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a b s t r a c t

In industries which employ large numbers of mobile field engineers (resources), there is a

need to optimize the task allocation process. This particularly applies to utility companies

such as electricity, gas and water suppliers as well as telecommunications. The process of

allocating tasks to engineers involves finding the optimum area for each engineer to operate

within where the locations available to the engineers depends on the work area she/he is

assigned to. This particular process is termed as work area optimization and it is a sub-domain

of workforce optimization. The optimization of resource scheduling, specifically the work area

in this instance, in large businesses can have a noticeable impact on business costs, revenues

and customer satisfaction.

In previous attempts to tackle workforce optimization in real world scenarios, single ob-

jective optimization algorithms employing crisp logic were employed. The problem is that

there are usually many objectives that need to be satisfied and hence multi-objective based

optimization methods will be more suitable. Type-2 fuzzy logic systems could also be em-

ployed as they are able to handle the high level of uncertainties associated with the dynamic

and changing real world workforce optimization and scheduling problems.

This paper presents a novel multi-objective genetic type-2 fuzzy logic based system for

mobile field workforce area optimization, which was employed in real world scheduling prob-

lems. This system had to overcome challenges, like how working areas were constructed, how

teams were generated for each new area and how to realistically evaluate the newly suggested

working areas. These problems were overcome by a novel neighborhood based clustering al-

gorithm, sorting team members by skill, location and effect, and by creating an evaluation

simulation that could accurately assess working areas by simulating one day’s worth of work,

for each engineer in the working area, while taking into account uncertainties.

The results show strong improvements when the proposed system was applied to the work

area optimization problem, compared to the heuristic or type-1 single objective optimization

of the work area. Such optimization improvements of the working areas will result in better

utilization of the mobile field workforce in utilities and telecommunications companies.
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1. Introduction1

For large companies with high numbers of mobile staff, efficiency can have a significant impact on many areas of the business,2

most importantly operation costs and revenue. This particularly applies to large utility companies that provide services such as3

water, electricity or telecoms.4

One area of efficiency that is key is the optimization of allocating engineers to available tasks. Assigning each engineer the5

right set of tasks can be crucial in increasing the amount of tasks completed satisfactorily across the organization. The increase in6

completed tasks can lead to the improvement of customer satisfaction, as customers have to wait less time for services to be de-7

livered to them. This also has the potential to increase revenue as there is more capacity to take on new customers. Furthermore,8

the increased utilization of the engineers has the potential to lower costs, as this will mean using the existing set of engineers9

to execute the given tasks within their working hours, rather than paying more money for overtime expenses or hiring external10

workforces to complete the given tasks [17,23].11

A way in which the utilization of the engineers can be improved is by optimizing the area the engineers are assigned to. These12

areas, known as working areas (WAs) or work locations (WLs) [23] create the boundaries in which groups of engineers (teams)13

work within. These boundaries contain geographical areas and generate demand (tasks) for the engineers. However they also14

restrict the tasks that can be allocated to the engineers. If the WAs are not optimal, this will have a direct impact on the overall15

resource utilization.16

In [17] the work revolves around a genetic fuzzy approach to assigning tasks to resources. However it does not look at the17

designs of the WAs the engineers work in. It does not generate new teams and it does not take into account factors such as18

travel or the imbalance of hours between the WAs. So this work greatly expands on the concept of workforce optimization but19

in a number of different ways, meaning the work noted in [17] could lead to sub-optimal solutions because it does not aim to20

optimize all the necessary factors that contribute to an engineer’s utilization.21

The overall structure and size of a WA can depend on the organization’s management structure. As a number of WAs may be22

grouped together to form a region for the organization’s higher level managers to oversee. This type of organization structure is23

a tree structure and is very common, as it is the same structure that is used in the military.24

Fig. 1 illustrates an example of how the United Kingdom (UK) may be split up into areas and the management structure in25

place to oversee the operations of these areas. In this example, the director is responsible for 3 regional managers. The South26

UK regional manager has N number of sub-region managers (indicated by the dashed line) they are responsible for. A sub-27

region manager is responsible for N number of branch managers (indicated by the dashed line). Finally, the branch managers are28

responsible for a team of engineers which is divided into sub teams. These sub teams operate in their respective working areas,29

there can be between 1 and N number of WAs (indicated by the dashed line in Fig. 1).30

The combination of the geographical working areas, the management structure and resource planning all contribute to the31

organization’s efficiency and therefore needs to undergo an optimization process. This is to increase the efficiency with lower32

costs, as well as reducing travel costs or time dependent penalties and increasing the demand satisfaction. There are other33

secondary benefits involved with an optimized organizational structure, including the reduction of the organization’s ecological34

impact (via less travel) and improved working conditions for engineers and managers.35

Given the potential benefits of increasing an organization’s efficiency, there have been a number of methodologies inves-36

tigated to tackle the problem of optimizing workforce scheduling where heuristic techniques are widely applied. However a37
Fig. 1. Management tree structure example.
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rute force or exhaustive search method will not find a good solution in good time. These problems are known as combinatorial

ptimization (CO) problems [27] and hence heuristic optimization techniques tend to lead to suboptimal solutions which con-

der only single objectives.

Algorithms designed to tackle CO problems usually aim for a metaheuristic approach. Metaheuristics are algorithms that

ttempt to find a solution that is good enough at solving the problem [4,20]. This is most applicable in an organization with a

rge mobile field workforce.

A common metaheuristics approach to tackling these large scale and complex optimization problems is genetic algorithms

As) [3,13,25]. When using a GA there needs to be a way of testing how effective the created solution is at solving the problem. A

ood way to do this is to run the solution through a simulation. For WA optimization this would be a simulation of how effectively

sks would be completed given any setup of WAs. This would require calculating the path engineers would take to complete

sks so their estimated travel distance and time can be calculated. This essentially links into the travelling salesman problem

SP).

The goal of the TSP is for a salesman to visit all cities in a given set only once and end up at the starting city. This has to be

one in the shortest distance (minimum cost). However the number of potential paths increases exponentially with the increase

the number of cities the salesman has to visit [18]. Minimizing travel distance is not only a computationally complex problem,

is a real world constraint. The engineers in the real world will always take the shortest route where possible; this route is

sually provided by their global positioning system (GPS) or familiarity with the WA. It is unlikely an engineer will visit a job

cation twice on two separate occasions. If one street has two jobs to be completed, the engineer will complete these jobs one

fter another. Instead of leaving the location after the first job and coming back to do the second.

Given the complexity and multiple objectives of these large scale optimization problems, traditional single objective genetic

lgorithms may not be appropriate. This is because they fail to take into account the conflicting nature some of the objectives

ay have. One way of solving this problem is to use multi-objective genetic algorithms (MOGAs).

In previous attempts to tackle workforce optimization in real world scenarios, single objective optimization algorithms em-

loying crisp logic were employed. So we can use these as a benchmark to compare against our proposed system. The advantage

f this is that we can test both the multi-objective algorithm against the single objective algorithm. We can also test the impact

pe-1 and type-2 fuzzy logic as when compared against the crisp logic. We can then also compare how the multi-objective

pe-2 fuzzy logic system compares to the single objective crisp logic solution. As a result we can compare the impact of each

roposed improvement over current methods.

One popular MOGA is the non-dominated sort genetic algorithm II (NSGA-II) [2]. The benefit of using such an algorithm is

at each objective specified is compared directly between solutions. Tackling a multi-objective problem using a single objective

ased algorithm may hinder the exploration of the search to find the best solution [22] and thus lead to a sub-optimal solution.

In business processes there are many objectives to consider. Many of which are conflicting objectives, but multi-objective

lgorithms can help to find suitable solutions when applied business processes [26]. MOGAs have been shown to improve on

e results of Single objective GAs in scheduling problems [28]. This is beneficial to WA optimization because scheduling forms a

rge part of the evaluation process. This means other single objective only type algorithms, such as bacterial foraging algorithm

FA) and differential evolution (DE) cannot be used, as for a fair assessment there needs to be a comparison between the single

nd multi-objective versions of the same algorithm. This effectively leaves us with a GA and MOGA like NSGA-II or partial swarm

ptimization (PSO) and multi-objective particle swarm optimization (MOPSO).
MOPSO can find a solution quicker and perform relatively well however NSGA-II can find more optimal solutions because it

n maintain a good variety of solutions when compared to MOPSO [24]. The variety of solutions is especially important for the

roposed problem as it is a higher-order multi-objective problem in a real world environment, so the diversity of solutions and

liability can explore more of the search space.

Higher-order multi-objective problems are not explored as much as bi-objective problems. For example in [22] a variant of

e MOPSO is compared against NSGA-II using the same predefined problems (SCH, FON, ZDT1, ZDT2, ZDT3 and ZDT6) as [2]

sed to test the performance of NSGA-II against other algorithms. However due to the proposed problem being a higher-order

ulti-objective problem and is restricted by real-world constraints, we would not be able to confidently say that our proposed

roblem would gain the same benefits over NSGA-II as described in [22] by using a MOPSO.

Another area that aims to improve the solutions generated for the WA optimization problem is fuzzy logic. The reason fuzzy

gic should be applied to WA optimization is the potentially high level of randomness and uncertainty which face the problem

f WA optimization in changing and dynamic environments, for example:

• Uncertainties in the data used for optimization, as the data used is collected or estimated from real world data captured from

sensors which are subject to noise and impression.

• Uncertainties on the available skills per day due to engineers falling sick or going on holiday.

• Estimated travel times and distances. The travel time between jobs is estimated based on the time given by a route planner.

The times and distances given may not reflect road works, traffic collisions, toll roads or rush-hour traffic.

• Estimated job completion times. The average time to complete a job of a particular type is used to estimate the job completion

time. However each engineer has their own rate of efficiency that is not used.

There are a number of examples where real world problems use genetic algorithms to solve the issues presented [21,31,32].

here are also examples of multi-objective GAs being used to solve real world problems [1,30] and there are also examples where

ulti-objective genetic algorithms have been combined with fuzzy logic to improve the results associated with a non real-world
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Fig. 2. (a) Regional areas. (b) WAs within a sub-region.

application in a normal TSP [29]. However none of the existing solutions which employed multi objective GA for real world WA

optimization employed type-2 fuzzy logic.

The introduction of fuzzy logic can potentially improve the optimization because fuzzy logic can be used to handle the rea

world uncertainties. However type-1 fuzzy logic systems (FLSs) cannot fully handle the high level of uncertainties associated

with the real world dynamic and changing environments as the type-1 FLS employ the crisp and precise type-1 fuzzy sets. Type

2 FLSs can handle high uncertainty levels as they employ type-2 fuzzy sets which provide through their footprint of uncertaint

(FOU) and third dimension additional degrees of freedom to enable handling higher uncertainty levels. There have been notabl

examples of type-2 FLSs outperforming the results of type-1 fuzzy logic system [6,8,14].

This paper presents a novel multi-objective genetic type-2 fuzzy logic based system for mobile field workforce area opti

mization, which was employed in real world scheduling problems. The reason for the creation of this type of system was that t

accurately take into account all the business objectives of resource optimization, a multi-objective approach is needed. This i

because as a single objective approach will lead to suboptimal solutions as it cannot take into account each objective separately

As fuzzy logic performs well at handling real-world uncertainties, this was also integrated to improve the results. Given thes

constraints the strongest option was to build a multi-objective type-2 fuzzy logic system.

This system had to overcome challenges, like how working areas were constructed, how teams were generated for each

new area and how to realistically evaluate the newly suggested working areas. These problems were overcome by a nove

neighborhood based clustering algorithm, sorting team members by skill, location and effect, and by creating an evaluation

simulation that could accurately assess working areas by simulating one day’s worth of work, for each engineer in the workin

area, while taking into account uncertainties.

The results show significant improvements when the proposed system was applied to the work area optimization problem

as compared to the heuristic or type-1 single objective optimization of the work area. Such optimization improvements of th

working areas will result in improving the utilization of the workforce.

Section 2 will present more details on the problem description of WA optimization. Section 3 will provide high level overview

on type-2 FLSs. Section 4 will present a high level overview on the employed MOGA NSGAII. Section 5 will present the proposed

multi-objective genetic type-2 fuzzy logic based system for mobile field workforce area optimization. Section 6 will present th

experiments and results while Section 7 will present the conclusions and future work.

2. Overview of the work area optimization problem

2.1. Overview on work areas

The current problem concerns the optimization of the working areas in which the engineers are constrained. Large organiza

tions usually split up the territory they work within into regions and sub regions for the purpose of management. At the lowes

level, the areas are known as working areas (WAs) which are made up of a collection of service delivery points (SDPs). These SDP

serve domestic and commercial properties by connecting these properties to services such as electricity, gas, water or telecoms

depending on the service the organization provides. These SDPs generate demand for services and create tasks for engineers

Fig. 2a illustrates how the UK might be subdivided into regions.
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Fig. 2b shows a sub region, which might be operated by a branch manager. This area is divided into 5 WAs with the groups of132

SDPs shown for each. It is the grouping of these SDPs that needs to change when finding the most optimal WAs. Note that high133

density areas are smaller than rural areas. This is because the WAs need to be balanced in terms of work where high density134

urban areas provide more work per SDP than low density rural areas. The goal is to have the engineers service as many tasks as135

possible at the lowest cost.136

2.2. Objectives and constraints137

The WA optimization process has a number of objectives which need to be satisfied as follows:138

• Maximize coverage: Coverage is the amount of tasks that are estimated to be completed. This is measured in hours. In Eq. (1)139

this is represented at the sum total of all engineers completed work (Ecw).140

∑Ecw

(1)

• Minimize travel: Minimizing traveling distance increases the amount of available time for each engineer and also decreases141

costs. However minimizing travel directly conflicts with maximizing coverage. This is because an engineer (in the majority of142

cases) will be required to travel to each task. As coverage increases, travel also increases. In Eq. (2) this is represented as the143

sum total of all engineers travel distance (Etd) divided by the sum total of engineers (E) as this is represented as average travel144

per engineer.145

∑Etd

/∑E
(2)
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• Maximize utilization: Utilization is the percentage of time an engineer is completing tasks. Unutilized time is when the

engineer is idle or traveling. In Eq. (3) this is the sum total of engineer completed work (Ecw) divided by engineer available

time (Eat), this is then divided by the sum total number of engineers (E) to get the average utilization.(∑Ecw
/

Eat

)/∑E
(3)

• Maximize area balancing: WAs should be evenly balanced with the amount of work they contain. This means there will be

smaller WAs for urban areas and larger WAs for rural areas. Balancing is measured in hours and is represented in Eq. (4). It is

the difference between the largest (WAL) and smallest (WAS) WAs in terms of hours of work.

WAL − WAS (4)

There are a number of constraints that need to be looked at and included in the optimization. For example, all of the engineers

ill not all be working at all times (as some of them might fall sick, have holidays or day offs), so there is a degree of workforce

rinkage that needs to be taken into account. Of the engineers that remain, they can only be assigned tasks that they are qualified

complete. Of these tasks, each engineer has preferred tasks that they work on. Taking this into account can help improve the

verage time taken to complete the tasks.

Another constraint is that each engineer is limited by the amount of work they can do each day (travel time has to be included

this). In addition, each team has to be equal in size and WAs should not cross large rivers or other geographical obstacles.

. Overview on type-2 fuzzy logic systems

Fuzzy logic systems (FLSs) have been credited with providing white box transparent models which can handle the uncertainty

nd imprecision. However, the vast majority of the FLSs were based on type-1 fuzzy logic systems which cannot fully handle or

ccommodate the uncertainties associated with changing and dynamic environments. Type-1 fuzzy sets handle the uncertainties

ssociated with the FLS inputs and outputs by using precise and crisp membership functions [12]. Once the type-1 membership

nctions have been chosen, all the uncertainty disappears, because type-1 membership functions are totally precise [6,12].

The uncertainties associated with real world environments cause problems in determining the exact and precise antecedents

nd consequents membership functions during the FLS design. Moreover, the designed type-1 fuzzy sets can be sub-optimal for

iven environment conditions. However due to the change in the individual engineer circumstances and the uncertainties present

the surrounding environments, the chosen type-1 fuzzy sets might not be appropriate anymore. This can cause degradation

the FLS performance and we might end up wasting time in frequently redesigning or tuning the type-1 FLS so that it can deal

ith the various uncertainties faced. Type-2 FLSs which employ type-2 fuzzy sets can handle such high levels of uncertainties to

ive very good performances.

A type-2 fuzzy set is characterized by a fuzzy membership function, i.e. the membership value (or membership grade) for

ach element of this set is a fuzzy set in [0,1], unlike a type-1 fuzzy set where the membership grade is a crisp number in [0,1]

2]. The membership functions of type-2 fuzzy sets are three dimensional and include a Footprint of Uncertainty (FOU), it is the

ew third-dimension of type-2 fuzzy sets and the footprint of uncertainty that provide additional degrees of freedom that make

possible to directly model and handle uncertainties [6,12]. As shown in Fig. 3a, the Interval Type-2 (IT2) fuzzy set Ã can be
lease cite this article as: A. Starkey et al., A multi-objective genetic type-2 fuzzy logic based system for mobile field workforce
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Fig. 4. Type 2 FLS [16].

represented in terms of the upper membership function (UMF) (denoted by μ̄
Ã
(x), ∀x∈X ) and the Lower Membership Function

(LMF) (denoted by μ
Ã
(x), ∀x∈X ) as follows:

Ã =
∫

x∈X

[∫
u∈[μÃ

(x),μ̄Ã(x)]
1/u

]/
x (5

The UMF and LMF are bounds for the FOU(Ã) of an IT2 fuzzy set Ã. As shown in Fig. 3b, in an IT2 fuzzy set the secondar

membership function is equal to 1 for all the points in the primary membership for ∀x∈X .

Fig. 4 shows an overview on the type-2 FLS where the crisp inputs are fuzzified to input type-2 fuzzy sets which are fed to th

inference engine which maps the input type-2 fuzzy sets to output type-2 fuzzy sets using the rule base. The output set is then

processed by the type-reducer in the type reduction section which generates a type-1 output set. In this paper we use the cente

of sets type-reduction, shown in Eq. (6), as it has a reasonable computational complexity that lies between the computationall

expensive centroid type-reduction and the simple height and modified height type-reductions which have problems when onl

one rule fires [12].

Ycos(x)k = [ylk, yrk] =
∫

y1
k
∈[y1

lk
,y1

rk]
. . .

∫
yM

k
∈[yM

lk
,yM

rk]

∫
f 1∈[ f

1
, f̄ 1]

. . .

∫
f M∈[ f

M
, f̄ M]

1/

∑M
i=1 f iyi

k∑M
i=1 f i

(6

After the type-reduction process, the type-reduced sets are defuzzified (by taking the average of the type-reduced set) so a

to obtain crisp outputs. This is shown in Fig. 4. More information regarding the interval type-2 FLS and its applications can b

found in [7,9,10,15,16].

4. Overview on single and multi objective genetic algorithms

4.1. Single objective GAs

Genetic algorithms (GAs) are based on Charles Darwin’s theory of natural selection and evolution. In GAs, over time a pop

ulation, or species, will adapt to its environment. This adaptation takes place through the idea of survival of the fittest. Th

individuals in the population that have characteristics most suited to its environment are the individuals most likely to survive

Thus these characteristics are passed on to the next generation of the species. The individuals less suited to the environment d

not survive so these characteristics are lost in the next generation.
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Fig. 5. GA flow.

In genetics each individual has a chromosome (or multiple chromosomes) where a chromosome is a collection of genes. These197

genes are what determine the characteristics of the individual. When the next generation of the species is created, genes from198

two parent individuals will be combined to determine the characteristics of the child [11]. Fig. 5 shows the process of a standard199

GA. The first step is to initialize the population. This is done by creating N solutions and randomly assigning the genes of each200

solution.201

These genes are then evaluated to see how suited to the environment they are. Each solution (individual) is then given a score202

to represent the solution fitness. Once each solution has been evaluated. The evolution process can begin. The first step in this is203

the selection of solutions to crossover. There are a number of selection operators out there such as tournament or roulette [19].204

In tournament selection a subset of solutions from the population are chosen. Then the solution with the highest fitness will be205
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osen as the first parent. The process is repeated to find the second parent.

Once two parents have been chosen they will crossover their genes using a crossover operator (1 point, 2 point, uniform) [19].

rossover will generate 2 child solutions that will be added to the new population set. Every so often one of the genes in a child

lution will randomly change, this is known as mutation. Once enough children have been generated and the new population

t is the same size as the old population set, the old population will die off and the new population will go back to the fitness

valuation stage.

The stopping criterion decides when the GA process should stop. This can be done by setting the maximum number of gen-

rations or waiting until convergence happens. Convergence is when all solutions in the population are the same and have

onverged’ on the same point in the search space. If the criterion is met the best (most fit) solution will be returned, else the GA

ill loop back round for another generation.

Whenever one of the generated solutions is being evaluated by the genetic algorithm it uses a fitness function. If there is one

bjective to be optimized in the GA, then the fitness function will reflect the objective to be optimized. However if there is more

an one objective, then the objective values need to be combined using a function to give a single fitness value. If the objectives

re complementary or do not have any correlation then the objective function will be sufficient in some cases. In cases where the

bjectives conflict then the use of a fitness function starts to show its weakness. Some examples of conflicting objectives include:

◦ Minimizing cost while maximizing production

◦ Minimizing carbon dioxide (CO2) emissions while maximizing transport capacity

◦ Maximizing customer satisfaction while minimizing staff

The problem with these conflicting objectives is that neither can be 100% satisfied without causing significant damage to

e other objective. For example we can easily minimize costs to 0, however production would also be 0. This situation is not

cceptable, especially in real world problems.

The following is an example of how using a single objective GA to solve multiple objectives can be ineffective at tackling

ll objective. Imagine a problem which has three objectives whose current values (original solution) are A:5, B:5, C:10. B and C

re conflicting objectives where more B gives more C with a linear relationship. A and B are maximization objectives and C is a

inimization objective. The fitness function would be written as follows:

Fitness = A.B

C
= 2.5 (6a)

ere are some possible solutions that could come from the single objective GA with this fitness function:
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Table 1

Possible solutions.

Possible solution A value B value C value Fitness

1 6.00 8.00 12.00 4.00

2 4.00 4.00 6.00 2.67

3 4.00 2.00 3.00 2.67

4 9.00 10.00 15.00 6.00
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Fig. 6. Fronts in multi-objective results [5].

In Table 1, Solutions 1 and 4 have worse C than the original solution (as it is higher and this is a minimization objective) bu

the solutions are considered better in terms of their fitness value. Solutions 2 and 3 have worse A and B than the original but th

solutions are considered better. All of the solutions presented above are deemed better than the original solution fitness valu

with the fitness function, however none of the solutions optimize in all of the objectives when compared with the original. Thi

example illustrates why problems with multiple objectives should use a multi-objective GA.

4.2. Multi-objective genetic algorithms

Multi-objective genetic algorithms (MOGAs) compare the results of each objective between solutions. This means that th

value for the first objective for one solution can be compared to the value for the first objective of another solution explicitly. In

this way it is clear which solution is stronger in this objective, rather than having all values amalgamated into one value and no

really knowing how the objective values compare.

Given that each objective is compared between solutions there needs to be a method of deciding if one solution is bette

than another. One way of doing this is by ‘Domination’ as is done in the non-dominated sorting genetic algorithm II (NSGA-II

[2]. Domination determines if one solution dominates another by setting out conditions. These conditions are as follows (t

determine if solution A dominates solution B):

1 Solution A has no objective value that is worse than the respective objective value in B.

2 Solution A has at least one objective value that is better than the respective objective value in B.

If both of these conditions are met it would be determined that A dominates B, meaning solution A is the better solution. I

each solution is compared with every other solution in the population in the same way, the domination count can be calculated

The domination count is the number of solutions that dominate the current solution.

Once the domination count has been calculated a simple sorting algorithm can be used to order the solutions from best t

worst. The solutions with a domination count of 0 (no solutions are deemed better) are grouped together to form the Paret

front. This is the set of solutions that are all deemed to be the best and selecting any of these solutions will be the most suitabl

for the problem. All other fronts (sets) are made up of the other solutions and are grouped based on their domination count.

Fig. 6 illustrates what the fronts may look like in a MOGA with two minimization objectives. Fig. 6 also shows an infeasibl

point which is a point that is not possible given the constraints of the objectives. A benefit of having a Pareto front set of solution
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Fig. 7. Multi-objective flow diagram [5].

is that it gives the user a choice of solutions. Given the nature of multi-objective problems different solutions with different257

strengths may be suitable at different times. The user can then select the solution they find most appropriate for the situation,258

knowing there is no better solution available and the other objectives (although they may not be as good as other solutions on259

the Pareto front) are the best they can be given the current priority and constraints.260

The process of a multi-objective genetic algorithm, specifically NSGA-II, is laid out in Fig. 7. It starts off with generating a261

population of size N. This is done in the same way as explained in the single objective algorithm. Chromosomes are created for262
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ach new member of the population where each of these chromosomes has a randomly generated set of genes.

Once there are N members in the new population, each one will be evaluated in each objective. The results for each objective

ill depend on the characteristics of the solution, which are determined by its genes. However unlike the single objective GA

ach objective value is stored separately and is not combined within a fitness function. The population is then ranked using

e NSGA-II domination count where members of the population with a count of 0 will belong to the Pareto front (Illustrated

reviously in Fig. 6).

Once the new population has been ranked the process then moves on to the evolution stage. This consists of 3 main steps;

lection, crossover and mutation. The aim of evolution is to create a child population, with the hope that the child population

t holds better solutions than the parents. Selection is the process of selecting the parents to carry forward to the crossover

age. We will use tournament selection here to illustrate the difference between single objective GAs and multi-objective GAs.

ournament selection randomly picks a small subset of the population to compete as described previously in Section 4.1. However

ere is no fitness function, so there are no fitness values to compare. The comparison is down to the rank (or domination count)

f the individual. This is because if the first solution is on the Pareto front and the second is on the 2nd front we know that

e first solution dominates the second and wins the tournament. If there is a case of the two solutions having the same rank,

en they are evenly matched. So in this case randomly select between the two. The two winning solutions from the tournament

lection are carried through to the crossover stage.

Crossover and mutation processes are the same as in the single objective GA. Once all the new children have been generated,

ey all need to go through the same evaluation process as the parents. Once the child population has been created there are

ow two populations of size N (the parent population and the child population). These populations need to be combined and

nked. Fig. 8 illustrates this process where both the child and parent populations are combined together to create a population

f size 2N. Then this combined population needs to go through the ranking process. This process of ranking is a natural way of

aintaining elitism.

When the combined population is ranked it no longer matters which solutions were parents and which were children. It only

atters which solutions dominate. The population of size 2N cannot be taken through to the next generation. So the combined

opulation is cut down into the new population. This is done by going through the combined population in rank order, adding

lutions to the new population and then stopping once the new population is of size N.

Multi-objective GAs, like NSGA-II, have stopping criteria just like single objective GAs. Convergence and max generation are

erfectly acceptable criteria for this. If the criterion has not been met the GA will go back to the evolution stage and create a new
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Fig. 8. Creating a new population form the combined population [5].

child population set. If the stopping criterion has been met then the GA stops and the current set of solutions in the Pareto front291

are reported. If there are many solutions in the Pareto front, it will be up to the user or a subsequent algorithm to select which292

solution is the most appropriate for the current environment.293

5. The proposed multi-objective genetic type-2 fuzzy logic based system for mobile field workforce area optimization294
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5.1. The proposed system overview

Fig. 9 provides an overview on the stages of the proposed multi-objective genetic type-2 fuzzy logic based system for mobil

field workforce area optimization. The first step in this system is to collect the list of engineers and the list of SDPs to optimize

The engineers and SDPs will already be grouped together into teams and patches (WAs) from their current set-up, so the system

organizes the entities into the groupings from the data presented.

The system now has the current setup of patches with their respective teams. This configuration is then put through the one

day simulation to assess how the current setup is performing. The one-day simulation cycles through each engineer and assign

them tasks based on their skills and the patch they are in. The simulation will attempt to assign the closest tasks to the engineer

Once a task has been assigned it will be removed from the task list.

Each engineer will be assigned tasks until their time has been filled or there are no more tasks available. Each engineer i

allocated 7 h and each task has an estimated completion time attached to it. When an engineer is assigned a task this time wil

be added to their utilized time, while the time it takes to travel to the task will be added to the engineers travel time (part o

the engineers unutilized time). The distance traveled is also stored per engineer. The simulation will stop assigning tasks onc

the utilized time combined with the travel time is over 7 h. The simulation will also stop assigning tasks if there are no mor

available tasks for that engineer to complete. Any remaining time an engineer has will be idle time, which is part of the engineer’

unutilized time.

The one-day simulation step is where the Task Allocation Fuzzy Logic System can be applied. When choosing which task t

assign to an engineer the distance and time to the task is fuzzified. The number of tasks at the SDP is calculated and fuzzified

This helps the simulation take into account the uncertainty of the travel time and to direct the engineer to SDPs with more tasks

More on this can be found is Section 5.2.

Once each engineer has been cycled through, the system will calculate the objective results. The first value to calculate is th

coverage. This is the total amount of hours of completed work. This is calculated be summing all the utilized time of the engineers

The second value is the total travel distance. This is calculated by summing all the total travel distances of the engineers. Th

third value is utilization, this is calculated by dividing the utilized time of an engineer by the max time (7 h). This value is then

expressed as an average across all engineers. The final value is balancing which adds up all the task time per patch (WA) and find

the number of hours different between the largest patch and smallest patch. Ideally this difference value should be 0, meanin

perfect balancing.

Given that the current setup has been evaluated, these values can be used as a simple benchmark for the optimization proces

to improve upon. The system gives the user the option to adjust any of the GA’s parameters before the optimization process i

started.

When the GA is started it will create a new population of solutions. Each member of the population has P genes, where P i

the number of patches to optimize for. Each gene is the center location of a patch and the rest of the patch will be constructed

from these points.
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Fig. 9. The proposed multi-objective genetic type-2 fuzzy logic based system for mobile field workforce area optimization.

Each of the solutions needs to be evaluated. The first step to this is building the patch setup from the center points. There

re certain restrictions that apply to the patch construction. SDPs in the same patch cannot be separated by rivers or by other

atches. The patch construction works in the following way: Each center point works out who its neighboring SDPs are, this is

rovided by a precomputed neighborhood index. This neighborhood index was generated by pairing together SDPs that share

e same boarders.

Then out of these neighbors, work out which is the closest. If no other patch has deemed that SDP to be the closest it will be

dded to the patch. The next patch will do the same. Each time a SDP is removed from the list and added to a patch, each patch

as to recalculate who its available neighbors are. This is done by retrieving the neighbors of the current WA’s SDPs from the

atrix, then removing SDPs that have been added to any WA. The removal of SDPs already added means that SDPs cannot be

istakenly re-added.

The patch construction is where the Patch Construction Fuzzy Logic System can be applied. When it is being decided if an

DP should be added to a patch, the list of all neighboring SDPs will be passed through the FLS whose inputs are the size of the

DP (in hours), the size of the patch (in hours) and the distance to the SDP from the center point. More on this can be found in

ection 5.3.

Once the patches have been constructed from the center points, the teams for each patch need to be assigned. This first step

this process is to assign each engineer to the patch they live in (or are closest to, if they do not live in any patch). This will

sually mean the teams are extremely unbalanced as city/town patches will have overpopulated teams and rural patches will

ave underpopulated teams.

So the next step is to balance out the teams. This is done by a bidding process. The system will cycle through each over-

opulated patch and ‘sell off’ its engineers to the highest bidders. Each underpopulated patch will cycle through the current

verpopulated patch’s engineers and give each a bid value. If there are no other bids for this engineer they will move over to the
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Fig. 10. Distance to task type-2 fuzzy sets.

Fig. 11. Jobs in SDP type-2 fuzzy sets.

underpopulated patch, if there are other bids the highest bid wins. The bid value is made up of the distance the engineer is from349

the underpopulated patch, how much their skills are needed and the level of under-population the patch is at. Once the bidding350

process is complete the engineers should be spread as best as possible between the patches.351

The newly constructed patches and teams will then go through the same one-day simulation process as the original setup352

(also using the Task Allocation FLS if required) if the generated solution is valid. There are certain criteria that if not met the353
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solution will be rejected or altered before the one day simulation is run on it. This includes the number of patches constructed

As the user specifies the number of patches and each gene represents a patch center, any solution cannot have two genes tha

represent the same center point. Also, all SDPs have to be added to the patch design, so the list of unassigned SDPs has to b

empty before the simulation can be run. If there are any SDPs on the list they will be assigned the same patch as their closes

neighbor.

Once the solution has passed the checks and is deemed valid, the objective values for this solution will be calculated. The GA

will carry out the ‘Solution Evaluation’ for every solution it generates. More about how the single objective and multi-objectiv

algorithms affect the optimization can be found in Section 5.4.

With each solution in the population evaluated, regular GA process is resumed. The stopping criterion that is currently bein

utilized in the system is the number of generation. Once the GA has stopped the results are reported and output files can b

generated. The output files list each engineer and their newly assigned patch and the structure of these new patches.

5.2. Fuzzy task allocation

Figs. 10–12 show the interval type-2 fuzzy sets used to decide which tasks to pick up. The average distance to a task (AD in

Fig. 10) is calculated for the area being optimized. This is done before the initial one-day simulation when the teams and SDP

are first loaded. The average amount of work in an SDP for the area (AW in Fig. 11) is also calculated at this point. Fig. 12 show

the output of the interval type-2 FLS which represents the probability of picking a task. This interval type-2 FLS uses the cente

of sets type-reduction as it has a reasonable computational complexity.

The footprint of uncertainty, shown in Figs. 10–12 as the gray areas, is a variable. The uncertainty value is given to the system

as an input and the footprint extends each side of the base point by the required percentage. The percentage of uncertainty i
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Fig. 12. Probability of picking task type-2 fuzzy sets.

Table 2

Task allocation rule base.

Distance to task Tasks at SDP Probability of choosing SDP

Low Low Average

Low LessAvg Average

Low Average MoreAvg

Low MoreAvg High

Low High High

Average Low LessAvg

Average LessAvg LessAvg

Average Average Average

Average MoreAvg MoreAvg

Average High MoreAvg

High Low Low

High LessAvg Low

High Average Low

High MoreAvg LesAvg

High High Average
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variable in the experiments and results for this can be found in Section 6. The base points of the membership functions were

ned by running experiments to find the most suitable setup.

The values for the average distance (AD) and average work (AW) had to be calculated so that their values were relative to the

rea that was being optimized. For example an average distance per job in London might be 100 m but in the Scottish Highlands

is value might be 5 km or more. Having the base points relative to the area is important, else input values will be wrongly

tegorized relative to the local area.

The reason for the triangular and trapezoid membership functions is that the alternative would be to have bell-shaped mem-

ership functions, created by using standard deviation. However due to the need to generate the membership functions dynami-

lly, it is faster to use the triangular and trapezoid membership functions generated from calculated base points and scale them

ccordingly. Table 2 shows the list of rules used in this FLS.

.2.1. The following is an example of how this fuzzy system would work

The system wants to find the next best SDP to send an engineer to. So the system finds out that the average amount of work in

ll SDPs in the WA. This is 5 h. The average distance to a task is calculated to be 2 km. The current engineer has 3 SDPs to choose

go to next. The first is 3 km away with 5 h worth of work. The second is 1 km away with 6 h worth of work and the third is

km away with 8 h worth of work.

Given these options the fuzzy system would classify the first option as High distance and Average amount of work giving a

w probability of choosing that SDP. The second option would be classified as Low distance and More than Average amount of

ork giving a high probability of choosing the SDP. The third option would be classified as Average distance and High amount of

ork giving a more than average probability of being chosen. With these 3 results their output defuzzified values are compared

hich would give option 2 the highest value and this SDP would then be assigned to the current engineer.

.3. Fuzzy patch construction

Figs. 13–15 show the type-2 fuzzy sets that are used in the fuzzy patch construction. When the area to be optimized is initially

aded up, the average patch size in hours of work, patch average (PA), is calculated along with the average SDP size (SDPA). This
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Fig. 13. Patch size average type-2 fuzzy set.

Fig. 14. SDP size average type-2 fuzzy set.
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Fig. 15. Average distance type-2 fuzzy set.

is because these values can vary a lot between urban and rural areas. Hence, for London the average SDP may carry 500 h worth

of work, but in the Scottish Highlands there may only be an average of 50 h worth of work, or even less.

The base points of the membership functions were tested to see if reasonable categorization of SDPs and patch sizes wer

given. As before, the reason for the triangular and trapezoid membership functions is the alternative would be to have bell

shaped membership functions, created by using standard deviation. Due to the need to generate the membership function

dynamically it is faster to use the triangular and trapezoid membership functions. This interval type-2 FLS also uses the cente

of sets type-reduction, again because it has a reasonable computational complexity.

The task of this fuzzy logic system is to more sensibly add SDPs to patches (WAs). The center points of the patches are provided

to the fuzzy system (these center points are the initial SDPs allocated to each patch). The size of the patch is re-calculated each

time an SDP is added to it. Fig. 16 shows the type-1 fuzzy sets representing the output of the type-1 FLS which is the chance o

an SDP being added.
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Fig. 16. Add/not add type-2 fuzzy set.

Table 3

Patch construction rule base.

WA size Distance to SDP SDP size Consequence

Small Small Small Add

Small Small Average Add

Small Small Large Add

Small Average Small Add

Small Average Average Add

Small Average Large Add

Small Large Small Add

Small Large Average Add

Small Large Large DontAdd

Average Small Small Add

Average Small Average Add

Average Small Large DontAdd

Average Average Small Add

Average Average Average Add

Average Average Large DontAdd

Average Large Small Add

Average Large Average DontAdd

Average Large Large DontAdd

Large Small Small Add

Large Small Average DontAdd

Large Small Large DontAdd

Large Average Small DontAdd

Large Average Average DontAdd

Large Average Large DontAdd

Large Large Small DontAdd

Large Large Average DontAdd

Large Large Large DontAdd

This is a more sensible way of adding SDPs to patches because the alternative way is to allocate an SDP to the patch that is407

deemed closer based on travel distance. This does not take into account the size of the SDP or the size of the patch it is being408

added to. The add/not add membership functions were designed in such a way that a rule with a not add consequence would409

have more of an impact on the final outcome than an add consequence. The output values are compared between the patches,410

with the SDP being added to the patch with the highest output value. Table 3 shows the list of rules used in the fuzzy patch411
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nstructor.

.3.1. The following is an example of how this fuzzy system would work

The system wants to find the next best SDP to add to the current WA. So the system finds out that the average amount of work

all SDPs in the area to be designed. This is 5 h. The current WA is deemed to be an average sized WA based on its current total

mount of work. The current WA has 3 SDPs to choose from to add to itself. The first is 3 km away with 5 h worth of work. The

cond is 2 km away with 6 h worth of work and the third is 2.5 km away with 2 h worth of work.

Given these options the fuzzy system would classify the first option as Large distance and Average amount of work giving a

nsequence of suggesting not to add this SDP to the current WA. The second option would be classified as Low distance and

arge amount of work giving a consequence of suggesting not to add this SDP to the current WA. The third option would be

assified as Average distance and Small amount of work giving a consequence of suggesting too add this SDP to the current WA.
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Table 4

Original vs single vs multi-objective GA.Q5

Original score Single objective Multi objective

Travel (km) Balancing (h) Coverage (h) Travel (km) Balancing (h) Coverage (h) Travel (km) Balancing (h) Coverage (h)

80.00 17.00 455.00 73.86 22.28 453.25 73.20 44.70 460.59

99.00 68.00 476.00 102.17 38.21 485.64 97.39 64.38 492.11

50.00 102.00 212.00 52.55 12.13 214.73 45.86 48.40 214.74

With these 3 results their output defuzzified values are compared which would give option 3 the highest value and this SDP422

would then be added to the WA.423

After one SDP has been added the system will move onto the next WA. The WA will only get a chance to add another available424

SDP to it once all the other WAs have had a chance. It is worth noting that it does not matter how low the score is from this fuzzy425

system, the highest value always wins. This is to ensure that all exchanges are added to a WA, even if that means adding a large426

SDP to a Large WA. Ultimately this will just mean this solution will perform badly in the patch balancing objective, yet it would427

still be a valid solution as all SDPs would have been added to the design.428

5.4. Genetic algorithms429

Both single objective and multi objective genetic algorithms can be used with the system and the different results given by430

each can be found in Section 6.1. If a single objective GA is being used then the following fitness function (Eq. (7)) will be used to431

assess the solutions.432

Fitness = (Coverage × W1 ) × (Utilization × W2)

(Travel × W3 ) × (Balancing × W4)
(7)

W is the weighting of each objective, W1 is the weighting of the coverage objective, W2 is the weighting of the utilization433

objective, W3 is the weighting of the travel objective and W4 is the weighting of the balancing objective. Changing these values434

pushes the optimization to find solutions that satisfy the objectives with the higher weightings. Any weighting could be set to 0435

to remove that objective from the fitness function. If this is done, the objective value combined with the weighting defaults to a436

value of 1.437

If a multi-objective GA is being used there will be no fitness values, only each individual objective value. The output will also438

be a set of solutions (provided there is more than one solution on the Pareto front). This allows managers to pick a set up that439

is best suited bases on local knowledge that could not be taken into account by the proposed system. This adds an extra layer of440

validation.441

6. Experiments and results442

The aim of the experiments is to take an existing structure of WAs in a telecommunications domain with its current patch443

set up and teams of engineers, then run it through the optimization process to see how well the working areas get optimized.444

These experiments are then repeated with potential improvements added to the optimization to see the impact these potential445

improvements will make. The experiments involved altering the optimization process by gradually increasing the use of more446

advanced optimization methods.447

The process started by comparing the use of single and multi-objective GAs and then progressed to evaluate the effect of448

employing type-1 and type-2 FLSs. The real world tool (which is a leading tool for mobile workforce allocation) created for this449
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process is shown in Fig. 17. There are no other tools that attempt to handle the real world uncertainties or multi-objective natur

of real constraints for this type of problem. Therefore current systems lead to sub optimal performance because of this, the too

shown in Fig. 17 has been created. The tool also allows the visualization of the WAs and SDPs.

For all of the experiments both the GA and MOGA were set to carry out 20 generations and have a population size of 40

Due to the complexity in generating designs of WAs and simulating one-day, the time it took to complete one generation wa

significant enough to prevent more generations from being carried out. Both the GA and the MOGA ran with a crossover rate o

0.4 and a mutation rate of 0.05. These settings were already good in the current real-world tool that is used on a daily basis. S

these settings were kept the same for the following experiments for a fair comparison on how fuzzy logic and an MOGA would

affect those daily results.

6.1. Single vs multi-objective GAs

The goal in this first experiment was to see if the multi-objective genetic algorithm (MOGA), NSGA-II, optimized more objec

tives than the standard Single Objective Genetic Algorithm (SOGA). Where Travel is measured in kilometers (km) and balancin

and coverage are measured in hours (h).

Table 4 shows a sample of the results collected when comparing single and multi-objective GAs. The first row of results from

Table 4 shows that the SOGA optimized in travel only, when compared to the original setup of the patch. Whereas the MOGA
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Fig. 17. The mobile field workforce area optimization visualization and optimization tool.

Table 5

Addition of type-1 FLS to patch construction and job allocation.

Type Travel (km) Coverage (h) Balancing (h) Utilization (%)

A1 SOGA without fuzzy 122.63 763.74 369.16 57.03

A1 SOGA with fuzzy 133.37 952.53 170.18 71.13

A1 SOGA effect with fuzzy 8.75% 24.72% −46.10% 24.72%

A1 MOGA without fuzzy 135.70 1014.15 70.02 75.72

A1 MOGA with fuzzy 48.14 1021.36 82.19 76.27

A1 MOGA effect with fuzzy −64.53% 0.71% 17.38% 0.73%

A2 SOGA without fuzzy 123.48 624.38 310.20 61.50

A2 SOGA with fuzzy 145.87 739.75 174.01 72.97

A2 SOGA effect with fuzzy 18.13% 18.47% −43.90% 18.65%

A2 MOGA without fuzzy 165.44 799.16 74.80 78.72

A2 MOGA with fuzzy 44.90 779.90 16.19 76.82

A2 MOGA effect with fuzzy −72.86% −2.41% −71.06% −2.41%

ptimized in both travel and coverage when compared to the original. Although the SOGA did a better job of optimizing in the

alancing objective than the MOGA, neither beat the original at balancing in this case.

In the second and third rows of results the SOGA optimizes in balancing and coverage but not travel. However the MOGA

ptimizes in all objectives when compared to the original patch set up. In the SOGA results the balancing objective is better than

e MOGA result, however this is due to the fact that the SOGA has sacrificed the travel objective to reach this level of balancing.

he goal is to optimize in all objectives, the SOGA fails to do this because of a good result in one of the objectives that overrides

e poor result in another.

In the results presented in Table 4, the MOGA optimizes in more objectives than the SOGA when compared to the original

atch set up. This suggests that MOGAs are better at dealing with problems with multiple conflicting objectives.

.2. Single vs multi-objective GAs with type-1 fuzzy logic

The next set of experiments aim to assess the impact of the inclusion of type-1 fuzzy logic in the patch construction and one-

ay simulation processes. In the results shown in Table 5, there are two different areas (A1 and A2) that are optimized. Rows 1–3

ow that in area 1 (A1) when a SOGA is used and the FLSs are used, we increase the coverage by 24.72%, reduce the imbalance

etween the WAs by 46.10% and increase the utilization by 24.72%. Coverage and utilization are linked very closely together so

e rate of change of these values are almost the same, this pattern continues through all of the results in Table 5. However as a

sult of these significant improvements we do get an increase in the level of travel by 8.75%.

In rows 4–6, we see the results of the MOGA on area 1 with and without the FLSs. In this instance, we see that we get a 64.53%

duction in travel, with a slight increase in coverage and utilization when the FLSs are used. This very small increase may be due
lease cite this article as: A. Starkey et al., A multi-objective genetic type-2 fuzzy logic based system for mobile field workforce
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Table 6

Type 1 FLS vs type-2 FLS in work area optimization system.

Type (U) Travel (km) Coverage (h) Balancing (h) Utilization (%) Fitness

T1 180.30 819.33 133.28 62.93 1.83

T2 (1%) 165.22 833.72 111.47 64.03 4.60

T2 (3%) 157.25 794.94 161.30 61.06 2.82

T2 (5%) 180.30 819.33 133.28 62.93 1.83

Table 7

Progressive real world run results.

Travel (km) Coverage (%) Balancing (h) Utilization (%)

Original 172.00 71.34 68.96 63.88

Single 187.16 68.86 110.16 61.67

Multi 173.26 68.46 54.21 61.30

Multi-fuzzy T1 67.01 69.68 62.09 62.40

Multi-fuzzy T2 (tuned) 68.15 71.25 30.08 63.81

to the coverage being topped out by the MOGA (very little work left in SDPs). As the MOGA improves over the SOGA results, the483

coverage value may have already hit the upper limits, so the potential improvements that could be made by the FLSs on coverage484

are very small. Hence the much improved travel objective, as the FLSs cannot improve on coverage, they can improve on the rate485

of travel per hour of task. In this example it is the balancing objective that has suffered to the largest degree. However when486

comparing this value to the SOGA with FLSs value we still get a 51.71% reduction in the imbalance of the WAs.487

When the same experiments were run on area 2 (A2) we get similar results for the SOGA, rows 7–9 where we achieved an488

18.47% increase in coverage and 18.65% increase in utilization and a 43.90% reduction in the imbalance of the WAs.489

When we look at the MOGA results for area 2, rows 10–12, we get a 72.86% reduction in travel and a 71.06% reduction in the490

imbalance of the WAs. As a result of these very large improvements we suffer a small decrease in coverage and utilization at a491

rate of 2.41% each. Again this may be because the coverage values have hit the upper limit in the MOGA without the FLSs so there492

is little to improve upon.493

If we take area 2 as an example and compare the SOGA without the FLSs and the MOGA with the FLSs, we see 63.64% reduction494

in travel, a 24.91% increase in coverage and utilization and a 94.78% reduction in the imbalance of the WAs which is regarded495

as significant improvement in all areas and most notably in travel and patch balancing which are the 2 primary areas where the496

FLSs are applied.497

The results shown in Table 5 suggest that including the FLSs in Task Allocation and Patch Construction have a significant498

improvement on the results generated by the proposed system.499

6.3. Type 1 FLSs vs type 2 fuzzy FLSs500

The third experiment aims to test the impact type-2 FLSs have on the results. These following results include the type-1 FLS501

results and the type-2 FLS results with different uncertainty values. If the uncertainty value is 1% this means that the footprint502
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of uncertainty extends 1% (of the average value) either side of the base point.

For this experiment seeding was used in the GA to allow a more accurate comparison of the results. This is possible becaus

the GA for each run is given the same starting population and conditions, giving a more accurate reflection of how the fina

outcome is affected by the different types of FLS and uncertainty values. A single objective GA was used in this experiment s

that the fitness values can be directly compared between results and there is no ambiguity as to which result is better.

Table 6 gives a sample of the results collected for the comparison of the type-1(T1) and type-2 (T2) FLSs.

In Table 6, the type-1 FLSs gave an overall fitness value of 1.83. This is now compared with the results from the type-2 FLS

where three uncertainty values were tested. A 5% uncertainty actually gave the same result as the type-1 FLSs, this is possibl

because of the seeding and the same optimization conditions. A 3% uncertainty value significantly improved on the fitness b

54%. Finally an uncertainty value of 1% gave a fitness value of 4.60 a 151% increase over the type-1 FLSs.

The results shown in Table 6 suggest that upgrading from a type-1 FLS to a type-2 FLS can have significant improvements t

the final results. However the uncertainty values have to be tuned correctly for these results to be realized.

6.4. Progressive results

One final set of results aims to test the suggestions given by the previous experiments in one sequential real time test. Thes

results are not an average, not seeded, use the same patch, and run as if they would be in the real world. Coverage here i

expressed as a percentage of the total amount of work available.

Table 7 shows the results from the progressive tests. The original patch values are given in row 1. The first step is to optimiz

this patch with the SOGA. Row 2 shows us that on this occasion the SOGA failed to optimize in any objective. This means that th
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Fig. 18. SOGA optimization design (main city area is circled).
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Fig. 19. Multi-objective optimization.

ptimization would have to be run again and the GA setting would need to be tuned for this specific area to get a better result.

his would cause frustration to the user and cost time.

Row 3 shows us the most suitable solution from the MOGA. On this occasion the MOGA has optimized in balancing, travel is

ss than 1% worse so that can be seen as the same. However the MOGA has failed to optimize on coverage and utilization. If the

ser was looking to only improve on balancing and was happy to suffer the reduction in the other two objectives then this may

e acceptable, else the optimization would need to be run again.

Row 4 shows the most suitable solution from the MOGA using type-1 FLSs in the optimization. Here we can see that the

OGA has now optimized in two objectives, with travel being significantly improved, now only 38.96% of the original travel

alue. However coverage and utilization still suffer. But they suffer less if the MOGA did not use the type-1 FLSs. As there is a 1.8%

crease in both coverage and utilization over the MOGA that does not use any FLSs.

Finally row 5 shows the most suitable MOGA result with type-2 FLSs (that has been tuned to 1% uncertainty). On this occasion

o objectives have been optimized and the remaining two do not suffer any noticeable fall, less than 0.13% for coverage and less

an 0.11% for utilization. This gives the user a solid result and can confidently say that this new patches are better than the old

atches. This is on one run of the optimization and with no specific tuning of the GA required, which is great from a user’s point

f view.

As a result we can say that these results support a multi-objective genetic type-2 fuzzy logic based system for mobile field

orkforce area optimization.

.5. Subjective evaluations

Figs. 18–21 show the visualization of how the results change with each incremental improvement of the proposed system.

ig. 18 shows the SOGA try and divide the selected area, into 9 WAs. The selected area includes both rural and urban areas,

cluding the densely populated city area and surrounding suburbs. The single objective optimization has split the city area
lease cite this article as: A. Starkey et al., A multi-objective genetic type-2 fuzzy logic based system for mobile field workforce
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Fig. 20. MOGA with type-1 fuzzy.

Fig. 21. MOGA with type-2 fuzzy.
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(circled in Fig. 18) up into 3 WAs, this is not good as engineers will have to keep traveling in and out of the city. The other WA

are either too large or too small.

Fig. 19 shows one of the solutions on the Pareto front from the MOGA with no FLSs. This solution is slightly better as it ha

sectioned off the center of the city. But this WA is now too small as the outside of the city forms part of another WA to the north

This has left one suburb in a very oversized WA and another in a small WA. However the remaining WAs are of reasonable size.

Fig. 20 shows a solution that used the MOGA with type-1 FLSs in the optimization process. This has done a slightly better jo

of sectioning off the city but there are a few SDPs that were not included in that WA. There is also a WA in the west that is to

small and there is a suburb still in an oversized WA.

Fig. 21 shows a solution that has replaced the type-1 fuzzy with type-2 fuzzy logic in the MOGA. This solution has done a good

job of sectioning off the city. Each WA is more balanced in size and even the town to the west is its own WA. There also seem

to be reasonable utilization of the road networks in the area. The MOGA with type-2 fuzzy has produced the most sensible WA

(patch) designs visually (this is important to the engineers and managers who have to accept these designs) as well as the bes

results from the simulation.

7. Conclusions and future work

In this paper, we have presented a multi-objective genetic type-2 fuzzy logic based system for mobile field workforce are

optimization. The benefits of having such a system in real world utility companies include increased utilization of the workforc

leading to reduced costs. The data used was based on a large mobile field workforce and collected over 3 months. The system ha

been tested in a real world telecommunication service industry.

The proposed system uses GA based optimization, however it was explained that traditional single objective GAs cannot full

handle optimization processes with multiple objectives, especially when those objectives are conflicting. This is an importan
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challenge to overcome, our solution to this was to introduce multi-objective genetic algorithms to the system, specifically NSGA-562

II. This gave the optimization process the ability to compare the results of the individual objectives between possible solutions563

and rank them accordingly.564

There were additional challenges to overcome to build the system. This included a suitable way to cluster together SDPs565

that satisfied the constraints. These constraints included avoiding geographical obstacles like rivers and balancing out the work566

evenly between the WA clusters. This was solved using a neighborhood matrix and monitoring the size of each WA as they had567

more SDPs added to them.568

Another problem was how teams were built for the new WA structures, as the old teams would become obsolete when the569

WAs change. This was solved using a bidding system for each WA that took into account the engineers location and skill and the570

current WA team size.571

As the proposed system is designed to tackle a real world problem with real world data, there are many uncertainties. Because572

of these uncertainties we introduced why fuzzy logic is adapted to handle such uncertainties and we also outlined the differ-573

ences between type-1 fuzzy logic systems and type-2 fuzzy logic systems. The experiments that we ran showed that the system574

performed much better with the inclusion of fuzzy logic. The results were further improved when type-2 was used instead of575

type-1.576

To fully evaluate each aspect of the proposed systems we ran through several experiments, each designed to assess the impact577

of the different methodologies. The results from these experiments showed that a multi-objective system was able to optimize578

in more objectives than a single objective system. The results also showed that including type-1 fuzzy logic systems on the task579

allocation and the patch construction parts of the optimization improved the results the system generated. With one example580

showing that we could have better performance in all objectives when compared to the SOGA system that employed crisp logic.581

With some minimization objectives being reduced by up to 94.78%.582

Finally the results showed that upgrading the type-1 fuzzy logic systems to type-2 further improved on the results, giving583

up to 151% improvement over type-1 fuzzy in some instances. The system presented has significantly improved the solutions584

generated by the current system. We have seen from the progressive results the multi-objective genetic type-2 fuzzy logic based585

system can produce results that are significantly better than the current system, reducing the travel by 63.59%, increasing the586

coverage by 2.39%, reducing the imbalance of the WAs by 72.69% and increasing the utilization by 2.14%. The result produced is587

then significantly improved over the original to be implemented in the real-world environment. Whereas the current systems588

result has to be rejected.589

As this is a real world problem being tackled there are many aspects that could be improved upon to have a system that590

generates even stronger results. One area of improvement is where the parameters of the type-2 systems could be optimized.591

There are also limitations with the work presented, which will be addressed in our current and future work. The system is592

limited to planning for medium to long term WA designs. The system could therefore be improved by optimizing all objectives593

in real-time and attempt to converge rapidly on a solution to handle any changes in the environment. This way the patch designs594

could be up kept up to date and help reduce the potential risks to utilization that could not be planned for. These risks could595

include under or over estimating the number of engineers that will leave in the medium or long term. This could also include596

vehicles being damaged and therefore not available to engineers to travel to SDPs.597

Work area optimization is just one aspect to the overall vision of workforce optimization. Another domain that should be598

tackled in our future work is the optimization of the engineers. Each engineer has a set of skills, however they can be trained599

to gain more skills or they can stop being assigned tasks they underperform in. Another area we aim to improve upon in our600
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ture work is the optimization of the parameters of the type-2 fuzzy systems employed in this work. Currently they were tuned

anually through tests, however using an optimization algorithm may improve the performance.
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