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Abstract

Given the widespread transfer of trading to electronic platforms it is important to

ask whether such trading is more efficient than traditional open outcry. To empiri-

cally assess this we examine the Crude Palm Oil market from 1995:06 to 2008:07 -

a market where all trading swapped over from open outcry to electronic trading at

the end of 2001. Results indicate that both forms of trading are long-run efficient

but that short-run inefficiencies do exist. Our main findings, derived from the appli-

cation of a novel threshold autoregressive relative efficiency measure, is that market

efficiency is conditional on (i) the volatility of the underlying asset (ii) the maturity

of the futures contract and (iii) the market trading system. Specifically, bootstrap

results from the efficiency measure suggest that the open outcry trading method is

superior for shorter maturities when volatility is high, and indistinguishable from

electronic trading when volatility is low or maturity is long. These results suggest

that electronic trading should not supersede open outcry, but rather that there are

clear benefits to their coexistence.
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1 Introduction

Futures markets provide a tool for risk management and aid in price discovery. However

these functions are only optimal in the presence of market efficiency. As is well known,

under the assumptions of rationality and risk neutrality, the futures market is not only

efficient but the price is an unbiased estimator of the corresponding future spot price.

Using cointegration techniques futures market efficiency has been extensively inves-

tigated for a number of commodities and financial assets across a variety of data spans.

On the one hand, there is evidence of efficiency (see, for example: Kellard et al., 1999;

Switzer and El-Khoury, 2007; Kawamoto and Hamori, 2011), whilst on the other there

is evidence of inefficiency (see, for example: Chowdhury, 1991; Mohan and Love, 2004;

Figuerola-Ferretti and Gonzalo, 2010). The outstanding question is therefore how can

this contradictory evidence be reconciled?

Applying Occam’s razor, the obvious answer may be that some markets may be

efficient, whilst others may not be. This then points towards unique market specific

factors that may contribute to or hinder efficiency. One such factor may be the way in

which, if at all, electronic trading systems are implemented. Many asset and commodity

markets have now either abandoned open outcry for electronic trading platforms, or

run both systems side-by-side. The evidence for either option is mixed, with some work

suggesting that a well-functioning market benefits from the latter (Martens, 1998), whilst

others posit a fully electronic approach (Tse et al., 2006). However, there is also emerging

evidence that when used independently, electronic trading is not as able as open outcry

to impound information into the price when volatility is high (Aitken et al., 2004).

Existing work that focuses on these two methods of trading use intraday data to

examine issues such as liquidity, the size of spreads, and price discovery, across a broad

range financial and commodity futures. Examples of such work include Aitken et al.

(2004), Ates and Wang (2005), Copeland et al. (2004), Theissen (2002), and Tse and

Zabotina (2001). However the main focus of our study is distinct from this literature,

contributing by being the first, to our knowledge, to address predictive efficiency in

futures markets under discrete market trading regimes. In other words, we utilize daily

data on futures contracts to examine under which trading regime the futures price best

predicts the future spot price.

For this experiment we choose the crude palm oil (CPO) futures market due to

its discrete migration from open outcry to electronic trading which obviates the need to

address a scenario where both open outcry and electronic trading operate simultaneously.

In choosing CPO we also address a gap in the literature as this commodity is under-

researched. This is surprising given its wide spread use globally and the increasing

prominence of this commodity on the world food market. Strikingly production levels
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are greater than any other edible oil.1

In implementing this experiment we utilise two sub-samples of data pre- and post-

introduction of electronic trading and initially assess long-run and short-run efficiency

using standard cointegration techniques and Kellard et al.’s (1999) relative efficiency

measure. Unlike other efficiency measures which classify whether a market is either

solely efficient or inefficient, this relative measure allows an assessment of the degree to

which efficiency is present. We further contribute by being the first to examine how

well these two methods of trading impound information as a function of the volatility

of the underlying asset, which is achieved by adapting the relative efficiency measure

to a threshold autoregressive environment with a bootstrap confidence interval. Finally,

we examine market efficiency at several points across the term structure permitting a

more comprehensive analysis of the market. It is noteworthy that the much of the extant

literature is lacking in this respect, often focusing solely on shorter terms to maturity.

Our findings indicate that the CPO futures market is long-run efficient in the vast

majority of maturities tested across both trading platforms. However, across the whole

sample and open outcry and electronic trading sub-periods there is evidence of short-run

inefficiency. Interestingly, applying the relative efficiency measure of Kellard et al. (1999)

indicates that open outcry is more efficent at shorter maturities and electronic trading

at longer maturities. However, using the new threshold autoregressive relative efficiency

measure, bootstrap results suggest that the open outcry method is superior for shorter

maturities when volatility is high, and otherwise is indistinguishable from electronic

trading. These results suggest that electronic trading should not supersede open outcry,

but rather there are benefits to their coexistence. This updates and extends the thesis

of Martens (1998), suggesting there is still a clear role for open outcry in modern futures

markets to improve price discovery and related issues of risk management, particularly

at shorter maturities.2 In the context of the CPO market, this clearly has implications

for the price discovery and hedging of a commodity that is increasingly prominent on

the world food market, and one that also has both developmental and environmental

effects.3

The remainder of the paper is organised as follows: Section 2 provides a short overview

of the CPO market, Section 3 examines CPO futures efficiency across the term structure,

Section 4 examines CPO futures efficiency across periods of electronic trading and open

outcry, and a final section concludes.

1Based on the latest production data, palm oil presents almost a third of edible oil market (source:
Food and Agriculture Organization of the United Nations). See Section 2 for more information on the
CPO market.

2This role for open outcry has been documented at the trader level by Boyd and Kurov (2012), who
find that when run side-by-side with electronic trading, traders are more likely to survive using both
systems rather than one alone.

3See World Bank and IFC (2011) for a discussion of the developmental and environmental effects.
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2 A précis: Crude Palm Oil

CPO currently represents the largest share of the edible oil market, thus the functioning

of this market warrants close attention in the current climate of an expanding world

population and finite resources. It is derived from the fruit of the oil palm tree and is

used for a range of purposes, including cooking oil, baked goods, soaps, washing powder,

and as a bio-fuel. The demand for palm oil has increased in recent years, linked to (i)

the growth of the Indian and Chinese economies (ii) the use of palm oil as a substitute

for trans fatty acids and (iii) the use of palm oil as a bio-fuel. Figure 1 demonstrates the

impressive growth of CPO production over the last 30 years becoming the most produced

edible oil (by tonnes) in 2006.

[Figure 1 about here]

We also compared the production growth 1980-2012 of over 100 crops listed on the Food

and Agriculture Organization’s database, and found that palm oil ranks in 4th place,

contrasting with staple crops commonly traded on futures exchanges such as soybean

(60th), corn (94th), and wheat (124th). Taking each of these commodities as a case in

point, the absolute production levels of corn and wheat is higher than that of the oil

palm fruit. However the production gap between soybean and the oil palm fruit has been

closing over time with 2012’s figures showing higher production for the oil palm fruit.

This study focuses on the Malaysian CPO futures price as it represents the global

reference price and is the single largest market for CPO futures globally.4 Trading tra-

ditionally takes place on the Bursa Malaysia Derivatives Berhad where trading volumes

have increased in recent years - Figure 2 shows the average daily volume and open in-

terest (per month) of the most traded (3-month) CPO futures contract from 1995:06 to

2008:07.5 Figure 3 shows the average (per month) futures price and the 30-day historical

spot price volatility.

[Figure 2 about here]

[Figure 3 about here]

Contracts are for 25 metric tons and are settled on the 15th day of the month, and are

available for the current month, the subsequent 5 months, and thereafter alternately

4See online documentation from Bursa Malaysia (www.bursamalaysia.com) or the CME Group
(www.cmegroup.com).

5Bursa Malaysia Derivatives Berhad was formally the Malaysia Derivatives Exchange (MDEX).
Malaysia is also the leading exporter and second largest producer of CPO.
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up to 24 months ahead.6 Up until December 2001, futures contracts were traded using

open outcry and subsequently migrated to an electronic trading system on 28 December

2001.7 Global access to the CPO futures market was further improved on 17 September

2009 via a partnership with the Chicago Mercantile Exchange (CME).8

3 Futures market efficiency across the term structure

3.1 Market efficiency hypothesis

We examine long-run and short-run market efficiency for a number of different maturities

across the term structure. This is achieved by testing for cointegration and using the

quasi-error correction model (QECM) of Kellard et al. (1999).

Long-run market efficiency is linked to the spot and futures markets via the notion

of unbiasedness.9 Specifically, under the joint assumptions of rational expectations and

risk neutrality, the unbiasedness hypothesis can be expressed as:

Et−τ [st] = ft−τ (1)

where st and ft are the log of the spot and futures prices and E[.] is the expectations

operator, and τ is the interval between opening a position and expiry. Equation (1)

states that the futures price set at time t − τ , for delivery at time t should equal the

time t − τ expectation of the spot rate for time t. By varying τ we gain the ability to

comment on efficiency across the term structure. Under rational expectations, Equation

(1) can be recast as:

st = ft−τ + ǫt (2)

where ǫt is a zero mean, finite variance random variable. Testing this simple relationship

for any point on the term structure is complicated by the time-series properties of both

the spot and futures price. There is a large body of evidence that points towards both

series being non-stationary (e.g. Figuerola-Ferretti and Gonzalo, 2010). Therefore for

6The contract specifications have changed little over the span of our sample. For example the contract
size, tick size, final trading day, maturity date, and tender period all remain unchanged. However some
changes have occurred, for example prior to 2007 contracts were only available alternatively up to 12
months ahead, the size of allowed for speculative positions were smaller, and price limits were statically
managed as opposed to dynamically. See www.bursamalaysia.com for further details on the contract
specification.

7See Appendix A for a plot of daily volume and open interest in the 6 months pre/post-migration.
8The agreement included the distribution of the Bursa Malaysia’s products through the Globex

electronic trading platform.
9As explained in the next section we depart from the standard approach outlined in this section using

{ft, ft−τ} in place of {st, ft−τ}.
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unbiasedness to hold st and ft must be cointegrated:

st = α0 + α1ft−τ + ǫt (3)

where α0 = 0 and α1 = 1, and ǫt is serially uncorrelated. If the restriction that α1 = 1

cannot be rejected, then this points towards a long-run equilibrium relationship between

st and ft. Given empirical support for this relationship a handle on short-run efficiency

can be garnered by rewriting Equation (3) as a quasi-error correction model:

st − st−τ = γ0 + γ1(ft−τ − st−τ ) +

k
∑

i=1

δi(st−i − st−τ−i) +

k
∑

i=1

ζi(ft−i − ft−τ−i) + ǫt (4)

Estimating Model (4), efficiency is indicated by there being no significant coefficients on

lagged changes in the spot and futures price. In other words, efficiency requires that no

information in addition to the basis is of use in forecasting changes in the spot rate.

3.2 Testing CPO efficiency

Utilising the unbiasedness framework in the previous section we examine CPO market

efficiency for a number of maturities: τ = 7, 14, 21, 28, 56, and 84 days, with data

spanning from 15 June 1995 to 15 July 2008.10 Following the observations of Goss

(2000), who notes that emerging markets can lack proper underlying wholesale markets

which would support price discovery in the corresponding futures market, and that in the

case of CPO that spot and futures market are traded on different exchanges in different

locations, we follow Beck (1994) and use the futures price at maturity as the spot price.11

Futures prices are matched to the spot price on delivery for each τ , thus generating a

new time-series for each maturity. Table 1 present summary measures for each maturity.

The sample mean and standard deviaiton tends to increase as τ reduces. In the case of

the latter this may be linked to an increase in trading activity as traders seek to close

out positions as delivery approaches.

[Insert Table 1 about here]

10Data are closing prices from Reuters (code: FCPO). In addition to the futures price the daily high
and low are used in Section 4.4. The choice of sample permits two sub-samples of equals size as discussed
in Section 4.2. Values of τ are actual days not business days; following the contract specification, if the
delivery date is a non-business day the preceding business day is used. When constructing the price
series for each τ if the trade date t− τ is not a business day the preceding business day is taken. Across
all series 93% of observations fall on the exact business day, and 99.3% fall within three calendar days
prior.

11Malaysia Palm Oil Board manage palm oil physical market and Bursa Malaysia Derivatives Berhad
govern the futures market.

6



As discussed, the order of integration of the time series needs to be examined as a

precursor to testing for unbiasedness. Table 2 presents the results of tests under the

null of the futures price being both non-stationary (augmented Dickey-Fuller test) and

stationary (KPSS test) for each τ . Given the uniform inability (ability) to reject the null

of the ADF (KPSS) test across all τ we deem the CPO futures prices to be non-stationary.

[Insert Table 2 about here]

[Insert Table 3 about here]

Table 3 presents the results of tests to examine whether ft and ft−τ are cointegrated

using the Johansen method, specifying a vector error correction model of the m-variable

VAR of order k for time-series vector Xt:

∆Xt = η0 +ΠXt−k +

k−1
∑

i=1

ηi∆Xt−i + vt (5)

where k is chosen by the Akaike Information Criterion (AIC). The procedure tests the

rank (r) of parameter matrix Π, where vt will only be I(0) if there exists a stationary

linear combination of I(1) variables in Xt−k. Specifically ΠXt−k has to be stationary.

We define Xt = (ft, ft−τ ) and test this using the Johnansen λ-max and trace statistics

to test sequentially under the null of the r = 0 (no cointegration) and r = 1 (cointegra-

tion). Given the presence of a long-run relationship it is then straightforward to test the

restriction α1 = 1 in Equation (3) - this test for unbiasedness is also presented in Table

3.

The results clearly show a rejection of the null of zero rank and thus of no cointe-

gration for all maturities for both test statistics. Further using both tests we are unable

to reject the null that r = 1 at the 5% significance level for all maturities, and is thus

indicative of there being a long-run relationship between ft and ft−τ . This also supports

the findings of the time-series properties of ft and ft−τ from the earlier ADF and KPSS

tests. Testing the restrictions on the cointegrating vector yields conclusive support un-

biasedness as the restriction under the null is unable to be rejected for all maturities

tested. Hence we find that in the long-run the futures price is an unbiased predictor of

the future spot price.

The evidence of long-run efficiency in the CPO market, whilst encouraging, does not

preclude inefficiency in the short-run. Table 4 examines short-run efficiency. This is

achieved using a variant of Equation (4), accounting for the fact that we use the futures

price at delivery in place of the spot rate:
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ft − ft−τ = θ0 +

k
∑

i=1

θi(ft−i − ft−τ−i) + ǫt (6)

The interpretation is similar to Equation (4), where statistically significant lags of the

dependent variable are indicative of inefficiency. We can see from Table 4 that the longest

maturity evidences more inefficiency than shorter maturities as indicated by the larger

number of lags included. More specifically, as the maturity decreases the number of

significant coefficients is at least equal or fewer, finally yielding short-run efficiency 7

days before settlement. Interestingly when lag 4 is present it is always significant.

[Insert Table 4 about here]

4 Open outcry or electronic trading?

4.1 Literature

There is a wide body of research comparing open outcry and electronic trading using

intraday data. This research takes the form of examining markets that have made a

transition from the former to the latter, or markets that trade under both systems con-

currently. Martinez et al. (2011) provides a useful summary of the two trading systems for

agricultural commodity futures markets and Cardella et al. (2014) survey the literature

that examines the effects of computerization across a variety of markets. Of particular

interest for this current study is understanding how efficiency may differ following the

advent of electronic trading.

Aitken et al. (2004) uses intraday data and time-weighted bid-ask spreads to examine

the determinants of spreads on index futures on three major exchanges: London Inter-

national Financial Futures and Options Exchange (LIFFE), Sydney Futures Exchange,

and the Hong Kong Futures Exchange. Controlling for changes in price volatility and

trading volume they find lower spreads result under electronic trading, adducing evi-

dence that electronic trading can result in higher liquidity and lower transaction costs.

Interestingly they note that spreads from electronic trading are more sensitive to price

volatility and thus the performance of such systems deteriorates during periods of in-

formation arrival. Focusing specifically on how information is impounded in periods of

high and low volatility, Martens (1998) examines futures contracts on German long-term

government bonds traded simultaneously on the LIFFE (open outcry) and Deutsche

Terminborse (electronic trading). Using the Hasbrouck’s (1995) measure of information

share, Martens finds that in low volatility periods it is electronic trading that contributes

more to the price discovery process. Conversely, results suggest that in volatile periods
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it is open outcry that makes the larger contribution. However the findings of Martens

(1998) differ from Ates and Wang (2005), who find the opposite relationship between

electronic trading and volatility for the S&P 500 and NASDAQ 100 index futures.12 This

mixed picture is further reinforced by Tse et al. (2006), who look at futures contracts

for foreign exchange (EUR/USD, JPY/USD) and find open outcry trading contributes

least to price discovery (vis-à-vis electronic trading and online trading.)

Tse and Zabotina (2001) examine trading activities before and after the FTSE 100

index futures contracts moved from open outcry to electronic trading. In common with

the majority of the recent literature they find lower spreads in electronic market vis-

à-vis open outcry. However results using Hasbrouck’s (1993) market quality indicate

that open outcry has greater pricing efficiency (as measured by the variance of pricing

error) and a slower adjustment to information in the electronic market. In addition to

this slower adjustment they also find a negative relationship between trades and lagged

quote revisions for electronic trading, but no relationship for open outcry. The authors

attribute this last finding to a different approach inventory between these two methods of

trading.13 In related work Ning and Tse (2009) also examine the FTSE 100 index futures

contracts pre-/post-migration to electronic trading. Under electronic trading they find

that daily contract order imbalances are autocorrelated for lags of several days, and

attribute this to the characteristics of the limit order book. As the authors comment,

the arrival of a large market order is split against multiple existing quotes on the order

book generating a sequence of transactions on one side of the market. For open outcry

there is no autocorrelation in the order imbalance suggesting persistence is eliminated

within the day.

On balance, the extant research tends to favour electronic trading, but there does

seem to be some evidence that there is a role for open outcry in the price discovery

process, particularly during periods of high volatility. However these results may be

market specific and it is of course difficult to draw broader conclusions given the limited

number of markets examined by researchers to date.

4.2 Market efficiency: open outcry or electronic trading?

This study is the first to examine predictive efficiency across trading systems, using an

important and under researched commodity, CPO. Previous work (see, for example: Tse

and Zabotina, 2001; Martens, 1998) typically use short sample periods and Hasbrouck

(1993, 1995) type measures of pricing efficiency. These measures assume semi-strong

market efficiency and decompose the futures price into a random walk and a transitory

12Ates and Wang (2005) attribute this difference in result to market specific factors. Namely that on
the U.S. index futures markets some participants are able to trade both in the pit and electronically.

13See Tse and Zabotina (2001) for more details.
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component, which thus reflects a pricing error. However for the CPO futures market

there now exists sufficient data to test for informational efficiency post-implementation

of electronic trading, and so we can employ the testing procedures in section 3 and avoid

any such initial assumptions. The futures market for CPO represents an ideal candidate

as it has made a discrete transfer from open outcry to electronic trading, rather than

running both systems in parallel. This obviates the task of trying to understand the

behaviour of one market in the presence of another, thus making inference more tractable.

This is achieved by forming two datasets, representing the period where CPO was traded

via open outcry (15 June 1995 - 15 December 2001) and the current system of electronic

trading (15 January 2002 - 15 July 2008) and examine market efficiency under these two

trading methods using the methodology previously applied. We view the choice of data-

span as appropriate for three reasons: (i) it yields two equally sized sub-samples avoiding

any need to address a scenario where one sub-sample may have better statistical power

than another by virtue of its longer span (ii) it avoids the unusual volatility exhibited as

a result of recent financial crises and (iii) it focuses solely the period prior to the strategic

partnership with the CME group in 2009.

[Insert Table 5 about here]

Table 5 presents the summary statistics for both sub-samples. Interestingly open outcry

tends to exhibit a downward trend in the sample mean as settlement approaches whilst

for electronic trading it is increasing, yet in both samples there typically exists an inverse

relationship between volatility and maturity in accordance with that observed for the

full sample. Table 6 examines the time-series properties of ft−τ and Table 7 the results

of the cointegration analysis. Overall, for both sub-samples, Table 6 is indicative of the

findings for the whole sample, namely the CPO futures price being a non-stationary

process across a range of maturities. The one notable discrepancy between the ADF and

KPSS tests is for the ft−84 (exogenous specification: constant) for the open outcry sub-

sample. Given the contradictory results between these tests we defer to the Johansen

cointegration framework as this implicitly provides an additional test of the time-series

properties of ft and ft−τ in Table 7.

[Insert Table 6 about here]

[Insert Table 7 about here]

In Table 7 we find evidence of cointegration for the majority of maturities across both

open outcry and electronic trading sub-samples. The two exceptions are ft−28 and ft−56

where no cointegration is found. Thus we conclude that the dominant picture is one of a

long-run relationship between the futures price at maturity t− τ and the contract price
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at delivery. Additionally the Table indicates that for both sub-samples the unbiasedness

restriction in the cointegrating vector cannot be rejected, thus where cointegration is

found we conclude that the market is long-run efficient under both open outcry and

electronic trading regimes.14

Turning now to short-run efficiency, Table 8 indicates that both the open outcry and

electronic trading sub-samples exhibit evidence of inefficiency to some degree, although

there are three noteworthy instances where support for short-run efficiency is found:

open outcry, 7 days and 14 days; electronic trading, 14 days. In the case of inefficiency,

for open outcry there are 4 (2) significant lag coefficients for τ = 84 (τ = 56). As the

maturity decreases further this drops to 1, then finally zero at the shortest maturities.

However these results contrast with the electronic trading sub-sample, where there are

almost twice as many significant coefficients across the term structure. We argue that the

stronger evidence for short-run inefficiency in the electronic trading sub-sample provides,

at the very least, prima facia evidence that this trading mechanism may not always be

superior, and indeed may sometimes be less efficient than open outcry.

[Insert Table 8 about here]

4.3 Relative efficiency

The estimates reported in Table 8 indicate that there exists short-run inefficiency at

various points across the term structure using both open outcry and electronic trading

sub-samples. However this approach is not able to quantify the magnitude of this inef-

ficiency. With this in mind we adopt the measure of relative efficiency of Kellard et al.

(1999). As they note, the ability to quantify the level of (in)efficiency is important to

hedgers (hedging costs rise as markets become more inefficient - Krehbiel and Adkins,

1993) and wider society alike (the link between inefficiency and the social costs attributed

to futures trading - Stein, 1987). For the current application, being able to quantify the

measure of efficiency allows a new direct comparison between open outcry and electronic

trading systems.

The efficiency measure of Kellard et al. (1999) is formed from two forecast error

variances. One is the forecast error variance of Equation (4), representing the extent to

which the model was unable to forecast the realised change in the spot price. The second

is based on the corresponding forecast error should the market be efficient: E[(st−ft−τ ].

Under the assumption of rationality this is proxied by the mean corrected measure of

st − ft−τ . This yields the relative efficiency measure:

14Long-run restrictions are provided for ft−28 and ft−56 for completeness only.

11



φτ
c =

(n− 2k − 2)−1
∑n

i=1
ǫ̂2t

(n− 1)−1
∑n

i=1
[(st − ft−τ )− (st − ft−τ )]2

(7)

We adapt this efficiency measure using Equation (6) in place of (4). This requires

substituting st with ft and an attendant adjustment to the degrees of freedom:

φτ
c =

(n− k − 1)−1
∑n

i=1
ǫ̂2t

(n− 1)−1
∑n

i=1
[(ft − ft−τ )− (ft − ft−τ )]2

(8)

where n constitutes the number of dependent variable observations prior to lags being

taken. By construction φτ
c takes values between 0 and 1, with 0 indicative of complete

inefficiency, 1 for a fully efficient market, with interim values representing the degree

of (in)efficiency. Table 9 presents the results of the test for relative efficiency for both

sub-samples, as well as for the whole sample for comparative purposes.

[Insert Table 9 about here]

For the entire sample, short-run efficiency increases as the settlement date approaches,

while for the two sub-samples the average across the term structure is within two percent

(78% for electronic trading and 76% for open outcry). As maturity reduces there is a

marked increase in φτ
c for the open outcry sub-sample mirroring the full sample results;

however the pattern from the electronic trading sub-sample is not quite so clear. Further,

our results suggest that open outcry is at least as efficient as electronic trading at shorter

maturities whilst electronic trading performs better at longer maturities.15 Finding that

support for open outcry is garnered at shorter maturities could support the notion that

when volatility is high open outcry is superior in impounding information (Aitken et al.,

2004) - recall from Table 5 that the standard deviation is highest at the 7-day maturity

for both samples. We examine this further in the next section.

4.4 Relative efficiency during periods of high and low volatility

Building on the direct comparison between open outcry and electronic trading systems

from the previous section, we redeploy the relative efficiency measure in a threshold

autoregressive setting permitting a novel comparison between trading systems in times of

high and low volatility. To achieve this the following two regime threshold autoregression

(TAR) framework replaces Equation (6):

15For ft−7 and ft−21 open outcry is more efficient while both are short-run efficient at the 14-day
maturity.
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ft − ft−τ =



















θH,0 +
∑k

i=1
θH,i(ft−i − ft−τ−i) + ǫH,t if σ

2
t (f) > q(κ)

θL,0 +
∑k

i=1
θL,i(ft−i − ft−τ−i) + ǫL,t if σ2

t (f) ≤ q(κ)

(9)

where the subscript H denotes the high volatility regime, L the low volatility regime,

σ2
t (f) is the transition variable which is defined as the difference between the daily

future’s high and low price at the pricing date, q(κ) is the chosen threshold, and lags are

selected up to a maximum of 6 using a modified form of the AIC (see Tong, 1990).

Thereafter it is straightforward to apply the relative efficiency measure in Equation

(8) to the high volatility regime using ǫH,t and ǫL,t for the low regime. We denote these

two new measures as φτ
c,h and φτ

c,l, which are estimated using the quantile κ = 0.4 and 0.6

where values of κ are calculated based on the full available sample across open outcry and

electronic trading. For each κ we calculate the difference in the relative efficiency measure

between the electronic (EL) and open outcry (OO) samples, δτc,r = φτ,EL
c,r −φτ,OO

c,r , where r

denotes either the upper or lower regime from Equation (9). Complimenting this relative

efficiency TAR framework we examine the effect of maturity by creating a short and long

maturity measure by averaging δτc,r across 7- and 14-day maturities (δ̄sc,r, short), and 56-

and 84-day respectively (δ̄lc,r, long). Further, we extend this approach by bootstrapping

these short and long maturity measures, adding robustness to our approach.16

As the focus is on high and low volatility environments, when κ = 0.4 we examine

δ̄sc,L and δ̄lc,L (the lower regime) and when κ = 0.6 we examine δ̄sc,H and δ̄lc,H (the

upper regime). Figure 4 reports these results and the attendant bootstrapped confidence

intervals, showing the difference in relative efficiency between electronic trading and open

outcry for the high/low volatility regimes at short/long maturities.

[Insert Figure 4 about here]

Overall, the results of the bootstrap TAR analysis show novel differences in efficiency

under electronic trading and open outcry, finding these differences to be a function of

the maturity and the volatility of the underlying asset. Inference aside, these results

also suggest that electronic trading in the CPO futures market is most efficient when the

delivery date is distant, and therefore support the analysis in Table(9). Conversely, as

delivery approaches, it is open outcry that better impounds information into the futures

price. However on inspection of the bootstrap results, the standout result is to be found

16Taking the short maturity measure as a case in point, the inputs into the relative efficiency measure
(E[(ft − ft−τ ] from the high and low volatility environments and the corresponding residuals from
Equation (9) are re-sampled in tandem for 7- and 14-day maturities to generate φτ

c,h
and φτ

c,l
which are

then averaged to get δ̄sc,r . This is repeated 5000 times to form an empirical distribution from which a
10% confidence interval is calculated.
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for the short maturities high volatility case where open outcry is found to be more

efficient than electronic trading. This figure is also striking insofar as the remainder of

the bootstrap confidence interval suggests that open outcry is as efficient as electronic

trading. Thus the best case we can make in favour of electronic trading is that it is no

worse than open outcry. Thus our results support and extend earlier work such as Tse

and Zabotina (2001) and Martens (1998); that there are potential advantages to using

open outcry in modern futures markets.

5 Conclusions

This study presents the first examination of futures market predictive efficiency under

different market trading regimes, as well as providing a timely contribution to an under

researched yet important commodity in the world food market - crude palm oil (CPO).

We operationalize our test of market efficiency between trading regimes by deriving

two sub-samples of data, pre- and post-introduction of electronic trading at the Bursa

Malaysia Derivatives Berhad using a number of different contract maturities. Testing for

long-run efficiency across a selection of maturities using contegration analysis indicates

that the CPO futures market is predominantly long-run efficient across both trading

platforms. However, across both sub-samples there is evidence of short-run inefficiency.

Applying the relative efficiency measure of Kellard et al. (1999) indicates that the level

of short-run inefficiency is lower for shorter maturities under open outcry and conversely

is lower for electronic trading when maturities are longer.

Given the summary statistics on the CPO data, this findings fits with existing studies

that have suggested that electronic trading platforms may not perform as well when

volatility is high. To examine this issue further, we implement a novel bootstrapped

version of the relative efficiency measure conditioning on a daily measure of futures

price volatility in a threshold autoregressive environment. The results suggest that the

open outcry method is superior for shorter maturities when volatility is high, and is

indistinguishable from electronic trading when volatility is low or when the maturity is

long. Our results help clarify the mixed picture in the extant literature by providing new

evidence that the considered trading systems are complimentary and can be usefully run

side-by-side.
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Appendix A

Figure A1: Daily volume and open interest prior to and proceeding migration from open
outcry to electronic trading
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Notes: The figure plots the daily volume and open interest for the 3-month futures contract 6 months
prior and 6 months after migration from open outcry to electronic trading on 28 December 2001. The
vertical dashed line denoted the the switch over from open outcry to electronic trading. Source: Bursa
Malaysia Derivatives
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Table 1: CPO summary of statistics, June 1995 - July 2008

ft ft−7 ft−14 ft−21 ft−28 ft−56 ft−84

Mean 7.3102 7.3085 7.3081 7.3084 7.3055 7.2985 7.2917
Standard Deviation 0.3559 0.3501 0.3462 0.3427 0.3438 0.3295 0.3139
Skewness 0.4645 0.4514 0.4729 0.4974 0.4936 0.5048 0.5273
Kurtosis 3.2356 3.1402 3.1955 3.2842 3.2819 3.3515 3.3960

Notes: Observations = 158. ft is the logged futures price at the settlement date. ft−τ is the logged
futures price τ -days before settlement, where τ = 7, 14, 21, 28, 56, 84.
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Table 2: ADF unit root and KPSS stationarity tests, June 1995 - July 2008

Exogenous specification
Constant Constant and linear trend

Test ADF KPSS ADF KPSS

ft -1.4935 (4) 0.4064* -1.9815 (4) 0.1726**
ft−7 -1.9319 (5) 0.3982* -2.3701 (5) 0.1706**
ft−14 -1.7103 (5) 0.4064* -2.1679 (5) 0.1746**
ft−21 -1.4106 (4) 0.3960* -1.8538 (4) 0.1727**
ft−28 -1.3471 (4) 0.3908* -1.7896 (4) 0.1693**
ft−56 -1.3472 (4) 0.3830* -1.8050 (4) 0.1684**
ft−84 -1.4319 (4) 0.3690* -1.8658 (4) 0.1660**

Notes: The table shows t-statistics for the ADF and KPSS tests. (): number of lags selected by the
AIC. *,**,*** represents a rejection of the null hypothesis at the 10%, 5%, and 1% significance levels
respectively.
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Table 3: CPO cointegration analysis CPO, June 1995 - July 2008

λ-max Trace P(χ2(β))
H0: r = 0 H0: r = 1 H0: r = 0 H0: r = 1

ft−7 79.8946*** 0.4724 80.3669*** 0.4724 0.7943
ft−14 75.8854*** 0.3623 76.2477*** 0.3623 0.9102
ft−21 90.0689*** 0.2693 90.3382*** 0.2693 0.5014
ft−28 28.0500*** 2.6566 30.7066*** 2.6566 0.5704
ft−56 29.6712*** 3.1608* 32.8321*** 3.1608* 0.8739
ft−84 56.2082*** 3.2621* 59.4703*** 3.2621* 0.9013

Notes: The table shows the results of the Johansen test (λ-max and Trace) with attendant chi-squared
test on the restricted cointegrating vector [1,-1,0]. *, **, ***, represents a rejection of the null hypothesis
at the 10%, 5%, and 1% significance levels respectively.
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Table 4: Short-run CPO efficiency

ft−7 ft−14 ft−21 ft−28 ft−56 ft−84

θ1 0.0017 0.0023 0.0017 0.0029 0.0046 0.0047
(0.0030) (0.0046) (0.0055) (0.0060) (0.0083) (0.0086)

γ1 0.0577 0.1083 0.1044 0.5931 0.8268
(0.0702) (0.0778) (0.0757) (0.1144)*** (0.0863)***

γ2 -0.0525 -0.0659 -0.0704 -0.3994 -0.2812
(0.0853) (0.0937) (0.1040) (0.1494)*** (0.1086)**

γ3 0.0024 0.0525 0.0513 0.2553 -0.0650
(0.0869) (0.1038) (0.0774) (0.1307)* (0.1182)

γ4 0.2796 0.2736 0.3279 0.1620 0.4417
(0.0889)*** (0.0813)*** (0.0891)*** (0.0969)* (0.1527)***

γ5 -0.2148
(0.1178)*

P(F ) NA 0.0066*** 0.0005*** 0.0001*** 0.0000*** 0.0000***

Notes: The table shows the results for the short-run model, Equation (6), with lags selected using AIC.
(): HAC standard errors. *, **, *** represents a rejection of the null hypothesis at the 10%, 5%, and
1% significance levels respectively. P(F ) denotes the p-value from the joint test of zero restrictions on
lagged coefficients.
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Table 5: Summary of statistics, open outcry and electronic trading

ft ft−7 ft−14 ft−21 ft−28 ft−56 ft−84

Open outcry
Mean 7.1666 7.1689 7.1690 7.1733 7.1711 7.1739 7.1797
Standard deviation 0.3393 0.3391 0.3302 0.3283 0.3322 0.3219 0.3076
Skewness 0.3690 0.4289 0.4078 0.4035 0.4222 0.4232 0.4450
Kurtosis 2.5832 2.5911 2.5624 2.6258 2.6356 2.5975 2.6444

Electronic trading
Mean 7.4538 7.4482 7.4473 7.4434 7.4398 7.4231 7.4036
Standard deviation 0.3131 0.3038 0.3049 0.3028 0.3017 0.2889 0.2798
Skewness 1.1498 1.1410 1.1171 1.1790 1.1965 1.2423 1.1643
Kurtosis 3.2525 3.2215 3.2919 3.3856 3.4575 3.7408 3.9076

Notes: ft is the logged futures price at the settlement date. ft−τ is the logged futures price τ -days
before settlement, where τ = 7, 14, 21, 28, 56, 84. Open outcry sample period: 15 June 1995 - 15
December 2001. Electronic trading sample period: 15 January 2002 - 15 July 2008.
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Table 6: ADF unit root and KPSS stationarity tests, open outcry and electronic trading

Panel A: Open outcry

Exogenous specification
Constant Constant and linear trend

Test ADF KPSS ADF KPSS

ft -1.8829 (4) 0.3689* -2.1086 (4) 0.2079**
ft−7 -1.7223 (4) 0.3655* -1.9681 (4) 0.2117**
ft−14 -1.5474 (4) 0.3792* -2.1222 (5) 0.216**
ft−21 -1.8293 (4) 0.3715* -2.0488 (4) 0.2165***
ft−28 -1.8835 (4) 0.3618* -2.1609 (4) 0.2184***
ft−56 -1.7283 (4) 0.3509* -1.9598 (4) 0.2234***
ft−84 -2.0818 (4) 0.3301 -2.2119 (4) 0.2198***

Panel B: Electronic Trading

Exogenous specification
Constant Constant and linear trend

Test ADF KPSS ADF KPSS

ft 0.1455 (2) 0.7286** -0.7159 (2) 0.2265***
ft−7 -0.0735 (2) 0.7312** -0.9308 (2) 0.2242***
ft−14 -0.2385 (0) 0.7375** -1.1591 (0) 0.2189***
ft−21 0.0755 (0) 0.7327** -0.8159 (0) 0.2209***
ft−28 0.2894 (2) 0.7288** -0.5562 (2) 0.2205***
ft−56 0.4742 (0) 0.7461*** -0.5561 (0) 0.2136**
ft−84 -0.3551 (0) 0.7553*** -1.0637 (0) 0.2019**

Notes: The table shows t-statistics for the ADF and KPSS tests. (): number of lags selected by the
AIC. *, **, *** represents a rejection of the null hypothesis at the 10%, 5%, and 1% significance levels
respectively. Open outcry sample period: 15 June 1995 - 15 December 2001. Electronic trading sample
period: 15 January 2002 - 15 July 2008.
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Table 7: CPO cointegration analysis, open outcry and electronic trading

Panel A: Open outcry

λ-max Trace P(χ2(β))
H0: r = 0 H0: r = 1 H0: r = 0 H0: r = 1

ft−7 34.3067*** 1.7865 36.0932*** 1.7865 0.6822
ft−14 29.5163*** 1.5155 31.0318*** 1.5155 0.9839
ft−21 43.0092*** 1.2708 44.2801*** 1.2708 0.5210
ft−28 9.4352 3.1375* 12.5727 3.1375* 0.9623
ft−56 11.5456 4.1884** 15.7340** 4.1884** 0.8485
ft−84 28.2994*** 3.3478* 31.6472*** 3.3478* 0.7139

Panel B: Electronic trading

λ-max Trace P(χ2(β))
H0: r = 0 H0: r = 1 H0: r = 0 H0: r = 1

ft−7 18.1087** 0.0272 18.1358** 0.0272 0.5149
ft−14 50.4781*** 0.1470 50.6252*** 0.1470 0.7266
ft−21 56.6498*** 0.1129 56.7627*** 0.1129 0.2946
ft−28 48.1009*** 0.0450 48.1459*** 0.0450 0.2307
ft−56 29.6180*** 0.0078 29.6257*** 0.0078 0.5319
ft−84 28.2616*** 0.6979 28.9595*** 0.6979 0.1528

Notes: The table shows the results of the Johansen test (λ-max and Trace) with attendant chi-squared
test on the restricted cointegrating vector [1,-1,0]. *, **, ***, represents a rejection of the null hypothesis
at the 10%, 5%, and 1% significance levels respectively. Open outcry sample period: 15 June 1995 - 15
December 2001. Electronic trading sample period: 15 January 2002 - 15 July 2008.
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Table 8: Short-run CPO efficiency, open outcry and electronic trading

Panel A: Open outcry

ft−7 ft−14 ft−21 ft−28 ft−56 ft−84

θ1 -0.0023 -0.0024 -0.0038 -0.0018 -0.0030 -0.0082
(0.0046) (0.0080) (0.0106) (0.0111) (0.0147) (0.0132)

γ1 0.1117 0.0685 0.5511 0.8789
(0.1110) (0.1110) (0.1655)*** (0.1146)***

γ2 -0.1131 -0.1016 -0.4134 -0.3262
(0.1099) (0.1256) (0.1953)** (0.1425)**

γ3 0.0559 0.0728 0.2749 -0.0379
(0.1440) (0.1108) (0.1976) (0.1492)

γ4 0.3643 0.4606 0.2183 0.5669
(0.1044)*** (0.0993)*** (0.1419) (0.2304)**

γ5 -0.4276
(0.1922)**

P(F ) NA NA 0.0003*** 0.0000*** 0.0000*** 0.0000***

Panel B: Electronic Trading

ft−7 ft−14 ft−21 ft−28 ft−56 ft−84

θ1 0.0037 0.0065 0.0065 0.0085 0.0174 0.0171
(0.0028) (0.0045) (0.0046) (0.0062) (0.0085)** (0.0101)*

γ1 -0.0333 0.1521 0.1956 0.6489 0.8020
(0.1189) (0.1391) (0.0836)** (0.0913)*** (0.1388)***

γ2 -0.1435 -0.1279 -0.1519 -0.4208 -0.3602
(0.1060) (0.1068) (0.1075) (0.1111)*** (0.1859)*

γ3 0.3909 0.2308 0.1727 0.2335 0.0541
(0.1340)*** (0.1045)** (0.0752)** (0.0888)** (0.1407)

γ4 0.0864 0.0415 0.0963 0.1709
(0.0859) (0.0965) (0.0888) (0.0938)*

γ5 0.2883 0.0668 0.1138
(0.0893)*** (0.0843) (0.1005)

γ6 0.3795 0.2476
(0.0995)*** (0.1238)*

γ7 -0.1373 -0.1199
(0.1140) (0.1312)

γ8 -0.0435 -0.0895
(0.1427) (0.1577)

γ9 -0.1546 -0.1072
(0.1227) (0.0877)

P(F) 0.0000*** NA 0.0015*** 0.0069*** 0.0000*** 0.0000***

Notes: The table shows the results for the short-run model, Equation (6), with lags selected using
AIC.(): HAC standard errors. *, **, *** represents a rejection of the null hypothesis at the 10%, 5%,
and 1% significance levels respectively. P(F ) denotes the p-value from the joint test of zero restrictions
on lagged coefficients. Open outcry sample period: 15 June 1995 - 15 December 2001. Electronic trading
sample period: 15 January 2002 - 15 July 2008.

8



Table 9: Relative efficiency measure

ft−7 ft−14 ft−21 ft−28 ft−56 ft−84

Open outcry 1 1 0.8477 0.7795 0.6156 0.4120
Electronic trading 0.7835 1 0.7403 0.7974 0.6909 0.5411

Whole sample 1 0.9153 0.8994 0.8643 0.6353 0.4648

Notes: The table shows the results of the Kellard et al.’s (1999) short-run efficiency measure. Open
outcry sample period: 15 June 1995 - 15 December 2001. Electronic trading sample period: 15 January
2002 - 15 July 2008.
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Figure 1: Edible Oil Production
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Notes: The graph shows the annual production (’000,000 tonnes) for the most produced edible oils. For
ease of interpretation the remaining edible oils are presented by the shaded area and comprise: Coconut
oil, cottonseed oil, groundnut oil, linseed oil, maize oil, virgin olive oil, palm oil kernel, safflower oil, and
sesame oil. Source: Food and Agriculture Organization of the United Nations.
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Figure 2: Average daily volume and open interest for 3-month CPO futures contracts
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Notes: The graph shows the daily average (per month) volume and open interest for the 3-month futures
contract. Source: Bursa Malaysia Derivatives

2



Figure 3: Price and 30-day historical volatility
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Notes: The figure shows the average (per month) 3-months CPO futures price and the 30-day historical
spot price volatility (standard deviation).
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Figure 4: TAR relative efficiency measure
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Notes: The figure shows the results of the TAR relative efficiency analysis. The figure shows the
difference in relative efficiency (δ̄m

c,r
) between electronic trading and open outcry as an average across

short (m = s: τ = 7 and 14 days) and long (m = l : τ = 56 and 84 days) maturities and across high
(r = H ) and low (r = L) volatility environments. Positive (negative) values denote a higher value for
electronic trading (open outcry). See equations (8) and (9). The bands denote bootstrapped confidence
intervals calculated using 5000 replications
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