Research Repository

A multi-objective genetic type-2 fuzzy logic based system for mobile field workforce area optimization

Starkey, A and Hagras, H and Shakya, S and Owusu, G (2016) 'A multi-objective genetic type-2 fuzzy logic based system for mobile field workforce area optimization.' Information Sciences, 329. 390 - 411. ISSN 0020-0255


Download (4MB) | Preview


In industries which employ large numbers of mobile field engineers (resources), there is a need to optimize the task allocation process. This particularly applies to utility companies such as electricity, gas and water suppliers as well as telecommunications. The process of allocating tasks to engineers involves finding the optimum area for each engineer to operate within where the locations available to the engineers depends on the work area she/he is assigned to. This particular process is termed as work area optimization and it is a sub-domain of workforce optimization. The optimization of resource scheduling, specifically the work area in this instance, in large businesses can have a noticeable impact on business costs, revenues and customer satisfaction. In previous attempts to tackle workforce optimization in real world scenarios, single objective optimization algorithms employing crisp logic were employed. The problem is that there are usually many objectives that need to be satisfied and hence multi-objective based optimization methods will be more suitable. Type-2 fuzzy logic systems could also be employed as they are able to handle the high level of uncertainties associated with the dynamic and changing real world workforce optimization and scheduling problems. This paper presents a novel multi-objective genetic type-2 fuzzy logic based system for mobile field workforce area optimization, which was employed in real world scheduling problems. This system had to overcome challenges, like how working areas were constructed, how teams were generated for each new area and how to realistically evaluate the newly suggested working areas. These problems were overcome by a novel neighborhood based clustering algorithm, sorting team members by skill, location and effect, and by creating an evaluation simulation that could accurately assess working areas by simulating one day's worth of work, for each engineer in the working area, while taking into account uncertainties. The results show strong improvements when the proposed system was applied to the work area optimization problem, compared to the heuristic or type-1 single objective optimization of the work area. Such optimization improvements of the working areas will result in better utilization of the mobile field workforce in utilities and telecommunications companies.

Item Type: Article
Subjects: Q Science > QA Mathematics > QA75 Electronic computers. Computer science
Divisions: Faculty of Science and Health > Computer Science and Electronic Engineering, School of
Depositing User: Jim Jamieson
Date Deposited: 02 Oct 2015 14:33
Last Modified: 30 Mar 2021 23:15

Actions (login required)

View Item View Item