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Abstract
Recently, MOEA/D (multi-objective evolutionary algorithm based on decomposition)
has achieved great success in the field of evolutionary multi-objective optimization and
has attracted a lot of attention. It decomposes a multi-objective optimization problem
(MOP) into a set of scalar subproblems using uniformly distributed aggregation weight
vectors and provides an excellent general algorithmic framework of evolutionary multi-
objective optimization. Generally, the uniformity of weight vectors in MOEA/D can
ensure the diversity of the Pareto optimal solutions, however, it cannot work as well
when the target MOP has a complex Pareto front (PF; i.e., discontinuous PF or PF
with sharp peak or low tail). To remedy this, we propose an improved MOEA/D with
adaptive weight vector adjustment (MOEA/D-AWA). According to the analysis of the
geometric relationship between the weight vectors and the optimal solutions under
the Chebyshev decomposition scheme, a new weight vector initialization method and
an adaptive weight vector adjustment strategy are introduced in MOEA/D-AWA. The
weights are adjusted periodically so that the weights of subproblems can be redis-
tributed adaptively to obtain better uniformity of solutions. Meanwhile, computing
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efforts devoted to subproblems with duplicate optimal solution can be saved. More-
over, an external elite population is introduced to help adding new subproblems into
real sparse regions rather than pseudo sparse regions of the complex PF, that is, discon-
tinuous regions of the PF. MOEA/D-AWA has been compared with four state of the
art MOEAs, namely the original MOEA/D, Adaptive-MOEA/D, paλ-MOEA/D, and
NSGA-II on 10 widely used test problems, two newly constructed complex problems,
and two many-objective problems. Experimental results indicate that MOEA/D-AWA
outperforms the benchmark algorithms in terms of the IGD metric, particularly when
the PF of the MOP is complex.

Keywords
Multi-objective optimization, evolutionary algorithm, decomposition, initial weight
vector construction, adaptive weight vector adjustment.

1 Introduction

Many real-world applications have more than one conflicting objective to be optimized
simultaneously. These problems are the so-called multi-objective optimization problems
(MOPs). A MOP can be defined as follows:{

min F(x) = (f1(x), f2(x), . . . , fm(x))T

subject to: x ∈ �
(1)

where � ⊂ R
n is the decision space and x = (x1, x2, . . . , xn) ∈ � is a decision variable

which represents a solution to the target MOP. F(x): � → R
m denotes the m-dimensional

objective vector of the solution x.
Suppose that xA, xB ∈ � are two solutions of a MOP, we say that xA dominates xB

(written as xA ≺ xB), if and only if fi(xA) ≤ fi(xB),∀i ∈ {1, . . . , m}, and there exists a
j ∈ {1, . . . , m } which makes fj (xA) < fj (xB). A solution x∗ ∈ � is called Pareto optimal
if there is no other solution that dominates x∗. The collection of all Pareto optimal
solutions is called the Pareto optimal set (PS), that is PS = {x∗ | ¬∃x ∈ �, x ≺ x∗}. The
Pareto optimal front (PF) is thus defined as the corresponding objective vectors of the
solutions in Pareto optimal set, that is, PF = {F(x) | x ∈ PS}. Solving a MOP is to find
its PS.

In traditional mathematical programming approaches, the decomposition tech-
nique which transfers the MOP into a set of scalar optimization problems has been
widely applied (Miettinen, 1999). However, these decomposition-based approaches can
only find one Pareto-optimal solution in a single run. By taking advantage of evolution-
ary algorithms (EAs), Schaffer developed a vector evaluated genetic algorithm (VEGA)
by combining the decomposition technique with the genetic algorithms to obtain a
set of optimal solutions in a single run (Schaffer, 1985). VEGA is considered to be the
first multi-objective evolutionary algorithm (MOEA). After that, the concept of Pareto
optimality was introduced into MOEA, where it contributed greatly to this research
field. MOEAs with Pareto-ranking-based selection became popular. According to the
classification proposed by Coello Coello (2006), the first generation of MOEAs is charac-
terized by the usage of selection mechanisms based on the Pareto ranking and the fitness
sharing. Typical representatives include the multi-objective GA (MOGA; Fonseca and
Fleming, 1993), the non-dominated sorting GA (NSGA; Srinivas and Deb, 1994) and
the niched Pareto GA (NPGA; Horn et al., 1994). The second generation of MOEAs
is characterized by the use of elitism strategy. Typical examples include the strength
Pareto evolutionary algorithm (SPEA; Zitzler and Thiele, 1999) and its improved ver-
sion SPEA2 (Zitzler et al., 2001), the Pareto-envelope-based selection algorithm (PESA;
Knowles and Corne, 2000) and its enhanced version PESA-II (Corne et al., 2001), the
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Pareto archived evolution strategy (PAES; Corne et al., 2000), and the improved version
of NSGA (NSGA-II; Deb et al., 2002).

Recently, Zhang and colleagues (Zhang and Li, 2007; Li and Zhang, 2009; Zhang
et al., 2009) introduced the decomposition approaches into MOEA and developed the
outstanding MOEA/D, which provides an excellent algorithmic framework of evo-
lutionary multi-objective optimization. MOEA/D decomposes the target MOP into a
number of scalar optimization problems and then applies the EA to optimize these sub-
problems simultaneously. In recent years, MOEA/D has attracted increasing research
interest and many follow-up studies have been published. Existing research studies
may be divided into the following five aspects:

1. Combinations of MOEA/D with other nature inspired meta-heuristics, such as
simulated annealing (Li and Landa-Silva, 2011), ant colony optimization (Ke et al.,
2010), particle swarm optimization (Moubayed et al., 2010; Martinez and Coello
Coello, 2011), and estimation of distribution algorithm (Shim et al., 2012).

2. Changes of the offspring reproducing mechanisms in MOEA/D. Newly devel-
oped reproducing operators include the guided mutation operator (Chen et al.,
2009), nonlinear crossover and mutation operator (Sindhya et al., 2011), differen-
tial evolution schemes (Huang and Li, 2010), and a new mating parent selection
mechanism (Lai, 2009).

3. Research on the decomposition approaches. In Zhang, Li, et al. (2010), an NBI-
style Chebyshev decomposition approach is proposed to solve MOPs with dis-
parately scaled objectives. In Ishibuchi et al. (2009, 2010), different decomposition
approaches are used simultaneously. In Deb and Jain (2012a, 2012b), an enhanced
Chebyshev decomposition approach is developed.

4. Refinements of the weight vectors for scalar subproblems. The uniformly dis-
tributed weight vectors used in MOEA/D are predetermined. Recent studies
have shown that the fixed weight vectors used in MOEA/D might not be able to
cover the whole PF very well (Li and Landa-Silva, 2011). Therefore, some studies
have been done to refine the weight vectors in MOEA/D. In Gu and Liu (2010),
new weight vectors are periodically created according to the distribution of the
current weight set. In Li and Landa-Silva (2011), each weight vector is periodi-
cally adjusted to make its solution of the subproblem far from the corresponding
nearest neighbor. In Jiang et al. (2011), another weight adjustment method is de-
veloped by sampling the regression curve of objective vectors of the solutions in
an external population.

5. Applications of MOEA/D on benchmark and real-world problems. Most of the
applications have been dedicated to multi-objective combinatorial optimization
problems, such as the knapsack problem (Li and Landa-Silva, 2011; Ke et al.,
2010; Ishibuchi et al., 2010), the traveling salesman problem (Li and Landa-Silva,
2011; Zhang, Li, et al., 2010), the flow-shop scheduling problem (Chang et al.,
2008), and the capacitated arc routing problem (Mei et al., 2011). Some practical
engineering problems like antenna array synthesis (Pal, Das, et al., 2010; Pal, Qu,
et al., 2010), wireless sensor networks (Konstantinidis et al., 2010), robot path
planning (Waldocka and Corne, 2011), missile control (Zhang, Tang, et al., 2010),
portfolio management (Zhang, Liu, et al., 2010) and rule mining in machine
learning (Chan et al., 2010) have also been investigated.
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Figure 1: (a) Uniformly distributed weight vectors of the subproblems. (b) The corre-
sponding optimal solutions when the PF has a sharp peak and a low tail.

In this work, we aim at the refinement of weight vectors in MOEA/D. As claimed by
Zhang and Li (2007), to make the optimal solutions evenly distributed over the target
PF, the weight vectors need to be selected properly under a chosen decomposition
scheme. The basic assumption of MOEA/D is that the uniformity of weight vectors
will naturally lead to the diversity of the Pareto optimal solutions. In order to ensure
the diversity of scalar subproblems, MOEA/D employs a predefined set of uniformly
distributed weight vectors. In general, as claimed in Liu et al. (2010), when the PF
is close to the hyper-plane

∑m
i=1 fi = 1 in the objective space, MOEA/D can obtain

the uniformly distributed Pareto optimal solutions. However, the basic assumption of
MOEA/D might be violated in the cases where the PF is complex, that is, when the
PF is discontinuous or has the shape of sharp peak and low tail (see an illustration in
Figure 1(b)).

When the target MOP has a discontinuous PF, several subproblems will have the
same optimal solution (see the analysis in Section 2). Dealing with these subproblems
simultaneously will be a waste of computing effort, as it contributes nothing to the
performance of the algorithm. When the target MOP has a PF with a sharp peak or a
low tail, the shape of the PF will be far from the hyper-plane

∑m
i=1 fi = 1 in the objective

space. As shown in Figure 1(b), at the sharp peak or low tail areas, there are many
non-dominated solutions distributed within a narrow gap in one of the objectives. In
this case, MOEA/D cannot obtain a set of uniformly distributed optimal solutions on
the PF.

In this paper, we develop an enhanced MOEA/D with adaptive weight vector ad-
justment (MOEA/D-AWA) to address the MOPs with complex PFs. The major contribu-
tions of the paper are the developments of a novel weight vector initialization method
and an elite population-based adaptive weight vector adjustment (AWA) strategy. The
development of the weight vector initialization method is based on our analysis of the
geometric relationship between the weight vectors and their corresponding optimal
solutions under the Chebyshev decomposition scheme. The AWA strategy is designed
to regulate the distribution of the weight vectors of subproblems periodically according
to the current optimal solution set. In the AWA strategy, the elite population is intro-
duced to help in adding new subproblems into the real sparse regions of the complex
PF rather than the discontinuous parts which are pseudo-sparse regions.
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The rest of this paper is organized as follows. Section 2 analyzes the characteristics
of the Chebyshev decomposition approach. Section 3 presents the suggested MOEA/
D-AWA algorithm. Section 4 shows the comparison results between the newly de-
veloped algorithm and other state of the art algorithms. Some further studies on
the effectiveness of MOEA/D-AWA are also made in this part. Section 5 concludes
the paper.

2 The Analysis

In this section, we briefly introduce the Chebyshev decomposition approach. A geomet-
ric analysis on the relationship between the weight vectors and the optimal solutions
under this decomposition scheme is carried out.

2.1 Analysis on the Chebyshev Decomposition Approach for MOPs

Many approaches have been developed to decompose a MOP into a set of scalar opti-
mization problems (Das and Dennis, 1998; Miettinen, 1999; Messac et al., 2003; Zhang
and Li, 2007; Zhang, Li, et al., 2010). Among these decomposition approaches, the
Chebyshev approach (Miettinen, 1999) is the most widely used (Zhang and Li, 2007;
Zhang, Li, et al., 2010) due to its ability of solving MOPs with non-convex Pareto-
optimal fronts. Here we carry out a further analysis on the Chebyshev decomposition
approach, which provides a theoretical basis for this work.

Under the Chebyshev scheme, a scalar optimization subproblem can be stated as
follows:

min
x∈�

gtc(x|λ, z∗) = min
x∈�

max
1≤i≤m

{λi |fi(x) − z∗
i |} (2)

where λ = (λ1, λ2, . . . , λm)(
∑m

i=1 λi = 1, λi ≥ 0, i = 1, . . . , m) is the weight vector of the
scalar optimization subproblem, and z∗ = (z∗

1, z
∗
2, . . . , z

∗
m) is the reference point (i.e.,

z∗
i < min{fi(x)|x ∈ �}, i = 1, . . . , m).

It has been proved in Miettinen (1999) that under mild conditions, for each Pareto
optimal solution x∗ there exists a weight vector λ such that x∗ is the optimal solution
of Equation (2). On the other hand, each optimal solution of Equation (2) is a Pareto
optimal solution to Equation (1). This property allows obtaining different Pareto optimal
solutions by varying the weight vectors.

Due to z∗
i < min{fi(x)|x ∈ �}, i = 1, . . . , m, we have:

min
x∈�

gtc(x|λ, z∗) = min
x∈�

max
1≤i≤m

{λi × |fi(x) − z∗
i |} = min

x∈�
max
1≤i≤m

{λi × (fi(x) − z∗
i )}.

Based on the above definition, we have the following Theorem 1.

THEOREM 1: Assume that the target PF of a MOP is piecewise continuous. If the straight line
f1−z∗

1
1
λ1

= f2−z∗
2

1
λ2

= · · · = fm−z∗
m

1
λm

(λi �= 0, i = 1, 2, . . . , m), taking f1, f2, . . . , fm as variables, has

an intersection with the PF, then the intersection point is the optimal solution to the scalar sub-
problem with weight vector λ = (λ1, λ2, . . . , λm)(

∑m
i=1 λi = 1, λi > 0, i = 1, 2, . . . , m), where

z∗ = (z∗
1, . . . , z

∗
m) is the reference point.

The proof can be found in Appendix A.
Moreover, if we let λi �= 0, i = 1, 2, . . . , m, then f1−z∗

1
1
λ1

= f2−z∗
2

1
λ2

= · · · = fm−z∗
m

1
λm

is the

straight line that passes through the reference point z∗ = (z∗
1, . . . , z

∗
m) with the direction

vector λ′ = (
1
λ1∑m

i=1
1
λi

,
1
λ2∑m

i=1
1
λi

, . . . ,
1

λm∑m
i=1

1
λi

). In the following, we define the direction vector

λ′ as the solution mapping vector of the scalar subproblem with weight vector λ.
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Figure 2: Contour lines of a scalar subproblem and the geometric relationship between
its weight vector and optimal solution under the Chebyshev decomposition scheme.

Figure 3: The geometric relationship between the weight vectors and their correspond-
ing solution mapping vectors for tri-objective optimization problems.

For clarity, Figure 2 illustrates the contour lines of a scalar subproblem taking a
bi-objective minimization problem as an example. In Figure 2, we combine the objec-
tive space and the weight space. The weight vector λ is in the weight space and its
solution mapping vector λ′ is in the objective space. It can be seen from Figure 2(a) that
the optimal solution of the scalar subproblem with weight vector λ is located on the
lowest contour line, which is also the intersection point between λ′ and the target PF.
However, when the target PF is discontinuous, as shown in Figure 2(b), there might be
no intersection point between λ′ and the target PF. In this situation, the optimal solution
is the point on the target PF that is located on the lowest contour line of the subproblem
with weight vector λ.

For bi-objective optimization problems, the uniformity of the weight vectors and
that of the corresponding solution mapping vectors are consistent with each other. How-
ever, for tri-objective optimization problems, the situation becomes different. Figure 3
illustrates the geometric relationship between the weight vectors and their correspond-
ing solution mapping vectors in three-dimensional objective space. It can be seen that a
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Figure 4: Analysis of the Chebyshev decomposition approach for the MOPs with dis-
continuous target PF.

set of uniformly distributed weight vectors lead to a set of regularly but nonuniformly
distributed solution mapping vectors. The reason is that the relationship between a
weight vector and its solution mapping vector is nonlinear.

Theorem 1 indicates that if the solution mapping vector has an intersection point
with the target PF, then the intersection point must be the optimal solution of the
corresponding scalar subproblem. However, if the PF is discontinuous, the solution
mapping vector may have no intersection with the target PF. Figure 4 shows the scalar
subproblems whose solution mapping vectors pass through the discontinuous part of
the target PF. It can be seen from Figure 3 that at the discontinuous part of the target PF,
more than one scalar subproblem has the same optimal solution.

2.2 Motivation of the Proposed Work

According to the above analysis, we may draw conclusions as follows. First, uniformly
distributed weight vectors cannot guarantee the uniformity of the optimal solutions on
the PF. Second, for the MOPs with discontinuous target PFs, some scalar subproblems
have the same optimal solution which reduces the diversity of the Pareto optimal so-
lutions. Therefore, in order to maintain a set of uniformly distributed Pareto optimal
solutions on the PF, decomposition-based MOEAs should pursue a uniform distribution
of the solution mapping vectors. This motivates us to develop a new weight vector ini-
tialization method with which a set of uniformly distributed solution mapping vectors
are created.

Moreover, we can see that the uniformity of the solution mapping vectors can lead
to a set of uniformly distributed Pareto optimal solutions over the PF when the shape of
the PF is close to the hyperplane

∑m
i=1 fi = 1 in the objective space. Unfortunately, the

shape of the PF is usually not known in advance. When the target MOP has a complex
PF, the new weight vector initialization method cannot solve all the problems. The
first challenge is that the PF is discontinuous. In this case, many scalar subproblems
obtain the same optimal solution on the breakpoints, which reduces the diversity of
subproblems and wastes computing effort. The second challenge is that the PF has a
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Figure 5: Illustration of the discontinuous part and the real sparse area for the PF which
is discontinuous.

complex shape, that is, it has a sharp peak and a low tail, as shown in Figure 1. At the
sharp peak or the low tail of the PF, there are many non-dominated solutions distributed
within a narrow gap in one of the objectives. In this case, MOEA/D is unable to obtain
uniformly distributed optimal solutions on the target PF.

It is natural to pursue uniformly distributed Pareto optimal solutions by removing
subproblems from the crowded regions and adding new ones into the sparse regions.
However, if the target PF is discontinuous, it is a big challenge to distinguish between
the discontinuous regions, which need fewer subproblems to save computing resources,
and the sparse regions, which need more subproblems to enhance diversity, as shown
in Figure 5. In order to obtain evenly distributed Pareto optimal solutions, more com-
puting resources need to be spent on searching the real sparse regions rather than the
pseudo-sparse regions, that is, discontinuous regions. To achieve this goal, we propose
to introduce an elite population that is used as a guide for adding and removing sub-
problems. If an elite individual is located in a sparse region of the evolving population, it
will be recalled into the evolving population and a new weight vector will be generated
and added to the subproblem set. This strategy helps to introduce new subproblems
into the real sparse regions. When the evolving population converges to some extent,
individuals in the elite population can be considered as non-dominated solutions. As
there is no non-dominated solution that exists at the discontinuous regions of the target
PF, the enhanced algorithm will not introduce too many new subproblems into the
discontinuous parts.

To handle the MOPs with unknown PF shapes, we propose to deploy an elite
population-based adaptive weight vector adjustment strategy to obtain uniformly
distributed Pareto optimal solutions. The proposed adjustment strategy can remove
redundant scalar subproblems whose solution mapping vectors pass through the dis-
continuous part of the target PF. This could help to improve the computational efficiency
of the algorithm.

For convenience of discussion, we introduce the WS-transformation. It maps the
weight vector of a scalar subproblem to its solution mapping vector. If λ = (λ1, λ2, . . . ,

λm) ∈ R
m, satisfying

∑m
i=1 λi = 1, λi ≥ 0, i = 1, 2, . . . , m, is a weight vector, then the

WS-transformation, giving rise to λ′, on λ can be defined as:

λ′ = WS(λ) =
(

1
λ1∑m

i=1
1
λi

,

1
λ2∑m

i=1
1
λi

, . . . ,

1
λm∑m
i=1

1
λi

)
. (3)
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It can be proved that the WS-transformation is self-inverse. That is, λ = WS(λ′) =
WS(WS(λ)). Thus, if we apply the WS-transformation on the solution mapping vector
λ′, we can obtain the weight vector λ. For example, if the points in Figure 3(b) are used as
the weight vectors, then their solution mapping vectors will be the points in Figure 3(a).
In Section 3, this mathematical property will be applied to facilitate the development of
our algorithm.

3 The Algorithm—MOEA/D-AWA

In this section, the basic idea of the proposed MOEA/D-AWA and its main framework
will be described. Then, its computational complexity will be theoretically analyzed.

3.1 Basic Idea

Our main goal is to obtain a uniformly distributed optimal solution set on the PF
of the target MOPs using MOEA/D by assigning appropriate weight vectors to the
scalar subproblems. At first, we develop a novel weight vector initialization method
to generate a set of weight vectors by applying the WS-transformation on the original
weight set used in MOEA/D. As the WS-transformation is self-inverse, the weight
vectors generated by this initialization strategy will lead to a set of solution mapping
vectors that are uniformly distributed on the hyperplane f1 + f2 + · · · + fm = 1, as
shown in Figure 3.

The new weight vector initialization method can significantly improve the perfor-
mance of MOEA/D in general. However, it cannot solve all the problems. For the MOPs
with complex PF, the uniformity of solution mapping vectors of the subproblems still
cannot guarantee the uniformity of the optimal solutions on complex PFs. In this case,
the suggested algorithm is expected to obtain a set of uniformly distributed optimal
solutions by using the adaptive weight vector adjustment strategy.

In summary, our basic idea is to apply a two-stage strategy to deal with the gener-
ation of the weight vectors. In the first stage, a set of predetermined weight vectors are
used until the population is considered converged to some extent. Then, a portion of
the weight vectors are adjusted according to the current Pareto optimal solutions based
on our geometric analysis. Specifically, some subproblems will be removed from the
crowded parts of the PF, and some new subproblems will be created into other parts of
the PF.

3.2 Novel Weight Vector Initialization Method

In this section we present the new weight vector initialization method. The method is
summarized in Algorithm 1.

Taking a tri-objective optimization problem as an example, we can see from Figure 3
the difference between the weight vectors generated by MOEA/D (Figure 3(a)) and the
weight vectors constructed by our method (Figure 3(b)), here the subproblem number
is set as N = 300.

3.3 Recreating Subproblems

Recently, Kukkonen and Deb (2006) proposed a fast and effective method for pruning of
non-dominated solutions. A crowding estimation approach using k nearest neighbors
of each solution, which is termed as vicinity distance, was adopted in their work. The
vicinity distance of the jth solution among a population of solutions can be defined as
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Algorithm 1 New weight vector initialization
Require: N : the number of the subproblems used in MOEA/D-AWA; m : the number

of the objective functions in a MOP (1);
Ensure: a set of initial weight vectors λ1, λ2, · · · , λN ;

Step 1: Generate a set of evenly scattered N weight vectors {λ1 , λ2 , · · · , λN }
using the method from Zhang and Li (2007) in its feasible space
{(w1, w2, · · · , wm)| m

i=1 wi = 1, wi ≥ 0, i = 1, 2, · · · , m)}.
Step 2: Apply the WS-transformation on the generated weight vectors:

for j = 1, · · · , N , do

λj = WS(λj ), if m
i=1 λj

i = 0
WS(λj + ε ∗ [1, 1, · · · , 1]), otherwise

where ε > 0 and ε → 0.

Algorithm 2 Deleting overcrowded subproblems
Require: evol pop : The current population;

nus : the maximal number of subproblems adjusted in AWA;
Ensure: The adjusted population evol pop ;

Step 1: Update the current evolutional population EP :

if gtc(xi|λj , z) < gtc(xj |λj , z), xi,xj ∈ evol pop, i, j = 1, · · · , |evol pop|,
then set xj = xi, FV j = FV i, where FV i and FV j are the objective function
values of xi and xj ;

Step 2: Calculate the sparsity level for each individual indi(i = 1, 2, . . . , |evol pop|)
in the population evol pop among evol pop by Equation (4);
Step 3: Delete overcrowded subproblem:

if the number of deleted subproblems does not reach the required number nus,

then remove the individual with the minimum sparsity level, goto Step 2;

else output the remaining individual as the resulting evol pop

V j = ∏k
i=1 L

NN
j

i

2 , where L
NN

j

i

2 is the Euclidean distance from the jth solution to its ith
nearest neighbor.

In MOEA/D-AWA, the vicinity distance is adopted to evaluate the sparsity level
of a solution among current non-dominated set. The sparsity level of the jth individual
indj among the population pop can be defined as:

SL(indj , pop) =
m∏

i=1

L
NN

j

i

2 . (4)

Algorithms 2 and 3 summarize the procedures for deleting overcrowded subprob-
lems and creating new subproblems, respectively.

In Step 3.1 of Algorithm 3, Equation (5) can result in a good weight vector according
to the individual with largest sparsity level. To justify, we introduce the definition of
the optimal weight vector of a MOP solution.

240 Evolutionary Computation Volume 22, Number 2



MOEA/D with Adaptive Weight Adjustment

Algorithm 3 Adding new subproblems into the sparse regions

Require: evol pop : the resultant population after subproblems deletion;
z∗ : the reference point; EP : an external archive population;
nus : the maximal number of subproblems adjusted in AWA;

Ensure: The adjusted population evol pop”.
Step 1: Remove the individuals in EP which are dominated by the individuals in
evol pop ;
Step 2: Calculate sparsity levels of the individuals in EP among the population
evol pop using Equation (4);
Step 3: Add a new subproblem to the sparse region:

3.1 Generate a new subproblem using the individual indsp = (xsp, FV sp) which
has the largest sparsity level. The weight vector λsp of the new constructed
subproblem can be calculated as follows, in which FV sp = (fsp

1 , · · · , fsp
m ),

(5)

3.2 Set the solution of the new constructed subproblem as indsp and add it to the
current population evol pop ;

Step 4: Stopping criteria: If the number of added subproblems reach the required
number nus, then output the current individual set as the resulting evol pop”. Other-
wise goto Step 2.

DEFINITION: Given the objective values F = (f1, . . . , fm) of a solution and the reference point
z∗ = (z∗

1, . . . , z
∗
m), denote h(λ|F, z∗) = max1≤i≤m{λi |fi − z∗

i |} and Wm = {(λ1, λ2, . . . , λm)|∑m
i=1 λi = 1, λi ≥ 0, i = 1, 2, . . . , m}, we say that λopt is the optimal weight vector to the

solution F, if

h(λopt |F, z∗) = min
λ∈Wm

h(λ|F, z∗) = min
λ∈Wm

max
1≤i≤m

{λi |fi − z∗
i |} = min

λ∈Wm

max
1≤i≤m

{λi ∗ (fi − z∗
i )}.

From the definition, we can see that for given F and z∗, the optimal weight vector
is the one that makes h(λ|F, z∗) reach the minimum value. Thus, it seems sensible to
allocate the optimal weight vector to the individual with the largest sparsity level.
Theorem 2 provides a theoretical basis for constructing the optimal weight vector of a
given solution.

THEOREM 2: Given F = (f1, . . . , fm) and z∗ = (z∗
1, . . . , z

∗
m), if

∏m
j=1(fj − z∗

j ) �= 0, then λopt =
WS(F − z∗) = (

1
f1−z∗1∑m

k=1
1

f1−z∗
k

, . . . ,
1

fm−z∗m∑m
k=1

1
f1−z∗

k

) is the optimal weight vector to F based on z∗.

The proof can be found in Appendix B.
Figure 6 takes a bi-objective problem as an example to illustrate how to construct

the optimal weight vector for a given solution F and a reference point z∗. In case∏m
j=1(f sp

j − z∗
j ) = 0, we replace Equation (5) by Equation (6).

λsp =
⎛
⎝ 1

f
sp

1 −z∗
1+ε∑m

k=1
1

f
sp

1 −z∗
k+ε

, . . . ,

1
f

sp
m −z∗

m+ε∑m
k=1

1
f

sp

1 −z∗
k+ε

⎞
⎠ , ε > 0, ε → 0. (6)
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Figure 6: Plot of constructing the optimal weight vector for a given solution and the
reference point in bi-objective problems.

3.4 MOEA/D-AWA

MOEA/D-AWA has the same framework as MOEA/D. Moreover, it employs the strat-
egy of allocating different computational resources to different subproblems as pro-
posed in Zhang et al. (2009). In this strategy, a utility function is defined and computed
for each subproblem. Computational efforts are distributed to each of the subproblems
based on their utility function values. The major differences between MOEA/D and the
suggested MOEA/D-AWA focus on two aspects. One is the weight vector itialization
method, the other is the update of the weight vectors during the search procedure.

During the search procedure, MOEA/D-AWA maintains the following items:

• An evolving population evol pop = {ind1, · · · , indN }, and indi = (xi , FV i), i =
1, 2, . . . , N where xi is the current solution to the ith subproblem and FV i =
F (xi);

• A set of weight vectors λ1, λ2, . . . , λN ;

• A reference point z∗ = (z∗
1, . . . , z

∗
m)T , where z∗

i is less than the best value ob-
tained so far for the ith objective;

• The utility estimations of the subproblems π1, π2, . . . , πN ;

• An external population EP for the storage of non-dominated solutions during
the search.

MOEA/D-AWA requires a set of parameters as input, including the neighborhood
size T, the probability of selecting mate subproblem from its neighborhood δ, the it-
eration interval of utilizing the adaptive weight vector adjustment strategy wag, the
maximal number of subproblems needed to be adjusted nus, the maximum iteration
times Gmax, the ratio of iteration times to evolve with only MOEA/D, rate evol and
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the max size of EP . Given these items and the parameters, MOEA/D-AWA can be
summarized in Algorithm 4.

In MOEA/D-AWA, the adaptive weight adjustment strategy in Step 4 is applied
periodically. It comes into play only after the population has converged to some extent.
The purpose of introducing the external population is to store the visited non-dominated
solutions and provide a guidance of adding and removing subproblems in the current
evolving population to obtain a better diversity.

For a MOP whose PF is close to the hyperplane
∑m

i=1 fi = 1, the enhanced MOEA/D
with the new weight vector initialization method can perform well. However, when
the assumption is violated, the adaptive weight adjustment strategy based on the elite
population could be of great help. It introduces new subproblems into sparse regions of
the evolving population without adding too many subproblems into the discontinuous
parts (cf. Section 2.2).

3.5 Computational Complexity of MOEA/D-AWA

The time complexity for allocating the computing resources in Step 2 is O(N ), while
for the operation of updating the solutions of evolution population in Step 3 is O(m ×
N2). The time complexity for removing the overcrowded subproblems in Step 4.1 is
O(nus × m × N2), while adding a new subproblem in Step 4.2 is O(nus × m × N2). The
time complexity for updating the neighborhood in Step 4.3 is O(m × T × N2) and the
updating of the external elite population is O(m × N2). In summary, the time complexity
of the adaptive strategy in Step 4 at each iteration is O(nus × m × N2 + T × N2 + 2m ×
T × N2).

Taking the time complexity of initialization, which is O(m × T × N ), into account,
the total time complexity of MOEA/D-AWA is O(m × N2 × (T + nus) × Gmax). Com-
paring with the computational complexity of NSGA-II (Deb et al., 2002) and MOEA/D
(Zhang et al., 2009), MOEA/D-AWA allocates additional computational resources for
the strategy of adaptive weight vector adjustment.

4 Experimental Study

In this section, we first compare MOEA/D-AWA with four other algorithms: the orig-
inal MOEA/D (Zhang et al., 2009), NSGA-II (Deb et al., 2002), Adaptive-MOEA/D
(Li and Landa-Silva, 2011), and paλ-MOEA/D (Jiang et al., 2011). Adaptive-MOEA/D
and paλ-MOEA/D are newly developed MOEA/D with adaptive weight vector de-
sign. Adaptive-MOEA/D employs the weight vectors adjustment approach that was
designed in EMOSA (Li and Landa-Silva, 2011). As EMOSA is proposed for handling
combinatorial problems, we replace the proposed weight vectors adjustment strategy
by the one in EMOSA to form the Adaptive-MOEA/D. paλ-MOEA/D (Jiang et al.,
2011) is another improved MOEA/D with weight vector adjustment. Secondly, we
study the effectiveness of the developed weight vector initialization method and the
elite population-based AWA strategy. Thirdly, the effectiveness of the proposed method
on many-objective test problems is studied.

4.1 Test Instances

In the experimental study, we select five widely used bi-objective ZDT test instances
and five tri-objective DTLZ problems to compare the proposed MOEA/D-AWA with
MOEA/D, Adaptive-MOEA/D, paλ-MOEA/D, and NSGA-II. In order to investigate
the capability of MOEA/D-AWA to solve MOPs whose PF has a sharp peak and low tail,
we construct two new test instances F1 and F2 whose ideal PFs are of complex shapes.
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To investigate the ability of MOEA/D-AWA for many-objective problems, DTLZ5(I,m)
(Deb and Saxena, 2005; Saxena and Deb, 2007; Singh et al., 2011) and its variation
DTLZ4(I,m) are selected as test problems. Some detailed descriptions of these problems
can be found in Table 6 in Appendix C.

The simulation codes of the compared approaches are developed by Visual Studio
2005 and run on a workstation with Inter Core6 2.8 GHz CPU and 32GB RAM.

4.2 Performance Metric

In the experimental study, we use the inverted generational distance (IGD) metric which
is a comprehensive index of convergence and diversity (Zitzler et al., 2003) to evaluate
the performance of all compared algorithms. Let P ∗ be a set of evenly distributed points
over the PF (in the objective space). Suppose that P is an approximate set of the PF, the
average distance from P ∗ to P is defined as:

IGD(P ∗, P ) =
∑

ν∈P ∗ d(ν, P )
|P ∗| (7)

where d(ν, P ) is the minimum Euclidean distance between ν and the solutions in P.
When |P ∗| is large enough, IGD(P ∗, P ) can measure both the uniformity and the con-
vergence of P. A low value of IGD(P ∗, P ) indicates that P is close to the PF and covers
most of the whole PF.

For all the benchmark algorithms, we use the evolutionary population as the pop-
ulation P to calculate the IGD metric.

4.3 Parameter Settings

In our experimental study, NSGA-II follows the implementation of Deb et al. (2002).
The parameters of all compared algorithms are set as follows.

The simulated binary crossover (SBX) operator and polynomial mutation (Deb and
Beyer, 2001) are employed in MOEA/D-AWA, MOEA/D, Adaptive-MOEA/D, paλ-
MOEA/D, and NSGA-II for the 14 test problems. The parameter settings are listed in
Table 1, where n is the number of variables and rand is a uniform random number in
[0,1].

The population size is set to N = 100 for the five bi-objective ZDT problems, N = 300
for the given tri-objective DTLZ problems, N = 100 for the bi-objective F1 problem,
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Table 1: Parameter settings for SBX and PM.

Parameter MOEA/D MOEA/D-AWA NSGA-II

Crossover probability pc 1 1 1
Distribution index for crossover 20 20 20
Mutation probability pm 1/n 1/n 1/n
Distribution index for mutation 20 20 20

N = 300 for the tri-objective F2 problem, and N = 252 for the 6-objective DTLZ4(3,6)
and DTLZ5(3,6). The size of external elite is set as 1.5N .

All the compared algorithms stop when the number of function evaluation reaches
the maximum number. The maximum number is set to 50,000 for the five bi-objective
ZDT problems, 75,000 for the five tri-objective DTLZ problems, 50,000 for the bi-
objective F1 problem, 75,000 for the tri-objective F2 problem, and 200,000 for the two
6-objective DTLZ4(3,6) and DTLZ5(3,6) problems.

For MOEA/D-AWA, the maximal number of subproblem adjusted nus is set to
rate_update_weight ×N and the parameter of rate_update_weight is set to 0.05. The
parameter rate_evol is set to 0.8, that is, 80% of computing resources are devoted
to MOEA/D while the remaining 20% are assigned to the adaptive weight vector
adjustment.

MOEA/D uses weight vectors as shown in the literature (Zhang and Li, 2007; Li and
Zhang, 2009; Zhang et al., 2009). MOEA/D-AWA and Adaptive-MOEA/D apply the
new constructed initial weight vectors which have been defined in Step 1.1 of Algorithm
2, paλ-MOEA/D uses the weight vectors from Jiang et al. (2011). For MOEA/D-AWA,
MOEA/D, Adaptive-MOEA/D, and paλ-MOEA/D, the size of neighborhood list T is
set to 0.1N , and the probability of choosing the mate subproblem from its neighborhood
δ is set as 0.9.

In Adaptive-MOEA/D, the iteration intervals of utilizing the adaptive weight vec-
tor adjustment strategy (the parameter of wag) is set to different values for different
problems. For ZDT problems, DTLZ2, DTLZ4, and DTLZ6, wag is set to 100. For P_F2,
P_F3, and P_F4, wag is set to 120. For DTLZ1, DTLZ3, and P_F1, wag is set to 125. For
F2, wag is set to 160. For F1, wag is set to 200. For DTLZ4(3,6) and DTLZ5(3,6), wag is
set to 250.

4.4 Experimental Studies on MOEA/D-AWA and Comparisons

This part of the experiments is designed to study the effectiveness of MOEA/D-AWA on
different types of MOPs. Firstly, the classical ZDT and DTLZ problems are investigated.
Then the performance of MOEA/D-AWA on MOPs with complex PFs is studied.

4.4.1 Experimental Results for ZDT and DTLZ Problems
In this part of the experiments, the ZDT and the DTLZ problems are bi-objective and
tri-objective problems, respectively. Their mathematical descriptions and the ideal PFs
of the ZDT and DTLZ problems can be found in Deb et al. (2002).

Table 2 presents the mean and standard deviation of the IGD metric values of the
final solutions obtained by each algorithm for five 30-dimensional ZDT problems and
five 10-dimensional DTLZ problems over 30 independent runs. This table reveals that in
terms of the IGD metric, the final solutions obtained by MOEA/D-AWA are better than
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Table 2: Statistic IGD metric values of the Pareto-optimal solutions founded by the five
compared algorithms on the ZDT and DTLZ problems. The numbers in parentheses are
the standard deviations.∗

Instance MOEA/D-AWA MOEA/D Adaptive-MOEA/D paλ-MOEA/D NSGA-II

ZDT1 4.470e–3 4.739e–3 4.750e–3 3.674e–3 4.696e–3
(2.239e–4) (3.973e–5) (1.801e–4) (5.923e–5) (1.435e–4)

ZDT2 4.482e–3 4.461e–3 4.727e–3 3.900e–3 4.724e–3
(1.837e–4) (9.849e–5) (1.277e–4) (2.735e–4) (1.390e–4)

ZDT3 6.703e–3 1.362e–2 1.248e–2 9.737e–3 5.281e–3
(4.538e–4) (1.574e–4) (1.876e–4) (6.636e–4) (1.788e–4)

ZDT4 4.238e–3 4.692e–3 4.835e–3 5.174e–3 4.880e–3
(3.102e–4) (1.339e–4) (3.917e–4) (7.339e–4) (3.713e–4)

ZDT6 4.323e–3 4.474e–3 5.331e–3 3.601e–3 4.261e–3
(2.819e–4) (3.666e–4) (5.899e–4) (4.250e–4) (2.255e–4)

DTLZ1 1.237e–2 1.607e–2 1.605e–2 1.632e–2 3.982e–2
(1.617e–3) (9.458e–4) (3.266e–3) (2.106e–3) (1.121e–3)

DTLZ2 3.065e–2 3.878e–2 3.189e–2 3.232e–2 4.696e–2
(1.183e–4) (2.974e–4) (1.045e–3) (9.275e–4) (1.435e–3)

DTLZ3 3.196e–2 3.921e–2 4.487e–2 5.723e–2 8.741e–2
(8.036e–4) (5.883e–4) (1.080e–2) (9.761e–2) (5.430e–2)

DTLZ4 3.068e–2 3.889e–2 3.277e–2 3.443e–2 3.951e–2
(1.351e–4) (3.202e–4) (1.135e–3) (9.476e–3) (1.065e–3)

DTLZ6 3.610e–2 8.778e–2 7.787e–2 6.980e–2 4.156e–2
(5.054e–3) (2.603e–3) (2.830e–3) (2.539e–3) (1.483e–3)

∗Note: The values in bold indicate the best performing algorithm for the particular instance of a test problem.

MOEA/D for nine out of 10 problems, except for the simple problem ZDT2. Especially
for the tri-objective DTLZ problems, MOEA/D-AWA performs much better than all of
the compared algorithms.

It can be seen from Table 2 that the proposed MOEA/D-AWA performs best on
tri-objective DTLZ problems and much better than MOEA/D and two other MOEA/D
based algorithms on ZDT3. The five DTLZ problems investigated here are tri-objective
MOPs with simple PFs. For these problems, the developed weight vector initialization
method in MOEA/D-AWA plays an important role in maintaining good uniformity.
As has been analyzed in Section 2, the initial weight vector set in MOEA/D-AWA
corresponds to a set of uniformly distributed solution mapping vectors which can lead
to a number of uniformly distributed Pareto optimal solutions over the PF when the
curve shape of the PF is close to the hyper-plane

∑m
i=1 fi = 1.

Figure 7 and Figure 8 show in the objective space, the distribution of the final
solutions with the lowest IGD value found by each algorithm for tri-objective DTLZ
problems. The ideal PF of DTLZ1 is a hyperplane in the first quadrant. The ideal PFs
of DTLZ2, DTLZ3, and DTLZ4 are unit spheres in the first quadrant. The ideal PF of
DTLZ6 is composed of four curve surfaces. It is visually evident that MOEA/D-AWA
is significantly better than the original MOEA/D in terms of the uniformity of final
solutions. Among the benchmark algorithms, the final non-dominated solutions found
by MOEA/D distribute with some regularity and concentrate at the center of the target
PF. The points obtained by Adaptive-MOEA/D distribute with no regularity, but their
uniformity is not as good as those obtained by MOEA/D-AWA. The points obtained by
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Figure 7: The distribution of the final non-dominated solutions with the lowest IGD
values found by MOEA/D-AWA, MOEA/D, Adaptive-MOEA/D, paλ-MOEAD, and
NSGA-II on the 10-dimensional DTLZ problems (part I).

paλ-MOEA/D are uniformly distributed but with some regularity. NSGA-II obtains a
good diversity, but its uniformity is not very good.

Moreover, it should be pointed out that MOEA/D-AWA obtains good performance
on DTLZ6, whose PF is discontinuous and is not close to the hyperplane

∑m
i=1 fi = 1.

When dealing with this problem, the AWA strategy helps to maintain better diversity
and saves computing effort that will then be devoted to the discontinuous parts of the
PF in the original MOEA/D. In Section 4.5.1, further discussions will be made on the
computing effort assignment among the discontinuous parts of the PF.

As for the bi-objective ZDT problems, the weight vector initialization method in
MOEA/D-AWA does not work well, because the new weight vector set is exactly
the same as the original one. According to the definition of the WS-transformation in
Section 2, in the two-dimensional objective space, the weight vector set is basically the
same after the WS-transformation except that the order is reversed. Therefore, when
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Figure 8: The distribution of the final non-dominated solutions with the lowest IGD
values found by MOEA/D-AWA, MOEA/D, Adaptive-MOEA/D, paλ-MOEAD, and
NSGA-II on the 10-dimensional DTLZ problems (part II).
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Figure 9: The ideal Pareto-optimal fronts of F1 and F2.

dealing with bi-objective MOPs, the AWA strategy plays an important role in MOEA/
D-AWA. As shown in Table 2, MOEA/D-AWA performs as well as or slightly better
than MOEA/D on ZDT1, ZDT2, ZDT4, and ZDT6, which have simple PFs. As for
ZDT3, where PF is discontinuous, MOEA/D-AWA performs significantly better than
MOEA/D and two other MOEA/D based algorithms. This implies that the developed
AWA strategy is successful as it is designed particularly for MOPs with complex PFs.

We can conclude from the above results that the weight vector initialization method
in MOEA/D-AWA significantly improves the performance of MOEA/D on tri-objective
MOPs with simple PF. On the other hand, the AWA strategy works well when the target
MOP has a complex PF.

4.4.2 Performances on Newly Constructed MOPs with Complex PFs
The above experimental results on ZDT3 and DTLZ6 problems indicate that the pro-
posed MOEA/D-AWA can obtain good performance on the MOPs with discontinuous
PF. In this section, we intend to study the performance of MOEA/D-AWA on prob-
lems with sharp peak or low tail PFs. The test problem F1 is a newly constructed
bi-objective problem which is a variant of ZDT1. And F2 is a tri-objective problem
which is a variant of DTLZ2 and described in Deb and Jain (2012a). Their mathe-
matical descriptions can be found in Table 6 in Appendix C. The ideal PSs of F1
and F2 are F1 PS = {(x1, x2, . . . , xn)|x1 ∈ [0, 1], x2 = x3 = · · · = xn = 0} and F2 PS =
{(x1, x2, . . . , xn)|x1, x2 ∈ [0, 1], x3 = x4 = · · · = xn = 0.5}, respectively. The ideal PFs of F1
and F2 are F1 PF = {(f1, f2)|(1 − f1)2.8 + (1 − f2)2.8 = 1, f1, f2 ∈ [0, 1]} and F2 PF =
{(f1, f2, f3)|√f1 + √

f2 + f3 = 1, f1, f2, f3 ∈ [0, 1]}, respectively. Figure 9 gives the ideal
Pareto-optimal fronts of F1 and F2.

Table 3 lists the IGD metric values obtained by the compared algorithms on F1
and F2. It can be seen from Table 3 that MOEA/D-AWA performs best among the
five compared algorithms. The second best algorithm is NSGA-II. NSGA-II performs
better than MOEA/D and its two variants Adaptive-MOEA/D and paλ-MOEA/D.
Adaptive-MOEA/D and paλ-MOEA/D perform as well as or better than the original
MOEA/D, especially for tri-objective problems. This suggests that weight adjustment
does improve MOEA/D significantly in terms of uniformity for the MOPs with complex
PFs.
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Table 3: Statistic IGD metric values of the solutions founded by the five compared
algorithms on the two MOPs with complex PFs. The numbers in parentheses present
the standard deviation.∗

Instance MOEA/D-AWA MOEA/D Adaptive-MOEA/D paλ-MOEA/D NSGA-II

F1 5.204e–3 2.531e–2 2.331e–2 6.111e–3 5.404e–3
(7.975e–5) (7.264e–4) (2.060e–4) (3.608e–4) (2.137e–4)

F2 1.637e–2 4.023e–2 3.647e–2 1.663e–2 1.956e–2
(3.104e–4) (4.162e–4) (1.795e–3) (3.233e–4) (5.286e–4)

∗Note: The values in bold indicate the best performing algorithm for the particular instance of a test problem.

Figure 10 shows the distribution of the final non-dominated fronts with the lowest
IGD values found by MOEA/D-AWA, MOEA/D, Adaptive-MOEA/D, paλ-MOEA/D,
and NSGA-II for F1 and F2. As shown in Figure 10, MOEA/D-AWA performs better than
four other compared algorithms in term of uniformity. For the bi-objective problem F1,
MOEA/D-AWA performs as well as NSGA-II and is superior to MOEA/D, Adaptive-
MOEA/D, and paλ-MOEA/D. It obtains better uniformity among the sharp peak and
low tail parts of the target PF. As for the tri-objective problem F2, MOEA/D-AWA per-
forms obviously better than all the other algorithms. It is visually evident that as to the
distribution of final solutions, MOEA/D obtains a set of regularly but non-uniformly
distributed non-dominated solutions whose distribution is similar to that of the solution
mapping vectors of the original MOEA/D with uniformly distributed weight vectors.
Adaptive-MOEA/D changes the regular distribution of the non-dominated fronts in
MOEA/D, and it performs slightly better than MOEA/D. paλ-MOEA/D performs as
well as NSGA-II and better than Adaptive-MOEA/D. It obtains a set of uniformly dis-
tributed non-dominated solutions, but the points are distributed with some regularity.
NSGA-II devotes more effort to the remote and boundary non-dominated solutions. A
possible reason for the success of MOEA/D-AWA is that it treats all the subproblems
equally.

4.5 Effectiveness of the Adaptive Weight Adjustment Strategy

The AWA strategy is designed to enhance the performance of MOEA/D on the MOPs
with complex PFs. When solving MOPs with discontinuous PFs, the AWA strategy can
remove redundant scalar subproblems whose solution mapping vectors pass through
the discontinuous part of the target PF. As for the MOPs whose PFs have a sharp peak
and a low tail, the AWA strategy can obtain good uniformity by removing subproblems
from the crowded parts and adding new ones to the sparse regions. In this section,
experiments are designed to study the effectiveness of the AWA strategy in both cases.

4.5.1 The Capability of Recognizing Discontinuous PFs
In this section, ZDT3 and DTLZ6, which are two MOPs with discontinuous PFs, are used
to study the capability of the AWA strategy to recognize discontinuous PFs. Moreover,
the aim of these experiment studies is to see whether the AWA strategy could help
reduce the number of subproblems.

The sets of breakpoints on the PF of ZDT3 and DTLZ6 are plotted in seven solid
circles and eight segments, respectively, on the left side of Figure 11, while the right side
shows the average number of subproblems over 30 runs converging to the breakpoints
in the evolution process. If the Euclidean distance in the objective space between the
current solution of a subproblem in the evolutionary population and the number of
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Figure 10: The distribution of the final non-dominated solutions with the lowest IGD
values found by MOEA/D-AWA, MOEA/D, Adaptive-MOEA/D, paλ-MOEA/D, and
NSGA-II, on the two newly constructed bi-objective and tri-objective MOPs with a
sharp peak and a low tail.

breakpoints is less than a small number (which is set 1 × 10-2 for ZDT3 and 4 × 10-2

for DTLZ6), the subproblem will be considered as a subproblem assembling in the
breakpoints. On the other hand, the larger the number of subproblems is assembled in
the breakpoints, the more computing effort is wasted.

From Figure 11, it can be seen clearly that AWA does decrease the number of sub-
problems around the breakpoints of the PF on ZDT3 and DTLZ6. It may be concluded
from the above observations that MOEA/D-AWA can recognize the discontinuous parts
of the complex PF and reduce the computing effort on searching the discontinuous parts.

However, it is desirable to know which of the two modifications makes a larger
contribution to the capability of MOEA/D-AWA. Figure 12 shows the number of sub-
problems devoted to the discontinuous fields by MOEA/D-AWA and its two vari-
ants. Among the two variants of MOEA/D-AWA, OIW-MOEA/D-AWA represents
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Figure 11: Left plots display the distribution to breakpoints of ZDT3 and DTLZ6; right
plots are the number of the current solutions to the subproblems converging to the break-
points, using MOEA/D-AWA, MOEA/D, Adaptive-MOEA/D, and paλ-MOEA/D.
Here the population size of MOEA/D is 300, the maximum number of function evalu-
ations is 90,000, and the ratio of iteration times to evolve with MOEA/D only is set as
0.8 in MOEA/D-AWA and Adaptive-MOEA/D.

Figure 12: Plot of the number of the current solutions to the subproblems converg-
ing to the breakpoints, using MOEA/D, NIW-MOEA/D, OIW-MOEA/D-AWA, and
MOEA/D-AWA. Here the population size of MOEA/D is 300, the maximum num-
ber of function evaluations is 90,000, and the ratio of iteration times to evolve with
MOEA/D only is set as 0.8 in MOEA/D-AWA and OIW-MOEA/D-AWA.
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Table 4: Statistic IGD metric values of the solutions founded by MOEA/D-AWA,
MOEA/D, OIW-MOEA/D-AWA, and NIW-MOEA/D on the two MOPs with complex
PFs. The numbers in parentheses present the standard deviation.∗

Instance MOEA/D-AWA MOEA/D OIW-MOEA/D-AWA NIW-MOEA/D

F1 5.204e–3 2.531e–2 5.204e–3 2.531e–2
(7.975e–5) (7.264e–4) (2.060e–4) (7.264e–4)

F2 1.637e–2 4.023e–2 1.758e–2 3.516e–2
(3.104e–4) (4.162e–4) (2.549e–4) (8.048e–4)

∗Note: The values in bold indicate the best performing algorithm for the particular instance of a test problem.

MOEA/D-AWA with the AWA strategy only. That is, the new weight vector initializa-
tion is ignored in OIW-MOEA/D-AWA. While in NIW-MOEA/D, only the new weight
vector initialization is employed without the adaptive strategy.

As shown in Figure 12, only the curves of MOEA/D-AWA and OIW-MOEA/
D-AWA which are common in employing the AWA strategy, reduce to a low level.
These results lead us to the conclusion that the AWA strategy contributes to MOEA/
D-AWA with the capability of recognizing discontinuous PFs and saving unnecessary
computing effort from searching among discontinuous fields.

4.5.2 The Capability of Pursuing Uniformity on PFs with Complex Shape
Experimental results on F1 and F2 in Section 4.4.2 indicate that MOEA/D-AWA can
obtain good performance on the MOPs that have PFs with a sharp peak and a low
tail. In this section, MOEA/D-AWA is compared with its two variants OIW-MOEA/
D-AWA and NIW-MOEA/D on F1 and F2. The aim of the experiment is to see which
one of the two modifications really works on enhancing the performance of MOEA/D
on the MOPs with complex PFs, or how the two modifications collaborate with each
other.

Table 4 shows the mean and standard deviations of the IGD metric values of the
final solutions obtained by MOEA/D-AWA, MOEA/D, OIW-MOEA/D-AWA, and
NIW-MOEA/D on F1 and F2 with complex PFs over 30 independent runs. As ana-
lyzed before, the new weight vector initialization does not work when dealing with
bi-objective problems. Hence, for F1, which is bi-objective, the performances of MOEA/
D-AWA and OIW-MOEA/D-AWA will be the same, and MOEA/D and NIW-MOEA/D
are exactly the same. As shown in Table 4 , MOEA/D-AWA and NIW-MOEA/D per-
form much better than MOEA/D and OIW-MOEA/D-AWA on F1, which indicates that
the AWA does work on pursuing uniformity on the PFs with complex shape. As for
the tri-objective problem F2, MOEA/D-AWA performs the best, OIW-MOEA/D-AWA
performs better than NIW-MOEA/D, and MOEA/D is the worst. These results suggest
that both modifications enhance the performance of MOEA/D, and the AWA strategy
is more important.

For a clearer view, we plot in Figure 13 the distribution of the final non-dominated
solutions with the lowest IGD values found by MOEA/D-AWA, MOEA/D, OIW-
MOEA/D-AWA, and NIW-MOEA/D on F1 and F2. It can be seen from Figure 13
that for F1, MOEA/D-AWA, and OIW-MOEA/D-AWA obtained better uniformity than
MOEA/D and NIW-MOEA/D, especially at the sharp peak and low tail parts of the
target PF. As for F2, the original MOEA/D obtains a set of non-dominated solutions
that are distributed with some regularity and concentrated at the center of the target PF.
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Figure 13: The distribution of the final non-dominated solutions with the lowest IGD val-
ues found by MOEA/D-AWA, MOEA/D, OIW-MOEA/D-AWA, and NIW-MOEA/D
in solving the two newly constructed MOPs with complex PFs.

By adding the new weight vector initialization method into MOEA/D, the enhanced
algorithm NIW-MOEA/D can obtain a set of non-dominated solutions that are uni-
formly distributed but concentrated at the center of the target PF. This result suggests
that the new weight vector initialization method can change the distribution type of
the Pareto optimal set, but it fails to obtain good coverage on the sharp peak and low
tail parts of the target PF. With the help of the AWA strategy, the enhanced algorithm
OIW-MOEA/D-AWA obtains good coverage, but the solutions are distributed under
similar regularity to those of MOEA/D. This result suggests that the AWA strategy
helps MOEA/D-AWA to achieve better coverage on the sharp peak and low tail parts
of the target PF, but it changes the distribution of non-dominated solutions slowly and
cannot obtain satisfactory uniformity. MOEA/D-AWA combines the new weight vector
initialization method and the AWA strategy together, so the best performance in terms
of both coverage and uniformity is achieved.
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Figure 14: The projection of the ideal PFs of DTLZ5(3,6) and DTLZ4(3,6) on the subspace
spanned by f4, f5, and f6.

Table 5: Statistic IGD metric values of the solutions founded by MOEA/D-AWA,
MOEA/D, Adaptive-MOEA/D, and NSGA-II on DTLZ4(3,6) and DTLZ5(3,6) which
are many objective problems with low-dimensional PF. The numbers in parentheses
present the standard deviation.∗

Instance MOEA/D-AWA MOEA/D Adaptive-MOEA/D NSGA-II

DTLZ4(3,6) 0.0379 0.1778 0.0901 1.7974
(0.0005) (0.0090) (0.0064) (0.6792)

DTLZ5(3,6) 0.0382 0.1946 0.0882 2.7806
(0.0006) (0.0160) (0.0015) (0.6480)

∗Note: The values in bold indicate the best performing algorithm for the particular instance of a test problem.

4.6 Study on Many-Objective Problems

In this section, two test problems DTLZ5(I,m) and its variation DTLZ4(I,m) are used
to study the ability of the MOEA/D-AWA on many-objective problems. DTLZ5(I,m)
(Deb and Saxena, 2005; Saxena and Deb, 2007; Singh et al., 2011) and DTLZ4(I,m) are
m-objective problems with I-dimensional Pareto-optimal surface in the m-dimensional
objective space, where I < m. DTLZ5(I,m) and DTLZ4(I,m) are many-objective prob-
lems with low-dimensional PF in the objective space; thus, their PFs are convenient
for the visual display of the distribution of solutions. The definition of DTLZ5(3,6) and
DTLZ4(3,6) can be found in Table 6 of Appendix C.

The PFs of DTLZ5(3,6) and DTLZ4(3,6) are surfaces in a three-dimensional subspace
of the objective space. The three prime conflict objectives are f4, f5, and f6. The projection
of the obtained solutions on f4, f5, and f6 will reflect the distribution of the whole
obtained solutions to a large extent. The ideal PF of DTLZ5(3,6) and DTLZ4(3,6) can be
mathematically described as: {(f1, f2, f3, f4, f5, f6)|f4 = √

2f3 = 2f2 = 2f1, 2f 2
4 + f 2

5 +
f 2

6 = 1, f4, f5, f6 ≥ 0}. The projection of the ideal PFs of DTLZ5(3,6) and DTLZ4(3,6) on
the prime objectives is shown in Figure 14.

Table 5 demonstrates the mean and standard deviations of the IGD metric values
found by the benchmark algorithms on DTLZ4(3,6) and DTLZ5(3,6) over 30 indepen-
dent runs. Figure 15 illustrates the distribution of the final non-dominated solutions
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Figure 15: Plot of the non-dominated solutions in a three-dimensional subspace of the
objective space with the lowest IGD metric values found by MOEA/D-AWA, MOEA/D,
and Adaptive-MOEA/D with the Chebyshev approach and NSGA-II for DTLZ4(3,6)
and DTLZ5(3,6) problems.

with the lowest IGD values found by MOEA/D-AWA, MOEA/D, Adaptive-MOEA/D,
and NSGA-II on DTLZ4(3,6) and DTLZ5(3,6) problems.

As can be seen in Figure 15, the proposed MOEA/D-AWA performs significantly
better than the benchmark algorithms in terms of both uniformity and convergence.
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These experimental results suggest that the AWA strategy in MOEA/D-AWA can help
MOEA/D to reallocate its computing resource and obtain better diversity, especially for
many-objective problems. Adaptive-MOEA/D fails to obtain good diversity on many-
objective problems. NSGA-II can obtain good diversity, but it has poor convergence.
This is because the non-dominance-based schemes have insufficient selection pressure
on the Pareto front (Ishibuchi et al., 2008; Singh et al., 2011). With an increase of the
number of objectives, almost all solutions in the current population are on the same
rank of non-domination. NSGA-II deteriorates the situation by preferring the remote
and boundary non-dominated solutions (Saxena et al., 2010); therefore, it obtains good
coverage and diversity but converges slowly.

We can conclude from the above results that, with the help of the AWA strategy,
MOEA/D-AWA can obtain good diversity when solving many-objective problems. The
computing efforts in MOEA/D-AWA are evenly distributed and have no preference to
the boundary solutions.

5 Concluding Remarks

In this paper, we have proposed an improved MOEA/D for the MOPs with complex PFs.
The proposed MOEA/D-AWA is an enhanced MOEA/D with two major modifications.
One is a new weight vector initialization method based on the geometric analysis of
the Tchbeycheff decomposition approach, and the other is an adaptive weight vector
adjustment (AWA) strategy for dealing with the MOPs with complex PFs. We compare
MOEA/D-AWA with four other state of the art algorithms: the original MOEA/D,
Adaptive-MOEA/D, paλ-MOEAD (which are two enhanced MOEA/D with weight
adjustment), and NSGA-II. Experimental studies have been carried out on 10 well-
known ZDT and DTLZ instances and two newly constructed instances with specially
designed complex PFs having a sharp peak and a low tail. The proposed MOEA/D-
AWA approach was also applied to a pair of many-objective problems.

Experimental results indicated that the proposed MOEA/D-AWA approach is able
to successfully obtain a well-converged and well diversified set of non-dominated
solutions. A detailed study has also indicated that the new weight vector initialization
method can significantly improve the performance of MOEA/D on tri-objective MOPs
with simple PFs. As for solving the MOPs with discontinuous PFs, the AWA strategy can
help MOEA/D to recognize the discontinuous parts of the complex PF and reduce the
computing effort on the search among discontinuous fields. We have also shown that
when the PF of the target MOP has a shape with a sharp peak and a low tail, the AWA
strategy can help MOEA/D to obtain better uniformity, especially at the sharp peak
and low tail parts. MOEA/D-AWA has also been applied to many-objective problems
with low-dimensional PFs which can be visually displayed. Experimental results have
shown that MOEA/D-AWA performs significantly better than the compared algorithms
in terms of both uniformity and convergence.

In the field of evolutionary multi-objective optimization (EMO), many research
efforts have been performed to develop effective selection mechanisms in the objective
space, but few of them have been devoted to the design of evolving strategies in the
decision space according to the feature of the MOPs. In our future work, we may
introduce machine learning methods into EMO and predict the evolving tendency of
the population by learning from the evolutionary history and the distribution of the
visited solutions.
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Appendix A: Proof of Theorem 1

PROOF: We carry out the proof by contradiction. Suppose that the intersection of the
line f1−z∗

1
1
λ1

= f2−z∗
2

1
λ2

= · · · = fm−z∗
m

1
λm

(λi �= 0, i = 1, 2, . . . , m) and the PF is the optimal solu-

tion to the subproblem with weight vector λ = (λ1, λ2, . . . , λm)(
∑m

i=1 λi = 1, λi > 0, i =
1, 2, . . . , m). In Miettinen (1999), the authors proved that the optimal solution to a
Chebyshev subproblem is a Pareto optimal solution. Thus we assume that the op-
timal solution to the resultant subproblem with weight vector λ = (λ1, λ2, . . . , λm) is
f̄ = (f̄1, . . . , f̄m), f̄ = (f̄1, . . . , f̄m) is a Pareto optimal solution but not the point in the
line of f1−z∗

1
1
λ1

= f2−z∗
2

1
λ2

= · · · = fm−z∗
m

1
λm

. Then it must have the following non-empty sets:

J̄ = {j |λj × |f̄j − z∗
j | < max

1≤i≤m
{λi × |f̄i − z∗

i |}, j = 1, . . . , m} �= ∅ (8)

K̄ = {k|λk × |f̄k − z∗
k | = max

1≤i≤m
{λi × |f̄i − z∗

i |}, j = 1, . . . , m} �= ∅. (9)

Therefore,

λj × |f̄j − z∗
j | < λk × |f̄k − z∗

k | = max
1≤i≤m

{λi × |f̄i − z∗
i |}, j ∈ J̄ , k ∈ K̄.

Without loss of generality, we assume that f̄ = (f̄1, . . . , f̄m) is an internal point of
the PF. Since the ideal PF is piecewise continuous, suppose that f̂ = (f̂1, . . . , f̂m) is in
the neighborhood of f̄ , then f̂ satisfies the following conditions:

f̂ = (f̂1, . . . , f̂m) is a Pareto optimal solution.

f̂j > f̄j , j ∈ J̄ ; f̂k > f̄k, k ∈ K̄ .

Since z∗
i = min{fi(x)|x ∈ �}, i = 1, 2, . . . , m ⇒ z∗

i ≤ fi(x), i = 1, . . . , m, then |fi(x) −
z∗
i | = fi(x) − z∗

i ≥ 0. Since f̂ = (f̂1, . . . , f̂m) is in the δ-neighborhood of f̄ = (f̄1, . . . , f̄m),
we have

λj × (f̄j − z∗
j ) < λj × (f̂j − z∗

j ) < λk × (f̂k − z∗
k) < λk × (f̄k − z∗

k), j ∈ J̄ , k ∈ K̄.
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This implies that

gtc(f̂ |λ, z∗) = max
1≤i≤m

{λi × (f̂i − z∗
i )} = max

k∈K̄
{λk × (f̂k − z∗

k)} (10)

< max
k∈K̄

{λk × (f̄k − z∗
k)} = gtc(f̄ |λ, z∗). (11)

This contradicts the assumption that f̄ is a Pareto optimal solution. �

Appendix B: Proof of Theorem 2

PROOF: Suppose that λ̄ = (λ̄1, . . . , λ̄m), rather than λopt, is the optimal weight vector to
the individual F = (f1, . . . , fm) with the reference point z∗ = (z∗

1, . . . , z
∗
m). That is, λopt �=

λ̄ and h(λ̄|F, z∗) < h(λopt|F, z∗). Since λ̄, λopt ∈ Wm = {(w1, . . . , wm)|,∑m
i=1 wi = 1, wi ≥

0, i = 1, . . . , m} and λ̄ �= λopt, if we note that

B = {j |λ̄j > λ
opt
j }, S = {k|λ̄k < λ

opt
k }, E = {l|λ̄l = λ

opt
l }

we have B �= ∅, S �= ∅. Recall that
∏m

i=1(fi − z∗
i ) �= 0, we obtain 0 < λ

opt
i < 1, i = 1, . . . , m.⎧⎪⎪⎨

⎪⎪⎩
∀j ∈ B, λ̄j > λ

opt
j

m∏
i=1

(fi − z∗
i ) �= 0 =⇒ fi − z∗

i > 0, i = 1, . . . , m
(12)

=⇒ λ̄j × (fj − z∗
j ) > λ

opt
j × (fj − z∗

j ) = 1∑m
k=1

1
fk−z∗

k

, j ∈ B

⎧⎪⎪⎨
⎪⎪⎩

∀k ∈ S, λ̄k < λ
opt
k

m∏
i=1

(fi − z∗
i ) �= 0 =⇒ fi − z∗

i > 0, i = 1, . . . , m
(13)

=⇒ λ̄k × (fk − z∗
k) < λ

opt
k × (fk − z∗

k) = 1∑m
i=1

1
fi−z∗

i

, k ∈ S

⎧⎪⎪⎨
⎪⎪⎩

∀l ∈ E, λ̄l = λ
opt
l

m∏
i=1

(fi − z∗
i ) �= 0 =⇒ fi − z∗

i > 0, i = 1, . . . , m
(14)

=⇒ λ̄l × (fl − z∗
l ) = λ

opt
l × (fl − z∗

l ) = 1∑m
i=1

1
fi−z∗

i

, l ∈ E.

So ∀k ∈ S, l ∈ E, j ∈ B, we have λ̄k × (fk − z∗
k) < 1∑m

i=1
1

fi−z∗
i

= λ̄l × (fl − z∗
l ) < λ̄j ×

(fj − z∗
j ). Because B �= ∅, we can get

h(λ̄|F, z∗) = max
1≤i≤m

{λ̄i × (fi − z∗
i )} >

1∑m
i=1

1
fi−z∗

i

= max
1≤i≤m

{λopt
i × (fi − z∗

i )} = h(λopt|F, z∗). (15)

This conclusion conflicts with the assumption. �
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Appendix C: The Test Instances

Table 6 shows the mathematical definition of the test instances.

Table 6: Test problems used in this study.

Instance Variable bound Objective functions

F1 [0, 1]n f1(x) = x1

n = 30 f2(x) = g(x){1 − [1 − (1 − x1)M ]
1
M }

where g(x) = 1 + 9(
∑n

i=2 xi)/(n − 1); M = 2.8;

F2 [0, 1]n f1(x) = {[1 + g(x)] cos(0.5πx1) cos(0.5πx2)}4

n = 10 f2(x) = {[1 + g(x)] cos(0.5πx1) sin(0.5πx2)}4

f3(x) = {[1 + g(x)] sin(0.5πx1)}2

where g(x) = ∑n

i=3(xi − 0.5)2

DTLZ4(3,6) [0, 1]n f1(x) = [1 + g(x)] cos(θ1) cos(θ2) cos(θ3) cos(θ4) cos(θ5)
n = 26 f2(x) = [1 + g(x)] cos(θ1) cos(θ2) cos(θ3) cos(θ4) sin(θ5)

f3(x) = [1 + g(x)] cos(θ1) cos(θ2) cos(θ3) sin(θ4)
f4(x) = [1 + g(x)] cos(θ1) cos(θ2) sin(θ3)
f5(x) = [1 + g(x)] cos(θ1) sin(θ2)
f6(x) = [1 + g(x)] sin(θ1)
θi = πxα

i

2 i = 1, 2; θi = π

4[1+g(x)] [1 + 2g(x)xα
i ] i = 3, 4, 5

where g(x) = ∑n

i=6(xi − 0.5)2, α = 100

DTLZ5(3,6) [0, 1]n f1(x) = [1 + g(x)] cos(θ1) cos(θ2) cos(θ3) cos(θ4) cos(θ5)
n = 26 f2(x) = [1 + g(x)] cos(θ1) cos(θ2) cos(θ3) cos(θ4) sin(θ5)

f3(x) = [1 + g(x)] cos(θ1) cos(θ2) cos(θ3) sin(θ4)
f4(x) = [1 + g(x)] cos(θ1) cos(θ2) sin(θ3)
f5(x) = [1 + g(x)] cos(θ1) sin(θ2)
f6(x) = [1 + g(x)] sin(θ1)
θi = πxi

2 i = 1, 2; θi = π

4[1+g(x)] [1 + 2g(x)xi] i = 3, 4, 5
where g(x) = ∑n

i=6(xi − 0.5)2
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