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In this paper, we consider decoding of loss tolerant data encoded by network coding and
transmitted over error-prone networks. Intermediate network nodes typically perform
the random linear network coding in a Galois field and a Gaussian elimination is used for
decoding process in the terminal nodes. In such settings, conventional decoding
approaches can unfortunately not reconstruct any encoded data unless they receive at
least as many coded packets as the original number of packets. In this paper, we rather
propose to exploit the incomplete data at a receiver without major modifications to the
conventional decoding architecture. We study the problem of approximate decoding for
inter-dependent sources where the difference between source vectors is characterized by
a unimodal distribution. We propose a mode-based algorithm for approximate decoding,
where the mode of the source data distribution is used to reconstruct source data. We
further improve the mode-based approximate decoding algorithm by using additional
short information that is referred to as position similarity information (PSI). We analyti-
cally study the impact of PSI size on the approximate decoding performance and show
that the optimal size of PSI can be determined based on performance requirements of
applications. The proposed approach has been tested in an illustrative example of data
collection in sensor networks. The simulation results confirm the benefits of approximate
decoding for inter-dependent sources and further show that 93.3% of decoding errors are
eliminated when the approximate decoding uses appropriate PSI.

& 2015 Elsevier B.V. All rights reserved.
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1. Introduction

The hardware development of sensors and commu-
nication chipsets has enabled easy deployment of sensor
networks and it has led to an excessive network traffic and
demands to increase network capacity. Network coding [1]
has been proposed in order to increase the throughput of
networks; it can reach the max-flow capacity between the
source and each destination node [2–4]. In this case, unlike
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simple data forwarding in conventional networks, inter-
mediate network nodes combine the received packets
with basic coding operations. Network coding can lead to
efficient resources usage (e.g., bandwidth and power),
reduced computations, and improved robustness against
network dynamics [5] by exploiting the diversity in net-
works. A variety of applications have been developed by
taking advantages of network coding (e.g., content dis-
tribution, storages, and P2P systems [6–10]). Random lin-
ear network coding (RLNC) [11] is the most popular net-
work coding algorithm, as it permits distributed deploy-
ment in dynamic error-prone networks [12].
79
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Fig. 1. Overall description of system setup. At the h-th coding stage, the incoming T innovative packets yðiÞm ðhÞ (1rmrT) are combined based on RLNC and
K outgoing packets are generated. If T innovative packets are not available for the decoder at the moment of decoding (i.e., KinoT), the proposed
approximate decoding is deployed with side information ν, which is delivered from the encoder. These are discussed in Sections 2.2 and 2.3, respectively.
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While several advantages can be obtained by deploying
network coding techniques for information delivery, it has
a significant drawback in practice, which is also known as
all-or-nothing problem, i.e., a terminal node cannot recover
any information from the received data unless it receives
at least the same number of innovative coded packets1 as
the number of source packets. In other words, under the
conventional decoding process (e.g., Gaussian elimina-
tion), the received packets have to form a full-rank system
for decoding. However, perfect decoding might not always
be necessary and approximate reconstruction may be
sufficient for several services that can accept imperfect
reconstruction.

In order to solve this problem, we propose an approach
to approximately recover inter-dependent sources from a
set of network coded data that does not form a full rank
system at receiver. With this same objective, a low com-
plexity approximate decoding algorithm has been pre-
sented in [14], where the receiver simply matches the
most similar data between neighbor sources and thus
reaches only limited approximate decoding performance.
In this paper, we present an improved approximate
decoding algorithm that exploits the source character-
istics, i.e., the distribution of differences between neighbor
source vectors, thereby explicitly considering more general
types of source data. We propose to use the mode of the
distribution (i.e., the value that appears most often in a
distribution) in the source characteristics to build an
approximate decoding algorithm. The mode of the dis-
tribution is referred to as similarity information (SI). We
show that it is sufficient side information to maximize
performance of the proposed approximate decoding. As a
result, the mode-based approximate decoding can sig-
nificantly reduce the amount of side information needed
for decoding. The decoding performance can be further
improved by considering the positions where errors may
occur, which are explicitly captured by the position simi-
larity information (PSI) at the expense of additional side
information. We investigate the tradeoff between the PSI
size (i.e., the amount of side information or communica-
tion overheads) and the corresponding decoding
1 A packet is innovative for a node if its coding vector is not in the
span of the coding vectors of the packets already available at the node
[13].

Please cite this article as: M. Kwon, et al., Approximate de
Processing (2015), http://dx.doi.org/10.1016/j.sigpro.2015.09.01
performance and show that there is an optimal amount of
additional information for approximate decoding. Finally,
the proposed approach is deployed in an illustrative
example of sensor networks and the simulation results
confirm our theoretical performance study.

The main contributions of the paper can be summar-
ized as follows:

� we propose a generalized framework of approximate
decoding that covers large range of source types,

� we develop an algorithm that enables the approximate
decoding solution to be deployed for any linearly inter-
dependent sources,

� we develop decoding algorithms that can exploit both SI
and PSI, leading to significantly improved decoding
performance,

� we analytically study the tradeoff between commu-
nication overhead (incurred by deploying SI and PSI)
and decoding performance gains, and

� we have extensive set of experiment results that con-
firm the theoretical analysis.

The rest of the paper is organized as follows. The gen-
eral network coding framework is presented in Section 2.
The mode-based decoding approximate decoding algo-
rithm that considers inter-dependent source distributions
is proposed and discussed in Section 3. In Section 4, we
show that the decoding performance can be improved by
incorporating PSI into the mode-based approach. In Sec-
tion 5, we evaluate and compare the performance of the
mode-based approach against conventional decoding
methods in an illustrative sensor network scenario. Rela-
ted works are discussed in Section 6 and conclusion is
drawn in Section 7.
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2. System setup

We consider data transmission over error-prone net-
works that consist of source nodes, intermediate nodes
and receivers. The source data is delivered to the receivers
through intermediate nodes that are able to perform net-
work coding, similar to the frameworks in [15–17]. The
overview of the proposed system is shown in Fig. 1 and the
details will be discussed next.
coding for network coded inter-dependent data, Signal
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2 Note that KinrK and it depends on packet erasure of network

condition.
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2.1. Source description

Consider T source vectors st ð1rtrTÞ and let st be the t-
th measured symbol vector that consists of L symbols
denoted by sð1Þt ; sð2Þt ;…; sðLÞt . These symbols are discrete, i.e.,
sðiÞt AR for 1r irL, and inter-dependent. R represents the
field of real numbers. Since the network coding operations
are performed in the Galois field (GF), each sðiÞt has to be
discretized and mapped into an element in GF. This opera-
tion is represented by a function Q that transforms the
source data to GF with size 2M, denoted by GFð2MÞ, where M
is a positive integer. The function Q:R-GFð2MÞ is defined as

Q sðiÞt
� �

¼ xðiÞt AX ð1Þ

where xðiÞt is the GF representation of sðiÞt in its alphabet set X .
Note that the GF size is determined by M that can be
appropriately chosen by considering the sizes of the source
alphabet, maximum bandwidth constraints, etc. Then, the
measured symbol vector st ¼ ½sð1Þt ;…; sðLÞt �T is mapped into
xt ¼ ½xð1Þt ;…; xðLÞt �T by Q, where the notation ( � )T represents
the matrix transpose operator. In order to simplify the
notations used in this paper, the field of operands is impli-
citly assumed to be the same as the field of operators. For
example, if an operator is in a GF, all the associated operands
are implicitly assumed to be elements in the GF. The
operators � and � denote the addition and multiplication
in GF, respectively, and the operator � represents the mul-
tiplication between matrices in GF. In this paper, � in GF is
performed by the logical bitwise exclusive-OR (XOR) opera-
tor. Conversely, if an operator is in R (e.g., þ , � , 	 ), the
operands are also in R.

2.2. RLNC based encoding

In the network, an intermediate node deploys RLNC
and generates coded packets. Let yðiÞðhÞ ¼ ½yðiÞ1 ðhÞ;…;

yðiÞm ðhÞ;…; yðiÞT ðhÞ�T be incoming packets at the h-th coding
stage; yðiÞð1Þ ¼ ½xðiÞ1 ;…; xðiÞT �T is the initial source data packet.
At the h-th coding stage intermediate node, the first T
innovative packets (e.g., yðiÞm ðhÞ for 1rmrT) are combined
using RLNC and generate K outgoing packets (e.g.,
yðiÞk ðhþ1Þ for 1rkrK) as

yðiÞðhþ1Þ ¼ cðhÞ � yðiÞðhÞ ð2Þ
or equivalently,

yðiÞ1 ðhþ1Þ
⋮

yðiÞk ðhþ1Þ
⋮

yðiÞK ðhþ1Þ

2
66666664

3
77777775
¼

c11ðhÞ ⋯ c1mðhÞ ⋯ c1T ðhÞ
⋮ ⋱ ⋮ ⋱ ⋮

ck1ðhÞ ⋯ ckmðhÞ ⋯ ckT ðhÞ
⋮ ⋱ ⋮ ⋱ ⋮

cK1ðhÞ ⋯ cKmðhÞ ⋯ cKT ðhÞ

2
6666664

3
7777775

�

yðiÞ1 ðhÞ
⋮

yðiÞm ðhÞ
⋮

yðiÞT ðhÞ

2
66666664

3
77777775
9

XT
m ¼ 1

�fcmðhÞ � yðiÞm ðhÞg:

The number of outgoing packets K is chosen larger than T
(i.e., the number of symbols combined in a packet) and K
Please cite this article as: M. Kwon, et al., Approximate de
Processing (2015), http://dx.doi.org/10.1016/j.sigpro.2015.09.01
may depend on the expected packet erasure rate; higher K
is recommended for higher erasure rate and vice versa. In
terms of element-wise operations, yðiÞk ðhþ1Þ is generated
as

yðiÞk ðhþ1Þ ¼
XT
m ¼ 1

� ckm � yðiÞm ðhÞ
n o

¼ fck1ðhÞ � yðiÞ1 ðhÞg � ⋯

� fckmðhÞ � yðiÞm ðhÞg � ⋯ � ckT ðhÞ � yðiÞT ðhÞ
n o

:

Each outgoing packet yðiÞk ðhþ1Þ is a linear combination of
the incoming packets yðiÞm ðhÞ for 1rmrT with coding
coefficients ckm(h). The number of combined symbols is
denoted by T and cmðhÞ is a coding coefficient vector that is
defined as

cmðhÞ ¼ c1mðhÞ;…; ckmðhÞ;…; cKmðhÞ
� �T

:

In this paper, network coding is implemented with RLNC
so that the coding coefficients are uniformly and randomly
chosen from GFð2MÞ, i.e., ckmðhÞA GFð2MÞ.

We finally note that the coded packet at the h-th coding
stage of the network in (2) can be expressed as

yðiÞðhþ1Þ ¼ cðhÞ � yðiÞðhÞ ¼ cðhÞ � cðh�1Þ � ⋯ � cð1Þ
� xðiÞ ¼ CðhÞ � xðiÞ

where CðhÞ is referred to as a global coding coefficient
matrix [13], which is included in the header of the packet
and delivered to the decoder to enable decoding and
reconstruction. cðhÞ can be selected such that CðhÞ is
invertible with high probability in RLNC [11].

In the next section, we focus on designing an approx-
imate decoding approach, which can be deployed if a rank
deficient system of equation is available at the receiver.
Note that the system becomes rank deficient because of
the packet loss and delay, but not because of the random
selection of cðhÞ (as CðhÞ is assumed to be full-rank).

2.3. Data reconstruction based on approximate decoding

With the coding procedure described above, K coded
packets are generated at intermediate network nodes
using T innovative incoming packets (KZT) and traverse
error-prone network toward the destination node hD.
When a decoder receives Kin innovative packets,2 it

attempts to recover the source data x̂ðiÞ. In the decoding
process, well-known Gaussian elimination in the con-
sidered GF [18] is employed for matrix inversion and if the
Kin 	 T global coding coefficient matrix CðhD�1Þ is full-

rank (i.e., Kin ¼ T), then x̂ ðiÞ ¼ ½x̂ðiÞ1 ;…; x̂ðiÞT �T is uniquely
determined by

x̂ ðiÞ ¼ ½x̂ðiÞ1 ;…; x̂ðiÞT �T ¼ CðhD�1Þ�1 � yðiÞðhDÞ ð3Þ
because the inverse of a full-rank global coding coefficient
matrix CðhD�1Þ�1 is unique.

If the number of received packets is insufficient to
determine CðhD�1Þ�1 uniquely, i.e, in the presence of a
singular matrix CðhD�1Þ matrix (e.g., due to packet loss or
coding for network coded inter-dependent data, Signal
0i

http://dx.doi.org/10.1016/j.sigpro.2015.09.010
http://dx.doi.org/10.1016/j.sigpro.2015.09.010
http://dx.doi.org/10.1016/j.sigpro.2015.09.010


1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

85

87

89

91

93

95

97

99

101

103

105

107

109

111

113

115

117

119

Table 1
Summary of Notations.

Notation Description Notation Description

h Coding stage index δt Result vector of xtþ1�xt

hD Final stage (destination node) index δðiÞt i-th element of δt
T The number of innovative packets encoded together ΨΔ Distribution of inter-dependent source with mode Δ

K The number of outgoing packets generated at an intermediate
node (KZT)

Δ Similarity Information (SI)

Kin The number of innovative incoming packets at a node (KinrK) Δt Result vector of xt � xtþ1

st t-th measured symbol vector in RL Δn n-th candidate for Δ in GF

sðiÞt i-th element of st in R ΔR Random variable for Δn

xt t-th source vector GFð2MÞ Galois field with size of 2M

xðiÞt i-th element of xt in GF L Length of a source vector

yðiÞðhÞ i-th incoming encoded data vector at the h-th coding stage cðhÞ Coding coefficient matrix (with size K 	 T) at the h-th
coding stage

yðiÞm ðhÞ m-th element of yðiÞðhÞ in GF ckmðhÞ k-th element of cmðhÞ
cmðhÞ m-th coding coefficient column vector of cðhÞ CðhÞ Global coding coefficient matrix
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delays) with KinoT , the receiver is not able to find the
inverse of the coding coefficient matrix and there are
multiple solutions to the system in (3). With additional
constraints, a good but not-necessarily optimal solution
can still be determined. In order to add constraints and
find a unique solution, the idea of an approximate
decoding approach is introduced in [14] that considers a
simple source model and permits approximate recon-
struction of sources from an insufficient number of
received packets. The approximate decoding method adds
simple constraints in order to form a full rank coding
coefficient matrix, thereby enabling the decoding process
from the system in (3) with external information. In par-
ticular, the inter-dependence between the input data is
exploited in order to build additional constraints D and ν

which render the system in (4) solvable:

x̂ ðiÞ ¼ CðhD�1Þ
D

� ��1

� yðiÞðhDÞ
ν

" #
: ð4Þ

The coefficients in D and ν are in GF and depend on the
source model. In this paper, ν is assumed to be delivered
with high reliability. For example, separate channels such
as control channels can be used [19–22] or high level of
error protection techniques can be deployed for ν.

A simple implementation of the approximate decoding
method is presented in [14]. In particular, the matrix D of
size ðT�KinÞ 	 T is constructed such that each of its rows
consists of zeros (i.e., additive identity of GFð2MÞ) except
for two elements with value “1”3 that correspond to the
positions of the xðiÞt and xðiÞt0 such that xðiÞt ¼ xðiÞt0 in the
received packets. Then, the vector ν is determined
accordingly as a zero vector with size ðT�KinÞ (i.e.,
ν¼ 0T�Kin ). This means that xðiÞt and xðiÞt0 shall have the same
value in the approximate decoding algorithm proposed in
[14]. Finally, an approximation x̂ ðiÞ of the original data is
3 Recall that 1 is also an additive inverse of 1 in GF 2M
� �

.

Please cite this article as: M. Kwon, et al., Approximate de
Processing (2015), http://dx.doi.org/10.1016/j.sigpro.2015.09.01
obtained as

x̂ ðiÞ ¼ CðhD�1Þ
D

� ��1

�
yðiÞðhDÞ
0ðT�KinÞ

" #
ð5Þ

where 0ðT�KinÞ is a vector with ðT�KinÞ zeros. This
approach permits the receiver to approximately recon-
struct the original symbols when the number of symbols is
not sufficient for perfect decoding.

The key idea of the approximate decoding method is to
incorporate additional equations (i.e., D) based on source
model, such that the matrix ½CðhD�1ÞT DT �T in (5) becomes
full rank. Without changes in conventional decoding
algorithm (e.g., Gaussian elimination), approximate
decoding algorithm does not need complex processes such
as belief propagation [23] and it can be easily used when
the received data does not form a full rank system. While
the approximate decoding algorithm in [14] shows a new
paradigm of network coded data reconstruction, the
additional equations in (5) are very simple and cannot
fully capture complex inter-dependent source models.
Therefore, the algorithm in [14] can be used only in limited
source model. In order to overcome the limitation, we
propose an improved algorithm for approximate decoding
that explicitly considers the statistical characteristics of
the sources.

For reader's convenience, we summarize notations and
abbreviations frequently used in this paper in Tables 2 and
3, respectively.
121
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3. Mode-based approximate decoding for inter-
dependent sources

In this section, we develop a new approximate decod-
ing algorithm that explicitly considers the source char-
acteristics for data reconstruction with incomplete sets of
received packets.
coding for network coded inter-dependent data, Signal
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Table 2
Summary of abbreviations.

Notation Description Notation Description

RLNC Random Linear
Network Coding

GF Galois Field

R Field of Real
Numbers

SI Similarity Information,
The mode of ΨΔ

PSI Position Similarity
Information

MSE Mean Square Error

PMSE Peak Mean Square
Error

4 Note that PMSE for νn ¼ ν�n is not zero in this experiment result. This
is because ν¼ ν�n � 1ðT�Kin Þ is not enough for perfect decoding in GF where
network coding operations are performed, while it can provide enough
information in R. This is studied in Property 3.
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3.1. Description of inter-dependent source distribution

We consider a set of inter-dependent discrete sources.
The sources are characterized by the distribution (i.e.,
probability mass function) of the difference between
values in source data vectors. Let δt ¼ ½δð1Þt ;…; δðLÞt �T be an L-
element vector representing the difference between data
of the t-th and ðtþ1Þ-th sources, i.e., xt and xtþ1, respec-
tively, and δðiÞt be the i-th element of δt . We assume that the
elements in δt follow a unimodal distribution ΨΔ where its
mode is Δ. Here, the source data can be expressed as

xtþ1 ¼ xtþδt ð6Þ
where δðiÞt 
ΨΔ, or equivalently,

xðiÞtþ1 ¼ xðiÞt þδðiÞt for all 1r irL: ð7Þ
In order to describe the entire source vectors, a single or
multiple ΨΔ can be deployed. The inter-dependent source
model can be exploited in a wide range of applications
such as brightness changes in pictures, temperature var-
iances, and seismic signals at different sensors [24,25]. The
unimodal distribution can further represent noise in
source data. A unimodal distribution includes various
stochastic models such as Gaussian, Laplacian, chi-square
and Cauchy distribution. An illustrative example of the
above source model is shown in Fig. 2.

3.2. Approximate decoding algorithm for inter-dependent
sources

We now discuss how to design the constraints
ν¼ ½ν1; ν2;…; νT�Kin �T that complete the decoding system in
(4) such that the performance of the approximate decod-
ing is maximized given the inter-dependent source dis-
tribution ΨΔ. The constraints ν can provide additional
equations that render the underdetermined decoding
system solvable. Since the inter-dependent sources are
characterized by δðiÞt 
 ΨΔ, ν needs to be designed such that
it represents the source characteristics.

Let ν� be the optimal constraints ν that lead to a perfect
decoding in (4). It is therefore desired that ν¼ ν�. If νaν�,
the more zeros in the vector of ν�ν�, the better perfor-
mance of approximate decoding algorithm [17]. An illus-
trative result is shown in Fig. 3, where source data vectors
have inter-dependency parameterized with ν�n ¼ 16, i.e.,
xðiÞtþ1 ¼ xðiÞt þ16 and RLNC is deployed in GFð210Þ. The
decoding is based on Gaussian elimination and the
decoding performance is measured by Peak Mean Square
Please cite this article as: M. Kwon, et al., Approximate de
Processing (2015), http://dx.doi.org/10.1016/j.sigpro.2015.09.01
Error (PMSE) [26] for various ν¼ νn � 1ðT�KinÞ in (4). The
average PMSE for 1000 independent experiments is shown
in Fig. 3, where the source vector x1 is randomly and
independently determined in every experiment. This
result confirms that approximate decoding leads to the
best performance only when ν�n ¼ ν among 1rνnr32.
Contrary to the intuition that closeness of νn to ν�n would
increase the decoding performance, there is no obvious
relationship between ν�n�νn and performance. Rather, the
number of zeros in ν�ν� determines the performance of
approximate decoding.4 The analysis of the decoding per-
formance behavior is presented in Appendix A.

The shape of decoding performance given ν�n (see Fig. 3
and Appendix A) is well captured by a cost model Cðνn; ν�nÞ,
referred to as the Cauchy–Dirac delta function [27],
defined as

Cðνn; ν�nÞ ¼ lim
γ-0

ð1� f ðνn; ν�n; γÞÞ ¼
0 if νn ¼ ν�n
1 otherwise

�
ð8Þ

where the probability density function of the Cauchy dis-
tribution is given by

f νn; ν
�
n; γ

	 
¼ 1

πγ 1þ νn�ν�n
γ

� �2
" #: ð9Þ

Here, ν�n and γ are determined by the sources as ν�n denotes
the parameter that specifies the position of the peak of the
distribution and γ is a scale parameter that specifies the
half-width at half-maximum. Since f ðνn; ν�n; γÞ is a prob-
ability measure, f ðνn; ν�n; γÞA ½0;1�. Therefore, the expected
cost, which represents the decoding error, with any inter-
dependent source distribution ΨΔ, is expressed as

EfCðνn; ν�nÞg ¼
X
νn Aν

Cðνn; ν�nÞPrðVn ¼ νnÞ ð10Þ

where Vn is a random variable for νnAν and is character-
ized by ΨΔ. In Property 1, we show that SI (i.e., Δ) leads to
the minimum expected cost given the source distribution
ΨΔ.

Property 1. Given the inter-dependent source distribution,
the mode of distribution (SI) minimizes expected cost of
approximate decoding.

Proof. The goal of the proof is to show that ðν�nÞopt ¼ Δ is
the minimizer of the expected cost. The corresponding
optimization problem is given by

ðν�nÞopt ¼ arg min
ν�n A ν

EfCðνn; ν�nÞg ð11Þ

ðν�nÞopt ¼ arg min
ν�n A ν

X
νn Aν

Cðνn; ν�nÞPrðVn ¼ νnÞ ð12Þ

ðν�nÞopt ¼ arg min
ν�n A ν

X
νn Aν;νn a ν�n

PrðVn ¼ νnÞ ð13Þ

ðν�nÞopt ¼ arg min
ν�n Aν

1�PrðVn ¼ ν�nÞ
� �
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Fig. 3. An illustrative example for the average performance of approximate decoding with various νn when ν�n ¼ 16. The performance of approximate
decoding is maximized only if νn ¼ ν�n ¼ 16. In this example, GFð210Þ is used and the sources are randomly and independently determined over 1000 times.

Fig. 2. An illustrative example of matrix-shaped inter-dependent sources and corresponding difference δt . δ
ðiÞ
t is an element of δt and δðiÞt follows a unimodal

distribution ΨΔ where its mode is Δ.

M. Kwon et al. / Signal Processing ∎ (∎∎∎∎) ∎∎∎–∎∎∎6
ðν�nÞopt ¼ arg max
ν�n A ν

PrðVn ¼ ν�nÞ ð14Þ

ðν�nÞopt ¼ Δ: ð15Þ
The equality between (12) and (13) comes from the defi-
nition of cost function given in (8), i.e., Cðνn; ν�nÞ ¼ 1 if
νnaν�n and Cðνn; ν�nÞ ¼ 0 if νn ¼ ν�n. Since PrðVn ¼ νnÞZ0, the
minimization of 1�PrðVn ¼ ν�nÞ is equivalent to the max-
imization of PrðVn ¼ ν�nÞ, leading to (14). Since Vn is char-
acterized by the inter-dependent source distribution ΨΔ,
max PrðVn ¼ ν�nÞ is achieved only if ν�n ¼ Δ. Therefore,
ðν�nÞopt ¼ Δ minimizes the expected cost.□

The above property means that the decoder only needs
to know Δ instead of the entire distribution ΨΔ in order to
have effective decoding; the amount of the additional
information that needs to be delivered is minimized.

This property is confirmed by the simulation results
shown in Fig. 4. To generate an illustrative set of linearly
inter-dependent source data (i.e., xðiÞtþ1 ¼ xðiÞt þδðiÞt ), the
source dependency δðiÞt is generated based on a Gaussian
distribution N ð16; σ2Þ in Fig. 4(a), where the mean is 16
and the variance is σ2. For a Gaussian distribution, the
mode is the same as the mean, i.e., SI¼16ðΔ¼ 16Þ. For the
sources in Fig. 4(b), δðiÞt is generated based on the Laplacian
distribution Lð16; σ2=2Þ where the location parameter is 16
Please cite this article as: M. Kwon, et al., Approximate de
Processing (2015), http://dx.doi.org/10.1016/j.sigpro.2015.09.01
and the scale parameter is σ2=2. For the Laplacian dis-
tribution, the mode is the same as the location parameter,
i.e., SI¼16ðΔ¼ 16Þ. Hence, SI¼arg maxνnPrðVn ¼ νnÞ ¼ 16 in
both cases. In these simulations, three source data vectors
are combined together based on RLNC and 1 out of
3 packets is lost (i.e., 1/3 packet loss rate) so that approx-
imate decoding strategies are deployed in GFð28Þ. The
results are given in average PMSE computed from 1000
independent experiments. For the sake of comparison, we
consider the following alternative three strategies [17]:

� Strategy 1 (S1): Select a single value Δ in ΨΔ (i.e., SI) as
shown in Property 1, i.e., ν¼ Δ � 1ðT�KinÞ.� Strategy 2 (S2): Sample the inter-dependent source
distribution ΨΔ to select values of νn, i.e., νn 
ΨΔ.

� Strategy 3 (S3): Sample a uniform distribution
Uð0;28�1Þ to select values of νn, i.e., νn 
 Uð0;28�1Þ.

From the results, it is obvious that average PMSE is mini-
mized by selecting SI (i.e., Strategy 1), which confirms
Property 1.

In summary, under the knowledge of inter-dependent
source distribution, SI for ν leads to the minimized expected
cost (i.e., ν¼ Δ � 1ðT�KinÞ). More importantly, it implies that the
performance of the approximate decoding algorithm
coding for network coded inter-dependent data, Signal
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Fig. 4. Performance comparison of the three different strategies (S1, S2, S3). Sources are generated by (a) Gaussian and (b) Laplacian distributions with SI
(Δ¼ 16) and variance (σ2). RLNC is deployed over GFð28Þ.
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significantly depends on the number of νn that is exactly the
same as ν�n. Hence, we will discuss how to maximize the
number of zeros in νn�ν�n in the next section.
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4. Approximate decoding with PSI for linearly inter-
dependent source data

In Section 3, it is discussed that the increased number
of zeros in νn�ν�n improves the performance of approx-
imate decoding. In this section, our focus is on how to
increase the number of zeros by deploying PSI constructed
at the encoder as ν¼ΔPSI .

4.1. Δ-linearly inter-dependent source data and PSI

In Section 3, it is concluded that the approximate
decoding with SI (i.e., the mode Δ) can minimize the
average decoding error for unimodal inter-dependent
source data. Therefore, the SI (i.e., the value of Δ) would
be the only side information that needs to be transmitted
to receivers if such decoding systems are implemented.
From the decoder's perspective, the sources are seen as
linearly and deterministically inter-dependent data in
terms of SI. Here, we study the performance of the
approximate decoding algorithm considering linearly and
deterministically inter-dependent sources, which is also
referred to as Δ-linearly inter-dependent source,5 i.e.,

xtþ1 ¼ xtþΔ � 1: ð16Þ
Note that if all the operations are performed in R, the
information Δ is sufficient for the perfect recovery of the
original source data because xtþ1�xt ¼ Δ � 1. However, the
119

121

123

5 In this paper, we assume that Δa0 in GF, since Δ¼ 0 simply means
that two neighbor data vectors xt and xtþ1 are identical. Thus, if xtþ1 is
lost, it can be easily recovered simply by duplicating xt . For simplicity, we
assume that the largest data is denoted by xt which does not exceed the
size of GF. Hence, xto2M � 1 for GFð2MÞ.

Please cite this article as: M. Kwon, et al., Approximate de
Processing (2015), http://dx.doi.org/10.1016/j.sigpro.2015.09.01
corresponding operation in GF, xtþ1 � xt , includes not
only Δ but also the other outcomes. For example, when
sources are described as xt�xtþ1 ¼ Δ¼ 16 in R, xt � xtþ1

in GF includes not only 16 but also other values such as 48,
112, …, in GFð28Þ. Hence, we define Δt as the vector of
outcomes from xtþ1 � xt , i.e., Δt ¼ xtþ1 � xt where each
element in Δt is denoted by Δn. These elements are refer-
red to as candidates of Δ. Since there may be different
occurrences of Δn in Δt , we consider Δn as a random vari-
able, is denoted by ΔR.

As will be discussed later, PrðΔR ¼ ΔnÞ is decreasing with
respect to n. This means that the probability of Δ1 is the
highest among the candidates of Δ and Δ1 ¼ Δ by definition.
This is illustrated in Table 3 and the details are discussed in
Property 3. Moreover, as discussed in Section 3.2, the accurate
positions (or indices) of the candidates are the key information
for improved performance of the proposed approximate
decoding framework. Therefore, Strategy 1 (S1) in Section 3.2,
which is shown to be the best implementation of approximate
decoding for unimodal inter-dependent sources, can be fur-
ther improved by considering the positions of the candidates
Δt included in PSI.

The PSI includes Δ1 by default as it has the highest
probability of occurrence in Δt . Then, it includes the
position indices of Δn in Δt for nZ2. The n-th row of PSI is
filled with position indices of Δnþ1 in Δt . An illustrative
example of PSI construction is shown in Fig. 5. If a decoder
receives PSI, Strategy 1 (S1) that is based only on Δ is
deployed as the baseline of approximate decoding, i.e.,
ΔPSI ¼ Δ1 � 1ðT�KinÞ. Next, the elements with the position
indices that are written in n-th row of PSI are replaced by
Δnþ1 in ΔPSI . Finally, ν in (4) is replaced by ΔPSI , leading to

x̂ ðiÞ ¼ CðhD�1Þ
D

� ��1

� yðiÞðhDÞ
ΔPSI

" #
: ð17Þ

In the next section, we study the properties of proposed
approximate decoding with PSI that helps us to increase
performance.
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4.2. Properties of approximate decoding with psi for Δ-lin-
early inter-dependent source

In this section, we focus on the investigation of the
basic properties of the proposed approximate decoding
algorithm with PSI for Δ-linearly inter-dependent sources.
We first consider a special case where Δ¼ 2k and then
generalize the case to Δa2k.

Property 2. For Δ-linearly inter-dependent sources, the
expected distortion of approximate decoding with Δ¼ 2k

(0rkoM) is always lower than that with Δ0 such that
2k�1oΔ0o2kþ1;Δ0a2k.

Proof. Any element in GFð2MÞ can be represented byM-bit
binary numbers. Since xtþ1 ¼ xtþΔ � 1 in (16), there is no
distortion if

xtþΔ � 1ð Þ � Δ � 1ð Þ ¼ xt : ð18Þ

Let ωðx; yÞ denote the number of “1” that are at the same
position of binary representations of x and y. Note that, the
condition given in (18) is satisfied if and only if
ωðxt ;Δ � 1Þ ¼ 0, because an overlap between any two “1”s at
the same position of xt and Δ � 1 results in carriage returns
from xðiÞt þΔ. This leads to decoding errors (or distortion),
implying that the distortion can be minimized with the
smallest ωðxt ;Δ � 1Þ. Since

min ω xðiÞt ;Δ
� �

¼ 1

for all i, the distortion is minimized when Δ¼ 2k,
0rkoM. This is equivalent to the case where only a
95
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99

101

103

105

Table 3

Examples of candidates for Δ¼ 2k over GFð28Þ.

Δ1 Δ2 Δ3 Δ4 Δ5 Δ6

Δ¼ 22 22 P3
k ¼ 2 2

k P4
k ¼ 2 2

k P5
k ¼ 2 2

k P6
k ¼ 2 2

k P7
k ¼ 2 2

k

Δ¼ 23 23 P4
k ¼ 3 2

k P5
k ¼ 3 2

k P6
k ¼ 3 2

k P7
k ¼ 3 2

k

Δ¼ 24 24 P5
k ¼ 4 2

k P6
k ¼ 4 2

k P7
k ¼ 4 2

k

Δ¼ 25 25 P6
k ¼ 5 2

k P7
k ¼ 5 2

k

Δ¼ 26 26 P7
k ¼ 6 2

k

Fig. 5. An illustrative example of PSI construction. In this example, xt�xtþ1 ¼ Δ

values such as 48, 112, …, in GFð28Þ. The results from xt � xtþ1 are referred to
indices for Δn for nZ2.

Please cite this article as: M. Kwon, et al., Approximate de
Processing (2015), http://dx.doi.org/10.1016/j.sigpro.2015.09.01
single bit 1 is set at the ðkþ1Þ-th position of the binary
representation of Δ, which completes the proof.□

In order to construct the PSI, the candidates Δt need to
be found, as discussed in Property 3. To be consistent with
the assumptions on the sources, xðiÞt þΔ does not exceed
the size of GF, i.e., 0rxðiÞt o2M�2k such that all source
data are in GFð2MÞ.

Property 3. If Δ¼ 2k ð0rkoMÞ in GFð2MÞ, there are at
most ðM�kÞ candidates in Δt where n-th candidate Δn is
expressed as

Δn ¼
Xkþn�1

i ¼ k

2i

with the probability of

Pr ΔR ¼ Δnð Þ ¼ 2ðM�k�nÞ

2ðM�kÞ �1
:

Proof. An element in GFð2MÞ is represented by M bits. For
an element Δ¼ 2k in GFð2MÞ, it can be represented by only
a single bit “1” at the ðkþ1Þ-th position and “0” at all the
other positions. Recall that the candidates are generated
when

xðiÞtþ1 � Δ¼ xðiÞt þΔ
� �

� ΔaxðiÞt :

If bit “1” is set for ðkþ1Þ-th, …, ðkþn�1Þ-th position of xðiÞt
when the bit “1” is set for both ðkþ1Þ-th position of Δ and
xðiÞt , Δn is generated with a value of Δn ¼

Pkþn�1
i ¼ k 2i. Since

Δn is in GFð2MÞ, 1onrM�k, there are at most M�k
candidates.
Next, we show that PrðΔR ¼ ΔnÞ ¼ 2ðM�k�nÞ=ð2ðM�kÞ �1Þ.

Since xðiÞt is in the range of 0rxðiÞt o2M�2k, xðiÞt can take
one of 2M�2k different values. Given a Δn, there are 2M�n

different values for xðiÞt because the ðkþnÞ-th position of xðiÞt
is set to “0” and the positions of xðiÞt from ðkþn�1Þ-th to
ðkþ1Þ-th are set to “1”. Therefore, Δn is generated with
probability

Pr ΔR ¼ Δnð Þ ¼ 2ðM�nÞ

2M�2k
ð19Þ
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¼ 16 in R. However, xt � xtþ1 in GF includes not only 16 but also other
as candidates of Δ¼ 16. The PSI includes Δ1 by default and the position
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Pr ΔR ¼ Δnð Þ ¼ 2ðM�k�nÞ

2ðM�kÞ �1
for 1rnrM�k ð20Þ

which completes the proof.□

The candidates Δt and the corresponding probability
mass function (PMF) based on Property 3 are shown in
Table 4 when Δ¼ 2k in GFð2MÞ. This enables us to construct
a PSI matrix, where each row of PSI represents a candidate.
For example, the first row has the index numbers of Δ2, the
second row has the index numbers of Δ3, and in general,
the ðM�n�1Þ-th row has the index numbers of ΔM�n for
n¼ 1;…; k. As discussed above, while the approximate
decoding with the PSI leads to improved performance, the
use of PSI results in more communication overhead com-
pared to SI. Hence, it is essential to investigate the tradeoff
between the amount of overhead for transmitting PSI and
the performance improvement. This tradeoff is studied in
Property 4.

Property 4. If the ðn�1Þ-th row of PSI or Δn is additionally
used for approximate decoding, its performance can be
improved by a factor of 1=2ðn�1Þ.

Proof. As shown in Table 4, PrðΔR ¼ ΔnÞ is given by
2ðM�k�nÞ=2ðM�kÞ �1. This means that PrðΔR ¼ ΔnÞ decreases
by 1=2n, as n increases. Thus, if Δn is additionally used for
approximate decoding, the performance can be improved
by 1=2ðn�1Þ times compared to the gain obtained if Δn�1

is used.□

The performance improvement based on additional
information in PSI is interpreted as an additional refine-
ment. Property 4 is used as a guideline for the trade-off
between the communication overhead and the decoding
performance of the proposed approximate decoding
algorithm.

Unlike the case of Δ¼ 2k, the candidates for the case of
Δa2k cannot be easily identified. In this case, the candi-
dates Δt can be found by decomposing into the sum of 2ks
for 0rkrM and using the candidates of Δ¼ 2k. The above
description is explained in Algorithm 1.

Algorithm 1. Candidates Δt .

Given: Δ and GFð2MÞ.
1: if Δ¼ 2k then

2: Δt ¼ fΔ1 ;…;Δn ;…;ΔM�kg where Δn ¼
Pkþn�1

i ¼ k 2i // Prop-
erty 3

3: else // if Δa2k

4: Find p1 ; p2 ;…; pn such that Δ¼ Pn
j ¼ 1 2

pj for
0rpno⋯op2op1

5: Find all the candidates Δt based on Property 3, if Δ¼ 2pn

(denoted by Δt ð2pn Þ).
6: Compute Cartesian product set,

∏n
l ¼ 1Δt ð2pl Þ ¼ fðγ1;…; γnÞj γiAΔt ð2pi Þg
Table 4

Candidates of Δ and PMF of the candidates if Δ¼ 2k in GFð2MÞ.

Δ1 Δ2 ⋯

Δt 2k Pkþ1
j ¼ k 2

j ⋯

PrðΔR ¼ ΔnÞ 2ðM�k�1Þ

2ðM�kÞ �1

2ðM�k�2Þ

2ðM�kÞ �1

⋯

Please cite this article as: M. Kwon, et al., Approximate de
Processing (2015), http://dx.doi.org/10.1016/j.sigpro.2015.09.01
7: Calculate the sum of a tuple Γi ¼
Pn

j ¼ 1 γj , where Γi is sum of i-
th tuple elements

8: S¼fΓ1 ;Γ2 ;…;Γqg, where q¼∏n
l ¼ 1jΔt ð2pl Þj and j � j denotes

cardinality
9: if there are even number of Γi in S then
10: Remove Γi from S
11: else// odd numbers
12: if there are multiple instances of Γi in S then

merge them to a single Γi

13: end if
14: Δt’S
15: end if
16: end if

4.3. PSI properties illustrations

We implement here our approximate decoding method
in conjunction with PSI and we experimentally analyze the
properties studied in the previous section. In the following
simulations, we consider a set of three Δ-linearly inter-
dependent sources, which are randomly generated as in (16).

Fig. 6 shows the performance of approximate decoding
with PSI, which is measured by PMSE over various packet
loss rates with different amounts of additional information
delivered by the PSI.

In these experiments, the first source data vector x1 is
randomly generated and neighbor source vectors are
generated by xt ¼ x1þðt�1Þ � Δ for t ¼ 1;…; T . Hence, the
sources are Δ-linearly inter-dependent. For Fig. 6(a) and
(b), Δ¼ 8 and Δ¼ 10 are used, respectively. Since Δ¼ 10 is
not the form of 2k, candidates are found based on Algo-
rithm 1. Ten data vectors are combined together based on
RLNC in GFð210Þ. The experiments are independently
repeated 1000 times.

It is clear from Fig. 6(a) and (b) that the approximate
decoding solution for different PSI outperforms the approx-
imate decoding with PSI0 or SI, over all the range of packet
loss rates. Moreover, the approach proposed in Algorithm 1 is
effective for any Δs that are not necessarily powers of 2. The
results indicate that the additional information given by PSI
needs to be adaptively structured by explicitly considering the
packet loss rates and the targeted performance.

Fig. 7 confirms Property 4, which says that additional Δn
can improve the performance of approximate decoding by a
factor of 1=2n�1. For example, if Δ2 is used in addition to Δ1,
the performance (measured by PMSE) improves from
approximately 0.06 to 0.03. Similarly, if Δ3 is used in addition
to Δ1 and Δ2, the performance improves again from approxi-
mately 0.03 to 0.015. We finally note that there is no error if
Δ1;…;Δ6 are included in PSI. This is because Δ1;…;Δ6 are the
information that can be maximally provided to the decoder
(recall that M�k¼ 8�2¼ 6 for Δ¼ 2k ¼ 4 and
GFð2MÞ¼GFð28Þ as discussed in Property 3).
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Δn ⋯ ΔM�k

Pkþðn�1Þ
j ¼ k 2j ⋯ PM�1

j ¼ k 2j

2ðM�k�nÞ

2ðM�kÞ �1

⋯ 1

2ðM�kÞ �1
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Fig. 6. Average PMSE of the proposed decoding algorithm for various sizes of PSI. In order to find candidates for Δ¼ 10, Algorithm 1 is used. PSI0 denotes
the case where only SI is delivered and PSIn denote cases where fΔ1;…;Δng is included in PSI. (a) Δ¼ 8, GFð210Þ and (b) Δ¼ 10, GFð210Þ.

Fig. 7. Average PMSE for PSIn. PSIn (1rnr6) denote cases where
fΔ1;…;Δng is contained in PSI.

Fig. 8. Performance comparison for three different approximate decod-
ing algorithms.
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5. Simulation results

In this section, we quantitatively evaluate the perfor-
mance of the proposed approaches and compare them
with other existing approaches such as the approach
presented in [14], Strategy 1 (S1) discussed in Section 3.2
(denoted by the SI scheme), and the method described by
(17) (denoted by the PSI scheme). We then deploy the
proposed approach in a sensor network scenario.

5.1. Performance comparison of approximate decoding
algorithms

Unlike the approaches shown in [14] and the SI scheme,
the proposed PSI scheme requires additional information
as a form of PSI, which can be considered as an overhead.
The overhead is defined in the simulations as the ratio of
the amount of data additionally added to the amount of
Please cite this article as: M. Kwon, et al., Approximate de
Processing (2015), http://dx.doi.org/10.1016/j.sigpro.2015.09.01
original data. For fair comparison, the source node in [14]
and the SI scheme repeatedly transmit packets such that
they have the same amount of overhead as the PSI scheme,
since [14] and the SI scheme do not require additional
information for decoding. For example, 25% overhead for
[14] and the SI scheme means that one packet is trans-
mitted in addition to every four packets, resulting in five
transmissions in total. In case of the PSI scheme, however,
the amount of additional information included in PSI is
25% larger than the total packet size (i.e., four packets).

The simulation results for performance comparison are
shown in Fig. 8. In the simulations, Δ¼ 8 and 17 packets
are network coded over GFð210Þ. Fig. 8 shows the average
PMSE for the considered approaches over 100 indepen-
dent experiments. For the SI scheme, the packet loss rates
are set in the range of (0, 0.5] and (0.5, 1), and the corre-
sponding average PMSEs shown in Fig. 8 are indicated by
“SI: packet loss rate o0:5” and “SI: packet loss rate 40:5”,
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respectively. For the PSI scheme, the packet loss rates are
set to 1=17;2=17 and 3/17 for illustration.

It can be easily observed that the performance of all the
approaches improves as the overhead increases. This is
because the additional information can help the decoder
to recover more data correctly. In particular, the impact of
the additional information on the performance improve-
ment of the PSI scheme is the greatest among the con-
sidered approaches, which is consistent with the analytical
results discussed in Section 3.2. It is also observed that the
performance curves converge into two PMSE levels as the
overhead approaches 0%, which are determined based on
the packet loss rates, i.e., packet loss rate is higher or lower
than 50%. If the packet loss rate is higher than 50%,
approximate decoding needs more artificially generated
information (e.g., using (4)) than innovative (received)
packets, thereby leading to performance degradation.

5.2. Illustrative application: approximate decoding deploy-
ment in sensor networks

In this section, we consider an illustrative application of
the proposed approximate decoding algorithm with PSI in
seismographic networks. In this simulation, we use seis-
mic data that is actually collected from 30 sensors that
measure the amplitude of a seismic signal at a distance of
100 m from each other. A sensor t captures signal st that
represents a series of sampled observations in a time
window of size L, i.e., st ¼ ½sð1Þt ;…; sðLÞt �T . The measured
symbol is quantized and mapped into GF(2M) elements,
and the resulting data is denoted by xt, i.e., QðsðiÞt Þ ¼ xðiÞt A
GF(2M). Each sensor makes measurements and forwards
them to its neighbor encoding sensors. An index vector of
sensors whose data are encoded together at sensor t is
denoted by HiAt, where i is a vector index. An encoding
sensor t may receive multiple data from sensors in Hi and
combine them based on RLNC, where the combined data is
Fig. 9. An illustrative example of sensor network for seismic data. Sensors are de
at sensors 1, 2 and 3, respectively, are transformed into GF (i.e
yðiÞk ð2Þ ¼ fck1ð1Þ � xðiÞ1 g � fck2ð1Þ � xðiÞ2 g � fck3ð1Þ � xðiÞ3 g. The encoded data forward
can be lost in the transmission and the receiver reconstructs source data based

Please cite this article as: M. Kwon, et al., Approximate de
Processing (2015), http://dx.doi.org/10.1016/j.sigpro.2015.09.01
again forwarded to its neighbor nodes or the final desti-
nation (i.e., receiver). The elements of coding coefficient
vector ct are randomly selected from GF(2M). The encoded
data packets generated at the first coding stage are
expressed as yðiÞð2Þ ¼P

tAHi
� ctð1Þ � xðiÞt . The encoded

packets are mixed again at the intermediate nodes while
traversing network towards the destination. An illustrative
example for simulation setup is shown in Fig. 9.

As a representative example, we consider the case
where the data measured from sensors 1–3 are collected
and combined by sensor 3 based on RLNC in our experi-
ments. The measured signals from a set of sensors are
mostly time-shifted and energy-scaled. The energy dif-
ference between sensors is modeled as the Gaussian
distribution. The similarity of the signals becomes higher
as sensors are closer to each other. In this simulation, the
energy difference between the signals captured by
neighbor sensors is modeled as Gaussian random variable
with mean value of 8 and variance of 0:22, i.e.,
sðiÞtþ1�sðiÞt 
N ð8;0:22Þ for t ¼ 1;2. In Fig. 10, the seismic
data measured from three sensors are depicted. We set
the temporal window size by L¼256 for data repre-
sentation and use the quantizer xtA GF(2M) for source
data quantization. The GF size is set to 27, i.e., GF(27) and
packet loss rate is set to 1/3. The receiver reconstructs the
original source data based on the data collected from the
three sensors.

In the decoding process, we deploy SI as ν, i.e.,
ν¼ 8 � 1ðT�KinÞ, in (4). This is the S1 discussed in Section 3.2.
We also deploy the proposed decoding algorithm includ-
ing the PSI, which is discussed in Section 4. The results are
shown in Fig. 11. Fig. 11(a-1) shows the original signal
captured by sensor 3 and Fig. 11(a-2) shows the decoded
signal based on S1 that depends only on SI. Fig. 11(a-3) and
(a-4) shows the decoded signals based on PSI with Δ2 and
with Δ2 and Δ3, respectively. The average PMSE is pre-
sented in Table 5, where the amount of decoding error is
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ployed and capture seismic signals. The symbols sðiÞ1 ; sðiÞ2 , and sðiÞ3 measured
., xðiÞ1 ; xðiÞ2 ; xðiÞ3 ) and encoded based on RLNC. In this example,
ed to their neighbor nodes through error-prone networks. Some packets
on the proposed approximate decoding algorithm.
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reduced to 17.3% and 6.7% of (a-2), in (a-3) and (a-4),
respectively. As discussed, the performance of approx-
imate decoding improves as more Δi is included in PSI.
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6. Related works

In this section, we study prior work related with the
proposed approaches. Several regularization techniques
[28] can be deployed for overcoming the all-or-nothing
problem of network coding in finite fields. For example,
the pseudo-inverse of underdetermined coefficient matrix
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Fig. 10. Seismic data measured from sensors. Sensor 1 measures the
seismic data and forwards it to sensor 2 with energy attenuation with
N ð8;0:22Þ.

Fig. 11. Seismic signals measured from sensors and decoded signals by approx
Gaussian distribution, N ð8;0:22Þ, and network coding and approximate decodin

Please cite this article as: M. Kwon, et al., Approximate de
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can be used for decoding. However, it is generally known
that this type of regularization techniques may result in
unreasonable approximations [28]. Alternatively, Tikhonov
regularization [29] can improve the decoding performance
by slightly modifying the standard least square approach.
However, this technique cannot be easily deployed in
practice because it requires to determine additional opti-
mization parameters. Sparsity assumptions can also be
used for regularized decoding in underdetermined sys-
tems in cases where a model of the signal of interest is
known a priori [30]. However, all of these regularization
techniques have been designed and developed in the field
of real numbers, but not in finite fields that are used in
network coding approaches. Hence, they may show sig-
nificant performance degradation if they are blindly
deployed in the proposed framework, as they cannot
consider several properties (e.g., cyclic properties) of finite
field operations. Underdetermined systems can also be
solved approximately based on the maximum likelihood
estimation (MLE) techniques (see e.g., Part II of [31]) or
based on mixed integer linear programming [32]. How-
ever, these techniques require effective data models and
may typically involve large computational complexity.

Unlike the approaches mentioned above, several
approaches have been proposed to overcome the all-or-
nothing problem of network coding in finite fields (see e.g.,
[33,32]). In [33], a loss-tolerant protocol for broadcasting,
named by Dragoncast, based on network coding is pro-
posed. In [32], a coding scheme that jointly considers both
network coding and multiple description coding is pro-
posed. The problem of data reconstruction is formulated as
a mixed integer quadratic programming and robustness
against missing packets is achieved. Our prior work [14]
propose an approximate decoding approach based on
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imate decoding with PSI. Energy difference on the signals is modeled by
g are performed in GF(27).
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Table 5
Average PMSE for different approximate decoding algorithms.

Fig. 11
(a-2) SI
(Δ)

Fig. 11 (a-3) PSI (Δ;Δ2) Fig. 11 (a-4) PSI
(Δ;Δ2 ;Δ3)

PMSEð%Þ 0.0010
(100 %)

1:7266	 10�4ð17:3%Þ 6:7118	 10�5ð6:7%Þ
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simple matches of the most similar data between neighbor
sources.

The information on the inter-dependency of the sour-
ces has been exploited in order to improve the perfor-
mance of data reconstruction. In [34], network coding for
two arbitrary inter-dependent sources is studied in a
generic network and an upper bound on the probability of
decoding errors is found as a function of the network
parameters such as the number of links upstream of a
receiver or network topologies. Several practical aspects of
joint source and network coding are investigated in [35].
However, the proposed approach is sub-optimal and pro-
vides a solution only for two inter-dependent sources that
are transmitted over binary symmetric channels. The
design of optimal network codes under joint distributed
source and network coding framework is studied in a
sensor network [36]. The goal is to find the optimal tra-
deoff between compression efficiency and network
robustness. However, the complexity of the proposed
solution in [36] grows exponentially with the network
size. In [23], an iterative decoding algorithm for source
reconstruction is proposed for inter-dependent sources
following a belief propagation approach that incorporates
inter-dependence characteristics. However, none of prior
works solve the all-or-nothing problem of network coding
in finite fields with low-complexity, while the algorithm
proposed in this paper can be implemented with low-
complexity and it is compatible with well-known Gaussian
elimination methods. Several extensions of [14] can be
found in [15] and [16] for deterministic sources with SI and
PSI, respectively. In [17], approximate decoding algorithm
for sources that have bell-shaped, symmetric and unim-
odal distribution is proposed. Unlike these prior works, we
propose more generalized framework that can cover a
large range of source types. Moreover, the proposed
approximate decoding solution can exploit both SI and PSI
such that the approximate decoding performance can be
significantly improved.

Since additional information is transmitted [37] in the
proposed scenario, the proposed approach can be con-
sidered as an index coding problem [38]. However, the
index coding is generally considered in broadcasting sce-
narios (i.e., a single server wishes to communicate with
several clients) and the side information in the index
coding contains the source information [39]. Hence, the
amount of additional information required for the pro-
posed approach is significantly smaller than that for index
coding.
Please cite this article as: M. Kwon, et al., Approximate de
Processing (2015), http://dx.doi.org/10.1016/j.sigpro.2015.09.01
7. Conclusion

In this paper, we consider the transmission of network
coded inter-dependent sources in error prone networks. In
order to solve the all-or-nothing problem of network
coding approaches, we propose a solution that approxi-
mately reconstructs the source data when the number of
received data packets is not sufficient for perfect recovery
without major change in the conventional decoding
architecture. Unlike prior works, we consider a generalized
source inter-dependency characterized by unimodal
shapes. Given the information about source distributions,
we show that the performance of the proposed approx-
imate decoding algorithm is improved by using the mode
of the distributions (SI). We further improve the perfor-
mance of the proposed approximate decoding algorithms
by deploying additional information called PSI. We evalu-
ate the proposed approaches in an illustrative example of
sensor network and the simulation results confirm that
approximate decoding along with minimal side informa-
tion leads to effective source reconstruction.
Appendix A

In Appendix A, we show that the approximate decoding
performance is maximized only when νn ¼ ν�n and is flat for
all other value of νnðaν�nÞ values, which justify the use of
the Cauchy–Dirac delta function in Section 3.2.

The approximate decoding algorithm in (4) can be
expressed as

x̂ ðiÞ ¼ CðhD�1Þ
D

� ��1

� yðiÞðhDÞ
ν

" #
¼ C

� yðiÞðhDÞ
ν

" #
¼ c1;…; cKin ; cKin þ1;…; cT
� �

� yðiÞðhDÞ
ν

" #
¼ c1;…; cKin

� � � yðiÞðhDÞ � cKin þ1;…; cT
� �

� ν

where C9 CðhD�1ÞT ;DT
h i�T

¼ ½c1;…; cT � and ct is in
GFð2MÞ. Hence, the squared decoding error can be
expressed as

xðiÞ � x̂ ðiÞ
 2 ¼ ½cKin þ1;…; cT � � ðν�T �νT Þ

 2: ð21Þ

The squared decoding error shown in (21) implies that
ν¼ ν� is the condition that minimizes the error. However, a
small distance between ν and ν� (νaν�) in the GF does not
directly lead to small distance of xðiÞ � x̂ ðiÞ

 2 due to the
cyclic property of the operations in the GF and the random
selection of the coding coefficients. The characteristics of
the decoding performance (i.e., the squared decoding
error) can thus be well captured by the Cauchy–Dirac delta
function. An illustrative example shown in Fig. 12 for the
squared decoding error in (21) also confirms the
discussion above.
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Fig. 12. An illustrative example of the squared decoding error
jxðiÞn � x̂ ðiÞ

n j2 ¼ jck;m � ðν�n�νnÞj2 in GF(28). ck;m is randomly selected in
GF(28).
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