary biology it appears that in 
certain circumstances symbiotic species have formed 
collaborations that are adaptive at a higher level of 
organisation (3), but it has been difficult to integrate this 
perspective with the assumption that under natural selection 
such collaborations must be driven by the selfish interests of 
the organisms involved (4,5). In social network studies there 
is increasing interest in adaptive networks (6) where agents in 
a network can alter the structure of the connections in the 
network. Of particular interest is the possibility that by doing 
so they may increase the ability of the system to maintain high 
levels of cooperation (7,8). However, a general understanding 
of how agents on a network modify their interactions with 
others in a way that increases total cooperation is poorly 
understood. In each domain we are, at the broadest level, 
interested in understanding/identifying very simple 
mechanisms that might cause self-interested agents to modify 
their behaviour, or how their behaviours are affected by 
others, in a manner that increases adaptation or efficiency 
either globally or at a higher-level of organisation than the 
individual.  

Taking an agent perspective, the obvious problem is this: If 
it is the case that agents collectively create adaptation that is 
not explained by the default selfish behaviours of individuals, 
then it must be the case that, on at least some occasions, 
agents take decisions that are detrimental to individual 
interests. If this were not the case then there is nothing to be 
explained over and above the selfish actions of individuals. 
But if it is the case, then this runs counter to any reasonable 
definition of a rational selfish agent. In what sense could it be 
self-consistent to suggest that a selfish agent has adopted a 
behaviour that decreased individual utility? One way to make 
sense of this is the possibility that, at the time that the agent 
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takes this action, it appears to them be the best thing for them 
– that the agent is no longer making decisions according to the 
true utility function but some distortion of it that alters their 
perception of the utility of that action. If somehow the 
perception of an agent were distorted in the right way, so that 
the action that it preferred, the one that it thought was best for 
it, was in fact the action that was globally optimal, then a 
rational agent with this distorted set of preferences could 
increase global efficiency even at the cost of personal utility. 
One might assume that this is easier said than done – but in 
this paper we suggest that the reverse is true; it is easier to do 
than to explain how it works. However, the general problem 
and the essence of the strategy we investigate is 
straightforwardly introduced by means of the following 
simple parable. Although this makes the concepts intuitively 
accessible it might tend to cast the model in a narrow 
interpretation – it is, of course, not really a model about 
scientists and their drinking habits, but a general model of 
interacting agents on a network with pair-wise constraints 
between binary behaviours. 

Consider a community of individuals (e.g. researchers) in a 
social network. Each has an intrinsic symmetric compatibility, 
or ‘complementarity’, with every other individual that 
determines the productivity/pay-off of collaborating with 
them. Each evening all researchers attend one of two 
intrinsically equal public houses (or other such collaborative 
projects) initially at random. Individuals must decide which to 
attend based solely on who else attends that venue. Each 
individual seeks to maximise their scientific productivity by 
attending the pub that, on that night, maximises the sum of 
compatibilities with other researchers and minimises 
incompatibilities. Assessing the company they find at any 
moment, individuals therefore (one at a time in random order) 
may choose to switch pubs to maximise their productivity 
according to the locations of others. Since each individual has 
compatibilities and incompatibilities with all other 
individuals, each must choose the pub that offers the best 
compromise of these conflicting interests. Since 
compatibilities are symmetric, the researchers will quickly 
reach a configuration where no-one wants to change pubs (9), 
however, this configuration will not in general be the 
arrangement that is maximal in total productivity, but merely 
a locally optimal configuration.  

This describes the basic behaviour of agents on the 
network. Our aim is to devise a simple individual strategy that 
causes researchers to make better decisions about when to 
change pubs such that total productivity is maximised. This 
will necessarily mean that some researchers, at some moments 
in time, must change pubs even though it decreases their 
individual productivity. 
 Surprisingly, we find that this can be achieved (over many 
evenings) by implementing a very simple rule – each 
individual must develop a preference for drinking with 
whichever other researchers they are drinking with right now. 
As Crosby, Stills and Nash put it “If you can’t be with the one 
you love, honey, love the one you’re with” (10). Since we 
already know the arrangements of researchers will be initially 
random and, most of the time, at best sub-optimal, this seems 
like a counter productive strategy. But, in fact we find that it 

is capable, given enough evenings and slowly developed 
preferences, of causing all researchers to develop preferences 
that cause them to make decisions that maximise total 
productivity reliably every evening. 
 The agents that we model are therefore not wholly selfish 
agents – they sometimes take actions that do not maximise 
individual utility, which is the point of the exercise after all. 
But neither are they overtly cooperative or altruistic agents. 
They are simply habitual selfish agents. In this paper we are 
not directly addressing why it might be that selfish agents act 
as creatures of habit, although we will discuss this briefly. But 
we suggest this type of distorted perception of a true utility 
function, one which agents come to prefer familiarity over 
otherwise obvious opportunities for personal gain, is one 
which does not require any teleological or, certainly, any 
centralised control and is therefore relevant to many domains. 
 In the next two sections we will detail an illustration of this 
strategy and the results we observe. In the Discussion section 
we will outline how this result can be interpreted in terms of 
adaptive network restructuring. Briefly: Initially, interactions 
between agents are governed by a network of intrinsic 
constraints (compatibilities), and latterly they are governed by 
a combination of these intrinsic constraints plus the 
interaction preferences that the agents have developed. The 
new behavioural dynamics of the agents caused by interaction 
preferences can therefore equally be understood as a result of 
changes to connection strengths in the effective interaction 
network. The increased global utility observed can then be 
explained using theory from computational neuroscience. In 
particular, we can understand how the system as a whole 
improves global adaptation via the observation that when each 
agent acts as a creature of habit it changes the effective 
dependencies in the network in a Hebbian manner (11,12). 
This means that through the simple distributed actions of each 
individual agent, the network as a whole behaves in a manner 
that is functionally equivalent to a simple form of learning 
neural network (13). In this case, the network is not being 
trained by an external training set, but instead is ‘learning’ its 
own attractor states, as we will explain. We discuss how a 
separation of the timescales for behaviours on the network and 
behaviours of the network (i.e. changes to network structure) 
is essential for this result.  

Methods 

Default agents 
Our model involves N=100 agents playing two-player games 
on a fully connected network (Table 1). Specifically, for each 
game (i.e. each connection in the network), there is a single 
symmetric payoff matrix, Uij, which defines for agents i and j 
either a coordination game (α=1, β=0) or anti-coordination 
game (α=0, β=1) with equal probability (Table 1).  

Player 2  
A B 

A α,α β,β Player 
1 B β,β α,α 

Table 1: Payoff for (player 1, player 2). 
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Games are played in extensive form, i.e., initially all agents in 
the network are assigned a behaviour at random, and then 
each agent in random order is permitted to update its 
behaviour (to either A or B). Each agent does so according to 
a best response strategy, i.e., to adopt the behaviour (choose a 
pub) that maximises its utility, ui (Eq.1) given the behaviours 
(pub choices) currently adopted by its neighbours: 

€ 

ui ( t ) = Uij (si ( t ),s j ( t ))
j

N

∑           (1) 

where Uij(x,y) is the payoff received by player i when player i 
plays strategy x and player j plays strategy y (according to 
Table 1 above), and sn(t) is the strategy currently played by 
agent n. Behaviours are updated in this manner repeatedly. 
Each agent is involved in many games but can adopt only one 
behaviour at any one time, thus coordinating with one 
neighbour may preclude coordinating with another, and so 
each agent must therefore adopt the behaviour that is the best 
compromise of these constraints. By using a symmetric game, 
Uij=Uji, we can ensure that the system will reach a stable fixed 
point (9), i.e. a configuration where no agent wants to change 
behaviour unilaterally (14). Moreover, this configuration will 
be a local optimum in the total or global utility, G, of the 
system which is simply the sum of individual utilities (9) 
(Eq.2).  

          (2) 

However, in general, the stable configuration reached from an 
arbitrary initial condition will not be globally maximal in total 
utility. If the system is repeatedly perturbed (reassigning 
random behaviours to all agents) at infrequent intervals (here 
every 1000 time steps = one evening), and thereby allowed to 
settle, or relax, to many different local equilibria (on different 
evenings), the behaviour of the system given these default 
agents can be described by the distribution of total utilities 
found at the end of each of these ‘relaxations’ (Fig. 1.c).  

Creatures of habit 
We seek a simple distributed strategy that causes agents to 
make different (hence unselfish) behavioural choices in 
particular contexts in such a manner that configurations of 
higher global utility are attained or high global utility 
configurations are attained with greater reliability (i.e. from a 
greater number of random initial conditions). To this end we 
investigate agents that act as 'creatures of habit' by increasing 
their preference to coordinate with whichever neighbours they 
are coordinated with at the present moment (regardless of 
whether this is presently contributing positively or negatively 
to their utility). Specifically, in addition to the ‘true’ utility 
matrix, Uij, each agent also possesses a ‘preference’ matrix, 
Pij, for each of its connections. These are used to modify the 
behaviour of the agent such that it chooses the behaviour that 
maximises its ‘perceived utility’, pi, (Eq.3), instead of its true 
utility (Eq.2) alone: 

€ 

pi ( t ) = Uij (si (t ),s j (t )) + Pij ( t )(si (t ),s j (t ))[ ]
j

N

∑     (3) 

where Pij is a pay-off matrix that represents an agent’s 
preference for the combination of behaviours si and sj. The 
perceived utility is thus simply the sum of the true utility plus 
the agent’s preferences. Each agent has a separate preference 
pay-off matrix for each other agent. All preference payoff 
matrices are initially set to zero, such that the initial dynamics 
of the agents are as per the default agents. But as the values in 
these matrices change over time they may come to 
collectively overpower the tendency to maximise true utility 
and thereby cause agents to make different decisions about 
which behaviour is best for them to adopt.  

It should be clear that it is possible in principle, with 
knowledge of the globally optimal system configuration, to 
assign values to each of the Pij matrices that will cause agents 
to adopt behaviours that maximise global system utility 
instead of choosing behaviours that maximise individual 
utility and thereby failing to maximise total utility. But our 
question then becomes how to enable agents to develop, via a 
simple distributed strategy (without knowledge of the global 
optimum, of course) such a perception of interactions with 
others that causes them to make these globally optimal 
decisions.  

The strategy we investigate is very simple – we assert that 
each Pij matrix is updated so as to increase the agent’s 
perceived utility at the current moment. Specifically, 
whenever an agent’s behaviour has just been updated 
(whether it changed behaviour or not), with probability rp = 
0.0001 all of its Pij matrices will also be updated. To decide 
how to update each Pij matrix, one of two possibilities is 
considered (chosen at random), either  = Pij(t)+A or = 

Pij(t)-A, where A is the adjustment matrix defined in Table 2. 
If pi(t)_given_  > pi(t)_given_

€ 

Pij  then Pij(t+1)=  else 

Pij(t+1)= 

€ 

Pij . 
 

Player 2  
A B 

A r -r Player 
1 B -r r 

Table 2: adjustment matrix A (r=0.005) 
 

This strategy has the effect of increasing agent i’s 
preference for coordinating or anti-coordinating with agent j 
according to whether it is currently coordinating or anti-
coordinating with agent j, respectively. Note that this 
preference is not sensitive to whether the interaction between 
these two agents is currently contributing positively to the 
utility of agent i; an agent increases its preference for the 
current combination of behaviours irrespective of whether 

. It is thereby simply reinforcing a 

preference for doing more of what it is currently doing with 
respect to coordinating with others (i.e. I’m in the same pub 
with them now, so change my preference so I like being in the 
same pub with them a little more or dislike it less). This is a 
counterintuitive strategy in the sense that it can increase the 
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preference for coordinating with other agents even when Uij 
defines an anti-coordination game, and vice versa. Note that 
this habituation does not alter the independent preference for 
playing behaviour A or B, but instead alters the preference for 
coordinating behaviours with others. 

Results 
The system is run for 1000 relaxations, of 1000 time steps 
each, without habituation (i.e. default agents). Example 
trajectories of total utility for individual relaxations are shown 
in Fig1.a. The total utility at the end point of each relaxation is 
shown in Fig.1.b (first 1000 relaxations). The system is then 
run for 1000 relaxations with habituation (i.e. r=0.0005). As 
the preference utility matrices change over time the 
distribution of local optima found changes (Fig.1.b, 
relaxations 1001-2000). We see in these figures that the 
probability of finding the configurations with high total utility 
increases over time, such that the trajectories of the system 
after habituation (Fig.1.c) find high-utility configurations 

reliably. Histograms of the total utilities found before and 
after habituation are shown in Fig.1.d. 

These results therefore show that habituation of agent 
interactions, created by developing a preference for whatever 
combination of behaviours is currently observed, has the 
effect of causing agents to adopt different behaviours in some 
situations (essentially because the resulting combination of 
behaviours has been experienced more often in the past). 
Specifically, since without habituation agents adopt 
behaviours that maximise their individual (true) utility, so the 
different behaviours adopted with habituation are therefore 
behaviours that (at least temporarily) decrease their true utility 
– otherwise the trajectories would not be different (neutral 
changes are very rare in this system). Over time agents 
therefore come to choose behaviours that decrease their 
individual utility in certain circumstances, but that allow the 
system to ultimately reach states of global utility higher than 
would have been otherwise possible. Accordingly, trajectories 
before and after habitation are different, but more specifically, 
the behavioural choices that agents make after habituation 
increase total system utility and are in this well-defined sense 
more cooperative.

a)     c)  

b)    d)  

 

Fig.1. Behaviour of the system using default (no habituation) and habituating agents. a) Some example trajectories of system 
behaviour before habituation – each curve represents one relaxation (N=100, relaxation length 10N) – vertical axis is the total system utility 
(G, Eq 2); b) utilities of attractor states visited (i.e. end points of curves like those in (a)) without habituation (relaxations 1-1000) and 
during habituation (relaxations 1001-2000, r=0.0005); c) example trajectories after habituation; d) histogram of attractor utilities before 
habituation (relaxations 1-1000) and after habituation (relaxations 2001-3000), showing that after habituation the system reliably finds one 
of the highest total-utility configurations from any initial condition. 
 



Proc. of the Alife XII Conference, Odense, Denmark, 2010 663

Results collected for 50 runs (each consisting of 1000 
relaxations before habitation, 1000 relaxations during 
habituation and 1000 relaxations after habituation) show that 
with the current parameters, the global utility of system 
configurations found after habituation is on average in the 93rd 
percentile of global utilities of system configurations found 
before habituation. While this represents a considerable 
increase in the likelihood of finding a high utility system 
configuration, it is clear that with the current learning rate 
(r=0.0005) habituation will not always cause the system to 
ultimately settle at the global optimum. However, it is 
important to note that this is simply due to the learning rate 
used; with a sufficiently low learning rate, after habituation 
the system will only ever find the global optimum utility 
configuration (13,15). 

 Discussion 

Adaptive networks  
 
An agent system where actions are governed by a perceived 
utility (rather than the true utility) is formally equivalent to a 
system where actions are governed by a new network of 
constraints (rather than the original network of constraints) 
(28). Here we have been modelling a system that is fully 
connected with coordination and anti-coordination games 
played on the edges of that network. This is equivalent to a 
weighted network, where edges are weighted by ωij=±1, and 
all games are coordination games (α=1, β=0) with pay-off 
ωijUij. (i.e. each of the table entries in Uij is multiplied by the 
scalar ωij). The structure of the games defined by the pay-off 
matrices is thus converted into the connections of the network 
(with identical pay-off matrices). Further, the addition of a 
preference matrix (restricted to the limited form investigated 
here) is equivalent to an alteration of this weighting; 
specifically, (ωij+kijr)Uij, where r is the learning rate (as 
above) and kij is the number of times agents i and j have been 
coordinated in the past minus the number of times they have 
been anti-coordinated (note that kij will always equal kji, 
ensuring that the connections remain symmetric if they start 
symmetric). Thus, although conceptually contrasting, 
changing the perception of pay-offs for agent i via a 
preference matrix is functionally identical to altering the 
connection strengths between the agents. We chose not to 
introduce the model in these terms, in part because it is 
important to realise that although an agents’ behaviours will 
be governed by the new connections, the effects on global 
‘true’ utility that we are interested in must be measured using 
the original connection strengths (13) (it should be clear that if 
this were not the case it would be trivial for agents to alter 
connections in a manner that would make satisfying 
constraints easier for them and thereby increase total utility). 
Nonetheless, this perspective helps us to connect the current 
work with studies of adaptive networks (6) where agents on a 
network can alter the topology (here, connection strengths) of 
connections in the network. We can thereby understand the 
system we have illustrated to be an example of how agents on 

a network can ‘re-structure’ the network in a manner that 
enhances the resolution of conflicting constraints and thereby 
global efficiency. Other works in this area include that of (7,8) 
where agents on a network, playing a variety of games, re-
wire their links when their utility is low, but keep the local 
topology unchanged if their utility is high. Although there are 
several important technical differences with the current work, 
the basic intuition that agents should alter network topology to 
make themselves happier (or at least, alter it if they are 
unhappy) is common to both. 
 In essence, the form of habituation we model is a very 
simple form of re-structuring; it simply asserts that 
connections between agents increase or decrease in strength in 
a manner that reinforces the current combinations of 
behaviours observed. The effects of this habituation are put 
into context by considering the problem at hand: we are 
dealing with a limited form of global optimisation problem 
(16) in which local optima (and the global optimum) are 
created by the inability to resolve many overlapping low-order 
dependencies (17, 13). When using simple local search on this 
problem (i.e. agents without habituation), there is only a small 
probability of finding configurations with high global utility 
(Fig.1.a and b); however, they are found nonetheless. 
Habituation outcompetes local search, not by finding new 
configurations of absolute higher utility (although this may 
occur in some cases), but instead by progressively increasing 
the probability of finding high utility configurations, until 
only one configuration is ever found (which is very likely to 
be one of high utility). We can therefore view habituation as a 
mechanism that gradually transforms the search space of the 
problem from one with many varied local optima, to one with 
a single (and very likely high utility) optimum, which will 
always be reached; furthermore, it does so via a simple 
distributed strategy. 

Specifically, although it is not immediately obvious from a 
static analysis of the connection matrix which connections 
should be increased and which decreased in order to cause 
selfish agents to solve the problem better, the necessary 
information is naturally revealed by allowing the system to 
repeatedly settle to local optima and reinforcing the 
correlations in behaviours so created. These correlations are 
created by the connections of the original network in an 
indirect manner. For example, a particular constraint may 
often remain unsatisfied in locally optimal configurations 
even though the direct connection defining this constraint 
states that it is just as valuable to satisfy it as any other 
connection. Then if a constraint is often easily satisfied its 
importance is strengthened, if it is equally often satisfied and 
unsatisfied it remains unchanged on average, and when agents 
are on average unable to satisfy it its importance is weakened 
and eventually its sign can be reversed. This causes the system 
to, gradually over time, pay more attention to the connections 
that can be simultaneously satisfied and weaken or soften the 
constraints that cannot be satisfied. One way to understand the 
result of this adaptive constraint relaxation/exaggeration is 
that agents become specialists, i.e. selectively attuned to some 
constraints more than others. That is, whereas the default 
agents are generalists who persist in trying to satisfy all 
constraints whether satisfiable or unsatisfiable, habituating 
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agents, through the self-organisation of the behaviours on the 
network, come to specialise in a manner that ‘for their own 
comfort’ (i.e. for the immediate increase of their perceived 
utility) fits together better with one another but thereby 
actually resolves more of the system constraints in total.  

Self-structuring adaptive networks, neural network 
learning and associative memory 
How this type of adaptive network, with very simple, local 
modification of connections, comes to maximise global utility 
can be explained formally using theory from computational 
neuroscience. Specifically, the behaviour of the network of 
default agents detailed above is identical to the behaviour of 
the discrete Hopfield network (9) (which is just a bit-flip hill-
climber (15)) and when connections between nodes increase 
or decrease in strength in a manner that reinforces the current 
combinations of behaviours this is formally equivalent to 
Hebbian learning (13). Hebb’s rule, in the context of neural 
network learning, is often represented by the slogan neurons 
that fire together wire together, meaning that synaptic 
connections between neurons that have correlated activation 
are strengthened. This learning rule has the effect of 
transforming correlated neural activations into causally linked 
neural activations, which from a dynamical systems 
perspective, has the effect of enlarging the basin of attraction 
for the current activation pattern/system configuration. This 
type of learning can be used to train a recurrent neural 
network to store a given set of training patterns (9) thus 
forming what is known as an ‘associative memory’ of these 
patterns. A network trained with an associative memory then 
has the ability to ‘recall’ the training pattern that is most 
similar to a partially specified or corrupted test pattern. 
 Formally, a common simplified form of Hebb’s rule states 
that the change in a synaptic connection strength ωij is Δωij = 
δsisj where δ>0 is a fixed parameter controlling the learning 
rate and sn is the current activation of the nth neuron. Here by 
changing the pay-off matrix of each individual by kij(t)rUij 
where kij(t) is the correlation of behaviours at time t, we are 
effecting exactly the same changes. Thus the habituating 
agents each modify their perceived utilities in a manner that 
effects Hebbian changes to connection strengths – which they 
must if these preferences are to mean that this behaviour 
combination is preferred more. This equivalence at the agent 
level has the consequence that the system of agents as a whole 
implements an associative memory. Since this is a self-
organised network, not a network trained by some external 
experimenter, this is not an associative memory of any 
externally imposed training patterns. Rather this is an 
associative memory of the configuration patterns that are 
commonly experienced under the networks intrinsic dynamics 
– and given the perturbation and relaxation protocol we have 
adopted, which means that the system spends most of its time 
at locally optimal configurations, it is these configurations that 
the associative memory stores. 

From a neural network learning point of view, a network 
that forms a memory of its own attractors is a peculiar idea 
(indeed, the converse is more familiar (18)). Forming an 
associative memory means that a system forms attractors that 

represent particular patterns or state configurations. For a 
network to form an associative memory of its own attractors 
therefore seems redundant; it will be forming attractors that 
represent attractors that it already has. However, in forming an 
associative memory of its own attractors the system will 
nonetheless alter its attractors; it does not alter their positions 
in state configuration space, but it does alter the size of their 
basins of attraction (i.e. the set of initial conditions that lead to 
a given attractor state via local energy minimisation).  

Specifically, the more often a particular state configuration 
is visited the more its basin of attraction will be enlarged and 
the more it will be visited in future, and so on. Because every 
initial condition is in exactly one basin of attraction it must be 
the case that some attractor basins are enlarged at the expense 
of others. Accordingly, attractors that have initially small 
basins of attraction will be visited infrequently, and as the 
basins of other, more commonly visited attractors increase in 
size, so these infrequently visited attractors will decrease. 
Eventually, with continued positive feedback, one attractor 
will out-compete all others, resulting in there being only one 
attractor remaining in the system.  
 But what has this got to do with resolving the constraints 
that were defined in the original connections of the system? 
One might expect, given naïve positive feedback principles, 
that the one remaining attractor would have the mean or 
perhaps modal global utility of the attractor states in the 
original system; but this is not the case (Fig.1.d). In order to 
understand whether the competition between attractors in a 
self-modelling system enlarges attractors with especially high 
total utility or not, we need to understand the relationship 
between attractor basin size and the total utility of their 
attractor states. At first glance it might appear that there is no 
special reason why the largest attractor should be the ‘best’ 
(highest utility) attractor – after all, it is not generally true in 
optimisation problems that the basin of attraction for a locally 
optimal solution is proportional to its quality. But in fact, 
existing theory tells us that this is indeed the case (17) for 
systems that are additively composed of many low-order 
interactions. Specifically, in systems that are built from the 
superposition of many symmetric pair-wise interactions, the 
height (with respect to total utility) of an attractor basin is 
positively related to its width (the size of the basin of 
attraction), and the globally optimal attractor state has the 
largest basin of attraction. One must not conflate, however, 
the idea that the global optimum has the largest basin, with the 
idea that it is a significant proportion of the total configuration 
space and therefore easy to find: In particular, the global 
optimum may be unique, whereas there will generally be 
many more attractors that lead to inferior solutions, and 
importantly, the basins of these sub-optimal attractors will 
collectively occupy much more of the configuration space 
than the basin of the global optimum.    

Given that high utility attractors have larger basins than 
low utility attractors, they are therefore visited more 
frequently and therefore out-compete low utility attractors in 
this self-modelling system. Thus, (in the limit of low learning 
rates such that the system can visit a sufficient sample of 
attractors) we expect that when a dynamical system forms an 
associative memory model of its own utility maximisation 
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behaviour it will produce a ‘model’ with ultimately only one 
attractor, and this attractor will correspond to the globally 
optimal minimisation of constraints between variables in the 
original system (13).  
 This is not an entirely satisfactory conclusion however. It 
implies that the system only fixes on the global optimum 
because the global optimum has already been visited many 
times in the past. But this is not the full story. A final part of 
the puzzle is provided by the well-known ability of Hebbian 
learning to generalise training patterns and create learned 
attractors that represent new combinations of common 
features from the training patterns rather than the training 
patterns per se. In associative memory research the creation of 
such ‘spurious attractors’ is generally considered to be a 
nuisance (18,19), but it in fact represents a simple form of 
generalisation that is important for our results. Producing new 
attractor states that are new combinations of features (sub-
patterns) observed in the training patterns (20) enables the 
globally optimal attractor to be enlarged even though it has 
not yet been visited. Basically, this occurs because when 
Hebbian learning is applied to a training pattern it not only has 
the effect of enlarging the basin of attraction for this pattern, 
but also it enlarges the basin of attraction for all 
configurations in proportion to how many behaviour-pairs 
they share in common. The global optimum is, by definition, 
the configuration that has the most simultaneously satisfied 
constraints, and this ensures that, on average at least, it tends 
to share many behaviour combinations in common with 
locally optimal configurations that have many constraints 
simultaneously satisfied (but not as many as globally 
possible). 

Lastly on this equivalence, it is essential to recognise how 
the separation of the timescales for behaviours on the network 
and behaviours of the network (i.e. changes to network 
structure) influence this result. Getting the timescale of the 
changes to network structure correct is equivalent to the 
problem of setting the learning rate correctly in a neural 
network. If connections are modified too slowly then learning 
is unnecessarily slow. And if learning happens too quickly the 
network will only learn the first local optimum it arrives at, or 
worse, if the learning rate is really high, the system could get 
stuck on some transient configuration that is not even locally 
optimal. More generally, if most learning happens at or near 
random initial conditions then the patterns learnt will be 
similarly random. It is therefore essential that the system is 
allowed to relax to local optima, and that most learning 
therefore happens at local optima, so that the patterns learned 
are better than random. But if the system is not perturbed 
frequently enough or vigorously enough, and consequently 
spends all of its time at one or a few local optima, the system 
will simply learn these attractor configurations and will not 
generalise correctly. 

Limitations and further work 
Why would agents be creatures of habit? In this paper we 
have mandated that (otherwise selfish) agents behave as 
creatures of habit and examined the consequences of this 
simple local mechanism on global system behaviour. But we 

are also interested in the question of whether selfish agents, 
given the opportunity to alter their preferences according to 
their own self-interest, would alter them in a Hebbian/habit 
forming manner. Intuitively, we suggest that this is indeed the 
case – that forming preferences for the status quo is a natural 
strategy for any agent that favours exploitation over 
exploration, as any non-teleological agent must.  

There is some interesting subtlety involved here however. 
If an agent’s perceptions only alter the perceived utility of its 
actions, and not its true utility, then an agent can only assess a 
proposed change in perception as having some real 
consequence for its utility if that change in perception causes 
it to change its behaviours and hence its true utility. Note that 
when the system is at a locally optimal configuration all 
changes to behaviours are deleterious, whereas Hebbian 
changes to preferences never cause a change in behaviour and 
are therefore neutral. This indicates a preference for Hebbian 
changes in a somewhat subtle sense. However, when 
behaviours are discrete (and deterministic) as in the current 
model, most changes to preferences, either Hebbian or non-
Hebbian, will not cause a change in behaviour and will 
therefore be neutral.  

Investigations using alternate behavioural models are 
therefore being developed elsewhere to address this question. 
This relates to work we are developing in the context of co-
evolving species in an ecosystem where species may evolve 
the coefficients of a Lotka-Volterra system (21,22) or evolve 
symbiotic relationships (23). This connects the current work 
with concepts we refer to as ‘social niche construction’ 
(24,25,26,27). 

Altruism in populations of self-interested individuals has 
been well researched (e.g. 29); however, very few previous 
studies investigate games on adaptive networks. Those that do 
(7,8) differ in a number of ways from the current model, in 
that here, we: a) only address one type of game 
(coordination/anti-coordination games), b) play games in 
normal form, and c) only allow strategies to be adopted to a 
best-response strategy, rather than by replication equations. 
  However, despite the novelty of the current model, there 
appears to be an important similarity between this and many 
other game theoretic models (network or otherwise) which 
observe flourishing altruism. Whether they do so by giving 
agents memory of their past games (30), allowing ‘reputation’ 
(31), rewiring links (7,8) or changing link weightings (15), all 
of these models promote altruism by giving the system a 
method of passing information from one game to the next, that 
is not available in the simple, non-altruistic case. This 
information passing effectively forms a distributed system-
level memory, allowing optimisation over multiple games – a 
mechanism that unites these disparate mechanisms under a 
common theme.  

Finally, it should be noted that the Hopfield model is not 
new (9), and its capabilities for Hebbian learning are well 
known (18). However, here we provide a reinterpretation of 
the system, staging it in a generic, game-theoretic network 
scenario. This opens up the possibility of reinterpretation of 
some of the analytically solved variants of the Hopfield model 
(e.g. 32,33). 
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Conclusions 
This paper has investigated the effect of a simple distributed 
strategy for increasing total utility in systems of selfish agents. 
Specifically, habituating selfish agents develop a preference 
for coordinating behaviours with those they are coordinating 
with at the present moment, and henceforth adopt behaviours 
that maximise the sum of true utility and these preferences. 
We show that this causes agents to modify the dynamical 
attractors of the system as a whole in a manner that enlarges 
the basins of attraction for system configurations with high 
total utility. This means that after habituation, agents 
sometimes make decisions about their behaviour that may (at 
least temporarily) decrease their personal utility but that in the 
long run increases (the probability of arriving at 
configurations that maximise) global utility. We show that the 
habituating agents effectively restructure the connections in 
the network in a Hebbian manner and thus through the simple 
distributed actions of each individual agent, the network as a 
whole behaves in a manner that is functionally equivalent to a 
simple form of learning neural network. This network 
improves global adaptation by forming an associative memory 
of locally optimal configurations that, via the inherent 
generalisation properties of associative memory, enlarges the 
basin of attraction of the global optima. This work thereby 
helps us to understand self-organisation in networks of selfish 
agents and very simple processes that subtly deviate selfish 
agents in the direction that maximises global utility without 
overtly prescribing cooperation or using any form of 
centralised control. 
 
Acknowledgments: Alex Penn, Simon Powers and Seth 
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Extended Abstract

Microblogging is a form of online communication by which users broadcast brief text updates, also known as tweets, to the
public or a selected circle of contacts. A variegated mosaic of microblogging uses has emerged since the launch of Twitter
in 2006: daily chatter, conversation, information sharing, and news commentary, among others (Java et al, 2007). Regard-
less of their content and intended use, tweets often convey pertinent information about their authors mood status. As such,
tweets can be regarded as temporally-authentic microscopic instantiations of public mood state (O‘Connor et al, 2010).
Here we perform a sentiment analysis of all public tweets broadcasted by Twitter users between August 1 and December
20, 2008. For every day in the timeline, we extract six dimensions of mood (tension, depression, anger, vigor, fatigue,
confusion) using an extended version (Pepe and Bollen, 2008) of the Profile of Mood States (POMS), a well-established
psychometric instrument (Norcross et al, 2006; McNair et al, 2003). We compare our results to fluctuations recorded
by stock market and crude oil price indices and major events in media and popular culture, such as the U.S. Presidential
Election of November 4, 2008 and Thanksgiving Day (see Fig. 1). We find that events in the social, political, cultural and
economic sphere do have a significant, immediate and highly specific effect on the various dimensions of public mood. In
addition, we found long-term changes in public mood that may reflect the cumulative effect of various underlying socio-
economic indicators. With the present investigation (Bollen et al, 2010), we bring about the following methodological
contributions: we argue that sentiment analysis of minute text corpora (such as tweets) is efficiently obained via a syntac-
tic, term-based approach that requires no training or machine learning. Moreover, we stress the importance of measuring
mood and emotion using well-established instruments rooted in decades of empirical psychometric research. Finally, we
speculate that collective emotive trends can be modeled and predicted using large-scale analyses of user-generated content
but results should be discussed in terms of the social, economic, and cultural spheres in which the users are embedded.
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Abstract 
Empirically, culture is that complex whole which results from 
the interaction of a multitude of ideas, individuals, behaviors, 
groups, artifacts, workplaces and architectures, each distributed 
uniquely and differentially in space and time.  Artificial culture 
is the program of describing, understanding and explaining 
such human complex systems in computer simulations.  Several 
recent conferences in evolutionary computation (i.e. dynamical 
hierarchies, computational synthesis, and dynamic ontology) 
have focused on the problem of automatically creating novel 
and compounded emergences in natural and artificial worlds.  
This paper reviews current progress toward that goal from the 
perspective of an anthropologist. 

Cultural Complexity 

Each culture is as different as are its members.  Moreover, 
the minds of individual members of a culture are often 
filled with different and competing thoughts. To further 
complicate matters, cognition is unevenly distributed not 
only among people, but also among their behaviors and the 
products of their technology. Culture is the totality that 
emerges, through complex webs of mutual causation at 
increasing levels of complexity, through dynamical 
hierarchical synthesis, from such seemingly dissimilar 
things:   
 

Ideas, and other atomic particles of human culture, often 
seem to have a life of their own – organization, mutation, 
reproduction, spreading, and dying.  In spite of several 
bold attempts to construct theories of cultural evolution, 
an adequate theory remains elusive.  The financial 
incentive to understand any patterns governing fads and 
fashion is enormous, and because cultural evolution has 
contributed so much to the uniqueness of human nature, 
the scientific motivation is equally great.  (Taylor & 
Jefferson, quoted in Gessler, 2003). 

Culture shifts… with kaleidoscopic variety, and is 
characterized internally not by uniformity, but by 
diversity of both individuals and groups, many… in 
continuous and overt conflict in one sub-system and in 
active cooperation in another.  (Wallace, 1961:28). 

Humans create their cognitive powers by creating the 
environments in which they exercise those powers.  
(Hutchins, 1995:xvi). 

More formally, we might define culture as a complex network 
of activity through multidimensional multiagent webs of 
mutual causation, a computational process that is both 
massively parallel and simultaneous.  Culture is the emergent 
product of the variety of beliefs held by a single individual 
and the variety of individual behaviors that constitute a 
society.  Complexities of this kind are everywhere and 
everywhere they defy casual description. Although complex 
adaptive systems are largely intractable to traditional 
discursive and mathematical representations, the "new 
sciences of complexity" offer some fresh alternatives. 
Beginning about 1950, we created computational languages 
for describing, explaining and understanding these dynamic 
technicalities. Artificial culture1 is a program that extends the 
trajectory that began with distributed artificial intelligence 
and grew from artificial life to artificial society, towards a 
new social scientific practice. Creative, critical, experimental 
and empirically informed, artificial culture is the project of 
describing the technical complexities of culture in 
computational terms.  Much existing discursive and 
mathematical cultural theory may be amenable to translation; 
much may need to be completely reformulated.  In short, we 
need to encode a population of agents, along with their social 
and physical environments, inside simulations.  This enables 
us to begin to describe, understand and explain the complex 
causal web of biological and cultural evolutionary processes 
that distinguished us as humans from our primate ancestors. 
Experiments of this kind allow us to evaluate the nature of 
alternative counterfactual "what if” scenarios by observing the 
entailments of different initial patterns of similarity and 
difference, different constellations of individual and group 
(local and global) interaction and different degrees of 
ideational and material agency. Inspired by the 
epistemological convergence between evolution and 
computation (e.g. Rozenberg, et al. 2010), such investigations 
offer rich new insights into cultural complexity:  the 
individual and society (local versus global), distributed 
cultural cognition (including the intermediation between 
humans and their technologies) and the coevolution of the 
unlimited variety of cultural things-that-think2 and things-
that-work.  Vital to understanding the evolution of culture is 
understanding networks of trust, secrecy and deception, the 
human practice of judging the reliability of other individuals 
in exchanging matter and  information, the practice that builds 

                                                             
1 A term originally suggested by Michael Dyer. 
2 A phrase originated by the MIT Media Lab. 
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reputation.   Artificial culture enables us to describe and 
experiment with the coevolution of seemingly disparate 
processes in natural culture and it suggests to us some new 
critical perspectives from which to evaluate our methods of 
anthropological inquiry.   

Metaphors and Media 

Although cultural evolution clearly outpaces genetic evolution 
in the natural world, it does so only to the degree in which it is 
freed from the constraints of biological materiality.   Cultural 
change, considered as the reproductive cycle, takes place in 
seconds, minutes, days, years or decades, whereas human 
biological change takes at least a decade and a half.  In the 
natural biological and cultural worlds the media of 
evolutionary transmission behave quite differently: genes 
reproduce slowly; ideas reproduce quickly.  In the artificial 
world of the computer, whether modeled on a cultural or 
genetic metaphor, the medium through which evolution 
unfolds is essentially the same for both.  The generations over 
which evolution unfolds are constrained by the same system 
clock.  Although cultural evolution proceeds more quickly 
than biological evolution in the natural world, there is no a 
priori reason to believe that cultural processes will be quicker 
than genetic ones when evolution runs in simulation.  
Computational algorithms metaphorically modeled on culture 
may well run faster than those metaphorically modeled on 
biology, but even if we find this to be true, the argument that 
what holds true for the natural world must also hold true for 
the artificial world is simply unsupported (Gessler, 1998).  
Consequently, when we create simulations using artificial 
agents, we must critically question the representational 
analogies and metaphors we use.   
 Hierarchically synthesized emergences are likely to be 
more ephemeral and complex in culture than they are in 
physics, chemistry or biology, and certainly of a completely 
different nature.  In those non-cultural domains, spatial and 
temporal proximity may be adequate for creating many 
emergent syntheses.  The hierarchical two-fold emergences of 
monomers to polymers and polymers to micelles, spanning 
three levels of hierarchical complexity, may be readily 
visualized as aggregates of dots in three dimensions 
(Rasmussen, 2002).  However, in cultural domains, although 
space and time may adequately define some features of human 
interaction (such as households, settlements and trading 
patterns) other emergent objects are more amorphous and 
atemporal.  Cultural emergences are more difficult to 
circumscribe.  How would a program automatically recognize, 
capture and repurpose the emergence of a concept such as 
trade, reciprocity or kinship in an evolutionary simulation?  
How would a programmer design a graphical user interface to 
visualize an emergent instance of an institution?  In creating 
artificial cultures for social scientific research, one must be 
careful not to collapse the spatial, temporal and physical 
constraints of the real natural world into unrealistic artificial 
world representations.  To exacerbate the problem, if one used 
natural or artificial cultures as inspiration for creating 
populations of synthetic artificial software agents interacting 
on the Internet, would those same spatial, temporal and 
physical constraints, that were so important to a science of 
culture, take on completely different meanings for so-called 

cultures of software agents?  Can they really be “cultural 
agents” if they are so disembodied?  To what extent can 
software agents be expected to behave like natural human 
agents?  Should they even be modeled on human agents?  Or 
might they better serve our purposes if freed to shape 
themselves according to their own natures? 

Emergence 

Among the goals of the "new sciences of complexity," if not 
of all the sciences in general, is the explanation of emergence 
in the natural world.   In artificial worlds this translates to how 
to foster emergence in simulations.  We often choose to talk 
about emergence, metaphorically, as levels in a hierarchy.  
Much research focuses on defining the primitive elements of a 
simulation at a “lower (local) level” and fostering emergences 
at a “higher (global) level” of system behavior.  Several 
workshops and labs have focused on creating increasingly 
higher levels of emergence (Bilotta et al. 2003, Anonymous 
2010).   
 

Given a particular framework, there is a tight 
correspondence between the complexity of the simple 
objects used and the system’s ability to generate 
dynamical hierarchies….  The complex systems dogma 
encourages those studying dynamical hierarchies always 
to seek models with the simplest possible element.  Our 
ansatz, by contrast, encourages us to add complexity to 
system elements to explore more levels of the 
hierarchy…  Of course, we want to preserve the complex 
systems dogma to the extent that is possible; we want the 
simplest possible models of dynamical hierarchies.  But 
we want to stress that the complex systems dogma 
should not block us from building simulations with 
enough object complexity to model multilevel dynamical 
hierarchies successfully.  (Rasmussen, 2002:350). 

 
The term “emergence” conflates at least two entangled, yet 
distinct, meanings.  We may talk about it historically 
(diachronically), as the emergence of everything from the 
beginning of time to the present, and we may talk about it 
instantaneously (synchronically), as the structural foundation 
of  the moment.  Although the hierarchy of emergence, which 
we experience as the reality of this instant, may resemble the 
hierarchy of emergence, which historically enabled us to reach 
this point, they are qualitatively different.  The hierarchy of 
emergence that we experience as the reality of this instant is in 
an instantaneous state of self-creation and self-maintenance.  
From the smallest quark up to the largest quasar, everything in 
the “now” is held together by emergence.   Historically, if 
agriculture had not first emerged in Mesopotamia, it likely 
would have emerged somewhere else.  We don’t need to 
maintain every level of historical emergence in the present; it 
has passed.  However, if at this instant, sub-atomic particles 
should change their nature, all instants now and in the future 
would change dramatically.  Scenarios of the destruction of an 
emergent hierarchy in the “now” make good reading, such as 
the fictional account of the emergence of a seed crystal of 
“Ice-Nine,” a new solid form of water that melts at 114 
degrees (Vonnegut, 1963).  However, such collapses at a 
human scale are common.   
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 It is clear that in the natural world complexity evolves.  The 
big bang was arguably simpler than the universe today, the 
planets more complex than dust from which the condensed 
and contemporary organisms more complex than 
cyanobacteria.   Historical emergence builds the foundation 
for the instantaneous emergence of the “now.”  However, it is 
unclear to what extent both forms of emergence need to be 
represented in a simulation to produce persuasive results.  My 
use of the adjective “creative” in the title refers to those 
emergences which serve as primitives for yet higher levels of 
emergence.  They may perform this function autonomously as 
long as the causal infrastructure of their creation, from 
primitive to emergence, is maintained.  Alternatively, they 
may perform it by proxy if their form and functionality can be 
captured in some other medium and the causal infrastructure 
of their creation is abandoned3.  This is particularly likely if 
the maintenance of their proxy is less costly than the 
maintenance of the infrastructure of their creation, but other 
factors may come into play due to the different physical 
properties of that new medium.  The evolution of an efficient 
route between A and B is replaced by its proxy: a well 
travelled path, a cleared path, a road.  Mutually tolerated theft 
may lead to trade, a market, a designated market place.  The 
relative advantages of autonomous emergences requiring high 
maintenance versus proxy emergences requiring low 
maintenance (as well as intermediate states) depend upon the 
circumstances in which they are embedded.  Again it is 
interesting to look at science fiction to illustrate the point:  
Computist Paul Durham has created an artificial world called 
Elysium.  Within it he has programmed two artificial cultures, 
Permutation City and the Autoverse.  The inhabitants of 
Permutation City are modeled on their creators and called 
Copies.  They resemble humans but are constructed of ad hoc 
rules and equations patched in at a high level, without the 
historical or instantaneous emergent structures that support 
their “originals” in the natural world.  By contrast, inhabitants 
of the Autoverse, called Lambertians, evolved from a mutated 
artificial bacterium in situ and thus share their computational 
space with all the historical and instantaneous emergences that 
created them.  Clocks for these two artificial cultures tick at 
different rates.  Seven thousand years in Permutation City 
allow three billion years to pass in the Autoverse.  The 
Autoverse, because of the thick richness of its emergences, 
evolves, while Permutation City, due to its thin superficiality, 
does not (Egan, 1994).  
 At the level of simulating living and human systems, 
maintaining representations of all the preceding and 
underlying levels of historical and instantaneous emergence is 
untenable.  In this sense all our social science simulation 
models float, like Copies, upon a cloud of compromised 
reality.  In creating increasingly immersive and compelling 
models, in suspending disbelief, we run the risk of ignoring 
this.  In creating so-called “cultures” of software agents, we 
must be constantly aware that there is nothing underneath that 
cloud.  Perhaps our scientific and commercial agents should 
be sustained by historical and instantaneous emergence from 
the bottom-up, evolved solely from the primitives in the 
computational universe that they inhabit.  How might we best 

                                                             
3 See Koza et al. 2005 on automatically defined functions, etc. 

create an environment for their constructive coevolution with 
humans? 
 In The Emergence of Everything, 28 steps of historical 
emergence are identified (Morowitz, 2002).  Little, if any, 
discussion is devoted to the emergence of the instant.  
However, it is useful to look at his last six steps to see the 
scope of the challenge for understanding culture:   
 

• Hominization and Competitive Exclusion. 
• Toolmaking. 
• Language. 
• Agriculture. 
• Technology and Urbanization. 
• Philosophy. 

Culture 

“Culture” is a term that has enjoyed a profound freedom in its 
use and meaning, dancing here and there to the tempo of 
political correctness and situational ethics.  As a mark of 
status and distinction, it’s a thing to which you might aspire 
to, or oppose.  Culture in this sense is what is spoken of in 
circles of the arts, film, music, literature and fashion.  It is the 
“culture” preserved in museums, galleries, heritage sites, and 
tourist brochures.  In a world where political correctness 
demands that we respect cultural traditions and differences 
(c.f. Star Trek’s prime directive), it is ironically only those 
things about an “other” people that we find interesting and 
worthy of preservation from our own perspective that we call 
“culture.”  Lightheartedly, “culture” is everything we’ve got 
that our primate ancestors and relatives don’t.  What is it 
then? 
 Heralded as “a monumental work of historical and critical 
analysis,” two prominent anthropologists, Alfred Kroeber and 
Clyde Kluckhohn published Culture – A Critical Review of 
Concepts and Definitions (Kroeber, 1963).  Finding the origin 
of the word in its anthropological and technical sense in 1871, 
they trace its slow disassociation from the concepts of 
cultivation and civilization and from this research extract 
taxonomy of meanings: the margins will therefore be as 
follows: 
 

• Descriptive:  enumeration of content. 
• Historical:  social heritage or tradition. 
• Normative:  rules, ways, ideas & values plus behaviors. 
• Psychological:  a problem solving device, learning, 

habit, attitudinal relationships among men. 
• Structural:  pattern and organization. 
• Genetic:  product or artifact, ideas, symbols, what 

distinguishes us from animals. 
 
To those engaged in artificial life or artificial societies the 
term artificial culture evokes a scientific confrontation, the 
challenge of simulating emergence at the top of the scale of 
dynamical hierarchical synthesis.  To many anthropologists, 
humanists and social scientists alike, largely unaware of the 
advances and potentials of complex adaptive systems and 
evolutionary computation, the term artificial culture stirs up 
apprehension.  Some resent the intrusion of Western 
technology into the lives of “their people,” promoting 
“cultural relativism,” the privileging of “their peoples’” 
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epistemological and ontological views of the world over that 
of “Western science.”  Others express amusement, derisively 
observing that culture is, by its very definition, artificial, and 
that the phrase is thus redundant and consequently sterile.  
Others in the “cultural studies of science” focus on narrative 
and discursive strategies of explanation.  Some use traditional 
mindsets to study people who write and use simulations, but 
our goal is to use evolutionary and computational mindsets to 
study people by writing and using simulations.  Opponents of 
a science of culture frequently call themselves postmodernists, 
not realizing that postmodernism originally did not discount 
scientific knowledge.   A program of artificial culture is more 
closely allied to a posthumanist view (Hayles, 1999:2-3). 

Reputation 

Cognizers are those things-that-think, known or unknown, real 
or imagined, that occupy a person’s head.  They may also 
extended beyond a person’s head to include observed 
behavior, material artifacts such as a tally stick, a knotted cord 
(quipu), an abacus or computer and the larger spatial 
architecture of a home or workplace.  Without limiting the 
generality of the above, cognizers include beliefs, goals, plans, 
actions, images, algorithms, languages, observations, 
performances, desires, emotions, memories, dreams, fantasies, 
etc.  Cognizers, such as those for reputation, and their 
referents change at different times and in different situations.  
How are reputations formed, mediated and communicated?  
How are they manipulated?  Which are necessary and 
sufficient to explain the origins and maintenance of 
cooperation and competition in a scientific simulation? 
 The fitness (maintenance and origin) of any naturally or 
artificially synthesized dynamical hierarchy rests upon the 
fitness of the structure of its emergences and the fitness of the 
primitives that give rise to it.  In the cultural domain these 
factors are likely to be widely variable and unevenly 
distributed in space and time.  Cultural organization is 
conditional upon its individuals being recognized as “same” 
by one another, and the acquisition by each of information 
about others.  Such information, arising from personal or 
exchanged experience, constitutes a database of 
trustworthiness, credibility or “reputation.”  The human 
operations of creating, maintaining, manipulating and leveling 
reputations are complex.  But the human individual is not the 
only level at which reputation resides.  Agency may be 
invoked at many levels in a cultural setting.  Below the 
individual they might include agents in a cognitive society-of-
mind.  Above the individual they might include groups, their 
artifacts and behaviors.  Reputation is an attribute of agents at 
all these levels.  Thoughts and institutions have their 
reputations too.  Reputation does not come free.  
Misinformation and disinformation mingle coadaptively with 
uncorrupted information flow.  Reputation percolates through 
mazes of cognizers, individuals, groups, artifacts and 
behaviors.  Consequently, we should not be surprised to find 
reputation represented in more than one cultural medium, each 
adapted to a different niche or competing for the same niche.   
 Cognitive reputational schemes, natural or artificial, 
embodied in the mind or in the material artifactual world, each 
have concomitant costs and benefits.  The cognitive load 
(cost) of any particular medium of representing reputation is 

offset by its performance (benefit) in calculating fitness.  The 
cognitive compression of reputation can be beneficial.  But as 
much as cognitive compressions bring with them opportunities 
for creating yet more highly nested constellations of 
emergences, literally emergences of emergences, they have a 
down-side.  In compressing, encapsulating and simplifying 
representations of reputation, they leave behind the 
mechanisms of their origin and maintenance, and may lose 
relevance in their new instantiations. Cognitive algorithms are 
emergent processes and are subject to the same caveats 
introduced in the previous discussion of historical versus 
instantaneous emergence.  Each time an emergence is 
captured as a primitive for a higher level of emergence, it 
looses its infrastructure, and floats like a cloud in a thin 
atmosphere.   
 Growth in the new sciences of complexity relies on the 
intermediation of two lines of research.  On the one hand, we 
must develop an effective means of representing complexity, 
describing it and calculating its entailments.  On the other, we 
must examine the empirical world with freshly recalibrated 
eyes.  The two are intimately intertwined, for without an 
adequate language of description and synthesis, complexity 
will always lie just outside our ken, and without direct 
confirmation from the real world, complexity will simply be 
an empty speculation.  The psychology of perception implies 
that in the absence of a formal way of describing and talking 
about complexity one is likely not to recognize it in the world, 
and to settle for a simpler misperception.  Empirically, things 
that we do not understand, we often do not see.  Innovation in 
science requires new ways of looking at the world and new 
ways of looking at old theories and old data.  Discovery is 
seeing what has not previously been seen.   

Artificial Culture 

Artificial culture has been outlined in several previous 
publications (Gessler, 1994, 1995, 1996, 2003).  It would not 
only advance cultural theory in anthropology but also provide 
useful analogies and metaphors for research in evolutionary 
computation (Bäck, et al. 1997).  It should provide 
evolutionary computation with new cultural metaphors and 
analogies which will broaden historical reliance on biological 
analogies to evolution.  For anthropology, it should provide 
cultural theory with a realistic computational framework for 
describing, synthesizing, experimenting and assessing the 
entailments of a variety of human complex systems.  It would 
answer the skeptic’s taunt, “If you really know how culture 
works, then build me one!”  Culture is technically complex.  
Should our explanations of it be less so?  We can distinguish 
three major levels of cultural complexity.   Within each 
human head we find a multiagent multimodularity of thoughts 
insightfully explored in The Society of Mind (Minsky, 1985) 
and The Adapted Mind (Borkow, 1992).  Among human heads 
(among individuals) we find a distributed cultural cognition 
(Hutchins, 1995) dispersed among individuals, groups and 
institutions, as well as in their physical artifacts, workplaces, 
architectures and settlements.  Cognition is rarely the entire 
picture, so the dynamics of work, matter and energy 
exchanges among individuals, groups and their technologies 
may be equally important.  Artificial culture seeks a minimal 
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representation of objects and processes, a small core set of 
functionalities that are essential in explaining the desired 
aspects of the origins and evolution of culture.  It builds upon 
the practices of artificial life and artificial societies by 
imbuing its primitives with a richer mix of intellectual, social 
and environmental primitives, necessary and sufficient to give 
rise to cultural complexity.  It is useful to visualize artificial 
culture as the corner of a cube, situated in space equidistant 
from the major axes of artificial intelligence, artificial life and 
virtual environments.  In this position, it distributes the 
computational load of simulation equally among those three 
schools of complexity.   
 

 
Artificial culture can be an experimental vehicle for 
discovering what it minimally takes to build a culture, a 
desktop laboratory for evaluating theory against empirical 
observations by exploring alternative “what if” scenarios.  I 
do not expect it to be predictive in fine detail, but I do expect 
that it will be insightful in helping us to separate those 
explanations that are viable from those that are not.  If we can 
develop new approaches to social science theory by building 
leveraged computational models, models containing the 
minimal key features that produce maximal results, we can 
expect to advance both evolutionary computation and cultural 
theory. 
 Evolutionary computation is the convergence of a diverse 
collection of evolutionary algorithms.  It embraces the 
historically separate trajectories of genetic algorithms, 
evolutionary strategies, evolutionary programming, cultural 
algorithms and genetic programming (Fogel, 1998) in a 
cooperative enterprise to automatically construct dynamical 
hierarchies.  Under the rubric of a computational synthesis, it 
seeks, “formal algorithmic procedures that combine low-level 
building blocks or features to achieve given arbitrary high-
level functionality” (Lipson, 2002).  Cultural theory is an 
explicitly scientific enterprise in anthropology, a field that has 
traditionally had roots in both the sciences and the humanities.   
Cultural theory has made measured progress towards a 
Science of Culture (Harris, 1979).  Anthropology has also 
been traditionally divided over the relative importance of 
cognition versus materiality in cultural causation.  Two 
anthropologists have been particularly influential in 
articulating these relationships as “cultural materialism” 
(Harris, 1979 & 1998) and “culture processs” (Binford, 

2001)4.  A third expatriate anthropologist has extended 
cognition to the physicality of real-world artifacts.  Material 
culture has too often been neglected.   
 

I hope to evoke… an ecology of thinking in which 
human cognition interacts with an environment rich in 
organizing resources…  It is in real practice that culture 
is produced and reproduced…  I hope to show that 
human cognition is not just influenced by culture and 
society, but that it is in a very fundamental sense a 
cultural and social process.  To do this I will move the 
boundaries of the cognitive unit of analysis out beyond 
the skin of the individual person and treat (it) as a 
cognitive and computational system.  (Hutchins, 
1995:xiv).  

 
The “holy grail” of artificial life research is arguably 
understanding the bottom-up and top-down exchanges 
between local and global levels of complex adaptive systems, 
as each provokes emergences and constraints upon the other.  
This is also the goal of simulation in sociology, economics, 
political science, and anthropology. 
 

(Multiagent systems) have attained a level of maturity 
where they can be useful tools for sociologists…  (They) 
provide new perspectives on contemporary discussions 
of the micro-macro link in sociological theory, by 
focusing on three aspects of the micro-macro link:  
micro-to-macro emergence, macro-to-micro social 
causation, and the dialectic between emergence and 
social causation.  (Sawyer, 2003). 

 
Despite our tendency to speak about “the culture” of a people, 
culture is more than the often-cited “body of shared ideas and 
behaviors.”  That “sharedness” is not a sufficient explanation 
of cultural dynamics.  Cross-cutting shared concepts are 
abundant divergences and disagreements that are often the 
animating factors in exchanges, negotiations and the flow and 
quality of goods and information.  Culture has eloquently been 
described as the organization-of-diversity: 
 

Culture shifts in policy from generation to generation 
with kaleidoscopic variety, and is characterized 
internally not by uniformity, but by diversity of both 
individuals and groups, many of whom are in continuous 
and overt conflict in one sub-system and in active 
cooperation in another.  (Wallace, 1961:28). 

 
Fortunately, we are not fully enslaved by the languages, 
words, beliefs or categories that we generate and use to 
formulate our responses to the world.  We recognize and 
distinguish many more differences in objects and behaviors 
than we have symbols to express them.  In natural language 
metaphors and modifiers push and pull words in one direction 
or another to disambiguate their referents and meanings.  
Natural language is only one system of representation and 
reasoning, and although we accord it great respect, we must 
remember that each medium of representation has its 
distinctive costs and benefits.  Each has its specificities and 

                                                             
4 For opponents of these views see Geertz 1977 and Hodder 2001. 
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ambiguities, its own channel width and physical and energy 
requirements.  Without pretending to understand how the 
mind speaks to itself, I think it is clear that thoughts also flow 
through images and diagrams, gestures and emotions, a gentle 
touch and a bop on the head.  Science is a formalization of 
these more intuitive media of description and evaluation 
which grows by inventing new practices of representation and 
confirmation.  Science has become the art of building 
increasingly reliable, comprehensive and economical 
representations of the world.  Just as some modes of 
representation are more useful when confined to the mind of a 
human individual (e.g. meditation), others are more useful for 
exchanging information between individual minds (e.g. 
spoken discourse).  Mathematics inhabits both our minds and 
our technologies.  Computational simulation alone entrusts 
representations to the minds of our machines.  The downside 
of the mind of the machine is that it is beyond the ken of those 
who do not reason with machines.  “If you can’t wrap your 
mind around it intuitively, if you can’t understand it without a 
machine, how can you call it an explanation?“  It is unlikely 
that this epistemological myopia will change.  I won’t attempt 
a rebuttal here, but will simply echo Jay Forrester’s audacious 
claim: 
 

It is my basic theme that the human mind is not adapted 
to interpreting how social systems behave.  Our social 
systems belong to the class called multi-loop nonlinear 
feedback systems.  In the long history of evolution it has 
not been necessary for man to understand these systems 
until very recent historical times.  Evolutionary 
processes have not given us the mental skill needed to 
properly interpret the dynamic behavior of the systems 
of which we have now become a part.   
 In addition, the social sciences have fallen into some 
mistaken “scientific” practices which compound man’s 
natural shortcomings.  Computers are often being used 
for what the computer does poorly and the human mind 
does well.  At the same time the human mind is being 
used for what the human mind does poorly and the 
computer does well.  Even worse, impossible tasks are 
attempted while achievable and important goals are 
ignored.  (Forrester, 1971:61). 

 
Human cognition, whether biologically or culturally 
determined, is a composite of representations, a hall of 
mirrors, a set of nested Chinese boxes or Russian dolls.  The 
connections among these representations are in a continual 
state of flux and intermediation.  Computer scientists have 
proposed models of such complex cognitions.  Marvin Minsky 
invokes a cultural (he calls it a “societal”) metaphor of mental 
process.  Mind, he says, is a microcosm of society itself, with 
mental agents vying for control over the individual.  
Consciousness, he and others assert, sits as an epiphenomenal 
observer arrogantly taking all the credit. 
 

We’ll show that you can build a mind from many little 
parts, each mindless by itself.  I’ll call “Society of Mind” 
this scheme in which each mind is made of many smaller 
processes.  These we’ll call agents.  Each mental agent 
by itself can only do some simple thing that needs no 
mind or thought at all.  Yet when we join these agents in 

societies --- in certain very special ways --- this leads to 
true intelligence…  One trouble is that these ideas have 
lots of cross-connections.  My explanations rarely go in 
neat, straight lines from start to end.  I wish I could have 
lined them up so that you could climb straight to the top, 
by mental stair-steps, one by one.  Instead they’re tied in 
tangled webs.  (Minsky, 1985:17). 

 
Rodney Brooks cogently argues that intelligence and 
representation are not necessary for purposeful action.  He 
eats away at our conventional wisdom of what comprises 
intelligence: 

The so-called central systems of intelligence… (are) 
perhaps an unnecessary illusion…  (Perhaps) all the 
power of intelligence (arises) from the coupling of 
perception and actuation systems.  (Brooks, 1999:viii)  
The basic idea (of the first model) is that perception goes 
on by itself, autonomously producing world descriptions 
that are fed to a cognition box that does all the real 
thinking and instantiates the real intelligence of the 
system.  The thinking box then tells the action box what 
to do, in some sort of high-level action description 
language.  (The second model) completely turns the old 
approach to intelligence upside down.  It denies that 
there is even a box that is devoted to cognitive tasks.  
Instead it posits both that the perception and action 
subsystems do all the work and that it is only an external 
observer that has anything to do with cognition, by way 
of attributing cognitive abilities to a system that works 
well in the world but has no explicit place where 
cognition is done.  (Brooks, 1999:x). 

 
Computational views of mind and culture offer new 
challenges to both social and computer science.  The 
anthropologist may frame cultural explanations using 
advanced computational modeling.  The evolutionary 
computist may invoke the complexities of culture in designing 
new algorithms for creativity and optimization.   
 Anthropology ambitiously makes claim to the entire 
domain of human cultural evolution, from our primate 
ancestors through small-group hunter-gatherers to civilized 
society and the global institutions of our present.  It also often 
advocates a holistic view of culture.  Consequently, 
anthropologists have repeatedly tried to transcend short-term 
historical particulars by contemplating the major factors that 
advanced our cultures to their present reflexive state of 
complexity (Boyd & Richerson, 1988, Johnson & Earle, 
1988).  A no less ambitious book attempting to find 
commonalities among all “Living Systems” was published a 
decade earlier.  It won this praise from Margaret Mead: 
 

Scientists, from anthropologists to political scientists, 
and all students of living systems will find here a way of 
looking at changing scales, but comparable problems, 
which will enormously illuminate and simplify their 
attempts to relate one level of living system to another.  
(Miller, 1978: dustcover).     

 
It seems appropriate that half-a-century after the popular 
acknowledgement of the “computist” and the “thinking 
machine” (Anon, 1950) and the recent publication of a 
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milestone book on an artificial society known as Sugarscape 
(Epstein & Axtell, 1996 and Gessler, 1996), we should finally 
begin to translate this limited discursive theorizing into robust 
computational models in an effort to create a fledgling 
artificial culture.   

A Grand Challenge 

Two conferences were recently held on the ontological and 
epistemological convergences between evolutionary and 
computational thought.  The first was in connection with the 
Eighth International Conference on Artificial Life in Sydney, 
a workshop on “Computational Synthesis: From Basic 
Building Blocks to High Level Functionality”.  The second 
was in connection with the American Association for 
Artificial Intelligence Spring 2003 Symposium in Stanford, a 
workshop on “Modeling Dynamical Hierarchies in Artificial 
Life.” Based upon discussions at these workshops, the 
challenge of artificial culture should be to explore models of 
dynamical hierarchical emergence in which selection is free to 
operate concurrently at different levels of complexity 
(cognitive agents, individuals and groups).  This implies a 
connectedness between different informational media 
(ideational, behavioral and physical) as well as a fluid scheme 
for allocating the membership of agents to a variety of levels.  
Interactions need to be further mediated by space and time.  
Within this milieu of connections, reputations will be free to 
form and flow among individuals, and they will be captured 
(frozen with some loss of information about their formation) 
for subsequent reuse.  In other words, the simulation must 
include functionality for the formulation of the reputation of 
each cognitive, individual and group agent by those same 
agents, as well as the reliability of that information.  
Individuals make their own choices of partners or groups with 
whom to cooperate, based upon their individual beliefs and 
perceptions of categories of group membership.  Individuals 
are free to display informative, misinformative or 
disinformative cues about those affiliations and reputations, or 
not.  It is important to explore the coevolution of cultural 
things-that-think and things-that-work: the cognitive, material 
and energetic exchanges that are the minimal elements of an 
artificial culture.  How complex do simulation primitives need 
to be, how rich do embedded emergences need to be, in order 
to foster further hierarchical emergences?  No one really 
knows.  
 A theoretical model is no better than the empirical 
observations that it attempts to explain.  While detailed 
accurate, precise and repeatable prediction is too much to 
expect from a minimal artificial culture, prediction in the 
sense of building an insightful envelope of possibilities is a 
sufficient goal.  Anticipating the criticism that such models 
are only “toy” explanations, I would ask how many of our 
discursive or mathematical models of social processes are any 
more than “toy?”  The world is always much richer than 
simulations, and we must strike a balance between what is 
small and insightful and what is large and cumbersome.  In 
short, our models must be guides to, not substitutes for, the 
empirical world: 
 

"That's another thing we've learned from your Nation," 
said Mein Herr, "map-making. But we've carried it much 

further than you. What do you consider the largest map 
that would be really useful?" 
 "About six inches to the mile." 
 "Only six inches!” exclaimed Mein Herr. "We very 
soon got to six yards to the mile. Then we tried a 
hundred yards to the mile. And then came the grandest 
idea of all! We actually made a map of the country, on 
the scale of a mile to the mile!" 
 "Have you used it much?" I enquired. 
 "It has never been spread out, yet," said Mein Herr: 
"the farmers objected: they said it would cover the whole 
country, and shut out the sunlight! So we now use the 
country itself, as its own map, and I assure you it does 
nearly as well.  (Carroll, 1982:727). 

 
After nearly two decades of archaeological, ethnohistorical 
and ethnographic research among the Haida hunter-fisher-
gatherers of the Pacific Northwest Coast, I could find no 
adequate single-cause explanation of culture change.  Various 
lines of empirical investigation show abundant evidence for 
complexly shifting factors coming into play from pre-
European contact days (circa 1750) to the present, a period of 
250 years of cultural evolution.  Early records were limited in 
scope, and observers “spun” assorted biases into their 
observations, but there are many clear indications of tipping-
points and small events leading to major structural changes.  
Historical specificities continually spawn irreversible 
emergences, echoing the properties of chaotic systems: 
sensitivity to initial (and subsequent) conditions.   
 Clearly, developing a program of artificial culture will not 
be an easy undertaking.  No single implementation of a 
simulation is likely to address more than a few of the unique 
processes extant in cultural evolution.  Nevertheless it is 
important to develop examples of how these processes build 
creative emergences culminating in the variety of complex 
cultural systems we see today.   Although the origins of 
culture may be traced back to our hominid ancestors 4.4 
million years ago and are beyond the scope of this paper, 
Lovejoy’s articulation of an “emergent adaptive suite” of 
causally interrelated processes is prescient (Lovejoy, 2009) 
precisely because these processes break the boundaries among 
biology, behavior and technology, all arguably elements of 
proto-culture.  In much the same way, the processes of culture 
and emergence that I have discussed form a culturally 
emergent adaptive suite.  What we initially need are 
simulations which explore information processing and storage 
across media (intermediation), matter and energy processing 
and storage across industries (technology) and patterns and 
modalities of emergence across levels (creative emergence).  
Researchers in evolutionary computation will often tell you 
that breaking a problem into simpler modules precludes much 
of the potential for finding optimal solutions for the larger 
problem.  Creativity and innovation in evolution often result 
from finding and exploiting unlikely coevolutionary 
interactions.  A striking example is endosymbiosis, the 
evolution from prokaryotes to eukaryotes as the symbiotic 
inclusion of one species inside the body of another.  When 
boundaries become permeable, causation may become 
complicated.  Evolutionary computists Karl Sims, John Koza 
and David Fogel have casually characterized the code 
underlying successfully evolved complex entities as 
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unintelligible, incoherent and diffuse5.  Perhaps culture is no 
less messy underneath. 
 The grand challenge is to synthesize a system rich in the 
physicality of its components, letting boundaries dynamically 
evolve with minimal human intervention.  In order to 
accomplish this, a minimal artificial culture should be seeded 
with a population of individuals, each with the properties of 
age, sex and parentage, and situated in a physical environment 
with both space and time.   Each should initially have four 
potentially competing goals:  food, shelter, security and 
reproduction.  Cooperative associations should be free to form 
among causal agents at the cognitive, individual and group 
levels.  At each level a dynamically derived fitness value 
should be computed.  As individuals and groups interact, 
hierarchical selection is likely to emerge, although it may be 
difficult to identify because of the shifting boundaries of the 
units of selection.   Fitness advantages and disadvantages 
should accrue to each level of selection.  Social structures 
would likely form around basic friendship and kinship-derived 
privileges and obligations, theories of mind, observed 
behaviors, as well as the accrued prestige, credit ratings and 
reputations of individuals and groups.  Information acquired 
first-hand or second-hand from individuals should be tagged 
as such.  Information about information, in expectation that 
the reputation of information will also be an important 
commodity, should also be kept.  The perception of 
boundaries among associated cognitions, individuals, groups 
and artifacts are expected to be different for each individual.   
 I hope that incorporating many of these processes into 
simulations which exhibit limited historical and instantaneous 
emergence will help to foster proxied (intermediated) creative 
emergences, offering new rungs on which cultural theory may 
climb to look back upon the evolution and origins of culture. 
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Abstract 

This paper describes the concepts of concretization and social 
imaginary and argues that they provide helpful hints to a more 
advanced cultural understanding of robot technology, so the 
human system may exploit the full potential of such living 
technology.  

Introduction 

New advances in robot technology have made self-managed 
automated machines possible that not only do things for 
humans, but also affect the way we relate to the world, 
perceive ourselves and other people (Turkle, 2006). Such 
machines have been called “social robots” (Hegel, Muhl, and 
Wrede, 2009) and also viewed as being a part of the concept 
of “living technology” (Bedau, et al. 2010). Social robots are 
gradually finding their way into the healthcare sector where 
the prospects are fascinating, compelling, and controversial 
(Shibata and Wada, 2008; Dautenhahn, 2007). In this process, 
culture plays an important role in the selection and adoption 
of technological solutions (Steers, Meyer and Sanche, 2008).  
 
The way a society responds to the potential use of robots in 
healthcare is influenced by norms, values, and symbols that 
often remain unquestioned by the parties involved even 
though they are profoundly influential. However, there is still 
not a proper theorization of robot technology and culture, 
although research in recent decades in various ways has 
revealed facets of this research. Concepts of concretization 
(Simondon, 1990) and social imaginary (Castoriadis, 1987) 
provide helpful hints toward a more advanced cultural 
understanding of robot technology. These concepts offer the 
first step to making a link between culture and non-human 
agents, so the human system may take full advantage of living 
technology.  

The existence of technical objects 

Gilbert Simondon is among the first to discuss the relation 
between culture and technical developments (Simondon, 
1990). He argues that resistance to technology is embedded in 
culture. His thesis is that because technical objects evolve 
independently of the human they create tension between 
innovation and culture. This prevents some innovations from 

developing. To exploit the full potential of technology, 
Simondon believes it is necessary to reintegrate culture and 
technology.  
 
In his theory mekanology, the technical item is socially 
autonomous as it undergoes a technical genesis, called the 
concretization process. It is a process in which a technical 
object goes through a series of stages, from the abstract to the 
concrete and thereby refines its functionality, independent of 
human interference. The genesis of a technical object is not to 
cover a specific need, but to create synergy and convergence 
between technical objects’ functions. For example, a robot is 
an expression of such a technical process of creation 
(innovation) more than the result of specific human needs 
(Simondon, 1990).  
 
Simondon divides the technical development into three levels: 
the technical element, the technical individual, and the 
technical ensemble (a network). The technical element 
constitutes the artifact and may be organized in relation to 
other elements. It is not a tool and does not have an associated 
environment. It can be compared to an organ in a body. 
However, contrary to an organ in the human body an element 
can be separated from the technical individual. Technical 
individuals are combined elements and associated 
environments. Examples of such individuals are a house, car 
or computer. The technical ensemble is a network of technical 
subjects (subsystems) which are arranged in relation to the 
outcome of their function. An example of a technical 
ensemble is a nursing home. It is on the ensemble level where 
the technical and economic are combined. 
 
Following the theory of mekanology, living technology has 
reached a level, where it can be comprehended as something 
in-between a technical individual and a technical ensemble, 
but the final step, network integration, can only be achieved if 
it is constituted in the human sphere. With reference to 
Simondon this poses some important questions: When the 
technology becomes as complex, integrated, and far-reaching 
as living technology, what happens to human control and the 
impact technology has on the perception of control?  
 
To elaborate on these points we can bring in Cornelius 
Castoriadis’ perspective insofar that living technology is both 
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an outcome and product of culture, i.e. part of the social-
historical imaginary.  

The social imaginary of living technology  

Living technology (e.g. robots) is considered highly equivocal 
(Weick, 1990), which means that the valorisation of such a 
new technology is neither fully given in advance nor once and 
for all, but is an on-going result of social interactions and 
discourses (e.g. Castoriadis, 1984). What will be considered 
“good” technologies, are those that meet the socially 
negotiated needs and not necessarily those technologies, 
which the experts see as the most suitable. In light of this, 
different technological solutions for various problems are 
related to the needs and wants of the people in a given culture, 
be it on societal, organizational, or local levels. 
 
Not only is robot deployment negotiated socially among and 
between actors in healthcare, but it is also recursive because it 
both enables and constrains individual action as well as 
providing the precondition for the production of new types of 
technologies (Orlikowsky, 1992; Morin, 1986). At the same 
time, the social structure will be affected and reorganized 
within that circle of innovation.  
 
Thus, technology should be seen as an institution of society 
that produces meaning in the same way that language does 
since both constitute the human as well as the real-rational 
world (Castoriadis, 1984, p. 240). This implies an imaginary 
dimension in the application and use of robot technology. 
According to Castoriadis significations that individuals and 
collectives use to make sense of reality both constitutes the 
physical world and organizes social life (Castoriadis, 1987, p. 
146). The social imaginary significations are a form of self-
creation and organizing that “have to confer meaning on 
everything” (Bouchet, 2007, p. 36) and are visible through the 
prevailing societal discourses (Castoriadis, 1987). 

Conclusion 

A cultural understanding of living technology may be seen as 
a function of the social imaginary. Meanings concerning 
living technology are generated by cultural images that 
reinforce these meanings. Uncertainty about the technology 
will stabilize through the negotiation of meanings, which aims 
at achieving rhetorical closure and societal consensus. This is 
a process that goes on parallel to the concretization process, 
but needs to be coupled together in order to get the full 
potential of living technology. 
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Abstract

The lonely researcher trying to crack a problem in her office still 
plays an important role in fundamental research. However, a vast 
exchange, often with participants from different fields is taking 
place in modern research activities and projects. In the “Research 
Value Chain” (a simplified depiction of the Scientific Method as a
process used for the analyses in this paper), interactions between 
researchers and other individuals (intentional or not) within or 
outside their respective institutions can be regarded as 
occurrences of Collective Intelligence. “Crowdsourcing” (Howe 
2006) is a special case of such Collective Intelligence. It leverages
the wisdom of crowds (Surowiecki 2004) and is already changing 
the way groups of people produce knowledge, generate ideas and 
make them actionable. A very famous example of a 
Crowdsourcing outcome is the distributed encyclopedia 
„Wikipedia“. Published research agendas are asking how 
techniques addressing “the crowd” can be applied to non-profit 
environments, namely universities, and fundamental research in 
general.
This paper discusses how the non-profit “Research Value Chain”
can potentially benefit from Crowdsourcing. Further, a research 
agenda is proposed that investigates a) the applicability of 
Crowdsourcing to fundamental science and b) the impact of 
distributed agent principles from Artificial Intelligence research
on the robustness of Crowdsourcing. Insights and methods from 
different research fields will be combined, such as complex 
networks, spatially embedded interacting agents or swarms and 
dynamic networks.
Although the ideas in this paper essentially outline a research 
agenda, preliminary data from two pilot studies show that non-
scientists can support scientific projects with high quality 
contributions. Intrinsic motivators (such as “fun”) are present,
which suggests individuals are not (only) contributing to such 
projects with a view to large monetary rewards.

Introduction

The Scientific Method in empirical science is constantly being 
improved to investigate phenomena, acquire more knowledge, 
correct and/or integrate previous knowledge. Beyond a 
constant evolution, several researchers and meta-researchers
(e.g., epistemologists and research philosophers) have tried to 
develop a process view of the main steps conducted in most 
forms of fundamental research, independent of discipline or 
other differentiating factors.  In the context of this process, 
many interactions between groups of people and individuals 

are taking place: e.g., idea generation, formulation of 
hypotheses, evaluation and interpretation of gathered data, 
among many others. Furthermore, large project conglomerates 
(e.g., EU-funded research projects or projects funded through 
the Advanced Technology Program and others in the U.S., see 
Lee and Bozeman 2005, p.673ff.) increase the number of such 
interactions. In many cases, the scientist groups involved self-
organize their work and contributions according to their 
individual strengths and skills (and other measures) to reach a 
common research goal, without a strong centralized body of 
control (Melin 2000, Stoehr and WHO 2003, Landry and 
Amara 1998). The interactions between these individuals and 
groups can be seen as instances of Collective Intelligence, 
including consensus decision making, mass communications, 
and other phenomena (see e.g., Hofstadter 1979).
In what follows, we will select examples of Collective 
Intelligence, which we base on the following broad definition 
(Malone et al. 2009, p.2): “groups of individuals doing things 
collectively that seem intelligent”. Collective Intelligence
involves groups of individuals collaborating to create synergy, 
something greater than the individual part (Castelluccio 
2006).
Although we will mainly use the generic term “Collective 
Intelligence”, or “CI”, we will use an interpretation that is 
very close to “Crowdsourcing”, because we are going beyond 
the traditional research collaborations (that, of course, are also 
a form of Collective Intelligence): Crowdsourcing, connoted 
as “Wikipedia for everything” by the inventor of the term 
(Howe 2006), has influenced several researchers and 
practitioners alike. It builds on the concept of User Innovation 
(von Hippel 1986) among others. 

Although there are currently many definitions and similar 
concepts being discussed in the surrounding space (radical 
decentralization, wisdom of crowds, peer production, open 
innovation, mass innovation, wikinomics, and more (Malone 
2004, Surowiecki 2004, Benkler 2006, Chesbrough 2003,
Leadbeater and Powell 2009, Tapscott and Williams 2008), 
we will use the following definition of Crowdsourcing:

“Crowdsourcing is the act of taking a job traditionally 
performed by a designated agent (usually an employee) 
and outsourcing it to an undefined, generally large group 
of people in the form of an open call.” (Howe 2010)

For our purposes we understand “Crowdsourcing” as an 
umbrella term for the nuances indicated by the other terms
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Crowdsourcing is a relevant construct for our research 
because it describes research collaboration that radically 
enlarges the pool of (potential) scientific collaborators. 
Research projects, such as NASA’s Clickworkers and the 
“self-organized” research collaboration identifying the cause 
of  the severe acute respiratory syndrome SARS (Stoehr and 
WHO 2003), go beyond traditional forms of collaboration by 
embracing electronic communication and cooperation 
between a very large group of scientists.  
The applicability of Crowdsourcing approaches to the solution 
of scientific problems can be motivated by a simple 
probabilistic argument: a sufficiently large crowd of 
independent individuals will, in a majority yes/no vote, decide 
properly, with high probability, even if the individuals have 
only a slight bias towards the correct answer.  Surowiecki 
(2004) shows by example that crowd based decision finding 
also works for questions with answers more complex than 
yes/no. Moreover, it is known that virtual stock exchanges 
estimating (betting on), e.g., results of elections deliver 
surprisingly precise predictions, even if the participants are 
subject to a broad variety of influences and cannot be 
regarded as independent. The implementation of 
Crowdsourcing in a scientific context first requires identifying
the type of questions suitable to being answered by a crowd 
(e.g., strategic decisions that benefit from experience but for 
which no rational solution scheme exists) and second finding 
a balance for antagonistic system properties, such as, e.g., 
communication between agents vs. the independency of their 
respective decisions. Research areas that provide tools and 
insights for this optimization task include complex networks, 
spatially embedded interacting agents or swarms and dynamic 
networks.  
In the following sections, we first propose a simplified 
process view of the Scientific Method that we use to 
investigate potential Crowdsourcing opportunities for 
fundamental research based on the above definitions. Second, 
we show how mass collaboration (including Crowdsourcing)
is already changing the way parties interact in industry and 
connect this development to science.  Third, we develop a 
framework for analyzing the tasks of the Scientific Method
regarding their applicability for Crowdsourcing. After 
showing some examples from our preliminary analysis, we 
state important challenges and a research agenda, which 
investigates these challenges and the applicability empirically.

The Scientific Method as a process

Different fields of research have different approaches to 
conducting research as a process (see Amigoni et al. 2009 for 
an example comparing mobile robotics with other sciences). 
Paul Feyerabend and other well-known meta-scientists 

criticize every form of standardization, stating that any 
depiction has little relation to the ways science is actually 
practiced (see, e.g., Feyerabend 1993). There are, however, 
elements that are part of almost every research process (either 
explicitly or implicitly), such as characterizations, hypotheses, 
predictions, and experiments. We will use a simplified 
process for empirical science, based on Crawford and Stucki 
(1999) as a basis for this paper, which we call the “Research 
Value Chain” (see Figure 1). “Value” is not defined as
economic value, but as an “addition to the body of reliable 
knowledge”, rather a social value.

Not all tasks in our Research Value Chain are present in all 
research projects: After defining the (research) question at 
hand, a methodology is either developed or chosen. If 
necessary, a proposal is compiled to obtain funds or other 
resources. Potentially, a team of co-workers and a laboratory 
or field group is set up. Next, resources are gathered, 
hypotheses are formulated (sometimes implicitly), and 
subsequently experiments are performed which yield data. 
The data can then be analyzed and interpreted and conclusions 
may be drawn that may lead to new hypotheses, indicated by 
the small connecting arrow in Figure 1. The research piece is 
then published – or, in some cases, the resulting Intellectual 
Property (IP) is secured – in order to spread the insights, 
potentially appropriate the investment and enable other 
researchers to use it as a basis for their further thinking and 
testing.
Such a process is potentially subject to iterations, recursions, 
interleavings and orderings. 

Why Crowdsourcing in the Scientific Method

Before answering this question, we need to put 
Crowdsourcing, a process that is described often in a business 
(or innovation) context, into a research context. Technological 
advance has often been subdivided into two categories: 
invention (a scientific breakthrough) and innovation 
(commercialization of the invention) - a distinction Nelson and 
Winter (Nelson and Winter 1982, p.263) attribute to 
Schumpeter (1934). For this purpose, we demonstrate an 
important development taking place throughout
technologically advancing societies:

Industries are on the verge of a significant change in the way 
they innovate. Over the past decade, the Internet has enabled 
communities to connect and collaborate, creating a virtual 
world of Collective Intelligence (Malone et al. 2009, Lane 
2010). Von Hippel (2005) states that for any group of users of 
a technology, a large number of them will come up with 
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innovative ideas. What began as a process in business is also 
being observed in science. Discussions on “Citizen Science”
(Irwin 1995) and “Science 2.0” (Shneiderman 2008) suggest 
the same effects are relevant for fundamental research 
practices.
Chesbrough provides an example in the consumer sector
where a form of Crowdsourcing (in this case, he calls it “open 
innovation”) has proven successful and which seems to be 
applicable to fundamental research as well:

“In 1999, Procter & Gamble decided to change its 
approach to innovation. The firm extended its internal 
R&D to the outside world through an initiative called 
Connect and Develop. This initiative emphasized the 
need for P&G to reach out to external parties for
innovative ideas. The company's rationale is simple: 
Inside P&G are more than 8,600 scientists advancing the 
industrial knowledge that enables new P&G 
offerings; outside are 1.5 million.” (Chesbrough 2003)

Schrage (2000) states innovation requires improvisation; it is 
not about following the rules of the game, but more about 
rigorously challenging and revising them, which is consistent
with criticism of any standardization of the Scientific Method.
An expert scientist (or an expert group) needs to manage (and 
perhaps improvise) the overall process and aggregate potential 
input from “the crowd”. But the crowd doesn’t necessarily 
have to be composed of experts.
(Maintained) diversity is an essential advantage of crowds. 
Scott E. Page has created a theoretical framework to explain 
why groups often outperform experts. The results of several 
experiments formed the basis for the “Diversity Trumps 
Ability” Theorem (Page 2008): Given certain conditions, a 
random selection of problem solvers outperforms a collection
of the best individual expert problem solvers due to its 
homogeneity. The experts are better than the crowd, but at 
fewer things. Friedrich von Hayek stated in 1945 that nearly 
every individual "has some advantage over all others because 
he possesses unique information of which beneficial use 
might be made" (von Hayek 1945).
Although certain universities have been trending towards a 
more entrepreneurial model for more than two decades, 
(Etzkowitz 1983, Etzkowitz et al. 2000, Bok 2003) we still 
regard them as being in the not-for-profit field, interested in 
spreading knowledge throughout society. Crowdsourcing has 
been successfully used in the business environment for 
creating economic value. To our knowledge, there is no 
systematic study investigating the applicability of 
Crowdsourcing in not-for-profit basic research (as conducted 
in traditional universities). 

This paper aims to help fill this gap by testing the use of 
Crowdsourcing in the Scientific Method in order to maximize
the knowledge that can be gained and dispersed, reduce
necessary resources, and other potential contributions to the 
fundamental research process. Crowdsourcing is regarded as a 
tool within the Scientific Method, not a substitute for it.

For the remaining sections of this paper, we will use the terms 
“Collective Intelligence” and “Crowdsourcing” 

interchangeably for “using a large group of individuals to 
solve a specified problem or collect useful ideas”.

A Framework for integrating Collective 
Intelligence in the Scientific Method

We combine frameworks from prior research with our own 
thinking in order to systematically analyze the tasks 
comprising the Research Value Chain. 
The first framework, drawn from MIT’s Center for Collective 
Intelligence (Malone et al. 2009), uses the genome analogy to 
map the different elements of a Collective Intelligence task to 
4 basic “genes”: Who, Why, What, How.
These basic questions are further divided into subtypes that 
help structure the problem at hand in a mutually exclusive, 
collectively exhaustive manner with respect to Collective 
Intelligence.

The following list shows the hierarchy of the “genes”. For a 
detailed description, please consult the original paper.

Who
Crowd, Hierarchy

Why
Money, Love, Glory

What, How
Create

Collection, Contest, Collaboration
Decide

Group Decision
Voting, Averaging, Consensus, Prediction Market

Individual Decisions
Market, Social network

However, before a task can be crowdsourced, it needs to be 
tested as to its suitability for Collective Intelligence. Here we 
use a design principle called the “Three-constituents 
principle” from Artificial Intelligence (see e.g., Pfeifer and 
Scheier 1999). It states that the ecological niche 
(environment), the tasks at hand and the agent must always be 
taken into account when investigating or modeling intelligent 
behavior. Therefore, for every task in our Research Value 
Chain, we analyze the environment (e.g., research institute 
location, funding situation), the agent (e.g., researchers’ 

Figure 2 – MIT's Collective Intelligence genes (Malone et al. 
2009)
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tenure, culture, particularistic characteristics) and the task. To 
analyze the likelihood and potential success for collaboration 
given the environment and the agent, we use the moderating 
variables identified by Lee and Bozeman (2005). 
The following list (not exhaustive) shows variables that 
moderate the relationship between scientific productivity
(normal and fractional journal publications) and collaboration 
in a scientific setting (several of them backed by other 
studies):

Agent
Career age, Job satisfaction, Collaboration strategy, 
“Cosmopolitan scale” (collaborating with those outside the 
proximate work environment)

Environment
Log of current grants, Field/discipline, Number of 
collaborators

Figure 3 gives a schematic overview over all the relationships 
of the different elements of our framework.

In addition to the potential of crowdsourcing a certain task 
from the Research Value Chain, we assess its feasibility given 
limited resources (funding, apparatus, time).

In what follows, we offer a few intuitive examples of where 
we see untapped potential for Crowdsourcing in the Research 
Value Chain. We distinguish between “potential” and 
“feasibility”.

Untapped potential for Crowdsourcing within the 
Scientific Method. Regarding untapped potential, we believe 
that the analysis of the collected data as well as the 
interpretation and drawing of conclusions have high potential 
for using the wisdom of the crowd or rather its intelligence. 
The crowd is particularly suited for recognizing patterns and 
important data points (“looking at the right spots”). In 
addition, the crowd might read data differently, draw 
additional conclusions and ideas, and thus complement the 
researcher or a small research team in its findings (evidence 
can be found in Kanefsky et al. 2001). Another good example 

for such a success is the “Goldcorp Challenge” (see e.g.,
Brabham 2008) The Canadian gold mining group Goldcorp 
made 400 megabytes of geological survey data on its Red 
Lake, Ontario, property available to the public over the 
Internet. They offered a $575,000 prize to anyone who could 
analyze the data and suggest places where gold could be 
found. The company claims that the contest produced 110 
targets, over 80% of which proved productive; yielding 8 
million ounces of gold, worth more than $3 billion. The prize 
was won by a small consultancy in Perth, Western Australia, 
called Fractal Graphics.
We see further potential in the formulation of hypotheses
(similar to forecasting) from information collected. J. Scott
Armstrong of Wharton School studied the prognoses of 
experts in several fields. In not a single instance could he find
any clear advantage in having expertise in order to predict an 
outcome; “…expertise beyond a minimal level is of little 
value in forecasting change […].This is not to say that experts 
have no value, they can contribute in many ways. One 
particularly useful role of the expert seems to be in assessing a 
current situation.” (Armstrong 1980). In the same paper he 
states several other studies that confirm this with respect to 
forecasting or hypothesizing. We also believe that the crowd 
can be especially useful in defining the (research) questions 
and in collecting relevant literature. As a positive side effect, 
consulting a crowd may also help overcome group biases like 
Groupthink (Janis 1972).

Feasibility of using Crowdsourcing within the Scientific 
Method. Regarding feasibility, the same steps are likely to be 
a target for Crowdsourcing: The questions can be discussed 
and exchanged through electronic channels (e.g., discussion 
boards, email) and literature collections can be remotely 
coordinated. Collected data can be posted on the Internet for 
analysis while interpretations can be discussed through 
application-sharing tools.

A pilot study was conducted during the “ShanghAI Lectures 
2009”, (see Hasler et al. 2009), a global lecture on Artificial 
Intelligence involving 48 universities from five continents –
the 421 participating students could support one of four 
current scientific projects by contributing a paper stating their 
ideas on pre-defined open questions. The contest prize was a 
trip for the winning team to Zurich, Switzerland. Some of the 
solutions were rated “excellent”, “well-elaborated” and 
“useful for the advancement of the project” by the scientists 
that headed the projects. We sent questionnaires to 372 
participating students after the lectures and received 84 valid 
replies (23%). Although only 16% stated that they had prior 
theoretical or technical knowledge regarding the chosen 
subject, 32.1% of them indicated that they had much or very 
much fun participating in the contest and 15% agreed to
participate in another contest while 29% answered “maybe”
(although the workload was significant with several hours up 
to two weeks investment and the lecture was over). 22.6 % of 
all students (including those that did not participate in the 
contest) perceived a potential impact on current research if 
they participated in the contest.
However, the data collection was not thorough enough to 
analyze all the variables mentioned in our framework.

Figure 3 – Framework for assessing Crowdsource-ability of a 
task
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In addition, data gathered from the Crowdsourcing website 
“starmind.com” indicates that for 247 not-for-profit scientific 
questions posted between 1 January 2010 to 27 May 2010, 
481 solutions have been submitted by question solvers, 368 of 
these have been viewed by the question posers with a 
resulting satisfaction of at least “good” for 267 (73%, on a 
scale “excellent”, “good”, “useful”, “decline”). 66% of the 
problem solvers that contributed to a “good” rating are not 
“scientists“ (self-assessed: PhD student, postdoctoral 
researcher, Professor). Starmind focuses on “small” questions. 
The rewards for answering a question start as low as EUR 3.-

Our research will analyze the tasks of the Research Value 
Chain according to the framework in much more depth, 
aiming to create a CI genome for each task of the Research 
Value Chain, where applicable. In addition, empirical data 
will be analyzed regarding the moderating variables to 
identify relevant sensitivities.

Challenges in Crowdsourcing and the 
Connection to AI Research

When dealing with any form of outsourcing of tasks 
(including Crowdsourcing), the risks are non-trivial. 
Especially for groups that are more distant, geographically 
and culturally, many situations arise that cannot be foreseen 
(see e.g., Nakatsu and Iacovou 2009). Crowdsourcing is an 
extreme case of dealing with the unknown, where emergence 
and the reactions to emerging behavior play an important role: 
The individuals of the “crowd” are a priori unknown and 
contingency plans for unexpected behavior of this interacting 
mass cannot be fully prepared beforehand. Moreover, in a 
Crowdsourcing scenario there are no pre-defined contracts 
between parties like in traditional outsourcing. Lane points 
out that risk is involved when using Crowdsourcing for 
decision making: 

“However, mechanisms also need to be in place to 
protect against competition sabotaging the crowd system. 
[...] Therefore, systems that leverage the crowd for 
creation decisions should ensure that the final decision 
passes through a governing body.” (Lane 2010). 

Roman (2009) states that there is an inherent weakness to 
Crowdsourcing that the difference between the “wisdom of 
crowds” and the “mob that rules” must be actively managed in 
order to manage correctness, accuracy and other elements that 
are relevant for valid fundamental research. 
(For some further specific risks of Crowdsourcing, see e.g.,
Kazai and Milic-Frayling 2009). 
There is, however, a fundamental consideration that justifies 
the trust in the wisdom of crowds: Assume that a decision 
problem has to be tackled. The members of the crowd have a 
certain intuition about the problem, which gives them a small 
bias towards the “correct” decision. It is easy to show that if a 
million individual agents decide independently and have a 
slight bias of 50.1 % towards taking the right decision (which 
is close to random guessing), a majority vote will lead to the 
correct decision with a probability of 97.7%. Even if there is a 

lack of expert knowledge, crowd decisions are rather robust. It 
is an open question to what extent the assumption about the 
independency of the decisions of individual agents is justified. 
Furthermore, independency also implies the absence of 
knowledge transfer between the agents, hardly a desired 
feature. Finding the optimal balance between communication 
and independency is therefore a relevant research topic.
Lakhani and Panetta (2007) state when comparing Open 
Source Software development (OSS) to traditional (business) 
management: 

“Brownian motion-based management” is not yet taught 
in any business schools. But the participation of 
commercial enterprises in OSS communities and other 
distributed innovation systems suggest that organizing 
principles for participation, collaboration, and self-
organization can be distilled. Importantly, these systems 
are not “managed” in the traditional sense of the word, 
that is, “smart” managers are not recruiting staff, 
offering incentives for hard work, dividing tasks, 
integrating activities, and developing career paths. 
Rather, the locus of control and management lies with 
the individual participants who decide themselves the 
terms of interaction with each other.

Scholars in Artificial Intelligence (AI) research have 
developed (and are still developing) “design principles” that 
distill high-level principles for increasing the robustness of 
agents or groups of agents (see e.g., Pfeifer and Bongard 2007
or Pfeifer and Scheier 1999). These design principles 
specifically “prepare” the intelligent agents to deal with 
unexpected or unknown situations or to interact with 
unknown environments and large groups or known/unknown 
individuals. 

Three examples of agent design principles 
The following three example principles are stated here to 
make this idea more tangible. The first one deals with the 
importance of the way a problem is defined for 
Crowdsourcing, while the second example discusses the need 
for partial overlaps (redundancy). The third example puts the 
focus on local rules of interaction, thus shifting the focal point 
from a complex abstraction of “the crowd” to a better 
understandable, concrete set of small observations:

‘Three Constituents’ Principle. The ecological niche 
(environment), the tasks at hand and the agent must always be 
taken into account when investigating on or modeling 
intelligent behavior. This implies for Crowdsourcing, that not 
only processes or organizational structures (part of the 
environment) are relevant for success, but also the task (e.g., 
formulation of the problem at hand) and the socio-technical 
environment as well as the variables describing the agent 
(individual, group or other organization) in their interplay. AI 
research provides frameworks and tools in order to do this
systematically. We have already incorporated this principle 
into our general analysis framework, above.

‘Redundancy’ Principle. Lean operations (Womack et al. 
1991) and other optimizing paradigms are trying to eliminate 
redundancy in organizational processes. Current Artificial 
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Intelligence research shows that partial overlap of 
functionality is helpful and even necessary to build robust 
intelligent systems that are able to cope with the unexpected 
and new. 

In general, biological systems are extremely redundant 
because redundancy makes them more adaptive: if one 
part or process fails, another, similar part or process can 
take over. Brains also contain a lot of redundancy; they 
continue to function even if parts are destroyed. (Pfeifer 
and Bongard 2007)

Insights from AI research may help identify where redundancy 
is necessary to create robustness when crowdsourcing, and 
where it can be omitted for the sake of efficiency.

‘Design For Emergence” Principle.  This principle
specifically aims at Collective Intelligence and states that 
when analyzing biological systems, the focus should be on the 
local rules of interaction that give rise to the global behavioral 
pattern that is studied: 

Because systems with emergent functionality rely on 
self-organizing processes that require less control, they 
tend to be not only more adaptive and robust but also 
cheaper. Emergent functionality requires us to think 
differently, for example, about social interaction, 
because much of what we may have thought would be 
under conscious control turns out to be the result of 
reflex-like local interactions. (Pfeifer and Bongard 2007)

The local rules of interaction for Crowdsourcing that produce 
desired input by the crowd are part of our ongoing research.
There are many more agent design principles dealing with 
different numbers of agents (e.g., single agents vs. groups of 
agents as in a Crowdsourcing situation) and different time 
scales (e.g. “here and now” vs. ontogenetic and phylogenetic 
time scales) that we will consider during the analysis that 
follows.

Making Crowdsourcing in Science more 
robust – towards a research agenda

In what follows we propose a research agenda that aims at 
three goals:
G1. Examine which forms (see e.g., Schenk and Guittard 
2009) of Collective Intelligence in the large, or 
Crowdsourcing, and which incentives are suitable for use in 
fundamental research (based on the simplified “Research 
Value Chain” and our framework).
G2. Test the applicability of agent design principles in order 
to make collaboration based on Collective Intelligence more 
robust, with a special focus on Crowdsourcing in fundamental 
research.
G3. Identify local rules of interaction between agents in 
Collective Intelligence interactions (incl. Crowdsourcing) that 
lead to productive emerging phenomena. The definition of 
“productive” depends on the domain: In fundamental science 
it is measured by maximizing the contribution to the body of 
reliable knowledge.

Research Questions
The following questions will guide our research in the two 
branches:
G1-Q1. Which forms of Crowdsourcing (e.g., routine task vs. 
complex task vs. creative) are best suited to fundamental 
research?
G1-Q2. Are there best practices for Crowdsourcing in 
fundamental research that can be generalized for several 
disciplines?
G1-Q3. Which are the best incentive schemes for 
Crowdsourcing in fundamental research? 
G1-Q4. How does the aim of protecting IP with a patent (or 
other instrument) change the above answers?
G2-Q5. Can the application of agent design principles (e.g., 
“frame of reference principle”, “motivated complexity 
principle”, “cumulative selection principle”) to platforms and 
processes make Crowdsourcing interactions more successful 
in terms of useful input by “the crowd”?
G2-Q6. If the answer to Q5 is “yes”, which design principles 
are best suited to which situation?
G2-Q7. Are there differences regarding Q6 in different 
disciplines?
G2-Q8. Decisions made by independent agents are highly 
robust, but communication offers other benefits. Is there a 
way to determine an optimal balance between robustness and 
interdependency/communication?
G3-Q9. Which local rules of interaction can be inferred in 
different tasks of the Research Value Chain?

Hypotheses
Given the limited data set so far, we state the following 
hypotheses in order to guide our empirical evidence finding.
These hypotheses form a basic collection of  ideas that will be 
subsequently tested, expanded and detailed in a structured and 
systematic manner.

H1. The prerequisites for Crowdsourcing (see, e.g., Benkler 
2006, Howe 2008, Kazman and Chen 2009) are present in 
academic settings.
H2. Scientists from different disciplines perceive 
Crowdsourcing as a useful tool for supporting fundamental 
research.
H3. By systematically applying agent design principles (Three 
Constituents, Complete Agent, Parallel, Loosely Coupled 
Processes, Sensory-Motor Coordination, Cheap Design, 
Redundancy, Ecological Balance, Value) to Crowdsourcing 
settings, the output of the community (in terms of “value” as 
judged by seeking scientists) can be significantly increased
(compared to not applying principles).
H4. By systematically applying design principles for 
development (Integration of Time Scales, Development as an 
Incremental Process, Discovery, Social Interaction, Motivated 
Complexity) and insights from AI fields (e.g., Swarm 
Behavior, Complex Networks), the quality of a community 
can be improved over time in terms of efficiency and 
effectiveness in solving a crowdsourced task (compared to 
groups not applying principles).
H5. By systematically applying design principles for evolution 
(Population, Cumulative Selection and Self-Organization, 
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Brain-Body Coevolution, Scalable Complexity, Evolution as a 
Fluid Process, Minimal Designer Bias), a research group can 
increase its value creation (see above) from Crowdsourcing
processes over time quicker than when not applying  the 
principles.
H6. Crowdsourcing techniques allow Academic research 
groups to more successfully advance outputs from 
fundamental research to market maturity (technology transfer)
than without Crowdsourcing.
H7. “Crowds” (in the sense of an active community in 
Crowdsourcing) involved in fundamental research are subject 
to guided self-organization (i.e., autonomous global self-
organization with a few adjustable parameters, e.g., given by 
the environment or the platform).

Methods and Approaches
We will apply our framework to identify the sensitivities 
regarding moderating variables (environment and agent) when 
in a fundamental research setting. In addition, we will 
generate “CI genomes” for each task in the Research Value 
Chain, in order to better understand the applicability for 
Crowdsourcing. In parallel, we will collect more data 
regarding Crowdsourcing contributions to different steps in 
the “Research Value Chain”:
The data gathering will consist of several Crowdsourcing
contests treating current projects in fundamental research (at 
universities). Both the participants in the contests (“crowd”) 
as well as the participating researchers will complete a set of 
questionnaires which include both closed- and open-ended 
questions on individual and team functioning (in case a 
contribution is made by a team) during these contests as well 
as self-assessed vs. outside-assessed ratings of the inputs they 
give. The questionnaires will be based on (Bartl 2006) and 
(Lakhani et al. 2006), but slightly adapted to better suit the 
non-profit context of universities.
One (or more) iteration(s) of the data gathering process will 
be used to (in)validate the insights gained from the data and 
test the application of agent design principles as stated above.
As a final measure, a Multiagent System (Weiss 2000,
Wooldridge 2008) will be implemented in order to simulate 
stochastic behavior given the sensitivities and settings found 
in the data.
The inquiry will limit its focus to fields where the “Research 
Value Chain” is applicable and generally accepted as a 
guiding process for conducting fundamental research.

Conclusion
Based on the current success in several industries, we see 
indications that fundamental research potentially benefits 
from leveraging Collective Intelligence techniques (including 
Crowdsourcing). We hypothesize that there are “tasks” in the 
Scientific Method that can potentially benefit from 
Crowdsourcing and will test our hypotheses according to the 
stated research agenda.
In addition, we will test the applicability of agent design 
principles from Artificial Intelligence research to 
Crowdsourcing. In this paper, we have shown only a few 
examples of these principles, there are more stated in the 

current AI literature (The hypotheses H3 to H5 state some 
more principles that might be suitable for this context.)
Although focusing on fundamental science, this research will 
potentially yield insights for making processes involving 
Collective Intelligence in the private sector more robust, too. 
If you would like to be part of this research, please contact the 
corresponding author.
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Abstract

We consider a group of autonomous robots which perform
the classical task of transporting resources from a source to
home. The robots use ant-like emergent trail following to
navigate between home and source. When trails lie close to-
gether, spatial interference between robots navigating in op-
posite directions reduces overall system performance. This
paper proposes a navigation strategy which is effective in sep-
arating trails with different goals. The results of simulation
experiments indicate that the performance of robots is use-
fully increased compared to original algorithm in constrained
environments.

Introduction
This paper presents a navigation strategy to reduce interfer-
ence in ant-inspired foraging-and-trail-following robot sys-
tems. We consider the classical resource transportation task,
in which a team of robots works to transport resources in an
initially unmapped environment. Robots start from a home
position and search for a supply of resources. On reaching
the source, they receive a unit of resource and must return
home with it, then return to fetch more resource repeatedly
for the length of a trial. Achieving this task reliably with
robots will meet a real-world need. It is a canonical multi-
robot task since the work is inherently parallelizable. The
critical factor limiting scalability is mutual spatial interfer-
ence between robots.

Our earlier work Vaughan et al. (2000, 2002) examined
an implementation of ant-inspired trail following that is
suitable for imperfectly-localized mobile robots. In our
“localization-space trails” (LOST) algorithm, robots gener-
ate and share trail data structures composed of waypoints
specified by reference to task-level features that are shared
by all robots. The trails are continuously refined online, and
maintain the ant-algorithm property Dorigo (1992) of con-
verging to near-optimal paths from source to home.

Trails are labelled with their destination, and the trail to
the current goal destination is followed. In previous work,
the other trails were ignored during navigation. However,
trails may overlap in space and robots navigating to differ-
ent goals may interfere with each other’s progress. We ar-

(a) LOST (b) SO-LOST

Figure 1: Trails formed in an obstacle-free “empty” environ-
ment using LOST and SO-LOST. SO-LOST has separated
the trails, achieving better throughput due to reduced inter-
ference.

gued previously that an emergent property of LOST is that
it can produce trails that are separated in space Vaughan
et al. (2000) thus reducing interference. In this paper we
describe a modification to LOST called Spread-Out LOST
(SO-LOST) that greatly improves this effect, creating trails
that share parts of the environment while being far enough
apart to reduce interference. The result is superior perfor-
mance in most of the cases we examine. The innovation
is that the robots’ trail-following behaviour is subtly modi-
fied to avoid competing trails, with the emergent effect that
trails are iteratively spread out until intereference is largely
avoided.

It is reported that some type of ant use repellent
pheromone to mark unrewarding areas so that other ants
avoid foraging that part of the environment (Robinson et al.
(2008)). However, we do not know of any biological sys-
tem that uses similar behaviour to tackle the spatial inter-
ference problem. The new navigation algorithm in this pa-
per is a synthetic technique that improves the efficiency of
a biologically-inspired path finding and sharing algorithm
used in multi-robot systems. The advantage of these type of
synthetic behaviors has been studied before (e.g. Heck and
Ghosh (2002)).
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Related Work
Various different robot implementations of ant-like trail fol-
lowing have been presented. Real chemical marks were
first used to produce true stigmergic trail-following in Rus-
sell et al. (1994). Also recently, Fujisawa et al. Fujisawa
et al. (2008) carried out a study out of communication in a
swarm of robots using pheromone and proposed a behav-
ior algorithm for robots to search for prey and attract other
robots. They used ethanol as pheromone in their real robot
experiments. The challenge of chemical and sensor engi-
neering makes these methods often impractical. A more
parsimonious method was invented by Payton et al. (2001)
where virtual pheromone trails are implemented by direc-
tional infra-red messages transmitted from robot to robot.
Robots echo received messages, incrementing a contained
hop-count which is used to estimate the distance to the mes-
sage source. In both chemical and IR-mediated methods, the
local “gradient” is sensed directly from the environment. If
robots are mutually localized, virtual trails can be created
from global waypoints, which are communicated by wire-
less network. We showed that this scheme can be robust to
large zero-mean localization error (Vaughan et al. (2000)),
and admits a relaxed and practical definition of mutual lo-
calization (Vaughan et al. (2002)).

The diminishing-to-negative-returns effect of increasing
the number of robots on performance has been studied in
related contexts. In a mathematical model of robot foraging
Lerman and Galstyan (2002), it was shown that adding more
robots to the system improved the group performance while
decreasing individual robot’s performance. Based on that
model, an optimal group size was found that maximizes the
group performance. Explicit anti-interference strategies are
studied in real robots in Zuluaga and Vaughan (2005), to
increase performance in the transportation task. Congestion
control in a dense multi-robot system is studied in Scheidler
et al. (2008), where asymmetries that resolve conflicts are
introduced by modifying either the environment or the robot
controllers.

A related idea using occupancy grids to model multi-robot
interaction is described in Zuluaga and Vaughan (2008).
There, a global histogram of occupancy is constructed, and
areas with high probability of co-location are identified and
fed into an (unrelated) interference reduction method.

Localization-Space Trails (LOST) review
This section briefly reviews the generalized trail-following
method formulated in Vaughan et al. (2002).

LOST generates trails between the locations of Events.
An Event is defined as a task-relevant occurrence that may
happen to any member of the team, and is locally but re-
liably perceived. For example, in our transportation task
the relevant Events would be ‘pick-up-resource’ and ‘drop-
resource’. A robot must be able to recognize these events
in order to switch between resource-seeking behavior and

home-seeking behavior. When an Event occurs to a robot,
its current pose in localization space is recorded to create
an [Event,Pose] tuple called a Place. A robot can then ex-
press information about the world relative to the Places it
has seen. Other robots that have position estimates for the
same Events can interpret the coordinates in their own lo-
cal frame of reference. Thus robots are mutually localized
by the shared experience of the common task, rather than
conventional global localization in some arbitrary coordi-
nate system.

The purpose of LOST is to guide the robot to a Place cur-
rently of interest: the goal. The algorithm provides the robot
controller with two pieces of information; (i) the heading-
hint that is the local direction in which to travel to reach the
goal; (ii) the distance-hint that is the estimated cost (usually
in time) to reach the goal. These hints are extracted by ex-
amining a set of waypoints called Crumbs which are poses
specified relative to a Place. The current set of Crumbs spec-
ified relative to a particular Place is a Trail to that place. A
Crumb is a tuple C = [Pc, Lc, dc, tc] containing the name of
the Place Pc to which it refers, a localization space pose Lc,
an estimate dc of the distance (in some distance function)
from Lc to Pc, and the time tc when the Crumb was created.

Each robot maintains an initially empty temporary trail.
Every S seconds, a robot inserts a new crumb to the tem-
porary trail. The crumb contains the current location of the
robot, the name of the most recent Event experienced by that
robot, the distance from the last event, and the current time.
When another event occurs to the robot (e.g., when a robot
drops off its cargo), the temporary trail is broadcast to all
robots, including itself, then deleted. A new temporary trail
is then created for the recent Event.

Besides the temporary trail, each robot maintains a trail
for each different Event it has learned about from the net-
work. When a broadcast trail is received, the crumb poses
are transformed into the local frame of reference by the rigid
body transform defined by comparing the local and received
poses of the trail’s Place. The transformed crumbs are added
to the local trail for this Place. All trails are periodically
scanned and any Crumb with time stamp older than age
threshold a seconds is discarded. Thus the trail is updated
dynamically, and out-of-date information is expired. The
dynamic response of the trail to changing environments is a
function of a.

Suppose a robot at pose Lr has Place Pg as its goal,
such as Event(Pg) = ‘drop-resource-at-home’. The robot
searches the set of Crumbs with Place = Pg to find the set
of crumbs that lie within its field of view (FOV) i.e., within
radius df of Lr. From this set it finds the crumb CL with the
smallest distance-to-goal dc. This distance is returned as the
distance-hint. The heading-hint is the angle from the robot’s
pose Lr to Lc = Pose(CL). If the robot moves in the di-
rection of the heading hint and repeats this process, it will
encounter crumbs with decreasing distance to goal values,
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Figure 2: Sketch of the new LOST algorithm. While the
robot was following the trail (filled circles), it sees a crumb
with different goal (triangle) and thus changes its direction
to a new point (the empty circle).

and eventually arrive at Pg .
The robot will take the shortest route so far discovered

from that location. By following the Crumbs dropped by
the whole population, each robot benefits from the others’
exploration; robots will find a reasonable route much more
quickly than they would alone. The larger the population
size, the greater the probability of finding a good route and
the more quickly a good route is found.

Spread-Out LOST
In the LOST algorithm, as the robots move they “lay”
crumbs. The goal Place of these crumbs is the place that the
robot has most recently visited. This means that in order to
reinforce a trail, the robots should travel in the opposite di-
rection that the crumbs are showing and consequently robots
following a trail are very likely to interfere with robots lay-
ing (reinforcing) it. With few robots, this does not have
much effect on performance and the ”pick-up-resource” and
”drop-resource” trails converge to one shortest discovered
path. However as the robots’ team size increases, these in-
terferences damage the performance of the system.

To address this, we modify the LOST algorithm so that
when a crumb is created, the Pc data field will be the goal
of the robot rather than the recently visited place. With this
modification, the robots have to perform two searches at the
beginning; one for finding a path from home to source and
another one for a path from source to home. We can avoid
the need for the second search by copying the first discov-
ered trail and changing the goal and reversing the distance
hint along the trail.

When the environment in which the robots are working

Algorithm 1 The New Trail-Using Algorithm
Require: The distance distobstacle from the robot to the

nearest non-robot obstacle on the left side of the robot.
return the direction Dirrobot to which the robot should
move

Θ = all the crumbs in the robot’s FOV with positions
relative to the robot;
Σ = {c|c ∈ Θ ∧ (c.pc = robot.goal)};
Π = {c|c ∈ Θ ∧ (c.pc 6= robot.goal)};

λ = Min(crumb avoid, distobstacle);

cbest = c s.t. (c ∈ Σ) ∧ (6 ∃c′ ∈ Σ s.t. c.dc > c′.dc);

if (∃canti ∈ Π s.t. dist(canti, robot) <
crumb avoid) ∧ (cbest.dc ≤ 2s) then

Dirrobot =
−−−−−−→
(robot, c) + λ

2 ×
−−−−→
(−1, 0);

else
Dirrobot =

−−−−−−→
(robot, c);

end if

is complicated and contains narrow corridors and doorways,
or is very crowded, LOST may produce trails with different
goals that are either very similar or have many parts in com-
mon. Figures 1(a),3(a),4(a) show this phenomenon in our
trail-following robot system implemented in the well known
simulator Stage (Vaughan (2008)). The trails formed be-
tween source and home are often very close to each other,
leading to problematic interference between robots travel-
ling in opposite directions. Since the crumb trail data struc-
ture does not contain any explicit information about the fixed
obstacles in the environment, there is no way to directly pro-
cess the trail data to avoid robot-robot interference without
risking directing robots into fixed obstacles. Instead, we use
a small modification to the robots’ trail following control
strategy that results in emergent trail separation.

A robot following a trail to get to Pc, can interpret crumbs
with goals other than Pc, as proxies for potentially interfer-
ing robots. If the robot follows the trail to Pc while slightly
avoiding all other nearby crumbs, the new Pc crumbs it lays
will tend to be slightly more distant from other crumbs than
those just followed. This mechanism is essentially similar
to the iterated corner-cutting that drives the ant-algorithm’s
ability to locally improve trail length. The resulting trails
may be slightly longer but may reduce interference signifi-
cantly, as suggested by the results below.

The new trail-using algorithm is presented in Algorithm
1. It first searches for the crumb cbest with minimum dis-
tance to goal that is located in the robot’s FOV. Then if
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(a) LOST (b) SO-LOST

Figure 3: Trails formed in the cave environment using the LOST and the new algorithm after 30 mins of simulation.

(a) LOST (b) SO-LOST

Figure 4: Trails formed in the hospital environment. using the LOST and the new algorithm.

there exists a crumb canti with different goal than the robot’s
goal and it was closer to the robot than a distance threshold
(crumb avoid), the direction to which the robot moves will
turn to the robot’s left. This will change the angular velocity
of the robot so that it keeps away from canti. The shift vector
is orthogonal to the

−−−−−−−−→
(robot, cbest) vector. Also, the magni-

tude λ is calculated based on the obstacles near the robot
such that the robot’s target point does not lie inside an ob-
stacle. Trails with different goals are necessarily very close
to each other around source and home. Thus the shift vec-
tor is not applied when the robot is near the goals to prevent
robot’s circular trajectory in these areas.

Figure 2 illustrates how the behavior of the robot changes
in presence of canti. The robot is following the small cir-
cles. On seeing the triangle crumbs, the robot’s target point
is changed from cbest to another point (the empty circle).
This simple mechanism alters the robots movement so that
different trails are gradually separated from each other. The

divergent movement of trails continues until they are away
enough from each other, if possible.

Experiments
Simulation Setup
We ran Stage simulations to evaluate the new algorithm in
three different environment settings: empty (Figure 1), cave
(Figure 3) and hospital (Figure 4). The size of the empty,
cave and hospital environments are 20x20m, 40x40m and
60x30m respectively, with robot length 0.45m. Robots are
Stage’s Pioneer 3DX and SICK LMS200 laser rangefinder
models. The bottom left (green) square is the source; top
right (red) square the sink of resources. In the screenshots,
robots (red polygons) are shown with yellow diamonds to
indicate they are carrying a unit of resource. Robots start ev-
ery trial at the same randomly-chosen uniformly distributed
positions, do not know the initial location of source and sink
locations, and must find them by exploration at the start of
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Figure 5: The result of the experiments in the 3 environments. The mean performance over 10 trials are shown with errorbars
showing the standard deviation for both the original LOST and the new algorithm. The dotted line shows the data point for
which the two algorithm do not show significant difference in distribution.

the trial. Each trial runs for 60 minutes, and the total number
of resources delivered at the end of the trial is our perfor-
mance metric. 10 trials are performed for each population
size. LOST is deterministic but the local obstacle avoidance
and searching is stochastic (for robustness), hence the need
for repeated trials. For all experiments the crumb avoid pa-
rameter is set to 2m.

Results

The results of the experiments are summarized in Figure 5,
showing the mean and standard deviation of performance
over 10 repeated trials plotted for each population size. The
plot shows a marked improvement in many cases (in some
cases 3 times better) in performance with the new algorithm.

As expected, with few robots (20), there is not much dif-
ference in performance since the interference among robots
is small. In the empty environment with population size of
10, the LOST outperforms the new algorithm. This is be-
cause the benefit of interference reduction can not outweigh
the penalty of increase in the length of the trails. As the pop-

ulation size increases and the environment becomes more
constrained, improvement in performance gets bigger. This
can be seen in the plot showing the results of the experiments
in the hospital environment; For the smallest populations,
the two methods perform about the same; however, since the
hospital environment contains corridors and doorways (Fig-
ure 4(b)), there is a degradation in the LOST performance
with more robots whereas the new algorithm improves the
performance in some populations up to 3 times.

To verify that the performance results are significantly
different for different algorithms, we performed hypothesis
testing using a T-test. The P values for the hypothesis that
the performance values for LOST and the new algorithm are
from the same distribution are calcuated. For all population
sizes, the test suggests that the distributions are significantly
different (P << 0.02), except for the pairs identified in Fig-
ure 5 with dotted line.
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Figure 6: The histograms showing the number of times the goal crumb was shifted. The time bin is 30 seconds of simulation
time. 30 robots are used in the empty environment and 50 robots are used in the other environments.

Discussion
The new algorithm is based on the idea that laying crumbs
near other crumbs with different goals increases the proba-
bility of co-location among the robots performing different
tasks. This is more clear in transportation task in which the
trails for ‘pick-up-resource’ and ‘drop-resource’ tasks can be
formed very close to each other. In the new algorithm robots
follow the trails and also try to keep a distance from other
crumbs and therefore new trails are laid at a safe distance
from each other. Figures 1(b), 3(b), 4(b) show the trails
formed with the new algorithm. It is visible that different
trails are separated from each other and consequently robots
do not approach the unattractive trails. The magnitude of the
shift vector (crumb avoid) determines the distance of the
trails from each other and should be large enough to keep
robots away from each other.

In order to see if the trails converge to a stable state we
plotted the number of simulation cycles in which the shift
vector was applied in each 30 sec of simulation time (Figure
6). In the cave and hospital environments, after the trails
are formed they are gradually separated from each other due
to the high use of shift vector. After some time, the trails
come into a relatively stable state. The shift vector is still
applied occasionally since the trails in some narrow parts
of the environment (like doorways) are at their maximum
distance from each other and can not go farther away. For
the empty environment since the area is small and there is
a short distance between source and sink, the robots tend to
be pushed towards other trails which results in the high use

of shift vector throughout the experiment.
We do not know of any biological system that uses a sim-

ilar approach to reduce destructive effects of interference
among individuals, but still we believe that these techniques
can be used in systems inspired from animals and social
insects to improve the efficiency of robots in performing a
task.

Conclusion and Future Works
In this paper we presented SO-LOST, a new navigation strat-
egy to reduce interference in ant-inspired foraging-and-trail-
following robot systems. The method makes use of the dif-
ferent trails formed in the environment to prevent robots
with different goals from getting in each other’s way. It
is quantitatively evaluated through simulation experiments
and shown to be effective in relatively constrained environ-
ments. Qualitatively, the screenshots of simulation experi-
ments show that distinct separate trails with different goals
were formed while keeping a distance from each other hence
reducing the interference.

In future work we will implement the new algorithm on
real robots and run experiments to verify our findings in sim-
ulation. Also, we will investigate methods of congestion
resolution in trail-following robot systems. The algorithm
presented in this paper is used to avoid congestion and con-
flicts between robots. However, there is plenty of room for
improvement in mutual robot-robot avoidance methods, and
development here would have an impact in many multi-robot
systems.
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The LOST and SO-LOST framework allows us to add
various kinds of meta-data to the crumb and trail data struc-
tures. Here we have allowed all nearby trails to influence the
behaviour of a trail-follower. We expect that performance
could be further improved by clever use of other meta-data
embedded into crumbs, perhaps by gathering some global
statistics. This would be unusual in ant-inspired systems,
and perhaps powerful.

For now, we believe SO-LOST may be the most real-
world practical trail-following algorithm yet described,
since it explicitly manages the spatial interference that
plagues real-world robots in any number.
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Abstract

Swarm construction involves a population of autonomous agents collaboratively organising material into useful persistent
structures without recourse to central co-ordination or control. This approach to fabrication has significant potential within
nanoscale domains, where explicit centralised control of building activity is prohibitive (e.g., Martel and Mohammadi,
2010). The ultimate value of swarm construction will be demonstrated in the real world with physical agents (or perhaps
software agents working with real-world digital media). However, our interest is in exploring different possibilities for
decentralised control of swarm construction in abstract simulated environments populated by idealised simplistic agents.
The goal of such simulations is not to demonstrate solutionsto specific realistic construction challenges, but to capture
elements of the fundamental logic of decentralised control.

Here, we explore a population of simple simulated agents that combine information from two sensory modalities (one
proximal and one distal) in order to overcome some of the limitations of two previously explored uni-modal schemes. Like
the artificial paper wasps of Bonabeau et al. (2000), the agents simulated here are able to sense the configuration of building
material in their immediate environment and use this proximal sensory information to trigger specific building activity via
a set ofmicrorules. In addition, like the simulated termites of Ladley and Bullock (2004, 2005), they are also able to sense
simulated diffusing artificial pheromones deposited during building and movement, and use this distal sensory information
to influence movement and release or inhibit building activity. Since both the proximal configuration of building material
and the distal distribution of pheromone intensities in an agent’s vicinity are themselves the consequence of prior agent
building activity, the scheme isstigmergic—the environmental trace of agent activity guides subsequent agent behaviour.

Movement and building activity are constrained by a simple physics such that agents cannot pass through building material
and must remain in contact with the ground or built structure. Moreover, new building material may only be deposited
in locations with sufficient support. In contrast to Grushinand Reggia (2006), these constraints, while simplistic, donot
prevent concave, hollow or over-hanging structures.

In principle, this swarm construction scheme is “universal” in that it is capable (given enough distinct types of building
material) of generatingany configuration of contiguous building material—a property inherited from Bonabeau et al.
(2000)’s scheme. However, proofs of universality tell us nothing about what a scheme will in fact be useful for in practice
(Bullock, 2006). Consequently, we concentrate here on exploring and describing the scheme’sgenericbehaviour: what
classes of structure are readily built and why; conversely,what kinds of structure require a prohibitively complex setof
building materials, pheromones, microrules, etc.

Here, using hand-designed agents we are able to show that, unlike Ladley and Bullock’s (2004, 2005) termites, the addition
of proximal microrules enables agents to construct both simple conicand rectilinear structures such as domes, arches,
pillars, cubes and frames (see figure 1 for examples of the latter), and that they are able to combine these structures
relatively easily (see figure 2). Moreover, we are also able to show that, unlike Bonabeau et al’s (2000) wasps, the addition
of distal pheromone-mediated behaviour enables agents to construct architectures exhibiting long-range structure without
recourse to a prohibitive number of block types (as requiredby, e.g., Howsman et al., 2004), and that these structures
can be easily scaled in size through manipulation of pheromone parameters. However, complex structures still present
challenges in terms of managing interactions between agents obeying different rule-sets, and timing issues related tothe
establishment of pheromone templates before the initiation of pheromone-template-mediated building activity.
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Figure 1: Stages in the formation of a square frame (top row),and a hollow cube (bottom row). In both cases building is initiated
by the placement of a single block (depicted in magenta) in the centre of the ground plane. Distinct types of building material
are represeted by solid cubes of different colours. Distributions of distinct types of pheromone are indicated by wire-frame
cubes of different colours. Builder agents are not depicted.

Figure 2: A series of interleaving arches mounted on a row of columns.
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Abstract

The three rules of alignment, separation and cohesion, introduced by Reynolds (1987) to recreate flocking behaviour have
become a well known standard to create swarm behaviour. We aim to demonstrate that those three rules can emerge
from the principle of information maximisation. We begin with a single agent looking for a specific location (i.e. a food
source), its actions governed by a modified version of the Infotaxis behaviour introduced by Vergassola et al. (2007).
Every action is selected to maximise the expected gain in information in the coming step. In Salge and Polani (2009,
2010) we demonstrated that this leads, without an explicit intent to communicate, to a “concentration” of “Relevant
Information”(Polani et al. (2001, 2006)) in the agents‘ actions. In a multi-agent scenario it therefore becomes interesting,
from an information theoretic (Shannon (1948)) perspective, to look at another agent’s actions. We further demonstrated,
that Bayes‘ Formula can be used to update the internal probability mapping of the food source using the other agents‘
actions, leading to an increase in agent performance and information gain per time.

So far, we only used the other agents‘ information when we encountered them incidentally. But it seems reasonable, as
our behaviour is motivated by maximising the expected information gain, to include the expected position of other agents,
and the expected gain of information from observing them, into our decision making process. Looking now at a multi-
agent, grid-world scenario where all agents act with this new policy we can observe the emergence of some coordinated
behaviour via local decision making of the agents. A closer analysis shows not only a further increase in performance, but
also an increase in local agent density around the agent and an alignment of the overall direction the agents move in. Also,
even though the agents are interested in being close to other agents to gain information from them, there is also some force
that still separates them, since we rarely observe all agents congregating on one single spot and staying there.

Those measurements suggest that we are observing a behaviour that could - in spirit - also be created by the well-known
three rules of “Boids” behaviour introduced by Reynolds (1987). The cohesion that makes agents move towards the
average position of the local flock mates is recreated by the agent’s motivation to have as many agents as possible in its
sensor range, so it can profit from the information in their actions. The separation on the other hand, the aversion of the
agents to get too close to others, is motivated by the lack of new environmental information around observed agents. Even
though an agent’s action is rich in information, it mostly provides information of its immediate surroundings. So, while
some agent at the end of an agent A’s sensor range would provide it with further information, an agent that is close to A
can mostly display information that A has already acquired. Finally, alignment can be explained by realising that if an
agent moves in a given direction, the goal is more likely to be there, and all else being equal, another agent should have a
tendency to move in that direction as well.
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Abstract

The regeneration process of contractile oscillation in the plas-
modium of Physarum polycephalum is investigated experi-
mentally and modelled computationally. When placed in a
well, the Physarum cell restructures the body (fusion of small
granule-like cells) and shows various complex oscillation pat-
terns. After it completed the restructuring and regained syn-
chronised oscillation within the body, the cell shows bilateral
oscillation or rotating wave pattern. This regeneration pro-
cess did not depend on the well size and all the cases showed
similar time course. A particle-based computational model
was developed in order to model the emergence of oscilla-
tion patterns. Particles employing very simple and identical
sensory and motor behaviours interacted with each other via
the sensing and deposition of chemoattractants in a diffusive
environment. From a random and almost homogeneous dis-
tribution, emergent domains of oscillatory activity emerged.
By increasing the sensory radius the model simulated the re-
generation process of the real plasmodium. In addition, the
model replicated the rotating wave and bilateral oscillation
pattern when the sensory radius was increased. The results
suggest that complex emergent oscillatory behaviours (and
thus the high-level systems which may utilise them, such as
pumping and transport mechanisms) may be developed from
simple materials inspired by Physarum slime mould.

Introduction
A plasmodium of true slime mould Physarum polycephalum
is a multi-nuclear single-cellular organism. In the plas-
modial state, the Physarum slime mould does not have any
fixed shape and it lives as an amorphous amoeba-like or-
ganism. Being a single cell, it does not have any brains or
neurons or any central controlling system. Nevertheless it is
able to react to external stimuli by changing the body shape
without losing control as a single cell. In other words, the
Physarum plasmodium is an example of natural distributed
computing system. Based on this fact, there has been a lot
of research on the plasmodium from computational perspec-
tive. For example, it has been shown that the plasmodium
can form an optimal tube network (Tero et al., 2010), com-
pute planar proximity graphs (Adamatzky, 2008), and an-
ticipate periodic events (Saigusa et al., 2008). The cell was

∗These authors contributed equally to this work.

also used to implement computational systems, such as ba-
sic logic gates (Tsuda et al., 2004), storage modification ma-
chine (Adamatzky, 2007), coupled oscillator system (Taka-
matsu et al., 2000b), and neural network system (Aono and
Hara, 2007).

One of goals of these computational approaches to slime
mould dynamics, termed as Physarum computing (Naka-
gaki, 2010), is to elucidate mechanisms of biological algo-
rithm in the form that can be applied for bio-inspired compu-
tation, such as swarm intelligence (Bonabeau et al., 1999).
A few approaches have already been taken towards this goal
(e.g. Tero et al., 2006; Ishiguro et al., 2004).

So far it is known that the underlying mechanism which
enables the primitive intelligent behaviour is intrinsic cel-
lular oscillation. The Physarum plasmodium shows a cell
thickness oscillation which period spans around 1-2 min-
utes. Any external stimuli impinging on the cell’s behaviour
(food, chemical, thermal, etc) are “encoded” as modulation
of local oscillation rhythms. The local change in oscilla-
tion frequency propagates to other parts of the cell through
protoplasmic streaming and is eventually “interpreted” as
behavioural changes, such as locomotion towards food or
shape changes (Miyake et al., 1996). Therefore, without the
oscillation, the plasmodium is not able to perform any com-
putations.

Our particular interests in this paper are two fold: (1) to
experimentally investigate the generation of the contractile
oscillation and (2) to develop a computational model that
replicates the process. When innoculated onto an agar gel, a
piece of Physarum plasmodium starts to reorganise the body
structure in order to resume oscillating. Takagi and Ueda
(2008) found that a small plasmodium cell shows various
dynamic oscillation patterns in the course of body restruc-
turing. As behaviours of the plasmodium is said to be size-
invariant (Miura and Yano, 1998), we investigated the effect
of size on the dynamic patterns and modelled them using a
swarm-based particle model.
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The Generation of Oscillatory Behaviour in
the Physarum plasmodium

To observe how the plasmodium (re-)generates the contrac-
tile cell volume oscillation, a piece of the Physarum plas-
modium is cut from one of growing tips of a larger culture
and then placed in a well constructed with a 1.5 % agar
gel and a transparency sheet (Fig. 1) in a Petri dish. The
plasmodium tends to stay inside a well where agar gel is
exposed because it prefers wet areas to dry ones. Imme-
diately after placed in a well, the cell was placed under a
microscope (Leica Zoom 2000, Germany) and illuminated
from underneath with monochromatic light of wavelength
600 nm. The Physarum plasmodium is known to be insensi-
tive to the wavelength of light in terms of the cellular oscil-
lation activity (Nakagaki et al., 1996). A microscope cam-
era image was taken every 3 seconds for over 5 hours. As
the brightness level of a pixel in an image is inversely pro-
portional to the thickness of the cell, the relative thickness
oscillation can be calculated by image analysis. We tested
1.6, 3.2, and 4.5mm diameter wells and oscillation patterns
of the plasmodium in those wells are compared.

Images were analysed with following process: First, each
colour snapshot image was converted to a grey-scale image
in which a pixel has a value corresponding to light intensity.
Then a spatio-temporal moving average filter was applied
over each snapshot image, which effectively works as a low-
pass filter to reduce camera flicker noise. The window size
used in this case was 41x41 pixels (spatial) and 5 images
(temporal). Finally the relative thickness at time t was cal-
culated as ∆s(t) = s(t) − s(t + ∆t), where ∆s(t) is an
image of extracted relative thickness at time t, and s(t) and
s(t + ∆t) are grey-scaled images at time t and t + ∆t, re-
spectively. ∆t = 7 was chosen empirically.

Physarum
Plasmodium

Mask

Figure 1: Picture of a Physarum plasmodium on 1.5 % agar
gel. The cell is allowed to move only inside a circular well
of a mask. The well diameter is 1.6mm in this example.

Results
A portion of Physarum cell in a well consists of small
dark granules and transparent parts, as seen in Fig. 1. The

transparent parts are considered to be extracellular material
(slime) coating cell’s body. A plasmodium in a larger well
(e.g. 4.5mm) contains more granules in it.

A typical time course of the plasmodial contraction re-
generation was as follows: Within 10 minutes, the plas-
modium starts contractile oscillation. At this stage, each
granule independently shows contractile oscillation within
itself, but the oscillation rhythms appears to be unsynchro-
nised to oscillations of other granules (Fig. 2a). Gradu-
ally small granules start to merge together with neighbour-
ing granules and the independent oscillations start to syn-
chronise accordingly (Fig. 2b). As a result, an area within
which a synchronised oscillation is observed gradually ex-
tends over time until the whole cell in a well shows a syn-
chronised oscillation (Fig. 2c). To illustrate this, Physarum
thickness oscillation on a line (a grey arrow in Fig. 2b) is
plotted against time (for 1 hour from the start of measure-
ment), shown in Fig. 2d. This space-time plot shows how
a globally synchronised pattern emerges in the plasmodium.
As mentioned above, small granules oscillate independently
at an early stage of the experiment. There are two oscillat-
ing granules on the line, one in the upper part and another
small one in the bottom part of the plot, which are indicated
as by gray rectangles in Fig. 2d. These two parts become
larger and larger over time. This means the area exhibiting
synchronous oscillation is gradually expanding. Approxi-
mately after 30 minutes from the start, the spatio-temporal
pattern becomes somewhat chaotic (the period around (b)).
Although various types of complex oscillating patterns can
be observed in this period, there are a few areas where syn-
chronised oscillation can be observed (In the case of Fig. 2b,
roughly 3 synchronised areas can be found). This period can
be interpreted as a “resetting” phase in which merged gran-
ules are reconstructing the whole body structure and prepar-
ing to become one single cell prior to the whole synchro-
nised phase. Those areas eventually synchronise together
and the whole cell shows a synchronise oscillation. Af-
ter it reached the phase, there were mainly 2 types of os-
cillation patterns observed: bilateral oscillation (anti-phase
oscillation between two halves of a well like Fig. 2c) and
rotating wave pattern (clockwise or anti-clockwise). Only
in the case of 4.5mm well, a convective pattern (two rotat-
ing wave colliding at the centre of a well) was observed.
These oscillation patterns were constantly switching one to
the other after a couple of cycles. Figure 3 illustrates such
frequently changing patterns. In this case, it shows a bilat-
eral oscillation at first (Fig. 3a). The pattern soon switches
to a clockwise rotating wave (Fig. 3b), followed by an anti-
clockwise rotating wave (Fig. 3c). During the period plotted,
the cell has been already settled in a globally synchronised
phase. Figure 3d is a spatio-temporal thickness oscillation
plot along a circle indicated in Fig. 3bc. The bilateral pattern
(Fig. 3a) is represented as checkerboard-like patterns where
upper and lower halves show alternating stripe patterns (gray
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Figure 2: (a) An example of plasmodial oscillation pattern in
1.6mm well at an early stage. Black regions indicate thick-
ness is increasing whereas white ones is decreasing. Syn-
chronised areas are indicated by dotted circles. (b)(c) Snap-
shot images taken after 30 and 50 minutes, respectively. (d)
space-time plot of Physarum oscillation along an arrow in
(c). First 1 hours from the start is plotted. (a-c) in the plot
corresponds to the above snapshots of Physarum thickness
oscillation (a-c).

squares in Fig. 3d). The clockwise and anti-clockwise pat-
terns are forwardslash and backslash stripe patterns (indi-
cated by gray arrows).

All the 3 well sizes investigated here showed common
time course of the oscillation regeneration as described
above. However, in general, a plasmodium in a larger well
took longer time to reach the whole synchronised phase due
to the physical size. The average lengths to settle into a
whole synchronised phase from the start were 0.95, 1.32,
and 1.68 hours for 1.6, 3.2, and 4.5mm wells, respectively.

Takagi and Ueda (2008) observed oscillation patterns of
unbounded Physarum cells (approximately 1.5mm diame-
ter) during the regeneration of contractile oscillation and
identified 4 distinctive patterns: standing wave, many drift-
ing spirals, one or two stable spirals, and synchronous oscil-
lation. Although their condition is similar to ours, in particu-
lar the case of 1.6mm well, our experiments did not confirm
all the patterns they reported. Two possible reasons can be
considered for this: First, they used Physarum plasmodia
in liquid form obtained from protoplasmic veins, whereas
ours are from growing tips. As a liquid plasmodium does
not have any granule-like structures, it starts as a uniform
cell to resume the contractile oscillation, which may leave
out the granule fusing process in our observation. Another
possible reason is the boundary for the cell. In (Takagi and
Ueda, 2008), they observed plasmodial oscillation simply
placed on a plain agar gel. On the other hand, in our setup

(a) (b) (c)

(d) Time

S
pa
ce

(a) (b) (c)

Figure 3: (a) space-time plot in (e) is plotted along the grey
arrow, 360 points. (b) Bilateral oscillation (c) clockwise os-
cillation (d) anti-clockwise oscillation of a Physarum plas-
modium in 4.5mm well. (e) space-time plot of Physarum
oscillation. (b-d) in the plot corresponds to the period when
above oscillation patterns were observed.

cells are constrained to move only within a well. This may
well have affected the way a plasmodium oscillates, as it
is empirically known that the Physarum plasmodium shows
a stable and sustained oscillation pattern when it is free to
move and grow. This would partly explain the frequent pat-
tern change observed in this paper. Because of surround-
ing walls, the movement of the plasmodium is constantly
blocked and it may have led to the frequent pattern change
in the globally synchronised phase. In fact, it has also been
observed that Physarum cells in 3.2 and 4.5mm wells de-
velop tiny mushroom-like 3D structures (pseudopods grow-
ing vertically) in the phase. This is possibly because the cell
is not able to grow horizontally.

A Particle Approach to the Generation of
Oscillatory Behaviour

To investigate and replicate the emergence of oscillatory be-
haviour within the plasmodium we employ and extend the
particle model in (Jones, 2010b) which was used to gener-
ate dynamical emergent transport networks. The approach
uses a population of mobile particles with very simple be-
haviours, residing within a 2D diffusive environment. The
discrete 2D lattice (where the features of the environment
are mapped to grey-scale values in a 2D image) stores par-
ticle positions and the concentration of a local factor which
we refer to generically as chemoattractant. The ’chemoat-
tractant’ factor actually represents the hypothetical flux of
sol within the plasmodium. Free particle movement repre-
sents the sol phase of the plasmodium. Particle positions
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represent the fixed gel structure (i.e. global pattern) of the
plasmodium. The particles act independently and iteration
of the particle population is performed randomly to avoid
any artifacts from sequential ordering. The behaviour of the
particles occurs in two distinct stages, the sensory stage and
the motor stage. In the sensory stage, the particles sample
their local environment using three forward biased sensors
whose angle from the forwards position (the sensor angle pa-
rameter, SA), and distance (sensor offset, SO) may be para-
metrically adjusted (Fig. 4a). The offset sensors represent
the overlapping and intertwining filaments within the trans-
port networks and plasmodium, generating local coupling of
sensory inputs and movement (Fig. 4c,d). The SO distance
is measured in pixels and a minimum distance of 3 pixels
is required for strong local coupling to occur. During the
sensory stage each particle changes its orientation to rotate
(via the parameter rotation angle, RA) towards the strongest
local source of chemoattractant (Fig. 4b). After the sensory
stage, each particle executes the motor stage and attempts
to move forwards in its current orientation (an angle from
0–360 degrees) by a single pixel forwards. Each lattice site
may only store a single particle and—critically—particles
deposit chemoattractant into the lattice only in the event of a
successful forwards movement (Fig. 5a). If the next chosen
site is already occupied by another particle the default (i.e.
non-oscillatory) behaviour is to abandon the move and select
a new random direction (Fig. 5b). Diffusion of the collective
chemoattractant signal is achieved via a simple 3x3 mean fil-
ter kernel with a damping parameter (set to 0.07) to limit the
diffusion distance of the chemoattractant.

The low level particle interactions result in complex pat-
tern formation. The population spontaneously forms dy-
namic transport networks showing complex evolution and
quasi-physical emergent properties, including closure of net-
work lacunae, apparent surface tension effects and network
minimisation. An exploration of the possible patterning pa-
rameterisation was presented in (Jones, 2010a).

Although the particle model is able to reproduce many of
the network based behaviours seen in the Physarum plas-
modium such as spontaneous network formation, shuttle
streaming and network minimisation, the default behaviour
does not exhibit oscillatory phenomena and inertial surging
movement, as seen in the organism. This is because the de-
fault action when a particle is blocked (i.e. when the cho-
sen site is already occupied) is to randomly select a new
orientation—resulting in very fluid network evolution, re-
sembling the relaxation evolution of soap films, and the lipid
nanotube networks seen in (Lobovkina et al., 2008).

The oscillatory phenomena seen in the plasmodium are
thought to be linked to the spontaneous assembly / disas-
sembly of actin-myosin and cytoskeletal filament structures
within the plasmodium which generate contractile forces on
the protoplasm within the plasmodium. The resulting shifts
between gel and sol phases prevent (gel phase) and promote

(a) (b)
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C Sensor Offset
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(SO)

Sensor Width
(SW)
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Sensor
Angle
(SA)

(d)

[Sensory stage] 
 
- Sample chemoattractant map values 
- if (F > FL) && (F > FR)  
 - Continue facing same direction 
- Else if (F < FL) && (F < FR) 
 Rotate by RA towards larger of FL and FR  
- Else if (FL < FR) 
 Rotate right by RA 
- Else if (FR < FL) 
 Rotate left by RA 
- Else 
 Continue facing same direction 

Figure 4: Particle morphology and schematic illustration
of overlapping particle positions representing transport net-
works and plasmodium mesh. (a) Morphology showing
agent position ’C’ and sensor positions (FL, F, FR), (b) Al-
gorithm for particle sensory stage, (c) Transport network for-
mation, (d) Overlapping sensors representing plasmodium
mesh.

(sol phase) cytoplasmic streaming within the plasmodium.
To mimic this behaviour in the particle model requires only
a simple change to the motor stage. Instead of randomly se-
lecting a new direction if a move forward is blocked, the
particle increments separate internal coordinates until the
nearest cell directly in front of the particle is free. When
a cell becomes free, the particle occupies this new cell and
deposits chemoattractant into the lattice (Fig. 5c). The ef-
fect of this behaviour is to remove the fluidity of the default
movement of the population. The result is a surging, iner-
tial pattern of movement, dependent on population density
(the population density specifies the initial amount of free
movement within the population). The strength of the iner-
tial effect can be damped by a parameter (pID, set to 0.05
for all experiments) which sets the probability of a particle
resetting its internal position coordinates, lower values pro-
viding stronger inertial movement.

When this simple change in motor behaviour is initi-
ated surging movements are seen and oscillatory domains
of chemoattractant flux spontaneously appear within the vir-
tual plasmodium showing characteristic behaviours: tempo-
rary blockages of particles (gel phase) collapse into sudden
localised movement (solation) and vice versa. The oscilla-
tory domains themselves undergo complex evolution includ-
ing competition, phase changes and entrainment. We utilise
these dynamics below to reproduce the oscillatory patterns
seen in the Physarum plasmodium at different well sizes.

The particle lattice was configured to reflect the environ-
ment of a single well containing and confining the plasmod-
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New cell
Unoccupied

(Oscillatory And
 Non-Oscillatory)

Occupy New Cell
Deposit Chemoattractant
Maintain Direction

New Cell
Occupied

(Non-Oscillatory)

Stay In Current Cell
Do Not Deposit Chemoattractant
Choose New Random Direction

New Cell
Occupied

(Oscillatory)

Do Not Deposit Chemoattractant
Maintain Direction:
Increase Internal Coordinates
Move When Next Cell Is Free

(a)

(b)

(c)

Figure 5: Particle motor behaviour in non-oscillatory and
oscillatory modes. (a) Behaviour in both modes is identi-
cal when new site is unoccupied, (b) When the new site is
occupied in non-oscillatory mode a new random direction
is selected, (c) When the new site is occupied in oscillatory
mode the particle increments an internal position counter at
every subsequent motor step until a new site in the current
direction becomes free.

ium. Movement was prevented outside this region (specifi-
cally, if the border region was encountered, a random change
in direction was made). The population size was fixed at
90% of the well size, leaving 10% of the free space avail-
able for movement. No growth/shrinkage rules were im-
plemented for these experiments. The results show pat-
terns of the concentration of chemoattractant flux within
the population. Areas of greater flux are shown as darker
regions. Since deposition of chemoattractant only occurs
when movement if successful the concentration relates to
the amount of active transport caused by oscillations in plas-
modium thickness. This is indirectly related to thickness
changes of the plasmodium detected in laboratory condi-
tions - there is a reciprocal relationship between contraction
of the plasmodium in a local region and subsequent trans-
port of material from that region, as noted by (Takamatsu
et al., 2000a). Due to the complex evolution of the patterns
the reader is encouraged to refer to the online supplementary
recordings at (Jones, 2010c).

Results
Initial experiments with the sensory parameters SA and RA
showed that a wide range of values yielded complex oscil-
latory patterns (see supplementary video recordings for ex-
amples). The differences in base pattern type at different
SA-RA combinations were caused by differences between
sensor arm angle and rotation angle. Whichever SA-RA
was used there was a common evolution to all experiments.

Figure 6: A constant SO parameter during an experimental
run results in no significant changes in pattern type. Exper-
iment iterated for 10,000 steps. Plots were sampled from a
circular region at the centre of the well at half the well ra-
dius. Well size were all 200 pixels, SO for each run: (a) 9
pixels, (b) 21 pixels, (c) 41 pixels

There was an initial period where multiple foci of oscillat-
ing flux appeared. These small regions gradually exerted an
influence upon each other and entrainment of patterns was
seen. The size of the entrained regions depended upon both
the SO parameter (sensory radius) and the well size. We
selected a small sample from the parameter ranges (specif-
ically SA 22.5 degrees and RA 45 degrees) in an attempt
to explore the complex experimentally observed phase tran-
sitions. These SA-RA settings were used because, when
considering the transport networks, they generated foraging-
like behaviour (Jones, 2010a). Grey-scale output images
from the model were saved every 10 iterations and a spatio-
temporal moving average and thickness extraction for space-
time plots were calculated as per the experimental method
above.

When a fixed value was used for the Sensor Offset (SO)
scale parameter, there was an initial period of chaotic in-
teractions until a stable type of oscillatory pattern predom-
inated. Occasionally the oscillatory behaviour was inter-
rupted, however variations on this pattern were then ob-
served throughout the time course of the simulation (Fig. 6).
Although the fixed SO parameter was able to successfully
generate emergent oscillatory behaviours, there was no pre-
dictable transition between the pattern types observed exper-
imentally. When higher values of SO were used (with iden-
tical SA-RA) fewer independent foci of oscillations were
seen. When the SO parameter increased significantly the
type of oscillation pattern changed. This supports the idea
that the independent domains in the plasmodium interact
over an increasingly large scale.

To reproduce the experimental observation of the growth
and fusion of oscillatory domains, and resultant change in
pattern type, we gradually increased the SO parameter dur-
ing the experiment. Beginning with an SO value of 3 pix-
els, the SO parameter for all particles was increased by 3



Proc. of the Alife XII Conference, Odense, Denmark, 2010 703

pixels every 500 iterations of the model. This resulted in a
larger local sensory radius for each particle, causing the be-
haviour to be influenced by local particles at larger distances.
An entrainment of movement was observed as the collec-
tive sensory coupling increased. The results showed clear
transitions between different pattern types which were ob-
served visually and in terms of the space-time plots (Fig. 7).
The order of pattern transition tended to be: 1. Chaotic be-
haviour, 2. Interacting domains, 3. Rotational pattern, 4.
Bilateral synchronisation, and 5. Pulsatile annular pattern.
However, as with the experimental plasmodium, some re-
version to earlier patterns was also observed. At the smallest
well size (100 pixels) entrainment of the entire particle col-
lective occurred relatively quickly (Fig. 7a). The rotational
patterns within this small well were two rotating halves of
the well. Larger wells produced ’propeller-like’ rotational
patterns, with increasing numbers of vanes as well sized in-
creased. Synchronous oscillations (both bilateral and later
with a pulsatile annular pattern) were observed some time
after the rotational patterns. When larger well sizes were
used, there was a longer time period before transition be-
tween pattern types. This can be seen from the phase plots
in Fig. 7b and c, which show increasing delays before the
onset of rotational patterns. The effect of the larger well
size is also evidenced by the rather fragmented aspect to the
phase plots which indicate a weaker initial coupling between
different regions (Fig. 7d. Although the model was able to
replicate the oscillatory patterns and transitions, there ap-
peared to be some limitation on the maximum well size for
entrainment of the particle population to completely occur.
With the largest well size (400 pixels), the phase plots in-
dicate the regions stay independent for much longer peri-
ods. When SO was very large (greater than 80 pixels) the
large scale oscillations became frozen and the only flux of
particles was along narrow domains within the collective.
Whether this behaviour is a feature of the real plasmodium,
or merely a modelling artifact, requires further investigation.

The phase plots of the regular periods of oscillation pat-
terns seen with SA 22.5 and RA 45 (rotation, bilateral and
annular synchronisation) can be seen in Fig. 8. Animated
video recordings of the entire well phase patterns and tran-
sitions can be seen in the supplementary material. Experi-
ments using other SA-RA settings produced other oscilla-
tory patterns, including the convective oscillatory seen in
the 4.5mm well experiments. Experiments with the particle
model suggest that the causes of the changes in oscillatory
regimes (and the reversion to previous patterns) may be the
gradual increase in sensory influence. As the SO parameter
increases previously separated oscillators begin to interact
and some begin to predominate. The increase in sensory in-
fluence also appears to reduce the freedom of movement of
the oscillatory patterns. From an informal observation the
initially separate oscillatory bodies adopt spiral and circu-
lar paths. These independent circular paths then fuse into

Figure 7: When increasing SO parameter during an exper-
iment, well diameter affects pattern types, transitions and
timing of transitions. Experiment iterated for 10,000 steps.
Plots were sampled from a circular region centre in the mid-
dle of the well at a size half the well radius. Well sizes: (a)
100 pixels, (b) 200 pixels, (c) 300 pixels, d) 400 pixels

a single circumferential path (rotation pattern). The scope
for movement is further reduced by the emergence of syn-
chronous oscillations (movement is limited by the diameter
of the well in bilateral oscillations, and to a radius distance
with annular oscillations). This observation is difficult to
quantify, however, and does not simply explain the rever-
sion to previous patterns which possess greater freedom of
movement. It is plausible that, just as there appears to be a
mechanism within the plasmodium for increasing influence
over distance, there may be another opposing mechanism
which decreases influence over distance. The polymeri-
sation/depolymerisation of actin filaments within the plas-
modium could be one (speculative) mechanism of increas-
ing/decreasing the region of influence.

Discussion and Conclusion
We experimentally investigated the regeneration process of
the Physarum plasmodium in a well and computationally
modelled oscillation patterns of the cell observed in the ex-
periments using a particle model. It has been found that
cells exhibited similar time course of oscillation regenera-
tion independent of the well size. A granule-like cell works
as an oscillator unit and by the fusion of granules the cell
eventually reaches a state where all the parts in the cell are
synchronised. Although the detailed synchronisation mech-
anism is yet to be investigated further, physiological findings
of the cell suggest that there are two factors involved in the
oscillation synchronisation (Kessler, 1982): Ectoplasmic lo-
cal contraction and endoplasmic flow. The ectoplasm (gel
phase) of the Physarum protoplasm contains actin in fila-
mentous form (F-actin). This molecule is periodically poly-
merised or fragmented, which creates cell contraction and
relaxation rhythm in a local part of the cell. The endoplasm
(sol phase) flow generated by the contraction rhythm me-
diates the oscillation synchronisation between local parts,
otherwise local rhythms do not synchronise at all (Yoshi-
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Figure 8: Characteristic oscillation patterns observed within
the particle model. Left side indicates pattern type and sam-
ple through virtual plasmodium. Right side indicates space-
time plot. (a) Rotating pattern observed in 200 pixel well,
(b) Bilateral oscillation observed in 100 pixel well, (c) Syn-
chronous annular pattern observed in 100 pixel well.

moto and Kamiya, 1978). In the experiments with real plas-
modium cells, we observed that small granular cells show-
ing independent oscillations in the beginning were gradu-
ally synchronised with time. Given the physiological find-
ings above, our observation can be considered as a process
of the endoplasmic flow network development, which coor-
dinates the synchronisation between granular cells. In our
simulation, we observed that the particle model replicates
this process well when the Sensor Offset (SO) parameter
was gradually increased. As the SO parameter determines
the interaction range between particles, the whole system
with large SO value acquired an (amorphous) interaction
network, which effectively corresponds to the endoplasmic
flow network in the plasmodium cell. The important factor
to consider is that all the processes observed here (regard-
ing both real and virtual slime moulds) emerged from the
bottom-up local interactions between simple and identical
components.

The amorphous nature of the Physarum plasmodium
presents attractive possibilities from structural, computa-
tional and robotics perspectives. The plasmodium may
be considered, on one hand, as a programmable material
whose morphology may be specified and altered by +ve
(chemoattractants, warmth) and -ve (chemorepellents, light
etc.) stimuli. On the other hand, the material itself dis-
plays impressive and well documented computational prop-
erties which are also—to some degree—subject to external

control. The computational possibilities of even small frag-
ments of Physarum plasmodium arise from the same sim-
ple interactions and are distributed throughout the material,
placing it in the category of programmable and functional
bio-materials. Although there are numerous difficulties in
trying to persuade the plasdmodium to adopt and indeed
maintain the required structural and functional patterns,
the simple low-level interactions which generate the emer-
gent behaviours suggest that it may be possible to develop
Physarum-like programmable-functional materials. Further
work is in progress using the plasmodium and its oscillatory
patterns for simple robotic devices and sub-components.
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Abstract

We continue our investigation of a bio-inspired solution for
binary classification of textual documents inspired by T-cell
cross-regulation in the vertebrate adaptive immune system,
which is a complex adaptive system of millions of cells in-
teracting to distinguish between self and nonself substances.
In analogy, automatic document classification assumes that
the interaction and co-occurrence of thousands of words in
text can be used to identify conceptually-related classes of
documents—at a minimum, two classes with relevant and ir-
relevant documents for a given concept (e.g. articles with
protein-protein interaction information). Our agent-based
method for document classification expands the analytical
model of Carneiro et al [5], by allowing us to deal simul-
taneously with many distinct populations of antigen-specific
T-Cells and their collective dynamics. We have previously ex-
tended this model to produce a spam-detection system [2; 3].
We have also developed our agent-based model further to ap-
ply it to biomedical article classification [4], testing it on a
dataset of biomedical articles provided by the BioCreative 2.5
challenge [17]. Here, we study the effect that the sequence of
presentation of articles has on classification performance, as
well as the robustness of the ensuing T-cell cross-regulation
dynamics to initial biases of the proportions of effector and
regulatory T-cells. We show that classification is improved
when we preserve the original temporal order of biomedi-
cal articles, suggesting that our model is capable of track-
ing the natural conceptual drift of the relevant biomedical
literature. We further show that initial biases in the propor-
tions of T-cells are corrected by the dynamics of the model.
Our results are useful for biomedical text mining, but they
also help us understand T-cell cross-regulation as a potential
general principle of classification available to collectives of
molecules without a central controller. While there is still
much to know about the specifics of T-cell cross-regulation
in adaptive immunity, Artificial Life allows us to explore al-
ternative emergent classification principles while producing
useful bio-inspired tools.

Introduction
At least since the start of systematic genomic studies, there
has been a tremendous growth of scientific publications in
the life sciences [13]. Pubmed (http://pubmed.gov)
now contains a growing collection of more than 19 million
biomedical articles. Manually classifying these articles as

relevant or irrelevant to a given topic of interest is very time
consuming and inefficient for curation of new published ar-
ticles [14]. Literature (or text) mining offers solutions for
automatic biomedical document classification and informa-
tion extraction from huge collections of text, as well as the
linking of numerous biomedical databases and knowledge
resources [14; 28]. Because it is very important to vali-
date and assess the quality of proposed solutions, various
community-wide competitions and challenges have been or-
ganized so that automatic systems can be evaluated against
human annotated data sets (e.g. TREC Genomics [10]).
One such effort is the BioCreative challenge, which aims
to assess biomedical literature mining in real-world scenar-
ios [11; 18; 17]. Machine learning has offered a plethora
of solutions to this problem [14; 8], however, even the most
sophisticated of solutions often overfit to the training data
and do not perform as well on real-world scenarios such as
that provided by BioCreative [1; 16]. One of the challenges
of biomedical article classification in real-world scenarios is
the presence of highly unbalanced classes; typically, there
are many more irrelevant than relevant documents, without
prior knowledge of class proportions. This was the case of
the article classification data set in the Biocreative BC2.5
challenge [17]. While participating teams (including our
own team [16]) did not enter bio-inspired solutions, the un-
balanced nature of classes and the presence of conceptual
drift, which we showed to occur between training to test-
ing data sets [1; 16], may be a good scenario to test classi-
fiers inspired by the vertebrate immune system—which must
operate under class-imbalance with permanent drift in the
populations of pathogens encountered. Therefore, here we
explore the feasibility of using T-Cell cross-regulation dy-
namics to classify biomedical articles using the real-world
scenario provided by the Biocreative 2.5. data set.

The immune system (IS) is a complex biological system
made of millions of cells all interacting to distinguish be-
tween self and nonself substances, to ultimately attack the
latter [12]1. In analogy, relevant biomedical articles for a

1We use the terminology of self/nonself discrimination, though
perhaps a more accurate description is classification of harmless
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given concept need to be distinguished from irrelevant ones.
To perform such a topical classification, we can use the oc-
currence and co-occurrence of thousands of words in a docu-
ment. In this sense, words can be seen as interacting in a text
in such a way as to allow us to distinguish between relevant
and irrelevant documents—in analogy with the interactions
among T-cells and antigens that lead to self/nonself discrim-
ination in the immune system, as we describe below.

Our Artificial Life approach is based on the idea that the
immune system is a distributed collection of molecular con-
stituents with no central controller [25]. Therefore, its clas-
sification ability needs to result from a collective classifi-
cation process, defined as the ability of decentralized sys-
tems of many components to classify situations that require
global information or coordinated action [20]. Nature is
full of examples of collective classification: the dynamics
of stomata cells on leaf surfaces are known to be statisti-
cally indistinguishable from the dynamics of automata that
are capable of performing nontrivial classification [21], bio-
chemical intracellular signal transduction networks are ca-
pable of emergent classification [9], quorum sensing in bac-
teria [33] and social insects [23], etc. We can study col-
lective classification in general models of complex systems
such as Cellular Automata, namely by identifying regular
patterns in the dynamics that store, transmit and process
information [6; 24; 27]. Here, instead of looking at gen-
eral models of complex systems, we focus on a specific im-
munological model of T-Cell cross-regulation dynamics [5].
We are are interested in exploring the collective dynamics
of this model to: (1) build a novel bio-inspired machine
learning solution for document classification, and (2) un-
derstand how well collections of T-Cells engaged in cross-
regulation perform as a classifier. The first goal entails a bio-
inspired approach to computational intelligence, and the sec-
ond a computational biology experiment, but both are based
on artificial life principles. It should be noted that recent
work in artificial immune systems (AIS) [30] has lead to a
few immune-inspired solutions to document classification in
general [32], however, none to our knowledge has been ap-
plied to biomedical article classification nor do they employ
T-cell cross-regulation dynamics.

We have already proposed an agent-based model of T-
cell cross-regulation for spam detection [2; 3]. Our dis-
tributed model extendes the original analytical model of T-
Cell cross-regulation dynamics [5] to be able to deal with
many multiple features simultaneously, and therefore ren-
der the model applicable to real-world applications. Our re-
sults on spam-detection were comparable to state-of-art text
classifiers [2; 3]. However, our initial agent-based imple-
mentation of cross-regulation dynamics did not explore im-
portant parameter configurations such as the death rate of

vs. harmful substances, because harmless can also include antigens
from bacteria that are necessary for vertebrate bodies, and harmful
can also include body’s own tumor cells.

T-cells or the best training strategies. It also lacked an ex-
tensive parameter search for optimized performance. More
recently, we started addressing some of these issues on full-
text biomedical data from BioCreative, and showed that T-
cell death is important to obtain better classification [4].
This is an interesting result, showing that the loss of T-cells
rather than hindering, can improve the collective classifi-
cation of relevant documents. Therefore, the dynamics of
T-cell cross-regulation as proposed by Carneiro et al. [5]
can lead to the elimination of T-cells that are not useful for
classification—even in our extended formulation which con-
tains hundreds of distinct T-cells representing antigens or
textual features. We also showed that training exclusively
on relevant documents (or self antigens) leads to worse clas-
sification performance than training on both relevant and ir-
relevant documents [4]. This is interesting for tuning the al-
gorithm in text mining settings, but also suggests that T-cell
cross-regulation in the vertebrate adaptive immune system
can improve from a “training” stage where it is presented
with both self and nonself antigens.

Here, we study the importance of the original temporal
sequence of bio-medical articles. Text mining classifiers do
not typically depend on the sequence of documents they are
trained with, but our model of T-cell cross-regulation dy-
namics does. Therefore, we are interested in ascertaining
if the sequence-dependence of ensuing collective dynamics
can be used to track the natural change in real-world textual
corpora, i.e. concept drift [31]. We also study the effect
of biases in the initial T-cell population. This more exten-
sive study allows us to better understand the behavior of T-
cell cross-regulation dynamics and establish its capability to
classify sequential data. It also leads to a competitive, novel
bio-inspired text classification algorithm.

The Immune System as Inspiration
The vertebrate adaptive immune system2 (IS) is a complex
network of cells that distinguishes between self and nonself
substances or antigens—usually fragments of proteins that
can be recognized by the immune system. When nonself
antigens are discovered, an immune response to eliminate
them is set in motion. Recognizing self antigens, which
obviously should not lead to an (auto)immune response to
eliminate them, is resolved by negative selection of T-cells
which takes place in the thymus, and removes T-Cells that
strongly bind to self antigens—after positive selection of T-
Cells that are capable of binding with the major histocom-
patibility complex (MHC). It is in the thymus that T-cells de-
velop and mature; only T-cells that have failed to bind to self
antigens are released (as naive T-cells), while the rest of the
T-cells is culled. Mature T-cells are allowed out of the thy-
mus to detect nonself antigens. They do this by binding to

2A good, though already a bit dated, overview of the vertebrate
immune system for the artificial life community is Hofmeyer’s
[12].
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Figure 1: CRM interactions that define the dynamics of APC and
E and R T-cells. The model assumes that APC can only form
conjugates with a maximum of two T-cells. Adapted from [5].

antigen presenting cells (typically B-cells, macrophages and
dendritic cells) that collect and present antigens via MHC af-
ter breaking them by lysosome. The specific T-cells that are
able to bind to the presented antigens then stimulate B-cells
that start a cascade of events leading to antibody produc-
tion and the destruction of the pathogens or tumors linked
to the antigens. However, it is possible that T-cells and B-
cells, which are also trained in the thymus and bone mar-
row, mature before being exposed to all self antigens. Even
more problematic is the somatic hypermutation that ensues
in lymph nodes after the activation of B-cells. At this stage,
it is possible to generate many mutated B-Cell clones that
could bind to self antigens. Either situation can cause auto-
immunity by generating T-cells capable of attacking self
antigens. One way to deal with this problem is by a pro-
cess called costimulation which involves the co-verification
of self antigens by both T-cells and B-cells before the anti-
gen is identified as associated with a nonself pathogen to
be attacked. To further insure that the T-cells do not attack
self, another type of T-cells known as regulatory T-cells, are
formed in the thymus where they mature to avoid recogniz-
ing self antigens. These regulatory T-cells have the responsi-
bility of preventing autoimmunity by down-regulating other
T-cells that might bind and kill self antigens. Our model is
based on this process of T-Cell cross-regulation.

Artificial Immune Systems (AIS) are artificial life tools,
inspired by theories and components of the immune sys-
tem, and applied towards solving computational problems,
such as categorization, optimization and decision making
[7]. Common AIS techniques are based on specific theoret-
ical models explaining the behavior of the IS such as: Neg-
ative Selection, Clonal Selection, Immune Networks and
Dendritic Cells [30]. AIS fall in categories: (1) mathe-
matical and computational models to understand IS behav-
ior and (2) engineering of adaptive machine learning algo-

rithms. While our approach fits more immediately in the
second category, our goal is also to use our classifier to test
the prevailing model of T-cell cross-regulation and therefore
also contribute to the first category of the study of AIS.

The Cross-Regulation Model
The T-cell Cross-Regulation Model (CRM) [5] is a dynami-
cal system that aims to distinguish between self and nonself
protein fragments (antigens) using only four possible inter-
action rules amongst three cell-types: Effector T-cells (E),
Regulatory T-cells (R) and Antigen Presenting Cells (APC).
As their name suggests, APC present antigens for the other
two cell-types, E and R, to recognize and bind to them. Ef-
fector T-cells (E) proliferate upon binding to APC, unless
adjacent to regulatory T-cells (R), which regulate E by in-
hibiting their proliferation. For simplicity, proliferation of
cells is limited to duplication in quantity in contrast to hav-
ing a proliferation rate. T-cells that do not bind to APC die
off with a certain death rate. The dynamics of the CRM
depend on four interaction rules defined by the following re-
actions (illustrated in Fig. 1):

E−→
dE
{} and R−→

dR
{} (1)

A+R→ A+R (2)
A+ E → A+ 2E (3)
A+ E +R→ A+ E + 2R (4)

Reaction (1) defines E and R apoptosis with the correspond-
ing death rates dE and dR. The last three proliferation reac-
tions define the maintenance of R (2), the duplication of E
(3), and the maintenance of E and duplication of R (4) .

Carneiro et al [5] developed the analytical CRM to study
the dynamics of a population of T-cells and APC that present
a single antigen associated with a single T-cell population.
In [2; 3], we extended the original CRM model to be able to
deal with multiple populations of antigens and T-Cells us-
ing agent-based modeling. More recently, Sepulveda [26,
pp 111-113] extended the original CRM to study analyti-
cally multiple populations of T-cells that recognize antigens
presented by APC capable of presenting at most two distinct
antigens. In our model, explained in detail in the next sec-
tion, APC are capable of presenting hundreds of antigens
to be recognized by T-cells of hundreds of different popula-
tions, using the same four interaction rules of the CRM.

The Agent-Based Cross-Regulation Model
In order to adapt CRM to an Agent-Based Cross-Regulation
Model (ABCRM) for text classification, one has to think
of documents as analogous to the organic substances that
upon entering the body are broken into constituent pieces.
These pieces, known as epitopes, are presented on the sur-
face of Antigen Presenting Cells (APC) as antigens. In the
ABCRM, antigens are textual features (e.g. words, bigrams,
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Figure 2: To illustrate the difference between the CRM and the
ABCRM, the top part of the figure represents a single APC of the
CRM which can bind to a maximum of two T-Cells. The lower part
represents the APC for a document d in the ABCRM, which con-
tains many pairs of antigen/feature “slots” where pairs of T-cells
can bind. In this example, the first pair of slots of the APC Ad

presents the features fi and fj ; a regulatory T-cell Ri and an ef-
fector T-cell Ej bind to these slots, which will therefore interact
according to reaction (4)—Ri inhibits Ej and in turn proliferates
by doubling. The next pair of slots leads to the interaction of regu-
latory T-cells Ri,Rk that proliferate via reaction (2), etc.

titles, numbers) extracted from articles and presented by ar-
tificial APC such that they can be recognized by a number
of artificial Effector T-cells (E) and artificial Regulatory T-
cells (R). Individual E and R have receptors for a single,
specific (textual) feature: they are monospecific. E prolifer-
ate upon binding to antigens presented by APC unless sup-
pressed by R; R suppress E when binding in adjacent lo-
cations on APC. Individual APC present various document
features: they are polyspecific. Each APC is produced when
documents enter the artificial cellular dynamics, by breaking
the former into constituent textual features. Therefore we
can say that APC are representative of specific documents
whereas E and R are representative of specific features.

A document d contains a set of features Fd; an artifi-
cial APC Ad that represents d, presents antigens/features
fi ∈ Fd to artificial E and R T-cells. Ei and Ri bind to
a specific feature fi on any APC that contains it; if fi ∈ Fd,
then either Ei or Ri may bind to Ad as illustrated in fig-
ure 2. In biology, antigen recognition is a more complex
process than mere polypeptide sequence matching, but for
simplicity we limit our feature recognition to string match-
ing. Once T-cells bind to an APC Ad, every pair of adjacent
T-cells on Ad proliferates according to reaction rules (2-4).
APC are organized as a sequence of pairs of “slots” of (tex-
tual) features, where T-cells, specific for those features, can
bind. We use this antigen/feature presentation scheme of
pairs of “slots” to simplify our algorithm. In future work
we will study alternative feature presentation scenarios. In
summary, each T-cell population is specific to and can bind
to only one feature presented by any APC. Implementing the
algorithm as an Agent-based model (ABM) allows us to deal
with the recognition and co-recognition (co-occurrence in
the same document/APC) of many features simultaneously,
rather than a single one as the original CRM does.

The ABCRM uses incremental learning to first train on
N labeled documents (relevant and irrelevant), which are or-
dered sequentially (typically by time signature) and then test
on M unlabeled documents that follow in time order. The
sequence in which documents are received affects the artifi-
cial cellular dynamics, as incoming APC and T-cells face a
T-cell dynamics that depends on the specific documents pre-
viously encountered. Therefore, we use publication-time as
the default ordering for incoming documents, but we study
here if there is an advantage to preserving the original tem-
poral sequence of articles (see below).

Carneiro et al [5] show that both E and R T-cells co-exist
in healthy individuals assuming enough APC exist. R T-
cells require adequate amounts of E T-cells to proliferate,
but not too many that can out-compete R for the specific
features presented by APC. “Healthy” T-cell dynamics is
identified by observing the co-existence of both E and R
features with R ≥ E. “Unhealthy” T-cell dynamics is iden-
tified by observing E � R, and should result when encoun-
tering many irrelevant features in a document—in analogy
with encountering many nonself antigens. In other words,
features associated with relevant documents should have E
and R T-cell representatives in comparable numbers in the
artificial cellular dynamics (with slightly more R). In con-
trast, features associated with irrelevant documents should
have many more E than R T-cells. Therefore, when a doc-
ument d contains features Fd that bind mostly to E rather
than R cells, we can classify it as irrelevant—and relevant
in the opposite situation.

The ABCRM is controlled by 6 parameters:
• E0 is the initial number of Effector T-cells generated for

all new features
• R−

0 is the initial number of Regulatory T-cells generated
for all new features in irrelevant and unlabeled (testing)
documents

• R+
0 is the initial number of Regulatory T-cells generated

for all new features in relevant documents
• dE is the death rate for Effector T-cells that do not bind to

APC
• dR is the death rate for Regulatory T-cells that do not bind

to APC
• nA is the number of slots in which each feature fi is pre-

sented on APC
In the IS, millions of novel T-cells are randomly gener-

ated in the thymus every day to attempt to predict future
antigens. In our algorithm, in contrast, we generate T-cells
only for features (words) occurring in the relevant document
corpus. This is reasonable because the space of meaning-
ful words in a language are largely fixed and much smaller
than the space of possible polypeptide epitopes in biology.
When (textual) features are encountered for the first time, a
fixed initial number of E0 effector T-Cells and R0 regulatory
T-Cells is generated for every new feature fi. These initial
values of T-cells vary for relevant and irrelevant documents
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in training and in testing stages. More Regulatory (R+
0 ) than

Effector T-cells are generated for features that occur for the
first time in documents that are labeled relevant in the train-
ing stage (R+

0 > E0), while fewer Regulatory (R−
0 ) than

Effector T-cells are generated in the case of irrelevant doc-
uments (R−

0 < E0). Features appearing in unlabeled docu-
ments for the first time during the testing stage are treated as
features from irrelevant documents, assuming that new fea-
tures are irrelevant (nonself) until neutralized by the collec-
tive dynamics given their co-occurrence with relevant ones.

Naturally, relevant features will occur in irrelevant docu-
ments and vice versa. However, the assumption is that rel-
evant features tend to co-occur more frequently with other
relevant features in relevant documents and similarly for ir-
relevant features. Therefore, the proliferation dynamics de-
fined by the 4 reactions and guided by co-binding to APC
slots is expected to correct the erroneous initial bias. But
this self-correction has not been proven, and it is one of the
issues we test in the present work, as detailed below. The
pseudocode for the algorithm is shown below:

ABCRM:
(1) ∀d generate a linear array Ad presenting each fi ∈ Fd at nA

arbitrary, randomly distributed slots
(2) Let Ct contain Ek and Rk T-cells for all features fk in the
cellular dynamics at time t.
(3) For an incoming document d, ∀fi ∈ Fd, if Ei /∈ Ct and
Ri /∈ Ct then,
(4) Ei = E0 (generate E0 Effector T-cells for fi)
(5) if d is labeled relevant.
(6) Ri = R+

0 (generate R+
0 Regulatory T-cells for fi)

(7) otherwise
(8) Ri = R−0 (generate R−0 Regulatory T-cells for fi)
(9) update Ct with Ei and Ri
(10) Let all Ei, Ri bind specifically3 to matching fi on Ad:
(11) ∀ pairs of adjacent (fi, fj) on Ad apply the interaction rules:
(Ri, Rj) → Ri + Rj (Ei, Ej) → 2.Ei + 2.Ej (Ei, Rj) →
Ei + 2.Rj

(12) ∀Ri, Ei that bind to Ad, update total number of Ei, Ri

(13) ∀Rk, Ek ∈ Ct that do not bind to Ad, cull Ek and Rk accord-
ing to death rates dE and dR
(14) If d is unlabeled, Let R(d) =

∑
fi∈Fd

(Ri) and E(d) =∑
fi∈Fd

(Ei)

(15) Compute the normalized score S(d) = R(d)−E(d)√
R2(d)+E2(d)

(16) If S(d) > 0 then classify d as relevant, else irrelevant.

Data and Feature Selection
The BioCreative (BC) challenge aims to assess the quality of
biomedical literature mining algorithms such as article clas-
sifiers. The article classification task of Biocreative 2.5 [17]
was based on a training data set (T ) comprised of 61 full-text
articles relevant (PT ) to the topic of protein-protein interac-
tion (PPI) and 558 irrelevant ones (NT ). The realistic im-
balance between the relevant and irrelevant instances is very

3While the features fi are arbitrarily distributed over the APC
Ad, Ei and Ri that are specific to fi, are sampled from Ct based
on the proportions of Ei to Ri

Figure 3: Numbers of relevant (P ) and irrelevant (N ) documents
in the training (T ) and testing (V ) data sets of the Biocreative 2.5
challenge. In the parameter search stage, we use a balanced set of
60 PT (blue) and 60 NT (red) randomly selected articles from the
training data set. In the testing stage we use the unbalanced valida-
tion set containing 63 PV (black) and 532 NV (black) documents.
Notice that the validation data was provided to the participants in
the classification task of Biocreative 2.5 unlabeled, therefore par-
ticipants had no prior knowledge of class proportions.

challenging for common machine learning techniques, since
there are few instances of the topical category of interest
to generalize from. Because we cannot predict how imbal-
anced the validation set will be, we first search for optimal
ABCRM parameters on a smaller sample of the training that
is balanced in the numbers of relevant and irrelevant docu-
ments. For this purpose, we chose the first 60 relevant and
sampled 60 irrelevant articles that were published around the
same date (uniform distribution between Jan and Dec 2008)
as illustrated in figure 3. For final validation we used the
entire Biocreative 2.5 testing data set (V ) consisting of 63
full-text articles relevant to PPI (PV ) and 532 irrelevant ones
(NV ) as also shown in figure 3. Furthermore, we compared
our optimized algorithm with a Naive Bayes (NB) [19] and
a support vector machine (SVM) classifier [15].

We pre-processed all articles by filtering out common
words4 and porter stemming [22] the remaining words
which are all the potential features. We then ranked
words/features f extracted from training articles (T )5 ac-
cording to two scores: the first one is the average TF.IDF6

[8], and the second one is the separation score S(f) =
|pP (f) − pN (f)| where pP (pN ) is the probability of a
feature occurring in a relevant (irrelevant) document of the
training set T [1; 16]. The final rank R(fi) for every feature
fi is given by the product of the ranks obtained from both
scores; we used only the 650 top ranked features according

4The list of common (stop) words includes 33 of the most com-
mon English words from which we manually excluded the word
“with”, as we know it to be of importance to PPI

5For feature extraction we used both the training data of Biocre-
ative 2.5 and Biocreative 2 as described in [16]; all classifiers used
the exact same feature set.

6TF.IDF is a common text weighting measure to evaluate the
importance of a feature/word in a document in a corpus. TF stands
for term frequency in a document and IDF for inverse document
frequency in the corpus. [8]
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Parameter Range Step
E0 [1,7] 1
R−

0 [3,12] 1
R+

0 [3,12] 1
dE [0.0,0.4] 0.1
dR [0.0,0.4] 0.1
nA [2,22] 2

Table 1: Parameter ranges used for optimizing the ABCRM

to R(fi). Features such as “interact”, “lysat” and “transfect”
were ranked above others for their high ranks according to
both scores. See [16] for more details about the feature ex-
traction procedure.

Parameter Search and Robustness
We performed an exhaustive parameter search by training
the ABCRM on 60 balanced full-text articles (30 PT and
30 NT from BC2.5 training) and testing it on the remain-
ing 60 balanced ones (also 30 PT and 30 NT from BC2.5
Training) as illustrated in figure 37. Each run corresponds to
a unique configuration of the 6 parameters of the ABCRM.
The explored parameter ranges are listed in table 1 which
result in a total of 192500 unique parameter configurations
for each experiment. Finally, the parameter configurations
were sorted with respect to the resulting F-score measure of
performance8, which is a good measure between precision
and recall when applied to balanced data [29].

We compiled the performance of the ABCRM on the en-
tire parameter search space for two distinct experiments:
(1) effect of sequence order of articles, and (2) effect of
varying initial T-cell counts. In another publication [4] we
showed that a positive T-Cell death ratio improves classifi-
cation, whereas training exclusively on relevant documents
lowers the performance. In both experiments, we choose the
50 configurations with highest F-score measure to study the
ABCRM performance, because we are interested in identi-
fying the experimental setups that lead to higher robustness
to parameter changes. We compare experimental outcomes
with the paired student t-test; the null hypothesis is that the
two samples are drawn from the same distribution. A p-
value < 0.01 rejects the null hypothesis, establishing a sta-
tistical distinction between the data drawn from two exper-
imental setups—in our case, the data from each experiment
are the top 50 F-score values obtained. Finally, we train on
both relevant and irrelevant documents as this was shown to

7Notice that this parameter search on the provided labeled train-
ing data uses only the information available to the teams participat-
ing in Biocreative 2.5 challenge, and none of the testing data whose
labels were revealed post-challenge.

8F-score = 2.Precision.Recall
Precision+Recall

where Precision = TP
TP+FP

and
Recall = TP

TP+FN
. True Positives (TP) and False Positives (FP) are

the classifier’s correct and incorrect predictions for relevant doc-
uments, while True Negatives (TN) and False Negatives (FN) are
the correct and incorrect predictions for irrelevant documents.

be advantageous [4], and search for optimal parameter con-
figurations (including T-Cell death ratios).

The first experiment aims to establish how much the se-
quence order of processing documents impacts performance.
In particular, we test if preserving the original temporal or-
der of biomedical documents results in better performance,
as this would indicate that the ABCRM can use its sequence-
dependent dynamics to track the natural concept or topical
drift and thus improve classification. Therefore, we com-
pared the performance of the ABCRM when tested on a se-
quence of biomedical articles ordered by the original pub-
lication, against randomly shuffling the articles. We tested
four distinct experimental setups in order to fully explore the
influence of document order:

1. Ordered training set⇒ ordered testing set
2. Ordered training set⇒ shuffled testing set
3. Shuffled training set⇒ shuffled testing set
4. Shuffled training set⇒ ordered testing set

In the case of shuffled sets, we produced 8 runs with dis-
tinct random document orderings; in those cases, perfor-
mance is represented by central tendency and variation.

Figure 4: Left: top 50 parameter configurations ranked in terms
of F-score for experimental setups 1.1/2.1 (red circles), 1.2 (blue
triangles), 1.3 (blue pluses), 1.4 (blue crosses), and 2.2 (green di-
amonds). Right: mean (line), 95%CI (boxes), and standard devia-
tion (whiskers) of F-scores for top 50 parameter configurations.

The results of this experiment are summarized in figure
4. The robustness of performance of the first experimental
setup (preserving temporal order of articles) is significantly
above the other setups. Using the paired student t-test as
described above, we conclude that the ABCRM is sensitive
to article order—i.e. if the articles are shuffled, the perfor-
mance is worse. While the performance of the best classifier
obtained via experimental setup 1.2 is equivalent to the best
one obtained for experimental setup 1.2 (F-Score = 0.853,
see table 2 and figure 4), that setup is very sensitive to pa-
rameter changes and the performance quickly and signifi-
cantly decreases for subsequent best classifiers (see figure



Proc. of the Alife XII Conference, Odense, Denmark, 2010 712

Exp. F-Score E0 R+
0 R−

0 dR dE nA

1.1 = 2.1 0.852 2 11 10 0.3 0.2 18
1.2 0.853 2 7 6 0.0 0.0 20
2.2 0.862 3 8 7 0.2 0.1 14

Table 2: Performance and parameters of top classifiers in experi-
ments 1.1, 1,2, 2.1 and 2.2.

4). Indeed, the performance of the top 50 classifiers for ex-
perimental setups 1.2, 1.3, and 1.4 is statistically indistin-
guishable from each other, but is significantly lower than the
performance of the top 50 classifiers for experimental setup
1.1. This means that there is indeed a conceptual drift in
the Biocreative 2.5 article data stream, and the ABCRM can
track it better (and in a more robust manner) when publi-
cation date is used as the sequence for processing articles
than when the temporal order of articles is shuffled. This
also suggests that the process of T-Cell cross-regulation in
the IS, as modeled here, can track changing environments.

In the second experiment we test the effect of the ini-
tial biases introduced when features are first encountered.
The initial biases of regulatory T-cells injected in the dy-
namics for a new feature fi, depend on whether the first
document d where the feature is encountered is labeled ir-
relevant/unknown (R−

0 ) or relevant (R+
0 ). Since features

will occur in both relevant and irrelevant articles, this ini-
tial bias for a feature could be detrimental, as a feature most
associated with one class could be first encountered on a
document of the opposite class. Therefore, it is important
to test if the dynamics of the four reactions and APC fea-
ture co-presentation that define the ABCRM can self-correct
such erroneous biases. To perform this test, we altered the
ABCRM algorithm such that T-cells are incremented appro-
priately every time a feature occurs in a document, and not
just the first time the feature occurs (as the canonical algo-
rithm does). Specifically, every time a feature fi occurs in a
document d, we increment Ei = Ei+E0 and Ri = Ri+R+

0

if d is labeled relevant and Ri = Ri +R−
0 if d is labeled ir-

relevant or unknown.
The results of this experiment are also summarized in fig-

ure 4. The performance of top classifiers obtained for exper-
imental setups 2.1 (same as 1.1) and 2.2 is shown in table 2.
While the best overall classifier is obtained with experimen-
tal setup 2.2, the performance of both setups is statistically
indistinguishable. Indeed, using the paired student t-test as
described above, we conclude that this modification does not
improve the performance of the ABCRM on the Biocreative
data set, thus showing that the initial bias can be corrected
by the ABCRM collective dynamics. Because features most
associated with a given class tend to co-occur in text with
other features most associated with the same class, they will
also tend to be co-presented in APC and thus the relevant
T-cells will proliferate with similar rates. Therefore, the dy-
namics of the ABCRM can self-correct initial erroneous bi-
ases from the natural textual co-occurrence of features. This
shows that T-Cell cross-regulation as modeled here can self-

correct initial antigen misclassification by the IS, assuming
that antigens from one class (self/nonself) tend to co-occur
with antigens from the same class.

Validation and Conclusions
To test the ABCRM on the full, unbalanced testing set of
the Biocreative challenge (see figure 3), thus establishing its
merit as a bio-inspired biomedical literature mining classi-
fier, we adopted the best parameter configuration from the
canonical ABCRM (experimental setup 1.1 and 2.1, see ta-
ble 2) obtained from the parameter search described above.
We compared the ABCRM classifier with the multinomial
Naive Bayes (NB) with boolean attributes [19], and the pub-
licly available SVMlight implementation of SVM applied to
normalized feature counts [15]. All classifiers were tested
on the same features obtained from the same data.

ABCRM NB SVM Mean StDev. Median
Precision 0.22 0.14 0.24 0.38

Recall 0.65 0.71 0.94 0.68
F-score 0.33 0.24 0.36 0.39 0.14 0.38

Accuracy 0.71 0.52 0.74 0.67 0.30 0.84
AUC 0.34 0.19 0.46 0.43 0.17 0.44
MCC 0.24 0.13 0.31 0.31 0.19 0.33

Table 3: F-Score, Accuracy, AUC and MCC performance of vari-
ous classifiers when training on the balanced training set of articles
and testing on the full unbalanced Biocreative 2.5 testing set. Also
shown is the central tendency and variation of all systems submit-
ted to Biocreative 2.5.

Since the F-score and Accuracy are not very reliable
for evaluating unbalanced classification [29], we also use
the Area Under the interpolated precision and recall Curve
(AUC) and Matthew’s Correlation Coefficient (MCC). The
results are listed in table 3, which also includes the cen-
tral tendency of the results of all systems submitted by all
Biocreative 2.5 participating teams [17; 16]. It should be
noted that the ABCRM, NB, and SVM classifiers we tested
here, used only single-word features because we wish to es-
tablish the feasibility of the method. In contrast, most clas-
sifiers submitted to the Biocreative 2.5 challenge (including
another method from our group which was one of the top-
performing classifiers [16]) used more sophisticated features
such as bigrams and problem-specific entities. Therefore, it
is not surprising that these methods as tested here performed
under the mean of the challenge. Our goal was to estab-
lish the ABCRM as a new bio-inspired text classifier to be
further improved in the future with more sophisticated fea-
tures. When we compare its performance to NB and SVM
on the exact same single-word features, the results are en-
couraging. Indeed, based on the given measures, while SVM
out-performed the ABCRM, the latter out-performed NB.
Therefore, the dynamics T-Cell cross-regulation lead to a
competitive collective classification of biomedical articles,
which we intend to develop further.

In conclusion, we observed that our algorithm adapts to
the initial bias of T-cell populations generated for new fea-
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tures, and it performs best when tested on a sequence of ar-
ticles ordered by publication date—showing that it can track
concept drift in the biomedical literature. These properties
of our Artificial Life model also show that T-Cell cross regu-
lation is capable of efficient collective classification of non-
self antigens and suggest that T-Cell cross-regulation can
naturally respond to drift in the pathogen population. There-
fore T-Cell cross-regulation defined by the 4 reaction rules
and co-presentation of features in APC can be seen as an ef-
fective general principle of collective classification available
to populations of cells. Clearly, there is still much to do to
improve the model. For biomedical literature mining appli-
cations, we need to test it with more sophisticated features
(as top classifiers in the field do). For our goal of under-
standing T-Cell cross-regulation in the IS, we need to un-
derstand better how memory is sustained in the collective
cellular dynamics; for instance, how to sustain regulatory T-
Cells, which keep memory of self, in the dynamics even in
the presence of very unbalanced scenarios where there are
many more nonself instances.
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Abstract 
Research in evolutionary robotics has traditionally been limited 
to morphologies comprising rigid and discrete components, 
such as links connected with rotational or linear joints and 
actuators. Here, we demonstrate the evolution of robots with 
continuous and amorphous morphologies composed of multiple 
materials. Actuation is accomplished by periodic volumetric 
expansion and contraction of one or more of these materials. 
The challenges of representing evolvable multi-material 
freeform shapes and evaluation (simulation) of the resulting 
soft bodies are discussed. Several genotypic representations are 
explored which use a level-set threshold to generate the 
material distribution in the phenotype. Soft body simulation of 
the robot is accomplished using a relaxation algorithm to model 
the dynamics of the resulting amorphous machines under the 
actuation material expansion, gravity forces, and non-linear 
ground friction. These results open the door to a new design 
space that more closely mimics the freeform, amorphous and 
continuous nature of biological systems.  

Introduction 
The field of evolutionary robotics has explored methods for 
generating interesting and functional robot morphologies 
(Nolfi and Floreano 2002). Ever since the early work in 
evolving virtual (Sims 1994) and physical (Lipson and 
Pollack 2000) creatures, many examples have been published 
of evolved walking, (Pollack, Lipson et al. 2001) running 
(Zykov, Bongard et al. 2004; Hornby, Takamura et al. 2005), 
and swimming (Ijspeert and Kodjabachian 1999) robots. 
These simulations all use rigid-body simulations of discrete 
components connected by rotational or linear joints. Many 
interesting biological forms of locomotion, however, are not 
modeled well by rigid links and joints – such as the 
earthworm (Quillin 1999) and the amoeba (Mast 1926). More 
recent work on morphogenetic robotics explores the 
development of more complex morphologies using many rigid 
links, but these bodies are still inherently discrete and 
relatively sparsely connected (Hornby, Lipson et al. 2001; 
Bongard 2003). 

In this paper we focus on evolving fully amorphous soft 
robots. Material distributions take the place of discrete links, 
and volume changing materials replace discrete actuators. 
These material distributions are not constrained to any given 

topology or shape. This freedom removes fundamental 
constraints, thereby opening a vast new design space to 
explore.  

Traditional computer aided design (CAD) tools are 
typically inappropriate for designing amorphous machines 
with continuous morphology and actuation. Such tools rely on 
feature-based modeling approaches that work well for well-
defined geometric primitives made of a single material. 
However, the lack of constraints on the shape and material 
distribution of soft robots indicate that existing CAD 
programs would be ineffective in their ability to fully take 
advantage of the design space offered. Therefore, new higher 
level design tools are necessary to meet functional goals 
without geometric constraints. 

As greater computing power becomes more readily 
available, design automation algorithms are becoming 
increasingly valuable for designing structures with freeform 
material distributions. Homogenization techniques (Bendsoe 
and Kikuchi 1988) are useful for designing single material 
structures such as 2D and 3D beams, and simple 
mechanisms(Nishiwaki, Frecker et al. 1998). However, 
homogenization techniques are limited in their ability to meet 
high level functional goals, such as specific beam 
deformations (Hiller and Lipson 2009) or locomotion. Here, 
we focus on the use of evolutionary algorithms to 
autonomously design locomoting amorphous soft robots. 

We first briefly describe the field of soft robotics and the 
additive manufacturing technology that make amorphous 
robots possible. Next, we explore three representations that 
enable genetic algorithms to evolve functional three 
dimensional multi-material morphologies independent of 
topology. We then describe our soft body physics simulator 
used to evaluate potential solutions. Finally, the abilities of 
each representation are compared and several resulting 
amorphous, locomoting robots are shown for various 
scenarios. 

Background 

Soft Robotics 

Robots are traditionally made of discrete rotary or linear 
actuators, connected by rigid links. This architecture is driven 
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by the manufacturing technology used to physically build the 
robots and the methods used to simulate and control them. 
The kinematics of these machines can be deterministically 
modeled and used to perform useful functions such as path 
planning and collision avoidance.  

A new paradigm in robotics has recently emerged, inspired 
largely by the robustness and resilience of biological systems. 
These “soft” robots trade deterministic control for 
probabilistic models, but gain robustness (Rieffel, Trimmer et 
al. 2008). While several actuation methods have been 
explored for soft robots such as shape memory alloy (SMA), 
pneumatics, (Rieffel, Saunders et al. 2009) electroactive 
polymers, (Bar-Cohen 2001) and jamming (Mozeika, Steltz et 
al. 2009), these all place constraints on the geometry and the 
ways in which internal forces are applied. Here we consider 
pure volumetrically actuated materials in order to more 
accurately mimic distributed actuation and avoid imposing 
undue constraints. 

Freeform Fabrication 
The new design space of soft robots is characterized by a 
nearly complete freedom over the spatial distribution of 
materials (Beaman, Marcus et al. 1997). Physically, this is 
realized by novel additive manufacturing technologies (also 
known as solid freeform fabrication, rapid prototyping or 3D 
printing). This technology is currently capable of 
autonomously fabricating multi-material 3D objects in any 
desired shape, with any internal material distribution (Malone, 
Rasa et al. 2004; Malone and Lipson 2007; Hiller and Lipson 
2009; Objet 2010). Materials that can be co-fabricated include 
rigid plastics and soft rubbers. 

A significant missing link in soft robots becoming 
ubiquitous is the ability to print volumetric actuators. Many 
examples are present in literature of additively manufactured 
robots with actuators added after fabrication. However, these 
are limited to traditional rotational or linear actuators, 
(Pollack, Lipson et al. 2001) which would severely limit the 
generality and methods of actuation of an amorphous robot. 
Here in simulation we explore an ideal volumetric actuator, in 
which a given material expands isometrically (equally in all 
dimensions). A useful analogy is that we will be evolving 
robots with materials of varying thermal expansion 
coefficients (CTE), then “actuating” the robot by globally or 
locally varying the “temperature”. Thus materials with a 
simulated CTE of zero will not change volume, whereas 
materials with a non-zero CTE will swell or contract 
isometrically as the temperature changes.  

In these experiments, the temperature is assumed to vary 
sinusoidally over time, and slowly enough that actuation 
across the entire structure occurs simultaneously without heat 
diffusion effects. The period and amplitude of this 
temperature variation determine how dynamic the movement 
of the robot is. More complex actuation patterns including 
evolved brains will be examined in the future. 
 

Methods 
In this section we address the two main challenges of evolving 
amorpheous soft robots. First, we explore continuous 
representations of 3D multi-material objects unconstrained by 
topology, with the goal of maximizing interesting shapes and 
evolvability while minimizing the number of variables to be 
evolved. Each continuous representation is rendered to 
discrete voxel-space for simulation, which allows any suitable 
resolution to be used for the simulation process in order to 
balance computational efficiency with accuracy. Second, we 
outline our soft-body physics engine used to efficiently 
simulate the dynamics of amorphous robots with non-linear 
large deformations, volume-changing materials, and friction.  

Representations 
There are many possible representations for three dimensional 
freeform shapes for an evolutionary algorithm. Most prior 
examples use primitives (Sims 1994) but these are not 
conducive to creating smooth freeform shapes. We use a 
level-set class of representations that create a four-
dimensional landscape, which is then threshholded to create a 
three dimensional solid (Sethian and Wiegmann 2000; Wang, 
Wang et al. 2003). A convenient analogy is to view the 
genotype as specifying a 3D density field, to which a 
threshold is applied. All the volume at a higher density is 
instantiated as part of the solid, whereas the rest is interpreted 
as empty space. 

The level-set concept is versatile and useful for evolving 
shapes for several reasons. First, there is complete freedom in 
the topology of the object. More importantly, a continuous 
evolution path between different topologies exists since a 
phenotype’s topology is derived, not prescribed. Moreover, 
this representation allows multiple materials to be seamlessly 
interspersed throughout the volume. A density field for each 
material is generated. Then the boundary of the volume is 
determined by thresholding the sum of the density fields of 
each material at each location. The material with the highest 
density at each location within the lattice is instantiated at that 
location. Alternatively, mixtures of materials could be 
described by blending materials in ratios proportional to their 
respective density fields.  

We explore three different representations that create 3D 
density fields: (a) The Discrete Cosine Transform (DCT) 
representation (Hiller and Lipson 2009), (b) the 
Compositional Pattern Producing Network (CPPN) 
representation (Stanley 2007), and (c) the Gaussian Mixtures 
representation (Pernkopf and Bouchaffra 2005). Each of these 
was chosen to create smooth shapes of multiple materials. 
Each representation is also open ended in that it has the ability 
to increase the complexity of the resulting objects at the 
expense of the number of evolved parameters. 

Discrete Cosine Transform (DCT). The discrete cosine 
transform is a special case of the discrete Fourier transform, in 
which boundary conditions favorable to creating amorphous 
morphology shapes are enforced. In the DCT representation 
(Hiller and Lipson 2009) the phenotype is a 3D matrix of 
frequency amplitudes, ranging from -1 to 1. To convert each 
phenotype to a genotype, the inverse DCT is applied to each 
row of each dimension of this matrix, converting from the 
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frequency domain to the spatial domain. Thus, each element 
in the frequency matrix scales a harmonic density field, where 
the number of modes in each of the three dimensions 
corresponds to its X, Y, and Z indices in the frequency matrix. 
A simple 1D example is shown in Figure 1. In this example, 
the 1D genotype matrix would be as follows: 

The first element of this matrix scales the fundamental 
harmonic, the second element scales the second harmonic, 
and so on. These weighted harmonic functions are then 
summed to create a density field, which is thresholded at zero. 
In the 1D case, this results in a “freeform” 1D line segment, as 
shown in red in Figure 1. By extension, a 3D matrix of 
frequency components results in a freeform 3D solid.  

 
Figure 1: The inverse discrete Fourier transform 
representation sums weighted sinusoids, then thresholds them 
at zero as shown in this 1D example. The weights are the only 
evolved parameters. 

 
The usefulness of the DCT representation for creating smooth, 
amorphous shapes is realized when the evolved frequency 
amplitude matrix is smaller than the rendered matrix of voxels 
in the spatial domain. Before the inverse DCT is applied, the 
frequency amplitude matrix of the genotype is simply padded 
with zeros to match the dimension of the number of voxels in 
the phenotype. Thus, smooth, freeform shapes are created.  

When evolving freeform amorphous morphologies using 
the DCT representation, mutation involves making small 
changes (up to 5%) in amplitude of these frequency 
components. A mutation rate of 20% was used. The crossover 
operation randomly selects each frequency component from 
either parent to create offspring. 

Compositional Pattern Producing Network (CPPN). 
Compositional Pattern Producing Networks (CPPNs) (Stanley 
2007) have been demonstrated to be useful for evolving two 
dimensional density fields (often interpreted as grey-scale 

images). Here, we introduce the third dimension to produce 
3D density fields to threshold into amorphous morphologies. 
CPPNs are similar in concept to an artificial neural network 
(ANN), except that more geometrically-useful transfer 
functions are used instead of just sigmoids. A network of 
nodes (each containing a function) are connected by weighted 
paths. In order to create 3D amorphous morphologies, three 
coordinates (X, Y, and Z) that represent the position of a point 
in 3D space are used as inputs. The network has a single 
output, which represents the resulting density at that point. By 
sweeping through X, Y, and Z, the full 3D density field is 
obtained  

Unlike ANNs, however, a variety of activation functions 
are used in a CPPN. Activation functions used here include 
traditional sigmoids and Gaussians, as well as sinusoids and 
the absolute value function for inducing repetition and 
symmetry, respectively. For each node (function), several 
parameters were evolved. These include the function type, 
offsets, and scaling. Additionally, a complexity measure was 
implemented to control minimum feature sizes, such that 
features were not being lost at a sub-voxel scale. Weights 
between nodes were also subject to evolution. An example 
CPPN and the resulting geometry is shown in Figure 2. 

 

 
(a) 

 
 (b) 

Figure 2: The Compositional Pattern Producing Network 
(CPPN) representation evolves a network of functions with 
three inputs (X, Y, and Z) and one output, which is the 
density at that location. The node functions and connecting 
weights (negative shown red, positive shown black) are 
evolved. After sweeping the inputs and thresholding, the 
network (a) produces a 3D freeform shape (b). 

[ ]2.15.06.02.05.0 −−−  
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A CPPN has many evolvable parameters. Given a network 

that is m layers deep with n nodes per layer, there are a total 
of m×n nodes. Each node has an assigned activation function 
and three parameters that describe it (offset and scaling along 
the X axis, and scaling along the Y axis). There are also as 
many as (m-1)×n2 real-value weighted connections between 
the nodes, which can be either active or inactive. All these 
parameters are eligible for small changes upon mutation. 
However, the mutation rate is chosen such that on average 
only one of these values (in total) is adjusted. In the crossover 
operation, a rectangular “region” of nodes is selected from 
one parent, and the rest of the nodes are taken from the 
second parent. This region is chosen such that all nodes are 
equally likely to be in the selected region, not favoring the 
center nodes. 

Gaussian Mixtures (GMX). The Gaussian mixtures 
representation also relies on the density field analogy of the 
level-set method common to all these representations. In the 
GMX representation, the density field is initialized with zero 
density everywhere. Then, points of density with Gaussian 
falloff are added within the spatial envelope. These points can 
have either positive or negative weights, which add or subtract 
from the density respectively. If only one Gaussian point was 
used, the resulting thresholded solids would always be 
spheres. However, with a relatively small number of Gaussian 
Mixtures, interesting and complex shapes and topologies can 
result. A simple 2D example with equal size and equally 
weighted Gaussian points is shown in Figure 3. 
 

  
(a) (b) 

  

Figure 3: In the Gaussian Mixtures representation, the 
locations and intensities of Gaussian distributions are evolved. 
In this simple 2D example, nine Gaussian point locations with 
equal sizes and weights (a) are threshholded to create a 
freeform 2D shape (b). 

Mutating the Gaussian Mixtures representation involves 
making small changes to the location, density, and falloff 
(radius) of a Gaussian point, and occasionally adding or 
removing points. A mutation rate of 20% was used. Crossing 
over two individuals is accomplished by initializing a random 
plane that intersects the volume of the workspace. Points from 
one side of the plane are taken from one parent, while points 
from the other side of the plane are taken from the second 
parent. Here we used only spherical distributions though 
general Gaussians could be used as well by representing each 
distribution using a covariance matrix. 

Soft Body Simulation 
In order to efficiently evaluate amorphous soft robot 
morphologies with volumetric actuation, we developed a soft 
body simulator ab initio in C++. The main features of our 
simulation are: 

1) Speed: With thousands of time steps per evaluation, 
and thousands of evaluations per evolutionary run, 
the feasibility of evolving amorphous robots 
depends on having an efficient simulation. 

2) Dynamics: Full dynamics modeling with variable 
damping allows for realistic, 2nd order momentum 
effects in all translational and rotational degrees of 
freedom. 

3) Large deformation: Shapes can be bent and twisted 
far past any linear small angle approximations 
without revoxelizing. 

4) Multi-material: Any number of materials can be 
combined in any internal material distribution, each 
with varying stiffnesses and densities. 

5) Friction: Nonlinear friction is incorporated with a 
static/dynamic friction model. 

6) Collision detection and handling: Self intersection is 
calculated and enforced. With large deformation 
comes the need to avoid an object penetrating itself. 

 
When a continuous amorphous robot object is imported 

into the simulation, it is first voxelized at an appropriate 
resolution. These voxels are then simulated according to the 
appropriate statics and dynamics, and the continuous mesh is 
drawn according to the deformation of the nearest voxel (Alec 
and Doug 2007). At each time step, the total force on each 
voxel is calculated. Then, the momentum (P) of each voxel is 
updated according to the length of the time step (Δt) and the 
total force.  

∑ ∆×+= − tFPP tt 1  
Linear damping was modeled, which is consistent with the 

internal damping of most bulk materials. The loss factor (η) is 
normalized by the length of time step and determines how 
much energy (in the form of momentum) is lost at each time 
step. 

 η×= oldnew PP  
Finally, the momentum is numerically integrated to get the 

change in position (ΔX) of the voxel. The positions of each 
voxel are synchronously updated, and the process repeats. 

 
m

tPX ∆×
=∆  

Although the equations above illustrate the translational 
degrees of freedom, the equivalent equations are used to 
model the rotational degrees of freedom. An example of the 
freeform, large-displacement nature of this soft-body 
simulation is shown in Figure 4. 

The interaction between individual voxels is modeled by a 
standard flexible beam model. This allows all 6 relative forces 
and moments to be calculated based on the relative 3D 
position and rotation of the two voxels. For computational 
efficiency, each element is transformed to point in the positive 
X direction before the reactions are calculated. The reaction 
forces and moments then undergo the inverse transform to put 



Proc. of the Alife XII Conference, Odense, Denmark, 2010 721

them back in the reference frame of the actual element. When 
considering two voxels of differing material properties (such 
as stiffness), the bond is assumed to have the composite 
stiffness of the two materials connected in series. 

Choosing the optimal time step is critical to an efficient 
simulation. If the time step is too small, computation time is 
wasted with the extra time steps. However, a time step that is 
too large will result in diverging instability within the 
simulation. Calculating the optimal time step for an arbitrary 
geometry with varying stiffness in the material and non-linear 
interactions such as collisions and friction is non-trivial. To 
address this we experimentally determine the optimal time 
step upon importing an object to the simulation. This involves 
a series of short simulation runs, with steadily decreasing time 
steps. Since divergence is exponential, very few time steps are 
needed to determine if a given time step increment is unstable. 
Thus, the first simulation without a significant increase in 
strain energy by 100 time steps is assumed stable, and a safety 
factor of 5% is incorporated. For efficiency, very coarse steps 
are taken at first (one order of magnitude apart), then a second 
finer pass determines the optimal time step at a higher 
resolution. 
    

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 4: A randomly generated 3D object (a) is imported into 
the soft-body simulation, which voxelizes the object at an 
appropriate level of detail. (b) Potential self-intersection 
collisions are shown as blue lines. As the temperature varies, 
the volume of the yellow material shrinks (c & d) and swells 
(e & f) accordingly. The volume of the blue material remains 
constant. 

Calculating self intersection is necessary in a soft-body 
simulation since the objects deform significantly. However, 
calculating collisions for a large number of lattice points is 
computationally intensive. This has an order of n2 complexity, 
where the number of lattice points n can easily be in the 
thousands. This would dominate the computational time of 
the physical simulation itself, which is order n complexity. To 
address this, we made use of several useful simplifications. 
First, only the voxels on the exterior of the object need be 
considered for collisions. Second, an intermediate list of 
possible collisions between bonds can be maintained. Initially, 
each pair of voxels within an absolute distance 2.5 voxels but 
which are not touching within two links in the lattice are 
added to the list. Then, at each time step only the possible 
contact bonds on this list are considered. The list is 
periodically regenerated when the absolute displacement of 
any voxel in the lattice is enough to touch a voxel not on its 
list of possible interactions. 

Several parameters of the simulation were chosen to be of 
interest for exploring further. The first is the level of dynamic 
response. This term refers to the importance of the momentum 
term of the material. An object with a high level of dynamic 
response could be a very dense, soft, rubbery object actuated 
near resonance, where movements can be significantly out of 
phase with the actuation. Conversely, an object with a low 
level of dynamic response would be light and stiff (or 
actuated very slowly), such that the static movement 
dominates the momentum terms. Several combinations of 
static and dynamic friction were also explored, ranging from 
realistic values to exaggerated stick-slip scenarios. For the 
bulk of experiments, the coefficient of dynamic friction was 
0.3 and the coefficient of static friction was 1.0. 

Each evaluation of an amorphous machine was broken into 
two segments. The relaxation segment settles the object under 
gravity and friction, allowing it to come to rest in a neutral 
position. In the movement segment, temperature oscillations 
begin. After 10 complete temperature cycles, the magnitude of 
change in position of the center of mass during the movement 
segment is returned as the fitness for a given individual. 

Evolution parameters and performance 
The solutions presented here were each evolved on a single 
quad-core desktop computer. Each solution was voxelized 
into a 20×20×20 workspace, which provided suitably accurate 
resolution while remaining computationally feasible. At a rate 
of approximately 3-15 seconds per evaluation (depending on 
number of instantiated voxels), 20,000 evaluations in a 24 
hour day was typical. Deterministic crowding selection was 
used (Mahfoud 1996), in which an offspring replaces its most 
similar parent if it outperforms it. Small population sizes work 
well with this crowding method, so a population size of 20 
was chosen for all experiments. The mutation rate was 
different for each representation as detailed above. 

Results 
The evolved behaviors of the amorphous robots generally 
took advantage of a combination of dynamics and non-linear 
friction to make forward progress. Two modes of movement 
in the desired direction were generally observed: Several 
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robots made significant progress by maximizing the distance 
traveled as they fell and flopped over. This movement was 
often aided by the actuation cycles gradually tipping the robot 
over, but this method of movement does not count as true 
locomotion because it cannot be sustained over an indefinite 
distance. The more successful mode of movement involved 
scooting, in which the robots expanded and contracted in 
specific ways, making and breaking contact friction 
selectively to make forward progress. Several observed 
solutions made use of a combination of flopping and scooting. 

Two material results 
In the first experiments, a palette of two equal stiffness and 
density materials was used. The first material (shown in blue) 
had a CTE of zero, signifying that it was not actuated. The 
second material (shown in yellow) had an arbitrary CTE of 
0.01. The temperature was varied sinusoidally globally with 
an amplitude of 30 degrees, leading to a ±30% change in 
volume of the actuated material. The period of oscillation was 
500 time steps.  

Comparison of Representations 
The three representations under consideration were all run 
three times for a total of nine evolutionary runs. Figure 6 
displays the average and standard error of the best solution of 
each of the three runs. The GMX representation outperformed 
the other representations consistently. This may be a result of 
locality that preserves geometric novelties in the crossover 
process and can make small changes to specific areas of the 
robot through mutation.  

The DCT representation fell behind and had a very large 
standard error, which means that the genetic algorithm was 
not able to consistently find good solutions. This is likely 

because each mutation in the genome has a global effect 
across the entire structure, a characteristic that couples the 
mutations and prohibits small, subtle changes.  
The CPPN representation, as implemented, was not well 
suited to evolving freeform amorphous morphologies. 
Mutations drove the solution toward filling the entire 
workspace with material, a trend that significantly slowed the 
simulation down (since more elements needed to be 
simulated) and also led to fewer interesting geometries. 
Resulting amorphous robots generated by each representation 
are shown in Figure 5. 
 

 

 
Figure 6: Three independent runs were completed for each of 
the three representations. The average and standard error of 
the three best solutions are plotted for each. The GMX 
representation outperformed the others. 

 

(a) 

 

(b) 

 

(c) 

 
Figure 5: Evolved robots for the DCT (a), CPPN (b), and GMX (c) representations demonstrate successful locomotion. The blue 
material is passive, while the yellow material changes volume sinusoidally. The first frames for each show the initialized shape, the 
second frames show the settled result under gravity, and the following frames are snapshots of its motion. Direction of motion is to 
the left. 
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Three material results 
A second volumetrically actuated material was introduced to 
explore the possibilities enabled by multiple actuation modes. 
The second actuator material was simulated the same stiffness 
and density as the others, but with 90 degree phase lag in 
actuation. It was hypothesized that this would enable different 
modes of locomotion, such as continuous rolling or more 
interesting gaits. However, only the more primitive 
locomotion modes of flopping (Figure 7a) and scooting 
(Figure 7b) were observed. 

Dynamic response. By varying the actuation speed of the 
temperature fluctuations and the internal material damping, 
the importance of momentum effects in the amorphous 
morphologies can be adjusted. The best solution of the 
dynamic runs ended up using only one actuator material, as 
shown in Figure 7c. Based on the size and mass of the 
optimized object, however, the dynamics were strongly 
exploited to bounce forward. 

Friction. Different parameters for friction bias the solution 
towards different modes of locomotion. Experiments were run 
with very low dynamic friction and high static friction 
(0.1/5.0) and with dynamic and static friction values that were 
very close (0.4/0.5). The solutions with very high static 
friction tended to exhibit flopping/rolling over behavior, such 
as in Figure 7a, since the force to overcome static friction was 
extremely high. However, solutions with moderate static and 
dynamic friction tended towards the scooting locomotion, 
such as in Figure 7b. 

Conclusions 
We have demonstrated that evolutionary algorithms are 
suitable for designing the freeform material distribution of 
locomoting amorphous robots, which would be a difficult task 
to perform in traditional CAD software. This opens the door 
to a new design space of soft robotics, where the functionality 
of the robot is determined by the material distribution, not by 
rigid links. Sensing, actuation, and computation can all be 
distributed, potentially making the design of these robots even 
more difficult without the aid of design automation methods. 
Thus, with the exponentially expanding design space of 
robotics enabled by additive manufacturing of multiple 
materials, genetic algorithms and other design automation 
methods will play an increasingly important role in designing 
robots to directly meet high level functional goals.  
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Abstract

We present an evolutionary robotics investigation into the
metabolism constrained homeostatic dynamics of a simulated
robot. Unlike existing research that has focused on either en-
ergy or motivation autonomy the robot described here is con-
sidered in terms of energy-motivation autonomy. This stipu-
lation is made according to a requirement of autonomous sys-
tems to spatiotemporally integrate environmental and physi-
ological sensed information. In our experiment, the latter is
generated by a simulated artificial metabolism (a microbial
fuel cell batch) and its integration with the former is deter-
mined by an E-GasNet-active vision interface. The investiga-
tion centres on robot performance in a three-dimensional sim-
ulator on a stereotyped two-resource problem. Motivation-
like states emerge according to periodic dynamics identifi-
able for two viable sensorimotor strategies. Robot adaptivity
is found to be sensitive to experimenter-manipulated devia-
tions from evolved metabolic constraints. Deviations detri-
mentally affect the viability of cognitive (anticipatory) capac-
ities even where constraints are significantly lessened. These
results support the hypothesis that grounding motivationally
autonomous robots is critical to adaptivity and cognition.

Introduction
The pursuit of imbuing robots with levels of autonomy has
resulted in recent emphasis on internal dynamics of robotic
systems as they affect adaptive and cognitive behaviour (cf.
Parisi 2004, Ziemke and Lowe 2009). McFarland (2008) has
identified three core levels of autonomy – energy, motivation
and mental levels and suggests: “Autonomy implies freedom
from outside control. There are three main types of freedom
relevant to robots. One is freedom from outside the control
of energy supply. Most current robots run on batteries that
must be replaced or recharged by people. Self-fuelling ro-
bots would have energy autonomy. Another is freedom of
choice of activity. An automaton lacks such freedom, be-
cause either it follows a strict routine or it is entirely reac-
tive. A robot that has alternative possible activities, and the
freedom to decide which to do, has motivational autonomy.
Thirdly, there is freedom of ‘thought’. A robot that has the
freedom to think up better ways of doing things may be said
to have mental autonomy” (McFarland 2008, p.15).

Naturally, how the robot designer is to seamlessly inte-
grate these levels of autonomy represents another challenge
but inspiration can be derived from biology. A key fea-
ture of biological autonomous systems is homeostatic reg-
ulation. Drawing from Cannon (1915), the importance of
bodily ‘essential’ variables to behavioural dynamics was
identified in an artificial systems context by Ashby (1960).
Ashby’s homeostat produced feedback signals following de-
viation from a pre-set range of the essential variables (EVs).
While Ashby’s notion was deliberately abstract, biological
evidence for the effects of EVs on regulation of behaviour
has recently been found regarding feeding and drinking.
Canabal et al. (2007) discovered that levels of extra cellular
glucose in hypothalamus can impact on neural activity via
slow diffusing nitric oxide (NO) molecules. NO emissions
in glucose-sensitive cells correlate with feeding (cf. Mor-
ley et al., 1999) while ‘osmoreceptor’ cell NO emissions in
hypothalamus correlate with drinking (cf. Yao et al. 2005).

Robot controllers have utilized bio-inspired mechanisms
for ‘brain-body’ interfacing in the areas of: navigation (Var-
gas et al. 2009), foraging (McHale and Husbands 2006),
two-resource problems (Avila-Garcı̀a and Cañamero 2004).
This work has, however, invariably abstracted away details
of the dynamic grounding of brain-body interfacing. Specif-
ically, metabolic dynamics and their imposed behavioural
constraints have been ignored. Instead, emphasis has been
placed on motivation-like states (cf. McFarland and Spier
1997) as a function of abstract internal (essential) variable,
and externally sensed, information. Such states are typically
non-grounded either evolutionarily or metabolically. The re-
sulting homeostatic expression of such robots may, there-
fore, be critically constrained regarding adaptive behaviour
in spatial-temporal realistic environments.

Research into metabolic performance constraints has been
carried out in recent years in the form of microbial fuel
cell (MFC) robotics applications (cf. Melhuish et al. 2006,
Ieropolous et al. 2007). MFCs can provide wheeled robots
with (electrical) energy for driving motors as constrained by
bio-chemical EV dynamics. MFC technology has the ca-
pacity to produce bioelectricity from virtually any unrefined
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renewable biomass (e.g. wastewater sludge, ripe fruit, flies)
using bacteria; thus, when used as the power source for ac-
tuation MFCs equip robots with a degree of energy auton-
omy concerning choice of ‘recharging’ resource. A limita-
tion of artificial metabolism motored robots such as EcoBot
(cf. Melhuish et al. 2006) given the present state of the
art, however, is the energy requirement for actuating motors.
Consequently, the robot may take as long as 15 minutes to
move 15mm. This renders experimentation with new forms
of homeostatic control and performance optimization chal-
lenging. A need is evident for simulations based scenarios
for assessing the potential development of metabolism con-
strained robotic behaviour.

In the rest of this article we will describe an initial inves-
tigation into the dynamics of a robotic system that integrates
two levels of autonomous control – energy-motivation. Two
themes address the influence of simulated metabolic con-
straints on: 1) evolved sensor-motor resource acquiring
strategies, 2) the emergence of affective (‘motivational’) dy-
namics. Spatiotemporal coherence between internal and
sensorimotor domains is evaluated as it renders adaptive
and cognitive behaviour. In the next section we introduce
the components of the energy-motivation autonomous robot
and our methodological approach. The results section evalu-
ates themes 1) and 2) according to a comparative case study
of best evolved controllers. The discussion section includes
reference to present and future work.

Robot Architecture and Methodology
There are three architectural components: 1) a brain-body
interface (E-GasNet) between 2) artificial metabolism (MFC
model), and 3) sensorimotor (active vision) system. Be-
low, each component is described in turn followed by the
methodology used to assess the spatiotemporal coherent in-
tegration of the three components to adaptive behaviour.

Robot Architecture: The E-GasNet
The neurophysiological controller we propose is an exten-
sion of the GasNet (Husbands et al. 1998). The essential
components comprise a standard neural network the activity
of which is modulated by nitric oxide (NO) emissions en-
abling a spatiotemporal dynamic that when embedded in a
wheeled robot tunes network performance to task require-
ments (cf. Smith et al. 2002). Work has been carried out
utilizing GasNets according to evolutionary robotics inves-
tigations on bodily homeostasis (cf. Vargas et al. 2009) and
energy constraints (cf. McHale and Husbands 2006). The
focus, however, has not been on the incorporation of non-
neural bodily states into GasNet ‘nervous system’ activity.

Based on the neuroscientific findings referred to in the
previous section, we propose the E-GasNet (‘Essential Vari-
able Monitoring GasNet’) as a type of GasNet developed
according to an evolutionary robotics approach. The novel
feature it incorporates is the use of EV level sensing nodes

Figure 1: E-GasNet component of the complete energy-motivation
autonomous robot architecture. Nodes: H = hidden, L = left mo-
tor, R = right motor, P = pan, T = tilt, Vi = Visual input, Pr = pan
proprioception, W = water sensitive e-node, S = substrate sensitive
e-node, Vo = MFC voltage input. Grey shaded circles depict poten-
tial e-node gas emissions. Green and blue coloured vertical lines
provided by MFC represent substrate and water levels, respectively.

(for water and metabolizing-substrate) that emit gas con-
tingent on the state of concomitant EVs. We term these
nodes e-nodes. The E-GasNet (fig.1) represents the inter-
face between artificial metabolic EV dynamics and actua-
tors – (left and right) motors and active vision (pan and tilt)
nodes. Depending on topological positioning on the two di-
mensional plane motor nodes in the network are modulated
only by a retinal pan proprioception node and gas modula-
tion – this simplified analysis concerning comparative sen-
sorimotor activity. Pan and tilt nodes are modulated by elec-
tric input and gas. Electric input permits transient retinal im-
age positioning on the camera. The position of nodes on the
plane, the number of e-nodes and the sign and connectivity
are determined by a genetic algorithm or GA (see method-
ology). An E-GasNet consists of four actuator nodes, four
‘hidden’ nodes and a variable number of e-nodes. E-nodes
emit gas modulating the electric activity of neighbouring
nodes (within a genetically specified radius) via affecting
the gain of the output function. Gas emissions are depen-
dent on a genetically determined e-node specific EV thresh-
old. EV values are provided by the MFC dynamics (see next
sub-section). Hidden nodes do not emit gas. Output from
the MFC gates motor wheel activity while an output from a
visual node provides a mean value of all cells on a ‘retina’
which inputs to the network as it pans and tilts across the
camera image. The E-GasNet dynamic is governed by the
same set of difference equations utilized by Husbands et al.
(1998) and, where slightly adapted, Smith et al. (2002). It
is to these papers that the reader is referred for details of
electric output and gas emission dynamics.
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Figure 2: MFC model of system level (electric) energy output dy-
namics. The vertical axis provides output voltage (mV) where 2900
is the discharge level providing energy to the actuators (e.g. mo-
tors), the horizontal axis represents time in arbitrary units.

Robot Architecture: Artificial Metabolism
This component is comprised of the Microbial Fuel Cell
(MFC) model of Montebelli et al. (2010a), designed at a
level of abstraction purpose-made for autonomous robot-
ics investigations. Critical to energy-motivation autonomous
level integration is the charge-discharge electric output dy-
namics that gate motor wheel activation. An example of
this dynamic is illustrated in figure 2 according to a sub-
strate exhaustion cycle. At a threshold of electricity storage
at the MFC capacitor bank (pre-set to 2900mV) energy is
utilized by motors that indirectly contribute to the mainte-
nance of the charge-discharge dynamic, i.e. through feed-
ing/drinking. After a period without substrate, the charge is
not arrived at in spite of periodic rehydration (every 0.2∗104

time units) at the cathode. Re-establishment of an efficient
output dynamic owes to simulated fuel source provision at
1.8 ∗ 104 at the anode. This cycle demonstrates the require-
ment for both water and substrate (EVs) to be replenished
for efficient system level energy to be produced. Reduced
charge rate ensures less energy for the motors.

In the set-up used in our investigation, the robot produces
a pulsing motor behaviour similar to ‘EcoBot’ (cf. Melhuish
et al. 2006). This entails energy being made available to the
motors for a short time window following the point of dis-
charge. Where MFC performance degrades, motor pulses
slow and in turn MFC performance continues to degrade as
resource acquisition capacity is impaired. If the discharge
threshold is not reached, motor output eventually ceases – no
such constraint has been placed on visual sensing at present.
For specific values used in our experimentation and an alter-
native application see Montebelli et al. (2010b).

The E-GasNet is evolved to track the level of the EVs
in the MFC model – the GA may ‘select’ for e-nodes that
‘monitor’ the level of either substrate or water according to
a genetically determined threshold value specific to the par-
ticular node. If the EV level falls below such a node-specific
threshold, gas emission is initiated and linearly increments
to an upper bound; only when EV values are re-established
above threshold (as set by the GA) does the gas level lin-
early dissipate. In this Ashby-like manner, e-node activity

Figure 3: Controller dynamics top-left: retina superimposed on
camera image, top-right: E-GasNet topology – blue circle repre-
sents (inhibitory) gas emission at node 9, bottom-left: E-GasNet
parameters – K is gain level; C1/C2 are gas 1/2, respectively;
Elec is the electric output of each network node; vis is the scalar
input from the retina (here 3*3 units); In is actual visual input, i.e.
above noise threshold ensuring a differentiated node response to
visual input, bottom-right: EV dynamics of the MFC including the
same dynamics as they relate to e-node gas emission thresholds.

serves to anticipate the effect that EV depletion will have
on the ‘life-energy’ output of the MFC providing a mode of
embodied cognition. This occurs since MFC electric output
cycles depend absolutely on efficient regulation of these two
EVs. The e-node gas emission is the means by which body
can interface with sensor-motor activity in order to pre-empt
catastrophic performance degradation.

Robot Architecture: Sensor-Motor Morphology
An E-puck robot simulated in Webots (Cyberbotics Ltd.
– http://www.cyberbotics.com) was used but any simple
wheeled robot may be suitable. Our emphasis is on inte-
gration of sensorimotor capacities with neurophysiological
dynamics. Sensor input consisted of a low dimensional grey-
scaled retinal image superimposed on an e-puck camera im-
age. The ‘retina’ is initialized for each evaluated robot con-
troller in the centre of the camera image but may pan and
tilt through 360 ◦ within the 2D bounds. Pan/tilt values (one
node each) for the retina are modulated through: electric in-
puts from E-GasNet nodes, gas, a pan proprioception node.
This permits a type of active vision similar to Floreano et
al. (2004). A retinal scalar value inputs to GA-determined
nodes in the network. Figure 3 provides a snapshot of the
robot graphical interface for the retinal network (along with
E-GasNet topology/activity and EV dynamics).

The equations that determine the active vision effects on
robot dynamics are as follows: Po(t) = (Cx + Rw/2) −
Cw/2 and Pr(t) = Po(t−1)/(Cw−Rw) where Po(t) = pan
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orientation at time t, Cx = x axis value of the robot camera
image in [0,50], Rw = retina width genetically determined
in [15,25], Cw = camera image width (50 pixels); To(t) =
(Cy + Rh/2) − Ch/2 where To(t) = tilt orientation at time
t, Cy = y axis value of the robot camera image in [0,40],
Rh = retina height genetically determined in [12,20], Ch =
camera image height (40 pixels); Pr(t) = pan proprioception
at time t. Motor wheel output is determined by: Oi(t) =
br∗(α+Pr(t−1)∗(Vi > Vti)∗(Vi−Vti)) where O = wheel
output for node i ∈ {1, 2} at time t, br = ‘burst’ boolean,
α = a constant set at 0.5, V = retina input in [0,1], Vt = a
genetically determined node-specific threshold in [0,0.5].

Methodology: The Two Resource Problem
The energy-motivation autonomous robot was evaluated ac-
cording to a two resource problem (McFarland and Spier
1997) where applicable resources are water and fuel sub-
strate. The literal use of two resources (one of each type)
serves as an initial benchmark control to facilitate identifica-
tion of core principles and homeostatic dynamics. The two
resource paradigm is a class of problem whereby adaptive
sensorimotor activity enables a (quasi) optimal trade-off be-
tween two conflicting EV needs. Spier (1997) studied two-
resource problems on 2D scenarios for agents utilizing an
ethology-based cue-deficit model that states that likelihood
of enacting a ‘motivated’ behaviour in animals is determined
by the product of: 1) external stimuli, 2) related physiologi-
cal need deficit. The realization of such a cue-deficit model
in a 3D world is not obvious particularly if the robot sen-
sors do not provide pre-given information with which to dis-
criminate stimuli or/and implicitly provide information re-
garding stimulus distance/attainability. A stronger measure
of autonomous capabilities is provided by robots remaining
viable over long periods in partially human-known environ-
ments, possibly inhospitable to human habitation. Energy
autonomous robots flexible in their means of refuelling are
critical in this case. Realistic metabolic constraints impact
on sensorimotor capabilities rendering high-level modelling
approaches compromised regarding robot adaptivity to dy-
namic and challenging environments. Situated integration
of internal and external sensing is therefore needed in order
to enable motivational autonomous capabilities.

Evolved E-GasNet interfacing of metabolic and senso-
rimotor activity provides a spatiotemporally and metaboli-
cally situated cue-deficit model apt for 3D world robot per-
formance where resource-specific sensory information con-
cerning distance and type is not explicitly pre-given.

Methodology: An Evolutionary Robotics Approach
100 candidate controllers were evaluated over 50 genera-
tions via the distributed GA used by Husbands et al. (1998).
Each evaluation consisted of a robot making 20 selections
(one per trial) from the 2 available resources. Each trial
is terminated either by successfully reaching a resource

leading to instantaneous related EV replenishment, or if a
resource is not reached by 500 cycles (basic timestep =
64ms). The latter time constraint ensured against ineffi-
cient/arbitrary approach behaviours. The metabolic con-
straints required the robot to ‘switch’ preference from one
resource to the other at least twice ensuring against evolu-
tion of uninteresting dynamics. Agents viable after 20 trials
were considered survivors. Both resources were within cam-
era image scope at the beginning of each trial to limit poten-
tial bias towards one or other resource – test trials found no
observable bias. Water and substrate resources were placed
left and right of the robot trial starting position, respectively.
This positioning – relative to the centre of the robot – was
not varied in order to promote ease of analysis of the com-
plex interactive dynamics of the system. Solutions were an-
alyzed according to an independent variable (IV) – clamp-
ing, or not, of gas effects on motor node activity; the IV,
thus, consisted of two values - a) Gas modulated motor out-
put (GM), b) Non-gas modulated motor output (NGM). In a)
motor output could be affected both by gas and the pan pro-
prioception node; in b) motor output was modulated only
by the pan proprioception node – this exerted evolutionary
pressure for the emergence of ‘active vision’ strategies while
purely electric inputs to the retina position otherwise en-
sured early stabilization. The only means by which robots
can survive trials is by switching from one resource prefer-
ence to the other over the 20 trials. This switching in the lat-
ter condition can, therefore, only be achieved via e-node gas
modulation of pan-tilt activity. The emergence of e-node ar-
bitration is therefore unsurprising. Our investigation instead
focuses on exactly how such arbitration dynamically occurs.

The evaluation criteria consisted of 1) fitness, 2) no. sur-
vivors. Robot fitness is defined: fit(t) = fit(t − 1) +
(subst(t)+wat(t))/2 and fitµ = tterm ∗ (fit(t)/Ntr) up-
dated once per trial at time t, tterm is a boolean determining
termination of the controller evaluation, i.e. at the end of
Ntr = 20 trials. The fitness function captures physiological
state at the time of resource acquisition while no assump-
tions concerning ideal state are made. Evolutionary para-
meters adhered to Husbands et al. (1998) but adopted the
gaussian gas diffusion of Smith et al. (2002) and the connec-
tivity schema of Jakobi (1998). Further parameters subject
to the GA were: e-node no. (in [0,6]), e-node gas emission
thresholds (in [0.0,1.0]), retina squared unit dimension size
(in [3,5] where a unit = 5*4 pixels and camera dimensions
are fixed at width = 50, height = 40). Finally, unlike the
classical GasNet, left/right wheel (and pan/tilt) nodes’ x, y
coordinates were evolutionarily specified.

Results
Evolution and Evolvability of Strategies
Figure 4 illustrates fitness and survivor rate of all controllers
over 10 runs. Evaluation of independent sample t-tests indi-
cated that robots were significantly fitter in early generations
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Figure 4: Left: Fitness (in [0.0,1.0]). Right: Survival rate. Mean
values for agent popn. over 50 generations comparing gas mod-
ulating motor activity (GM) to non-gas motor modulating (NGM)
runs; Error bars calculated as: SE = sd√

N
where N = 10 runs.

(1-4) of NGM runs than they were in GM runs. Compar-
ison of performance of survivors uncovered that only gen-
erations 5, 7-9 produced significant differences with higher
survivor rate in NGM runs. All tests were at p < 0.05 for
two-tailed tests with d.o.f = 18. These results suggest a ten-
dency, early in evolution, to favour higher performance in
NGM runs suggesting greater evolvability. However, allow-
ing motor nodes to be potentially modulated by gas emis-
sions in GM runs ensured additional genome complexity
possibly requiring more generations for adaptive strategies
to manifest. The high survival variance in GM runs – 3/10
runs produced no survivors by generation 50 – compared to
10/10 in NGM runs producing > 30 survivors by generation
50 – and higher mean in NGM runs hints at NGM strategies
differentiable from those found in GM runs.

MFC Constraints: A Comparative Case Study
An in-depth evaluation of individual controllers taken from
the best runs of each condition furnished a case study com-
parison in order to unveil adaptive strategies. Owing to evo-
lution converging on a common ancestor by generation 50
a given controller selected from the genome candidate so-
lution grid (see Husbands et al. 1998) provided a typical
evolved topology for the run. We compared only viable con-
trollers, i.e. ones that enabled robots to ‘survive’ 20 trials.

Figure 5 depicts trial-by-trial motor trajectories for the
two controllers. On the left of the figure is the GM con-
troller (GMC). Typically, per trial, the robot followed an
arced path towards the nearest edge of the approached re-
source which is energy-efficient. On the right of the figure
is the NGM controller (NGMC) showing a similar pattern of
approach for the water resource (left-side) but more varied
trajectories for substrate approach (right-side). Substrate is
acquired on 4/20 occasions (compared to 7/20 for the GMC).
On trial one the robot retina is biased, by electric inputs to
pan/tilt nodes, towards water resource saccade-fixation but
pans to substrate subsequent to gas modulation effects. Fig-
ure 5 (right) depicts this initial movement towards the water

Figure 5: Inter-trial motor trajectories – inset camera images show
in-trial perspectives. Left: GMC trajectories (20 trials). Right:
NGMC trajectories (for visibility – trial 1 and 2, and a sub-set).

which then arcs towards the substrate. On trial two, the robot
decisively approaches the substrate where the retina remains
fixated while the gas dissipates. Regarding NGMC, expres-
sion of ‘opportunism’ (trial 1) and ‘persistence’ (trial 2) is
afforded by active vision. Such modes of flexible foraging
activity have been posited as expressions of motivated be-
haviour in non-metabolically grounded architectures tested
on two-resource problems (cf. Spier 1997, Avı́la-Garcı́a and
Cañamero 2004). Opportunism entails ability to “change
one’s mind” concerning a preference while persistence en-
tails behavioural resistance to alternative motivations. These
behaviours accord with McFarland’s (2008) non-reactive
criterion for motivational autonomy. Such flexibility is af-
forded owing to fast saccade-fixation speed relative to inter-
pulse wait time providing an example of how such system
level energy constraints may be exploited sensorially given
low, or, in the case of the robots here, zero, energy con-
straints to saccade. In essence, during the waiting period,
the robot is able to saccade to the ‘desired’ resource afford-
ing anticipatory activity. Regarding GMC, the orientation
behaviour, is more reactive – the tight coupling between
metabolic and motor activity ensures behaviour is tied to
present state (the inter-pulse wait time is not exploited – the
retina remains, mostly, static). The comparative metabolic
under-determination of sensor-motor activity in NGMC be-
haviour might permit us to label it cognitive (see Barandi-
aran and Moreno 2008). In spite of its cognitive utility, the
emergence of active vision strategies appears to be stifled
in the GMC condition and to no apparent advantage. This
appears to owe to the relative ease of evolution to tap and
fine-tune motor orientation-based solutions creating an ob-
stacle for active vision evolutionary transition.

Internal and Sensorimotor Dynamics In order to pro-
vide a mechanistic explanation of how metabolism con-
strains sensorimotor strategies we investigated sensorimotor
and internal dynamics as they affected resource selection. In
figure 6 are displayed the evolved topologies for our study.
In both cases, multiple gas-emitting e-nodes (grey-circled)
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Figure 6: Topology of evolved controllers. Left: GM controller.
Right: NGM controller.

evolved. However, via systematic ‘clamping’ of gas emis-
sion capability it was found that both controllers function-
ally depended on only a single e-node. The left side (GMC)
shows that only the right wheel (node 3) is directly affected
by gas (e-node 11). Left wheel (1) and pan (0) nodes are
only indirectly gaseously affected while the tilt node (2) is
affected only by sensory input (indicated by yellow figure
colouration). The right side (NGMC) shows both pan and
tilt nodes within the e-node (11) gas emission radius. This
implicates gas as a motor switch mechanism where for GMC
and NGMC the individual e-nodes are sensitive to water and
substrate, respectively. The GMC was observed on individ-
ual re-runs not to use active vision. Figure 7 displays over
the 20 trials GMC motor activity in [0,0.5] where a constant
C = 0.75 was added to ensure forward movement (given
sufficient MFC-supplied energy). The boxed windows cap-
ture a transient phase prior to a more regular periodic dy-
namic. MFC charge-discharge cycles slow during this pe-
riod as does left and right wheel pulsed activity. The in-
creased output of the right wheel captured in a time-lagged
window reflects slow diffusing gas emission effects consis-
tent with a water resource orienting response. The slow gas
dissipation ensures ‘commitment’ in GMC accounting for a
water-substrate acquisition ratio of 2:1 – the robot chooses
water a second time even after acquisition brings the EV
value above the e-node gas emission threshold.

Figure 8 displays GMC internal dynamics for: EVs (top),
E-GasNet electric activity (middle), e-node gas output (bot-
tom). Periodic activity for gas output at the e-node arises
after the previously described transient phase. Vertical red
dashed lines capture windows of resource acquisition dy-
namics comprised of 3 selections at the 2:1 ratio for wa-
ter:substrate. The dashed horizontal grey line depicts the sta-
ble (mean) EV balance and it can be observed with reference
to the skewed horizontal black line linking EV balance win-
dows that stability occurs after 3 windows. During this pe-
riod the robot’s initial EV values become increasingly well
regulated therefore. On the other hand, a salient periodic gas
emission (and GasNet electric activation) dynamic appears

Figure 7: MFC-constrained sensor-motor activity for GM con-
troller over 20 trials on a normalized time scale.

Figure 8: Internal activity for GM controller over 20 trials. Top:
Physiological (EV) balance. Middle: E-GasNet electric activity (4
hidden nodes, 4 e-nodes). Bottom: E-node 11 gas dissipation.

prior to this – after the first window – in accordance with wa-
ter acquisition dynamics. This happened in spite of the fact
that resource distance from the invariant initial position of
the robot was varied (to prevent strong sensor-motor depen-
dencies – see Jakobi 1998). The duration of gas emission ac-
tivity in the e-node observably correlates with the undulating
right wheel activity responsible for ‘behavioural switching’
(fig.7) and dissipates at the point of water resource acqui-
sition. Substrate approach, in the absence of gas effects, is
the default behaviour – this is reversed for the NGMC. The
gaseous ‘thirst’ signal is affective insofar as it is evolutionar-
ily and metabolically grounded into the agent-environment
dynamic and the product of embodied (e-node) anticipatory
activity. In sum, the two controller strategies use gas for
EV-relevant switching from a default resource-orientation
response to spatiotemporally-tuned orientation towards the
alternative resource. This ‘tuning’ is critical to sustaining
the internal-sensorimotor cohesion of the robot. To better
establish the relevance of metabolic grounding to this co-
hesion we varied inter-pulse wait time (MFC system level
constraint) and re-assessed performance of the controllers.
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Figure 9: Gas emission as modulated by metabolic constraints
over 20 trials according to bC = {0, 50, 75, 100, 150} where
constraints are represented top to bottom according to ascending
strengths. Left: GM controller, Right: NGM controller.

Dynamic Robustness to MFC constraints The inter-
pulse wait time is determined by a constant/parameter bC.
All controllers were evolved according to bC = 75 steps.
This was chosen as an apt challenge level following pre-
trial testing. The two evolved controllers in the case study
were tested against bCε{0, 50, 75, 100, 150} providing zero,
intermediate (50,75,100) and high (150) constraints, respec-
tively. Figure 9 provides gas emission plots over all trials for
the two evaluated controllers. It is observed for the NGMC
(right-side) that only at the constraint value on which it was
evolved does it remain viable – robots ‘die’ at the gas verti-
cal ‘cut-off’ point and must emit at least twice – perform two
switches – over all trials. Interestingly, at zero and low in-
termediate constraints the robot fairs badly but performs rel-
atively better at high intermediate and high constraints. Fig-
ure 10 illustrates why this is the case. On the left-side (low
intermediate constraint), saccade-fixation activity is now in-
sufficiently fast relative to motor speed. The robot behaves
‘opportunistically’ but receives insufficient retinal stimula-
tion to fixate on the substrate leading to ‘dis-orientation’. On
the right-side, the high inter-pulse wait time allows saccad-
ing to the substrate. This behaviour is more efficient than at
the bC value on which the controller was evolved. However,
owing to the strong constraint and requirement for regular
rehydration the robot soon becomes unviable.

The internal dynamics of the GMC (fig.9 – left) are equiv-
alent for all intermediate constraints with the same resource
choice profile over the 20 trials. Interestingly, at the zero
constraint the dynamic pattern of gas emissions bifurcates,
relative to intermediate constraints, early in the trial set.
This is an example of robot ‘dithering’ between the two
resources leading to no resource acquisition on trial two
which, following the initial transient, periodically recurs.
This dynamic is viable but sub-optimal – the robot controller
was evolved on bC = 75 and whilst robust to relatively mi-
nor bC intermediate shifts, dynamics are non-robust to ex-
treme shifts of the metabolic constraint. The use of a sub-
optimal strategy given a zero constraint is viable since the ro-

Figure 10: NGMC motor trajectories at different metabolic con-
straints. Left: low intermediate – the robot is not viable beyond
one trial. Right: high intermediate – the robot stops moving (is
non-viable) following two successful resource acquisitions.

bot only ‘dies’ following a full trial of non-movement. MFC
degradation is not sufficient for this to occur owing to the
relatively unchallenging agent-environment dynamic.

In summary, we can say that the challenge level of the
environment alone is an insufficient indicator of likely ro-
bot viability. It is more informative to consider the ro-
bot’s spatiotemporal cohesion given internal and sensorimo-
tor domains and evolved metabolic grounding. Specifically,
‘dithering’ in the GMC at zero metabolic constraint is an ex-
ample of maladaptive behavioural performance not present
at the evolved constraint. The above highlights the require-
ment for autonomous robotics architectures to account for
metabolic grounding in order to shape adaptive and cogni-
tive (anticipatory) capacities. Affective signals are critical
for cohering body-brain dynamics and may be robust to per-
turbations in agent-environment coupling but are rendered
ineffectual if the integration of internal and sensorimotor ro-
botic domains is insufficient.

Discussion
This paper has described work towards an autonomous
robotic system focused on the integration of energy and
motivation autonomous levels as described by McFarland
(2008). We suggest that top-down (e.g. ethological) mod-
els claiming to implement motivational autonomy in robots
are limited as they: 1) ignore how metabolic constraints im-
pact on sensorimotor activity, 2) require a priori environ-
ment knowledge. A major application for autonomous ro-
bots, however, is in their deployment in inhospitable and
unknown environments where harmonious spatiotemporal
agent-environment integration is crucial for long-term via-
bility. Our work presents the first steps towards integrating
levels of autonomy hinting at the potential for adaptive cog-
nitive behaviour to emerge out of metabolic constraints. We
summarize our findings as follows:

1. Two strategies evolutionarily emerged that spatiotempo-
rally integrated metabolic and sensorimotor activity.
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2. Strategy one – active vision – enabled robots to exploit the
energy-constrained pulsed motor behaviour to produce:

(a) Sensorial anticipatory behaviour,
(b) Energy-efficient motor trajectories,
(c) Adaptive opportunistic-persistent behaviours.

3. Strategy two – motor orientation – did not sensorially ex-
ploit its energy-constrained motor-pulsed behaviour.

4. E-nodes, via EV-level thresholded gas emission, antici-
pate metabolism constrained performance degradation.

The grounding of behaviour according to artificial
metabolic constraints permitted the evolution of sensorial
anticipatory behaviour in the form of simple pan/tilt active
vision. Interfacing ‘body’ (MFC) and ‘brain’ (E-GasNet)
entailed tuning gas emissions to enable this anticipatory
sensorimotor response. Stable gas emission dynamics in
functional nodes when metabolically situated constitutes
motivation-like (thirst/hunger) signals. The existence per
se of such signals precipitates orientation/saccade switching
and is functional therein. The periodicity and duration of
such signals are requisite to the agent-environment dynamic
niche and functional therein. A significant change to this dy-
namic, e.g. severe modification of the metabolic constraint,
renders the motivation-like signals non-adaptive even if the
task challenge is effectively reduced.

We are currently investigating ‘naturalistic’ settings with
dynamic resource configurations. Early findings hint at the
emergence of distributed forms of e-node networks adapted
to this more complex dynamic. A long term aim is to unveil
robot controllers that exhibit energy-motivation-mental au-
tonomy (see Ziemke and Lowe 2009) described using utility-
and optimality-based ecological models.
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Abstract 
This paper describes the work carried out to develop EcoBot-
III, which is a robot with an artificial digestion system. The 
robot is powered by Microbial Fuel Cells (MFCs) and it is 
designed to collect food and water from the environment, digest 
the collected food and at the end of the digestion cycle, egest 
the waste. EcoBot-III operated successfully for 7 days when fed 
with anaerobic or pasteurized sludge, before mechanical failure 
required human intervention. Work is ongoing to improve the 
mechanics and thus extend the artificial agent’s operational 
lifetime.  

Introduction 

Autonomous behavior for artificial agents implies prolonged 
operational periods with minimum or no human intervention. 
This is important (and can also be considered as vital) for a 
variety of tasks/missions, generally categorized under ‘remote 
area access’. Up until recently autonomous robotic behavior, 
was primarily seen as a computational challenge, where robots 
are developed with processing skills that allow action 
selection and decision making, but with the element of energy 
and energy collection taken for granted. Work by numerous 
groups has indicated that true autonomy needs to take into 
account the collection of energy from the environment (akin 
to biological agents) and build it in the robot’s behavioral 
repertoire (McFarland, 1990; Steels and Brooks, 1995; 
McFarland and Spier, 1997; Spier and McFarland, 1997). 
Thus, over the recent years, energetic autonomy has received 
increased attention from the robotics community as a vital 
feature for autonomy and self-sustainability (Spier and 
McFarland, 1996; 1998; Melhuish and Kubo 2004; Ziemke 
2008; Kubo et al. 2009). The robot pioneers Gastrobot, 
Slugbot and EcoBots have demonstrated how this notion may 
be realized, through the integration with real microorganisms 
living inside Microbial Fuel Cells (MFCs) (Gastrobot, 
EcoBots) and the collection of real food from the environment 
(Slugbot) (Kelly et al. 2000; Wilkinson, 2000; Greenman et 
al. 2003; Ieropoulos et al. 2003; Melhuish et al. 2006). This 
integration between biology and machines has been described 
as (artificially) symbiotic and has resulted in the introduction 
of a new class or robots known as Symbots (Melhuish et al. 
2006). 

 The present study addressed the twin issues of energy 
autonomy and bio-regulation. Biologically inspired 

mechanisms and strategies were explored, to provide full 
energy autonomy to a new robot that produced its own energy 
from biological material (e.g. plant or insect material) which it 
collects and processes using MFCs. The work focused on the 
construction of a complete MFC-based self-regulating energy 
system which necessitated exploring mechanisms for (1) 
collecting, ingesting (eating) new substrate (2) removing 
waste material (3) maintaining internal homeostasis and (4) 
performing appropriate behavior for the foraging/ acquisition 
of food. 

The work described in this paper, builds on EcoBots I and 
II and had the following main aims: (i) To build the individual 
prototype mechanisms for ingestion for EcoBot’s artificial gut 
using MFC technology; (ii) To develop embedded low-power 
controllers capable of sensing and on-board actuation to 
maintain internal homeostasis; (iii) To design and build a 
novel egestion mechanism to allow the evacuation of waste 
material from both the MFCs and the digester unit; (iv) To 
design and build a system with which it will be possible for 
the robot to collect liquid food and water from the floor or 
wall of an arena (EcoWorld arena); (v) To integrate all 
components and systems to demonstrate self-sustainable 
operation of EcoBot-III. This demonstration will include 
ingestion of fresh food source, digestion and egestion of waste 
material in order to continue performing its assigned tasks. 

The following sections describe the development of 
EcoBot-III - the third in a series of self-sustainable agents – 
with an artificial digestion system that collects its energy from 
the environment and ‘lives’ on microbial metabolism.  

Materials and Methods 

In the first phase of the study, the work focussed on the design 
and testing of engineered prototypes of sub assemblies for 
power production (MFC stacks), artificial gut circulation, food 
ingestion and their integration into a work bench 
demonstrator. The ingestion system needed to supply the 
anodic chambers with an organic substrate (food). It had to 
maintain appropriate separation between the stomach-like 
collecting pouch and the anodic chamber. Early experiments 
explored the possibility of designing a system that attracts 
insects (flies) using pheromone bait and traps the flies in a 
fluid reservoir. Later experiments focussed on using 
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alternative feed substrates (broths and pure substrates), which 
the robot accessed from a wall-mounted feedstock reservoir. 

A biologically-inspired controller for homeostasis was also 
prototyped. This was used to model, in control-theoretic form, 
the biological negative feedback loops typical of regulatory 
mechanisms for homeostasis. Of particular importance to 
EcoBot, given its continuously low energy levels, was a 
model of the regulation of energy intake that takes into 
account the modulation of this system by internal temporal 
cycles for ingestion. The controller is generalized to regulate 
the internal parameters of the robot with electronic sensor 
boards for temperature and fluid levels (with option for pH or 
other sensor systems if they possess low power requirements). 

Microbial Fuel Cells 
MFCs are bioelectrochemical transducers that convert 
biochemical energy (generated by microbes) directly into 
electricity. They consist of two half-cells; an anode, which is 
the bacterial side and has negative polarity (electron 
generating) and a cathode, which is the oxidizing side and has 
positive polarity (electron accepting) and the two are 
separated by an proton selective membrane (PEM) (figure 1). 
Microbes in the anode chamber can be in either planktonic 
(suspended in liquid solution) and/or biofilm forms (attached 
to the electrode surface) and transfer electrons to the electrode 
either via electroactive metabolites naturally released by the 
microbes or direct conduction, via conductive pili 
(nanowires).  
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outflow 
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inflow 
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PEM with 
gaskets 
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reservoir 

Top tier 
cathodes
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Top tier 
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Figure 1: Photo of the terracotta colored (Nanocure® photo-
polymer) final assembly of a MFC; labels show the various 
parts and features of the design. Inside the anode and cathode 
chambers (not shown in photo) are the carbon veil electrodes 
(67.5cm2 total surface area for each electrode). 

MFCs are a new technology, in the sense that only now can 
they produce sufficient power to make them drive useful 
applications. The open circuit voltage and maximum 
sustainable power output of a single MFC is approximately 
0.7V and 50μW respectively, suggesting that a plurality of 
MFCs will be required to drive an application such as EcoBot. 

A related question is “can stacks of MFCs produce enough 
energy at a fast enough rate to drive a physical entity that 
could move and support the weight of its own energy 
generating system (MFC stacks, stomach, tubes, electronics, 
accumulators, motors and pumps).  The weight onboard the 
robot had to be as low as possible and all actuators, motors 
and pumps had to function at the lowest possible power 
consumption. Earlier findings demonstrated that power 
density improves with decreasing size of individual MFCs 
(Ieropoulos et al. 2008). This formed the basis for EcoBot’s 
final design. 

A total of 48 MFCs were employed onboard EcoBot-III and 
they were configured in a circular fashion (figure 2). This was 
in order for the open-to-air oxygen-diffusion cathodes to be 
facing outwards in order to maximize oxygen (from free air) 
exposure. The 48 units were stacked in 2 tiers so that 
overflowing liquids (feedstock from the anodes and water 
from the cathodes) from the top tier could fall directly into the 
corresponding MFC units in the bottom tier.  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2: CAD snapshot of the MFC stack onboard the middle 
part of the EcoBot-III chassis. 

Isolated liquid (feedstock and H2O) distribution 
When connected in stacks, MFCs behave like batteries and are 
thus prone to ‘shorting’ and system failure if brought in 
fluidic contact. This may be the result of (i) feeding multiple 
units from a common feedstock bottle, (ii) feeding one MFC 
unit directly from another in continuous flow or even (iii) if 
the structural material of MFCs is hygroscopic. This is 
particularly relevant when there are elements of the MFC 
network in series. Series connection is a pre-requisite since 
single units or units in parallel do not produce enough voltage 
(at max sustainable power) to drive electronic modules nor 
charge up accumulators. Energy at a voltage below 500mV is 
insufficient to be usefully harvested. It was therefore 
necessary to build-in to the EcoBot-III design a method of 
breaking this fluidic linkage and allowing the isolation 
between all functional units of the robot, whilst still being fed 
and/or hydrated from common sources. The problems of 
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common feeding have been previously identified (Ieropoulos 
et al. 2008). This was the main idea behind the introduction of 
a ‘carousel’ feeding mechanism, which distributes food and 
water in a sequential-isolated manner (see figure 4), which 
also alleviates the problems arising from feeding the bottom 
MFCs directly from the ones above. 

Fluids (substrate feedstock to anodic chamber; water to the 
cathodes) had to be circulated on board the robot, with all the 
attendant challenges of “wet engineering”. This meant that the 
overflowing fluids from the MFC stack were collected in a 
trough (see figure 3) and periodically recycled back into their 
respective reservoirs (food into stomach; water into 
distribution nozzle). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: CAD image of the fluidic collection trough – inner 
channel (food), outer channel (water). Return ports are shown 
on the side. N.B. This is the bottom part of the image in figure 
2. 

Carousel feeding/distribution mechanism 
As mentioned before, a sequential distributor was built-in to 
the EcoBot. This was a carousel-like mechanism which was 
motor-driven to increment its state by one position at a time so 
that all the MFCs can be fed and watered in an isolated 
manner (figure 4).  
 

 
 
 

 
 
 
 
 
 

Figure 4: (Left) CAD snapshots of the carousel feeding 
mechanism; (right) the complete carousel feeding mechanism 
uncovered. Outside channel is for water and inside for 
feedstock. Funnels at the bottom of the part are the inlet 
nozzles for each MFC unit.  

The carousel unit has additional smaller motor-driven 
distributors in order for food and water to be distributed over 
4 outlet ports – in essence feeding 4 quartiles at the same time. 
The amount of fluid flowing per feed and water dose was 
intentionally superfluous so that the 4 MFCs on the top tier 

would overflow into the corresponding 4 MFCs on the bottom 
tier, during each feed or hydration. 

Ingestion, digestion (stomach), fly-trapping and 
egestion of waste 
One of the main objectives of this study was the design and 
development of mechanism(s) to allow the intake and 
processing of food and evacuation of the waste products e.g. 
recalcitrant and inorganic matter. To this effect a digestion 
unit was designed (figure 5) which incorporated a conical hat 
with added features (UV light, pheromone pocket, and liquid 
collection lip) to allow the ingestion of either liquid food or 
flies. In addition, the bottom part of this digestion unit was 
designed to allow the sedimentation of heavy-weight particles 
and was connected to a peristaltic pump, which allows the 
excretion of this material, in an effort to rid the microflora in 
this digestion unit from the accumulation of poisonous waste 
by-products, e.g. acid waste. 

Yellow hat on which UV light is 
emitted for fly visual attraction, 
plus fly pheromone for chemo-
attraction. Pheromone pocket 
(0.5mL) inside the stomach

 
 
 
 
 
 
 Upper-lip ingestion for 

liquid feedstock from 
EcoWorld

 
 
 
 
 Fluid feedstock reservoir 

(stomach; contents 
300mL) where digestion 

takes place

 
 
 
 Peristaltic pump for 

egestion of sediment 
and waste 

 
 
 
 

 
Small distributors Figure 5: CAD image of the stomach unit with the ingestion, 

digestion and egestion features. The underside of the conical 
hat (not shown) is black and the stomach has transparent 
windows to ensure that flies remain trapped. 

Drive gear 

EcoBot-III was designed to operate on two feeding 
strategies; one attracting insects (flies) using pheromone bait 
and UV-light (as a visual stimulus), in order to lure and trap 
the flies in a fluid reservoir and the other collecting liquid 
food supply (complex broth or pure substrates) from a feeder 
mechanism from the side-wall of the test bed arena (see 
below). Visual attraction is by UV light LED’s flashing 
periodically on the yellow surface of the stomach hat and 
chemical attraction is by using the fly sex pheromone Z-9 
tricosene – only as a primer.  
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Onboard accumulator 
However good the stacks of MFCs may be, power is still 
insufficient to run all actuators simultaneously and 
continuously. Energy storage, action selection processing and 
pulsed behavior patterns must be embedded. This was the core 
of the electronic circuitry which employed a capacitor bank 
acting as the energy accumulator. 
 Initially 0.408F capacitance was used (60 x 6800μF 
electrolytic capacitors 6.3V), which subsequently doubled to 
0.816F (120 x 6800μF electrolytic capacitors 6.3V). The 
voltage operating range (Vdis = 2.96V; Vch = 1.9V), was 
dictated by the symmetry around the intersection point 
between the actual capacitor charge curve and its first 
derivative. 

Control architecture overview 
Figure 6 below illustrates the actual embedded ultra-low 
power microcontrollers, in situ, for sensing and on-board 
actuation to maintain homeostasis. The main list of 
components is: microcontroller board (PIC46F20); startup 
isolator; 3.3V and 5V PSU board with onboard comparator; 
input board; output board; H-bridge board; level sensor board; 
pump driver board; photo eye boards; UV LED driver board. 
 

 

 

 

 

 
 
 
 
 

 

 

Figure 6: Control hardware onboard EcoBot-III, connected 
and running 

EcoWorld (the robot arena) 
The arena was constructed out of transparent Perspex and 
contained the robotic track and the water and liquid feedstock 
distribution mechanisms (figure 7).  

The internal temperature was controlled by thermostatic fan 
heater to maintain the temperature at 30 ± 5 °C. The 
dimensions were 70cm x 100cm (floor area) x 67 cm height. 
Two microprocessor controlled feedstock distribution 
mechanisms (one for liquid nutrient, one for water) were 
designed and built, each with radio connectivity. The system 
distributes a fixed fluid volume on to the robot in response to 
the robot making contact with the micro switch. 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 

Water 
bottle

Heater  
 
 
 Feedstock 

bottle  
 

Figure 7: EcoWorld finished with EcoBot-III on its robotic 
track inside. The external (arena) microcontroller is shown on 
the top, with water and liquid feedstock bottles shown on the 
left and right, respectively. 

EcoBot-III 
The final prototype EcoBot-III is shown in Figure 8. This is 
the resultant platform that integrates all the aforementioned 
functional units. The robot has the following physical 
characteristics: height, 63cm; diameter (outer), 29cm; weight 
(with full stomach, MFCs and trough), 5.88kg. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 8: EcoBot-III in its final state and in the EcoWorld. 
The whole robot is made from 3 different rapid prototype 
materials: Nanocure® resin for the MFCs, yellow ABS for the 
more intricate parts due to its soluble scaffolding and 
polycarbonate (ISO) for the more ‘heavy duty’ parts. 
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As previously mentioned, EcoBot-III has been constructed 
in such a way, that there is only one waste evacuation 
mechanism. Microbial Fuel Cells have been developed with a 
continuous flow design, by which excess fluids (useful and 
useless) overflow to the outside and below. The current 
EcoBot consists of 2 tiers of MFCs. Fluid flows from the 
header tank (digester) into the MFCs of the first floor, which 
when full (6mL total volume) overflows directly into the 
MFCs of the level below. Overflow from the bottom MFC tier 
is collected into a trough, which loops back into the header 
tank, thereby allowing the re-circulation (and hence further 
utilization) of useful ‘waste’ that has overflowed from the 
MFCs. Eventually, undigested or indigestible waste will 
accumulate inside the digester unit, which has been designed 
with a central port for evacuation. This is located at the 
bottom of the digester, so that heavy weight particulates can 
settle. A heavy duty peristaltic pump has been modified and 
fitted at the bottom of the header tank, so that it can be 
periodically actuated to allow some of this semi-solid waste 
material to evacuate the digester in the form of a pellet. The 
solid (or semi-solid) waste evacuation is at the moment 
performed on a time basis (once every 24hrs). The semi-solid 
stomach contents may be periodically agitated (not part of the 
current design), using a high-speed dc motor with a flexible 
long shaft to bring solids into suspension and allow their re-
distribution through the MFC network. 
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Results 

EcoBot-III is designed to collect and utilize flies, however 
experiments in which live flies are introduced into the robot’s 
arena (EcoWorld), in order to evaluate its autonomous 
behavior based on only ‘insect-diet’ are ongoing and have not 
been completed. The data presented herewith, are from the 
experiments in which EcoBot was manually fed with fly-juice 
(sludge that had been fed with flies) and also in which EcoBot 
successfully collected pasteurized sludge (artificial 
wastewater) from its environment. 
 
Fly attraction 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9: Comparison between fly-traps working with the 
chemo-attractant pheromone (triangle symbols) and without 
(square symbols; control). 

Although live flies were not introduced in EcoWorld, the 
effectiveness of the Z-9 tricosene pheromone against a control 

was still of interest, since the stomach of EcoBot-III is 
designed to accommodate a small volume (0.5mL separate 
pocket inside a 300mL digester) of this chemical as a primer. 
Experiments using conventional fly-traps with the Z-9-
tricosene pheromone (28mL in 2L) and without (control) have 
shown a remarkable difference (figure 9). 

EcoBot-III telemetry data 
EcoBot-III is designed to communicate with a basestation for 
reporting data such as time stamping, voltage of the onboard 
accumulator, task identity, fluid level status for the stomach 
and trough and also origin and destination in the arena. A 
snapshot of the telemetry data received from the real EcoBot-
III experiments is shown below in figure 10.  
 
 
 
 
 
 
 
 

Figure 10: Exemplar of a string of telemetry data received 
from EcoBot-III when running in EcoWorld. In this particular 
example, the robot is moving towards the left feedstock 
distribution (looking at the arena from the front), and it is 
actuating every 54 minutes.  

The incoming data (red boxed transmission) can be 
interpreted as follows (from left to right): Days: Hours: 
Minutes: Seconds, Energy actuation (as opposed to timer 
triggered actuation), Time between actuations, Task 
identification, Capacitor Voltage.  

Binary data string (MSB→LSB): Arena right feedstock and 
H2O distribution (1 = not there yet); Arena left feedstock and 
H2O distribution (1 = not there yet); Stomach low fluid level 
(1=full, 0=empty); Stomach high fluid level (1=full, 
0=empty); Trough feedstock low fluid level (1=full, 
0=empty); Trough feedstock high fluid level (1=full, 
0=empty); Trough H2O low level (1=full, 0=empty); Trough 
H2O high level (1=full, 0=empty). 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 11: Time to fire vs. number of actuations for feedstock 
distribution via carousel mechanism. EcoBot-III operating for 
5 days, feeding on anaerobic sludge that had been given dead 
flies. 
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Data from experiments completed using EcoBot-III are 
shown below in figure 11. This is the processed version of the 
telemetry data received from EcoBot during a 7-day 
experiment, when EcoBot was feeding on flies (>10 in 300mL 
of stomach contents). The data show that the robot was 
actuating (feeding the MFCs) every approx 30 minutes, until a 
mechanical failure occurred at the 111th actuation, at which 
point the time to fire increases exponentially.  

EcoBot-III has a defense mechanism, by which it triggers 
actuation using a timer (after 2 hours) if during this period 
energy has not accumulated to the pre-set threshold at the 
correct rate (flat line at the end of the curve). All other 
actuations have been filtered out to show only those related 
with feeding – this could have been done for any of the 
actuations. In reality the total number of actuations (including 
hydration) was twice as many (309 firings) as shown in figure 
12. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12: Total energy generated per actuation 

Liquid feedstock (synthetic wastewater with 20mM 
sodium acetate) 
In this experiment, EcoBot is employing the second feeding 
strategy, which is utilizing liquid food from the arena wall.  
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 13: Time between actuations when EcoBot was feeding 
from the arena. 

The liquid feedstock was artificial wastewater consisting of 
nutrients, minerals and carbon energy source (20mM acetate), 
but was deprived of any microbial growth that is found 
naturally in wastewater. This was in order to ensure that the 

energy is coming from this feedstock and not from exogenous 
(and newly introduced) microbes. 

Figure 13 below shows the relationship between the 
number of actuations and the time (in minutes) it took for each 
actuation to fire. 

As can be seen from the graph above, the time varies 
depending on the actuation, since different actuations use 
different amounts of energy and therefore take longer (or not) 
to occur. The increase in time between actuations is an 
indication that EcoBot is slowing down (MFC exhaustion; 
possible blockage; feedstock leakage due to blockage shorting 
MFCs out). The distribution of energy for each actuation is 
shown below in Figure 14. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 14: Energy usage per actuation; the numbered 
actuations are as follows: 1) water distribution (hydration) of 
cathodes; 2) feedstock distribution (feeding) of microbial 
anodes; 3) carousel indexing one position; 4) feedstock 
recycling into the stomach; 5) locomotion; 6) egestion; 7) UV 
light attractant; 8) single UV flash before each actuation. 

As an exemplar of all actuations, onboard water distribution 
to the cathodes was further analyzed, as shown below in 
Figure 15. 
 

 (a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
The data in Figure 15, show a stable behaviour in terms of 

this particular actuation for the vast majority of hydration 
cycles, up until the point that the performance begins to slow 
down, at which point the time between actuations increases 
exponentially. Equally, the energy spent per hydration cycle is 
stable within ±10%, up until the system performance 
deteriorates. When EcoBot operates correctly, then the graphs 
for all actuations are constant. 
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Figure 15: (a) Water distribution to MFC cathodes; (left) time 
between water distribution in hours; (b) average energy per 
water distribution actuation. 

On this particular occasion, the EcoBot performance 
deteriorated due to the fact that the robot was dehydrated and 
did not make it to the water distribution mechanism on the 
side wall of the arena. The experiment started (intentionally) 
with an empty onboard water trough reservoir but with fully 
moistened MFC cathodes, to investigate whether it would 
make it to the water point. In addition, extra actuations were 
introduced (UV single flash before every actuation) and waste 
evacuation at the end of each actuation sequence. In reality, 
waste evacuation takes place only once in a day and there is 
no UV single flash before each actuation. These experiments 
are currently ongoing. 

Discussion 

Developments in energy-autonomous robots using microbial 
fuel cells (MFC) can be expected to be attractive to industry in 
two areas. Firstly, the MFC technology itself may eventually 
reach a development stage where it produces comparable 
energy densities with those of ‘domestic’ batteries and 
therefore provide an alternative, carbon-neutral, power source. 
This could lead to stand-alone appliances such as sensors, 
alarms, telecommunications, low energy lights, small pumps 
or actuators, small motorized systems (fans, robots) and 
trickle chargers for charging car batteries. Possibly the 
technology could be scaled sufficiently to generate energy 
from large ‘reservoirs’ of biomass such as those found in 
sewage treatment works. These fuel cells can also utilize 
waste products (such as acetate) from current fuel cells which 
are being employed to generate hydrogen thus improving the 
overall efficiency.  

Autonomous robots powered from MFCs will have a wide 
range of applications and will be attractive to industry. The 
finding that MFCs can utilize waste (sludge) suggests that the 
technology can be considered as a useful novel method for 
tertiary wastewater treatment. Regarding their application into 
Symbots (i.e. EcoBot) provided their energy supply is 
sufficient for them to function and carry out their tasks, it may 
not matter that they are neither the most efficient nor the 
quickest; sufficient is all that matters. Therefore, it is easy to 
envisage energetically autonomous robots employed for 

monitoring of farm land and crops, sewers and also for marine 
exploration in non-sunlit waters. (b)

Energy autonomy. It is clear from our work that as long as 
EcoBot is performing correctly within its working 
environment and is provided with food and water via the arena 
(EcoWorld), it continues to function well. It can gain 
sufficient electrical energy from organic food to continue 
motion on its track, to collect water and food when needed 
and distribute these to the MFCs. It has sufficient energy on 
board to also perform other exemplar tasks such as elimination 
of non-digestible components by controlled ejection of 
“waste”, sensing (of temperature and light), data processing 
and radio transmission of logged data. 

Bio-regulation. When mixed-culture “ecologies” are 
transplanted into EcoBot, they consist of a wide diversity of 
different groups and species of microorganism. Further groups 
of microbes may also be introduced, depending on the nature 
and source of the food – e.g. rotten fruits and vegetables and 
sludge carry with them their own microbes (essentially 
responsible for the rotting). The physicochemical environment 
within EcoBot (albeit different to the microbe’s original 
natural environment) is nevertheless a suitably selective 
environment for the more robust microbes’ survival and 
growth. The microbial community that finally adapts to this 
system, will still be sufficiently diverse to function. Clearly, 
some species that do not like the prevailing environment will 
diminish in population number (be selected against) whilst 
others that can adapt will be enriched. Electroactive species of 
microbe appear to be enriched as biofilms around the anodic 
electrodes. Within the stomach-digester (artificial gut) the 
main types of species (in a low dissolved oxygen 
environment) are likely to be strict and facultative anaerobes, 
and the main pathways by which they will gain energy will be 
via fermentation. Polymeric food molecules (starch, chitin, 
proteins, saccharides) are hydrolysed by microbial enzymes to 
give monomeric molecules that can be taken up by the cells. 
Fermentation produces organic acids as the main end-products 
of metabolism, including acetate, propionate, butyrate, lactate, 
formate, alcohols and carbon dioxide. The acids produced 
would normally be expected to reduce the pH. The organic 
acids (e.g. acetate) are circulated to the MFC units where 
electrogenic species utilise them by oxidation, through the 
abstraction of electrons (via the electrode) and producing 
carbon dioxide and more protons. However, the build-up of 
acids (and resulting low pH) does not appear to occur, 
possibly because of one or more of the following reasons: (i) 
the anaerobic sludge microbes forming into robust and stable 
biofilms, naturally buffering their surroundings (concomitant 
production of ammonia and other basic molecules at a rate 
which neutralises the pH); (ii) loss of acids through 
volatilization; (iii) effective removal of protons by the MFC 
cathodic system (PEM and cathode).  

The latter mechanism appears to be the most important and 
the system maintains pH homeostasis throughout continuous 
operation. Alternative designs of cathode employ closed 
chambers with either chemical electrolytes, fast running water 
or aerated water. All these systems require high amounts of 
energy to remain operational and help catalyse the reaction: 
O2 + 4e- + 4H+ ↔2H2O [+0.82]. In the cases where the 
chemical electrolyte is fully reduced, or the water/air stops 
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flowing, then the cathodic system no longer acts as the 
oxidising half-cell, and the H+ ions generated in the anode 
(cations) cannot find their electrochemical path through to the 
cathode, thus accumulating to lethal levels for the microbes. 
The open to the air/periodically moistened cathode, might not 
be as efficient as the aforementioned alternatives at the initial 
stages of the MFC lifetime, however it continuously improves 
with time and eventually outperforms all other systems, 
especially in terms of longevity. It would be interesting to see 
(as part of future work) what happens if the robot is fed acid 
or alkaline mixtures of feedstock, or whether acid build-up 
does occur when the MFC are electrically disconnected.  

Nutrient acquisition behavior. In the programming of 
EcoBot, nutrient acquisition is triggered by contact with the 
feed and water distribution mechanisms of the arena, at which 
point the behaviour changes so that the robot feeds and 
hydrates all MFCs, before it moves away to do other 
functions. Provision for different behavior patterns has been 
made so that the robot can move towards the feed/water 
distribution points when fluid levels are low or indeed when 
energy levels from the MFCs are low. This is what we would 
term as ‘hunger’ simulation. 

Conclusions 

As the development of MFCs continues (using smaller units 
which make for more powerful stacks), then the ability to 
utilise MFC-stacks on board robots will become more 
attractive and commonplace. This study shows the feasibility 
of the Symbot approach, albeit being far from fulfilled. It may 
not be a perfect system and still a proof-of-concept prototype, 
however, it is the authors’ conclusion that EcoBot-III 
demonstrated energy autonomy, when fed with nutrient rich 
liquid feedstocks and within the boundaries of its 
environment.  

To the best of the authors’ knowledge, this is the first 
example of a robot, which integrates real life and machine in a 
symbiotic manner (Symbot) for digestion and autonomous 
operation as an exemplar of artificial life.  
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Abstract

We present a distributed multi-robot controller for forming
spatially efficient queues of arbitrary numbers of robots. The
method is formally analyzed and validated in a conventional
robot simulation. This controller is based on sunflower phyl-
lotaxis and inherits its efficient packing properties. Two mea-
sures of queue spatial efficiency are proposed and their upper
bounds for the presented controller are found. The controller
compares favorably with a simple line queueing and shows
unexpectedly high tolerance to spatial interference between
robots.

Introduction
Living systems have evolved remarkable properties that are
very desirable to have in embodied artificial systems includ-
ing robots. Biomimetic robotics focuses almost exclusively
on animals and bacteria, which is natural since members
of these kingdoms face locomotion-related tasks similar to
those of robots. In this paper we show that useful inspiration
can be obtained from plants as their growth can be viewed as
movement. We describe a multi-robot system based on phyl-
lotaxis, in particular the arrangement of seeds on a sunflower
head. To our knowledge, this is the first robot controller in-
spired by plant morphogenesis.

The problem we are solving is in the context of our in-
terest in the energetics of large-scale multirobot teams. We
believe that the ability to manage its own energy is a key
characteristic of artificial and biological living systems. Au-
tonomous energy management poses a plethora of chal-
lenges one of which is sharing a single charging station be-
tween many robots. Here we focus on finding an efficient
way for robots to organize themselves into a queue while
waiting for the service at the station.

Specifically, we are looking for a queue organization that
will allow a large group of hungry robots to queue for the
station without creating a major obstacle for other robots and
without spending too much energy on supporting the forma-
tion. Thus, we want the queue to be dense and not to extend
far in any direction so it is easy to navigate around. Also,
we want to decrease the additional distance a robot needs
to travel in order to join and move in the queue. Though

we focus on robots and recharging, our arguments could be
applied to any type of service and any embodied artificial
living agents.

The next section reviews related work which is followed
by definition of Vogel’s sunflower phyllotaxis model. We
present our modification of this model and define the robot
controller based on the modified model. We analyze this
controller in terms of two measures of queue spatial effi-
ciency and compare it with a simple line queueing solution.
After that we describe an informal experimental demonstra-
tion of the system and conclude by summarizing the paper
and offering directions for future work.

Related work
Biomimetic robotics is a vibrant and diverse field. An up to
date exploration of biomimetic robot mechanisms was done
by Vepa (2009), while Bar-Cohen and Breazeal (2003) pro-
vide wider survey of the field and discus both mechanisms
and control. Biologically inspired robot navigation was re-
viewed by Franz and Mallot (2000).

A rare plant-motivated robotics work by Armour and Vin-
cent (2006) describes robot morphology motivated by tum-
bleweed plant. Another unconventional non-animal design
is a robot controlled by a slime mold (Tsuda et al., 2007).

Phyllotaxis has been studied extensively both by mathe-
maticians and biologists. One of the most known works on
phyllotaxis modelling was done by Vogel (1979). An acces-
sible introduction to the topic is available at Prusinkiewicz
and Lindenmayer (1990, Ch. 4), while a detailed review
of the early work was done by Jean (1994). Embryogenic
mechanisms involved in phyllotaxis are disused in Traas and
Vernoux (2002). In a recent work Nisoli et al. (2009) give
experimental and numerical evidence for emergence of phyl-
lotaxis in a system of repulsive particles.

Work on autonomous robot recharging has traditionally
focused on the engineering issues of the problem and used
simplistic non-optimal recharging policies (Silverman et al.,
2002; Oh and Zelinsky, 2000). Recently Wawerla and
Vaughan (2007) described a near-optimal robot recharging
control policy that mimics animal foraging. Couture-Beil
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Figure 1: Sunflower head with 300 circular elements. Ra-
dius of an element is r = 0.5, Vogel constant c = 0.75.

and Vaughan (2009) developed an adaptive interference re-
duction strategy of placing recharging station and observed
that the optimal location of the station is slightly off the path
of working robots. A coordination mechanism for a large
number of robots and multiple charging stations is presented
by Drenner et al. (2009)

To our knowledge, no previous work has explicitly con-
sidered the cost of robot queues, either in terms of their di-
rect navigation cost, or the indirect system cost due to the
spatial interference they induce. Both are addressed here.

Efficient robot queueing by reverse phyllotaxis
Vogel’s model
One of the best known models of sunflower phyllotaxis was
proposed by Vogel (1979) in response to an early work by
Mathai and Davis (1974). Vogel’s model gives a construc-
tive procedure for the shape of the mature sunflower head
with the elements of equal sizes:

ρ = c
√
n, (1)

θ = ng, (2)

where (ρ, θ) are the polar coordinates of the n-th element (r
is the distance from the centre and θ is an angle between the
element and a fixed axis passing through the centre), c is a
scaling factor, and g = 2π

φ is the golden angle (the smaller
of the two angles produced by sectioning a circle circum-
ference according to the golden ratio φ = 1+

√
5

2 ) so that the
ratio of the full circumference to the larger arc is equal to the
ratio of the larger arc to the smaller arc. A pattern produced
by this model is shown on Fig. 1.

The elements in Vogel’s model are arranged on a Fermat’s
(parabolic) spiral which has a general form r2 = a2θ. Every
turn of the spiral in the model contains on average φ+ 1 el-
ements. Since Fermat’s spiral crosses the annuli of equal ar-
eas in equal number of turns, equal areas on the head contain
on average equal number of elements. The irrational angle
between successive elements ensures that no two elements

are located at the same angle. These two properties alone
do not guarantee efficient packing of elements as locally the
element packing density may differ significantly and large
areas of unused space can be present.

However, the choice of the golden angle produces the the-
oretically most efficient packing of the elements among for-
mations described by Eq. (1-2). Ridley (1982) proves that
this angle will maximize the normalized packing efficiency
defined as

η = A−1 inf
{
|x− y|2 : x, y ∈ X,x 6= y

}
,

where A is the average area occupied by each element (in-
cluding its share of adjacent free space), and X is the set of
elements. If η is high, then there are no areas where packing
is too dense. Since elements are packed equally on average,
having no overly dense areas ensures the absence of overly
sparse areas with unused space.

This efficient packing and roughly circular shape of the
sunflower head are appealing as a formation for a group of
queueing robots. The head of the queue can be located at
the centre of the sunflower and queuing robots can arrange
themselves around it as if they were sunflower seeds. Sim-
plicity of the model will transfer to the simplicity of a robot
controller. Below we argue that this formation has a small
diameter and allows for a low navigation overhead on join-
ing and leaving the queue. However, first we need to provide
a means for the robots to leave the queue once they were ser-
viced.

Leaving the exit gap
Dense packing of the elements in Vogel’s model makes the
task of navigating from the centre of the formation outside
very challenging. To minimize the interference and decrease
the time spent on leaving the queue robots leave a gap from
the centre of the formation to the periphery. This gap is lo-
cated at a predefined angle and is wide enough for a robot to
drive through (see Fig. 2). Assuming circular elements,

d(ρ, θ) = |ρ sin(θ − α)| , (3)

V =
{
(ρ, θ)|r = c

√
n, θ = gn

}
, (4)

G = {(ρ, θ) ∈ V |(d(ρ, θ) > s) ∨ (cos(θ − α) < 0)} ,
(5)

where d(p) gives the distance of point p from the line pass-
ing through the centre of the exit gap, α is the direction angle
of the gap, V is the set of element centres generated by Eq.
(1-2), G is the set of element centres pruned of the elements
that block the exit and s is the diameter of the element. The
cosine condition in the generator for G is needed to restrict
the blocking elements to the half plane in which the exit gap
is located. As element locations are generated sequentially
using Vogel’s model, blocking elements can be skipped.

Therefore, leaving the queue amounts to simply going
along the gap. Leaving the gap constantly open will increase
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Figure 2: Sunflower head with 300 circular elements and
an exit gap. Radius of an element is 0.5, Vogel constant
c = 0.75. Exit direction α = π/4.

the diameter of the formation. However, it will eliminate the
need for the queueing robots to move while letting a leav-
ing robot through the formation. In the theoretical analysis
section we explain why we believe this trade-off is reason-
able. Also leaving a constant exit gap will be beneficial if
the service rate is so high that a serviced robot starts leaving
formation before another one finishes exiting.

Below we will use the terms “sunflower formation” and
“sunflower queue” to refer to the formation with an exit gap
unless specified otherwise.

Controller definition
We assume that robots are localized relative to the service
stations. Every robot is equipped with a short range sensor
capable of sensing the relative position of other robots. Pos-
sible choices for such a sensor include a stereo vision system
and a laser-ranger-based fiducial finder. During the queueing
routine a robot can be in one of four states. For simplicity
we assume that if robots A senses robot B, it receives both
relative position of B and its state. However, since the state
of the robot can be deduced from its position and velocity,
the state sensing is redundant. Sensors are subject to occlu-
sions, so a robot can not sense through other robots.

Figure 3 describes the state diagram of the controller.
When robot needs to get service, it switches into Approach-
ing state. In this state robot drives straight to the charging
station. If the station is free, it reaches it and switches to
the Charging mode. Once recharged, the robot vacates the
station and leaves along the predefined exit direction. If the
station is busy, or the robot senses another robot in Queueing
state, it switches into Settling state and calculates its position
in queue based on the position of the furthest robot from the
station observed so far. The Settling robot orbits around the
queue and stops when it finds its position. Once there, the
robot switches to Queueing state. If a robot in Queueing
state is the closest one to the free charging station, it moves
there and switches to Charging state. Other robots close to
station sense this movement and move themselves closer to

Approaching

QueuingSettl ing

Charging

Station is freeSense a Queuing or

Charging robot 

Reached position

Station is free

Figure 3: State diagram of the robot controller.

the station. This movement propagates through the whole
queue and every robot moves closer to the station.

Below we provide a more formal description of behaviour
in Settling, and Queueing states. All coordinates are polar
with the origin located at the charging station. The currently
assumed position of self on the formation is n, (ρd, θd) de-
notes the currently desired position, (ρ, θ) is the current ac-
tual position, ρi is the distance to station of the observed
robot i (this can be calculated from the robot’s own global
position and the observed relative position of robot i), o
is the orbiting offset, c is the Vogel constant, and g is the
golden angle.

Settling A robot switches to the Settling state once it de-
tects the presence of the queue by discovering that the charg-
ing station is occupied or sensing another robot in a Queue-
ing state. The robot initializes its queue position to zero (line
1 of the Algorithm) and then processes positional informa-
tion about the robot it senses.

The global position of a sensed robot is calculated as a
sum of a global position of self and relative position of the
sensed robot. If the robot observes a Queueing robot i the
formation position of which is greater than the robots as-
sumed position (line 4), the robot will chose the next posi-
tion on a sunflower to occupy(line 5). If this position blocks
the exit, the robot skips this position and chooses the next
one (lines 6-8).

The robot calculates his desired coordinates from his se-
lected position in the formation (lines 9-10) and navigates to
that position in the following way. First, he moves from his
current position to an orbit which is slightly above his de-
sired distance from the charging station (line 13). Once on
the orbit it moves on that orbit toward its desired angle (line
14). Once it successfully reaches this angle, it moves down
from the orbit to the desired distance (lines 15-17).

The loop (2-18) ensures that the orbiting robot recom-
putes its desired position if it discovers a Queueing robot
that occupies the desired position or even is further from it.
At most one full turn around the formation will provide the
Settling robot with a correct position in a formation. Once
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the robot reaches its desired position, it switches to Queue-
ing state(line 20).

Algorithm 1 Settling state controller
1: n← 0
2: repeat
3: for all sensed robots i in Queuing state do
4: if ρ2

i /c
2 ≥ n then

5: n← ρ2
i /c

2 + 1
6: if (c

√
n, ng) blocks the exit then

7: n← n+ 1
8: end if
9: ρd ← c

√
n

10: θd ← ng
11: end if
12: end for
13: go to orbit ρd + o
14: move some distance along the circular orbit toward

angle θd
15: if θ = θd then
16: go to radius ρd
17: end if
18: until pc = pd
19: stop
20: state← Queuing

Queueing A robot switches to Queueing state only from
Settling state once the robot reaches its proper position in
the formation. While in Queueing state, a robot finds the
nearest robot it can sense that is closer to the charging station
than itself and remembers the radius of this robot (line 1). If
the robot senses a free charging station and is closer to the
station than all queueing robots it senses to the station, then
it is next to be charged and it proceeds to the station (lines 3-
5). Once at the station the robot switches to Charging state.

The robot repeatedly finds the current value of the radius
of the nearest sensed robot closer to the charging station
(step 8). A change in the value means that a robot left the
charging station, another robot occupied it and the queue
moves closer to the station in response. This movement
propagates from the centre of the formation to the periph-
ery. The robot does not change its angle, but moves to the
previous radius in the Vogel’s model. Relocation happens
once the new position is free (steps 9-11). If the new posi-
tion blocks the exit the robot moves instead along the exit
gap restoring the distance to the closest robot. When the
robot reaches its new position, it updates the distance to the
nearest robot which is closer to the charging station (step
16).

The positional update on steps 10-14 ensures that the or-
der of recharging will correspond to the order of queueing.
After the update the formation will remain a Vogel’s for-
mation with a gap. Such an update can be thought of as an

inverse phyllotaxis during which the elements move inwards
toward the centre instead of moving outwards.

Algorithm 2 Queueing state controller
1: ρf ← max{sensed Queuing i|ρi<ρ} ρi
2: repeat
3: ρmin ← min{sensed Queuing i} ρi
4: if ρ < ρmin and charging station is free then
5: Move to charging station
6: state← Charging
7: else
8: ρc ← max{sensed Queuing i|ρi<ρ} ρi

9: if ρc < ρf and (c
√

(n− 1), θ) is free then
10: n← n− 1
11: if (c

√
n, θ) is not blocking the exit then

12: Move to (c
√
n, θ)

13: else
14: Move along the exit gap until ρc = ρf
15: end if
16: ρf ← max{sensed Queuing i|ρi<ρ} ρi
17: end if
18: end if
19: until state = Charging

Analysis
Our goal is to optimize two performance characteristics :
the diameter of the queueing formation and the locomotion
overhead on queueing. In this section we analyze the sun-
flower formation and provide theoretical guarantees of di-
ameter and locomotion overhead. We will not make any as-
sumptions about the initial spatial distribution of robots and
service rate of charging station and derive instead the upper
bounds of the performance characteristics. Moreover, since
queueing overhead depends on the angle of the approach of
the robot, worst case analysis allows to avoid complexities
of parameterizing the result on that angle. Our primary inter-
est is how performance characteristics change as the number
of formation members grows.

Diameter Formation diameter is the maximum distance
between the elements of the formation. Decreasing forma-
tion diameter is beneficial as it in general reduces the cost of
non-participating robots to navigate around the formation.

Definition 1. For a formation V = {p|p ∈ R2} diameter
d(V ) = max ‖pi − pj‖, pi ∈ V, pj ∈ V .

Lemma 1. If n robots s are in the sunflower formation S(n)
with an exit gap, d(S(n)) ≤ 2c

√
2n+ s, where c is Vogel’s

constant and s is the size of the robot.

Proof. Construction of formation with gap places elements
according to the Eq.(1-2) skipping elements that block the
exit. In Settling algorithm this skipping happens at steps
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6-8. For a single-element-wide gap no two successive ele-
ments can block the exit, so at most every other position is
skipped. Therefore, n-th element in the formation will be
placed at most at radius c

√
2n. By construction, all previous

elements are placed at smaller radii. Hence, the centres of
all formation elements fit into a circle with diameter 2c

√
2n.

Since an element fits into the circle with diameter s, the max-
imum distance between points on formation surface is less
than 2c

√
2n+ s.

Locomotion overhead Queueing requires a robot to move
into its position in the formation and then move in the queue
until the robot reaches the charging station. This will usually
require more locomotion than in the case where the station
is free and robot can go straight for it. Locomotion overhead
measures additional travelled distance caused by queueing.

Definition 2. Locomotion overhead Po = Pr − Ps, where
Ps = ‖a − l‖ is the distance between the point a at which
robot detects the queue and starts a queueing manoeuvre, l
is the location of charging stations, and Pr is the length of
the robot trajectory from point a until it reaches the charging
station while in queue 1.

Lemma 2. n-th robot in the queue has locomotion overhead
Po(n) < (2π+2g)(c

√
2n+o)+c

√
2n−c

√
2n− 2+o+2s.

Proof. Assume a robot detected a queue at point a. Its tra-
jectory from that point to the charging station is comprised
from three components (i) getting to the settling orbit, (ii)
orbiting to the position in a queue, and (iii) moving toward
the station while in a queue. By the argument used in the
proof of Lemma 1 we conclude that n-th robot in a queue
will settle at radius c

√
2n. The longest possible orbiting

path for a robot n will result from detecting robot n − 1
only after one almost full turn around the queue and then
skipping the next position on a spiral because it blocks the
exit. Therefore, a robot will settle in less than one full turn
and two golden angles on a circumference of circles of the
radius less than c

√
2n + o, where o is the orbiting offset.

Hence, component (ii) of the trajectory has an upper bound
of (2π + 2g)(c

√
2n+ o).

Once settled and in a queue a robot moves only toward
the charging station as it would do in the absence of a queue.
Therefore, the only part of components (i) and (iii) that will
contribute to the overhead is the travel from radius of point
a to c

√
2n+ o and back. Because of the tight packing of the

sunflower formation an approaching robot can travel at most

1It may be argued that the overhead should include leaving the
formation and even returning to the original line of approach. How-
ever, it is not easy to define a standard way to measure these com-
ponents of the trajectory across different formations. In any case,
accounting for these components do not change the rate of growth
of performance measure and qualitative comparison results we ob-
tain.

one robot size s away from the outermost located robots be-
fore detecting the queue. That outermost located robot has
number at least 2n − 2. Therefore, the total contribution of
(i) and (iii) is less than s+o+c(

√
2n−

√
2n− 2) for a robot

that is not encountering the exit gap on its straight path in a
queue to the charging station.

For a case when robot has to follow the exit gap and depart
from the straight path to the station a simple geometric argu-
ment shows that the increase in the path can not be greater
than s. Hence, contribution of (i) and (iii) is bounded by
2s+ o+ c(

√
2n−

√
2n− 2)

Comparison with the linear queueing There is no con-
ventional robot queueing formation to serve as a benchmark
for new queueing strategies. We will compare the sunflower
formation with a simple and natural line queueing strategy.
In this strategy a robot goes directly toward the charging sta-
tion. If the charging station is occupied, the robot queues in
a straight line that goes to the prespecified direction. To do
this the robot follows the queue away from the station until
it finds a free spot on a line. It is easy to argue, that diam-
eter of this formation is d(n) = ns, where n is the number
of robots in the queue and s is the size of the robot. Also,
the locomotion overhead of n-th robot in line queueing is
Po(n) = 2ns since the robot has to travel exactly two queue
diameters before it reaches the charging station.

It seems that the linear queueing strategy has a lot of room
for immediate improvement. For example, instead of go-
ing straight to the station, the robot can align itself with the
queueing direction and then follow it to the station. If there
is a queue, the robot detects it before reaching the station and
can possibly reduce locomotion overhead by decreasing its
travel to the tail of the queue. On the other hand, in case of
no queue or a short queue this strategy will actually increase
the overhead. A careful consideration shows that robot can
make a correct decision on where to go only if he has an es-
timate of the current queue size beforehand. However, since
the system described in this paper can also improve its per-
formance by using a priori queue size information we will
keep the comparison fair by using the simple uninformed
linear queueing.

Linear queue diameters and the diameter bound of the
sunflower queue differ in their rate of growth. The diam-
eter of a linear queue grows linearly with queue cardinality,
dl(n) = O(n), while the upper bound of a sunflower with
a gap formation diameter grows at a slower square root rate
ds(n) = O(

√
n). Therefore, for any size of the robot and

any Vogel’s constant c the sunflower queue is guaranteed
to eventually outperform the linear queue as the size of the
queue grows, though for small queue this might not be the
case.

Fig.4 compares the queue diameter of the simple linear
queue with an upper bound of queue diameter of a sunflower
formation for robots with size s = 0.5 and Vogel’s constant
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c = 0.6. For queues with less than 13 robots a linear queue
may have a smaller diameter, but for larger queues sunflower
formation is guaranteed to outperform a linear queue. For 40
robots the sunflower queue already has half the linear queue
diameter. The margin between the measures of two queues
grows linearly as the queue size grows.

The locomotion overhead of the linear queue and the over-
head bound of the sunflower queue relate similarly. The lo-
comotion overhead of a linear queue grows linearly, while
the overhead bound of a sunflower queue grows at a square
root rate. Again, because of this difference in growth rates
for any set of parameters there is a robot position for which
the sunflower queue guarantees smaller overhead than the
linear queue. For the larger robot positions sunflower queue
will keep outperforming the linear queue and the margin be-
tween the measures will grow linearly with the robot posi-
tion.

Fig.5 compares the locomotion overhead of the linear
queue and the overhead upper bound of the sunflower queue
for robots with size s = 0.5, Vogel’s constant c = 0.55
and orbiting offset o = 0.7. For robot positions below 76
the linear queue can perform better, but for larger values the
sunflower queue is guaranteed to have a smaller locomotion
overhead.

Justification of leaving the exit gap Performance func-
tions growth considerations can be also used to explain our
choice of a leaving strategy for a recharged robot. Keep-
ing the formation tight without a gap will lead to a constant
factor improvement in the queue diameter, however robots
will need to move and create an opening for every leaving
recharged robot. Since the formation is tight, all robots will
need to move whenever somebody leaves the formation from
its centre. The last member of a queue with n members will
need to move O(n) times, therefore increasing the growth
factor of the locomotion overhead from square root to lin-
ear. As we are interested in the efficient strategies for large
number of robots, we prefer to leave a gap in a formation
and suffer a constant factor increase in diameter but keep
the growth rate of the locomotion overhead sublinear.

Demonstration
We implemented our queueing controller in the conventional
robot simulator Stage (Vaughan, 2008). We simulate a team
of 30 Pioneer robots in an 10m by 10m arena. Robots are
equipped with short-range fiducial sensors capable of sens-
ing bearing and distance to other robots, and a global posi-
tioning system. Robots do not communicate between them-
selves or with a charging station. Robots can collide, they
have non-holonomic driving, and speed restriction and their
fiducial sensors can be occluded by other robots. Parameters
of simulation are given in Table 1.

We employ a simple orthodox reactive collision avoidance
algorithm that uses range-finder readings. If there is an ob-
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Figure 4: Diameters of the linear queue and the sunflower
formation with a gap (vertical axis) plotted against number
of robots in a queue (horizontal axis). Robot size s = 0.5,
Vogel’s constant c = 0.6.
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Figure 5: Locomotion overheads of the linear queue and the
sunflower formation with a gap (vertical axis) plotted against
robot position in queue (horizontal axis). Robot size s =
0.5, Vogel’s constant c = 0.55, orbiting offset o = 0.7.

stacle closer than a certain distance dstop, the robot stops. If
there is an obstacle which is at closer than a certain distance
davoid > dstop then the direction that gave the smallest dis-
tance reading is found. If smallest reading came from the
direction to the right of the robot bearing, a collision avoid-
ance manoeuvre with a duration randomly selected in a cer-
tain interval is performed. The robot starts to turn left with a
fixed turning speed and driving speed. Otherwise, the robot
performs a right turn manoeuvre. If smallest reading came
from the left, a right turn manoeuvre is performed. Once the
collision avoidance manoeuvre is over, the robot continues
to set the speed as prescribed by the main controller.

1: In the first set of simulations robots join the queue one
by one with enough delay to let the previous robot settle in
a queue and not create interference between settling robots.
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Figure 6: Locomotion overhead data from 3 experimental
runs and a theoretical upper bound (vertical axis) plotted
against robot position in queue (horizontal axis). Vogel’s
constant c = 0.55.

Locomotion overhead is measured as robots settle and move
in queue. Once all robots join the queue, recharging start
and robot recharge one by one until the queue is empty. The
simulation stops once all robots are recharged. For various
settings of Vogel’s constant c and different initial approach
of robots we observed the successful organization of sun-
flower formation with a gap and queue position updates after
recharged robots depart.

Figure 6 shows the observed navigation overhead plotted
against robot queue position from some representative ex-
ample runs. All measured locomotion overheads were below
the theoretically predicted upper bound (Lemma 2), which
is also plotted. The angle of approach to the queue deter-
mined how closely the measured value approached the upper
bound. If the approaching robot had the previously settled
robot on the opposite side of the orbiting direction and be-
yond its sensor range, than an almost full turn around the
formation was performed before the settling robot was able
to sense it and calculate the position in formation. In this
case the measured value of overhead was close to the the-
oretical upper bound. If the angle of approach allowed the
robot to detect the last previously settled robot more quickly,
then the measured value of overhead was significantly lower,
than the predicted upper limits.

2: In the second set of simulations we tested how the sys-
tem would cope with multiple robots approaching an empty
queue at the same time. In this case they interfered with each
other and a reactive collision avoidance algorithm took over
control of the robots that came too close to other robots. The
system handled interference unexpectedly well. For a small
number of simultaneously approaching robots (between two
and five) the system reliably created the formation albeit
with a delay caused by repeated interference avoidance. For

Maximum speed 0.4 m/s
Collision avoidance speed 0.05 m/s
Collision avoidance turning speed 0.5 rad/s
Collision avoidance initiation distance 0.6 m
Minimum front stopping distance 0.5 m
Collision avoidance duration interval [1,2]s
Fiducial finder range 2 m
Orbiting offset 0.7 m
Position settling precision 0.05 m

Table 1: Parameters used in Stage simulation

larger number of simultaneously approaching robots occa-
sional collisions were observed as the collision avoidance
was not able to handle large number of robots in close prox-
imity to each other. However, most of the collisions were re-
solved by the emergent “helping” behaviour of other robots
that approached stuck robots and triggered collision avoid-
ance that separated them. Even for a very large number of
robots successful formation creation was possible.

Fig. 7 illustrates successful creation of the formation by
the group of 30 robots. Fig. 7(a) shows the initial posi-
tions of the robots. As they all simultaneously drive for the
charging station a lot of interference occurs and robots spend
most of the time in collision avoidance mode (See Fig. 7(b)
with two robots in position and the rest interfering with each
other). Eventually robots succeed in settling in positions and
formation starts to grow (see Fig. 7(c) with 8 robots still set-
tling). Fig. 7(d) shows the final formation.

Observe the group of robots following each other on the
orbit in the right side of Fig. 7(c). This emergent “train
formation” behaviour results from the interaction of orbit-
ing part of the settling algorithm and the collision avoid-
ance mechanism that randomizes the collision avoidance
manoeuvre duration thus spreading robots in time. We be-
lieve that this emergent behaviour explains the tolerance
of the system to spatial interference. As the queue forms,
the system is capable of handling increasing numbers of si-
multaneously joining robots as the orbit circumference in-
creases.

Conclusion
The focus of this paper was on autonomous creation of spa-
tially efficient queues by a group of robots. We described a
novel distributed decentralized queue formation algorithm
inspired by the plant phyllotaxis, which we call the sun-
flower formation. To our knowledge this is the first robot
control algorithm inspired by phyllotaxis. We defined two
measures of spatial efficiency for robot queues and proved
upper bounds of these measures for the sunflower formation
algorithm. Our algorithm compares favourably with a sim-
ple linear queueing algorithm showing superior asymptotic
behaviour of both measures. The controller was successfully
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Figure 7: 30 robots simultaneously attempting to join an empty queue. Vogel’s constant c = 0.55 Exit direction α = π/3.

demonstrated in a conventional multi-robot simulation and
showed an unexpectedly high spatial interference tolerance.

This work can be extended in many directions. The first
is the extension of the algorithm to create efficient queue
formation in three dimensions with potential application in
aerial, space and underwater robotics. A second direction
is looking for ways to improve queueing as a system com-
ponent, for example integrating it with a custom collision
avoidance algorithm that would favour its emergent proper-
ties and allow it to successfully manage larger number of
simultaneously approaching robots. Also, it may be possi-
ble to eliminate the need for global localization by using the
relative poses of sensed queueing robots in addition to their
relative positions. Finally, other queueing formation like
zig-zag queue and theoretically optimal hexagonal packing
should be investigated.

A very interesting direction is looking for ways to base the
controller on models of emergent phyllotaxis instead of the
constructive model employed here. Finally, we believe that
plant kingdom has a lot of hidden potential for biomimetic
robotics that is waiting to be discovered and exploited.
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Abstract

With the present study we report the first application of a
recently proposed model for realistic microbial fuel cells
(MFCs) energy generation dynamics, suitable for robotic
simulations with minimal and extremely limited computa-
tional overhead. A simulated agent was adapted in order
to engage in a viable interaction with its environment. It
achieved energy autonomy by maintaining viable levels of
the critical variables of MFCs, namely cathodic hydration
and anodic substrate biochemical energy. After unsupervised
adaptation by genetic algorithm, these crucial variables mod-
ulate the behavioral dynamics expressed by viable robots in
their interaction with the environment. The analysis of this
physically rooted and self-organized dynamic action selec-
tion mechanism constitutes a novel practical contribution of
this work. We also compare two different viable strategies, a
self-organized continuous and a pulsed behavior, in order to
foresee the possible cognitive implications of such biological-
mechatronics hybrid symbionts in a novel scenario of ecolog-
ically grounded energy and motivational autonomy.

Introduction
Over the past decade, the perspective on what constitutes
adaptive behavior in living organisms and robots has evolved
from one of embodiment entailing solely the study of sen-
sorimotor activity to one that incorporates internal bodily
dynamics (e.g. Pfeifer and Scheier, 1999; Wilson, 2002;
Ziemke, 2003). This century, the increased emphasis on
internal dynamics to behavior has led some researchers to
suggest that non-neural activity – of the type that is sub-
stantially affected by whole organism interaction with an
external environment – is indispensable for garnering fur-
ther insights into the nature of adaptive behavior (cf. Parisi,
2004; Ziemke, 2008; Ziemke and Lowe, 2009). Further-
more, the integration between non-neural internal compo-
nents and sensorimotor activity may be at the heart of related
concepts such as autonomy, emotion and agency.

The importance of non-neural internal (bodily) variables
to behavioral dynamics was well appreciated by Ashby
(1960). A leading figure in the British cybernetics move-
ment in the 40s and 50s, Ashby emphasized the importance
of feedback to control systems and, drawing on the work of

Cannon (1915), applied the biological notion of homeostasis
to an engineered artifact, the homeostat. The essential cog-
nitive feature of the homeostat is that it purportedly provides
a demonstration of what makes a system truly adaptive, or
ultrastable. According to Ashby, a requisite feature of adap-
tive living and artificial organisms is that their behavior is
governed not just by a first order reactive sensorimotor loop
but also by a second order loop. In the case where envi-
ronmental changes occur such that the value of a set of es-
sential variables (e.g. blood glucose level) deviate from an
ideal/viable bounded region, the 2nd order loop may be en-
acted. This 2nd order loop entails random changes in some
of the system parameters that affect organism-environment
interactive coupling, i.e. inducing a remapping of the sen-
sorimotor activity. Only when the reconfiguration of the pa-
rameter values, altering the sensorimotor activity, permits
essential variable values to be re-established within their
ideal bounds, the stable/viable organism-environment inter-
active coupling will be likewise re-established.

Robotics investigations and research into adaptive sim-
ulated agents has been increasingly embracing the role of
bodily dynamics regarding autonomous and adaptive be-
havior. Robot controllers utilizing homeostatic and non-
neural modulatory mechanisms for cognitive shaping have
been applied to navigation problems (Moioli et al., 2008,
– neuroendocrine control), foraging (McHale and Hus-
bands, 2006, – system-level energy constraints), compet-
itive two-resource problems (Avila-Garcı́a and Cañamero,
2004, – synthetic hormones). Other minimalist and dy-
namic systems centred approaches have investigated the
effects of ‘energy’ or ‘essential variables’ that link agent
viability to adaptive environmental interactions in terms
of: action selection and anticipation (Montebelli et al.,
2008, 2009), environment-contingent ‘bodily’ monitoring
(Saglimbeni and Parisi, 2009), internal expression in re-
source competitive scenarios (Lowe et al., 2005) and also
with regard to a minimal cognitive robotics interpretation of
Ashby’s ultrastability concept (Di Paolo, 2003). This whole
body of work, relevant to system level energy constraints
and neuro-physiological homeostatic control, has invariably
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assumed abstract (or even arbitrary) metabolic dynamics.
The homeostatic dynamics and their impact on robot behav-
ior is rooted in designer-specified requirements and means
of fulfillment, rather than on any bio-chemical reality.

A real-world instantiation of ‘artificial metabolism’, that
can provide wheeled robots with (electrical) energy for be-
havioral performance as constrained by actual bio-chemical
essential variable dynamics, exists in the form of Microbial
Fuel Cell (MFC) technology (cf. Melhuish et al., 2006;
Ieropoulos et al., 2007; Logan et al., 2006). MFC technol-
ogy has the capacity to produce bioelectricity from virtually
any unrefined renewable biomass (e.g. wastewater sludge,
ripe fruit, flies, green plants) using bacteria. This provides
robots with a degree of energy autonomy concerning choice
of (non-battery) ‘energy recharging’ resource. Individual
cells consist of anode and cathode compartments. Owing
to the need for persistent rehydration of the electrode in the
cathode compartment and the provision of substrate to be
‘metabolized’ in the anode compartment, the MFC electric
energy wielding power can be said to depend on the dynam-
ics of biochemical energy and water, essential variables of
the system. Ongoing work in this area has led to generations
of this MFC-powered robot demonstrating increasing inde-
pendence from outside (human) control. The present incar-
nation EcoBot-III, for example, is able to circulate water and
substrate intake according to a number of actuators (pumps)
that also require a modicum of electric energy ‘overhead’.
Given the present state of the art, a critical limitation of
this robot, motored by a biological-mechatronic symbiotic
metabolism, is energy requirement. Individual robots are
required to wait long-intervals between bursts of motor ac-
tivity. Many minutes may be required for relatively little
movement. Simulations based scenarios offer a means to
overcome such performance constraints whilst simultane-
ously providing a tool for offering new insights and future
direction. Moreover, the application of a (simulated) phys-
ically constrained metabolic dynamic on robotic behavioral
competences, offers opportunities for investigating the sig-
nificance of forms of homeostatic dynamics, provisioning
adaptive behavior as it emerges from sensorimotor, internal
and agent-environment interactions.

In the remainder of this article we will firstly present a
MFC model pitted at a level of abstraction suitable for rela-
tive robotic platform independence and mathematically de-
scribed. Secondly, we describe an abstract experimental sce-
nario, and methodological approach used, in which a sim-
ulated robot is required to balance its MFC essential vari-
able levels in order to remain viable. Thirdly, we report
results from this experiment according to the evolutionary
emergence of sensorimotor strategies tightly coupled to es-
sential variable needs and environmental resource availabil-
ity. Finally, we provide a discussion on the potential for
simulations-based MFC-robotics applications to uncovering
new breakthroughs in the physical domain.

Method
The MFC model
The core element of our experimental setup is constituted
by the model of MFC recently reported by Montebelli et al.
(2010a). The model has been derived from real experimen-
tal data generated by EcoBot-II, a prototype robot devel-
oped at the Bristol Robotics Lab and described in detail in
Melhuish et al. (2006). The MFCs implemented for this
robotic setup were characterized by oxygen-diffusion based
cathodes. This choice critically constrainted the maximum
energy performance. Nevertheless, it was fundamental to
provide the robots with a long term self-sustainable energy
source, thus promoting the conditions for genuine energy
autonomy. With respect to other MFC models currently
available in the scientific literature, e.g. in Picioreanu et al.
(2007) and Marcus et al. (2007), our model was intentionally
built at a high level of abstraction. This allows us to cap-
ture the characteristic energy generation dynamic of a MFC
without the burden of details that would be non-crucial for
our robotic simulations. In its simple formulation, the model
works as a plug-in that can be easily implemented on any
robot platform in simulation, and can endow robotic agents
with realistic MFC energy production dynamics with mini-
mal and extremely limited computational overhead.

As we direct the reader to the exhaustive description of
the model in Montebelli et al. (2010a), we will here specify
the details for its full implementation. We essentially de-
veloped a simple resistance-capacitance (RC) model (Fig.
1). Two of its physical parameters, namely the electromo-
tive force (V ) and internal resistance (Ri) of the MFC, fully
characterize the MFC as an electric generator. These pa-
rameters crucially depend on the level of hydration of the
cathode and on the chemical energy available in the sub-
strate biomass of the anodic chamber. This dependency was
extracted using system identification techniques from the ex-
perimental data. Therefore, once provided with the current
level of hydration and of substrate richness, the model sim-
ulates realistic MFC energy generation dynamics, quantita-
tively similar to the ones produced by 8 MFCs connected
in series. With reference to Fig. 1, the electromotive force
V generates the electric current that through the internal re-
sistance Ri buffers energy in the external capacitor C. The
presence of this latter element is an arbitrary choice of the
robot designers at the BRL to endow the system with an en-
ergy reservoir. This gives a partial solution to the strong
electric constraints deriving from the low power rates that
typically emerge from a MFC. This part of the circuit, fully
platform-independent, describes the energy generation pro-
cess and is specifically addressed by the MFC model. As
soon as the difference potential across the capacitor reaches
an upper threshold (V cmax = 2.9V ) the electronic switch
(S) is triggered and the energy stored in the capacitor is mo-
bilized towards the robot sensors/actuators and to its control
electronics. This second part of the circuit, described by the
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Figure 1: Electric schema of our model of energy genera-
tion in MFCs. The electromotive force (V ) and the internal
resistance (Ri) of the MFC depend on the current level of
cathode hydration and on the biochemical energy in the sub-
strate. This determines the dynamic of energy generation,
buffered on the external capacitance (C). The dashed rect-
angle highlights the platform-dependent resistive load.

resistive load in Fig. 1, constitutes the energy distribution
process and is completely platform-dependent. It cannot be
addressed in general terms and must be tailored to the spe-
cific robot design. When the difference potential across the
capacitor falls below a lower threshold (V cmin = 2.03V )
then the switch S is opened and the capacitor is recharged
up to its upper threshold. This event closes the logical loop
of the charge/discharge hysteresis cycle.

Using elementary electromagnetism we can describe the
model in more analytical terms. The starting point is the first
order linearly differential equation representing the electric
current balance at node α in Fig. 1:

V − VC
Ri

= C
dVC
dt

+ IM (1)

where IM represents the current drainage of the resistive
load, while the meaning of all the other symbols has al-
ready been introduced. As anticipated, the quantity IM , be-
ing platform-dependent, will be specified in the next section
together with the other details regarding the specific robotic
setup.

Under normal operating conditions, oxygen-diffusion
cathode based MFCs are subject to water evaporation. Con-
currently, although slower in time, the concentration of bio-
chemical energy in the anodic substrate decays as a result of
the bacterial activity. Linear laws describe the relations be-
tween: 1) the current level of hydration (hyd) and the time
from the last full cathode hydration (th); 2) the chemical en-
ergy of the substrate (subst) and the time from the last anode
replenishment with fresh substrate (ts):

hyd = − th
τh

+ 1 (2)

subst = − ts
τs

+ 1 (3)

where τh and τs (with τh << τs) respectively determine the
time scales of the cathode dehydration and of the substrate
biochemical energy decay.

The dependence of V and Ri with th is summarized by
the following equations:

Ri = Ri0 + kRith (4)

V = V0 + kV th (5)

The effect of ts is expressed by:

Ri0 = qR +mRts (6)

kRi = a2t
2
s + a1t

1
s + a0 (7)

V0 = qV +mV ts (8)

The dynamic of Ri0 is limited to values above 450. Nu-
meric values for all the remaining symbols are: C = 0.0282,
kV = −0.14, qR = 642, mR = −0.022, a2 = 2.41e − 8,
a1 = −1.1036e − 4, a0 = 0.1207, qV = 3117V , mV =
−0.0166, τh = 2500, τs = 7000 1.

Finally, the energy currently stored in the capacitor
(ε) can be easily derived from the current tension of the
capacitor (VC):

ε =
1

2
CV 2

C . (9)

In conclusion, the differential equation 1, and equations
4–9 specify the model. Equations 2 and 3 allow the (equiv-
alent) descriptions of the system in terms of time domain or
as a function of the current levels of cathode hydration and
substrate biochemical energy. According to this model, well
hydrated MFC with fresh substrate can generate energy at
a significantly higher rate than in dehydrated and ’starving’
conditions. The system is particularly sensitive to the hy-
dration level. A serious dehydration as well as an exhausted
substrate determine the disruption of the charge-discharge
cycle previously described and the energy generation mech-
anism collapses.

The robotic setup
In our experiments, a commercial e-puck robot simulated
with the program Evorobot* (Nolfi and Gigliotta, 2010)
could freely move in a square arena (measuring 1000 mm
x 1000 mm), bound by opaque walls all around its perimeter
(Fig. 2, central panel). Centrally located in the arena were
two circular recharging areas (radius 120 mm). Upon en-
tering in the lower circle, in whose center is placed a light
source, the robot instantaneously received full cathode hy-
dration (i.e. water was injected so to fill the capacity of its

1In order to limit the duration of each trial, we anticipated the
kick in of the substrate effect by reducing the physical value of τs
by a factor 3. Refer to Montebelli et al. (2010a) for details about
the appropriate physical dimensions.



Proc. of the Alife XII Conference, Odense, Denmark, 2010 752

Figure 2: Central panel- Representation of the simulated arena. Upon entering the upper/lower circle (respectively, food/water
recharging areas) the e-puck robot was fed with fresh substrate or fully rehydrated. Left panel- Feedforward ANN controller
with no hidden layers. The ANN receives inputs from the robot’s infrared and light sensors (I0-7 and L0-7), from its micro-
phones (P0-2) and from the food and water level sensors (F and W). It outputs the motor activation signals of the robot’s left
and right motors (M0-1). Right panel- Feedforward ANN controller 5 hidden neurons and direct input-output connections.

cathode). On entering of the upper circle, landmarked by
a continuous sound source, the robot received a complete
and instantaneous refill of its anodic chamber with fresh sub-
strate.

The simulated e-puck robot was provided with its stan-
dard 8 infrared sensors, 8 light sensors (activated by the light
source) and 3 microphones (reacting to the sound source
with an intensity that is inversely proportional to the square
distance of the microphone from the sound source). A small
quantity of noise was injected in the system. Customized
water and food level sensors were included in the robot’s
sensory capabilities, providing information about the current
level of cathode hydration and of the chemical energy stored
in the anodic substrate.

The robot’s motors were controlled by the activation of an
artificial neural network (ANN). We tested several different
standard architectures of discrete time ANNs, but in this re-
port we will refer to only two of them for reasons of space.
The first (Fig. 2, left panel) was a feedforward ANN with no
hidden layer. The second (Fig. 2, right panel) was a feedfor-
ward ANN with five hidden neurons and direct input-output
connections. In our setup, the robot’s motor activation di-
rectly determined the energy drainage through the resistive
load. The current IM , i.e. the leakage term in equation 1,
can be estimated as a function of the motor activation based
on the robot’s motor data sheets. Quantitatively:

IM = 0.36|mact| (10)

where mact is the current level of activation for each of the
two motors, with values in the interval [-0.5 0.5], as imposed
by the controlling ANN.

The energy production took place continuously (i.e. in
any instant an electric current was flowing from the MFC to
node α in Fig. 1) as long as the MFC was sufficiently hy-
drated and provided with fresh substrate. On the other hand,
the energy distribution took the form of a hysteresis cycle.

When the tension across the capacitor, VC , reached its up-
per threshold an electric current flowed to power the robot’s
motors. When VC fell below its lower threshold, the motor
activity was suddenly inhibited and the robot remained still
until VC would be recharged above its upper threshold again.
Accordingly, the current hydration level and the chemical
energy of the substrate represent, in Ashby’s terminology,
the essential variables of the system.

We chose to boost the rate of energy generation character-
istic of a series of 8 MFCs (the configuration that we used
in order to identify the parameters of our MFC model) by a
factor 100. That means that we considered a parallel elec-
tric connection of 100 elements constituted by 8 MFCs con-
nected in series. Comments about this choice are left for the
following discussion.

The free parameters of the ANN controller (synaptic
weights and biases) were adapted in order to allow the robot
to viably cope with its environment using a standard genetic
algorithm (Goldberg, 1989) implemented in the Evorobot*
simulator. We ran 10 replications of the evolutionary pro-
cess, over 1500 generations with elitist selection. Each indi-
vidual was on trial for 1000 simulated seconds (10000 time
steps), and tested on 4 different trials from random start-
ing position. The fitness function was intentionally rather
generic: it integrated at each time step the absolute value
of the current level of activation of the two motors, but only
outside the recharging area. The rationale behind this choice
was that we wanted the robot to consume the energy accu-
mulated on its capacitor by demonstrating movement. On
the other hand, similar to previous experiments by Floreano
and Mondada (1996) and Montebelli et al. (2007, 2008), we
wanted to avoid the affordance of clues about the existence
of the light and sound sources, their relation to the recharg-
ing areas, their critical relations with the robot’s hydration
and food sensors, implicitly with the robot’s energy genera-
tion rate and hence with its own overall viability.
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We conclude this section with a few comments. Firstly,
we emphasize the simplicity of our setup. A minimal setup
focuses our attention on the object under study and allows a
deeper mathematical exploration of the properties of the sys-
tem. Secondly, in such a simple scenario a viable behavior
might be imposed on the system by explicit design. Never-
theless, of all the options our choice was to adapt ANNs by
using an evolutionary algorithm. The reason for our prefer-
ence was twofold. On the one hand, we consider this alter-
native more liable to scaling up to more complex and less
predictable circumstances (e.g. dynamically changing envi-
ronments). On the other hand, we reckon on the flexibility
of the fitness functions in evolutionary techniques for un-
supervised adaptation, compared to other machine learning
methods. This is functional to our focus on versatile robot
autonomy within general and unpredictable environments,
rather than on domain specific optimization.

Results
Continuous behavior
All of the considered ANN architectures managed to evolve
viable behaviors for this simple task. In all cases the evolu-
tionary process was liable to failures. Nevertheless, several
classes of viable strategies were created during the evolu-
tionary process for the best evolved individuals.

In the present and following sections we report the
evolved behavior of the simplest control architecture that
we considered, the feedforward ANN with no hidden layer
sketched in Fig. 2, left panel. The continuous behavior of
the best individual is shown in Fig. 3, left panel. The robot
could move without sudden stops, as it would maintain a sta-
ble balance between the energy income from the MFC gen-
erator and the energy drained by its own motors (i.e. only
seldom VC fell below its lower threshold). The onboard ca-
pacitor provided a little energy buffer, but only episodically
the robot had to stop and wait for its recharge.

During the initial transient period, the robot navigated in
the environment, looking for a direct engagement with the
water recharging area. Once reached its initial goal (Fig. 3,
left panel), it maintained its engagement, looping around the
water recharging area (associated with the light source) and
systematically entering in it for hydration. After three loops
around the light source, a fourth, larger loop would also
encapsulate the food recharge area (marked by the sound
source), entering which would instantaneously replenish the
robot with fresh anodic substrate. This resulted in a sta-
ble and viable behavior: its timing maintained both essential
variables within ideal bounds.

Essential variables as dynamic neuromodulators
By using a neuroscience-inspired clamp technique, similarly
to Montebelli et al. (2008, 2009), we emphasized how the
activation of the robot’s water and food sensors was crucial
for the emergence of the behavior. We clamped the values

Figure 3: Examples of viable behaviors. After exhaustion
of the initial transient, the robots enter in a stable, although
not stereotypical loop, constituted of several passages across
the water recharging area followed by one passage through
the food area. Left panel- In the case of the continuos be-
havior generated by the ANN with no hidden layer (Fig. 2,
left panel) the ratio between water and food access is 4 : 1.
Right panel- For the pulsed behavior of the ANN with hid-
den layer (Fig. 2, right panel) it is 3 : 1. In both cases the
trajectory of the robot is plotted for 1200 time steps.

of the two inputs F and W to arbitrary levels for the whole
trial (i.e. we nullified the whole energy mechanism: the wa-
ter and food levels remained constant at the selected value
and the two recharging areas had no effect on the system).
By systematically exploring different combinations of the
clamped levels of hydration and substrate biochemical en-
ergy, we discovered that (after exhaustion of the transient
period) these two essential variables, statistically determined
the ratio between the numbers of accesses to water and food
resources in the robot trajectories (W:F ratio). Ratios be-
tween 5 : 1 and 1 : 1 were observed (Fig. 4), and once
mapped as a function of the values of the essential variables
they showed a significant regularity (Fig. 5). In a tiny region
of the essential variable state space, characterized by very
high values of both F and W (both around 0.98), the system
manifested bistability. The robot kept looping around either
one or the other recharging area (Fig. 4, top and central
right panels), depending on its starting position and on the
integrated effects of noise. Behavioral transitions from one
basin of attraction to the other were observed, although sta-
tistically rare (Fig. 4, bottom right panel). This persistence
rapidly faded for different values of F and W, that modulated
the height of the separation between the two different basins
of attraction and the relative depth of the basins. For high
values of F with subcritical levels of W (e.g. around 0.65)
we noticed a maximal bias towards water, and accordingly a
higher W:F ratio. Finally, in the vast area where the ratio is
mapped to 0, we observed nonviable monostable behaviors,
i.e. the robot would remain on a single behavioral attractor,
without systematically entering any of the two recharging
areas.

Detailing how the two essential variables (directly related
to realistic MFC dynamics) modulated the behavioral dy-
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Figure 4: Examples of robot trajectories (behavioral attrac-
tors), for different clamped values of inputs W and F as spec-
ified on each panel, demonstrate different water to food ac-
cess ratios. Top and central left panels- Examples of ratio
1 : 1 and 4 : 1. Bottom left panel- Unviable behaviors
dominate lower levels of activation of the W and F sensors.
Top and central right panels- Local behavioral attractors
in the bistable regime. Bottom right panel- Random transi-
tion from one behavioral attractor to the other.

namics of this simple and purely reactive neurocontroller
constitutes the main and novel practical contribution of this
work. During normal interactions with its environment (the
evolved task) the system relies on a dynamic action se-
lection mechanism, self-organized during evolution without
any hardwired rule.

Continuous vs. pulsed behavior
The behavior of the robot analyzed in the previous sections
will here be compared to a qualitatively different pulsed be-
havior observed in the case of the feedforward ANN with 5
hidden neurons and direct input/output connections (Fig. 2,
right panel). The robot always moved at its maximal speed,
thus draining more energy than instantaneously provided by
the MFC generator. Therefore, it systematically exhausted
the energy stored on the capacitor and exploited the energy
distribution hysteresis cycle previously described.

As in the previous case, the best evolved individual moved
towards the water recharging area first. Once its stable be-
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Figure 5: Water to food-access ratio (W:F ratio) as a func-
tion of the essential variables W and F. The area hidden un-
der the highest peak is a region of bistability characterized
by rare transitions between the two attractors. The dark area
with 0 ratio represents dysfunctional behaviors: the robot
cannot maintain its essential variables within a viable region.

Figure 6: Average and standard deviation for the absolute
value of the motor activation during continuous and pulsed
behavior. Data from 2000 time steps of actual movement.

havior is reached, the robot engaged in regular loops from
the water recharging area to the wall on the left side of the
arena and back to the recharging area (Fig. 3, right panel).
Every two loops, a third loop would emerge with a broad-
ened width encapsulating the food recharging area. The
robot apparently acted by integrating the information from
all its sensory modalities. This behavior also qualifies as
stable and viable, actually performing across the different
trials equally well as the continuous behavior.

Fig. 6 quantitatively demonstrates the different nature
of the continuous and pulsing behaviors. The continuously
moving agent had its motors activated at about 77% of their
maximal speed, with high variability, as demonstrated by the
plot of the standard deviation. On the other hand, consider-
ing only the time intervals during which the robot was actu-
ally moving, the pulsing behavior was performed at 91% of
the motor speed maximum, with a very low standard devia-
tion.



Proc. of the Alife XII Conference, Odense, Denmark, 2010 755

Discussion
One of the most intriguing properties of computer simula-
tions is the possibility to anticipate the forcefully slow pace
of technological progress. As such, it should be used with
full awareness and attention. In our study we multiplied by
a factor 100 the basic electric performances of the modeled
MFC energy generator. There are at least two important jus-
tifications for this choice. The first is experimental: prelim-
inary studies (Ieropoulos et al., 2008) produced significant
evidence that smaller MFCs might generate energy more ef-
ficiently, i.e. with a higher level of energy density. The sec-
ond is theoretical, as it has been argued that the implemen-
tation of micron-level biofuel cells is possible in principle,
and prototypes have been implemented (Kim et al., 2003).
Although more research is necessary, the progressive minia-
turization of MFCs seems to suggests an extremely alluring
future scenario. With our choice of the multiplicative factor
we anticipated the possibility to carry on board of our sim-
ple robot 800 single MFCs. The state of the art prototype of
MFC powered robot, EcoBot-III, is currently endowed with
a stack configuration of 48 basic MFCs. This number, lim-
ited for obvious practical reasons, is nevertheless destined
to grow. Following these considerations, the factor 20 be-
tween the current physical implementation and our simula-
tion seems appropriate.

This said, the selected multiplicative factor endowed our
work with the power to foresee a crucial bifurcation in the
development of MFC technology for robotic applications.
The prospective historical period on which our investigation
resides is the moment of transition from pulsed to contin-
uos behaviors in MFCs powered robots. In other words, the
moment when enough power is generated in order to sup-
port a sub-maximal motor activation in continuous mode.
This is not to rule out the possibility of interesting pulsed
behaviors. As already mentioned in Melhuish et al. (2006),
for more complex cognitive architectures and environments,
the intervals of stillness during energy recharge might be the
perfect place to start dealing with cognition in terms of plan-
ning for thoughtful action selection, where ‘mental activity’
might be energetically less demanding than actual overt be-
havior. A similar approach, although still at a larval phase
of development has been considered by Lowe et al. (2010).
In this novel work, during the idle motor intervals, the robot
can capitalize on active ‘sensing’ by executing energetically
inexpensive visual saccades, rather than actual physical nav-
igation.

Finally, why should we abandon the engineering perspec-
tive of robots that could turn to virtually unlimited sources
of energy (in form of power sockets or batteries), a perspec-
tive largely inherited by cognitive roboticists? As a matter
of fact, we just analyzed a not even too futuristic scenario
where MFCs will converge towards offering the MFC pow-
ered robots the option of continuous action, simply consid-
ering appropriate stack configurations of basic miniaturized

MFCs. Furthermore, if pragmatic results will support the
theoretical expectations, MFC miniaturization might create
a sort of limit situation, allowing a fully distributed energy
generation system reminiscent of biological cellular energy
generation strategies, where energy constrains would be cru-
cially relaxed. A serious answer to this question has to do
with our idea of autonomy. Future MFC powered robotic
agents, through the development of a viable behavior in their
environment, will be ecologically rooted in their environ-
mental context. They will depend on food and water re-
sources that are available as long as the robots can live in
a sustainable and meaningful ‘ecological relation’ to their
environment. This property, novel and original in robotics,
represents an exciting new scenario for future research.

Conclusions
This work, jointly with the mentioned paper by Lowe et al.
(2010), represents the first effort aimed to put to the test the
MFC model for robotic simulations presented in Montebelli
et al. (2010a). Its aim, beyond the mere demonstration, is to
ground previous work related to the dynamic neuromodula-
tory role of non-neural internal variables (Montebelli et al.,
2007, 2008) in a realistic simulation of physical energy con-
straints. The robot is energetically autonomous insofar as
it can sustain a viable interaction with its environment by
maintaining its essential variables. Within this tight agent-
environment interaction, our analysis emphasized the neu-
romodulatory role played by the essential variables for dy-
namic action selection with no hardcoded rules. We also
pointed to the possible coexistence of several viable strate-
gies, different both in qualitative and quantitative terms and
to their possible cognitive implications in a novel scenario of
‘ecologically grounded’ energy and motivational autonomy.

In future work we will further investigate these findings.
The 2 resource problem has been characterized in McFar-
land and Spier (1997), where a robot was expected to nego-
tiate between an environmental resource critical to its sur-
vival (fuel) and the execution of a task that some external
supervisor considered useful (work). We are extending our
experimental setup for a fully fledged 3 resource problem,
where the exploitation of food and water will be functional
to the execution of physical work in a dedicated area. In ad-
dition the experimental setup appears suitable for a deeper
exploration of the concept of embodied anticipation (i.e.
the capacity to profit from the non-neural neuromodulatory
characteristics achieved during evolutionary and ontogenetic
adaptation in order to perform swift readaptation to novel
situations) as proposed in Montebelli et al. (2009, 2010b).
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Abstract

We study a novel deterministic online process for the ex-
ploration and capture of possible locomotion patterns of a
simulated articulated robot with an arbitrary morphology in
an unknown physical environment. The robot controller is
modelled as a network of neural oscillators which are cou-
pled indirectly through physical embodiment. Goal directed
exploration of coordinated motor patterns is achieved by a
chaotic search method using adaptive bifurcation. The phase
space of the indirectly coupled neural-body-environment sys-
tem contains multiple phase-locked states each of which is a
candidate for driving efficient locomotion. By varying the
chaoticity of the system as a function of evaluation signal,
it is able to chaotically wander through various phase-locked
states and stabilise on one of the states matching the given
criteria. The nature of the weak coupling through physical
embodiment ensures that only physically stable locomotion
patterns emerge as coherent states, which implies the emer-
gent pattern is well suited for open-loop control with little or
no sensory inputs.

Introduction

Properly coordinated rhythmic motor behaviours are ubiqui-

tous in animals. From insects to humans, locomotive ability

is one of the most fundamental survival mechanisms to have

evolved. As has been increasingly pointed out over the past

few years (Pfeifer and Iida, 2004), studying neural circuitry

underlying the generation of rhythmic motor behaviour in

isolation ignores the considerable advantage that can be ob-

tained from incorporating the the physical body and its en-

vironment - an approach that can significantly reduce the

amount of information needed to develop successful motor

patterns.

This naturally led to efforts to exploit ready-made func-

tionality provided by the given physical properties of an em-

bodied system for the automatic generation of motor move-

ment. One such line of enquiry involves using frequency

adaptive oscillators that can be entrained to the resonant fre-

quency of the mechanical system (Buchli et al., 2006), in-

cluding the use of chaotic frequency scaling (Raftery et al.,

2008). Although frequency adaptation to a given physical

body accounts for a major part of the properties of loco-

motion, we believe that, in general, the appropriate phase

relationship between each limb should take priority among

other aspects when dealing with the creation of new mo-

tor patterns. One of the seminal works from this perspec-

tive is the exploration and acquisition of motor primitives,

for a simple robot, using a mechanism which is embodied

as a coupled chaotic field (Kuniyoshi and Suzuki, 2004).

Those researchers modelled an extreme version of embodied

coupling that had no electrical connection between neural

units at all: they were only coupled indirectly through body-

environment interactions. The neural oscillators were imple-

mented using a simple logistic map with chaotic behaviour,

and the system dynamics rapidly developed to a stable, co-

herent rhythmic motion by using mutual entrainment be-

tween the neural circuit and the body-environment interac-

tions. The process was completely deterministic. Later work

(Kuniyoshi and Sangawa, 2006) dealt with a more biologi-

cally plausible system in which a realistic musculo-skeletal

model was employed and the neural control circuit consisted

of a model CPG. While these previous studies have devel-

oped detailed biological models that have significant impli-

cations for the understanding of motor development, con-

crete general methodologies for applying such techniques to

the automatic generation of desired motor patterns for au-

tonomous robots remains a challenge.

In this paper we build on the prior work outlined above,

extending and generalising it as we attempt to develop a gen-

erally applicable methodology for neural-body-environment

coupled systems, based around self-organisation through

chaotic dynamics. We present a study of goal directed online

exploration of rhythmic motor patterns in a oscillator system

coupled through physical embodiment, specifically generat-

ing forward locomotion behaviours without prior knowledge

of the body morphology or its physical environment. This is

explored in the context of a simulated limbed robot. In an

important departure from the previous work outlined above,

in order to explore and drive system dynamics toward a de-

sired state, we employ the concept of Chaotic Mode Tran-

sition with external feedback (Davis, 1990), which exploits

the intrinsic chaoticity of a system orbit as a perturbation

force to explore multiple synchronised states of the system,
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Figure 1: (A) A conceptual illustration of the state space of a
neuro-body-environment system coupled through physical embod-
iment, which consists of three basins of attraction (A,B,C) with dif-
ferent performances. (B) An exploration process to find the desired
attractor, C, by varying the complexity of the state space landscape.
Lump spaces and narrow passages in the landscapes of higher com-
plexities represent quasi-attractors and itinerant pathways respec-
tively.

and stabilises the orbit by decreasing its chaoticity accord-

ing to a feedback signal that evaluates the behaviour. This

enables the system to perform a deterministic search guided

by a global feedback signal from the physical system, which

facilitates an active exploration toward a desired behaviour.

This research is intended to open up new directions in the

exploitation of chaos as a self-organising principle in em-

bodied autonomous systems, as well as to potentially shed

light on its role in biological systems.

Chaoticity as Perturbation Strength

Conventional optimisation strategies generally use stochas-

tic perturbations on system parameters for search space ex-

ploration. However, a few studies address the effectiveness

of chaotic dynamics as behaving like a stochastic source (Ott

et al., 1994), and have found that a deterministic chaotic gen-

erator outperforms a stochastic random explorer (Morihiro

et al., 2008). In these cases, the chaotic dynamics acts as

an external module generating perturbations that cause sys-

tem parameters to wander in parameter space. However, as

we shall see, adaptive chaotic search methods using bifurca-

tion to chaos can directly drive the phase orbit of a bodily

coupled system for exploration because of the endogenous

existence of chaotic dynamics in the system itself.

The general idea of applying a chaotic search method

which uses adaptive parametric feedback control had been

previously presented in the field of optical sciences (Aida

and Davis, 1994) and for memory search (Nara and Davis,

1992). It has been argued that this method should be gener-

ally applicable when the target device is capable of support-

ing a variety of stable modes, with chaotic transitions exist-

ing between them, which interact with their environment and

give a feedback signal evaluating whether the mode is suit-

able or not. Chaotic transitions allow the system to try each

of the modes sequentially, and the mode which is evaluated

as suitable is selected and stabilised by changing a device

parameter to take it into a multistable regime. An indirectly

coupled neuro-body-environmental system, such as the one

used in this paper, has the required characteristics of such a

device, including multiple coordinated oscillation modes. It

is known that a properly designed coupled oscillator system

can have multiple synchronised states which exhibit stable

oscillations (Feudel and Grebogi, 1997), and the structure of

emergent behaviour in these systems often reflect the spatial

distribution of coupling strengths (Kaneko, 1994). Accord-

ingly, a network of oscillators coupled through physical em-

bodiment forms multiple synchronised states which reflects

the body schema and its interaction with the environment.

A conceptual description of the chaotic search process is

briefly illustrated in Fig. 1. The goal of the system can be

regarded as finding and becoming entrained in the basin of a

particular attractor which has high performance (denoted by

C) while escaping from the low performing attractors (A and

B) regardless of the initial point in the state space. The idea

is to ‘open’ a new pathway which connects those isolated

basins through use of an additional dimension afforded by

changing the system dynamics through tuning the chaotic-

ity according to the evaluation signal. The orbit will visit

and evaluate each of the attractor (A,B,C) systematically yet

chaotically by adaptively varying the bifurcation parame-

ter of the system according to the feedback signal until it

reaches the basin of the desired attractor. The process can

be interpreted as a deterministic version of trial-and-error

search which exploits the chaotic behaviour of system. For

the first time, this study attempts to implement and integrate

these concepts into an autonomous neuro-body-environment

system, making use of a continuous-time dynamical system

framework.

Method

The architecture of the neural part of the generic system de-

veloped is based on (Kuniyoshi and Sangawa, 2006), but

with a more compact and modular configuration for each

joint of the limbed robot. It is intended to be applicable to a

wide range of robotic systems. The architecture consists of

a number of identical control modules connected to each of

the body parts in their environment. Each neuro-motor-joint

system which receives afferent sensory input and gives mo-

tor output can be encapsulated as a singlemotor unit, and the

whole system consists of identical motor units whose num-

ber is the same as the number of degrees of freedom of the

robot (Fig. 2). The signal from the sensor of a motor unit (in

most case a mechanosensory information) is fed, with op-

posite signs, to both of the pair of electrically unconnected

oscillators that each motor unit contains. This configura-



Proc. of the Alife XII Conference, Odense, Denmark, 2010 759

����

���	
����
�������� �	������

��������


���� ����

� � �

����

���� �� ��

�

�

� �

Figure 2: (A) A motor unit for a single degree of freedom in
the joint-motor system. A unit consists of two electrically discon-
nected oscillators, which receive indirect integrated information of
other oscillators in the system from the sensor (S), via environ-
mental coupling, and give a control signal to the motor (M). (B)
A neural-body-environment system whose body has N degrees of
freedom. The complexities of all units are altered according to a
global evaluation signal.

tion eliminates muscle redundancies by constraining joint-

motors to be operated only by an antagonistic actuator pair,

thus giving more weight to inter-limb interactions.

The control signals for the basic motor patterns are gener-

ated by central pattern generators (CPG), which are com-

posed of a collection of neurons that produces an oscil-

latory signal for various locomotor patterns by synchroni-

sation with the movement of the physical systems. The

model consists of coupled Bonhoeffer-van der Pol (BVP, or

Fitzhugh-Nagumo) oscillators which are widely studied as

models of pacemaking cells and interlimb coordination. A

particularly interesting feature of coupled BVP equations,

that allows adjustment of the complexity of the system orbit,

had been presented by (Asai et al., 2003). A pair of coupled

BVP oscillators generates a stable limit cycle when the two

control inputs are the same, but a quasiperiodic/chaotic or-

bit otherwise. Another interesting feature of the BVP model

is flexible phase locking (Ohgane et al., 2009), where the

phase relationship between CPG activity and body motion

can be flexibly locked according to a loop delay. This is a

beneficial feature for covering a range of sensorimotor de-

lays originated from different body-environment configura-

tions. A pair of oscillators for a motor unit i, dealing with

its sensory input, is described by the following equations:

τ
dx1,i

dt
= c(x1,i −

x3

1,i

3
− y1,i + z1) + δ(I1(si) − x1,i) (1)

τ
dy1,i

dt
=

1

c
(x1,i − by1,i + a) + εI1(si) (2)

τ
dx2,i

dt
= c(x2,i −

x3

2,i

3
− y2,i + z2) + δ(I2(si) − x2,i) (3)

τ
dy2,i

dt
=

1

c
(x2,i − by2,i + a) + εI2(si) (4)

where τ is a time constant, and a=0.7, b=0.675, c=1.75 are

the fixed parameters of the oscillator. δ=0.013 and ε=0.022

are coupling strength for afferent input I(s) which is a func-

tion of the actual sensor value s. The time constant, which

represents the frequency of the oscillator, was set to τ=0.8

throughout this work, as this was found to be an appropri-

ate value. z1 and z2 are control parameters for adjusting

the chaoticity of the motor unit. Their difference (z2-z1)

changes identically in all motor units as a function of the

evaluation signal, which will act as the bifurcation parameter

for the chaotic search with adaptive feedback. In the stable

regime where z1 and z2 are symmetric, (Asai et al., 2003)

found that the two coupled BVP equations exhibit bistable

phase locking of their oscillations in a parameter range of

0.6 < z1 = z2 < 0.88. From the observation of a number of

experiments on the oscillator dynamics, to ensure a higher

probability of multistability of the system, we chose to fix

z2 = 0.73 and to vary z1.

Evaluation and Feedback

The coherent integration of a performance evaluation signal

that is able to control the chaoticity of the system is an im-

portant contribution of the current work. In the experiments

to be described next, the performance evaluation signal E

is measured by the forward speed of the robot. Since the

system has no prior knowledge of the body morphology of

the robot, it does not have direct access to the direction of

movement nor of information on body orientation. In order

to facilitate steady movement in one direction without gyrat-

ing in a small radius, a temporal integration of the velocity

of the center of mass was formulated as an evaluation func-

tion. The center of mass velocity of a robot is continuously

averaged over a certain time window and its magnitude was

used as the performance of system. The performance signal

E at any time instance can be calculated by applying a leaky

integrator equation to the velocity vector as

E(t) = |v̄|, τE
dv̄

dt
= −v̄ + v (5)

τE is the time scale of integration which is larger than that of

an oscillator (slower than the oscillator period), but typically

not exceeding it by more than an order of magnitude.

A global feedback signal determines the degree of

chaoticity of an oscillator network. The bifurcation param-

eter for feedback control is continuously modified by an

amount governed by the evaluation signal. If the current en-

trained state is not satisfactory, parameter μ is increased to

where the orbit will follow quasiperiodic or chaotic dynam-

ics, and when a satisfactory pattern appears, μ is decreased

so that the satisfactory mode becomes stable. The adaptive

control parameter μ (= z2 − z1) is described as follows:

τμ
dμ

dt
= −μ + G(E) (6)

G(E) =
μc

1 + eP (E)
, P (E) =

16E

Ed
− 8 (7)

As described in the last section, z2 (Equation 3) if fixed,

hence z1 (Equation 1) varies as μ changes. G(E) is a mono-

tonically decreasing sigmoidal function of locomotion per-

formance E (Fig. 3). τμ determines the time scale of the



Proc. of the Alife XII Conference, Odense, Denmark, 2010 760

change of μ and is normally set faster (τμ < T ) than the

oscillation period (T ) of the controller. If its value is too

high, stabilisation of the system dynamics is significantly

delayed which results in a partition mismatch (Aida and

Davis, 1994). If it is too low, μ tends to fluctuate according

to the undulation of the robot movement which acts as a dis-

turbance for stabilisation, or the system can become locked

in a ring of undesirable patterns in a regime of intermediate

chaoticity. We used τμ = 0.5T throughout this work. The

evaluation function G(E) determines the level of chaoticity

by varying μ in the range [0,μc] where μc is the maximum

level of chaoticity of the system. From the analysis of a sin-

gle BVP oscillator it is well known that it shows Hopf bifur-

cation with the increase of the parameter z (Nomura et al.,

1993). An analytically estimated critical value of z for equa-

tions (1) and (2), without its coupling term, is z≈0.38247,

which indicates that the maximum possible value of μc is

0.73 − 0.38247 = 0.34753. However, because the situation

is different from the dynamics of a single oscillator, exper-

iments on the robotic system presented here revealed that

the actual behavioural criticality of z varies slightly among

different body and environmental settings. Hence we chose

μc = 0.35, taking into consideration the asymptotic charac-

teristic of the sigmoidal function G. Ed indicates the desired

locomotion performance of a given robot. However we do

not have prior knowledge of how much performance it can

achieve. Hence the dynamics of Ed is modelled using the

idea of a goal setting strategy (Barlas and Yasarcan, 2006).

With this concept the expectation of a desired goal is influ-

enced by the history of the actual performance experienced

in the past. When the robot has already achieved high perfor-

mance during a certain period in the past, the performance

expectation increases. The performance expectation decays

if it is not being met by the actual performance. We integrate

this strategy in terms of simple continuous dynamics for Ed,

which slowly decays toward the current performance. This

can be simply described by a leaky-integrator equation:

τd
dEd

dt
= −Ed + E (8)

where τd is set larger than τE . Ed functions as a temporal av-

erage of E for a certain time window. Since Ed continuously

decays toward E, the changing speed of control parameter

μ depends both on E and τd. Therefore τd determines the

depth and the duration of chaotic wandering.

Experiments and Results

Initial experiments with the framework described above

used the simple simulated robot shown in Fig. 3: a four-

armed aquatic swimmer with fins at the end of each arm

placed in a simulated hydrodynamic planar environment.

The robot was modelled using ODE (Smith, 1998). A joint-

motor of the robot was modelled using a pair of servo motors

which generate torques in opposite direction. These mo-

4-Fin Swimmer

torso dimension (m)

arm dimension (m)

torso weight (Kg)

arm weight (Kg)

joint range (rad)

fin dimension (m)

fin weight (Kg)

fin stiffness (N/m)

fin damping (Ns/m)

fluid density (Kg/m3)

0.2× 0.2× 0.2

0.075× 0.075× 0.15

1.6

0.34 (× 4)

± 1.0

0.2× 0.2

0.005

0.1

0.045

1000.0

14

23

D1

D2

D3

D4

Figure 3: The 4-Fin Swimmer and its parameters. The arrows at
each joint describe the direction of rotation. Arrows D1-D4 repre-
sent the possible directions of movement.

tors are used as effectors for the neuronal output by vary-

ing their desired angular speed according to the simulated

muscle force used by (Ekeberg, 1993). The functional struc-

ture of bodily coupling between motor units is formed by the

transmission of hydraulic reaction forces of one limb to the

others through body articulation. Each fin was modelled as a

nonlinear torsional spring and its bending angle (θ) was fed

to the corresponding motor unit. The fin angle implements

the stretch receptor at each side of fin, so the afferent input I

in the equations (1) and (3) were defined as: I1(θ) = H(kθ)

and I2(θ) = H(−kθ) where k (= 2.5) is input gain and

H(x) is heaviside function. Joint axes and motor unit ar-

rangements were set to be bilaterally symmetric which is

a dominant feature throughout the animal world. The ra-

dial symmetry of the body morphology ensures that possible

locomotion behaviours are not restricted to longitudinal di-

rections. The radially symmetric shape in a 2D underwater

environment is interesting because it makes generating con-

tinuous asymmetric propulsion forces challenging; in other

words forward locomotion is non-trivial. The agent will not

be able to move in a single direction unless the movements

of all four arms are successfully synchronised with appro-

priate phase differences. The other parameters used for the

search process was μc = 0.35, τE = 5T and τd = 5τE

Observation of Emergent Behaviours

First, we fixed the control parameter to a target value (μ = 0,

no chaotic search) and ran the simulation to see what kinds

of behaviours emerged from various initial states. Numer-

ous test was done in order to observe and categorise the be-

haviours that emerged from the system. Basic movement

behaviours were categorised into motion in four directions

(along the body axes D1,D2,D3 and D4 as shown in Fig.

4) which met expectations given the symmetric shape of the

swimmer. For each direction of movement, four different

behaviours were observed and classified according to the lo-

comotion performance. These are straight movement, mov-

ing in medium radius circles, moving in small radius circles,

and moving in/out in a spiral. Each circling locomotion can

be either clockwise or counterclockwise. Also there were

non-locomotion movements such as rotation or vibrating at

a fixed position, and completely symmetric leg movements
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Pattern # of variations Avrg E

1. straight (ST) 4 body orientations 0.45

2. medium R (MR) 8 (4×(CW/CCW)) 0.25

3. small R (SR) 8 (4×(CW/CCW)) 0.2

4. spiral (SP) 8 (4×(CW/CCW)) 0.02-0.3

5. rotate (RO) 2 (CW/CCW) 0.03

6. vibration (VB) 2 (D1-D3 / D2-D4) 0.03

7. bound antiphase (BA) 1 0.0

Table 1: Categories of emergent behaviours. The variations of
straight swimming are in 4 different body orientations. Circular
movements (pattern 2,3,4) have 8 variations by including two cir-
cling directions. Vibration has 2 variations which are in direction
of D1-D3 and D2-D4.

resulting in no movement (bound antiphase). The categories

of emergent behaviours of the swimmer robot and their av-

erage performances are shown in Table 1, which indicates

that the total number of movement patterns is 33.

In order to quantify an emergent pattern and its tempo-

ral dynamics we developed a method we call a Feature In-

dex (FI) plot which is inspired by multivariable data binning

techniques. A feature index is a scalar value which is calcu-

lated from the powered sum of the bin indices of the phase

differences between each DoF. Therefore, a feature index

can uniquely represent a given motor coordination. Since

the phase difference alone cannot capture the difference of

motor amplitudes we used two feature indices: one for the

phase relationship and one for the amplitude relationship. If

we define N phase differences of the limb movements, the

feature index F can be written as:

F =

N
∑

i=1

kiB
i−1

, ki∈Z (9)

ki = (di − dmin) div {(dmax − dmin)/B} (10)

where w is the width of a bin, B is the number of bins, and

di is the ith wrapped phase difference which has the range

[dmin,dmax]. The feature index for the amplitude relation-

ship uses the phase differences between two antagonistic

motor commands for di. The range of wrapped phase dif-

ference were [−π,π] for the phase index and [0,2π] for the

amplitude index which indicates the phase difference of π

between antagonistic motor signal is producing maximum

amplitude. The FI plots of four different straight locomo-

tions and the other behaviours are depicted in Fig. 4 using

the following four phase differences: leg 1-4, leg 2-3, leg

1-2 and leg 4-3.

Dynamics of Chaotic Search

The stable dynamics of the system begins to fluctuate as

μ increases, exhibiting a series of transient dynamics from

quasiperiodicity to chaos. Fig. 5 shows the chaoticity

of the system with different control parameters. In the

higher chaotic regime complex transitory dynamics similar

D1 D2

D3 D4

MR-D4-CCW SR-D4-CCW

SP-D4-CCW RO-D4-CCW

VB-D2-D4 BA

Figure 4: Limb cycle number vs. feature indices. In each pair of
plots, a phase plot is on the left and an amplitude plot is on the right.
From D1 to D4 are plots of straight locomotion in each direction.
The next four plots are from the circular movements whose body
orientation are D4 and rotating direction are counterclockwise. The
last two plots are for vibration and bound antiphase.

to chaotic intermittency occurs which drives the system to

briskly explore the phase space. To see the effect of chaotic

search, the distributions of visits to each of the behaviour

identified in Table 1 was investigated under the presence

and absence of chaotic search. 100 simulations were per-

formed for each case and the visiting counts of seven major

behaviours were recorded. Fig. 6 shows a clear difference

between the visiting ratios of the two cases, suggesting the

effectiveness of chaotic search (B and C) which tended to

settle on effective straight motion. In the search with fixed

desired performance (Fig. 6B) any pattern below the criteria

did not appear while the case of flexible Ed (Fig. 6C) shows

a wider range of behaviours although the highest performing

patterns still dominate. During the search process all vari-

ables and control parameters vary continuously as parts of

the neuro-body-environment system, and the time evolution

plots (Fig. 7) show that the stabilisation and destabilisation

of the system occurs repeatedly in a trial-and-error manner
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Figure 5: Poincare plots of the output of oscillators which corre-
spond to the flexor neurons for legs 0 and 1 with different value of μ
((A) 0.2, (B) 0.34, (C) 0.346). We can see weak and strong chaotic
intermittencies (the regions indicated by arrows) in high μ (B,C)
while there is smooth and periodic transition of phase relationships
in A.
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Figure 6: Visiting ratio distribution. (A) No chaotic search. (B)
Search with Ed = 0.2. (C) Search with adaptive Ed as in Equation
11. Lighter shaded bars indicate visiting ratios in exclusion of ST-
D4 pattern through the deep-path (see text).

until it settles on an effective form of locomotion.

Bad-Lock and Deep-Path

Although the system exploits chaotic dynamics for the ex-

ploration of motor patterns, unwanted synchronisation be-

tween chaotic movements of limbs, resulting in low perfor-

mance (bad-lock), can arise from some initial conditions.

In the case of fixed Ed, a local minimum was occasionally

observed in which the system dynamics are locked in a nar-

row range of phase differences while the precise values of

variables vary chaotically (Fig. 8). Although this is unde-

sirable for the purpose of this work, it should be noted that

this phenomena is observed in real biological systems (e.g.

in walking and heartbeat rhythms). The bad-lock phenom-

ena occurred more frequently if we set μc below the onset of

chaos, indicating that the system has less exploratory ‘per-

turbation force’ when using low chaoticity.

Adaptive Ed was successful in enabling the goal seeking

strategy for the unknown robotic system, as well as sup-

pressing the bad-lock local minima outlined above by intro-

ducing an additional slow variable to the system. However

another kind of deficiency, so called deep-path, was some-

times observed in this case. This involves the orbit becom-

Figure 7: Time evolution of the search process. (A) Unwrapped
phase differences between legs. (B) Performance and control pa-
rameters. (C,D) Phase and amplitude feature indices.

ing entrained in some periodic state for a long time before

it eventually reaches the desired state (Fig. 9). This is due

to the time spent in the chaotic regime becomes very short

because the difference between E and Ed is too small, re-

sulting in the system taking a long time to escape from the

local minimum. The possibilities of bad-lock and deep-path

always exist because the system is fully deterministic with-

out stochastic sources, but it should be possible to reduce

them by using more sophisticated goal seeking strategies.

Physical Stability for Open Loop Control

Previous work on embodied coupling (Pitti et al., 2009)

showed that the causal information flow between the con-

troller and physical system is highly biased toward the

sensor-to-motor direction, suggesting the controller strongly

exploits the body-environment dynamics. Since the neuro-

body-environment system used in the current paper is

weakly coupled only through physical embodiment it can be

inferred that the emergence of movement patterns is highly

influenced by the dynamic stability of locomotion. There-

fore we hypothesise that the more dynamically stable move-

ment patterns remain longer as coherent states. A previous

study (Iida and Pfeifer, 2004) provide the evidence that the

intrinsic body dynamics of a properly designed controller-

body system can self-stabilise into a periodic locomotion

pattern without any sensory input. From the experiment in

our study, we have shown that chaotic search of locomotion

using a bodily coupled system is capable of naturally finding

such stable patterns. This feature, together with the ready-

built servo controller means the robot should be able to per-

form stable locomotion in an open-loop manner without any

sensory information. This accomplishes “cheap” locomo-
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Figure 8: Local minima with fixed Ed = 0.2. The phase feature
index plot (middle) indicates that the behaviour is locked around
the vibrating (VB) pattern while the amplitudes fluctuate periodi-
cally.

tion, meaning that we should be able to readily capture a

wide range of useful transient patterns which appear during

the search process without being stabilised.

We tested this using a ‘damaged’ version of the robot

by removing one of its fins, where there is no stable pat-

tern when μ = 0 but there exist a series of useful transient

patterns. The chaotic search process was run for the 3-fin

swimmer, and if some high performing pattern appeared the

sensory input was gradually decayed to zero. We call this

process pattern capturing for open-loop control rather than

acquiring because it does not deal with the cortical memori-

sation of discovered patterns. The time course of the search

process of the damaged robot (Fig. 10a) shows multiple

transient patterns appear for a while, with high performing

patterns among them. After the sensory inputs are removed

the captured pattern is stably retained, providing fast loco-

motion; successful open-loop control is achieved. In order

to see the dynamic stability of the captured behaviour, an ex-

ternal perturbation was applied by exerting random forces to

each of fins (Fig. 10c). The stability of locomotion was re-

markable, as the robot maintained a good locomotion perfor-

mance even when the perturbation strength was over 200%

of the average hydraulic force the fin receives during normal

locomotion.

Discussion

We have modelled and investigated the emergent behaviours

of a neuro-body-environment system coupled indirectly

through physical embodiment and have shown the efficacy

of exploring useful motor patterns by applying a novel

chaotic search method. The whole system is treated as a

single high dimensional continuous dynamical system con-

taining intrinsic chaos as a necessary driving force for the

exploration of its own dynamics. The search process was

completely deterministic, and was able to selectively entrain

the system orbit to one of the patterns by imposing goal di-

rectedness toward a desired behaviour. The emergent loco-

Figure 9: Deep path in the search process with adaptive Ed. The
uppermost graph is an example of the typical search process, and
the lower three graphs show the deep-path. The system is locked
in a periodic state for a long time (see the time length) with very
short duration of chaotic perturbation then eventually stabilises on
the straight locomotion.

motion behaviours involved inherently stable physical dy-

namics, enabling stable open-loop control without a need

for sensory information.

The method has been tested with a simple underwater

robot, but it is generally applicable to a wide range of differ-

ent robot morphologies and physical environments. How-

ever, further analysis is necessary in order to determine the

optimum values of various parameters used in the search

process. For example, the time scales of slow dynamics

such as evaluation, goal seeking and feedback bifurcation

(τE ,τd,τμ) influence the search performance as well as the

probability of being trapped in a local minima. Preliminary

results of investigating the effect of different time scales re-

vealed that the ratio between the time scales for evaluation

and goal seeking determines the balance between the ‘mem-

orising’ and ‘forgetting’ of patterns during the search pro-

cess, implying there might be an optimal ratio which allows

the system to stay in the chaotic regime for an optimal du-

ration enabling fast search with less local minima. Another

crucial factor which influences the system is the amount of

bandwidth resulting from the design of body-environment

interactions. In the case of the 4-fin swimmer presented

here, the functional coupling strength between motor units

varies with the body mass. Increased body mass will result

in an increased moment of inertia which causes less trans-

mission of the hydraulic force on one leg to the others, and

vice versa. Similar effect will be caused by decreasing the

density of the surrounding fluid or by increasing fin stiffness.

Our method is also applicable to terrestrial robots where

a torque sensor is used for the sensory information. A few

examples of initial results of our method applied to other
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(A)

(B)

(C)

Figure 10: Capturing a transient locomotion pattern. (A) Normal
behaviours of damaged robot. (B) Captured pattern by cutting sen-
sory inputs. The initial condition is same as (A). (C) Stability of
captured locomotion under perturbations. Over three equal time
intervals random force vectors (N ) whose strength were in ranges
(1)[−0.1, 0.1], (2)[−0.5,0.5], (3)[−1,1] were exerted on each fin.
The typical hydraulic force that a fin receives is around ±0.3N .

kinds of robots can be found in supplementary movie clips

(http://email.kebi.com/∼necromax/explore.html). Although

the movement patterns produced by our work can deviate

from perfect patterns for highly adaptive locomotion, we be-

lieve it can make an important contribution as a basic ex-

ploratory element in more complex robotic system - such as

providing supervisory pattern for the learning of locomotor

CPGs.
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Abstract 

In this paper, we present a morphogenetic approach to self-
reconfiguration of a lattice-based simulated modular robot, 
CrossCube, under dynamic environments.    A hybrid 
hierarchical controller inspired by the embryonic development 
of multi-cellular organisms is proposed to form different 
patterns for modular robots to adapt to environmental changes. 
The first layer is a rule-based controller to generate a number of 
appropriate target patterns (i.e. configurations) for various 
environments. The second layer is a gene regulatory network 
(GRN) based controller to coordinate the modules of 
CrossCube to transform from its current pattern to the target 
pattern. This hybrid hierarchical control framework is 
distributed in the sense that each module makes its own 
decisions based on its local perception. The global behavior of 
modular robots emerges from the local interactions with the 
environment and between the modules. The simulation results 
demonstrate that the proposed system is efficient and robust in 
adaptively reconfiguring modular robots to adapt to the 
changing environment.  

Introduction 

Self-reconfigurable modular robots are autonomous robots 
with a variable morphology, where they are able to 
deliberately change their own shapes by reorganizing the 
connectivity of their modules to adapt to new environments, 
perform new tasks, or recover from damages.  Each module 
is an independent unit that is able to connect it to or 
disconnect it from other units to form various 
structures/patterns dynamically. Compared with conventional 
robotic systems, self-reconfigurable robots are potentially 
more robust and more adaptive under dynamic environments.  
 Modular robots can be generally classified into two groups 
according to their geometric arrangements of the modules: the 
chain/tree-based architectures [16] [19] [21] [22] and the 
lattice-based architectures [5] [7] [8] [10] [13] [14] [17] [24] 
[25]. In the chain/tree-based architectures, the modules are 
connected in a topology of a chain or a tree, where the motion 
controls of the modules are executed sequentially. It is 
relatively easier to design and implement this kind of 
architectures.  In the lattice-based architecture, robot 
modules are usually arranged and connected in 3D patterns, 
such as a cubical or hexagonal grid, and the motion control of 
modules are carried out in parallel.  Therefore, compared to 
the chain/tree-based architectures, the lattice-based 

architectures are more flexible and efficient to form complex 
structures although the design and implementation of this kind 
of architectures are more difficult.  From this point of view, 
lattice-based modular robots are more suitable for dynamic 
environments. However, most available lattice-based modular 
robotic systems only have basic locomotion controllers to 
reconfigure the modular robots to a few predefined patterns by 
following predefined sequences or rules which have been 
optimized by human operators as a global controller.  These 
predefined rules or sequences cannot predict all the possible 
situations that may occur for modular robots under dynamic 
environments.  Although self-reconfiguration is believed to 
be the most important feature of modular robots, the ability to 
adapt their configuration autonomously under environmental 
changes remains to be demonstrated. 

Generally, centralized high-level controllers for lattice-
based modular robots are vulnerable to system failures or 
malfunctions of robot modules. On the other side, 
decentralized controllers are more robust and flexible under 
dynamic and uncertain environments.  However, the main 
challenge for distributed systems is that it is difficult to predict 
the emerging behaviors only from local interactions of 
individual agents; neither is it easy to design rules for local 
interactions to generate desired global behaviors. Therefore, 
the major challenge in developing a decentralized controller 
for self-reconfigurable modular robots is how to coordinate 
local behaviors of multiple modules to achieve the desired 
global patterns to adapt to current environmental situations.  
To this end, we turn our attention to biological systems.  
Biological systems, from macroscopic swarm systems of 
social insects to microscopic cellular systems, can generate 
robust and complex emerging behaviors through relatively 
simple local interactions subject to various kinds of 
uncertainties [9]. We are more interested in the 
morphogenesis procedure in multi-cellular organisms. During 
the morphogenesis, genes in each cell are expressed, resulting 
in various cellular functions. The expression of the genes is 
regulated by their own protein products as well as proteins 
produced by other genes in the same cell or neighboring cells 
through intracellular and intercellular diffusion, forming a 
gene regulatory network that can be described by a set of 
coupled ordinary differential equations. 

The connection between reconfigurable modular robots and 
multi-cellular organisms appears straightforward. Each unit in 
modular robots can be seen as a cell, and there are similarities 
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in control, communication and physical interactions between 
cells in multi-cellular organisms and modules in modular 
robots. For example, control in both modular robots and 
multi-cellular organisms are decentralized. In addition, global 
behaviors of both modular robots and multi-cellular organisms 
emerge through local interactions of the units, which include 
mechanic, magnetic and electronic mechanisms in modular 
robots, and chemical diffusion and cellular physical 
interactions such as adhesion in multi-cellular organisms. 
Therefore, it is a natural idea to develop control algorithms for 
self-reconfigurable modular robots using biological 
morphogenetic mechanisms. 
 Inspired by the embryonic development of multi-cellular 
organisms [24], in this paper, we propose a morphogenetic 
approach to self-reconfiguration of a lattice-based simulated 
modular robot, CrossCube. Basically, each module of 
CrossCube has a flexible single cubic shape like Molecube 
[25] [15], which does not require much free space for modules 
to move around, similar to the mechanics of SUPERBOT [14] 
[4] and MTRAN [10] [11] [20]. In the high-level controller, a 
two-layer morphogenetic architecture is proposed. Layer 1 is 
pattern generation layer, which is a rule-based controller to 
generate appropriate patterns represented by look-up tables. 
Layer 2 is a gene regulatory network (GRN) based controller 
to reconfigure modules automatically to the target patterns 
generated from layer 1.  
   Recently, Stoy proposed cellular automata to control 
reconfiguration [17]. Both our method and Stoy’s method 
used cellular mechanism to reconfigure the modular robots. 
However, there are some major differences between our work 
and his work. Our method is two-layer hierarchical method. In 
[17], one-layer approach was proposed which corresponds to 
layer 2 in our model. Layer 2 of our model uses priorities to 
assign the importance of the positions of the target pattern, 
which help to improve the balance of target formation. In 
addition, our proposed method can solve the dead-lock 
situations of the modules while [17] cannot.  
 The major contributions of this paper are listed as follows. 
(1) The mechanics of CrossCube enables highly flexible 
locomotion compared to that in existing lattice-based modular 
robots. (2) A hybrid hierarchical morphogenetic controller is 
proposed, which is a decentralized approach where each 
module makes its own decisions based on its local perceptions 
on the environment and interactions with its immediate 
neighboring modules.  (3) The modular robots can 
autonomously choose an appropriate pattern based on the 
current environment and then automatically self-reconfigure 
itself to the target pattern. (4) The proposed system is very 
robust to system failures. 
 The rest of the paper is organized as follows.  The basic 
mechanics and locomotion design of CrossCube are described 
at first, followed by a brief introduction to biological 
morphogenesis.  Then the proposed morphogenetic approach 
to self-organization of modular robots is presented. Various 
simulation results on evaluating the proposed morphogenetic 
approach to modular robots under dynamic environments are 
described. The paper concludes with a short summary of the 
current results and future work. 

CrossCube – A Simulated Modular Robot 

CrossCube is a simulated modular robot we developed in a 
robot simulator using a real time physics engine PhysX. The 
detailed information on the simulator will be discussed in the 
simulation section. CrossCube adopts a lattice-based cube 
design. Each module is a cubical structure having its own 
computing and communication resource and actuation 
capability. Like all modular robots, the connection part of the 
modules can easily be attached to or detached from other 
modules. Each module can perceive its local environment and 
communicate with its neighboring modules using on-board 
sensors. 
 Each CrossCube module consists of a core and a shell as 
shown in Fig. 1(a). The core is a cube with six universal 
joints. Their default heading directions are bottom, up, right, 
left, front, and back, respectively. Each joint can attach to or 
detach from the joints of its neighbor modules. The axis of 
each joint can actively rotate, extend, and return to its default 
direction and length. 
 The cross-concaves on each side of the shell restrict the 
movement trajectory of the joints, as show in Fig. 1(a). The 
borders of each module can actively be locked or unlocked 
with the borders of other modules, as shown in Fig. 1(b). 
 Basic motions of modules in CrossCube include rotation, 
climbing and parallel motion. Fig. 1(c) illustrates a rotation 
movement of two modules. Parallel motion means that a 
module moves to a next position which is parallel to its 
current position. During a parallel motion, a module moves 
from its current position to a parallel position Climbing 
motion means that a module moves to a diagonal neighboring 
position. Parallel motion and climbing motion allow a module 
of CrossCube to move to any position within the modular 
robot as long as the modules are connected. Since the major 
focus of this paper is the self-reconfiguration control 
algorithm, the detailed mechanical design of CrossCube is 
skipped here. 

Figure 1: Mechanical demonstration of CrossCube. (a) The 
joints; (b) The locks on the boundaries of the modules. (c) 
Rotation and extension of the joints of the modules. 

Morphogenetic Approach 

Multi-Cellular Morphogenesis 
Multi-cellular morphogenesis is under the control of gene 
regulatory networks. When a gene is expressed, information 
stored in the genome is transcribed into mRNA and then 
translated into proteins. Some of these proteins are 
transcription factors that can regulate the expression of their 
own or other genes, thus resulting in a complex network of 
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interacting genes termed as a gene regulatory network (GRN). 
To understand the emergent morphology resulting from the 
interactions of genes in a regulatory network, reconstruction 
of gene regulatory pathways using a computational model has 
become popular in systems biology [1].  A large number of 
computational models for GRNs have been suggested [2], [3], 
which can largely be divided into discrete models, such as 
random Boolean networks and Markovian models, and 
continuous models, such as ordinary differential equations and 
partial differential equations. Sometimes, GRN models also 
distinguish themselves as deterministic models and stochastic 
models according to their ability to describe stochasticity in 
gene expression. Note that in artificial life, a few high-level 
abstraction models have also been used for modeling 
development, such as the L-systems [12] and grammar trees 
[6]. 

The Hierarchical Framework 
  The metaphor between reconfigurable modular robots and 
multi-cellular organisms is straightforward.  We can treat 
each module in modular robots as a single cell. And the 
similarities in control, communication and physical 
interactions between cells in multi-cellular organisms and 
modules in modular robots are obvious.  For example, the 
control in both modular robots and multi-cellular organisms in 
decentralized.  Furthermore, the global behaviors of both 
modular robots and multi-cellular organisms emerge through 
local interactions of the units, which include mechanic, 
magnetic and electronic mechanisms in modular robots, and 
chemical diffusion and cellular physical interactions such as 
adhesion in multi-cellular organisms.                

Figure 2:  The block diagram of the hierarchical framework 
for the morphogenetic approach. 
 
Based on this metaphor, a hybrid hierarchical morphogenetic 
approach is developed in this paper for self-reconfiguration of 
modular robots.  First, the target pattern (i.e. final 
configuration) that a modular robot needs to form has to be 
generated automatically based on the current environments 
and mission at hand using some heuristic rules, which is the 
layer 1 controller of the hierarchical framework.  Then, the 
modules in a modular robot need to self-organize themselves 
to form the target pattern generated by layer 1 using a GRN-
based controller, which is the layer 2 controller.  Fig. 2 
shows the block diagram of this hierarchical GRN framework. 
Each unit of the modular robots contains a chromosome 
consisting of several genes that can produce different proteins.  
The local communications between the modules can be setup 
by diffusing the proteins into neighboring modules. The 

concentration of the diffused proteins decays over time and 
distance. 

Layer 1: Pattern Generation 
Adaptation to environmental changes is of paramount 
importance in reconfigurable modular robots. A mechanism is 
needed to define and modify the target configuration of the 
modular robot adaptively. Adaptation of the global 
configuration of the modular robot, i.e., change in morphogen 
values, can be triggered by local sensory feedback.  For such 
tasks, it is assumed that each module is equipped with a sensor 
to detect the distance(s) between the module and obstacle(s) in 
the environment.  Once a module receives such sensory 
feedback, this information will be passed on to its neighbors 
through local communication. In this way, a global change in 
configuration can be achieved. 

The target pattern of the modular robot is defined by 
morphogen values of each grid. Grids are discretized from the 
space in which the modular robot is located. Each grid has the 
same size of with a robot module. The morphogen value can 
be either positive or negative. A positive morphogen value 
means that the grid should be occupied by a module, while a 
negative gradient suggests that the module in the grid, if any, 
should be removed. A higher value of morphogen value 
indicates a higher priority for the grid to be filled by a module. 

For the sake of simplicity, a number of basic configurations 
for different environments can be represented in terms of a 
look-up-table for a given mission, for instance locomotion. An 
example of defining the configuration of a vehicle is provided 
in Table 1. In the table, x, y, and z are 3D coordinates of grid 
positions, MG denotes morphogen level and PID stands for 
position identification. Additionally, we define some joints’ 
behaviors to enable the vehicle to move once the 
configuration is completed.  Joints can be identified by its 
PID and RD means joint rotate direction. 

Then the question is how to generate the look-up-table and 
decide the morphogen value for each position of a pattern 
under current environmental situations. A rule-based 
controller is developed for this purpose.  In this paper, we 
only focus on the generation of some specific vehicle patterns 
to explain the basic ideas. We will investigate a more generic 
controller for different patterns in the future. 

It is assumed that initially all robot modules know the 
heading direction of the vehicle pattern.  When a robot needs 
to traverse a path whose width is narrower than that of the 
robot, the width of the front row will be first adapted to fit in 
the path. The remaining rows of the vehicle will be adapted 
row by row in a decentralized manner through local 
communication.  The basic rules for this procedure can be 
summarized as follows:   
 Rule 1:  Once a module in the front row detects obstacle(s), 

it passes this information through local communication to its 
neighboring modules until all the modules are reset to the 
unstable state for initialization. Refer to the next section for 
a definition of different states of the robot modules.  

 Rule 2: If some of the modules in the first row detect an 
obstacle, they will estimate whether the robot need to 
reconfigure itself to avoid the obstacle.  If yes, these 
modules will estimate how many modules need to be 
removed and this information is passed to other modules in 

Task 
requirements

Layer 1:
Pattern 

Generation

Layer 2:
Pattern 

Formation

Pattern/Body 
Motion Control Environment

Hierachical Morphogenetic Framework
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the same row through local communication. Therefore, the 
mophogen gradients of these need-to-remove positions are 
set up as negative values while others as positive values. As 
a result, those positions with positive mophogen values are 
head of the new vehicle pattern. 

 Rule3: After the GRN-based pattern formation controller 
finishes the reorganization of the modules in one row, the 
states of these modules are set to be ‘stable’. If a row of a 
vehicle pattern is filled in by stable modules, these modules 
can set the positive morphogen values for the position in the 
next row. One exception is that if the module is used as a 
wheel for the vehicle pattern, the morphogen value of its 
next position should be set as negative because two 
neighboring wheel modules causes fault pattern. 

 Rule4: The pattern generation procedure stops when all the 
modules change to the stable state. 

Layer 2: Pattern Formation 
By setting any single module as the origin, all other modules 
can figure out their relative positions to this origin easily 
through local communications. Based on the relative positions 
and the information on the target pattern, each module can 
produce different types of proteins to attract other modules to 
fill in its neighboring positions with positive morphogen 
values, or repel its neighbor modules from positions with 
negative morphgen values. 
 
Finite States of Modules 
The attraction and repellent behaviors of the modules are 
regulated by a GRN-based controller, which can adaptively 
set the state of the modules to one of the following five states, 
namely, ‘stable’, ‘unstable’, ‘attracting’, ‘repelling’, and 
‘repelled’. The transition relationships between the five states 
of modules are given in Figure 3.  
    

Figure 3: State transition of each module in CrossCube. 
 
   The “stable” state means the final state of the module. The 
“attracting” state means the module can attract other modules 
to fill in some of its neighboring positions. The “unstable” 
state means the module can respond to attractions.  The 
“repelling” state means the module can repel specific 
neighboring modules away. The “repelled” state means that 

the module responds to repelling requests and move away 
from the current position.  

When an ‘unstable’ module arrives at the destination 
position (grid), it changes its state to “stable” (arrow a in 
Figure 3). A ‘stable’ module can change its state to 
‘attracting’ (arrow b in Figure 3) if it has neighboring 
positions with a positive morphogen value. When those 
neighboring positions are occupied by modules, the 
‘attracting’ module returns to the ‘stable’ state (arrow c in 
Figure 3).  A ‘stable’ module may also give up its current 
position so that it can fill in some more important positions in 
the pattern (with a high positive gradient) by turning its state 
to ‘unstable’ (arrow d in Fig. 2).  

When the ‘repelled’ module moves away from its current 
position it switches its state to ‘unstable’ (arrow h in Figure 
3).  A module can be triggered to be ‘repelling’ state under 
two situations. First one is when a ‘stable’ module finds out 
that some of its neighboring modules are located in the 
positions with negative morphogen value, it changes its state 
to ‘repelling’  (arrow e in Figure 3) and switches the state of 
those neighbors to be ‘repelled’ (arrow g in Figure 3). When 
all the ‘repelled’ modules have left, the ‘repelling’ module 
returns to the ‘stable’ state (arrow j in Figure 3). The second 
situation is a deadlock situation. A deadlock happens when a 
module is blocked by its neighboring modules. To resolve this 
deadlock, the blocked module switches its state to be 
‘repelling’ (arrow f in Figure 3), and trying to change the state 
of all its neighbors to be ‘repelled’ (arrow g in Figure 3). This 
removes some of its neighboring modules to make room for 
the blocked module to move away. Then the ‘repelling’ 
module turns back to the ‘repelled’ state (arrow i in Figure 3). 

The state transitions are controlled by a GRN-based model 
having two gene-protein pairs: an attracting gene-protein pair 

),( AA pg and a repelling gene-protein pair ),( pp pg .  We 
assume that the repellent states always have a higher priority 
than the attracting states. As a result, all the states triggered by 
the attracting behaviors can be overwritten by the states 
triggered by the repelling behaviors. The reason for this 
assumption is that the positions with a repelling (negative) 
morphogen value should be kept empty as long as migration 
modules are still in need during reconfiguration.  

 
Gene-Protein Pair for Attraction 
The attracting gene-protein pair ),( AA pg is used to control 
the transitions between ‘attracting’, ‘stable’ and ‘unstable’ 
states in Figure 3. Basically the expression level of Ag  
affects the state as shown in (1). And protein Ap  will 
regulate Ag ’s expression level.  

  
_

_ _

_

'unstable'        if 

state 'stable'            if 

'attracting'      if 

A A L

A L A A H

A A H

g G

G g G

g G

 


  
 

         (1) 

where _A LG  is a negative threshold and _A HG  is a positive 
threshold. 

At the initial stage of pattern formation, all modules are set 
as ‘unstable’. After they are initialized with the target pattern 
and the relative position information to the origin, modules 
that are located in the grids with a positive morphogen value 
become ‘stable’. A new ‘stable’ module initializes the gene 
expression level of its attracting gene Ag  to zero. 
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Each ‘stable’ module generates attracting protein Ap  for 
all of the empty neighboring grids having a positive 
morphogen value. The local generated Ap  and received Ap  
from other modules will regulate the expression level of Ag . 
When Ag  is high enough to trigger the module to be 
‘attracting’, the local generated Ap  will be diffused to other 
modules. During diffusion, the concentration of Ap  are 
weaken by a fix rate each time when it enters a cell. Here, 

Ap  is defined as  
},{ ij

A
ijij

A MAPp        (2) 
 

where ij
Ap  is the attracting protein generated by i-th module 

for its j-th neighbor position. ijAP is the position, and ij
AM is 

the concentration of the protein ij
Ap , which is discounted 

from the morphogen value of ijAP  defined by layer 1 of the 
control framework.  

The dynamics of regulation can be described by the 
following GRN model:  

1 2 3 _
( ) ( )

i
i ijA
A A A received

j

dg t
k g t k p k p

dt
          (3) 

where )(tg i
A  is Ag ’s concentration of the i-th module. The 

first term indicates that )(tg i
A will decay over time.  The 

second term represents the sum of all locally generated Ap  
by grid i. The more proteins a module (which is associated 
with grid i ) generates for its empty neighboring grid, the 
higher the Ag expression level this grid will be, which means 
it will have better chance to change its state from “stable” to 
“attracting”.  Meanwhile, ( )Ag t will decrease if it receives 

Ap from other modules. The module may turn to ‘unstable’ if 
outer attraction is strong enough. 1 2 3, ,and k k k  are constant 
coefficients. Unstable modules choose the attracting position 
with the highest AP   from all the received attracting proteins 
to fill in, and move to the destination by following morphogen 
gradient. Once a module reaches its destination, it will become 
stable. 

To summarize, the gene-protein pair ),( AA pg can regulate 
each other according to the GRN model described in Eqns. (1) 
and (3). More specifically, Ap can regulate Ag through Eqn. 
(3).  Meanwhile, Ap  can diffuse only if  Ag   is greater 
than HAG _  based on Eqn. (1). 

 
Gene-Protein Pair for Repelling 
The ‘repelling’ states are controlled by the repelling gene-
protein pair ),( pp pg . The repelling modules produce pp , 
which is defined as  
 

   },{ ij
P

ijij
P MRPp                (4) 

 
where ij

Pp is the repellent protein generated by i-th module 
for its j-th neighbor. ijRP is the j-th repellent grid around i-th 
module, and ij

PM is the concentration of the protein ij
Pp , 

which equals to a predefined positive constant. Each module 
has repelling gene whose concentration affects whether the 
module should change to ‘repelled’ state, that is, to respond to 
a ‘repelling’ module. The gene expression level of Pg  is 
initialized as 0 and can be regulated by Pp  through Eqn. (5) 
 

     4 5 _
( ) ( )

state  repelled when 

i
iP
P P rec

i
P

dg t
k g t k p

dt

g MG

    

  

       (5)        

where ( )pg t  is the gene expression level of the repellent 
gene at time t. _P recp  is the concentration of the received 
repellent protein. iMG  is the morphogen value of the current 
position. 4 5and k k  are constant coefficients. The first item 
denotes ( )pg t  will decays to zero along time. The second 
term indicates that when a module receives Pp , the 
concentration of Pg  is reduced. Obviously modules with a 
lower morphogen value are more likely to be repelled. 

To summarize, Pp  can regulate Pg  through Equation 
(5). Pg can produce Pp  under the condition that Pg is 
below iMG  and the module is blocked. 

Simulation Results 

To evaluate the efficiency and robustness of the 
morphogenetic approach to the self-reconfiguration of 
CrossCube, several case studies have been conducted in a 
robot simulator, as shown in Figure 4.  This simulator is used 
to simulate the behaviors and interaction of CrossCube with a 
physical world using C++ and the PhysX engine from nVidia 
(http://en.wikipedia.org/wiki/PhysX). In the following 
experiments, the system parameters are setup as 
follows: 1 0.7,k  2 1,k   3 1k  , 4 0.5,k  5 2k  , _A LG  = -
1, _A HG  = 1, _ 2P LG   , ij

PC  = 0.7.  Protein 
concentration decays to 80% of its previous level when it 
diffuses into a neighbor module.  

Case Study 1: Pattern Formation 
To evaluate the performance of the GRN-based controller for 
pattern formation layer, first, we can predefine a fixed target 
pattern using a look-up table.  For example a vehicle pattern, 
can be defined as Table 1. 
 

Positions 
(X, Y, Z, MG, PID) 

Joints 
(PID1, PID2, RD) 

(0, 0, 0, 10, 0) (1, 0, 3, 10, 10)  (0, 1, 0)

(1, 0, 0, 10, 1)  (2, 0, 3, 10, 11)  (2, 3, 1) 

(2, 0, 0, 10,2)  (0, 0, 4, 10,12)  (6, 7, 0) 

(3, 0, 0, 10, 3)  (1, 0, 4, 10, 13)  (8, 9, 1) 

(1, 0, 1, 10, 4)  (2, 0, 4, 10, 14)  (12, 13, 0) 

(2, 0, 1, 10, 5)  (3, 0, 4, 10, 15)  (14, 15, 1) 

(0, 0, 2, 10, 6) (0, 0, 1, ‐1, 16)   
(1, 0, 2, 10, 7)  (3, 0, 1, ‐1, 17)     
(2, 0, 2, 10, 8)  (0, 0, 3, ‐1, 18)   
(3, 0, 2, 10, 9)  (3, 0, 3, ‐1, 19)     

 
Table 1: Definition of a vehicle pattern for case study 1.  In the 
table, x, y, and z are 3D coordinates of grid positions, MG 
denotes morphogen level and PID stands for position 
identification. 

Based on this predefined target pattern, the modules of 
CrossCube modules need to autonomously configure 
themselves to form the target pattern using the GRN-based 
controller in layer 2.  A set of snapshots of this pattern 



Proc. of the Alife XII Conference, Odense, Denmark, 2010 770

formation procedure in the experiment is depicted in Figure 4. 
From Figure 4, we can see that the CrossCube can 
automatically form a given target pattern through self-
reconfiguration using the proposed GRN-based controller. 
 

 
Figure 4: Autonomous reconfiguration of a CrossCube from a 
rectangle to a vehicle using the GRN-based model. 
 

 
Figure 5: A set of snapshots for the simulation using the 
repelling feature of the GRN-based controller to resolve a 
deadlock problem. (a) The original pattern of the robot. (b)(c) 
Two modules are repelled by the central modules. (d)(e) The 
central modules move away from blocked positions. (f) The 
target pattern is finished. 

Case Study 2: Resolving Deadlock 

In this case study, a deadlock problem is resolved using the 
repelling function of the GRN-based controller in layer 2. 
Robot modules are initialized in a 4x3x3 solid cube, starting at 
(0, 0, 0) and ending at (3, 2, 2). The target pattern is 
predefined in Table 2 which is a center-empty box plus two 
additional modules at sides. To build the pattern, the modules 
in the center of the solid cube should move out the module 
that is blocked by the modules on surface. Then the GRN-
based controller of layer 2 is conducted to solve the deadlock 
problem to form the target pattern.  Figure 5 shows the 
successful procedure of solving this deadlock problem using 
this morphogenetic approach on CrossCube simulator. It is 

shown that the modules with lower morphogen value are 
repelled which is consistent with our design. 

Positions (x, y, z) 
Morphogen 

value 

(-1, 0, 1), (4, 0, 1), (0, 1, 1), (3, 1, 1)  2

(1, 1, 1), (2, 1, 1)  ‐10

Other positions 10 
 Table 2 Definition of a vehicle pattern for case study 2 

Case Study 3: Self-Repairing 
One important feature of a reconfigurable modular robot is 
being able to dynamically self-repair itself from the 
malfunctions of modules or damaged modules. For example, if 
some of the modules are damaged, the remaining modules will 
release new attracting proteins to repel those damaged 
modules and attract existing modules in the positions with a 
low morphogen value to fill in the positions of the damaged 
modules.  In other words, modules that are located in less 
important positions of the target pattern will automatically 
migrate to the positions originally occupied by the damaged 
modules with a higher morphogen value. To evaluate the self-
repairing performance of the GRN-based control in layer 2, 
another experiment is conducted here. First, the look-up table 
for the target pattern (i.e., a vehicle patter here) is given in 
Table 3 as a fixed predefined layer 2. The bottom modules (y 
equals to 0) are functional modules in the vehicle pattern. The 
top modules (y equals to 1) are backup modules, which are 
used to repair the malfunctioned parts of the vehicle pattern. 
Therefore, the backup modules have a lower morphogen value 
than that of the functional modules. 

When the vehicle is moving, an “explosion” occurs and 
some functional modules are blown away. The backup 
modules then automatically move to fill in the damaged 
modules. Figure 6 shows a snapshot of this self-repairing 
procedure using the proposed hierarchical framework on 
CrossCube modules.  This experiment demonstrates that the 
proposed approach is efficient for self-repair of a modular 
robot in the presence of some failed modules. 
 

Positions 
(X, Y, Z, MG, PID) 

Joints 
(PID1, PID2, RD) 

(0, 0, 0, 10, 0) (0, 0, 4, 10,12)  (0, 1, 0)

(1, 0, 0, 10, 1) (1, 0, 4, 10, 13)  (2, 3, 1)

(2, 0, 0, 10,2) (2, 0, 4, 10, 14)  (6, 7, 0)

(3, 0, 0, 10, 3) (3, 0, 4, 10, 15)  (8, 9, 1)

(1, 0, 1, 10, 4) (0, 0, 1, ‐1, 16)  (12, 13, 0)

(2, 0, 1, 10, 5) (3, 0, 1, ‐1, 17)    (14, 15, 1)

(0, 0, 2, 10, 6) (0, 0, 3, ‐1, 18)   
(1, 0, 2, 10, 7) (3, 0, 3, ‐1, 19)     
(2, 0, 2, 10, 8) (1, 1, 1, 1, 20)   
(3, 0, 2, 10, 9) (2, 1, 1, 1, 21)   
(1, 0, 3, 10, 10) (1, 1, 2, 1, 22)   
(2, 0, 3, 10, 11) (2, 1, 2, 1, 23)   

Table 3 Definition of a vehicle pattern for case study 3 

Pattern Adaptation in a Changing Environment 
To verify the efficiency and robustness of the rule-based 
controller for pattern generation, a transformable vehicle is 
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developed. During the pattern generation process, the positive 
morphogen value is set as 10 and the negative morphogen 
value is -10. 

A set of snapshots showing the adaptation of the vehicle 
pattern to environmental changes is provided in Figure 7.  
First the pattern generation controller generates a vehicle 
pattern based on the width of path it needs to traverse using 
the rule-based method. As the vehicle is moving forward, a 
narrower path is detected. Consequently, a new vehicle pattern 
that can fit in this narrower tunnel is generated. Then steps are 
detected in front of the robot, new target patterns are 
dynamically generated to allow the robots to climb the steps, 
and eventually a new vehicle pattern is generated to continue 
its locomotion task after finishing the climbing. During this 
procedure, the GRN-based controller for pattern formation 
layer would automatically reconfigure the modules to form the 
new target patterns.   

 

 
 
Figure 6: A set of snapshots of the self-repairing of CrossCube 
using the GRN-based controller.  (a) A vehicle pattern is 
formed. (b) The vehicle pattern moves forward. (c) Some 
modules are blown off when the explosion happens.  (d) The 
failed part is filled up by the backup modules. (e) The vehicle 
is repaired.   (f) The repaired vehicle continues moving. 

Conclusion and Future Work 

In this paper, we presented a hybrid hierarchical approach to 
self-reconfiguration of a simulated modular robot, CrossCube, 
which is inspired by multi-cellular morphogenesis.  First 
layer defines the desired configuration of the modular robots 
while the other layer organizes the modules autonomously to 
achieve the desired configuration. Such a hierarchical 
structure makes it possible to separate the control mechanisms 
for defining a target configuration from those for realizing it, 
similar to biological gene regulatory networks. In response to 
the environment changes, the layer for defining the robot 
configuration is able to adapt the target configuration, based 
on which the second layer can re-organize the modules 
autonomously to realize the target configuration. 
The current system is only based on simulated modular robots 
with considerations of physical constraints. In the future, we 
will develop the real modular robots based on the current 
mechanical design.  Furthermore, since the current design of 
the first layer is a heuristic rule-based method, it has some 
limitations to generate various patterns for dynamic 
environments, only some simply patterns are possible.  In the 
future, we will investigate a more general approach for the 
design of layer 1 so that more general patterns can be 
automatically generated to adapt to various dynamic 
environmental changes.  
 

Figure 7. A set of snapshots demonstrating a series of 
reconfigurable processes during locomotion and climbing. The 
robot first adapted its width to the narrow path, then changed 
its configuration for climbing up a step, and finally 
reconfigured itself into a vehicle again to move forward. 
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Abstract

The semi-automatic or automatic synthesis of robot controller
software is both desirable and challenging. Synthesis of
rather simple behaviors such as collision avoidance by apply-
ing artificial evolution has been shown multiple times. How-
ever, the difficulty of this synthesis increases heavily with in-
creasing complexity of the task that should be performed by
the robot. We try to tackle this problem of complexity with
Artificial Homeostatic Hormone Systems (AHHS), which
provide both intrinsic, homeostatic processes and (transient)
intrinsic, variant behavior. By using AHHS the need for pre-
defined controller topologies or information about the field of
application is minimized. We investigate how the principal
design of the controller and the hormone network size affects
the overall performance of the artificial evolution (i.e., evolv-
ability). This is done by comparing two variants of AHHS
that show different effects when mutated. We evolve a con-
troller for a robot built from five autonomous, cooperating
modules. The desired behavior is a form of gait resulting in
fast locomotion by using the modules’ main hinges.

Introduction
The (semi-)automatic synthesis of robot controllers with ar-
tificial evolution belongs to the software section of evolu-
tionary robotics (Cliff et al., 1993). The main challenge in
this field is the curse of complexity because an increase
in the difficulty of the desired behavior results in a signif-
icantly super-linear increase in the complexity of its evolu-
tion. This is partially documented by the absence of com-
plex tasks in the literature (Nelson et al., 2009). Addition-
ally, in evolutionary robotics the cost of the fitness evalu-
ation is rather high even in case of simulations, if the ap-
plication of a physics engine (simulation of friction, inertia
etc.) cannot be avoided. Another challenge is the appropri-
ate choice of a genetic encoding (Matarić and Cliff, 1996)
and the basic principle of the controller design as they define
the designable fraction of the search space and the fitness
landscape (non-designable fractions are induced, for exam-
ple, by the environment or the task itself). While the search
space should be kept small, the fitness landscape should be
smooth with a minimum number of local optima. Expe-
rience shows that these two criteria are contradicting. We

summarize this complex of challenges by the aim to ‘strive
for high evolvability’.

Concerning the problem of finding appropriate controller
designs a pleasant trend can be observed in recent litera-
ture. The most prominent candidate is presumably the Hy-
perNEAT design (Stanley et al., 2009; Clune et al., 2009). It
is based on artificial neural networks (ANN) but combines
the ‘search for appropriate network weights with complexifi-
cation of the network structure’ (Stanley and Miikkulainen,
2004) through the generation of connectivity patterns. It
has proven to have good evolvability combined with an ad-
equate range of applications. Other promising, recent ap-
proaches tend to be more inspired by biology, in particular
by unicellular organisms and endocrine systems. Examples
showing good evolvability are the reaction-diffusion con-
troller by Dale and Husbands (2010) and homeostasis and
hormone systems based on GasNets (Vargas et al., 2009)
and ANNs (Neal and Timmis, 2003). They indicate home-
ostasis as a prominent feature in successful adaptation to dy-
namic environments.

In this paper, we analyze a controller design called Artificial
Homeostatic Hormone Systems (AHHS) that is based on
hormones only and was introduced before (Hamann et al.,
2010; Schmickl et al., 2010; Schmickl and Crailsheim,
2009; Stradner et al., 2010, 2009). AHHS is a reaction-
diffusion approach. Sensory stimuli are converted into
hormone secretions that, in turn, control the actuators.
In addition, hormones interact linearly and non-linearly
comparable to the hidden layer of ANN. The topology of
this hormone-reaction network is not predefined. Such
systems show homeostatic processes because they typically
converge to trivial equilibria for constant sensor input. The
sensory stimuli are basically integrated in form of hormone
concentrations (a form of memory) and decomposed over
time (oblivion). However, during a limited period of time
(transient) after a stimulus they show also variant behavior,
especially, if non-linear hormone-to-hormone interactions
are applied. This way, explorative behavior of the robot is
implemented that allows for the testing of many sensory-
motor configurations. The concept of AHHS is related to
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gene regulatory networks. However, here each edge has its
own activation threshold and redundant edges with different
activations between two hormones are allowed.
The desired main application of AHHS is multi-modular
robotics (SYMBRION, 2010; REPLICATOR, 2010). In
this field, autonomous robotic modules are studied, that are
able to physically connect to each other, and can also es-
tablish a communication and energy connection. Hence,
they form a super-robot called ‘organism’, that is able to re-
configure its body shape, see for example, Shen et al. (2006)
or Murata et al. (2008). Therefore, the underlying idea of
diffusion in our reaction-diffusion system is that hormones
diffuse from robot module to robot module and establish a
low-level communication. Following our maxim of trying to
reach a maximum of plasticity we use identical controllers in
each module independent of their position within the robot
organism, so there is neither a controller nor a module spe-
cialization. This concept implements the focus of evolution-
ary robotics on modularity (among others) in terms of hard-
ware and software (Nolfi and Floreano, 2004). Although
we evolve cooperative behaviors by evolving a kind of self-
organized role selection, there is no co-evolution.
In general, our approach is more organic in contrast to the
typical symbolic approach (direct encoding of pitch, roll,
yaw angles, use of pattern generators using Gaussian func-
tions etc.). The biological inspiration is not practiced asan
end in itself but rather introduces more robustness in compu-
tations and it allows the diffusion of such values from mod-
ule to module (implementing implicit communication).
One focus of our current research track is to design fit-
ness landscapes by using appropriate controller designs. We
investigate possibilities of smoothing the fitness landscape
by a sophisticated interaction between the controller design
and the mutation operator. We test whether it is useful to
maximize the causality of the mutation operator (i.e., small
causes have small effects) by reducing the maximal impact
to the organism’s behavior. However, whether high causality
is really desirable, is questionable (e.g., cf. Chouard (2010)).
The investigated scenario is a modular-robotics variant of
gait learning in simulation. Initially, we connect five mod-
ules in a simple chain formation as the body formation itself
is not yet in our focus. The task is to move as far as possible
by utilizing the hinge in each module only (no wheels).

Artificial Homeostatic Hormone Systems
In AHHS, sensors trigger hormone secretions, which
increase hormone concentrations in the robot. These
hormones diffuse, integrate, decay, interact and fi-
nally, affect actuators. We have analyzed AHHS con-
trollers in single robots before (Schmickl et al., 2010;
Schmickl and Crailsheim, 2009; Stradner et al., 2010,
2009). In these cases, the robot’s body was virtually divided
into compartments that hold hormones and between which
hormones diffuse. These compartments create a spatial

a a
sensor

actuatorH2H1H0

diffusion

sensor

Figure 1: Sketch of the hormone dynamics and diffu-
sion processes in an organism. Each module holds differ-
ent hormones with different concentrations, hormones dif-
fuse through the organism based on a diffusion coefficient
evolved individually for each hormone, module locations
(e.g., elevation) are not relevant for diffusion; sensor settings
simplified, actually four proximity sensors per module.

context (embodiment) by associating sensors and actuators
with explicit compartments (e.g., left proximity sensor and
left wheel actuator are associated with the left compartment
and hence depend only on hormone concentrations of
this compartment). In the case of modular robotics, the
subdivision of the robot organism is naturally defined by
the modules themselves. A virtual compartmentalization is
not necessary and hormones diffuse from module to module
(see Fig. 1). A first small case study with organisms built
from three modules was reported in (Hamann et al., 2010).

AHHS1
We call the AHHS, initially presented in (Schmickl et al.,
2010; Schmickl and Crailsheim, 2009), AHHS1. An AHHS
consists of a set of hormones and a set of rules. On the one
hand, it defines production/decay rates and diffusion coeffi-
cients for each hormone. On the other hand, it defines by
rules the production through sensors and interaction of hor-
mones as well as their influence on actuators. There are four
types of rules. Sensor rules define the production of hor-
mone through sensor input. Actuator rules define the con-
trol of actuators through hormone concentrations. Hormone
rules define the interaction between hormones, that is, one
hormone triggers the production of another hormone (or it-
self). Additionally, there is an idle rule to allow a direct
deactivation of rules through mutations. Rules are triggered
at runtime, if a certain threshold is reached (sensor values
in case of sensor rules or hormone concentrations in case of
hormone rules). The amount of produced hormone or the
actuator control value are linearly depending on the control-
ling sensor or hormone respectively (‘λx + κ’). For more
details see Schmickl et al. (2010).

AHHS2
Based on AHHS1 we designed an improved variant called
AHHS2. The guiding principle of this improved controller
design was to gain higher evolvability by creating smoother
fitness landscapes. There were three main changes.
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First, we introduced an additional rule type that implements
nonlinear hormone-to-hormone interactions in the general
form of ∆x/∆t = xy, wherex is the considered hormone
concentration andy is the hormone concentration of the in-
fluencing hormone that triggers the considered rule. The
idea is to increase the intrinsic dynamics (basically transient
behavior before equilibria are reached) of the hormone net-
work even without significant sensor input.
Second, a rule is not just triggered by exceeding or falling
below a threshold but is linearly weighted within a trigger
window (i.e., a tent function with a maximum of 1, defined
by a center and a width, see eq. 2 below).
Third, the mutation of rule types in the form of discrete
switches seemed to be too radical. This was overcome by
introducing a concept of weights for rule types. Now, each
rule can operate as any rule type at the same time. Each rule
has a weight for each of the five rule types summing up to
one (see Fig. 2). The influence of a rule type is proportional
to its weight, for example, the sensor-rule aspect of a rule
with a weight of 0.1 will produce only 10% of the hormone
it would produce, if its weight would be 1, seew

L
in eq. 1

below. A mutation will now only change two rule weights
by reducing one byw and addingw to the other weight. In
a well adapted controller we would expect that the weights
of a rule are mainly concentrated on one or at most two rule
types. Other weight distributions should be transitional only
because specialization allows for better optimization.
The mathematical closed-form of this concept using the ex-
ample of a linear hormone rule type is

L(t) = w
L
θ(Hk(t))(λHk + κ), (1)

whereL(t) is the hormone amount that is to be added to the
considered hormone at timet, w

L
is the weight of the linear

hormone rule (see Fig. 2),k is the index of the input hor-
mone andHk is its concentration,λ is the dependent dose,
κ the fixed dose.θ is called trigger function and defined by

θ(x) =

{

1

η
(η − |x − ζ|) if |x − ζ| < η

0 else
, (2)

for trigger window centerζ and trigger window widthη. For
a more detailed introduction of AHHS2 and for a compari-
son of the AHHS approach to the standard ANN approach,
see Hamann et al. (2010).
Note that the rule parameters (fixed dose, input hormone,
trigger window etc.) are correlated via the rule types. For
example, the input hormone is used for both the linear and
the nonlinear hormone rule. If we would allow indepen-
dent parameters for each rule type the genome (encoding
of the controller) size would be increased by a factor of
about three. This is a tradeoff in the complexity of the
genome and, for example, a difficulty when analyzing the
results. This is related to the completeness-vs-compactness
challenge (Mataríc and Cliff, 1996).

one of
any rule type
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Figure 2: Rule type weights of the AHHS2 approach com-
pared to AHHS1 (abbreviations: sensor rule, linear hormone
rule, nonlinear hormone rule, actuator rule).

Investigated scenarios

Our main focus is on the field of modular robotics and our
main concern is whether we are able to evolve fast loco-
motion in the gait learning task. Still, we tested the AHHS
approach also in an inverted pendulum task as well, due to
its lower computational complexity.

Inverted pendulum

In addition to the gait learning task, we tested the AHHS
approach in a task that is easier to handle: balancing the in-
verted pendulum (see Fig. 3). The computational demand of
the gait learning task is very high due to the sophisticated
simulation of physics. We satisfy the need for a simula-
tion of lower computational complexity by introducing the
inverted pendulum task. Higher statistical significance of
the results can be reached within reasonable time of com-
putation. The original inverted pendulum is only slightly
related to a real robotic task. Therefore, we adapted it to
our requirements. The sensors are noisy (equally distributed
and uncorrelated in time,±2.3%) and sampling rates of
sensors are low which is documented by the relation be-
tween the cycle lengthτ and the maximal angular velocity
of 0.05π[1/τ ] = 9◦[1/τ ]. The pendulum can move up to
9◦ between two calls of the controller. The controller has
little time to adapt to new configurations. Furthermore, the
sensors do not deliver actual angles and positions directly
but partitioned onto several sensors and also relative rather
than absolute (distance to wall instead of the crab’s posi-
tion etc.). The AHHS controls two outputs, left actuatorA0

and right actuatorA1, while the speed control of the crab is
determined by their difference. The pendulum is started in
the lower equilibrium position, so the nonlinear up-swinging
phase is included. Combined with the sensor noise it is im-
possible for the controller to balance the pendulum in the
upper equilibrium position. So the task stays dynamic and
the controller is exposed to new situations constantly. The
fitness function is the summation over all time steps of the
angular distance to the top position in radians.
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φ

Figure 3: Inverted pendulum, pendulum free to move full
360◦ mounted on the crab that moves in one dimension
(left/right) bounded by walls.

Figure 4: Two connected prototypes of the projects
SYMBRION (2010) and REPLICATOR (2010).

Gait learning in multi-modular robotics

Gait learning in legged robotics is a commonly studied task
in evolutionary robotics as reported by Nelson et al. (2009).
However, here we investigate gait learning in multi-modular
robotics. Each module consists of one hinge and we con-
nect five modules. These five hinges are controlled decen-
trally although the modules have a low-level communication
channel by means of diffusing hormones.
In contrast to the standard tasks of gait learning and collision
avoidance, the challenge of gait learning in multi-modular
robotics is more complex. The resulting gait is emergent due
to the decentral and cooperative control of the actuators. In
addition, there are several conceptionally different solutions,
that is, different techniques of locomotion with good perfor-
mance (e.g., caterpillar-like, erected walk, small jumps).
In each module the same controller is executed. Therefore,
the gait learning task includes several sub-tasks. The organ-
ism has to break the symmetry (head and tail), synchronize
through collective cooperation, and start moving into a com-
mon direction. This synchronization aspect is similar to the
gait learning task for a legged robot with HyperNEAT by
Clune et al. (2009).
All of this work is based on simulations as the actual hard-
ware is not yet available (see Fig. 4 for a current pro-
totype of Symbrion and Replicator (SYMBRION, 2010;
REPLICATOR, 2010)). We use the simulation environment
Symbricator3D by Winkler and Ẅorn (2009) that was de-
veloped for these projects. We use the current prototype
design in the simulation (imported CAD data) as described
in (Levi and Kernbach, 2010). However, we simplified the

sensor setting to four proximity sensors (equally distributed
around the robot shifted by 90 degrees: upwards, forwards,
downwards, backwards). Symbricator3D is based on the
game engine Delta-3D and currently uses the Open Dynam-
ics Engine for the simulation of dynamics. The simulation
of friction and momentum is important because the evolved
gait behaviors rely on them. A drawback is that high compu-
tational complexity limits the number of evaluations in our
evolutionary runs. We are interested in systems that evolve
useful behaviors within a few hundred generations and with
small populations (order of 10).
We have tested the AHHS controllers with two variants of
the simulation framework. In the first version, the forces in
the joints, that connect the modules, were damped and small
displacements of the modules at the joints were allowed (i.e.,
simulation reacts moderately to big forces). It turned out that
caterpillar-like locomotion was favored because the damped
joints support wave motion. In the second version, the joints
were fully fixed. In this version of the simulation the evolu-
tion of locomotion is more difficult which will be reflected
by the best fitnesses in the following.
We start the scenario with five robot modules which are sim-
ply connected in a chain. Initially this robotic organism is
placed in the center of the arena. In order to increase the
complexity of the gait learning task, the central area is sur-
rounded by a low wall forming a square (its height is about
half the height of a robot module). Outside the wall sev-
eral cubes are placed that could only be sidestepped by the
organism. An identical robot controller is uploaded to the
memory of all five modules. The robot modules have to fig-
ure out their position (their role within the configuration),
that is, they have to break the symmetry of the configuration
in order to generate a coordinated gait. This is, for exam-
ple, possible because of different outputs of proximity sen-
sors depending on the modules’ positions. There are three
classes of modules defined by their characteristic sensor in-
puts: front module, back module, and modules in between.
We use identical controllers because we want to apply them
to dynamic body shapes in our future work and also a single
module should have all functionality. Hence, uploading het-
erogeneous controllers with predefined roles would not be
an option. In addition, using self-organized role assignment
will allow for high scalability (using the same controller for
different body sizes), plasticity (reorganization of roles in
changing body shapes), and new role types might emerge
that were unthought of by the human designer.
The fitness is defined by the covered distance of the organ-
ism. It is an aggregate fitness function (Nelson et al., 2009)
that evaluates the organism’s performance as a whole. Al-
though the organisms might achieve advancements early in
the evolutionary run, there is a bootstrapping problem. For
example, the downward proximity sensors will not give sig-
nificant input until the organism has figured out how to erect
the modules in the middle. In addition, controllers cannot
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Figure 5: Inverted pendulum, AHHS1 with 60 rules,
AHHS2 with 15 rules, comparison of fitness and evolution
speed (generation when 75% of max. fitness was reached).

evolve special techniques to climb the wall before they have
actually managed to move the organism there to explore it.

Results and discussion
Inverted pendulum

The evolutionary runs of the inverted pendulum were per-
formed with a population of 200 randomly initialized con-
trollers. The AHHS was set to 15 hormones. For AHHS1
60 rules were used and 15 for AHHS2. The runs were
stopped after 200 generations. Linear proportional selection
was used and elitism was set to one. The mutation rate was
0.15 per gene with a maximal, absolute change of range 0.1.
The recombination (two-point crossover) rate was 0.05.
For this task we configured AHHS with a left and a right
compartment. The left compartment incorporates the left
actuatorA0, the left proximity sensor, the sensors giving the
angles of the pendulum when it is in the left half etc. and for
the right compartment respectively.
The comparison of the best controllers of each run is shown
in Fig. 5(a). In this scenario, AHHS2 performs significantly
better than AHHS1 although in terms of evolution speed
there is no significant difference (see Fig. 5(b)). The AHHS2
design is the better choice in this task. The cause of the ad-
vantage of AHHS2 over AHHS1 in this task compared to
the indistinct situation in the gait learning task is unclear.
In future studies we will investigate whether this trend will
also be observed in more complex tasks from the domain of
multi-modular, evolutionary robotics.
One of the best evolved AHHS2 controllers showing inter-
esting behavior is analyzed in the following1. While it is
not possible to keep the pendulum in the upper equilibrium
for longer time due to noise, the controller still tries to maxi-
mize the time the pendulum is close to the upper equilibrium
mostly by small displacements of the crab. The controller
is mainly based on one hormone (H0), and four rules (see
Fig. 6). SensorS0 reaches its maximum, if the pendulum ap-
proachesφ = 0 (top position) from the left. It triggers small
displacements of the crab to the right, a behavior that keeps
the pendulum turning counterclockwise with slow passes at

1
http://heikohamann.de/pub/hamannEtAlAlife2010pend.mpg
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Figure 6: Inverted pendulum, analysis of one of the best
evolved AHHS2 controllers; only most relevant rules of the
evolved behavior are shown.

the top position. SensorS9 gives the intensity of negative
angular velocities of the pendulum (clockwise turns) and
triggers moves of the crab to the left. The proximity sen-
sors are not used at all. The walls are avoided by the crab
movements depending on position and turning direction of
the pendulum. Hence, the position of the crab is virtually
encoded in the motion of the pendulum.
See Fig. 7 for the sensor, hormone, and actuator dynamics.
This sample run begins with an initial (t < 50) move of the
crab from the center to the outer left due to transient dy-
namics ofH0 in the left compartment (see Fig. 7(a)). This
motion implements the up-swinging of the pendulum and
is followed by ten small displacements of the crab to the
right to keep the pendulum swinging counterclockwise. At
t = 1093 the turning direction of the pendulum changes (see
Fig. 7(b)). A sequence of right-left movements is initiatedto
reestablish the counterclockwise turning. Later att = 1933
a phase of low angular velocity is reached which causes ir-
regular movements of the crab that hold the pendulum close
to the top position.

Gait learning

The evolutionary runs of the gait learning task were per-
formed with a population of 20 randomly initialized con-
trollers. The configuration of the AHHS was set to 5 hor-
mones. The number of rules was varied between 20 and
300. The runs were stopped after 200 generations. Linear
proportional selection was used and elitism was set to one.
The mutation rate was 0.15 per gene (rule or hormone, with
a maximal, absolute change of range 0.1). The recombi-
nation (two-point crossover) rate was 0.05. One run of the
evolution (full 200 generations) took about 28 hours of CPU
time (on a single core of a standard, up-to-date desktop PC).
In the first version of the simulation (damped joints), the
evolved behaviors reach high fitness values for all investi-
gated settings of the AHHS (see Fig. 8). Directly approach-
ing the wall yields a fitness of about 0.7, getting one half of
the modules over the wall yields a fitness of 0.8, and a fitness

http://heikohamann.de/pub/hamannEtAlAlife2010pend.mpg


Proc. of the Alife XII Conference, Odense, Denmark, 2010 778

0

1

 0  500  1000  1500  2000  2500  3000
0

1

t

le
ft

rig
ht

(a) most relevant hormoneH0 (upper and lower half, red), actuator
left A0 (upper half, black), rightA1 (lower half, black)

0

1

 0  500  1000  1500  2000  2500  3000
0

1

t

le
ft

rig
ht

(b) pendulum angle sensorS0 for 0 < φ < π/2 (purple), negative
angular velocity sensorS9 (lower half, yellow)

Figure 7: Inverted pendulum, most relevant hormone, sen-
sors, and both actuator control values for both compartments
(left and right) of the evolved behavior.

0.
0

1.
0

2.
0

AHHS1
120

AHHS1
300

AHHS2
30

n = 8 n = 13 n = 13

fit
ne

ss

(a) fitness

0
50

15
0

AHHS1
120

AHHS1
300

AHHS2
30

n = 4 n = 9 n = 10

ge
ne

ra
tio

n

(b) generation

Figure 8: 5-module gait learning with damped joints, com-
parison of fitness and evolution speed, which is indicated
by the generation in which 75% of the overall max. fitness
(1.41 = 0.75 × 1.88) was reached (if at all).

of above 1 is reached, if the wall is overcome. Typically the
evolved behaviors rely on two or three of the five provided
hormones only and make use of less than ten rules. However,
a too low number of rules results in too little exploration of
the behavior space. Based on preliminary tests we decided
to use 30 rules for AHHS2. One AHHS2 rule is potentially
active for each rule type, which corresponds to four active
AHHS1 rules. However, AHHS2 cannot optimize the pa-
rameters for each rule type individually. Still, we tested the
AHHS1 with 120 rules and also with a much higher number
of 300 rules. The results show no statistical significant dif-
ferences but show in a trend that the AHHS1 does not reach
comparable results as AHHS2 with corresponding rule num-
bers. In addition, the behaviors evolved by AHHS1 show
high variance depending on the deterministic chaos through
the complex system (simulation of physics).
Using the second version of the simulation (fixed joints), we
have tested smaller differences in the number of rules be-
tween AHHS1 and AHHS2. The results show that the more
realistic simulation of the joints complicates the evolution
of fast locomotion. However, the favoring of caterpillar-like

locomotion is reduced significantly and especially in case of
AHHS2 an unexpected vast diversity2 of different locomo-
tion paradigms is observed (see Fig. 9 for a short collection).
Basically we observed three classes of locomotion: erected
walking behavior, caterpillar-like locomotion, and locomo-
tion through jumps. The behaviors evolved using AHHS1
were less diverse. Quantifying these differences will be the
focus of future studies.

(a) walking (b) upside down over wall

(c) independent hinges (d) caterpillar-like

(e) jumping (f) warping over the wall

Figure 9: Screenshots showing the diversity of evolved loco-
motion paradigms (colors represent three selected hormones
in the primary colors according to the RGB color model).

The comparison of the best evolved behaviors is shown in
Fig. 10(a) and the speed of evolution is shown in Fig. 10(b).
55% of the AHHS2-runs with 50 rules and 38% of the
AHHS1-runs with 80 rules reach a best fitness that is within
80% of the theoretical maximum fitness of about 1.7. Sig-
nificant results are only reached for AHHS1 with 20 rules
compared to both AHHS1 with 80 rules and to AHHS2 with
50 rules. Noticeable is the bad performance of AHHS2 with
just 20 rules both in terms of final best fitness and speed of
evolution. From our observations we speculate that the ini-
tial exploration (during few of the early generations) of the
search space (basically the sensory-motor configurations)is
a relevant feature. Identifying the actual shortcoming of
AHHS2 in this context is part of our future research.

2
http://heikohamann.de/pub/hamannEtAlAlife2010.mpg

http://heikohamann.de/pub/hamannEtAlAlife2010.mpg
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Figure 10: 5-module gait learning with fixed joints, com-
parison of fitness and evolution speed, which is indicated by
the generation in which 75% of the overall max. fitness was
reached (if at all).

One important aspect in the differences between the two
controller types seems to be the different triggering of rules
in AHHS1 and AHHS2. The behaviors of AHHS1 clearly
show more fast-paced movements. With damped joints this
seems to be a disadvantage as smooth movements are less
likely. Using the fixed joints this sometimes results in fast
locomotion through little jumps.
The evolved structures are complex and the underlying pro-
cesses are often counter-intuitive. The in-depth analysisof
individual behaviors is alleviated by considering the number
of steps a rule has been active (triggered). Typically, about
one third of the rules trigger never or very seldom.

Post-evaluation and analysis

We have investigated the behavior of one of the best evolved
AHHS2 controllers in the second version of the simulator.
It shows a dynamic caterpillar-like motion3. It is noticeable
that the rules show characteristics of specialization and op-
timization. For example, often the (floating) index of the
output hormone is close to an integer (i.e., the rule’s effect
is mostly limited to one hormone) and often a rule weights
are above 0.5 showing the specialization of those rules. For
the investigated controller we have identified three most rel-
evant hormones:H2, H3, andH4. The angle of the hinge is
mainly controlled by hormonesH3 andH4 (see Fig. 11(a).
High values ofH4 turn the hinge towards+90◦ while any
value ofH3 > 0 turns the hinge towards−90◦. As a re-
inforcing effect there is a hormone rule that decreasesH4,
if H3 > 0. H2 shows the influence by diffusion of hor-
mones through the organism (see Fig. 11(b). A decreasing
concentration in the back module is consequently followed
by a decrease in the second last, middle, and second first
module, hence, forming a hormone wave that is propagating
through the organism. Finally, we investigated the influ-
ence of mutations. The leading design paradigm of AHHS2
was to improve the causality of the mutation operator (small
changes in genome result in small changes in the behavior).
This was done exemplarily by taking an evolved controller

3
http://heikohamann.de/pub/hamannEtAlAlife2010ind.mpg
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Figure 11: 5-module gait learning with fixed joints, analysis
of the evolved behavior.
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Figure 12: Fitness landscape neighborhood, fitness his-
togram of 35 samples of mutated controllers, fitness of the
original controller is for AHHS1: 0.84, for AHHS2: 0.81.

from each type. For both we produced 35 controllers by ap-
plying the mutation operator once for each. The evaluated
fitnesses of these 35 controllers are shown as a histogram in
Fig. 12. For AHHS1 the majority of mutated controllers had
a fitness of less than 0.2. For AHHS2 the majority of mu-
tated controllers reached about the original fitness. For both
types some controllers reached higher fitness due variance
introduced by deterministic chaos in the simulated physics.

Conclusion and Outlook
We have reported the application of our hormone control
approach to the domain of evolutionary modular robotics.
The automatic synthesis of controllers, that facilitate loco-
motion of organisms built from five robot modules, has been
effective in a majority of the evolutionary runs. Almost all
evolved controllers are able to generate a form of locomo-
tion that takes the organism at least to the wall. A majority
of the evolved controllers were able to overcome the wall.
An unexpected vast diversity of locomotion paradigms was
evolved especially in the second version of the simulation.
On the one hand, this shows the complexity of the gait learn-
ing task in modular robotics because there are many solu-
tions of similar utility. On the other hand, it shows the diver-

http://heikohamann.de/pub/hamannEtAlAlife2010ind.mpg
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sity of behaviors representable by AHHS controllers.
Whether the redesigned controller AHHS2 is generally su-
perior to the original AHHS1 design is still an open question.
However, in case of the inverted pendulum it performs sig-
nificantly better. In the gait learning scenario AHHS2 shows
a higher diversity and behaviors with smoother movements
resulting in more reliable locomotion.
There are many open issues and this research track is rather
at its beginning. Our future research will include the follow-
ing. The different possibilities of initializations need to be
investigated extensively. For example, the controllers could
be initialized with specialized sensor, hormone, and actua-
tor rules (i.e., weights of 1). Scalability and more complex
tasks from the domain of modular robotics will be inves-
tigated (e.g., organisms with more modules). We plan to
use environmental incremental evolution (e.g., steadily in-
creasing heights of walls) as reported by Nakamura et al.
(2000). The dynamic adaptation of rule numbers by evo-
lution will be investigated. Hence, we will evolve hor-
mone reaction networks through complexification similar to
(Stanley and Miikkulainen, 2004). Finally, we plan to check
the controllers’ exploration of the sensory-motor space, es-
pecially, during the initial generations to get a better under-
standing of what facilitates a high diversity of solutions.
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Abstract

This paper focuses on the well-known problem in behavioral
robotics – “what to do next”. The problem addressed here
lies in the selection of one activity to be executed from multi-
ple regulative, homeostatic and developmental processes run-
ning onboard a reconfigurable multi-robot organism. We con-
sider adaptive hardware and software frameworks and argue
the non-triviality of action selection for evolutionary robotics.
The paper overviews several deliberative, evolutionary and
bio-inspired approaches for such an adaptive action selection
mechanism.

Introduction
Evolutionary robotics is a well-established research field,
which combines several such areas as robotics, evolutionary
computation, bio-inspired and developmental systems (Nolfi
and Floreano, 2000). This field is characterized by multiple
challenges related to platform development, onboard fitness
evaluation, running time of evaluation cycles and other is-
sues (Levi and Kernbach, 2010). Synergies between recon-
figurable robotics and evolutionary computation are of spe-
cial interest, because here the high developmental plasticity
of the hardware platform can be exploited to realize the goal
of adaptivity and reliability.

Modern reconfigurable multi-robot systems possess very
high computational power and extended communication for
performing evolutionary operations on-board and on-line.
These hardware capabilities allow us to extend the soft-
ware framework to include the whole regulative, homeo-
static and evolutionary functionality for achieving long-term
autonomous behavior of artificial organisms (Levi and Kern-
bach, 2010). In this work we focus on the issues of run-
ning multiple control processes on board the robot. These
processes are created by evolutionary development, home-
ostasis and self-organizing control, learning, and middle-
and low-level management of software and hardware. Some
of these processes will have a protective role in preventing
the mechatronic platform from harm during the evaluation
phases. We expect that regulative and developmental pro-
cesses will, in some situations, contradict each other and

thus come into conflict. Multiple difficulties with action se-
lection mechanisms are well-known in robotics (Prescott,
2008). When applied to evolutionary robotics these cre-
ate problems related to, for instance, credit assignment
(Whitacre et al., 2006), self-organization and fitness evalua-
tion (Floreano and Urzelai, 2000), and robustness of behav-
ioral and reconfiguration strategies (Andersen et al., 2009).

More generally, action selection is a fundamental prob-
lem in artificial systems targeting long-term autonomous
and adaptive behavior in complex environments, especially
when such a behavior is expected to be evolved (Gomez and
Miikkulainen, 1997). Current thinking and experience sug-
gests that several architectures, e.g. subsumption, reactive,
insect-based or others (Brooks, 1986), need to be consid-
ered as a framework around bio-inspired and evolutionary
paradigms for complex behaviorial systems.

This work is an overview paper, which introduces the
problem of action selection in evolutionary modular robotics
and considers a combination of behavioral, bio-inspired and
evolutionary approaches for its solution. Firstly, the field
of morphogenetic robotics is outlined in Sec. II, then the
high complexity of the regulatory framework is underlined
in Sec. III. Sec. IV reviews a number of approaches to ac-
tion selection, from the literature. Secs. V and VI present
several evolutionary and bio-inspired approaches, based on
a combination of fixed, self-organized and evolvable con-
trollers and hormone-based regulation. Sec. VII concludes
this work.

Morphogenetic Robotics

Artificial developmental systems, in particular developmen-
tal (epigenetic) robotics (Lungarella et al., 2003), is a new
and emerging field across several research areas – neuro-
science; developmental psychology; biological disciplines
such as embryogenetics; evolutionary biology or ecology;
and engineering sciences such as mechatronics, on-chip-
reconfigurable systems or cognitive robotics (Asada et al.,
2009). The whole research area is devoted to ontogenetic
development of an organism, i.e. from one cell to multi-
cellular adult systems (Spencer et al., 2008).
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A closely related field is evolutionary robotics (Nolfi and
Floreano, 2000), which uses the methodology of evolution-
ary computation to evolve regulative structures of organisms
over time. Evolutionary robotics tries to mimic biologi-
cal processes of evolution (Elfwing et al., 2008), but also
faces challenges of embodiment, the reality gap, adaptation
or running on-line and on-board a smart microcontroller de-
vice (Baele et al., 2009).

In several aspects developmental and evolutionary
methodologies differ from each other:

• “ ... should try to endow the [developmental] system with
an appropriate set of basic mechanisms for the system to
develop, learn and behave in a way that appears intelli-
gent to an external observer. As many others before us,
we advocate the reliance on the principles of emergent
functionality and self-organization...” (Lungarella et al.,
2003);

• “evolutionary robotics is a new technique for the au-
tomatic creation of autonomous robots. Inspired by
the Darwinian principle of selective reproduction of the
fittest, it views robots as autonomous artificial organisms
that develop their own skills in close interaction with the
environment and without human intervention” (Nolfi and
Floreano, 2000).

Despite differences, evolutionary and developmental ap-
proaches share not only common problems, but also some
ways to solve them, it seems that both are merging into one
large area of self-developmental systems (Levi and Kern-
bach, 2010).

Both developmental and evolutionary methodologies im-
pose a set of prerequisites on a system; one of the most im-
portant is that it should possess a high degree ofdevelopmen-
tal plasticity. Only then can an organism be developed or
evolved. Developmental plasticity requires a specific flexi-
ble regulative, homeostatic, functional and structural organi-
zation – in this respect evolutionary/developmental systems
differ from other branches of robotics. Since collective sys-
tems, due to their high flexibility and cellular-like organiza-
tion, can provide such a versatile and re-configurable orga-
nization – collective robotics is a suitable subject for appli-
cation of evolving and developmental approaches.

The approach used in our work is based on modularity
and reconfigurability of the robot platform, as shown in
Fig. 1. Individual modules possess different functionality
and can dock to each other. Changing how they are con-
nected, an aggregated multi-robot system (organism) pos-
sesses many degrees of structural and functional freedom.
With a self-assembly capability, robots have control over
their own structure and functionality; in this way different
“self-*” features, such as self-healing, self-monitoringor
self-repairing can emerge. These self-* features are related
in many aspects to adaptability and evolve-ability, to emer-

gence of behavior and to controllability of long-term devel-
opmental processes. The self-issues are investigated in man-
ufacturing processes (Frei et al., 2008), distributed systems
(Berns and Ghosh, 2009), control (Brukman and Dolev,
2008), complex information systems (Babaoglu et al., 2005)
and cognitive sensor networks (Boonma and Suzuki, 2008).

(a) (b)

(c)

Figure 1: (a), (b) Real prototypes of aggregated robots
from the SYMBRION /REPLICATOR projects;(c) Image of
the simulated multi-robot organism.

The platform, shown in Fig. 1 is a complex mechatronic
system. Each module includes the main CPU, intended
for behavioral tasks that require high-computational power.
This CPU is a Blackfin double-core microprocessor with
DSP functionality, which can run with up to 550MHz core
clock and supports aµCLinux kernel. It possesses an effi-
cient power management system and in its current version
the main CPU can utilize 64Mb SDRAM. Peripheral tasks,
e.g. sensor-data processing, control of brushless motors,
power management and others are executed by several ARM
Cortex and low-power MSP microcontrollers. Each module
has an energy source with a capacity of about 35Wh. All
of them are connected through Ethernet and a power shar-
ing bus. In the next section we briefly discuss a framework
of software controllers, developed for this system and intro-
duce the problem of action selection.

Controller Framework, Middleware
Architecture and the Need for Action Selection
In robotics, there are several well-known control ar-
chitectures, for example subsumption/reactive archi-
tectures (Brooks, 1986), insect-based schemes (Chiel
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et al., 1992) or structural, synchronous/asynchronous
schemes (Simmons, 1991). An overview of these and other
architectures can be found in (Siciliano and Khatib, 2008).
Recently, multiple bio-inspired and swarm-optimized
control architectures have appeared e.g., (Kernbach et al.,
2009b). In designing the general control architecture, we
face several key challenges:

• Multiple processes. Artificial organisms execute
many different processes, such as evolutionary develop-
ment, homeostasis and self-organizing control, learning,
middle- and low-level management of software and hard-
ware structures. Several of these processes require simul-
taneous access to hardware or should be executed under
real-time conditions.

• Distributed execution. As mentioned, the hardware pro-
vides several low-power and high-power microcontrollers
and microprocessors in one robot module. Moreover, all
modules communicate via a high-speed bus. Thus, the
multiprocessor distributed system of an artificial organ-
ism provides essential computational resources, however
their synchronization and management are a challenge.

• Multiple fitness. Although fitness evaluation using lo-
cal sensors is mentioned in the literature, here we need to
stress the problem of credit assignment related to the iden-
tification of a responsible controller, see e.g. (Whitacre
et al., 2006)). Since many different controllers are simul-
taneously running on-board, the problem of credit assign-
ment as well asinterference between controllersis criti-
cal.

• Hardware protection. Since several controllers use the
trial-and-error principle, the hardware of the robot plat-
form should be protected from possible damage caused
during the controllers’ evolution.

Corresponding to the hardware architecture, the general con-
troller framework is shown in Fig. 2. This structure fol-
lows the design principles, originating fromhybrid delibera-
tive/reactive systems, see e.g. (Arkin and Mackenzie, 1994).
It includes rule-based control schemes, e.g. (Li et al., 2006),
as well as multiple adaptive components. The advantage of
the hybrid architecture is that it combines evolvability and
the high adaptive potential of reactive controllers with delib-
erative controllers. The latter provide planning and reason-
ing approaches that are required for the complex activities
of an artificial organism.

Meeting the challenges above raises the issue of choosing
a suitable underlying middleware with an adequate architec-
ture. As mentioned, a dual-core DSP with aµCLinux will be
used as the main CPU. This approach provides much flexi-
bility and facilitates rapid development, for instance in the
use of shared standard libraries (e.g., STL, Boost and oth-
ers). Although the DSP is relatively powerful computation-
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Figure 2: General controller framework. All con-
trollers/processes are distributed in the computational sys-
tem of an artificial organism, OS – operating system. Struc-
ture of controllers utilizes hybrid deliberative/reactive prin-
ciple.

ally (given its power consumption), it nevertheless imposes
some restrictions that need to be addressed.

The most important limitation may be the fact that there is
no hardware memory management unit (MMU). Due to the
way theµCLinux software MMU works, we decided to de-
sign the controller framework as a set of competing applica-
tions; an approach that is quite common for UNIX environ-
ments (Tanenbaum and van Steen, 2008). For communica-
tion within the controller framework a message based mid-
dleware system has been implemented. This provides the
necessary flexibility needed to implement an event-driven
system without having to determine all of the timing con-
straints in advance (Tanenbaum and van Steen, 2008). Sock-
ets serve as the only mechanism for inter-process commu-
nication. Although this may appear to be a disadvantage
it yields some very important benefits. First, there is only
one standard communications interface defined in advance,
with attendant benefits in parallel development across mul-
tiple teams. Second, and with regard the robustness of the
system; if, for example, a certain controller crashes, the im-
pact of that crash is limited to a single process within the
system. All the other applications remain functional and the
system may even restart the crashed process later on. The
same applies to the middleware itself, as it conforms to the
same rules. The approach assures that connections once es-
tablished are not harmed even if, for example, the addressing
module itself is faulty and, therefore cancelled by the oper-
ating system (the only limitation here will be the creation
of new connections as this is impossible without address-
ing modules). For connections to other robot modules via
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Ethernet the same socket mechanism is used, as for stan-
dard Ethernet communications. With this framework we are
able to create several controllers which use, for example,
evolutionary engines with a structure encoded in an artifi-
cial genome. It is assumed that there are also a few task-
specific controllers placed hierarchically above other con-
trollers. These task-specific controllers are in charge of the
macroscopic control of an artificial organism. They may, for
instance, use deliberative architectures with different plan-
ning approaches, e.g. see (Weiss, 1999).

Finally, a hardware protection controller closes the fit-
ness evaluation loop for the evolvable part of the con-
trollers (Kernbach et al., 2009a). This controller has a re-
active character and monitors activities between the action
selection mechanism and actuators as well as exceptional
events from the middleware. It prevents actions that might
immediately lead to damage to the platform (e.g., by me-
chanical collisions).

The action selection mechanism is one of the most com-
plex elements of the general controller framework. This
mechanism reflects a common problem of intelligent sys-
tems, i.e. “what to do next”, (Bratman, 1987). This problem
is especially challenging in evolutionary robotics for sev-
eral reasons. Firstly, the fitness evaluation loop will include
a combination of different controllers, so it may be diffi-
cult to find a unique correlation between a specific evolved
controller and its own fitness value. Secondly, several con-
trollers on different levels will be simultaneously evolved,
so that some co-evolutionary effects may appear. Among
other problems, we should also mention the multiple co-
dependencies between fixed, self-organized and evolving
controllers.

Action Selection Mechanism
Formally, action selection is defined as follows: “given an
agent with a repertoire of available actions ... the task is to
decide what action (or action sequence) to perform in or-
der for that agent to best achieve its goals” (Prescott, 2008).
Within the context of the projects general controller frame-
work shown in Fig. 2, the role of the action selection mech-
anism is to determine which controller(s) are driving the ac-
tuators at any given time. At one level the action selection
mechanism can be thought of as a switch, selecting which
of the controllers is connected to the actuators; however a
simple switch would fail to provide for, firstly, smooth mo-
tor transitions from one controller to another and, secondly,
the fact that in this hybrid deliberative/reactive architecture
some controllers will need to be prioritized for short time
periods (e.g., for obstacle avoidance) whereas others need
periods of control over longer time spans (perhaps subsum-
ing low-level reactive elements) to achieve high level goals.
In practice, therefore, the action selection mechanism will
need to combine some or all of the following elements:

• prioritization of low-level reactive controllers so that they

are given control with very low latency;

• vector summation or smoothing between some controller
outputs in order to achieve jerk free motor transitions on
controller switching, and

• a time multiplexing scheme to ensure that different con-
trollers are granted control with a frequency and for time
periods appropriate to achieving their goals.

Action selection mechanisms have been the subject of re-
search in both artificial and natural systems for some years,
see for instance (Maes, 1990; Hexmoor et al., 1997; Prescott
et al., 2007). However, in a recent review Bryson suggests
that no widely accepted general-purpose architecture for ac-
tion selection yet exists (Bryson, 2007). Relevant to the
present work is a review of compromise strategies for ac-
tion selection (Crabbe, 2007). A compromise strategy is one
in which instead of selecting a single controller, the action
selection mechanism combines several controller outputs in
such a way as to achieve a compromise between their (other-
wise conflicting) goals; (Crabbe, 2007) suggests that a com-
promise strategy is more beneficial for high-level than low-
level goals.

It is important to note that the action selection mechanism
embeds and encodes design rules which will critically in-
fluence the overall behavior of the robot. In order to arbi-
trate between, possibly conflicting, controller goals the ac-
tion selection mechanism will certainly need to access inter-
nal state data for the robot (i.e. from the homeostatic con-
trollers), and may need to access external sensor data. Fur-
thermore, given that those action selection design rules and
their parameters may be difficult to determine at design time,
we are likely to require an evolutionary approach; hence the
connection between the genome structure/evolutionary en-
gine and the action selection mechanism shown in Fig. 2.
We may, for instance, evolve the weights which determine
the relative priority of controllers as in (González et al.,
2006), or co-evolve both controllers and action selection pa-
rameters (González, 2007).

Evolution and Action Selection
The action selection mechanism can be seen as a two-tiered
architecture of the robot controller (Fig. 3(a)). On the lower
tier are activities like elementary actions (e.g. turn right), be-
havior routines (e.g. random walk) or sub-controllers (e.g.
sensor fusion). The upper tier is the action selection mech-
anism, that controls which activities are running at the mo-
ment.

The adaptiveness of the entire robot control can be in-
creased by applying evolutionary approaches to the differ-
ent tiers of the architecture (Fig. 3(b)):(A) Neither the con-
troller nor the action selection module adapts.(B) The ac-
tion selection is static and the activities evolve.(C) The
action selection mechanism evolves and the activities are
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Foraging Exploration ...

Action Selection Mechanism

... OthersExploration Sensor

Fusion

(a) (b)

Figure 3:(a) Two-tier architecture with action selection and
activities.(b) Evolution at the different tiers of the architec-
ture.

static. (D) Both action selection mechanism and activities
evolve.

One concept for approach(B) is a static planning system
where a plan to achieve a goal is formulated as a series of
activities described by fitness functions. At each step of the
plan, the actual controller for the corresponding activityis
evolved by online evolutionary algorithms using the fitness
function. In this way, the overarching plan does not adapt
but the execution of the individual steps evolves. Examples
for activities of such a plan can be “Sense Energy Source”
or “Robot Aggregation”.

An extreme example for approach(C) is a large mono-
lithic evolving neural network as the action selection mech-
anism. The activities are direct sensor and actuator actions,
like reading sensor values and setting motor velocities. An
increase in complexity of the activities allows a reduction
in the action selection mechanism. For example, instead of
direct commands, activities can be small controllers such
as collision avoidance or sensor fusion. With very com-
plex activities that control complete behaviors, like forag-
ing, resting or exploring for example, the action selection
mechanism can degenerate into a simple priority manage-
ment system that checks for which “needs” are the most ur-
gent. While a complex neural network can be difficult to
evolve efficiently, a priority system can be evolved easily by
parameter evolution of the weights or thresholds of different
needs and motivations.

Approach(D) offers the most flexibility and adaptiveness
of the controller architecture. This could possibly be a sim-
ple combination of(B) and (C). It is conceivable that the
action selection adapts to a changing environment by chang-
ing priorities of preferences for subordinated activities. In
case no matching controller is available for an operation, the
action selection can define new fitness functions and evolve
new activities to suit the current needs, or evolve existing
activities for extended tasks.

In the next section a hormone based controller for ap-
proach(D) is presented.

Biologically Inspired Mechanism
Artificial Hormone Control
Within the scope of the SYMBRION /REPLICATOR projects,
we follow a bio-inspired approach of decentralized co-
ordination of action selection which is distributed across
the robot modules: On the one hand, all robot modules,
that form the organism, act as autonomous units which
have a repertoire of behavioral programs available (ac-
tions/controllers). A localized action selection mechanism
is needed, which decides within each single unit which ac-
tion has to be selected. On the other hand, the whole organ-
ism has to decide “as a whole”, which action it will perform
based on its current status, on its past experience, on its cur-
rent goals, and on the current set of sensor information. To
achieve this difficult task, we developed the Artificial Home-
ostatic Hormone System (AHHS) which mimics the spread
of cellular signals (chemicals, hormones) within multicellu-
lar (metazoan) organisms (Schmickl and Crailsheim, 2009;
Stradner et al., 2009). This set of controllers, often called
“hormone controllers” allow cells (robot modules) to spe-
cialize within the robot organisms and to reflect specific
physiological states by a simple physiological model that
mimics excretion, dilution, diffusion, (chemical) interaction,
and degradation of hormones. Within the robotic organism,
gradients of hormones emerge over time, reflecting not only
the modules’ positions in the organism but also important
status information, such as the current energy level. In a hi-
erarchical approach, the globally influenced hormone status
within a robot module can help to select an optimal local
controller. In turn, the execution of local controllers can
significantly alter the hormone system, thus, via diffusion
to neighboring modules, alter the behavior of controllers in
nearby modules. This way, the AHHS controller allows not
only decentralized action selection, but also inter-modular
communication between different sub-controllers, hardware
abstraction, and sensor integration. See Fig. 4 for a graphi-
cal representation of the AHHS design as described above.
The concept of AHHS is related to gene regulatory net-
works (Bongard, 2002). However, here each edge has its
own activation threshold and redundant edges with different
activations between two hormones are allowed.

Action selection is not only about choosing the right ac-
tion but also about how selected actions integrate to low-
level motor commands in a robot (seeÖztürk, 2009). The
AHHS allows multiple hormones to affect the actuators of
the robots in parallel by integrating various chemical stimu-
lations (see Fig.5 for a schematic of this process).

In the following we present results of a simplified sce-
nario to demonstrate the principles of action selection in a
hormone controller. We restrict ourselves to a single robot
module and we use the AHHS directly to control the robot
without having sub-controllers as described in the general
concept above. However, the robot’s body is virtually sep-
arated into two compartments (c.f. Fig. 5a) between which
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Figure 4: Schematic representation of decentralized action
selection that is provided in various ‘body parts’ of the or-
ganism by the AHHS robot control.

Figure 5: In the AHHS, actuators are influenced by various
hormone states in parallel, this way allowing signal integra-
tion to produce “mixed” or blended actions.

hormones diffuse. Each compartment is associated with one
half of the robot. The left compartment contains the left
wheel and all proximity sensors of the left half (similar for
the right half).

The task of the hormone controller is to control a robot
module in a 2-D arena, to catch light emitters, and to explore
the arena. Thus, basically two actions are needed to succeed
in this task: exploration/wall avoidance and a gradient ascent
behavior. The arena consists of surrounding and additional
walls in the upper and lower third (see Fig. 6(a)). In addition,
it includes one randomly positioned emitter. Both, the walls
and the emitter, are perceived by the robot, if they are within
range of the sensors (range of light sensors about 50% and
range of proximity sensors about 10% of the arena width).
The intensity of the sensor signal depends on the distance to
the walls and the emitter, respectively. If the robot reaches
the emitter (distance< robot diameter) the emitter is erased
and reappears at a random position.

The fitness function, that is applied in the artificial evolu-
tion, rewards the successful locating of the light emitter,but
also – at smaller scale – the exploration of the arena. Thus,
the robot has to switch between the action of exploration,
if no emitter is detected (i.e., it is too far away to have any
significant impact on the sensors), and the gradient ascent,if
the emitter is detected. The trajectory of the best individual
of the 1000th generation is plotted in Fig. 6(a).

(a) circle is initial pos., crosses show sequence of emitters

-1

 0

 1

 0  500  1000  1500

H1

H2

(b) The three vertical lines indicate the time at which emit-
ters were reached; note local minima ofH2 att = 175 and
t = 647 showing the misses in approaching the emitter.

Figure 6: Robot’s trajectory using AHHS controller and the
dynamics of five hormones responsible for action selection.

The evolved hormone reaction network of the best
evolved controller is complex. We restrict ourselves to a de-
scription of the most prominent features. In the hormone
network we identify two major hormone interactions that
represent the actions: exploration/wall avoidance and gra-
dient ascent. Without any significant input the robot drives
in wide right turns forming spirals. If it approaches a wall
it avoids collisions because of two controller rules. First,
the production of hormoneH1 (see Fig 6(b)) is triggered by
the proximity sensor that points 45 degrees to the right (the
closer the wall the higher the hormone production). Sec-
ond, another rule controls the right wheel depending on hor-
moneH1. With increasing value of this hormone the wheel
is accelerated resulting in a turn to the left. Hence, a wall
following behavior emerges during which the robot keeps
the wall to the right. A question concerning action selection
is when to stop the wall following action and continuing the
gradient ascent in order to reach the light emitter. This is
controlled by hormoneH2. Its value is reduced with increas-
ing input of the left light sensor (bright light results in low
H2). A second rule controls the left wheel which is decel-
erated mainly for values ofH2 ∈ [−0.2,−0.6]. This slow-
down of the left wheel results in a left turn. Hence, the robot
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interrupts its wall following behavior and turns towards the
light (which is always to the left as the robot follows the wall
counterclockwise). Hence, we have identified the relevant
trigger (hormoneH2) for the action selection mechanism in
this hormone network. Obviously, this is a simplified appli-
cation of AHHS and in future applications we will aim for
much more complex tasks of multi-modular robotics.

Adapting Hormone Control
The hormone controllers mentioned in the previous section
are subject to evolutionary adaptation. A data structure
called “genome” contains rule descriptions and other pa-
rameters, which describe some physicochemical properties
of the simulated hormones (production rates, decay rates,
diffusion rates). In addition, these data describe how one
hormone can influence the dynamics of the concentrations
of other hormones. The genome is modified by a process of
artificial evolution, which allows the embedded action selec-
tion to adapt over time to a given body shape or to changes in
the environmental conditions. In our evolutionary approach,
the fitness of the system reflects multiple levels of adapta-
tion: The whole organism level (e.g., efficiency of shapes
and gait patterns) but also on the individual module level
(e.g., energetic efficiency of singular modules within the or-
ganism).

Conclusion
In this paper we have briefly presented hardware and soft-
ware frameworks for a reconfigurable multi-robot system.
The mechatronic platform provides a high hardware plastic-
ity in terms of structural reconfiguration, changeable loco-
motion and actuation, and sharing and distribution of power
and information. Because of the complexity of regulative,
homeostatic and evolutionary mechanisms there are multi-
ple processes that require simultaneous access to actuators.
Based on preliminary experiments these processes are ex-
pected to display contradictory characteristics. For example,
the homeostatic system can require minimization of energy
consumption, whereas the evolutionary system may require
more energy for performing evaluation runs.

The problem of action selection considered in this paper
is highly non-trivial in this context. It is not only related
to the classical problem of action selection, well-known in
robotics, but also has new aspects related to fitness estima-
tion, credit assignment, evolving of multiple controllersand
other issues. The problem of action selection requires a
complex deliberative framework and specific controller ar-
chitectures.

In this paper we have considered a hybrid controller
framework, which has reactive and deliberative components.
The evolutionary part, which consists of genome, evolution-
ary engines and evolvable controllers, represents in fact only
a small part of the whole framework. It seems that evolv-
ing all regulatory structures of real robots from scratch is

not feasible because of technology limitations, very specific
sensor-actor systems and complexity. Furthermore, it is not
fully clear whether this is a general property or is related
only to technological artefacts.

Beside the hybrid framework, this paper has proposed
evolutionary and bio-inspired solutions to the problem of ac-
tion selection. The evolutionary approach combines fixed,
self-organized and evolvable controllers; moreover the ac-
tion selection mechanism can also be integrated into the evo-
lutionary loop. The bio-inspired approach is guided by the
hormone systems and based on the distribution of hormonal
intensity (and between different hormones) in different com-
partments of a robot, and across robots in a multi-robot or-
ganism.
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Abstract

We investigate the task switching problem of a robot max-
imizing its long-term average rate of return on work per-
formed. We propose an online method to maximize the aver-
age gain rate based on only past experience. For that we alter
the formulation from optimal foraging theory and recursively
include estimates of global task qualities. We demonstrate
and analyze our method on a puck-foraging example. In sim-
ulation experiments under a variety of conditions we show
that our method performs well compared to results obtained
by brute force method using post-processed foraging data.

Introduction
Many robot applications require a robot to make task switch-
ing decisions in order to maximize its reward. Often this
reward is a diminishing function of the time spent perform-
ing the task. These diminishing returns can either be caused
by (i) exhausting a given task, for example having delivered
all mail in a given building or by (ii) increasing difficulty to
perform the task, e.g. it will be more and more difficult for a
vacuum cleaning robot1 to remove dirt as it cleans the floor.
In fact it will be virtually impossible for a vacuum cleaning
robot to remove all dirt particles and thus this task has no
well defined intrinsic end point.

In both situations the robot has to decide when it is prof-
itable to terminate the current task, pay a switching cost, and
start a new task that yields higher rewards. The switching
cost can come in form of an opportunity cost or an actual
cost such as energy expenditure, transit toll or task acquisi-
tion cost. In other words the robot has to decide when to
switch tasks in order maximize its long-term average reward
rate. This decision depends on a number of factors: how
good is the current task, how high is the switching cost and
what is the average payoff function for tasks in the robot’s
environment?

In an earlier paper (Wawerla and Vaughan, 2009) we pro-
posed a task switching policy based on the Marginal-Value
Theorem (MVT) (see Sec. Marginal-Value Theorem). This

1We assume the robot gets rewarded for the amount of dirt col-
lected and not for time spent vacuuming.

policy required the robot to perform exploration steps in or-
der to evaluate the average quality of the available tasks.
We showed that the performance of the proposed policy was
about 80% of that obtained by a near optimal policy discov-
ered by brute force search.

In this paper we propose a recursive task switching policy
based on locally available information only, hence no ex-
plicit exploration phase and thus no exploration/exploitation
trade-off is required.

The policy is applicable to other task switching situa-
tions that exhibit diminishing returns. We choose forag-
ing as an example task, since it is a canonical task in au-
tonomous robotics (Cao et al., 1997). Robot foraging often
means multi-agentcentral place foraging(Stephens et al.,
2007), where foraged items are delivered to single privi-
leged location. In contrast in this paper and our previous
work (Wawerla and Vaughan, 2009) we use solitary, instant-
consumption foraging in a patchy environment: a single
robot immediately consumes items once they are encoun-
tered obtaining a reward without the need to deliver them to
a centralized location. Items to be foraged are not distributed
uniformly, but in patches defined for Behavioural Ecology as
“an homogeneous resource containing area separated from
others by areas containing little or not resources” (Danchin
et al., 2008).

Marginal-Value Theorem

In behavioural ecology the task switching problem is of-
ten discussed in terms of optimal foraging theory (Stephens
and Krebs, 1986) as a patch leaving decision. In this con-
text patches are subject to diminishing returns and thus re-
quire the forager to make decisions about changing patches.
In this case the task switching cost the inter-patch travel
cost. An important result of optimal foraging theory is
the Marginal-Value Theorem (MVT). Charnov and Orians
(1973); Charnov (1976) proposed the MVT to model forag-
ing decisions made by animals. His key result is the follow-
ing patch leaving rule: “when the intake rate in any patch
drops to the average rate for the habitat, the animal should
move on to another patch” (Charnov and Orians, 1973). As
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a consequence an optimal forager should exploit patches for
a longer time as the inter-patch travel time increases and for
a shorter time as the entire environment becomes more prof-
itable. The simplicity of this rule makes it very appealing
as a task-switching rule for robots, but the theorem and its
validity has been widely and controversially discussed, for
example by Green (1984); McNamara (1982); Stephens and
Krebs (1986). Some of these issues make an implementation
of the MVT as a robot task switching policy impossible. The
main problems are:

• How to measure the marginal gain rate (the derivative of
the gain rate) if the reward comes in discrete lumps. An-
drews et al. (2007) suggest calculating the slope of the
gain function between the last gain function change and
the one two changes prior. In our tests (not shown) this
method proved ineffective due to the stochastic nature of
puck encounter during random foraging in patches with
randomly placed pucks. In previous work (Wawerla and
Vaughan, 2009) we used the expected value of a beta dis-
tribution over time-steps in which the robot found a puck
and those in which it did not, as a proxy for the instan-
taneous rate. While we were able to build a task switch-
ing policy around this estimated gain rate, it is not the
instantaneous gain rate. Thus leaving a patch once this
estimated gain rate equals the long-term average rate does
not maximize the long-term gain rate.

• The true long-term average gain rate for a given environ-
ment is usually unknown to the forager: all it can know
is the average gain rate it experiences. This experience
is a result of the foragers behaviour, yet the MVT re-
quires the forager to base it’s patch leaving decision on
the obtainable long-term average gain rate. This circu-
lar dependency necessitates that the forager explores the
action space in order to find the maximum long-term av-
erage gain rate. Previously (Wawerla and Vaughan, 2009)
we used this circular dependency and turned the foraging
task into a multi-armed bandit problem and applied stan-
dardε-greedy methods (Sutton and Barto, 1998) to tackle
the exploration-exploitation trade-off.

Stephens and Krebs (1986) summarize these problems as
“The MVT survives not as a rule for foragers to implement,
but as a technique that finds the rate-maximizing rule from
a known set of rules”. Since the MVT does not provide an
implemetable policy, behavioural ecologists proposed other
patch-leaving rules. (1)number rule, “leave after catching
n items” (Gibb, 1958); (2)fixed residence time rule“leave
after being in a patch fort time” (Krebs, 1973); (3)give up
time rule “leave aftert time has elapsed since the last en-
counter” (Krebs et al., 1974); (4)rate rule “leave when the
instantaneous intake rate drops to a critical valuer” (McNa-
mara, 1982). Rules 1-3 have the advantage that the decision
is based on values that are easily measurable by the forager.
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Figure 1: Average gain rate for a fixed patch residence time.
Series of 100 patches with initially 50 pucks and a patch
switching time of 500 seconds.

The rate rule is an extension of the MVT in that it copes
with variance in patch sub-types, but it does not address the
two issues mentioned above. None of these rules address
the question of how to obtain the magic number on which
the decision is based.

To illustrate the difficulty of this task-switching problem
we conducted a brief simulation experiment. For this ex-
periment we generated 100 constant size patches, each with
initially 50 pucks. Next we had the robot forage in each
patch until it was completely exhausted. For each time step
we recorded the number of pucks gained from the current
patch. From the recorded data we then calculated the av-
erage long-term gain rate as a function of patch residence
time. In other words we forced the robot to leave each patch
in a 100 patch series after a fixed time. By sweeping over
patch residence times from 10 to 8000 seconds we obtained
Fig. 1. This graph shows the long-term gain rate for a given
patch residence time for this particular patch configuration
and switching cost. The curve is interesting because it shows
how large an error (i.e. reduction on average reward gain
rate) a task-switching robot can make if switching too early
or too late. It is worth pointing out that a robot is not actually
able to measure this curve and exploit a patch optimally at
the same time. Fortunately the robot only needs to find the
maximum of the long-term gain rate and not determine the
function per se.

Having described the optimization problem, in the fol-
lowing we present a new online adaptive solution that is
grounded in the robot’s perception and achieves foraging re-
sults comparable to an idealized forager that bases its deci-
sions on global, unknowable environmental averages.
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Marginal Gain Rate Task Switching
To derive the MVT Charnov (1976) argued that an optimal
forager should maximize

R=
∑λ j ·g j(t j)− τ ·E

τ +∑λ j · t j
(1)

whereλ j is the proportion of visited patches that are of type
j, g j(t j) is the net gain function for a patch of typej, τ
is the average inter-patch travel time,E the rate of energy
expended while switching patches andt j is the time spent in
a patch of typej. The objective of a forager is to select all
patch residence timest j such thatR is maximized.

Without loss of generality we ignore the energetic cost of
travelτ ·E, since it is independent of the decision variables,
so Eq. 1 reduces to

R=
∑λ j ·g j(t j)

τ +∑λi ·Tj
(2)
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Figure 2: Typical MVT plot with two quantities on the ab-
scissa: travel time increasing to the left, and patch residence
time increasing to the right. The optimal patch residence
time Γ∗ is found by constructing a tangent to the gain func-
tion g(t) that begins at the patch switching timeτ on the
travel time axis.

Charnov showed thatR is maximized if
∂g j (t j )

∂ t j
= R.

Graphically this is easy to do. As Fig. 2 shows, the optimal
patch residence timeTj is found by constructing a tangent
to the gain function that begins at the patch switching time
τ on the travel time axis (see Stephens and Krebs (1986) for
details).

The gain functiong(t) depends on (i) the actual patch
quality, which varies from patch type to patch type but can
also be variable within a patch type, for example if the pucks
are placed randomly and (ii) on the robot environment in-
teraction, e.g. sensor range, search strategy, motor control
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Figure 3: Average gain function (thin line) for random for-
aging in a 50 puck patch, error bars depict the standard de-
viation. Two instance of the gain function (thick lines) for
patches with the same initial number of pucks.

etc. Thus foraging in two equally sized patches, initially
containing the same number of pucks, that is patches with
the same puck density, may result in two totally different
gain functions and there is no way a forager can predict
the gain function of a particular patch before entering the
patch. Fig. 3 shows two exemplar gain functions and the
average gain function over 100 patches (each patch with ini-
tially 50 pucks). Thus as McNamara (1982) argues, the sub-
patch type variance has to be considered. This immediately
raises the question how does the forager determine the type
of patch in which she is currently foraging ? In some sce-
narios the patch type might be detectable by an external cue,
but in general it is not and the forager is required to forage in
the patch in order to obtain information about the patch. This
adds a patch discrimination problem to the decision process.

To overcome these issues, we suggest dropping the notion
of patch types and treating each patch as its own type. (In
the following we still use the phrase “patch type” to mean
patches with the same initial number of pucks (same puck
density), but we do not perform any form of rate maximiza-
tion based on the notion of patch types.) For unique patches
the long-term average gain rate is

R=
1
n ∑n

i gi(ti)

τ + 1
n ∑n

i ti
(3)

We replaced the patch type indexj with index i referring to
unique patches. The advantage of not having to distinguish
patch types and not having to deal with patch subtype vari-
ance comes at the disadvantage of having a possibly very
large planning horizon ofn timesteps. In fact the planning
horizon is the lifetime of the robot. Since the robot cannot
predict the future, we avoid the large planning horizon by re-
cursively maximizing Eq. 3 based on only past experiences
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and ignoring possible future changes. Then our approxi-
mation of the long-term average gain rate while foraging in
patchi, based on observations from previously encountered
patches 0..i −1 is

R̃i =
gi(ti)+Gi

ti + τ +Ti
(4)

WhereGi is the sum of collected pucks andTi the total time
(patch residence plus travel time) from all previous patches
0..i −1. G0 andT0 can be used as a prior that provides the
robot with an initial estimate of the average patch quality.
BothGi andTi are a simple model of the average patch qual-
ity of the environment. This information (except the prior)
is gained by the forager during exploitation. Hence a for-
ager encountering only one patch type will actually maxi-
mize Eq. 2. But a forager first encountering a series of only
low quality patches and then a series of high quality patches
will maximize a very different average gain rate function
than an omniscient forager. But an uninformed forager max-
imizing Eq. 4, will do as well as possible given the limited
available information.

Robot Controller
The core of our task switching method is to maximize Eq. 4.
This is done by numerically estimating the derivative ofRi

at every time step and leaving the patch once the the deriva-
tive becomes zero. Since the gain function is assumed to be
negatively accelerated, a maximum is found this way.

Algorithm 1 summarizes our task switching method. The
robot forages for one time-step, if it collected a puck the lo-
cal gain functiong(t) is incremented (line 10-15). Next we
calculate an approximation of the long-term gain rate based
on the experience from previous patches (Gi , Ti), an estimate
of the travel timẽτ and the value of local gain function at the
current time. Because of the stochastic and noisy nature of
the gain function the estimate of the long-term gain rate has
to be smoothed. In our implementation we use a low-pass
filter (line 17-21). Other methods maybe substituted, how-
ever it performs well enough for our purpose. As mentioned
earlier the patch leaving decision is based on checking if the
derivative of the long-term gain rate is equal to zero. Again
because of the stochasticity of the gain function we might
experience a local region of zero or negative gradient, which
could be interpreted as a local maximum. A simple count-
ing step helps to overcome those undesired local maxima
(line 22-27). As with the low-pass filter, any suitable method
may substituted. The actual patch leaving decision is made
in line 27. A patch is left once a maximum is found and a
minimum amount of time has been spent in the patch. This
minimum patch residence time is helpful during the initial
time in a patch, since until the first puck is foundg(t) = 0
would cause the robot to leave the patch immediately.

Once the robot leaves the patch it travels to the next patch.
This travel takesτi time. Before starting to forage in the new

Algorithm: patchMax1

init G0, T0, τ̃, k1, k2, k3, k42

i = 13

forall patchesdo4

enter patchi5

t = 06

g(0) = 07

repeat8

t = t +19

randomly forage for one time-step10

if puck collectedthen11

g(t) = g(t −1)+112

else13

g(t) = g(t −1)14

end15

r(t) = g(t)+Gi
t+τ̃+Ti

16

if t == 1 then17

r f ilt (t) = r(t)18

else19

r f ilt (t) = (1− k3) r f ilt (t −1)+ k3r(t)20

end21

if r f ilt (t)− r f ilt (t −1)≤ 0 then22

c= c+123

else24

c= 025

end26

until c> k1 and t> k227

move to next patch inτi time28

Gi+1 = Gi +g(t)29

Ti+1 = Ti + t+ τi30

τ̃ = τ̃ + k4(τi − τ̃)31

i = i +132

end33

Algorithm 1 : Task switching algorithm

patch the estimates for the environment qualityG andT and
the estimate of the switching timẽτ are updated (line 29-30).

Experiments
To investigate the effectiveness of our approach, we con-
ducted a series of simulation experiments consisting of two
phases (i) generate foraging data and (ii) test our task (patch)
switching policy on the generated data (see Sec. Exper-
imental Data). To generate the foraging data we used a
generic mobile robot model in the well known simulator
Stage (Vaughan, 2008). The robot is equipped with a short-
range colour blob tracker to sense ‘pucks’, our unit of re-
sources, in its vicinity. The robot knows (or equivalently
can detect) the boundaries of a puck patch. Patches are 620
times the size of the robot, and contain initially 10, 30, 50,
100, 200 or 300 pucks placed uniformly at random. A min-



Proc. of the Alife XII Conference, Odense, Denmark, 2010 793

imum distance between pucks is enforced to avoid overlap.
To exploit a patch, the robot randomly forages for pucks, by
driving straight until it comes to the patch boundary, where
it chooses a new heading that brings it back into the patch, at
random. When a puck is detected, the robot servos towards
the closest puck and collects it. Collecting a puck takes one
simulation time step, so there is virtually no handling time.
At each simulation time step we record how many pucks the
robot has collected so far in the current patch: this is the gain
function.

As mentioned earlier the gain function is not only depen-
dent on the initial number of pucks per patch but also on
the robot/environment interaction. To get a good sample of
the distribution of gain functions, we randomly generate 100
patches of each of the six patch types and record the gain
functions from the robot foraging in those patches. Note that
at this point in the experiment no patch leaving decisions are
made. The robot simply forages until the patch is exhausted
and the simulation is terminated. Testing our approach on
this recorded data set rather than during the robot simulation
allows us to compare approaches on exactly the same data
and it makes it feasible to determine a near-optimal solution
by brute force solution search.

As a baseline for comparison we need to find ati for each
patch such that the long-term gain rate is maximized. No
closed form solution is known to this problem, and the gain
functions are available as data points only. So we employ a
brute force search. Since each patch is unique this techni-
cally requires us to solve Eq. 3 for all possible combinations
of patch residence times. Because this is computationally
prohibitive we resort to calculating the average gain func-
tion over all 100 instances of a patch type. Then we find
the best patch residence time by solving Eq. 3 for all possi-
ble t (0 ≤ t ≤ Tpatchexhaused) and selecting thet that maxi-
mizes the average gain rate. In case of multiple patch types
we calculate the long-term gain rate for each combination
of residence times on the average gain function. This is only
feasible since the number of patch types considered is small.

In all of the following experiments we used the obtained
long-term average gain rate as a metric for comparison. All
algorithm parameters required were set manually and kept
constant without any attempt to optimize them. The priors
G0 andT0 were set to zero. To investigate our task switching
method under a wide range of conditions we altered the task
(patch) switching timeτ from very short 10 seconds to very
long 5×106 seconds (≈6 days). To put this in perspective
we report the mean and standard deviation of observed times
required to exhaustively forage patches in Table 1. The spec-
trum reaches from almost no switching cost to a switching
cost about 200 times the average time required to exhaust a
patch.

initial pucks per patch
10 30 50 100 200 300

µ [s] 1858 2909 3631 4556 5171 5475
σ 825 1184 1271 1337 1206 1208

Table 1: Mean and standard deviation of the time required
to exhaustively forage patches

Single Patch Type

In a first experiment we had the robot forage in a series of
100 patches with the same initial number of pucks. Fig-
ure 4(a)-(f) shows the achieved long-term average gain rate
for each patch type over a variety of switching times com-
pared to the brute force solution. From the graphs we can
draw three conclusions. (i) If the task switching times are
short (i.e. much lower than the patch residence times) the
performance of our method is in general lower than that
of the near-optimal brute force method. The MVT predicts
short patch residence times in situations where patch switch-
ing is cheap. But because of the various filters (filter param-
eters kept constant for all experiments over all conditions)
our method’s responsiveness is too slow in these short resi-
dence time situations. We say the performance is lower, but
it is still above 78% (except in the 10 puck patches, where
the performance drops to 50%). (ii) Under low patch qual-
ity situations (10 pucks, 30 pucks) our method performs less
well than the brute force method. Again the reason is in the
choice of parameters. The filters are too slow for the opti-
mal, short patch residence time. (iii) The method described
in this paper achieves similar long-term rates as the brute
force method in all other cases examined. Recall that it uses
only locally obtained information, in contrast to the omni-
scient brute force method.

Multiple Patch Types

A more challenging problem is the case where patches of
very different quality are encountered. As the MVT predicts
the patch leaving decision is not only dependent on the qual-
ity of a given patch but on the global quality. To illustrate
the difficulty of this decision we give a brief example. Let
th be the optimal patch residence time if a forager only en-
counters patches of a fixed, high quality. If the same forager
now encounters a mixture of high and low quality patches,
th is no longer the optimal patch residence time for the high
quality patches. The reason is that the cost of lost opportu-
nity has increased due to the patches of low quality. As a
consequence the forager should increaseth under these cir-
cumstances.

To investigate our system under these conditions we con-
ducted a series of experiments. In a first experiment we had
the robot encounter 100 patches of type A and 100 patches of
type B in a random order. Figure 4(g) and 4(h) show the av-
eraged results over 20 trials for patch configurations 50:100
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Figure 4: Long-term average gain rates achived by the bruteforce method (red line with circle) and our online method (green
line with cross, blue with asterix). Inter patch travel timeτ in seconds on the x-axis and long-term gain rate in pucks per seconds
on the y-axis. More details in the text.
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pucks and 50:300 pucks respectively. Errorbars were omit-
ted because of the small standard deviation. As in the single
patch type experiments and for the same reasons, the perfor-
mance is somewhat lower under short switching time con-
ditions, but in the general the graphs show that our method
copes well with randomly encountered patches of different
qualities.

An even harder problem is to encounter a longer series of
patches of type A followed by a series of patches of type
B, where the forager does not know anything about type B
patches while it forages in type A patches. On encounter-
ing type B patches, the robot has built a strong prior ex-
pecting type A patches. In this experiment the robot was
faced with a series of 100 patch of one type followed by 100
patch of a different type. The results for 50:100 and 50:300
patches with a stepwise change in both directions is shown in
Fig. 4(i) and 4(j) respectively. Here the brute force method
is at a significant advantage because the patch leaving de-
cisions are derived with full knowledge of the future patch
change. Our method does not/can not anticipate the patch
quality change and thus for the first 100 patches acts under
the “assumption” of a constant environment. The error re-
sulting from this “assumption” grows with the difference in
patch qualities. That is why the performance difference in
the 50:300 scenario (Fig. 4(j)) is larger than in the 50:100
case (Fig. 4(i)).

Figure 4(k) shows the results for a stepwise sequence of
50:100:200:300 puck patches and the reverse ordering. The
results are qualitatively very similar to those discussed pre-
viously. In one last experiment of this type we choose step
wise patch encounter with larger step sizes. The ordering
chosen was 50:300:100:200. Results are shown in Fig. 4(l).
The performance results are again qualitatively similar, sug-
gesting the our method handles this type of variance well.

Variable Switching Cost
So far we tested different switching costs but kept them con-
stant in the single patch type as well as multi patch type
experiments. To investigate varying inter-patch travel time,
we conducted an experiment in which the travel time be-
tween patches was drawn from a normal distribution with
mean 1000 seconds and standard deviation 100, 500 and 700
seconds respectively. Table 2 shows the results in percent
compared to the long-term gain rate of the brute force so-
lutions. Because of the computational complexity the brute
force solution was only calculated using the mean and not
the actual randomly drawn travel times. As in the previ-
ous experiments we see generally good performance and the
usual drop in situations with low patch quality.

Discussion
Task switching under diminishing returns is daily routine
for many animals and important for many conceivable au-
tonomous robots. Maximizing the long-term average gain

initial pucks per patch
σ 10 30 50 100 200 300

100 74.0 92.2 96.0 96.4 95.3 92.2
500 76.3 90.2 93.9 94.5 89.7 92.3
700 67.8 89.5 96.9 92.6 88.7 90.1

Table 2: Percent performance for variable patch switch-
ing time with mean 1000 sec. and standard deviationσ =
{100,500,700}

or reward rate under these conditions requires the robot to
have knowledge of future gain functions. This is not achiev-
able by a robot relying solely on information obtained by
its own actions. To the best of our knowledge no solution
to this problem is known. In this paper we have argued
that the MVT is not implementable because an instantaneous
gain rate is meaningless in the case of rewards obtained in
chunks. It also requires a continuous exploration phase in
order to find the global maximum rate, but the MVT itself
does not explore the action space.

Instead we proposed a task switching method that bases
its decision only on previously obtained information, well
aware that we therefore maximize a different function. Thus
we may make suboptimal task switching decisions, but these
decisions are as good as possible given no information about
the future.

An important issue to discuss is how large the time win-
dow of past experiences should be, that are considered in the
task-switching decision. In this paper we simply included all
past foraging experiences when modelling the global patch
quality. This is reasonable as long as the past is a good pre-
dictor for the future. On the other hand in situations where
the future strongly deviates from the past, forgetting or a
short memory can be beneficial. The memory size is also
interesting from a behavioural ecology point of view, be-
cause it might explain why animals often appear to maxi-
mize the short-term and not the long-term intake rate (Real
et al., 1990). In future it would be interesting to investigate
what influence the memory size has on the rate maximiza-
tion of a robot and what the optimal size is.

We draw a lot of insight from behavioural ecology, but we
make no claims about mechanisms employed by animals.
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Abstract

This project focuses on developing a flapping-wing hovering
insect using 3D printed wings and mechanical parts. The use
of 3D printing technology has greatly expanded the possibil-
ities for wing design, allowing wing shapes to replicate those
of real insects or virtually any other shape. It has also re-
duced the time of a wing design cycle to a matter of minutes.
An ornithopter with a mass of 3.89g has been constructed
using the 3D printing technique and has demonstrated an 85-
second passively stable untethered hovering flight. This flight
exhibits the functional utility of printed materials for flap-
ping wing experimentation and ornithopter construction and
for understanding the mechanical principles underlying insect
flight and control.

Introduction
Hovering flapping flight of insects and birds has long fasci-
nated scientists and engineers, but only in the last decade has
it been successfully demonstrated by man-made flying ma-
chines. Unlike forward flight, hovering flapping flight poses
several special challenges. First, there has yet to emerge an
established body of theoretical and experimental work on the
unsteady aerodynamics of flapping wing flight for the pur-
poses of wing design. Second, flapping hovering flight of
insects and birds is generally unstable and requires a sophis-
ticated solution to maintain an upright flying position (Tay-
lor and Thomas, 2003; Sun and Xiong, 2005). Third, the
energy density of batteries was insufficient for the power de-
mands of hovering flight until small lithium-based batteries
became widely available. However with the improvement of
electrical power solutions, a number of successful hovering
ornithopters have been developed with a variety of wing de-
signs. This project utilizes existing solutions to the power
and stability problems and uses 3D printing as a novel ap-
proach to designing and manufacturing the key aerodynamic
component: the wings.

Thus far, producing effective flapping wings for research
and ornithopter construction has been a time consuming and
delicate process taking days or longer to complete. The 3D
printing technique allows wings to be produced in a matter
of minutes, dramatically reducing the time of each design

Figure 1: 3D-Printed elements of flapping-hovering insect.

cycle. Overcoming this barrier to experimentation will allow
a comprehensive study of lift production for a wide variety
of wing shapes including those replicating real insect wings.

A comprehensive understanding of flapping wing aero-
dynamics and hovering flight will become increasingly im-
portant as ornithopters shrink to the scale of real insects
where some advantages of flapping wing flight are realized
(Ellington, 1999). These advantages include efficiency and
maneuverability improvements over fixed and rotary wing
aircraft at low Reynolds numbers as well as the suitability
of micro-scale actuators to producing vibrating motion for
flapping rather than rotary motion for traditional propellers
(Pesavento and Wang, 2009; Woods et al., 2001). Maneu-
verable, low-power micro air vehicles have a wide range
of applications including mapping, surveillance and search-
and-rescue operations where these properties of small size
and ability to maneuver in tight spaces are vital, or in thin
extraterrestrial atmospheres where low Reynolds numbers
occur (Michelson and Naqvi, 2003). Micro air vehicles also
present a challenging synthesis of many areas of engineer-
ing, including materials, actuators, electronics, control, vi-
sion, guidance, and others (Floreano et al., 2010; Karpel-
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Design Year Mass (g) Span (cm) Wings Hover Time (s) Features
Mentor (Zdunich, 2007) 2002 580 36 4 > 60 Nitromethane Fuel
DelFly II (DelFly, 2010) 2006 16.07 28 4 480 Camera, R/C
van Breugel (van Breugel et al., 2008) 2007 24.2 45 8 33 Passively Stable
Chronister (Chronister, 2010) 2007 3.3 15 4 Unknown R/C
Wood (Wood, 2008) 2007 0.060 3 2 N/A Piezoelectric Power
DelFly Micro (DelFly, 2010) 2008 3.07 10 4 N/A Camera, R/C
NAV (AeroVironment, 2009) 2009 10 (est.) 7.5 (est.) 2 20 Active Wing Pitching
Richter (this paper) 2010 3.89 14.3 4 85 3D Printed Parts/Wings

Table 1: Characteristics of existing ornithopter designs.

son et al., 2008). This project has demonstrated the viability
of 3D printed aerodynamic components for experimentation
and for use in a real ornithopter on the size scale of the small-
est current designs.

Review of Existing Work

The existing work that has influenced this project includes a
variety of successful ornithopter designs and some research
on the dynamics and control of insect flight. This project
is effectively a continuation of an earlier ornithopter design
project by Floris van Breugel of the Cornell Computational
Synthesis Laboratory. Van Breugel’s design used four mo-
tors to drive eight wings and featured passively stable flight
dynamics using a set of damping sails above and below the
body of the aircraft. This model had a mass of 24g and
demonstrated stable hovering flight of over 30 seconds in
2007. Broad goals for the current project were to achieve a
comparable flight time using this system of passive stability
in a vehicle under 10g.

Several other successful designs currently exist, including
the series of DelFly ornithopters, which are radio controlled
using tail configurations resembling fixed-wing aircraft and
the AeroVironment Nano Air Vehicle, which achieves con-
trol using active wing control. The Harvard Microrobotics
Laboratory has also produced ornithopters weighing 60 mg
using piezoelectric actuators and insect-like passive wing
pitching, but require a tether for power and stability.

There have also been recent developments in the under-
standing of insect flight (Dickinson et al., 1999; Wang, 2005;
Bergou et al., 2007; Ristoph et al., 2009). These studies have
explored one mechanism of passive wing deflection in insect
flight that is essential to the simplicity of some ornithopter
designs. They have shown that some insect wings deflect to
an angle of incidence of 45 degrees, which is thought to be
optimal for lift production of a flat plate wing. These find-
ings have also given rise to hypotheses explaining forward
thrust, flight maneuvers and disturbance rejection, and ex-
periments have been designed to examine these hypotheses
using the ornithopter as a test bed.

Methods
One primary goal of this project was to produce a hovering
ornithopter with as many 3D printed components as possi-
ble. An Objet EDEN260V printer and the Objet FullCure
720 material were used to produce all printed components.
This material costs roughly 0.22 USD per gram and the
EDEN 260V prints with a resolution of 42 µm on the x-
and y-axes and 16 µm on the z-axis. At first, only the fuse-
lage, hinges and pushrods were printed, however a method
of printing entire one-piece wings was soon developed.

First attempts at wing construction were aimed at recre-

Figure 2: A variety of wing shapes for experimentation.

Figure 3: The most successful wing design during testing.
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ating the wings of the van Breugel design, using a carbon
fiber rod as the main strut, polyethylene terephthalate (PET)
stiffening ribs and a Mylar film wing surface. Two examples
of this early printed type can be seen in the upper left corner
of Fig. 2. The carbon fiber rod was to extend out of a 3D
printed hinge, but after several design iterations, the hinge,
strut and stiffening ribs were combined into a single printed
piece. When further experimentation revealed that a durable
thin film could be printed using only two layers of printed
material, this film was used instead of Mylar as the wing sur-
face and the first one-piece printed wings were made. Fig. 2
shows many conventional and biologically inspired printed
wings.

Printed Wing Construction
The printed wings of the ornithopter are comprised of three
functional elements: the central beam, the surrounding
frame, and the thin film wing surface. Fig. 4 shows the parts
of the dual-wing used in the full ornithopter design.

Figure 4: Parts of the one-piece printed wing.

The central beam is the most rigid portion of the wing and
contains the pivot point as well as the attachment holes for
the connecting rods. Whereas some designs require a bush-
ing or dedicated hinge, 3D printing allows the hinge to be
incorporated into the main beam design. Furthermore, the
FullCure 720 material features relatively low friction against
the stainless steel 0.5 mm piano wire hinge pins when lubri-
cated with a drop of medium-viscosity oil. The holes for the
pivot points were designed with a 0.6 mm diameter to pro-
vide an adequate gap for low-friction operation. This tech-
nique eliminates the need for a heavy bushing or complex
assembly.

The outer frames of the wings are attached to the ends
of the beam. The outer frames determine the flexibility of
the wings and the deflection properties during flapping. The
outer frames were defined in the CAD model as lofted curves
connecting circular cross sections. By varying the radius of
the circular cross sections at various points along the frame,
the overall stiffness and flexibility patterns of the wing could
be tuned.

The thin wing surface is a flexible film that extends
through the area inside the outer frame. The surface has
a thickness of 40µm, which is achieved by depositing two
layers of material. The ability of the printer to print such a
thin flexible film is the development that made a one-piece
printed wing possible. While it is possible to print a thin-
ner film using a single layer, wings constructed with a single
layer surface are extremely delicate and tend to tear upon
vigorous flapping. Chamfers were used to counter the ten-
dency of the wing film to tear at points of discontinuous ge-
ometry, such as the edge where the film joins the frame.

One practical element of 3D printing technology is the use
of a gelatinous material to support the structure during print-
ing. Therefore, removing the support material is an impor-
tant step in the manufacturing process, especially with deli-
cate features such as the thin wing surface. Common meth-
ods used to remove support material include dissolving it in
sodium hydroxide and spraying it off with pressurized wa-
ter. However, both of these methods have limitations due to
the delicacy of the thin film. When a printed wing is soaked
in liquid for any period of time, it tends to curl up or become
warped, which can be partially corrected by pressing it flat
and allowing it to dry. However, the moisture tends to leave
some permanent warping of the wing shape. The method of
spraying pressurized water is also difficult because extreme
care must be taken to avoid tearing the wing film. Again,
the moisture tends to warp the wing shape. The best method
thus far has been to place the wing on a clean surface with
some elasticity such as a dense rubber mat and scrape the
support material away using a dull blade. Any residual ma-
terial can be removed by wiping with a cloth moistened with
water or rubbing alcohol. This is the fastest and most suc-
cessful method for removing support material from the thin
wing film.

Wing Design
At the beginning of the project, the wing design process fo-
cused on narrowing the vast design space to a size scale that
was appropriate for the motors available and desired weight
of the vehicle. During initial testing, key wing design fea-
tures were identified that helped produce the ideal shapes
and deflections when flapping. Testing of a wide variety of
wing shapes, sizes and structures was carried out by pow-
ering them with a small DC gear-motor using a DC power
source. The lift of each wing was measured using a custom
attachment for a digital lab scale and flapping behavior was
analyzed using a high-speed camera capturing 1000 frames
per second. Fig. 5 shows the experimental apparatus.

The wing size partially determines several important vari-
ables, including mass and surface area, which in turn de-
termine how fast the wings can flap for a given power in-
put. For the motor chosen for this project (GM 15 gear mo-
tor available from Solarbotics.com with 25:1 gear reduction)
and the power expected from a pair of Lithium- Polymer bat-
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Figure 5: Experimental test setup on the lab scale (above);
Close-up of mechanism (below).

teries (7.4V , 200mA), the best performing single wing of all
wing designs tested had a length of 80 mm and a maximum
chord of 30 mm. The overall weight of the wing was ap-
proximately 0.3g and the thickness of the wing film was 40
µm. This wing flapped at approximately 30 Hz through an
angle of 110 degrees and produced a maximum lift force of
2.92g. This wing design is shown in Fig. 3.

The wing structure is important to proper deflection and
wing shape during flapping. For maximum lift, the wing
should deflect to an angle of attack of roughly 45 degrees at
the middle of the stroke. This angle of attack can be tuned
by adjusting the flexibility of the main wing strut and the
ribs that stiffen the interior of the wing. Thus far, successful
wing designs have been created with and without wing ribs.

One major problem associated with simple deflecting
wings is that they do not deflect as flat plates. Instead,
the leading edge tends to remain vertical rather than flexing
torsionally, while the wing surface bends away underneath
it. This behavior creates an inverted camber shape that is
undesirable. Several methods were explored to overcome
this problem. The most effective solution was to extend the
wing frame all the way around the tip of the wing. This
design forced the leading edge to twist when the wing de-

flected, thus maintaining a roughly continuous slope across
the chord of the wing near the tip. In other words, the tip of
the wing behaved more like a flat plate with the entire wing
deflecting to the proper angle, rather than just the lower half.

Wing ribs have also been used to control the deflection
patterns and add stiffness in certain directions. Various rib
designs were tested, featuring rectilinear patterns as well
as curved patterns inspired by the wings of dragonflies and
other insects. However, the current design does not feature
stiffening ribs. Fig. 6 shows a top-down view of a wing de-
flecting during flapping tests on the experimental setup.

This general wing design, while not optimal, was deemed
satisfactory for use in the challenge of building a full or-
nithopter using 3D printed wings. A new double-ended ver-
sion of this wing shape was produced for use in the full or-
nithopter.

Full Ornithopter Design
Once a satisfactory wing design was obtained, it was imple-
mented in the four-wing vehicle. The wing chosen for this
purpose was the rib-less design that produced the greatest
lift. A fuselage was designed to hold the motor, crank, and
wing hinge. Care was taken to place the motor as close as
possible to the wing pivot point to center the mass.

Figure 6: Flash photos showing deflection while flapping
(above); wing deflection in a tethered flight test (below).
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The wings are driven by a crankshaft connected to the
motors gearbox. In order to drive the wings in a roughly
symmetrical motion, the crankshaft includes two attachment
points for the connecting rods powering the left and right
wing. These two attachment points are roughly 30 degrees
out of phase from each other to compensate for the asym-
metry of the crank position at any given point in the stroke.
Fig. 7 shows a top view of this offset-crank mechanism,
which is similar to the DelFly I design (de Croon et al.,
2009) and many toy ornithopters.

Figure 7: Top view of ornithopter with offset-crank in green.

The ornithopter was tested first using a DC power source
and a fishing line tether to verify proper operation of the
crank mechanism and proper flapping behavior of the wings.
The crank is designed to flap each of the four wings through
roughly 80 degrees, and when the flexibility of the wings
is included, this angle is enough to allow the wings to clap
and fling at the end of each stroke. The clap and fling phe-
nomenon may aid in lift production (Lehmann et al., 2005).
Fig. 6 shows a photo of a tethered flight test showing ideal
wing deflection of roughly 45 degrees. In this test configu-
ration, the ornithopter was able to lift up to 1.5g of payload,
which is roughly equivalent to the mass of batteries required
for flight.

Once the ornithopter was able to support a payload while
flying on the tether, it was outfitted with batteries and unteth-
ered flight tests began. Two 10mAh Lithium Polymer batter-
ies were used to power the motor and were attached on the
opposite side to the motor to balance the mass. The other
feature required for untethered flight is a set of thin foam
damping sails attached to a thin carbon fiber rod above and
below the fuselage to maintain an upright flying position.
This method of achieving passive stability was developed by
van Breugel and is replicated here (van Breugel et al., 2008).

Figure 8: Final configuration and large view of mechanism.

Passive Stability

The sails employed to maintain stability help keep the or-
nithopter upright. Without sails, the ornithopter tends to
tip over, causing a loss of upward lift. However, when the
sails are attached, the larger top sail acts as a damper on the
tendency to tip over, which allows the bottom sail to swing
back under the fuselage, righting the ornithopter. The bot-
tom sail is just large enough to dampen any oscillation when
it swings. If launched upside down, the ornithopter will right
itself, demonstrating the robustness of the design.
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Figure 9: Breakdown of total mass (3.89g).

Conclusions
This project has yielded several significant results thus far.
First, wing tests and the hovering demonstration have vali-
dated the concept of a printed ornithopter. This method of
construction has greatly accelerated the design cycle, since
a set of wings can be printed in less than 30 minutes and a
complete set of ornithopter parts can be printed in 60 min-
utes. Thus, several design iterations can be tested per day.

The Objet FullCure 720 material has some limitations,
particularly in its mechanical properties. It is not as light
or as stiff as carbon fiber or balsa wood, which are the main
alternative options for wing struts. Therefore, printed wings
do not store as much energy when they flex and energy is
lost to friction during each wing stroke. Different strut cross
sections will be tested to improve stiffness per volume of
material.

Other limitations of the 3D printed material include a ten-
dency of thin wings to curl up after a period of days, render-
ing them useless. This problem can be corrected by storing
wings between flat plates or in the pages of a book, which
requires disassembly. Thin wings also tend to develop small
tears after minutes of vigorous flapping, however this prob-
lem can be partially prevented with chamfered edges along
the wing frame to avoid discontinuous geometry.

Experimentation with wing designs has begun to uncover
some of the features and parameters of successful wings for
this size and power scale. The GM15 motor seems to be
well matched to wings that are approximately 80-100 mm
long from base to tip with a chord length of 30-40 mm when
it is running at a power of 1.5W (typical power consumption
during flight). If the wing strut is extended further, then the
drag of the wing acts along a longer lever arm, slowing down
the rate of flapping and reducing lift.

One very successful design feature is the wing frame that
extends around the wingtip. This feature helps maintain a
continuous wing slope at the tip of the wing and helps ap-
proximate the flat-plate airfoil cross section of many hover-
ing insects. The continuous wingtip frame was a design bor-
rowed from the structure of dragonfly wings, which exhibit
ideal shape and deflection at the wingtips. Overall, the use
of 3D printing to create flexible wings that are aerodynam-
ically functional is the main accomplishment of this project
and will be one area for future improvement.

Figure 10: Final design with sails and mechanism close-up.
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Figure 11: Ornithopter taking flight and hovering.

Future Work
A long-term project utilizing a hovering ornithopter will be
to test hypotheses of insect propulsion and control. This
project will be carried out by building wings with a nominal
bias of several degrees built into the angle of incidence to
produce forward thrust or turning maneuvers. If successful,
these principles could form the basis of hovering ornithopter
control.

Another project planned for the future is to perform a de-
tailed study using 3D printed wings to develop analytical
models predicting wing performance. The lift of many dif-
ferent wing designs will be measured to identify relation-
ships between the major variables involved in lift production
such as wing length, chord, surface area, flapping frequency,
parameterized shape, etc. This data will then be mined for
analytical relationships using the Eureqa software (Schmidt
and Lipson, 2009). These laws will then be compared with
current designs to evaluate the model and ultimately produce
the best possible wings.

Finally, another ornithopter will be designed using 3D
printed wings and other parts that is still smaller and lighter
and is composed of an even greater proportion of printed
components.
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Abstract 

This paper presents a new rat animat, a rat-sized bio-inspired 
robot platform currently being developed for embodied 
cognition and neuroscience research. The rodent animat is 
150mm x 80mm x 70mm and has a differential drive, visual, 
proximity, and odometry sensors, x86 PC, and LCD interface. 
The rat animat has a bio-inspired rodent navigation and 
mapping system called RatSLAM which demonstrates the 
capabilities of the platform and framework. A case study is 
presented of the robot's ability to learn the spatial layout of a 
figure of eight laboratory environment, including its ability to 
close physical loops based on visual input and odometry. A 
firing field plot similar to rodent „non-conjunctive grid cells‟ is 
shown by plotting the activity of an internal network. Having a 
rodent animat the size of a real rat allows exploration of 
embodiment issues such as how the robot's sensori-motor 
systems and cognitive abilities interact. The initial observations 
concern the limitations of the design as well as its strengths. 
For example, the visual sensor has a narrower field of view and 
is located much closer to the ground than for other robots in the 
lab, which alters the salience of visual cues and the 
effectiveness of different visual filtering techniques. The small 
size of the robot relative to corridors and open areas impacts on 
the possible trajectories of the robot. These perspective and size 
issues affect the formation and use of the cognitive map, and 
hence the navigation abilities of the rat animat.  

Introduction 

Brains are evolved to control bodies, which have 
characteristic sizes, and live in specific environments. One 
approach to studying embodiment is to develop animats 
(Wilson, 1991), which are robots that mimic specific animals 
that enable the study of the integrated system formed by brain, 
body and environment (Beer, 2008; Beer & Williams, 2009). 
Animats also enable comparisons with the behavior of the 
corresponding animal on similar tasks, which can lead to the 
co-development of animats with animal laboratory studies. No 
animat perfectly mimics their biological counterpart, and 
priorities need to be established for the animat design. 
 Bio-inspired robotics is a growing field that draws insights 
from nature‟s solutions for interacting with real-world 
environments. A major research question in bio-inspired 
robotics is the design and evaluation of effective algorithms 
for embodied learning and action. In particular, rodents have 
been well-studied both biologically and for bio-inspired 
technologies. Rodents have excellent mobility, and 

interactions are particularly important for survival both within 
peripersonal space (the space within reach of the animal) and 
wider aspects of navigation in geopersonal space (the space 
that the agent can move through beyond its current location).  
Rodents have proved an effective match between embodied 
ability, brain complexity and current state-of-the-art in 
neuroscience. Embodiment itself can reduce the complexity of 
control architectures and improve energy efficiency (Brooks, 
1991). 

Bio-mimicry is often used as a more targeted term to 
develop engineering solutions that not only develop 
algorithms based on animal morphology and behaviour, but 
also that aim to preserve a high fidelity with the target system. 
This research focuses on bio-mimicry which has the potential 
to benefit biology as well as engineering, as discussed in 
detail in the extensive article and commentaries in (Webb, 
2000, 2001). 

In robotics, a significant engineering design aspect is the 
tradeoff between size and capabilities. Capabilities include 
sensing, actuation and computation. For a rat animat the size 
is given by the real animal. However, it is not always possible 
to integrate the desired capabilities into an animat the size of 
the real animal. The robot can be designed with only those 
capabilities that fit into the size of the real animal, or the 
robot‟s size can be increased to accommodate the full 
complement of desired capabilities. Setting the first design 
requirement to be a match between the size of the robot and 
the animal enables the study of aspects of embodiment and the 
physical context that are not possible in larger animats.  

Body size places strong constraints on an animat, just as it 
does on an animal‟s abilities, including its navigational 
abilities and the range of its behavior. Size is rarely given 
precedence in design criteria in embodied systems, but to test 
the rat animat on the same laboratory tasks as real rats, size 
becomes a defining feature in our research. Physical size 
places strong constraints on power available for movement 
and computational abilities. Size also impacts on possible 
physical sensori-motor configuration. For example, with 
respect to sensors, the visual field perspective is impacted by 
the height of the camera, and for motor control, the power of 
the motors and size of the wheels impact on the range and 
terrain that the robot can cover. 

Existing robot rats can be broadly categorized from an 
engineering point of view into two categories: those with 
computational capacity equivalent to a standard PC but larger 
than a rat, and those the size of rat but with reduced or custom 
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computational capacity. The recent availability of small x86 
platforms (that allow a standard Windows or Linux OS) has 
allowed for a reduction in the size of robots without 
compromising on computational capacity. This paper 
describes a new rat animat that takes advantage of the recent 
miniaturization of PC equivalent computational parts to build 
a rat sized robot platform. 

RatSLAM is a bio-inspired navigation system based on 
the rodent hippocampus, which uses visual appearance as the 
primary mechanism for localization (Milford & Wyeth, 2009). 
Previous studies have been performed on a robot where the 
visual sensor is approximately 0.5m from the ground. The 
rat‟s eyes are an order of magnitude lower at a height of 
approximately 0.05m above the ground. The nature and 
quality of information in different parts of the visual field is 
impacted by the location of the camera, and hence the 
perspective of the robot. 

The next section reviews existing rodent animat platforms 
and rodent inspired navigation system. The following section 
describes the new rodent animat platform and the RatSLAM 
system. Then the paper describes the focus study for this 
paper where the rat animat maps a figure of eight 
environment. Then the results of the navigation studies, 
including the resultant topological map and „place fields‟ are 
described. The final section provides discussion, including 
directions for future work, before the paper concludes. 

Background 

Robot rat studies to date have developed many components 
for building a rat-like robot, but either the size is much larger 
than a real rat, or the computational capabilities have limited 
low fidelity bio-mimicry. The AMouse (Fend, 2004) has two 
whisker arrays and an omnidirectional camera. The robot uses 
whiskers to ensure robust obstacle navigation in changing 
light conditions integrated into a subsumption architecture. 
The camera and whisker were separate modules added to the 
Khepera robot platform.  

Psikharpax is a rat animat, with sensors, actuators and 
control architectures closely inspired by the rat (Meyera et al., 
2005). Mechanically, the rat is 500mm long and has two 
wheels that allow a maximum speed of 0.3m/s. Psikharpax 
can rear and grasp objects with its foreleg and can move its 
head and eyes. The sensors include two visual sensors, an 
auditory system and a 32 whisker haptic system. A bio-
mimetic chip capable of low-level real time signal processing 
for sensor fusion is under design. Recently an omni-
directional visual system has been added (Lacheze, 
Benosman, & Meyer, 2008).  

Alternatively, the Cyber Rodent project has less emphasis 
on physical bio-mimicry, rather taking its inspiration from 
neuromodulation (in particular dopamine, serotonin, 
acetylcholine and noradrenaline), and uses self-preservation 
and self-reproduction in a reinforcement learning framework 
to understand the biological reward system (Doya & Uchibe, 
2005). The robot is larger than a typical rodent, 220mm long 
and weighs 1.75kg and has two wheels that allow a maximum 
speed of 1.3m/s. Sensors include a camera, range and 
proximity sensors, gyros and accelerometers, microphones. 
For communication the robot has a speaker and tri-color LED. 

Computationally, it has custom embedded hardware for on-
robot learning. 

There are a number of robot rats that are focuses on the 
embodiment of the whisker system (Fend, Bovet, & Pfeifer, 
2006; Fox, Mitchinson, Pearson, Pipe, & Prescott, 2009; 
Pearson, Pipe, Melhuish, Mitchinson, & Prescott, 2007). 
These robots explore vibrissal sensory processing for texture 
discrimination, obstacle detection and wall following. A 
number of different sensors, whisker materials, whisker 
actuation methods and computational processing techniques 
have been explored. 

Robot rats also interact with real rodents in a laboratory. 
Waseda Mouse-No.2 (WM-2) (1998) has a similar size and 
mass to rat, uses a fur coat to achieve a similar appearance and 
uses wheels for mobility. An embedded microcontroller 
handles sensors, motors and communication with the host 
computer over an IR link. They demonstrated that a real rat 
recognized the movement of WM-2, and that the robot 
influenced the rat‟s behavior, helping it to learn response to 
stimulations. WM-6 added arms at the front for interacting 
with levers (2006). WM-6 uses Bluetooth to communicate 
wirelessly with the host computer. Patanè, Mattoli et al. 
(2007) has increased the complexity of the interaction 
possible by using a legged robot rat. The host computer is 
responsible for autonomous control of the robot via overhead 
vision. The robot successfully taught the rat a lever pushing 
task to get food.  

Rodent bio-inspired navigation 

There has been extensive work investigating how animals 
navigate, in particular towards the goal of understanding how 
the rodent‟s hippocampus and associated regions work to 
localize, map and navigate an environment. These biological 
studies have formed the basis for many rodent-inspired robot 
navigation systems. Cells with a range of specific functions 
have been found including head-direction cells (Ranck Jr, 
1984), place cells (O'Keefe & Conway, 1978), and grid-cells 
(Hafting, Fyhn, Molden, Moser, & Moser, 2005). There are 
several approaches to apply these insights to robot navigation 
ranging from those that try and mimic the biological studies as 
closely as possible to those that use them as inspiration but 
apply an engineering approach.  

Early work by Mataric (1991) used a layers-of-
competence subsumption architecture on a custom robot with 
sonar sensors. Burgess and Donnett et al. (1997) developed a 
simulation of neuronal place cells and "goal" cells to create 
mapping and navigation abilities on a K-Team Khepera robot. 
Meyer, Guillota et al. (2005) base their navigation system on 
place cells and behavioral system and are applying it to their 
large rat animat, Psikharpax, described previously. 
Alternatively, Arleo and Gerstner‟s (2000) approach more 
closely emulates biological place cells and was demonstrated 
using a K-Team Khepera robot in a small environment with 
artificial textures. Barrera and Weitzenfeld et al. (2008) 
demonstrated their biologically inspired spatially cognitive 
work in a typical wet lab experimental setting using a Sony 
AIBO. Milford and Wyeth (2009) focused on using place cell 
biology as an inspiration to engineer a complete robot 
navigation solution on an ActiveMedia Pioneer robot. 
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RoboRat platform 

Given the research to date on rodent animats, there is an 
opportunity to integrate many of the existing ideas, extending 
them where necessary, and develop a robot rat-mimic which 
has the size and navigation abilities to operate in the same 
environments as real rats, challenged with the same tasks, and 
controlled by neural-inspired algorithms. Such a rat animat 
could be used to study embodiment issues in robotics, test 
theories of the neural basis of mammalian navigation, and also 
has the potential to open new areas of behavioral study 
through interaction with real rats. In this paper, we address the 
first goal, that of developing a rat-size robot to use as an 
integrated development platform. 

A (real) rat is incredibly mobile and uses its legs, spine, 
head and tail to traverse complex environments. As shown in 
Fig 1 the prototype robot is approximately the size and mass 
of a large rat and mechanically simple using wheels for 
mobility. The robot‟s dimensions are 150mm long, 80mm 
wide, and 70mm high, not including the Wi-Fi antenna with a 
mass of 0.5kg approximating those of a real rat. Note that the 
cream colored body shown in the figure is designed to allow 
for evaluation of sensors and their locations and will be  
designed to incorporate aspects of the rat's body shape in 
subsequent development. 

A real rat digests food for energy. The robot has a battery 
and on board recharging that allows two hours of continuous 
operation.  

A (real) rat‟s eyes have poor visual acuity, high sensitivity 
that gives excellent performance in low light conditions, and a 
wide field of view. A custom solution is currently under 
development, designed to allow the robot to see well in low 
light conditions and over a wide field of view. For this study 
the prototype design uses a single low-cost USB webcam for 
the robot rat‟s vision sensor.  

A rat has whiskers that can discriminate texture and sense 
proximity for close obstacle avoidance. This prototype design 
uses four Sharp IR range sensors arrayed at the front to give 
proximity information for obstacle avoidance.  

A rat can integrate its self motion given by leg movement 
and vestibular information. The robot has encoders on the 
wheels which provide an estimate of the distance travelled.  

A rat does all its thinking on-rat. On-robot computational 
capacity is given by a custom embedded controller coupled 
with a RoBoard mainboard with a 1GHz Vortex86DX CPU, 
256MB RAM, and 4GB microSDHC card currently running 
Windows XP. The RoBoard has a wireless LAN connection 
so that it can communicate with other computers to gain 
access to additional computational capacity. A separate sensor 
and actuator interface controller handles the robot motion and 
reading sensors. This interface controller also has an LCD and 
navigation pad (similar to small portable devices) to allow 
user interaction. 

The robot has a distributed cognitive control architecture 
(DCCA) that will support the testing of a range of neural 
models. In this context „distributed‟ refers to modular, layered 
systems which can be implemented across physically separate 
computational platforms; „cognitive‟ refers to neutrally-
inspired or high-fidelity neural networks; and „control‟ 
indicates that the robots operate in closed feedback systems. 
The DCCA is implemented using a robot software framework. 

A robot server-client interface, Player (Gerkey, Vaughan, 
& Howard, 2003; Vaughan, 2008) is used as the basis for the 
framework. This framework allows studies in a real 
environment or in a virtual reality world simulation, allows 
pluggable modules for a variety of tasks, and connects to 
appropriate visualization tools. Player is free software that 
provides a client-server network interface that abstracts the 
robot hardware, sensors and actuators. This network interface 
allows for modularity and distribution of computation. Player 
has bindings for several different compiled and interpreted 
programming languages including: C, C++, Python, and 
MATLAB. The interpreted programming languages enable 
rapid prototyping and are commonly used by neuroscientists. 

 

 

 

Fig 1. (top) The current state of the robot rat, showing the web 

camera, and four IR proximity sensors at the front, the Wi-Fi 

antenna „tail‟ at the back and the LCD and navigation button user 

interface on the top. For this paper the left and right IR sensors 

were angled out at 45 degrees. (bottom) An image from the 

robot‟s camera sent over the wireless LAN as a 320 pixel by 240 

pixel JPG image. Note the narrow field of view. 
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RatSLAM navigation 

RatSLAM is a biologically inspired SLAM system based on 
models of mapping and navigation processes in the rodent 
hippocampus. RatSLAM contains three major modules; a 
vision system for appearance-based scene recognition, a 
neural network that represents the location and orientation 
state of the robot, and a graphical mapping algorithm that 
creates semi-metric topological maps. This section provides a 
brief overview of RatSLAM; a more technical system 
description can be found in (Milford & Wyeth, 2008, 2009). 

Attractor Dynamics and Path Integration 

RatSLAM represents the location and orientation state of the 
robot using a three-dimensional continuous attractor network 
(CAN). Continuous attractor networks are a popular method 
of modeling the spatially responsive cells found in the rodent 
brain (Arleo & Gerstner, 2000; Samsonovich & McNaughton, 
1997; Stringer, Rolls, Trappenberg, & de Araujo, 2002; 
Stringer, Trappenberg, Rolls, & de Araujo, 2002). RatSLAM 
uses a rate-coded continuous attractor network. The network 
is arranged in a three-dimensional structure, where each of the 
three dimensions corresponds to one of the three spatial 
dimensions x', y', and θ' (Fig 2). Each cell is connected to 
nearby cells by both excitatory and inhibitory connections, 
which “wrap” across the opposing faces of the network 
structure. The connectivity is designed such that during robot 
navigation, the pose cell network will usually have a single 
cluster of highly active units, often referred to as an “activity 
packet” or “activity bump”. The centre of this activity packet 
encodes the robot‟s location and orientation. Path integration 
is performed by shifting the activity in the pose cells based on 
self-motion information, such as wheel encoder counts. In a 
similar manner to the attractor dynamics, path integration can 
shift activity off one face of the pose cell structure, wrapping 

the activity around to the opposing face. Copying and shifting 
activity offers stable path integration performance over a 
wider range of movement speeds and under irregular system 
iteration rates, when compared with methods that shift activity 
through weighted connections (Arleo & Gerstner, 2000). 

Local View Cells and Visual Pose Recalibration 

The RatSLAM vision system learns a collection of visual 
templates representing what the robot sees at different 
locations in the environment. Each visual template is 
represented by a local view cell, which becomes active when 
the robot sees a visual scene similar to the template. To enable 
recalibration of the robot pose representation, connections are 
formed between co-active local view and pose cells. If the 
robot sees a familiar visual scene, the corresponding local 
view cell will activate, in turn activating the pose cells it is 
connected to. The activity packet will move towards the 
location associated with that visual scene, providing a means 
for correcting odometric drift and closing a loop.  

Experience Mapping 

The experience map is a semi-metric topological map driven 
by output from both the pose cells and local view cells. As a 
graphical map it contains representations of places, called 
experiences, and links between these experiences describing 
properties of the transition between them. Each experience is 
associated with a certain pose cell network state and local 
view cell network state, but exists in a separate co-ordinate 
space to the pose cell network, called experience map space. 
New experiences are generated when no current experiences 
sufficiently match the activity states in the pose and local 
view cell networks. A graph relaxation method distributes 
odometry errors throughout the map.  
 

Fig 2.  The RatSLAM system consists of the pose cells, which encode the robot‟s location and orientation state, the local view cells, 

which encode the robot‟s visual experience in the environment, and the experience map, which provides a semi-metric topological map 

that is used for navigation (Milford & Wyeth, 2009). 
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Fig. 3. This diagram shows the computational architecture 

demonstrating the possibilities using this rat animat and the 

Player framework. Arrows show the direction of main messages. 

Experimental setup 

The demonstration environment for the study was an 
approximately 1.5 x 1.5 meter figure of eight environment 
with walls of the same height as the robot, so the animat can 
see the rest of the lab for distal cues. The figure of eight has 
three loops (a large loop follows the outside wall of the arena, 
and two smaller loops follow the inner walls of the top and 
bottom halves of the figure of eight).  

For this implementation of RatSLAM the view templates 
are histograms of column sums of the grayscale images given 
by the camera. New templates are compared to the stored 
templates using a correlation metric, with allowance for some 
rotation. The comparison determines whether the view is new 
or familiar: if new, a view template is created, and if familiar 
the best matching view template is determined. The bottom 
third of each image is typically the ground and has few 
distinct features appropriate for appearance based SLAM. 
Therefore, the robot only uses the top two thirds of the image 
for the view template histogram. Experiments were run for ten 
minutes with the robot navigating the three loops (one outer 
plus two inner) multiple times. 

For this study the robot explored the environment using a 
center following behavior that attempted to maintain the same 
distance between the left and right wall based on readings 
from the IR proximity sensors. When the proximity to either 
wall becomes larger than a threshold then the robot would 
revert to either left or right wall following. These exploration 
behaviors were subsumed by obstacle avoidance based on the 
distance given by the IR sensors. For the majority of the 
experiment the robot travelled at 0.1 m/s. The exploration 
behavior ran on the robot connecting to Player via a local 
LAN connection receiving proximity distance and sending 
robot velocity commands at 4Hz 

This study ran a MATLAB implementation of the 
RatSLAM navigation system on a laptop. The MATLAB 
version received odometry information (translational and 
rotational velocities) and camera images from the robot rat 
over wireless LAN. Fig 3 shows the experimental 
computational architecture. RatSLAM initially runs at 4Hz in 
real time but after the initial fast response, performance 
decreases due to the unbounded nature of the view templates 
and experience map in this lightweight MATLAB 
implementation. Because of the unbounded nature of the 
MATLAB version of RatSLAM, and to combine with 
overhead tracked images, the result figures were generated by 
logging the robot‟s camera images over Wireless LAN and 
then processing them offline. 

Results 

Fig 4 shows a comparison between the path given by the 
overhead tracking system, the integrated odometry path (given 
by the wheel velocities) and the final topological experience 
map given by RatSLAM. The experience map shows that the 
robot rat has approximately mapped the figure of eight 
environment. The paths show coherence within each loop, but 
the three loops don‟t completely overlap for three reasons. 
The first is that the centre, left and right wall following 
behaviors follow parallel but offset paths down the corridor 
resulting in different visual sequences. The second is that the 
centre following behavior has oscillations, particularly 
immediately after turning corners, which has an impact on the 
visual sequence. The third, and most important, is that 
traveling in both directions down a corridor results in different 
experience paths due to the forward facing camera not 
matching view templates. One of the primary causes is the 
camera‟s narrow field of view (approximately 50 degrees). 

The experiment demonstrates the general nature of the 
RatSLAM system. Only minor adjustment of the visual 
processing algorithm was required from other applications of 
the RatSLAM system. 
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Fig. 4. (top) Path given by the overhead tracking system. The rat 

animat is in the bottom right corner. (middle) Raw odometry path 

given by integrating wheel velocities. (bottom) Semi-metric 

topological RatSLAM experience map that approximates the 

overhead tracked path. 

 

 

 

Fig. 5. Three „non-conjunctive grid cells‟ as given by summing 

along the theta direction in the RatSLAM Pose Cell system. The 

size of the circle represents the level of activity. The figures show 

that the cells have different firing patterns. (top) The cell fires 

predominately in two corridors.  (middle) The cell fires only in 

one corner of the environment. (bottom) The cell fires strongly in 

multiple locations in the environments. 
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Grid Cells 

One of the original inspirations for the RatSLAM design was 
the rodent hippocampus. By plotting activity in an internal 
network of the distributed cognitive control architecture 
versus the position of the rat animat, it is possible to gain a 
firing field similar to „non-conjunctive grid cells‟ prevalent in 
the rodent research field. These cells give a regular non-
directional firing pattern. The equivalent of the „non-
conjunctive grid cells‟ is created by summing the activity of 
the RatSLAM pose cells along the θ‟ dimension, and plotting 
their average activity levels against the robot‟s overhead 
tracked location.  Fig 5 shows the firing fields for three „non-
conjuctive grid cells‟. The fields show that the cells fire in 
different locations and with different spatial properties. Some 
cells fire only in one part of the environment, whereas others 
fire across multiple sections. Note that the more typical 
regular firing pattern is not demonstrated in these plots 
because of the relatively small size of the environment 
compared to the pose cell network. 

Discussion and Conclusions 

This paper has described a new rodent animat platform similar 
in size to a large rat, which is capable of exploring and 
mapping an environment with multiple loops in real time. On 
board capabilities include visual, proximity, and odometry 
sensors, wheeled actuation and on-robot PC equivalent 
computation. The rat animat‟s distributed cognitive control 
architecture is not limited by on-robot computational 
resources as the Player framework allows for transparent 
communication over wireless LAN. The results demonstrate 
the rat animat‟s and Player’s possibilities with using C/C++ 
and MATLAB in real time behaviors and SLAM distributed 
across the robot and other computers. This is significant as it 
will open up the platform to a broader range of researchers. 

The paper began by highlighting the importance of 
embodiment with regard to the size of the real animal and the 
corresponding constraints on capabilities. This study has 
demonstrated that computational resources equivalent to a PC 
are now possible on a rat sized robot as well as real time 
connection to off-robot computation. The RatSLAM 
algorithm has shown itself to be remarkably generic, as it was 
ported from the pioneer robot to the robot rat with minimal 
adjustments. The order of magnitude change in camera height 
from the Pioneer robot to the rat animat does give a different 
perspective on the environment although this did not require 
any changes to the visual template matching technique. 
Changing from an omni-directional visual sensor to the 
forward facing small field of view sensor has had the most 
dramatic effect on the system performance as shown by the 
experience map connectivity. The experience map would 
benefit from using a visual sensor with a field of view similar 
to a real rat.  

There are many avenues for future work. To allow longer 
experiments and users to interact with the robot via the web 
over the long term, the platform will need to be able to 
autonomously recharge with a docking station. Whiskers are 
important sensors for rodents that allow them to wall follow, 
detect obstacles and discriminate textures. Work has begun on 
developing a whisker system for this platform with these 

capabilities. On the neural controller side, the SLAM system 
needs to be integrated with a behavior system at a minimum 
capable of goal directed navigation and exploration. 
RatSLAM will also benefit from an improved visual 
perception system (hardware and neural controller) to improve 
performance. Other work will extend the behaviors for 
survival, social interactions and language games. 
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Abstract

Taking inspiration from the biological world, in our work we
are attempting to create and examine artificial predator-prey
relationships using two LEGO robots. We do so to explore
the possible adaptive value of emotion-like states for action
selection in this context. However, we also aim to study and
consider these concepts together at different levels of abstrac-
tion. For example, in terms of individual agents’ brain-body-
environment interactions, as well as the (emergent) predator-
prey relationships resulting from these. Here, we discuss
some of the background concepts and motivations driving the
design of our implementation and experiments. First, we ex-
plain why we think the predator-prey relationship is so inter-
esting. Narrowing our focus to emotion-based architectures,
this is followed by a review of existing literature, comparing
different types and highlighting the novel aspects of our own.
We conclude with our proposed contributions to the literature
and thus, ultimately, the design and creation of artificial life.

Introduction
In our work we are, broadly speaking, interested in see-
ing what existing ideas about emotion in biological agents
can do for the creation of more adaptive artificial agents.
Concentrating on ideas about the role of emotion in ratio-
nal decision-making, we are especially concerned with how
such ideas might help us address the problem of action se-
lection using emotion-based architectures. Action selection
referring to the problem all agents (biological and artificial)
must necessarily face of “what to do next” [Bryson (2007)],
we are further interested in (and advocate) studying it within
the context of (biological and artificial) predator-prey rela-
tionships.

By focusing on this type of relationship, besides enabling
us to better explore and develop our ideas about the role of
emotion for adaptive behaviour in dynamic environments,
we suggest it allows us to obtain more detailed insights due
to and regarding specific aspects or characteristics of this
type of environment. This includes those requiring some
kind of appropriate risk assessment (such as perception of
danger) and, in turn, risk-taking. Consequently, one of our
main aims is to consider in greater depth how action selec-
tion mechanisms might be developed so as to be adaptive

in such situations. That is, where an agent’s decisions are
literally those of “life and death”.

Considering relatively recent ideas about the importance
of the body for intelligent and adaptive behaviour [Pfeifer
and Scheier (1999); Pfeifer and Bongard (2006)], we ex-
plore the link between action selection and emotion in terms
of brain-body-environment interactions. Asking whether we
should stop focusing so much on abstracting away features
of body, in favour of developing emotion-based architectures
oriented more towards ideas such as those inherent to the no-
tions of internal robotics [Parisi (2004)] and morphological
computation i.e. those explicitly giving agent body a more
proactive role in the generation of behaviour.

To do this, and because we are interested in identifying
factors (particularly those relating to the concepts of em-
bodiment and embeddedness) that might affect such inter-
actions, we have developed robots that both model and pro-
vide a means for studying the (different types of) relation-
ship between a single predator and prey agent. Specifically,
we use an implementation of a predator-prey type scenario
previously developed to study action selection: the Haz-
ardous Three Resource Problem (H3RP) [Avila-Garcı́a and
Cañamero (2005)].

Here though, we set aside the more technical details of our
experiments and implementation. Firstly, for a more general
consideration and outline of our ideas as to why the predator-
prey relationship is so interesting and relevant to the prob-
lem of action selection (also detailing our main research in-
terests and questions). Secondly, to review the literature so
as to compare more general features of our work, robots and
implemented emotion-based architecture with those of other
researchers. And finally, to detail the ways in which we hope
our work will make its own contribution to the existing lit-
erature, for both the problem of action selection and role of
emotion in adaptive systems.

The Predator-Prey Relationship and Problem of
Action Selection in the Literature

The relationship between predator and prey is one that
should be of particular interest to those studying action se-
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lection. Indeed, it is of interest across and within many dis-
ciplines. While there are many aspects of this scenario to
interest researchers, what often stands out is the fact it is a re-
lationship between two agents. Moreover, it is a relationship
characterised by a dependency of one agent (the predator)
on another (the prey) for its continued survival. This results
in interactions between agents that will determine the suc-
cess of each agent, with a push-pull effect. Where one wins,
the other will likely suffer some corresponding cost or loss.

Looking at the literature, research has explored this sce-
nario from various perspectives. From the level of the in-
dividual over a lifetime [Kelly et al. (1999)] to populations
across generations [Nolfi and Floreano (1998); Buason et al.
(2005)]. Yet the way this relationship has most often been
studied is through the development of action selection mech-
anisms for the prey that will result in it fleeing whenever it
sees a predator. In effect, making this the more or less auto-
matically optimal or decided choice of action, regardless of
the task currently being performed.

Strangely, researchers have also commonly continued to
focus on one type of agent only (predator or prey) with the
action selection problem of the other agent being of sec-
ondary to no interest. We regard this as possibly leading to
a more superficial look at, or treatment of, the action selec-
tion problem for artificial predators and prey. A perspective
which may lead to less rich, or realistic, solutions than might
be the case or useful in real life and real time.

For example, this emphasis does not take into account or
allow for the possibility that in fact there may be times in
which the more adaptive behaviour would be for the prey to
“take the risk” of being attacked by its predator. Or, indeed,
the case that there are some, if not many, environments in
which life must constantly be risked in order to achieve long-
term survival. Perhaps in favour of satisfying some other
survival need or task. Looking towards ethological studies
for evidence and inspiration, researchers illustrate this could
also be true of biological organisms.

For instance, Cooper Jr (2000) found a species of lizard
will tolerate predators to come closer before they decide to
“flee” under certain conditions, including when they were
eating food. Though it could be argued this might also re-
flect the possibility that the lizard’s attention is more di-
rected on feeding than awareness of or perception of the
predator. More interestingly, it could be that some kind of
economic model allows for “risk-taking” or a kind of “cost-
benefit” analysis in terms of risk assessment that is adaptive
for agents. Then too, this could lead to a role for emotion-
like states as quick, real-time assessors of risk in relation to
certain stimuli.

Our Interest in the Predator-Prey Relationship
The predator-prey relationship may be of interest for action
selection researchers for many other reasons. However, for
us, among the most interesting are:

Figure 1: Our Implementation: Predator (left) and Prey (right)
robots developed for early experiments [O’Bryne et al. (2009)].
These agents have been built using two LEGO NXTs. Our ini-
tial experiments have focused on developing different “brains” for
our agents (emotion-based architectures); looking at the results in
terms of adaptive value (production of adaptive behaviour) in dif-
ferent “bodies” and “environments” (by connecting architectures to
the environment in different ways, such as using different physical
sensors; and varying properties of the partner robot i.e. predator or
prey agent)

• Adding a predator (or prey) to a given agent’s environ-
ment is a way of making that environment dynamic. It
leads to to changes over time that the agent must respond
to adaptively and often increases environmental complex-
ity. Thus, in terms of action selection, it can act as a good
test for how well an individual agent (or the action se-
lection mechanism implemented within it) can cope with
increases in the dynamics of their environment. Impor-
tantly, the typical nature of these are usually such that
each agent has to make quick decisions in order to make
adaptive ones. This leads to a trade-off, where if the agent
hesitates or ponders too long, all could be lost anyway
(game over, especially for the prey).

• It allows us to study action selection at a higher or more
general level, within the context of two agents in a very
unique relationship. Typically, one in which, where one
agent wins, the other will invariably lose. This may affect
the demands for (and guide the design of) the agents and
action selection mechanisms themselves, especially as the
relationship is characterised by a dependency of one on
the other i.e. predator is dependent on prey. Admittedly,
prey might also be said to be dependent on predator. For
instance, at the population level, to avoid over-population.
Yet such dependency is likely to be much more indirect.
This thereby makes the balance of opportunity cost and
stakes for each agent in any interaction unequal. Where
predator loses a meal, prey loses its life.
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Figure 2: Overview of our developed architecture (“brain”) for a prey agent: internal “body” is represented through physiological vari-
ables, deficits of which act as drives which, combined with the presence/absence of external stimuli, are used to calculate motivational and
behavioural intensity. For example, calculations of motivational intensity for a motivation representing hunger will take into account both
physiological deficits such as blood sugar and the presence/absence of food in the environment. In our experiments we vary external “body”
using different physical sensors. Emotion-like states are modelled by the addition of a gland (g); releasing a “hormone” in the presence
of a specific stimulus (in this case the predator) which affects both perception of internal physiological deficits, increasing calculations of
motivational intensity, and the behaviour selected in terms of physical response (speed or tempo of behaviour is increased if hormone is
present)

• It provides us with (if nothing else a wealth of biologi-
cal) inspiration for building action selection mechanisms
both a) capable of dealing with situations of high and im-
mediate risk (used by prey) and b) capable of adapting to
another agent’s behaviour (environmental dynamics) for
the agent’s own advantage (used by prey and predator).
It is also a problem that may call for compromises, in-
creasingly specialised or more adaptive behaviours and,
more specifically for us, interesting trade-offs. Namely,
between the basic choices for the prey of whether it should
flee or not, and for the predator of whether it should at-
tack/hunt or not. Somehow, these agents must be able to
effectively weigh up and make these decisions in the lim-
ited time available.

• It allows us to focus on the interactions that result between
(the action selection mechanisms of) two agents with dif-
ferent sensory abilities, brains, bodies, motivations, pos-
sibly emotions (especially at the time of interaction) and
behavioural repertoires. Starting our own “arms race” be-
tween such agents, we can develop and fine-tune features
of these agents to enable one to gain an advantage over the
other. This could not only produce and drive the produc-
tion of increasingly more adaptive agents, but also lead to
a better understanding of the (different types of) predator-
prey relationship(s), as well as the circumstances when
certain components of action selection mechanisms might
be most adaptive.

• It allows us to look in more detail at the requirements for
adaptive behaviour in this context. For example, it allows
us to ask whether a predator needs more “brain power”
than its prey in order to be able to catch it, or simply dif-
ferent types of behaviours and abilities. Similarly, it al-
lows us to explore those ways in which we might increase
or examine the adaptive value of predator and prey ac-
tion selection mechanisms. This could include the use of
methods across disciplines. For instance, we might anal-
yse developed prey agents’ behaviour in a similar way to
Cooper’s lizards: in terms of the assessments of risk or
cost-benefit analyses that he suggests can be used to ex-
plain their behaviour.

Our Research
Driven by these interests, we have been using our robotic
predator and prey to develop and explore the adaptive value
of emotion for emotion-based architectures (see Figures 1
and 2). Both to gain insights as well as explore (test) links
between concepts of emotion, action selection, adaptive
value, dynamic environments, the brain-body-environment
and predator-prey relationship. Adopting a bottom-up ap-
proach, we introduce emotion-like states using a mechanism
that simulates the effects of neuromodulation (albeit at a
more abstract level than that of the neuron). What is par-
ticularly attractive about this mechanism is it can be used as
secondary controller to an existing architecture.

Broadly, we look to see under what conditions our
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emotion-based architectures (especially those implementing
our chosen mechanism) prove adaptive for agents. We be-
lieve a systematic study, in the context of the H3RP, will
increase our understanding of the adaptive value and poten-
tial of this mechanism. Not only in terms of action selection,
but in terms of predator-prey scenarios. Our mechanism was
chosen primarily because neuromodulation has previously
been noted as a possible “substrate of emotion”. And it is
within this general framework that we formulate our more
concrete experimental research question(s).

Experimentally, this has led to an attempt to identify fac-
tors affecting the adaptive value of the mechanism simulat-
ing neuromodulation. Both as a proposed substrate of emo-
tion and biasor of action selection, in the predator-prey sce-
nario. However, we are interested not only in what this will
tell us about the possible adaptive value of emotion, but also
its likely link to and dependence on properties of a given
body and environment (implementation or task[s]) [O’Bryne
et al. (2009)].

More specifically, we ask how changes in the physical
(e.g. sensory-perceptual and motor-behavioural) abilities of
predator and prey agents interact to affect the balance or dy-
namics of their relationship. The abilities we aim to study
have primarily included the distance into the agent’s envi-
ronment information about stimuli can be obtained. We are
not only interested in such relationships in terms of the ad-
vantage of one over the other in given encounters i.e. who
“wins”, but more importantly the behavioural interactions
and adaptive value of the mechanism simulating neuromod-
ulation.

In the context of brain-body-environment interactions
[Chiel and Beer (1997)] we think such questions are inter-
esting. Not only are we explicitly exploring the importance
of certain specific aspects of body in producing adaptive be-
haviour. But we are also considering their importance for the
successful integration of emotion and emergence of specific,
adaptive behaviours within a predator-prey situation. Look-
ing not only at what kind of role emotion might play with re-
gards to brain-body-environment interactions, but also how
the presence of another agent (prey or predator) might con-
currently affect and direct this relationship or interactions.

To put this another way, we ask what will happen to the
dynamics of a predator-prey relationship when sensory ca-
pabilities, including perceptual distances, are varied. We
want to know what will happen in terms of physical and
behavioural advantage, as well as the consequent adaptive
value, of a mechanism simulating neuromodulation (as a bi-
asor of action selection).

A Comparison with other Emotion-Based
Architectures

To give an idea of where we place our work and architectures
in relation to that of others, as well as to give an overview
of related literature, it might be useful to conduct a quick

Figure 3: Illustration and overview of Breazeal’s architecture for
Kismet: Incorporating ideas about different types of emotions and
connecting them to different motor responses (emotional expres-
sions) [Breazeal and Scassellati (2000)]

comparison of different types of emotion-based architec-
tures. Specifically, those which have also been implemented
in robots. Here we look to do so in order to effectively, al-
beit briefly, contrast our work with that of three other re-
searchers: Breazeal, Arkin and Avila-Garcı́a.

We chose each of these researchers and their architec-
tures for different reasons: Breazeal [Breazeal and Scas-
sellati (2000)] provides us with a “classic” architecture for
comparison, Arkin [Moshkina et al. (2009)] with a relatively
recent addition (TAME being the “state of the art” in the
history of his work) and Avila-Garcı́a’s work [Avila-Garcı́a
(2004)] is in many ways closest to our own. Such similarity
makes it important for us to identify the ways in which our
approach and architectures differ.

So as to get more of an overview of the differences be-
tween them, we will look at these researchers’ research in
reasonably broad terms, using some simple criteria. We do
so here in the context of how each of these researchers treat
or incorporate ideas about emotion in their architectures;
what their primary motivations are, including the problem
or domain of interest studied; and what they consider adap-
tive action selection to be (i.e. their measures of adaptive
value).

Function and Integration of Emotion
Illustrations of the types of architecture produced by each
researcher, including our own, are produced in Figures 2-
5. First, we should look at how each one sees “emotion” in
this context i.e. their ideas as to the function and integra-
tion of emotion for action selection mechanisms. As can be
seen from Figure 3, Breazeal’s architecture explicitly intro-
duces emotions as a subset of motivations. Ideas about the
function of emotion as being communicative are incorpo-
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Figure 4: Illustration and overview of Moshkina and Arkin’s
TAME Architecture: Incorporating ideas about and explicitly mod-
elling personality and emotion using concepts connecting Traits,
Attitudes, Moods and Emotions - each of these varying in their
temporal effects and influence on each other [Moshkina et al.
(2009)]

Figure 5: Illustration and overview of Avila-Garcı́a’s hormone-
like modulation of an action selection architecture: Emotion-like
states are modelled by the addition of a gland (g); releasing a
“hormone” in the presence of a specific stimulus (in the case of
his predator-prey scenario, the H3RP, the predator) which affects
both perception of internal physiological deficits, increasing calcu-
lations of motivational intensity: concentration decays over time
[Avila-Garcı́a (2004)]

rated through the modelling of emotional expressions (the
“actions” selected by her implemented robot Kismet) and
internal “emotions” are used to activate a robot’s physical
expression at any given time.

Contrastingly, from Figure 4, we see that lately Arkin
has been contributing towards the development of a differ-
ent kind of architecture. The TAME architecture introduces
and incorporates emotions in a more “sophisticated” model,
where emotion is treated as one of a number of affective phe-
nomena to be explicitly modelled (traits, attitudes, moods
and emotions). Similarly to Kismet, the robots (AIBO and
Nao) in which TAME has been implemented have used emo-
tion in a communicative context. This is in contrast to some
of his earlier architectures, looking “up the food chain”,
which were generally based on the ideas of his earliest ar-
chitecture (AuRA) and also looked at other possible func-
tions of emotion (non-communicative) for individual, au-
tonomous agents.

With more relevance for our own work, Figure 5 presents
one of Avila-Garcı́a’s architectures. This is where we most
closely align ourselves with regards to the function and in-
tegration of emotion. This is because, in his architecture,
Avila-Garcı́a does not explicitly label any one component as
“emotion” (something we also advocate). Instead, we both
prefer a more bottom-up approach: trying to model one of
the suggested neural “substrates of emotion”. Namely, neu-
romodulation [Fellous (1999)]. We do this in order to exam-
ine the emergent properties of a system, which may conse-
quently resemble the “emotion-like” behaviours of real-life
adaptive agents.

Thus, we have both attempted to simulate the effects of
neuromodulation for the benefit (adaptively) of action selec-
tion mechanisms. In addition, at a level of abstraction which
has resulted in the development of hormone-like mecha-
nisms (“hormone-release” occurring in the presence of rel-
evant external stimuli) which affect action selection over
time. In particular, Avila-Garcı́a examined different ways
in which such a mechanism can act as a biasor of action
selection, modulator of perception (both interoception and
exteroception) and “second-order controller” for existing ar-
chitectures (in this case a motivation-based one).

However, one way in which our currently developed ar-
chitecture differs, is that we try to integrate this kind of
mechanism more pervasively or intricately with the rest of
our architecture. As Figure 2 shows, we have linked our
hormone-like mechanism not only to calculations of moti-
vational intensity, but also the intensity of behavioural re-
sponse. To give an example, in recent experiments, this has
translated into an implementation of a prey agent that, when
its “hormone level” increases, so too does its physical speed.
Thus, we use this “substrate” not only to modulate percep-
tion, but to influence behaviour more dynamically and phys-
ically, in terms of factors such as time.

We think this has the advantage of effectively making
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“short-cuts” or more direct links between a perceived ex-
ternal stimulus and physical response or readiness of action,
which may especially help in the problem of allocation of
limited “energy” resources. Moreover, we go further to con-
sider the interactions between two agents (and their archi-
tectures) rather than looking at one individually (though this
is not explicitly illustrated in Figure 2).

Problem or Domain of Interest
Next, we would like to turn to and compare the particular
areas or “problems” that these architectures, or their imple-
mentations, have been designed to study or solve. We at-
tempt to do so here with regards to each researcher’s partic-
ular contribution to the study of action selection, reflected in
the implementations each researcher has developed, as well
as the particular context (environment/scenario/task) it has
looked at the role of emotion or emotion-like states in. In
this way, we can also examine some of the features of action
selection that each focuses on.

Whilst each architecture can itself be considered a con-
tribution to the action selection literature, and all have been
implemented in robots which is especially appealing, they
have each been implemented for quite different purposes and
in quite different environments: Kismet to model social in-
teractions between infant and caregiver (thus human-robot
interactions); Arkin’s TAME to model affect more sophis-
ticatedly for human-robot interaction; Avila-Garcı́a’s to test
the properties of architectures across different types of en-
vironment/scenarios (only one of which includes a predator-
prey type scenario); and ours to study action selection within
a very particular context and relationship (predator-prey) in
order to examine brain-body-environment interactions.

First, in more general terms, we can say that the primary
implementations of both Breazeal’s and Arkin’s architec-
tures have been in the area and interests of human-robot in-
teraction. The robot head Kismet is Breazeal’s result and
TAME has been implemented in both Sony’s AIBO dog and
the humanoid Nao. While this is of course an extremely rel-
evant and interesting area for the study of the role of emo-
tion (particularly with regards to communicative functions
and interactions) what sets such architectures apart for us is
that they are designed to say as much, if not more, about our
own emotions and interpretation of other agents’ (robots) be-
haviours. That is to say, they may reveal more about us and
less about the adaptive value of emotion for the robot.

We regard this as bringing a dimension to their work that
we currently prefer to leave out of our own, in favour of fo-
cusing our study more exclusively on artificial agents. One
of the advantages of a synthetic approach is that we can
study the interactions resulting between two agents we al-
ready know the exact internal workings of. Introducing a
human participant negates this as we do not know the ex-
act workings of such an agent. Thus, we are less concerned
with their impact on our own (human) behaviours and per-

ceptions of them as agents (though of course we may always
inadvertently introduce our own bias as researchers if we are
not careful in how we study them).

Avila-Garcı́a similarly goes a different way to Breazeal
and Arkin. He implements his architectures across different
scenarios, also using LEGO robots (Taurus and Sador being
examples of these). However, he focuses instead on devel-
oping ways to quantitatively and qualitatively measure these
implementations as individual adaptive systems, to identify
their specific properties in different contexts. He consid-
ers other agents solely with regards to how they may add
to the environmental dynamics, and possibly environmental
complexity (rather than as an agent in a partnership or some
kind of artificial ecology, which can affect and be affected
by other agents).

By not focusing on one particular problem, Avila-Garcı́a
was able to look at the properties of architectures, in par-
ticular arbitration mechanisms, across different scenarios.
He developed several types of scenario for the study of ac-
tion selection, including a robotic two-resource problem;
competitive two-resource problem; and hazardous three-
resource problem (H3RP). Yet, even in his predator-prey
type scenario (the H3RP) action selection did not involve
situations of such high risk as might be expected of such
a relationship. This was due to his development of a more
“parasitic” type of predator-prey relationship (allowing his
agents some leeway in choosing to change activity).

This does not mean that we do not want to, or do not aim
to contribute towards developing ideas that may also be of
use to these other domains of interest. More, we think by
focusing on our particular scenario now (that of predator-
prey) we will be able to bring something particularly special
or unique to the problems of these other architectures later.
Currently, for instance, all three of these other architectures,
when you consider the implementations, do not seem capa-
ble of producing adaptive behaviour in situations where both
the two-way relationship between two agents is accounted
for, and the right decision or action selection is vital for
agent survival i.e. studying both agents in high risk situa-
tions.

What is primarily different about our own motivation
then, is with regards to the kinds of decision and environ-
mental demands we want our architecture to deal with. This
includes situations where there may not be enough time
or flexibility to allow for mistakes or trial-and-error learn-
ing; instead requiring split-second judgements. More to the
point, we want to study the predator-prey scenario for a
much more in-depth look at this kind of relationship, where
a predator is not just an environmental dynamic.

For example, if a robot were to identify another agent as a
predator, we would like to see our robot’s emotion-based ar-
chitecture capable of using its “fear” to better make those
split-second decisions that will direct action selection to-
wards the agent’s own survival. This could involve some
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means of “fleeing” the scene, but might even involve our
prey robot staying to “brave” it out or “defend” its position
or resources. More, we also want the robot predator to be
able to adapt to such behaviour, somehow weighing up the
situation in the limited time available to better direct action
selection.

Finally, another difference can be seen in the type of
intelligence or adaptive behaviour studied. For example,
Breazeal and Arkin can be said to study action selection and
emotion more focused on ideas of human-level intelligence
and emotions (though Arkin has in fact previously devel-
oped ones he suggests demonstrate a lower, more insect-like
intelligence). Once more in common with Avila-Garcı́a, in
contrast we attempt to create simpler creatures for study.
For example, considering these concepts more in terms of
animal-like mechanisms of adaptive behaviour and intelli-
gence.

While Arkin has previously studied architectures aiming
towards insect-level intelligence (incorporating and devel-
oping ideas about motivation and emotion), in “moving up
the food chain” [Arkin (2005)] it does appear he left a some-
what expansive gap between the level of insect and that of
animals. Using our bottom-up approach, this is where we
would like our work to fit. Between the reactive architecture
he attributes to an insect; and the more deliberative architec-
tures he chooses for those interacting with humans.

Measures (of Adaptive Value)
Finally, we can also compare researchers in terms of the
level of analysis and criteria each expects will be used to
measure the adaptive value of their architectures in a given
implementation. Without going into unnecessary detail, per-
haps due to their interest in human-robot interaction, in this
respect both Breazeal and Arkin can be said to have fo-
cused on the use of both internally and externally-derived
measures i.e. measuring, for different purposes, both ex-
ternal effects of their robots’ action selection on human re-
sponse; and the internal parameters of the system or archi-
tecture over time. When involving observations, this is often
a lengthy process with regards to analysis, but has the benefit
of allowing us to directly study interactions between humans
and robots.

Conversely, Avila-Garcı́a’s architectures were studied
placing focus mainly on the use of more internally-derived
and summarative measures. He developed measures of anal-
ysis that consider the viability of agents over an individual
life span (presumably choosing this as the correct level of
analysis to study adaptive value). But, just as interestingly,
Avila-Garcı́a also considered and suggested action selection
be studied in terms of activity cycles rather than separate de-
cisions. Similarly, we would like to consider how analysis
of behaviour over time might bring us more insights into our
architecture’s behaviour in different predator-prey scenarios.

In our work though, perhaps more in common with

Breazeal and Arkin, we try to combine the use of both exter-
nally and internally-derived measures for studying the per-
formance of our agents. We also attempt to go further, for a
more comparative look. One of our primary concerns is thus
to ask at what level of study we will find out most or under-
stand our systems best. Especially with regards to what one
might consider adaptive value to be (and in terms of brain-
body-environment interactions). In this way we again seek
to bridge the gap between these architectures, this time in re-
spect of the level their researchers have proposed we analyse
them at.

One source of inspiration for us in this endeavour again
comes from another discipline: ethology. Though dynamic
systems theory has developed tools to study the interactions
of dynamic systems, we use the analogy of animal-like be-
haviour to suggest that the ethologists have already devel-
oped many tools to be used in the analysis of our animat
agents. In particular, many of these methods allow us to
combine both considerations of internal and external data
(as derived or collected from experiments).

Contributions
Having considered our own research using such criteria, the
contributions we therefore hope our work will make, espe-
cially towards the literature on action selection and emotion
(or affect) include:

For “Affective” Action Selection:
• Further development of our architectures and implemen-

tation. In initial experiments, we divided perception into
proximal and distal types (combinations of which making
further sub-problems or versions of the H3RP). This en-
ables and hopefully justifies direct comparison, especially
in terms of the interactions of different physical proper-
ties of predator and prey, with previous findings using the
same framework (such as Avila-Garcı́a’s). At the same
time, it introduces a new dimension for study (an aspect
of embodiment, in this case perceptual field or “sensory
ability”). Such a comparison will, for example, enable
us to identify aspects of the original scenario that may
be crucial for the success of our proposed emotion-like
mechanism.

• A more systematic study of the predator-prey type rela-
tionship than has been conducted yet in the action selec-
tion literature with regards to affect. For instance, look-
ing to see the minimal conditions under which our cho-
sen mechanism (or emotion in general) might be adap-
tive. Both with regards to the capabilities of our agents’
“brains” and “bodies”, as well as features of the environ-
ment: varying both abilities of predator and prey. For,
while others have looked at the role of emotion in the
predator-prey scenario, they do not necessarily know or
have not necessarily taken into consideration how their
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mechanisms or emotion-based architectures might work,
or be developed to work, in increasingly more dynamic
environments. Or with different types of embodiment.

• An analysis of costs and benefits of both emotions and
decisions in the predator-prey relationship. Looking at
neuromodulatory effects as the basis for emotion, when
used in different ways for agents (such as aggression for
predator, fear for prey). But, in addition, also looking
at action selection mechanisms more in terms of trade-
offs. So, examining mechanisms as assessors of risk or
opportunity cost: quick or rough-and-ready filters for be-
haviour and representations of the importance and lim-
ited nature of time. Looking at action selection in terms
of a trade-off, between the time taken to decide and
time taken for environmental circumstances to change ad-
versely, temporally-adaptive responses may follow.

For Analysis of Adaptive Systems:
• A comparison and evaluation of measures of adaptive

value (both quantitative and qualitative) that might be
adopted. From internal measures of viability from ex-
amination of an individual agent, to Markov Models con-
structed from external observational data (by adopting the
idea of activity cycles, thereby looking to analyse tempo-
ral behaviour of agents rather than simple life span etc).

• An analysis of the action selection problem in terms of the
brain-body-environment relationship. Taking a broader
look at action selection, so as to be asking whether we
should actually be looking at the architecture alone in iso-
lation, or whether we find out more by considering el-
ements together. For example, considering both archi-
tecture and body, predator and prey, together, rather than
individually. Moreover, looking at how (more realistic)
two-way interactions may affect the performance of archi-
tectures and where emotion might fit in the relationship.

For System Design:
• A demonstration of how we might manipulate or adjust

parameters so as to better “fine-tune” our mechanism and
increase its value for adaptive action selection in this con-
text (of the H3RP and predator-prey relationship). In par-
ticular, looking at how we might benefit from further dis-
tributing control and neuromodulatory influence across
both agent architecture and agent body (as generators of
brain-body-environment interactions).

We suggest that together these contributions will enable
us to make an altogether much more comprehensive, per-
haps even synergistic, contribution to the literature regarding
action selection. Not only linking concepts such as action
selection and emotion to the predator-prey relationship and
brain-body-environment interactions; but, in turn, highlight-
ing their more general contributions to the more intelligent
design or creation of artificial life.
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Abstract 
The effect that learning has on Life History Evolution has 
recently been studied using a series of Artificial Life 
simulations in which populations of competing individuals 
evolve to learn to perform well on simple abstract tasks.  Those 
simulations assumed that learning was achieved by identifying 
patterns in sets of training data, i.e. through direct experience.  
In practice, learning is not only by direct experience, but also 
by imitation of others.  Such imitative information transfer is 
now often formulated in terms of memes being passed between 
individuals, and it is clear that this is a substantial part of real 
learning processes.  This paper extends the previous study by 
incorporating imitation and memes to provide a more complete 
account of learning as a factor in Life History Evolution. 

Introduction 
Computational models based on neural networks that learn 
from a stream of experience (i.e. representative input-output 
samples) have provided good accounts of numerous aspects of 
human behaviour.  Extending those models to Artificial Life 
simulations of evolving populations of competing neural 
network based individuals can then lead to improved under-
standing of more general aspects of human development and 
“life history”, such as the periods of protection that parents 
offer their young and ages at first reproduction (Bullinaria, 
2009).  Those simulations elucidated the trade-off between 
learning quickly and learning well, and showed how evolution 
can balance the trade-off to result in the emergence of 
extended periods of parental protection during which learning 
could be completed slowly and effectively without the impact 
of fitness based natural selection pressures.  

The Bullinaria (2009) Life History Evolution study began 
by using a simple artificial neural network based system that 
allowed each individual to learn from a set of training 
patterns, and then moved on to study non-neural network 
abstractions of that kind of learning process, that were more 
computationally efficient for large scale evolutionary 
simulations.  What all those simulations assumed was that the 
learning was achieved by identifying patterns in relevant 
training data, i.e. through direct experience.  In practice, 
learning is not purely by direct experience, but also by 
imitation of learned performance of others.  Such information 
transfer can be formulated in terms of memes being passed 
between individuals (e.g., Brodie, 1996; Blackmore, 1999), 
and it is clear that this, in its most general form, is a large part 
of the human learning process, and maybe also of other 
animal species.  It is therefore important to incorporate 

imitation and memes into any complete account of learning as 
a factor in Life History Evolution.  As always, there will be 
trade-offs between the various costs involved (Stearns, 1989, 
1992).  In many ways, the relevant trade-offs are clear from a 
theoretical point of view, but the interactions are complex and 
highly dependent on the associated parameters.  It is only by 
running comprehensive series of simulations that the effect of 
the various parameter values becomes apparent.  

Already Higgs (2000) has simulated the evolution of 
learning by imitation, but that study didn’t consider how that 
learning might interact with more traditional neural learning 
by direct experience, and it is not immediately obvious how 
best to bring those different forms of learning together.  One 
of the key results of Bullinaria (2009) was that it is possible to 
abstract out almost all the details of the neural learning, and 
still be left with a system that resulted in the evolution of the 
same life history properties.  Although it was not the intention 
at the time, that abstraction process also provides a relatively 
straightforward way of incorporating imitative learning into 
the same system.  Therefore, the aim of this paper is to 
introduce a parameterized account of memes and imitation 
into the approach of Bullinaria (2009), and begin to explore 
the effect that imitation has on the various life history and 
human development factors.  

In the remainder of this paper, the underlying Artificial Life 
framework is first described, and then the details are provided 
about how the direct learning and imitation processes can be 
modelled efficiently.  This is followed by a presentation of the 
results from a representative series of simulations designed to 
test and explore many of the key relevant issues.  The paper 
ends with some discussion and conclusions. 

The Artificial Life Framework 
The simulation approach involves evolving populations of 
individuals, each specified by a set of innate parameters, that 
must learn to perform well on some abstract task.  The fitness 
of each individual at each stage will simply be how well it has 
so far learned the given task.  Forcing the individuals to 
compete to survive and procreate, according to their relative 
fitness, results in the emergence of populations of increasing 
ability.  Moreover, to compete effectively in a population 
consisting of individuals of all ages, each individual must not 
only learn how to perform well, but must also be able to learn 
quickly how to achieve that good performance, or at least 
quickly enough that it can survive after its parents have 
withdrawn their protection.  This leads to the evolution of 
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riskier learning strategies than over-simplified “generational” 
approaches that involve weaker selection pressures and do not 
match real environments so well (Bullinaria, 2007a).  

In all the simulations, a fixed population size is maintained 
(that is consistent with fixed total food resources available to 
support the population) by replacing the individuals that have 
died by children of the most fit individuals.  Deaths occur by 
losing a fitness comparison “fight” against other individuals, 
or randomly due to old age beyond a natural life-span (set 
here to be around twice the time typically taken to learn the 
simulated task, namely 30 simulated years).  The children are 
generated by cross-over and mutation from two parents 
chosen each simulated year by pair-wise fitness comparisons 
of the eligible individuals.  This is implemented by having 
each child inherit innate parameters chosen randomly from the 
corresponding ranges spanned by its two parents, plus a 
random mutation (from a Gaussian distribution) that gives it a 
significant chance of falling outside that range.  Although 
these details are clearly over-simplifications of real animal 
populations, they constitute a manageable approximation of 
all the key processes, and have proved effective in numerous 
previous studies (e.g., Bullinaria, 2007a,b, 2009).  

The Bullinaria (2009) study began with a learning process 
based on standard fully connected Multi-Layer Perceptron 
neural networks with one hidden layer, sigmoidal processing 
units, and training by gradient descent using the cross-entropy 
error function on simple classification/categorization tasks.  
The main life history factor explored in that study was the 
protection of children by their parents until they had reached a 
certain age, so they could not be killed by competitors before 
then.  That added an implicit cost to the parents in that the 
more they protected their children, the more likely they were 
to die themselves through competition.  Simulations that 
evolved the protection period, as well as all the neural 
learning parameters, established that clear learning advantages 
and better adult performances were possible if children 
received longer periods of parental protection, but only if the 
children were not allowed to reproduce during their period of 
protection.  If procreation was not prevented in that way, the 
competition to reproduce led to learning strategies that result 
in worse adult performance.  When procreation is prevented 

while protected, a compromise protection period evolves that 
balances the improved learning performance against the 
reduced period for procreation.  It was also shown that the 
evolved protection period increases with life-span, rather than 
remaining at a fixed duration determined by the learning task 
complexity, illustrating the trade-off involved and confirming 
the importance of learning well.  

Abstracting the Neural Learning Process 
An important result of Bullinaria (2009) was that it is possible 
to approximate the full neural network learning process by a 
single performance level that varies as a simple parameterized 
function of age, and still end up with qualitatively the same 
Life History Evolution results.  The simplest stochastic 
approximation would be to have each individual’s learning 
performance (i.e. fitness) rise approximately linearly with age 
from 0 up to 100% in steps drawn randomly each year from 
the range [0, 2δ].  Simulations using different learning rates δ 
then show that the population mean performance falls almost 
linearly with the Expected Learning Time (ELT), i.e. 100/δ, 
and the evolved protection period rises approximately linearly 
with 100/δ, but peaks near the point at which individuals start 
dying of old age.  Predictably, the best mean performance is 
achieved with very high learning rates δ, for which all 
individuals reach perfect performance before their first round 
of competition to survive or procreate at the end of their first 
year.  Consequently, if the learning rate δ is evolved along 
with the protection period, it quickly achieves very high 
levels, and the protection period goes to zero.  Of course, with 
real neural networks one cannot just keep on increasing the 
learning rate and expect the learning time to decrease with it.  
Eventually, at some task dependent point, the approximation 
to true gradient descent breaks down, and the learning 
performance deteriorates.  In that case, the evolutionary 
process will find the best values for the learning parameters, 
and having slower learning with longer protection periods 
does consistently emerge to provide a clear advantage.  

A better approximation to the full neural learning process, 
that has faster learning leading to riskier learning strategies 
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which increasingly lead to persistent poor performance, is 
achieved by simply having the learning process stop at some 
random point in the performance range [0, 100] with a 
probability ρδ that increases linearly with both the learning 
rate δ and an associated “task difficulty” parameter ρ.  The 
left graph of Figure 1 shows how the mean performance then 
depends on the ELT 100/δ for four representative values of ρ.  
The higher ρ is, the lower the value of δ at which significant 
deviations from the earlier ρ = 0 case arise.  The right graph 
shows that the relation between the evolved protection period 
and 100/δ is not much affected by the size of ρ.  

The performance plot shows a clear maximum for each 
value of ρ, and successful evolutionary processes will result in 
the emergence of the corresponding optimal learning rates δ 
with their associated non-zero protection periods.  The left 
graph of Figure 2 shows the mean Expected Learning Times 
100/δ and protection periods that actually emerge through 
evolution as a function of the parameter ρ.  As ρ increases, the 
best possible learning time 100/δ also increases, and the best 
protection period follows suit.  The evolved protection period 
is always slightly longer than the ELT 100/δ.  This is because 
of the stochastic nature of the learning process and the fact 
that the mutations lead to distributions of learning rates and 
protection periods, and the obvious advantage of protection 
periods being long enough to accommodate a reasonable 
number of individuals that are slower than average.  

The parameter ρ is seen to act as an abstract measure of 
learning difficulty, and can be regarded as an approximate 
representation of the difficulty the neural network learning 
algorithm has with its given task.  Although this is a rough 
approximation to reality, it does have the required properties.  
Relatively easy tasks correspond to low ρ, are learned quickly, 
and have short associated protection periods.  Harder, or more 
complex, tasks correspond to higher values of ρ, take longer 
to learn, and benefit from longer protection periods.  The 
individual performance levels that emerge in the abstracted 
learning models were compared directly by Bullinaria (2009) 
with those arising from the full evolutionary neural network 
simulations, and a good qualitative correspondence was found 
for ρ = 0.04.  The right graph of Figure 2 shows the median 
performance levels as a function of age for this case.  The 

mean evolved ELT 100/δ is around 10 years and the mean 
evolved protection period is around 14 years.  As for the full 
neural simulations, the results arising with evolved protection 
period (Ev) were compared with three fixed protection periods 
(1, 10, 20).  The linear learning approximation and uniform 
distribution of residual errors are rough approximations of the 
real neural learning processes, but the broad pattern of results 
is found to be the same:  Longer protection periods allow 
slower learning and result in better adult performance, but not 
allowing procreation while being protected prevents the 
evolved protection periods from becoming excessively long.  
The effects of changing the age at onset of “old age”, and of 
allowing procreation while protected, are also found to be in 
line with those of the full evolving neural networks.  

There certainly remains much scope for more accurate 
parameterizations for specific real learning processes, as 
discussed by Bullinaria (2009), but the current set-up will 
suffice for the preliminary investigation of memes here.   

Incorporating Imitative Learning 
The main aim of the abstracted neural learning process was to 
improve the computational efficiency, and hence allow more 
detailed Life History factors to be simulated, but it also 
renders it feasible and fairly straightforward to incorporate 
learning by imitation into the same performance function.  

The basic idea is that it will often be more efficient to 
imitate the successful behaviour of another individual than it 
is to learn it from direct experience.  One can think of the 
transmission of behavioral practices or cultural ideas between 
individuals, and those memes will replicate and respond to 
natural selection pressures in a manner analogous to genes 
(Dawkins, 1976; Brodie, 1996; Blackmore, 1999).  It seems 
likely that humans have evolved to learn by imitation as well 
as direct experience across a wide variety of tasks (e.g., 
Richerson and Boyd, 1992; Offerman  and Sonnemans, 1998), 
though other species appear to imitate to a much lesser extent 
(e.g., Byrne and Russon, 1998; Blackmore, 1999; Zentall, 
2001).  There has been considerable recent interest in this idea 
across a range of disciplines (e.g., Hurley and Chater, 2005; 
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Figure 2:  The mean evolved ELT 100/δ and protection period as a function of learning task difficulty parameter ρ (left), and the 
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Nehaniv and Dautenhahn, 2009).  The thinking here is that 
Artificial Life simulations will be best placed to explore this 
issue in the context of other Life History traits.  

Some interesting preliminary work has already been carried 
out.  Belew (1990) and Best (1999) have introduced imitation 
based cultural factors into the Hinton and Nowlan (1987) 
model of learning guiding evolution, but that work is far 
removed from the neural inspired learning relevant to the life 
history factors of relevance here.  Borenstein and Ruppin 
(2003) address many of the limitations of those earlier studies, 
and do incorporate neural learning mechanisms, but they 
actually prevent cultural evolution by not allowing meme 
transmission between generations and only allowing innate 
behaviours to be imitated.  

The study of Higgs (2000) comes closest to exploring the 
life history issues of interest here.  That paper considered the 
evolution of populations of individuals that may invent and 
imitate memes, and investigated a range of factors that affect 
how the imitation rates, fitness levels, and number of memes 
evolve.  The key finding was that imitative ability does 
consistently emerge under a range of conditions, even when 
some memes have a negative effect on fitness, and/or there is 
an inherent cost in the ability to imitate.  In many ways it is 
obvious that if there exist memes with a range of positive and 
negative effects on fitness, then not imitating will leave the 
fitness at some baseline, whilst imitation will result in a range 
of fitness levels above and below that baseline.  Selection on 
the basis of fitness will then favour those individuals that have 
imitated the good memes, and hence favour imitative ability.  
Moreover, since it favours individuals that have acquired and 
can pass on those good memes, the good memes will tend to 
propagate at the expense of the bad memes.  Memes acting 
together (i.e. memeplexes), the interplay of genetic and 
cultural fitness, and the interaction of genetic and mimetic 
replicators, all complicate this simple picture (e.g., Brodie, 
1996; Blackmore, 1999; Best 1999), but these are all things 
that can be incorporated into future simulations. 

The main question this paper aims to address is: how can 
the Life History Evolution approach of Bullinaria (2009) be 
extended in a way that enables these issues to be studied in 
conjunction with direct lifetime learning processes?  

Simulating Memes and Imitation 
For the extraction of reliable conclusions from Artificial Life 
simulations it is important to avoid confounding factors, so to 
explore general ideas it is usually wise to keep the models 
much simpler than when the aim is to model particular real 
life scenarios.  Moreover, it is important to parameterize the 
models (e.g., like introducing the parameter ρ above) so that 
they remain relevant to a range of species, tasks, etc. and 
allow comparisons between them.  The aim here is to develop 
such a parameterized framework that is general enough to 
cover learning from others in the most general sense, that 
includes (but is not limited to) simple imitation. 

Unfortunately, the details of the Higgs (2000) study do not 
match with the current aims.  In particular, it did not consider 
the details of any of the processes taking place during the 
individuals’ lifetimes, and it used non-overlapping generations 
which means a total absence of the competition between 
individuals of different ages that underlies so many of the 
issues of interest here.  Other factors simply complicate the 
analysis unnecessarily, such as using Gaussian distributions 
for the meme fitnesses and mutations, the non-linear relation 
between learning ability and probability of imitation, and the 
unbounded number of memes that can be invented.  So, 
instead of following the approach of Higgs (2000), the 
approach of Bullinaria (2009) will be extended in a minimal 
computationally efficient manner to include the key concepts 
of memes and their imitation. 

The starting point is to assume that there exist a set of M 
memes {mj : j = 1,…,M} and that each individual i at each 
stage of its life will have acquired some subset of them to be 
stored in their brain of size Bi.  There is no need to specify 
exactly what the memes represent, nor worry about the details 
of the imitation process.  It will also be assumed that all the 
memes are of equal complexity and imitability, though they 
may contribute unequally to fitness of the individuals that 
possess then.  To begin with, the individuals’ baseline fitness 
will be 0, and half the memes will be deemed good memes 
that increase this by 1, and the other half will be bad memes 
that decrease it by 1.  So each individual i can potentially 
increase its fitness during its lifetime from 0 up to Bi.   
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Figure 3:  The evolution of imitability (left), and the change in average numbers of good and bad memes known by individuals 
throughout evolution (right), for 16 runs of the basic imitation-only simulation with limited brain sizes.  
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The imitative ability αi of all individuals i in the initial 
population will be zero, but the mutations and crossovers as 
described above enable it to evolve from zero up to a 
maximum of 1 if that proves beneficial.  Then during each 
simulated year, each individual can acquire up to αiφBi memes 
from other individuals, where φ is a parameter that specifies 
the maximum rate at which memes can be copied.  To inject 
memes into the populations with minimal disruption to the 
imitative process, each year one randomly chosen individual 
acquires one randomly chosen meme with probability r if its 
brain is not already full.  Figure 3 shows what happens if 
M = 400, Bi = 100, φ = 0.1 and r = 0.01, with just the 
imitabilities αi allowed to evolve.  The tournament based 
selection of parents, deaths and copied individuals give the 
good memes an advantage over bad memes, so the number of 
bad memes rises more slowly than the good memes, and when 
the number of known memes reaches the level that brains 
regularly reach full capacity (~20,000 years), the number of 
bad memes begins to fall and eventually becomes negligible 
(~150,000 years).  There is a clear advantage to acquiring 
memes throughout, and so the imitability quickly rises to near 
1.  The behaviour during the lifetime of a typical evolved 
individual is a simple linear acquisition of memes over the 
first 1/φ = 10 years, at which point the brain reaches full 
capacity and maximum performance is achieved.  Children are 
then produced until death due to old age.  Most deaths due to 
competition occur during the meme acquisition period.   

There are interesting dependencies on who exactly is 
imitated to acquire memes.  If memes are copied from random 
individuals, there is still enough selection pressure to eradicate 
the bad memes, but it takes about twice as long (~300,000 
years).  If each individual first acquires memes from their own 
parents, before imitating random others, the number of bad 
memes disappears more quickly (~130,000 years).  If parents 
are imitated before fitness selected others, the bad memes go 
even more quickly (~120,000 years).  Since parents have 
already gone through fitness selection to become parents, and 
are also older and more experienced, they are a better source 
of memes than other fitness selected individuals.  In fact, if 
individuals only copy from their parents, significant numbers 
of bad memes never build up at any stages of evolution.   

Another factor that affects the results is the basing of who 
to imitate on cultural fitness (Higgs, 2000).  In this case, each 
meme has a cultural fitness that is not correlated with its 
standard (biological) fitness, and individuals are chosen for 
imitation according to the total cultural fitness they have 
acquired.  As Figure 4 shows, this allows memes of high 
cultural fitness to persist in the population, even if they are 
actually bad memes.  This is independent of what contributes 
to the cultural fitness of those bad memes.  Obviously, there 
are numerous related factors, such as cognitive dissonance 
(Cooper, 2007) and memes associating into memeplexes 
(Blackmore, 1999), that will increase or decrease this effect to 
varying degrees, and these are more issues that may be worth 
attempting to incorporate into future simulations.  

The effect of copying fidelity also needs consideration.  
This can easily be approximated by having a fraction 1–f of 
good memes incorrectly copied and thereby transformed into 
bad memes.  As the fidelity f is reduced from 1, the pattern 
changes from that like Figure 3 but with increasing times 
needed to eradicate the bad memes, to something like Figure 4 
with persistent levels of bad memes.  

Finally, it is important to understand how the results 
depend on the relation between the total number of memes 
and the brain capacity.  For M = 200, Bi = 200 and everything 
else the same, the simulation results of Figure 3 take on the 
rather different pattern seen in Figure 5.  Now all individuals 
can acquire all memes, and it proves much more difficult to 
separate the good from the bad so that selection pressures can 
act.  In this case evolution ends up with only slightly more 
good memes than bad, and there is little pressure towards high 
levels of imitability.  Interestingly though, the strategy of only 
imitating ones own parents does manage to prevent the build-
up of bad memes in this case too.  

A central recurring feature of the Higgs (2000) study was a 
“mimetic transition” at which there is a dramatic rise in 
imitative ability and number of memes, and it was shown how 
numerous factors affected the timing of that transition.  In the 
current framework, that transition virtually always happens 
right at the start of the evolutionary process.  

There is certainly much more to memes and imitation than 
has been introduced here (e.g., Brodie, 1996; Blackmore, 
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Figure 4:  The evolution of imitability (left), and average numbers of good and bad memes known by individuals (right), for 16 runs 
of imitation-only simulations with limited brain sizes and cultural fitness based imitation selection.  
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1999), but the framework as described above already includes 
all the key ideas necessary to make progress.   

Simulating Direct Learning 
Having formulated the key mimetic factors, the direct lifetime 
learning factors of Bullinaria (2009) can now be reinstated.  
The natural way to do this in terms of memes is to have δiψBi 
random memes learned each year, where δi  is an evolvable 
learning rate, and ψ is an intrinsic measure of learning 
difficulty.  The time to learn to brain capacity is then 1/δiψ, 
and for ψ = 0.01 the expected learning time matches that of 
the Bullinaria (2009) simulations.  The learning difficulty 
parameter ρ  that prevents the evolution of unrealistically high 
learning rates can be implemented easily here by learning a 
bad meme rather than a good meme with probability ρδ.  
Then the evolved learning rates balance the trade-off between 
learning quickly and having too many fitness reducing bad 
memes, with results equivalent to the full neural network 
simulations of Bullinaria (2009).  

Life History Simulation Results 
The simulations become even more interesting when the 
imitation and direct learning occur together and interact with 
life history traits such as protection periods.  But, before doing 
that, there are a few more important details that need to be 
added to render the simulations reasonably realistic.  

First, it is possible for an individual to acquire both good 
and bad “versions” of the same meme via different routes.  
The resolution of meme inconsistencies in reality is known to 
be a complex issue (Cooper, 2007), but a convenient approach 
to start with here is to have the good and bad memes come in 
pairs that simply cancel each other out if they occur together.  
In this way, a bad meme arising from direct learning can be 
removed if the corresponding good meme is copied from 
another individual.  Similarly, a bad meme arising from poor 
copying fidelity can be removed by later acquiring the 
corresponding good meme by direct learning or by copying 
from a different individual.  

Second, in reality, the rate of meme acquisition is unlikely 
to be as constant as in the processes described above.  Instead, 
more realistic results are produced by a stochastic version, 
where each usage of the parameters αi and δI are replaced by 
random numbers from the respective ranges [0, 2αi] and 
[0, 2δi], like in the Bullinaria (2009) study.  

Figure 6 shows the evolution of the key parameters and 
resultant meme counts when M = 400, Bi = 100, φ = 0.1, 
ψ = 0.01, r = 0.01, f = 0.9 and ρ = 0.001.  In this case, both 
copying and direct learning contribute to the learning process, 
and bad memes are kept to very low levels.  The protection 
period settles to slightly above the typical learning time as in 
the full neural simulations of Figure 2.   

The implementational details obviously affect exactly what 
emerges from the simulations, and it is those differences that 
reflect the wide range of life history patterns for the different 
species that have emerged from biological evolution.  Varying 
the details and parameters allows a systematic exploration of 
the trade-offs and interactions that lead to specific traits.  A 
few simple examples will now illustrate the kind of factors 
that can be investigated within this framework.  

The issue of whether to allow procreation while protected 
produced interesting results in the direct learning study of 
Bullinaria (2009).  In that case, if procreation was allowed 
while protected, the protection periods rose so that there were 
only deaths due to old age and no deaths by competition, and 
the selection pressure to learn fast to procreate early resulted 
in higher learning rates that led to poorer adult performance.  
This no longer happens in the current meme based framework.  
Since the errors arising from faster learning can now be 
corrected by copying (or being taught), such fast learning will 
emerge without a deterioration of the final adult performance.  
Increased protection periods again remove the worry of early 
death due to competition, so if some unlucky individuals are 
slow in correcting their direct learning errors, that is 
compensated overall by the faster early learning in others.  
The balance between the two forms of learning, parameterized 
here by φ, ψ, f and ρ, will determine exactly what emerges, 
and the way forward would be to attempt to understand 
species specific differences in terms of variations in such 
parameter values.  
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Figure 5:  The evolution of imitability (left), and average numbers of good and bad memes known by individuals (right), for 16 runs 
of the basic imitation-only simulation with brains large enough to accommodate all known memes.  
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The copying fidelity, parameterized by f, has a particularly 
large effect on what emerges.  If it is raised from the 0.9 of 
Figure 6 up to 1.0, so that all the copying is exact, evolution 
results in perfect performance being achieved more quickly 
and more reliably.  One might predict that the evolved direct 
learning rates δ will then decrease to enable more reliable 
memes for copying, but they actually increase from 12 to 19, 
because copying can now more effectively correct any direct 
learning errors.  Overall, the evolved protection period can be 
reduced from 10.0 to 7.6 years to enable a longer procreation 
period.  The trade-offs are such that fidelity differences affect 
what emerges in different ways depending on the values of the 
other parameters.  This again illustrates the need for a flexible 
modeling framework to explore such interactions.  

If the copying fidelity is very low, a high imitative ability α 
never evolves because it introduces too many bad memes into 
the population, and one ends up with direct learning only, as 
appears to be the case for most animal species apart from 
humans.  Also, if mechanisms are not available to remove bad 
memes, interesting changes in imitative ability can arise 
throughout evolution.  For example, Figure 7 shows one such 
case in which the number of bad memes repeatedly rises to 
such high levels that the best strategy is to stop copying until 
all the carriers have died, and then start again.   

The brain size is another crucial factor that can be evolved, 
and in the simulations described above it invariably grows to 
the maximum allowed.  Obviously, for real animals there are 
significant costs associated with having larger brains, and 
trading those costs against the improved performance that 
results from a bigger brain leads to particular brain sizes 
emerging (e.g., Blackmore, 1999; Striedter, 2005).  It actually 
proves easy to add such costs into the simulations to limit the 
brain sizes that emerge, but the cost implementations are not 
yet sophisticated enough that the models can provide reliable 
testable predictions about particular species.  

Discussion and Conclusions 
This paper has made the first steps in introducing imitative 
learning and memes into Artificial Life simulations of Life 
History Evolution.  The main contribution has been to present 
a flexible framework which allows a computationally efficient 
way of parameterizing and exploring any hypotheses in this 
field.  There are certainly numerous simplifications and 
approximations involved, which have been highlighted 
throughout, but the basic structures and ideas are in place, and 
they have already been shown to replicate the key results of 
earlier approaches and improve upon them.   
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Figure 6:  Evolution of the full imitation and direct learning system with copying fidelity f = 0.9 and ρ = 0.001: the average 
imitability α (top left), learning rate δ (top right), protection period (bottom left) and resultant meme counts (bottom right).  
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Even this simplified framework can be used to investigate 
an enormous number of interactions and trade-offs.  This 
paper has only presented results from a small selection of 
simulations to illustrate the kinds of issues that can be 
explored.  Experiments studying further issues will be 
reported in a longer paper elsewhere.  The simulation results 
so far are in line with existing intuitions, which instills 
confidence that they can now be taken further with some 
reliability to explore issues for which our intuitions are not so 
clear and controversy remains.  

There are numerous aspects of the current set-up that could 
be improved further without too much effort.  One would be 
the refinement of the parameterization of direct learning, and 
the relation of that to different types of animal learning.  Some 
preliminary attempts involving more parameters and different 
distributions of good and bad memes have shown that they do 
indeed re-balance the trade-offs slightly, but no fundamentally 
different behaviours have yet emerged.  Specific details of the 
mechanisms for removing bad memes tend to have a more 
dramatic effect on the results, as Figure 7 shows.  Building in 
associations between good and bad memes and simulating the 
creation of memeplexes (Blackmore, 1999), and introducing 
related mechanisms for the resolution of cognitive dissonance 
(Shultz and Lepper, 1996; Cooper, 2007), are obvious avenues 
for future enhancement of the framework in that direction, but 
it is not clear what fundamentally new results might emerge 
from that.  More challenging future work will involve the 
incorporation into the existing framework of more realistic 
additional indirect performance costs related to biological 
factors (such as the cost of running a larger brain, or of 
providing parental protection, or of allowing copying, or of 
teaching), and better distinction between types of learned 
behaviour and related factors such as ease of copying.  
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Abstract

We argue that culture undergoes an evolutionary process,
analogous to biological evolution. As evidence, we analyze
the bibliographic information of all utility patents issued in
the United States from 1976 through 2007, which comprise
over three million patents. The set of issued patents is re-
garded as an evolving population. A patent is considered to
“reproduce” when it is cited by a new patent, and variability
is introduced into the population by the innovations in new
patents. We analyze patent records with statistics that quan-
tify the degree to which the population of patents is shaped
by natural selection, and we find convincing evidence of Dar-
winian evolution. Further, weighting our statistics by the
classification distance between parent and child shows that
the most fecund patents are “door-opening” technologies that
enable an especially broad range of further innovations.

Introduction
We study the evolution of technology as reflected in US
patent records. Everyone agrees that technology evolves,
but there is controversy about what this means, and espe-
cially whether the evolution of technology is “Darwinian”
in some interesting sense (Jablonka (2002); Benzon (1996)).
By Darwinian evolution, here, we mean that the process of
natural selection in a population is a significant factor in ex-
plaining how the traits in the population change over time.
Natural selection, in turn, is defined as the process by which
heritable traits that make members of a population more
likely to survive and reproduce tend to be increasingly rep-
resented in the population over time.It should be noted that
our conception of Darwinian evolution is consistent with
cultural evolution being simultaneously significantly shaped
by many non-Darwinian mechanisms, like random genetic
drift, pleiotropy, and epigenesis (Jablonka and Lamb (2005);
Sperber (1996)).

In this paper, we develop methods to address the follow-
ing two questions:

1. Does natural selection shape the evolution of technology?

2. If so, what kinds of technological innovations especially
drive its evolution?

Our aim is both to show the value of the methods, even when
applied in new settings and adapted to new contexts, and also
to investigate and learn from the first fruits of applying the
methods to patent data. In the end, our conclusions will be
two: (1) Natural selection significantly shapes the evolution
of patented technology, and (2) the statistical evidence cor-
roborates the hypothesis that so-called “door-opening” tech-
nologies have been especially important drivers of the evo-
lution of technology.

Our project applies earlier work on evolutionary activity
statistics (Bedau and Packard (1992); Bedau et al. (1997,
1998); Bedau and Brown (1999); Rechtsteiner and Bedau
(1999); Raven and Bedau (2003)) and significantly expands
and develops an earlier similar pilot project (Skusa and Be-
dau (2002); Bedau (2003)).

Patent data
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Figure 1: Number of patents issued each quarter, over the
thirty years in our database.

The patent data we mine in this experiment consists of
records of US patents issued over thirty years from 1976
through 2007. Figure 1 shows that the rate at which patents
have been issued has doubled over the past thirty years.
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Figure 2: Average number of citations made per quarter; up-
per curve includes all citations made, lower curve includes
only citations made to patents within our dataset.

In this study we focus only on a few key pieces of infor-
mation in the patent record: patent number, title, issue date,
IPC code, and references. The patent number serves by de-
sign as a unique identifier for each patent and we use it as
such.

Each US patent is assigned a handful of IPC codes by the
inventor and patent examiners at the USPTO, designed to
classify the invention. In this paper we use IPC codes to
measure the degree of similarity and dissimilarity between
two inventions. The IPC codes are also used to control for
differences in citation practices in diverse technical fields.

Each patent record is required by the USPTO to cite all of
the previous inventions on which it depends. These citations
establish an intention’s “prior art” and are compiled by both
patent examiners at the USPTO in and the inventor. Figure 2
shows a three-fold rise in the average number of citations
each patent makes over the past thirty years. Citations play
a pivotal role in our evolutionary analysis of the patent data.
We develop a precise formalism for key statistics about ci-
tations, and visualize the evolution of technology by high-
lighting the most heavily cited inventions.

Evolutionary activity
We regard the evolutionary activity of a patent as the cumu-
lative number of times other patents cite it. For patent p,
ct(p) is defined as the set of patents issued at time t that cite
p, and Ct

p as the cumulative citations to patent p up to t:

Ct
p =

t′=t∑
t′=0

∑
p′∈ct′ (p)

f t(p, p′), (1)

where f t(p, p′) is a counting function, constructed to count
contributions of citations to the cumulative sum. The sim-
plest version of a counting function is f t(p, p′) ≡ 1, in
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4723129 Bubble jet recording method and apparatus in which a heating element generates bubbles in a liquid flow path to project droplets
4683202 Process for amplifying nucleic acid sequences
4463359 Droplet generating method and apparatus thereof
4683195 Process for amplifying detecting and/or−cloning nucleic acid sequences
4740796 Bubble jet recording method and apparatus in which a heating element generates bubbles in multiple liquid flow paths to project droplets
4558333 Liquid jet recording head
4345262 Ink jet recording method
4313124 Liquid jet recording process and liquid jet recording head
4459600 Liquid jet recording device
4733665 Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft
5103459 System and method for generating signal waveforms in a CDMA cellular telephone system
5572643 Web browser with dynamic display of information objects during linking
4901307 Spread spectrum multiple access communication system using satellite or terrestrial repeaters
5143854 Large scale photolithographic solid phase synthesis of polypeptides and receptor binding screening thereof
4655771 Prosthesis comprising an expansible or contractile tubular body
4340563 Method for forming nonwoven webs
4776337 Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft
5643826 Method for manufacturing a semiconductor device
4608577 Ink−belt bubble propulsion printer
5742905 Personal communications internetworking

Figure 3: The cumulative number of citations as a function
of time. Each curve represents citations accumulated by a
particular patent. Only the top 100 patents are shown. Patent
numbers and titles are printed in the same color as the cor-
responding citation curve.

which case each citation in ct(p) is counted with equal
weight. For this case, Ct

p is illustrated in Figure 3. The
counting function f t(p, p′) may be crafted to emphasize or
de-emphasize different aspects of the population, as dis-
cussed below.

In Figure 3, we overlay the patent number and title for the
twenty most heavily cited patents in our dataset. In this and
all subsequent plots, we color the citation waves as follows:
Top inkjet printing patents are blue, top polymerase chain
reaction (PCR) patents are red, and the top stents patent is
green. All other patents are colored various shades of gray.
We focus on inkjet printing, PCR, and stents because all
of the ten most heavily cited patents in Figure 3, by a sig-
nificant margin, are innovations in one of those three areas
of technology. Later in this paper we consider what makes
those three technologies so fecund.

The average behavior of Ct
p, obtained by averaging over

all patents issued at each new time t is illustrated in Figure 4
(the time resolution is quarterly). Notice that the curves are
roughly straight lines, indicating that patents continue to re-
ceive citations at roughly the same rate over their life in the
database. Notice also that the slopes of the lines increase
through the first two decades of in our data and then level
off.

Shadow models
In order to determine which aspects of the patent data might
be shaped by natural selection, we construct a “shadow
patent” system. Shadow patents and real patents exhibit
many of the same statistics, by construction. If a real patent
is issued, then so is a shadow patent, and if a real patent
makes a citation, then so does a shadow patent. Thus,
by construction, Figures 1 and 2 are identical for real and
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Figure 4: Average number of citations per quarter. Each
curve represents the cumulative sum of the citations received
of all patents issued in a given quarter.

shadow patents.
However, the same does not necessarily hold for Figure 3.

When shadow patents choose which patents to cite, they
do so randomly and with equal probability from the pool
of earlier patents. To test the hypothesis that heavily cited
real patents are heavily cited just by chance (given the num-
ber of patents being issued and the number of citations be-
ing made), we simulate shadow patents and observe typi-
cal maximal citation levels. If the most cited real patents
have significantly more citations that the most cited shadow
patent, then the real citation levels are not statistical fluctua-
tions.

Figure 5 shows the cumulative citations of the most heav-
ily cited shadow patents issued each quarter. Comparison
of the y-axis in Figures 3 and 5 shows that heavily cited
real patents get orders of magnitude more citations than any
shadow patent. We conclude that the striking fecundity of
heavily cited patents is no accident. It is not mere noise.
Rather, there must be something special about the meaning
or content of heavily cited patents that makes them so fe-
cund.

Super star patents
The significant rise of evolutionary activity, measured by
raw cumulative citation counts Ct

p, over shadow model ac-
tivity is itself evidence of the process of Darwinian evolu-
tion, driven by selection of the fittest.

Further insight may be gained by examining particular
high-fitness patents, to create narratives that may contribute
to our intuition about the evolutionary process. Studying
the patents in Figure 3 reveals that the most heavily cited
patents typically involve one of the following three innova-
tions: inkjet printing, PCR, and stents.

Inkjet printing: The Japanese company, Canon, holds a
spate of patents on inkjet printing that have been very heav-
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Figure 5: The cumulative number of citations of the most
heavily cited patents issued each quarter in a shadow patent
model (see text).

ily cited. Although originally developed for putting ink on
paper, the fundamental innovation behind inkjet printing ac-
tually involves the ability to extremely precisely position ex-
tremely small bits of matter (“ink”). Beside traditional inks,
for the original printing applications, the printed materials
now also include skin cells (so skin grafts can be printed),
DNA or RNA primers (on microarray chips), and metals.
Depositing successive layers of materials means that we can
print certain arbitrary three dimensional structures. One now
reads about inkjet printing technology being used to print
batteries, clocks and flexible video screens, among other
things.

PCR: Polymerase chain reaction is one of the corner-
stones of contemporary biotechnology. Patented (number
4683202) in 1987 by Kary Mullis of Cetus Corporation (one
of the first biotech firms), PCR makes it possible to rapidly
make millions of copies of an arbitrary DNA sequence. This
method has been extensively modified to achieve many dif-
ferent kinds of genetic manipulations. It is now a funda-
mental tool in a wide range of biotech applications. In 1993
Mullis received the Nobel Prize in Chemistry for his work
on PCR.

Stents: Stents are man-made tubes that are used to hold
open conduits in the body, such as coronary arteries partially
occluded with plaque. In 1986 Julio Palmaz patented a stent
that could be expanded within a blood vessel by an inserted
angioplasty balloon. This procedure allows some blocked
coronary arteries to be repaired without open-heart surgery,
allowing much simpler and safer treatment. Citations to this
patent indicate that it opened the door to a wide range of
minimally invasive blood vessel therapies. Stents have been
in the news recently because of patent litigation between
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Boston Scientific and Johnson and Johnson, and because of
controversy about the merits of drug-coated stents.

Eliminating data biases and artifacts
The definition of evolutionary activity in terms of the raw
cumulative citation counts Ct

p as described above may suf-
fer from artifacts in the data that are not related to evolu-
tionary selection of the fittest, which effect evolutionary ac-
tivity aims to capture. This leads to variations in the defini-
tion of activity, obtained by modifying Ct

p to counter these
effects through a process of normalization. The canonical
way in which Ct

p will be modified is through the definition
of the counting function f t(p, p′). We will see how modi-
fied counting functions will enable biases and artifacts to be
compensated for explicitly. Generally, these modifications
may contain a parameter that must be chosen for a certain
level of compensation; for this reason these modified count-
ing functions may be regarded as heuristic, rather than fun-
damental.

A simple example of such an artifact is evident from Fig-
ure 2, in which the number of citations grows with time.
This leads us to expect that patents issued later would ac-
cumulate citations more rapidly than patents issued earlier.
Patents are more likely to cite (relatively) recent patents, and
over time the number of citations made increases, thus favor-
ing later patents.

A normalization to adjust for this effect uses the counting
function

f t
rate =

Rt′/N t′

Rt/N t
, (2)

where N t is the total number of patents issued at time t,
and Rt is the total number of citations made by patents is-
sued at t, and t′ is the (arbitrary) baseline time point in the
dataset. The total number of citations made must be equal to
the total received so

∑
t

∑
pR

t
p =

∑
t

∑
p C

t
p. The effect

of this normalization is to value all citations in terms of the
baseline citation rate, similar to adjusting historical prices
for inflation. Because patents at the beginning of the dataset
make one third as many citations as those at the end, their
citations are given three times as much weight. Then, the
adjusted cumulative citation sum, Ct

rate p, is computed from
equation (1) using f t(p, p′) ≡ f t

rate.
The dynamics of Ct

rate p is illustrated in Figure 6. No-
tice that this normalization significantly boosts the citation
counts for earlier patents, as expected. Notice also that the
same ten patents involving inkjet printing, PCR, and stents
still occupy the top ten positions in the graph. Thus, al-
though normalizing by prior expected probability of being
cited does significantly change which patents are judged to
be technology super stars, the narrative of technology evolu-
tion being most strongly driven by innovation in inkjet print-
ing, PCR, and stents.

Different IPC classifications are known to have average
citation rates that vary by orders of magnitude. These
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4723129 Bubble jet recording method and apparatus in which a heating element generates bubbles in a liquid flow path to project droplets
4463359 Droplet generating method and apparatus thereof
4683202 Process for amplifying nucleic acid sequences
4740796 Bubble jet recording method and apparatus in which a heating element generates bubbles in multiple liquid flow paths to project droplets
4558333 Liquid jet recording head
4345262 Ink jet recording method
4683195 Process for amplifying detecting and/or−cloning nucleic acid sequences
4313124 Liquid jet recording process and liquid jet recording head
4459600 Liquid jet recording device
4733665 Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft
5103459 System and method for generating signal waveforms in a CDMA cellular telephone system
3953566 Process for producing porous products
4901307 Spread spectrum multiple access communication system using satellite or terrestrial repeaters
4655771 Prosthesis comprising an expansible or contractile tubular body
5572643 Web browser with dynamic display of information objects during linking
4340563 Method for forming nonwoven webs
5143854 Large scale photolithographic solid phase synthesis of polypeptides and receptor binding screening thereof
4776337 Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft
4100324 Nonwoven fabric and method of producing same
4608577 Ink−belt bubble propulsion printer

Figure 6: Normalization by relative rate of citation due to
changes in the number of citations that are being given over
time. Activity is valued in terms of most recent citation
rates.

skewed IPC citation distributions might be thought to create
further artifacts in our cumulative citation statistics. We can
test that hypothesis by introducing a new counting function,
fIPC, to normalize by the mean number of citations made by
patents in a given category.

The IPC classification of a patent has five levels, I(p) =
(c1, ..., c5), where each ci may be thought of as an integer
labeling different categories. So, to define the new counting
function, we first define the categories of interest to be all
possible values of the first two category coordinates, c =
(c1, c2). The total number of citations made by patents in
the category at time t is

Rt
c =

∑
p′∈p

r(p′)δ(c1 − I(p′)1)δ(c2 − I(p′)2),

where δ(x) = 1 if x = 0 and 0 otherwise and r(p′) is the
number of citations made by p′. So we can define fIPC to be
a function that depends only on the citing patent:

f t
IPC(p′) =

∑
c

Rt′

c /N
t′

c

Rt
c/N

t
c

δ(c1− I(p′)1)δ(c2− I(p′)2). (3)

E.g., a patent in category A01 issued in 1976 has its outgoing
citations doubled in weight because A01 patents issued in
1976 made half as many citations on average as B02 patents
from 2007 (chosen as the arbitrary baseline rate). In this
way the contributions to evolutionary activity of different
categories and different times are equalized.

Figure 7 shows a plot of Ct
IPC p, defined by equation

(1), with f t(p, p′) ≡ f t
IPC(p′). This figure shows that the

skewed IPC citation distribution strongly affects the cumu-
lative citation values. Comparison with Figure 6 shows that
the cumulative citations for PCR (red) patents have been sig-
nificantly raised, while those for inkjet printing (blue) have
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been significantly lowered, as have stent patents (green).
Nevertheless, those same three narratives still play a dom-
inant role in driving technological innovations.
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4683202 Process for amplifying nucleic acid sequences
4683195 Process for amplifying detecting and/or−cloning nucleic acid sequences
4723129 Bubble jet recording method and apparatus in which a heating element generates bubbles in a liquid flow path to project droplets
4463359 Droplet generating method and apparatus thereof
4740796 Bubble jet recording method and apparatus in which a heating element generates bubbles in multiple liquid flow paths to project droplets
4558333 Liquid jet recording head
4345262 Ink jet recording method
4313124 Liquid jet recording process and liquid jet recording head
4459600 Liquid jet recording device
4965188 Process for amplifying, detecting, and/or cloning nucleic acid sequences using a thermostable enzyme
5103459 System and method for generating signal waveforms in a CDMA cellular telephone system
5143854 Large scale photolithographic solid phase synthesis of polypeptides and receptor binding screening thereof
4358535 Specific DNA probes in diagnostic microbiology
3953566 Process for producing porous products
4901307 Spread spectrum multiple access communication system using satellite or terrestrial repeaters
4816567 Recombinant immunoglobin preparations
4733665 Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft
4800159 Process for amplifying, detecting, and/or cloning nucleic acid sequences
4376110 Immunometric assays using monoclonal antibodies
5572643 Web browser with dynamic display of information objects during linking

Figure 7: Normalization by mean outgoing citation rate for
individual IPC categories (first two levels). This rate varies
over time. Contribution to activity is weighted based on the
mean number of citations made by patents in that (level 2)
category at that time.

Another important effect present in the data is that some
patents are cited by subsequent patents that are closely re-
lated, and that often have the same assignee. We refer to this
as “self-citation” because of the effective redundancy. It is
not surprising that citation counts can become inflated due to
self-citations; if a company makes an innovation, it is mo-
tivated to build on that innovation and to patent further de-
velopments. However, this might create an artificially large
citation count for some patents that all derive from the same
source. A simple normalization to adjust for this effect uses
a counting function that discounts self-citations, as follows:

fself(p, p′) =
{
α if p and p′ have the same assignee
1 otherwise

with α < 1. Then, the adjusted cumulative citation sum,
Ct

self(p,p′), is computed from equation (1) using f t(p, p′) ≡
frate(p, p′)fself(p, p′), where we include normalization with
respect to changing mean citation rates, as described above
for f t

rate.
Figure 8 shows a plot of Ct

self(p, p
′) for α = 0.33 (other

values of α produce similar results). This normalization
reshuffles the relative impact of the top patents. One ef-
fect is the dramatic drop in inkjet printing patents (blue).
Those patents cover inventions developed at Canon, and nu-
merous subsequent Canon patents cite their earlier inven-
tions as prior art. However, relatively few other groups cite
Canon’s inkjet printing patents. By contrast, the PCR and
stent patents virtually unaffected in both relative and abso-
lute terms.
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4683202 Process for amplifying nucleic acid sequences
4683195 Process for amplifying detecting and/or−cloning nucleic acid sequences
4733665 Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft
5103459 System and method for generating signal waveforms in a CDMA cellular telephone system
4655771 Prosthesis comprising an expansible or contractile tubular body
4901307 Spread spectrum multiple access communication system using satellite or terrestrial repeaters
5572643 Web browser with dynamic display of information objects during linking
4723129 Bubble jet recording method and apparatus in which a heating element generates bubbles in a liquid flow path to project droplets
4463359 Droplet generating method and apparatus thereof
5143854 Large scale photolithographic solid phase synthesis of polypeptides and receptor binding screening thereof
4776337 Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft
3953566 Process for producing porous products
4608577 Ink−belt bubble propulsion printer
4367924 Chiral smectic C or H liquid crystal electro−optical device
4503569 Transluminally placed expandable graft prosthesis
4340563 Method for forming nonwoven webs
4580568 Percutaneous endovascular stent and method for insertion thereof
4558333 Liquid jet recording head
5056109 Method and apparatus for controlling transmission power in a CDMA cellular mobile telephone system
4965188 Process for amplifying, detecting, and/or cloning nucleic acid sequences using a thermostable enzyme

Figure 8: Discounting for self-citations. Notice that the
ranking of superstar patents significantly changes, but PCR
(red), inkjet printing (blue), and stents (green) remain super-
stars.

We may combine any or all these normalizations, aiming
to obtain the cleanest possible picture of which technologies
most strongly drive innovation in the evolution of technol-
ogy. When we do so, we see that the three top stories (PCR,
inkjet printing, and stents) remain dominant among the most
fecund technologies. It is striking that, while our efforts to
reduce artifacts in cumulative citation counts does signifi-
cantly change the relative ranking of our stories, the same
stories consistently remain significant.

Door-opening innovations
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4683202 Process for amplifying nucleic acid sequences
4340563 Method for forming nonwoven webs
4723129 Bubble jet recording method and apparatus in which a heating element generates bubbles in a liquid flow path to project droplets
4100324 Nonwoven fabric and method of producing same
3953566 Process for producing porous products
4683195 Process for amplifying detecting and/or−cloning nucleic acid sequences
5143854 Large scale photolithographic solid phase synthesis of polypeptides and receptor binding screening thereof
5272236 Elastic substantially linear olefin polymers
4740796 Bubble jet recording method and apparatus in which a heating element generates bubbles in multiple liquid flow paths to project droplets
5608786 Unifi messag system and method
4413725 Potted plant package
4733521 Cover forming apparatus
4663220 Polyolefin−contain extrud composit and method for their format into elastomer product includ microfib
4463359 Droplet generating method and apparatus thereof
4333267 Protect sleev for plant
4916441 Portabl handheld termin
4558333 Liquid jet recording head
4706121 TV schedul system and process
4345262 Ink jet recording method
4313124 Liquid jet recording process and liquid jet recording head

Figure 9: Weighting citation counts by the exponential of
IPC distance, so that citations by patents in distant IPC cat-
egories count much more. This rewards door-opening inno-
vations and penalizes innovations that merely spur further
innovations of the same type.

A crucial aspect of biological evolution seems to be the
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ability of biological innovations to “open doors” to entire
new universes of innovation, e.g., through the creation of
new modes of interaction and new ecological niches, on all
scales from molecular to macro-population. Door-opening
innovations contrast with inventions that represent “incre-
mental progress,” in which new innovations have similar
IPC classifications to their ancestors. We may ask if door-
opening innovations are important players in the evolution
of the patent population.

Our cumulative citation statistics may be modified to ad-
dress the question of how and whether door-opening patents
are present in the dataset, and in particular, whether they are
present in the stars that emerge. The modification to address
this question takes substantially the same form as the modi-
fications discussed above for eliminating biases and artifacts
in the data: define a new counting function that emphasizes,
or accentuates the property being investigated. Such use of a
counting function is heuristic, in the sense that there is typ-
ically not a fundamental formulation, but rather a range of
possibilities, corresponding to the testing of a range of dif-
ferent hypotheses.

To formulate the question quantitatively, we use IPC cat-
egories to quantify the evolutionary impact of a patent in
terms of the breadth of different kinds of patents that cite
it. The intuition is that if a patent is cited by patents from
very similar IPC categories, then it has relatively narrow im-
pact. By contrast, if a patent is cited by patents in radically
different IPC categories, then is has a much broader impact
and is opening doors to more kinds of innovations. This
intuition may be quantified by weighting the citation count
more heavily for more distant IPC categories.

Specifically, if I(p) is the IPC vector (c1, ..., c5), with c1
being the coarsest grain IPC resolution, and c5 being the
finest grain resolution, we define the IPC distance between
two patents as

dIPC = 5− nIPC,

where nIPC is the maximum integer such that I(p)i = I(p′)i

for all i ≤ nIPC. Then we may create a counting function
that weights by this distance, exponentiating it to emphasize
the effect:

f t′

IPCd(p, p′) = 2dIPC . (4)

Now, we can compute Ct
IPCd p from equation (1), using

f t(p, p′) ≡ f t
IPCd(p, p′).

A plot ofCt
IPCd p is shown in Figure 9. Note that PCR and

inkjet printing remain significant innovations, indicating that
they are all likely to be door-opening innovations. The argu-
ment is this: If those inventions were not door-opening but
instead represented incremental progress, then weighting by
IPC distance would drastically lower their relative citation
levels. But instead those patents remain superstars. So, they
must be door-opening.

Stents do not appear among the top hundred patents with
this weighting. This suggests that while significant, stents

are not door-opening to the extent that inkjet printing and
PCR are. Intuitively this makes sense, stents are a more spe-
cialized type of invention. The difference between stents and
the other superstars is also apparent in other normalizations
where it trails the other superstars.

Conclusion

Our results show that technology undergoes a Darwinian
evolutionary process, analogous to biological evolution. The
set of issued patents can be viewed as an evolving popula-
tion of “organisms” that reproduce when they are cited by
later inventions. In the end, we can treat an invention’s fe-
cundity (evolutionary activity) as its fitness, for its fecundity
directly measures the patent’s impact on the composition of
future populations.

We interpret cumulative citation count as evolutionary ac-
tivity, that is, as direct evidence of the dynamics being pro-
duced by a Darwinian evolutionary process driven by dif-
ferential selection. The dramatically high citation counts for
the most cited patents show that high fecundity cannot be ex-
plained merely as a statistical fluctuation. This comparison
with a no-selection null hypothesis embodied in the shadow
patents is convincing evidence for Darwinian evolution of
technology.

In addition to the population-level conclusion based on
cumulative citation rates across the entire population of
patents, the conclusion is reinforced by examining individ-
ual patents that are “stars,” in the sense that they have ex-
ceptionally high numbers of citations. The narratives for the
star patents are intuitively consistent with the interpretation
of the patent population as undergoing Darwinian evolution.

The cumulative citation count on which this conclusion
is based can be adjusted, to account for biases inherent in
the data. We have discussed various such adjustments, and
we find that the evidence for Darwinian evolution is consis-
tently and strongly present over all versions of adjustments
we have examined. The decisions for making the adjust-
ments are delicate, and can have a substantial effect on the
particular patents that emerge as stars, and on the narratives
that accompany them. Some of the difficulties are inherent
in the data, e.g., its finiteness, and consequently the absence
of citations to the latest patents in the dataset.

Further, heuristic adjustments to our cumulative citation
count statistics may be made to emphasize or uncover cer-
tain structure in the data. We have used one such adjustment,
exponential boost of citations that cross IPC boundaries,
to discover which patents appear to be issued for “door-
opening” technologies, i.e., those that enable a broad range
of further kinds innovations in areas different from the orig-
inal area the patent was issued in. Applying these statistics
largely corroborates the hypothesis that the patent superstars
are door-opening technologies.
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Abstract

We study the evolution of technology as reflected in the US
utility patents granted in the period 1976-2009. Previous
work by Skusa and Bedau (2002) and Buchanan et al. (2010)
used cumulative citation statistics to identify the inventions
that most affect the course of evolution (those with the high-
est innovative impact). Here we examine the text of patent
records (specifically, titles and abstracts) to identify which
features are responsible for the high impact on later innova-
tions. We use the TFIDF metric (term frequency times in-
verse document frequency) to identify which words best con-
vey a patents explicit content. Because a new patent is re-
quired to cite all important earlier patents (“prior art”) that
introduced innovations on which the new patent depends, we
use the TFIDF scores of words in citing patents to identify a
patent’s emergent content. A patent’s emergent content ex-
plains its impact on subsequent inventions; it reflects what
traits in an invention actually led to a significant number of
subsequent innovations. We illustrate two ways to visualize
the explicit and emergent content of patents: word arrays and
clouds. Examining the emergent content of populations of
patents issued during different epochs reveals when impor-
tant new ideas appear in the evolution of technology and how
they affect its subsequent evolution.

Introduction
This paper presents a method to quantify and visualize cer-
tain aspects of the evolution of technology as reflected in
patent records. Previous work by Skusa and Bedau (2002)
(summarized by Bedau (2003)) used citation statistics to
visualize and quantify one specific subset of cultural evo-
lution: the evolution of technology as reflected in patent
records. Buchanan et al. (2010) developed and extended this
use of patent citations to identify which new inventions over
the past three decades have seeded the greatest number of
further innovations, termed patent “superstars.” They con-
cluded that three of the most important inventions in the past
three decades were ink-jet printing, PCR, and stents, and
they further showed that many superstar patents are “door-
opening” inventions that spawn an especially wide range of
further types of innovations.

This previous work highlights the importance of answer-
ing the following questions:

1. How can we identify which features characterize the core
content of an invention?

2. In particular, which features make superstar patents so
successful at spawning future inventions?

3. How have the key features driving technological innova-
tion changed over the past few decades?

This paper aims to answer these three questions.
First, following the approach of Skusa and Bedau (2002)

and Buchanan et al. (2010), we use citation statistics to iden-
tify how the key inventions driving technological evolution
(patent superstars) have changed over the past few decades.
To determine the content of these patents, a human can sim-
ply examine and interpret its title and abstract, but this pro-
cess is labor intensive and introduces an element of subjec-
tivity. We want to automate the process and make it objec-
tive, but this requires a method for identifying which terms
in a document from a corpus especially indicate the distinc-
tive content of that document. The TFIDF metric (term fre-
quency times inverse document frequency, described below)
is commonly used for precisely this purpose, so we iden-
tify the high-content terms in a patent record as those terms
with high TFIDF scores. This method can naturally be gen-
eralized to identify high-content sequences of terms, or n-
grams.

There is a complication that must be discussed. The high-
content terms in a patent tend to reflect what the inventor
believes are the important features of the invention; below,
we term this the invention’s explicit content. However, the
features of an invention that actually play the biggest role in
spawning further innovation might not be anticipated by the
inventor, so they might not be well reflected in the patent’s
explicit content. Instead, they might be only implicitly re-
flected in the terms in the patent’s title and abstract. Accord-
ingly, to determine what features actually are important for
an invention’s fecundity, we look to the high-content words
in the patents that cite the invention; below, we term this the
invention’s emergent content.

The explicit and implicit content of sets of patents can
be visualized by two complementary methods: word arrays
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and word clouds. By applying these methods to patents from
successive epochs, we visualize how the explicit and emer-
gent content of key inventions have changed over time. Our
results described below indicate that innovation in the later
half of the 1970s was especially active concerning automo-
bile emissions and personal electronics. In the 1980s, the
dominant technology drivers shifted to zeolites and semi-
conductors. The 1990s and 2000s were both dominated
by a range of further technologies, especially inkjet print-
ing, PCR, stents, e-commerce, wireless communication, and
solid-state storage.

Our work here illustrates how citations and key terms in
patent records provide a rich empirical foundation for the
study of the evolution of technology. Since technology is
one aspect of culture, this work helps illuminate the simi-
larities and differences between cultural and biological evo-
lution. As the papers in Wheeler et al. (2002) indicate,
a variety of approaches are being applied to the study of
the evolution of culture. The application of the concept of
memes from Dawkins (1989) is especially hotly disputed,
as illustrated by comparison of Sperber (1996), Fracchia
and Lewontin (1999), Dennett (2006), and the papers in
Aunger (2000). Rather than adding to these polemics, we
provide an empirically grounded account of the actual evo-
lution of one important aspect of culture–patented techno-
logical innovations–and we develop a method for identify-
ing the key features in inventions that make their impact on
new innovations especially big. This line of research might
eventually help resolve some of the controversies about cul-
tural evolution, including those about memetics.

The patent record
Patents are granted to inventions only if the patent’s examin-
ers are satisfied that the invention is novel, non-obvious, and
useful. A patent’s novelty is documented by citing the pre-
vious patents (and sometimes published papers) on which it
depends and builds; these are known as the patent’s “prior
art.” Perko and Narin (1997) and Hall et al. (2005) ex-
plain that the patent examiner is the ultimate referee of what
patents must be cited, and can add citations that were ne-
glected or omitted on the application.

Our data set consists of records of all the utility patents
granted between 1976 and 2009 in the US. (That time win-
dow was chosen because of the ready availability of patent
data for that period.) In this study, a patent’s title and ab-
stract are concatenated to constitute its “record.” (A nat-
ural generalization of our methods would add further text
to a patent’s record, such as its claims. Our analysis also
uses certain other information about a patent, such as its
unique identifying number and, most importantly, the pre-
vious patents which it cites–its “prior art.”)

Our corpus of 3,630,466 patent records contains
459,232,327 individual word tokens, employing a dictionary
of 993,544 word types. Our analysis relies crucially on ci-

tations among patents. The patents in our data set bestowed
a total of 38,893,014 citations, of which 30,198,227 (about
80%) hit patents in our dataset. Our patents on average cite
10.97 earlier patents and are cited 8.25 times, but 87,695
(2.4%) cite no previous patents.

Our investigation of the evolution of technology is moti-
vated by an analogy with biological evolution. A patented
invention is viewed as an organism, and different inventions
compete for adoption by users in various niches. The spread
of inventions in niches is analogous to the Darwinian process
of natural selection (we make no assumptions here about
how close that analogy is). When a new patent cites prior
art (i.e., earlier patented inventions on which it depends and
builds), we consider the earlier patent to have spawned an
incipient daughter species.1 Those inventions that spawn es-
pecially many incipient daughter species and so are most
heavily cited, are the inventions that drive the course of the
evolution of technology.

From patent citations, it is possible to reconstruct the en-
tire phylogeny of the evolving network of patented inven-
tions. The entire set of patent records is analogous to the
entire fossil record, except that the patent record is virtu-
ally complete and mostly accurate and unambiguous.2 Ac-
cordingly the phylogenies that can be reconstructed are stun-
ningly complete, covering every patent (organism in the
population). It would be a biologist’s dream to work with
empirical phylogenies that are this dense and accurate.

Shadow patents
In order to test whether the citation patterns that we observe
in the patent data could have been created by a random pro-
cess that ignores the content of the patents involved, we
construct a system of “shadow” patents. By construction,
shadow patents mirror (or “shadow”) many aspects of real
patents.

The precise mechanism for generating shadow patents is
as follows: If p real patents were granted in year y, then
p shadow patents are also granted that year. If a particular
patent, i, is granted in year y and cites c earlier patents, then
the shadow patent, is, is also granted in year y and cites c
earlier shadow patents. However, whereas a real patent cites
its prior art, a shadow patent cites earlier patent chosen at
random (with replacement) from the patents cited by real

1For simplicity of exposition and when no confusion should re-
sult, we will sometimes speak of a patent when we mean to refer to
the invention that is patented.

2It is worth noting that the patent record is somewhat “dirty.”
Cleaning the data involves various ad hoc and approximate proce-
dures, and raw data is sometimes corrupted or lost. It should be
noted in addition that simple citation metrics can draw an incom-
plete picture of what is happening in the patent data. We know
from Cohen et al. (2000) that patent value, citation rate, patent
frequency and citation methodology vary greatly in different in-
dustries. This should prompt a salutary dose of skepticism about
simplistic sweeping interpretations of citation patterns.
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Figure 1: Cumulative citations (or “activity”) of the twenty
most heavily cited patents from each decade (see Table 2),
divided by the prior expected probability of being cited.

patents granted in year y.
The system of shadow patents is a null hypothesis against

which we measure whether the citation patterns we observe
in real patents could have been created by a random process
that ignores the content of the patents.

Highly cited inventions
Following Skusa and Bedau (2002) and Buchanan et al.
(2010), we begin by examining the most highly-cited
patents, for their high citation counts show that they have
an especially great influence on the subsequent evolution of
technology. Because of variation in the citation rate and size
of the patent corpus each year, we normalize citation counts
to make them comparable across epochs, as follows: In a
given year, each incoming citation count is divided by the a
priori expected probability of a patent being cited at a given
time. Assuming that all patents have an equal probability of
being cited, this prior probability of being cited at t is cal-
culated as the number of citations given by all the patents
issued at t (the number of citations given out) divided by the
number of patents issued up to t (the number of patents that
could be cited). Exploration of different normalizations is
available in Buchanan et al. (2010).

First we examine the twenty patents that received the most
citations from all of the patents issued in each of the last few
decades. Table 2 describes most of the main innovations
covered by those patents. While some heavily cited patents
fall outside of the kinds of innovations we list, most do fit in
our list. Since our data starts in 1976, relatively few of the
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Figure 2: Cumulative citations (or “activity”) of the twenty
most heavily cited “shadow” patents from each decade.
Compare with Figure 1.

citations from the first decade contribute to our analysis.
Figure 1 shows the cumulative citations received by the

twenty most heavily cited patents in each decade, colored
by the year in which the patent was granted. These cumula-
tive citation counts dramatically illustrate which patents are
most influencing the evolution of technology at any given
time. Analysis of the patent titles and abstracts reveals
that the most “fecund” innovations of the past three decades
fall into the following technology sectors: automobile emis-
sions, personal electronics, zeolites, semiconductors, inkjet
printing, PCR and stents. This decade-by-decade analysis
corroborates and extends the results reported by Buchanan
et al. (2010).

Figure 1 can be directly compared with Figure 2, which
shows the cumulative citation counts of the most heavily
cited shadow patents. (Real and shadow patents are nor-
malized identically.) Note that the most heavily cited real
patents receive two orders of magnitude more citations than
their shadow counterparts. This indicates that heavy cita-
tion counts observed in the real patents are not merely an
artifact of the numbers of patents giving and receiving cita-
tions. Randomly distributed citations would never produce
the high citation counts observed for the most fecund inven-
tions.

Many details about the evolution of technology can be
read off from Figure 1. For example, the most highly-
cited patents in the 1970s (concerning automobile emis-
sion and personal electronics) are never cited after the 70s
and become dormant (indicated by flat lines). In addition,
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Figure 3: The citation rate for the twenty most heavily cited
patents from each decade (see Table 2). Citations are nor-
malized as in Figure 1, and scaled to the interval [0, 1].

one patent (concerning zeolites) is especially heavily cited
through most of the 1980s, but its influence subsequently
is dominated by a new group of patents (about inkjet print-
ing, PCR, and stents) from the late 1980s, which eventually
achieve the highest citation counts overall.

Figure 3 plots the citation rate time series for each of
the patents depicted in Figure 1, scaled to the range [0, 1].
(Mathematically, this corresponds to the slope of the patents
shown in Figure 1.) This heatmap shows each patent at
each moment, with hotter colors indicating patents that are
spawning more new inventions. The heatmap shows that ci-
tation rates for most of the most heavily cited patents have
cooled off by 2005, and a new crop of patents (about, e.g.,
genetically modified organisms, e-commerce, and solid-
state storage) are heating up today.

The TFIDF measure of high-content words
In this paper, we identify the words that best capture the
content of an invention by applying the TFIDF metric to
the words in the invention’s patent record. TFIDF scores
are a standard way to measure the significance of a word in
a given document within a corpus, as Spärch Jones (1972)
and Salton and McGill (1983) explain. The intuitive idea
behind the TFIDF metric is that the most significant words
in a document are used frequently within that document, but
are not widely used in other documents from the corpus.
Accordingly, the measure has two components: term fre-

quency (TF), and inverse document frequency (IDF). Term
frequency is just the frequency of a word w in a document
d:

TF(w, d) =
|{w′ ∈ d : w′ = w}|

|{w ∈ d}|
.

The inverse document frequency of a word w in a corpus
D is simply the logarithm of the inverse of the fraction of
documents in D which contain w:

IDFD(w) = log
|D|

|{d ∈ D : w ∈ d}|
.

Then the TFIDF score for a word w in a document d in a
corpus D is just the product of these two measures:

TFIDFD(w, d) = TF(w, d)× IDFD(w).

To illustrate the TFIDF metric in the patent record, con-
sider the title and abstract of US patent number 4683202
(granted 28 July 1987), which happens to be the most cited
patent in the last decade:

Process for amplifying nucleic acid sequences
The present invention is directed to a process for ampli-
fying any desired specific nucleic acid sequence con-
tained in a nucleic acid or mixture thereof. The process
comprises treating separate complementary strands of
the nucleic acid with a molar excess of two oligonu-
cleotide primers, and extending the primers to form
complementary primer extension products which act as
templates for synthesizing the desired nucleic acid se-
quence. The steps of the reaction may be carried out
stepwise or simultaneously and can be repeated as of-
ten as desired.

The title and abstract contain 90 word tokens and 56 word
types. The most frequent word is ‘the’, appearing seven
times, for a term frequency of TF = 0.0778. However, the
ubiquitousness of ‘the’ gives it a very high document fre-
quency within the patent corpus, and so a low inverse doc-
ument frequency, IDF = 0.009, which shrinks its resulting
TFIDF score.

The words in the title and abstract of Patent 4683202
with the highest and lowest TFIDF scores appear in Table 1.
Note that words with the highest TFIDF scores convey a lot
of information about the topic of this patent; for example,
‘nucleic’, ‘acid’, ‘primers’, and ‘amplifying’ all have high
TFIDF scores. By contrast, words with the lowest TFIDF
scores (‘the’, ‘and’, ‘a’, ...) convey virtually no information
about the patent. Instead, they are so-called “stop words”
that reflect grammar and logic rather than content.

The emergent content of patents
The evolution of technology that we study consists of the
rise and fall of superstar patents that dominate different
epochs. This raises a question: What is the content of the
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Rank Term Count TF IDF TFIDF

1 nucleic 5 0.0556 2.3167 0.1287
2 acid 5 0.0556 1.4203 0.0789
3 primers 2 0.0222 3.2907 0.0731
4 amplifying 2 0.0222 2.6341 0.0585
5 complementary 2 0.0222 2.2645 0.0503
...

...
...

...
...

...
51 in 1 0.0111 0.1187 0.0013
52 is 1 0.0111 0.1151 0.0013
53 of 3 0.0333 0.023 0.0008
54 the 7 0.0778 0.009 0.0007
55 and 2 0.0222 0.0217 0.0005
56 a 3 0.0333 0.0135 0.0004

Table 1: TFIDF values for words in the title or abstract of
patent no. 4683202, Process for amplifying nucleic acid se-
quences.

innovations in the superstar patents? Which of their fea-
tures make them superstars? People can often glean such in-
formation by reading superstar patents’ titles and abstracts.
For example, personal inspection of Table 2 reveals a lot
about the content of the most highly cited patents during re-
cent decades. Here we develop methods for determining a
patent’s content without human intervention. Specifically,
we use TFIDF profiles of the words in a patent to measure
the patent’s content.

We start with some definitions. We write C(p1, p2) if
patent p1 cites patent p2, and we let ←−C (p) be the set of
patents that cite p, i.e., p’s “incoming” citations:

←−
C (p) = {p′ : C(p′, p)}.

Then, the number of patents that cite p, or |←−C (p)|, can
be used to identify the superstars of a set of patents, or
superstarsN (P ), as the N most heavily cited patents in P ,
ranked by |←−C (p)|.

Let the representative (or high-content) words of a patent
p in the patent record P be the set of words w in the patent
with TFIDF above a given threshold, θ:

TFIDFθ(p) = {w ∈ p : TFIDFP(p, w) ≥ θ}

(For this paper, we typically use a threshold of θ = 0.05,
which eliminates most stop words and typically picks out
just a few words from each patent.)

These concepts easily extend to a set of patents, P . We
can identify their citers,

←−
C (P ) =

⋃
p∈P

←−
C (p).

and their high-content words,

TFIDFθ(P ) =
⋃
p∈P

TFIDFθ(p).

A central hypothesis in our paper is that the high-TFIDF
words in a patent, or set of patents, are key to revealing their
content. We consider TFIDFθ(P ) to be the explicit content
of a set of patents, and we consider the emergent content of
a set of patents, P , to be the high-content words in the set of
patents that cite patents in P , or

TFIDFθ(
←−
C (P )).

This content is “emergent” because it is implicit; it depends
on what subsequent inventions “see” in the inventions in P ,
and how the inventions function as prior art. Analogously,
TFIDFθ(

←−
C (superstars(P ))) is the emergent content of the

superstars of a set of patents, P . We give examples of both
kinds of emergent content below.

Visualizing emergent content with word arrays
The evolution of the emergent content of the patents consists
of a list of words with various associated numerical values.
A word’s value can include such things as the word’s TFIDF
score, its frequency in the corpus, or the number of patents
that contain the word. The evolution of the emergent con-
tent in a set of patents can be visualized in various ways,
once two things have been determined: (1) Which words
contribute to the content? (2) How is the word’s numerical
value calculated? The visualization methods described here
work for any evolving list of words with associated numeri-
cal values.

Word arrays are simply lists of words in some fixed,
meaningful order, each associated with its numerical value
in a given time period. Word arrays are analogous to gene
chips, which visualize the expression profile of protein-
producing genes. Since word arrays can be represented
in one dimension, aligning word arrays from successive
snapshots of a population of patent records yields a two-
dimensional “movie” of the evolving meaning of a given
period of the evolution of technology.

Figure 4 shows the raw time behavior of the emergent
content of the superstar patents in Table 2. The words were
selected from the citers of the patents in the table. Word fre-
quencies were computed over all of the abstracts of patents
issued in each year. For each word, a time vector of values is
computed, with each entry cw,t the word w’s raw frequency
in year t:

cw,t =

∑
p∈Pt

|{w′ ∈ p : w′ = w}|∑
p∈Pt

|{w ∈ p}|

In Figure 4, each word’s vector has been scaled to fit the
range [0, 1], in order to show each word’s rise and fall rel-
ative to itself. Figure 4 provides one perspective on the
evolving content that is driving innovation in the evolution
of technology.

Successive columns in a word array indicate successive
moments of time. Figure 4 is like a “film strip” of the evolu-
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Figure 4: The relative frequency over time of a subset of the
emergent content of the top technology patents identified in
Table 2. The x-axis is years, and the y-axis is individual
high-content words.

tion of certain high-impact players in the evolution of tech-
nology; each single column is a single frame in the film.
It is evident that the main innovation drivers of the 1970s
(automobile exhaust and personal computing) are almost
completely dormant today. Similarly, the main technology
drivers of the 1990s and 2000s (inkjet printing, PCR, stents,
and semiconductors) were almost completely dormant for all
of the 1970s and 1980s. Furthermore, inspection shows that
stents have been cooling off recently, while key components
of the PCR and semiconductor genealogies remain very hot.

Visualizing emergent content with word clouds
The word clouds described in this section are another way
to visualize how the content of inventions changes over the
decades. A word cloud is a two-dimensional agglomeration
of the high-content words in some patents, with the words
sized according to their numerical value. Since the most
important words are the largest, people can easily read the
key content in word clouds.

The algorithm for calculating word clouds from a set, P ,
of patents in a decade has three steps, illustrated in Figure 5:

1. Determine the decade’s superstar patents (colored blue in
the diagram), superstars(P ); these are the patents most
heavily cited by the patents issued in the decade.

2. Determine all the patents (green stars) that cite any of the
decade’s superstars, including patents granted after the
decade in question: ←−C (superstars(P )).

…70s 80s 90s 00s  ……70s 80s 90s 00s  ……70s 80s 90s 00s  …

Figure 5: Cartoon sketching the three stages by which word
clouds emerge out of a set of patents (e.g, those issued in
the 1990s). First, the superstars (blue stars) of the patents is-
sued in the 1990s are identified, then their citers (green stars)
are identified, and finally the emergent content of the su-
perstars is identified: TFIDFθ(

←−
C (superstars(patents1990s)).

Gray lines are citations between patents.

3. Identify the emergent content of the superstar patents,
TFIDFθ(

←−
C (superstars(P )), arrange the words in a

cloud,3 and size each word w by the number
of patents in the decade that contain the word:
|{p ∈ P : TFIDFP (p, w) ≥ θ}| .

We illustrate word clouds by focusing on the superstar
patents in each decade, and extracting the emergent content
of superstars in the familiar way. In this case, we choose to
size the words in a word cloud by the number of patents in
the corpus that contain the word.

Figure 6 shows the word clouds that emerge from the
patents in each decade in our data set: the 1970s (start-
ing with 1976), 1980s, 1990s, and 2000s. Collecting and
smoothly connecting these snapshots yields a movie of how
the key innovations in patented technology evolve over time.

Conclusions
There are many differences between biological evolution
and the evolution of technology, but there are also impor-
tant similarities. The most important similarity here is the
non-randomness or adaptive quality of the key features of
the entities that have the greatest impact on new innovations.
Comparison with shadow patents confirms that citation rates
of the most heavily cited patents would virtually never oc-
cur if patents were cited at random and irrespective of their

3Word cloud layout algorithm by Jonathan Feinberg, Wor-
dle.net and IBM Research, http://www.wordle.net/credits.
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Figure 6: The emergent word clouds for top cited patents in
the 1970s, 1980s, 1990s, and 2000s (from top to bottom).
The word clouds are still shots from a movie of the evolving
meaning of the main technologies driving the evolution of
technology.

specific features.
We identify the “emergent” content of sets of patents as

the “explicit” content of the patents that cite the patents in
the set, measured by high TFIDF scores. We use word arrays
and word clouds to visualize the evolution of the key features
of patents that have an especially high impact on new inno-
vations. This brings us closer to understanding what makes
superstar patents so heavily cited.

Here, the environment that drives adaptation is the techno-
logical and economic context of an epoch. If patents and in-
ventions are significantly analogous to biological organisms,
then we have created a new way to identify and visualize the
emergent semantics of technological evolution through time.
Whereas the citation record of patents provides a phylogeny
of patented inventions, word arrays and clouds represent the
changing emergent content of the drivers of technological
innovation through time.
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Table 2: Major innovations (or technology “superstars”) as reflected in citation patterns from each decade.

Selections from the twenty patents that received the most citations from patents issued in 1976-1979 Citations
Automobile emissions

3827237: Method and apparatus for removal of noxious components from the exhaust of internal combus-
tion engines

69

3759232: Method and apparatus to remove polluting components from the exhaust gases of internal com-
bustion engines

44

3745768: Apparatus to control the proportion of air and fuel in the air-fuel mixture of internal combustion
engines

44

Personal electronics
3760171: Programmable calculators having display means and multiple memories 69
3672155: Solid state watch 40
3947375: Liquid crystal materials and devices 39
3813533: Clock calculator 39
Selections from the twenty patents that received the most citations from patents issued in 1980-1989 Citations

Zeolites
3702886: Crystaline zeolite ZSM-5 and method of preparing the same 196
4061724: Crystalline silica 120
4440871: Crystalline silicoaluminophosphates 93

Semiconductors
3856513: Novel amorphous metals and amorphous metal articles 119
4226898: Amorphous semiconductors equivalent to crystalline semiconductors produced by a glow dis-
charge process

115

4217374: Amorphous semiconductors equivalent to crystalline semiconductors 109
4064521: Semiconductor device having a body of amorphous silicon 108
Selections from the twenty patents that received the most citations from patents issued in 1990-1999 Citations

Ink-jet printing
4723129: Bubble jet recording method and apparatus in which a heating element generates bubbles in a
liquid flow path to project droplets

753

4463359: Droplet generating method and apparatus 677
4740796: Bubble jet recording method and apparatus in which a heating element generates bubbles in
multiple liquid flow paths to project droplets

663

4558333: Liquid jet recording head 637
4345262: Ink jet recording method 630
4313124: Liquid jet recording process and liquid jet recording head 612
4459600: Liquid jet recording device 599

PCR
4683195: Process for amplifying, detecting, and/or-cloning nucleic acid sequences 620
4683202: Process for amplifying nucleic acid sequences 597

Stents
4733665: Expandable intraluminal graft, and method and apparatus for 349
4655771: Prosthesis comprising an expansible or contractile tubular body 277
4776337: Expandable intraluminal graft, and method and apparatus for 268
Selections from the twenty patents that received the most citations from patents issued in 2000-2009 Citations

Ink-jet printing
4723129, 4740796, 4463359, 4558333, 4345262, 4313124, 4459600 (see above) 6518

PCR
4683202, 4683195 (see above) 2526

E-commerce
5572643: Web browser with dynamic display of information objects during linking 839
5892900: Systems and methods for secure transaction management and electronic rights protection 770
5710887: Computer system and method for electronic commerce 655

Wireless communication
5103459: System and method for generating signal waveforms in a CDMA cellular telephone system 802
5742905: Personal communications internetworking 762
4901307: Spread spectrum multiple access communication system using satellite or terrestrial repeaters 665

Solid-state storage
5643826: Method for manufacturing a semiconductor device 831
5172338: Multi-state EEprom read and write circuits and techniques 629

Stents
4733665: (see above) 940
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Abstract

It is generally thought that living things have desires for con-
formity as well as desires for differentiation, which makes
their preferences show fashion. Recently, it was shown that
there were fashion in preferences of how female birds chose
their mates. We think fashion in female preferences for a
mate is related to their desires and that the strengths of de-
sires among living species are genetically different from one
to another. We describe the strength of desires among living
species as being artificial agents of genes. In this paper, we
simulate the phenomenon of fashion in female preferences
for a mate by using an agent model that consists of imported
conformity and differentiation as genes. In this experiment,
we found that there were two kinds of periodic phenomena of
fashion and reported the influence of conformity and differ-
entiation on the transition of female preferences.

Introduction
Fashion expresses the process of the penetration and spread
of particular ideas into society. Factors for the generation
of different fashions in each era have been attributed to the
antithetical desires for conformity and differentiation (Sim-
mel, 1957). In the animal world, many behaviors have been
observed that suggest the existence of desires for conformity
and differentiation, such as imitation, herd, staking territory,
and individual actions.

Generally, fashion is considered to be present in prefer-
ences. Until recent years, it was believed that in the animal
selection of mates, factors for the evolution of male orna-
mentation are usually uniform even as time passes; in other
words, there was no fashion in the preferences of females.
However, the research of Chaine et al. has shown the exis-
tence of a species of bird called the Lark Bunting (Calam-
ospiza melanocorys) whose preference of male ornamenta-
tion by females change every year (Chaine and Lyon, 2008).
However, the reason for this is not understood. We believe
that the phenomenon of fashion in preferences, seen in some
female birds, contribute to the existence of desires for con-
formity and differentiation in mate selection. We study this
using computational simulation.

Conformity behaviors are behaviors that are similar in
one’s environment. Conformity behaviors make an orga-

nization uniform and establish the majority (Asch, 1951).
However, the entire population is not just made up of the
majority as a result of conformity behaviors. According to
Simmel, fashion is created not just by conformity to oth-
ers (conforming behaviors), but also by antagonism to ex-
clusive desires, that is, by the desire to differentiate oneself
from others (non-conforming behaviors) (Simmel, 1971). It
is believed that non-conformity behaviors can preserve di-
versity, and that conformity behaviors create fashion. Fujii
et al. carried out simulation experiments on the effects of
conformity and non-conformity behaviors by individuals in
a population. The results showed that many non-conforming
individuals were needed to create fashion (Fujii et al., 2002).

Until now, we have expressed inborn bodily characteris-
tics as genes, and acquired preferences as memes. We pro-
posed an evolutionary model of artificial life (agents) that
combine genes and memes, and observed their influence on
changes in preferences concerning mate selection (Mizuno
et al., 2005)(Tokuhara et al., 2005). In this paper, we pro-
pose a model that adds genes that express strength of de-
sires for conformity and differentiation in order to represent
different value systems for agents created in our previous
model. By doing so, we can observe computationally mate
selection behaviors by agents. We discuss the evolution and
expression of fashion by the agents’ responses to the envi-
ronment as generations proceed.

Agent Model
We have described an enhanced Lerena model (Ler-
ena, 2000) in the form of an agent model consisting of
both hereditary traits (genes) and acquired traits (memes)
(Mizuno et al., 2005)(Tokuhara et al., 2005). This agent
model introduces memes into the existing Lerena model.
The concept of memes was proposed by R. Dawkins
(Dawkins, 1989). He described a meme as both a base fac-
tor and a unit of cultural infomation. Our agent model was
able to represent constant (i.e., hereditary) and variable(i.e.,
acquired) information as genes and memes, respectively. In
this paper, we describe a new model that reflects the concept
of conformity and differentiation.



Proc. of the Alife XII Conference, Odense, Denmark, 2010 847

Agents
An agent ai consists of the sex sexi, age agei, en-
ergy energyi, dyad genes genei and dyad meme pools
meme poolsi as follows.

ai(sexi, agei, energyi, genei,meme poolsi). (1)

Genes are hereditary: the first one is for gene traits, and the
second relates to preferencs for gene traits. Meme pools are
acquired: the first one is for meme traits, and the second
relates to preferences for meme traits.

genei = (gtrait
i , gpref

i ), (2)

meme poolsi = (mtrait
i ,mpref

i ), (3)

where gtrait is a gene trait, mtrait is a meme trait, and gpref

and mpref are preferences for the gtrait and mtrait, respec-
tively. Preference works to evaluate corresponding traits; for
example, gpref means the preference of the gtrait in mate
choice. The expression of both preferences is limited to fe-
males (sexi = female), and the expression of both traits is
limited to males (sexi = male).

Conformity-desire genes
We add conformity-desire genes to above-mentioned agents
as follows.

gtrait
i = (Gt

i ,Gtclv
i ), (4)

gpref
i = (Gp

i ,Gpclv
i ). (5)

The Gt
i is a gene trait, and the Gp

i is a gene preference.
The Gtclv

i and the Gpclv
i are conformity-desire genes of an

agent ai. They have a real-value between 0 and 1. In our
model, the nearer a conformity-desire gene value is to 0,
the stronger the differentiation desire the agent has. Con-
versely, the nearer a conformity-desire gene value is to 1,
the stronger the conformity desire the agent has. Using
Equations (1)-(5), we represent individuals having desires
for conformity and differentiation as genes.

Plainness and ornateness
Male and female agents have gene traits and preferences.
They consist of bit string data. Since we present the plain-
ness or ornateness of them, we use a cf(Gt

j) function that
counts the number of 1s in the bit string data of a gene trait
Gt

j . If cf() of the agent is over half of a bit length, we call
the trait and preference of the agent ‘trait (preference) a’ also
known as a ornateness trait and preference. If not, we call
the trait and preference of the agent ‘trait (preference) b’,
also known as a plainness trait and preference. This model
uses a cf() function to calculate the consumption energy of
the agents. The more ornate the agent, the more energy is
required to act.

clv i <R i

No

Yes

ai

Figure 1: A flowchart of agent actions during each step.

Action
A single run is the repetition of three procedures:

1. mate choice

2. breeding

3. decision between conformity and differentiation behavior

4. conformity or differentiation behavior

A flowchart of agent actions is shown in Figure 1. First,
each female selects a male as a mate on the basis of pref-
erence. After breeding, each female and male agent se-
lects and performs a conformity or differentiation behavior.
These behaviors are operations that rewrite memes. Agents
age 1[age] during each step. Lm[age] females and Lf [age]
males are removed from the population. Agents burn energy
by each action and recover after one step. Next, we explain
each action.

Mate choice A female ai selects the best-matched male
aj as a mate from L reference males. The reference pop-
ulation consists of randomly selected L males. The female
evaluates a male by calculating the hamming distance be-
tween her own preferences and the traits displayed by the
male. The evaluation value Pi,j for mate choice is deter-
mined using agent ai’s gene preference Gp

i and meme pref-
erence mpref

i , and agent aj’s gene trait Gt
j and meme trait

mtrait
j as follows.

Pi,j = w1 H(Gp
i ,Gt

j) + w2 H(mpref
i , mtrait

j ), (6)

where H(A,B) is the hamming distance between A and B,
and w1 and w2 are weight parameters. Agent ai prefers aj
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to ak when Pi,j < Pi,k. After choicing a mate, a femele ai

is added to the queue waitingj for selected male aj .

Breeding Suppose that female ai selects male aj . A new
agent al is produced as the child of ai and aj . This new
agent al has the following composition.

al(sexl, 0, energyDV ,

((Gt
l ,Gtclv

l ), (Gp
l ,Gpclv

l )), (mtrait
DV , mpref

DV )), (7)

(Gt
l ,Gtclv

l ) =

(mutb(crb(Gt
i ,Gt

j)), mutr(crr(Gtclv
i ,Gtclv

j ))), (8)

(Gp
l ,Gpclv

l )) =

(mutb(crb(Gp
i ,Gp

j )),mutr(crr(Gpclv
i ,Gpclv

j ))), (9)

where sexl is either male or female with an even proba-
bility; agel is zero; energyl is default energyDV ; genes
(gtrait

l gpref
l ) are determined by genetic operations of Equa-

tion (8) and (9); mutb(A) is a mutate-function that reverses
each bit of A with probability γ; mutr(A) is a bound-
ary mutate-function for real-value A with a probability γ;
crb(A,B) is a cross-function that returns either A and B
with an even probability; crr(A,B) is Blend cross-function
(Eshelman, 1991) with A and B. In this model, we think
that all agents should mature before they are included in the
population. Thus, we abbreviate the process by supposing
the growth of agents. Memes (mtrait

l ,mpref
l ) are not inher-

ited from parents. Thus, their defaults are (mtrait
DV ,mpref

DV ).
By breeding, male aj uses energy Ccrs

j as follows.

Ccrs
j = αcrs(cf(Gt

j) + cf(mtrait
j )) + 1. (10)

The more ornate the agent, the more energy is needed to
breed. Thus, ornate traits are a disadvantage for childbirth.

A femaleai is limited to only one round of breeding for
each step. On the other hand, a male aj is not limited. He
can breed repeatedly with femeles in the queue waitingj

while their energy is greater than zero.

Decision between conformity and differentiation behav-
iors An agent decides between conformity and differenti-
ation behaviors after breeding. First, an agent ai selects M
agents of the same sex randomly from a population. Then,
an agent ai perceives the local proliferation rate Ri as fol-
lows.

Ri = max(num(a), num(b))/M, (11)

where num(a) is the number of agents having a trait (pref-
erence) a in M agents. Agents in this model have a trait
(preference) a or trait (preference) b as mentioned above.
Thus, the range of the local proliferation rate Ri is 0.5 to 1.

As mentioned above, we assume that living species have
desires for comformity and differentiation. The proposed

model has the following mechanism. If an agent feels that a
local proliferation rate is high, he desires differentiation. If
not, he desires comformity.

We define the local proliferation rate that an agent con-
siders high as a bifurcation value. The bifurcation value clvi

of an agent ai is calculated using conformity-desire genes as
follows.

clvi =
Gtclv

i + 1

2
. (0.5 ≤ clvi ≤ 1) (12)

In addition, Equation (12) is a calculus equation for either
male or female agents. An agent ai decides between con-
formity and differentiation behavior by using its own bifur-
cation value clvi and the perceived local proliferation rate.
In particular, if the magnitude relation of their values is
Ri < clvi (i.e., the agent does not feel the local prolifer-
ation rate is high), the agent excutes a conformity behavior.
On the other hand, if Ri ≥ clvi (i.e., the agent feels the local
proliferation rate is high), the agent excutes a differentiation
behavior.

Conformity behavior The conformity behavior means
that an agent ai imitates the meme mtrait

k of a male ak who
is the most popular as indicated by mate choice. Specifi-
cally, the imitation target is the male agent who breeds the
most times out of N males selected randomly from a popu-
lation.

In imitation, an agent ai can change its own meme mtrait
i

(mpref
i ) by reversing one bit in its bit string data to come

close to the meme mtrait
k (mpref

k ) of target male ak. By its
behavior, the male ai uses energy Cimt

i as follows.

Cimt
i = αimt(cf(Gt

i ) + cf(mtrait
i )) + 1. (13)

Equation (13) is a calculus equation for either male or fe-
male agents. Conformity behaviors are repeated while their
energy is over zero, i.e., multiple bits are imitated. On the
basis of Cimt

i , the more ornate an agent ai, the larger the en-
ergy cost it requires. Thus, the more ornate it is, the smaller
the number of bits that can be changed.

Differentiation behavior The differentiation behavior
means that an agentai imitates reversely the meme mtrait

k

of a male ak who is the most popular as indicated by mate
choice. Specifically, the reverse-imitation target is the male
agent who breeds the most times out of N males selected
randomly from a population.

In reverse-imitation, an agent ai can change its own meme
mtrait

i (mpref
i ) by reversing one bit in its bit string data to

back away to the meme mtrait
k (mpref

k ) of target male ak.
By its behavior, the male ai uses energy Ccrt

i as follows.

Ccrt
i = αcrt(cf(Gt

i ) + cf(mtrait
i )) + 1. (14)

Equation (14) is a calculus equation for either male or fe-
male agents. Differentiation behaviors are repeated while
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their energy is over zero, i.e., multiple bits are imitated. On
the basis of Ccrt

i , the more ornate an agent ai, the larger
the energy cost it requires. Thus, the more ornate it is, the
smaller the number of bits that can be changed.

Experiments
Next, we explain an experiment with the proposed model,
where many male and female agents exist and are evolvable.

Experimental settings
All agents are dead after 5[step] (life time). A population
of 1000 agents, consisting of 500 females and 500 males, is
evolved from an initial state where: (1) the genes Gt and Gp,
the memes mtrait and mpref are encoded by bit-strings; the
length of these strings is 10 bits each; (2) the initial values of
the genes gtrait and gpref are given randomly to all agents;
(3) the initial values of the memes mtrait and mpref are
given median (cf(mtrait

DV ) = cf(mpref
DV ) = 5). The parame-

terization used in these sets of simulation runs is as follows:
(1) reference population size for mate choice and confor-
mity and differentiation behavior (L = N = M = 40); (2)
weight parameters in mate choice (w1 = w2 = 0.5); (3) ini-
tial values of energy (energyDV = 100); (4) parameters in
costs (αcrs = 3.5, αimt = 2.0, αcrt = 4.0, γ = 0.005).

We defined cases with cf(Gp) + cf(mpref ) > 10 and
cf(Gp) + cf(mpref ) ≤ 10 as ornate and plain cases, re-
spectively. In this experiment, we examine survival ratio of
female agents with ornate and plain preferences.

Results
In our experiment, we set the preference of more than half
of the female agents as preference for the majority, and the
rest as preference for the minority. We then focused on the
turnover between majority and minority. The results of the
10,000-step simulation, run 20 times, showed that turnover
between preference for the majority and the minority oc-
curred frequently in all the trials. Figure 2 provides an ex-
ample of the change in the preference of females that is of-
ten seen in the experiment. We could confirm repetition of
turnover between the two different preferences of the major-
ity and minority.

Also, Figure 3 shows by generation the average values of
the conformity-desire gene of male Gtclv and female Gpclv

agents for 20 trials. Whereas the female conformity-desire
gene Gpclv did not change in the vicinity of strength 0.5
through 10,000 steps, the male conformity-desire gene Gtclv

increased immediately after the start of the experiment, and
after 2000 steps, it stabilized between 0.62 and 0.67.

Discussion
Figure 2 shown is similar to periodic phenomena of fash-
ion. In the proposed model, the process by which periodic
phenomena of fashion of preference a and preference b is
expressed is repeated in the following way:
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Figure 2: Survival ratio of female agents at each step. A
solid line shows a plain preference. A broken line shows a
ornate one.
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Figure 3: Averag values of the conformity-desire gene of
male Gtclv and female Gpclv at each step.

(i) Preference a increases due to conformity behaviors, and it
becomes easy for the local proliferation rate of preference
a to increase.

(ii) An agent with preference b is created by an agent that
takes a differentiation behavior when the local prolifera-
tion rate of preference a exceeds the agent’s bifurcation
value.

(iii) Female with preference b selects male mates with trait b,
so preference b increases as a result of females’ confor-
mity behaviors in the environment.

In Figure 3, the reason that the male conformity-desire
gene is higher in strength compared to females is that in this
model, the power to select mates belongs to the females.
Because males that copy traits that are popular to females
are more easily selected, males with strong differentiation
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desires-that is, males with weak conformity-desire gene-are
easily selected out. On the other hand, the conformity-desire
gene of females do not attain a high level compared to males
because 1) male are popular as a result of female confor-
mity behaviors, so there are females born that cannot find a
mate, and 2) females have the power to select mates, so they
are successful in mating even if they act in a differentiating
manner.

From our results, we found that there is a high probability
that agents that carry out differentiation behaviors, which
trigger the conversion of fashion in process(ii), are females
with weak conformity-desire gene.

Furthermore, change was also observed in female agents’
preference for plainness or ornateness. As can be seen from
the results shown in Figure 2, when preference for plain-
ness becomes the majority over preference for ornateness,
plainness’ ratio of survival becomes greater, but its duration
becomes shorter. When ornate preference becomes the ma-
jority over plain preference, its survival does not become
great, but its duration is long. This set of phenomena was
confirmed in all 20 trials.

The reason for the difference seen in the change of fash-
ion as a result of such change in preferences is believed to
be attributable to the difference in the cost of assuming be-
haviors by agents. For agents with plain preference, the cost
of behaviors compared to agents with ornate preference is
low, so it is easier to beget progeny and for the number of
individuals to increase. Because the local proliferation rate
perceived by each agent becomes high, it becomes easier for
each agent to assume a differentiation behavior. As a result,
it becomes easier for the switching of fashion by differenti-
ation behavior to occur.

On the other hand, the behaviors for ornate preference in-
cur greater cost compared to plain preference, so it is harder
to beget progeny and for the number of individuals to in-
crease. The local proliferation rate perceived by each agent
does not become high, so it becomes hard for agents to take
differentiation behaviors. As a result, the traits and prefer-
ences homogenize and stabilize.

The appearance of the sudden increase and decrease of
female agents with plain preference confirmed in our exper-
iment approximates a “craze” phenomenon. Also, the ap-
pearance of a stable fashion among female agents with or-
nate preference approximates a “boom” phenomenon.

Compare with the Lark Bunting
According to the report presented by Chaine et al., for the
Lark Bunting, whose females have preferences that show
traits of fashion, many males with small bodies are success-
ful in mating compared to males with large bodies when the
small-body phenotype is in fashion. Furthermore, the dura-
tion of the fashion is short. If having a big body is hypothe-
sized to be disadvantageous for survival compared to having
a small body (incurring a high cost for behaviors), in our

model we can consider a big body as ornate phenotype and
a small body as plain phenotype. The phenomena observed
in our experiment, namely that survival ratio is high when
plain preference is in fashion and this duration is short, and
that the survival ratio is low when ornate preference is in
fashion and this duration is long, match a part of the fashion
phenomena of preference observed in female Lark Bunting.

Effects of the reference population size
Next, we carry out experiments to determine the effects that
reference population size M , a parameter inherent in our
proposed model for deciding learned behaviors, have on
changes in fashion.

Here, we define the change in the survival ratio of
agents with target traits (preferences) in the stabilized pe-
riod (which is the period after 2000 steps that stabilize the
conformity-desire gene according to the diagram) of each
experiment as either “craze” or “boom”.

“Craze”:
The survival ratio increases from less than 50 percent
to more than 90 percent and again drops to less than 50
percent within 1000 steps.

“Boom”:
The survival ratio increases from less than 50 percent to
more than 50 percent, and maintains the state of greater
than 50 percent for more than 1,500 steps before drop-
ping to less than 50 percent again.

We changed the size of the reference population, M , in
the range of 5 ≤ M ≤ 100, and studied the number of
occurrences of “craze” and “boom” as defined above. Figure
4 shows the average frequency of occurrences of “craze” in
plain preference and “boom” in ornate preference over 20
trials.

The results of the experiments showed that when M = 5,
“craze” and “boom” were almost never observed. However,
as the size of the reference population increases, their fre-
quency increases. “Craze” occurred most frequently when
M = 40, and “boom” occurred most frequently when
M = 20.

For “craze” to occur, there must be rapid increase of the
majority by conformity behaviors and switching between
majority and minority due to differentiation behaviors. It
is expected that as the reference population size becomes
smaller, the average value of the local proliferation rate be-
comes higher, so differentiation behaviors occur more easily
and conformity behaviors occur with more difficulty. In-
versely, as the reference population size becomes bigger, the
average value of the local proliferation rate becomes lower,
so differentiation behaviors occur with more difficulty and
conformity behaviors occur more easily. The results of Fig-
ure 4 also suggest that the size of the reference population
size when deciding on learning actions contribute to the fre-
quency of “craze” and “boom”.
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Figure 4: Average frequency of occurrences of “craze” and
“boom” at each number of reference populations M . A solid
line shows “craze”. A broken line shows “boom”.

Conclusion
In this paper, we proposed a new model for mate choice
involving genes and memes that introduces conformity-
desire genes that correspond to the value systems of indi-
vidual agents. We expressed agents that combine desire
for conformity, which is believed to belong to some ani-
mals via conformity-desire genes, and desire for differen-
tiation. Furthermore, we created a model that sought to
carry out conformity behaviors and differentiation behav-
iors through conformity-desire genes possessed by agents
themselves and the local proliferation rate perceived from
the environment. From the results of experiments using our
proposed model, we confirmed two types of periodic phe-
nomena of fashion expression. For preferences that incur a
high cost for behaviors, a stable “boom” was often observed.
For preferences that incur a low cost, a “craze”-like fashion
phenomenon, with sudden penetration and then decay, was
often observed. We also discovered that the existence of
female agents that carry out differentiation behaviors is im-
portant for the expression of periodic phenomena of fashion.

From here, it is necessary to match the results of this ex-
periment in detail against real-world animals whose females
have preferences that can be seen as fashion, and are the tar-
gets of this model. However, we expect that verification of
the model will face great difficulty because of the very few
case studies of animals whose female have preferences that
can be seen as fashion when it comes to mate choice. There-
fore, it is desirable to collect data on a variety of fashion
phenomena in the real world, including mate choice. Also,
mate choice in the real world is not simple like the model.
There are a variety of factors involved in propagation, such
as the asymmetry in roles between males and females. It is
necessary to improve the model based on the findings of this
paper so that it better conforms to the real world.

The characteristics of the two types of periodic phenom-
ena of fashion as a result of the difference in cost expressed
in our model can be applied to fashion phenomena in general
society. For example, because an expensive product cannot
be possessed by many people, a moderate degree of differ-
entiation desire is maintained, and a hypothesis can be made
that a “craze” will not occur easily. Form the results of last
experiments, it is also possible to discuss the relationship
between the differences in information space between indi-
viduals and the ease with which a “craze” occurs. From here
on, we want to extend our proposed model to be a model of
general society.
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2LabMAg – Dep. de Informática, Faculdade de Ciências, Universidade de Lisboa, Portugal

plsm@ua.pt Luis.Correia@di.fc.ul.pt

Abstract

In games that model cooperative dilemmas, if players are able
to choose with whom they will play, they will seek out coop-
erative partners while escaping free riders. In this paper we
recast the problem of selecting with whom to play as a prob-
lem of finding the right combination of players. With this
approach, we present a model suitable to anyn-player game.
The model is adaptive and we present three update policies.
If a player has enough cooperative partners, then with our
model a player is able to only select them. We show informal
proofs of our claim and illustrate our model under different
scenarios.

Introduction
Cooperative dilemmas have been modelled by several
games, for instance Iterated Prisoner’s Dilemma (IPD), Ul-
timatum, Investment, Centipede, and Public Good Provision
(PGP) (Gintis, 2000b; Fudenberg and Tirole, 1991; Axel-
rod, 1997). Theoretical analysis of these games predicts
the prevalence of free-riders, exploiters, and other typesof
non-prosocial behaviour (Gintis, 2000b). Despite this, ex-
periments involving people show significant pro-social be-
haviour. Several theories, trust management, reputation,
norms, punishments, have been put forward to explain these
results under different forms. However these theories are
usually attached to particular games.

In this paper we focus on partner selection. It has been re-
ported in human experiments (Coricelli et al., 2004; Ehrhart
and Keser, 1999) that if players are able to select their part-
ners they will seek cooperative partners while escaping free
riders. We present a model of partner selection tailored for
any n-player game that allows a player to select the most
favourable combination of partners. In contrast with previ-
ous results, our model relies solely on private information.

The model we present should be used by a player during
its life cycle when it has to play a game. The player uses
private information gathered from previous games to select
partners to play a game. Although with our model a player
can in some conditions only select cooperative partners, we
do not prevent it from being selected by uncooperative play-
ers.

The goal of our model is to allow cooperative players to
tentatively select cooperative partners. We assume that a se-
lected player cannot refuse to play and therefore it can be
selected by uncooperative players. This situation is not un-
like neighbourhood choice, for instance. Someone chooses
a neighbourhood for its general reputation but she may not
refuse to have any new neighbour no matter how the new-
comer is uncooperative.

Related Work
Volunteering is a form of partner selection where a player
can choose to participate in a game or not, Aktipis (2004);
Hauert et al. (2002); Orbell and Dawes (1993). For each in-
teraction, it introduces the possibility of not playing. How-
ever the payoff for not playing lays between the maximum
and minimum payoffs obtainable in the game. This relation
alters the equilibria in the original game and thus creates new
ones. This is the case in Orbell and Dawes (1993) where the
payoff for not playing is zero (in their game there are posi-
tive and negative payoffs). They justify their choice of this
value because people can evaluate and compare game ac-
tions that lead to positive or to negative payoffs. The same
happens in Hauert et al. (2002). They focused on the PGP
game. Players that do not play get a payoff that is higher than
the payoff obtained by a defector in a group of defectors but
lower than the payoff obtained by a cooperator in a group
of cooperators. They found out that their system exhibits a
rock-scissors-paper dynamics where players with the option
of participating cyclally appear and disappear from the pop-
ulation. In both works players do not have memory of past
encounters nor can identify other players. In Price (2006)
the author refers that in experiments involving human sub-
jects, people usually cooperate when they can choose their
interaction partners, and they cooperate when they perceive
altruistic behaviour.

Model Description
In a n-player game, a player has to selectn − 1 partners to
play a game from a population ofm candidates. Its problem
is to find those combinations that yield the highest utilities.
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We assume that the player has access to thosem candidates,
but our model can easily be adapted to a scenario where can-
didates may enter or leave the population. We assume that
the population may contain candidates that behave stochas-
tically, namely, they sometimes cooperate but they also free
ride.

For largem andn it may not be feasible for a player to
process all the possible combinations. Therefore, a player
maintains a poolc of l combinations that is updated as it
plays games. Each combination has a probability to be se-
lected. These probabilities are stored in a vectorw. Finally,
the player has a utility thresholdu

T
. Representing a strategy

by s, a player is then characterised by a 4-tuple:

α = (s, c,w, u
T
) . (1)

When a player has to play a game, it selects a combination
from vectorc using the probability vectorw. It compares
the utility obtained withu

T
and decides if it should update

the two vectors. If it is lower, then other combination should
be favoured.

In the following discussion, we will assume thatk is the
slot index of the selected combination. We will now discuss
some vector update policies.

Drastic Update – Policy A
If the selected combination yields a utility lower thanu

T
, its

probability is multiplied by a factor,δ, lower than 1.

wt+1

k =

{

δwt
k if u < u

T

wt
k if u ≥ u

T

. (2)

The probabilities of other combinations are updated as
follows:

wt+1

i =







wt
i +

(1 − δ)wt
k

l − 1
if u < u

T

wt
i if u ≥ u

T

, (3)

wherei 6= k, in order to maintain sum to unit.
In slot k of vectorc a randomly drawn combination re-

places the selected combination in case it yielded a lower
utility:

ct+1

k =

{

rnd(C \ {ct
i : 1 ≤ i ≤ l}) if u < u

T

ct
k if u ≥ u

T

,

(4)
whereC is the set of all combinations ofn − 1 elements
out of m candidates, andrnd is a function that given a set
returns a random element.

The initial probability vector,w0, may have random val-
ues or constant valuel−1. It has been shown that the choice
of w

0 does not change game dynamics (Mariano et al.,
2009a). In order to give a fair chance to all initial combi-
nations, we prefer the uniform distribution.

The rationale for the drastic update is that combinations
that contain free riders, exploiters, etc., are removed from
the pool. It explores new combinations because it is always
replacing lower ones. Although the replacing combination
has initially a lower probability to be selected, it may absorb
the probabilities of other lower combinations. An impor-
tant aspect is that combinations with only cooperators never
leave the pool and absorb the probabilities of lower com-
binations. This means that in the long run, the probability
mass of combinations with cooperators approaches1.

If there are no good combinations, then the pool will never
stabilise, with combinations constantly entering. Their time
in the pool will be proportional to their cooperation level.

Smooth Update – Policy B
This update policy has a parameterǫ < 1 that determines
when the combination vector is updated. Whenever a com-
bination yields a utility lower thanu

T
, its probability de-

creases as it is multiplied by a factorδ lower than 1. If the
probability reaches valueǫ we consider that the correspond-
ing combination should leave the pool. It will be replaced by
a new randomly generated combination. In order be fair, the
new combination is assigned probabilityl−1. This means
that we have to decrease the other combinations’ probabili-
ties. We opt for a decrease proportional to their value. For-
malising, the probability to select combinationck is updated
as:

wt+1

k =











l−1 if u < u
T
∧ wt

k ≤ ǫ

δwt
k if u < u

T
∧ wt

k > ǫ

wt
k if u ≥ u

T

, (5)

and the probability to select the other combinations is:

wt+1

i =



























wt
i

1 − l−1

∑

j 6=k

wt
j

if u < u
T
∧ wt

k ≤ ǫ

wt
i +

(1 − δ)wt
k

l − 1
if u < u

T
∧ wt

k > ǫ

wt
i if u ≥ u

T

. (6)

The combination vector is updated as follows:

ct+1

k =

{

rnd(C \ {ct
i : 1 ≤ i ≤ l}) if u < u

T
∧ wt

k ≤ ǫ

ct
k otherwise

(7)
The first probability vector,w0 is initialised with constant

valuel−1, in order to give a fair chance to all initial combi-
nations.

As long as the pool size is smaller than the number of
good combinations, in the long run, the pool will only con-
tain those combinations. Again, a good combination is never
replaced. If the pool size is higher, then bad combinations
will always have in the long run a probability of being se-
lected ranging fromǫ to l−1.
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Drastic Proportional Update – Policy C
The probability of a good combination is only indirectly in-
creased by the update policies we have described. A bet-
ter solution is a probability proportional to the utility ob-
tained with the corresponding combination. Even among
good combinations there can be differences due to different
types of cooperators in the population. For instance, some
candidates may behave stochastically in terms of their coop-
erativeness.

In this policy, vectorw is best described as a weight vec-
tor. Whenever a combination is selected, if the utility ob-
tained,u, is higher than thresholdu

T
its weight is updated in

order to approach the true combination utility. If the utility
obtained is lower thanu

T
, a random combination is selected

and the weight reset to some value.
Like in previous policies, we opt for having an initial

weight vector with identical values,w0

k = u
T
− u. The de-

cision thresholdu
T

is used when a new combination enters
the pool. Parameterδ < 1 is used to gradually approximate
the true utility of a combination. Formalising, the update
policy is:

wt+1

k =

{

δwt
k + (1 − δ)(u − u) if u ≥ u

T

u
T
− u if u < u

T

, (8)

where u is the lowest utility obtained by a player. The
combination vector is updated using the policy described by
Equation (4).

This policy is general enough to encompass games with
negative utilities. To guarantee this, weights assigned tonew
combinations are shifted byu.

As in the previous vector update policies, if the pool size
is smaller than the number of good combinations, in the long
run the pool will only contain those combinations. Again,
a good combination is never replaced. If the pool size is
higher, then bad combinations will always have, in the long
run, a non-zero probability of being selected, which is less
thanl−1 and higher than:

u
T
− u

u
T
− u + (l − 1)(u − u)

(9)

which corresponds to the limit probabilities of a pool with
l − 1 perfect combinations. Although this value is inversely
proportional tol, if we increasel but other parameters re-
main constant (in particular number of good combinations),
the probability mass of good combinations decreases.

Adaptive Utility Threshold
As the goal of this model is for cooperative players to only
select their kin, the ideal value for thresholdu

T
is the utility

obtained by a strategy profile composed of only cooperative
strategies. We will use parameteru

P
to represent this value.

It may happen that a player does not have enough pure co-
operative partners. Therefore, no single partner combination

will remain forever in vectorc. In this case, the player could
lower thresholdu

T
in order to reach a stable regime.

The player should raise the threshold if vectorc is stable.
But we must take care in order to guarantee that the thresh-
old does not oscillate too much. We opt for a regime similar
to the thermal one used in a Simulated Annealing algorithm
(Kirkpatrick et al., 1983).

The rule to update the utility threshold is based on the
number of changes that occurred in the combination vector
in the lasth games. The rationale being that a high number
of changes, larger thanh

T
, means that there are not enough

cooperative candidates and the threshold should decrease.
On the other hand, no changes means that the threshold can
increase in order to select better cooperators. The model
has additional parameters that control the change in utility
threshold,β andγ. The utility threshold update policy is:

ut+1

T
=











(1 − βe−γt)ut
T

+ βe−γtu
P

if #c = 0

(1 − βe−γt)ut
T

+ βe−γtu if #c > h
T

ut
T

otherwise
(10)

where#c represents the number of changes in the combina-
tion vector in the lasth games. Parameterβ ∈ [0, 1] con-
trols the magnitude of change inu

T
. Forβ = 0 there is no

change. The value ofγ ∈ [0, 1] controls the decay ofu
T

with the number of games. Forγ = 0 there is no decay and
for other values we may consider that the threshold stabilises
after10/γ games.

The initial utility threshold is set to the Pareto utility,
u0

T
= u

P
. The threshold can never go bellow the lowest

utility obtained by a player,u.

Discussion
We have presented three policies of partner selection suit-
able for anyn-player game with stochastic players. We
stress the fact that in the three models a player selects part-
ners based only on private information. This information
consists on the utilities obtained in each game. The utility
is not necessarily equal to the payoff a game ascribes to a
player. It may depend on the payoff of all players, as in the
utility of homo equalitarium(Gintis, 2000a).

Update policy A is identical to the policy presented
in Mariano et al. (2009a). However here we extend that
model to select partner combinations instead of a single part-
ner. Moreover we can handle stochastic strategies. Update
policy A only requires one combination of good partners
while update policies B and C requirel combinations of
good partners. If there are fewer, then with update policiesB
and C there will be bad combinations in the pool with non-
zero probability. While this is a drawback, update policy B
does not promptly remove bad combinations from the pool,
but only removes them when their probabilities are lower
than thresholdǫ. This allows combinations with stochas-
tic players to remain longer in the pool. As for policy C,
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the probability of a partner combination is proportional to
their utility, thus the best combinations are favoured over
bad ones.

All models aim at keeping the combinations that yield the
highest utility in the long run. Despite the computational
effort needed by the policies, it is rational for a player to
follow one of them instead of randomly selecting partners.

The vector update policy is performed by the player that
selects partners, but it can also be performed by players that
are selected. In particular, if the combination, from the view-
point of the partner exists in his pool, then he can apply one
of the three update policies. This is an improvement over
previous work (Mariano et al., 2009b) as the partner selec-
tion model was only used by the player that selected part-
ners. In 2-player games, if the player has enough computa-
tional resources its pool can cover the entire population of
candidates.

This paper also introduces an adaptive process to mod-
ify the utility threshold used in all the policies. The goal of
this adaptation is to stabilise the contents of the combina-
tion vector while maintaining a higher probability to select
the best possible combinations. For instance, if the num-
ber of pure cooperators is scarce, a player should accept, as
good, combinations with stochastic cooperators, which pro-
vide sub-optimal utilities (less thanu

P
). Also, the adaptive

process may recover from a situation where the threshold is
low and new good candidates appear.

Experimental Analysis

We have performed simulations using the PGP game (Boyd
et al., 2003; Hauert et al., 2002). This game is commonly
studied to analyse cooperative dilemmas. Moreover, it is a
n-player game. We analysed the games played by a particu-
lar player paying special attention to the evolution of vectors
w andc and the number of games played with every candi-
date.

Simulation Description

In the PGP game, a player that contributes to the good, in-
curs in a costc. The good is worthg for each player. Let
x be the proportion of players that provide the good. The
payoff of a player that provides the good isgx − c while
players that defect getgx. The game has a single iteration.
The strategy used by players is probabilistic and is defined
by parameterp which is the probability to provide the good.
We assume that the utility of a player is equal to its payoff.
In the simulations we setg = 10 andc = 4. The number of
players in a game varied between three and five.

Partner candidate population composition was chosen in
order to illustrate interesting behaviour of update policies:
with update policy A the population has fewer thann − 1
cooperative partners; with update policies B and C the num-
ber of combinations with only cooperative partners is less

Players
3 4 5

C
an

d
id

at
es 10 45 120 210

30 435 4060 27405
50 1225 19600 230300

100 4950 161700 3921225

Table 1: Number of available partner combinations for dif-
ferent number of candidates and players in the PGP game.

id strategies
P1 2 (p = 1) 8 (p = 0.5)
P2 3 (p = 1) 7 (p = 0.5)
P3 4 (p = 1) 6 (p = 0.5)
P4 2 (p = 1) 18 (p = 0.5)
P5 3 (p = 1) 17 (p = 0.5)
P6 4 (p = 1) 16 (p = 0.5)

Table 2: Candidate populations used in the simulations.

thanl. Table 1 lists the number of available partner combi-
nations per population size and players.

Different hand-tailored partner candidate populations
were used. They varied in the number of cooperative strate-
gies and population size. Table 2 presents the candidate pop-
ulations used. The number of cooperative partners varied
between two and four. The rest of the population was filled
with mixed strategies that cooperated with probability0.5.
Population size was either ten or twenty. The size of the
population of candidates was chosen to reflect the size of
small communities (Price, 2006).

Pool size, represented by parameterl, was selected from
set{10, 20, 30}. A higher value means more combinations
may be analysed, but there will be more bad combinations
in the pool.

The player that was used to analyse the partner selection
algorithm used a pure cooperative strategy(p = 1). The
player ran the algorithm duringR = 1000 games. After
each game, we measured vectorsw andc, the selected com-
bination, utility thresholdu

T
and the player payoff.

All probability vector update policies usedδ = 0.5. Re-
garding update policy B extra parameter,ǫ, instead of using
an absolute value, in the simulations we usedǫ = l−1ǫ′, with
ǫ′ ∈ {0.2, 1}.

Regarding the adaptive utility threshold policy, for update
policies A and C a history size of 20 was used. Since up-
date policy B only updates the probability vector when the
probability is lower than parameterǫ different history sizes
and values for parameterǫ were tested in order to observe
any relevant behaviour. History size was taken from set
{20, 40, 60, 80, 100}. As for the remaining parameters, we
setβ = 0.1, γ = 0.002 andh

T
= 8.

To obtain statistically significant results, 30 simulations
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were performed for each parameter combination. The ap-
pendix describes the implementation of the vector update
policies and other relevant details.

Result Analysis

Figure 1 shows the average and standard deviation per each
parameter combination of the following values: average
payoff, number of changes in combination vector and last
utility thresholduR

T
. The key is shown separately in Fig-

ures 1a and 1b.
Average payoff is higher with policy A mainly due to bad

combinations having a low probability value. Recall that
in this policy the probability of good combinations never
decrease. This causes bad combinations to have a proba-
bility approaching zero. In contrast, policies B and C de-
crease the probability of combinations (good ones included)
when a new combination enters the pool. Therefore, in these
two policies, bad combinations will always have a non-zero
probability of being selected. Average payoff increases with
the number of cooperators in the candidate population while
in most parameter combinations it decreases with pool size.
The bigger is the number of cooperators the higher is the
number of available partner combinations. The bigger is the
pool size the higher is the probability to select bad combina-
tions. Average payoff is inversely proportional to candidate
population size. The reason being the higher number of un-
cooperative partners.

As for changes in the probability vector, update policy A
has lower values compared with the other update policies.
A higher number means that a player takes longer to find a
suitable combination of partners. There is not a clear trend
on the number of changes versus other parameters: in some
settings the number of changes is proportional to pool size.
In update policy A in particular, when the number of coop-
erators is equal to or higher thann, the number of players in
a game, there are few changes. There are simulations with
candidate population size equal to 20 (results not shown)
where the number of changes inc, the combination vector,
is higher then the corresponding parameter combination but
with size equal to 10. The reason being the higher number
of uncooperative partners.

The plots ofuR
T

, the last utility threshold, show that up-
date policy A has slightly larger values than policy C. In sim-
ulations where the number of cooperative partners is equal
to n − 1, the best payoff a cooperative player can get is
g(n − 1)/n − c. This is a reasonable value foru

T
as it

guarantees a combination of partners where all but one are
cooperative. For other values of the number of cooperative
partners and number of players, Table 3 presents the best
payoff a cooperator can obtain.

The simulations where the number of cooperators in can-
didate population is equal or higher thann − 1 are a special
case for update policy A. This policy is able to find a com-
bination of only cooperative partners, thus the threshold is

Players
3 4 5

C
o

o
p

er
at

o
rs

2
2g

3
− c

2g

4
− c

2g

5
− c

3 g − c
3g

4
− c

3g

5
− c

4 g − c g − c
4g

5
− c

Table 3: Best payoff obtained by a cooperative player per
number of players and number of cooperators in candidate
population.
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Figure 2: Plot of average and standard deviation ofuR
T

from
simulations where negative values where observed. Results
from simulations with update policy B,ǫ′ = 1, population
size is 20 and history size is 60.

nearerg − c = 6.
We comment the results of update policy B separately be-

cause of its rule to update the combination vector. Since
an update is only triggered when the probability is lower
thanǫ, if the probability is very low, then the correspond-
ing combination is selected infrequently. Thus changes in
the probability vector are rare. In particular, when history
size is 20 andǫ′ = 0.2, no changes occur. Despite this, av-
erage payoffs are similar to those obtained by a player that
uses update policy C. When we increase history size and use
ǫ′ = 1 then there are simulations were changes occur, but
in a lower quantity when compared to the other policies. As
for utility threshold, we observed simulations with negative
values (see Figure 2). This is due to a large history size. Let
hs be history size. If there areh

T
consecutive rounds with

changes inc, then in the followinghs−h
T

roundsu
T

will be
decreased towards the minimum utility obtained in a game.
Recall that the minimum utility in PGP isg/n − c ≈ −1
(all players do not cooperate except one). When changes are
scarce, the utility threshold remained atu

P
.

The plots in Figure 1 only show an inversely relation be-
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Figure 1: Results from the simulations with population sizeequal to 10 and history size equal to 20. Plots on the left column
are from update policy A, the middle column has plots with update policy B withǫ′ = 1 while the rightmost refers to update
policy C. Error lines show the average and standard deviation of, from top to bottom, average utility, number of changes in
combination vector,c, and last utility threshold,u1000

T
. Due to layout reasons, the key is displayed in Figures 1a and1b. Line

style represents pool size, from left to right: bold solidl = 10, mild solid l = 20, dottedl = 30. Point style represents number
of cooperators in candidate population, from left to right:square#(p = 1) = 2, circle 3, triangle 4.
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tween average payoff and pool size. In order to search for
other relations between parameters, we performed signifi-
cance tests for the product-moment correlation coefficientat
0.5% level between parameters and measured values. We
have found that average payoff is directly proportional to
the number of cooperators (in the partner candidate popula-
tion) and inversely proportional to the number of players in
a game (Tables 4a and 4b). As for the number of changes
of the combination vector and the last value of the utility
threshold,uR

T
, we did not find a clear correlation. However,

analysing in more detail, we could see that, for policies A
and C, there is an inversely proportional correlation between
the average payoff and the pool size. Also, for policies A and
C, uR

T
is correlated with the number of cooperators and the

number of players. It is directly proportional to the number
of cooperators and inversely proportional to the number of
players. For most of policy B cases there is no correlation.
This can be explained by its use of parameterǫ. For instance,
whenǫ′ is 0.2 the chance of a combination being replaced is
so low that the utility threshold mostly remains unchanged.

In Table 4d we see the results obtained while maintaining
all parameters and varying only the update policy. There is
a clear correlation between the policy and changes, average
payoff anduR

T
. It indicates that policy B has the worst results

and that policy A is the best. Nevertheless we made a deeper
comparison between policies A and C (in Tables 4e and 4f).
The result observed in Table 4d while still favouring policy
A is not so clear. Policy C in a few cases obtains better
results and in some more is comparable to A.

Conclusions
We have recast partner selection inn-player games, with
stochastic strategies, as a problem of selecting the right com-
bination of players. To support this approach, each player
maintains a pool of partner combinations and a probability
it associates to each combination. We have presented three
policies to update probabilities and to replace player combi-
nations. We have given informal proofs of how a player will
only select combinations with cooperative players. One of
these policies, A, is able to increasingly select a single good
combination, if there is only one. We have also presented a
model that updates a threshold for policy replacement used
by the three policies. This update aims at adapting a player
to situations were there are not enough cooperative partners.

The experimental part focused on the interesting be-
haviour of a player, which is the situation of not having
sufficient cooperative partners. Results show that with the
threshold update policy a player was able to select combi-
nations mostly with good cooperators. Results also showed
that the threshold converged to a reasonable value.

A drastic update policy, A, is able to obtain better results
in most cases. This confirms that the capacity of policy A
to increase the probability of selecting a good combination,
even if it is the only one in the pool, is a significant advan-

tage for partner selection inn-player games.
As for future work, we aim at improving the selection of

partner combination. Instead of randomly picking partners
to the new combination, a proportional selection should be
done. We plan to assign to each partner a probability of
entering a combination.

We are currently investigating the conditions that favour
the evolution of partner selection.

As we have said, our model does not prevent a player from
begin selected by uncooperative. We also plan to investigate
the possibility of refusal. However, this raises the question
of the refusal payoff. As we have mentioned some authors
chose a payoff higher than the minimum payoff in the origi-
nal game, thus altering the equilibria in the game.
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changes avg payoff uR
T
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changes avg payoff uR
T
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(b) Correlation with number of players in
the game.

changes avg payoff uR
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(f) Correlation with update policies A and
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Appendix
Implementation Details of the Probability Vector
Update Policy
The probabilities in vectorw where represented as partial sums of
31 bit integers. The motivation to use integers is due to the fact that
floating point division can yield approximate values and thus the
sum of the probabilities may not add up to1. As we used integers,
whenever a probability was decreased, the others were incremented
by the quotient of the division presented in the policy equations
(see for instance Equation (3)). As for the remainder, a random
probability was chosen.

The use of partial sums allows a faster algorithm, with time com-
plexity O(log l), to select a combination to play with. A random
integer in the range[0, 231] was chosen and then a binary search
was performed. Although updating the probability vector has time
complexityO(l/2), because on average half partial sums must be
updated, when the vector converges only selections take place.

As for the pseudo-random number generator, we used an im-
plementation of the Mersenne Twister, a uniform generator with a
large period (Matsumoto and Nishimura, 1998).
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Extended Abstract

One of the challenges of artificial life is to implement agency in the creature. This paper is going to argue for the concept
of agency existing in linguistic communication. It is usual and normal to see that agency exists outside of language: it is
the user of the language who is equipped with agency, and language is not ostensibly related to it. On the other hand, since
the invention of the Turing test, it has been an unsolvable question whether agency is a physical property, or something that
is attributed from the outside. Here, it is argued that agency emerges in linguistic communication itself. For developing
this idea, we have designed a new communication game between two human subjects in order to see how ”agency” is
organized in each communication pattern (which is intended to be a proto-language).

Some researchers, most notably Galantucci (2005), already reported evolution of artificial language in human communica-
tion necessary to tell some information to others. Here, our focus is not on language as informative tools, but on language
itself as goal of communication, in which it has own agency.

We asked 20 subjects (10 pairs) to communicate using an artificial language, where the expressions are the spatial pattern
of the triplet in a 3-by-3 bit square. The subjects are allowed to rewrite the pattern alternatively. Here are some examples
from our data. (2) is in response to (1):

@ � @

� @ � (1)

@ � @

###

#@ � (2)

# � @

Each trial consisted of 16 exchanges of pattern messages between two subjects. Then, the subjects were asked to report
their intentions behind the sent messages, and their interpretations of the received messages. The pattern of symbol arrays
was analyzed mathematically, and the reports linguistically. We especially focused on how topics shifted during the
communication.

Our analysis shows that when the Hamming distance between the patterns of symbol arrays was small, the agents tended
to report the messages using metaphorical expressions and not in a literal descriptive manner. The report in (3) explains
the intention of (1) to use metaphorical expressions, while that in (4) describes the pattern in (2) literally.

(3) Cherry blossoms are beautiful.

(4) Break the circle by movement from top left to bottom right.

It should be noted that in this experiment, the subjects are forced to exchange messages, so the language pattern should
be sufficiently attractive to keep the communication going. Once an attractive pattern emerges, the pattern may inherit the
characteristic of being attractive, irrespective of the subjects’ intentions. The pattern dynamics are, therefore, operationally
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closed in the same sense that Luhmann (1986) defined a social system as being autopoietic. This perspective is also found
in a simulation model for demonstrating the Luhmann’s concept by Dittrich et al. (2003).

We found that when the Hamming distance between successive patterns gets smaller, human subjects tend to use metaphor-
ical expressions in order to overcome the monotonous development of the pattern exchanges. Thus, the emerging pattern
dynamics inversely subdued the subjects, which proves that the communication is indeed structurally coupling system.
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Abstract 
Communication processes rely on the production and 
interpretation of representations, thus an important issue is to 
understand what types of representations are involved during 
the emergence of interpretations. Here we present an 
experiment to evaluate conditions for the emergence of 
interpretations of different representation types. To design our 
experiment, we follow biological inspirations and a theoretical 
framework of representation processes. Our results show that 
different interpretations process can emerge depending on the 
adaptation cost of cognitive traits and on the availability of 
cognitive shortcuts. 

 Introduction 
The emergence of semiotic competences (morphosintax, 

grammaticality, semantics, pragmatics) has been studied 
through various computational perspectives, including 
embodied robotics, animats, synthetic ethology, and others. 
Particularly, virtual simulations have been used extensively to 
model and simulate the emergence of different types of 
representations (for a review of works, see Nolfi and Mirolli, 
2010, Christiansen and Kirby, 2003, Wagner et al. 2003). 
Here we propose a synthetic experimental protocol to examine 
the conditions underlying the emergence of two types of 
representations (symbols and indexes) in a community of 
artificial creatures able to interact through communication 
processes. Empirical constraints come from evidences in 
studies of animal communication as e.g. the minimum brain 
model for animal communication, proposed by Queiroz & 
Ribeiro (2002), which provided us biological inspirations to 
develop our algorithms.  

Despite the many works on the emergence of 
communication in a community of artificial creatures, there 
are still important open questions that need further 
exploration. Particularly, based on the fact that representations 
can be of different types and that communication processes 
rely on the production and interpretation of representations, an 
important issue is to understand what types of representations 
are involved during the emergence of interpretations in a 
community of artificial creatures.  

In the next section, we will briefly review related work on 
the emergence of communication and representations 

processes. Then we present the theoretical and empirical 
constraints that guided our computational model and 
simulation. Next, we present our ALife experiment and its 
results, and, finally, we outline our conclusions and point to 
future perspectives on the study of the emergence of different 
representation types. 

 Related work 
To illustrate the open issue of understanding the semiotic 
process of interpretation in communication events, we bring 
forward two representative works that simulate the emergence 
of communication in a community of artificial agents.  

Floreano and coleagues (2007) studied the evolutionary 
conditions that might allow the emergence of a reliable 
communication system in a community of simulated robots, 
relying on biological motivations on animal communication. 
The robots could use a visual signal, turning on or off a light 
ring, to communicate with other robots about the position of 
food source. They found that if selection acts on group level 
instead of individual level, or if members of a community are 
genetically similar, a reliable communication system could 
emerge. The robots simulated in this experiment were 
controlled by artificial neural networks, with a direct 
connection between the input layer and the output layer. 
Floreano and coleagues did not discuss how was the light 
signal interpreted by the robots, or what it represented to 
them, but, from the neural controller architecture, we can infer 
that any light signal received was directly mapped to a 
displacement speeed, so the robot blindly reacted to it without 
relating to what it could represent, until it finally reached the 
food source itself.  

Cangelosi (2001) is one of the few works to actually 
propose the emergence of different modalities of 
representations in a experiment on the evolution of 
communication. In an experiment with artificial creatures in a 
grid word, Cangelosi (2001) simulated the emergence of 
communication systems to name edible and poisonous 
mushrooms. He had also relied on biological motivations to 
define a food forage goal for the creatures.  In typifying 
communication systems, Cangelosi (2001) distinguished 
between signals, which have direct relation with world 
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entities, and symbols, which in addition are related to other 
symbols, and built two experiments to study the evolution of 
each type. The simulated creatures were controlled by a 3-
layer neural network with an input layer that receive the visual 
and auditory sensory data, an intermediate layer that joint 
together sensory data and an output layer that defined 
movement and the emission of a signal. In his experiments, 
the neural networks were both evolved and trained in various 
tasks, and, in the end, a shared communication system 
emerged, involving signals and symbols, according to 
Cangelosi. But he did not described how were these signals 
and symbols interpreted by the creatures, i.e. if a signal heard 
was first mapped to a mushroom as its referent, and then to an 
action, or if it was mapped to an action, with a referent being 
associated with it. Since the intermediate neural layer might 
develop either solution, it is not possible to infer what could 
have happened. 

Besides Floreano et al (2007) and Cangelosi (2001), other 
works have studied the emergence of communication traits 
and the acquisition of vocabulary or language among artificial 
agents (see Nolfi and Mirolli, 2010, Christiansen and Kirby, 
2003, Wagner et al. 2003). But we have not found works that 
have studied the emergence of different types of 
interpretations processes and differentiated the interpretation 
processes that emerged. 

 Theoretical and Empirical Constraints 

Computational models and simulations are based on different 
tools that are heavily influenced by meta-principles 
(theoretical constraints) and biological motivations (empirical 
constraints) in the design of the environment and the 
morphological definitions of sensors, effectors, cognitive 
architecture and processes of the conceived systems and 
scenarios. This theoretical basis influences modeling on 
different degrees depending on how it constrains the model 
being built and what decisions it leaves to the experimenter. 
Depending on the theoretical framework, this allows us to test 
the various factors influencing semiotic onto-phylogenetic 
processes, such as the differences between innate and learned 
communication systems, the adaptive role of compositional 
languages, the adaptive advantage of symbolic processes, the 
hypothetic substrate of these processes, the mutual influences 
between different semiotic competences and low level 
cognitive tasks (attention, perceptual categorization, motor 
skill), and the hierarchical presupposition of fundamental 
kinds of semiotic competences operating on symbol-
grounding processes.  

Sign-mediated processes, such as the interpretation of 
representations in communicative contexts, show a 
remarkable variety. A basic typology (and the most 
fundamental one) differentiates between iconic, indexical, and 
symbolic processes. Icons, indexes, and symbols are 
differentiated on how the sign relates to what it refers to, its 
object (Peirce 1958; see Ribeiro et al. 2007). They match, 
respectively, relations of similarity, contiguity, and law 
between sign and object. Icons are signs that stand for their 
objects by a similarity or resemblance, no matter if they show 
any spatio-temporal physical correlation with an existent 
object. In this case, a sign refers to an object in virtue of a 

certain quality which is shared between them. Indexes are 
signs which refer to their objects due to a direct physical 
connection between them. Since (in this case) the sign should 
be determined by the object (e.g. by means of a causal 
relationship) both must exist as actual events. This is an 
important feature distinguishing iconic from indexical sign-
mediated processes. In the other hand, spatio-temporal co-
variation is the most characteristic property of indexical 
processes. Symbols are signs that are related to their object 
through a determinative relation of law, rule or convention1. A 
symbol becomes a sign of some object merely or mainly by 
the fact that it is used and understood as such by the 
interpreter, who establishes this connection.  

Communication is a process that occurs among natural 
systems and as such we can employ empirical evidences on 
building our synthetic experiment. Animals communicate in 
various situations, from courtship and dominance to predator 
warning and food calls (see Hauser, 1997). To further explore 
the mechanisms behind communication, a minimum brain 
model can be useful to understand what cognitive resources 
might be available and process underlining certain behaviors. 
Queiroz and Ribeiro (2002) described a minimum vertebrate 
brain for vervet monkeys predator warning vocalization 
behavior (Seyfarth et al 1980). It was modeled as being 
composed by three major representational relays or domains: 
the sensory, the associative and the motor. According to such 
minimalist design, different first-order sensory 
representational domains (RD1s) receive unimodal stimuli, 
which are then associated in a second-order multi-modal 
representation domain (RD2) so as to elicit symbolic 
responses to alarm-calls by means of a first-order motor 
representation domain (RD1m).   

The theoretical descriptions and biological evidences 
described above guided the design of our computer 
experiment. We were interested in studying the emergence of 
indexical and symbolic interpretation competences, so, to start 
of, we needed to specify the requirements for each and also 
how to recognize each of them in our experiment. Indexical 
interpretation is a reactive interpretation of signs, such that the 
interpreter is directed by the sign to recognize its object as 
something spatio-temporally connected to it, so for our 
creatures to have this competence, they must be able to 
reactively respond to sensory stimulus with prompt motor 
answer. In the minimum brain model, this corresponds to an 
individual capable of connecting RD1s to RD1m without the 
need for RD2. But a symbolic interpretation undergoes the 
mediation of the interpreter to connect the sign to its object, in 
such a way that a habit (either inborn or acquired) must be 
present to establish this association. Thus, in symbolic 
interpretation, RD2 must be present once it is the only domain 
able to establish connections between different representation 
modes. Thus, our artificial creatures must be able to receive 
sensory data, both visual and auditory, in its respective RD1s, 
that can be connected directly to RD1m, defining motor 
actions (Type 1 architecture), or connected to RD1m 
indirectly, through the mediation of RD2, that associates 
auditory stimulus to visual stimulus acting as a associative 

                                                             
1 Differently from Cangelosi’s (2001) definition of symbol, based on 
Deacon’s approach (1997), Peirce  (1958) did not require symbols to be 
related to each other to be called symbols. 
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memory module (Type 2 architecture) (figure 1). To evaluate 
what conditions might elicit each response type – indexical or 
symbolic –, we implemented these two possible cognitive 
processing paths as mutually exclusive paths: either the 
creature responds to auditory events indexically and reactively 
responds with motor actions, or the creatures responds to 
auditory events symbolically and associates them with a visual 
stimulus and responds as if that was really seen. For an 
external observer, which only watches the information 
available to the creature and its motor responses, these means 
changes in the interpretation process. 

 Building the Experiment 
After specifying the brain model requirements and defining 
the phenomena of interest, we need to set up the scenario 
where we can test the conditions for both semiotic processes 
to emerge. To do so, we rely on the empirical evidences of 
animals vocalizing for food quality, recruiting other group 
members to feed, and so we designed an experiment where 
creatures are selected by artificial evolution for their foraging 
success. Lower quality resources are scattered throughout the 
environment and a single location receives highest quality 
resources. One creature (vocalizer) is placed fixed in this high 
quality resource position, vocalizing a sign continuously. At 
start, the other creatures (interpreters) do not know how to 
respond appropriately to sensory inputs and neither recognize 
the sign vocalized as a sign. But an evolutionary process of 
variation and selection is applied, with the hope to evolve 
individuals to better accomplish the task of food foraging. 
During the evolutionary process, for each start-up conditions, 
we observe the emergence of indexical or symbolic 
interpretation for the vocalizations. 

The environment is a 50 by 50 grid world (figure 2) and 
there are 20 positions with only one resource unit each. There 
is also one position with 500 resource units, where an 

immovable vocalizer creature is also placed. The vocalizer’s 
sole behavior is to produce a fixed vocal sign, reproduced at 
every instant. Fifty interpreter creatures are randomly placed 
in this grid and are capable to visually sense food up to a 
distance of 4 cells and auditory sense vocalizations up to a 
distance of 25 cells. This sensory range difference models an 
environment where vision is limited by the presence of other 
elements such as vegetation, restraining far vision such as in a 
open field. The creatures can either see a resource and its 
position (ahead, left, right, back) or hear a vocalization and its 
position, if any is within range. Interpreter creatures have a 
limited repertoire of action: move forward, turn left, turn 
right, collect resource, or do nothing; and are controlled by 
(genetically based) Mealy finite state machines (FSM), with 
up to 4 states (see figure 3). An FSM was chosen as the 
control architecture because it is quite simple and direct to 
analyze how it is functioning, permitting direct identification 
of the processes underlying the creatures’ cognition. The 
creatures always respond to visual inputs with one of the 
motor actions, and can also respond to auditory input with a 
direct motor action (a reactive, indexical process) (Type 1 
architecture). Alternatively, they can also choose to establish 
an internal association between the heard stimulus and the 
visual representation domain (Type 2 architecture). This 
internal association links what is heard with the view of a 
collectible resource, i.e. the creature can interpret the sign 
heard as a resource and act as if the resource was seen. 
Additionally, the creature may also ignore the sign heard, 
interpreting it as nothing and acting as if no sensory data was 
received. 

At start, creatures are controlled by randomly constructed 
FSMs, and are allowed to live for 100 iterations for a trial, 
trying to collect resources. Artificial evolution selects 
individuals for their foraging success (number of resources 
collected in all trials). The 10 best individuals, i.e. the 10 
individuals that collected the most resources, are allowed to 

Figure 1: Possible cognitive architectures for representations 
interpretations. Left: Type 1 architecture, RD1s are connected 
directly to RD1m. Right: Type 2 architecture, data from visual 
RD1s  and auditory RD1s can be associated in RD2 before 
connecting to RD1m. 

Figure 2: The grid environment. Creatures are blue circles, low 
quality resource positions are in green cells, and high quality 
one in the cyan cell in the center. 
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breed and make up the next generation. These 10 individuals 
are copied to the next population and the 40 remaining 
individuals are a product of mutations (including a cognitive 
architecture type mutation) and crossovers of the FSMs of the 
best individuals.  

The mutations can be of changing an action for a sensory 
event in a state, changing the next state after a transition, 
changing the start state and add or remove a state. The number 
of mutations is selected from a Poison probability distribution 
with an expected value of 2. The crossover exchanges states 
and transitions originating from the selected states between 
two FSM in a uniform way. All FSM undergo a correction 
process to fix error that might occur during these operations, 
such as a transition pointing to a non-existing state. 

Every generation undergoes the 10 trials for 500 
generations, but, in the first 200 generations (cycle 1), the 
vocalizer creature is not present and interpreters do not have 
an auditory sensor, but in the 300 subsequent generations the 
vocalizer creature is present and interpreters are able to hear 
(cycle 2). At the start of cycle 2, all creatures are set to ignore 
the vocalizations, as if it was not relevant, but a small 
mutation probability is set for changing the kind of response 
to vocalizations which can be of reacting to them by moving  
to or to link it with the view of a resource. This corresponds to 
a change to a Type 1 cognitive architecture (indexical) or to a 
Type 2 cognitive architecture (symbolic). Besides the 
probability of going from Type 1 architecture to Type 2 
architecture is lower than the other way around, to simulate 
the fact that such a significant cognitive change is not that 
easy to happen. 

We are interested in observing the overall adaptation 
process to the foraging task, and are specially focused on the 
interpretation process, related to the cognitive architecture 
type, that might result. 

 Results 
To evaluate conditions that might conduct to either an 
indexical interpretation or to a symbolic interpretation of 
vocalizations (or even no interpretation at all), we first ran the 
experiment as described above and observed the evolutionary 
process and its final result, to see what kind of vocalization 
response and what type of cognitive architecture would 
prevail and consequently what type of interpretation process 
would be chosen. In figure 4, we present the fitness of the best 
individual, the mean fitness of the 10 best individuals and the 
mean fitness for the population. In just a few generations, best 
individuals where able to collect more than 200 resource 
items and then their foraging success oscillates around 300 
items until the end of cycle 1.  

 Checking the FSM controlling the creatures, by generation 
50, they can almost correctly respond to the view of a 
resource: if it is ahead, move forward, if in the left side, turn 
left, if at resource, collect resource, but still with bad 
responses when resource is at right side or at back. And when 
nothing is seen, they move forward. The oscillations in 
amount of items collected are due to the random start position 
of individuals.  

At the end of cycle 1, at generation 200, the best individual 
responds properly to the view of resource, but maybe not 
optimally. This individual responds to the view of resource in 
the right with a turn to left, but since it also responds to the 
view of resource with a turn to the left, the final behavior 
allows the creature to go in the direction of the resource. If a 
resource shows up at right it turns left, and then the resource 
is at its back, so it turns left again, and the resource ends up at 
the left side now and it turns left once more and then moves 
forward to collect the resource. 

After generation 200, cycle 2 starts, and a vocalizer is 
placed in the high quality resource position, emitting 
continually a vocal call. At first all creatures are set to ignore 
anything heard, so they interpret this as nothing at all. We can 
observe from figure 3 that the population evaluation rapidly 
increases and, in generation 210, the best individual reached 
an amount of resources collected around 800. The individuals 
adapted fast to the presence of new information in the 
environment, that enabled them to more easily locate the high 
quality resource position. The evaluation of the best 
individual also oscillates much less compared to cycle 1. This 
is because the start position does not affect as much the 
individual ability to find the high quality resource position, 
once the hearing sensor has a much greater range then the 
visual sensor. But we are interested particularly in the type of 
response the individual has to vocalizations, whether it was an 
indexical interpretation, a symbolic interpretation or 
interpreted as nothing. Figure 5 exhibits the type of response 
the individuals had along the generations. 

In cycle 1, the vocalizer is not present and individuals are 
not able to hear. But in cycle 2, their hearing sensor is 
functional and hearing stimulus are received, but all 
individuals start with a default behavior of ignoring data 
coming from the hearing sensor and act as if no sensory data 
is available. In a short period, alternative responses to hearing 
a vocalization appear in the population, and by generation 
205, the population is equally split with all three kinds of 
response:  indexical response, symbolical response and ignore 

Figure 3: An example of a FSM that controls the creatures. 
The circles are states and a double circle marks the start state. 
Arches represent transitions and are labeled according to the 
sensory event and the action to take over when that event 
occurs. 
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response. This means, first, that the ignore response has 
severely declined, and, second, that the other two are rising 
but tied. In a closer look at generation 205, we can see that the 
best individual is one that responds indexically and collected 
728 resource units, and the best individual with symbolic 
response collected 691 items. However, the mutation operator 
that changes a Type 1 cognitive architecture (indexical)   to a 
Type 2 cognitive architecture (symbolic) has a quite low 
probability of happening, and once learning to coordinate 
sensory data with correct moves is an easy process in this 
context, as we can see from the fast adaptation in cycle 1, and, 
moreover, moving from Type 2 architecture to Type 1 is more 
probable than the other way around, adaptations involving 
indexical response stabilize faster and take over all 
individuals, exactly what happened after generation 210.  

To further test our computational model, we started a new 
set up for our experiment, where actions coordination in 
RD1m would be harder to acquire. For that, we impose a 
restriction that before any movement (moving forward and 
turning), the creature had to ‘prepare’ itself by having a null 
action (do nothing response). To appropriately coordinate its 
actions then, the creature must use its internal states (finite 
states machines are capable of dealing with internal states), to 
‘remember’ whether a preparatory action was taken to then 
take. This makes the task of coordinating sense data and 
appropriate actions harder. 

After simulating these conditions, it can be noticed that it 
took longer, in cycle 1, for the creatures to evolve an adequate 
behavior to collect food. By generation 50, for example, the 
best individual was still not able to move itself around when 

Figure 7: Response type of individuals along the generations 
for the second experiment. 
 

Figure 6: Evaluation of individuals along the generations for 
the second experiment. 
 

Figure 4: Evaluation of individuals along the generations for 
the first experiment. 
 

Figure 5: Response type of individuals along the generations 
for the first experiment. 
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no resource was seen, it was only able to collect a resource 
when it was placed in front, to the left, or exactly at a resource 
position. Only after generation 160, the creatures started to 
move forward when no resource was seen, instead of staying 
still when nothing is seen. Comparing to the previous 
experiment, this new challenge considerably required more 
effort for adaptation. The amount of resources collected by the 
creatures is also lower then in the previous experiments, due 
to fact that they spend a lot of the iterations ‘preparing’ 
movements (figure 6). 

After cycle 2 starts in this second experiment, we can 
notice that the amount of resources collected by the creatures 
grows almost as fast as in the same transition in the first 
experiment. By generation 217, around 550 resources were 
collected by the best individual. But the vocalization 
interpretation evolution was not as smooth as in the first 
experiment (figure 7). 

In the start of cycle 2, only indexical responses appear as an 
alternative to ignore heard signs, and by generation 212 the 
population is split between ignoring the vocalization and 
indexically responding to it with a direct action. But even 
though the vocalization helps finding the high quality 
resource, an indexical response to it is quite faulty, providing 
bad actions as responses. By generation 213, the first 
creatures start responding symbolically to the vocalization, 
interpreting it as if a resource was seen, and reusing the 
already acquired behavior in cycle 1. The symbolic response 
take over the population after 20 generations and is adopted 
by the majority of the population. Nevertheless, we can see 
that this response preference is not as stable as the indexical 
response in experiment 1, because it is more probable to go 
from a symbolic response to a indexical response then the 
other way around. But all 10 best individuals in each 
generation, after this convergence, are interpreting the 
vocalization symbolically. 

 Discussion 
These two experiments allow us to see conditions that 

might guide the emergence of indexical or symbolic 
interpretation. In the first experiment, the acquisition of 
indexical competence, for associating arbitrary signs directly 
to expected motor responses is a cheap process and prevails in 
the population, even though the creatures already acquired the 
ability to coordinate visual sensory data with actions during 
cycle 1, and reusing this ability for auditory data would seem 
faster. This is due to the relative ease of learning a new 
ability, in face of the low probability to acquire the ability of 
symbolic response. 

In the second experiment, the cost of coordinating sensory 
data and actions is higher, and the adaptation of symbolic 
responding to vocalizations does act as a viable cognitive 
shortcut, that will use the already costly acquired trait of 
coordinating RD1s visual and RD1m, so there is no need to 
learn a new coordination again. We propose that a symbolic 
interpretation process can happen if a cognitive trait is hard to 
be acquired and the symbolic interpretation of a sign will 
connect it with another sign for which the creature already has 
an appropriate response.  

One further test we ran (to be described in a future work) 
was of removing cycle 1 from the second experiment and let 
the simulation start at cycle 2, with the vocalizer placed in the 
high quality resource and all creatures able to hear, but 
starting with random FSMs. It would be expected that since 
there was no acquired trait a symbolic response would no 
prevail, but surprisingly the creatures spend quite a few 
generations ignoring any sign heard. Only after they are able 
to almost adequately coordinate visual data with actions, they 
start interpreting the vocalizations, and they do it 
symbolically. 

 Conclusion 
The emergence of interpretation processes in computational 
models is an open issue in Artificial Life experiments. Even 
though there has been already many experiments on the 
emergence of different traits of communication systems, the 
research area still lacks studies on the modalities of processes 
underling the interpretation of the signs been communicated, 
and on the conditions that might conduct to the emergence of 
different modalities of interpretation.  

Here we proposed a synthetic experiment to examine the 
conditions for the emergence of symbolic and indexical 
interpretation processes. Simulated creatures could interpret 
available vocalizations in three ways: not interpreting it, 
interpreting it indexically or interpret it symbolically. From 
the results obtained, we can conclude that  indexical 
interpretation can emerge when the acquisition of a direct 
coupling of sensory and motor domains is a cheap process, 
and symbolic interpretation of signs can emerge as a cognitive 
shortcut across different sensory modalities, when 
coordinating representations and actions directly is a costly 
trait to acquire. 

These are initial experiments on the study of conditions for 
the emergence of different modalities of interpretation 
processes. Other possible set ups for our experiment will 
make certain connections faulty (like the connection between 
RD1s visual and RD1m) and test the robustness of this 
competence and of it being used as a cognitive shortcut. 
Furthermore, another experiment will also be built in a 
scenario where all creatures can hear each other and also 
vocalize, with no immovable creature, and test not only sign 
interpretation processes but also sign production processes. 
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Abstract

In this paper, we propose a collective self-supervised learn-
ing method to be deployed in acoustic sensor arrays. We de-
scribe a series of experiments on the automated classification
of tropical bird species and bird individuals from their songs
by a classifier ensemble. Simulation results showed that accu-
rate classification can be achieved using the proposed model.

Introduction
Adaptive sensor arrays provide excellent platforms for test-
ing hypotheses about critical properties of living systems, in-
cluding collective and social behavior, communication and
language, emergent structures and behaviors, among others.
Further, understanding the capabilities and limitations of
sensor arrays are useful for understanding self-organization
in its own right, and may also prove helpful in guiding the
construction of artificial agents that possess problem-solving
abilities.

Over the past few years, we have been concerned with
developing acoustic sensor arrays for use in observing and
analyzing bird diversity and behavior (Vallejo and Taylor,
2009). We would like each sensor to see and “understand”
part of the situation – depending on its own location – then to
fuse their experiences with other such sensors to form a sin-
gle, coherent understanding by the ensemble (Taylor, 2002).
The ideal is that the array will act something like a living
membrane, sensitive to what is going on within it, around it
and passing through it.

So far, we have developed and tested sensor arrays that
can identify their own location and sense bird vocalizations
in real-world settings. We have developed filters to identify
species (in some instances individual birds) and software
tools to localize those individuals in natural environments.
In the same vein, we have determined, to some extent, the
conditions under which different classification approaches,
both supervised and unsupervised, would be particularly ef-
fective (Vilches, et al 2006; Escobar, et al 2007; Vallejo etal
2007; Trifa, et al, 2008; Kirschel, et al 2009).

A problem with unsupervised learning methods has been
that a particular bird species might be attached to one cate-

gory in one part of the array, but to another category in other
parts of the array. Therefore, achieving coherence and con-
sistency in classification at the ensemble level have remained
elusive. The main goal of the learning process should not
only be to allow individual nodes to classify environmental
sources accurately, but also to achieve coherent and consis-
tent classification capabilities along the entire sensor array.

Toward that goal we have devised a self-supervised clas-
sifier ensemble model in which individual nodes of the ar-
ray collectively act as both learners and teachers during the
learning process. At each training step, each node of the ar-
ray uses the classification outcomes of its neighbor nodes as
output targets and learns accordingly. Therefore, the provi-
sion of labeled data from an external teacher is not necessary
as the ensemble uses self-supervision for achieving collec-
tive classification capabilities.

Here we report simulation results on birds species recog-
nition from their songs using the proposed model. Prelim-
inary results indicate that consistent and coherent classifi-
cation capabilities could be deployed in sensor arrays using
self-supervised classification. Moreover, the time required
for achieving convergence in learning have been improved
for unsupervised classification.

Related work

In this section, we summarize the work of our laboratories
aimed at developing filters to identify species, and individual
birds in natural environments. These employ a variety of su-
pervised and unsupervised approaches, as described below.

The simplest is to calculate the power spectrum, whereby
the amount of energy at each wavelength is calculated and
used to form a vector, typical to that individual or species.

We obtain better results by generating a sonogram of the
vocalization, then look at particular features of those sono-
grams that might be particular to the species or individu-
als. We have found it most helpful is to adapt methods
from human voice recognition to create a Markov Transi-
tion Matrix appropriate to the vocalizations of each individ-
ual or species. We are also looking at other methods that ap-
pear promising, especially data mining and Self-Organizing
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Maps.
A collection of software tools have proven helpful for fea-

ture extraction, by providing efficient representations ofbird
songs while at the same time preserving the essential infor-
mation contained in the songs. The emphasis has been on
feature selection and on the conversion of analog waveforms
into efficient digital representations. These tools, some of
which are described in Kirschel et al, (2009), are mostly
built on the signal processing toolbox of MatLab. Such
transformations of signals are intended to minimize the com-
munication capacity required for transmission of bird songs
over a sensor network, to minimize the storage capacity re-
quired for saving such information in databases, and to pro-
vide the simplest possible accurate descriptions of a signal
so as to minimize the subsequent complexity of identifica-
tion and localization of individual birds.

Following feature extraction, we explored the use of dif-
ferent data mining techniques for the classification of bird
species. The main goal has been to understand the impor-
tance of particular features of the acoustic signal that are
distinctive for the accurate discrimination of bird species. A
secondary goal has been to reduce the dimensionality of the
acoustic signal in order to minimize the computational re-
sources required for its manipulation and analysis.

Our approach has been to obtain large collections of tem-
poral and spectral attributes using signal processing software
tools to characterize bird songs and to use data mining to ex-
tract implicit and potentially useful information from these
data. In this way, we have obtained a collection of asso-
ciation rules that describe correlations among features that
appear to be inherent to a group of individuals and their con-
specifics (Vilches et al, 2007).

Particularly, we used decision tree-based ID3 and J.48 al-
gorithms for the identification of the most informative at-
tributes and then use the selected attributes for species dis-
crimination using a Naive Bayes classifier. Experimental
results showed considerable dimensionality reduction can
be achieved without significant loss in species classification
accuracy with respect to alternative methods (Vilches et al,
2006).

In addition, we have explored the use of Self-Organizing
Maps (SOMs) for the acoustic classification of bird species
and individuals. The overall goal has been to examine the
scope in which unsupervised learning is capable of confer-
ring meaningful categorization abilities and increasing au-
tonomy to sensor arrays.

Despite its preliminary character, our experiments with
SOMs indicate that accurate unsupervised categorization of
bird species can be achieved using two-dimensional SOMs
(Escobar et al, 2007). However, unsupervised classification
of bird individuals have proven to be extremely difficult for
SOMs so we are beginning to explore complementary ap-
proaches such as semi-supervised and supervised classifica-
tion.

Bird song is thought to possess a hierarchical organization
similar to that used for describing human language. As a re-
sult bird song is typically described as consisting of phrases,
syllables and elements (Catchpole and Slater, 1995). We
have drawn inspirations from the structure of bird song to
formulate a hierarchical approach for species and individual
unsupervised classification.

The overall approach has been to transform the acoustic
signal of bird songs into strings of symbols. This trans-
formation is achieved by the unsupervised classification of
syllables of the original acoustic signal using a competi-
tive learning network. Unsupervised species classification is
achieved using a second competitive learning network that
classifies strings of symbols from their syllable structure(i.
e. syntactical) features (Vallejo et al, 2007).

Our experiments suggested that using different abstrac-
tion levels for the description of bird song provides a conve-
nient approach for analyzing different aspects of the acous-
tic signals. On the one hand, temporal and spectral features
have proven to be useful for the categorization of song seg-
ments. On the other hand, compositional features of sylla-
bles have proven to be sufficiently informative for species
classification.

Despite of their obvious advantages, unsupervised learn-
ing methods have shown important limitations in practice.
For example, even though individual nodes have been com-
petent at discriminating bird species, and in some cases in-
dividual birds, achieving consistency and coherence in clas-
sification along the entire sensor array has been less satis-
factory. In this paper, we further elaborate on this particular
aspect of source recognition.

Methods and tools

Biological context

The principal field site for our work has been the rainfor-
est environment at the Estacion Chajul in the Reserva de
la Biosfera Montes Azules, in Chiapas Mexico (approxi-
mately16◦6′44′′ N and90◦56′27′′ W). The species of birds
in our analysis have been antbirds from the suboscine fami-
lies ThamnophilidaeandFormicariidae. The songs of sub-
oscines are less complicated than those of some others, and
are thought to be largely determined genetically, rather than
learned, making them more stable and appropriate for test-
ing methods of classification. The species toward which we
have directed most of our attention are Barred Antshrikes
(BAS) (Thamnophilus doliatus), Dusky Antbirds (DAB)
(Cercomacra tyrannina), Great Antshrikes (GAS) (Taraba
major), and the Mexican Antthrushs (MAT) (Formicarius
analis). The spectrograms describing the songs of each
species are shown in Figure 1. It is apparent that the songs
from different species posses a similar structure. In effect,
they consist of repetitive segments of sounds that span simi-
lar frequency spectra. These similarities pose challengesfor



Proc. of the Alife XII Conference, Odense, Denmark, 2010 871

Figure 1: Spectrograms for antbirds in this study. From top,
BAS, DAB, GAS, and MAT. The spectrograms were ob-
tained from the Raven sound analysis software tool (Charif
et al., 2004).

automated species recognition; especially for those methods
that rely on unsupervised classification.

Sensor arrays

Th sensor arrays we are using consist of Acoustic ENSBox
subarrays (Girod et al, 2006), pictured in Figure 2. These
are ARM-based embedded platform designed for rapid de-
velopment and deployment of distributed acoustic sensing
applications. Each subarray node is self contained, with an
embedded processor and a four channel microphone array
that can process data locally as well as archive it and for-
ward to other nodes wirelessly.

Typically, 5 - 8 nodes are deployed concurrently to form
a distributed system of sensor sub-arrays. They are typically
placed 10 - 30m apart encompassing the area to be moni-
tored. They are automatically calibrated, to determine their
node locations and orientation, then activated to perform

Figure 2: The Acoustic ENSBox Version 2, shown deployed
near Chajul Station at left. A detailed description of both
the hardware and software of this platform may be found in
Collier (2010).

streaming event recognition and acquire data when triggered
by animal vocalizations.

This approach provides greater sensor coverage, and cre-
ates a multi-hop wireless network for forwarding data and
results back to a base station where data can be archived and
displayed. Since each sub-array is small and has a fixed ge-
ometry, data from a single sub-array can be processed using
algorithms that rely on coherence. Data from several sub-
arrays can be fused to perform source localization (Ali, et al
2008). Mre detailed descriptions of the hardware and soft-
ware of this platform may be found in Collier (2010) and
Collier et al (2010a).

Self-supervised classifier ensemble
For this study, we devised a self-supervised classifier en-
semble model (El Gayar, 2004). Different versions of self-
supervised learning have been increasingly used for mod-
eling different aspects of life-like behavior such as pattern
classification, sensory motor coordination and motion plan-
ning, among others (Cohen, 2007; Lieb, 2005).

The proposed classifier ensemble consists of a collec-
tion of competitive neural networks in which classification
is achieved by self-supervised learning as described below.
Each competitive learning network, in turn, consists of a sin-
gle layer of output unitsCi, each fully connected to a set of
inputsoj via excitatory connectionswij . Figure 3 shows an
example of such a network.

The presence of an external source initiates the operation
of those nodes of the ensemble that perceived the external
stimulus. Particularly, if a node of the ensemble detects an
input stimulus, it proceeds to determine the output unit that
most resembles the input signal. Formally, given an input
vectoro, the winner is the unitCi∗ with the weight vector
wi∗ as follows:

|wi∗ − o| ≤ |wi − o| (for all i)
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Figure 3: Simple competitive learning network. Each unit
Ci can be seen as possessing a prototype that is used to rep-
resent a collection of inputs belonging to the same category.
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Figure 4: The learning procedure. Learner nodevl interacts
with teacher nodevt and then iterates over all of the neigh-
bor nodes.

Once the output nit for a given input has been determined,
the node of the ensemble becomes a learner and its neighbor
nodes become teachers, as shown Figure 4. For example,
a learner nodevl of the ensemble detects an inputo from
the environment and determines the winner unitCi∗l. The
learner nodevl then communicates with the teacher nodevt

to use the teacher’s winner unitCi∗t as label for the inputo.
The learner nodevl then updates the weightswi∗j for the

winning unitCi∗ only, as follows:

∆wi∗j =

{

+η(oj − wi∗j) if Ci∗l = Ci∗t

−η(oj − wi∗j) if Ci∗l 6= Ci∗t

whereη ∈ [0, 1] is the learning constant.
A prediction derived from the formulation of the learning

algorithm is that learning at the node level would be accel-
erated by the interaction of the learner node with a group of
teacher nodes instead of using a target output provided by an
external teacher. Furthermore, coherence and consistencyof
classification at the ensemble level would be incidental to
the collective learning process.

The operation of the collective self-supervised learning
procedure is described using the pseudocode in Table 1.

1. Create a setN of neural networks with initial random weights
(one for each node)

2. Do until number of simulation stepsk is met

(a) For each nodevl ∈ N that detects an input signaldo
i. Determine the winner unitCi∗l of vl

ii. Select a setT ⊆ N of networks in the neighborhood ofvl

iii. For each nodevt ∈ T do
Modify the weights ofvl using the learning rule:

∆wi∗j =

{

+η(oj − wi∗j) if Ci∗l = Ci∗t

−η(oj − wi∗j) if Ci∗l 6= Ci∗t

End for

End for

End do

Table 1: Training algorithm.

Parameter Value
Nodes 16-32
Neighbors 2-8
Categories 4-8
Learning constant 0.01-0.1
Simulation steps 100-2000

Table 2: Parameters for the simulations. The values of the
learning constant and simulation steps were determined em-
pirically.

Experiments and results
Bird species recognition
We conducted simulations in order to explore the capabili-
ties of the proposed classifier ensemble on the discrimina-
tion of bird species from their songs. We use recordings
obtained by Martin L. Cody at our field site. From these
recordings, we generated a collection of unlabeled training
and validation sets using the procedure described in (Vallejo,
et al 2007). Twelve training and twelve validation samples
for each species of antbirds (BAS, DAB, GAS and MAT)
were used in our experiments.

Multiple simulations were conducted using different com-
binations of parameter values as shown in Table 2. The fol-
lowing were the major results:

1. The classifier ensemble produced a meaningful classifi-
cation of the unlabeled training sets. Table 3 shows the
accuracy in classification in a typical simulation.

2. The classifier ensemble produced acceptable generaliza-
tion performance when confronted to labeled validation
sets, as shown in Figure 5.

3. Reasonable numbers of training steps (˜500) are required
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procedure accuracy classified misclassified

training 93.75% 45 3
testing 91.66% 44 4

Table 3: Classification results

Figure 5: Classification results during validation. Misclassi-
fied samples are false negatives

for achieving coherent and consistent classification along
the entire classifier ensemble.

4. Low communication bandwidth would be required for
data transmission between nodes of a sensor arrays dur-
ing self-supervised learning.

5. Coherence and consistency in classification along the en-
tire classifier ensemble is achieved without compromising
the accuracy of classification of individual nodes.

Bird individuals classification
It is sometimes possible to distinguish individual singers.
Songs were recorded from each of 5 Mexican Antthrushs
(MAT) (Formicarius analis) bird individual during Decem-
ber 2006, by Martin Cody. The identification of each singer
was inferred from timing and location. The individuals were
identified by labels PMPa, PMPb, PBEa, AVEa, and SNWa,
Samples of 16 songs from each of the 4 territories they oc-
cupied (labeled PMP, PBE, AVE, SNW) were included. The
sonogram of each song was measured for 7 traits, including
length and maximum or minimum frequency at various parts
of the song, so that each song was represented by a vector.
From this dataset, it is apparent that some individuals are
clearly distinguished while others are much less so, at least
by inspection.

Multiple simulations were conducted using different com-
binations of parameter values as the previous experiment.
The classification results obtained in a typical simulation
are shown in Table 4. Specific results during validation are
shown in Figure 6.

procedure accuracy classified misclassified

training 77.50% 33 7
testing 72.50% 31 9

Table 4: Classification results

Figure 6: Classification results during validation. Misclassi-
fied samples are false negatives

Conclusions and future work
Our long term goal is to provide sensor arrays with the
adaptation capabilities required to identify the meaning of
bird vocalizations in the social context of the vocalizing an-
imals. This requires event recognition, symbol grounding
and adaptive communication in order for the array to arrive
at a collective understanding (Lee et al, 2003). Previous
studies have established plausible scenarios for the emer-
gence of these capabilities in sensor arrays (Collier and Tay-
lor, 2005).

Several methods for event recognition have been sug-
gested, e.g. (Nolfi, 2005). We are currently examining meth-
ods based on information theory, among others (Kobele et al,
2004). Symbol grounding, identifying and binding seman-
tically meaningful events to symbols, then communicating
that information among parts of the arrays is of great impor-
tance.

Once events have been recognized then we can use the un-
supervised classification to categorize the songs . A problem
has been that new events might be attached to one symbol in
one part of the array, but to another symbol in other parts
of the array. Our future efforts will be directed at testing
the prediction that coherence and consistency in communi-
cation could be achieved in sensor arrays using the method
proposed here.

Finally, we are developing the linguistic structure that is
necessary to describe these songs and events in an expres-
sive, learnable manner, based on the ideas developed by Sta-
bler et al (2003).

Overall, adaptive sensor arrays seem promising platforms
for monitoring applications. In the near future, our efforts
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will be directed towards enabling sensor arrays with increas-
ing adaptability and cognitive abilities. To accomplish this
we will build largely on the results reported here.
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Extended Abstract

Finding robust explanations of behaviours in Alife and related fields is made difficult by the lack of any formalised defi-
nition of robustness. A concerted effort to develop a framework which allows for robust explanations of those behaviours
to be developed is needed, as well as a discussion of what constitutes a potentially useful definition for behavioural ro-
bustness. To this end, we must differentiate between two senses of robustness: robustness in systems; and robustness in
explanation.

When discussing systems, robustness is often described as a property which gives the system a certain resilience against
perturbation. A robust system is thus able to retain functionality despite variation. In contrast, we define a robust explana-
tion as a scientific explanation which can identify causal factors that underlie a phenomenon in a variety of circumstances.

The concept of robustness analysis, pioneered by Levins (1966), has illuminated the importance of developing a com-
prehensive research programme to develop such explanations. Levins argues that doing so requires the study of multiple
models of that same phenomenon. Each model should be distinct, containing differing core assumptions or methodologies.
If these different models still produce similar results, we can develop what Levins calls a robust theorem: an explanation
of the behaviour of interest which is largely independent of the details of the models being studied.

The difficulty for Alife researchers lies in developing an appropriate set of models to produce robust explanations. Weis-
berg (2005) provides an intensive examination of robustness analysis, describing the concept of a robust property, or a
property common to multiple models which contain different idealising assumptions. This leads to a discussion of the
need to find common structures between models: those elements which give rise to the robust property. However, many
models in Alife not only have different idealising assumptions, but may be based on vastly different methodologies entirely.

In order to escape this conundrum, we need a unified framework under which to search for common structures in order
to perform robustness analysis. Models in Alife can frequently share a conceptual relationship - they examine similar be-
haviours within biological systems, but using fundamentally different methods. The way forward is to create experiments
and simulations which share common grounding and related contexts, even when these experiments are quite different in
implementation.

An examination of our own work in robotics (Hubert et al, 2009) and biochemical experiments (Ikegami 2009) will
provide an example of how divergent methodologies can be used to develop a framework of idealising assumptions. This
framework can then form the basis for the development of robust explanations. The commonalities found between the
robust behavior of the robot (Hubert et al, 2009) and the biochemical experiments (Ikegami 2009) demonstrate recovery
mechanisms which can keep a system from degrading into non-moving states. Here self-movement creates robustness and
robustness enables ”intentional” behavior. Through an examination of these common structures, we can begin to develop
a framework for robust explanations of these self-movement behaviours.
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Abstract

In this paper we consider Mark Bedau’s notion of weak emer-
gence (WE) and relate it to various attempts to objectively
construe complexity. We argue that the heavy reliance on
a specific notion of complexity risks rendering the concept
superfluous. Furthermore we discuss what sort of systems
might reasonably be understood as exhibiting emergence at
all and point out that the macro-level needs to be at least min-
imally structured. A worry may thus be formed that macro-
level generalisations provide the sort of short-cut that is ex-
plicitly excluded from WE thus potentially making the con-
cept apply only to chaotic systems of limited interest (in this
context).

Introduction
Artificial life research can in many instances be charac-
terised as a search for the surprising. A very general ques-
tion posed by researchers in the field is: what type of be-
haviour can we expect from a system with the following dy-
namics? If the answer is obvious or expected the system is
often neglected or simply not classified as Alife because it is
not life-like enough. Biological life is full of surprises and
therefore ALife should be as well.

Fortunately systems with interesting and often surprising
behaviour are not difficult to find. Classical examples in-
clude cellular automata of class IV (Wolfram, 2002), evolv-
ing systems such as Tierra (Ray, 1992), Avida (Ofria and
Wilke, 2004) and more recently systems investigating chem-
ical interactions such as Urdar (Gerlee and Lundh, 2010) and
the Organic Builder (Hutton, 2009).

This notion of surprise or appearance of higher-order
structure such as universal computation in CA or the evo-
lution of parasites in Tierra is often in the literature labelled
with the term emergence. The notion of emergence is how-
ever originally a philosophical term, with many precise al-
beit disparate definitions. In order to bring the concept more
formally into the ALife-community Bedau (1997) recently
introduced the notion of weak emergence, which takes a
simulation-based approach to the definition of emergence.
Roughly put, the idea being that a property P of a system S

is weakly emergent iff the only procedure for deciding if S
will have P at some later time is to simulate the system.

His approach has however been met with critique from
several philosophers, e.g. for being too broad (Stephan,
2006). A defense of the thesis has been presented on sev-
eral occasions (Bedau, 2003, 2008), clarifying his intentions
and arguing for the merits of WE.

In this paper we will argue that Bedau’s definition of weak
emergence relies so heavily on a notion of complexity it risks
conflating into it. Further we note that complex systems of-
ten exhibit higher-order structures, which can be described
by law-like generalisations on that level, but this contradicts
the very notion of weak emergence, suggesting that it misses
the point all together. Whatever the outcome of this de-
bate is we also note that established measures of complexity
can lead to a quantification of weak emergence applicable to
both real and artificial systems.

Emergence
The concept of emergence is usually traced back to a hand-
ful of British thinkers active during the second half of the
19th century among them figuring names such as John Stuart
Mill, Samuel Alexander and C.D. Broad. They considered
themselves as inhabiting a moderate position in which both
dualism in the form of vitalism and mechanism could be
avoided (Kim, 1999, 4). At its intuitive base the idea is that
a whole can be more than the sum of its parts. Complexes
may have properties not analysable in terms of the proper-
ties of their constituent parts. At the time this thought was
very much empirically justifiable. The special sciences—
chemistry was a favourite example—seemed to be hope-
lessly irreducible to ontologically more fundamental sci-
ences, such as for instance physics.

Despite its appeal the idea withered to the onslaught of the
unity of science movement and fell out of vogue from the
30s and onwards, not to be considered seriously again until
the ultimate demise of that tradition in the early 70s.1 Since

1Quantum mechanical explanations of chemical bonds is of-
ten blamed, chemistry being a favourite example of emergence for
these philosophers and scientists.
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then emergentism has experienced a small renaissance, not
least within the scientific community. The interest in com-
plexity as of the past couple of decades seem to have ushered
its return.2 In philosophical quarters emergentism or similar
positions found new defenders among non-reductive materi-
alists.

A central tenet of British emergentism was that emer-
gents were entirely unpredictable from knowledge of their
emergent base Kim (2006). The early Emergentists consid-
ered the appearance of emergent properties as metaphysi-
cally contingent, brute facts of nature. No amount of knowl-
edge about the underlying structure allows one to predict the
emergent. But since supervenience was thought to hold, ap-
pearance of emergent properties were considered to be law-
ful. Given that one had observed some emergent property
in connection with some specific microstructure an ”emer-
gence law” (transordinal law on Broad’s terminology) could
be formulated. Such a law would be a fundamental law of
nature. ‘Prediction’ should hence be understood as theo-
retical prediction, or derivation, and not as what one may
call inductive prediction. Broad e.g. writes “[i]f emergence
be true they [the emergent properties] could not have been
deduced from any amount of of reflexion on the proper-
ties of these constituents taken separately or in non-living
wholes...” (Broad, 1925, 75) Mill seem to have held a view
very similar to this.3 Properties of wholes that could be de-
duced straight-forwardly from the properties of their con-
stituent parts were referred to as resultant properties. Oft
cited C. Lloyd Morgan (1923) writes concerning the distinc-
tion between resultant and emergent properties.4

...both distinguish those properties (a) which are ad-
ditive or subtractive only, and predictable, from those
(b) which are new and unpredictable; both insist on the
claim that the latter no less than the former fall under
the rubric of uniform causation. (Morgan, 1923)

As Kim (1999) has pointed out there is reason not to take the
‘additivity and subtractivity’ requirement literally. The idea
was to pick out properties that could be predicted by means
of some compositional principle, as e.g. additivity or sub-
tractivity. Other principles however were clearly acceptable;
the law of composition of forces being a favourite example.5

2A search on Google Scholar combining the keywords com-
plexity and emergence generates over a million hits. A quick
browse through the philosophical literature will also reveal a con-
nection between the terms ‘emergence’ and ‘complex’ that seems
deeper than the connection warranted by taking ‘complex’ to de-
note an object that has parts.

3Mill never used the term ‘emergence’ but discussed what he
called heteropathic effects, effects to which the causes do not abide
by any principle of composition of causes. See McLaughin (1997)
for a thorough discussion of Mill’s views on this matter.

4The “both” here refer to the thinkers to which Morgan claims
to owe this distinction; John Stuart Mill and George Henry Lewes.

5See e.g. (Mill, 1869, 210ff)

So a resultant property is such that it can be calculated from
knowledge of the basal properties by means of some compo-
sitional principle. Emergent properties of some whole were
understood in contrast to this as properties that: 1), super-
vene on some basal property; and 2), is not predictable by
means of such a compositional principle (and knowledge of
properties of the parts).

But this is clearly not enough to make the distinction lu-
cid. As the early Emergentists well understood given one is
to combine a few quantities it is logically contingent what
sort of principle one should use. Physics is riddled with
straight-forward compositional principles and it seems that
faced with a new case it is an entirely empirical matter
which one is appropriate. Thus this would render cases like
weight addition, composition of forces etc. cases of emer-
gence which is clearly not right and definitely not what the
early Emergentists had in mind. Broad and Mill solved this
dilemma by putting restrictions on these principles disallow-
ing principles working for properties of parts in other com-
binations. As McLaughin (2008, 92f) has pointed out the
problem with such an approach is that almost nothing counts
as emergent.6

An alternative strategy involves prohibiting what Van
Gluick (2001) calls specific value emergence. Strictly speak-
ing specific value emergence is not a form of emergence at
all, but rather the most trivial form of resultance. Suppose
we have a whole consisting of two proper parts a kilogram
each in weight. The whole will weigh two kilograms despite
none of the parts having that specific weight. We will return
to this idea in the section below as this is part of Bedau’s
strategy.

Conclusively what is sometimes called strong emergence
has been offered significant attention in the philosophical de-
bate in the past twenty or so years and it has been found to
suffer from serious problems. A lot of these problems stem
from the difficulty to get the emergence/resultance distinc-
tion just right. Either too much or too little counts as emer-
gent. Contemporary accounts typically strive for weaker for-
mulations trying to salvage some part of the concept whilst
giving others up. Mitchell (2009) does this by means of de-
fending a form of downward causation deploying a multiple
realisation argument. A different strategy is put to work by
Bedau that defends a notion of emergence that tries to find
objective criteria for a form of unpredictability that seems to
fit the purposes.

6Interestingly Kim (2006) has voiced critique seemingly point-
ing in the opposite direction claiming that emergence an accounts
such as the above is under-characterised. The problem is that both
supervenience and (in this case) non-derivability are negatively de-
fined. Though not a decisive argument it raises the problem that
the phenomena emergence might not be a genuine category.
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Weak Emergence

Within the field of Artificial Life philosopher Mark Bedau
has over a number of years developed and defended a vari-
ety of emergence he calls weak emergence (henceforth WE).
WE may be characterised as a strong form of epistemolog-
ical emergence since it does not rely on psychological or
logical limitations of human cognition but rather an objec-
tive notion of complexity.

Bedau has written extensively on the subject but here we
are going focus on two more recent works, Bedau (2003)
and Bedau (2008) respectively. In these texts one find sev-
eral characterisations, in the first article WE is defined in
terms of a requirement of simulation, in the second an ap-
peal to explanatory incompressibility is voiced. Bedau him-
self however views these two varieties as essentially one,
“[t]hese two definitions are similarly indirect, and they are
essentially equivalent” (2008, 444). We shall also treat them
as such. Hence we believe that the following reflects Be-
dau’s idea well. For a macro-property M of a system S to
be WE the following two criteria should be met;

1. M is nominally emergent.

2. There is a derivation from P to M but that derivation can
only be generated through simulation.

Nominal emergence is understood as the “...notion of a
macro property that is the kind of property that cannot be a
micro-property.” (Bedau, 2003, 158) Notably this is equiva-
lent to what Van Gluick (2001) calls modest kind emergence,
at least taken in the stronger modal version. The necessity
claim here is not further specified though the name suggest
nominal necessity. In that case this qualification taken by it-
self includes a host of phenomena on both sides of the resul-
tant/emergent divide. Bedau seems well aware of this (Be-
dau, 2003, 158).

This second criteria is a little more difficult. Importantly
Bedau accepts (for the systems under scrutiny anyway) what
he calls causal fundamentalism, the thesis that “...macro
causal powers supervene on and are determined by micro
causal powers” (Bedau, 2003, 159). So strictly speaking
WE properties are only resultant, as there exists a deriva-
tion from micro to macro. Bedau’s idea however is to pick
out a certain kind of derivation. In Bedau (2003) this is to
be thought of as “derivation by simulation,” and this in turn
should be interpreted in the strongest possible sense. Bedau
writes:

A derivation by simulation involves the temporal iter-
ation of the spatial aggregation of local causal interac-
tions among micro elements. (Bedau, 2003, 164)

What Bedau seems to be saying is that a simulation here
is a process that produces or reproduces the actual mecha-

nism in question.7 Hence WE phenomena appear in accurate
computer simulations and natural systems alike.8 A central
feature of such a derivation is that it must be done stepwise
so that the further into the future one is interested in mak-
ing predictions, the longer the derivation will be. In Bedau
(2008) WE is thought of in terms of incompressible gener-
ative explanations connecting micro-state P with emergent
M . Bedau writes:

An explanation is generative just in case it exactly and
correctly explains how macro-events unfold over time,
how they are generated dynamically. (Bedau, 2008,
445)

This characterisation also requires the ‘explanation’ to fol-
low the actual procedure (crawling the causal web) and
‘short-cuts’ are explicitly prohibited.

If an explanation of some macro-property of some sys-
tem is incompressible, then there is no short-cut gen-
erative explanation of that macro-property that is true,
complete, accurate, and can avoid crawling the causal
web. (Bedau, 2008, 446)

Let is try to construe this in a more formal fashion.9 Sup-
pose we have a micro-P (an initial condition) and a macro-
M (at some later time) that stand in a WE relation to each
other.10 Then there is some sequence P1, P2, ..., Pn connect-
ing P and M , let us call this sequence D. There is no other
sequence connecting P and M that is shorter than D and
also satisfies the criteria of being true, complete, accurate
and avoids crawling the causal web. We take it that if it is
true and complete it must also be accurate and “crawling the
causal web” entails that for every other derivation E that is
exactly as long as D, then E is identical to D.

What about false derivations that are shorter but none-the-
less accurately predict M from P ? It seems that this char-
acterisation is much too strong. Truth, completeness, accu-
racy and causal web-crawling trivially homes in on just these
micro-sequences, regardless of the system at hand. If it is the
dynamics one is interested in, then broad and approximative
statistical models that essentially leap-frogs the bowels of
whatever process one is studying, just won’t do. But that is

7On a weaker understanding one would only require from the
simulation that it be sufficiently similar with respect to some char-
acteristics of the original process. The mechanism driving the sim-
ulation however would not have to be qualitatively identical to pro-
cess which it mimics.

8Of course inaccurate simulations could also exhibit WE, put
perhaps with other emergents than the ones belonging to the system
they are mimicking.

9In the below section we use ‘derivation’ instead of ‘explana-
tion,’ we do not however think it matters. The explanation Bedau
seem to have in mind are derivational. Besides ‘derivation’ is the
preferred term in Bedau (2003).

10Bedau interchangeably talks about objects, properties, states
and facts so let us give this a neutral account.
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so regardless of whether it is possible to do so or not. So
it seem Bedau would have to opt for some more inclusive
idea of what exactly amounts to a short-cut. Perhaps the
idea that derivations concerning states further away requires
more computational power is more important and promis-
ing. Our worry however is that in order to avoid making a
characterisation that is non-trivial Bedau would have to ac-
cept that there can be no regularities at all elsewhere in the
system, and this in turn warrants the question whether the
system at hand has any macro-level at all. We will however
return to this topic in our discussion.

What sort of systems might this be true of then? Bedau
relates this to systems that are complex. Emergents, on Be-
dau’s take, is not epistemological in the sense that emergents
are dependent on “human frailty.” To the contrary not even
infinite knowers could avoid using this type derivation in
making successful predictions regarding these systems.

Incompressibility of explanations is a consequence of
the objective complexity of the local micro-causal in-
teractions that are ultimately generating the emergent
behavior being explained (Bedau, 2008, 453).

Thus Bedau means to move the ‘ontological burden’ away
from the notion of emergence, where it has shown to be
problematic, to the notion of complexity. We will now move
on to discuss the notion of complexity introducing a few
of formal complexity measures, and propose a link between
WE and the complexity of a system.

Complexity
An intuitive understanding of the predicate ‘complex’ with
regards to some object (process or pattern) entails that the
object is structured in such a way that it is very difficult
(or perhaps impossible) to describe.11 In recent years the
study of complex systems have enjoyed some popularity,
especially within biology and ecology but also within e.g.
statistical mechanics where the aim often have been to pro-
vide formal definitions or objective criteria. A quantitative
measure has however turned out to be difficult to find. This
is at least partially due to disparate use of the term in var-
ious disciplines; complexity is often thought to be salient
in structures such as the human brain, weather and climate
systems, but also in single-celled organisms. In the scientific
community it has been in use since the rise of systems the-
ory and cybernetics in the 40s and 50s, and has the last 20
years experienced a revival. On some construals the notion
seems to approximate the concept of emergence. Consider
for example the definition by Simon (1962):

Roughly, by a complex system I mean one made up of a
large number of parts that interact in a nonsimple way.

11One may thus note that already on this early stage there is
some tension between ontological and epistemological aspects of
the concept.

In such systems, the whole is more than the sum of the
parts, not in an ultimate, metaphysical sense, but in the
important pragmatic sense that, given the properties of
the parts and the laws of their interaction, it is not a
trivial matter to infer the properties of the whole.

This definition falls close to the weak sense of emergence,
but of course depends on how we interpret ‘not a trivial mat-
ter’. A more recent remark by physicist Nigel Goldenfeld
(Editorial, 2009) states that:

Complexity starts where causality breaks down.

This claim is even stronger, and might put complexity on par
with stronger notions emergence. However, independent of
the exact interpretation of these statements our point is that
the notions of emergence and complexity are intertwined,
and that Bedau’s notion in fact lies close to well-developed
quantitative measures of complexity. Before we proceed
with this thesis, let us look more closely into what we mean
by complexity and how to measure it.

The concept of complexity has a relatively short history in
the natural sciences. Before the 20th century the physical
sciences were confined to the study of simplicity, while bi-
ology and the medical sciences, unable to explain the om-
nipresence of complex form and function, were concerned
with collection and classification of living systems. It is
here important to distinguish between systems which are
complex and those which are merely complicated, or as put
by Weaver (1948): complex in a organised vs. disorganised
way. By complicated systems we refer to those which con-
sist of large number of interacting parts with many degrees
of freedom, such as an ideal gas, which yield to a statistical
description, while complex systems are those which tend to
organise themselves and exhibit structure despite being gov-
erned by local microscopic rules of interaction.

Intuitively we would like to class objects as being com-
plex if they lie somewhere in between complete order and
randomness. The human eye and the organisation of a
colony of termites are things typically considered complex,
while a crystal structure with its endless repetition, or an un-
structured gas both fall outside our notion of complexity. To
capture this intuition into a quantitative measure has how-
ever turned out to be immensely difficult. Many attempts
have been made at defining complexity, either from a struc-
tural or functional point of view (McShea, 1996; Wimsatt,
1972), although none fully satisfactory, and the most suc-
cessful route has instead been to consider the complexity of
strings, called sequence complexity.

The first attempt along these lines was made by Kol-
mogorov (1968) (and later Chaitin (1975)) and quantifies
the complexity of a sequence as the shortest possible de-
scription of that sequence. This is done by considering the
shortest computer program or algorithm which when exe-
cuted will reproduce the sequence in question, and from this
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complexity measure has gained its name Algorithmic Com-
plexity (AC). It is also related to the amount of information
contained in the sequence as defined by Shannon entropy
(Shannon, 1948). The problem with this measure is that
it assigns maximal complexity to sequences that are com-
pletely random, and also assigns low complexity to intricate
objects that can be generated with simple rules. A prime
example of this is the Mandelbrot set, which because it can
be generated with a very short algorithm has a low AC, al-
though its structure suggests otherwise. AC therefore devi-
ates from our intuitive notion of complexity, at least in some
instances.

By measuring the running time of the shortest computer
program generating the sequence, instead of its length, Ben-
nett (1988) was able to overcome the problem of assign-
ing low complexity to seemingly complex mathematical ob-
jects. This approach was motivated by the fact that com-
plex objects often have a long causal history, and by equat-
ing the history with running time a quantitative measure can
be defined. These attempts are nevertheless intractable be-
cause the length of the shortest program is provably non-
computable, and we have no way of a priori telling which
program is the most plausible.

This shortcoming was addressed by Grassberger (1986)
who suggested an Effective Measure Complexity, which
measures the complexity of a sequence as the value of hav-
ing observed all previous symbols in the sequence when
guessing the next. A similar measure termed Statisti-
cal Complexity was developed by Crutchfield and Young
(1989), and measures the minimum amount of information
required to make optimal guesses of the symbols in the se-
quences at an error rate h, where h is the Shannon entropy
of the sequence. One drawback with these two measures is
that they cannot measure the complexity the of a single se-
quence, but only of the ensemble from which sequences are
drawn, although one can argue that complexity in fact is a
property of an ensemble and not of a single object.

Applying these measures to dynamical processes can be
accomplished by mapping the trajectory of the system, by a
partition of the state space, into a symbol sequence which
can then be analysed. For example the trajectory of the lo-
gistic map can be mapped to a binary alphabet and the corre-
sponding binary sequence then reflects the complexity of the
underlying dynamical systems, which turns out to be max-
imal at the period-doubling accumulation (Crutchfield and
Young, 1989; Crutchfield, 1994). However, the structure of
objects such as living organisms are currently impossible
to capture by the dynamics of their underlying processes,
which means that the above measures still fall short of a sat-
isfactory account of complexity.

Systems which exhibit a high degree of complexity (in
the sense of EMC and SC) have the interesting property that
they exhibit structure (i.e. they are not maximally random)
but at the same time the future state of the system is difficult

to predict. This property has been termed “computational
irreducibility” (Wolfram, 2002) and more precisely means
that there is no way of predicting how the system will be-
have except by explicit simulation. Please note that this also
holds for chaotic systems12, but is of less interest as it is
the combination of structure and unpredictability which we
usually find interesting.

Precisely which systems qualify as computationally
irreducible is currently unclear, but one sufficient condition
is computational universality (i.e. Turing completeness).
This condition is met by a few surprisingly simple systems
such as Wolframs one-dimensional CA rule 110 (Cook,
2004), and the Game of Life (Berlekamp et al., 1982),
which for some specific initial conditions instantiate a
Universal Turing Machine. At least for a subset of these
initial conditions the system is computationally irreducible,
otherwise it would violate the halting problem. This
suggests a link between universality and complexity which
led Wolfram (2002) to formulate the Principle of Com-
putational Equivalence, which states that all processes in
nature (that are not obviously simple) can be considered
as computations, and are of such complexity that they
attain computational irreducibility. The human brain, an
ant colony and a weather system, are according to the
principle of the same computational sophistication, and
instantiate computations which are irreducible. This is
an intriguing and very bold statement, which if it is true,
clearly has bearing on the ontological status of these objects.

Returning to WE several connections should become clear.
Obviously unpredictability plays an integral part. Moreover
incompressibility as Bedau thinks of it is very similar to
computational irreducibility. Systems which are computa-
tionally irreducible and thus in principle impossible to fore-
cast (and do not exhibit chaos) are precisely those of high
complexity. This was already noted by Bedau (2003), but
he did not follow through on the connection, which in the
end leads to an interesting conclusion. In avoiding the meta-
physical pitfall of the otherwise attractive idea of ontologi-
cal emergence by appealing to complexity one find similar
questions can be stated yet again, is complexity to be under-
stood in ontological or epistemological terms? Wolfram’s
claim is that computational irreducibility and thus ontologi-
cal complexity is ubiquitous in nature, and possibly the only
one worth considering, although both concepts could clearly
coexist.

Although the question of ontological complexity might
be impossible to answer the link established between weak
emergence and complexity might allow for quantification of
the emergence a system exhibits. Systems with low com-
plexity are easy to forecast, while those with high complex-
ity might be impossible to predict the future of without ac-

12The relation between WE and deterministic chaos will be dis-
cussed below.
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tually iterating the dynamics. This might provide a different
route to quantifying weak emergence than the one suggested
by Hovda (2008), which measures the degree of emergence
as the length of a formal derivation of property P from the
initial conditions, and instead focuses on the amount of in-
formation needed to make optimal predictions about the fu-
ture of the system with respect to some property P .

It is also worth mentioning that complexity has previously
been suggested as a route to defining emergence, by consid-
ering the predictive efficiency of a set of causal variables
describing a system (Shalizi and Moore, 2003). The predic-
tive efficiency can be quantified as the ratio between EMC
and SC, and a set of variables are considered emergent from
another set if 1) one is a coarse-graining of the other and 2)
the coarse-grained variables can be predicted with higher ef-
ficiency. The prototypical example for this type emergence
is the relation between statistical mechanics and thermody-
namics.

Discussion
Complexity is usually thought to relate to emergence by
causing it, or giving rise to it. Once a system reaches a cer-
tain degree of complexity emergent properties will start to
appear. The relationship is more curious however. The rea-
son is that complexity itself is an obvious systemic property
that, at least in the systems under scrutiny here, spring from
micro-structures that do not exhibit it. Quite to the contrary,
at their ontological bottom they are notoriously simple. One
the other hand the opposite might be true. A system may
have a microstructure that is beyond description whilst be-
ing highly predictable on the macro-level. In that case we
would perhaps talk of the emergence of simplicity. Given
of course we deploy a weaker version of the concept. In
the previous section we established a link between WE and
complexity as measured by statistical complexity or effec-
tive measure complexity. We will now elaborate on this and
the implications it has.

Interestingly it is often in complex systems that we find
higher-level structure that behaves lawfully with respect to
some higher-order dynamics. This is precisely the domain
of the special sciences. Let us consider two examples of this
lawfulness: In the Game of Life (GOL) (Berlekamp et al.,
1982) there is a configuration known as a ‘glider’. It consists
of five active cells and has the peculiar property of moving
across the lattice in a diagonal fashion. Now if we know that
a glider is moving in a particular direction and at a given
time is located at position x, then if it does not collide with
any other cells predicting its position for all future times is
easy, and does not require that we simulate the entire system.
Next consider the dynamics of an ant colony. Without know-
ing the exact details of the anatomy of a particular ant, we
can by coarse-graining it into what type of ant it is (queen,
soldier etc.) get a good picture of what duties it will have
in the colony. The system clearly exhibits regularities which

allows us to formulate higher-order laws (or at least law-like
generalisations), which in turn allow for prediction of the
dynamics.

Although these systems, might be computationally
irreducible on the micro-level they are still amenable to
a coarse-grained description which can make reasonable
predictions about the future state of the system. There is
thus a clear tension in the link between WE and complexity
that was presented above. Complex systems are possibly
computationally irreducible and thus WE, but at the same
time a WE system does not allow any short-cut derivations,
which is precisely what higher-order structure allow. But
again picking out systems with no higher-level structure at
all seems to exclude precisely the kind of systems about
which talk of emergence is the most appropriate.

Higher-order descriptions are typically coarse-grained in
more than one respect; firstly by individuating the system
differently (e.g. by using functional definitions), and sec-
ondly that they may imply some loss of accuracy in the pre-
dictions. This can happen in two ways, either as a conse-
quence of noise, or as consequence of abstraction to more
general terms.

The loss of accuracy is dependent on the level of coarse-
graining one applies to the system. At the level of no coarse-
graining we have to, assuming that the system is computa-
tionally irreducible, iterate the dynamics explicitly to make
predictions about the future state of the system, e.g. if it will
have a certain property P at time t. Now if we move one
level up in the coarse-graining, e.g. in GOL we start talking
about gliders and blinkers, we might be able to formulate
laws at this level which faithfully describe the system, such
as the fact the gliders move diagonally at the speed of light.
These laws allows us to circumvent the actual simulation,
but on the other hand introduces inaccuracy in the descrip-
tion. It also denies us any knowledge about the micro-state
of the system at future times, as coarse-graining procedures
by definition are non-invertible.

In the above example of the ant colony, knowing the type
of ant only gives us a better than null prediction as to its
behaviour, obviously not a perfect prediction of the future
actions of the ant in question. For every coarse-grained de-
scription of the system we thus have an error rate of predic-
tion. What we save in terms of not having to simulate the
system at the ‘basal’ level is lost in the power of prediction.
The rate at which this error increases varies between differ-
ent systems depending on their regularity. Now, one way to
read Bedau is to say that a WE occurs when the error rate of
prediction on all coarse-grained levels is sufficiently high.
To reliably forecast the dynamics it is necessary to revert to
an explicit simulation of the system.

This discussion can in fact be couched in terms of Cruth-
fields ε-machine reconstruction (Crutchfield, 1994), where
automata with different ‘causal’ states are able to predict
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the future state of a system with varying accuracy. Viewing
different levels of description as different ε-machines, we
can make a formal comparison of both their complexity13

and their accuracy. A similar approach to different levels of
description has been pursued by Dennett (1991) in his dis-
cussion on the reality of patterns and ultimately beliefs in
nature. He also notices the inherent trade-off between an ac-
curate and complicated description versus a simple one with
a higher error rate, and that this leads to a multitude of pos-
sible ‘patterns’ in the same data.

The above discussion covered systems which exhibit
structure on some higher level, but there is also an interest-
ing link between WE and deterministic chaos (DC). Chaotic
systems are generally governed by local micro-level rules, or
non-linear equations of evolution, and their hallmark is their
sensitive dependence of initial conditions. This means that
trajectories at machine precision distance from each other
diverge exponentially, and implies that predictions about
the future state of the system are difficult or impossible to
make.14

These systems do not show regular structure15, except
possibly for some isolated regions of parameter space, and
are also highly sensitive to initial conditions. The future
state of a chaotic system is difficult to predict without sim-
ulation, and for reasonable choices of a property P it thus
fulfills the criterion for WE, i.e. there are no short-cuts for
predicting if the system will have P , it can only be decided
by explicit simulation.

Depending on our rigour when accepting short-cut deriva-
tions, based on their accuracy, we naturally get different de-
grees of overlap between weakly emergent and chaotic sys-
tems. If we only accept predictions which are perfectly ac-
curate then the class of WE-systems might incorporate both
chaotic and complex systems, while if our criterion for ac-
curacy is lower, and we accept statistical laws, then WE co-
incides more with systems considered chaotic.

Suppose we consider a form of system of which a con-
cept of emergence does some actual work. As we have
noted before the most obvious category consists of systems
that have higher levels that are at least minimally structured,
i.e. systems that succumb to macro-level generalisation of
some form and degree of accuracy.16 However, as discussed
above, these systems seems to be excluded by definition
from WE. The reason would be that macro-level regularities

13If the machine is minimal, then its statistical complexity is the
amount of memory (in bits) required for the agent to predict the
environment at the given level ‘ε’ of accuracy

14See Kellert (1993) for an extensive argument of the latter.
15Here we disregard from coarse-grained structure such as in-

variant measures, which can be defined for chaotic systems exhibit-
ing ergodicity.

16This needs to further specified but following Fodor (1974) we
think that minimally the higher level consists of functional kinds,
usually however these kinds will allow for something more, macro-
level laws or at least law-like generalisations.

plausibly could be understood as exactly the kind of ‘short-
cut’ Bedau dismisses. If this is true it seems WE can only be
applicable to systems that are macroscopically unstructured.
But it seems systems that lack structured macroscopic levels
are usually uninteresting.

In a way this worry seems entirely misguided. The reason
is that since these macro-level generalisation are located on
the macro-level they themselves constitutes the emergents in
this contexts and it is the derivation of them rather than be-
tween them that is under scrutiny. In other words, the rules
which govern the higher-order structures (e.g. the collision
of two gliders in GOL) are not derivable except by simula-
tion from the micro-level dynamics.

To determine if this objection is genuine it seems one
would have to specify what is micro and macro properties
for the system under investigation. Though this might seem
conceptually trivial it is decidedly less than straight forward
in this particular context. We have already hinted at an ex-
ample; a lot of kinds are functionally defined in GOL, take
e.g. spaceships; anything that moves whilst retaining its
shape over a relatively short period of time is a spaceship.
Thus it makes out a kind on some non-basal level of de-
scription. But since any number of different micro-level
configurations might exhibit this behaviour it seems there
won’t be a micro structural definition of spaceships. Some
specific kinds of spaceships do have micro structural defini-
tions, gliders are an example of that.

Other interesting candidates are more abstract systemic
features like chaos or complexity that both seem to intu-
itively fit well on at least some conceptions of emergence.
These predicates are usually ascribed (in this context at
least) to entire systems where microscopical structures typi-
cally are very simple. They are thus systemic properties that
are genuinely novel—systems with simple microstructures
are not always complex—and they apparently aren’t trivial
in the sense that one can easily find configurations in e.g.
GOL that do not exhibit complexity on any technical under-
standing of the term. Yet another category that might coex-
tend with the one just mentioned concerns questions regard-
ing specific initial states. Suppose one has a certain initial
state for GOL and wants to know if it will produce a bounded
dynamic or not. For some configurations these questions are
computationally irreducible and thus also weakly emergent
on Bedau’s understanding, but what sort of macro-properties
do these future states represent?

These are the types of questions that need to be addressed
if we are to get a proper account of the relation between
weak emergence, complexity and deterministic chaos.

In this paper we have elaborated on the connection between
weak emergence and complexity. We found that WE lies
very close to certain measures of complexity, and this might
allow for a quantitative measure of WE. Further we noticed
that complex systems often exhibit higher-order structure
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which allows for coarse-grained prediction of the dynam-
ics. This is in possible contradiction to the definition of WE,
which implies that the scope of WE is narrow and possibly
only covering systems exhibiting deterministic chaos. In-
stead we propose a different interpretation of the concept
which focuses on the derivability of the rules acting on the
higher levels in the system.
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Extended Abstract 
Herbert Simon is justly regarded as the father of artificial intelligence and even of the fields of computer science and cognitive 
science as we currently conceive them.  His Nobel Prize was in economics, but he also made significant contributions to 
philosophy, political science, psychology, public policy, and beyond. Among his nearly a thousand publications, were many that 
dealt with issues of causality, complexity, problem solving, the discovery process, learning, scientific theory testing, simulation and 
modeling, and even consciousness.  Many of his research interests revolved around questions about decision-making under 
conditions of uncertainty, which he took to be the usual case for both organizations and individuals.  Human beings have “bounded 
rationality” and so are not in a position to optimize their choices, but rather must “satisfice”.  Notably absent from this amazing 
body of work, however, is much about biology.  Though many of the ideas Simon investigated are directly or indirectly relevant to 
artificial life research, he never had the opportunity to consider what light his AI research might shed on ALife and vice versa.  This 
is a significant loss, as ALife is an especially important case by which to consider Simon’s theses about the “sciences of the 
artificial.” (Simon 1984) What might he have said about what each field could learn from the other?  This article reviews some of 
Simon’s distinctive notions about models and model-based reasoning in AI and outlines the beginning of an answer. In particular, it 
considers how current work in digital evolution builds upon, extends and in some cases overturns Simon’s ideas about complexity, 
discovery, learning, intelligence and more.  It concludes by highlighting how the ALife “bottom up” approach of digital evolution 
provides a radically different perspective on artificial intelligence that complements Simon’s “top-down” approach and opens up 
promising new avenues of investigation. 
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Extended Abstract 

 In this talk I shall explore what kind of knowledge can be obtained from computer simulations and the 

sense in which that knowledge is different from what can be gained from traditional experiments on the one hand 

and from traditional theoretical work on the other. Some recent literature has suggested that the more similar the 

experimental subjects are to the target systems, the greater the security of the inferences involved. Although that is 

true in an important sense, it is not the most relevant aspect when we are interested in the role that concrete 

implementations play in simulations.  I shall illustrate my arguments with examples from artificial societies and 

artificial economics, two areas in which agent based models have significant similarities to artificial life models. 
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Abstract

An observation process is a fundamental implicit component
of the simulation based studies on artificial-evolutionary sys-
tems (AES) by which time-varying entities are identified and
their behavior is observed to uncover higher-level “emergent”
phenomena. In this paper, we analyze algorithmic feasibil-
ity of implementing an observation process and consequent
automated discovery of the entities and the evolutionary pro-
cesses in arbitrary AES models. We characterize the bounds
for the worst case computational complexity for the process
of discovery of possible presence of entity and population
level reproduction with epigenetic development in the child
entities involving mutations and heredity in presence of nat-
ural selection. In particular, we prove that if entities in an
AES simulation are structurally distinguishable, the problem
of observability of evolutionary processes is only polynomi-
ally harder w.r.t. the entity recognition. The complexity
bounds are presented in parameterized form so that for any
given AES model, if parameter estimates are known, corre-
sponding bounds can be derived.

Background
Studies on Artificial Evolutionary Systems (AES) are recent
attempts to complement real-life theories to study the prin-
ciples underlying the complex phenomena of life without
directly working with the real-life organisms. For exam-
ple, AES studies can complement theoretical biology by un-
covering potential evolutionary dynamics (Ostrowski et al.,
2007; Lenski et al., 2003).

Observations play a fundamental role in AES research, in
particular, for those AES studies, which focus on the prob-
lem of the “emergence” of life-like behavior. However, the
mechanisms and analysis often employed in AES studies to
discover the emergent entities and their life-like behavior re-
main useful only to the specific models and do not always
have the generic perspective. Therefore an important aspect
where AES studies demand increasing focus is to study ob-
servational processes and mechanisms used in AES studies
in their own right resulting into a framework for automated
discovery of life-forms and their dynamics in simulated en-
vironments. With AES studies involving mostly digitized
universes and their simulations, it is actually desirable to ex-
plore by algorithmic means potentially varied possibilities

which these simulations hold yet usually require such de-
tailed observations that it may not always be feasible to carry
out for human observers alone. Such an automated discov-
ery of life-forms and the evolving dynamics may bring much
promise in AES studies as compared to what could possibly
be achieved only with manually controlled observations.

An example of such an automated discovery of life forms
is discussed in (Sayama, 1998). In order to observe the liv-
ing loops in his Cellular Automata (CA) model, another
“Observer CA” system is designed and embedded within
the simulator software. The observer CA is capable of per-
forming the complex image processing operations on the CA
configuration given to it as an input by the simulator CA
to automatically identify the living loops of different types.
Also recently (Stone et al., 2009) have discussed the inte-
gration of artificial life simulations with interactive games-
based techniques to study simulation complexity for the be-
havioral representation of species in fragile or long-vanished
landscapes and ecosystems.

However, because of its implicit nature and the multitude
of AES models, a precise characterization of the observation
process is generally a difficult problem. Importantly it needs
to be defined independent of the low-level micro dynam-
ics any specific AES model to permit the study of higher-
level observationally “emergent” phenomena. Initial work
on systematically studying the observational processes in-
dependent of the underlying AES models appeared in Henz
and Misra (2007); Misra (2009). In (Henz and Misra, 2007)
an observation process is characterized as an abstraction on
the model universe for establishing the necessary elements
and the level of evolutionary behavior in that model. Based
upon this formal characterization, in Misra (2009), it was
proved that the task of entity recognition in a simulation,
is a NP-hard problem and therefore cannot be completed in
polynomial number of steps. In this paper we extend this re-
sult further and present computational complexity theoretic
analysis for the problem of algorithmic discovery of evolu-
tionary phenomena in AES studies. The presented analy-
sis on observing evolutionary behavior reveals important in-
sights on how computation intensive an automated discovery
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of life-like phenomena could be.
Related Work To the author’s knowledge, there is not

much work focusing on the algorithmic feasibility analy-
sis of generic models for AES studies. However, interest-
ingly, for few specific AES models, there exist parallel re-
sults. For example, Melkikh (2008) considered the compu-
tational analogue of the problem of the origin of species in
a genome space under DNA Computing framework (Paun
et al. (2006)) and has shown that in absence of a priori infor-
mation about the possible species of organisms, the under-
lying computational problem is NP-hard. Similarly, Centler
et al. (2008) prove that the problem of computing a reactive
chemical organization is NP-hard.

Notations: Set notations: \ (set difference), P (power set),
 (partial function). Logical operators: ∧ (and), ¬ (not),⇒
(implication), ⇔ (if and only if), ∃ (existential quantifier),
and ∀ (universal quantifier). Programing pseudo code nota-
tion: if . . . then . . .. N+ is the set of positive integers. For
a vector x = (a1, a2, . . . , ar), ith element (ai) will be de-
noted as x[i]. Also basic notions from multiset theory (Singh
et al., 2007) (e.g.,

⊎
(multiset join)) and the theory of com-

putational complexity (Papadimitriou, 1994; Cormen et al.,
2001) (e.g., ‘big-Oh’ notation - O1) would be used in the
formal exposition of the derived results.

The Formal Structure of the Framework
In this section we will briefly review the axiomatic frame-
work presented in Henz and Misra (2007); Misra (2009).
In the ensuing discussion, we will use “AES model”
and “model”, “Observation process” and “Observer” inter-
changeably to add convenience in presentation. Axioms are
used to specify conditions which need to be satisfied in or-
der to draw valid inferences e.g., recognition of entities and
their causal relationships.

Observation Process and the Model Universe

Axiom 1 (The Axiom of Observable Life). Life-like phe-
nomena in a AES model exists only if it can be observed
using its simulations.

In other words, existence of life-like behavior can only be
proved with respect to an observation process and associated
simulations.

Definition 1 (Observation Process). An observation pro-
cess is an algorithmic transformation from the under-
lying AES simulation model to observer abstractions

1Asymptotic order notation, O, is used to measure the bounds
on computational complexity for algorithms and problems. If
f(n) = O(g(n)), then f is said to be upper bounded by g for
all the values of the input of size n after certain point. Two useful
asymptotic properties ofO are: If f1(n) = O(g1(n)) and f2(n) =
O(g2(n)), then f1(n) + f2(n) = O(max{g1(n), g2(n)}) and
f1(n) ∗ f2(n) = O(g1(n) ∗ g2(n)).

(Absind, Absdep), where Absind is the set of process in-
dependent abstractions and Absdep is the set of process de-
pendent abstractions.

Definition 2 (States). Σ: set of observed states of the model
across simulations.

Definition 3 (Observed Run). T : Σ  P(N+): An ob-
served sequence of states ordered with respect to the tempo-
ral progression of the model during its simulation.

N+ acts as a set of indexes for the states in the sequence.
Since a state may appear multiple times in a simulation, sub-
sets ofN+ are used to denote that. Each such sequence rep-
resents one observed run of the model. We let ΣT denote
the set of unique states appearing in a specific run T .

Entity Recognition
Definition 4 (Entity Set). Es: Multiset of entities observed
and uniquely identified by the observer in a state s of the
model for a given run T . ET =

⊎
s∈ΣT

Es is the multiset
of entities observed and uniquely identified by the observer
across the states in a given run T .

“Tagging” can be used as a mechanism for identifying in-
dividual entities whenever there exist multiple entities in the
same state which are otherwise indistinguishable.

Axiom 2 (Axiom of Unique Identification of Entities). An
entity must be uniquely identified in a given observed run T .

Axiom 3 (Axiom of Unique Identification in States). If two
states are identical, i.e., consist of the identical multisets of
atomic observable structures, then an observer must identify
the same multisets of entities in these states irrespective of
their temporal ordering in the observed run T .

Axiom 4 (Axiom of non-Ignorance). It must not be true that
an observer omits identification of an entity in a state s but
in a different state s′ identifies it as consisting of the same
atomic elements which were also available in s.

Definition 5 (Character Space). An observer should define
a set of all possible mutually independent (or orthogonal)
and measurable characteristics for possible entities in the
model as a multi dimensional character space Υ = Char1×
Char2 × . . . × Chard, where each of Char i is the set of
values for ith characteristic.

Corresponding to each entity e ∈ ET there is a point in
Υ, say (v1, v2, . . . vd), where vi ∈ Char i.

Observable characteristics need not to be limited to syn-
tactic level or structural properties and may also include se-
mantic properties, which are observable patterns of behav-
iors abstracted over a range of states.

Definition 6 (Distance Measure). An observer defines a
computable clustering distance measure D : ET × ET →
Diff , where Diff is the set of values to characterize the ob-
servable “differences” between entities in E.
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Definition 7 (Mutation Bound). Based upon the choice of
D, an observer selects δmut ∈ Diff as a vector such that
each element in δmut specifies an observer-defined threshold
on the recognizable mutational changes for corresponding
characteristic.

It is important to note that the choice of δmut critically af-
fects further inferences. For example, a choice of very large
values would result in the lack of identification of variability
in characteristics among entities. On the other hand, with
relatively smaller values for δmut, it is difficult to recognize
persistence of an entity across states under changes.

Next, a Recognition relation is defined to establish the
persistence of entities across states in the presence of mu-
tational changes:
Definition 8 (Recognition Relation). An observation pro-
cess establishes recognition of entities across states of the
model with (or without) mutations by defining a partial func-
tion Rδmut : ET  ET , satisfying following axioms:
Axiom 5. Entities to be recognized as the same should be
observed in successive states.
Axiom 6. No two different entities in one state can be rec-
ognized as the same in the next state.
Axiom 7. If an entity e mutates and in the next state is iden-
tified as e′, observer might be able to recognize e and e′

as the same only if these changes (between e and e′) are
bounded by δmut.

In order to infer meaningful relationship among entities,
to be used as a basis for inferring macro level phenomena
in the model, an observer needs to first identify “causal”
relationships among entities independent of the underlying
‘physical laws’ or ‘micro level dynamics’ of the model.

Definition 9 (Causality). C ⊆
⊎
s∈ΣT

Es × Es+1. C estab-

lishes the observed causality among the entities appearing in
the successive states of a run T .

Since causality is largely an observer and model depen-
dent, it is further refined by defining additional axioms for
specific cases, for example, for the case of reproductive
causality to infer reproductive relationships among entities
(See Axiom 8).

Observing Evolution
In the following discussion we will define components in
Absdep for observing the fundamental evolutionary compo-
nents: reproduction with mutations and epigenetic develop-
ments, heredity, and natural selection.

Reproduction An observation process establishes repro-
duction by defining causal descendance relationships among
the entities across states, whereby parent and the child enti-
ties are recognized by the observer as being sufficiently sim-
ilar and “causally” connected across the states. Formally, we
add a new Axiom for the causal relation C defined before:

Axiom 8 (Reproductive Causality). If an entity e in state
s is causally connected to entity e′ in the next state s + 1,
then there must not be any other entity e′′ in state s, which
is recognized by the observer as (mutating to) e′.

In essence, this formulation of causality is an abstract
specification which demands observers to identify the en-
tities which have been observed to be causal sources for the
appearance of a new entity.

Similar to δmut, as discussed before, it is important to
specify the limits under which an observer can identify
whether an entity is a descendant of another entity even
though they might not be identical. This limit on observable
reproductive mutations is essential while working with mod-
els where epigenetic development in the entities can be ob-
served (Mahner and Bunge, 1997). This is because in such
models including examples from real life, “child” entity and
the “parent” entities may not have identical characteristics
the beginning and therefore an observation process needs to
wait until whole epigenetic developmental process gets un-
folded and only then compare the entities for similarities in
their characteristics.

Definition 10 (Reproductive Mutation Bound). Based
upon the choice of D, the observer selects δrep mut ∈
Diff , which will be used to bound reproductive mutational
changes for proper recognition.

δrep mut assists an observer to establish whether a particu-
lar entity could be treated as a “descendant” of another entity
or not. It is important to note that the choice of δrep mut also
critically affects further inferences. For example, small val-
ues for δrep mut might make it harder to establish reproduc-
tive relationships among entities and for such an observer
every new entity would seem to be appearing de novo in the
model. On the other hand choice of very large values would
result in the lack of identification of variability in character-
istics and thus make it difficult to infer natural selection.

An auxiliary relation ∆ is used to determine that the
differences due to reproductive mutations are bounded by
δrep mut.

Definition 11. ∆ ⊆ ET × ET s.t. ∀e, e′ ∈ ET . if (e, e′)
is in ∆ then their differences for each single characteristic
chari must be bounded by δrep mut[i] and e should not be
recognized as mutating to e′.

Based on the thus established notion of “causal” relation-
ships between entities and ∆, we define AncestorOf re-
lation, which connects entities for which an observer can
establish descendance relationship across generations.

Definition 12. AncestorOf = (C ∪ Rδmut)
+ ∩ ∆

In this definition the transitive closure of (C ∪ Rδmut)
captures the observed causality (C) across multiple states
even in cases when “parent” entities might undergo mu-
tational changes (Rδmut) before “child” entities complete
their “epigenetic” maturation with possible reproductive
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mutations. Intersection with ∆ ensures that causally re-
lated parent and child entities are not too different from each
other, that is, reproductive mutational changes are under ob-
servable limit.

Using AncestorOf relation, we now can consider the
cases of entity level reproduction and Fecundity:

Case 1: Entity Level Reproduction We consider the case
where instances of individual entities can be observed as re-
producing. For a given simulation T of the model, an ob-
server defines the following Parent∆ relation:

Definition 13. Parent∆ = {(p, c) ∈ AncestorOf | 6 ∃e ∈
ET . [(p, e) ∈ AncestorOf ∧(e, c) ∈ AncestorOf ]}

The condition in defining Parent∆ is used to ensure that
p is the immediate parent of c and thus there is no intermedi-
ate ancestor e between p and c. Using Parent∆ relation, in
order for the observer to establish reproduction in the model,
the following axiom should be satisfied:

Axiom 9 (Reproduction). There should exist at least one
instance of reproduction in a simulation T of the model i.e.,
Parent∆ 6= ∅.

Since for every (p, c) ∈ Parent∆, some other (p′, c′) ∈
AncestorOf where p (and/or c) has been observed to
change to p′ (c′) may also be present in the Parent∆, there-
fore, let Parentmin

∆ consist of temporally least parent-child
pairs (p, c) from Parent∆.

Case 2: Population Level Reproduction - Fecundity
Owing to the carrying capacity of the environment, which
limits the maximum possible size of a population, for natu-
ral selection it is the population level collective reproductive
behavior (fecundity), which is significant. Therefore in or-
der to ensure that there is no perpetual decline in the size of
the population, following axiom should hold:

Axiom 10 (Fecundity). There exist statistically significant
number of different generations of reproducing entities in
temporal ordering G1, G2, . . . , GL such that for every gen-
eration of reproducing entities, there exists a generation of
its descendant entities such that the size of descendant gen-
eration is equal or more than the current generation.

Heredity yet another precondition for evolution, can in
general be observed on two different levels: Syntactic level
and Semantic level. On syntactic level, entity level inheri-
tance is implied by the structural proximity between parents
and their progenies ranging over several generations. For
syntactic inheritance to persist, design of the model needs
to ensure that environment, which controls the reaction se-
mantics of entities, remains approximately constant over a
course of time so that structural similarities also result into
continued reproductive behavior. On the other hand, the se-
mantic inheritance is implied in terms of semantic related-
ness between entities, whereby progenies and their parental

entities exhibit similarities in their behaviors (e.g., reproduc-
tion) under near identical set of environments. This in turn
would require an observer to abstract the behavioral (e.g., re-
productive) semantics from the observable reactions among
entities in the model, which in turn might require non-trivial
inferences in absence of the knowledge of the actual design
of the model.

Heredity usually requires further mechanisms to reduce
possible undoing of current mutations in future generations
owing to new mutations. Therefore, in order to establish in-
heritance in AES models, sufficiently many generations of
reproducing entities need to be observed to determine that
the number of parent-child pairs where certain characteris-
tics (both syntactic and semantic) were inherited by child
entities without further mutations is significantly larger than
those cases where mutations altered the characteristics in the
child entities. We can express it as the following axiom:

Axiom 11 (Heredity). Let Ω be a statistically large ob-
served subsequence of a run T , then there exists a charac-
teristic Chari such that the set of entities in Ω, where this
characteristics were inherited without (further) mutation is
statistically significant.

Natural Selection Following the idea from (Bell, 2008,
page 19) that on evolutionary scale rate of reproduction is
the only attribute selected directly and characteristics affect-
ing the rate of reproduction are selected only indirectly, we
consider natural selection as a statistical inference on av-
erage reproductive success of a population of reproducing
entities over an evolutionary time scale. Towards that we
define following necessary and sufficient axioms as gener-
ally discussed in the literature (Stearns and Hoekstra, 2000):

Axiom 12 (Observation on Evolutionary Time Scale). An
Observer must observe statistically significant population
of different reproducing entities, say Λmin, for statistically
large number of states in a run T .

Axiom 13 (Sorting). Entities in Λmin should be different
with respect to characteristics in Υ and there should exist
differential rate of reproduction among these reproducing
entities. Rate of reproduction ror(e) for an entity e is the
number of child entities it reproduces before undergoing any
mutations beyond observable limit.

Axiom 14 (Heritable Variation). There must exist vari-
ation in the inherited mutations in the population of Λmin

implying that a significant fraction of the population of all
reproducing entities should have at least one unique char-
acteristics.

Axiom 15 (Correlation). There must be non zero corre-
lation between heritable variation and differential rate of
reproduction.

Yet another important constraint from the evolutionary
perspective is that reproduction in a model should not en-
tirely cease because of the (harmful) mutations. Though this
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constraint is implicitly captured in the axioms 12 and 13,
we can still restate it below primarily since this weaker ver-
sion may enables us to directly argue for the reasons of the
absence of evolutionary behavior in a model:

Axiom 16 (Preservation of Reproduction under Muta-
tions). Some mutations do preserve reproduction. In other
words, if there exist reproductive entities in a state s, either
some mutants of these entities or their children should con-
tinue reproducing further.

Software Architecture for an Observation Process
An implementation of the observation process discussed so

far essentially demands deciding the level of abstraction on
which observations need to be carried out with respect to the
underlying AES model. Once it is decided by the designer
of the model, either of the following two approaches can be
considered for the software design:

Source Code Interleaving/Embedding The specified ob-
servational processes can be executed by interleaving the
programs for the observations and corresponding interfer-
ences within the source code of the AES model simula-
tion design itself. Advantage of such interleaving is that
the implemented observation process can reuse some of
the computational resources (e.g., memory) of the AES
model.

Interactive Observations An observation process could
also otherwise be programmed as a separate process it-
self together with the actual AES model simulation pro-
cess. These two processes could communicate with each
other asynchronously by exchanging the messages con-
taining the required information on the state changes by
the model simulation process, which then can be used by
the observation process independently for drawing the in-
ferences. This keeps the design of both the processes in-
dependent of each other, however unlike the earlier op-
tion, the observation process requires to have separate re-
sources for itself. Nonetheless, by virtue of the indepen-
dence between these two processes, simulation cum ob-
servation can be carried out in a distributed environment,
which can be useful in case of certain AES studies requir-
ing large amount of computational resources to uncover
rare and complex phenomena or detailed dynamics not
possible to execute on a single machine owing to main
memory limitations or CPU speeds.

Computational Complexity
In the next few (sub)sections, we will estimate upper bounds
on the worst case time complexity for the problem of es-
tablishing axioms dealing with evolutionary components in
the framework for arbitrary AES models. For a discussion
on the very choice of worst case computational complexity
measure, we request reader to refer to the next Section.

Estimates for space complexity, though equally impor-
tant, will not be addressed. Primary reason for that is that
space (memory) requirement is often dependent upon the ac-
tual model at hand, the syntactic nature of the entities as de-
termined by an observation process, and is often linear w.r.t.
the total number and size of states observed.

An important problem to be considered while providing
estimates on the computational complexity is that observed
state progression during simulations might not correspond to
the actual underlying reaction semantics for a specific entity.
In other words, observed states during simulations progress
according to the underlying updating rules for the model,
which determine which subset of entities would react in any
state. However, in the following analysis, we assume that all
those entities, which are enabled to react in each state, are
indeed allowed to react. In cases where it is not true, an ob-
servation process may store state subsequences of finite size
where all (or most of) the enabled entities have been ob-
served to react and then merge all the states in each of these
subsequences into single meta states, which reflect the ef-
fect that most of those entities which can react have actually
reacted.

Computational Complexity of Entity Recognition
Following basic result was proved in Misra (2009):

Theorem 1. The problem of entity recognition using struc-
tural (syntactic) constraints is NP-hard.

Assuming that all the states in a simulation are of compa-
rable size (i.e., having roughly same number of atomic ob-
servable elements), let us use O(n) as the size of any state.
Therefore, if the size of a run T is r, entity recognition us-
ing structural constraints in all the states s0, s1, . . . , sr may
require in the worst case O(r2n) steps.

In case, where entities do not have overlapping structures,
corresponding upper bound is O(rn2n) steps.

Computational Complexity of Observing
Evolutionary Components
We can now discuss some of the computational complexity
theoretic aspects of observing various components of evolu-
tion. Also we will use the following notations:
tc: expected number of time steps required to determine
membership of an entity pair in the relation C.
t∆: expected number of time steps required to determine
membership of an entity pair in the relation ∆.
tδmut

: expected number of time steps required to determine
membership of an entity pair in the relation Rδmut .
t=: expected number of time steps required to compare two
entities for equality checking.
tD: expected time steps required to compute function D to
check the equality (or inequality) of the characteristics of
two entities.

We further assume that checking the negation of a
condition takes same number of time steps as checking
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the condition itself. For example, t∆ would also be the
expected number of time steps required to determine that an
entity pair is not in the relation ∆.

Computational Complexity of Observing Entity Level
Reproduction Establishing the case for the entity level re-
production in the simplest case, where there are no epige-
netic developments in the child entities, minimally demands
identifying a single instance of a reproducing entity and its
progeny in the next state during one simulation. Suppose an
observer needs to determine that an entity p in a state s is an
instance of a reproducing entity. For this, the observer needs
to establish that under the specified definition of the causal
relation C, there exists another entity c in the state s + 1
such that (p, c) ∈ C and that the reproductive mutations in
c with respect to p are bound by δrep mut, i.e., (p, c) ∈ ∆,
and that there does not exist any other entity in the state s,
which is recognized as mutating to c. This process would at
worst takeN (s)

p = tc+t∆+|Es|tδmut steps where |Es|tδmut

factor comes owing to the fact that for each of the |Es| num-
ber of entities in the state s, we need to ascertain that it is
not mutating to c. Since for a state s, such a reproducing
instance may not be found quickly, in the worst case all the
entities in the state s might need to be assessed under these
steps. Therefore search for an reproducing instance in a state
s may take at worst

Trp =
∑
p∈Es

N (s)
p = |Es|N (s)

p = |Es|(tc + t∆ + |Es|tδmut
)

≤ 2n(tc + t∆ + 2ntδmut) = O(2n max{tc, t∆, tδmut2
n})

steps, where |Es| ≤ 2n. Since finding such a state s, where a
reproducing entity may be present itself may require search
into a potentially large state subsequence of a run, it might
take O(r) ∗ Trp = O(r2n max{tc, t∆, tδmut2

n}) steps to
establish the entity level reproduction, where r is the num-
ber of states in the state subsequence used in the search as-
suming that all the states are of comparable sizes. Therefore
we have

Proposition 1. Given the sets of entities in each state, ad-
ditional time steps required for observing entity level repro-
duction, without epigenetic development in the child entities
and mutational changes in the parent entities, in an AES is
upper bounded byO(r2n max{tc, t∆, tδmut

2n}), where r is
the number of states observed before first instance of entity
level reproduction is recognized.

The case where entities do not have overlapping struc-
tures, total number of entities in a state are restricted by the
number of atomic structures, that is, |Es| ≤ n. Therefore
we have the following corresponding corollary:

Corollary 1.1. Given the sets of entities in each state, ad-
ditional time steps required for observing entity level repro-

duction in an AES where entities do not have overlapping
structures is upper bounded byO(rnmax{tc, t∆, tδmut

n}).

Next let us consider the general case of entity level repro-
duction with epigenetic developments in child entities and
mutational changes in the parent entities. Towards that we
have the following result:

Theorem 2. Given the sets of entities in each
state, additional time steps required for establish-
ing an entity level reproduction is upper bounded by
O
(
r2n max

{
tδmut

, tc2n, t∆2n, t=r323n
})

.

The case where entities do not have overlapping
structures, we have the following corresponding bound:
O
(
rnmax

{
tδmut

, tcn, t∆n, t=r
3n3
})

Computational Complexity of Observing Fecundity In
order to establish fecundity having recognized an entity level
reproduction, the first problem for an observation process is
to determine the temporal granularities for the generations
of the reproducing entities especially when there may exist
different types of reproducing entities with different rates of
reproduction. In that case, requirement is to determine how
many entity types need to be considered. Towards this, the
observation process could initially scan a constant number
of states to collect all different kinds of reproducing enti-
ties together with their rates of reproductions. Based upon
the initial estimates on these rates of reproductions, it may
consider their least common multiple as the granularity for
a generation and ignore other new types of entities while
aiming to establish the fecundity axiom. However in case
such initial estimates do not yield sufficient support for the
fecundity and more reproducing entity types need to be con-
sidered, backtrack step is necessary. This process need to
continue till statistically significant number of states have
been observed to get support for the fecundity axiom or to
assume it to be statistically unsatisfiable in that simulation.

Let us first consider the case of single state reproduction
without any epigenetic developments. In this case, we have:

Proposition 2. Given the set of entities in each state, the
worst case computational complexity of observing fecun-
dity without epigenetic development is upper bounded by
O(L22n max{tc, t∆, tδmut , L/2

2n}) where L is the number
of generations of the reproducing entities.

Next, we consider the more general case involving epige-
netic developments in the child entities:

Theorem 3. Given the set of entities in each state, the
worst case computational complexity of observing fecundity
is upper bounded by O(Lmax{tδmut

2n, tc22n, t∆rπ22n,
t=r

4
π24n, L}), where rπ is the maximum of the lengths of

the reproduction cycles of the different types of observed re-
producing entities across these generations.

In a special case of replication (with epigenetic devel-
opment) involving no reproductive mutations in the child
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entities and no parental mutations would only demand
identification using syntactic equivalence between entities
and counting the entities belonging to various reproduc-
tive types only in last state of each generation. The worst
case complexity for such process is upper bounded by∑

1≤i≤L (|Eiλ| ∗ k ∗ t=) ≤ L∗2n ∗2n ∗ t= = O(Lt=22n),
where Eiλ is the multiset of entities in the last state of the
ith generation and k is the number of different types of re-
producing entities in each generation.

Also the case where entities do not have overlapping
structures, we have the following corresponding bound:
O
(
Lnmax{tδmut , tcn, t∆rπn, t=r

4
πn

3, L}
)
.

Computational Complexity of Observing Heredity
Theorem 4. Given the sets of recognized entities in each
state, the worst case computational complexity of observing
heredity in an AES is upper bounded by
O
(
r2n max

{
tδmut

, tc2n, t∆2n, t=r323n+1, |Υ|2td2n
})

The case where entities do not have overlapping struc-
tures, we have the following corresponding bound:
O
(
rnmax

{
tδmut , tcn, t∆n, t=r

3n3, |Υ|2tdn
})

Computational Complexity of Observing Natural Selec-
tion Given the sets of recognized entities in each state and
the relations R+

δmut
, Parentmin

∆ , Λmin, and ror from the
earlier steps, additional time steps required for establishing
axioms for natural selection are upper bounded as follows:

• The Axiom 12 of Observation on Evolutionary Time
Scale: O

(
t=r

323n
)
.

• The Axiom 13 of Sorting: O(r2n max{r2n, |Υ|}).

• The Axiom 14 of Heritable Variation:
O(r22n max{r322n, td|Υ|}).

• The Axiom 15 of Correlation: O(r|Υ|2n).

Given the upper bounds for these axioms, the following re-
sult is immediate for natural selection:

Theorem 5. Given the sets of recognized entities in each
state and the relations R+

δmut
and Parentmin

∆ , additional
time steps required for establishing natural selection in an
AES are upper bounded by

O
(
r22n max

{
t=r

22n, td|Υ|, r322n
})

Given the estimates for the upper bounds on the time steps
required for constructing the entity sets EΩ, R+

δmut
, and

Parentmin
∆ , the bound for the overall computational com-

plexity of observing natural selection can be estimated:

Corollary 5.1. Overall worst case computational complex-
ity of establishing natural selection in an AES is upper
bounded by
O
(
r2n max

{
tδmut

, tc2n, t∆2n, t=r323n+1, td|Υ|2n
})

The case where entities do not have overlapping struc-
tures, we have the following corresponding bound:
O
(
rnmax

{
tδmut

, tcn, t∆n, t=r
3n3, td|Υ|n

})
Significance of Results

Before we conclude, it is necessary to discuss why to study
these worst case computational complexity bounds? In prac-
tice, today, most of the AES studies are carried out with sig-
nificant manual involvement throughout the simulation pro-
cess and not all the AES studies are carried out to such an
extent that their fullest potential is conclusively explored.
However as the field would progress, automated exploration
of myriad of possibilities which AES simulation studies
could have would also become increasingly important. Such
automation necessarily present us with fundamental ques-
tions on the hardness and limits of such exploration.

One of well studied questions in the domain of algorithm
design and analysis is the computational complexity analy-
sis, which gives an insight on the fundamental resource re-
quirements for the problem at hand with respect to the in-
creasing input size. The precise characterization of the in-
herent resource requirements resulting from such analysis
helps an algorithm designer to devise appropriate strategies
to optimally utilize the available resources (e.g., CPU cy-
cles) and also to have an estimate of how much could be
achieved with available resources.

Among many possible complexity analysis (e.g., average
case analysis, amortized analysis etc.) the one which ap-
pears most natural and tractable for AES studies is the worst
case analysis considered in this paper. The reason is that
other than the worst case analysis, other analyses demand
either a unifying AES model or a complete characterization
of all the AES models. However, currently known and fore-
seeable AES models differ so fundamentally from each other
in terms of their syntactic structures and semantic rules that
it is extremely hard to solve either of the problems of defin-
ing a unifying AES model or complete characterization of
all possible AES models upon which such analyses could be
carried out. Also owing to these irreducible design differ-
ences, analysis for one AES model could not be generalized
in a meaningful manner for other models and thus an induc-
tive approach of building a theoretical framework starting
from specific AES case studies may not yield expected an-
swers. Therefore the only fruitful analysis, which appears
feasible is the worst case analysis, which could be performed
by rather defining a unifying framework for an observation
process independent of the underlying AES models.

Further question, which may arise to the reader is how
could these results be used in practice? To discuss this, let
us informally interpret the presented theorems:

Entity Recognition Theorem 1 could be interpreted as stat-
ing that if one has a large and complex simulation for an
AES model, it will be computationally expensive to au-
tomatically determine the kind of entities, which would
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emerge over time without externally supplied meta infor-
mation.

Evolutionary Components On the other hand the remain-
ing theorems state that if entities are structurally distin-
guishable (i.e., the case of non overlapping structures),
once they are identified in a simulation (automatically or
otherwise), determining whether evolutionary processes
are effective on these entities can be checked in computa-
tionally less-expensive manner.

Further, the parameterized form of the results could be used
to determine resource bounds for specific AES models hav-
ing estimates for the required parameters. For example, if
in a given AES model entity recognition is feasible in poly-
nomial number of time steps and observed entities do not
have overlapping structures, in that case an automatic dis-
covery of natural selection and other evolutionary compo-
nents could also be carried out using only polynomial num-
ber of time steps. On a different note, the specified axioms
and proof steps provide practical guidance on implementing
the actual observation process, which, once designed could
as well be used as reusable component for different AES
models with minor changes.

Conclusion
The work on formal characterization of the observational
processes can be seen as an attempt to fulfill the need for
explicitly separating the design of the AES models from the
abstractions used to describe their dynamic progression and
the discovery of life-like behavior. We consider evolutionary
behavior, as one such characteristic property of life-like phe-
nomena and discuss basic components for observing evolu-
tionary behavior in AES models.

Computational complexity theoretic analysis of the en-
tity recognition as well as establishing evolutionary behav-
ior reveals that an automated discovery of life-like phenom-
ena could be computationally intensive in practice and tech-
niques from the fields of pattern recognition and machine
learning in general can be of significant use for such pur-
poses.

The presented work can be further extended by con-
sidering other macro level emergent properties including
metabolic processes (Bagley et al., 1992), structural and
reactive complexity (Adami et al., 2000), self organiza-
tion (Kauffman, 1993), autonomy and autopoisis (Zeleny,
1981). Associated computational complexity theoretic anal-
ysis can be further refined and strengthened by considering
classes of models for which most of the parameters have
precise bounds compared to the generic analysis presented
in this paper.
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Extended Abstract 

In the field of consciousness studies, the phrase ‘Is there something it is like to be X?’, derived from Nagel’s ‘What is it like to be a 
bat?’ (Nagel 1974), has become an acceptable way of asking whether X is conscious. It is my contention that this is a question that 
should be asked in the context of artificial organisms of the type studied in Alife, and especially of physically embodied organisms; 
the fact that it has so rarely been asked within Alife is perhaps a legacy of the influence of behavior based ideas, which have 
emptied most such entities of internal representations and processes just as behaviorism banished them from psychology for the best 
part of a century. However, the question of whether and how some forms of consciousness can be produced in artefacts is the 
province of the new discipline of machine consciousness, which emerged from outside Alife, and is proceeding independently of it. 
I wish to bring the two together, and to do so I will ask and answer a slightly different question: if an Alife organism did have a 
form of consciousness, what would it be like? One of the advantages of asking this particular question is that we can answer 
objections that certain abilities are impossible (e.g. building and maintaining a world model) by pointing to current work in robotics 
and AI that demonstrates those abilities. 
 So what would such a consciousness be like? My claim is that, if it had developed through artificial evolution, it would be very 
like our own, and in particular it would have many of the same defects, deficiencies, and peculiarities. One problem with making 
this claim to an audience unfamiliar with the current state of consciousness research is that most people are blissfully unaware of 
the differences between objective reality and what our consciousness represents to us. I will briefly review the current state of 
knowledge in respect of this, and I will then show how distortions of time, memory, perception, and voluntary capacity may be the 
inevitable consequences of the evolution of progressively more capable entities, whether natural or artificial. This will entail a 
description of how and why world-models and self-models must arise, and of how and to what purpose they might interact.  
 An enduring problem in the study of consciousness is the explanatory gap – our continuing inability to account for the mental in 
terms of the physical (Levine 1983). I will not engage directly with this issue, but will instead avoid it by proposing what I call the 
representational principle of experience: in a system capable of conscious experience, what is experienced must be represented 
within the system, but not everything represented within the system will or can be experienced (Holland and Marques 2010). One 
attractive and much discussed possibility is that conscious experience is in some way centered around a model of the physical self. 
Using the principle, I will present evidence from both robotics and psychology that this, regrettably, is probably not the case. 
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Extended Abstract 
In the study of life, main attention has been on the concrete physical and chemical properties of organisms. The behaviour of living 
systems has also been extensively studied both empirically and by computer simulations. Sometimes relatively simple rules can 
produce complex behaviour and patterns – an aspect of life that has been successfully applied to many artificial and engineering 
systems. But a general understanding is yet to be reached about the rules and conditions that could sufficiently explain the real 
complexity of life on earth and what distinguishes life from non-living. Currently, a number of competing theories and descriptions 
exist for the common purpose of defining life. One reason behind this unfortunate situation can be lack of formalism when it comes 
to defining real living organisms. 

Cells are the basic constituent units of biological organisms. Unicellular organisms demonstrate, that a cell can also be an 
individual exhibiting all the typical descriptive properties of life. Hence, the problem of life is hereby reduced to the problem of 
understanding what cells are. This idea is far from new as the physical and chemical properties of cells have been extensively 
studied and used in many theoretical accounts of life and living. Here, however, I take a radically different approach and examine 
cells from a systems science point of view. This approach produces very different kind of data about more abstract system-level 
properties of cellular living. 

A conceptual examination of real unicellular organisms showed that they typically combine active reproductive living with 
formation of dormant resistant survival forms. Examples include bacterial quorum sensing as well as differentiation of spores in 
bacteria and protista. This kind of biphasic life was hence considered to be prototypic and a transition model describing it was 
formulated. A critical point in the model is the entry into dormancy because it can regulate the trade-off between reproduction 
efficiency and survival probability. Further examination of the model structure revealed many interesting system properties. The 
structure provides clues about relevant selection pressures suggesting that complexity increase of living systems happens along two 
specific system axes. The model is general and formal enough to be applied to various aspect of biological life. 

On the basis of this, a formal systems definition of an organism is given. It corresponds to a minimal description of a biphasic 
transition system. This description is conceptualized as an ideal organism. Ideal formalizations of more complex real organisms can 
also be derived. The ideal organism concept can be presented, examined and discussed using relatively simple expressions: open 
form vs. closed form, active state vs. passive state, directed transitions, discrete states, etc. This enables formalization to the point of 
detaching the conceptual organism from the chemical substance and physical environment of biological life. This may be of interest 
also to fields that study non-biological complex systems, which nevertheless are often thought to resemble living organisms: trading 
systems, corporations, as well as human language and societies are some examples. 
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