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Abstract  

There are many vegetable fruits recognized in Nigeria, but tomato, a vegetable fruit is a 

major food component, an ingredient utilized by every house hold and constitutes the 

national food security programme. The record confirmed that Nigeria produces 

approximately 1.8 million metric tons of fresh fruits for domestic consumption, with 

national demand of about 2-3 million tons per annum with a demand gap of about 

500,000 metric tons. Tomato production is an important source of income to farmers 

unfortunately diseases such as Alternaria alternata greatly increase food losses by an 

approximately 20-30% and methods of using synthetic chemical compounds can be costly 

and dangerous if applied by an unskilled operator and are often not available at the time 

when required. As a result this study focused on the effect of hot water dipping as a non-

chemical method to control the black mould disease caused by Alternaria alternata on red 

tomatoes. Hot water dip at 50ᴼC for 5 or 10 min was carried out on Alternaria alternata 

spore suspension (in-vitro), the results showed a significant (P≤0.05) reduction in 

germination of spores after 48 h. The in-vivo hot water treatment was carried out in three 

groups, viz-a-viz; first group consists of 30 and 50⁰C and tomato fruits were heated in hot 

water for 30 and 60 min respectively. The second group was 30, 40 and 50⁰C and fruits 

were dipped in hot water for 20 min. In the third group the temp was at 40, 45 and 50
0
C 

and fruit were dipped in hot water at these temperatures respectively for 10 min. 

Furthermore, the hot water temp was increased to 50 and 55⁰C and inoculated fruits were 

immersed for 5 min in separate hot water bath. In this trial the result showed that dipping 

artificially inoculated fruit at 50 or 55⁰C for 5 min significantly reduced (P≤0.05) decay 

development caused by A. alternata. Conidia germination was more sensitive than 

mycelia growth to 50⁰C, but inhibition of both processes increased with the duration of 

time of treatment. The in-vitro hot water treatment of Alternaria alternata spores at 50⁰C 
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for 30 min significantly reduced the spore germination and mycelia elongation of the 

fungal pathogen in 48 h. The in-vitro result obtained was attributed to the direct effect of 

heat on the spore germination as well as mycelia growth resulting in the reduction of the 

growth of the fungus on the inoculated red fruit. Splitting was observed on the pericarp 

(skin) at the point of inoculation of fruits before hot water treatment at 55°C for 5 min.  

The hot water treatment of the tomatoes had the following effects on the attributes of quality: the 

Brix degrees measurement showed a negligible difference in 40
 
°C or 50°C compared with the 

control for 30 min heat treatment after 24 h storage. Also there was no effect of heat on the total 

soluble solid likewise, the firmness measurement on flesh of tomato showed no significant 

difference when compared with the control. In this study the change in colour after heat treatment 

was not statistically significant.  Similarly, in the taste test there appears no real difference 

recorded in the attributes of juiciness, flavour and overall acceptance except that the skin of the 

tomato was recorded “softer” by some of the taste panellists. This study has shown that 

prestorage hot water treatment may be a useful non-chemical method of controlling A. 

alternata postharvest disease pathogen without adverse consequence on the fruit quality.  
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CHAPTER 1: GENERAL INTRODUCTION 

1.1 Introduction 

Tomato (Lycopersicon esculentum Mill.) fruit is an abundant crop used by many people all over 

the world as fruit salad, stew and different culinary delicacies. Recent studies have also 

emphasised the importance of the major constituent of the fruit; lycopene which is used 

medicinally to prevent cardiovascular disease and prostate cancer (Ejechi et al., 1999). It is an 

important food crop that can be cultivated all year round, but if not properly handled during 

postharvest management this will create an opportunity for disease pathogen infection that cause 

fruit rot in storage. 

 

The cultivation of fruit and vegetables in Nigeria is undertaken by small farmers who usually have 

a small land holding of less than two hectares. As a result the yield is low and coupled with 

inadequate postharvest experience, lack of storage facilities and postharvest diseases have made 

fresh tomato fruit unavailable abundantly all year round in the market in the country. The lack of 

postharvest management experience, sanitation of the environment of the farm and problem of 

handling and transportation may lead to pathogen infection which affects the quality of tomatoes. 

Large quantities of fruits and vegetables are produced and staggering yield figures are quoted as 

annual production. For example 6 million tonnes of tomatoes was reported as the annual yield 

(Idah et al., 2007). However, it is the amount of the produce available to the consumer that is 

more important.  

 

The cost of energy and erratic power supply limits the use of low temperature storage also the 

chilling injury will be another contending issue. As a result farmers who have information about 

food processing industry harvest red ripe tomato for sale to the company. Tomatoes that are used 

for culinary purposes are mostly available in the processed form such as sauce, puree and peeled 

in cans and bottles. Thus, there is the need for an alternative method of preserving fresh tomatoes 
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which lay waste in the open market and on roadsides during the period of abundant yield in the 

country.  

Fruits and vegetables contain high percentage of water when fresh. Physiological function of 

respiration is continuing and at this stage of the life cycle of the produce they are more susceptible 

to pathogen infection in transit and storage. Reports have shown that one of the contributing 

factors to enormous losses and high price of fresh tomato fruits in Nigeria market is the 

postharvest pathogen disease infection of the fruit in transit and storage (Idah et al., 2007). But 

there is no evidence to show the exact data for postharvest loss estimates of fruits and vegetables 

between harvest and consumption except on controlled experimental basis. However, it is reported 

that losses as high as 50 % are common in these produce between rural production and town 

consumption in the country (Idah et al., 2007). The resultant effect will be low production and 

short supply to the market creating increase in price.  

 

Some of the diseases include; Alternaria alternata, Botrytis cinerea, Rhizopus stolonifer and 

Fusarium species (Ejechi et al., 1999). Alternaria alternata f. sp. lycopersici was reported to 

cause stem canker disease of fresh market tomatoes. The fungus is a distinct pathogen capable of 

primary infection of leaves, stems, and on the fruit of susceptible cultivars. Tomato crop was 

reported to have been the only host of this fungus and only 25 % of 265 cultivars in San Diego 

County of Southern California, USA were susceptible (Grogan et al., 1975). The studies also 

showed that when some green fruits were inoculated through artificial wounds into the carpel wall 

they were almost completely rotted and the surfaces became blackened by dense sporulation, 

which is the black mould. 

The highly perishable nature of tomatoes needs careful treatment during handling after harvest 

because improper handling such as physical injury during postharvest management may lead to 

infection by pathogenic diseases. Infection of postharvest diseases which is common through 

physical injury, together with long distance the produce is transported to the market has limited 

the availability of fresh tomatoes in the market.  
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Postharvest technologies for long term storage and disease control are being developed and 

refined to expand marketing of fresh fruits. Variability in storage potential of fruit with certain 

quality parameters such as colour grade, maturity, and firmness might become a serious problem 

for the grower, distributor and retailer to achieve when developing appropriate storage techniques.  

Due to the restrictions in the registration of the use of inorganic chemicals on fresh produce, the 

cost of application and the availability of chemicals resulted to attention to be shifted by 

researchers and farmers to finding an alternative method in controlling disease pathogen of fruit 

and vegetables. As a result, research efforts are directed towards the development of the 

appropriate non-chemical treatments to control disease pathogen and maintain fruit quality.  

 

Major improvements in postharvest technology for producing fresh tomatoes can come from 

refinement of pre-harvest management, harvesting and non-chemical postharvest treatments. Non-

chemical treatments which were considered include heat, irradiation, biological control, host 

resistance and controlled atmosphere storage (Ferguson et al., 2000; Panhwar, 2006; Droby et al., 

2009; Schirra et al., 2000). Since consumers have not accepted gamma (ɣ) irradiation method 

because of the very high capital cost and centralised treatment, host resistance and heat are 

plausible options for postharvest treatment of fruit and vegetables to control disease pathogen.  

 

The extent of postharvest damage due to spoilage fungi is reportedly dependent on tomato variety 

(Etebu et al., 2013). The report showed that whilst up to 44 % of postharvest spoilage was 

attributed to microorganism in a given tomato variety, only 14-23 % of spoilage was attributed to 

the same microorganism among other varieties. Pre-harvest production practices may seriously 

affect postharvest return. For example losses due to soil borne fungi like Phytophthora capsici is 

common (Hausbeck and Lamour, 2004). P. capsici cause late blight resulting to wilting in tomato 

crop. Alternaria solani causes early blight, Septoria lycopersici is responsible for Septoria leaf 

sport and Fusarium oxysporum causes wilting in tomato (Etebu et al., 2003). In other to overcome 

these post-harvest losses due to fungi infection, a resistant variety could be so developed that will 
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have a wide spectrum of resistant attributes covering these microorganisms. This approach could 

be recommended for the future.   

Another approach to host resistance in fruit and vegetables is to involve the activation of defence 

mechanisms by non-pathogenic elicitors referred to as induced resistance (Wisniewski et al. 

2001).  Plants generally possess a number of morphological structures that act as a defence to 

protect them from infection by pathogenic organisms. Many of these resistant features are 

expressed during normal development, while some are activated in response to pathogen invasion 

or induced by elicitors. Wisniewski et al. (2001) defined the function of elicitors as the activation 

of defence mechanisms to cause an induced resistance in the crop and are non-pathogenic. These 

defence mechanisms can be characterised as: (i) structural barriers such as deposition of lignin 

and waxes on the skin surface (epidermal layer) of the fruit; (ii) attainment of constitutive 

inhibitors such as antimicrobial compounds; phytoalexins, and; (iii) activation of pathogenesis 

related proteins including chitinases, glucanases etc. Also Thakur and Sohal (2013) reported that 

elicitors are compounds, which activate chemical defence in plants, such as salicylic acid, methyl 

salicylate, benzothiadiazole, benzoic acid, chitosan, which affect production of phenolic 

compounds and activation of various defence related enzymes in plants. 

 

 Furthermore the activation of these defence mechanisms can be by the application of microbial 

antagonists, such as Pichia guiliermondii (yeast), which was reported to be more effective than 

heat treatment in reducing Alternaria alternata in cherry tomato (Zhao et al. 2010); whilst 

Alternaria growth was inhibited but not prevented when tomatoes were dipped in hot water at 

these following temperature and time regimes; thus, 3 min at 55 °C, 5 min at 50 °C and 10 min at 

45 °C respectively (Lurie et al. 1998; Fallik et al. 1993). Another study by Liu et al. (2012) 

reported that heat treatment triggered the accumulation of reactive oxygen species (ROS), which 

resulted to the collapse of mitochondrial membrane activities and a decrease in intercellular 

adenosine triphosphate (ATP) processes in Monilinia fructicola disease pathogen in peach fruit. 

The report showed that heat induced the expression of defence-related genes including chitinases, 
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β-1 and 3-glucanase and phenylalanine ammonia lyase, as a result increase the activities of these 

enzymes in peach fruit.  

 

There are three methods in use to apply heat to produce; hot water dips, vapour heat and dry hot 

air (Lurie et al., 1998). Consideration of hot water was the original concept of use to control 

fungal pathogens on commodities, but was extended to disinfestations of insects (Lurie et al., 

1998). Another study showed that dry heat is effective against insect pests, but heat alone was 

reported not to have adequately control some of the disease pathogens in mangos (Nyanjage, 

1999). Most studies have focussed on the effects of heat treatment on mature green and pink 

colour tomato and disease pathogens; whereas little is known about the effect of heat on red fruit. 

Fallik et al. (1993) reported that most research on the effect of heat treatment on tomatoes laid 

emphasis on the physiological rather than the phytopathological effects and has focused more on 

mature green rather than pink or red fruit. However, consumer preferences for tomatoes that are as 

close as possible to vine ripe are preferred in Nigeria market. Etebu et al. (2013) reported in their 

study that dipping tomato in hot water at 50 °C delayed ripening of pink/light red tomatoes also 

reduced chilling injury and controlled postharvest diseases of tomatoes.  

 

There is a dearth of knowledge of this method of treatment as result the traditional method of heat 

treatment engaged in preserving fruit and vegetables is solar drying which is relatively low cost 

has compared to ware-housing cool storage system. Although there are limitations to this method; 

only small yield is involved and the fruit is sliced before it can be properly sun dried. As a result 

most farmers produce tomato for the processing industry so as to secure their investment and 

guarantee an appreciable income.  

 

The quantity of fresh tomato available in the market is low compared to the yield that goes into 

the processing industry. As a result the study focused on the need to have an understanding of the 

overall impact of hot water treatment of red tomatoes. Fallik et al. (1993); Barkai-Golan (1989); 

and Tohamy et al. (2004) reports stated that Alternaria alternata pathogen inoculated into mature 
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green tomato caused black mould disease on the fruit. Current methods for the control of this 

pathogen rely on chemical compounds yet, due to resistance developed by the pathogen and the 

human perception of chemicals on food, the environment and health, cost and availability, natural 

chemical of plant and plant materials, non-chemical and environmental friendly control method 

were sought. Some of these chemicals reported in some studies include chlorine and essential oils 

for example, plant extracts; red thyme (Thymus zygis), clove buds (Eugenia caryophyllata) and 

cinnamon leaf (Cinnamomum zeylannicum) were used to control the growth of Botrytis cinerea on 

fruits (Panhwar, 2006). However, chlorination is one of the treatment options available to help 

manage postharvest diseases. Chlorine dioxide has been used in some sanitizing processes and its 

action is effective when used with proper postharvest handling practices (Sholberg and Conway, 

2004). Thyme oil and essential oil from dill (Anethum graveolens L.) were respectively used 

against fungal spoilage of cherry tomatoes to control Alternaria alternata in-vitro and in-vivo as 

fumigant and contact treatments (Feng et al., 2011; Tian et al., 2011). Fumigation with thyme oil 

was reported not to cause any visible disorders and off-flavour to the fruits after 3 days of 

incubation. 

 

Feng and Zheng (2007) reported that cassia oil and thyme oil both exhibited antifungal activity 

against A. alternata. The treatment of tomatoes with these essential oils had no adverse effect on 

quality of fruit such as visible disorders and off-odour to the fruits after 5 days of storage. Another 

study reported that volatile compounds from plants such as essential oils can inhibit the fungal 

growth of pathogens while leaving few residues. Apparently, some of these `residues` are normal 

constituents of the human diet and are unlikely to be of any health risk (Feng et al., 2008). The 

report of Tian et al. (2011) stated that the in-vitro and in-vivo study of dill (Anethum graveolens 

L.) as an essential oil against fungal spoilage of cherry tomatoes reported that the minimum 

inhibitory concentration of oil for the four tested fungi; Aspergillus flavus, Aspergillus oryzae, 

Aspergillus niger and Alternaria alternata; was 2.0 µl/ml, and the mycelia growth inhibition 

measured on the 9
th
 day.  
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It was concluded that the promising results of both studies showed that employing Anethum 

graveolens oil has a significant potential as a fumigant during the usual storage or prolonged 

transport period. As a result the use of essential oils can not only improve food safety by 

eliminating fungal spread but also leave no detectable residues after storage. These essential oils 

would be economical in applications with a comparable commercial importance as a fumigant in 

storage containers. 

 

For a developing country, preservation of food must be simple and inexpensive. In a study carried 

out by (Anonymous, 2013) it was reported that each year countries around the world produce 

some four billion tonnes of food but between 30 % and 50 % of this total, which amount to 1.2 to 

2 billion tonnes, never get eaten by the consumers. Likewise, the Institution of Mechanical 

Engineers reported that as much as half of all the food produced in the world, amounting to two 

billion tonnes worth ends up being thrown away. The waste is caused by poor infrastructure and 

lack of storage facilities (Anonymous, 2013).  

 

In another development the central bank of Nigeria made a proclamation to improve the yield of 

tomato by providing agriculture loan to farmers (Ibeabuchi, 2012). The money will provide 

infrastructure such as irrigation, seeds, packaging and storage facilities as a result the farmer will 

be able to plant two crops within one year. The cumulative effect of this assistance will increase 

yield from 2 million to 10 million tonnes per annum and also the income of the farmers. For an 

example the farmers will sell a raffia basket (30kg) of tomato for US$3.00 (₦450). During peak 

season farmers that have limited storage facility can hold on and sell for an equivalent of 

US$15.00 (₦2200) towards the end of the season (Ibeabuchi, 2012). 

1.2 Nigeria as a country 

Nigeria is a country in West Africa and is estimated to be the most populous country in Africa 

with an estimated population of 155,215,573 inhabitants (Taylor and Esan, 2012). Geographically 

Nigeria is located between longitude 4° and 14° and latitude 2° and 14 °E, making it a country 
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with a tropical climate type where seasons are damp and very humid.  She shares land borders 

with the Republic of Benin in the west, Chad and Cameroon in the east, and Niger in the north (As 

indicated in Figure 1). Its coast lies on the Gulf of Guinea in the south and it borders Lake Chad 

to the northeast (Taylor and Esan, 2012). The climate of Nigeria is seasonally damp and very 

humid which is typical of a tropical country. Nigeria is affected by four climate types; these 

climate types are distinguishable, as one travels from the southern part of Nigeria to the northern 

part of the country through the middle belt region.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1:  West African countries and the crop zones in Nigeria (USDA, 2002/03) 

1.3 Climate types found in Nigeria  

The Tropical rainforest climate or the Equatorial monsoon is found in the southern part of the country. 

This climate is influenced by the monsoons originating from the South Atlantic Ocean, which is 

brought into the country by the maritime tropical (MT) air mass, a warm moist sea to land seasonal 

wind (Briney, 2010). Also the Tropical rainforest climate in the country has a very small temperature 

range such that the temperature ranges are almost constant throughout the year, for an example, a 
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town (Warri) in the southern part records a maximum temp of 28 °C for its hottest month while its 

lowest temperature is 26 °C in its coldest month which is suitable for tomato production all year 

round. 

 

Figure 2: Rainfall pattern in Nigeria (Source: FAO, 2005) 

There is heavy and abundant rainfall in the southern part of the country which results into storms 

and heavy flooding due to the regions proximity to the equatorial belt, as a result the annual 

rainfall in this region is usually above 2,000 mm (78.7 in), particularly in the south east (Briney, 

2010). About 4,000 mm (157.5 in) of rainfall is recorded for a coastal town (Brass) in the Niger 

Delta area (Figure 2). The first rainy season begins in March and last to the end of July with a 

peak in June, this is followed by a short dry break in August known as the August break; mainly 

for harvesting and is a short dry season for 2-3 weeks. There is another short rainy season starting 

early September lasting to Mid-October and is followed by long dry season that stays till March 

with peak dry conditions between December and February (Briney, 2010). The Tropical Savannah 

climate is extensive in area and covers most of Western to central Nigeria beginning from the 

Tropical rainforest climate boundary in the south to the central part where it has an enormous 

influence on the region - Figure 3 (Anonymous, 1997).  
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The tropical savannah climate exhibits a well-marked rainy season and a dry season with a single 

peak known as the summer maximum as a result of its distance to the equator. Average 

temperatures are above 18 °C throughout the year (Briney, 2010). Other climates in the country 

where tomatoes are successfully grown include; the Sahel Climate or Tropical dry climate, and is 

the predominant climate type in the northern part of the country. The annual rainfall totals are 

lower compared to the southern and central part of Nigeria. Alpine climate or highland climate or 

mountain climate are found on highland regions. Highlands with the alpine climate are over 1,520 

metres (4,987 ft.) above sea level. Due to their height in the tropics, this elevation is high enough 

to reach the temperate climate in the tropics thereby giving the highlands, mountains and the 

plateau regions standing above this height a cool mountain climate which make these areas 

conducive to tomato production (Briney, 2010).  

 

Consequently, the climactic difference in the country has influenced the growth of crops between 

zones and seasons. Tree crops such as cocoa, oil palm, avocado pear and other fruit trees are 

found in the southern part leading to the central region, while crops that require less amount of 

water for production, for example vegetables; tomato and pepper are cultivated mostly from the 

central to savannah zones. For example the cropping of tomatoes during the wet and dry seasons 

contributes immensely to the national yield average of 114 tonnes/ha but the bulk of fresh tomato 

production is from the dry season cropping particularly in southern states (Olaniyi et al., 2010). 

The production of tomato (Lycopersicon esculentum), in dry season is mainly by irrigation in the 

northern part due to low rainfall. But marketing and consumption are widespread throughout the 

country. As a result fresh produce travelled a long distance between the farm and the market.  

 

Tomato is transported by road and the system is associated with many problems that affect the 

quality of the fresh produce. The study by Idah et al. (2007), reported that there are no clearly 

defined routes for any particular produce, but the market forces dictate the handlers` choice of 

market. The delivery period of the produce from the farm to the market on the average normally 
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spends four to five days in transit, out of which two days are spent on movement for example 

from Kano (north) to Lagos (south) and the remaining days are spent at the source market coupled 

with ten days of shelf life. Aba et al., (2012); Idah et al., (2007) also reported that losses up to 14-

20 % occurred in the consignment of fresh tomatoes transported from the production areas in 

northern part to an urban wholesale market in South West Nigeria, a distance of about 1000 km. 

These losses, it is noted occurred during transportation, storage and marketing. As a result the 

expected post-harvest life of tomatoes in Nigeria is between ten and fifteen days. 

 

Figure 3: Nigeria vegetation 

1.4 Tomato production in Nigeria                                                  

Nigeria is a leading producer of large amounts of tomatoes, pepper and other vegetables which are 

grown in its diverse agro-ecological zones that range from humid in the south to sub-humid in the 

middle belt and semi-arid/arid in the north. Fresh fruits and vegetables are inherently more liable 

to deterioration under tropical conditions characterised by high ambient temperatures and 

humidity, and high incidence of pests and diseases. Consequently, many studies including 

(Anonymous, 2013), have reported postharvest losses of fruits and vegetables are very high in the 
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country (30-50 %), and this situation was worsened by poor marketing, distribution and storage 

facilities. 

 

Large scale cultivation of the crop is often practised in the northern part of the country vis-à-vis in 

the Savannah region. Nigeria has two main rainfall seasons; the first raining season starts in 

March-June the second rainfall begins in Oct-Nov. The rainfall pattern is bimodal that is having 

two peak period. It is at the lesser peak that tomato production gives the potential maximum yield 

(Oct-Nov). The climatic condition at this season is conducive to the production of tomato; since 

the crop is self-pollinated and requires mild rainfall for pollination. The total yield of tomato is 

about 1.7 million tonne per year from a total area of one million hectares used for tomato 

cultivation (Etebu et al., 2013; Costas and Heuvelink, 2005), most of which go in to the 

processing industry. The quantity of produce that goes into high wastage is staggering due to the 

inability of farmers to provide post-harvest treatment and storage infrastructures.   

 

Nigeria is one of the top twenty producers of tomato in the world and the second largest producer 

in Africa (Etebu et al., 2013), having a total production of 1,701,000 tonnes per year which make 

the country the 13
th
 largest producer in the world (Costas and Heuvelink, 2005; FAOSTAT, 

2008). An average yield is 25 tonnes per hectare which is compared low to what is obtained in 

Egypt with 9.2 million tonnes per year and 50.8 tonnes per hectare a similar developing country 

like Nigeria. Information about the actual loss of food between harvest and consumption are not 

documented, also the available data for post-harvest loss estimates for fruits and vegetables are 

difficult to substantiate except on limited controlled experimental basis. But Idah et al. (2007) 

reported that losses as high as 50 % are common in fruits and vegetables between rural production 

and town consumption in the tropical regions. These losses, it is noted, occurred during 

transportation, storage and marketing. 

 

Etebu et al. (2013) also reported that 21 % of tomato harvested in Nigeria was lost to rot in the 

field while an additional 20 % was due to poor storage system, transportation and marketing. In 
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Mauritania, Bishop and Ramma (2012) reported in their study that only 25 % of the tomato fruit 

fully ripened for market within a week of harvest the balance is the estimated loss through 

dehydration, disease and inadequate postharvest resources and management. These losses have 

prompted the need for simple, but effective and economical methods to control pre- and 

postharvest diseases and other losses in tomato. 

    

Figure 4: Traditional packaging and transportation of tomato in jute bags.        

Postharvest practices such as sanitation of the environment and packaging material should be 

without blemish that will encourage disease infections caused by microorganisms. The main 

factors affecting postharvest losses of tomatoes include; moisture loss through storage at too high 

temperature and low relative humidity; disease development through physical contact and storing 

tomato fruit at temperature conducive to disease growth. Mechanical damage can occur as a result 

of fruits stacked in jute bags resting on top of each other on a trailer truck – Figure 4. This 

abrasion damage could cause increased moisture loss and increase likelihood of disease entry 

since part of the skin layer (pericarp) has been removed. The depth of stacking in the jute bag can 

also cause compression damage.  

 

Other factors that inhibit large quantity of fresh produce being provided at the markets include 

very limited storage facilities, poor crop cooling system, and the logistics of transportation from 

the farms located in the northern part of Nigeria to the south where the produce are sold at a 
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premium price (Figure 4). The picture is a typical example of how tomatoes are packed in jute 

bags and stacked on top of each other to the market. For example, a substantial loss (up to 20 %) 

typical of this transport system was reported to have occurred in fresh tomatoes being transported 

from the production areas in northern Nigeria (e.g. Kano, Kaduna and Sokoto States) to an urban 

wholesale market (Shasha) in Ibadan south-western Nigeria (Aworh, 2009). This situation can 

cause bruising of fruits and compression damage in the bag which can lead to an infection of 

disease pathogen. Consequently, many farmers have resolved to produce the crop for the 

processing industry where they are put in cans and bottles as tomato sauce, plum and puree.  

 

Figure 5: Tomato in basket ready for sale 

Figure 5 showed red ripe tomatoes traditionally packaged in basket and covered with brown paper 

ready for sale in the market. This method of packaging can cause bruising of fruits and compression 

damage in the basket which can lead to disease infection. Diseases such as Botrytis cinerea (grey 

mould) and Alternaria alternata (black mould) were common causes of tomato fruit disease 

pathogens that cause fungal rot (Fallik et al., 1993; Barkai-Golan, 1989; Tohamy et al., 2004). The 

conventional method of controlling these diseases is through the application of fungicides such as: 

chlorothalonil, benlate, rovral, and sumisclex (Davis et al., 1997); Abdell-Mallek et al. (1995). At 

1000 ug/ml benlate, rovral and sumisclex completely prevented Alternaria rot (Abdell-Mallek et al., 

1995), while chlorothalonil, a chloronitrile fungicide serves as a broad spectrum tomato disease 
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management agent. For example, it is recommended in Florida for management of target spot, and 

also control early and late blight of tomato (Anonymous, 2014). The price of chlorothalonil is 

estimated as $10.32 per pound of active ingredient, and the approximate cost of a maximum 

application of 2.1 Ib active ingredients per acre in Florida is $21.67 (Anonymous, 2014).  

To show the similarity between potato and tomato, in terms of the cost and application of fungicides 

to control early and late blight diseases, the mean cost per hectare of the fungicide and application to 

control these diseases on potatoes was $316 per hectare ($128 per acre) in the Columbia Basin of 

Washington, whilst the cost of the active ingredient is $7.33 per Ib. (Johnson et al., 2000). In another 

study it was reported that the cost of the fungicide i.e. Chlorothalonil and its application, a single dose 

applied to plots of tomatoes would give the grower $160.47 net return per hectare (Davis et al., 1997). 

The cost implication of these chemicals and the availability in the local market is relatively high for 

small scale farmers.  

Studies have shown that many postharvest treatments have been developed to control the development 

of the fungal pathogen causing tomato fruit rot through non chemical method using these treatments 

individually or in combination with food preservative compounds and solutions (Ejechi et al., 1999; 

Yan Zhao et al., 2010). Lurie and Klein, 1991, reported that mature green tomato fruit kept for 3 days 

at 36, 38 and 40 °C respectively, before storing at 2 °C for 3 weeks did not develop chilling injury, 

while the unheated fruit placed in the storage at the same temp developed chilling damage. The heated 

tomatoes also had lower levels of ion leakage and higher phospholipid content than unheated 

tomatoes.  

Heat treatment has also been identified by various reports to be one of the most promising non 

chemical control methods for post-harvest fungal diseases. The efficacy of pre-storage heat treatment 

either as dry or hot water dips was reported to reduce storage rots on bell peppers and tomatoes. The 

best results were obtained with hot air at 38 °C for 48-72 h or hot water at 50 to 53 °C for 2-3 min 

(Lurie, 1998; Fallik et al., 2001). Fallik, (2004) reviewed the latest developments in hot water 

immersion treatment and hot water rinsing and brushing technologies and concluded that these 
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treatments kill disease pathogens that cause surface decay, while maintaining fruit quality during 

storage and marketing.  These studies showed that heat treatment inhibited germination of fungal 

spores and the development of mycelia, thus effectively reducing inoculum population and lesion 

development on the produce (Ferguson et al., 2000; Lurie et al., 1998; Fallik et al., 1993; Couey, 

1989).  

 

Studies have shown that heat treatment can be applied to fruit and vegetables as; (i) hot water 

dips, (ii) vapour heat and (iii) hot dry air. For an example dipping for 1-2 min in water heated to 

55 °C was the optimal anti-fungal treatment reported for the control of Alternaria, Fusarium, 

Rhizopus, and Mucor species on melon fruit (Teitel et al., 1991; Fallik et al., 1993; 2001). Vapour 

heat was used on strawberries for 1hr at 44 °C, while pear fruit was exposed for 48 h at 37 °C 

prior to storage, inhibited the decay caused by these pathogens (Spotts and Chen, 1987). While in 

another study by Jacobi and Wong (1992) reported that mango (Mangifera indica Linn.) treated 

with hot water at temperature of 47 °C from 7.5-30 min shortened the fruit softening time but 

caused internal and external injury.  

 

Heat treatment on the effect of hot air on tomatoes, showed that the temperature of effective 

control was between, 36-40
0
C (Fallik et al., 1993; Lurie et al., 1998; Lurie, 1998; Ferguson et al., 

2000). For an instance hot air at 38 °C, for 24 h was enough to inhibit germination of Botrytis and 

Penicillium spores; while after 96 h at 38 °C, Alternaria still showed 20 % germination (Lurie et 

al., 1998). In this instance the decay caused by Botrytis in tomato, Botrytis and Penicillium in 

apple were reduced. Another report showed that germination of Alternaria could only be inhibited 

by extended temperature above 40 °C and time period, for example 96 h at 46 °C or 72 h at 42 °C 

(Lurie et al., 1998; Tohamy et al., 2004). This shows that high temperature heating for long period 

is common with hot air heat treatment.  
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Fruits are treated in hot water for shorter times at high temperature than hot air. Lurie et al., 

(1998) reported that ten minutes at 45 °C decreased Botrytis germination to below 10 % while 5 

min at 50 °C prevented it. Although, germination of Alternaria was more resistant to heat because 

some germination was reported to have occurred at all time and temperature regimes tested. For 

example, 3 min at 55 °C, 5 min at 50 °C and 10 min at 45 °C stopped the development after 

germination of Botrytis spores while Alternaria growth was inhibited but not prevented by all 

treatments. These reports on the effect of temperature on Alternaria disease served as a 

background knowledge to know the temp range to start with and also the heating time that will 

control the pathogen. As a result this study focused on the in vitro, in vivo and the effect of heat 

treatment on the quality of tomato. These temperatures 30, 40, 45, 50 and 55 °C together with 5, 

10, 20, 30 and 60 min were variously combined to test the effect of heat on Alternaria in vitro and 

in vivo trials. 

 

Most research reports on the effect of heat treatments on tomatoes has focused on the 

physiological rather than the phytopathological effects and has involved the use of mature green 

rather than pink or red fruit (Fallik et al., 1993). However, the consumers prefer tomatoes that are 

as close as possible to vine ripe as a result the farmers prefer to harvest the fruit for market at pink 

rather than the mature green stage. The report of reviews of Klein and Lurie (1992) stated that 

ripening of fruits is accompanied by a change in the ground colour, for example in apple the 

colour changes from green to yellow. Also prestorage heat treatment accelerated the colour 

change. Similarly, heated tomatoes were redder than non-heated fruit after storage at 12 °C and 

shelf life at 20 °C (Klein and Lurie, 1992). 

 

Treating inoculated red pepper fruits for example in 3 min with 50 °C hot water completely 

inhibited decay development caused by Botrytis and significantly reduced decay caused by 

Alternaria; likewise a reduction of decay in area of infection was observed with Botrytis infected 

fruit dipped for 1 and 5 min hot water (Lurie et al., 1998; Fallik et al., 1996). Similarly, dipping 

Alternaria infected fruit at 50 °C for 5 min reduced decay compared to control fruits, although 
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heat injuries such as cracking on the skin surface of tomatoes were observed on fruit dipped for 5 

min (Lurie et al., 1998; Lichter et al., 2002). Hot air treatments required a long term heating at 

high temperatures and are unlikely to become a commercially attractive method. But hot water is 

least expensive, more effective and takes a shorter time to reach the inner core of the fruit 

compared to hot humid air. In another report the use of hot water dips or vapour heat at 39-52 °C 

for 2-10 min has been reported to control in vitro and in vivo spore germination and decay 

development of postharvest fungi on tomato and pepper (Fallik et al., 1993; Lurie et al., 1998).  

The potential of hot water treatment to control fungal pathogen diseases is promising since the 

capacity of water to transfer heat is faster than air. For an instance, it was reported that when 

tomatoes were immersed in water at 20 °C; the interior of the fruit reached the water temp within 

30 min while it took 4 h in air (Lurie et al., 1998). Most of the studies on the use of hot water 

treatment to control the microorganisms that cause diseases on tomato reported the importance of 

high temperature in a short time period, failing which can easily result to damage of fruit tissue if 

the recommended exposure time is exceeded. Thus, 3 min at 55 °C, 5 min at 50 °C and 10 min at 

45 °C were recommended in other to prevent injury to the fruit surface (Fallik et al., 1996; Lurie 

et al., 1998). For example, tomatoes dipped in hot water at 45 °C above 10 min suffered injury 

such as shrivelling of tomato fruit pericarp also pepper fruit dipped at 55 °C above 3 min had 

significant water loss and softness due to heat damage causing cracks as well as pitting on the 

surface of the treated fruit (Fallik et al., 1996; Lurie et al., 1998).  Consequently, these has 

informed this study to determine the appropriate heat treatment temperature and time period that 

will control postharvest disease pathogens of tomato without causing injury to the fruit surface.  

1.5 Hypothesis 

Improvement on the quality and shelf-life of mature green tomato fruit following hot water 

treatment was exhaustively reported in relation to the effect on chilling injury and postharvest 

fungal disease control in storage. Many studies have also shown that the control of postharvest 

decay of fruit with hot water involved a direct inhibitory effect on the postharvest pathogens and a 
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resistance development in the host plant. The studies also showed no significant adverse effect of 

heat treatment on the fruit quality, aroma and taste.  

The hypothesis of this study is that the reports of the above mentioned effect of heat treatment on 

mature green tomato were encouraging then this quality improvement method could be tested on 

red ripe tomato through experimentation and possible get the same results by using hot water as a 

non-chemical and sustainable disease control method of Alternaria alternata disease pathogen.  

1.5.1 Aims and Objectives 

The objectives of this study were therefore largely two fold. First to evaluate the efficacy of hot 

water treatments as a non-chemical control method of Alternaria alternata disease pathogen of 

tomato. Second objective also included the effect of heat treatment on the fruit quality and shelf-

life. The study will conduct experiments to determine the effectiveness and confirm: (1) the 

temperature and time to control Alternaria alternata disease pathogen spores germination (in-

vitro). Also to look at the effect of hot water dipping on red ripe fruit (in-vivo) and the required 

time to reduce the decay caused by the pathogen; (2) other parameters to be evaluated will 

include: changes in fruit quality after heat treatment for example, a*/ b* value for colour change, 

firmness of the fruit, total soluble solids and weight loss. In addition, untrained taste panelists will 

be set up to evaluate the effect of hot water treatment on the aroma, texture, juiciness, flavour and 

overall acceptability of the fruit compared with non-heat treated tomato. 

1.5.2 Experiments Layout 

 Method of counting the number of Alternaria alternata Conidia Spores using 

Haemocytometer  

 The Colony Forming Unit (CFU) method to count the number of Conidia Spores of 

Alternaria alternata Spore Suspension  

 The production of Alternaria alternata Spores on Culture Plates using Mycelia Plug 

 The use of Single Spore to Test the Pathogenicity of Alternaria alternata Isolates on Culture 

Media  
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 The Dilution ratio method to Count the number of Conidia Spores of Alternaria alternata 

Suspension   

 Experiment of Hot Water at 45 and 50 °C for 5 and 10 min Treatment of Alternaria 

alternata Spore Suspension  

 Experiment of Hot water at 30, 40 and 50 °C treatment for 20, 30 and 60 min respectively 

of Alternaria alternata Spore suspension using Eppendorf vial  

 The effect of hot water at 40, 45 and 50 °C treatment for 10 min on inoculated tomato 

fruits  

 

 The effect of hot water at 50, 40 and 30 °C for 20 min treatment of inoculated tomato fruit  

 The effect of hot water at 50 and 55 °C for 5 min on inoculated tomato fruit  

 The effect of hot water treatment on the physiological processes during colour 

development of tomato  

 The effect of heat treatment on tomato fruit firmness  

 

 The effect of hot water treatment on total soluble solids (TSS) of tomato  

 

 The effect of hot water treatment on weight loss of tomato fruit  

 

 The effect of hot water treatment on the aroma, texture, juiciness, flavour and overall 

acceptability 

 

The above experiments will be carried out so as to show how postharvest hot water treatment of 

tomato fruit can reduce pathogen infection, reduce decay development and subsequently improve 

the quality and storage shelf life. The effect of hot water on the skin of the fruit e.g. ethylene 

production, colour development and softening will be explored so as to establish a relationship 

between these variables and ripeness, firmness, aroma and taste which are the most important 
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factors for determination of tomato quality as reported by Lurie et al., (1996); Thanh and Alcedo, 

(2006).   

 

The shelf life is a period of time which starts from harvesting and extends to the start of rotting of 

fruits (Nasrin et al., 2008). Rotting occurs as a result of excessive softening (Meli et al., 2010) 

that limits the shelf life which can lead to microbial infection consequently produce poor quality 

fruit. Also this study will investigate the effect of heat on the fruit after 24, 48, 72 and 96 h 

storage. Furthermore, reports have shown that pre-storage hot water dip of inoculated mature 

green and pink tomato fruits inhibited decay caused by postharvest pathogens of tomatoes (Lurie 

et al., 1998; Fallik et al., 1993). Therefore, this study will conduct experiments to show the effect 

of heat treatment as a method of inhibiting the decay caused by Alternaria alternata disease 

pathogen on red ripe tomato based on the reports of mature green fruit. 
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CHAPTER 2: LITERATURE REVIEW  

2.1 Tomato botany and importance 

Payal (2010) stated that tomato was considered as a vegetable simply because it is a plant that is 

grown primarily because of the fruit which is the edible part. Botanically, tomato can also be 

regarded as a fruit (berry), since it fits into one of the two meanings given to a fruit which is the 

popular term, `Knowledge puts tomato as a fruit but wisdom puts it as a vegetable`. The common 

name fruit is that part of a plant which is eaten as a desert after the main meal or a snack because 

of the sweetness. Similar analogy is often used for apple and peach which are regarded as fruit. 

Botanically, a fruit is the mature ovary and also the reproductive organ from which the plant was 

developed.  

      2.1.1. Classification of the cultivated tomato 

Heuvelink (2005) and Marshall (2006) classified the tomato to belong to the family Solanaceae 

(the nightshade family), genius Lycopersicon, sub family Solanoideae and tribe Solanaceae. The 

plant family Solanaceae include such important crops such as chilli and bell peppers (Capsicum 

spp), potato (Solanum tuberosum), aubergine (Solanum melongena), tomatillo (Physalis ixocarpa) 

and tobacco (Nicotiana tabacum).  

 

In the 18
th
 century, the famous Swedish botanist, Linnaeus, introduced his Binomial 

Nomenclature of plants, where he named tomato Solanum lycopersicon. Fifteen years later, 

another renowned botanist (Phillip Miller), changed the Linnaean name with Lycopersicon 

esculentum. Lately, the taxonomists have reintroduced Solanum lycopersicon, the name given by 

Linnaeus (Heuvelink, 2005). The taxonomic classification of the tomato has remained debatable 

till today. The widely accepted and used name in both text books and journal articles is 

Lycopersicon esculentum Mill (Heuvelink, 2005; Marshall, 2006) 
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Taxonomic classification 

           Common name: Tomato 

           Latin name: Lycopersicon esculentum 

           Family: Solanaceae  

           Chromosome number: Diploid; 2n = 24 

           Plant group: Dicotyledon 

           Growth habit: Perennial; grown as annual  

           Climate: Tropical crop; frost sensitive 

           Origin: Andean region (Chile, Colombia, Ecuador, Bolivia and Peru). 

Source: (Heuvelink, 2005; Marshall, 2006; Purdue University, 2007) 

      2.1.2 Origin and evolution of the cultivated tomato 

Many of the related wild species of tomato originated from the Andean region , that includes , 

parts of Chile, Colombia, Ecuador, Bolivia and Peru (Marshall, 2006; Heuvelink, 2005). The 

ancestor of the cultivated tomato is the wild species of Lycopersicon esculentum variety 

cerasiforme (cherry tomato) and they are indigenous of sub-tropical and tropical America. The 

extensive domestication of tomato started in Mexico, which is quite a distance to its ancestral 

home (Heuvelink, 2005; Marshall, 2006; Encyclopaedia of Food and Culture, 2010). 

      2.1.3 Domestication of the tomato in Europe  

The Spanish were the people that introduced the tomato into Europe in the early 16
th
 century 

(Heuvelink, 2005; Marshall, 2006). The report stated that the Spanish came across tomatoes after 

their conquest of Mexico began in 1519. The plants were disseminated first to the Caribbean, and 

then to Spain and Italy. The Europeans were slow in accepting tomato as a cultivated crop and as 

an inclusion of their culinary recipes (Marshall, 2006). Tomato was cultivated as an ornamental 

plant, simply because the fruits were considered poisonous, and also regarded as a close relative to 

the deadly nightshade (Solanum dulcamara) family (Heuvelink, 2005). By the mid-16
th
 century 

tomato became widely cultivated and consumed in south European countries; like Italy, and 
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Spain, but became widespread by the end of 18
th
 century in the north Western Europe (Heuvelink, 

2005). 

2.1.4 Introduction of tomato in Sub-Sahara Africa  

In the Encyclopaedia of Food and Culture (2010), it was reported that by the time tomatoes were 

consumed in southern and north Western Europe, in mid-16
th
 century and in late 17

th
 century, the 

first known tomato recipe appeared in the cookbook – Lo scalo alla moderna and was written by 

Antonio Latini. During this period, tomatoes were also consumed in eastern Mediterranean and 

North African countries. Later tomato cookery expanded into northern and eastern European 

countries, and finally spread to sub-Sahara Africa, South and East Asia.  

Tomato (Solanum lycopersicum L.), a plant species in the Solanaceae family, was reported to 

have originated in the Americas. Like its close relatives, chilli peppers and potato, tomato was 

probably introduced to Africa in the 16
th
 century (Wesonga and Kahane, 2011). According to the 

statistics the largest area and the highest production in Africa are found in northern Africa, 

including Egypt, Morocco, and Algeria, and the smallest area and the lowest production in 

southern and central Africa respectively (Wesonga and Kahane, 2011). The total production area 

in Africa increased from 159,593 ha in 1961 to 660,215 ha in 2007 and production increased from 

1,968,812 tons in 1961 to 14,918,554 tons in 2007 (Wesonga and Kahane, 2011). The average 

yields range from 6 t/ha in central Africa to 34 t/ha in southern Africa. South Africa production 

contributed to this higher productivity. 

2.2 TOMATO PRODUCTION AND QUALITY         

Morphologically, tomato fruit is a berry and the seeds are embedded in a jellylike proteinous 

matrix with the ovary wall developing in to the flesh of the fruit. The total world production 

stands at 152.9 million ton with a value of $ 74.1 billion (Rakha et al., 2011). 

2.2.1 Tomato market and types 

Growth habits: There are three different types of cultivars: 
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(i) Determinate: In this cultivar the primary shoot produces 0 to 2 leaves followed by the 

flower cluster but no further vegetative shoots (Payal, 2010). This process makes the main stem 

much shorter. The side shoots which are many arise from the main stem and all terminate with a 

flower cluster. Determinate or the Bush tomato, as otherwise called, is mainly used in the food 

processing industry and is the most important commercial outdoor type (Taylor, 1986). It is 

common with this cultivar to have one time flowering period followed by fruit set. 

(ii) Semi Determinate: Shoots of this type produce many flower clusters at the side of the 

main stem just similar with what happens with indeterminate varieties (Marshall, 2006). 

Eventually, the shoot terminates in a flower cluster, thereby making the plant to behave as 

determinate. 

(iii) Indeterminate: Payal (2010) showed that the main stems of indeterminate varieties of 

tomato can grow indefinitely and can reach a height of up to 3-6 meters. Furthermore, the 

characteristic of this cultivar was stated that the shoot continues to grow upward and flower 

clusters develop to the side of a main stem. Also the growth of the primary shoots usually end up 

with the formation of the first flower and the upward growth will continue to produce a side shoot 

that will give rise to three more leaves before terminating in a flower cluster. This process of 

producing new growth and side shoot from the last leaf initiated before the flower cluster 

continues indefinitely (Payal, 2010). The indeterminate or the vine variety of tomato is used for 

the production in the glass/green houses. The varieties produce flower inflorescence and set fruit 

throughout the life of the plant (Marshall, 2006).   

 

Another classification method of the varieties of tomato was reported by Costa and Havelink 

(2005) which was based on the difference between the characteristic of fresh and processed 

tomato. Varieties of processing and fresh-market tomatoes have different growth habits. The 

major characteristics of processing tomatoes are; determinate growth, dwarf habit, uniform fruit 

set and ripening, tough skin and a high soluble solids content (Costa and Heuvelink, 2005). The 

plants are grown mostly in the field.  
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The fresh markets varieties are grown largely in the greenhouses, indeterminate type and require 

trailing on galvanised wire or polystyrene string (Payal, 2010) – Figure 6. Much larger number of 

varieties and cultivars are available for fresh market production: (Costa and Heuvelink, 2005; 

Marshall, 2006; Payal, 2010). 

 

        Figure 6: Breaker stage of round tomatoes in trailing and galvanised wire 

Classic round tomatoes: The most popular varieties have a round shape and contain two to three 

locules. The average weight of a fruit is between 70-100 g, and the diameter is 4.7-6.7 cm.  

Cherry and cocktail tomatoes: The fruit is smaller than the classic tomato and having a weight 

ranging between 10-20 g and diameter 1.6-2.5 cm. The fruit of cherry tomato is common with the 

red colour, but there are some other colours like; golden, orange and yellow. They are usually left 

on vine to ripe.  

Plum and baby plum tomatoes: The fruits are small and oval in shape; whereas the flesh is firm 

and less juicy in the centre (Figure 7).  
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      Figure 7: Plum tomatoes in basket ready for market 

Beefsteak tomatoes: They are larger than the traditional round tomato; the weight is between 180-

250 g. It contains five or more locules (Figure 8). 

 

 

        Figure 8: Beef-steak tomatoes display in the market 
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Vine or truss tomatoes: They can be either classic round or cherry type. The most important 

market quality required is the aroma which is produced by the fruiting trusses (Figure 9).  

 

        Figure 9: Vine tomatoes attached to the stalks 

Tomato is one of the most important vegetable crops grown all over Nigeria. It is the world`s 

largest vegetable crop after potato and sweet potato but it tops the list of canned vegetables. The 

largest producer of tomato is China, followed by USA as indicated in Table 1.  

 

Nigeria is listed the 13
th
 world`s largest producer of the crop but came second after Egypt among 

African countries (GEOHIVE, 2013). Some of the varieties commonly grown include; Tropical, 

Roma VF, UC82B, Ibadan local and Ogbomosho local (Olaniyi et al., 2009). In Nigeria the crop 

is regarded as the most important vegetable after onions and pepper. Tomato fruit contains good 

source of vitamins such as vitamins A, C, and E and minerals that essential to the body as 

protection against diseases. The total worldwide production of both fresh and processed tomatoes, 

based on 2003 estimates was 110 million tonnes (Table 1), produced from an area of about 4.2 

million hectares (Costa and Heuvelink, 2005).  
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    Table 1: The top twenty tomato producing countries of the world 

Regions of Tomato production (tonnes)   

People's Republic of China  33,911,702 

United States  13,718,171 

Turkey  10,985,355 

India 10,303,000 

Egypt  9,204,097 

Italy  5,976,912 

Iran 4,826,396 

Spain  3,922,500 

Brazil  3,867,655 

Mexico 2,936,773 

Russia  1,938,710 

Uzbekistan 1,930,000 

Nigeria 1,701,000 

Ukraine  1,492,100 

Greece 1,338,600 

Morocco  1,312,310 

Chile  1,270,000 

Tunisia 1,170,000 

Syria  1,163,300 

Portugal  1,147,600 

(Source: GEOHIVE, 2013) 
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2.2.2 Structure, composition and physiology of tomato 

The genus Lycopersicon is believed to consist of the cultivated species, Lycopersicon esculentum 

and seven other wild species (Taylor, 1986). Earlier taxonomy of the genus was not relied upon 

because species and races have increased from the origin of diversity, South America (Taylor, 

1986; Purdue University, 2007). 

 

Figure 10: Anatomy of tomato fruit with multi-locular structure showing transverse section (Walls, 

1989). 

The anatomy of a tomato fruit consist of pericarp, radial arm, columella, and locular jell as 

illustrated in Figure 10. The pericarp originated from the ovary wall and consists of an exocarp or 

skin, a parenchymatous mesocarp with vascular bundles and a single-celled layer of endocarp 

lining the locules (Ho and Hewitt, 1986). The radial arm (septa) of the pericarp separates adjacent 

locules and the inner wall (columella), while the columella is located in the centre of the fruit. The 

septa and columella similarly have parenchyma cells. Locular jell is parenchymatous and is found 

around seeds (Ho and Hewitt, 1986).  

2.2.3 Physiology 

Tomato flowers are self-pollinated. During flower opening ‘Anthesis’, the stigma is about two 

days ready to receive the pollen and can remain so for up to four days or more (Ho and Hewitt, 

1986). Once the flower is pollinated, the pollen tubes start to grow down the style to reach the 
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micropyle of the ovule within 12h at 25 °C. Most of the ovules will be fertilized within 30 h at 20 

°C (Ho and Hewitt, 1986). In another development, Ahrens and Huber (2006) correlated the 

process of tomato fruit development to ripening and the characteristic changes that take place 

during this process are genotype dependent. By using the intrinsic variation in firmness, 

polygalacturonase activity and other ripening parameters, including rate (days from mature-green 

to full red) and intensity (rate of ethylene production at climacteric peak) of ripening, a 

quantitative relationship was developed between these quality variables.  

 

Texture, respiration and ethylene production were measured and used as benchmark to monitor 

the immature-green through the red ripe stages of fruit development. The results showed that in all 

fruit the polygalacturonase activity was highly correlated with pericarp softening, but only 

moderately correlated to the whole fruit. Polygalacturonase was also reported to have been 

involved in the cell wall autolytic activity in changing the fruit colour from pink to red. Fruits 

having firmer genotypes also exhibited low rate of respiration and ethylene production during 

ripening (Ahrens and Huber, 2006).  

2.2.4 Biochemistry        

Several metabolic changes are initiated after the harvest of fruits. In fruits an increase in the 

biosynthesis of the gaseous hormone ethylene serves as the beginning of physiological changes 

for the initiation of the ripening process (Paliyath and Murr, 2008). All plants produce a low level 

of ethylene, during ripening process some fruits evolve large amounts of this gas, sometimes 

defined as an autocatalytic increase in ethylene production. This process correlates with an 

increase in respiration referred to as the respiratory climacteric (Paliyath and Murr, 2008). Fruits 

are generally classified into climacteric and non-climacteric based on the ethylene produced and 

their responses to external ethylene added. The climacteric fruits characteristically demonstrate an 

increase in ethylene production and respiration as noticed by the evolution of carbon dioxide. In 

climacteric fruits such as apple, tomato and avocado, ethylene evolution can reach 30-500 

ppm/(kg/h),whereas in non-climacteric fruits such as orange, strawberry, and pineapple, ethylene 
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levels range from 0.1 to 0.5 ppm/(kg/h) during ripening (Paliyath and Murr, 2008). Since ethylene 

has been linked to fruit ripening the biosynthesis of the gas can be regulated technologically in 

storage so as to improve the shelf life and quality in fruits. Controlled atmosphere storage with 

low oxygen reduces ethylene production, while scrubbing is another biotechnological practice in 

storage facilities for the same purpose. 

 

 Many studies including Lurie (2008) stated that in climacteric fruits such as tomato and apple, 

which rely on ethylene for their coordinated ripening processes, heat treatment of fruits with high 

temperature inhibits ethylene evolution and subsequently inhibit many ripening processes, 

including fruit softening, colour changes, and aroma development. 

2.2.5 Nutritional value 

Fruits and vegetables are very essential in our diet and important to our day to day life. They are 

rich sources of vitamins, minerals, fibres, and antioxidants which are essential to a wealthy living. 

Consumers’ perception of good quality fruits is based on their colour, texture, taste and nutritive 

values. A series of physiological, biochemical, and organoleptic changes occur during ripening 

process that changes the status of an in edible fruit to an optimal quality material. Examples of the 

products of the processes which take place during ripening are: biosynthesis of anthocyanins, such 

as lycopene and carotenoids; degradation of chlorophyll, acceleration of activity of cell wall 

degrading enzymes, and production of aroma/volatile compounds (Sharma et al.,2008). 

 

Tomatoes contain no starch, but rich in sugars (fructose, glucose, and sucrose). They also contain 

some amount of food fibre, including cellulose and lignin in the seeds and the skin (Payal, 2010). 

Tomato is one of the most commonly consumed fresh vegetable and the most frequently 

consumed canned and processed fruit in human diet. Epidemiological study by Canene-Adams et 

al. (2005) concluded that there is concerted evidence that an increase in tomato consumption may 

lead to a reduced risk for both cardiovascular disease and prostate cancer. Tomato products are 

said to be good sources of potassium, folate, and vitamins A, C, and E (Table 2). In addition, 
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tomatoes are valuable in phytochemicals, such as carotenoids and polyphenols. For example, 

lycopene which forms the red pigments in the fruit, B-carotene, and the precursors of vitamin A 

compounds are contained in high quantity in fresh tomatoes and products (Canene-Adams et al., 

2005; Payal, 2010).  Flavonol is another typical example of polyphenols contained in the fruit and 

in a high quantity as well. If all these phytochemicals are properly annexed and vigorously 

pursued they will contribute in no small way to reduce the risk of human ailments such as 

cardiovascular disease and prostate cancer.  

Table 2: Nutrient composition of tomatoes and related tomato products 

 Tomato products (per 100g)
2
 

Nutrient Raw tomatoes Catsup Tomato 

juice 

Tomato 

sauce 

Tomato 

soup 

Potassium mg 237 382 229 331 181 

α-tocopherol mg 0.54 1.46 0.32 2.08 0.50 

Vitamin A, IU 833 933 450 348 193 

Vitamin C, mg 12.7 15.1 18.3 7.0 27.3 

Total folate, µg 15 15 20 9 7 

Source: (Canene-Adams et al., 2005) 
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2.3 HARVEST MATURITY, RIPENESS INDICES AND MEASUREMENTS 

The first step in the postharvest life of fruit is the moment of harvest. For most fresh fruit, harvest 

is done manually, so the picker will determine whether the fruit has reached the correct maturity 

stage for harvest. Tomatoes are perishable commodity and their maturity has a bearing on their 

storage life and quality and may affect the way fruits are handled, transported, and marketed. 

Harvest maturity is regarded as that stage at which the fruit has reached a sufficient stage of 

development that after harvesting and post-harvest handling, including ripening, its quality will be 

at least the minimum acceptable standard to the ultimate consumer. Harvest maturity varies with 

markets e.g. in Nigeria for processing market tomatoes are harvested at red ripe vine stage also 

fresh fruit is harvested at pink stage and become red while being transported from the farm to the 

market; which can be a long distance. In comparison to the United Kingdom market consumers 

prefer fresh tomato with good quality; as a result the fruit is harvested at mature green stage and 

become red in storage at temp of 10 to 29 °C (Anonymous, 2015). Only cherry tomatoes are 

harvested red ripe on the vine.  

2.3.1. Physical indices 

A wide range of physical features, such as size, shape, and surface characteristics are used to 

assess the maturity of fruits and vegetables (Reid, 2002). The changes in these features are the 

parameters often used as maturity indices. Choi et al. (1995) used the United States Department of 

Agriculture colour code classification as a physical index for measuring maturity of tomato fruit. 

Photo images of the standard classification: green, breakers, turning, pink, light red, red and blue 

were captured on camera, and converted to Hue, Saturation, and Intensity (HIS) measurements. 

The classification was based on the average percentage of the surface area which falls below hue 

angles. A tomato maturity index (TMI) was developed from this method to indicate the degree of 

maturity within each stage and to provide a continuous index throughout the complete maturity 

range. The results obtained from the study correlated to 77 % of hand grading. Developing a 

linear model from the colour image analysis will save time, labour and energy involved in 
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determining maturity of fruit using surface characteristics. Figure 11 indicates the different colour 

stages of tomato and the colour chart:  

 

      Figure 11: All about ripening of Tomato - Colour chart (Source: Ripening-fruit, 2013). 

In another development a laboratory study carried out by Lien et al. (2009) indicated that a non-

destructive method for assessing the maturity of tomatoes is feasible using the mechanical 

properties of the fruit, such as the falling impact test. The method was used for firmness 

measurement and classified tomato into; unripe, half ripe, and ripe classes. The system also 

achieved an accuracy classification of 75 % and above which is considered good enough for 

practical application. Hence, this classification of tomato technique could be developed into a 

computer programme whereby tomato maturity could be sorted on line. 

2.3.2 Chemical indices 

The definition of maturity of a commodity, such as a fruit, as the stage of development giving 

minimum acceptable quality to the consumer implies a measurable point in the fruit’s 
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development, and it also involves the need for techniques to measure maturity. Therefore, 

maturity index for a commodity is a measurement or measurements that can be used to determine 

whether a particular commodity is ready for harvest. Saltveit (2005) classified tomato ripeness on 

the external colour of the fruit. The traditional six ripeness stages for fresh market tomatoes are 

based on the external colour change from green to red. When the fruits reach about 80 % of their 

final size they continue to develop and ripe normally after harvest, they are considered to be 

mature-green. Under proper temperature and humidity conditions, tomato fruits develop through 

the six defined stages to the red-ripe colour stage (Table 3).  
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Table 3: Ripeness classifications of fresh-market tomatoes based on changes in external and internal 

colour and tissue softening. 

Stage                  Description 

0. Immature   The fruit is not sufficiently developed to ripen to an acceptable level           

of horticultural quality. Many immature fruit will eventually ripen, but to an inferior 

quality. 

1. MG* -       The fruit will ripen to an acceptable level of horticultural quality. The entire 

surface of the fruit is either green or white, no red colour visible. Stages within the MG 

classification include:  

MG1 -             firm locular tissue, knife cuts seeds  

MG2  -            softened locular tissue, seeds not cut with knife 

MG3 -             some gel in the locule, no red colour 

MG4 -             locular tissue predominantly gel, some red colour in columella    

2. Breaker   There is a definite break in colour from green to tannish yellow, pink or red 

on the blossom end of the fruit  

3. Turning  More than 10 % but less than 30 % of the surface of the fruit shows a definite 

colour change to tannish-yellow, pink, red, or a combination of colours 

4. Pink        More than 30 % but less than 60 % of the surface of the fruit shows pink or 

red colour 

5.Light- red More than 60 % but less than 90 % of the surface of the fruit shows red            

colour 

6. Red-ripe  More than 90 % of the surface of the fruit shows red colour 

*MG means mature green (Source: Saltveit, 2005) 

Colour change that accompanies maturation in fruits, for example, tomato is widely used as a 

maturity index. Human eye is not capable of giving a good evaluation of a single colour as is 

extremely sensitive to colour (Reid, 2002). Accurate devices with the state of the art electronics 
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and optics, including Minolta colour meter are now the equipment used for objective 

measurements for fruits. 

2.3.3 Horticultural maturity and harvesting  

Previous findings defined maturation of fruits and vegetables as a stage of development leading to 

attainment of physiological maturity or horticultural maturity (Sudheer and Indira, 2007; Mir, 

2008; Dhatt and Mahajan, 2007). However, horticultural maturity is the stage a plant or plant parts 

reached in its development that is considered to be ready for utilization by consumer for a 

particular purpose such as a food. Vegetables are recommended to be harvested when they attain 

certain size characteristic of the crop, while delayed harvesting beyond this stage will result to a 

bigger size which is not acceptable to the consumer.  

 

Most fruits are harvested at proper maturity stage which is often quite earlier than ripening stage 

(Sudheer and Indira, 2007; Mir, 2008). Tomato fruits for example, are harvested at the mature 

green stage and are allowed to ripe in store. Mir (2008) reported that the optimum maturity of a 

product at harvest should be the objectives of the grower or producer since this process is the 

determinant factor to the quality of the product. Commodity can be horticultural mature at any 

stage of development or physiologically mature depending on the species. Furthermore it was 

stated that all plant or plant parts are harvested when they are horticultural mature but may be 

physiologically immature or mature. Some examples of crops which mature horticultural but 

remain immature physiologically are: sweet corn, pears, snap beans, summer squash and 

cucumber. Tomato, pepper, eggplant, melons and winter squash are classified as crops which have 

both of their developmental processes in mature stage (Mir, 2008).  

 

The question now is what are the implications of harvesting these crops too early or too late? 

Harvesting fruit too early or green the tomatoes will either never ripen or take so long to ripen so 

they are poor quality. Late harvesting will result to too much water in the fruit and also over 

ripened. Thus the main role of the postharvest treatment is to devise methods by which 

38 



 

deterioration of produce is restricted as much as possible during the period between harvest and 

consumption. For example a situation whereby farms are located near towns and cities, harvesting 

the crop late will reduce postharvest treatment and the produce quickly disposed before serious 

wastage can occur. In countries which encompass a wide range of climatic regions, fresh fruit and 

vegetables are frequently grown at locations remote from the major centres of population. 

Thousands of tonnes of produce are now transported daily over long distances both within 

countries and internationally. As a result produce can be harvested early and put in storage to 

undergo its postharvest treatment.  

2.3.4 Economic effects of disease pathogen on tomato 

It is important to recognise the enormous crop losses that occur between harvesting and final 

consumption of tomatoes. The losses incurred happened through postharvest handling and led to 

diseases in storage. Waller (2002) divided postharvest diseases into those in which infection 

occurs in the field and those that happen during or after harvest. The postharvest loss far exceeded 

the damage caused by field diseases because of large investments in the overall processes the 

product undergoes from harvest until it reaches the customer; such processes include harvesting, 

sorting, packaging and shipping (Barkai-Golan, 2001). The attack of micro-organisms during 

handling of produce is a serious cause of postharvest loss in fruits and vegetables such as 

tomatoes. The physical damage that occurs exposes the fruit and vegetables to infection by 

pathogens and subsequently affects the physiological processes (Waller, 2002; Booth and Burden, 

1983). These pathogens caused quantitative losses of fresh produce and also reduce the quality.  

 

For example, Fusarium, Botrytis, Alternaria and Rhizopus species are capable of infecting tomato 

from wound caused by physical damage during handling or through the stomata or lenticels 

(Waller, 2002). The infection can occur at pre or post-harvest period at the sites of mechanical 

injury or through the stomata during harvesting and handling operations. At this point of entry the 

pathogen has the capacity to attack undamaged epidermal tissues thereby causing a substantial 

disease spread in storage (Barkai-Golan, 2001). Consequently, the physiological processes that 
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occur after harvest are impaired and may lead to decay of fruit. For instance, Schirra et al., (2000) 

reported that the increased susceptibility of tomatoes to decay during ripening was linked with the 

decrease and disappearance of mRNA encoding an anionic peroxidase. The reports also provided 

a corollary that if mature green tomatoes are heat treated the degradation rate of mRNA will be 

delayed and subsequently maintain antifungal resistance in the fruit tissue to decay (Schirra et al., 

2000).  

 

Although, another study reported that there was no significant effect of handling treatment for 

example, mechanical impact known to cause bruises and create entry points for spoilage 

microorganisms on ethylene production which stimulates ripening process, but the effect of 

storage temperature was significant at 20 °C than at 12 °C (Mutari and Debbi, 2011). 

     2.3.5 Other physiological defects 

A number of defects affect the quality of fresh market tomatoes. These disorders result from a 

combination of environmental, production and handling procedures or are generic in origin. An 

example of such defects is electrolyte leakage of the cell wall which impedes the electrical 

transfer ions across the cell membrane. 

      2.3.5.1 Electrolyte leakage 

An electrolyte is a liquid that reacts chemically when electricity is passed through it. It may be an 

aqueous solution of an acid, base, or salt. Tucker and Grierson (1987) stated that the biochemical 

reactions in fruit pericarp cells are associated with ripening result in the production of various 

organic salts and acids as well as other products. Chilling sensitivity of tomato fruit is related to 

ripening and senescence (Autio and Bramlage, 1986). It was reported that post chilling ion 

leakage, respiration, and ethylene (C2H4) biosynthesis elucidated the degree of chilling injury to 

fruit of tomato.  Another report by Lacan and Baccou (1996) stated that the amount of electrolyte 

leakage is directly proportional to increased cell membrane permeability caused by fruit ripeness 

or damage induced by stressful conditions. 
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 Sharom et al. (1994) also reported that chilling injury results in damage to cellular membranes 

and ensure leakage. This is evidenced in the formation of water-soaked patches in chill-injured 

tomato fruit (Sharom et al., 1994), and an enhanced electrolyte leakage from chill-injured tissue. 

Electrolyte leakage is measured as an increase in conductivity and is thought to reflect leakage 

across the plasma lemma. In another development the electrolyte leakage was reduced in heat 

treated fruit and the fruit turned red faster and showed less CO2 than non-treated fruit (Saltveit, 

2005). The trial concluded that red tomatoes both unheated and heated showed the lowest visible 

chilling injury, CO2 and ethylene production, but the highest electrolyte leakage. This 

phenomenon is common with tomato production in developed agricultural countries and occurs 

during the postharvest management of the produce.  

2.3.5.2 Electrical properties 

When electricity flows through a solution of electrolyte, chemicals split up in a process known as 

electrolysis. Current flows through electrolyte due to electrical potential difference (V) (Zhang et 

al., 1990). Anions are oxidised at the anodes, whereas cations are reduced at the cathodes. 

Electrolyte could be molten salts or aqueous solution of salts, acids, or bases. Electrolytic 

conductivity of a solution depends on the concentration of the ions in a solution. Water, ammonia, 

bases and most organic acids are weak electrolytes having only a fraction of molecules split into 

ions in a solution. Such solution thus formed will contain some ions that are in equilibrium with 

non-ionised molecules. Incomplete ionisation results to low conductivity. Generally, the number 

of ions in a solution of an electrolyte depends on the total number of molecules available and the 

degree of ionisation. 

 

Fruit ripening is a complex series of changes involving cell wall degradation, alteration of 

membrane condition and function, changes in metabolic activities and formation of various 

organic compounds associated with climacteric respiration and ripening. These changes result to 

fruit softening and development of juicy texture (Harker and Dunlop, 1994). The juice contains 

bioelectric properties because of organic acids, salts and water present in it. Therefore fruit can 
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behave as an electrical apparatus having anode and cathode terminals with resistances. Previous 

report by Furmanski and Buescher (1979) used electrical impedance measurements as maturity 

index during fruit development and as a method for following physiological changes in storage 

and fruit ripening. 

2.4 POSTHARVEST PHYSIOLOGY IN TOMATO 

The type of respiration of a fruit determines its postharvest physiology. Generally fruits can be 

divided according to whether they are climacteric or non-climacteric; whereas climacteric fruits 

have a corresponding rise in respiration rate. Harvested tomatoes have a climacteric rise in 

respiration (i.e. carbon dioxide production and oxygen consumption) and ethylene production that 

coincides with the beginning and progression of ripening (Saltveit, 2005). During this process 

other physiological changes take place in the fruit.    

                     

Respiration is the oxidation of carbohydrates (i.e. primary sugars) and organic acids to carbon 

dioxide and water, followed by the release of energy and production of intermediate carbon 

compounds. Apparently, the climacteric rise in respiration is necessary during ripening to produce 

energy for the tissue and the intermediate compounds required for the synthetic reactions involved 

in ripening. Although tomato is considered as a climacteric produce but there is as much 

variability in the rate of respiration among cultivars, growing locations and individual fruits as is 

within a fruit as it progresses through the climacteric during ripening (Saltveit, 2005). Grierson 

and Kader (1986) reiterated the afore mentioned statement in their studies showing that the rate of 

carbon dioxide produced by a tomato fruit at a turning stage of ripeness is twice what it was for 

the same fruit at the mature-green stage of ripeness. 

 2.4.1 Fruit ripening 

Fruit ripening is the final stage of maturation when the fruit develops the characteristic colour, 

flavour and aroma which are the parameters that determine quality. Tomatoes belong to the class 

of fruits and vegetables that demonstrate a climacteric respiratory behaviour during ripening. With 
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the onset of a climacteric rise in respiration, ethylene is produced; level of carbon dioxide is 

increased and coincided with the first appearance of red colour (Saltveit, 2005). Whether ripening 

occurred naturally or induced by ethylene, it is accompanied by many biochemical changes in 

organic acids, proteins, amino acids, and lipids which influence flavour quality of the product 

(Kader, 2002). Tomato fruits which are meant for distant markets or export are often harvested 

mature green. When this happens it is important to pick the fruits which are advanced in colour 

stage first such as `turning′ and separate them into groups based on the time the produce will 

arrive in the market. 

2.4.1.1 Ethylene production and respiration 

Ethylene was discovered along with the evolution of land plants which dated more than 450 

million years ago from a lineage of freshwater algae (Ju et al., 2015). Another study described 

ethylene as a substance which is physiologically active in minute quantities, but its activity cannot 

be traced to known mechanisms of substrate degradation (Anonymous, 2015). As a result of the 

pronounced effects that ethylene apparently has upon the physiology of both individual plant 

organs and entire plants, its metabolic origin could not be determined. Therefore, it was agreed 

that only living or respiring tissue produces this active emanation. Likewise, Kader (2002) defined 

ethylene (C2H4), as a natural occurring plant product and a simple organic compound that affects 

the physiological processes in plants. It is produced by the tissues in higher plants during 

metabolism and micro-organisms.  

 

Amongst the organic compounds present in plants, ethylene is regarded as a hormone that 

regulates growth, development, and senescence. 1-aminocyclopropane-1-carboxylic acid (ACC) is 

regarded as the precursor of ethylene and this product in turn was produced from S-

adenocylmethionine (SAM) by the enzyme ACC synthase (Saltveit, 2005; Kader, 2002). Through 

this process the biosynthesis of ethylene can be controlled (Kader, 2002), by preventing the 

oxidative processes of ACC oxidase to produce ethylene. 
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It was noted that the activities of ACC synthase and ACC oxidase are gene linked and can be 

affected by the environment including temperature and concentrations of oxygen and carbon 

dioxide. As maturity process progresses the ethylene production rates increase and also increase 

during physical injuries, disease attack, increased temperature (30
 
°C), and water stress. In 

contrast low temperature reduced the production of ethylene by reducing the level of oxygen(less 

than 8 %), and raise the carbon dioxide levels (more than 2 %) in storage (Kader, 2002; Saltveit, 

2003). 

     2.4.1.2 Colour change 

For the consumer, the changes in physical appearance are the characteristics that attract buying. 

However, consumer satisfaction is also linked to pleasant texture, taste and freshness, which are 

all considered as part of the ripening phase. Lurie (1998) stated that ripening of most climacteric 

fruit is characterised by softening of flesh, an increase in the sugar: acid ratio, enhanced colour 

development, and increases in respiratory activity and ethylene production. By exposing fruit to 

high temperatures some of these processes can be terminated while others can be enhanced. This 

situation resulted in heated fruit being more advanced in some ripening characteristics than non-

heated fruit. As a result the produce quality is retained longer during shelf life at 20
 
°C (Lurie, 

1998).  

 

Among these attributes, fruit colour is probably the most important that determines overall 

quality. Quite a number of changes happen when tomatoes progress from the mature-green to red-

ripe stage. During this complex ripening process in tomato, the breakdown of chlorophyll, 

synthesis of lycopene and the activity of polygalacturonase increase. Accumulation of lycopene is 

the most obvious external change and is the characteristic responsible for the colour (pigment) of 

the fruit (Saltveit, 2005). The inhibition of ripening by heat may be caused by reduced production 

of ripening hormone ethylene, although this process will commence when the fruit is returned to 

room temperature (Lurie, 1998).  
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For an example, hot air treatment of 35-38 °C was reported to inhibit ethylene synthesis in few 

hours in both apples and tomatoes. Increase in these temperatures can cause endogenous ACC to 

accumulate in apple and tomato tissue at the same time with the decrease in ethylene. Likewise, a 

rapid loss of ACC oxidase activity was reported to occur in many fruit exposed for a few hours to 

hot water immersion at 42-46
 
°C. It is due primarily to decrease in ACC oxidase mRNA and 

termination of enzyme synthesis, the hormone responsible for ripening. During the heating period, 

not only is endogenous ethylene production inhibited, but fruits will not respond to exogenous 

ethylene (Lurie, 1998).  

 

Colour changes in tomato fruit development differ between varieties, but for red cultivars they are 

normally considered to be in six different colour stages: Mature green, breaker, turning, pink, 

light-red, and red (Table 3). These colour changes take place on cellular and molecular levels and 

are involved in the conversion of chloroplasts to chromoplasts, which contain red or yellow 

carotenoids (Heaton and Marangoni, 1996). These colour stages are important in tomato 

enterprise for both pre-and postharvest fruit management. For instance, tomatoes that are 

produced for processing remain on the vine until they are red ripe while fruit that are meant for 

fresh market are harvested at mature green – breaker. This fruit will ripe either in transit or storage 

and determine the cool chain practices in postharvest handling of the crop and the subsequent 

shelf life. Also, colour plays a vital role at harvest because by picking the fruit too early will 

reduce some quality and taste characteristics later on, in fact harvesting tomato at a stage when 

still firm is best for shipment or transporting to long distance. If the fruit is allowed to stay longer 

on the plant it will develop aroma and taste factors. The adverse effect of allowing the fruit to 

ripen on the plant is that the fruit will be too soft and thereby lose its market quality. 

 

 Saltveit (2005) stated that the synthesis of lycopene and β-carotene is almost the same for both 

harvested mature green fruit and fruit left to ripen on the plant. Also by exposing mature green 

fruits to ethylene stimulate normal ripening, synthesize and accumulate lycopene and β-carotene 

greater than fruit left to ripe without ethylene stimulation. This confirms the method adopted by 
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producers and handlers whereby ethylene is introduced into storage of mature green tomatoes to 

accelerate ripening and quicken the change to red colour. During these stages of development and 

ripening, major structural changes occur in the cell walls which initiated and precipitated the 

action of ethylene and polygalacturonase (PG), leading to loss of galacturonic acid residues, and 

degrading of polyuronide from the cell wall (Stommel and Gross, 2001; Alexander and Grierson, 

2002).  

 

In another study by Farneti et al. (2012), it was reported that temperatures below 12
 
°C resulted in 

lycopene loss in red-ripe tomatoes and substantial colour loss as well. Prior hot water treatment 

did not prevent lycopene loss. Furthermore the storage of red ripe tomatoes at chilling 

temperatures reduces the nutritional and health promoting substance lycopene and also affects 

fruit colour. Red colour development was inhibited by heat treated fruit, likewise softening 

(Mitcham and McDonald, 1992). These reports also confirm earlier studies that heat treatment 

inhibited ripening-associated cell wall modification and the rate of loss of cell wall galactose and 

arabinose was reduced in heat-stressed tomatoes.                                 

       2.4.1.3 Cell wall metabolism 

During ripening it is understood that the activities taking place in the cell wall are crucial to 

softening and textural changes. As ripening advances the cell wall becomes increasingly hydrated 

as the pectin in middle lamella becomes modified and partially hydrolysed (Alexander and 

Grierson, 2002). It is the pectin gel that holds the cells of the lamella together, once this change 

the cells are separated from one another, which in turn affects the final texture of the ripe fruit. 

The tomato fruit polygalacturonase has been implicated as the major cell wall polyuronide 

degrading enzyme (Brummell and Harpster, 2001), and considered to be ethylene dependent 

ripening elements. Some studies have shown that low PG fruits are more resistant to splitting, 

mechanical damage and pathogen infection (Alexander and Grierson, 2002).  

In another study by Mitcham and McDonald (1992), it was reported that tomato fruit harvested at 

mature green stage and kept for 4 days at 21
 
°C or 40

 
°C and later stored at 21

 
°C; showed that red 
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colour development was inhibited in heated fruit as well as softening. Furthermore, fourteen days 

later the heat stressed fruit were twice as firm as the control. This demonstrated that heat treatment 

inhibited ripening associated cell wall modification so that 14 days after treatment, the heated fruit 

contained only one-third the amount of soluble ployuronides that was present in the control.  

 

Mature red cherry tomato fruit (Lycopersicon esculentum var. cerasiforme) were treated with hot 

water treatment (HWT) at 45 °C, and/or with 2 % (w/v) sodium bicarbonate solution (SBC), alone 

or in combination (HWT + SBC) for 10min then stored at 20
 
°C for 6 days (Shao et al., 2011). 

The report showed that hot water treatment alone caused cracking on the fruit surface, while no 

cracking was observed on sodium bicarbonate solution treated or on combined treatment fruits. It 

was also reported that after storage the fruit from combined treatment had higher skin firmness 

and titratable acidity and with a lower infection of grey mould rot caused by Botrytis cinerea 

compared with untreated control. 

2.4.1.4 Volatile compounds 

The concentration of organic acids and sugars is very important to the taste of ripening fruits. The 

characteristic flavour of fruits is as a result of the aroma volatile compounds produced within the 

fruit during ripening and cutting (Alexander and Grierson, 2002). It was determined in the study 

by gas chromatography that volatile profile of fruit includes many alcohols, aldehydes and esters. 

Brauss et al. (1998) stated that the difference in flavour between tomato varieties is due to 

variation in aroma volatile production. Hobson and Grierson (1993) also detected that tomato fruit 

contains over four hundred volatile compounds. Among these lot, only a group of seven including 

some amino acids (3-methylbutanal and 3-methylbutanol) and unsaturated fatty acids (hexanal 

and hexenol) are amongst the most important contributors to fruit aroma. In tomato fruit these 

aromatic volatile compounds are produced through different chemical pathways. For example, 

some of these hydrocarbon compounds are produced by the deamination and decarboxylation of 

amino acids, whereas others are formed by the lipid oxidation of unsaturated fatty acids on slicing 

of fruit (Hobson and Grierson, 1993; Griffiths et al., 1999a). Lipoxygenases (LOX) are the 
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enzymes identified in this process. Through analysis ethylene is said to have played a role as the 

regulator of the different genes on the enzymes acting on unsaturated fatty acids in tomato during 

fruit ripening (Griffiths et al., 1999a). Therefore, in order to maintain a good flavour, harvesting is 

best carried out when the fruits are at the physiological maturity (mature green) stage and ripening 

begins with initiation of ethylene. 

 

Boukobza and Taylor (2002) carried out their trials to show the effect of postharvest treatment on 

flavour volatiles of tomato; using storage conditions to mimic typical storage/transport scenarios. 

The results indicated that the storage under low oxygen conditions, followed by a recovery period 

in air (4-6 h) had less effect on volatile compounds. Whereas low temperature storage which is the 

usual practice for storing fresh fruit tomatoes, caused a significant decrease in volatile 

concentrations, the effect was not even reversed after long recovery period (72 h). A situation 

should arise in which these two conditions are put together so as to exploit the favourable 

advantages of each to increase the storage life of tomato. For example, ripening of most 

climacteric fruit is characterised by enhanced colour development, increase in respiratory activity 

and ethylene production (Klein and Lurie, 1992). Carbon dioxide production rises as oxygen 

decreases as climacteric fruit ripen. The presence of ethylene, either exogenous or endogenous 

usually promotes respiration, therefore a simultaneous increase in CO2 production with the 

consequent ethylene reduction occurring during exposure of tomato to high temperatures could be 

utilised to promote increase in shelf life. 

2.4.2 Physiological disorders 

Physiological disorders are abnormalities in fruit colour or appearance that caused by 

environmental factors. Sometimes these abnormalities are often confused with damage caused by 

pathogens or insects. Physiological disorders are different from a single nutrient deficiencies, 

physical, chemical or herbicide injury (Peet, 2009). The causes of these anomalies may be as a 

result of genetic susceptibility, environmental factors, watering practices, nutrition and storage 

temperature. 
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2.4.2.1 Storage temperature  

Tomato is regarded as one of the most important vegetables grown for edible fruits consumption 

in every home in Nigeria. Its production is carried out during the hot rainy season (Babatola et al., 

2008). Lack of postharvest storage expertise of tomato constitute a major cause of seasonal 

fluctuation in availability, deterioration in quality and other economic disadvantages as a result of 

inefficient means of storage thereby the fruit goes for canning (Babatola et al., 2008). 

Environmental factors such as soil type, temperature, frost and rainy weather at harvest can also 

have an adverse effect on storage life and quality of tomatoes (Ndukwu, 2011; Iwuagwu et al., 

2013).  

 

An aspect to consider when handling fruits and vegetables is the temperature and relative 

humidity of the storage environment. For example, freshly harvested produce will need method 

that will increase the relative humidity of the storage environment so as to slow the rate of water 

loss and other metabolic activities (Ndukwu, 2011). Although, refrigeration is very popular but it 

was observed that many fruits and vegetables, such as tomato, banana, plantain etc., cannot be 

stored in the domestic refrigeration for a long period because of susceptibility to chilling injury 

(Ndukwu, 2011). The irregular power supply and low income of farmers make refrigeration 

method not feasible. As a result an appropriate technology needs to be developed. But in another 

study by Babatola et al., (2008) it was reported that deep freezer storage condition at temperature 

of 0
 
°C and 95 % Relative Humidity (RH) was the best among other conditions such as ambient 

storage environment 32
 
°C; RH 85 %; room refrigerator 12

 
°C; RH 85 %; and storage incubator 8

 

°C; 80 % RH in terms of good quality tomatoes.  

 

Therefore, a proposition can be made for an appropriate technology that is adequate, affordable 

and easily adoptable by farmers, for example the Evaporative Coolant System (ECS) which can be 

useful for postharvest treatment of tomato (Iwuagwu et al., 2013; Ndukwu, 2011). The 

performance of cooler was evaluated for temperature; evaporative effectiveness and cooling 
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capacity for freshly harvested tomatoes. The result showed that the evaporative cooler reduced the 

ambient temperature to up about 10 % (32-40
 
°C to 24-29

 
°C) and increase the relative humidity 

of incoming air from 40 % to 92 %. Consequently, the cooler was able to preserve freshly 

harvested tomato for 19 days before deterioration in colour, weight of fruit, and infection of 

fungal pathogens (Ndukwu, 2011). 

 

Tomatoes for fresh consumption are commonly harvested at the mature green or early red-ripe 

stages and transported to retailers under controlled conditions, such as temperature, atmosphere 

and relative humidity (Boukobza and Taylor, 2002). The report of studies showed the best method 

of transporting fresh tomato is to have the fruits in storage under low oxygen conditions followed 

by recovery period in (4-6 h), and at ambient temperature (21-22 °C). Reports have shown that 

during this period, ethylene will evolve through the autocatalytic reaction (Alexander and 

Grierson, 2002) then trigger the respiratory climacteric and ripening process will begin once the 

fruits reach their destination. The resultant effect is that storage of fresh tomatoes under reduced 

oxygen level has less effect on volatile compounds. Low temperature storage caused a significant 

decrease in volatile compound concentrations even after a long recovery period. 

 

Results of the studies conducted by Maul et al. (2002) indicated that in ripe tomatoes stored at 20
 

°C showed a significant increase in aroma, sweetness and flavour in fruits, as opposed to other 

temperature regimes; 5
 
°C, 10 °C, and 12.5

 
°C. 

      2.4.2.2 Chilling injury   

Exposure of susceptible plant tissue to temperatures below 10-12
 
°C induces a physiological 

disorder called chilling injury (Saltveit, 2005). The extent of this disorder will depend on the 

environment to which the tissue was exposed previously, tissue type; such as unripe or ripe fruit, 

temperature, length of exposure and post-chilling conditions. Ding et al. (2002) stated that tropical 

and subtropical fruit and vegetable crops are susceptible to chilling injury when stored at low 

temperatures after harvest. For an example chilled tomato fruit lost the ability to develop full 
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colour, developed sunken areas on the fruit causing blemishes, and more importantly showed 

increased susceptibility to Alternaria rot and decay (Ding et al., 2002; Safdar et al., 2008; Saltveit 

et al., 2005).  

 

Farneti et al. (2012) reported that low temperature induced lycopene degradation in red ripe 

tomato which is a major component of vitamin C. Furthermore temperatures below 12
 
°C resulted 

in lycopene loss in red-ripe tomatoes and a substantial colour loss. Pre-storage hot water treatment 

did not prevent the loss of this essential nutrient contained in red tomatoes. The conclusion 

showed that storage of red ripe tomatoes at chilling temperatures reduces the nutritional and 

health promoting value and affects fruit quality. 

 

Chilling injury is a physiological disorder caused by the exposure of fruits to low temperatures 

above freezing point, resulting to reduction in fruit quality. Studies have shown how high 

temperature treatments and other stress factors have controlled this anomaly and improve the 

quality of fruit and extend shelf life (Lurie, 1998; Polenta et al., 2006; Ding et al., 2002; 

Whitaker, 1994; McDonald et al., 1999). These studies indicated that heat treatment (38-45
 
°C) 

administered for 5-60 min prior to chilling reduces the incidence and severity of chilling injury in 

tomato fruit (Farneti et al., 2012). Also partial ripening of tomato has been shown to reduce 

chilling sensitivity (Whitaker, 1994).  

In another study carried out on the effect of heat treatment uniformity on tomato ripening and 

chilling injury, a significant difference was found between the heated and unheated tomato halves 

in terms of colour and chilling injury (Lu et al., 2010). The objective of this investigation was to 

demonstrate the effect in tomatoes of heat treatment uniformity on quality attributes and chilling 

injury (CI) by subjecting only one half of each tomato to a specific treatment and evaluating the 

effect of the treatment on the two halves separately. It was believed that submitting the two halves 

of the same tomato fruit to two different conditions would ensure that such treatment would be a 

fair representative of tomatoes submitted to non-uniform treatment (Lu et al., 2010).   
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Saltveit (2002) reported that a phase transition or lateral phase separation in portion of cell 

membranes was significant in chilling injury. In addition one of the outcomes of a temperature-

induced phase transition in cellular membranes would be an alteration in their biophysical 

properties thereby resulting to change in their function. This procedure resulted to increased 

membrane permeability and increased rates of ion leakage associated with chilling of sensitive 

tissue. Tomato fruit exposed to non-freezing temperatures below 10
 
°C causes an increase in the 

subsequent rate of ion leakage from the pericarp (Saltveit, 2000, 2002; Marangoni et al., 1996). 

Another study reported that chilling sensitive tomato fruit is related to ripening and senescence 

(Autio and Bramlage, 1986). Ion leakage was used to measure the degree of chilling injury to fruit 

of tomato. The process first declined as the tomatoes began to ripen and then increased during the 

late stages of ripening. But in the non-ripening genotype, chilling sensitivity did not show the 

early decline but showed the increase during senescence. It is evident that ion leakage is as a 

consequence of chilling injury. 

 

Ding et al. (2002) also reported that with low concentrations of some inorganic compounds such 

as methyl jasmonate or methyl salicylate tomato fruit substantially developed resistance to 

chilling temperature and decrease the incidence of decay during low- temperature storage. In 

another study, a correlation was drawn between heat shock protein (HSP) and thermal tolerance in 

many organisms, but recently found that a heat stress can condition plants to low temperature and 

subsequently develop a resistance to chilling injury in tomatoes (Lurie, 1998; Saltveit, 2005). 

      2.4.2.3 Effect of mechanical injury on tomato 

Tomatoes are stage harvested in Nigeria and UK for different purposes. The fruits meant for the 

processing are harvested red-ripe and immediately taken to the processing plant. Whereas fruits 

proposed for the fresh market can be harvested at mature-green through to red-ripe stages. It is a 

common practise to harvest greenhouse tomatoes riper than field grown fruit and is therefore more 

prone to mechanical injuries. Riper fruits are softer and have a shorter shelf-life than fruits 
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harvested at mature green stage (Saltveit, 2005), and their thin skins and locular walls are valued 

by consumers, but these characteristics make them prone to mechanical injury.  

 

Horticultural products such as tomatoes are exposed to several external forces during their 

postharvest life. When these forces exceed a threshold for tissue failure they will cause 

mechanical damage to the fruit. Tomato bruising is one of the different types of mechanical 

damage that exit. Studies have shown that bruises are not always immediately visible but they 

become noticeable during subsequent handling and shelf-life (Van linden et al., 2006). Reports of 

mechanical impact on tomato bruise development stated that the pericarp tissue over the locules 

was much more sensitive to bruise development than radial wall tissue (Van linden et al., 2006; 

Milczarek et al., 2009). In addition tomato susceptibility to bruising increased substantially with 

ripening and loading conditions (Van linden et al., 2006).  

 

Arazuri et al. (2007) reported that the influence of mechanical harvest on the physical properties 

of tomato such as firmness and skin resistance are the most relevant quality characteristics in the 

canning industry. As a result most of mechanical actions affecting tomatoes are produced during 

harvest and transport causing low quality fruit. A simulated transport study carried out in the 

laboratory conditions to assess the performances of the traditional raffia basket, the only 

packaging container for tomato fruit in Nigeria, compared with plastic container which is 

currently not in use. The result showed that 40 %, 37.50 % and 45 % of the samples of tomato 

fruits from the top, middle and bottom of the basket respectively were severely bruised after four 

hours of excitation while the samples contained in the plastic container had the corresponding 

values of 44.18 %, 30.23 %, and 18.60 % respectively (Aba et al., 2012).  

 

Similarly, another study evaluated the impact of handling at three different harvesting periods: 15 

days, 30 days, and 45 days after the beginning of harvest (Ferreira et al., 2005). Fruits were 

classified according to ripening stage and diameter and were also evaluated for mechanical 

damage and external defects caused by harvesting procedures after storage. The results indicated 
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that the highest % fruit damage occurred during the 30 days period than the other two periods. 

Also fruits harvested during this period and stored for 21 days showed higher losses due to 

mechanical injury. 

 

Van linden et al. (2006) reported that tomato susceptibility to bruise damage is dependent on the 

location of impact and cultivar and was related to the applied energy input. The Impact 

assessment also showed one-third loss in firmness in tomato fruit from the bottom of the trailer 

and a substantial loss of skin resistance to crack in transit (Arazuri et al., 2007; Van linden et al., 

2006; Milczarek et al., 2009; Van linden et al., 2006). In another study tomato fruits subjected to 

injuries as a result of  high impact energy showed a significant increase in respiration in storage 

(de Paiva et al., 2012); and consequently increase CO2 and ethylene (C2H2) production in Roma 

tomato at mature-green, breaker, or pink ripeness stages (Lee, 2005).  

 

It is a customary practice in most industrialized countries to harvest processing tomatoes by 

machine. The harvest operations begin when at least 90% of the fruit are ripe (Sargent and 

Moretti, 2002). During the operation the fruits are dumped into field bins, as a result bruises are 

sustained at impact. The mechanical injuries inflicted on the fruit as well as the bruises 

encountered are not severe enough to be rejected for the processing. But in comparison the fresh 

market produce has a long period between harvest and consumption, therefore allows sufficient 

time for water loss, ion leakage, pathogenic infections, and the stimulation of CO2 and C2H2 

production (Kader, 2002). Consequently, the injuries sustained during picking and packing in to 

basket thereby renders the fruits unacceptable to the fresh market.   



In another development Lee and Kader (2000) stated that bruising and other mechanical injuries, 

such as trimming, lower the retention of vitamin C in horticultural crops. Many studies have 

shown that vitamin C is one of the constituents of tomato fruit and an essential nutrient for that 

matter, has many biological activities in the human body (Opena et al., 1989; Ejechi et al., 1999; 

54 



 

Ilic and Fallik, 2007; Ndukwu, 2011; Iwuagwu et al., 2013;. Therefore, efforts should be made to 

minimise the injury inflicted on the fruit skin during mechanical harvesting.  

2.5 POST-HARVEST PATHOLOGY 

Barkai-Golan (2001) defined postharvest pathology as a process that is required to protect and 

sustain fruit and vegetables against microorganism attack that causes decay during storage. The 

development of a decay which happened as a result of pathogen infection during storage is the 

main cause of deterioration of the fresh produce and can become the limiting factor in prolonging 

the shelf-life of fruits and vegetables. After harvest ripe fruits and vegetables can be attacked by 

various microorganisms which were unable to attack them during their growing period on the 

field. These are mainly weak pathogens such as fungi and bacteria commonly found on harvested 

and stored fruits and vegetables.  

 

The disease resistance contained in the plant organ meant for storage became weakened as a result 

of its separation from the mother plant. In addition, picked fruits and vegetables are rich in 

moisture and nutrients which form substrate that favours the development of pathogens. During 

ripening fruit and vegetables are more susceptible to injury and, therefore, more prone to the 

attack of these microorganisms that require an opening or damaged tissue to facilitate their entry 

in to the produce (Barkai-Golan, 2001). 

 

Losses caused by postharvest diseases of fruits and vegetables may be specifically classified into 

parasitic, nonparasitic, or physical (Sholberg and Conway, 2004). The parasitic causes are more 

common and are of microbiological in origin and can begin as latent infections before harvest or 

occur at or after harvest during storage (Cappellini and Ceponis, 1984). The losses are generally 

more than what people realize because prices of these produce continue to rise as they are taken 

from the field to the consumer. The postharvest losses are estimated to range from 10 to 30 % in 

the Europe and other developed world even with modern storage facilities and techniques (Waller, 

2002). The estimates can be more in developing countries which lark sophisticated postharvest 
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storage facilities and often faced with incessant electricity power fluctuations. Conservative 

estimate losses of 40-50 % of fruits and vegetables may not be uncommon in the tropics (Tian, 

2007). 

 

Several diseases (Table 4) cause postharvest decay of tomato fruits, however, the main diseases 

are Alternaria rot, anthracnose, bacterial soft rot, Cladosporium rot, grey mould, Rhizopus rot, and 

watery rot (Waller, 2002). 

Table 4: Diseases of Tomato 

Commodity 
Disease/disorder Causal organism or condition 

Tomato Alternaria rot Alternaria spp. 

 Anthracnose Colletotrichum spp. 

 Bacteria canker Clavibacter michiganensis subsp. Michiganensis 

 Bacteria soft rot Erwinia carotovora subsp. carotovora 

 Blight Phytophthora infestans 

 Cladosporium rot Cladosporium  herbarum 

 Early blight Alternaria solani 

 Fruit rot Didymella lycopersici 

 Grey mould Botryotinia fuckeliana 

 Phoma rot Phoma destructive 

 Rhizopus rot Rhizopus stolonifer 

 Sclerotium rot Corticium rolfsii 

 Soil rot Thanatephorus cucumeris 

 Watery rot Geotrichum candidum 

 (Source: Waller, 2002) 
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2.5.1 Some postharvest disease pathogens of tomato  

Studies have shown that postharvest diseases of fruits and vegetables are caused by 

microorganisms such as fungi and bacteria (Barkai-Golan, 2001; Snowdon, 1991). Sholberg and 

Conway (2004) reported that bacterial pathogens commonly affect vegetables because of less acid 

contents than fruits. They are capable of rapid multiplication under favourable conditions such as, 

pH, temperature, and nutrition. But ripening fruits are prone to attack by fungi both at pre-harvest 

or postharvest stages.  

 

The term “vegetable” generalises the use of a range of plant parts, and the common definition is 

that of a culinary function being used as part of main dishes rather than a dessert food (Snowdon, 

1991). In tomato, fruit is the plant part that is consumed, therefore by definition; tomato can be 

classified as a vegetable in botanical sense instead of a fruit. Other crops that are in the same 

category are; peppers, squashes, and cucumbers. Tomatoes are susceptible to many fruit decays, 

both bacterial and fungal. For example; bacterial decays include soft rots (Bacillus spp., Erwinia 

carotovora spp., Pseudomonas spp., and Xanthomonas campestris); and fungal decays comprise 

Alternaria rot (black rot) (Alternaria alternata); Fusarium rot (Fusarium spp.); Grey mould rot 

(Botrytis cinerea); Mucor rot (Mucor mucedo); Rhizopus rot (Rhizopus stolonifer); Sour rot 

(Geotrichum candidum), to mention just a few that are common in tropical Africa (Sargent and 

Moretti, 2002; Sholberg and Conway, 2004; Waller, 2002). 

 

Generally, B. cinerea is the major cause of loss in temperate countries, whereas in hotter climatic 

areas the common causes of decay are A. alternata, R. stolonifer, G. candidum and E. carotovora. 

All of these pathogens have high optimal growth temperatures (Barkai-Golan, 2001). These 

disease pathogens often develop via wounds, bruised tissue and sometimes during fruit ripening 

and softening. A common incidence in tropical vegetable production, particularly during 

postharvest management, is the penetration of these pathogens through cross- contamination from 

diseased fruits, dirty harvest containers and poor sanitation during handling and packing. 
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2.5.2 Effects of fungal pathogens on the postharvest quality of tomato (Lycopersicon esculentum 

Mill.) in Nigeria 

Tomato (Lycopersicon esculentum Mill.) is a globally grown vegetable fruit rich in vitamins and 

minerals. It is used for culinary purposes and in the production of fruit drinks (Etebu et al., 2013). 

Reports have shown that tomato (Lycopersicon esculentum Mill.) genotype is one of the most popular 

and widely grown crop plants in the world, likewise the most important vegetable worldwide in terms 

of the amount of vitamins and minerals it contributes to food (Osemwegie et al., 2010). Global 

production of fresh tomato fruit is about 89.8 million metric tonnes cultivated from 3,170,000 ha 

(Asgedom et al., 2011). Nigeria is second largest producer of tomato in Africa after Egypt (Costa and 

Heuvelink, 2005). The total annual cultivation of the crop is about one million hectares (Etebu et al., 

2013). Tomato fruits contribute about 18 % of the average daily consumption of vegetables as paste or 

puree which are used for cooking and as fruit drinks.  

2.5.3a Disease pathogens control methods  

Fruit vegetables of the Solanaceae family include tomatoes, peppers and eggplants (Barkai-Golan, 

2001). These three vegetable crops have common pathogens that affect their fruits; such as Botrytis 

cinerea, Alternaria alternata, Erwinia carotovora, Rhizopus stolonifer, Mucor spp., Geotrichum 

candidum, Fusarium spp., Phytophthora spp. and Rhizoctonia solani. Among these lot, Botrytis 

cinerea, Alternaria alternata and Erwinia carotovora are the common most important pathogens that 

affect the fruits. 

Very small proportion of fungicides are presently used as postharvest treatments for control of a 

number of decay causing microorganisms compared to pre-harvest pest control products (Sholberg 

and Conway, 2004). Most of the products for postharvest treatments of fruits are no longer permitted 

for use because of the public concerns with chemical residues in food and possible toxic effects. 

Furthermore, some of these products have lost their relevance due to persistence use of the fungicides 

and consequent development of resistance by the target pathogen (Sholberg and Conway, 2004).  
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Utkhede et al. (2001) demonstrated the biological and chemical control methods by applying Root 

Shield (Trichoderma harzianum) and yeast strain (S33) of Rhodosporidium diobovatum on tomato 

plant leaves to control tomato stem canker caused by Botrytis cinerea. Apparently, it is the synergy of 

these two microorganisms that really reduced the growth of the pathogen. It was suggested that R. 

diobovatum was antagonistic to B. cinerea on potato dextrose agar, therefore, it may be inferred that 

antibiosis may be one of the mechanism responsible for the control of this disease. The treatments 

with Root Shield, Soil Gard, and R. diobovatum produced significantly more total fruits than the 

inoculated control. Two strains of Bacillus subtilis (BACT-O and BACT-10), did not reduce the 

lesion length caused by B. cinerea on tomato plant, but they significantly increased the fruit yield and 

number of tomato plants (Utkhede et al., 2001).  

Feng and Zheng (2007) demonstrated in their studies the inhibitory effects of five essential oils 

(thyme, sage, nutmeg, eucaptus and cassia), against Alternaria alternata at different concentrations 

(100-500ppm) in vitro. The studies showed that both cassia oil and thyme oil have antifungal activity 

against Alternaria alternata. Spore germination and germ tube elongation of the pathogen were 

completely inhibited on potato dextrose agar with 500 ppm cassia oil. Natural oil contained in plant 

for example the thyme gave a lower degree of inhibition 62 % at 500ppm. Ejechi et al. (1999) study 

showed that phenolic and essential oil extracts of pepper fruit (Dennetia tripetala) inhibited the 

growth of these pathogenic fungi common in tomato. Some of the fungi include Saccharomyces 

cerevisiae, Candida tropicalis, Cryptococcus sp., Geotrichum sp., Rhizopus stolonifer, Aspergillus 

niger and Fusarium sp.; they are rot fungi of tomato. The combination of phenolic and essential oil 

extracts below 2.5 and 1.5 mg/ml of tomato/glucose medium respectively, significantly retarded the 

growth of these disease pathogens. Thus, the pepper fruit extracts could be used to control food 

spoilage as a potential source of food preservative.   
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2.5.3b Host resistance of disease pathogens 

The cuticle and the epidermal layer stand as barriers to pathogen penetration in to the plant or its 

organs. Treatments that cause damage to the cuticle accelerate infection by various pathogens 

(Barkai-Golan, 2001). Therefore, the cuticle may function not only as a physical barrier but also 

as chemical barrier, since it may contain antagonistic substances to the pathogen (Egusa et al., 

2009). For example, it was reported that Salicylic acid (SA) and Jasmonic acid (JA) are produced 

by tomato to combat the infection of host-specific AAL-toxin of Alternaria alternata fungal 

pathogen.  

The development of pathogen within the host is related to the activity of cell wall degrading 

enzymes which are responsible for the degradation of organic molecules which then become the 

source of attack by the pathogen (Barkai-Golan, 2001). As a result the liberated nutrients led to 

the stimulation of pathogen growth and accelerated disease development. Reports showed that 

sugars present in the produce, for example glucose, which serve as available nutrients for the 

pathogen and stimulate its growth is responsible for the inhibition of pectolytic and cellulolytic 

enzyme production and activity.  Other studies showed that another class of inhibitors of cell wall 

degrading enzymes includes the polygalacturonase (PG) inhibitory proteins present in plant tissue 

(Barkai-Golan, 2001).  

 

Furthermore, a PG inhibiting proteins from a plant tissue may act on peptic enzymes produced by 

different fungal species. Reports have shown that pepper fruits cell wall proteins of the host plant 

inhibited pectolytic enzyme production by Glomerella cinigulata, but the pectolytic activity of 

Botrytis cinerea was much less affected by PG (Barkai-Golan, 2001). Another study by Chung 

(2012) reported that plants produce toxic reactive oxygen species (ROS) as a defence mechanism 

against pathogens. This is in response to the microorganism invasion, the plant cells produce 

excessive amounts of H2O2 by a specific plasma membrane NADPH oxidase, called the 

hypersensitive reaction (HR), which resulted to cell death and consequently to cellular defence 

against pathogen attack (Niks and Rubiales, 2007). 

60 



 

     2.5.4 Mechanism of resistance  

Mitcham and McDonald (1992) reported that the cell wall uronide content increased in heat 

treated tomato fruit while it remained unchanged in the control at 21 °C. As a result heat treatment 

inhibited ripening associated cell wall modification consequently decrease the infection of the 

fruit by disease pathogen. Vicente et al. (2005) reported that strawberries (75 % red colour) heat 

treated fruit remained firmer because the activity of cell wall degrading enzymes is prevented. 

This process would have been responsible for cell wall tissue degradation and the release of 

nutrients available to the pathogen that cause infection of fruit. The role played by glucose which 

serves as available nutrients for the pathogen to promote its growth has been reported. Therefore, 

if the activity of the cell wall degrading enzyme is prevented, glucose production is also 

unavailable for the fungal pathogen, as a result increases the fruit resistance to disease. 

 

One of the most important characters to consider in plant breeding programmes is the resistance to 

pathogens that cause diseases (Niks and Rubiales, 2002). It is also recognised that growing 

resistant cultivars is the appropriate and cost effective approach to crop improvement. But there is 

a drawback in having durable resistance; the production of host-selective toxins by necrotrophic 

fungi for example Alternaria alternata (Chung, 2012), and host specificity and durability of the 

resistance incorporated in the cultivars (Niks and Rubiales, 2007) will prevent this proposition to 

be feasible in the long run. Also, there is a variation in varietal resistance between the indigenous 

and exotic cultivars imported in to the country. Invariably, it is the imported varieties that the 

farmers prefer to grow, but the plants cannot withstand the harsh environment.  

In other to overcome this problem, Niks and Rubiales (2007) reported that using upright plant 

habit decreased fungal spore infection on cereals in the field. The reduction was possible because 

of the crop structure, spacing and the micro-climate as a result the plant arrangement will have 

better aeration in the environment thereby reduces the chances of infection by disease pathogen. 

This method is feasible with tomato grown on trellis or metal wire in the field. 
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2.5.5 Alternaria alternata (Black Mould) disease of tomato 

Alternaria alternata (Fr.) Keissler is regarded as one of the major storage decay agent of 

tomatoes, giving the fungus about 80 % infections same as the entire range of fungi that are 

isolated from the surface of harvested tomatoes (Barkai-Golan, 2001). Grogan et al. (1975) 

described Alternaria alternata as a stem canker disease of fresh market tomatoes (Lycopersicon 

esculentum Mill.) causing serious disease infection such as leaf spot, rots and blights on many 

plant parts. At various times, these microorganisms have been unavoidably identified with many 

names including: Alternaria fasciculata, Alternaria rugosa (McAlpine), Alternaria tenuis (Nees), 

Macrosporium fasciculatum and Torula alternata (Fr.). Mahovic et al. (2004) identified Black 

mould rot disease of tomato as the fungus that appears on the shoulders by the stem scar or on the 

blossom end of fruit that have been injured by chilling, calcium deficiency, sun exposure and 

some climactic factors.  

Several different pathogens were reported to have caused black mould rots in tomato including 

Alternaria sp. and Stemphyllium sp. Invariably in Grogan et al. (1975) study it was stated that 

stem canker is caused by a virulent pathotype of Alternaria alternata (Fr.) Keissler which is 

synonymous to A. tenuis Auct. Furthermore prolonged storage that subjects tomatoes to chilling 

temperatures was reported by Segal and Hayslip (1966) to have increased tomatoes susceptibility 

to Alternaria tenuis infection. The optimal growth temperature of the fungus is 28
 
°C, but it may 

continue to grow in relatively high temperatures in storage. The fungus survives on plant debris 

and its conidia are present in the atmosphere which makes the control of infection by 

conidiophores difficult. 

      2.5.6 Vegetative structure of Alternaria alternata  

The vegetative structure of Alternaria alternata is the conidia with multiple cells. This develops 

into conidiophores that germinate on plant tissue or organ and subsequently elongate to form the 

mycelia. The fungal spores are found in the air and in soil, also survive on plant debris (Snowdon, 

1991). The survival of the fungus in the field soil is based on the widespread distribution of the 
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inoculum in air (Grogan et al., 1975) and likewise the soil. Spore germination is a preliminary 

stage to fungal penetration into the host. The environmental condition including temperature, 

water or moisture and sometimes, available nutrients transferred from the host into the water do 

encourage spore germination. In addition Barkai-Golan (2001) stated that atmospheric gases such 

as oxygen (O2) and carbon dioxide (CO2) levels in the store where fruits or vegetables are located 

can also affect germination. For example it was stated that an atmosphere that has 32 % or more 

of carbon dioxide (CO2) can only inhibit the germination of Alternaria alternata spores. 

2.5.7 Conidia and spore formation 

 

       Figure 12: Alternaria alternata conidia spores (Barnett and Hunter, 1972)   

Alternaria alternata (spores shown in Figure 12) was reported to have been causal agent of leaf 

spot and other diseases such as black mould and stem canker on over 380 host plants (Barnett and 

Hunter, 1998). It is regarded as an imperfect pathogen having many hosts and causing disease 

infections such as leaf spots, rots and blights on many plant parts. Conidia the vegetative structure 

is pale brown to light brown in colour with short conical beak at the tip or sometimes beakless. 

The conidia are produced in an often branched long chain more than five conidia. Studies have 
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shown that the pathogen penetrated the host tissue through stomata, lenticels and micro cracks in 

the epidermis (Swart et al., 1995).  

 

In another studies by Wolf et al. (2010) it was reported that by elevating the atmospheric carbon 

dioxide concentrations increases Alternaria alternata sporulation on timothy grass (Phleum 

pratense). Also the leaf carbon-to-nitrogen ratio was greater and leaf biomass than at the lower 

C02 concentrations.  

     2.5.8 Factors that affect the development of the disease 

Alternaria alternata is a weak fungal pathogen it requires an opening or injured tissue for 

penetration and development (Snowdon, 2001). The fungus survives on water that forms on the 

surface of ripening fruit from rain or dew, the spores germinate in response to soluble nutrients on 

the fruit surface (Barkai-Golan, 2001). Swart et al. (1995) reported that under conditions of high 

humidity, the fungus grew out of the stomata, lenticels and micro cracks of table grapes and 

formed an extensive superficial growth within 7 days. The fungus was able to grow into adjacent 

epidermal cells that surround wounds. This shows the extensive surface growth pattern of the 

pathogen on tissues and organs of fruit after cold storage. 

      2.5.9 Host factors that affect the development of Alternaria Rot 

 The point of entry of the fungus can be via growth cracks, opening on fruit skin, mechanical 

damage or bruises, but infection can also be through the calyx scar or stem scar of the fruit (Barki-

Golan, 2001). The fungus may appear on the margin of the stem scar but it remains inactive unless 

the fruits are subjected to weakening conditions such as chilling injury, sunscald or over ripening 

(Barkai-Golan, 2001; Snowdon, 2001). Also the production of non-specific toxic metabolites in 

the infected fruits may prevent the development of A. alternata decay. Barkai-Golan (2001) 

reported that the main toxin in infected tomato fruits was tenuazonic acid, while others such as 

alternariol, alternariol monomethyl ether and alternuen were found in small quantities.  
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Swart et al. (1995) found that the pathogen penetrated the host tissue through stomata, lenticels 

and micro cracks in the epidermis. In another studies by Jia et al. (2012), it was reported that 

phytohormone molecules such as ethylene (ET), jasmonic acid (JA) and salicylic acid (SA) have 

key roles in the disease response to nectrophic fungal pathogens. Both the ET and jasmonic acid 

(JA) pathways are necessary for susceptibility, while SA response promotes resistance to 

Alternaria alternata f. sp. lycopersici infection. Kepczynska (1994) also suggested that 

endogenous ethylene synthesis and action are essential for the development of A. alternata.     

 2.5.10 Pathogen factors that affect the development of Alternaria Rot   

The development of A. alternata in tomatoes is reported to have been associated with the 

production of host-selective toxins by the fungus, this is essential for pathogenesis to take place as 

a result of cellular stresses (Chung, 2012; Barkai-Golan, 2001). In citrus for an example, the 

fungal infection causes induction of lipid peroxidation on the leaves as well as other organs 

resulting to rapid accumulation of hydrogen peroxide (H2O2), and possibly cell death (Prasad and 

Upadhyay, 2010; Chung, 2012). The genus Alternaria includes both plant pathogenic and 

saprophytic species which may affect crops in the field or cause postharvest decay of plant 

products (Pose et al., 2010). In another study by Wu et al. (1997) it was reported that H2O2 acted 

as disease resistance radical in potato as well as a broad range of plant pathogens.   

Many studies have reported that Alternaria alternata has been the most frequent fungal species 

invading tomatoes (Barkai-Golan, 2001; Pose, et al., 2010; Graf et al., 2012). The production of 

mycotoxin by Alternaria alternata was adduced to be one of the pathogen factors that assisted in 

causing the black mould disease in tomato (Graf et al., 2012; Pose et al., 2010). Alternariol 

(AOH), Alternariol monomethyl ether (AME), and tenuazonic acid (TA) are some of the 

examples of Alternaria mycotoxins that can be found in tomato.  

 2.5.11 Environmental factors that affect the development of Alternaria Rot  

The fungus is very common in the air, soil and plant debris. It infects plants that are disposed to 

the favourable condition for sporulation and areas that maintain inadequate sanitation during 
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postharvest management (Snowdon, 2001). Environmental conditions during growth, for example, 

unfavourable high or low temperature, wind, rain or dew, can all affect the crop in terms of yield 

but also the quality of the produce when put in store (Barkai-Golan, 2001). For example, when 

free water forms on the surface of ripening tomato fruit from rain, dew or overhead irrigation, 

spores of A. alternata germinate in response to water soluble nutrients on the fruit surface (Egusa 

et al., 2009; Jia et al., 2013). High temperature was found to increase Botrytis cinerea infection of 

tomatoes through the flower as a result of increase in flower development and senescence (Barkai-

Golan, 2001).  

 

Consequently, all these necrotrophic pathogens enter through growth cracks, insect bites or 

mechanical bruises but infection is often initiated at the calyx scar or stem end of the fruit (Barkai-

Golan, 2001). Chilling injury, sunscald or over-ripening which subject tomato fruit skin to 

weakening conditions can also be points of entry of the pathogens. Environmental conditions may 

also affect the pathogens directly. Many pathogens remain in the soil or survive on plant debris in 

the field, but their dispersal to the next hosts will depend on wind, rain and other dispersal agent.              

2.6 CONTROL METHODS OF ALTERNARIA ALTERNATA DISEASE  

Barkai-Golan (2001), reiterated that the condition of the environment during growing of fruit and 

vegetable crops is of a great importance in order to prevent infection of disease pathogens. 

Examples of such condition are: high or low temperature, wind, rain or hail.  High temperature 

increases the susceptibility of Alternaria alternata infection of tomato resulting to an increase in 

the rate of flower production consequently increases senescence (Barkai-Golan, 2001). Therefore, 

growing tomato with suitable temperature conditions, such as 20-25
 
°C will decrease the amount 

of flower produced thereby control Alternaria infection. Wider plant spacing within the row 

against narrower spacing was reported by Legard et al. (2000) to have reduced the incidence of 

decay rot on strawberries. Cultural practices, such as pruning of trees and destruction of crop 

debris, can affect the survival of pathogenic fungi. 
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      2.6.1 Cultural control method  

Cultural practices improvement can also reduce the level of inoculum through sanitation or 

modifying the crop canopy to produce a microclimate leading to conditions less favourable for 

pathogen infection (Legard et al., 2000). Likewise increased plant density was reported to reduce 

the efficacy of fungicide applications by reducing plant coverage. Mahovic et al. (2004) reported 

that fruits and vegetables vary in their internal ability to resistance to decay. For example, crops 

that have active wound healing system are pear fruit (Spotts et al., 1998), jade leaves, tomato fruit 

and bean pods (Dean and Kolattukudy, 1976) are more resistant than crops that don’t have these 

attributes. The mechanism of wound healing is through the protective suberin layer e.g. in potato 

tubers and tomatoes forming a natural abscission zone at the stem scar; use these processes as 

defence mechanism against infection from decay pathogens.   

The potential for development of fruit decay is reduced if the produce is harvested dry and free of 

disease pathogen infection at the time of harvest. Although, harvested fruit may have some level 

of disease pathogens infection which are not visible at the time of harvest, but with good 

sanitation practices the development of this microorganism into fruit decay will be reduced during 

postharvest handling. The process should develop sanitation that will provide clean environment 

in the pack house and packing materials.  

2.6.2 Chemical control method 

 At present the export trade in fruits and vegetables rely on chemical compounds to protect the 

produce against entry of microorganisms that cause diseases in storage during transit. For 

example, fungicides and bactericides are used for the purpose of killing or controlling the 

development of pathogens (Barkai-Golan, 2001). The chemical has to make contact with the 

pathogen before it can be more effective. Sometimes the chemical substance and concentration of 

efficacy is pathogen dependent or the chemical compound will act in synergy with another 

compound before it becomes effective. Chemical treatments can be applied with these three 

methods: (i) pre-harvest application to prevent infection in the field; (ii) to carry out sanitation 

67 



 

procedure to reduce the level of inoculum in the environment of the injured fruits or vegetables 

present; (iii) postharvest application to prevent infection through wounds and to wipe out or 

weaken already existed infections, in order to prevent their development and spread in storage 

(Barkai-Golan, 2001).     

 

The current study is to elucidate the importance of postharvest fungicides against fungal 

pathogens of fruit and vegetables but laying emphasis on Alternaria alternata (Black mould) 

disease of tomato. It is important that the open wounds created during harvesting, handling and 

packaging, which are the major sites of invasion by postharvest wound pathogens, should be 

protected by chemical compounds so as to considerably decrease decay in storage.   

 

During the last five decades, thirty or more organic compounds have been identified to control 

decay caused by postharvest pathogens, such chemical fungicides include biphenyl (diphenyl), 

sodium ortho-phenylphenate, dicloran and sec- butylamine (Barkai-Golan, 2001). Their selection 

was based on these three criteria: (i) sensitivity of the pathogen to the chemical substance; (i) 

ability of the chemical to reach infection site through penetration of surface barriers; (iii) tolerance 

of the host to both the injury and any toxic effect of the pathogen, as well as the adverse effect of 

the quality of the chemical compound (Eckert and Ogawa, 1985).     

    

Biphenyl was extensively used on citrus fruit to inhibit sporulation of Penicillium species on 

decay fruits meant for export, but was reported not to be active against Alternaria, Rhizopus, 

Mucor, Phytophthora and Geotrichum species (Barkai-Golan, 2001). In addition, thiabendazole 

(TBZ) which is a benzimidazole compound and a systemic fungicide is not effective on these 

microorganisms (Barkai-Golan, 2001). In another study by Eckert and Ogawa (1998), it was 

reported that due to the limitations experienced in the use of TBZ against some important 

postharvest pathogens, such as Alternaria, Rhizopus, Phytophthora and Mucor therefore 

benzimidazole compounds may be used in addition with other chemical to control decay in 

storage. In another report Barkai-Golan (2001), stated that Iprodione and vinclozolin, which are 
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dicarboximide fungicides were used as alternative to TBZ on products such as cucumbers, 

tomatoes, strawberries, eggplants and grapes. Iprodione itself is effective against Alternaria, and 

considerably reduces the infection of this pathogen on mangoes (Prusky et al., 1983). 

 

 In another study by Kumar et al. (2013), it was reported that out of twelve fungicides tested, only 

five proved to be effective fungicides as they completely inhibited the growth of Alternaria 

alternata on chilli pepper. The chemical compounds include: Bavistin, Indofil M-45, 

Chlorothalonil, Vitavax and Thiram. Another chemical compound introduced in to the market for 

postharvest treatment, called Imazalil a systemic fungicide, inhibited the biosynthesis of 

ergosterol, an essential component of fungal membrane was effectively used on Alternaria 

(Barkai-Golan, 2001; Brown, 1984). An effective and considerable control of both stem-end rot 

and anthracnose was achieved when imazalil was applied with hot water at 53
 
°C (Spalding and 

Reeder, 1986
b
). The chemical compound inhibits spore germination and mycelial growth of 

Alternaria and suppresses decay development caused by the pathogen in the following crops: 

apples, pears, persimmons, tomatoes and bell peppers (Spalding, 1980; Prusky and Ben-Arie, 

1981). 

              

The study carried out by Prusky et al. (2006), reported that application of a combination of hot 

water spraying and brushing (HWB) for 15-20s, followed by spraying with 50mM HCl effectively 

controlled Alternaria rot in stored mango fruit. Hot water brushing (HWB) treatments with 

increased concentration of prochloraz were more effective than with the acid alone. Also hot 

water dip treatment of persimmon fruit followed by 50mM HCl reduced Alternaria rot. Sodium 

ortho-phenylphenate (SOPP) was reported to be an example of broad spectrum fungicide against 

fungal pathogens and anti-bacterial activities. For example solutions of SOPP with a pH of 11.5 is 

effective and save on many fresh fruits and vegetables which include citrus, apples, pears, 

peaches, tomatoes, peppers, cucumbers, carrots and sweet potatoes (Barkai-Golan, 2001).     

 The inhibitory effects of essential oils and plant extracts as antifungal chemical compounds on 

fruits and vegetables deserve adequate mentioning in this study. Barkai-Golan (2001) reported 
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that the major plants having the highest antifungal activity were pepper (Capsicum sp.) and garlic 

(Allium sp.). Gel derived from Aloe Vera plants was found to contain antifungal compounds that 

act against postharvest pathogens such as Alternaria alternata, Botrytis cinerea, Penicillium 

expansum and Penicillium digitatum (Barkai-Golan, 2001). The report further stated that its 

natural gel suppressed germination of spores as well as mycelial growth of fungi, with P. 

digitatum and Alternaria alternata the most sensitive species.  

 

The cassia oil and thyme oil were reported to have exhibited an antifungal control on Alternaria 

alternata disease pathogen which infected cherry tomato (Feng and Zheng, 2007). For example the 

cassia oil inhibited completely the growth of A. alternata at 300-500ppm, while thyme oil 

inhibition was 60 % at 500 ppm (Feng et al., 2011; Feng and Zheng, 2007). Similarly, Tian et al. 

(2011) determined the antifungal activity in vitro of the essential oil extracted from the seeds of 

dill (Anethum graveolens L) subsequently use the oil to control Alternaria alternata contained in 

the poisoned food. The effect of the dill seed oil on the inhibition of decay development on cherry 

tomatoes was tested in vivo by exposing inoculated and control fruit to the oil vapour at 120 µl/ml 

and 100 µl/ml concentrations respectively. The oil was found to inhibit the mycelial growth after 

nine days.  

      2.6.3 Biological control method 

The concern of official and the public is becoming greater now about the presence of chemical 

fungicide residues on food, the development of pathogens resistance and most importantly, the 

withdrawal of a number of fungicides used to control postharvest diseases of fruits and vegetables 

are some of the reasons for the increased interest in the potential of using biological control as an 

alternative non-chemical means of control of fungal decay. For instance Klein and Lurie (1992) 

reported that some chemicals including a fumigant ethylene dibromide have lost their 

Environmental Protection Agency (EPA) USA registration, while others may follow soon. In 

another study conducted by National Academy of Sciences (NAS), an agency of EPA, concluded 
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that fungicides constitute 60 % of the cancer risk among all the pesticides used on food (Wilson et 

al., 1991).  

 

The cost of developing, testing, and registering a new fungicide is increasingly prohibitive; hence 

there is a need for research into alternative methods of control. As a result biological control 

method could be considered as one of the alternatives to non-chemical means of decay 

suppression.      

 

The biological control is defined as the use of naturally found microorganisms which antagonizes 

postharvest pathogens of some fruits and vegetables (Barkai-Golan, 2001; Wilson et al., 1991). 

Wilson et al. (1991) and Wisniewski et al. (2001) defined the biological control of plant disease 

as `the decrease of inoculum or the disease-producing activity of a pathogen accomplished 

through one or more organisms, including the host plant but excluding man`. Droby et al., (2009) 

reported that antagonism between microorganisms involves fungi (e.g. yeast) and bacteria (Wilson 

et al., 1991; McSpadden, 2002), which naturally present in the soil and the surfaces of plants.  To 

identify a suitable antagonist as promising agents for disease control, a screening system should 

be developed such that it simulates natural inoculation and the inoculum should be applied to the 

infection sites and at the appropriate time (Barkai-Golan, 2001).  

 

Studies have shown that the use of antagonistic microorganisms has been explored to control 

various plant pathogens, but the research has been successful largely in the laboratory than the 

field (Wilson et al., 1991). Furthermore, the antifungal activities were concentrated on these 

various stages: (i) the antagonist inhibits the pathogen directly by secretion of antibiotics, for 

example, Pseudomonas cepacia controlled Botrytis and Penicillium rots of pome fruit by 

producing an antibiotic, pyrrolonitrin; (ii) the antagonist competes with the pathogen for nutrients 

or space; an example yeast antagonist Trichoderma species (US-7) act against the citrus pathogen, 

Penicillium digitatum; (iii) the antagonist induces resistance in the host; for example, by indirectly 

changing the chemical and osmotic environment at the wound site to favour the antagonist over 
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the pathogen; (iv) the antagonist directly interacts with the pathogen, an example of such process 

is the isolation of the antagonistic fungi, Trichoderma species, to reduce the Botrytis responsible 

for pre- and post-harvest rotting of strawberries (Wilson et al., 1991). All these processes focussed 

on the promotion and management of natural epiphytic antagonists inhabiting fruit and vegetable 

surfaces.  

 

In another report by Barkai-Golan (2001), which stated that fungicides may change the micro 

flora on the plant organs thereby affecting the microorganisms other than the pathogens against 

which control were intended, thereby changes can occur that will affect the pathogen resistance of 

the host. This situation can be modified and suit the purpose of promoting beneficial antagonistic 

microflora against the pathogen (Shafique and Shafique, 2012; Barkai-Golan, 2001). Plant 

secondary metabolites such as natural plants derivative compounds can contribute a lot in 

controlling disease pathogens (Wilson et al., 1991; Shafique and Shafique, 2012). For example, 

Alternaria alternata species was subjected to biological control by Tagetes erectus L. root extract 

which caused the reduction of the fungus biomass as much as between 81-92 % (Shafique and 

Shafique, 2012); flavour compounds such as acetic acid, jasmonates, glucosinolates, propolis, 

chitosan, essential oils and plant extracts also reduce fungal rotting of fruit and vegetables thereby 

prolonging shelf life (Tripathi and Dubey, 2004).  

Application of Trichoderma harzianum spore suspension to tomato fruits decreased disease 

infection significantly at higher concentrations of 10
8
 cells per mil and at high filtrate culture the 

pathogen spore germination on the surface of tomato fruits was reduced leading to decrease of rot 

symptoms (El-Katatny and Emam, 2012); grape, pear, kiwi and strawberry (Ahmad-Odeh, 2006). 

 

The combination of biocontrol agent and other methods such as heat treatment was reported to be 

one of the most effective techniques at controlling postharvest fungal spoilage in tomato (Zhao et 

al., 2010). Other areas open to control postharvest diseases of fruits and vegetables reported by 

Wilson et al., (1991), included the use of plant-derived fungicides from secondary plant 

metabolites, and the manipulation of resistance responses in harvested products.  In the study of 
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Zhao et al. (2010), it was reported that either heat treatment or Pichia guilliermondii reduce decay 

caused by Botrytis cinerea, Alternaria alternata and Rhizopus stolonifer on tomato. But the 

combination of heat treatment followed by the application of P. guilliermondii had the best 

efficacy in protecting tomatoes from fungal rot caused by these pathogens.   

 

Attention has been focused on naturally occurring yeast species which do not produce antibiotic 

substances in order to act as antagonists. They colonize the surface of the wound quickly and for 

long periods. They produce extracellular polysaccharide compounds, which enhance their survival 

and make use of host nutrients to reproduce rapidly and are affected minimally by pesticides 

(Barkai-Golan, 2001). In another study by Wang et al. (2008), where it was reported that the yeast 

Rhodosporidium paludigenum Fell and Tallman isolated from fruit wounds and marine resources 

e.g. south of East China Sea, showed that washed cell suspension of R. paludigenum gave a better 

control of A. alternata than any other treatment. Furthermore, its efficacy was largely dependent 

on the concentration of the antagonist inoculum. For example, the concentration of the washed 

yeast cell suspension of 1x 10
9
 cells per ml reduced the percentage rate of black rot of cherry 

tomato fruit to 37 %, which was remarkably lower than water (control).     

2.6.4 Non-chemical control method  

In the past years there has been a steady increase in the interest of finding alternatives to the use of 

synthetic fungicides for postharvest disease control. This has led to considerable research in 

physical treatments that could serve as alternatives to fungicides or the use of microbial 

antagonists as protective agents in as much the same way as chemical compounds for disease 

control (Lurie, 1998). Examples of such treatments include: heat treatments, salt solution, induced 

resistance, microbial antagonists, yeast, bacteria, chitosan, ionizing radiation and ultraviolet 

illumination (Wisniewski et al., 2001; Barkai-Golan, 2001).   

 

Heat treatments can be applied to the commodity by hot water dips and sprays, hot water vapour 

or dry air, infrared or microwave radiation (Fallik et al., 1993; Fallik et al., 2001). In vitro studies 
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have shown that spore inactivation increases with both temperature and duration of treatment; as a 

result conidia of Alternaria alternata may be inactivated equally by treatment for 2 min at 48
 
°C 

or 4 min at 46
 
°C. The conidia of the pathogen may be inactivated by dipping tomatoes for 1-2 

min in water heated to 55
 
°C which was the optimal antifungal treatment for control of Alternaria 

alternata (Fallik et al., 1993; Lurie et al., 1998). In another study it was reported that germinated 

spores as well as elongated germ-tubes or young hyphae were more sensitive to heat than non-

germinated spores; as a result Alternaria rot was effectively controlled in tomatoes heat treated 8 

h after inoculation than in those treated immediately after inoculation (Barkai-Golan, 2001).   

2.7 HEAT TREATMENT OF FRUIT 

 Many studies including Ben-Yehoshua and Porat (2005) reported that postharvest heat treatments 

of fruit started at the beginning of the first decade of the 20
th
 century where they were used on a 

commercial scale to control fungal diseases and pest infestation of horticultural crops. However, 

by the discovery of Thiabendazole, a synthetic, systemic, and selective fungicide, heat treatment 

was abandoned because the chemical cost less, effective and easy to apply. Consumers are wary 

of food products that contain chemical residues as a result the use of agrochemicals in fruits and 

vegetables is declining in a slow progression.  

Another reason for the decline is that many fungi are developing resistant strains because of the 

improper and prolonged use of these chemicals; as a result their efficacy has diminished 

(Adaskaveg et al., 2002). The prohibitive costs of registering new synthetic chemicals and the 

difficulties in maintaining the registration of the approved ones have resulted for search for a 

reliable, cost effective, and environmentally friendly system. Invariably, postharvest heat 

treatment was favoured by satisfying all these requirements.   

2.7.1 Development of early heat treatments 

Postharvest heat treatment of fresh fruits and vegetables was the process that was involved in 

preserving horticultural food products after the First World War (Ben-Yehoshua and Porat, 2005). 

The system started with hot water, 44-48 °C, to clean the fruit in a tank as well as a partial disease 
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control of green and blue moulds (Penicillium digitatum and Penicillium italicum). Many studies 

have shown that postharvest decay is one of the major factors limiting the storage life of fresh 

commodities (Kader, 2002), with losses ranging between 5-25 % in developed countries and 20 to 

50 % in developing countries. Therefore, it will be of priority to develop reliable methods to 

minimise losses caused by postharvest pathogens.  

 

It is well understood through various studies that the most important environmental factor that 

affects decay development is temperature. For example, storage of horticultural commodities at 

low temperature that does not cause chilling or freezing injuries will slow pathogen growth and 

reduce decay (Schirra et al., 2000a). In the same manner applying high temperature to fruit for a 

short time before storage at low temperature have a double effects on the product i.e. 

disinfestation and reduction in decay incidence. Furthermore, the studies described the mode of 

action of heat treatment on the causal agents; they exert their effects either by slowing pathogen 

growth or killing its germinated spores. Heat treatment can also enhance host pathogen defence 

responses (Lurie, 1998), thus renders the commodity to have more resistance. High temperature 

heat treatment may also partially melt the epicuticule surface of fruits or vegetables, thus resulting 

to sealing of micro-cracks and wounds which could serve as entry points to pathogens (Schirra et 

al., 1999b). 

2.7.2 Types of heat treatment  

 Time immemorial fresh fruits and vegetables have been part of the human diet although fruits and 

vegetables have always provided variety in the diet through their differences in colour, shape, 

taste, aroma, and texture, but the importance of their postharvest treatments have been emphasised 

by various studies to improve their shelf life and sustainability. Postharvest decay is the major 

factor limiting the extension of storage life of many fresh harvested commodities. All fresh fruits 

and vegetables for domestic or export markets should be free of dirt, dust, pathogens and chemical 

residues before they are packed. The susceptibility of freshly harvested produce to postharvest 
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diseases increases during packaging, transporting and prolonged storage resulting to physiological 

changes that enable pathogens to develop in the fruits.  

 

The use of synthetic chemicals on harvested fresh produce is becoming more difficult to justify 

mainly because consumers are sceptical on the residual effect of these compound on human 

health. Therefore, the interest in non-chemical methods for postharvest decay control of 

horticultural crops has been increasing (Schirra et al., 2000; Ferguson et al., 2000; Fallik, 2011). 

The progress made in agronomic, processing, preservation, packaging, shipping, and marketing 

technologies globally have enabled the fresh fruit and vegetable industry to supply consumers 

with a wide range of high quality produce all year round. However, the economic losses caused by 

postharvest pathogens can be high and the avoidable losses between the farm and the consumer 

could be minimised. These losses together with the costs of harvesting and handling have 

increased the cost of the produce several times as they are moved from the farm to the consumer. 

 

The diseases caused by postharvest pathogens have always relied on chemical control for ensuring 

the quality of harvested produce; various methods to control postharvest decay are being 

developed. Such methods include heat treatments which have been effective in controlling 

pathogens that are the main causes of pre-storage and postharvest decay development (Lurie, 

2008; Barkai-Golan, 2001; Fallik, 2011). Studies have shown that postharvest heat treatments to 

control decay development during storage are applied for a relatively short time; minutes, because 

the decay causing agents are found on the outer skin layer of the fruit or in the first few cell layers 

under the skin (Barkai-Golan, 2001). There are different forms of heat applied to control the decay 

causing agent of freshly harvested produce; these include hot water dipping, vapour heat, dry hot 

air and very short hot water rinsing and brushing (Lurie, 2008; Fallik, 2004).  

2.7.3 Hot water dipping  

The exposure of various fruits to high temperatures (50-60
 
°C) either as a wet or dry treatment has 

been demonstrated to have a significant impact on controlling both postharvest diseases and fruit 
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quality. Many fruits and vegetables tolerate exposure to water temperatures of 50-60 °C for up to 

10 min, but they can be exposed to shorter time and still control many postharvest plant pathogens 

(Lurie, 1998). In comparison, hot water dips for fruit require 90 min exposure to 46 °C. Fallik 

(1993) reported that dipping melon fruits in hot water at 55
 
°C for 1-2 min resulted in optimal 

antifungal treatment for control of Alternaria, Fusarium, Rhizopus and Mucor species. Also 

inoculated mature green and pink tomato fruits were held for 3 days at 38
 
°C completely inhibited 

decay caused by Botrytis cinerea.  

 

The effectiveness of a pre-storage hot water dip of bell peppers and tomatoes was investigated to 

reduce rots; the results showed that hot water dip at 50-53
 
°C for 2-3 min significantly inhibited 

the disease pathogens (Lurie et al., 1998). Another study reported that a minute dipping of rock 

melon to 60
 
°C hot water was the optimum time and temperature combination for the control of 

decay development caused by Alternaria sp., Fusarium sp., and Colletotrichum sp. after storage 

for 3 weeks at 5
 
°C. Likewise immersing bell peppers (Capsicum annum) in hot water at 45

 
°C and 

53
 
°C for 15 min and 4 min, respectively; and storing bell peppers at 8

 
°C inhibited fungal disease 

pathogen infections (Fallik, 2011).  

2.7.4 Vapour heat  

Vapour heat at 44
 
°C for 1h was reported to have been used against Botrytis cinerea in 

strawberries, while exposing pear fruits to 37
 
°C for 2 days pre-storage inhibited decay due to 

Mucor piriformis E. Fisch (Fallik, 1993). Water is regarded as the most effective heat transfer 

medium, as a result for air treatments the moisture content greatly influences heat transfer and 

heated moist air is generally more effective at killing pathogens than dry air at the same 

temperature (Mitcham and Cantwell, 2002). In an another study, the effect of vapour heat at 46
 
°C 

on the export quality parameters of fresh tomato was investigated using two maturity stages i.e. 

breaker and green stage; and secondly two fruit sizes; between 280-450 g and between 200-279.9 

g (Hurtado et al., 2009). The quality variables measured are external appearance, internal 

appearance, and flavour; while the quantitative ones are weight loss, firmness, soluble solids, pH, 
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and citric acid. The report concluded that treatment of the tomato fruits with vapour heat caused a 

non-acceptance of the produce for export purposes. The main parameters of rejection were the 

qualitative variables and the external appearance.  

2.7.5 Dry hot air  

Pre-storage hot air treatment of apples at 38
 
°C in combination with calcium chloride has also 

been shown to significantly reduce storage decay caused by Penicillium expansum and Botrytis 

cinerea; it was also used in combination of a biocontrol agent, Pseudomonas syringea to control 

these rots (Wisniewski et al., 2001). Other studies on in vitro heat treatment 38
 
°C of fungal 

pathogen (Lurie et al., 1998; Zhao et al., 2010), for example, Botrytis and Alternaria species on 

tomato spoilage, it was reported that dry hot air markedly inhibited the mycelia growth of these 

fungi. After 24 h hot air treatment on Botrytis the inhibitory rate was 89 % but further treatment 

for 48 h or 72 h completely inhibited the mycelia growth. In the case of Alternaria species twenty 

four heat treatment inhibited 18 % of the mycelia elongation, while 65 % inhibition was obtained 

after 72 h treatment.  

     2.7.6 Hot water rinsing and brushing (HWRB) 

This a technology based on a brief hot water rinsing and brushing for cleaning and disinfestations 

of fresh produce at the same time. The system was introduced commercially to be used on fruits 

and vegetables and worked by rinsing and brushing at temperatures of 48
 
°C to 62

 
°C for 15 to 25 

s, depending on the commodity (Fallik, 2011). Also by treating pink tomatoes with hot water rinse 

and brushing at 52
 
°C for 15 s or dipping the fruit in water at 52

 
°C for 1 min significantly reduced 

decay development caused by Botrytis cinerea after 3 weeks in storage at 2
 
°C or 12

 
°C followed 

by an additional 5 days at 20
 
°C. Fallik (2004) reported that rinsing and brushing bell peppers 

immediately after harvest at 55
 
°C for 12 s and 52

 
°C for 15 s on red tomatoes reduced decay 

incidence significantly and also maintain fruit quality as compared with untreated fruit. 

Furthermore, the HWRB 52
 
°C treatment enhanced resistance against artificially inoculated 

Botrytis cinerea when tomatoes were inoculated 24 h after treatment. Ripening inhibition was also 
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reported to have occurred indirectly in HWRB - treated fruit by inhibited colour development in 

melons and tomatoes. A short hot water brushing treatment at 62
 
°C for 20 s was reported to have 

controlled green mould (Penicillium digitatum) decay in citrus fruit, improved the colour retention 

in litchi fruits and also improved the quality and shelf life of pomegranate (Wisniewski et al., 

2001). As a result of the various studies this simple technology has demonstrated that a combined 

treatment of a hot water rinse and brushing improved the overall quality of fresh harvested 

produce and reduced postharvest decay development while maintaining fruit quality.  

2.8 Pathogen control through heat treatment  

Pre-storage heat treatment has been demonstrated as a promising method of postharvest control of 

fungal rot. It is also a safe and environmentally friendly procedure with increasing acceptability in 

commercial operations. It is used successfully, to control the incidence of postharvest disease in 

many commodities (Fallik, 2004). Studies have shown that heat treatments have a direct effect on 

pathogens by slowing down germ tube elongation or inactivating or outright killing germinating 

spores, thus reducing the effective inoculum size and minimising rots. Water is the preferred 

medium of application as it is a more efficient medium of heat transfer than air (Lurie et al., 

1998). Also pre-storage hot water treatments, methods of hot water immersion and treatment 

duration have been reviewed by Fallik (2004).  

Heat treatment can control decay development through physiological responses of the fruit tissue. 

These responses include inducing antifungal-like substances that inhibit fungal development in the 

fruit tissue, such as PR proteins- chitinase and β-1, 3 glucanase and stabilise membranes (Schirra 

et al., 2000). This type of response of the fruit tissue to pathogen infection will reduce postharvest 

treatments with agrochemicals as a result research efforts can be focused on the enhancement of 

host resistance to pathogens through physical, chemical or biological methods (Wilson et al., 

1994; Ben-Yehoshua et al., 2000).  

Many studies have shown that pre-storage hot water heat treatment appears to be one of the most 

promising methods in postharvest control of rot decay (Couey 1989; Ben-Yehoshua et al., 2000; 

Fallik et al., 1995; Wijeratnam et al., 2005). These studies showed that generally effective heat 
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treatments are applied for short periods of time for example three to five minutes because the 

target micro-organisms are found on the surface or within the first few outer cell layers of the fruit 

or vegetable. The reports of Mitcham and Cantwell (2002) stated that for a given species of fungi, 

spore inactivation increases with both temperature and duration of treatment. For example, spores 

of Botrytis cinerea may be inactivated equally by treatment for 2 min at 48
 
°C or for 4 min at 46

 

°C on grape tomato. Germinated fungal spores are much more sensitive to heat than non-

germinated spores. As a result the length of time between inoculation and heat treatment can be a 

factor which determines the effectiveness of a heat treatment.  

 

The essence of heat on the decay organism is to eradicate or simply to control the rot. Therefore, 

some factors can be responsible for effective heat treatments on the pathogen these include; 

disease organism, temperature of heat treatment, length of heat period, age of spores, moisture 

content of spores, and germination of spores (Mitcham and Cantwell, 2002). In carrying out some 

experiments on the effect of heat on the fungal spores, for example in the study carried out by 

Zhao et al. (2010) the report stated that the in vitro heat treatment markedly inhibited the mycelia 

growth of Botrytis cinerea. After 24 h treatment, the inhibitory rate was 89%, further heat 

treatment for 48 or 72 h completely inhibited the mycelia elongation. Alternaria alternata growth 

was inhibited by 18 % in 24 h of heat treatment but increased to 65 % after 72 h.  

 

Species of fungi have their effective control on spore germination increasing with both 

temperature and duration of treatment. For example, hot water dips on Botrytis cinerea on green 

bell peppers were effective at water temperatures of 55
 
°C and 58

 
°C for 5 min and 60

 
°C for 2 

min gave complete control of Botrytis rot without injury to the fruit. Dipping inoculated mature 

green and pink tomato fruits for 3 days at 38
 
°C completely inhibited decay caused by Botrytis 

cinerea one of the main postharvest pathogens of tomato (Fallik, 1993). Immersing the fruit in hot 

water at 55
 
°C for 1-2 min was the optimal antifungal treatment for control of Alternaria species. 

Lurie et al. (1998) reported that hot water at 50 to 53
 
°C for 2 to 3 min gave the best result to 

control Alternaria pathogen infection of bell peppers and tomatoes. 
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It was reported that heat treatment by immersion has a beneficial effect in preventing rot 

development in many temperate, sub-tropical and tropical fruit and vegetables. This method has a 

number of advantages which include relative ease of use, short treatment time, ease of monitoring 

of fruit and water temperatures, and the killing of skin-borne decay pathogens. Another important 

economic advantage of hot water immersion technology is that the cost of a typical commercial 

system is about 10 % of that of a commercial vapour heat treatment system (Jordan, 1993; Lurie, 

1998; Fallik, 2003) which makes the system affordable to farmers in developing countries. 

However, the physiological responses of cultivars of different fruit species to heat treatments can 

vary by season and growing location. The differences in climate, soil type, season production 

practices, and fruit maturity at harvest might be responsible for this variation. 

2.8.1 Heat damage  

 Many studies and reviews have shown that heat treatments affect the products in both positive 

and negative ways in addition to disease control (Lurie, 1998; McDonald et al., 1999).Although 

my investigation has focussed on the positive response of commodities to heat treatment, at the 

same time underestimate the negative response. Lurie (1998), review stated that there is always a 

danger of tissue damage if fruits and vegetables are heat treated which may lead to increased 

decay development. Likewise, Fallik et al. (1996) reported that scanning electron microscopy 

analysis of red pepper fruit dipped in hot water at 55
 
°C for 3 min, showed both external and 

internal heat damage.  

 

 Some studies have reported the adverse effects of high temperature on tomato besides the 

advantage of disease pathogen control. For instance during the growing of the tomato crop (Thanh 

and Acedo Jr., 2006) reported that high temperature resulted to a restriction on lycopene (red 

colour) in the fruit. As a result the fruits developed light red or yellowish red colour since B-

carotene formation is produced instead. Some damages that can be sustained during heat 

treatments  include: increased rate of water loss, cracks (Fallik et al., 1996), discolouration on the 

surface or internal portion of the commodity, increased susceptibility to decay if surface is 
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injured, loss of acidity, reduced shelf-life, and inhibition of ripening, uneven ripening (Mitcham 

and Cantwell, 2002).  

 

Polenta et al. (2006) have also shown that heat treatments applied to mature green tomatoes 

resulted to an increase in anaerobic processes and the long-term heat stress inhibited colour 

development irrespective of storage temperature. Air heat treatment reduced titratable acidity by 

increasing malic acid metabolism. Acetaldehyde concentration was also increased when the fruits 

were immersed in hot water for 60 min which produced a low-aerobic environment (Polenta et al., 

2006).  

2.8.2 Application of heat treatment of tomatoes  

This section focuses on the effects of heat application on tomato and its postharvest quality. Such 

effects will include postharvest heat treatment on aspects of ripening, development of thermo 

tolerance and other physiological changes that occur as a result. For example: ethylene 

production, respiration softening, colour change and taste components such as soluble solids, 

acidity and volatile compounds. Studies have shown that heat treatment substitutes a non-

damaging physical treatment for chemical application to postharvest tomato diseases. Many 

studies have also dealt with specialized aspects of heat treatments; but this section will discuss 

two of the three methods in use to heat tomatoes; hot water and hot air.  

 

Lurie (1998) reported that many fruits and vegetables can tolerate exposure to water temperatures 

of 50-60
 
°C for up to 10 min, but shorter exposure at these temperatures are also effective to 

control many postharvest plant pathogens. McDonald et al. (1999) reported that hot water 

treatment at 42
0
C reduced decay by 60 % in tomato, whereas heat treatment had no effect on 

ripening of the fruit. It also follows that at red ripe stage heat treatment had no effect on firmness, 

while fruits treated at 39 and 42
 
°C were preferred in terms of taste and texture. Lu et al. (2010), 

found no significant difference in the taste, the total soluble solids (TSS)/titratable acidity (TA), or 

sugar/acid ratio. Also partially ripened green tomatoes treated with hot water (37-50
 

°C) 
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effectively reduce chilling injury when stored at 2
 
°C (Whitaker, 1993; Fallik et al., 1993). 

Dipping tomatoes for 1-2 min in water heated to 55
 
°C was effective to control Alternaria species 

(Fallik et al., 1993).    

 

Hot air treatment (35-40
 
°C) was reported to inhibit ethylene synthesis within hours in tomatoes 

(Lurie, 1998).  Furthermore, continuous storage of tomatoes in hot air of 30-40
 °
C affect the fruit 

firmness i.e. it becomes softened more slowly compared to when held at 20
 
°C. Flavour 

characteristics of the fruit such as titratable acidity (TA) declined in hot air heated tomatoes as 

well. Also ripe tomatoes heated in hot air and stored at 13
 
°C before ripening had highest volatile 

compounds compared to mature green fruits (Lurie, 1998). Chlorophyll content in tomato pericarp 

was also reported to have decreased during a hot air treatment of 35-40
 
°C consequently inhibits 

lycopene synthesis. 
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CHAPTER 3: PRODUCTION OF MORE ALTERNARIA ALTERNATA 

SPORE CULTURE ON AGAR MEDIA  

 3.0 Introduction  
The use of spores as inocula in phytopathological experiments has been reported (Morris and 

Nicholls, 1978). Although, it might be desirable to determine the concentration of spores in an aliquot 

suspension studies, as this might have an effect on the results. But in other studies it might not be 

relevant to carry out such procedure. There are methods of counting the number of spores in an 

aliquot suspension of fungal pathogens. For example, the use of haemocytometer (HC) slide, 

microscope, and colony forming unit (CFU).  

A haemocytometer can be defined as a specialised microscope slide that permits you to easily count 

the number of cells in the microscope’s field of view to determine the number of cells per millimetre 

in sample. Haemocytometer is characterised by etched glass counting chamber for estimating the 

number of cells in a suspension. The chamber holds a specific volume of liquid and has grid lines 

etched into the glass so that cells can easily be counted using a microscope.  

At the centre of the chamber the etched lines form a 25 square (5 × 5 square) grid. There are actually 

2 chambers on each haemocytometer.  In addition, there are 16 smaller squares etched into each of the 

25 squares which represent the visual aid for counting cells. This is the area of the chamber that you 

want to use for counting. When a coverslip is placed on the haemocytometer, the dimensions of all 25 

squares are:  

0.1 cm × 0.1 cm × 0.01 cm or 1/10,000
th
 of a millimetre 

Colony forming unit (CFU) is used to measure the number of bacteria and fungi spores. This process 

has its common use in medical mycology and plant pathology to determine the spore concentration of 

fungi in indoor and outdoor environment using artificial culture media. For example, the study by 

Takahashi (1997) showed that the concentration of fungi ‘indoor’ and flora ‘outdoor’ can be analysed 

using Reuter centrifugal air sampler and dichloran 18 % glycerol agar (DG18), and compared with the 

levels assessed with potato dextrose agar (PDA).  Conidia and spores are the inoculum of infection of 
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pathogenic fungi, but their numbers may differ with different microorganisms and method of 

multiplication on agar media. Therefore, the approximate number of spores used for the control of 

disease pathogen will be known to support other research work. 

3.1 GENERAL MATERIALS AND METHODS  

3.1.1 Biological and agar media materials  

Two strains of Alternaria alternata isolate were used for the experiments. They were purchased from 

the Commonwealth Agricultural Bureau International (CABI) and were accompanied with the 

following information:  

IMI number: 89342 Pathogen no. (PON) 74351 – First isolate was purchased from CABI 

A strain from rotted red tomato from the Writtle College, Research Glasshouse was used as the 

second isolate. 

Growth medium: Distilled water principal component agar also tap water agar + wheat straw (TWA + 

WS) 23
 
°C.  

Alternaria alternate f. sp. Lycopersici (Tomato pathogen) 

The isolate with the pathogen no. 74351 from CABI was used as the first isolate, while the second 

isolate of Alternaria was a strain of rotten red tomato cultivar ‘Delycassi’ grown in the Research 

Glasshouse of the Writtle College, Chelmsford. Two to three millimetre (2-3mm) diameter of the 

infected fruit skin was cut and layered flat on PDA in a 9 cm diameter petri-dish plate for re-culturing.  
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Agar media 

The agar media used for the experiments were potato dextrose agar (PDA) and corn meal agar 

(CMA). The materials were obtained from the science laboratory of the Writtle College, Chelmsford. 

The materials were purchased from Oxoid Ltd., Basingstoke Hampshire England. 

Components of Agar media: 

 PDA: Typical formula (g/l) potato extracts 4.0; dextrose 20.0; agar 15.0. Four gram (4.0g) of 

potato extract is equivalent to 200g infusion from potatoes – Oxoid Ltd., Basingstoke Hampshire 

England.  

 CMA: Typical formula (g/l); corn meal extract (from 50g whole maize) 2.0; agar 15.0; pH 6.0 

± 0.2 – Oxoid Ltd., Basingstoke, Hampshire England.  

3.1.2 Other materials used for culturing 

Lamina flow hood was used to re-culture the isolates under aseptic environment in the micro-biology 

laboratory. In addition, 70 % alcohol (methylated spirit) was used to clean the cabinet. Twenty 

millilitre (20 ml) PDA agar plate was inoculated with 2-3 mm mycelia plug to develop fresh culture of 

the isolate from CABI and the strain from the rotten tomato cultivar ‘Delycassi’. A 9cm diameter 

PDA plates were used to grow more spore culture of the isolates.  

Two sets of experiments were designed for each isolate; one set of ten plates was grown under white 

diurnal fluorescent light (12 h) 813 lux, RH 20-30 % and 26 ± 1 °C temp; while the second set was 

grown in the dark (Gallenkamp incubator) for eight days under 17-20 °C temperature. After 8 days, 

the plates were given additional light period for two or seven days according to the aims and 

objectives of this study. After two weeks the culture colony developed from the inoculated plates 

formed the stock culture of Alternaria used in this study.  
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3.1.3 ASSESSMENT METHODOLOGY   

3.1.3.1 Haemocytometer 

To determine the spore concentration in the suspension the cover slip was placed over the HC cell 

counting chamber and by using a Pasteur pipette a drop of the spore suspension was placed at the 

edge of the `V′ shaped of the chamber. The suspension was allowed to be drawn in to the chamber 

by capillary action. The HC was placed on the microscope stage and the number of spores in 1mm 

square area was counted and finally adjusted to 0.8 × 10
5
 spores per ml.  

Formula:  

               C × 1/10
-4 

× 1/Y
 
= spores count / ml (N) 

Where:  

            C = average of spores counts / square (16 small squares/large squares)  

            10
-4 

= overall volume of all 25 squares of the Neubauer counting chamber (ml) 

                                                                V = 1 mm × 1 mm × 0.1 mm = 0.1mm
3 
   

                                                                 1 mm
3 
= 0.001 ml  

                                                                 V = 0.1 mm
3 
= 0.0001 ml (10

-4 
ml)   

            N = spores count per ml  

            Y = utilized dilution (e.g.: 1/10, 1/100)  

   Method adopted with modifications from Leuca et al., (2008)   

3.1.3.2 Colony forming unit (cfu)  

One millilitre (1ml) of spore suspension of each of the dilution ratio was spread with sterilised 

glass rod on PDA plates and grown under 12 h diurnal fluorescent light (813 lux), 20-30 % RH 

and 26 °C temp. The number of colonies which developed on each plate was counted after the 

observation of visible growth in 24, 48 and 72 h respectively. The mean data of the replicates was 

determined by haemocytometer counting. This method is adopted with modifications from Morris 

and Nicholls (1978).   
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3.2 METHOD OF COUNTING THE NUMBER OF ALTERNARIA ALTERNATA 

CONIDIA SPORES BY USING HAEMOCYTOMETER  

3.2.1 Materials and Methods  

Alternaria alternata was obtained from CABI. More culture plates were developed by inoculating 9 

cm diameter Petri dish with about 2-3 mm mycelia plug and allowed to grow for 2-3 weeks before 

being used for this trial. Spore suspensions were prepared by cutting 2 mm deep of mycelia and agar 

from the edge of the two week old culture plate with a sterilised fine blade. This was transferred into 

10 ml sterile water containing 0.5 ml/l (v/v) Tween-20. The suspension was filtered through two 

layers of cheese cloth to remove adhering fungal mycelia. The number of spores in the resulting 

suspension was estimated with a haemocytometer (Figure 13). 

 

 

       Figure 13: Haemocytometer 

     3.3.1 Haemocytometer:  

To determine the spore concentration in the suspension the coverslip was placed over the 

haemocytometer counting chamber and by using a Pasteur pipette.  A drop of the spore 

suspension was placed at the edge of the `V′ shape of the chamber. The suspension was allowed to 

be drawn in to the chamber by capillary action. The haemocytometer was placed on the 

microscope stage and the number of spores in 1 mm square area was counted.  

Calculation formula:  
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C = n/v  

Where:  

C = spore concentration in cells/ml  

N = average number of spores/mm² area  

V = volume counted = 10⁻4  

Thus: C = n/10⁻4  

3.3.1.1 Results  

The results obtained from the Haemocytometer count of conidia spores of A. alternata are shown in 

Table 5. 

Table 5: Haemocytometer count of conidia spores of A. alternata 

Block A 16 conidiophores        3 conidiophores       5 conidiophores 

Block B 12 conidiophores        6 conidiophores        6 conidiophores 

 

Block mean = 48 ÷ 6 = 8  

C = 8 x 1/10⁻4 = 8/0.0001 = 80000  

   = 0.8 x 10
5
 spores/ml   

Method adapted with modifications from Wang et al. (2010).  

Method adapted with modifications from (Anonymous-Hyclone)  

3.3.1.2 Remark 

In conclusion, haemocytometer counting can be defined as more reliable method of inoculum 

preparation for fungal susceptibility testing.  
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3.3.2 THE COLONY FORMING UNIT (CFU) METHOD TO COUNT 

THE NUMBER OF CONIDIA SPORES OF ALTERNARIA 

ALTERNATA SPORE SUSPENSION 

3.3.2.1 Materials and Methods  

Alternaria spore suspensions were prepared by flooding a 2-3 week old culture on PDA Petri dish. 

The plate was soaked for one hour before being used for this trial. The spores were brushed off the 

plates with a transfer needle in to sterilized water supplemented with 0.5 ml/l Tween-20. One 

millilitre (1 ml) of this suspension was taken into a 10 ml measuring cylinder containing 9 ml of 

sterile water to make 1:10 dilution. One millilitre (1 ml) from this suspension was taken and added to 

9 ml sterile water for a 1:100 dilution ratio. One millilitre (1 ml) from each of this dilution ratio was 

spread with sterilised glass rod on PDA plates and grown under fluorescent light (813 lux), 12 h 

diurnal, RH 20-30 % and 26 °C temperature. After 24, 48 and 72 h incubation at 26 °C, the colonies 

were counted and results were expressed as the mean number of colony forming units (CFU) ml⁻
1
. 

3.3.2.2 Results  

3.3.2.2.1 Colony forming unit (cfu)  

The result of the cfu method of sporulation is shown in Table 6. 

Table 6: Colony forming unit method of sporulation  

Ratio 24hr 48hr 72hr 

1: 10  8, 9, 8 8,12, 10 29, 27, 27 

1:100 3,1,3 4, 1, 5 8, 7, 9  

 

Conclusion: It is evident that Alternaria forms 800 colony units/ml/cm
3 
in 72hr at 1:100 dilutions. 

72 hr: 8, 7, 9 = 24/3 = 8 × 100 

   = 800 cfu/ml/cm
3 
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3.4 Discussion 

Most importantly, difficulties were encountered in sporulation of Alternaria alternata on artificial 

media. This situation led to the use of different methods of sporulation of fungal pathogen with 

artificial media and materials reported by some studies. For example, potato dextrose agar (PDA), 

corn meal agar (CMA) and tap water in 9 cm diameter petri dishes, 15 ml glass bottles, and 1.5 ml 

Eppendorf vials were the materials used for this study. A lot of time was expended during this 

period which led to the purchase of fresh A. alternata strain culture from CABI. The purpose for 

this process is to determine the concentration of the inoculum that will effectively control the 

fungal pathogen using haemocytometer under light microscope.  

 

In a previous study, it was reported that A. alternata is an incalcitrant fungal pathogen that only 

forms conidiophores easily on natural substrate (Misaghi et al., 1978). Also the conidia are larger, 

have longer beaks and uniform size than those produced in vitro on common agar media. Studies 

have shown that the morphology of the conidia produced in vitro was influenced by the 

environment such as temperature, relative humidity (RH), and the constituent of the culture media 

(Misaghi et al., 1978).  

 

Sporulation did occur on corn meal agar (CMA) cultures after 3 days at 20
 
°C when incubated at 

lower temperature (9
 
°C), but the beak are lower in size and shorter. These results indicated that A. 

alternata conidia can be produced in vitro on CMA medium by exposing the culture to low 

temperatures during the early stages of conidia formation. Subsequently, spore suspension was 

prepared and the concentration of inoculum was estimated with a haemocytometer under 

microscope.  

3.5 Conclusion 

Based on the results and assessment of this trial it is obvious that the different methods that were 

reported in many studies of spore counting in aqueous suspension ended up adjusting the 

concentration to that of haemocytometer count.  Aberkane et al. (2002) reported that there is a 
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correlation between species distribution of fungi and percentages of agreement between colony 

counts and haemocytometer counts whereby, the percentage of agreement refers to the number of 

isolates whose cfu/ml obtained by colony counting agreed with the haemocytometer count. Hence, 

the final inoculum size was adjusted to a range of 1.0 × 10
6 

– 5.0 x 10
6 

spores/ml by microscopic 

enumeration with a cell-counting haemocytometer. Therefore, the result of this trial is in 

agreement with the haemocytometer outcome of 0.8 × 10
5
 spores/ml.  
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CHAPTER 4: IN-VITRO AND IN-VIVO HOT WATER 

TREATMENTS TO CONTROL THE DISEASE PATHOGEN OF 

TOMATO WITH ASSOCIATED METHOD DEVELOPMENT   

4.1 Introduction 

4.1.1 The production of Alternaria alternata spore cultures on plates using mycelia plug 

Many reports have shown that most pathological studies require culturing a pathogen either to provide 

sufficient infective propagules for inoculation or to study its taxonomy and morphology (Dhingra and 

Sinclair, 1985). Plant pathologists and breeders use conidia of the fungus as inoculum to screen plants 

for resistance to the fungus (Shahin and Shepard, 1978). However, studies have shown that some 

pathogens produce relatively fewer spores on artificial media than on natural substrate due to 

immaturity of the spores and probably the method applied for sporulation during in vitro studies 

(Shahin and Shepard, 1978).The spores are the inoculum with which the pathogen infects the plant. 

As a result, the amount and maturity of spores are important for an effective pathogen infection of the 

plant. The quality and quantity of spores are important because the nutrient content of the propagules 

is related to its ineffectiveness also the quantity of spores is important as it is through this material 

that the concentration is adjusted in many in vitro studies (Dhingra and Sinclair, 1985).  

Sporulation of Alternaria species has been enhanced by different methods; and these are peculiar to 

individual pathogen and specific host plant. For example, sporulation of Alternaria solani was 

enhanced by mycelia wounding, medium dehydration, and use of chemical additives (Shahin and 

Shepard, 1978). Temperature was reported to be an important factor in the development of disease of 

sunflower caused by Alternaria helianthi (Abbas et al., 1995). For instance, the conidia of Alternaria 

helianthi were produced; also the percentage germination and number of germ tubes increased at 18 

compared to 26 °C (Abbas et al., 1995).  

The use of mycelia to produce the conidiophores has been reported. In one study the sporulation of A. 

alternata was achieved by using mycelia plug (Maiti et al., 2007). In this study, the fungus that 

caused the foliar infections of Stevia rebaudiana was isolated on potato dextrose agar media (PDA) 

and produced abundant branched septate, brownish mycelia. The conidiophores were brown, variable 
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in length with conidia which were in short chains. Based on the morphological characters, the fungus 

was identified as Alternaria alternata and the identification was confirmed by pathogenicity tests 

(Maiti et al., 2007). 

Misaghi et al. (1978) reported that the conidia of Alternaria alternata (Fr.) Kiesler f. sp. lycopersici 

(the causal organism of tomato stem canker) collected from tomato plants in the field were 

significantly bigger, uniform in size and have longer beaks  than those obtained through artificial 

culture media. Furthermore, the conidia produced in vitro is influenced by the environment such as 

temperature, relative humidity (RH), and composition of culture media, while light was not required 

for sporulation, and neither the size, shape, nor the number of conidia formed are significantly 

affected by light (Misaghi et al., 1978).  

Micro-organisms require some environmental conditions to reproduce asexually or sexually, such 

condition includes light, temperature and culture media, under which they grow to form propagules or 

inoculum and develop vegetative growth (Dhingra and Sinclair, 1985). The range of these conditions 

allowing for sporulation and mycelia elongation is divided into minimum, maximum and the best 

condition for different fungi. For example, Alternaria species thrive on water agar or any other low 

level nutrient culture media and are commonly found in soil or on decaying plant tissue (Thomma, 

2003). The production of enough inoculum for research studies is very important likewise the 

concentration of the inoculum contained in the volume used is essential in the study.  

The influence of environment and culture media on morphology, taxonomy and sporulation of many 

fungi has been reported. For example, Monilinia laxa (Tamm and Fluckiger, 1993); Alternaria 

alternata (Misaghi et al., 1978; Grogan et al., 1975); Alternaria spp. (Thomma, 2003), but the 

importance of these factors has not been emphasised on A. alternata conidia initiation as well as the 

spore count on culture media. Post-harvest pathology requires the knowledge of the fungus, method of 

asexual or sexual production and the causal organism of the disease for trials. In view of the reliance 

on spores for infection, this study was done to show the influence of temperature, light and culture 

media on conidiophores, spore production and infection of tomato by A. alternata.     
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 4.1.2 The influence of light, temperature and culture media on sporulation of Alternaria 

alternata 

The Tomato fungal pathogen Alternaria alternata f. sp. lycopersici has different isolates such that 

each isolate infects different part of tomato plant. Some of these isolates are pathogenic; for example 

the strains that infect tomato plant causing stem canker; while others are saprophytic and are found on 

rotting tomatoes (Misaghi et al., 1978).The influence of environment on conidia sporulation and 

infectivity of Alternaria species have been reported in some studies. The number of spores produced 

was not affected by light but temperature has a profound effect on the initiation and size of conidia 

formed (Misaghi et al., 1978; Abbas et al., 1995). In the study, it was reported that more conidia were 

produced at 18-26 °C than higher temperatures.  

The effect of culture media on the morphology of conidia of Alternaria and other fungal species has 

been reported by Misaghi et al., (1978) and Grogan et al., (1975). For example, differences were 

noticed in the size of conidia and length of beaks of isolates of A. alternata resulting to variability in 

their morphology. However, the same morphological measurements were obtained between spores 

from stem cankers and conidiophores from in-vitro cultures on agar media (Grogan et al., 1975).  

Alternaria alternata f. sp. lycopersici have two isolates (Misaghi et al., 1978). Some are saprophytes 

that are found in soil and on decaying plant tissues (Thomma, 2003); while some species are 

pathogenic that cause a range of diseases on a large variety of crops as host plants such as apple, 

citrus and tomato. To identify the strains in Alternaria species; Grogan et al. (1975) described the 

disease symptom of this pathogen as dark-brown to black cankers with concentric zonation occur on 

stems near the soil or above ground. These cankers got in to the plant through wounds as a result of 

pruning leaf petioles.  Grogan et al. (1975) described the pathogen on culture of potato dextrose agar 

(PDA) under fluorescent lights as fluffy and off-white, but become darkish neutral grey with an off-

white border within 48 hours. As the mycelia elongate, the colony covers the entire plate, a lot of 

spores are produced and the colony becomes almost black. Colonies developed on corn meal agar 

(CMA) was reported to be dark-brown, few and scattered, but with raised concentric rings and 

abundant sporulation. 
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All isolates of Alternaria alternata grew on corn meal agar (CMA) at temperatures in the 6-33 °C 

range, but beyond this range none grew in that medium (Misaghi et al., 1978). Furthermore, colonies 

grown at 27 °C had the largest diameters while the mycelia elongation was observed on CMA cultures 

after 3 days of incubation at 25 °C (Misaghi et al., 1978). The study showed that by exposing the 

inoculated culture media to temperatures below this threshold within 12 hours during the early stages 

of conidia development increases the size and consequently the number of spores. Therefore, the 

report suggested that temperature has an influence on the production and number of Alternaria 

alternata conidiophores and these can be correlated with the increase in the number of conidia 

produced.  

Dhingra and Sinclair (1985) reported that most pathological studies that involved culturing a fungus 

on artificial media is either to show the morphological characteristics of the fungal pathogen or to 

increase the quantity of an infective inoculum. For example, the effect of culture media on sporulation 

of A. alternata isolates grown on pieces of stem in vitro, showed larger conidia than when grown on 

water agar, CMA or PDA (Grogan et al., 1975; Misaghi et al., 1978). Though, the beaks of the 

conidia formed in vitro on pieces of stem were slightly longer than those grown on corn meal agar. 

The result showed that A.alternata has pathotypes that grow on natural substrate rather than on 

artificial culture media. The length: width ratio of conidia from cultures grown on CMA or PDA was 

two times more than the stem pieces grown culture (Misaghi et al., 1978).  

Single spore can be used to identify fungi morphology and their characteristic features. The fungal 

cultures obtained from single spore isolation produce more and pure culture with typical 

characteristics of the fungi (Choi et al., 1999). The implication is that the identity of the fungi is 

specific to the species and its isolates so that it could be compared with the culture obtained from the 

single spore used to carry out the pathogenicity test of the pathogen. Also the identification of fungi 

through single spore method can provide extra characters for identification and the connections 

between species. In most cases identification of the phylum of some genetic species of fungi, such as 

comparison of both morphological and molecular characters require single spore (Choi et al., 1999). 

Masunaka et al. (2004) reported that the pathogenicity of each isolate of A. alternata was tested using 
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single spore of conidia suspension (1x10
5 

conidia/ml) formed in to spray to inoculate potato dextrose 

broth (PDB). Also, single spore of conidia suspension (1x10
5 

conidia/ml) of each isolate of A. 

alternata tested was used to determine the pathogenicity on detached leaves of citrus cv. Iyokan 

tangor and rough lemon (Masunaka et al., 2004). 

The study by Goh (1999), reported that investigations on the genetics of Neurospora species and 

yeasts necessitated making numerous single spore isolations of all spores in a single ascus. This to 

show that there is a connection between an ascomycete and a conidium when cultures are derived 

from both single ascospore and single conidiophore. In another study it was reported that the 

comparison of genetic analysis of both morphological and molecular characters of Fusarium and 

Colletotrichum involving the use of single pore culture produced profuse spores that have 

characteristics of these fungi (Goh and Hanlin, 1997).  

The report of another study showed that Alternaria alternata has many pathotypes (pathogenic 

variants) and are known to produce Host-Selective Toxins (HST). Despite the morphological 

similarity of these pathotypes, it is possible to identify each one of them based on host range and this 

host specificity is due to the production of a particular HST (Masunaka et al., 2004). Therefore, the 

quantity of spores produced by single spore culture can be used to test the fitness of fit of isolates of 

A. alternata. This may provide more detail information of a fungus which will enable other 

researchers to repeat experiments and may lead to a new discovery.  

  

In microbiological studies spores are used as inocula in plant pathological experiments of some fungal 

pathogen studies (Morris and Nicholls, 1978). The knowledge of fungal pathogens is important so as 

to determine the approximate spore concentration that causes the effective control of the pathogen on 

the host plant. The information obtained may be useful for future development of a management 

strategy for control of diseases. However, Haemocytometer has been used to estimate the 

concentration of many fungal suspensions in pathological studies and was found to be slow and 

difficult particularly when it involves large samples and fungi with tiny spores such as Alternaria 
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alternata (Morris and Nicholls, 1978). Therefore, an alternative method e.g. the dilution ratio of spore 

suspension and the number of spores contained therein may be used to estimate the concentration of 

the spore suspension.  

4.1.3. In- vitro treatments: the evaluation of different methods of hot water treatment of 

Alternaria spore suspension   

The susceptibility of freshly harvested produce to postharvest diseases increases during prolonged 

storage as a result of physiological changes that enable pathogens to develop in the fruits (Schirra et 

al., 2000; Fallik et al., 2001). These fungi cause different mould or canker on the plant tissue and 

organ leading to rot in storage. An example is Alternaria alternata which causes black mould disease 

on tomato fruit and canker on the stem (Akhtar et al., 2004). This fungus uses spores as the inoculum 

of infection through wound or opening on the skin of fruit. The in-vitro trial by Fallik et al. (1996) 

reported that the exposure time (ET50 ) that will kill 50% of spore in order to prevent germination and 

growth of Alternaria alternata on tomato was 8.8, 4.2 and 1.4 min at 45, 50 and 55 °C respectively, 

whereas in another study 3 min at 55 °C, 5 min at 50 °C and 10 min at 45⁰C inhibited Alternaria 

spore germination (Lurie et al., 1998). In another study it was reported that in-vitro spore suspension 

of Botrytis cinerea exposed to hot water treatment at 50 °C for 7 min prevented the germination of 

spores, whereas that of  Alternaria alternata failed to germinate when treated in hot water at 55 °C for 

7 min (Tohamy et al., 2004). The optimum treatment time and temperature to control the growth of 

Alternaria alternata spores with hot water in vitro will be determined and the result will be used to 

design the in vivo trials.  

4.1.4. In-vivo treatments   

Many fruits and vegetables can tolerate exposure to water temperatures of 50 - 60 °C for up to 10 min, 

but shorter exposure at these temperatures also control many postharvest plant pathogens (Lurie, 

1998). At 46 °C hot water dips of fruit will require 90 min before it can be regarded as being 

effective. In contrast, hot air treatment temperatures range from 40 to 70 °C for 1 to 24 h (Mitcham 

and Cantwell, 2002). Air treatments were influenced by the water content because of heat transfer. 

Also heated moist air is generally more effective at killing pathogens than dry air at the same 
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temperature (Mitcham and Cantwell, 2000).  However, Fallik et al. (1993) reported that most of the 

research on the effect of heat treatment at temperature below 40 °C e.g. 36 - 40 °C has  been with hot 

air.  

The experiments focused on the physiological process rather than the phytopathological effects and 

have involved mature green rather than pink or red fruit (Fallik et al., 1993). Another study reported 

that dipping of fruits and vegetables in hot water at 55 °C for 1 - 2 min was the optimal antifungal 

treatment for control of Alternaria, Fusarium, Rhizopus, and Mucor species on melon fruits (Fallik et 

al., 1993). 2004). In addition, dipping cantaloupe fruits inoculated with Fusarium simetectum, 

Cladosporium herbarum and A. alternata in hot water at 50 °C for about 3, 5 and 10 min inhibited the 

decay caused by these fungi (Tohamy et al., 2004).   

The positive effects of hot water treatment of mature green tomato fruit against Alternaria alternata 

have been documented (Couey, 1989; McDonald et al., 1999; Lurie et al., 1998). Studies have shown 

that hot water dipping of tomato fruit inhibited or reduced pathogen diseases (Schirra et al., 2000; 

Mitcham and Cantwell, 2002), improved fruit resistance to chilling injury (Ferguson et al., 2000; Lu 

et al., 2010) and subsequently maintain fruit quality in storage (Shao et al., 2011).  

Most reports of tomato heat treatment to control fungal pathogens started the trial with mature green 

fruit but information is scarce regarding the use of red-ripe tomato for the trial. The aim of this 

experiment is to show the effect of heat treatment at 30, 40, 45, 50 and 55 °C for 5, 10 and 20 min 

respectively on red ripe tomato and also the control of decay caused by Alternaria alternata.  The 

disease emergence of inoculated and heat treated fruits will be measured after 48, 72 and 96 h. The 

effect of heat treatment on the mycelia elongation will be measured after 96 h incubation period.  

4.2 Materials and Methods 

Two isolates of Alternaria alternata f. sp. lycopersici were used for this study. Alternaria alternata 

with isolate number 74351 was obtained from the Commonwealth Agricultural Bureaux International 

(CABI), Bakeham lane, Egham Surrey TW20 9TY England and served as the old stock culture. Two 

millimetre (2mm) sections of A. alternata infected ripe tomato cultivar `Delycassi`, grown in the 
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research glasshouse, Writtle College, Chelmsford Essex, England was cultured to serve as the second 

isolate. Mycelia plugs obtained from the culture colony were grown on agar plates and served as the 

fresh stock culture. The isolate with the pathogen number (PON) 74351 was maintained as stock 

culture for about six months on corn meal agar (CMA) glass bottle slants and stored at 6 °C before 

being used for this trial. The second isolate was a strain of the naturally infected tomatoes in the 

research glasshouse.  

To determine the effect of various factors that induce sporulation of A. alternata conidia, 2-3 mm 

diameter plug was taken from the edge of the pathogen 74351culture and transferred to 9 cm diameter 

petri dishes containing 20 ml of corn meal agar (CMA) or potato dextrose agar (PDA), and taped with 

Parafilm. A medium size rotted red tomato obtained from the glasshouse served as the source of the 

second isolate. The rotted tomato was washed with tap water; surface disinfected for 1 min in 1.5 % 

sodium hypochlorite solution and rinsed twice with sterile distilled water (SDW). For this trial two to 

three (2-3) mm sections were taken from the infected surface of the fruit and were centrally placed in 

90-mm diameter petri dish plates containing 20 ml of potato dextrose agar (PDA) or corn meal agar 

(CMA) (Oxoid Ltd., Basingstoke, Hants, England) respectively.  

 Effect of light—Five inoculated culture plates each were grown on CMA or PDA and exposed to 

fluorescent light 813 lux (12 h of light daily), temp 26 °C and RH 80-85 % for 10 or 15 days. Another 

set of cultures were incubated in the dark at temp of 17-20⁰C, RH 20-30 % for 8 days after which they 

were kept under 12 h of fluorescent light daily for additional 2 or 7 days. Conidia germination and 

mycelia elongation measurements were made on 4, 8, 10 and 15 days respectively. A piece of paper 

strip calibrated from 0-90 mm was taped under the plates to measure the radial growth of culture in 

the plates.                                  

Effect of temperature— Each of the five inoculated plates with either CMA or PDA were incubated at 

26 °C under fluorescent for 10 or 15 days; while another set of cultures were incubated at temp of 17-

20 °C for 8 days in the dark and later kept for additional 2 or 7 days under light. Measurement of 

culture growth was done after 2 or 7 days under fluorescent light.    
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Effect of culture media— CMA and PDA were the two culture media used to show the effect of 

substrate on sporulation of the conidia of A. alternata.  

This trial was divided in to two groups for the combination of light, temperature and culture media 

studies. One group is made of four sets: viz-a-viz; two sets in a group has five inoculated plates each 

that were put under fluorescent light 23 lux (12 h of fluorescent light daily), temp 26 °C and RH 80-

85 % for 10 or 15 days; another two sets were incubated in the dark at temp of 17-20 °C, RH 20-30 % 

for 8 days then incubated for 2 or 7 additional days at 26 °C under fluorescent light. In the first group, 

all the inoculated plates contained corn meal agar (CMA) as the culture medium. The second group 

consisted of the same materials as the former group but the only difference was that the petri dishes 

contained potato dextrose agar (PDA) as the culture medium. Conidia germination and measurements 

of mycelia elongation were made at the 4
th
, 8

th
, 10

th
 and 15

th
 day respectively. In addition a piece of 

paper strip measuring 90 mm length was placed under the petri dish plate to measure the germination 

of spore and mycelia elongation. This method enabled the radial growth of the culture colony on the 

plate to be measured without opening the petri dish. These trials were carried out to show the effect of 

light, temperature and culture media on conidia development, sporulation, spore count and 

pathogenicity between two strains of Alternaria alternata cultures developed at two different times.  

4.2.1. The production of spore suspension from PDA culture plates 

To produce more culture plates on potato dextrose agar (PDA) 3 mm diameter plugs were taken from 

the edge of fresh cultures that were developed from CABI isolate and the strain on the rotted tomato 

cultivar `Delycassi`. They were inoculated on 20 ml potato dextrose agar contained in 9 cm diameter 

plates. Ten inoculated plates were incubated for ten days under the temp of 26 °C, cool-white 

fluorescent light 813 lux and ambient RH 80-85 %. One millimetre (1mm) sample of mycelia plug 

containing conidia spores was taken from each of the fresh culture and was examined with sterile 

water on a slide under the microscope (X400) for the presence of conidiophores of Alternaria 

alternata. After identification the spores were subsequently harvested by flooding the surface of 

culture plates with sterile water. The conidia suspension was prepared in 0.05 % (v/v) Tween-20. The 

concentration of conidia spores was estimated by using a haemocytometer after filtration of the 
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suspension through two layers of sterile muslin white cloth. The adjusted concentration was 1.0x10
5 

spores per cm
3
. The experiment was repeated thrice with four replications and the method was 

adopted with modifications from Zhao et al., (2010).       

4.2.2. The production of spore suspension from CMA cultures plates  

For the production of culture plates on corn meal agar (CMA) 3 mm diameter plug was taken from 

Alternaria culture stock from CABI isolate and the strain of rotted tomato. They were inoculated on 

20 ml corn meal agar (CMA) contained in 9 cm diameter petri dish. Ten culture plates were grown on 

the culture medium and exposed to fluorescent light (813 lux), temp 26 °C and RH 80-85 % for ten 

days. After seven days five plates were transferred to a Gallenkamp incubator at temp of 17-20 °C in 

the dark for eight days to enhance sporulation (Misaghi et al., 1978).  

To determine the number of conidia spores produced, four disks 1 cm diameter were cut with a cork 

borer at about 1-2 cm from the centre of the fresh culture plates. Conidia were washed and brushed off 

the disks with a transfer needle in to 5 mL of water and the number of conidia spores in the resulting 

suspension was estimated with a haemocytometer and adjusted to 1.0 × 10
5
 spores/mL with sterile 

water. The trial was carried out thrice with four replications. The method was adopted with 

modifications from Misaghi et al., (1978). 

4.2.3. Improvised paper ruler 

Figure 14 represents the improvised ruler that was used for measuring the radial growth of the hyphae 

in the petri-dish. The 90 mm paper ruler was attached to the base of the petri-dish.  

102 



 

 

Figure 14: Improvised ruler for measuring the radial growth of the hyphae on the petri-dish 

Another trial was done to test the pathogenicity of A. alternata spores produced from agar media such 

as CMA or PDA using two isolates of A. alternata disease pathogen. The two isolates of the fungus 

were grown using CMA or PDA media under different temperature, light and darkness. Single spore 

of these isolates were used to inoculate the petri dishes. The inoculated 9 cm diameter plates were 

grown under 12 h diurnal fluorescent light at 26
 
°C for 10 or 15 days; or incubated in the dark 

(Gallenkamp) at temp of 17-20
 
°C RH 20-30 % for 8 days after which the plates were put under light 

for additional 2 or 7 days. The numbers of spores on 9 cm diameter dish plates were counted using the 

colony counter (Scientifica and Cook electronics Ltd [BPN 4652] Bolo Bridge Road, Acton, London, 

W3 8AU).  

To determine the number of conidia spores produced four disks 1cm diameter were cut with a cork 

borer at 1-2 cm from the centre of the fresh culture plate. The conidia were washed and brushed off 

the disks with a transfer needle into 5 ml of water and the number of conidia spore in the resulting 
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suspension was estimated with a haemocytometer and adjusted to 1.0 x 10
5 

spores per ml with sterile 

water. The experiment was carried out thrice with four replications. The method was adopted with 

modifications from Misaghi et al., (1978).  

A dissection microscope with illumination from both below and above was kept in a lamina flow 

cabinet. A compound microscope was kept nearby to check conidia and to observe germinating 

spores.  Alcohol (70 %) was used to clean the working surface while an alcohol lamp was also used to 

sterilize a fine forceps, extra fine scapel blade and a rigid picking needle. Two isolates of Alternaria 

alternata were used for this trial: one isolate from CABI with pathogen number 74351; the other was 

a strain of A. alternata obtained from an infected tomato cultivar `Delycassi′ grown in the research 

green house of Writtle College. Petri dishes containing potato-dextrose agar (PDA) or corn meal agar 

(CMA) were seeded with single conidiophore derived from isolate 74351 and from the strain of 

tomato cultivar `Delycassi`, using the following treatment: (i) CMA culture plate developed for 10 

days under (diurnal 12 h light) and 26 °C temp or (ii) 8 days incubation in the dark at about 17-20 °C, 

RH 20-30 % plus 2 days light culture; (iii) CMA plate grown for 15 days under (diurnal 12 h light) 

and 26 °C temp or (iv) 8 days incubation in the dark at 17-20 °C, RH 20-30% plus 7 days light 

culture. The single spores were grown on 9 cm diameter corn meal agar petri plates.  

A single spore was identified on the agar surface under light microscope and were removed by using a 

fine needle to put on corn meal agar plates and incubated under fluorescent light (813 lux), temp 26 

°C and relative humidity 80-85 % for eight days. Germination of spores and mycelia elongation was 

evaluated for each treatment at 4
th
, 8th, 10

th
, 15

th
 day respectively. A strip of paper 100 mm length 

was divided in to 90 mm ruler and was taped under petri dish plates to measure mycelia elongation on 

the plate. The experiment was carried out thrice with four replicates in each trial.  

4.2.4. Pathogenicity Tests                

The Koch postulates method of testing pathogenicity on fresh media was carried out to confirm the 

morphology and characters of A. alternata (Agrios, 2005).  Also pathogenicity test was carried out on 

fresh tomatoes using techniques of Tian and Bertolini (1995). Fresh tomato fruits were washed in 
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sterile distilled water and surface sterilized with 70 % sodium hypochloride solution. Two wounds (2 

mm deep) per fruit were made with a sterile fine scapel blade on the equatorial surface opposite each 

other on the disinfected tomatoes. Two millimetre diameter plugs of mycelia from the two isolates cut 

from the edge of an actively growing colony on agar were introduced into the open cut of the tomato. 

These were kept for 8 days at 20°C temperature. The disease symptoms were established and the 

inoculum from the infected fruits were taken and cultured. Pure cultures were identified according to 

Misaghi et al., (1978). The symptoms were identical of naturally infected tomatoes. Morphological 

characteristics of conidia and mycelia of the fungus that were re-isolated from inoculated fruits 

confirmed Koch`s postulates (Agrios, 2005).  

An identification test was carried out on the pure culture isolates obtained from the diseased tomato 

fruits. Each isolate was subjected to colony and microscopic examinations during which their 

structural features were observed. Identification of the fungus was based on the growth patterns, 

colour of mycelia and microscopic observation of vegetative and reproductive structures according to 

Misaghi et al., (1978). 

The dilution ratio method was used to estimate the concentration of spores in A. alternata suspension. 

Single spore culture of tomato isolates pathogen number 74351 or the strain from tomato cultivar 

`Delycassi′ grown on PDA or CMA were used to prepare the suspension. The cultures were grown at 

26 °C under (12 h diurnal light) or at 17- 20 °C in the dark for 8 days followed by an additional 2 or 7 

days fluorescent (813 lux) light. Spore suspensions were made from 10 and 15 days single spore 

culture and the spores developed on CMA or PDA media using the following treatments: 10 days (12 

h diurnal fluorescent light); 8 days dark plus 2 days light in addition; 15 days diurnal light; and 8 days 

dark plus 7 days additional light respectively.  

The surface of culture plate was soaked with sterile water for an hour and the conidia were removed 

by flooding the plates with sterile distilled water.  Tween 20 (0.03 % w/v) was added to the conidia 

suspension to prevent the conidia from sticking to either the agar surface or the petri dish walls during 
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collection. The resultant spore suspensions were filtered through two layers of sterile cheesecloth to 

remove the hyphae.  

One millilitre (1 ml) of each suspension was put in to 9 ml sterile water in a measuring cylinder to 

produce 1:10 dilution ratio. Similarly, 1 ml of this solution was added to 99 ml sterile water using a 

pipette of 1000 ul (1 ml) calibration to produce 1:100 dilution ratio. 1 ml of the aqueous suspension of 

spores from each isolate of A. alternata was grown on 90 mm diameter plastic petri dishes containing 

about 20 ml of PDA or CMA. The suspension was spread evenly over the agar surface using a sterile 

bent glass rod and the plates were incubated under 12 h diurnal white fluorescent white for eight days. 

The spores were counted with a Colony Counter model BPN 4652 (Scientifica & Cook electronics 

Ltd, 78 Bolo Bridge Road, Acton, London, W3 8AU, UK). Four replicates were made for each 

treatment and the experiment was repeated three times.  

4.2.5. In-vitro hot water treatments for disease control 

Fifteen day old single spore cultures of Alternaria alternata (Fr.) Keissler grown at 26 °C were used 

for preparing spore suspensions in sterile water supplemented with 0.03 % Tween-20. For testing the 

effect of hot water treatment on germination and mycelia growth, 10 ml of suspension containing 10
5 

spores ml
-1 

were added to 16 mm diameter test tubes and heated for 45 or 50 °C for 5 or 10 min, while 

non-heated spore suspensions were used as control. Four glass test tubes were used for each treatment.  

Sample aliquots (100 µl) of the suspensions were streaked aseptically on the surface of 9 cm diameter 

CMA plates. The spore germination and mycelia growth were measured at 48, 72 and 96 h 

respectively. A piece of paper cut to 10 cm length was used as a ruler and divided to 100 mm 

measurement. This ruler was taped under the plates to measure the growth of the spore at the 

respective days described above.   

The spore suspension was prepared by flooding the surface of 30 day old culture plate of Alternaria 

alternata. Ten millilitres (10 ml) of sterilized water was used for flooding the surface of the culture 

plate and scrapped with a sterile cooled needle. The resulting spore suspension was filtered through 

sterile cheese cloth into 250 ml flask. The filtrate was diluted with water and spore concentration was 
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adjusted with haemocytometer to 1x10
5 

spores per ml. Aliquots (1 ml) of spore suspension was 

pipetted into 1.5 ml Eppendorf vial and subjected to hot water treatment. Ten vials were put in hot 

water baths (Grant JB series) held at temp of 30, 40 and 50
 
°C each for 20, 30 and 60 min 

respectively. After the heating period the vials were immediately transferred to a cool water bath at 

room temp for 2 min to stop the heating process.  

After hot water treatment 0.2 ml of treated spore suspension was spread on six PDA plates and all the 

plates were incubated at room temp 26
 
°C under white fluorescent light. Also to serve as the control 

0.2 ml aliquot of untreated spore suspension was put on ten plates and incubated under the same 

conditions with the treatment. The spore germination was considered to have occurred when the 

mycelia had exceeded one half the lengths of the conidia. The mycelia elongation was measured after 

24 h. The effect of hot water treatment on the spore was determined as the mean percent germination 

of spores compared to the germination of the control plate. The method was adopted with 

modifications from: (Gramaje et al., 2010).  

4.2.6. In-vivo hot water treatments for disease control 

Tomato fruit of uniform size at breaker-turning red colour stage were purchased from a farm shop 

(var. unknown) and used for this experiment. Ten fruits were used for each temperature treatment. 

They were dipped in 70 % ethanol (IMS) for one minute and transferred to distil water for the same 

period. The fruits were air dried and a small cut of 2-3 mm diameter was made on the fruit and 

inoculated with mycelia plus spores plug (3 mm diameter) from a 10 day old culture of Alternaria into 

the equatorial area of the skin surface (pericarp). The inoculated fruits were dipped in an insulated hot 

water bath (JB Grant) at 40
 
°C, 45

 
°C and 50 °C for 10 min respectively. Another ten inoculated fruits 

were immersed in sterilized distil water at room temperature and served as control. After the heating 

treatment the fruits were put in a plastic cup covered with a lid and left at room temperature for 

incubation for 48, 72 and 96 h. The experiment was repeated three times.  

Tomatoes (var. Vanessa) were obtained from a commercial fruit and vegetable shop. Ten fruits were 

used for each temperature degree (50, 40 and 30
 
°C) and put in the hot water for 20 minute. Before 
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putting the tomatoes in the hot water each fruit was dipped in 70 % industrial methylated spirit (IMS; 

ethanol with 4 % methanol) for one minute and then transferred into sterile distil water (SDW) for 

another 1 min. All the fruits were inoculated with 100 µl of 10
5
/ml conidial suspension of Alternaria 

into 3 mm deep cut on the surface. After allowing the spore suspension to dry four fruits were dipped 

in insulated hot water bath (JB Grant) at 50, 40 and 30 °C for 20 min. separate water bath was used 

for each treatment. Similarly, ten inoculated fruits were immersed in sterile water (SDW) at room 

temperature and served as control. Also, ten inoculated fruits were also used as a check but were not 

dipped in water. The purpose is to show that the effect of hot water on Alternaria alternata is real not 

that the spores were washed away by water in the bath.  

Tomatoes were obtained from a commercial fruit and vegetable farm shop var. `Cossack′. Ten fruits 

per replicate were disinfected with 70 % Industrial methylated spirit (IMS) containing ethanol with 

less than 4 % methanol for 1 min before inoculation to conduct the experiment. Ten fruits were used 

for hot water treatment and likewise for the control as check. All the fruits were inoculated with 100 

µl
5
 ml

-1
 conidial suspension of Alternaria alternata into 3 mm cut in to the surface of the fruit. The 

spore suspension was allowed to air dry and ten fruit were dipped in insulated hot water bath (JB 

Grant) at 50 °C for 5min and another set of ten fruit were immersed in sterilized water for the same 

time as the control. At the end of the heating period of 5 min each fruit was put in a plastic and cover 

with a lid before transferred to a room temperature (20 °C) for incubation for 48 h, 72 h and 96 h. 

A big plastic tank containing 0.12 m³ volume of hot water from the tap was used to demonstrate the 

practical application of hot water treatment in rural farm. Fifty seven red tomato fruits were put in a 

plastic tray basket and weighed before immersed in hot water bath contained in the tank. The weight 

of the fruit was measured on a weighing scale in the laboratory and also the temperature of inside 

(core) of the fruit was determined using a metal rod thermometer probe (Food Check- E.T.I. Ltd 

Worthing, Sussex). The room temperature was 29 °C. Hot water was put in the tank and stirred to the 

required temperature of 55 °C. The unit maintained the water temperature in the treatment tank 

consistently at or slightly above the set point temperature. Red tomatoes of equal size and colour were 

immersed in the hot water for 5 min and final temperature of hot water was taken.   
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4.3. Results  

The mycelia plug of Alternaria alternata isolate pathogen no. 74351 and the strain from tomato 

cultivar `Delycassi` which were obtained from ten day old culture (10 day) and grown on corn meal 

agar (CMA), under white fluorescent light (813 lux), temperature 26 °C and RH 80-85 %; showed a 

significant difference (P < 0.05) for the main effects of isolate and media in four day period. 

Similarly, the isolates and media were significantly different in four days when the culture was 

developed on potato dextrose agar (PDA). The fourth (4
th
) day result showed no significant difference 

of interaction between the isolate and media (Figure 15). Furthermore, the result also showed that 

there was a significant difference between the two isolates and media for instance on CMA, but no 

significant difference on the isolates and media-PDA in 8
th
, 10

th
, and 15

th
 day period respectively 

(Figure 15). The graph also showed a clear difference between the media for PON-74351. Also from 

observation the PDA gave more rapid growth than CMA.   

                       

Figure 15: The mean radial growth of a mycelia plug from a 10 day old culture of Alternaria 

alternata at 26
 
°C at the 4

th
, 8

th
, 10

th
, and 15

th
 day after inoculation on different media isolates. Each 

data point is the mean of 30 plates. The error bars indicate LSD of each data point.  
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The result of the mycelia plug obtained from the leading edge of a fifteen day (15 day) old culture 

plate of isolate no. 74351 and the strain of tomato cultivar `Delycassi′ culture grown on (CMA) gave a 

significant difference (P < 0.05) between the isolates and the media in 4
th
, 8

th
, 10

th
, and 15

th
 day 

respectively. For the culture grown on PDA a significant difference was shown between the isolates 

and media for the 4
th 

day but no significant difference on the 8
th,

 10
th 

and 15
th 

day respectively (Figure 

16).    

 

Figure 16: The mean radial growth of a mycelia plug from a 15 day old culture of Alternaria 

alternata at 26 °C at the 4
th
, 8

th
, 10

th
, and 15

th
 day after inoculation on different media isolates. Each 

data point is the mean of 30 plates. The error bars indicate LSD of each data point.  

Another experiment was carried out with these two isolates and media but under cool temperature 

(17-20 °C) in the dark for eight days followed by additional two or seven days under white 

fluorescent light as the same  process described above. Two to three millimetre (2-3 mm) mycelia 

plug was cut from a 10 day old culture plate to carry out this trial. The result showed a highly 

significant (P < 0.05) F-value for the main effects of isolate and media in the 4
th
 day for the two 

culture media. Also there was a significant difference between these variables on CMA on the 10
th
 

0

10

20

30

40

50

60

4 8 10 15

M
yc

e
lia

 g
ro

w
th

 (
m

m
) 

@
 1

5
 d

ay
 

Time 

CMA PON-74351

CMA Delycassi

PDA PON-74351

PDA Delycassi

110 



 

and 15
th
 day. There was no significant difference between the isolates and media in 8 days on CMA 

and PDA culture likewise on the 10
th
 and 15

th
 day period (Figure 16).  

The analysis of variance of the tenth day old culture showed a significant difference between the two 

isolates and media on the 4
th
 day. On the 8

th
 day there was no significant difference between the 

isolates and media on PDA plates. Likewise, on the 10
th 

there was no significant difference between 

these variables. On CMA plates there was no significant difference between the isolates and media on 

the 8
th 

day but a significant difference was shown on the 10
th
. The 15

th
 day showed a significant 

difference between these factors on corn meal agar (CMA), while there was no significant difference 

on potato dextrose agar (PDA) (Figure 17). 

 

Figure 17: The mean radial growth of a mycelia plug from a 10 day old culture of Alternaria 

alternata    at 17 °C at the 4
th
, 8

th
, 10

th
, and 15

th
 day after inoculation on different media isolates. Each 

data point is the mean of 30 plates. The error bars indicate LSD of each data point.  

Another trial was performed using the same set of materials and variable factors but with mycelia 

plug obtained from 15 day old stock culture of A. alternata. In the fourth day the analysis of variance 

of the data showed a significant difference between the isolates and the media. On PDA there was a 
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highly significant difference (P < 0.001) between isolates; for example isolate with the no. 74351 and 

the strain from tomato cultivar `Delycassi′ (Figure 18). Also the result showed a significant difference 

in the interaction between the isolates and culture media. The eighth day result showed no significant 

difference between the isolates and media on CMA but a significant difference on PDA. The tenth day 

result showed no significant difference between the isolates and media (Figure 18). On the fifteenth 

day a significant difference was shown between the isolates and media on CMA but the difference 

was not significant on PDA. The interaction between these main effects was also significant in the 

analysis of variance (ANOVA) of the data on the 10
th
 and 15

th
 day (Figure 18).The overall results of 

this trial indicated that the radial growth of the mycelia on PDA plates were better than CMA. Further 

elongation of the mycelia was restricted to the available space in the petri dish after the tenth day 

(Figure 18).    

 

Figure 18: The mean radial growth of a mycelia plug from a 15 day old culture of Alternaria 

alternata    at 17 °C at the 4
th
, 8

th
, 10

th
, and 15

th
 day after inoculation on different media isolates. Each 

data point is the mean of 30 plates. The error bars indicate LSD of each data point.  

The single conidiophore germination and mycelia growth of the isolates tested were not significantly 

different at 26 °C (10 day old culture) in the 4
th
 and 8

th
 day period of investigation. However, the 
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analysis of variance for these data showed a highly significant (P < 0.001) F-value for the main effect 

of culture media at the same period of time. For the interactions of isolates × media there was a 

significant difference in the 4
th
 day, also after the 8

th
 day the result showed a highly significant 

difference between these main factors.  Furthermore, in the 10
th
 and 15

th
 day period of this study the 

results showed a highly significant difference between the isolates (P < 0.001), media as well as the 

interactions (Table 7).  

The single spore growth of 15 day old culture at 26°C showed that the germination and mycelia 

growth result was significantly different between the isolates and media on the 4
th
, 8

th
, 10

th
 and 15

th
 

day respectively, but on the 8
th
 day the difference between the isolates was not significant (Table 8). 

The difference was highly significant (P < 0.001) between the media in the 8
th
, 10

th
 and 15

th
 day. 

Based on the analysis of variance of the data obtained it was shown that there was a significant 

difference in the interactions between the isolates and media in all the investigated days except on the 

8
th 

day (Table 8).  
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 Table 7: Mycelia growth of germinated single spore of 10 day-old culture at 26 °C  

 Treatments 10 DC 

S.e.ds significance 

Day CMA PDA       

 PON-74351 Delycassi PON-74351 Delycassi I M I×M I M I×M 

4 14.3 15.5 21.5 18.3 0.67 0.67 0.95 0.161 0.001 0.006    

8 25.8 31.0 43.0 37.5 0.57 0.57 0.81 0.831 0.001 0.001 

10 29.0 38.0 45.0 44.5 0.90 0.90 1.28 < 0.001 0.001 0.001 

15 36.3 45.0 45.0 45.0 0.24 0.24 0.34 < 0.001 0.001 0.001 
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Table 8: Mycelia growth of germinated single spore of 15 day-old culture at 26 °C  

 Treatments 15 DC 

S.e.ds significance 

Day CMA PDA       

 PON-74351 Delycassi PON-74351 Delycassi I M I×M I M I×M 

4 16.0 14.8 21.0 14.8 0.86 0.86 1.22 < . 001 0.013 0.013 

8 32.5 31.5 43.0 37.5 1.90 1.90 2.69 0.113 0.001 0.259 

10 34.3 39.0 45.0 44.5 0.89 0.89 1.25 0.034 0.001 0.012   

15 39.3 43.8 45.0 45.0 0.67 0.67 0.95 0.006 0.001 0.006 
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The germination of spore and mycelia elongation of the single spore derived from the two isolates were 

also studied under cool temp of 17-20 °C and cultures were developed from the10
th
 and 15

th
 day old 

plates. The result of the radial growth of the mycelia of the single spore of 10 day old culture showed a 

significant difference (P < 0.05) between the isolates and media in the 4
th
, 8

th
 and 10

th
 day, except that 

there was no significant difference between the isolates on the 8
th
 day. The result also showed that the 

interactions between the isolates x media was significantly different after the 4
th
, 8

th
 and 10

th
 day (Table 

9). After the fifteenth (15
th
) day of the experiment, the mycelia have grown to the full diameter of 9 cm 

petri dish plates. As a result the analysis of variance (ANOVA) was recorded as missing data (Table 9). 

The single spore obtained from 15
th
 day old culture grown at 17-20 °C for eight days in the dark plus an 

additional seven days under fluorescent light, the mycelia length measurements showed a highly 

significant difference (P < 0.001) F-value between the main effects i.e. isolates and media and the 

interactions in the 4
th
, 8

th
, 10

th
 and 15

th
 day respectively. But the 4

th
 day result showed no significant 

difference between the culture media as well as the interactions (Table 10). The results of this trial to 

produce more spores on agar media using these methods have shown that potato dextrose agar (PDA) 

produced more and sufficient quantities than CMA and were used for further research.  
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Table 9: Mycelia growth of germinated single spore of 10 day-old culture at 17 - 20°C 

 Treatments 10 DC 

S.e.ds significance 

Day CMA PDA       

 PON-74351 Delycassi PON-74351 Delycassi I M I×M I M I×M 

4 13.5 13.3 20.8 17.0 0.59 0.59 0.83 0.005 .001 .011 

8 26.0 29.0 42.8 36.3 0.95 0.95 1.35 0.091 .001 .001      

10 31.0 37.0 45.0 44.3 0.63 0.63 0.88 <.001 .001 .001  

15 35.0 45.0 45.0 45.0 -- -- -- -- -- -- 
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Table 10: Mycelia growth of germinated single spore of 15 day-old culture at 17 - 20°C   

 

 

Treatments 15 DC 

S.e.ds significance 

Day CMA PDA       

 PON-74351 Delycassi PON-74351 Delycassi I M I×M I M I×M 

4 22.5 14.3 22.5 14.8 0.53 0.53 0.75 <.001 NS NS 

8 44.3 30.0 44.3 36.5 0.65 0.65 0.92 <.001 .001 .001 

10 45.0 36.0 45.0 45.0 0.29 0.29 0.41 <.001 .001 .001 

15 45.0 40.8 45.0 45.0 0.24 0.24 0.34 <.001 .001 .001 
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The results of the pathogenicity test of the spores obtained from the culture incubated at varying 

conditions are shown in Figures 19 – 22. An identification test was carried out on the pure culture of 

isolates obtained from the diseased tomato fruits. Each isolate was subjected to colony and 

microscopic examinations during which their structural features were observed. Identification of the 

fungus was based on the growth patterns, colour of mycelia and microscopic examinations of 

vegetative and reproductive structures according to Misaghi et al. (1978).   

For example, when the culture was incubated in the same media at different culture ages for instance 

10 days versus 15 days, no significant difference was observed in the growth of mycelia and 

morphology of Alternaria alternata culture on agar plates (Figure 19-20). Likewise, when same 

media was used and the samples incubated for different duration of time, no significant difference was 

observed in the growth of the mycelia and the morphology of Alternaria alternata culture on agar 

plates (Figures 19 and 20). The culture on PDA under fluorescent lights are at first fluffy and off-

white, but become dusky neutral grey with an off-white border within 48 h. After, the colony extends 

over the entire plate while sporulation is abundant and the colony becomes flat and nearly black. 

Colonies on CMA (corn meal agar) are dark brown sparse and are lying flat but with slightly raised 

concentric bands with intense sporulation (Figure 19-20).  

Pathogenicity test of Alternaria alternata was carried out on tomato fruits (Figures 21 and 22).  The 

results showed that when the fungal pathogen was incubated either in CMA (figure 21) or PDA 

(figure 22) no significant difference was observed in the infectivity of the fruit irrespective of the 

isolate of the pathogen. The symptoms were typical of naturally infected tomatoes. Morphological 

characteristics of conidia and mycelia of the fungus that were re-isolated from inoculated fruits 

confirmed Koch′s postulates (Agrios, 2005).  
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Figure 19: Pathogenicity test of A. alternata spore on CMA plates 

 

Figure 20: Pathogenicity test of A. alternata spore on PDA plates 

 

Figure 21: PON-74351 ‘CABI’ isolate 
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Figure 22: Strain of isolate on tomato cultivar (Delycassi) on PDA  
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The result of the spore count experiment using dilution ratio showed that the mean spore count was a 

function of dilution, media and isolates. For example, the suspension prepared from 10 day old 

culture, when diluted to 1:10 ratio and grown under dark at 17 °C the result showed the mean spore 

count of the isolates was equal under CMA. In the case of PDA the spore concentration decreased 

from about 700 to 500 in the culture colony (Figure 23). The dilution ratio 1:100 produced more 

spores of pathogen no. 74351 than the strain of tomato cultivar `Delycassi` under CMA and PDA 

(Figure 23).     

 

Figure 23: The mean spore count of 10 day old culture at 26°C incubation for 10 days under 

fluorescent light and at 17-20°C for 8 days dark plus 2 days light on CMA or PDA agar. Total number 

of spores produced at 26°C on CMA = 598, PDA = 2926 (1: 10 dilution); CMA = 1188, PDA = 760 

(1:100 dilutions). At 17-20°C number of spores produced on CMA = 1390, PDA = 2040 (1:10 

dilution); 8 days dark plus 2 days light: CMA = 1320, PDA = 660 (1:100 dilutions).  
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For instance, on CMA agar the mean spore count of isolate PON-74351was about 700 compared with 

Delycassi which was about 300 spores (Figure 23). There was a difference in the mean spore count 

between PON-74351 and Delycassi isolates under CMA or PDA agar with the exception of 1:10 

dilution of spores on CMA agar medium.  

When the spore concentration was adjusted to about 1:10 dilution ratio in the suspension prepared 

from 15 day old culture at 17 °C temp, the number of spores in the suspension of isolate PON-74351 

increased from about 400 in CMA to 700 in PDA culture media. While the mean spore count of the 

1:100 dilution of this isolate decreased from about 750 in CMA to about 700 as well in PDA. The 

suspension prepared from the strain of tomato cultivar Delycassi, in the 1:10 dilution the spore count 

increased from about 1100 in CMA to 1700 in PDA. Similarly, in 1:100 ratios the strain of tomato 

cultivar ‘Delycassi’ increased in CMA from about 100 to 400 in PDA (Figure 24). Overall more 

spores are produced on PDA than CMA but the two media produced sufficient quantities for further 

research.     
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Figure 24: The mean spore count of 15 day old culture at 26°C incubation for 15 days under 

fluorescent light and at 17- 20°C for 8 days dark plus 7 days light on CMA or PDA agar. Total 

number of spores produced at 26°C on CMA = 1180, PDA = 6360 (1:10); CMA = 104; PDA = 3820 

(1:100). At 17-20°C the number of spores produced on CMA = 4360, PDA = 6772 (1: 10); CMA = 

424, PDA = 1612 (1:100 dilution).  

There was an increase in the mean spore count of the dilution ratios of the two isolates on the agar 

media except PON-74351 on PDA where they have equal number of spores (Figure 24). The 

approximate number of spores in the culture colony of the suspension prepared from 10 day old 

culture grown at 26⁰C, showed a linear increase from CMA to PDA for the two isolates in 1:10 and 

1:100 dilution ratio with the exception of the isolate strain of tomato cultivar `Delycassi′ in 1:10 and 

1:100 dilution on CMA and PDA. For example, the spore count of the suspension of `Delycassi` in 

1:10 dilution grown on CMA is about 60 % less than the PDA, while in 1:100 ratio is about 50 % 

(Figure 25).     
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Figure 25: The mean spore count of 15 day old culture at 26 °C incubated for 10 days under 

fluorescent light and at 17-20°C for 8 days dark plus 2 days light on CMA or PDA agar. Total number 

of spores produced at 26°C on CMA = 1528, PDA = 2288 (1:10 dilution); CMA = 1240, PDA = 3040 

(1:100 dilution). At 17-20°C number of spores produced on CMA = 1310, PDA = 2440 (1:10); 8 days 

dark plus 2 days light: CMA = 2844, PDA = 2370 (1:100 dilution).  
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The result of 15 day old culture suspension grown under fluorescent light and temp 26
 
°C showed the 

mean spore count of the dilution ratio 1: 10 and 1: 100 increased from about 400 per culture plate on 

CMA to 800 on PDA for isolate no. 74351(Figure 26). While the number of spore contained in the 

suspension from the strain of tomato cultivar `Delycassi′ increased sharply from about 300 on CMA 

to 1800 on PDA in 1:10, while in ratio 1: 100 it was about 50 to 900 spore count (figure 26). 

Generally, PDA agar produced more spores of the isolates than CMA of the two dilution ratios. 

 

Figure 26: The mean spore count of 15 day old culture at 26 °C incubation for 15 days under 

fluorescent light and at 17-20°C for 8 days dark plus 7 days light on CMA or PDA agar. Total number 

of spores produced 26°C on CMA = 1576, PDA = 3220 (1:10); CMA = 1700, PDA = 3260 (1:100). 

At 17-20°C the number of spores produced on CMA = 1680, PDA = 2780 (1:10); CMA = 3088, PDA 

= 2868 (1:100 dilution). 

The result showed that the isolates produced abundant spores for further experiments on PDA than 

CMA agar media.  

4.3.1. In vitro hot water treatments for disease control 

Spore germination and mycelia growth of A. alternata were inhibited by heat treatment at 45 and 

50
o
C for 5 and 10 min (Figure 27). For example, after incubation on CMA at 26 °C, the heat-

treatment at 50 °C for 5 or 10 min of A. alternata spores exhibited a significant difference (P < 0.05) 
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in germination after 48 h compared with the heat treated spore at 45 °C (Figure 27). Likewise, a 

similar pattern was observed for hot water at 50 °C for 5 or 10 min treated spore for 72 h and 96 h. 

The inhibitory effect of hot water at 50 °C for 5 min sufficiently reduces the germination to the barest 

minimum (Figure 27).. At 45 °C for 5 and 10 min there was a significant difference in spore 

germination between the treatments compared with the control after 48 h (Figure 27). For instance, 

heat treatment of spores at 45
o
C for 5 and 10 min reduced the germination to about 45% and 50%.     

 

Figure 27: Hot water treatment of Alternaria alternata (In vitro) at 45 and 50
 
°C showing mean 

percentage spore germination rate after 48 h incubation. Error bars indicate standard error of mean of 

each data point. 

The above figure illustrates the inhibitory effect of hot water treatment on spore germination of A. 

alternata. After 48 h of incubation of culture plates at 26
 
°C, the heat-treated Alternaria alternata 

spores at 50 °C for 5and10 min were significantly different (P < 0.05) in germination percentage 

compared to the non-heat treated control. Whereas, the inhibitory effect of heat treatment at 50
 
°C 

diminished when the treatment time was increased from 5 to 10 min. For example, the germination rate 

was 1 % in 5 min, while in 10 min it increased to 10 % of the control (Figure 27). After 48 h incubation 

of the culture plate at 26
 
°C there was a significant difference in spore germination between the heat 

0

20

40

60

80

100

120

control 5 10

 G
e

rm
in

at
io

n
 R

at
e

 %
 r

e
la

ti
ve

 t
o

 c
o

n
tr

o
l 

Min 

45⁰C 

50⁰C 

127 



 

treated spores at 45
 
°C for 5, 10 min and the control. For example, in 5 min the germination percent was 

45 % while in 10 min increased to 52 % of the control (Figure 27).  

 

Figure 28: Hot water treatment of Alternaria alternata (In vitro) at 45 and 50
 
°C showing mean 

percentage spore germination rate after 72 h incubation. Error bars indicate standard error of mean of 

each data point. 

When the culture colony was incubated for 72 h at 26 °C, there was no significant difference in the 

level of spore germination in heat treated spores at 50
 
°C for 5 or 10 min, but there was a significant 

difference in percentage germination compared with the control (Figure 28). But when the temp of 

hot water was reduced to 45
 
°C, the result showed a significant difference in percentage germination 

of 5 and 10 min treatments (Figure 28). For example, heat treatment in 5 min showed about 6 % 

germination; while in 10 min the percentage rose to 16 %. This is similar to the result obtained for hot 

water treatment at 50
 
°C in 5 and 10 min during incubation for 48 h (Figure 28).  
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Figure 29: Hot water treatment of Alternaria alternata (In vitro) at 45 and 50
 
°C showing mean 

percentage spore germination rate after 96 h incubation. Bars indicate standard error of mean of each 

data point.  

After 96 h, all the treated spores on agar plate failed to germinate in either 5 or 10 min hot water 

treatment at 50 °C. At 45 °C hot water treatment the result showed a significant difference (P < 0.05) 

of germination percentage in 5 and 10 min as well as the control (Figure 29).  
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Figure 30: Hot water treatment of Alternaria alternata (in vitro) at 30, 40 and 50
 
°C showing 

percentage spore germination. Error bars indicate standard error of difference of the mean of each 

replication (n = 30).  

The result above showed that increase in both the temperature of hot water and time of exposure to 

heat is inversely related to the germination of spores on all the tested temperatures. For example, the 

germination of spores was totally prevented at 50
o
C heat treatment for 60 min, while for 30 min and 

20 min the percentage germination was 10 and 15 % of the control (Figure 30). The percentage 

germination of hot water treatment of spore suspension at 50
o
C for 20, 30 and 60 min were 

significantly different compared with 40 and 30
o
C for 20, 30, 60 min and the control respectively 

(Figure 30). Also there was no significant difference between heat treated spores at 40 and 30
o
C for 

20 and 30 min but for 30 min exposure there was a significant difference between 40 and between 

30
o
C compared with the control. Furthermore, 60 min of heat treatment at 40 and 30

o
C were 

significantly different and with the control (Figure 30).  
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4.3.2. In vivo hot water treatments for disease control 

  

Figure 31: Disease emergence of red tomato fruit inoculated with Alternaria alternata and then 

heated at 40
 
°C, 45

 
°C and 50

 
°C for 10 min. Error bars indicate standard error of difference of the 

mean of 30 tomatoes.  

Grade scale 0 = no rot; 1 = decay up to 0.5cm in diameter without sporulation; 2 = decay between 

0.5 and 1.0 cm in diameter with sporulation beginning; 3 = decay between 1.0 and 2.5 cm in 

diameter with sporulation; 4 = decay between 2.5 and 4.0 in diameter with sporulation and 
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mycelium; 5 = completely rotten tomato covered with mycelium (Method adapted with 

modification from Lurie et al., 1998). 

 

The result of hot water treatment at 40, 45 and 50
 
°C for 10 min of tomato fruit showed a 

significant difference (P < 0.05) compared to the control after 48, 72 and 96 h, respectively 

(Figure 31). However, the results showed an inverse relationship between temperature and 

incubation time.  

 

Figure 32: Disease emergence of red tomato fruit inoculated with Alternaria alternata and then 

heated at 50 °C for 20 min. Fruit was examined after 48, 72 and 96 h at room temperature. Bars 

indicate standard error of difference of the mean of 30 tomatoes.  
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Grade scale 0 = no rot; 1 = decay up to 0.5cm in diameter without sporulation; 2 = decay between 0.5 

and 1.0 cm in diameter with sporulation beginning; 3 = decay between 1.0 and 2.5 cm in diameter 

with sporulation; 4 = decay between 2.5 and 4.0 in diameter with sporulation and mycelium; 5 = 

completely rotten tomato covered with mycelium (Method adopted with modification from Lurie et 

al., 1998). HWT - Hot water treatments. 

Figure 32 shows disease emergence of red tomato inoculated with Alternaria alternata spores heated 

at 50 °C for 20 min and examined after 48, 72 and 96 h at room temperature. At 48 h, 72 and 96 h 

respectively, the disease emergence is significantly different compared with tomato inoculated and put 

in sterilized water at room temperature and inoculated fruit with no water. There was no significant 

difference between the control treatments i.e. inoculated tomato dipped in sterilized water and 

inoculated but no water at room temperature.   
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Figure 33: Disease emergence of red tomato fruit inoculated with Alternaria alternata and then 

heated at 40
 
°C for 20 min. Fruit was examined after 48, 72 and 96 h at room temperature. The error 

bars indicate standard error of difference of the mean of 30 tomatoes.  

Grade scale 0 = no rot; 1 = decay up to 0.5cm in diameter without sporulation; 2 = decay between 0.5 

and 1.0 cm in diameter with sporulation beginning; 3 = decay between 1.0 and 2.5 cm in diameter 

with sporulation; 4 = decay between 2.5 and 4.0 in diameter with sporulation and mycelium; 5 = 

completely rotten tomato covered with mycelium (Method adapted with modification from Lurie et 

al., 1998). 

Figure 33 shows disease emergence of red tomato inoculated with Alternaria alternata spores heated 

at 40 °C for 20 min and examined after 48, 72 and 96 h at room temperature. The result showed that at 

48 h, 72 and 96 h respectively, the disease emergence was significantly different compared with the 

fruit inoculated and put in sterilized water at room temperature, and inoculated fruit with no water. 
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Also after 48, 72 and 96 h respectively, the result showed a significant difference between the two 

control treatments (Figure 33). 

 

Figure 34: Disease emergence of red tomato fruit inoculated with Alternaria alternata and then 

heated at 30
 
°C for 20 min. Bars indicate standard error of difference of the mean of 30 tomatoes. 

Fruit was examined after 48, 72 and 96 h at room temperature.  

Grade scale 0 = no rot; 1 = decay up to 0.5cm in diameter without sporulation; 2 = decay between 0.5 

and 1.0 cm in diameter with sporulation beginning; 3 = decay between 1.0 and 2.5 cm in diameter 

with sporulation; 4 = decay between 2.5 and 4.0 in diameter with sporulation and mycelium; 5 = 

completely rotten tomato covered with mycelium (Method adapted with modification from Lurie et 

al., 1998). 

In the case of Figure 34, the disease emergence of inoculated hot water treated fruits at 30C for 20 

min showed a significant difference between the treatment and the control after 48, 72 and 96 h 

respectively, with the exception of the treatment compared with the inoculated sterilized water at 
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room temperature For example after 48 h, the disease emergence was reduced to about 60 % 

compared with inoculated fruit dipped in sterilized water.  

 

Figure 35: The effect of an increasing temperature of hot water dip at 30, 40 and 50
 
°C for 20 min on 

mycelia elongation of Alternaria alternata on red tomato. Bars indicate standard error of difference of 

the mean of 30 tomatoes.  Mycelia elongation was evaluated after 96 h. Mycelia elongation is 

measured as per mm of affected area. HWT – Hot water treatment; SW – sterilized water.   

In Figure 35, the effect of increasing temperature of hot water dipping was investigated. In this trial, 

the temperatures tested were 30, 40 and 50 °C for 20 min. At 50 °C the mycelia elongation was 

completely reduced and was significantly different compared with 40 and 30 °C. Furthermore, the 

result showed no significant difference in mycelia elongation between the inoculated and heat treated 

tomato at 40 and 30ᵒC (Figure 35).  
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Figure 36: Disease emergence of red tomato fruit inoculated with Alternaria alternata and then 

heated at 50
 
°C for 5 min. Bars indicate standard error of difference of the mean of 30 tomatoes.  

Grade scale 0 = no rot; 1 = decay up to 0.5cm in diameter without sporulation; 2 = decay between 0.5 

and 1.0 cm in diameter with sporulation beginning; 3 = decay between 1.0 and 2.5 cm in diameter 

with sporulation; 4 = decay between 2.5 and 4.0 in diameter with sporulation and mycelium; 5 = 

completely rotten tomato covered with mycelium (Method adapted with modification from Lurie et 

al., 1998). 

The disease emergence of red tomato fruit inoculated with Alternaria alternata and then heated at 50
 

°C for 5 min examined after 48, 72, and 96 h incubation is shown in Figure 36. The disease 

emergence has a linear relationship with time of incubation i.e. after 48 h to 96 h. For example, the 

disease emergence index increased from 2 in 48 to 3 in 72 and to 4 in 96 h. Furthermore, the result 

also showed a significant difference in disease emergence index (P ≤ 0.05) between the heat treated 

0

1

2

3

4

5

6

48 hr 72 hr 96 hr

D
is

e
as

e
 E

m
e

rg
e

n
ce

 In
d

e
x 

Time (Hour) 

Inoculated HWT

Inoculated sterilized water
room temp

137 



 

tomatoes compared with inoculated fruit dipped in sterile water at room temperature after 72 h 

incubation.  

 

Figure 37: Disease emergence of red tomato fruit inoculated with Alternaria alternata and then 

heated at 55
 
°C for 5 min. Fruit was examined after 48, 72 and 96 h at room temperature. Bars 

indicate standard error of difference of the mean of 30 fruits. Grade scale 0 = no rot, 5 = rotten tomato 

covered with mycelium (Method adopted with modification from Lurie et al., 1998).  

Figure 37 shows the disease emergence of red tomato fruit inoculated with Alternaria alternata spores 

and then heated at 55 °C for 5 min examined after 48, 72, and 96 h incubation. After 72 and 96 h of 

incubation the inoculated and heat treated fruits showed a significant difference compared with 

inoculated sterilized water at room temperature which served as the control treatment. However, no 

significant difference was shown in disease emergence between the inoculated and treated fruit and 
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the control after 48 h. About 30 % of the fruits were observed to split following hot water treatment at 

55 °C for 5 min (Figure 38). 

 

Figure 38: Hot water treatment at 55
 
°C for 5 min of inoculated tomato fruit in a basket showing the 

splitting of tomato fruits (about 30 % split).  

4.4. 1. Discussion  

Maximum radial length was recorded for the two isolates on PDA after 8 days either with the 10 or 15 

days culture colony growth at 17 or 26
 
°C temp. Radial growth ranged from 8.8 mm to 45 mm of A. 

alternata isolates on tested media at 25 ± 1 °C (Figure 15 and 16). However, the growth of the 

isolates was not significantly different on PDA at 8
th
, 10

th
 and 15

th
 day respectively, except in the 4

th
 

day. In general, the radial growth of the isolates was better on PDA than CMA in all days of the 

measurement except the 4
th
 day. In addition, it was observed that the mycelia elongated faster at the 

initial 4-5 days of the experiment and continue to grow fast until the 8
th
 day where the growth started 

to level off. The result also showed that isolate PON-74351development was better than the strain of 

rotted tomato either on the agar media, dark and light or at the temperature tested. This is an  

indication that PDA gives more rapid growth than CMA either at cool or high temperatures.  
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In the comparison of figure 15 and 16, figure 17 and 18 the result showed the effect of temperature on 

the elongation of mycelia of A. alternata on culture plates. For example, the isolates elongated faster 

at 26°C temp irrespective of the age of culture or agar media. Therefore, this result agreed with the 

report of Tian and Bertolini (1995), which stated that temperature is generally considered to be one of 

the most important environmental factors that affect the germination of spores also the elongation of 

mycelia of the pathogens in vitro. Also high temperature favours the initiation and development of 

infectious plant diseases in vivo.  

The conidiophores produced in A. alternata are big enough to be identified on agar media compared 

to a single spore. In the study of Grogan et al. (1975) a comparison of spores and conidiophores from 

field and greenhouse stem cankers and in vitro culture on CMA and propylene-oxide-sterilised tomato 

stems showed that its measurement agree quite well with the published description of A. alternata 

(Fr.) Keissler. Although, conidiophores are produced on the mycelia hyphae as the growth continue 

on the culture media. In comparison the single spore growth of 10 day and 15 day old culture at 26ᵒC  

and at 17-20ᵒC of the isolates were similar on the agar media. This result agreed with study of Grogan 

et al., (1975). 

The influence of the composition of the media on the morphology of conidia of A. alternata and other 

Alternaria species has been reported by Misaghi et al. (1998). There was also a similarity between the 

stem canker organisms in morphology with A. alternata from rotted ripe tomato fruits. In this trial, the 

pathogenicity test of isolates in vitro on the agar media showed no difference in growth of mycelia – 

as indicated in Figure 19 and 20. Therefore, this result agreed with Grogan et al., (1975) and Misaghi 

et al., (1998) studies.  

Grogan et al. (1975) reported that when fruits were inoculated through superficial wounds into the 

carpel wall, after 8 days and the rotted surfaces become blackened by dense sporulation – as indicated 

in Figure 19 and 20. However, isolation from diseased fruit yielded cultures of Alternaria alternata 

similar in all respect to the isolates used for inoculation. Despite the fact that figure 21 and 22 have 

different pathotypes, there is no difference in infectivity of tomato.  
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The study by Morris and Nicholls (1978) stated that spore suspensions are used widely as inocula in 

phytopathological experiments. The use of haemocytometer to count spores is slow and difficult to 

view under microscope especially if the size of fungal spores is small and the suspension contains 

large number. There are variations in the count made with the haemocytometer especially if the 

concentration is high, when many spores lay on boundary lines between square of the specialised 

microscope.  

However, under fluorescent light at 26
 
°C the concentration of spores in the suspension is relatively 

equal in 1:100 dilutions. The findings agreed with the study of Tian and Bertolini (1995) which stated 

that sporulation was considered influenced by temperature in pathogenic fungi. Similarly, Wilcox 

(1989) experiment with variable inoculum levels that disease incidence was a function of inoculum 

concentration in addition to temperature. For example, the brown rot blossom blight of sour cherry 

inoculum concentration was increased from 50 to 500 and 5,000 conidia/ml at 16 °C temp; the disease 

incidence was 11, 47 and 81 %, respectively. However, when the temperature was increased and 

concentration remained the same the blight incidence rose to 26, 59 and 95 %, respectively (Wilcox, 

1989). Therefore, this result showed that the dilution rate and mean spore count depend on the 

concentration of the suspension for infectivity irrespective of the agar media. This experiment agreed 

with Wilcox (1989) report, hence, at higher concentration (1:10) more spores were produced from the 

isolates for further research study.  

4.4.2. In vitro 

Heat treatments have a direct effect on spore and mycelia elongation or outright killing germinating 

spores, thus reducing the effective inoculum size and minimising rots (Schirra et al., 2000; Fallik, 

2004). In the present study, it was found that heat treatment directly inhibited spore germination and 

by implication the mycelia elongation particularly at 50
 
°C. The results confirmed previous findings 

about the effect of heat treatment on A. alternata and Botrytis cinerea (two pathogenic fungi of 

tomato) reported by Lurie et al., 1998 and Fallik et al., 1996. The studies stated that when fungi are 

exposed to severe abiotic stresses including heat stress, the thermal shock happened within few 

minutes such that germination of spores might be inhibited. However, giving the spores more time of 
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exposure to heat treatment may wear-out the thermal effect or the spores might have developed a 

resistance to heat treatment.  

In this experiment the spore of Alternaria alternata proved to be erratic to heat treatment at high 

temperature and lower exposure time because the germination rate was expected to decrease on agar 

plates from 5 min to 10 min heat treated spores at 50
 
°C in 48 h incubation period (Figure 29). These 

indicated that the heat treatment only delayed the germination process for a short time of exposure 

and possibly resumed the process when the spores are exposed to an increase in treatment time and 

may have developed a resistance to heat treatment. This result agreed with the study of Lurie et al., 

1998 and Fallik et al., 1996. Another consideration for this situation that occurred when the culture 

plates of 5 min treatment had a lower germination compared to 10 min after 48 h incubation at 26
ᵒ
C 

might be due to the exposure of spores to high temp and the spore suspension might have contained 

some germinated spores. Barkai-Golan (1989) studies have reported that germinated spores are more 

sensitive to heat than non-germinated spores. Consequently, the situation at 5 min exposure might be 

as a result of heat on the germinated spores. Therefore, the result of this trial agreed with the study of 

Barkai-Golan (1989).  

Lurie et al. (1998) reported that hot water treatment for 10 min at 45
0
C decreased Botrytis 

germination to below 10 % while 5 min at 50
 
°C prevented it. Germination of Alternaria alternata 

was more resistant to heat and some germination occurred during all the time and temperature regimes 

tested. For example, Alternaria growth was inhibited not prevented by all treatments e.g. 40 % at 45 

°C in 10 min, 38 % at 50 °C in 5 min and 15 % at 55 °C in 5 min. Also the use of hot water dips or 

vapour heat at 39-52 °C for 2-10 min was reported to control the in vitro and in vivo spore 

germination and decay development of postharvest fungi in tomato (Fallik et al., 1993). Tohamy et al. 

(2004) also examined in vitro effect of hot water treatment on fungi. A linear growth of Botrytis and 

Alternaria was obtained from standardised number of spore treatment at 45 and 50
 
°C for different 

periods and was inversely related to the temperature treatments and time of dipping. Therefore, all 

these reports of studies agreed with the results of this trial.  
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The result of in vitro trial indicated that increase in both the temperature of hot water and time of 

spore exposure to heat is inversely related to the germination of spores (Figure 30). Lurie et al., 

(1998), study has shown that germination of fungal pathogens such as Alternaria alternata and 

Botrytis cinerea could be inhibited or prevented by extended periods of temperature above 40 °C; for 

example 10 min at 45 °C decreased Botrytis cinerea to below 10 % while 5 min at 50 °C was enough 

to prevent the germination of spores and elongation of mycelia. But in Alternaria some germination 

occurred with Alternaria heated spores. This report agreed with this study because germination of 

Alternaria spores occurred at all time and temperature regimes except at 50 °C for 60 min. The effect 

of heat on the pathogen depends on the state of development of the inoculum, for example germinated 

spore and elongated mycelia are more sensitive to heat than non-germinated spore (Lurie et al., 1998).  

In another study by Barkai-Golan (1989); Barkai-Golan (2001) the reports showed that in a given 

species of fungi, spore inactivation increases with both temperature and duration of treatment, for 

example the conidiophores of Alternaria alternata was inactivated by heat treatment at 48 °C  for 2 

min or at 46 °C for 4 min (Barkai-Golan, 2001). In this study the spore germination was reduced at 50
 

°C with the exposure time starting from 5 min which finally resulted to total inhibition in 60 min. 

Also spore sensitivity depends on their physiological state such that germinated fungal spores are 

more sensitive to heat than non-germinated spores (Barkai-Golan, 1973). Therefore, the result of this 

trial might be translated to mean that the germinated spores are inhibited at 50ᵒC as a result the 

percentage germination of spores was less compared to other temperature tested. Therefore, this report 

agreed with the study of Barkai-Golan, (1973). 

4.4.3. In vivo       

The result showed that the disease emergence and mycelia elongation which was measured by an 

empirical scale for disease emergence were inversely related respectively to the temperature increase 

at 40, 45 and 50 °C for 10 min and the length of incubation period (Figure 31). Temperature and 

incubation time are the factors found to be significant compared with control (Figure 31). Lurie 

(1998) reported that many fruits and vegetables tolerate exposure to hot water temperatures of 50 - 60
 

°C for up to 10 min, so also Tohamy et al., (2004) reported that dipping cantaloupe fruits inoculated 
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with Alternaria alternata in hot water at 50
o
C for 10 min inhibited the decay by this fungus. This 

experiment also showed that the development of A. alternata decay of tomato was reduced to a 

minimal level as was observed at 50°C for 10 min after 48 h incubation period. Therefore, this result 

agreed with Lurie (1998) and Tohamy et al., (2004) studies. 

The following hot water treatment of inoculated tomato fruits at 50, 40 and 30
o
C for 20 min the 

disease emergence was inhibited when compared with control after 48, 72 and 96 h respectively 

(Figures 32 - 35). The use of water dips at 38 to 60
o
C for 2 to 60 min has been reported to control in 

vivo and in vitro spore germination and decay development of postharvest fungi in melons (Klein and 

Lurie 1992). The result of this trial agreed with this report. The mycelia elongation measurements 

have shown that treatment at 40 and 30 °C reduced decay by 50 and 40 %, while at 50 °C the mycelia 

elongation was prevented completely (Figure 35). Barkai-Golan (1973) study showed that fungal 

disease of fruits was controlled by hot water at 38-50 °C for 5-60 min and as a result achieve a 

significant decay reduction ranging from 40-60 %. The report of Biggs et al., (1988) stated that heat 

treatment at 30
o
C for 20 min reduced germination of fungal spore on agar media as a result reduced 

the mycelia elongation. Therefore, this result is in agreement with Barkai-Golan (1973) and Biggs et 

al., (1988) studies. Lurie (1998) also reported that many fruits and vegetables can tolerate exposure to 

heat treatment at 50-60 °C for about 90 min also this result was in agreement with this study.  

In another experiment the result showed that dipping inoculated red tomato fruits in hot water at 50 

(Figure 36) and 55 °C (Figure 37) reduced fruit decay caused by Alternaria alternata compared with 

control after 72 h incubation. The severity of infection of the disease pathogen was gradually reduced 

as water temperature rose from 50 to 55 °C (Figures 36 and 37). At 55 °C the hot water treatment 

reduced the decay incidence compared with control after 72 h incubation period (Figure 37). Thus, it 

follows from reports of studies that 3 min at 55 °C, 5 min at 50 °C and 10 min at 45 °C reduced the 

decay caused by Alternaria alternata on tomatoes (Lurie et al., 1998; Lurie, 1998). Therefore, the 

result agreed with Lurie (1998) and Lurie et al., (1998) studies. 

144 



 

 Furthermore, report of Mitcham and Cantwell (2002) stated that dipping bell pepper fruit in hot water 

at 55
o
C for 5 min gave complete control of Botrytis rot without injury to the fruit. Therefore, the result 

of this trial agreed with this report. The report of Klein and Lurie (1992) also stated that the in vivo 

and in vitro spore germination and decay development were controlled at 38-60
o
C for 2 to 60 min is 

in agreement with the result of this experiment. After 5 min of hot water treatment at 55
 
°C crack was 

observed on the skin of tomato fruit from the point of inoculation (Figure 38). Approximately 30 % of 

mature red fruit cracked after heat treatment. Shao et al., (2011) reported that turgor pressure within 

the fruit is the major force causing cracking, and it increases with the temperature of water.  

Ripe fruits have the potential for an increase in cracking because of lower skin firmness (Lichter et 

al., 2002). Consequently, the heat treatment caused a rapid increase in internal temperature thereby 

increased the turgor pressure, as a result extended the skin of the fruit resulting to fruit cracking. 

Furthermore, the study showed that immersion of tomato fruit in calcium chloride reduced cracking 

compared with sodium carbonate, sodium bicarbonate and the control (Lichter et al., 2002). The result 

of cracking can be for further research of this study. 

4.5. Conclusion 

Conidia are formed on the hyphae and produced spores that germinated and form the mycelia. This 

study has shown that light has no effect on this process but the temp and culture media are important 

for the development of spores using mycelia plug on agar plates. This is in agreement with the report 

of Misaghi et al. (1978) that light was not required for sporulation, size, shape, and mycelia growth. 

Furthermore, it stated that A. alternata form spores within 6-33ᵒC temp by implication the 

temperature used in this study is within this range. Therefore, a conclusion can be drawn that in other 

to produce more A. alternata spores on plates, the temp could be as high as 26ᵒC without adverse 

effect on the pathogen. Potato dextrose agar (PDA) produced more spores than corn meal agar (CMA) 

and preferred in microbiology studies on petri dish plates.  

The Koch′s postulates test showed no morphological differences between the isolates. When the 

isolates were inoculated on red tomato, after 8 days the result showed the strain of tomato cultivar 
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`Delycassi′ caused disease infection on the fruit. Likewise, isolate no 74351 did develop disease 

infection on the fruit. Therefore, it could be concluded that there was no significant difference 

between the two isolates when Koch′s postulate test was done. Furthermore, there was no significant 

difference in age of culture of the isolates as regard to temperature as shown in the analysis of 

variance tables. For example, in comparing the result of the single spore growth of 10 and 15 day old 

culture at 26°C, the tested temperature assisted the elongation of mycelia almost on equal rate. 

Likewise, similar situation applied to 10 and 15 day old culture at 17-20°C. .  

The 1:10 dilution ratio produced more spores at 17
 
°C cool temp on CMA and PDA agar media 

compared with dilution 1:100. Usually it is desirable to determine the concentration of spores as it 

may affect the experimental result. In addition, the 1:10 dilution ratio of Delycassi isolates produced 

more spores compared to CABI isolates under PDA agar medium.  

The result of this study showed that the reduction of fungal growth was due to the direct effect of heat 

on the spore as well as mycelia as a result of hot water treatment at the tested temperature. 

Consequently, the germination of spores and mycelia elongation was reduced. The results obtained for 

in vitro experiment could be applied to explain the direct effect of heat treatment on tomato during in 

vivo trial. As a result of the heat treatment that reduced fungal viability, the effective inoculum 

concentration that causes decay development is also reduced, consequently control the rot 

development. This result is in agreement with the work of Schirra et al., (2000). This study showed 

that hot water treatment at 50
 
°C of Alternaria alternata for 5 min is enough to cause a greater 

reduction of conidia germination in 48 h. The result of this study has shown that increase in 

temperature above 40
 
°C could inhibit the germination of Alternaria alternata as a result reduces rot 

decay. However, fungi-static condition in Alternaria alternata occurs because the growth of 

Alternaria alternata was inhibited and not prevented. Based on the outcome of this trial, 30°C had no 

potential to reduce spore germination of Alternaria alternata because the result is similar to the 

control. Hot water treatment at 40 or 50ᵒC has the potential to reduce the germination rate of 

Alternaria spores compared to the control and lower temperature.  
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A conclusion can be drawn from this result that hot water treatment at 40
 
°C in 10 min is sufficient to 

reduce disease emergence of Alternaria alternata on red tomato during 48 h incubation period. In this 

study, less than or equal to 48 h incubation time after hot water treatment of inoculated tomato fruits 

has the greater potential to reduce fungal disease emergence compared to higher incubation period. 

The common outcome in this investigation is that in all the treatments the disease emergence on the 

fruit was significantly reduced (0.5 index) in 48 h. Mycelia elongation was completely and 

significantly reduced during 50
 
°C hot water treatment of tomato fruit compared to the control and 

lower temperature; which means that 50
 
°C could be an important temperature threshold for managing 

Alternaria fungal disease of tomato.  

Postharvest heat treatments to control decay are often applied for a relatively short time e.g. seconds 

to minutes because the target pathogens are found on the surface or in the first few layers under the 

skin of the fruit or vegetable. In this study the in vitro heat treatment of Alternaria alternata spores 

and in vivo for artificially inoculated tomato fruit indicated that hot water dipping at 50
 
°C or 55

 
°C for 

5 min was sufficient to inhibit growth of the fungus and decrease the severity of infection. Though, 

the use of hot water at 39-52
 
°C for 10 -2 min has been reported to control the in vitro as well as the 

in-vivo spore germination of postharvest fungi and decay development in tomato fruit (Tohamy et al., 

2004). The outcome of this trial showed that at 50
 
°C hot water treatment of inoculated tomato fruit 

for 5 min there was a decrease in disease emergence after 48, 72 and 96 h incubation time. But the 

heated fruits at 55 °C showed a decrease of disease emergence index after 48 h than 50
o
C compared to 

the control (Figure 37).  

However, all the methods currently being employed to reduce decay by heat treatment are temporary 

measures because the effect is reversible. The pathogen is markedly inhibited by thermal inhibition, 

and possibly by enhanced resistance of the fruit against the pathogen. This enhanced resistance is 

could be related to the welding of the epicuticular surface, filling cracks of the cuticle and preventing 

the use of these occluded cracks as invasion sites for various pathogens.  
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CHAPTER 5: THE EFFECT OF HOT WATER TREATMENT ON THE 

COLOUR, FIRMNESS, TOTAL SOLUBLE SOLID AND WEIGHT LOSS 

OF TOMATO FRUIT 

5.1 Introduction  

Tomato is an important source of vitamins A and C and contains antioxidants such as lycopene 

(Okolie and Sanni 2012). In tomato colour serves as a measure of total quality. Consumers notice 

colour first and their observation often supplements preconceived idea about other quality attributes 

such as aroma and flavour. Colour in tomato is due to carotenoids, a class of isoprenoid compounds 

varying from yellow to red colour (Okolie and Sanni, 2012). The major quality attribute of ripe 

tomato is its red colour, which is due to the lycopene content of the fruit. Other important 

physicochemical parameters, which determine the quality of tomato, include; firmness, 
°
Brix, fruit 

weight, flavour (Jackman et al., 1990; Okolie and Sanni, 2012); aroma, texture, juiciness and overall 

intensity (Maul et al., 2000). A fresh tomato is described by appearance, colour, texture and flavour. 

The best quality is attained through vine ripening; but ripe tomatoes are perishable and are susceptible 

to damage during handling which lead to loss of quality and waste.  

Lurie (1998) reported that heat treatment of fruits increased the rate of degreening in apples; as well 

as  the chlorophyll content in the fruit skin of apple peel, plantain peel and tomato pericarp decreased 

during a heat treatment at 35-40 °C. Cucumber developed yellow colour when dipped in hot water at 

45 °C for 30-60 min. Klein and Lurie (1992) stated in their study that heated tomatoes became redder 

than unheated fruit at 45 °C. The skin colour started changing from green to yellow and later to red 

after storage. Colour development was attenuated during heating both mature green and pink fruit 

(Fallik et al., 1993). However, 10 days after harvest all fruit have attained a uniform red colour 

irrespective of heat treatment or stage of maturity. These studies have demonstrated the significance 

of colour as a determinant of good quality tomato.  

Many studies showed  that ripening of most climacteric fruit such as tomato is characterised by 

softening of flesh (pericarp), increase in the sugar: acid ratio, enhancement of colour development, 
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and increase in respiratory activity together with ethylene production (Lurie, 1998). When fruit are 

exposed to high temperatures some of these processes are retarded while others are speeded up. 

Consequently, heated fruit are more advanced in some ripening characteristics than non-heated fruit 

as a result maintaining quality and may lead to a longer shelf life.  In one of the review it was stated 

that inhibition of ripening by heat may be related to the inhibition of ethylene by the enzyme ethylene 

synthesis (Lurie, 1998); for instance Biggs et al. (1988) and Lurie (1998) reported that hot air 

treatment at 35-40 °C for 20 min inhibited ethylene synthesis in both apples and tomatoes as a result 

the fruit become softened slowly when held in storage at 20ᵒC temperature. 

Temperature increase from 35-38 °C hot air caused endogenous 1-aminocyclopropane-1-carboxylic 

acid (ACC) to accumulate in apple and tomato tissue with decrease in ethylene. Immersion of fruit in 

hot water at 42-46 °C for few hours also resulted to loss of ACC oxidase activity as well as decrease 

in ACC oxidase m-ribonucleic acid (mRNA) and stoppage of enzyme synthesis (Lurie, 1998). 

Furthermore, ACC synthase is less sensitive to heat than ACC oxidase therefore implicating the 

importance of ACC oxidase.  

The inhibition of ethylene is a reversible process. For an example when the fruit is removed from heat 

and held at 20 °C, the result showed a reduction in ethylene synthesis compared with unheated fruit; 

however, production eventually recovered and even exceeded the control levels (Klein and Lurie, 

1992). The implication of these biosynthetic processes is that during the heating period, not only did 

endogenous ethylene synthesis is inhibited, but fruit may not respond to external application of 

ethylene. As a result it was suggested that either the ethylene receptors were lost or inactivated or it 

was due to the inability to continue with the subsequent series of processes that took place during fruit 

ripening (Lurie, 1998). No information is available on the availability of ethylene receptors in tomato 

due to heat treatment, but there are reports on the expression of tomato ripening genes inhibiting 

ethylene synthesis by high temperature (Lurie, 1998); (Barka-Golan and Kopeliovitch, 1989). Studies 

have shown that when apples, avocados, and tomatoes are heat treated a simultaneous increase in CO2 

production and decrease in ethylene occurred (Klein and Lurie, 1992). However, when the fruits are 
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removed from heating, CO2 production fell below that of controls while ethylene increase exceeded 

that of the control unheated fruit.  

Biggs et al., (1988) reported that heat treatment at 35 or 40°C inhibited ethylene synthesis in apples 

and tomatoes as a result the fruit become ripened slowly when held for 7 days. The rate of ripening 

increased when heated fruit were returned to ambient temperature, but it was still less than that of 

non-heated fruit. During heat treatment there was a decrease in ethylene production compared with 

non-heated fruit but later the enzymatic hormone increased more than the control. As a result of this 

increase in ethylene production, the fruit did not become softened because of heat treatment. The 

`physiological injury` softening, is linked with the production of endogenous ethylene in fruit and so 

the injury could be overcome by heat treatment. As a result the practice of removing ethylene gas 

from the store of fruits and vegetables, which is considered beneficial to a long shelf life of the 

produce, might become unnecessary with heated fruit.  

The L*a*b* are the colour space coordinates presently used for measuring object colour and 

commonly used in the food industry (Anonymous, 2002).  In the colour space diagram, L* indicates 

lightness and a* and b* are the chromaticity coordinates. The a
*
 and b

*
 indicate colour directions: +a

*
 

is the red direction, -a
*
 is the green direction, +b* is the yellow direction, and –b* is the blue direction 

(Anonymous, 2002). The a
*
 value is a good parameter for red colour development and degree of 

ripening in tomato while the b
*
 parameter shows yellow discolouration (Batu, 2004). Most studies use 

the USDA colour classification and the Minolta a
*
 / b

*
 values of the tomatoes correspond to the six 

USDA colour stages which are used for estimation of the colour values. The colour changes of 

tomatoes are normally recorded as a
*
/ b

*
 values (McDonald et al., 1999; Batu, 2004). Fruit colour is 

one of the quality factors of fresh tomatoes for consumer preference.  

Lurie (1998) reported that ripening of most climacteric fruit is characterised by intensified colour 

development, increase in respiratory activity and ethylene production, softening of flesh and increase 

in acid: sugar ratio. Therefore, exposing fruit to high temperatures weakens some of these processes 

and possibly enhance others (Lurie, 1998). As a result this situation may lead to some heated fruit 
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being more advanced in some ripening characteristics than non-heated fruit and still maintain their 

quality. For example, McDonald et al. (1999) reported that fruit colour was affected by heat treatment 

with increasing a
*
/b

*
 values associated with increasing treatment temperature; such that non-chilled 

tomato had higher a
*
/b

*
 values than chilled fruit. Furthermore, chlorophyll levels were reported to be 

highest in fruit from the 48
 
°C hot water treatment and in non-chilled compared with chilled fruit. 

Lycopene was reported not to be affected by the heat treatment (McDonald et al., 1999). Another 

study by McDonald et al., (1996) reported that there was no significant heat treatment effects on 

colour (L
*
 and a

*
/b

*
 values), ripeness, lycopene, chlorophyll, percent soluble solids, and fruit firmness 

in red-ripe fruit. Based on these reports it was shown that heat treatment inhibited the ripening of 

tomatoes. 

 The two quality attributes that are most important to buyers and consumers are texture and skin 

colour for fresh tomatoes (Batu, 2004); and texture is influenced by flesh firmness and strength of the 

skin. For example changes in firmness were highly correlated with surface appearance characteristics 

of tomatoes and was related to colour, shape and perceived feel for firmness at the time of purchase. 

Therefore, the degree of fruit firmness can be used to determine the quality and may be the final index 

by which the consumers decide to purchase tomatoes. 

McDonald et al., (1999) reported that heat treatment has no effect on fruit firmness. For instance red 

tomatoes remained firmer as a result of heat treatment and storage at chilling temperature; showing 

that  heat treatment had no effect on firmness but on chilling injury. Another study described the 

effect of continuous storage of fruit at elevated temperatures on fruit firmness; for instance plums, 

pears and tomatoes softened more slowly when put at temperature between 30 and 40 °C than at 20 

°C Klein and Lurie (1992; 1998). The rate of softening was increased when fruits were stored at 20 °C 

but still less than non-heated fruit. Fallik et al. (1993) study stated that heated mature green tomato 

fruit were softer during shelf-life (10 days after harvest) storage than nonheated control. But in 

comparison to tomatoes in other colour stage such as turning to light red, there was no significant 

difference between heated and nonheated fruit (McDonald et al., 1996); and McDonald et al. (1999) 

reports also confirmed that there was no significant heat treatment effect on firmness of red fruit.   
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Polygalacturonase and cellulose enzyme activities were implicated in the studies of Lurie (1998). In 

tomato mRNA for polygalacturonase was absent when the fruit was heat treated at 40 °C for 4 days, 

but reappear when the fruit was removed from heat (Lurie, 1998). The length of treatment determines 

whether the fruit recovers and softens to the same extent or remain firmer than the non-heated fruits.  

Fallik (2004) reported that polygalacturonase was significantly lower in heat treated tomato and sweet 

pepper during storage. As a result of this enzyme activity, there was a reduction in fruit softening 

which may be as a result of the inhibition of peptic hydrolysis, causing a reduced level of cell wall 

degrading enzyme activity and to the inhibition of ethylene forming enzyme (ACC synthase). Another 

possibility is that the reduction in softening of heat treated fruit might be due to melting of the wax 

layer which sealed non visible cracks in the cuticle through which water could be lost. Consequently, 

this sealing of cracks and natural openings could significantly reduce weight loss, thus maintaining 

fruit firmness after storage (Fallik, 2004).  

The total soluble solids acts as an induction of the amount of sugars present in fruits (Okolie and 

Sanni, 2012). It is the measurement of the amount of sugar and minerals dissolved in water present in 

fruits and vegetables. Sugars constitute 80-85 % of soluble solids. Many studies have shown that total 

soluble solids increased during ripening as a result of degradation of polysaccharides to simple sugars 

thereby causing an increase in soluble sugars (Okolie and Sanni, 2012). 

Many reviews including McDonald and McCollum (1996) have reported that there is no significant 

heat treatment effect on percent soluble solids, percent titratable acidity and solids/acid ratio in red-

ripe tomato. In another study by Lurie (1998) it was reported that in tomatoes hot air heated at 38 °C 

for 2-3 days, neither titratable acidity nor soluble solids content was affected by heat. Likewise, 

during hot water dipping for 15 min at 35, 45 or 55 °C for the decay control of strawberries, the heat 

treatment had no effect on soluble solids content or titratable acidity. Another report stated that the 

soluble solids concentration in heat treated apples did not differ from that in non-heated fruit; while 

heat treated tomatoes had higher soluble solids concentrations than non-heated fruit after removal 

from storage (Klein and Lurie, 1992). In some fruit such as muskmelon the sugar content is 

favourably affected by heat treatment when dipped for 3 h before cool storage. The heat treatment 
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prevented the loss of sucrose which occurred in non-heated fruit during storage. As a result the 

sucrose was transformed and the fruit qualified as a sweeter by a taste panel (Lurie, 1998).  

A laboratory experiment was conducted to investigate the effect of post-harvest hot water treatment 

on the quality of red-ripe tomato. Also included was the effect of heat on weight loss after storage 

condition. Fallik et al. (1993) reported that there were similarities in weight loss between mature 

green or pink tomatoes by the end of shelf life regardless of treatment. But the weight loss did not 

result to shrivelling or cracking of the fruit.  

5.2 Materials and Methods 

Tomatoes (Lycopersicon esculentum Mill. unknown variety) were purchased from a farm shop in 

Writtle, Chelmsford colour scale (turning pink to light red) with a weight range of 60-80 g. The fruit 

was put in storage for 24 h at 21-22 °C temperature. These tomatoes were used to study the effect of 

heat treatment on the colour of tomato skin. Fruit were sorted out to eliminate defects and establish 

uniform size.  The fruit were divided into 6 groups having 10 tomatoes in each group as sample 

treatment and 10 fruit as the control. Weights of 10 fruit were measured at the beginning of the study 

using the weighing scale for the treatment sample as well as the control. Tomatoes were dipped in hot 

water bath (Phillip Harris Limited, Lichfield, Staffs England) for the treatment at 39-40 °C or 49-50 

°C for 10, 20 and 30 min respectively. After hot water treatment the fruit were stored at 29-30 °C to 

mimic the average storage temperature in Nigeria; humidity 80-90 % for 1hr or 24 h for each 

temperature and time period. The weight of the treated fruit was measured at the end of 1h or 24 h 

storage. After 1 h and 24 h storage, 10 fruits were weighed and a
*
/ b

*
 colour ratio of tomato was 

measured using a Minolta Chroma meter CR 200 (Minolta Co. Ltd, Japan).  After 24 h storage period, 

five tomatoes were used to measure the fruit firmness and remaining five fruits were used to measure 

the total soluble solids (
°
Brix).   

Fruit firmness was determined with `Guss′ fruit texture analyser (FTA), (Atago Pal-1 ACE Industrial 

Supplies Limited, Staplehurst, Kent England) fitted with a 40 mm diameter,  flat-faced aluminium 

round disc. The food testing instrument was connected to a software which recorded the amount of 
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force (kg) required to compress the surface of the 3 mm diameter radial pericarp. One tomato fruit 

was cut into two through the style end of the fruit and two disks (3 mm diameter) of outer pericarp 

tissue were cut from the equator of each tomato, avoiding radial arms. The recorded values represent 

the amount of force required for maximum compression for ten tomatoes with two measurements per 

fruit. The data showed the mean of 3 replicates and each replicate consists of ten tomatoes. 

The total soluble solid (TSS) was measured with a refractometer `Atago′ Palette PR-32ἀ (Brix 0-32 

%) on five fruit before dipping in hot water at 40 °C for 30 min and at the end of 24 h storage and the 

values were expressed as degree Brix. Similarly, the same treatment was applied on tomatoes dipped 

in hot water at 50 °C for 30 min.  The experiment was repeated three times. The data was subjected to 

analysis of variance (ANOVA) with the GenStat program for the effect of treatment temperature on 

the quality characteristics of tomato in turning-pink colour stage.  
 

Five red tomatoes picked at random from hot water treated fruit at 40 or 50 °C for 30 min were used 

to determine the total soluble solids (TSS) using `Atago Palette′  hand refractometer PR- 32α (Brix 0-

32 %). Two slices of tomato about 2-3 mm diameter were cut from the skin of each fruit avoiding the 

locule, starting from the top to the bottom of the fruit by the end of 24 h period. A drop of juice was 

squeezed from each slice to the refractometer and the amount of total soluble solids and values were 

expressed as degree Brix.  Five non hot water treated tomatoes served as the control. Two values were 

recorded from one fruit.   

The experiment for the determination of the physiological loss in weight (PLW) of tomato fruits, the 

initial weight of the fruits was taken before applying the heat treatment. The tomatoes were divided 

into six sets, each set comprised of twenty fruits which included ten fruit each for the treatment effect 

and the control. Ten tomatoes were dipped in hot water at 40 or 50 °C for 10, 20 and 30 min while ten 

fruits served as the non-treated control for the combination of temperature and period of time. The 

final weight was recorded for 1 h and 24 h storage and the loss in weight was recorded as the 

difference between the initial and the final weight and was expressed as a percentage.  
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5.3 Statistical analysis 

The experiment on tomato colour was designed as a complete random design (CRD). The data were 

subjected to analysis of variance (ANOVA) using a GenStat statistical package. Treatment effects 

reported were significant according to an F test. Data for the different experiments were analysed 

separately. The significant differences between the treatments were detected using least significant 

differences (LSD) at p ≤ 0.05 (Steal and Torrie, 1987).    

5.4. Results   

The result of the trial on tomato colour showed no significant difference between the control and 

treated tomatoes at 40ᵒC for 10 and 30 min in 1 h but in 20 min there was a significant difference. 

Also after 24 h there was a significant difference between the treated fruit and the control in 10 and 20 

except for 30 min (Figure 39). The result of heat treatment at 50 °C showed a significant difference 

between the control and tomatoes treated for 10, 20 and 30 min respectively, either in storage for 1 h 

or 24 h (Figure 40). The treatment of tomatoes in 40 or 50 °C water for 10, 20 and 30 min before 

storage at 1 h and 24 h inhibited the colour development of the skin of tomato. This confirms the 

report of studies that a short-term heat treatment would be beneficial for maintaining tomato fruit 

quality. For example, Lurie and Klein (1992) reported that 72 h hot air treatment at 38 °C inhibited 

ripening of mature green tomatoes; while Lurie (1998), stated that hot water dips at 43-55 °C for up to 

10 min delayed yellowing of broccoli. McDonald et al. (1996) corroborated these findings that hot 

water at 42 °C and stored at 13 °C above chilling temperature inhibited tomato ripening. 
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Figure 39: The effect of hot water treatment at 40 °C on the colour of tomato fruit after 24 h storage. 

Error bars indicated standard error of the mean of 30 fruits for each point.     
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Figure 40 The effect of hot water treatment at 50 °C on the colour of tomato fruit after 24 h storage. 

Error bars indicated standard error of the mean of 30 fruits for each point.  

  

   

The results of hot water at 50°C treatment showed a highly significant difference (P ≤ 0.05) between 

the control and treated tomato for 10, 20 and 30 min respectively either in 1 h or 24 h storage period 

(Figure 40). 
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Figure 41 The effect of hot water treatment at 40 and 50 °C for 30 min on firmness of tomato after 24 

h storage.  Error bars indicate standard error of the mean of 30 fruits for each point.  

       

The results of flat-faced aluminium round disc compression test revealed a significant (P ≤ 

0.05) difference in fruit firmness between hot water at 40 or 50 °C for 30 min and the control 

after storage for 24 h (Figure 41).  
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Figure 42: Degree Brix values (0-32 %) of hot water treated tomatoes after 24 h storage. Bars 

indicated standard error of each point.  Error bars indicate standard error of the mean of 30 fruits of 

each point. 

The result showed that the soluble solids concentration in hot water treated tomatoes at 40 or 50 °C 

showed a significant difference (P < 0. 05) compared with the control non-treated fruit (Figure 42).  

However, there was no significant difference in soluble solids concentration of the fruit between the 

tested temperatures. The data on physiological loss in weight (PLW) as influenced by hot water 

treatment and the storage conditions showed a significant difference between the hot water 

temperature treatments and storage conditions at all time period tested (Figure 43). The percentage 

weight loss progressively increased with an increase in the storage period irrespective of the 

treatments and the storage conditions. Consequently, the result showed that weight loss by the fruits 

was similar both at 40 or 50 °C by the end of 24 h period.  

Furthermore, the result showed a higher percentage of weight loss in fruit treated at 50°C for 30 min 

than 40°C after I h storage. Whereas, more water was lost at fruit treated at 40°C for 30 min than 

50°C after 24 h. After 24 h storage the percentage weight loss of tomatoes treated at 40 or 50°C for 10 

or 20 min showed similar results.  
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Figure 43: The effect of hot water treatment at 40 and 50 °C for 10, 20, 30 min on tomato weight. 

The weight loss percentage data was based on the mean of 30 fruits for each point. 

5.5. Discussion 

The treatment of tomatoes at  40°C for 10 min followed by 24 h storage and either at 50°C hot water 

for 10 min followed by 1 h storage was sufficient to control the development of skin colour (a
*
/b

*
 ) of 

tomato. Studies have shown that tomato fruit colour was affected by heat treatment, with increasing 

a
*
/ b

* 
values associated with increasing treatment temperature (McDonald et al., 1999). Whereas, 

McDonald and McCollum (1996) reported that there was no significant treatment effect on ripeness, 

lycopene, chlorophyll, percent soluble solids, percent titratable acidity, solids/acid ratio, fruit firmness 

or C2H4 evolution rate in red-ripe fruit. But the result of this trial agrees with the study of McDonald 

et al., (1999). 

The result showed that heat treatment has no effect on the skin firmness of tomato. This result agrees 

with the study of Mutari and Debbie (2011) which stated that the effect of temperature on fruit 

firmness was not significant. This might be as a result of sealing the cracks or natural openings which 

significantly reduce water loss, and thus maintain fruit firmness after storage. In another study by 
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Fallik (2004) it was reported that the reduction in fruit softening by hot water treatment was due to the 

inhibition of peptic hydrolysis, showing a reduced level of cell wall degrading enzyme activity and to 

the inhibition of ethylene production due to a reduction in the activity of the ethylene-forming 

enzyme.  

This process occurred as a result of heat melting the wax layer so that the cracks were sealed and 

natural openings in the cuticle through which water could escape, thereby maintaining fruit firmness. 

Fallik et al. (1993) reported that heat treatment inhibit ripening processes during storage but did not 

substantially affect fruit firmness, colour, soluble solid content or acidity by the end of 7 days shelf 

life at 20
 
°C. This study agrees with Fallik (1993) and Fallik (2004) findings because there was no 

significant difference in the firmness of tomato at either 40
 
°C or 50

 
°C.  

Klein and Lurie (1992) reported that heated tomatoes when removed from storage showed an increase 

in the concentrations of soluble solids than non-heated fruit; also heated apples e.g. Golden delicious 

were perceived as sweeter, crisper and more acceptable to the consumer than non-heated fruit. The 

result of Degree Brix in this study was in agreement with these reports. The increase in soluble solids 

in the latter report may be due more to decrease in titratable acidity rather than increase in sugar 

content (Lurie, 1992). Therefore, this result agreed with the reports of Hurtado et al. (2009) and 

McDonald et al. (1999) which stated that heated tomatoes soluble solids concentrations were not 

differently affected by heat treatment at high temperatures and were not differentiated from non-

heated fruit by a taste panel.   

Weight loss of fresh tomatoes is primarily due to transpiration and respiration; whereas transpiration 

is defined as a mechanism in which water is lost due to differences in vapour pressure of water in the 

atmosphere and the transpiring surface (Okolie and Sanni, 2012). Respiration causes a weight 

reduction because a carbon atom is lost from the fruit each time a carbon dioxide molecule is 

produced from an absorbed oxygen molecule and released into the atmosphere (Okolie and Sanni, 

2012). Therefore, the heat treatment at 40 or 50⁰C and storage of red tomatoes for 24 h lowered the 

respiration rate, caused water loss and subsequently decreased the weight of the fruit (Figure 43).    
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The result also showed that the heat treated tomato fruits lost weight by evaporation of water from the 

skin surface irrespective of time of treatment after 24 h storage. Furthermore, the result of heat 

treatment at 50
 
°C of tomato in 10, 20 and 30 min were different as compared with one another. This 

result agreed with the report of Okolie and Sanni, (2012).    

5.6 Conclusion 

In general, the respiration rate and ethylene evolution of hot water treated tomatoes were lower than 

that of untreated fruit during storage thereby causing less production of carbon dioxide and ethylene 

(Fallik, 2004). The effect of heat treatment on tomato fruit increased respiration rate and the 

production of ethylene, consequently facilitated tomato fruit ripening. This result has shown the 

relationship between hot water treatment, respiration and biosynthetic products as catalyst to 

formation of tomato colour. Therefore, the treatment of tomato fruit at 40°C for 10 min followed by 

24 h storage, also 50°C hot water treatment for 10 min followed by 1 h storage were sufficient to 

control the development of the skin colour (a⃰ / b⃰ ) of tomato. Hot water treatment of tomato fruits in 

this study did not have any effect on its firmness. The reason might be due to inadequate time of 

exposure.   

Hot water treatment of tomato fruit in this study did not have any effect on soluble solids (i.e. sucrose) 

of tomato. The reason might be due to the fact that enzymes are denatured above 40°C as a result 

contributed to the weakening of enzyme activity of tomato.  

Hot water treatment of tomato fruits at 40 and 50 °C caused a loss of water from the fruit beginning 

from 1 h storage and increased in 24 h period. As the time of storage increases, the weight loss of 

tomato fruit increases. The hot water treatment of tomato fruits showed no appreciable difference 

between 40 and 50°C on weight loss of tomato. Therefore, the heat treatment at 40 or 50 °C and 

storage of red tomatoes for 24 h increased respiration, caused water loss and subsequently decreased 

the weight of the fruit at the temperature tested. A conclusion can be drawn stating that heat treatment 

above 40°C of tomato fruit could stay in storage for 1 h without losing much weight. 
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CHAPTER 6: THE EFFECT OF HOT WATER TREATMENT ON THE 

AROMA, TEXTURE, JUICINESS, FLAVOUR AND OVERALL 

ACCEPTABILITY OF TOMATO 

6.1 Introduction 

Many research studies have reported increased consumer dissatisfaction with fresh tomato 

(Lycopersicon esculentum Mill.) flavour (Maul, et al., 2000). This might be due to many reasons 

including aroma, texture, juiciness and flavour compounds that contribute to the perceived taste of 

tomato. Some of the reports have suggested ways of improving the inferior flavour quality in fresh 

tomatoes; some of which include breeding programs on disease resistance, productivity, and fruit 

firmness in selections at the expense of aroma, taste and overall intensity (Maul, et al. 2000). 

Although reports of the effect of postharvest heat treatment to control fungal pathogens that caused 

diseases have been exhausted but little is reported on the effect of heat on the aroma, flavour and other 

quality characteristic of tomato.    

Although various biochemical and physiological alterations have been associated with heat treatments 

(McDonald and McCollum, 1996), which consequently led to an improved quality product, but their 

effects on aroma and flavour perception have not been properly understood.  Studies have shown that 

postharvest heat treatment controlled the chilling injury of tomato as well as the disease pathogens 

caused (Fallik et al., 1993; Lurie, 1998; McDonald et al., 1999) without affecting the sensory 

attributes such as flavour volatiles and aroma (Maul et al., 2000; McDonald et al., 1999; Boukobza 

and Taylor, 2002). Reports of studies have shown that in some commodities sugar content is 

favourably affected by heat treatment. For example muskmelon dipped in hot water at 45 °C before 

cool storage prevented the loss in sucrose which occurred in non-heated fruit during storage. The heat 

treated squash was perceived as sweeter by a taste panel (Lurie, 1998). Likewise, in tomato the 

highest volatiles levels in ripe fruit were from fruit heated from mature green stage and then stored at 

13 °C before ripening at 20 °C (McDonald et al., 1996). 

The process of tomato fruit ripening involves many changes both quantitative and qualitative in 

flavour, aroma volatile compounds, organic compounds, soluble sugars, amino acids that contribute to 
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characteristic tomato quality (Maul et al., 2000). Because of the diversity of biosynthetic pathways 

contributing to the formation of volatile compounds as a result of heat treatment the aroma, taste 

(texture, juiciness, flavour) and overall intensity were deployed as a descriptive quality characteristic 

of tomato in the perception of a taste panel. This research work is therefore aimed to determine the 

effect of postharvest hot water treatment on the quality of tomatoes stored at 29-30 °C; 80-90 % 

relative humidity for 1 h and 24 h.    

6.2 Materials and Methods 

Mixture of turning and pink tomatoes (unidentified cultivar) was purchased from a farm shop in 

Writtle, Chelmsford. The fruit were sorted to eliminate defects and establish uniformity of size and 

colour, and divided into 3 groups of 10 for the taste test. A panel of 10 untrained people (male and 

female) was formed and the age range is from 18 to 60 years. Ten fruit were treated in hot water at 40 

or 50 °C for 30 min, while another ten tomatoes were non-treated and then stored at 29-30 °C for 24 

h. The red-ripe fruits were rated by the panelists for the following quality characteristics: aroma, 

texture, juiciness, flavour and overall acceptability. The experiment was repeated thrice.  

6.2.1. Statistical Analysis  

The descriptive panelists’ scores for aroma, texture, juiciness, flavour and overall acceptability were 

analysed as complete block design with panelists as blocks and temperatures as treatments. The 

Kruskal-Wallis post-hoc a non-parametric test (P ≤ 0.05) was used for the mean separation with 

Mann-Whitney pair-wise which gave an uncorrected value of the treatment means. These values of 

the treatments were compared with Kruskal-Wallis P-value figure for test of significance. 

Furthermore, the data were put into Bonferroni test to convert to corrected values and were compared 

with the Mann-Whitney values obtained from the data. These attributes were rated from good to poor 

where good is scored 5 and poor 1. 
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6.3. Results  

   

Figure 44: Opinion of taste panel members (n=30) of the aroma of heat treated and untreated 

tomatoes. 

Table 11: Aroma data (n=30)   

Uncorrected Mann-Whitney Pairwise 

 40ᵒC 50ᵒC 

Control 0.00313 0.03852 

40ᵒC  0.8197 

Bonferroni Corrected P-value 

 40ᵒC 50ᵒC 

Control 0.00939 0.1156 (NS) 

40ᵒC  1 (NS) 

p =0.0142   
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 Figure 45: Opinion of taste panel members (n=30) of the texture of heat treated and untreated 

tomatoes. 

Table 12: Texture data (n=30) 

Uncorrected Mann-Whitney Pairwise 

 40ᵒC 50ᵒC 

Control 0.000399 0.004498 

40ᵒC  0.9869 

Bonferroni Corrected P-value 

 40ᵒC 50ᵒC 

Control 0.001197 0.001349 

40ᵒC  1 

p =0.0001999  
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Figure 46: Opinion of taste panel members (n=30) of the juiciness of heat treated and untreated 

tomatoes. 

Table 13: Juiciness data (n=30) 

Uncorrected Mann-Whitney Pairwise 

 40ᵒC 50ᵒC 

Control 0.0048 0.0039 

40ᵒC  0.7124 (NS) 

Bonferroni Corrected P-value 

 40ᵒC 50ᵒC 

Control 0.0147 0.0116 

40ᵒC  1 

p =0.004061  
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Figure 47: Opinion of taste panel members (n=30) of the flavour of heat treated and untreated 

tomatoes. 

Table 14: Flavour data (n=30) 

Uncorrected Mann-Whitney Pairwise 

 40ᵒC 50ᵒC 

Control NS NS 

40ᵒC  NS 

Bonferroni Corrected P-value 

 40ᵒC 50ᵒC 

Control NS NS 

40ᵒC  NS 

p =0.1003  
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Figure 48: Opinion of taste panel members (n=30) of the overall acceptability of heat treated and 

untreated tomatoes. 

Table 15: Overall acceptability data (n=30) 

Uncorrected Mann-Whitney Pairwise 

 40ᵒC 50ᵒC 

Control 0.00496 0.00566 

40ᵒC  0.5642 

Bonferroni Corrected P-value 

 40ᵒ 50ᵒ 

Control 0.01457 0.01697 

40ᵒC  1 

p =0.00446  
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The results showed that 50°C reduced the aroma while 40°C hot water treated fruits were rated fresh 

and some aroma based on the percentage response of the panelist (Figure 44). For example, the 

panelists rated about 60% of the heat treated fruit at 50°C to have little or no aroma while about the 

same percentage rated 40°C heat treated fruit to have fresh and some aroma. The graph showed that 

the aroma of the treatments decreased from high to low as the temperature increased, there is no 

treatments in intense off aroma in the figure presented. The untreated fruit maintained its freshness 

and good aroma quality than the treated fruits (Figure 44). The statistical analysis of the response data 

of aroma showed a significant difference (P ≤ 0.05) between the control and the uncorrected Mann-

Whitney pairwise values at 40°C and 50°C but there was no significant difference between the 

treatments. The result showed no significant difference in aroma between 40 and 50°C treated 

tomatoes. The Bonferroni corrected P-value showed a significant difference between the control and 

40
o
C but no significant difference between 50°C, 40°C and control (Table 11).  

The result of the response of panelists showed that the fruit skin became softer when heated at 

temperature of 50°C compared with 40°C. For example, about 60% of the people rated the tomatoes 

heat treated at 50°C to be softer while the fruits heated at 40°C had 2% percentage response (Figure 

45). The statistical analysis of the scores obtained for texture showed a significant difference (P ≤ 

0.05) between the control, 40 and 50°C for both the uncorrected values (Mann-Whitney pairwise) and 

the Bonferroni corrected P-value. However, there was no significant difference between 40 and 50°C 

for both statistical analysis (Table 12).  

The percentage response of panelists in this trial showed that heated tomatoes at 40 or 50°C contained 

more juice than the control. For example, about 50% of the untrained panel members rated tomatoes 

treated at 40°C to be juicy while 45% of the people reported the fruit treated at 50°C as juicy. Also the 

heat treated fruit at 50
o
C was rated as very juicy by about 40% of the people (Figure 46).The 

statistical analysis showed a significant difference between 40 and 50°C compared with control  but 

no significant difference between 40 and 50
o
C in the uncorrected Mann-Whitney Pairwise values. The 

Bonferroni corrected p-value test showed a significant difference  (P≤0.05)  between the control, and 

40 and 50°C but no difference between 40 and 50
0
C (Table 13). 
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The panel members’ assessment showed that the treated fruit at 40°C had a fairly good taste compared 

with 50°C treated tomatoes. For instance the flavour increased from bad off flavour to slight taste for 

the treatments. A good balance of sugar: acid ratio was reported by the panelists for the two tested 

temperature regimes. At 50°C the amount of poor taste was about two times more than 40°C 

treatment. In addition 40°C and the control were given equal rating for poor and slight taste attributes 

(Figure 47). The statistical analysis of the flavour attributes scores showed no significant difference 

between 40, 50°C and control of the uncorrected Mann-Whitney pairwise and Bonferroni corrected P-

values (Table 14).   

On the overall acceptability of the product of this trial, the heat treated tomato at 40 °C was accepted 

and considered well with the control than the 50°C treated fruit. The sensory panelists also noted that 

tomato heated at 50 °C was rated poor by about 30% of the panellist than 40 °C heated fruit (Figure 

48). There was a significant difference (P≤0.05) between the control and both 40
o
C and 50

0
C but no 

significant difference between 40
0
C and 50

0
C temperature (Table 15).  
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6.4 Discussion  

Heat treatment was reported to have a tendency to reduce the level of some flavour volatiles in tomato 

(McDonald et al., 1996), while some of these volatiles contribute to tomato flavour based on aroma 

threshold studies. For instance, the fifteen volatiles identified in the study showed decreased levels in 

fruit exposed to air heat treatment while other volatiles showed decreased level in fruit exposed to 

water heat treatment e. g. 1-Nitro-2-phenylethane levels were significantly lower in the water heated 

fruit. Therefore, the effect of heat treatment on fruit flavour depends on the type of heat applied and 

also may depend on the type and cultivar of the fruit. Flavour characteristics of fruits can be affected 

by a heat treatment (Lurie, 1998).  

Maul et al., (2000) studies showed a relationship between flavour volatiles and perceived sweetness 

or sourness of fruit stored at different temperature. The concentration of some of the volatile 

compounds correlated negatively with sensory sweetness ratings, while some others are positively 

correlated with fruit sourness (Maul et al., 2000). In another report some fruit sugar content are 

favourably affected by heat treatment. For example, muskmelons dipped in 45 °C hot water before 

cool storage prevented the loss of sucrose content. Heated tomatoes were not distinguished from non-

heated fruit by a taste panel (Lurie et al., 1998). Golden delicious apple heated in air at 38 °C for 4 

days were perceived as sweeter, crisper and more acceptable to the consumer than non-heated fruit 

(Lurie et al., 1998). In this instance, the sweetness was due to decrease in acidity rather than increase 

in sugar content the result of which cumulated to a good balance of sugar: acid ratio. In this study, a 

good balance of sugar: acid ratio was reported at 40 and 50 °C; which made this trial to be in 

agreement with earlier research studies. There were no significant differences in aroma at 40
o
C and 

the flavour at 40 and 50
o
C compared with the control likewise in the other perceived quality 

parameters in informal taste tests. Therefore, a suggestion could be made to form a descriptive 

sensory panel for proper sensory responses in recognition of aroma, flavour volatiles and sucrose 

solutions of varying concentrations.  
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6.5 Conclusion 

Postharvest heat treatment that controls fungal pathogen infection of tomato can result in altered 

flavour volatile profiles compared with naturally non treated fruit. Heat treated tomatoes ripened 

normally, and the changes in flavour volatiles, aroma and other quality characteristic were not 

detrimental to overall quality as far as could be determined by the informal taste panellists. 
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CHAPTER 7: GENERAL CONCLUSION             

The result of the in vitro trial of this study indicated that 48 h after inoculation of agar plate with hot 

water at 45 °C treated spore suspension of A. alternata showed a reduction in germination rate 

compared with the control as detailed below. Thus, in 5 min the percentage reduction was 52 % while 

in 10 min it decreased to 48 % of its control. This represents a statistically significant difference 

between heat treatment and the control. This result agrees with Lurie et al., (1998) findings.  At 50
 
°C 

hot water treatment, the germination percentage of treated spores was significantly reduced to about 1 

% of control in 5 min whereas; in 10 min it was about 10 % compared with the control. However, the 

report of study on in vitro heat treatment of Botrytis cinerea and Alternaria alternata showed that 

percentage spore germination and germ tube elongation of these fungi were inversely proportional to 

the length of exposure to 45, 50 and 55
 
°C (Fallik et al., 1996). But in this study the reverse condition 

occurred. This condition might be as a result of heat treatment at 50
 
°C in 10 min killed some of the 

spores contained in the suspension; hence they are regarded as being non-germinated.  

Many studies have reported that the spore germination of Alternaria species becomes noticeable after 

48-72 h of inoculation on agar media (Shahin and Shepard, 1979). Therefore, in this trial the 

observation of heat treatment effect on germination of spores was extended beyond forty-eight hours. 

Also the effect of heat treatment of inoculated tomato becomes noticeable after 72 h period. 

Therefore, 72 h after inoculation of treated spores on agar at 45
 
°C for 5 min, the germination percent 

was 6 % while in 10 min the germination rate increased to 16 %. This showed a significant difference 

at this tested temp. It also agrees with the result of Fallik et al. (1996) which stated that percentage 

spore germination and germ tube elongation of Botrytis cinerea and A. Alternaria were inversely 

proportional to the length of exposure at 45, 50 and 55
 
°C. However, 72 h after inoculation of treated 

spore at 50
 
°C in 5 min and 10 min on CMA agar plate, the result showed no significant difference in 

germination rate between the times of exposure.  In 96 h after inoculation of treated spores at 45
 
°C 

for 5 min, 13 % germination occurred and then increased to 25 % in 10 min treatment period. After 96 

h hot water treatment at 50
 
°C in 5 and 10 min of spores on agar plate, the percent germination was 

174 



 

significantly reduced to nearly zero. The implication of this is that the spores might have died-off 

during incubation for four days.    

The work on a hot water treatment of tomato has shown that disease loading in 24 h after inoculation 

can be reduced at 40 °C for 10 and 20 min by 40 % and 10 % respectively. At 45 °C for 10 min it was 

reduced by 30 %, while at 50 °C for 5, 10 and 20 min the percentage reduction was 40, 20 and 10 % 

respectively. The result of the heat treated fruit at 55⁰C for 5 min showed a reduction in the disease 

emergence by 20 % after 24 h inoculation. After 24 h the mycelia elongation of inoculated tomato 

was reduced by hot water treatment at 30, 40 and 50
 
°C for 10 min by 38 %, 46 % and 0 % 

respectively. Similarly, dipping Alternaria infected fruit at 50 °C for 5 min reduced the decay 

compared to the control fruit. It was observed that heat injury occurred on the surface of the fruit 

dipped for 5 min. This is in agreement with the study of Lurie et al., (1998) which stated that tomato 

should not be put in hot water for too long.  

The hot water treatment of the tomatoes had the following effects on the attributes of quality: the Brix 

degrees measurement showed a negligible difference in 40
 
°C or 50

 
°C and the control for 30 min heat 

treatment. This is in agreement with the studies of McDonald et al., (1999) and Hurtado et al., (2009), 

who found no effect on soluble solids after the application of heat on tomato fruit. Furthermore, Fallik 

et al., (1993) reported that heat delayed rise in total soluble solid (TSS) percentage in both mature 

green and pink tomato, but at the end of storage both colour grade of tomato contained the same level 

of TSS regardless of heat treatment.   

The external appearance of tomato is designated by the colour which constitutes qualitative 

characteristics that appeal to the consumers. The colour change of tomato fruit is measured by a
* 

/b
*
. 

In this trial, the change in colour after heat treatment was not statistically significant. This agrees with 

Whitaker (1994) work where it was  suggested to be because of the chlorophyll content of outer 

pericarp tissue declined slightly in control fruit whereas, there was no change in heat treated tomato.  

With the firmness measurement on the flesh of heated tomato no statistically significant difference 

was found. This is in agreement with Fallik et al., (1993), work which stated that although, heated 
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mature green tomato were consistently softer during shelf life than non-heated mature fruit. But no 

such differences were observed between heated and non-heated pink fruit.  

Similarly, in the taste test there appears no real difference recorded in the attributes of juiciness, 

flavour and overall acceptance except that the skin of the tomato was recorded “softer” by some of the 

taste panel. This does not conflict with the findings on firmness, referred to previously because that 

was a consideration of the internal texture or flesh.  

The results lead to the conclusion that hot water treatment has potentially an important place for low 

input tomato farmers in countries such as Nigeria. Other factors that would also be favourable are the 

lack of availability of appropriate agrochemicals, the cost of these chemicals and the almost zero 

capital cost of using hot water.  

Traditionally, postharvest diseases were treated with chemical compounds to control or reduce the 

microorganism causing the disease. At the moment the application of chemical compound to food is 

facing a serious threat because of the potential residues left after its application as a postharvest 

treatment. Also fungi pathogens have developed resistance to some of these chemical compounds. 

Likewise, the renewal and registration of new chemical compound take a longer time and the effect of 

them on the environment are some of the issues to contend with in countries where chemical 

compounds are applied as postharvest treatment for fruit and vegetable diseases. As a result of these 

difficulties the new paradigm is likely to be towards the use of non-chemical means to control or 

reduce the incidence of pre or postharvest disease pathogen in fruits and vegetables.  

These problems are some of the prevailing situation in developing countries such as Nigeria and they 

pose a serious concern to our farmers. Also the chemical compounds which are used to treat 

postharvest diseases are not readily available and the cost of procurement is beyond the reach of small 

holder farmers. Safety of these chemicals is also a major concern as a result of their application 

procedure. Stealing of chemicals by farm workers is another problem whereby large amount is stolen 

and the remaining quantity is diluted thereby reducing the active ingredient and the effectiveness of 

the postharvest treatment by the chemical compounds. Invariably, other methods of postharvest 
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disease control are sought which should be simple to apply, readily available and equally inexpensive. 

Therefore, postharvest hot water treatment of tomato fruit was applied to reduce Alternaria alternata, 

the fungus that cause the black rot disease of tomatoes.  

These results have shown that hot water treatment at 50-55 °C was effective in controlling 

Alternaria alternata the disease pathogen of black rot of tomato fruit. Therefore, the use of this 

non-chemical approach to postharvest disease control offer a promising, safe and effective 

alternative to fungicides in treatment of postharvest fungal diseases of tomato fruits in Nigeria.   

In this study, heat affected the black rot disease pathogen itself, as shown in the result of in-vitro 

inhibition of both spore germination and mycelia growth, it was discovered that spore germination 

was more susceptible to increasing lengths of exposure to 50 °C. The in-vivo experiment of 

inoculated fruit before hot water treatment at 50 °C for 30 min showed no spore germination (48 

h) and mycelia elongation on the inoculated fruits in 96 h.  

Again the treatment time period of hot water at 50
 
°C of the inoculated fruit was reduced to 5 min, 

the outcome indicated that complete inhibition of Alternaria spore germination was not observed. 

The reduction in fungal growth or decay incidence was attributed to the effect of heat on the spore 

germination as well as mycelia growth resulting in the reduction of the growth of the fungus on 

the inoculated fruits. Another experiment was conducted to demonstrate its use by small holder 

farmers thus; tomato fruits weighing about 5kg were put in hot water (71 litres) at temperature of 

approximately 55±1 °C for 5 min the results showed that hot water dipping of red tomato at 55 °C 

for 5 min provided an effective control of germination of Alternaria alternata conidiophores.   

This study has shown that hot water has reduced spore germination and germ tube elongation in-

vitro, as well as inhibited or reduced rotting of artificially inoculated fruit. During the simulation 

experiment heat damage was observed on fruit dipped for 5 min at 55 °C, for example, the 

inoculated point on the surface of the fruit became wider when the fruit was treated with hot 

water. This development might be the effect of heat on the pericarp of tomato fruit. The effect of 

mechanical damage on the fruit skin and cell wall metabolism consequent to hot water treatment 

can be studied for future research. However, because this study was carried out under laboratory 
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conditions therefore it is essential that the same study is carried out on a large scale for future 

study. For an example, 30 kg which is assumed to be the average weight of tomato in a raffia 

basket used for packaging to the market. The fruits will be inoculated with Alternaria and dipped 

in hot water at 55 °C for 5 min. As a result heat exchange will be evenly distributed on a larger 

surface area.  

In other to actualise this temperature range 50-55
 
°C, in a rural farm community, candle wax can 

be dipped in boiling water, the moment it melts gives the approximate required temperature range. 

Paraffin wax is the constituent of a candle. The melting point of wax is 58
 
°C. It is a chemical 

compound that is malleable at ambient temperatures. Also it is insoluble in water and it usually 

melts at 55-58
 
°C, giving a low viscosity liquid (Anonymous, 2013). Therefore, it gives an 

approximate temperature applicable for hot water treatment to be used to control Alternaria 

alternata disease pathogen. It is inexpensive and readily available. The hot water method 

developed does not require any specific resources that the small farmer would not have at present 

and will provide the farmer with a longer storage life for his family or a stronger position with the 

merchant as he does not have to sell his crop that instant to a merchant or even on a village stall.   

Suggestions of further work   

       •     Studies are required to render this method technically and economically for efficient use 

on agronomic scale with small farmers. Consequently, there will be a need to look at a larger 

sample of tomatoes on a commercial scale. For an example, 30 kg is accepted to be the average 

weight of fruit in a raffia basket used for packaging tomato to the market as a result it is necessary 

to use this material to test the effect of this method in the village situation.  

      •      Trials need to be carried out to evaluate at the village level how long the tomatoes can be 

stored for as opposed to a diseased sample.   

      •      The importance of good handling will become more important with lower disease levels 

and so there is prospect to investigate the potential benefit of appropriate smoother packaging than 

the traditional raffia basket (Bishop and Ramma, 2012).  

       •      Study efforts should be made to make use of three to four strains of Alternaria species so 

as to overcome the difficulties encountered in sporulation in this study.          
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Appendices 

Appendix 1 

Plate 1: Marketing and sales of tomatoes in Nigerian cities 
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Appendix 2    

The top twenty tomato producing countries of the world (GEOHIVE, 2013)  
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Top Twenty Tomato producing Countries  
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Plate 2: Effects of hot water treatment at 500C for 30 and 60 min on the germination 

of Alternaria alternata spore suspension using test tubes and petri-dish plates.   
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Plate 3: Effect of hot water treatment at 500C for 20, 30 and 60 min on the germination of Alternaria 

alternata spore suspension using Eppendorf vial, tube suspension and incubated on petri-dish plates.  
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Appendix 3 

  

Plate 4: Laminar flow cabinet for creating aseptic environment during spore suspension 

preparation and inoculation.  

  

Plate 5: Section of the laboratory used for the incubation of treated specimens under fluorescent 

light tubes. 
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Plate 6: JB Grant water bath used for hot water treatment in the laboratory. 
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Plate 7: Plastic tank used for hot water treatment at 55
0
C for 5 min of inoculated tomato fruit in a 

basket showing the splitting of tomato fruits due to vapour pressure (About 30% split).  

 

Appendix 4 

 

Plate 8 Strain of rotted tomato-cultivar ‘Delycassi’ from Writtle Research Glasshouse  
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Plate 9 Effect of hot water treatment at 50
 
°C for 30 min on inoculated tomato fruit   

The result of inoculated fruit before hot water treatment at 50C for 30 min showed the 

germination of spores and mycelia elongation of Alternaria significantly inhibited after 48 h 

(Plate 9 A).  

 

Heat Exchange between Hot Water and Tomato Fruit The heat exchange between the hot water and 

tomato fruit was calculated to show the efficiency of water heat transfer. 

Tomato variety = Cossack  

Room temp = 29ºC  

Fruit core temp = 23.1ºC  

Hot water temp = 54.9ºC  

Diameter of plastic tank = 0.75m  

Height of water = 0.16m  

 

Thermal capacity tomato = 3.8 KJ/Kg/
0
C  

Thermal capacity water = 4.2KJ/Kg/
0
C  

 

0.75 diameter = h × п (d/2)²  

                       = 0.16 x 3.142 x (0.75/2)² m³  

                       =0.070695 m³ = 70.7 litre   

1 litre H20 = 1Kg  

Hot water temp @ the end of experiment = 52
0
C  

Room temp = 29
0
C  
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Weight of tomatoes = 45kg  

Starting temperature = 23.1
0
C  

End temperature = 29.0
0
C  

Heat absorbed by tomato: Temp difference x mass x specific heat  

                                           (29-23.1
0
C) x 4.5kg x 3.8 = 100.89KJ  

 

Heat lost by water = 54.9 – 52.0 = 2.9
0
C x moist climate   

                                    

Water (heat lost) 54.9 – 52.0 = 2.9
0
C  

                                    2.9 x 70.7 x 4.2 = 861.126 KJ 

 

 Efficiency in heat transfer       100.89 × 100 = 11.716 ≈ 12%           

                                                              

Therefore the water tank can be insulated to conserve heat. A lid or any other device can also 

serve the same purpose to prevent heat loss to the atmosphere. 
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