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Abstract 

There is a great need for the identification of non-invasive biomarkers for early detection, 

prognosis and treatment efficacy of breast cancer. Peripheral white blood cells (WBCs) carrying 

the information related to the presence of cancer, represent an attractive source for novel 

biomarkers. The main aims of the study were to develop the pipeline to discover and validate 

novel biomarkers in WBCs of breast cancer patients using proteomic and genomic approaches, 

and assess these biomarkers’ utility. Using the highthroughput mass spectrometry and 2D-gel-

electrophoresis, the protein profiles of the WBCs from breast cancer patients and healthy 

individuals were generated and compared with publicly available gene expression data from the 

WBCs of breast cancer patients and the information on protein profiles of the WBCs from the 

metastatic breast cancer patients. The shortlisted 15 genes were then validated using Real-Time 

Quantitative Reverse Transcription PCR (RT-qPCR). The mRNA levels of ITGA4, LCN2, 

CPNE3 and SERPINB1 were found to be altered significantly in the WBCs of breast cancer 

patients. The levels of SERPINB1 (Serpin B1, neutrophil elastase inhibitor) and CPNE3 (Copine 

3, phospholipid binding protein) were assessed using Western blotting. These analyses 

demonstrated the association of SERPINB1 with breast cancer metastases, and suggested its 

potential utility as a biomarker of poor prognosis and treatment efficacy. Further quantitative 

validation of SERPINB1 in a larger panel of WBCs by ELISA will be required for a clinical 

phase in the biomarker development pipeline. No conclusive results were obtained for CPNE3 

and, together with ITGA4, LCN2 and other additional candidate biomarkers (to be selected from 

the initial list), they will be tested further. The data generated for this study has also given insight 

into differences in the molecular portraits of the cells of immune system associated with breast 

cancer, which will need to be validated by laboratory based functional assays.  
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Chapter 1: Introduction 
 

1.1 Breast Cancer- Incidence and statistics 

 Cancer can be defined as the uncontrollable proliferation of cells which then become 

invasive and metastasise by spreading to various regions through blood or lymphatic vessels. 

Cancer can be classified based on their type of origin as follows: carcinomas (epithelial cells), 

sarcomas (mesenchymal connective tissues), leukaemia and lymphomas (haematopoietic cells). 

Breast cancer is the most common cancer in women who have 1 in 8 lifetime risk of developing 

breast cancer (Cancer Research UK, 2013). Around 49000 women were diagnosed with breast 

cancer in 2011 and breast cancer incidence has increased by 72% since the 1970s. Worldwide, 

1.68 million women were diagnosed with breast cancer in 2012. It is estimated that ~522,000 

women died of breast cancer in 2012 (Cancer Research UK, 2013). However, breast cancer 

survival rates have been increasing with ~ 80% of women surviving primary breast cancer for 

more than 5 years. 

1.2 Mammary gland and breast cancer 

 The mammary gland is a modified sweat gland that originates from the ectoderm. The 

breast has two main parts: supporting stroma and parenchyma. The parenchyma consists of 

ducts, lobules and alveoli, and the stroma includes connective and fatty tissues. The parenchyma 

tissue has 15-20 lobes, and within each lobe there are smaller lobules which produce milk. The 

lobules are connected by thin ducts and all the ducts lead to the nipple. Epithelial cells line both 

the ducts and the lobules. The epithelial cells are surrounded by myoepithelial cells which are 

attached to the basal membrane. The lobules and ducts are surrounded by the stroma consisting 

of fibroblasts and adipocytes (Torácica and Mama, 2006). The mammary epithelium undergoes 

several cycles of remodelling, proliferation, differentiation and apoptosis at various stages of life 
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such as puberty, pregnancy, lactation and menopause. These changes of the breast are induced by 

hormones such as oestrogen, progesterone and prolactin (Russo and Hu, 2000). 

1.2.1 Types of Breast cancer  

 Breast cancer is classified morphologically in two major categories based on their 

histology: Invasive and non-invasive (or in situ) cancer. Breast cancer is also classified based on 

the cells of origin: Ductal, lobular and tubular cancers. Non-invasive cancer cells do not 

penetrate the basal layer and do not spread to others parts of the breast. Invasive cancer spreads 

to the surrounding ducts, lobules, lymph nodes and to distant organs. Medullary, mucinous and 

pappilary cancers of the nipple are few of the rarer morphological types accounting for 2-5% of 

all cancers (Fentiman and D’Arrigo, 2004). Invasive ductal carcinoma (IDC) accounts to up to 

80% of breast cancers. Invasive lobular carcinoma accounts to 5-15% of all diagnosed breast 

cancers. 

Breast cancers are clinically classified into primary breast cancer and metastatic breast 

cancer. Primary breast cancer are small to medium sized tumours (<50mm) which are localised 

to only the primary site of tumour development. Metastatic breast cancers are spread to different 

parts of the body such as bone, brain, lungs etc. 

 Breast tumours are also described based on their size, spread and differentiation. Tumour 

staging (1-4) depends on the size of the tumour and lymph node metastasis. Tumour grading (1-

3) depends on how different cancer cells look when compared to normal cells when viewed 

under the microscope. Estrogen receptors (ER), progesterone receptor (PR) and human 

epidermal growth factor receptor 2 (HER2) statuses in the breast tumour are also important to 

decide the treatment protocol and assess response to therapy. ER and PR status are currently 

diagnosed using Immunohistochemistry (IHC). HER2 status is identified by nucleic acid 

hybridisation (Cianfrocca and Gradishar, 2009). 
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 Over the last 15 years due to the development of highthroughput genomics and 

proteomics the molecular classification breast cancer has become clearer, although there is no 

common standard categorization of breast cancer based on this concept. For example breast 

tumours were classified by Perou et al based on gene expression of 456 genes in 65 tissue 

samples (Perou et al. 2000).  This study resulted in the elucidation of four different molecular 

types of breast cancers: luminal-like (ER-positive, PR-positive, HER2-negative), basal-like (ER 

negative, PR negative, HER2 negative), HER2-positive, and normal breast. The most recent 

work revealed novel molecular subgroups of breast cancer based on genomic and transcriptomic 

experiments (Curtis et al., 2012; Dawson et al., 2013). In these studies, copy number, single 

nucleotide polymorphisms, and gene-transcription rates in 2,000 breast cancers were analysed 

and 10 different molecular subtypes of breast cancer based on patient treatment outcomes were 

identified. Furthermore, 45 regions in the genome were discovered which are either deleted or 

amplified abnormally and might contribute to the pathophysiology of breast cancer. These 

findings however are not yet strong enough to be applied to clinical research.  
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Figure 1.1 Anatomy of Breast. Front view and side view of a normal breast showing ducts, 

lobules, adipose tissue, muscle and lymph nodes. The breast lies superficial to the pectoralis 

muscle and drains to the regional nodes (Source: 

http://musom.marshall.edu/graphicdesign/ibooks/Reproductive%20Normal.html Last Accessed 

09/07/2015). 

http://musom.marshall.edu/graphicdesign/ibooks/Reproductive%20Normal.html
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1.3 Risk factors for breast cancer development 

 The exact cause of breast cancer is unknown and it can be caused by a number of risk 

factors. The risk factors include age (over 50 years), geographical variation (higher in western 

countries), first child bearing age (after 40 years), menarche age (before 11 years), menopause 

(after 54 years), family history of cancer incidence and genetic predisposition. Lifestyle factors 

such as obesity, alcohol intake, tobacco smoking, oral contraceptives and hormone replacement 

therapy increases susceptibility to breast cancer (Mcpherson et al., 2000). 

1.4 Molecular pathology of Breast Cancer 

 The mutations in the genes controlling the cell cycle lead to defects in the regulation of 

cell cycle which eventually lead to tumour formation. The genes which are involved in tumour 

formation can broadly be classified into Oncogenes and Tumour suppressor genes. Oncogenes 

are genes which are mutated are highly expressed in tumour cells and tumour suppressor genes 

prevent the cell from entering into tumour development stage. When DNA damage occurs in a 

cell an immediate cell reaction called the DNA damage response (DDR) is triggered. This 

response prevents the cell from undergoing DNA replication and separation of damaged DNA 

into daughter cells and thereby preventing the propagation of corrupt genetic information and 

finally acts with other cellular components to repair the damaged DNA. If the damaged DNA is 

repaired the cells will then undergo normal proliferation but if the DNA damage is so severe that 

it cannot be repaired easily the cells undergo apoptosis (Lord and Ashworth, 2012). However an 

additional outcome is also possible that the cells may go into cellular senescence. Cellular 

senescence can be defined as an irreversible state of cell cycle arrest with the survival of the cell 

in absence of any further cell division. It is still not clear what determines the cell to make its 

choice between apoptosis and senescence (Sulli et al., 2012). The link between senescence and 
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cancer development is still debatable as to whether senescent cells lead to formation of cancer 

(Rodier and Campisi, 2011).  

1.4.1 Genes involved in breast tumourigenesis 

Genes which exhibit in hereditary mutations leading to breast cancer are the most 

extensively studied genes. Examples include BRCA1, BRCA2, TP53, ATM, CHK2, PTEN and 

CDH-1 which are hereditary breast cancer causing genes which are mutated to cause the 

formation of tumour. BReastCAncer-1 gene (BRCA1) and BReastCAncer-2 gene (BRCA2)  are 

estimated to account for  between 5%-10%  of breast cancer. BRCA1 and BRCA2 are tumour 

suppressors with the main functions in homologous recombination. BRCA1 binds directly to the 

single stranded DNA and localises along with RAD51 and BARD1 to the site of the DNA 

damage which is already in complex with histones (Scully and Livingston, 2000). BRCA2 can 

bind with RAD51 while the binding nature of BRCA1 and RAD51 is unknown. BRCA1 is 

phosphorylated in this process by ataxia-telangiectasia mutated (ATM). Regardless of the 

presence BRCA1 the cellular localisation and the activity of RAD51 is controlled by BRCA2 

(Cousineau et al., 2005). The levels of these three proteins also increase when the cell enters S-

phase suggesting the role of these proteins in maintaining genome integrity (Narod and Foulkes, 

2004). In BRCA1 and BRCA2 knockout mice p21 (a p53 dependent cell cycle inhibitor) was 

induced to delay the cell cycle growth arrest only to leading to delayed death (Scully and 

Livingston, 2000). These findings imply that if BRCA genes are mutated the cell becomes 

abnormal and the cell survives for a prolonged period and driven towards tumourigenesis. Figure 

1.1 illustrates the functions of BRCA1 and BRCA2. The DNA breaks may lead to three possible 

outcomes: cell cycle arrest and repair, cell cycle arrest and apoptotic cell death, or the errors will 

be compromised leading to tumour development. 
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 BRCA1 mutations responsible for the protein’s malfunction are caused by the 

introduction of a stop codon or a substitution of base pair, and also insertions and deletions 

which leads to a truncated or mutated BRCA1 protein. BRCA1 and BRCA2 null mice cells were 

directed to apoptosis while the cells in which there were mutated BRCA proteins p53 and p21 

were inactivated. The breast epithelial cells are clonal due to the rapid growth rate during 

puberty. Hence if one cell carries a mutation the progeny of that cell will carry that mutation and 

be localised in one part of the breast (Narod and Foulkes, 2004; Scully and Livingston, 2000). 

Data also suggests that hypermethylation of the promoter region of BRCA1 and p53 is involved 

in breast cancers without the hereditary factor (Alkam et al., 2013; Baylin and Herman, 2000; 

Krasteva et al., 2012). Other genes which are hereditary involved with BRCA genes are ATM 

and CHK2 genes. CHK2 also codes for RAD3 which is involved in BRCA1-RAD51-BRCA2 

complex during double stranded breaks; Both CHK2 and ATM phosphorylate BRCA1 and p53 

thereby regulating their function. 

 Tumour suppressor gene TP53 responsible for the expression of the protein, p53,a 

transcription factor involved in the regulation of many functions including cell cycle and 

apoptosis, and is functionally inactivated in 70% of human tumours. On encountering DNA 

damage, a cell will either activate a DNA damage checkpoint to slow down or arrest cell division 

and allow repair of the lesions, or apoptosis will take place to remove cells with potentially lethal 

mutations. P53, which levels rapidly increase after DNA damage, plays the key role in these 

processes. There are various mechanisms employed by p53 to induce apoptosis in a stage-, 

tissue- and stress-signal-specific manner. One of them is direct regulation of apoptosis-related 

genes such as DR5, Fas, Bax, Noxa and Bcl-2. However, p53 can also promote apoptosis via 

transcription-independent mechanisms (Haupt et al., 2003; Möröy and Zörnig, 1996). 

 The presence of functional p53 is important in senescence (Herbig and Sedivy, 2006; 

Itahana et al., 2001). The p53 communications with the multitude of proteins such as  the Wnt-
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beta-catenin, IGF-1-AKT, Rb-E2F, p38 MAP kinase, cyclin-cdk, p14/19 ARF and the cyclin G-

PP2A, and p73  and others have been shown to be involved in the regulation of senescence and 

apoptosis in different cell types (Harris and Levine, 2005).  

The link between p53 and breast cancer has been well established. For example, 30% of 

breast tumours have been reported to have mutations in p53, although it is higher in whereas 

70% of colon tumours (70%) and generally in all cancers (50%) (Slee et al., 2004). However, 

other mechanisms, for example, nuclear exclusion can also lead to p53 malfunction and 

development of breast tumours(Moll et al., 1992). Overexpression of p53 protein was reported to 

be a tissue biomarker for disease recurrence and reduced survival rates in patients with breast 

cancer (Friedrichs et al., 1993).  
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Figure 1.2 BRCA1 and BRCA2 are important for DNA repair processes, in particular 

homologous recombination: BRCA1 and BRCA2 proteins act as scaffold to assemble DNA 

repair proteins (A); Loss of function of BRCA1 and BRCA2  may result in defects in repair, 

accumulation of mutation and, ultimately, cancer (B). Taken from Weinberg, 2006. Mutated 

BRCA protein function may lead to tumour development or the cell growth is arrested depending 

on the cell cycle checkpoint proteins such as CHK1 and PLK1 (C). (Taken from Scully & 

Livingston, 2000) 

 

(C) 
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1.5 Metastasis of breast cancer  

 Metastatic breast cancers (MBC) also known as advanced breast cancers (ABS) are 

invasive breast cancers of higher grade and stage which spread to distant organs such as lymph 

nodes, bones, lungs, brain, liver. Approximately 20-30% of the primary breast cancer patients 

develop metastatic disease. Metastatic breast cancer is major cause of breast cancer related 

deaths.  The median survival range after treatment of metastatic breast cancer is 24-36 months. 

Metastasis occurs in different steps (Fidler, 2003) that are illustrated in Figure 1.2. Several 

cellular processes and molecules are involved in cancer metastasis at each stage (Leber and 

Efferth, 2009).The subsequent metastatic events and the molecules involved are described 

below:  

i. Division and growth of tumour at the primary site. Receptors such as Vascular endothelial 

growth factor receptor (VEGF) and epidermal growth factor receptor (EGFR) are activated 

tumour secreted growth factors such as HER2 and epidermal growth factor (EGF). 

ii. Development of blood vessels (angiogenesis) in the tumour mass; when the tumour grows 

more than 2 cm it needs blood vessels to survive. Hypoxia induces the tumour cells to 

secrete angiogenic factors such as VEGF, platelet-derived growth factor (PDGF), fibroblast 

growth factor (FGF), angiostatin, endostatin and thrombospondins in a concentration 

gradient which drives angiogenesis. 

iii. Invasion of tumour cells into the surrounding basal tissues or stroma; the tumour cells need 

various cell adhesion molecules such asintegrins, CD44, E-cadherin etc to adhere to the 

extracellular matrix. Matrix metalloproteinases, serine proteinases and cysteine proteinases 

help the tumour cells dissolve the extracellular matrix.   

iv. Dissemination and aggregation of cancer cells in the blood stream. Survival of the 

disseminated cells in the blood stream  
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v. Adherence to blood vessel wall and invasion through the vessel wall into the basement 

membrane of the metastasis target tissue. Autocrine motility factors such as hepatocyte 

growth factor (HGF), insulin-like growth factor II (IGF-II) and autotoxin (ATX) stimulate 

the cells to start extravasation through blood vessel walls. 

vi. Proliferation and angiogenesis of secondary tumour at the metastasis site. 

 

1.6 Diagnosis of Breast cancer 

 Breast cancer is usually detected on the basis of particular symptoms or through the 

National Health Service breast screening program for women between the age ranges 47-73 

(currently every three years). During 2009/2010, 15500 cases of breast cancer were diagnosed 

because the screening program (Cancer Research UK, 2012). Currently the process of breast 

cancer diagnosis involves “triple assessment”; 

a) Physical examination 

b) Radiological investigation- includes Mammography and Ultrasound 

c) Pathological investigation- involves tumour biopsy collection through fine needle 

aspiration or excision biopsy.  
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Figure 1.3 Development of cancer metastasis: Cancer invasion and metastasis takes place in 

different steps. The most important processes are formation of blood vessels in the primary 

tumour and extravasation through the blood vessel wall at the site of metastasis (taken from 

Fidler 2003). 
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1.7 Breast Cancer Biomarkers 

1.7.1 Biomarker overview  

 Breast cancer grows to a critical mass by the time of clinical diagnosis and becomes 

difficult to treat. Therefore there is a need for biomarkers to screen, predict and identify 

treatment as early as possible. Biomarker is a defined as a “cellular, biochemical, biological 

characteristics or molecular alterations that can be objectively measured and evaluated as an 

indicator of normal biological processes, pathogenic processes, or pharmacological responses to 

a therapeutic intervention” (Naylor, 2010). 

 There are three types of biomarkers 1) Diagnostic biomarker- identification of preclinical 

stage of disease and disease state. 2) Predictive biomarker- used for forecasting the likely 

response to treatment. 3) Prognostic biomarker- used for predicting the course of the disease 

irrespective of treatment  (Buyse et al., 2010).  The sources of cancer biomarkers can be 

classified into two types; 1) Cellular Biomarkers- markers that are associated with the cancer 

tissue, 2) Humoral biomarkers- found in body fluids such as blood, urine, saliva, nipple 

discharge etc. 

 For the past two decades there have been advances in genomics, proteomics and 

molecular pathology and tremendous efforts have been taken to identify novel cancer biomarkers 

to be used in clinical practice. These are exemplified in the number of the grants (4928) and 

publications (441,510) up to 2008 relating to cancer biomarkers (Ptolemy and Rifai, 2010). 

However there is a discrepancy in the effort to discover cancer biomarkers and the number of 

biomarkers actually approved by the US Food and Drug Administration (Füzéry et al., 2013). 

Table 1.1 gives the list of approved cancer biomarkers which are currently in clinical use. It can 

be observed from the table that there only 6 biomarkers used in monitoring treatment response 

and disease progression of breast cancer. There are no approved biomarkers to be used in 
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screening and diagnosis of the disease before clinical symptoms begin to manifest. This shows 

the need for new breast cancer biomarkers that could be used for screening and diagnosis of 

breast cancer.  
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Table 1.1 US Food and Drug Administration-Approved Cancer Biomarkers 

Biomarker Clinical use Cancer type Specimen Methodology Year approved  

Pro2PSA Discriminating cancer from benign disease Prostate Serum Immunoassay 2012 

ROMA (HE4+CA-125) Prediction of malignancy Ovarian Serum Immunoassay 2011 

OVA1 (multiple proteins) Prediction of malignancy Ovarian Serum Immunoassay 2009 

HE4 Monitoring recurrence or progression of 

disease 

Ovarian Serum Immunoassay 2008 

Fibrin/ fibrinogen degradation 

product (DR-70) 

Monitoring progression of disease Colorectal Serum Immunoassay 2008 

AFP-L3 Risk assessment for development of disease Hepatocellular Serum HPLC, microfluidic 

capillary 

electrophoresis 

2005 

Circulating Tumor Cells (EpCAM, 

CD45, cytokeratins 8, 18+, 19+) 

Prediction of cancer progression and survival Breast Whole blood Immunomagnetic 

capture/ immune-

fluorescence 

2005 

p63 protein 

 

Aid in differential diagnosis Prostate FFPE tissue Immunohistochemistry 2005 

c-Kit Detection of tumors, aid in selection of Gastrointestinal FFPE tissue Immunohistochemistry 2004 
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patients stromal tumors 

CA19-9 Monitoring disease status Pancreatic Serum, 

plasma 

Immunoassay 2002 

Estrogen receptor (ER) Prognosis, response to therapy Breast FFPE tissue Immunohistochemistry 1999 

Progesterone receptor (PR) Prognosis, response to therapy Breast FFPE tissue Immunohistochemistry 1999 

HER-2/neu Assessment for therapy Breast FFPE tissue Immunohistochemistry 1998 

CA-125 Monitoring disease progression, response to 

therapy 

Ovarian Serum, 

plasma 

Immunoassay 1997 

CA15-3 Monitoring disease response to therapy Breast Serum, 

plasma 

Immunoassay 1997 

CA27.29 Monitoring disease response to therapy Breast Serum Immunoassay 1997 

Free PSA Discriminating cancer from benign disease Prostate Serum Immunoassay 1997 

Thyroglobulin Aid in monitoring Thyroid Serum, 

plasma 

Immunoassay 1997 

Nuclear Mitotic Apparatus protein 

(NuMA, NMP22) 

Diagnosis and monitoring of disease 

(professional and home use) 

Bladder Urine Lateral flow 

immunoassay 

1996 

Alpha-fetoprotein (AFP) Management of cancer Testicular Serum, Immunoassay 1992 
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plasma, 

amniotic 

fluid 

Total PSA Prostate cancer diagnosis and monitoring Prostate Serum Immunoassay 1986 

Carcino-embryonic antigen Aid in management and prognosis Not specified Serum, 

plasma 

Immunoassay 1985 

Human hemoglobin (fecal occult 

blood) 

Detection of fecal occult blood (home use) Colorectal Feces Lateral flow 

immunoassay 

1976 
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1.7.2 Blood based breast cancer biomarkers 

 Blood based biomarkers could be proteins in the serum/plasma, circulating tumour cells, 

circulating MicroRNAs (miRNAs), DNA, metabolites etc. Classical soluble breast cancer 

biomarkers include Cancer Antigen 15-3 (CA 15-3), Cancer Antigen 27-29 (CA 27-29) and 

carcinoembryonic antigen (CEA). Both CA 15-3 and CA 27-29 are members of the mucin-like 

membrane protein 1 (MUC1) family. The members of MUC1 family are large glycosylated 

molecules and their physiological functions are unclear but they have been implicated in cell 

adhesion and metastasis (Duffy, 2006). Both CA 15-3 and CA 27-29 are used for predicting 

prognosis after treatment in primary breast cancer. CA 15-3 along with alkaline phosphatase 

predicts breast cancer recurrence and metastasis (Keshaviah et al., 2007). The rise in 

concentrations of CA-15-3 occurs immediately after treatment. Decrease in the level of CA 15-3 

by 50% indicates suppression of tumour growth (Duffy, 2006). CEA is a secreted glycoprotein 

which is a tumour associated antigen and serum tumour biomarker. CEA is elevated in 50-60% 

of patients with metastatic breast cancer and hence is used to predict tumour metastasis. It is also 

used to monitor the therapy in breast cancer (Ebeling et al., 1999). 

 Other well known soluble biomarkers in the serum/plasma include cytokeratin 18, 

cytokeratin 20 (Moll, 1994), mammoglobin (Bernstein et al., 2005), MicroRNAs (miR-10b, 

miR-21, miR-125b, miR-145, miR-155 miR-191 and miR-382) (George and Mittal, 2010; Mar-

Aguilar et al., 2013) are in the development pipeline which are not yet applied in clinical 

diagnosis. 
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1.8 Microarray expression profiling and biomarker discovery 

1.8.1 Overview of Microarray Technology 

 Microarray is a technique used to genotype cells for identifying mutations or expression 

profile different types of cells. DNA microarrays are created by robotic machines that arrange 

thousands of small DNA sequences on a microscopic slide. These DNA sequences are 

complementary to the gene sequences in the cell. When DNA is extracted from the cell it is 

fragmented and labelled with a fluorescent probe. These small gene sequences are then allowed 

to hybridise on the DNA-chip. When the labelled DNA sequences bind to the chip the 

fluorescent signal can be detected and quantified. Expression microarrays use the sample 

principle but the RNA from the cells are extracted and converted to cDNA using reverse 

transcriptase enzyme. The cDNA is then allowed to bind to the DNA-chip (Forster et al., 2003). 

There are several sequence probes corresponding to every gene known and this depends on the 

manufacturer. The fluorescent signal is then detected using a high resolution camera. The image 

is processed by quantifying and normalising the signal/noise ratio. The expression values for 

each probe corresponding to a single gene are obtained. Different DNA-chips are normalised by 

using a combination of housekeeping genes that usually include genes such as GAPDH, β-Actin, 

18s rRNA, 28s rRNA etc. Expression microarrays can be used to identify changes in disease 

state and compare it with healthy or normal state. The first cDNA expression microarray was 

done by Augenlicht et al. 1987 and it started to gain popularity with the publication by  Ron 

Davis and Pat Brown labs at Stanford University (Schena et al., 1995). Microarrays has several 

limitations and drawbacks such as; reliance on the existing knowledge of the genome and 

isoforms of transcripts, high background levels on the DNA-chip due to cross hybridisation, lack 

of rigorous standards for data analysis and quality/ integrity of RNA used. 
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1.8.2 Genomics in biomarker discovery 

 Expression microarray technology and RNA sequencing technology are conventionally 

used to identify the expression profiles of cancer tissues and cancer cell lines to classify tumours 

based on their genotype and expression. This approach is also used to discover cellular 

biomarkers from the only the cancer tissue, recently from circulating tumour cells (Moll, 1994) 

and MicroRNAs (George and Mittal, 2010; Mar-Aguilar et al., 2013). There have been a number 

of studies aimed at discovering biomarkers for breast cancer from tissues. Perou et al. 2000 used 

cDNA microarrays to test tissue samples from 42 breast cancer patients for the expression of 

around 8000 genes. This was the first study which was done to classify breast tumours into 

different subtypes based on expression patterns. Sørliea et al. 2001 confirmed the findings and 

demonstrated that gene expression signatures of these subtypes of cancer can be used as a 

prognostic marker with respect to overall and relapse free- survival. Five types of breast cancer 

were identified based on the expression patterns; Luminal A, Luminal B, Basal-like, ERBB2 

positive/ER negative and normal breast-like. Various research groups have identified gene 

signatures which correlate with prognosis and outcome in breast cancer patients (Abba et al., 

2010; Glinsky et al., 2004; Van’t Veer et al., 2002; Yu et al., 2008b). Recent work done by 

Curtis et al. 2012 has revealed novel molecular subgroups of breast cancer based on genomic and 

transcriptomic experiments. The group analysed copy number, single nucleotide polymorphisms, 

and gene-transcription rates in 2,000 breast cancers and identified 10 different molecular 

subtypes of breast cancer based on patient treatment outcomes. The findings are yet to be 

implemented in clinical settings. The main disadvantage of genomic profiles to be used as 

prognostic biomarkers is the heterogeneity of cancers, expensive/time consuming method to be 

used in clinical settings, need for large randomised clinical trials, lack of specificity and 

sensitivity of individual genes and the RNA levels do not always correspond to protein levels. 
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 Recently several groups have tried to discover biomarkers by expression profiling in the 

patients WBCs of breast cancer (Aarøe et al., 2010; Komatsu et al., 2012; LaBreche et al., 2011; 

Sharma et al., 2005; Zuckerman et al., 2013), pancreatic cancer (Baine et al., 2011), Non-small 

cell lung cancer (Showe et al., 2009), colorectal cancer (Xu et al., 2013a) and acute myeloid 

leukemia (Metzeler et al., 2008). All these groups have performed expression analysis and come 

up with panels or expression patterns to predict cancer but none except one group (Xu et al., 

2013a) have performed validation by RT-qPCR. Since clinical tests for cancer use protein 

antibody based techniques such as ELISA, IHC and FISH, microarray data has to be validated so 

that it could be taken forward to the validation step. The difficulties in validation of biomarkers 

will be discussed later in Section 1.10. 

1.9 Proteomic profiling using Mass Spectrometry and biomarker discovery 

 Mass spectrometry based proteomics can be used for the discovery step of biomarkers to 

identify a huge list of potential candidates which can be shortlisted in the following steps of 

development. Proteomics complements and further enlarges the information generated by 

genomics in breast cancer. But the mRNA levels do not necessarily correlate with corresponding 

protein abundance. The most commonly used technologies are tissue protein microarrays, 2D-gel 

electrophoresis and mass spectrometry based techniques such as matrix assisted laser 

desorption/ionisation (MALDI),Surface Enhanced Laser Desorption/Ionization time-of-flight 

mass spectrometry (SELDI) and liquid chromatography (LC-MS/MS). In this study we have 

used 2D-gel electrophoresis and mass spectrometry using the LTQ Orbitrap hybrid ion trap mass 

spectrometer. 

1.9.1 Overview of 2-Dimensional Polyacrylamide Gel Electrophoresis (2D-PAGE) 

 2D-PAGE is a classical technique used to separate a cell lysate based on mass and 

charge, resulting in up to thousands of spots per gel. It can be used in tissue, plasma and serum 
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proteome analysis without prior enrichment or fractionation. The proteins are separated in two 

separate steps; in the first dimension proteins are solubilised in urea and are separated based on 

their isoelectric point on a pH gradient. Proteins will migrate until they have no net charge. After 

the proteins are separated based on their charge they are then loaded onto a polyacrylamide gel 

containing sodium dodecyl sulphate (SDS) under an electric field. The proteins get denatured 

and acquire a negative charge due to the presence of SDS. The proteins migrate under the 

electric field based on their molecular mass (Lopez, 1999; O’Farell, 1975). Thus proteins are 

separated in separate protein spots on an acrylamide gel with high resolution which can be 

stained. The protein spots are excised out of the gel and digested with proteases before mass 

spectrometric identification. 

1.9.2 Overview of  Mass spectrometry and LTQ Orbitrap hybrid ion trap mass 

spectrometer 

  Mass spectrometry has revolutionised the analysis of proteins and has become the 

tool of choice in biomarker discovery due to its speed, wide signal range, quantitative capability 

and the facility to interface with chromatographic methods. Time-of-flight mass spectrometry 

(ToF MS) is where the protein peptides are ionised and the ions are accelerated by an electric 

field of known strength. The mass analyser then separates ions according to their mass to charge 

ratio and by time taken for the ions to travel through the field (Boja et al., 2011). The data is then 

analysed by the application of algorithms to compare with the theoretical spectra of proteins in 

protein sequence databases. This mass analyser is usually coupled with MALDI, SELDI or liquid 

chromatography apparatus. 

 MALDI involves precipitation of proteins along with a matrix material (cyano-4-

hydroxycinnamic acid or dihydroxybenzoic acid). The precipitated protein is then fragmented 

and ionized with laser pulses which are fed into a ToF MS. SELDI involves the protein sample to 
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be loaded onto a ProteinChip arrays that selectively bind to proteins in the lysate according to the 

protein chemistries based on adsorption or affinity chromatography (Srinivas et al., 2002). The 

chip is then washed to avoid unspecific binding. LC-MS/MS combines liquid chromatography 

and mass spectrometry. After enzymatic digestion the mixture of peptides are resolved in a 

chromatographic column. The peptides are eluted at different rates due to their interaction with 

the column material. The separated peptides are then fed into a mass spectrometer (Khadir et al., 

2013). 

 The Orbitrap has an ion trap mass analyzer consisting of an outer barrel-like electrode 

and a co-axial inner spindle-like electrode that traps ions in an orbital motion around the spindle. 

The ions move inside in complex spiral patterns. The ions are then detected as an image current 

on the two halves of an electrode surrounding the orbitrap. Fourier transform is used obtain 

oscillation frequency for ions with different masses which gives the mass to charge ratio (Hu et 

al., 2005; Scigelova and Makarov, 2006). The Orbitrap mass spectrometer has very high 

resolution and high detection speeds of up to 5000 measurement per second per 5ppm. It also has 

very high sensitivity towards proteins of low concentrations in complex biological mixture. 

1.9.3 Proteomics in  breast cancer biomarker discovery 

 The advancement in new mass spectrometric techniques coupled with protein 

fractionation techniques has expanded the possibility of highthroughput protein identification 

and quantification in complex biological mixtures such as plasma, urine and cell lysates. The 

current FDA approved clinical tests are protein based antibody assays (Table 1.1). There are 

several candidate protein biomarkers such as cathepsin-D, 14-3-3 proteins, HSP60, PCNA, 

annexins, Calreticulin, matrix metalloproteinases etc that have been identified by mass 

spectrometry in breast cancer tissues (Hondermarck et al., 2001). There are no FDA approved 

biomarkers which was discovered by mass spectrometry based approaches (Drabovich et al., 
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2014). Biomarkers have been searched for in the plasma of cancer patients based on the 

hypothesis that tumour specific proteins maybe found in blood circulation and would have use in 

the early detection of cancer.CA 15-3 and CA 27-29 are FDA approved biomarkers of breast 

cancer to monitor disease progression and recurrence in the plasma. The main utility of both of 

these molecules are to monitor plasma levels in metastatic breast cancer patients undergoing 

therapy (Misek and Kim, 2011; Nolen et al., 2008). Early periodic peaks in CA 15-3 and CA 27-

29 levels have been reported during the therapy but these are not recommended for screening or 

diagnosis after primary therapy. Novel plasma biomarkers which have been discovered include 

apolipoprotein H (Chung et al., 2014) and 21-protein panel in metastatic breast cancer patients 

(Carlsson et al., 2011). There are several more plasma biomarkers which are in the development 

pipeline and have to be validated using clinical trials. The main drawbacks of protein biomarkers 

in plasma are dynamic changes in the blood, blood collection conditions, blood processing/ 

storage methods and detection of proteins of low concentrations. 

1.9.4 Biomarker Development Pipeline 

 Similar to drug discovery and biomarker discovery is a multi-step process. The aim of the 

pipeline is to assess the maximum possible candidates and exclude the ineffective ones as early 

as possible. Figure 1.3 gives the steps in the protein biomarker development pipeline describing 

the timeline and the approach usually taken for each step. The first step can also be called the 

discovery phase involves using clinical samples and currently there are two types of approaches; 

Exploratory approach where highthroughput methods are used and targeted approach where 

usually molecules overexpressed in cancers are measured by targeted proteomics. The 

exploratory approach consumes more money and time. It took nearly 8 years since the discovery 

of human epididymis protein 4 for ovarian cancer and interleukin 1 receptor-like 1 protein for 

heart failure to be approved by the FDA for clinical use (Drabovich et al., 2014). The 

qualification step involves analysing data from the first step to identify association between 
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clinical outcome and protein abundance by using criteria filtering to obtain a manageable list of 

biomarkers. The verification or validation step includes measuring the promising candidates 

using semi-quantitative methods like RT-qPCR, western blotting and Immunohistochemistry 

where false positive candidates are excluded. The pre-clinical step typically involves protein 

expression and purification of the biomarkers to develop antibodies against them. The clinical 

stage usually involves validation on clinical samples in large sample numbers (usually 1000s). It 

is in this stage reference values, clinical endpoints and surrogate endpoints are defined. Clinical 

endpoint is the defined by how the patient feels or survives and surrogate endpoint is defined as 

the substitute for clinical endpoint to include it and prediction of effects of treatment on the 

clinical endpoint (Buyse et al., 2010). A number issues such as deciding the number of samples 

to be analysed, criteria for inclusion or exclusion for sample and candidates, appropriate 

statistical analysis to use for both discovery phase and clinical phase, sample collection methods, 

effects of sample preparation, limitations of validation methods, validation using independent 

datasets/investigators, time taken for biomarker discovery process causing clinicians 

dissatisfaction and the cost of the process should be considered while developing a biomarker. 
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Figure 1.4 Integrated protein biomarker development pipeline: Both genomics and 

proteomics approach is combined and the biomarker candidates are validated using 

immunoassays. The numbers of candidates decrease and the number of samples increase along 

the pipeline (taken from Drabovich et al. 2014). 
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1.10 Cancer and the Immune system 

1.10.1 Immune Surveillance and Immunoediting  

 The immune surveillance theory explains that cancer cells constantly originate in the 

body but are eliminated by the immune system as antigens. The tumour which manifests itself 

either has to escape this or impair the immune system. This theory then evolved into the cancer 

immunoediting hypothesis which suggests that the immune system sculpts the tumour during its 

development and, paradoxically, results in the generation of cancer cells resistant to the immune 

system. Cancer immunoediting consists of three stages: elimination, equilibrium and escape 

(Dunn et al., 2002). During the first phase the immune system complements the immune 

surveillance hypothesis where the immune system eliminates the tumour cells based on their 

antigenic properties. The equilibrium phase occurs when tumour cells with reduced 

immunogenicity and increased immunosuppressive properties evolve. This is achieved when 

tumours secrete immunosuppressive factors, which downregulate antigen presenting molecules 

or inhibit of immune cell homing (Chouaib et al., 1997). Tumour escape occurs when the tumour 

secretes immunosuppressive factors such asvascular endothelial growth factor (VEGF), IL-10, 

IL-6, TGF-b, prostaglandin E2, soluble phosphatidylserine, granulocyte macrophage colony 

stimulating factor, tumour necrosis factor-α, soluble Fas and soluble Fas ligand (Kim et al., 

2007).  

1.10.2 Role of the Innate Immune system in promoting tumour development and 

angiogenesis: 

Approximately 15% of the cancers worldwide are caused by chronic infections. For 

example Hepatitis C increases the risk of liver carcinoma whereas chronic infection of 

Heliobacter pylori is a leading cause for stomach cancer (Cousens & Werb, 2002; De Visser, 

Eichten, & Coussens, 2006). There is a growing body of evidence suggesting the link between 
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inflammation and tumour development. The immune cells cause inflammation in the process of 

destroying an infection and produce cytokines which subject the surrounding cells to oxidative 

stress thereby damaging them. The damaged cells have a higher risk of developing into a 

neoplastic cell.  

Cell mediated immunity or innate immunity is the first line of defence of the body against 

tumour cells and comprise of macrophages, dendritic cells, mast cells, granulocytes, natural 

killer cells (NK cells) and cytotoxic T-cells (CTLs). Reduced NK cells activity and reduced 

number of T-lymphocytes were observed in breast cancer patients prior to surgery or adjuvant 

therapy. One of the major inflammatory cytokine secreted by macrophages TNF-α has also been 

found to be secreted by breast cancer cells in high levels. Also the activity of TNFα was 100% 

higher in breast cancer patients (Standish et al., 2008). TNF-α expression positively correlated 

with increased tumour grade and lymph node metastasis (Leek et al., 1998). The expression of 

class I MHC is reduced in tumour cells therefore the cytotoxic T-cells cannot recognise the 

tumour cells as they are dependent on MHC I expression. Tumour tissues from breast cancer and 

prostate cancer have abundant infiltrations of immune cells and immunoglobulin deposits 

compared to normal tissue (De Visser et al., 2006). The density of tumour associated 

macrophages in the tumours has been shown to be correlated with poor prognosis and lymph 

node metastasis. Also tumour associated macrophages secrete other inflammatory cytokines such 

as IL-8, IL-10, VEGF and Fibroblast growth factor to inhibit T cells response (Crowther et al., 

2001; Gabrilovich et al., 2012).  

Neutrophils comprise of a large subset of the white blood cell population (~70%) and are 

important in the innate immune response. Neutrophils are activated by compounds such as 

lipopolysaccharide, Interleukin-8, Interferon-γ, and TNF-α. Activated neutrophils secrete a 

growth promoting factor Hepatocyte Growth Factor (HGF) (McCourt et al., 2001). Interleukin-8, 

one of the stimulators of neutrophils is secreted in the cancer microenvironment and increases 
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the population of tumour infiltrating neutrophils in the tumour site (Waugh and Wilson, 2008). 

HGF was found to be produced by Tumour infiltrating neutrophils in response to granulocyte 

macrophage colony stimulating factor and TNF-α in pulmonary adenocarcinoma 

microenvironment (Wislez et al., 2003). HGF promotes metastasis and is a growth factor which 

improves angiogenesis and cell proliferation. In another study c-met gene which codes for the 

receptor for HGF is upregulated in colorectal cancer cells (Di Renzo et al., 1995). Recently it 

was proved that HGF was necessary to disrupt cell to cell interactions by uncoupling the myosin 

VI and E-cadherin function accompanied by loss of F-actin at cell surface junctions of zonula 

adherens (Mangold et al., 2011). Oncostatin M, a cytokine belonging to the IL-6 family was 

secreted by tumour infiltrating neutrophils in breast cancer cells. It improves the invasive 

capacity of the tumour and metastasis. When neutrophils were co-cultured with human breast 

cancer cell lines T47D and MDA-MB-231 oncostatin-M was secreted and macrophage colony 

stimulating factor was necessary for it (Queen et al., 2005). Thus neutrophils play a very 

important part in the immune response to cancer and may promote tumour progression and 

metastasis. It has been showed that TGF-β polarises tumour associated neutrophils to a N2 pro-

tumour phenotype. Blocking of TGF-β causes accumulation of N1 phenotype neutrophils which 

possess anti-tumour activity (Fridlender et al., 2009). The function of neutrophils in tumour 

microenvironment is still unclear as to whether they promote or suppress tumour development 

and growth. 

1.10.3 Cancer and the Chemokine/cytokine Network  

 The chemokines and cytokines secreted by tumour cells have been implicated in the 

suppression of the cells if the immune system. Two cytokines, CCL2 and CCL5, secreted by 

various tumours have been studied extensively. CCL2 otherwise known as MCP-1, is secreted by 

tumour and stromal cells into the surrounding attracting monocytes, basophils and T-cells to sites 

of inflammation. CCL2 levels correlate with lymphocyte and macrophage numbers in the 
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epithelial areas of the tumour along with poor prognosis and relapse (Balkwill, 2004). CCL5 

secreted by tumour cells, attracts T-cells, basophils and eosinophils; the CCL5 levels were high 

in advanced breast carcinomas (Ben-Baruch, 2003). Both CCL2 and CCL5 facilitate the 

production of matrix metalloproteinases such as MMP9 in macrophages which modify the 

extracellular matrix to aid tumour cell migration and invasion(Robinson et al., 2002). Another 

chemokine implicated in tumour development is CXCL12 (SDF1-α). CXCL12 is expressed by 

sites such as the bone marrow, liver, lung, brain etc which are metastasis sites for breast cancer. 

Its receptor, CXCR4, has been found to be up-regulated in many types of tumours including 

breast cancer, allowing cells to migrate to targeted distant organs containing cells that secrete its 

ligand (de Jong et al., 1998; Müller et al., 2001) 

1.11 Leukocyte Transendothelial Migration 

  It is very important for the immune cells reach the site of infection or 

inflammation through the blood vessel wall. Leukocyte transendothelial migration is the process 

by which T-cell, neutrophils and monocytes move through the endothelial layer. 

Transendothelial migration has also been implicated in tumour escape mechanisms. The whole 

process, illustrated in Figure 1.4,  happens in three stages: rolling and capture, adhesion on the 

endothelium and finally transmigration (Van Buul and Hordijk, 2004; Muller, 2009; Wagner and 

Roth, 2000). Monocytes, lymphocytes and neutrophils all migrate in a similar way into the 

endothelium but are activated by different signalling molecules. Many molecules such as TNF-α, 

IL-1, Leukotrienes, Platelet activating factor, Complement protein 5a, IL-8, SDF-1α etc mediate 

the interaction between the endothelium and the leukocytes (Wagner and Roth, 2000). 

1.11.1 Rolling and Capture 

Polymorphonuclear Leukocyte Neutrophils (PMNs) roll over the endothelium forming 

reversible interactions using molecules called selectins which are present on both PMNs and 
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endothelial cells. The PMNs, newly released from the bone marrow, express high levels of L-

selectin and as they age the L-selectin molecules are lost from the surface of PMNs (Kuhns et al., 

1995) .The ligand for L-selectin is CD34, it is highly expressed in lymph nodes and endothelial 

cells of the blood vessel (Krause et al., 1996). Two other selectins of the endothelium, P-selectin 

and E-selectin also have a role in this rolling step and are expressed when appropriate 

inflammatory signals are received. The ligand for P-selectin on the surface of leukocytes is 

PSGL1 which can bind to two P-selectin molecules at the same time (Wagner and Roth, 2000). 

The interaction with PSGL1 is longer than the L-selectin-CD34 interaction but if appropriate 

inflammatory signals are not received these selectin interactions are reversible and short-lived. 

1.11.2 Adhesion and Activation 

The next step in transendothelial migration is firm adhesion which happens due to either 

appropriate inflammatory signals or the activation of selectin interactions. Intracellular adhesion 

molecules and integrins play a very important part in the adhesion of PMNs onto the 

endothelium. Integrins are cells adhesion receptors which bind to a variety of ligands on the 

extracellular matrix such as collagen, fibronectin, fibrinogen, laminins, cadherins, vitronectins 

etc (Barczyk et al., 2010). Integrins are heterodimeric proteins found the membranes of most 

cells. There are 16 different α subunits and 8 β sub-units to form 23 different transmembrane 

Integrin receptors. Each Integrin is formed by one α and β sub-units with the cytoplasmic tail 

forming linkages with the cytoskeletal proteins and harbouring phosphorylation sites. The main 

integrins implicated in leukocyte migration are Mac-1(αMβ2), LFA-1(αLβ2) and VLA-4 

(α4β1).VLA-4 and LFA-1 are responsible for the movement for T-cells and monocytes while 

Mac-1 is predominantly responsible for neutrophil and NK cell movement. The receptors for 

Mac-1, LFA-1 and VLA-4 are C4a:C4b complement, ICAM-1 and VCAM-1 respectively. Both 

ICAM-1 and VCAM-1 interactions are essential for neutrophil invasion. PECAM-1 and CD99 is 

also essential for the neutrophil movement.PEACAM-1 is its own ligand forming a homodimer 
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on the opposing cell perhaps essential for signalling the cell to inform the degree of extravasion 

(Wagner and Roth, 2000). 

1.11.3 Transmigration 

Leukocytes possess proteolytic enzymes such as neutrophil elastase, proteinase 3 and 

cathepsin G which can cleave components of the extracellular matrix such as collagen and 

laminins. This step involves the actin cytoskeletal rearrangement of the PMN cell. The 

neutrophil proteases and peroxidases disrupt the VE-cadherin junctions of the endothelial cells to 

loosen the cell junctions for the movement of PMNs. This involves the reorganisation of the 

cytoskeletal structure of the PMN so it has a leading edge that adheres and protrudes into the 

endothelium and the retracting end. In fibroblasts the integrin binding activates Cdc42 and Rac1 

which intern activates the Arp2/3 complex. The molecules involved in the retracting end are 

CD44, CD43, ICAM-3 and PSLG-1 (Van Buul and Hordijk, 2004). 
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Figure 1.5 Overview of Leukocytes Transendothelial Migration: Three steps involved 

leukocyte migration along with the molecules involved. (Taken from Van Buul & Hordijk, 2004) 
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1.12 Aims of the project 

 The need for new biomarkers has been discussed in the previous sections. In this project 

the primary aim is to discover novel breast cancer biomarkers in the White Blood Cells (WBCs) 

fraction of blood of breast cancer patients using the exploratory biomarker discovery approach. 

The secondary aim is to use the findings to explain the effect of tumour on the immune system, 

specifically on the WBCs. To achieve this we divided the project into the following Objectives: 

1. Identification of the difference in gene expression profiles of WBCs between healthy 

donors and primary breast cancer patients, using the existing data deposited in the Gene 

Expression Omnibus (GEO). 

2. Identify the difference in protein profiles of WBCs of healthy donors and primary breast 

cancer patients by highthroughput proteomics and 2D-PAGE. 

3. Integrate the data from both genomic and proteomics approaches to shortlist the 

biomarker candidates. 

4. Validate shortlisted biomarker candidates using RT-qPCR and Western blotting. 

 

The expected outcome of this study would be identification of new breast cancer biomarkers. In 

addition, this investigation will add to our knowledge of how the immune system is altered in the 

breast cancer patients.  
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Chapter 2: Materials and Methods 
 

2.1 Isolation of White Blood Cells from whole blood 

  Ethical approval for this project was obtained from Essex Research Ethics Committee 

(Reference No: 10/H0301/60) and the Research & Development Department of Colchester 

Hospitals University NHS Foundation Trust. Blood samples of Breast cancer patients were 

obtained from Colchester general hospital in collections tubes with Ethylenediaminetetraacetic 

acid (EDTA) and were processed within 24 hours of collection. Blood was processed to separate 

White Blood Cells (WBCs) using the buoyancy density method (D’Arcy et al., 2006). 

Histopaque (Sigma) was used to separate the whole blood into a density gradient of plasma, 

white blood cells and red blood cells by spinning at 400 x g for 30 minutes. Red blood cells were 

discarded and the plasma was stored at -800C. The white blood cells layer was taken and washed 

with Hanks balance salt solution (HBSS) twice and was spun down at 250 x g for 5 minutes. The 

remaining pellet was treated with red blood cells lysis buffer (from Roche) to remove the red 

blood cells and washed with HBSS to obtain the WBC’s which was then split into different 

fractions to analyse them. 

2.2 Protein analysis methods 

2.2.1 Overview of Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis (SDS-

PAGE) and Western blotting 

SDS-PAGE is a method used to separate proteins in a mixture under the influence of an 

electric field in a polyacrylamide gel. Cells are lysed in a buffer containing SDS. The proteins 

are denatured and bind to SDS to obtain a negative charge. The proteins are then separated based 

on their molecular weight in a polyacrylamide gel (Chrambach& Rodbard 1971). Western 

blotting is a technique where the proteins which were resolved by SDS-PAGE are transferred to 
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a nitrocellulose membrane using an electric field. The membrane is then probed with a primary 

antibody raised specifically against an antigen followed by probing with secondary antibody 

labelled either a fluorescent tag or an enzyme which produces a luminescent signal in the 

presence of a substrate (Towbin et al., 1979). All the buffer and solution compositions used are 

given in Table 2.1 

2.2.1.1 Preparation of White Blood Cell lysates for gel electrophoresis 

The protein lysates were prepared from 2x10
6
 whole white blood cells in SDS lysis buffer 

containing 0.1M Tris/HCl pH 6.8, 7 M urea, 4% SDS, 10% mercaptoethanol and phenol red. The 

mixture was then heated at 95
0
C for 5 minutes to allow the proteins to be reduced. 

2.2.1.2 Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis (SDS-PAGE)  

 Standard 8.1% SDS-PAGE gel was used to separate the proteins in the lysates. The 

separating gel was prepared and poured into the glass cassettes. After the separating gel was 

ready Stacking gel was prepared and poured on the separating gel with a well comb. Once the 

gels were set, protein samples were loaded onto the wells. SDS-PAGE gels were run with a 

protein standard marker with a molecular weight range of 7 - 175 kDa (New England Biolabs) 

under denaturing conditions at 125 V and 40 mA (80 mA for two gels run simultaneously) for 

just over two hours. The gel was incubated in running buffer with 1% methanol for 15 minutes 

on a gentle rocking platform. The PVDF membrane was treated with methanol (100%) for 10 

seconds and washed thoroughly with RO water. 

2.2.1.3 Western blotting analysis 

Protein blotting was done from the acrylamide gel onto polyvinylidenedifluoride (PVDF) 

membrane by electrotransfer.Transfer was performed using transfer buffer in a semi-dry electro 

blotting apparatus for two hours at100 mA / 35 V. The PVDF membrane was blocked overnight 

at 4
0
C in blocking buffer (PBS, 0.05% tween-20 and 5% milk). The membrane was then 
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incubated with primary antibody at a concentration at the recommended concentration in 

blocking buffer for two hours and then washed with washing buffer (1XPBS, 0.05%tween-20) 

three times for five minutes. The membrane was incubated with the horse radish peroxidase 

(HRP) conjugated secondary antibody for two hours in blocking buffer followed by washing 

thrice with washing buffer. The membrane was then soaked with the enhanced 

chemiluminescence (ECL) solution Luminata forte from Millipore (cat no: WBLUF0100) 

containing fluorescent peroxidase substrate and visualized. The signal was detected by exposing 

the membrane to an autoradiography film (Kodak Medical X-ray film). The film was then 

developed using GBX Developer and Fixer (Kodak, Japan).  

2.2.1.4 Image J analysis 

 The image obtained from the PVDF membrane was then scanned as an image file and 

analysed with Image J analysis software which can downloaded freely from 

http://imagej.nih.gov/ij/. This software analyses the band intensity and gives values. The target 

protein molecule was normalised between samples using the signal obtained from β-Actin 

antibody probing. Protein density values from different gels were normalised based on the value 

obtained from a common sample used. 
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Buffer 
 

Composition 

 

SDS Lysis Buffer 
0.1M Tris/HCl pH 6.8, 7M Urea, 10% 2 β-mercaptoethanol (add just 

before use), 4% SDS and a pinch of Phenol red dye 

Tissue Lysis buffer 

20mM Tris/Hepes pH 8.0, 2mM EDTA, 0.5M NaCl, 0.5% Na 

deoxycholate, 0.5% Triton X-100, 0.25 M Sucrose, add directly 

before use 50mM 2-ME, 50µM PMSF, 1µM Pepstatin 

Resolving Buffer* 2M Tris/HCl, 0.2% SDS (pH 8.9) 

Stacking Buffer** 0.1M Tris/HCl, 0.1% SDS (pH 6.8) 

Gel Running Buffer 0.025M Tris/HCl, 0.192M Glycine, 0.1% SDS 

Transfer Buffer 20mM Na2PO4, 2% Methanol, 0.05% SDS 

Phosphate Buffered 

Saline (PBS) (1x) 

2mM KH2PO4, 10mM Na2PO4, 137mM NaCl, 2.7mM KCl,  

(pH 7.4) 

Blocking buffer  0.1% Tween, 5% dried skimmed milk powder, 1x PBS 

Washing Buffer 0.1% Tween, 1x PBS 

 

 

 

 

 

 

 

 

 

 

 

 

Resolving gel composition 
8.1% gel 

(ml) 

Acrylamide/Bis-acrylamide  

Solution (30%) (Bio Rad) 
2.7 

Resolving gel buffer* 5 

10% APS (SIGMA) 0.05 

ddH20 2.23 

TEMED (SIGMA) 0.02 

Total 10 

Stacking gel composition 
4% gel 

(ml) 

Acrylamide/Bis-acrylamide  

Solution (30%) 
0.665 

Stacking gel buffer** 1.75 

10% APS  0.025 

ddH20 2.55 

TEMED  0.01 

Total 5 

B. 

A. 
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Table 2.1 Preparation of buffers and gels for Western Blotting. (A) Composition of general 

buffers used in the SDS-PAGE and Western Blotting.(B) Components of Resolving (left) and 

Stacking (Right) Gels used in SDS-PAGE 

2.2.2 Protein Profiling by Mass spectrometry 

2.2.2.1 Protein profiling of White blood cells using Orbitrap mass spectrometer 

To identify the protein expression patterns specific for cancer patients’ proteins from 

WBC cell pellets were fractionated into membrane and soluble fractions as discussed in 

Alldridge et al., 2008. The proteins from the leukocyte fractions were extracted and the soluble 

and membrane proteins were separated to generate two separate proteome fractions to maximize 

the coverage of the analysis. Both the fractions were then digested using trypsin and analysed on 

OrbitrapVelos instrument equipped with an Ultimate 3000 nano-scale HPLC (Olsen et al., 2009). 

The data generated by Orbitrap was processed by MaxQuant (a suite of algorithms and tools to 

perform automated analysis using the raw files from Orbitrap). The software has been accepted 

and adopted widely by the quantitative proteomics community (Cox and Mann, 2008).The above 

work was conducted by Dr.MetodiMetodiev in his lab. The output of the procedure was obtained 

as table with normalised label free quantitative intensity values for each protein. Only the data 

from only the membrane fraction was analysed. Mann Whitney U test was then performed to 

compare the protein profiles between the WBCs of cancer patients and healthy donors with a p 

values of <0.05. The proteins were then shortlisted based on their expression profiles manually.  

2.2.3 Protein profiling using 2D gel electrophoresis 

2.2.3.1 Protein profiling of White blood cells using 2D Gel electrophoresis 

2.2.3.1.1 Sample preparation for 2D Gel electrophoresis 

The protocol used for protein lysate preparation and focusing the samples on pH strips 

was developed in our lab by Dr. Dawn Farrar. Frozen cell pellets were dissolved in a lysis buffer 
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containing 1%SDS and 100mM Tris-HCl pH7 preheated to 95
0
C. The sample was then sonicated 

using a bioruptor and 5% 2β-mercaptoethanol was added. The samples was dissolved in 

solubilisation buffer (8M urea, 2.5M thiourea, 4% 3-[(3-cholamidopropyl) dimethylammonio]-1 

–propanesulfonate CHAPS, 50mM DTT and 24mM sperminetetrachloride. The proteins were 

solubilised for 1 hour at room temperature following the further addition of 24mM of spermine. 

The sample was centrifuged at 12000g for 30 minutes. The solubilised protein sample was 

divided into two and 1ml ice cold acetone was added and incubated overnight at 20
0
C followed 

by centrifugation at 12000 g for 30 minutes. The protein pellet was then washed with ice cold 

methanol-chloroform mixture and resuspended in isoelectric focusing (IEF) buffer (8M urea, 

2.5M thiourea and 4% 3-[(3-cholamidopropyl) dimethylammonio]-1 –propanesulfonate 

CHAPS). The sample protein concentration was quantified using CooAssay.  

2.2.3.1.2 Separation in first dimension using Isoelectric focussing (IEF) 

55µg of protein lysate was dissolved with IEF buffer containing 1µl IPG buffer and 2.4µl 

destreak reagent to a total volume of 202µl. IPG strips (pH3-10) from BioRad were rehydrated 

with the above sample mixture overnight according to manufacturer’s protocol. The IPG strip 

was then focused on IPGphor system with the following conditions: 250V-30 minutes, 500V-15 

minutes, 500V-3.25hrs, 1000V-1hr, 6000V-2hrs, 6000V-2hrs, and 200V-12hrs. The strips were 

then incubated in equilibrium buffer (6 mol/L urea, 20% w/v glycerol, 4% w/v SDS, and 

0.375M/L Tris-HCl (pH 8.8)) with 5% 2β-mercaptoethanol and then with equilibrium buffer 

with 2.5% iodoacetamide for 15 minutes each. 

2.2.3.1.3 Second dimension separation using acryl amide gel electrophoresis and silver 

staining of proteins 

 The second dimensional electrophoresis was carried out in Criterion gel system 

(BioRad). 12% criterion precast gels (cat no: 345-0121) were used to perform the 

electrophoresis. The running buffer used was. The gels were fixed overnight in 10% methanol 
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and 10% acetic acid. The gel was stained using the silver staining protocol from Shevchenko, et 

al., 1996. Each sample was prepared and run as triplicates. The 2D-gels were scanned and 

analysed using SameSpots analysis software.  

2.2.3.1.4  Protein spot analysis using Samespots Software 

Each gel was scanned using the ImageScanner scanner from GE Healthcare. The scanned 

images were then uploaded into the Samespots software. The spots on the gel were then 

identified by the software. Background subtraction and normalization of the spots were then 

performed. The gels were then grouped for differential analysis based on tumour grade or disease 

state. The spots were compared between gels based on volume of the spot. ANOVA test (p-

value< 0.05) was performed was used to identify spots that were differentially present in primary 

breast cancer patients. The spots which were differentially present were cut from the gel. The 

spots were then destained and prepared using a compatible protocol for mass spectrometry 

(Shevchenko et al., 1996). The spots were sent to Dr. Metodi Metodiev’s lab for identification by 

mass spectrometry. 

2.3 Methods for RNA extraction and analysis 

2.3.1 RNA extraction and quality control 

Total cell RNA was extracted from WBC’s for microarray analysis using trisure phenol 

chloroform extraction method. Due to difficulties experienced like low final RNA concentration 

and low purity of RNA samples when extracting RNA from blood samples the conventional 

phenol-chloroform RNA extraction protocol was modified to obtain high quality RNA without 

any degradation. This protocol has been described in figure 2.1. The DNA digestion proved to be 

essential since the contaminating DNA in the RNA sample would interfere the microarray 

process and which was seen when the residual DNA was amplified when PCR was done on the 

cDNA produced from the RNA sample. Cells were stored in RNAlater at -80
0
C until they were 
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processed. The cells were lysed with 1 ml of trisure per 10 X10
6
 cells. 200µl of chloroform was 

the added and the tubes were vortexed for 15 seconds. The samples were then centrifuged at 

12000 xg for 15 minutes and the top aqueous phase was then transferred to a new tube. The 

chloroform step was then repeated again by adding 200 µl of chloroform. RNA was precipitated 

from the aqueous phase for 10 minutes using 500µl of isopropanol per 1 ml of trisure used. The 

samples were then centrifuged at 12000 xg for 10 minutes. The supernatant was then discarded 

and pellet was washed twice with 1ml of 75% ethanol at 7500 xg for 5 minutes each. The 

resultant RNA pellet was then dissolved in sterile water by heating it at 55
0
C for 5 minutes.  
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Figure 2.1 Modified RNA extraction protocol for White Blood Cells: The conventional 

Trisure phenol chloroform protocol was modified to extract RNA form white blood cells. The 

modified protocol includes an extra chloroform step and ethanol washing step. DNA digestion 

was also done to ensure the purity of RNA obtained. 
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2.3.2 DNase treatment of RNA extracted from cells and tissues  

 The purified RNA samples were treated with DNase to remove any DNA contamination 

carried over from RNA extraction process. TURBO DNA-free™ Kit (Ambion) was used and the 

digestion was performed according to manufacturer’s instruction. Up to 10μg of RNA was 

treated with 1µl of TURBO DNase and 0.1 volume of 10X TURBO DNase buffer. Digestion 

was done at 37
0
C for 30 minutes followed by deactivation of enzyme by incubating with 0.1 

volume of DNase inactivation reagent for 5 minutes at room temperature. The DNA-free RNA 

was then obtained after centrifugation at 9000g for 2 minutes. The RNA quality and integrity 

was determined which are described in the following sections. 

2.3.3 Quantification of RNA using Nanodrop® ND-1000 UV/VIS Spectrophotometer 

 Purified RNA samples were quantified using NanoDrop® ND-1000 UV/VIS 

Spectrophotometer (LabTech International Ltd, UK) following the manufacturer’s guidelines. 

The nucleic acid concentration was determined by Beer’s law and the absorbances were 

measured at 260, 280 and 230nm. The ratios of 260nm/280nm and 260nm/230nm were obtained 

to assess the purity of RNA. Both ratios had to be above 1.8 to be considered pure. Although 

Nanodrop measurements indicate the purity of RNA it does not indicate the integrity of RNA or 

indicate presence of DNA in the RNA sample.   

2.3.4 Analysis of RNA quality using Agilent 2100 Bioanalyzer 

Quality of all RNA samples was assessed using Agilent 2100 Bioanalyzer instrument 

according to the manufacturer’s instruction. The Aglient Bioanalyzer performs capillary 

electrophoresis to analyze RNA, DNA and proteins (Sodowich et al., 2007). It is a very efficient 

method used to perform absolute RNA quality control before downstream applications such as 

gene expression analysis or microarrays. All the reagents of Aglient RNA 6000 Nano kit were 

incubated at RT for 30 minutes before the start of the procedure. The Dye was covered with foil 
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as it is light sensitive. The Gel matrix was filtered through the column provided in the kit. The 

gel-dye mix was prepared by mixing 1μl of the RNA 6000 Nano Dye with 65μl of the Agilent 

RNA 6000 Nano Gel matrix according to the manufacturer‘s instructions. The 6000 NanoChip 

was primed by placing a 9μl of this mixture into the specified well on the NanoChip. The gel was 

dispersed across the chip with a help of a plunger. The RNA samples were denatured for 

2minutes at +70
0
C and loaded into the NanoChip alongside 5μl of the RNA Nano Marker. The 

NanoChip was then vortexed for 60 seconds at 2499xg on a vortex mixer (IKA)and applied for 

analysis by the Bioanalyser. To start the experiment, Eukaryote Total RNA assay was selected 

on the program and run. After the run was complete the data was saved as a pdf file and the RNA 

quality was assessed from the electropherograms obtained. Only RNA of acceptable quality was 

used in downstream applications. 

2.3.5 cDNA Synthesis (Reverse transcription)  

RNA prepared and analyzed as described above was reverse-transcribed to from cDNA 

using VersoTM cDNA Synthesis Kit (Thermo Scientific) according to the manufacturer’s 

instructions. 500ng of total RNA was diluted in autoclaved ddH2O and heated for 2 min at 70°C 

to remove secondary structures. The cDNA reaction was prepared in sterile PCR tube by adding 

cDNA synthesis buffer, dNTPs, random hexamer RNA primers, RT enhancer, RT-polymerase as 

per the manufacture’s recommendations. The reaction mix (20μl) was run using following PCR 

cycle: 10 min 25°C, 120 min 42°C; 2 min at 95°C. In parallel, reactions with “no template” and 

“no enzyme” were performed as negative controls. Freshly synthesized cDNA was diluted 10 

times and 1μl of the diluted cDNA was used in subsequent PCR or qPCR reaction.  

To assess the quality of cDNA prepared, a PCR reaction usinga housekeeping gene β-

Actin (Beta Actin) primers was performed. These are also known as reference genes and they 

help in normalizing the expression data when comparing different samples. As negative control, 
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a PCR reaction with 1μl of ddH2O instead of the cDNA template was run. The PCR-amplified 

samples were then resolved on an agarose gel. 

2.3.6 Polymerase Chain Reaction (PCR) 

Polymerase Chain Reaction or PCR method was originally developed by Kary Mullis 

(Mullis et al., 1986)who received the Nobel Prize in 1993 for this invention (Nobelprize.org., 

1993). PCR uses the DNA polymerase function to synthesise a new strand of DNA. Short 

complementary strands of DNA called primers are used in PCR. The primers bind to the DNA 

sequence and add nucleotides to the 3’-OH end. Two primers are always used for a reaction; 

forward primer and reverse primer to mark the start and end of the region to be amplified. This 

reaction is performed in a series of DNA denaturation (95
0
C), primer annealing (50-60

0
C) and 

DNA polymerase extension (72
0
C). Depending on the number of cycles the DNA is replicated to 

several thousand copies. This amplified DNA can be visualised on an agarose gel. 

cDNA was amplified using KOD Hot Start Polymerase (Novagen) using the TECHNE 

TC-312 thermal cycler. Each 25µl PCR reaction contained 5µl of KOD buffer, 1mM of 

Magnesium, 0.1µM of each forward and reverse primers, 0.2mM of dNTPs, 100ng of DNA 

template and 1µl of KOD polymerase diluted in ddH2O. A reaction where DNA template was 

substituted with ddH2O was used as a background control. 

2.3.7 Agarose gel electrophoresis 

Agarose gel electrophoresis was used in this study to resolve DNA fragments   to assess 

the size of PCR products. The nucleic acid samples were visualised with Ethidium Bromide 

(Sigma) in a 1% agarose gel using 300nm UV illumination (Alpha Innotech). Before loading 6 

xDNA loading buffer (0.25% Bromophenol blue, 0.25% Xylene, 30% glycerol) was added to 

DNA preparations to increase density of the samples and also help track DNA migration. 

Agarose gels were run in 1xTAE running buffer (40mM Tris, 20mM acetic acid, 1mM EDTA). 
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The DNA marker, GeneRuler™ DNA Ladder Mix (Lab Aid, Fermentas), was run alongside 

samples to act as reference to establish the size of bands produced.  

2.3.8 Gene Expression Analysis using Reverse Transcriptase Real Time PCR (RT-qPCR) 

Quantitative PCR (qPCR) is a modification of the standard PCT technique where 

fluorescent dyes such as SYBR green are used. SYBR green binds to the minor grove of the 

DNA double helix. Thus the dye binds to amplified DNA fragments and the level of fluorescence 

corresponds to amount of DNA fragments present. The cycle threshold (Ct) is defined as the 

point where the signal becomes detectable (Bustin and Nolan, 2004). Melt curve analysis are 

performed to ensure that there is only one PCR product formed. When the DNA denatures the 

SYBR green dye disassociates and the signal is lost gradually which is measured. Melting 

temperature (Tm) is the point where the maximum signal SYBR green dye is lost. 

Reverse Transcriptase Real Time (RT-qPCR) is qPCR using cDNA to measure 

expression levels of specific genes. To compare gene expression amongst different cell lines or 

tissue samples, it is very important that equal amounts of cDNA are used. Since there is no 

method to evaluate the efficiency of reverse transcription reaction, number of cDNA copies 

formed for each sample cannot be calculated. Therefore the selection of appropriate 

housekeeping or reference gene becomes an essential criterion for reliable gene expression 

analysis. The levels of the gene of interest are always compared between samples by normalising 

the target gene levels with the levels of a reference gene. 

The RT-qPCR reactions were normally carried out in 96-well plates (Bio-Rad) using 2x 

SensiFAST™ SYBR No-ROX mix (Bioline) according to manufacturer’s manual. The real time 

qPCR reactions were prepared in triplicates using cDNA (≈100ng), forward primer (400nM), 

reverse primer (400nM) and 2x SensiFAST™ SYBR No-ROX mix and autoclaved ddH2O to a 

final volume of 20μl per reaction. Negative control reactions without the DNA were also run 
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alongside. The target genes were always measured alongside reference genes to normalise and 

compare expression profiles. Primer sequences and their PCR cycling conditions used for 

specific experiments are described in Table 2.2 and Table 2.3. CFX96 Real-Time Thermal 

Cycler C1000 (Bio-Rad) was used and the data obtained was analysed using Bio-Rad CFX 

System Test software. The software calculates the relative quantities of gene expression based on 

the delta-delta Ct (ΔΔCt) method which assumes efficiency of each RT-qPCR reaction to be 

100%. A modified formula based on ΔΔCt method that takes into account the actual efficiency of 

the qPCR reaction is given below 
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Reference 

Gene 

For Primer Rev Primer Real-Time PCR 

conditions (initial 

denaturation: 95°C 2 

min) 

HPRT1 GACCAGTCAACAGGGG

ACAT 

AACACTTCGTGGGGT

CCTTTTC 

Cycle(x40): 95°C 5 

sec; 58°C 10 sec; 72°C 

10 sec.  

RPL32 CATCTCCTTCTCGGCAT

CA 

AACCCTGTTGTCAAT

GCCTC 

Cycle(x40): 95°C 5 

sec; 60°C 10 sec; 72°C 

10 sec.  

B2M ACTGAATTCACCCCCA

CTGA 

CCTCCATGATGCTGCT

TACA 

Cycle(x40): 95°C 5 

sec; 59°C 10 sec; 72°C 

10 sec.  

18s rRNA CAGCCACCCGAGATTG

AGCA 

TAGTAGCGACGGGCG

GTGTG 

Cycle(x40): 95°C 5 

sec; 61°C 10 sec; 72°C 

10 sec.  

CycloB TGGCACAGGAGGAAA

GAGCATC 

AAAGGGCTTCTCCAC

ATCGAT 

Cycle(x40): 95°C 5 

sec; 60°C 10 sec; 72°C 

10 sec.  

TBP GCCCGAAACGCCGAAT

ATA 

CGTGGCTCTCTTATCC

TCATGA 

Cycle(x40): 95°C 5 

sec; 58°C 10 sec; 72°C 

10 sec.  

HuP0 GCAGCATCTACAACCC

TGAAG 

CACTGGCAACATTGC

GGAC 

Cycle(x40): 95°C 5 

sec; 58°C 10 sec; 72°C 

10 sec.  

 

Table 2.2 Gene primers used for finding suitable internal control housekeeping gene and 

cycling conditions: HuPO, human acidic ribosomal protein; CycloB, cyclophylinB; B2M, β2-

microglobulin; HPRT, hypoxanthine phosphoribosyltransferase; 18sRNA, 18S ribosomal RNA; 

RPL32, ribosomal protein 32; TBP, Tata box Binding Protein. 
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Gene Name Sequence Annealing 

temperatur

e (X
0
C) 

cDNA 

product size 

SERPINB1 Forward TGAGTGAGAACAATCCGGCT 62 128 

SERPINB1 Reverse GTTGAAATGGAAAGTCTTGGAC

AG 

RHOA Forward CCCTCTCCTACCCAGATACC 60 167 

RHOA reverse TGCTCATCATTCCGAAGATCCT 

ITGA4 Forward TCACACTTTCCAGACAGCCA 61 119 

ITGA4 Reverse CACTCCATAGCAACCACCAG 

CALR Forward CAACTTCCTCATCACCAACGA 21 60.76 62 188 

CALR Reverse TGTCCTCATCATCCTCCTTGTC 

FGL2 Forward CCAGCCAAGAACAAATACAGTC 60 115 

FGL2 Reverse GGATCAGGTGTAACTCTGTAGG 

ALOX5 Forward CTACATCTACCTCAGCCTCGT 

61 188 ALOX5Reverse GTACCAGTCGTCATTCAGCC 

ANXA1 Forward  TTCAATACCATCCTTACCACCA 

61 124 ANXA1Reverse CTCAATGTCACCTTTCAACTCC 

WDR1 Forward AGATCCAAGATGCACACCG 60 122 

WDR1 Reverse GCTCCTCAGTAGGTGATTGTC 

YWHAE Forward CGATACGACGAAATGGTGGA 60 121 

YWHAE Reverse GGCTCTTCTAGCTCCAATCAC 

OSTF1 Forward AGTGGGTGTTAATGGCTTAGAC 59 137 

OSTF1 Reverse TATCTCCCAACTTGTTCTGCTG 

LTF Forward CAAATGTGCCTTCTCCTCCC 61 153 

LTF Reverse GTAACTCATACTCGTCCCTTTCA

G 

NONO Forward AGAGCAGGAGATTCGGATGG 61 172 

NONO Reverse AAGCGTTCAGTTGTTGGTGG 

ANXA3 Forward TCTTAACTACCAGGACAAGCAG 59 111 

ANXA3 Reverse GAAGTCACCAGATGTTTCGG 

CPNE3 Forward AGAGATATTGTCCAGTTTGTGCC 60 164 

CPNE3 Reverse ACTGCTTCTGTTGTTTCGTGG 

Table 2.3 Primer sequences used to validate candidate biomarkers using RT-qPCR:  Primer 

sequences used to validate a biomarker panel by RT-qPCR.  Real time PCR conditions: {Initial 

denaturation 95°C 2 min [Cycle(x40): 95°C 5 sec; X°C 10 sec; 72°C 10 sec]}. 
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2.4 High throughput data analysis and bioinformatics methods 

2.4.1 Public microarray databases and Gene Expression Omnibus 

 Public microarray databases are repositories of raw/processed gene expression data that 

are peer reviewed and produced by adhering to industrial standards. These databases include 

often include tools for data analysis. There are two types of these repositories; peer reviewed 

public databases (eg. Gene Expression Omnibus (GEO) from NCBI and ArrayExpress from 

European bioinformatics institute) and specialised repository which might be associated with 

research groups, labs, disease types, cell types etc. In this study we used GEO to mine for 

microarray datasets.  GEO provides a flexible and open design that facilitates submission, 

storage and retrieval of heterogeneous data sets from high-throughput gene expression and 

genomic hybridization experiments (Edgar et al., 2002). Both raw data and processed data for 

microarray datasets can be downloaded from GEO and data analysis can be independently 

performed. 

2.4.2 Statistical analysis methods used in the study 

 The statistical hypothesis tests used in this study were Student’s T-test and one- way 

Analysis of Variance (ANOVA). Both T-test and ANOVA assume the data is normally 

distributed. The T-test looks at the t-statistic, t-distribution and degrees of freedom to determine 

a p value (probability) that can be used to determine whether the population means differ. To 

compare three or more variables ANOVA is used. Other tests used in this study were Mann-

Whitney U-test and Kruskal-Wallis test. Both are non-parametric tests and is used when the data 

is not normally distributed, if the variances for the two conditions are markedly different or if the 

data are measurements on an ordinal scale. 
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2.4.3 Tools for Molecular and Functional analysis of highthroughput data 

2.4.3.1 Multi Experiment Viewer (MeV) 

 Multi Experiment Viewer is freely available software which can be used to analyse 

microarray data. It incorporates algorithms for normalisation, clustering, visualisation statistical 

analysis and annotation based meta-analysis. MeV is one of the components of the TM4 

microarray suite and can be freely downloaded from www.tm4.org. 

2.4.3.2 Gene Ontology (GO) 

 Understanding the biological meaning of the results obtained through microarray or 

RNA-Seq can be difficult. The conventional way to achieve this is to classify the genes based on 

their function and their cellular location. Gene ontology is used to annotate genes with respect to 

their function. The gene ontology project is an initiative which evolved out of the need to 

consolidate the descriptions of each gene and its products across different species for consistence 

to enable functional interpretation of experimental data; the ontology database is maintained by 

the gene ontology consortium (http://geneontology.org/). The Gene Ontology analysis was 

performed using a tool called Gene Ontology for Functional Analysis (GOFFA) developed by 

the USA Food and Drug Administration (FDA) Department which is available as a standalone 

tool at http://www.fda.gov/ScienceResearch/BioinformaticsTools/ucm233315.htm.  

2.4.3.3 Pathway enrichment analysis 

Pathway analysis is another approach to interpret the biological meaning of a microarray 

dataset. This approach can be used to observe subtle and consistent changes in the pathways 

using functional annotations. Pathway analysis was done using the KEGG database (Kyoto 

Encyclopedia of Genes and Genomes) (Weblink: http://www.genome.jp/kegg) and the software 

used to view to apply and view the data was GenMapp (Weblink: http://www.genmapp.org ). 

KEGG pathway database is a collection of manually drawn pathway maps representing molecular 
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interactions and networks for metabolism, genetic information processing, environmental 

information processing, cellular processes, organismal systems, human diseases and drug 

development (Kanehisa et al., 2012). 

2.4.3.4 Protein Protein Interaction analysis 

 Protein-Protein interactions are crucial for all biological processes. With the rapid 

development of genomics and proteomics technologies the knowledge about cellular processes 

has increased. In practice information about molecular interactions is dispersed in the scientific 

literature and difficult to retrieve in a structured format. Therefore organised, user-friendly and 

consolidated databases about molecular interactions are needed to interpret complex biological 

data. Currently several of these databases exist; Biomolecular Interaction Network Database 

(BIND), Biological General Repository for Interaction Datasets (BIOGRID), IntAct molecular 

interaction database, Search Tool for the Retrieval of Interacting Genes/Proteins (STRING), 

Molecular INTeraction database (MINT) etc. These databases use information from yeast hybrid 

experiments, immunoprecipitation, user submitted information etc.  Osprey is a tool for graphical 

visualisation of complex biological interaction networks using the gene ontology annotated 

dataset maintained by BIOGRID. Osprey was used in this study and it can freely downloaded 

from http://www.cs.duke.edu/donaldlab/osprey.php.  
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Chapter 3: Analysis of Protein profiles of White blood cells in breast cancer 

patients using Proteomic Approaches 
 

3.1 Introduction 

  Early detection of breast cancer allows the possibility to determine the best 

treatment options which may be surgical resection, hormone therapy, chemotherapy, 

radiotherapy or combination of those. Our understanding of the molecular pathology of breast 

cancer has recently advanced with the help of new proteome- and genome-wide technologies. 

The conventional classification based on traits such as invasiveness, tissue of origin, 

histopathology, degree of cellular differentiation etc has now been complemented by novel 

molecular stratification which derived from integrated analyses of gene expression and copy 

number (Curtis et al., 2012; Dawson et al., 2013). These studies also created an opportunity for 

discovering biomarkers to predict the prognosis of the disease thereby deciding the course of 

treatment.  

Proteomics approaches have been used in a number of studies to discover biomarkers in 

the blood plasma. Examples include biomarkers for invasive breast cancer in a mouse model 

(Pitteri et al., 2008, 2011), diagnostic and prognostic markers for gastric cancer (Qiu et al.,2009), 

non-small cell lung cancer (Izbicka et al., 2012) and breast cancer (Nolen et al., 2008) in 

patients’ plasma. Circulating biomarkers such as CA 125, CA 19-9 and carcinoembryonic 

antigen in ovarian, pancreatic and colon cancer, respectively, have been used to monitor response 

to therapy and recurrence (Ludwig and Weinstein, 2005).  There are a number FDA approved 

biomarkers (Ludwig and Weinstein, 2005) for breast cancer including CA15-3, CA27-29, 

Oestrogen receptor, progesterone receptor, HER2/NEU for prognosis and monitoring but none of 

them can be used for diagnosis. Therefore, there is a continuing quest to discover new 
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biomarkers from various sources, in particular from biological fluids (blood, urine, nipple 

aspirates) because of the less invasive procedures are involved to obtain those specimens. 

Proteomics technologies have now been widely used to study proteomes of the cells.  The 

term “proteome” refers to the entire set of proteins synthesised by the cell or tissue and the large 

scale study of it is proteomics.  This approach has advantages because (i) proteomics provide 

more  physiologically accurate information about processes in the cell; (ii) changes in protein 

activities associated with the disease can be identified and (iii) proteomics platforms are more 

applicable from therapeutics point of view. A range of methods including 2D-PAGE (Gharbi, 

2001; Somiari et al., 2003), protein arrays (Sreekumar et al., 2001) coupled with mass 

spectrometric techniques, for example, SELDI-ToF, MALDI-ToF, etc have been used to identify 

biomarkers for cancer using tissue, cancer cell lines and blood plasma.  

The evolution of mass spectrometry in the last decade has made it more sensitive, 

although it is not yet possible to resolve accurately all the proteins found in complex biological 

mixtures such as serum, cell lysates etc. Nevertheless, this approach has many advantages since 

protein biomarkers are more desirable in clinical settings. These methods will be used in this 

study to identify breast cancer biomarkers in the white blood cells (WBCs), a relatively 

unexplored source for biomarker discovery. 

3.2 Aim of the Chapter 

The main aim of this chapter is to investigate protein profiles specific for the WBCs of breast 

cancer patients and identify new breast cancer biomarkers. To achieve this, two approaches will 

be applied: the high throughput mass spectrometry using the Velos Orbitrap instrument and 2D-

PAGE.  
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 High throughput proteomics was used to identify the differences in protein profiles of 

white blood cells (WBCs) of breast cancer patients and healthy donors. For these analyses, 

samples from three participant groups will be processed: the healthy donors (Group C, n=5) and 

breast cancer patients (Group 1) stratified into two distinct groups:  Group 1A with more 

favourable prognosis   (Grade 1, Stage 1, n=5) and Group 1B with less favourable prognosis 

(Grade 3, Stage 3, n=5). We reasoned that using the groups with opposing characteristics will 

facilitate the analysis and simplify the identification of the candidates showing significant 

differences in protein profiles. Clinical information linked to the specimens used for these 

analyses is given in the Table 3.1.  

The 2D-PAGE method was employed to independently identify proteins differentially 

present in the WBCs of breast cancer patients and to compare the data with high throughput 

proteomics analysis. Clinical information linked to the specimens used in this investigation is 

presented in Table 3.2. 
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Table 3.1 Sample Patient data for the High-throughput Proteomics study: Breast cancer patient WBC samples used for high throughput 

analysis by OrbitrapVelos instrument. T size- Tumour size, T Grade- Tumour grade, T stage- Tumour stage, ER- Estrogen Receptor, PR-

Progestrone Receptor, DCIS- Ductal Carcinoma in situ, IDC- Invasive Ductal Carcinoma, ITC- Invasive tubular carcinoma and ILC- Invasive 

Lobular Carcinoma. 

 

Patient 

No 

AGE 
T 

SIZE 

NODE 

STATUS 

T 

STAGE 
T GRADE 

ER PR HER2 
DIAGNOSIS 

1462 65 11 NEG I 1 8 ND -ve ITC+DCIS 

1466 56 10 NEG I 1 8 ND 
-ve 

IDC+ILC 

1477 46 8 NEG I 1 8 ND 
-ve 

IDC,DCIS(LOW GRADE) 

1483 52 17 NEG I 1 8 ND 
-ve 

IDC+ILC 

1565 51 11 NEG I 1 8 NA 
-ve 

Tubular+DCIS 

453 26 50 POS III 3 3 0 
-ve 

IDC 

1261 44 80 POS III 3 4 NA 
-ve 

IDC+DCIS 

1503 75 20 POS III 3 8 NA 
-ve 

IDC+DCIS 

1516 46 14 NEG III 3 3 NA 
-ve 

IDC+DCIS 

1540 48 28 POS III 3 8 NA 
-ve 

IDC+Chondrosarcoma 
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Table 3.2 Sample Patient data for the 2D-PAGE: Breast cancer patient WBC samples used for 2D-PAGE. T size- Tumour size, T Grade- 

Tumour grade, T stage- Tumour stage, ER- Estrogen Receptor, PR-Progestrone Receptor, DCIS- Ductal Carcinoma in situ, IDC- Invasive Ductal 

Carcinoma, ITC- Invasive tubular carcinoma and ILC- Invasive Lobular Carcinoma.  

 

Patient 

No 

AGE T SIZE NODES T 

STAGE 

T 

GRADE 

ER PR HER2 DIAGNOSIS 

1310 69 8 NEG I 1 8   ND -ve ILC 

1455 49 18 NEG I 1 8 ND -ve ILC+LCIS 

1462 65 11 NEG I 1 8 ND -ve ITC+DCIS 

1499 67 15 NEG I 1 8 NA +ve IDC+DCIS+Tubulo-lobular 

1565 51 11 NEG I 1 8 NA -ve Tubular+DCIS 

1261 44 80 POS III 3 4 NA -ve IDC+DCIS 

1436 60 20 NEG II 3 8 ND -ve IDC+DCIS 

1528 84 20 NEG II 3 8 NA -ve IDC+DCIS 

1560 82 20 NEG II 3 0 NA -ve IDC 

1540 48 28 POS III 3 8 NA -ve IDC+Chondrosarcoma 
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3.3 Results 

3.3.1 High throughput proteomic profiling of WBCs using the Velos Orbitrap mass 

spectrometer. 

3.3.1.1 High throughput proteomic profiling and comparative analysis of WBCs from the 

Healthy donors and all Breast cancer patients groups. 

 High throughput proteomics was used to identify the differences in protein profiles of 

white blood cells (WBCs) of breast cancer patients and healthy donors. The WBCs were 

fractionated into membrane and soluble fractions  as described in Alldridge et al., 2008. Both 

fractions were digested and analysed using the OrbitrapVelos instrument (see section 2.2.2.1) 

equipped with an Ultimate 3000 nano-scale HPLC (Olsen et al., 2009). Dr Metodi Metodiev 

(University of Essex) had kindly performed the mass spectrometric analysis using this 

instrument. Only the data for the membrane fraction was analysed for this study. In total, 2577 

proteins were identified in the membrane fraction of the WBCs.  Since the data were not 

normally distributed, the Mann Whitney U-Test was performed with a P-value cutoff of <0.05 to 

compare the protein profiles between healthy donor and breast cancer patients. The test yielded 

136 proteins which were significantly different between the healthy donor and the breast cancer 

group. Out of the significant 136 proteins, 83 proteins were overexpressed and 53 proteins were 

under expressed in the breast cancer patient category. Hierarchical clustering was performed 

with the normalised Label free quantification (LFQ) intensity values of significant 136 proteins 

which are given in Figure 3.1. For this analyses the Multiexperiment viewer (see section 2.4.3.1) 

from the TM4 microarray software suite available at http://www.tm4.org/ was used.  

The hierarchical clustering revealed that the data had a high degree of variation especially 

among the breast cancer patient cohort. This can be due to the fact that WBCs are a mixture of 

different types of cells and the dynamic nature of the immune system. 

http://www.tm4.org/
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Figure 3.1 Hierarchical Clustering of significant proteins between the WBCs of Healthy 

Donors and Breast Cancer Patients: Differentially present proteins from the membrane 

fraction were identified using the Mann Whitney test between breast cancer patients and healthy 

donors. Hierarchical clustering was performed using the Multiexperiment viewer. In the breast 

cancer patient category 83 proteins were overexpressed and 53 proteins were underexpressed. 

Red indicates that the protein is relatively overexpressed and green the vice versa in breast 

cancer patient samples. 
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3.3.1.2 Comparison between the samples with different Tumour grades: Healthy Donors 

vs Low grade Breast Cancer patients and Healthy Donors vs High grade Breast 

Cancer Patients. 

 To identify the differences the between different grades and stages samples were chosen 

in patients with either Grade1-Stage1 tumours (favourable prognosis) or Grade3-Stage3 tumours 

(less favourable prognosis). We reasoned that by choosing samples with these characteristics the 

differences in proteomes of breast cancer will be more apparent. The WBCs protein profiles 

obtained using the high throughput mass spectrometry was compared as follows: Healthy Donors 

vs Low grade Breast Cancer patients and Healthy Donors vs High grade Breast Cancer Patients. 

Kruskal-Wallis teast (dunn’s correction, p value<0.05) was used as described in section 2.4.3.1 

to compare between the groups; this resulted in 44 proteins as significantly different between the 

categories.  

 Hierarchical clustering was performed with the normalised Label free quantification 

(LFQ) intensity values (section 2.4.3.1) of significant 44 proteins (Figure 3.2).  The 

Multiexperiment viewer from the TM4 microarray software was used for this analysis. There 

were three major groups of proteins observed from clustering: Proteins which were 

overexpressed in healthy donors (n=10), proteins overexpressed in both breast cancer cohorts 

(n=14) and proteins overexpressed in Low grade patients (n=20). The protein profiles which 

follow the trend of the first two groups were chosen and the mean for each group was taken to 

plot graphs with standard deviation (Figure 3.3). 
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Figure 3.2 Hierarchical clustering of significant proteins between the WBCs of Healthy 

Donors, Grade1-Stage1 and Grade3-Stage3 Breast Cancer Patients: Mann-Whitney test was 

performed to obtain the significantly expressed proteins between the WBCs of healthy donors, 

low grade breast cancer patients and high grade breast cancer patients. Hierarchical Clustering 

was done using the proteins which had significant differences using Multiexperiment viewer. 

Red indicates that the protein is relatively overexpressed and green the vice versa in breast 

cancer patient samples. 
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Figure 3.3 Protein expression profiles of significant proteins obtained by comparison 

between the WBCs of Healthy Donor, Grade1-Stage1 and Grade3-Stage3 Breast cancer 

Patients: Kruskal-Wallis was used to compare membrane fraction protein profiles of WBCs 

between healthy donors, low grade-low stage and high grade-high stage breast cancer patients. 

The profiles of proteins which showed significant changes in healthy donors and breast cancer 

patients (both low grade and high grade) were chosen and their mean was taken to plot graphs. 
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3.3.1.3 Molecular and Functional analysis of proteins obtained from the high throughput 

proteomics analysis 

It is important to biologically interpret the data obtained from the high throughput 

analyses and there are various approaches to achieve this. Commonly used approaches include: 

gene ontology, pathway enrichment and protein- protein interaction network analyses (see 

section 2.4.3). The ontology analysis was done based on three categories immune response, cell 

death and cell migration. The proteins which were differentially expressed in the WBCs of breast 

cancer patients obtained by both tests mentioned in sections 3.3.1.1 and 3.3.1.2 were analysed for 

functional significance. 

3.3.1.3.1 The Gene Ontology analysis: classification of Biological Processes 

 The differentially present proteins in the breast cancer patient cohort were obtained by 

comparing the WBC membrane fraction profiles of breast cancer patients and healthy donors. 

These proteins were subjected to ontology analysis to identify enriched biological processes. 

Gene ontology is used to functionally interpret data obtained from high throughput techniques 

such as microarray, proteomics etc (Ashburner et al., 2000). The gene ontology database is 

maintained by the Gene Ontology Consortium and can be accessed freely at 

www.geneontology.org. 

Gene ontology analysis based on classification of Biological Processes was performed 

using GOFFA (Gene Ontology for Functional Analysis) as described in Section 2.4.3.2.The 

results for the classification are given in Figure 3.4.The categories which had the most number of 

proteins were cellular processes (n=73), metabolic processes (n=59), response to stimulus and 

reproduction (n=53). It was observed that 41 proteins were involved in localisation and 

establishment of localisation. This shows that around 25% of proteins which changed were 

involved in cellular localisation.  
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Figure 3.4 Gene Ontology of significantly different proteins between the WBCs of Healthy 

donors and Breast cancer Patients obtained through high throughput Proteomics: Proteins 

differentially present in the WBCs of breast cancer patient and healthy donors by high 

throughput proteomics were statistically significant by the Mann Whitney U test. Gene Ontology 

was performed using GOFFA and based on biological processes. The total number of proteins 

involved was 136. 
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3.3.1.3.2 Ontology analysis of proteins involved in immune system processes 

 There were 34 proteins involved in the immune system processes; the gene ontology 

classification of these processes and proteins involved in each subcategory are given in Table 

3.4. Among those, 21 proteins were involved in regulation of the immune system processes, with 

14 activators. In the latter category, 8 proteins were overexpressed and 6 proteins were 

underexpressed in the breast cancer cohort. The number of genes involved in negative regulation 

of immune system was 5 and all the proteins except ADA (Adenosine deaminase) were 

overexpressed. These data provided inconclusive results as to how the immune response was 

affected by breast cancer. Therefore, the proteins involved in leukocyte and lymphocyte 

activation were analysed. The proteins involved in both categories were the same except for BPI 

(Bactericidal/Permeability-Increasing Protein) and YWHAZ (tyrosine 3-

monooxygenase/tryptophan 5-monooxygenase activation protein, zeta). The proteins involved in 

positive regulation of leukocyte and lymphocyte activity (ADA, CD3D, DPP4 and TRBC1) were 

underexpressed. The proteins which negatively regulated leukocyte and lymphocyte activity, BPI 

and GIMAP5, were overexpressed. It can be concluded from the data that activation of 

leukocytes and lymphocytes are negatively affected by the breast tumour. 

The proteins involved in the inflammatory response (n=10) are shown in Table 3.4; 

except for ADA and PRDX2, all the proteins were overexpressed. ADA negatively regulates the 

inflammatory response (GO:0050728). Peroxiredoxin-2 (PRDX2) is an enzyme which has 

antioxidant activity reducing hydrogen peroxide alkyl hydroperoxides in the cell and hence has 

an anti-inflammatory effect. This shows that inflammatory response is increased in the WBCs of 

breast cancer patients. 
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Table 3.3 List of Proteins involved in the immune response: Proteins identified by high-

throughput proteomics to be differentially present between healthy donors and breast cancer 

patients by comparing the membrane fraction of the WBCs. Gene ontology was to choose 

proteins related to immune response. Proteins in red are overexpressed and green are 

underexpressed in breast cancer patient WBCs. 

Gene 

Symbol 

Gene name 

Fold 

change 

ADA Adenosine deaminase  

CD79B CD79b molecule, immunoglobulin-associated beta  

DPP4 Dipeptidyl-peptidase 4 (CD26, adenosine deaminase complexing protein 2)  

S1PR4 Endothelial differentiation, lysophosphatidic acid G-protein-coupled receptor, 6  

CD3D CD3d molecule, delta (CD3-TCR complex)  

S100A7 S100 calcium binding protein A7  

ITGA4 Integrin, alpha 4 (antigen CD49D, alpha 4 subunit of VLA-4 receptor)  

CLEC4D C-type lectin domain family 4, member D  

TRBC1 T cell receptor beta constant 1  

ATP1B3 ATPase, Na+/K+ transporting, beta 3 polypeptide  

SOD2 Superoxide dismutase 2, mitochondrial  

UNC93B1 Unc-93 homolog B1 (C. elegans)  

TMEM173 Transmembrane protein 173  

PRDX2 Peroxiredoxin 2  

PTAFR Platelet-Activating Factor Receptor  

GIMAP5 GTPase, IMAP family member 5  

CD97 CD97 molecule  

PTPRJ Protein tyrosine phosphatase, receptor type, J  

YWHAZ 

Tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, 

zeta polypeptide 

 

ANXA1 Annexin A1  
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S100A9 S100 calcium binding protein A7;Calgranulin B  

FKBP1A FK506 binding protein 1A, 12kDa  

IGF1R Insulin-like growth factor 1 receptor  

RPS27A Ribosomal protein S27a  

CD46 CD46 molecule, complement regulatory protein  

BPI Bactericidal/permeability-increasing protein  

MICA MHC Class I Polypeptide-Related Sequence A  

TAP2 Transporter 2, ATP-binding cassette, sub-family B (MDR/TAP)  

UNC13D Unc-13 homolog D (C. elegans)  

ILF2 Interleukin enhancer binding factor 2, 45kDa  

AP1B1 Adaptor-related protein complex 1, beta 1 subunit  

NCF2 Neutrophil cytosolic factor 2   

NCF4 Neutrophil cytosolic factor 4, 40kDa  

AP1M1 Adaptor-related protein complex 1, mu 1 subunit  

CD200R1 CD200 receptor 1  
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Table 3.4 Gene ontology of the Proteins involved in immune system processes: Immune 

system proteins identified to be differentially present in the WBCs of breast cancer patient and 

healthy donors by high throughput proteomics were obtained by Mann Whitney U test. Gene 

Ontology was performed using GOFFA and based on Immune system process. The total genes 

involved in immune system processes were 34. 

Gene Ontology 

Term 

Gene 

Ontology ID 
Genes involved 

P value 

Regulation of 

Immune system 

process 

GO:0002682 

ADA,AP1B1,AP1M1,BPI,CD200R1,CD3D, 

CD46,DPP4,FKBP1A,GIMAP5,ITGA4,MICA, 

PRDX2,PTPRJ,RPS27A,S100A7,TAP2,TMEM173, 

TRBC1,UNC13D,UNC93B1 

0.0002 

Positive 

regulation of the 

immune system 

GO:002684 
ADA,CD3D,CD46,DPP4,GIMAP5,MICA, 

PTPRJ,RPS27A,S100A7,TAP2,TMEM173,TRBC1, 

UNC13D,UNC93B1 

0.0009 

Negative 

regulation of the 

immune system 

GO:002683 ADA,BPI,GIMAP5,PRDX2,PTPRJ 

0.03 

Adaptive 

Immune 

Response 

GO:0002250 ADA,CD46,DPP4,GIMAP5,TAP2,UNC13D 

0.02 

Innate Immune 

Response 
GO:0045087 

CD46,CLEC4D,GIMAP5,MICA,NCF2,PTAFR,RPS27A, 

S100A7,TMEM173,UNC13D,UNC93B1 

0.002 

Positive 

regulation of 

Innate immune 

response 

GO:0045089 GIMAP5,MICA,RPS27A,TMEM173,UNC93B1 

0.041 

Leukocyte 

Activation 
GO:0045321 

ADA,ANXA1,BPI,CD3D,DPP4, 

FKBP1A,GIMAP5,ITGA4,MICA,PRDX2,TRBC1, 

UNC13D,YWHAZ 

0.0001 

Positive 

Regulation of 

Leukocyte 

activation 

GO:0002696 ADA,CD3D,DPP4,TRBC1 

0.004 

Negative 

Regulation of 

Leukocyte 

activation 

GO:0002695 BPI,GIMAP5,PRDX2 

0.05 
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Lymphocyte 

activation 
GO:0046649 

ADA,ANXA1,CD3D,DPP4,FKBP1A,GIMAP5,ITGA4, 

MICA,PRDX2,TRBC1,UNC13D 

0.002 

Positive 

Regulation of 

Lymphocyte 

activation 

GO:0051251 ADA,CD3D,DPP4,TRBC1 

0.003 

Negative 

Regulation of 

Lymphocyte 

activation 

GO:0051250 GIMAP5,PRDX2 

0.046 

Inflammatory 

response 
GO:0006954 

ADA,ALOX5,ANXA1,CD97,MGST2,PRDX2, 

PSMA6,PTAFR,UNC13D,YWHAZ 

0.0002 
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3.3.1.3.3 Ontology analysis of proteins involved in Cell death and Cell migration 

 The number of proteins in involved in the cell death in the 136 significant proteins 

obtained by gene ontology analysis by GOFFA was23 (17%). The genes involved in cell death 

(GO:0008219) are given in Table 3.5. Of the proteins involved in negative regulation of cell 

death (n=13) except for ADA, PPT1, SOD2 and PRDX2 were overexpressed in the breast cancer 

cohort. The proteins involved in the positive regulation of cell death (n=8) were also 

overexpressed. The analysis for cell proliferation also gave similar inconclusive results. The 

effect of breast cancer on WBC survival is ambiguous taking this data into consideration. 

 Ontology analysis was done for proteins involved in cell migration. It was found that 10 

proteins involved in cell migration were differentially present in the WBCs of breast cancer 

patients. The genes involved in the positive regulation of cell migration are S100A7, S100A9, 

IGF1R, ITGB3 and SYNE2. Only S100 calcium binding protein A7 (S100A7) is 

underexpressed. The S100 family of proteins are involved in several cellular processes like 

proliferation, differentiation, migration etc. S100A7 has been implicated to aid in breast cancer 

progression and invasion (Emberley et al., 2004). S100A9 (Calgranulin B) is implicated in 

promoting leukocyte recruitment to sites of inflammation and abnormal differentiation of 

myeloid cell in the stroma of cancer (Cheng et al., 2008; Hiratsuka et al., 2006). The proteins 

which were involved in cell adhesion were CD97, FLOT2, ITGA4, NME2 and SIGLEC7 are 

shown in Table 3.5. Only ITGA4 and SIGLEC7 were underexpressed in the breast cancer cohort. 

ITGA4 (Integrin alpha 4) binds to cell surface adhesion molecules on endothelial cells enabling 

WBCs to transmigrate. SIGLEC7 is also known as adhesion inhibitory receptor molecule 1 is 

expressed on different tumour cells and inhibits leukocyte adhesion to endothelial cells (Jandus 

et al., 2014). The cell migration and cell adhesion ontology analysis show that the WBCs of 

breast cancer patients have increased cell adhesion and migratory functions.
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Table 3.5 Gene ontology of the Proteins involved in Cell migration and Cell death: 

Ontology was done with the differentially expressed proteins, obtained by comparison between 

healthy donors and breast cancer cohorts using GOFFA. The proteins involved in Cell migration 

processes and Cell proliferation processes were obtained along with their gene ontology IDs. 

 

Gene 

Ontology 

Term 

Gene 

Ontology 

ID 

Genes Involved P 

value 

Cell Migration GO:001647

7 

ADA,ATP1B3,DPP4,IGF1R,ITGA4,PTPRJ, 

RAP2C,RHOA,S100A7,S100A9,SYNE2 

0.017 

Positive 

regulation of 

cell migration 

GO:003033

5 

S100A7,S100A9,IGF1R,ITGB3,SYNE2 0.03 

Negative 

regulation of 

cell migration 

GO:003033

6 

ADA,PTPRJ,RAP2C 0.06 

Cell Adhesion GO:000715

5 

CD97,FLOT2,ITGA4,NME2,SIGLEC7 0.018 

Cell 

proliferation 

GO:000838

3 

ADA,ANXA1,DPP4,GNB1,GPC4,IGF1R, 

NME2,PRDX2,PTPRJ,RAP1B,SOD2,TXN 

0.04 

Negative 

regulation of 

cell 

proliferation 

GO:000828

5 

PTPRJ,SOD2 0.009 

Positive 

regulation of 

cell 

GO:000828

4 

ADA,DPP4,IGF1R,ITGB3,NME2 0.017 
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proliferation 

Cell death GO:000821

9 

CFL1,CYCS,GIMAP5,H1F0,IGF1R,KCNMA1, 

KPNB1,MICA,NME2,PARP4,PIGT,PPT1, 

PRDX2,PSMA6,RHOA,RPS27A,SET, 

SOD2,SPTAN1,TAP2,TMEM13 UNC13D,YWHAB 

0.003 

Negative 

regulation of 

Cell death 

GO:006054

8 

ADA,ANXA1,GIMAP5,IGF1R,NME2, 

PPT1,PRDX2,PTPRJ,RHOA,RPS27A,SET,SOD2,YWHAZ 

0.000

1 

Positive 

regulation of 

Cell death 

GO:001094

2 

CYCS,GIMAP5,KCNMA1,NCF2,RPS27A, 

TAP2,UNC13D,YWHAB 

0.011 
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3.3.1.3.4 Pathway enrichment analysis 

 The pathway enrichment analysis is another approach to interpret the biological meaning 

of high throughput data. This approach can be used to observe subtle and consistent changes in 

the pathways using functional annotations. Pathway analysis was performed on the significant 

genes obtained by comparing the protein profiles between the WBCs of breast cancer patients 

and healthy donors using GenMAPP software as described in section 2.4.3.3. The pathway 

database used was KEGG (Kyoto Encyclopedia of Genes and Genomes). The top 10 list of 

pathways with the proteins involved are given in Table 3.6. The majority of the pathways are 

related to metabolism. The only pathways related to immune function was leukocyte 

transendothelial migration (Figure 3.5) and PI3K-AKT signalling pathway (Figure 3.6). All the 

proteins (RHOA, NCF2, NCF4, GNAI3 and RAP1B) in the leukocyte transendothelial migration 

pathway except ITGA4 were overexpressed in the breast cancer cohort. It can be observed from 

Figure 3.5 that the leukocyte transendothelial pathway is promoted in the WBCs of breast cancer 

patients. It was previously reported that metastasis in melanoma patients was enhanced in the 

presence of neutrophils within the alveolar capillaries. Melanoma cells release interleukin 8 

inducing neutrophils to overexpress β2 integrins and adhere to the vascular endothelium. The 

ICAM-1 on melanoma cells and the β2 integrins on neutrophils then used for these cells to bind 

and melanoma cells transverse and emigrate into lung tissue (Gregory and Houghton, 2011). It 

should be noted that the PI3K-AKT pathway is involved in the leukocyte transendothelial 

signalling (Figure3.5). The altered proteins involved in PI3K-AKT pathway were ITGA4, 

GNG5, GYS1, YWHAB, YWHAZ and IGF1R.GNG5, GYS1, YWHAZ and YWHAB were 

overexpressed in the WBCs of breast cancer patients. The PI3K-AKT pathway is a combination 

of insulin, MAPK and VEGF signaling pathways leading to cell growth progression, immune 

cell activation and increased cell migration (Koyasu, 2003). 
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Table 3.6 Top 10 Pathways obtained by comparison of Protein profiles of healthy donors 

and breast cancer patients:   List of pathways and proteins involved in immune response to 

tumour obtained by high throughput proteomics by comparison of WBCs from healthy donor 

and breast cancer patients. 

KEGG pathway Proteins involved Adj P value 

Salivary secretion 
ATP1B3, ATP1A1, CAMP, PRH1, ATP2B4, 

KCNMA1 

1.33e-06 

Fatty acid metabolism ACADM, CPT1A, ECI1, ECHS1, ALDH9A1 1.33e-06 

PI3K-AKTsignaling pathway  
ITGA4, GNG5, GYS1, YWHAB, 

YWHAZIGF1R 

1.89e-06 

Valine, leucine and isoleucine 

degradation 

ACADM, OXCT1, ECHS1, ALDH9A1 3.72e-05 

Leukocyte transendothelial 

migration 

RHOA, NCF4, GNAI3, ITGA4, RAP1B,NCF2 6.62e-05 

Metabolic pathways 

ALDH4A1, LSS, PGM1, PIGT, PPT1, ECHS1, 

NME2, MDH1, AHCY, ACADM, NDUFA10, 

ALDH9A1 

6.94e-05 

beta-Alanine metabolism ACADM, ECHS1, ALDH9A1 0.0001 

Proximal tubule bicarbonate 

reclamation 

MDH1,ATP1B3, ATP1A1 0.0001 

Propanoate metabolism ALDH9A1, ECHS1, ACADM 0.0003 

Pyruvate metabolism MDH1, ME2, ALDH9A1 0.0005 

 

 

 

 

 

 

http://www.kegg.jp/pathway/hsa04964+476+4190+483
http://www.kegg.jp/pathway/hsa04964+476+4190+483
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Figure 3.5 Regulation of the Leukocyte Transendothelial Migration Pathway in the WBCs 

of Breast Cancer Patients: Differentially expressed genes were obtained from the comparison 

between protein profiles of breast cancer patients and healthy donors. Pathway analysis was 

performed using the KEGG database. Red indicated overexpression and green underexpression 

in the breast cancer patients. 
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Figure 3.6 Regulation of the PI3K-Akt Signalling Pathway in the WBCs of Breast Cancer 

Patients: Differentially expressed genes were obtained from the comparison between protein 

profiles of breast cancer patients and healthy donors. Pathway analysis was performed using 

GENMAPP and the KEGG database. Red indicated overexpression and green underexpression in 

the breast cancer patients. 
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3.3.1.3.5 Protein-Protein interaction (PPI) analysis 

 Interactions between proteins are very important in many biological processes and the 

information about interacting protein partners can provide clues about potential protein 

functions. We therefore performed the protein-protein interaction (PPI) analysis of the identified 

proteins with the help of the Osprey tool used for visualization and manipulation of complex 

interaction networks (see section 2.4.3.4). The Osprey tool builds data-rich graphical 

representations from Gene Ontology (GO) annotated interaction data maintained by the 

BioGRID (available from http://thebiogrid.org/). The protein-protein interaction network was 

generated and the single nodes (proteins) which did not have any interaction were deleted 

(Figure 3.7).The hub genes were identified using this approach. The hub genes are those genes 

which are highly connected to other genes and when altered lead to drastic phenotypic changes 

in the cell which could determine the fate of the cell.  

 It was observed that 14-3-3 protein beta/alpha (YWHAB), insulin-like growth factor 1 

receptor (IGF1R) and the Ras homolog gene family member A (RHOA) had the most number of 

interactions. These three proteins were overexpressed in the WBCs of breast cancer patients. 

 Other minor hub genes identified were Heterogeneous nuclear ribonucleoprotein A1 

(HNRNPA1), AP-1 complex subunit beta-1 (AP1B1), SET Nuclear Oncogene (SET) and 

SEC13 Homolog (SEC13). YWHAB belongs to the 14-3-3 family of proteins involved in a wide 

range of cellular functions such as metabolism, protein trafficking, signal transduction, apoptosis 

and cell cycle regulation. YWHAB binds to RAF1 and CDC25 phosphatases suggesting it might 

play a role in cell proliferation (Conklin, 1995; Yuryev and Wennogle, 2003). IGF1R activates 

the PI3K-AKT signalling, JAK/STAT pathway and the Ras-MAPK pathway leading to cell 

growth/survival (Wilker et al., 2005). RHOA is a small GTPase protein which is involved in 

regulation of actin cytoskeleton rearrangement to form stress fibres during cell migration. RHOA 
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is also implicated in regulating the cell transformation and cell cycle progression (Klimov et al., 

2013). The overexpression of all these proteins suggests that the WBCs of breast cancer patients 

are been driven towards cell proliferation and cell survival. 
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Figure 3.7 Identification Hub gene nodes changed in the WBCs of breast cancer patient 

cohort using high throughput protein data: Differentially expressed proteins in the WBCs of 

breast cancer patients were used to construct gene regulatory networks. Network was constructed 

using Osprey (http://biodata.mshri.on.ca/osprey/servlet/Index). The lines between gene nodes 

represent interactions and the genes with most interactions (hub genes) are independently with 

their own network. 

http://biodata.mshri.on.ca/osprey/servlet/Index
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3.3.2 Qualitative protein profiling using Two Dimensional (2D) Protein gel 

Electrophoresis 

In this study an alternative method, the 2D-PAGE, was also used. To be resolved by 2D 

gels, the whole cell protein lysates from the WBCs of 10 breast cancer patients and 5 healthy 

donors were prepared according to procedure in Section 2.2.3.3. The sample details are given in 

Table 3.2. The protein lysates were then separated in the first dimension by the isoelectric point 

and in the second dimension by the molecular weight. All the samples were run in triplicates and 

the gels scanned after staining. The images were then analysed using the Samespots software 

(see section 2.2.3.2.4). Two types of analysis were performed on the 2D-gels based on the 

grouping of samples: (1) the disease state (Healthy donor vs Breast Cancer) and (2) tumour grade 

(Healthy donor, Low Grade and High Grade). The Samespot analysis based on disease state gave 

18 spots which were significant and the analysis based on tumour grade gave 25 spots. The gel 

images showing the significant spots for both the analyses are presented in Figure 3.8. Between 

both analyses there was an overlap of 14 spots. The spots were excised out of the gels and given 

for mass spectrometric identification in Dr M. Metodiev’s laboratory.  
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A 

 

B 

Figure 3.8 2D-PAGE gel separation of proteins identified with silver staining from WBCs 

of cancer patients and healthy donors. The proteins are separated by their isoelectric point in 

the first dimension and by molecular weight (MW) in the second dimension. Gels were run in 

triplicates and analysed with the Samespots software. The spots which were differentially present 

were obtained by comparing different conditions. The circled spots show proteins significantly 

different in the Disease State analysis A and Tumour Grade analysis B. 
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3.3.2.1 Protein Spot Identification and Functional analysis 

 The total numbers of unique protein identifications were14 out of 26 spots obtained from 

the Samespot analysis. There was more than one protein identification for certain spots. This can 

be attributed to post-translational modifications, the protein fragmentation during the sample 

preparation step or simply an error during mass spectrometric procedures. The protein ID which 

had the most number of peptide hits was taken as the spot identification. Some of the spots could 

not be identified due to low protein content in the spot. The results for the tumour grade analysis 

and diseased state analysis are given in Table 3.7 and Table 3.8 respectively. All the proteins 

picked up in the disease state analysis were present in the tumour grade analysis with the 

exception of 6-phosphogluconate dehydrogenase (PGD). In the tumour grade analysis only the 

following proteins showed a consistent trend with both low grade and high tumours (either 

increase or decrease); JUP, TKT, SERPINB1, CAPZA1, CORO1A and ARPC2 (Figure 3.9). 

The proteins which were overexpressed in low grade breast and underexpressed in high grade 

breast cancer cohort were ANXA1, PRH1, ITGAM and VCL. On the other hand the proteins 

which were underexpressed in the low grade breast cancer and overexpressed in high grade 

breast cancer cohort were CASP14 and CTNNG. The proteins which were common between 

both the types of analysis were TKT, SERPINB1, CAPZA1, CORO1A and ARPC2. 

 When gene ontology was performed as described in section2.4.3.2majority of the proteins 

identified are cytoskeletal proteins involved in actin rearrangement (Gene Ontology id:0005856 

); CASP14, ACTN1, CORO1A,ARPC2, VCL, ANXA1 and CAPZA1 (Table 3.9). The other 

categories obtained by gene ontology analysis were cell adhesion and cell migration. CAPZA 

and CORO1A are involved in the innate immune response (GO:0045087). ANXA1 and 

CORO1A are involved in leukocyte activation (GO:0045321). SERPINB1 is stored in the 

granules of neutrophils and it inhibits neutrophil elastase which has anti-microbial activity, 
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dissolves cellular junctions, increases cell migration etc (Chou et al., 2012). Except for ACTN1, 

VCL and CAPZA1 all the proteins which are involved in cell migration/adhesion were 

overexpressed in the WBCs of breast cancer patients. SERPINB1 and JUP affect cell migration 

in a negative manner (Chou et al., 2012; Lam et al., 2012).All the other proteins (CORO1A, 

ITGAM, VCL and ACTN1) involved in cell migration/adhesion enhance the process. Protein-

Protein interaction network was constructed using the significant genes identified through 2D-

PAGE analysis as described in Section 2.4.3.4. It was observed that Plakoglobin (JUP) had the 

most number of interactions. Plakoglobin is a tumour growth and metastasis suppressor (Aktary 

and Pasdar, 2012; Lam et al., 2012). From the data obtained in this analysis a conclusion could 

be drawn on the effect of tumour on WBC migration in cancer patients. 
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Table 3.7 Mass spectrometric Identification of 2D-PAGE spots from Tumour Grade 

analysis: List of Protein spots and their Protein Ids differentially present in the WBCs of breast 

cancer patients as identified through mass spectrometry obtained by comparing healthy donors, 

Low grade breast cancer and high grade breast cancer patients. The spot numbers correspond to 

the numbers in the spotpickingimageFigure3.8 B. FC-Fold Change in comparison with healthy 

donors. Red- FC>1.2, Pink-0<FC<1.2, Green FC<-1.2, Light green -1.2<FC<0. 

Grade 

Analysi

s Spot 

number 

Protein Identification Protein 

Name 

Average Normalised 

Spot Volumes 

FC 

Low 

Grade 

 

FC 

High 

Grade 

Health

y 

Donor 

Low 

Grad

e 

High 

Grade 

17 Junction Plakoglobin JUP 2.136 2.83 3.398 +1.3 +1.6 

19 Immunoglobulin J chain  14.64 16.57 21.6 +1.1 +1.3 

21 Caspase 14 CASP14 1.836 1.349 2.142 -1.4 +1.2 

23 Integrin Alpha M ITGAM 1.723 2.503 1.641 +1.4 -1.04 

30 Transketolase TKT 9.738 14.3 14.42 +1.5 +1.5 

31 Glycogen phosphorylase PYGL 3.176 2.329 2.003 -1.4 -1.16 

35 Vinculin VCL 7.864 8.853 6.143 +1.12 -1.3 

37 Gamma-catenin CTNNG 2.595 1.851 2.655 -1.4 +1.02 

38 Annexin A1 ANXA1 22.9 29.05 20.41 +1.3 -1.12 

41 Neutrophil Elastase 

Inhibitor 

SERPINB

1 

8.138 10.52 11.26 
+1.3 +1.4 

42 Parotid acidic protein PRH1 26.81 32.2 23.39 +1.2 -1.15 

43 F-actin-capping protein 

subunit alpha-1 

CAPZA1 3.439 2.903 2.513 
-1.4 -1.4 

44 Annexin A1 ANXA1 2.222 2.836 2.083 +1.3 -1.06 

45 Coronin 1A CORO1A 5.813 6.18 7.797 +1.06 +1.3 

46 Actin-related protein 2/3 

complex subunit 2 

ARPC2 18.22 15.69 13.62 
-1.16 -1.3 

49 Actinin alpha 1 ACTN1 25.38 25.32 19.87 1 -1.3 

97 Immunoglobulin J chain  10.54 8.362 7.899 -1.3 -1.3 

122 Phosphoglyceratemutase 

1 

PGAM1 9.551 9.258 7.534 
1 -1.3 
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Table 3.8 Mass spectrometric Identification of 2D-PAGE spots from Disease state analysis; 

List of Protein spots and their Protein Ids differentially present in the WBCs of breast cancer 

patients as identified through mass spectrometry obtained by comparing healthy donors and 

breast cancer patients. The spot numbers correspond to the numbers in the spotpicking image 

Figure 3.8 A. FC-Fold Change in comparison with healthy donors. Red- FC>1.2, Green FC< -

1.2. 

 

 

 

 

Disease State 

Analysis Spot 

number 

Protein 

Identification 

Protein 

Name 

Average Normalised 

Spot Volumes 

Fold Change 

in Cancer 

Healthy 

Donor 

Cancer 

14 Immunoglobuli

n J chain 

 3.17 2.16 -1.5 

29 F-actin-capping 

protein subunit 

alpha-1 

CAPZA1 3.53 4.52 -1.4 

30 Actin-related 

protein 2/3 

complex subunit 

2 

ARPC2 18.2 14.63 -1.2 

10 Transketolase TKT 9.72 14.34 +1.5 

32 Coronin 1A CORO1

A 

5.80 6.98 +1.2 

22 Glycogen 

phosphorylase 

PYGL 8.13 10.7 +1.3 

24 Neutrophil 

Elastase 

Inhibitor 

SERPIN

B1 

14.6 19.05 +1.3 

26 6-

phosphoglucona

te 

dehydrogenase 

PGD 1.33 1.71 +1.3 
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Figure 3.9 Protein Spots common between disease state and tumour grade analysis 

identified by 2D-PAGE: WBC sample lysates were run in triplicates to perform 2D-gel 

electrophoresis. Scanned protein gels were analysed using Samespots software. Two types of 

analysis was done; Disease state (Healthy donor vs Breast cancer) and Tumour grade (Healthy 

donor vs Low grade breast cancer vs High grade breast cancer). Proteins spots represented above 

were common between both analyses and also showed consistent trends in different samples 

between different grades in breast cancer patient and healthy donor cohorts.  
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Table 3.9 Gene ontology of the significant proteins identified through 2D-PAGE: White 

blood cell lysates were subjected to 2D-PAGE. Samples were run in triplicates and the scanned 

gels were analysed by Samespots software. Protein spots were identified using the Orbitrap mass 

spectrometer. Proteins identified to be differentially present in the WBCs of breast cancer patient 

and healthy donors were subjected to gene ontology analysis. Gene Ontology was performed 

using GOFFA and based on Biological process. 

 

Gene ontology Term 

Gene 

ontology ID 

Proteins involved 

Immune system 

Process 

GO:0002376 ANXA1,CAPZA1,CORO1A,ITGAM 

Cell death GO:0016265 ACTN1,ANXA1,CASP14 

Cell proliferation GO:0008383 ANXA1,CORO1A 

Actin cytoskeleton GO:0015629 ACTN1,ANXA1,ARPC2,CAPZA1,CORO1A,JUP,VCL 

Cell Adhesion GO:0007155 ACTN1,CORO1A,ITGAM,JUP,VCL 

Cell migration GO:0016477 CORO1A,ITGAM,JUP,VCL 
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Figure 3.10 Identification Hub gene nodes changed in the WBCs of breast cancer patient 

cohort using 2D-PAGE: Differentially expressed proteins in the WBCs of breast cancer patients 

obtained by 2D-PAGE method were used to construct gene regulatory networks. Networks were 

constructed using the Osprey tool (http://biodata.mshri.on.ca/osprey/servlet/Index). The lines 

between gene nodes represent interactions and the genes with most interactions (hub genes) are 

independently with their own network. 

 

http://biodata.mshri.on.ca/osprey/servlet/Index
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3.4 Discussion 

  This study utilised proteomics approaches to identify differences in protein profiles of 

WBCs between breast cancer patients and healthy donors. Two types of technologies were used 

to identify differences in WBCs protein profiles: high throughput analysis using the Orbitrap 

mass spectrometer and the 2D-PAGE. These proteomic approaches are becoming very popular in 

finding novel cancer biomarkers in tissue and blood and give advantage over gene expression 

studies since protein biomarkers are preferred in clinical settings. They are also easier to detect 

due to well-developed antibody assays such as western blotting, enzyme-linked immunosorbent 

assay, antibody arrays etc. It should be noted that both methods have limitations, for example, 

the 2D-PAGE has reduced sensitivity and resolution, low throughput, requirement of the large 

amounts of starting material, more inter-gel variations and increased chances of experimental 

errors (Verrills, 2006). Compared with 2D-PAGE the high throughput proteomics has a better 

sensitivity and can be automated, however, the data mining, analysis and validation represents a 

challenge. The high throughput studies which were performed using the Orbitrap Velos 

instrument were very sensitive and even identified very specific changes. Around 2500 proteins 

were detected only in the membrane fraction of WBCs. For example ITGA4 (also known as 

CD49d) is present predominantly in the mononuclear cell fraction of the WBCs was found to be 

underexpressed in the breast cancer patient cohort. In our experiments, this analysis also showed 

variation in individual protein levels within the same cohort. This may be due to the 

heterogeneous composition of the WBCs and also the dynamic nature of the immune system.  

This can be solved by increasing the sample numbers which would provide more statistically 

significant proteins in cancer patients. Furthermore, the number of significant proteins identified 

through high throughput proteomics was much higher than 2D-PAGE analysis. However, these 

data will still need to be validated using other techniques such as western blotting, 

immunohistochemistry and others. 
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  One of the reasons the two techniques were used independently in our studies was to 

identify common proteins. Three candidates, SERPINB1, JUP and ANXA1, appeared in both 

analyses with SERPINB1 and ANXA1 overexpressed in the breast cancer cohort. All the three 

proteins are involved in cell adhesion and cell migration in immune cells. SERPINB1, also 

known as neutrophil elastase inhibitor, is a serine protease inhibitor which inhibits the neutrophil-

derived proteinases neutrophil elastase, cathepsin G, and proteinase-3 whereby protecting tissues 

from damage at inflammatory sites. In this study SERPINB1 levels were found to be increased in 

the WBCs of breast cancer patients using both approaches (2D-PAGE and high throughput 

proteomics).The link between SERPINB1 and cancer has been reported previously. For example, 

decreased expression of SERPINB1 in hepatocellular carcinoma positively correlates with poor 

prognosis (Cui et al., 2014). SERPINB1 was also found to positively correlated with cell 

invasiveness in oral cancer cell lines (Tseng et al., 2009). 

ANXA1 (Annexin A1) is a protein with the phospholipase A2 inhibitory activity. 

Phospholipase A2 is required for the biosynthesis of important mediators of inflammation such 

as prostaglandins and leukotrienes, hence, ANXA1 may have potential anti-inflammatory activity 

(Perretti and D’Acquisto, 2009). ANXA1 was also found to aberrantly overexpressed in highly 

invasive basal like and HER2 positive breast tumours (Yousef et al., 2013). Other proteins 

related to leukotriene synthesis which changed in the breast cancer patient cohort were ALOX5 

(Arachidonate 5-lipoxygenase) and LTA4H (Leukotriene A4 hydrolase); were overexpressed in 

the breast cancer patient cohort especially in the high grade category. CORO1A (Coronin-1A) is 

essential for T-cell mediated immunity and was present in higher levels in the breast cancer 

patient cohort in the 2D-PAGE analysis. It was found that CORO1A plasma levels increase in 

mice with tumour which corresponds to experiments done in white blood cells using 2D-PAGE 

(Pitteri et al., 2008). 
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  The high throughput proteomics has provided a list of statistically significant 136 

proteins differentially present between the WBCs of breast cancer patients and healthy donors. It 

is very important to note that these data only include the membrane proteins; the data from the 

soluble fraction were not analysed.  One of the reasons for this was the presence of abundant 

proteins which masked the signals from other proteins of low abundance in this fraction. The 

Gene ontology analysis of the identified proteins revealed that 34 of those were involved 

immune response and 41 in cellular localisation; generally, this analysis showed that 

inflammatory response was enhanced in the WBCs of breast cancer patients. This finding 

supports the theory that  inflammation contributes to generation of tumour-related mutations and 

promotes tumour progression (Grivennikov et al., 2010; Jackson et al., 1997; Nowarski et al., 

2013). The Gene ontology analysis on the high throughput data also demonstrated that around 11 

proteins were involved in the cell adhesion and migration. The ability of the immune cells to 

probe tissues for infection monitoring is very important. This is achieved by the immune cells by 

movement into tissues called transendothelial migration (Luster et al., 2005). If this movement of 

cells is affected the immune function can be compromised. 

                The Pathway analysis using KEGG database revealed leukocyte transendothelial 

migration was positively regulated in the breast cancer cohort.  The Leukocyte Transendothelial 

migration is the process by which WBCs invade tissue through the endothelial layer to routinely 

search for any inflammatory signals or infections (Van Buul and Hordijk, 2004). This analysis 

also revealed that the PI3K pathway which is associated with the transendothelial migration 

pathway was activated through the overexpression of chemokine receptors. Breast cancer cells 

overexpress SDF-1α which chemotactically attracts lymphocytes and macrophages to sites of 

tumour enhancing the tumour metastasis (Müller et al., 2001). Leukocytes and macrophages 

have been implicated in enhancing tumour angiogenesis/metastasis through their recruitment 

through tumour secreted chemokines such as IL6, granulocyte macrophage colony stimulating 
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factor, SDF-1α etc (Gabrilovich et al., 2012). The 2D-PAGE analysis also complemented the 

high throughput study where 9 out of 18 proteins identified were involved in actin cytoskeletal 

rearrangement (ACTN1, ITGAM, CORO1A, ARPC2, JUP, ANXA1 CAPZA1 and VCL) and 4 

proteins (ACTN1, ITGAM, SERPINB1and VCL) were involved in leukocyte transendothelial 

migration. The effect of the tumour tissue on the movement of leukocytes into the endothelium is 

implicated in cancer. Leukocyte adherence inhibition (89%) was observed when leukocytes from 

cancer patients were treated with tumour extracts (Halliday et al., 1980). Also tumour cells 

mimic immune cells by expressing surface molecules found on WBCs when they invade the 

extracellular matrix to metastasise (Jöhrer et al., 2004; Onrust et al., 1996).  

 This proteomics analysis will yield better results if it can be repeated using the datasets as 

the training dataset with the increased sample size. Gene expression data will give the changes in 

all the gene mRNA levels which will include secreted, membrane bound and soluble proteins and 

the proteomics data has to be linked up with the gene expression data to map out the immune 

response to tumour. This will also help in short listing the markers for validation at both RNA 

levels and protein levels.  
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Chapter 4:   Comparative analysis of gene expression profiles of white blood 

cells in breast cancer patients and healthy donor 
 

4.1 Introduction 

The use of gene expression microarray and RNA-Seq technologies in the effort to identify 

biomarkers has been employed for various types of cancers (See Section 1.8.2 and references 

therein).  In these studies, tissue samples were often used to identify genes differentially 

expressed in cancers and, ultimately, discover novel tissue cancer biomarkers. However, tissue 

biomarkers have limitations which include the costs and invasiveness of the biopsy procedures; 

in addition tumour tissue is only guaranteed at diagnosis, when the tumour is biopsied or 

resected. 

Blood can used as an alternative source for biomarkers, as blood collection is less 

invasive and cheap. However, current serum markers for breast cancer such as CA27.29 and 

CA15-3 lack sensitivity for early diagnosis of breast cancer. Despite of that the search for novel 

blood plasma cancer biomarkers continues, for example for breast cancer (Pitteri et al., 2008, 

2011) and Non-small cell lung cancer (Izbicka et al., 2012). As an alternative to serum or 

plasma, white blood cells (WBC) can be used to identify new biomarkers for cancer. A number 

of studies have been undertaken to screen for biomarkers for the purpose of both diagnosis and 

prognosis for cancer using genomic approaches in the WBCs for breast cancer (Aarøe et al., 

2010; Komatsu et al., 2012; LaBreche et al., 2011; Sharma et al., 2005; Zuckerman et al., 2013), 

pancreatic cancer (Baine et al., 2011), Non-small cell lung cancer (Showe et al., 2009) and acute 

myeloid leukemia (Metzeler et al., 2008). There also have been efforts to prove DNA 

methylation patterns in WBCs may be useful in detecting cancer (Brennan et al., 2012). 

 In the study reported by Aarøe et al., 2010 blood samples from 67 female patients with 

invasive breast cancer, 54 healthy donors and 9 other control samples (pregnant women and 
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benign breast cancer) were collected. The whole WBC fraction was isolated and RNA was 

extracted. Gene expression analysis was done using the single channel Applied Biosystems 

Human Genome Survey microarray V.2 chips. The group used partial least squares regression 

modelling and suggested 208 core regulated probes which discriminate breast cancer patients 

from healthy controls. The functional analysis done by the group was limited and showed very 

few functionally enriched categories. Furthermore the aim of their analysis was  only to identify 

gene expression patterns in the WBCs of breast cancer patients without validation of the data. 

These gene expression data will be analysed in this chapter to identify a list of potential 

biomarkers and to perform a independent functional analysis on the data.  

4.2 Aims  

The main aim of this Chapter is to analyse the gene expression patterns of WBCs from 

breast cancer patients from the previously published study (Aarøe et al. 2010 ). The gene 

expression data were deposited in the Gene expression omnibus (GEO) database (the GEO 

identity number is GSE16443). These data will be used to analyse for difference in global gene 

expression between helathy donors and breast cancer patients. This list of genes differentially 

expressed in the breast cancer patient cohort will be used for further functional analysis to 

identify possible biological pathways involved in the response of WBCs to the breast cancer. The 

latter included gene ontology, pathway and protein-protein interaction analyses. The Gene 

ontology  and pathway analyses will be primarily focussed on immune response processes. The 

differentially expressed genes will also be considered as potential biomarker candidates for 

further validation. The results from this analysis will also be combined with the results obtained 

in Chapter 3 for biomarker identification and maping out the changes in immune response in 

breast cancer patients. 
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4.3 Results 

4.3.1 Comparison of gene expression profiles between peripheral Blood cells of breast 

cancer patients and healthy donors.  

The gene expression data were obtained from the GEO using the GEO id GSE16443 in 

the form of log2 normalised gene expression value for each sample and gene in matrix. The 

numbers of breast cancer patient samples were 67 and healthy donors were 54. Students’ paired 

T-test was done using Multiexperiment viewer (see Section 2.4.3.1) between the two groups to 

obtain significant probes with fold change greater than ±1.2 and p-value less than 0.05. Genes 

which had more than one probe were filtered and the most significant fold change taken for 

further analysis. The test yielded 506 genes being significant with 214 genes under expressed 

and 292 genes overexpressed in the breast cancer patient cohort. Figure 4.1 is the volcano plot 

showing significant probes in blue which are being overexpressed in breast cancer patients with 

the fold change greater than ±1.2 and pvalue>0.05. Table4.1 gives the list of all the genes along 

with their fold change that were changed in the WBCs of breast cancer patients and are arranged 

in alphabetical order of their gene symbols. Hierarchical clustering for the 506 significant probes 

(Figure 4.2) was done using Multiexperiment viewer as discussed in Section2.4.3.1. It was 

observed that intensity values had a high degree of variance. This can be explained due to the 

fact that the molecular pathology of breast cancer is different to each tumour and also the 

immune system is very dynamic. 
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 Figure 4.1 Volcano plot of the probes in GSE16443 dataset: Student’s T test was performed 

to obtain probes which are significantly different between breast cancer patients and healthy 

donors. Individual probes are represented as dots. Blue dots represent probes which have p value 

<0.05 and fold change of ±1.2 which is relative to the breast cancer patient cohort. 
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Figure 4.2 Hierarchical Clustering of significant genes differentially expressed in the WBCs 

of Breast Cancer Patients: Hierarchical Clustering was done using the 506 genes which had 

significant differences between Healthy donors and Breast cancer Patients as identified by T test. 

Mutiexperiment viewer was used to perform clustering. Red indicates that the gene is relatively 

overexpressed and green the vice versa in the breast cancer cohort. 
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Table 4.1 List of genes changed significantly in the WBCs of breast cancer patients: 

Students T-test was done on the GSE16443 dataset comparing between the expression profiles of 

WBCs of breast cancer patients and healthy donors. The p value cutoff for the test was 0.05 and 

fold change ±1.2. The test gave 506 genes being significantly different in breast cancer cohort. 

Gene symbol Gene name FC 

AANAT arylalkylamine N-acetyltransferase 1.34 

ABP1 amiloride binding protein 1 (amine oxidase (copper-containing)) 1.21 

ACAD8 "acyl-Coenzyme A dehydrogenase family, member 8" -1.20 

ACATE2 
"likely ortholog of mouse acyl-Coenzyme A thioesterase 2, 

mitochondrial" -1.21 

ACBD6 acyl-Coenzyme A binding domain containing 6 -1.31 

ACE angiotensin I converting enzyme (peptidyl-dipeptidase A) 1 1.25 

ACPT "acid phosphatase, testicular" 1.26 

ADCK2 aarF domain containing kinase 2 -1.21 

ADRA2B "adrenergic, alpha-2B-, receptor" 1.33 

ADRA2C "adrenergic, alpha-2C-, receptor" 1.34 

ADRB1 "adrenergic, beta-1-, receptor" 1.38 

ADSS adenylosuccinate synthase -1.28 

AF1Q ALL1-fused gene from chromosome 1q -1.20 

AFG3L1 AFG3 ATPase family gene 3-like 1 (yeast) -1.25 

AGPAT5 
"1-acylglycerol-3-phosphate O-acyltransferase 5 (lysophosphatidic acid 

acyltransferase, epsilon)" -1.23 

AGR2 anterior gradient 2 homolog (Xenopuslaevis) 1.40 

AGRP agouti related protein homolog (mouse) 1.32 

AIM1L absent in melanoma 1-like 1.25 

AIP1 atrophin-1 interacting protein 1 1.29 

AK2 adenylate kinase 2 -1.23 

ALDH18A1 "aldehyde dehydrogenase 18 family, member A1" -1.23 

ALPL "alkaline phosphatase, liver/bone/kidney" 1.54 

ALS2CR3 
"amyotrophic lateral sclerosis 2 (juvenile) chromosome region, candidate 

3" -1.20 

AMELX "amelogenin (amelogenesisimperfecta 1, X-linked)" 1.31 

AMELY "amelogenin, Y-linked" 1.25 

AMY2B "amylase, alpha 2B; pancreatic" -1.24 

ANKRD10 ankyrin repeat domain 10 -1.26 

ANXA3 annexin A3 1.97 

AP1M2 "adaptor-related protein complex 1, mu 2 subunit" 1.32 

AP3M2 "adaptor-related protein complex 3, mu 2 subunit" 1.26 

APOC2 apolipoprotein C-II 1.35 

APOC4 apolipoprotein C-IV 1.22 

APOE apolipoprotein E 1.36 

APOL3 "apolipoprotein L, 3" -1.22 

ARFGEF2 
ADP-ribosylation factor guanine nucleotide-exchange factor 2 (brefeldin 

A-inhibited) 1.27 

ARHGAP17 Rho GTPase activating protein 17 -1.21 

ARHGDIG "protein disulfide isomerase, pancreatic,Rho GDP dissociation inhibitor 1.29 
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(GDI) gamma" 

ARHGEF3 Rho guanine nucleotide exchange factor (GEF) 3 -1.20 

ARHGEF9 Cdc42 guanine nucleotide exchange factor (GEF) 9 -1.21 

ARL11 ADP-ribosylation factor-like 11 1.29 

ARL6IP6 ADP-ribosylation-like factor 6 interacting protein 6 -1.21 

ASIP "agouti signaling protein, nonagouti homolog (mouse)" 1.29 

B3GAT3 "beta-1,3-glucuronyltransferase 3 (glucuronosyltransferase I)" 1.31 

BASP1 "brain abundant, membrane attached signal protein 1" 1.23 

BAZ2A "bromodomain adjacent to zinc finger domain, 2A" -1.21 

BCL7A B-cell CLL/lymphoma 7A 1.25 

BCNP1 B-cell novel protein 1 1.30 

BM88 BM88 antigen 1.28 

BNIP3L BCL2/adenovirus E1B 19kDa interacting protein 3-like 1.29 

BOMB BH3-only member B protein 1.28 

BRSK2 BR serine/threonine kinase 2 1.29 

BTBD2 BTB (POZ) domain containing 2 1.27 

BTC betacellulin 1.20 

C10orf33 chromosome 10 open reading frame 33 -1.28 

C10orf47 chromosome 10 open reading frame 47 -1.22 

C11orf16 chromosome 11 open reading frame 16 1.33 

C19orf25 chromosome 19 open reading frame 25 1.39 

C1orf19 chromosome 1 open reading frame 19 -1.27 

C2 complement component 2 1.30 

C20orf175 chromosome 20 open reading frame 175 1.22 

C21orf106 chromosome 21 open reading frame 106 1.32 

C21orf88 chromosome 21 open reading frame 88 1.30 

C22orf3 chromosome 22 open reading frame 3 -1.22 

C2orf22 chromosome 2 open reading frame 22 -1.29 

C5orf13 chromosome 5 open reading frame 13 -1.21 

C5orf15 chromosome 5 open reading frame 15 -1.31 

C5orf18 chromosome 5 open reading frame 18 -1.22 

C6orf110 chromosome 6 open reading frame 110 1.40 

C6orf209 chromosome 6 open reading frame 209 -1.21 

C8orf21 chromosome 8 open reading frame 21 1.25 

CAMP cathelicidin antimicrobial peptide 1.99 

CARD15 "caspase recruitment domain family, member 15" -1.36 

CASP5 "caspase 5, apoptosis-related cysteine protease" 1.24 

CCL1 chemokine (C-C motif) ligand 1 1.20 

CCNG1 cyclin G1 -1.24 

CD3Z "CD3Z antigen, zeta polypeptide (TiT3 complex)" -1.21 

CD68 CD68 antigen -1.21 

CD74 
"CD74 antigen (invariant polypeptide of major histocompatibility 

complex, class II antigen-associated)" -1.22 

CD9 CD9 antigen (p24) -1.32 

CDC2L1 
"cell division cycle 2-like 1 (PITSLRE proteins),cell division cycle 2-like 

2 (PITSLRE proteins)" 1.39 

CDC42BPG CDC42 binding protein kinase gamma (DMPK-like) 1.33 
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CDH15 "cadherin 15, M-cadherin (myotubule)" 1.23 

CDK5R1 "cyclin-dependent kinase 5, regulatory subunit 1 (p35)" 1.31 

CDK5RAP1 CDK5 regulatory subunit associated protein 1 -1.28 

CDKL5 cyclin-dependent kinase-like 5 1.31 

CEI CEI protein 1.35 

CEP1 centrosomal protein 1 -1.22 

Cep192 centrosomal protein 192 kDa -1.21 

CG018 hypothetical gene CG018 -1.21 

CGB8 
"chorionic gonadotropin, beta polypeptide 8,chorionic gonadotropin, beta 

polypeptide 5" 1.42 

CHGA chromogranin A (parathyroid secretory protein 1) 1.31 

CHMP1.5 CHMP1.5 protein -1.21 

CKLF chemokine-like factor 1.28 

CLDN11 claudin 11 (oligodendrocyte transmembrane protein) 1.22 

CLEC12A "C-type lectin domain family 12, member A" 1.60 

CLEC4G "C-type lectin superfamily 4, member G" 1.26 

CNFN cornifelin 1.21 

COG5 component of oligomericgolgi complex 5 -1.26 

CPA3 carboxypeptidase A3 (mast cell) -1.34 

CPNE3 copine III -1.20 

CREB5 cAMP responsive element binding protein 5 1.32 

CRHR1 corticotropin releasing hormone receptor 1 1.35 

CS citrate synthase -1.25 

CSTA cystatin A (stefin A) 1.32 

CTAG1A "cancer/testis antigen 1A,cancer/testis antigen 1B,cancer/testis antigen 2" 1.32 

CTSC cathepsin C -1.23 

CTSO cathepsin O -1.30 

CXXC5 CXXC finger 5 -1.22 

D4ST1 dermatan 4 sulfotransferase 1 -1.21 

DATF1 death associated transcription factor 1 -1.23 

DCN decorin 1.24 

DEFA3 
"defensin, alpha 1, myeloid-related sequence,defensin, alpha 3, 

neutrophil-specific" 1.86 

DERA 2-deoxyribose-5-phosphate aldolase homolog (C. elegans) -1.21 

DKFZp434I099 hypothetical protein DKFZp434I099 1.22 

DMRTB1 "DMRT-like family B with proline-rich C-terminal, 1" 1.23 

DOC2A "double C2-like domains, alpha" 1.24 

DOCK10 dedicator of cytokinesis 10 -1.37 

DPAGT1 
dolichyl-phosphate (UDP-N-acetylglucosamine) N-

acetylglucosaminephosphotransferase 1 (GlcNAc-1-P transferase) -1.22 

DRD2 dopamine receptor D2 1.26 

DYRK1B dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1B 1.25 

EDG6 "endothelial differentiation, G-protein-coupled receptor 6" 1.28 

EDG8 "endothelial differentiation, sphingolipid G-protein-coupled receptor, 8" 1.27 

EIF3S6 "eukaryotic translation initiation factor 3, subunit 6 48kDa" 1.28 

EIF4ENIF1 eukaryotic translation initiation factor 4E nuclear import factor 1 -1.21 

EIF4G2 "eukaryotic translation initiation factor 4 gamma, 2" -1.21 
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EIF5B eukaryotic translation initiation factor 5B -1.22 

ELAVL1 
"ELAV (embryonic lethal, abnormal vision, Drosophila)-like 1 (Hu 

antigen R)" -1.26 

ELF1 E74-like factor 1 (ets domain transcription factor) -1.36 

ELMO2 "engulfment and cell motility 2 (ced-12 homolog, C. elegans)" -1.21 

EME2 essential meiotic endonuclease 1 homolog 2 (S. pombe) 1.38 

ENTH enthoprotin -1.28 

EPB41L3 erythrocyte membrane protein band 4.1-like 3 -1.21 

EVER2 epidermodysplasiaverruciformis 2 1.37 

F5 "coagulation factor V (proaccelerin, labile factor)" 1.23 

FAD158 factor for adipocyte differentiation 158 -1.22 

FAM33A "family with sequence similarity 33, member A" 1.30 

FBS1 fibrosin 1 1.21 

FBXL12 F-box and leucine-rich repeat protein 12 -1.22 

FBXL14 F-box and leucine-rich repeat protein 14 1.20 

FBXL18 F-box and leucine-rich repeat protein 18 1.36 

FBXO11 F-box protein 11 -1.26 

FER1L3 "fer-1-like 3, myoferlin (C. elegans)" -1.26 

FKBP14 "FK506 binding protein 14, 22 kDa" 1.26 

FKBP5 FK506 binding protein 5 -1.23 

FKSG2 apoptosis inhibitor 1.39 

FLI1 Friend leukemia virus integration 1 -1.24 

FLJ10925 hypothetical protein FLJ10925 1.41 

FLJ11127 hypothetical protein FLJ11127 -1.20 

FLJ12270 FLJ12270 protein 1.37 

FLJ13841 hypothetical protein FLJ13841 1.23 

FLJ14753 hypothetical protein FLJ14753 -1.26 

FLJ20160 FLJ20160 protein 1.30 

FLJ30277 hypothetical protein FLJ30277 1.35 

FLJ32115 hypothetical protein FLJ32115 -1.39 

FLJ32770 hypothetical protein FLJ32770 1.45 

FLJ36268 FLJ36268 protein 1.31 

FLJ37543 hypothetical protein FLJ37543 1.33 

FLJ41131 FLJ41131 protein 1.23 

FLJ43855 similar to sodium- and chloride-dependent creatine transporter 1.36 

FN5 FN5 protein 1.28 

FNTA "farnesyltransferase, CAAX box, alpha" -1.22 

FRAS1 Fraser syndrome 1 1.31 

FSCN1 
"fascin homolog 1, actin-bundling protein 

(Strongylocentrotuspurpuratus)" 1.22 

FUSIP1 FUS interacting protein (serine-arginine rich) 1 -1.20 

FUT5 "fucosyltransferase 5 (alpha (1,3) fucosyltransferase)" 1.25 

FXYD7 FXYD domain containing ion transport regulator 7 1.35 

GADD45G "growth arrest and DNA-damage-inducible, gamma" 1.25 

GATA2 GATA binding protein 2 -1.38 

GBGT1 "globoside alpha-1,3-N-acetylgalactosaminyltransferase 1" 1.49 

GBP4 guanylate binding protein 4 -1.34 



 

103 

 

GCH1 GTP cyclohydrolase 1 (dopa-responsive dystonia) -1.30 

GFOD1 glucose-fructose oxidoreductase domain containing 1 -1.25 

GNE glucosamine (UDP-N-acetyl)-2-epimerase/N-acetylmannosamine kinase -1.20 

GOLGA1 "golgiautoantigen, golgin subfamily a, 1" -1.25 

GOT2 
"glutamic-oxaloacetic transaminase 2, mitochondrial (aspartate 

aminotransferase 2)" -1.21 

GPR103 G protein-coupled receptor 103 1.26 

GPR135 G protein-coupled receptor 135 1.25 

GPR158 G protein-coupled receptor 158 1.32 

GPR172A G protein-coupled receptor 172A -1.22 

GPR25 G protein-coupled receptor 25 1.27 

GPR35 G protein-coupled receptor 35 1.46 

GPR44 G protein-coupled receptor 44 -1.31 

GPR45 G protein-coupled receptor 45 1.38 

GPR6 G protein-coupled receptor 6 1.25 

GPR8 G protein-coupled receptor 8 1.49 

GRP58 "glucose regulated protein, 58kDa" -1.20 

GTPBP3 GTP binding protein 3 (mitochondrial) -1.21 

GYPC glycophorin C (Gerbich blood group) 1.25 

GYPE glycophorin E 1.37 

HAMP hepcidin antimicrobial peptide 1.31 

HAVCR2 hepatitis A virus cellular receptor 2 -1.21 

HBZ "hemoglobin, zeta" 1.40 

HDC histidine decarboxylase -1.44 

HEBP1 heme binding protein 1 -1.21 

HGFAC HGF activator 1.33 

HIRIP3 HIRA interacting protein 3 -1.20 

HIST1H3I "histone 1, H3i" 1.31 

HIST3H3 "histone 3, H3" 1.29 

HLA-DMA "major histocompatibility complex, class II, DM alpha" -1.20 

HLA-F "major histocompatibility complex, class I, F" -1.29 

HMBS hydroxymethylbilane synthase 1.20 

HMGA1 high mobility group AT-hook 1 1.26 

HNRPH1 heterogeneous nuclear ribonucleoprotein H1 (H) -1.33 

HRH2 histamine receptor H2 1.27 

HS6ST2 heparan sulfate 6-O-sulfotransferase 2 1.20 

HSD-40 HSD-40 protein 1.24 

HSPA9B heat shock 70kDa protein 9B (mortalin-2) -1.27 

HSPB1 heat shock 27kDa protein 1 1.23 

HTR1D 5-hydroxytryptamine (serotonin) receptor 1D 1.25 

HUMPPA paraneoplastic antigen 1.58 

IDH3A isocitrate dehydrogenase 3 (NAD+) alpha -1.23 

IDI1 isopentenyl-diphosphate delta isomerase -1.21 

IGFBP7 insulin-like growth factor binding protein 7 -1.23 

IGFL1 insulin growth factor-like family member 1 1.21 

IL20 interleukin 20 1.24 

IL27RA "interleukin 27 receptor, alpha" 1.47 
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IL28A "interleukin 28A (interferon, lambda 2)" 1.23 

IL2RB "interleukin 2 receptor, beta" -1.29 

ISYNA1 myo-inositol 1-phosphate synthase A1 1.28 

ITGA4 "integrin, alpha 4 (antigen CD49D, alpha 4 subunit of VLA-4 receptor)" -1.29 

ITPA inosinetriphosphatase (nucleoside triphosphate pyrophosphatase) -1.25 

JAK1 Janus kinase 1 (a protein tyrosine kinase) -1.25 

KAAG1 kidney associated antigen 1 1.34 

KCNF1 "potassium voltage-gated channel, subfamily F, member 1" 1.26 

KCNQ4 "potassium voltage-gated channel, KQT-like subfamily, member 4" 1.20 

KIAA0217 KIAA0217 -1.21 

KIAA0528 KIAA0528 gene product -1.22 

KIAA1185 KIAA1185 protein -1.20 

KIAA1441 KIAA1441 protein 1.29 

KIAA1446 brain-enriched guanylate kinase-associated protein 1.39 

KIAA1539 KIAA1539 1.41 

KIAA1875 hypothetical protein KIAA1875 1.42 

KIAA1904 KIAA1904 protein 1.35 

KIR2DL3 
"killer cell immunoglobulin-like receptor, two domains, long cytoplasmic 

tail, 3" 1.35 

KIRREL kin of IRRE like (Drosophila) 1.27 

KLHDC1 kelch domain containing 1 1.29 

KPNA2 "karyopherin alpha 2 (RAG cohort 1, importin alpha 1)" -1.24 

KRT16 keratin 16 (focal non-epidermolyticpalmoplantarkeratoderma) 1.35 

KRTAP12-3 keratin associated protein 12-3 1.38 

KRTCAP3 keratinocyte associated protein 3 1.24 

KRTHB3 "keratin, hair, basic, 3" 1.26 

LACTB "lactamase, beta" -1.20 

LAIR2 leukocyte-associated Ig-like receptor 2 -1.20 

LCMT2 leucine carboxyl methyltransferase 2 -1.27 

LCN2 lipocalin 2 (oncogene 24p3) 2.16 

LCN6 lipocalin 6 1.26 

LDLR low density lipoprotein receptor (familial hypercholesterolemia) -1.27 

LEPRE1 leucine proline-enriched proteoglycan (leprecan) 1 -1.20 

LGMN legumain -1.22 

LHB luteinizing hormone beta polypeptide 1.26 

LIF leukemia inhibitory factor (cholinergic differentiation factor) 1.26 

LIG1 "ligase I, DNA, ATP-dependent" -1.24 

LILRA1 
"leukocyte immunoglobulin-like receptor, subfamily A (with TM 

domain), member 1" 1.22 

LIN7A lin-7 homolog A (C. elegans) 1.37 

LIPA "lipase A, lysosomal acid, cholesterol esterase (Wolman disease)" -1.27 

LIPF "lipase, gastric" 1.40 

LIR9 leukocyte Ig-like receptor 9 1.24 

LOC113655 hypothetical protein BC011982 1.29 

LOC134548 hypothetical protein LOC134548 1.21 

LOC149837 hypothetical protein LOC149837 1.21 

LOC220070 hypothetical protein BC004224 1.26 
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LOC221091 similar to hypothetical protein 1.29 

LOC283932 hypothetical protein LOC283932 1.26 

LOC374969 hypothetical protein LOC374969 1.31 

LOC55831 30 kDa protein 1.22 

LONP peroxisomallon protease -1.23 

LPIN2 lipin 2 -1.23 

LRRC10 leucine rich repeat containing 10 1.30 

LTF lactotransferrin 2.38 

LUC7L2 LUC7-like 2 (S. cerevisiae) -1.25 

MAP17 membrane-associated protein 17 1.32 

MAP1LC3A microtubule-associated protein 1 light chain 3 alpha 1.35 

MAP3K8 mitogen-activated protein kinase kinasekinase 8 -1.26 

MAT1A "methionine adenosyltransferase I, alpha" 1.29 

MC1R melanocortin 1 receptor (alpha melanocyte stimulating hormone receptor) 1.26 

MCM7 MCM7 minichromosome maintenance deficient 7 (S. cerevisiae) 1.22 

MEN1 multiple endocrine neoplasia I -1.24 

METTL3 methyltransferase like 3 -1.26 

MGC11335 hypothetical protein MGC11335 1.21 

MGC13057 hypothetical protein MGC13057 1.30 

MGC15476 thymus expressed gene 3-like 1.34 

MGC15619 hypothetical protein MGC15619 -1.27 

MGC16635 hypothetical protein BC009980 1.25 

MGC2574 hypothetical protein MGC2574 1.21 

MGC29816 hypothetical protein MGC29816 -1.20 

MGC3036 hypothetical protein MGC3036 1.44 

MGC5178 hypothetical protein MGC5178 1.47 

MGC61598 similar to ankyrin-repeat protein Nrarp 1.31 

MGC70857 similar to RIKEN cDNA C030006K11 gene 1.21 

MGC9712 hypothetical protein MGC9712 1.24 

MHC2TA MHC class II transactivator -1.28 

MINPP1 "multiple inositol polyphosphate histidine phosphatase, 1" -1.25 

MMP15 matrix metalloproteinase 15 (membrane-inserted) 1.24 

MMP28 matrix metalloproteinase 28 1.29 

MPN pancreasin 1.31 

MRAP melanocortin 2 receptor accessory protein 1.28 

MRGPRD "MAS-related GPR, member D" 1.33 

MRVI1 murine retrovirus integration site 1 homolog 2.18 

MSX2 mshhomeo box homolog 2 (Drosophila) 1.23 

MT1G metallothionein 1G 1.22 

MTSS1 metastasis suppressor 1 -1.24 

MYC v-mycmyelocytomatosis viral oncogene homolog (avian) -1.22 

MYCN 
"v-mycmyelocytomatosis viral related oncogene, neuroblastoma derived 

(avian)" 1.26 

MYL4 "myosin, light polypeptide 4, alkali; atrial, embryonic" 1.39 

NARG1L NMDA receptor regulated 1-like -1.22 

NCOR2 nuclear receptor co-repressor 2 1.37 

NDUFV3 "NADH dehydrogenase (ubiquinone) flavoprotein 3, 10kDa" -1.25 
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NELL2 NEL-like 2 (chicken) -1.30 

NEUROG1 neurogenin 1 1.33 

NFAM1 NFAT activating protein with ITAM motif 1 1.33 

NFKBIA 
"nuclear factor of kappa light polypeptide gene enhancer in B-cells 

inhibitor, alpha" -1.20 

NGB neuroglobin 1.26 

NKTR natural killer-tumor recognition sequence -1.22 

NOXA1 NADPH oxidase activator 1 -1.22 

NPAS1 neuronal PAS domain protein 1 1.27 

NR1I2 "nuclear receptor subfamily 1, group I, member 2" 1.26 

NUP50 nucleoporin 50kDa -1.25 

OR10H1 "olfactory receptor, family 10, subfamily H, member 1" 1.27 

OR1D4 "olfactory receptor, family 1, subfamily D, member 4" 1.40 

OR4D1 "olfactory receptor, family 4, subfamily D, member 1" 1.21 

OR4M1 "olfactory receptor, family 4, subfamily M, member 1" 1.38 

OR51G1 "olfactory receptor, family 51, subfamily G, member 1" 1.30 

OR52E6 "olfactory receptor, family 52, subfamily E, member 6" 1.25 

OR52N4 "olfactory receptor, family 52, subfamily N, member 4" 1.60 

OR56B4 "olfactory receptor, family 56, subfamily B, member 4" 1.24 

OR6B3 "olfactory receptor, family 6, subfamily B, member 3" 1.48 

OR6N1 "olfactory receptor, family 6, subfamily N, member 1" 1.29 

ORF1-FL49 putative nuclear protein ORF1-FL49 1.32 

ORM1 "orosomucoid 1,orosomucoid 2" 2.22 

OTOS otospiralin 1.26 

OVOL1 ovo-like 1(Drosophila) 1.30 

P53AIP1 p53-regulated apoptosis-inducing protein 1 1.42 

PAOX polyamine oxidase (exo-N4-amino) -1.25 

PAPD4 PAP associated domain containing 4 -1.22 

PBP prostatic binding protein 1.29 

PCDHA5 protocadherin alpha 5 1.21 

PCNT1 pericentrin 1 -1.20 

PCYT2 "phosphate cytidylyltransferase 2, ethanolamine" 1.56 

PDE7A phosphodiesterase 7A -1.31 

PDZK1 PDZ domain containing 1 1.25 

PGLYRP1 peptidoglycan recognition protein 1 1.42 

PHKG1 "phosphorylase kinase, gamma 1 (muscle)" 1.24 

PIAS2 "protein inhibitor of activated STAT, 2" -1.22 

PIGV "phosphatidylinositol glycan, class V" -1.21 

PKD1 polycystic kidney disease 1 (autosomal dominant) -1.24 

PKMYT1 "protein kinase, membrane associated tyrosine/threonine 1" 1.21 

PLAGL1 pleiomorphic adenoma gene-like 1 -1.20 

PLCB3 "phospholipase C, beta 3 (phosphatidylinositol-specific)" 1.33 

PLEKHA9 
"pleckstrin homology domain containing, family A (phosphoinositide 

binding specific) member 9" 1.21 

PLEKHH1 
"pleckstrin homology domain containing, family H (with MyTH4 

domain) member 1" 1.30 

PLXNA1 plexin A1 1.33 
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PPFIA1 
"protein tyrosine phosphatase, receptor type, f polypeptide (PTPRF), 

interacting protein (liprin), alpha 1" -1.25 

PPP1R12C "protein phosphatase 1, regulatory (inhibitor) subunit 12C" -1.22 

PQLC2 PQ loop repeat containing 2 1.21 

PRKCG "protein kinase C, gamma" 1.37 

PRKCH "protein kinase C, eta" -1.21 

PRLH prolactin releasing hormone 1.33 

PRNP 
"prion protein (p27-30) (Creutzfeld-Jakob disease, Gerstmann-Strausler-

Scheinker syndrome, fatal familial insomnia)" -1.27 

PRPS2 phosphoribosyl pyrophosphate synthetase 2 -1.20 

PSD4 pleckstrin and Sec7 domain containing 4 1.20 

PSMB10 "proteasome (prosome, macropain) subunit, beta type, 10" -1.20 

PSMC3 "proteasome (prosome, macropain) 26S subunit, ATPase, 3" -1.25 

PSME2 "proteasome (prosome, macropain) activator subunit 2 (PA28 beta)" -1.21 

PSPH phosphoserine phosphatase 1.24 

PSTPIP2 proline-serine-threonine phosphatase interacting protein 2 -1.22 

PTDSS1 phosphatidylserine synthase 1 -1.25 

PTK2B PTK2B protein tyrosine kinase 2 beta 1.44 

PTMS parathymosin 1.25 

PUSL1 pseudouridylate synthase-like 1 1.34 

RAB1B "RAB1B, member RAS oncogene family" 1.32 

RAB3-GAP150 "rab3 GTPase-activating protein, non-catalytic subunit (150kD)" -1.20 

RASSF4 Ras association (RalGDS/AF-6) domain family 4 -1.22 

RBBP4 retinoblastoma binding protein 4 -1.25 

RBM15 RNA binding motif protein 15 1.31 

RBM16 RNA binding motif protein 16 -1.20 

RBM19 RNA binding motif protein 19 1.26 

RINT-1 Rad50-interacting protein 1 -1.20 

RNASET2 ribonuclease T2 -1.21 

ROBO4 "roundabout homolog 4, magic roundabout (Drosophila)" 1.35 

ROD1 ROD1 regulator of differentiation 1 (S. pombe) 1.23 

RHOA Ras homolog gene family, member A -1.22 

RPA3 "replication protein A3, 14kDa" 1.20 

RPL21 ribosomal protein L21 1.26 

RPS6 ribosomal protein S6 1.22 

RRN3 RRN3 RNA polymerase I transcription factor homolog (yeast) -1.21 

RTP2 receptor transporting protein 2 1.26 

S100A12 S100 calcium binding protein A12 (calgranulin C) 1.61 

S100A8 S100 calcium binding protein A8 (calgranulin A) 1.47 

SACM1L SAC1 suppressor of actin mutations 1-like (yeast) -1.25 

SCGB1A1 "secretoglobin, family 1A, member 1 (uteroglobin)" 1.37 

SCO1 SCO cytochrome oxidase deficient homolog 1 (yeast) 1.22 

SDFR1 stromal cell derived factor receptor 1 -1.20 

SDS serine dehydratase 1.21 

SEH1L SEH1-like (S. cerevisiae) -1.21 

SERF1A 
"small EDRK-rich factor 1B (centromeric),small EDRK-rich factor 1A 

(telomeric)" -1.20 
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SFRS1 
"splicing factor, arginine/serine-rich 1 (splicing factor 2, alternate splicing 

factor)" -1.22 

SFRS2 "splicing factor, arginine/serine-rich 2" -1.25 

SHANK1 SH3 and multiple ankyrin repeat domains 1 1.31 

SIRT6 
sirtuin (silent mating type information regulation 2 homolog) 6 (S. 

cerevisiae) 1.36 

SLC1A6 
"solute carrier family 1 (high affinity aspartate/glutamate transporter), 

member 6" 1.21 

SLC22A18 "solute carrier family 22 (organic cation transporter), member 18" 1.21 

SLC2A3 "solute carrier family 2 (facilitated glucose transporter), member 3" 1.31 

SLC31A1 "solute carrier family 31 (copper transporters), member 1" -1.26 

SLC35A5 "solute carrier family 35, member A5" -1.21 

SLC35E2 "solute carrier family 35, member E2" -1.21 

SLC41A1 "solute carrier family 41, member 1" 1.26 

SLC7A6 
"solute carrier family 7 (cationic amino acid transporter, y+ system), 

member 6" -1.27 

SMAD4 "SMAD, mothers against DPP homolog 4 (Drosophila)" -1.24 

SMARCA2 
"SWI/SNF related, matrix associated, actin dependent regulator of 

chromatin, subfamily a, member 2" -1.22 

SMBP SM-11044 binding protein -1.24 

SMCR8 "Smith-Magenis syndrome chromosome region, candidate 8" 1.45 

SMN1 
"survival of motor neuron 1, telomeric,survival of motor neuron 2, 

centromeric" -1.22 

SMNDC1 survival motor neuron domain containing 1 -1.23 

SMS spermine synthase -1.20 

SOCS3 suppressor of cytokine signaling 3 1.29 

SP3 Sp3 transcription factor -1.26 

SP6 Sp6 transcription factor 1.35 

SRGAP3 SLIT-ROBO Rho GTPase activating protein 3 1.51 

SRRM2 serine/arginine repetitive matrix 2 1.32 

ST8SIA4 "ST8 alpha-N-acetyl-neuraminide alpha-2,8-sialyltransferase 4" -1.23 

STAT1 "signal transducer and activator of transcription 1, 91kDa" -1.27 

STK39 "serine threonine kinase 39 (STE20/SPS1 homolog, yeast)" -1.20 

STX1A syntaxin 1A (brain) 1.27 

STXBP3 syntaxin binding protein 3 -1.22 

SUMF1 sulfatase modifying factor 1 -1.22 

SUSD2 sushi domain containing 2 1.42 

SYK spleen tyrosine kinase -1.21 

SYPL synaptophysin-like protein -1.20 

TACC1 "transforming, acidic coiled-coil containing protein 1" -1.25 

TAP1 "transporter 1, ATP-binding cassette, sub-family B (MDR/TAP)" -1.23 

TCP1 t-complex 1 -1.22 

TEKT2 tektin 2 (testicular) 1.39 

TESK2 testis-specific kinase 2 -1.24 

TFCP2L1 transcription factor CP2-like 1 1.24 

TFG TRK-fused gene -1.23 

TGFB1I4 transforming growth factor beta 1 induced transcript 4 -1.25 

THEG Theg homolog (mouse) 1.33 
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TITF1 thyroid transcription factor 1 1.21 

TIZ TRAF6-inhibitory zinc finger protein 1.21 

TK1 "thymidine kinase 1, soluble" 1.32 

TLR9 toll-like receptor 9 1.44 

TM4SF11 transmembrane 4 superfamily member 11 (plasmolipin) 1.38 

TM4SF9 transmembrane 4 superfamily member 9 1.30 

TMEM38A transmembrane protein 38A 1.26 

TNFAIP2 "tumor necrosis factor, alpha-induced protein 2" -1.21 

TNNI2 "troponin I, skeletal, fast" 1.29 

TOR3A "torsin family 3, member A" -1.27 

TP53I5 tumor protein p53 inducible protein 5 1.24 

TPM3 tropomyosin 3 -1.22 

TPP2 tripeptidyl peptidase II -1.26 

TRAF4 TNF receptor-associated factor 4 -1.21 

TRIM22 tripartite motif-containing 22 -1.30 

TRIM4 tripartite motif-containing 4 -1.24 

TRIM50A tripartite motif-containing 50A 1.35 

TSN translin -1.21 

TTBK1 tau tubulin kinase 1 1.35 

TTYH3 tweety homolog 3 (Drosophila) -1.26 

TUB tubby homolog (mouse) 1.21 

TXK TXK tyrosine kinase -1.36 

UBA52 ubiquitin A-52 residue ribosomal protein fusion product 1 1.29 

UBXD1 UBX domain containing 1 1.28 

UCKL1 uridine-cytidine kinase 1-like 1 -1.22 

UCN urocortin 1.27 

UCP2 "uncoupling protein 2 (mitochondrial, proton carrier)" -1.21 

UGT2A1 "UDP glycosyltransferase 2 family, polypeptide A1" 1.41 

ULK2 unc-51-like kinase 2 (C. elegans) 1.31 

UNQ5783 DTFT5783 -1.21 

UPK2 uroplakin 2 1.28 

UPK3B uroplakin 3B 1.31 

UROC1 urocanase domain containing 1 1.22 

UROS uroporphyrinogen III synthase (congenital erythropoietic porphyria) -1.22 

USP49 ubiquitin specific protease 49 -1.21 

USP52 ubiquitin specific protease 52 -1.20 

USP54 ubiquitin specific protease 54 1.25 

UTX "ubiquitously transcribed tetratricopeptide repeat, X chromosome" -1.21 

UVRAG UV radiation resistance associated gene -1.22 

VDP vesicle docking protein p115 -1.26 

VPS13C vacuolar protein sorting 13C (yeast) -1.24 

VPS4B vacuolar protein sorting 4B (yeast) -1.25 

WDFY2 WD repeat and FYVE domain containing 2 -1.21 

WDR1 WD repeat domain 1 1.24 

WDR37 WD repeat domain 37 -1.26 

XLKD1 extracellular link domain containing 1 1.44 
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XPO4 exportin 4 1.28 

ZC3HDC7 zinc finger CCCH type domain containing 7 -1.23 

ZCCHC14 "zinc finger, CCHC domain containing 14" -1.22 

ZF HCF-binding transcription factor Zhangfei -1.22 

ZFP36L2 "zinc finger protein 36, C3H type-like 2" -1.37 

ZMAT2 "zinc finger, matrin type 2" 1.27 

ZNF3 zinc finger protein 3 (A8-51) 1.32 

ZNF488 zinc finger protein 488 1.32 

ZNF579 zinc finger protein 579 1.33 

ZNFN1A1 "zinc finger protein, subfamily 1A, 1 (Ikaros)" -1.41 
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4.3.2 Molecular and functional analysis of the significant genes obtained through the 

comparison of gene expression profiles of Healthy donors and breast cancer patients 

Understanding the biological meaning of the results obtained through microarray or 

RNA-Seq can be difficult. The conventional way to achieve this is to classify the genes based on 

their function and their cellular location. Gene ontology is used to annotate genes with respect to 

their function. The Gene ontology project is an initiative which evolved out of the need to 

consolidate the descriptions of each gene and its products across different species for consistence 

to enable functional interpretation of experimental data. The Gene Ontology analysis was 

performed using a tool called Gene Ontology for Functional Analysis (GOFFA) developed by 

the USA Food and Drug Administration (FDA) Department. This tool is further explained in 

Section2.4.3.2.Other methods  to analyse microarray data include the KEGG pathway  and 

protein-protein interaction cluster analyses using databases such as Biomolecular Interaction 

Network Database (BIND), Biological General Repository for Interaction Datasets (BioGRID)  

and others ( discussed in Section2.4.3). 

4.3.2.1 Gene ontology-Biological Processes 

Gene ontology analysis was performed with the 506 significant probes obtained through 

the comparison of gene expression profiles between WBCs of breast cancer patients and healthy 

donors, with a particular purpose to highlight the changes in immune functions of WBCs in 

breast cancer patients. GOFFA was used to perform ontology as described in Section2.4.3.1. The 

software organises gene ontology into three main categories: Molecular function, Biological 

processes and Cellular components. Figure 4.3A shows the results for the gene ontology 

classification based on the biological function. The number of genes changed are related to 

metabolic processes (40%) followed by biological regulation (36%) and response to stimulus 

(30%). 
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A 

 

B 

Figure 4.3 Gene Ontology of significantly different genes between the PBCs of Healthy 

donors and Breast cancer Patients from GSE16443 dataset: Genes identified to be 

differentially present in the WBCs of breast cancer patient and healthy donors Gene Ontology 

was performed using GOFFA and based on biological processes (n=506). A) Ontology was done 

based on Biological processes and genes were grouped under different categories. B) Sub 

classification of immune system related genes (n=54). 
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4.3.2.2 Analysis of genes associated with immune system processes 

The number of significant genes which were related to immune system processes (GO: 

0002376) are 54 genes (10%). The genes related to the immune system were further sub 

classified based on different immune system functions (Figure 4.3B). The hierarchical clustering 

was performed using the Multiexperiment viewer on the significant probes which correspond to 

the immune system processes which shown in Figure 4.4. The clustering showed four distinct 

groups of genes in which the patterns of expression were same within the different cohorts of 

samples. The first and second group has genes which are under expressed in the breast cancer 

patient cohort. The genes in the last two groups are overexpressed in the breast cancer patient 

cohort. The category having most number of genes within the immune system process is the 

regulation of immune system (40%) followed by the innate immune response (27%). Table 4.2 

gives the list of all the genes which are related to the immune system.  

The categories involved in the immune system processes are given in Table 4.3 along 

with the significant genes involved. It can be observed that most of the genes have functions 

corresponding to the innate immune system processes such as leukocyte activation, leukocyte 

migration, antigen presentation etc. This might be due to the fact that leukocytes constitute a 

major fraction (~75%) of the WBCs. The genes involved in innate immune response which were 

down-regulated were HLA-DMA, JAK1, STAT1, LCN2, TAP1, HLA-F, PGLYRP1 and up-

regulated genes were C2, UBA52, GCH1, S100A12, TLR9, SOCS3 and NFKBIA. The down-

regulated genes in the innate immune response are mostly involved in antigen recognition, 

processing and presentation. The upregulated genes are involved in inflammatory responses. All 

the genes involved in lymphocyte activation were also involved with leukocyte activation (Table 

4.3). Only three genes ANXA3, STXBP3 and ZNF3 were unique to leukocyte activation. All the 

genes involved in leukocyte activation were down regulated with the exception of ANXA3, 

NFAM1 and ZNF3.Annexin A3 (ANXA3) is a calcium dependent phospholipid binding protein 
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which inhibits phospholipase A2. Phospholipase A2 releases arachidonic acid causes 

inflammation through the prostaglandin and leukotriene pathway(Hofmann et al., 2000). 

SCGB1A1 (Secretoglobin Family 1A, Member 1) encodes a small disulfide linked dimeric 

protein also called as Uteroglobin has also been implicated to inhibit phospholipase A2 activity 

(Peri et al., 1993). Zinc finger protein 3 (ZNF3) is DNA binding transcription factor which 

involved in cell differentiation and proliferation. Syntaxin binding protein (STXBP3) binds to 

STX2 and STX4 which are involved in targeting and fusion of intracellular transport vesicles. 

NFAT Activating Protein with ITAM Motif 1 (NFAM1) encodes for a type 1 membrane receptor 

which regulates B cell development and signalling (Ohtsuka and Arase, 2004). Table 4.3 shows 

the list of genes which are involved in the inflammatory response and only APOL3 and LIPA 

were downregulated which suggests that the inflammatory response is induced in the breast 

cancer patients. Only Lipase A (LIPA) and Apolipoprotein L3 (APOL3) were down regulated. 

LIPA catalyses the hydrolysis of cholesteryl esters and triglycerides in the lysosome and APOL3 

affects the movements of lipids and facilitates their attachment to the organelles. Among the 506 

significant genes the genes involved in T-cell receptor signalling (ELF1, NKBIA, PRNP, HLA-

DMA and SYK) were down regulated in the breast cancer patient category. 
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Figure 4.4 Hierarchical clustering of significant genes related to the immune system 

obtained through the comparison of expression profiles between the WBCs of Healthy 

Donors and Breast Cancer Patients: Hierarchical Clustering was done using GOFFA. Red 

indicates that the gene is relatively overexpressed in breast cancer patient samples and green the 

vice versa. Four distinct clusters were observed among the samples. 
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Table 4.2 List of differentially expressed genes involved in the immune response obtained 

from the comparison between breast cancer patients and healthy donors: Significant genes 

were identified by analysing GSE16443 dataset and gene ontology was done to identify immune 

system related genes using GOFFA. Red colour indicates overexpressed genes and green colour 

indicates under expressed genes in the breast cancer patient cohort. 

Gene 

Symbol Gene Name 

Up/Down 

regulated 

Gene 

Symbol Gene Name 

Up/Down 

regulated 

ACE 

angiotensin I 

converting enzyme 

(peptidyl-dipeptidase 

A) 1   LILRA1 

leukocyte 

immunoglobulin-like 

receptor   

ADSS 

adenylosuccinate 

synthase   LTF lactotransferrin   

ANXA3 annexin A3   MAP3K8 

mitogen-activated 

protein kinase 8   

AP1M2 

adaptor-related 

protein complex 1, 

mu 2 subunit   MEN1 

multiple endocrine 

neoplasia I   

BNIP3L 

BCL2/adenovirus 

E1B 19kDa 

interacting protein 3-

like   NFAM1 

NFAT activating 

protein with ITAM 

motif 1   

C2 

complement 

component 2   NFKBIA 

nuclear factor of kappa 

light polypeptide gene 

enhancer in B-cells 

inhibitor, alpha   

CCL1 

chemokine (C-C 

motif) ligand 1   ORM1 orosomucoid 1   

CD74 CD74 antigen    PGLYRP1 

peptidoglycan 

recognition protein 1   

CKLF chemokine-like factor   PRNP prion protein (p27-30)    

CRHR1 

corticotropin 

releasing hormone 

receptor 1   PSMB10 

proteasome subunit, 

beta type, 10   

CTSC cathepsin C   RBM15 

RNA binding motif 

protein 15   

ELF1 E74-like factor 1   RNASET2 ribonuclease T2   

GCH1 

GTP cyclohydrolase 

1 (dopa-responsive 

dystonia)   S100A12 

S100 calcium binding 

protein A12   
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GPR44 

G protein-coupled 

receptor 44   SCGB1A1 

secretoglobin, family 

1A, member 1   

HAMP 

hepcidin 

antimicrobial peptide   SLC7A6 

solute carrier family 7 

member 6   

HBZ hemoglobin, zeta   SOCS3 

suppressor of cytokine 

signaling 3   

HLA-

DMA 

major 

histocompatibility 

complex, class II, 

DM alpha   SP3 

Sp3 transcription 

factor   

HLA-F 

major 

histocompatibility 

complex, class I, F   STAT1 

signal transducer and 

activator of 

transcription 1   

HRH2 

histamine receptor 

H2   STXBP3 

syntaxin binding 

protein 3   

IL27RA 

interleukin 27 

receptor, alpha   SUSD2 

sushi domain 

containing 2   

ITGA4 integrin, alpha 4    SYK spleen tyrosine kinase   

JAK1 Janus kinase 1    TAP1 

transporter 1, ATP-

binding cassette, sub-

family B (MDR/TAP)   

KAAG1 

kidney associated 

antigen 1   TLR9 toll-like receptor 9   

KIR2DL3 

killer cell 

immunoglobulin-like 

receptor, two 

domains, long 

cytoplasmic tail, 3   TRIM22 

tripartite motif-

containing 22   

LCN2 lipocalin 2   TTBK1 tau tubulin kinase 1   

LIF 

leukemia inhibitory 

factor    UBA52 

ubiquitin A-52 residue 

ribosomal protein 

fusion product 1   

LIG1 

ligase I, DNA, ATP-

dependent   ZNF3 

zinc finger protein 3 

(A8-51)   
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Table 4.3 Ontology of the differentially expressed genes involved in immune system 

processes: The expression profiles of WBCs of breast cancer patients and healthy donors were 

compared and the differentially expressed genes were obtained. Gene ontology was performed 

using GOFFA. The genes involved in various immune system processes (GO: 0002376) were 

identified which are given below. 

Description Genes involved P 

value 

Innate Immune response C2,GCH1,HLA-DMA,HLA-F,JAK1,LCN2,NFKBIA, 

PGLYRP1,S100A12,SOCS3,STAT1,TAP1,TLR9,UBA52 

0.010 

Lymphocyte Activation CD74,HLA-DMA,ITGA4,MAP3K8,NFAM1, 

PRNP,SCGB1A1,SP3,SYK 

0.019 

Activation of Immune response C2,ELF1,HLA-DMA,NFAM1,NFKBIA, 

PRNP,SYK,TLR9,UBA52 

0.034 

Antigen processing and presentation CD74,HLA-DMA,HLA-F,TAP1 0.005 

Immune effector process ACE,ANXA3,AP1M2,BNIP3L,C2,CD74, 

HLA-DMA,STXBP3,SYK,TAP1 

0.022 

Immune system development CD74,HLA-DMA,ITGA4,MAP3K8, 

NFAM1,PRNP,SCGB1A1,SP3,SYK 

0.000

5 

Leukocyte activation ANXA3,CD74,HLA-DMA,ITGA4,MAP3K8,NFAM1, 

PRNP,SCGB1A1,SP3,STXBP3,SYK,ZNF3 

0.006 

Leukocyte Migration 
 

CD74,CKLF,ITGA4,SLC7A6,SYK 0.012

5 

Regulation of Immune system 

processes 

AP1M2,C2,CD74,ELF1,HLA-DMA,HLA-F,ITGA4, 

JAK1,KIR2DL3,LIF,LILRA1,MAP3K8,NFAM1,NFKBIA, 

ORM1,PRNP,RBM15,SCGB1A1,SOCS3,STAT1,SYK, 

TAP1,TLR9,UBA52 

0.001

2 

Adaptive immune response C2,CD74,HLA-DMA, TAP1 0.048 

Positive regulation of immune 

system 

C2,CD74,ELF1,HLA-DMA,MAP3K8, 

NFAM1,NFKBIA,PRNP,SYK,TAP1,TLR9,UBA52 

0.008 

Negative of immune system CD74,ELF1,PRNP,SCGB1A1,TAP1,TLR9 0.067 

Inflammatory response APOL3,ACE,LIPA,IL20,UCN,NFAM1,APOE, 

SCGB1A1,TLP9,S100A8,S100A12,ORM1 

0.045 
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4.3.2.3 Analysis of genes associated with apoptosis 

 Gene ontology was done on the 506 significant genes using GOFFA. Genes involved in 

cell death were identified. Figure 4.3 shows that only 8% (n=40) of the 506 genes that changed 

in the WBCs of breast cancer are involved in cell death. Hierarchical clustering was done on 

these genes which shown in Figure 4.5A.It was observed that 22 genes involved in the cell death 

were down regulated in breast cancer patients and 19 genes were up regulated. Thus a conclusion 

on the effect of tumour on the WBCs cell death could not be achieved. So the genes involved in 

induction of apoptosis were identified and the genes involved were GCH1, STAT1,TAP1, 

SMNDC1, ARHGEF9, ARHGEF3, PLAGL1, BNIP3L, UBA52 and APOE which has been shown 

in Table 4.3. It was observed except for BNIP3L, UBA52 and APOE all the other genes involved 

in the induction of apoptosis were down regulated which suggests that the WBCs were not 

driven towards apoptosis. The genes which were involved in cell growth are also given Table 

4.3. It was observed that all the genes involved in positive regulation of cell growth were 

overexpressed and genes involved in negative regulation of cell growth were under-expressed 

(except for ADRB1 and CAMP). This supports the observation that the WBCs are not driven 

towards cell death but towards cell proliferation. 
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4.3.2.4 Analysis of genes involved with cell migration 

 Cell adhesion and cell migration are very important for WBC function to detect antigens 

in different tissues and organs. WBC movement to the site of infection is very important for 

initiation and regulation of both the innate and adaptive immune response. WBC cell migration 

has been discussed in Chapter 1 (see Section 1.4).Gene ontology analysis was performed on the 

significant genes differentially expressed in the breast cancer patient cohort and genes involved 

in cell migration were obtained using GOFFA. Figure 4.5 B shows the hierarchical clustering of 

genes involved in cell migration and there were two groups of genes: Upregulated 

(ACE,ANXA3,APOE,CDK5R1,CDKL5,CKLF,DRD2,FSCN1,PTK2B,ROBO4) and 

downregulated genes (CD74, ITGA4, ELMO2,SLCA6, SYK) in breast cancer category. Table 

4.5shows the functions of the genes involved in cell migration and also the effect on cell 

migration. All the genes which have negative effect on cell migration were overexpressed. The 

genes involved in leukocyte migration specifically are ITGA4, CKLF, CD74, SLCA6 and SYK 

(Table 4.3). Except for CKLF all the genes are downregulated. This suggests that cell migration 

is negatively affected in the WBCs of breast cancer.  
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A 

 

B 

Figure 4.5 Hierarchical clustering of significant genes involved in cell death and cell 

migration: The genes which were significantly changed in the WBCs of breast cancer were 

identified through Student’s T-Test. Gene ontology was done and genes involved in Cell Death 

(A) and Cell migration (B) were identified. Hierarchical Clustering was done using GOFFA. Red 

indicates that the gene is relatively overexpressed and green the vice versa in the breast cancer 

cohort. 
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Table 4.4 Ontology of the genes involved in cell death and cell growth obtained by 

comparison expression profiles in the WBCs of breast cancer patients and healthy donors: 

The genes which changed significantly in WBCs of breast cancer patients were identified 

through T-Test and gene ontology was done using GOFFA. Genes involved in Cell death (GO: 

0008219) and growth (GO: 0016049) were identified. 

Biological 

Process 
Genes involved 

P value 

Cell Death GCH1,IL2RB,STAT1,PRNP,PSMC3,MEN1,CCNG1, 

SMAD4,TAP1,SMNDC1,LGMN,FNTA,CD74,ARHGEF9, 

EIF4G2,PSME2,TRAF4,ELMO2,ARHGEF3,PLAGL1,PSMB10, 

NFKBIA,BTC,RPS6,MSX2,HSPB1,CASP5,ACE,GADD45G, 

UCN,SOCS3,BNIP3L,UBA52,CDK5R1,CRHR1,APOE, 

PRKCG,FKSG2,PTK2B,LCN2 

0.006 

Positive 

regulation of 

apoptosis 

ACE,APOE,ARHGEF3,ARHGEF9,BNIP3L,CDK5R1,GCH1, 

MEN1,MSX2,PLAGL1,RPS6,SMNDC1,STAT1,TAP1,UBA52 

0.002 

Negative 

regulation of 

apoptosis 

APOE,BNIP3L,BTC,CCNG1,CD74,HSPB1,IL2RB,LGMN, 

MSX2,NFKBIA,PRNP,PTK2B,SOCS3,UBA52 

0.022 

Induction of 

apoptosis 

GCH1,STAT1,TAP1,SMNDC1,ARHGEF9,ARHGEF3, 

PLAGL1,BNIP3L,UBA52,APOE 

0.0056 

Cell growth ADRB1,APOE,CAMP,CDKL5,DRD2,IGFBP7,LGMN, 

MEN1,NELL2,PRLH,PTK2B,SMAD4,SMARCA2,SOCS3, 

TFCP2L1,UCN,ULK2 

0.044 

Negative 

regulation of 

cell growth 
ADRB1,CAMP,LGMN,MEN1,SMAD4,SMARCA2,ULK2 

0.032 

Positive 

regulation of 

cell growth 

CDKL5,DRD2,PTK2B,TFCP2L1,UCN 

0.047 
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Table 4.5 Ontology of significant genes in WBCs of breast cancer patients relating to Cell 

migration: Gene ontology was done using GOFFA on differentially regulated genes in the 

WBCs of breast cancer patients obtained by comparison with healthy donors. Genes involved in 

Cell migration process (GO: 0016477) were identified. 

Gene 

Symbol 
Gene name Function 

Fold 

Change 

Effect on 

migration 

ACE 
angiotensin I converting 

enzyme  
Involved in blood vessel constriction + Decreases 

ANXA3 annexin A3 Inhibits phospholipase A + Decreases 

APOE apolipoprotein E 
Transports vitamins and lipids into 

the lymph system 
+ Decreases 

DRD2 dopamine receptor D2 receptor for dopamine + Decreases 

ROBO4 
roundabout homolog 4, magic 

roundabout (Drosophila) 

Receptor for Slit proteins involved in 

angiogenesis.  
+ Decreases 

CD74 CD74 antigen  

Involved in antigen recognition and 

interacts with Macrophage inhibitory 

factor 

- Increases 

CKLF chemokine-like factor 
Acts as chemoattractant for 

neutrophils and lymphocytes 
+ Increases 

ELMO2 engulfment and cell motility 2  
Involved in actin cytoskeletal 

rerrangement 
- Increases 

FSCN1 
fascin homolog 1, actin-

bundling protein  

Increases Actin organisation in 

filipodia 
+ Increases 

ITGA4 integrin, alpha 4  
Involved in adhesion and 

transendothelial migration 
- Increases 

PTK2B 
PTK2B protein tyrosine 

kinase 2 beta 

Regulates reorganization of the actin 

cytoskeleton, cell migration and 

adhesion 

+ Increases 
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4.3.2.5 Pathway enrichment analysis of genes differentially expressed in the WBCs of 

breast cancer patients 

   Pathway analysis is another approach to interpret the biological meaning 

of a microarray dataset. This approach can be used to observe subtle and consistent changes in 

the pathways using functional annotations. Pathway analysis was performed on the 506 

significant genes using GenMAPP software as described in Section 2.4.3.3. The pathway 

database used was KEGG (Kyoto Encyclopedia of Genes and Genomes). The top ten pathways 

obtained by using GenMAPP are shown in Table 4.6 along with the altered genes. The pathways 

relevant to immune system processes in the table are antigen processing, Jak-STAT signaling 

pathways and leukocyte transendothelial migration which are shown in Figure 4.6, Figure 4.7 

and Figure 4.8 respectively.  

   It was observed that all the genes (HLA-DMA,LGMN,PSME2,HLA-

F,CD74,TAP1) which changed in the antigen processing and presentation pathway was 

downregulated except for ARHGDIG (Brp57) and Killer Cell Immunoglobulin-Like Receptor 

(KIR2DL3).KIR2DL3 is receptor found on natural killer cells which inhibits their activity. Thus 

the data suggests that antigen presentation is negatively affected in the WBCs of breast cancer 

patients. All the genes in the Jak-STAT signaling pathway were also downregulated except for 

Suppressor of cytokine signaling 3 (SOCS3), Interleukin 20 (IL20) and Leukemia inhibitory 

factor (LIF). SOCS3 binds to tyrosine kinase receptors such as LIF, IL12, GCSF etc instead of 

STAT4 to inhibit cytokine based signaling and it also inhibits JAK2 kinase (Sasaki et al., 1999; 

Yamamotoa et al., 2003). But interleukin 20 (IL20) and leukemia inhibitory factor (LIF) 

belonging to the IL6 family are Upregulated. The receptor for both IL20 and LIF which is 

Interleukin receptor Interleukin-2 receptor (IL2RB) subunit beta is downregulated. Thus it can be 

concluded that the Jak-STAT pathway is also downregulated in the WBCs of breast cancer 
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patients. Antigen presentation is regulated through the Jak-STAT pathway by activation of IL2 

and IFN-γ receptors (Schroder et al., 2004). The leukocyte transendothelial migration pathway 

had five genes changing: Integrin alpha 4 (ITGA4), Tyrosine protein kinase (TXK) were 

downregulated and Protein Kinase C Gamma (PRKCG), Protein Tyrosine Kinase 2 Beta 

(PTK2B), Claudin 11 (CLDN11) were upregulated. All the genes changed in the pathway favours 

cell migration. It can be observed in Figure 4.8 that the effect of cancer on the leukocyte 

transendothelial migration in WBCs is inconclusive. But the expression data can be combined 

with protein data to obtain a better understanding of this pathway. 
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Table 4.6 Top 10 Pathways obtained by comparison of gene expression profiles of healthy 

donors and breast cancer patients:   List of pathways and genes involved in immune response 

to tumour obtained by high throughput proteomics by comparison of WBCs from healthy donor 

and breast cancer patients. 

Kegg Pathway 
No of 

Genes 
Genes involved 

P value 

Metabolic 

pathways 
37 

MAT1A,FUT5,AK2,UROC1,GNE,B3GAT3,DPAGT1, 

ISYNA1,PLCB3,GBGT1,IDI1,AMY2B,GOT2,ALPL,CS, 

NDUFV3,PCYT2,ALDH18A1,ACAD8,PIGV,SMS, 

TK1,LIPF,UROS,UGT2A1,ITPA,UCKL1,IDH3A,ADSS, 

SDS,PRPS2,GCH1,AANAT,HMBS,PTDSS1,PSPH,HDC 

2.49e10 

Neuroactive 

ligand-receptor 

interaction 

10 
ADRA2C,CRHR1,DRD2,MC1R,LHB,ADRB1, 

ADRA2B,HRH2,HTR1D,GPR35 

0.0014 

Pathways in 

cancer 
10 

PRKCG,JAK1,TPM3,MYC,NFKBIA,STAT1, 

PIAS2,TFG,TRAF4,SMAD4 

0.005 

Jak-STAT 

signaling 

pathway 

9 
LIF,JAK1,MYC,STAT1,PIAS2,IL20,IL28A,I 

L2RB,SOCS3 

0.0002 

Lysosome 8 
CD68,AP1M2,CTSC,CTSO,AP3M2,SUMF1, 

LGMN,LIPA 

0.0002 

Antigen 

processing and 

presentation 

8 

HLA-DMA,LGMN,PSME2,HLA-F,KIR2DL3, 

 

CD74,TAP1,ARHGDIG 

0.0002 

Hepatitis C 7 JAK1,NFKBIA,LDLR,STAT1,SOCS3,PIAS2,CLDN11 0.0014 

Osteoclast 

differentiation 
6 JAK1,SYK,NFKBIA,LILRA1,STAT1,SOCS3 

0.007 

Leishmaniasis 5 HLA-DMA,JAK1,ITGA4,NFKBIA,STAT1 0.0044 

Leukocyte 

transendothelial 

migration 

5 PTK2B,PRKCG,ITGA4,TXK,CLDN11 

0.019 
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Figure 4.6 Effect of breast tumour on the Antigen presentation pathway in WBCs: Pathway 

analysis was done using the differentially expressed genes in the WBCs of breast cancer patients. 

The antigen processing and presentation pathway was significantly changed. GenMAPP was 

used to draw maps and the pathway database used was KEGG. 
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Figure 4.7 Effect of breast tumour on the JAK-STAT pathway in WBCs: Pathway analysis 

was done using the differentially expressed genes in the WBCs of breast cancer patients. The 

JAK-STAT pathway was significantly changed. GenMAPP was used to draw maps and the 

pathway database used was KEGG. 

 

 

 

 



 

129 

 

 

Figure 4.8 Effect of breast tumour on the Leukocyte transendothelial migration in WBCs: 

Pathway analysis was done using the differentially expressed genes in the WBCs of breast cancer 

patients. Leukocyte transendothelial migration pathway was significantly changed. GenMAPP 

was used to draw maps and the pathway database used was KEGG. Genes colored in red were 

upregulated and green were downregulated in the WBCs of breast cancer patients. 
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4.3.2.6 Construction of gene regulatory network models using the differentially expressed 

genes in the WBCs of breast cancer patients    

   Gene interaction network construction was done using Osprey software. 

Osprey is a tool for graphical visualisation of complex biological interaction networks using the 

gene ontology annotated dataset maintained by Biological General Repository for Interaction 

Datasets (BIOGRID). This has been explained further in Section2.4.3.4. The list of significant 

genes differentially expressed in the WBCs (Table 4.1) was used to generate the interaction 

network (Figure 4.9). Hub genes are those genes which are highly connected to other genes and 

when altered leads to drastic phenotypic changes in the cell which could be lethal. The hub genes 

which were identified in Figure 4.9 were MCM7, SMAD4, SYK, STX1A, PTK2B, JAK1, RBBP4, 

LUC7L2, STAT1, NFKIBA and NCOR2. All the genes except for MCM7, PTK2B and STX1A 

were downregulated in the breast cancer patient cohort. A gene regulatory network was also 

created using the genes involved in immune response (Figure 4.10) using the list in Table 4.2. 

The hub gene nodes in the immune system gene network were JAK1, STAT1, SOCS3, MAP3K8 

and NFKBIA. The ontology terms enriched among these hub genes were cell proliferation 

(MCM7, NFKBIA, PTK2B, RBBP4, SMAD4, STAT and SYK), regulation of immune system 

process (JAK1, MAP3K8, NFKBIA, SOCS3, STAT1andSYK) and regulation of localisation 

(NFKBIA, PTK2B, SMAD4, STX1A and SYK). The genes involved in major pathways are JAK1, 

STAT1 (Jak-STAT pathway), and NFKIBA (NFκB pathway). Jak-STAT pathway is involved in 

various immune responses such as antigen presentation, interferon-γ signalling and interleukin 

signalling (IL-2, IL-4, IL-7, IL-9, IL-15 and IL-21) (Shuai and Liu, 2003). NFκB pathway also is 

very important in activating several immune system pathways such as chemokine signalling, 

inflammatory processes etc (Richmond, 2002). 
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 Figure 4.9 Identification Hub gene nodes changed in the WBCs of breast cancer patient 

cohort: Differentially expressed genes in the WBCs of breast cancer patients were used to 

construct gene regulatory networks. Network was constructed using Osprey 

(http://biodata.mshri.on.ca/osprey/servlet/Index). The lines between gene nodes represent 

interactions and the genes with most interactions (hub genes) are arranged on the outer layer of 

the network. 

 

http://biodata.mshri.on.ca/osprey/servlet/Index
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Figure 4.10 Identification Hub gene nodes related to immune response changed in the 

WBCs of breast cancer patient cohort: Differentially expressed genes involved in the immune 

response in the WBCs of breast cancer patients were used to construct gene regulatory networks. 

Network was constructed using Osprey (http://biodata.mshri.on.ca/osprey/servlet/Index). The 

lines between gene nodes represent interactions and the hub genes with their own network are 

arranged independent of each other. 

 

http://biodata.mshri.on.ca/osprey/servlet/Index


 

133 

 

4.4 Discussion 

 The microarray and more recent RNA-Seq technologies, used to generate gene 

expression profiles in different tissues and biological fluids have been very useful to understand 

the molecular mechanisms of diseases allowing identification of potential biomarkers for cancer 

and other conditions, although such studies are also very challenging.  The WBCs represent a 

valuable resource for such studies. Indeed, the potential WBC biomarkers have been obtained by 

using these technologies for several types of cancers including pancreatic (Baine et al., 2011), 

colorectal (Xu et al., 2013b), renal (Twine et al., 2003) and lung cancers (Rotunno et al., 2011). 

These studies have also shown that the expression profiles in the WBC in cancer patients is 

altered compared with healthy donors.  However, it has been generally accepted by the scientific 

community that  in order to further evaluate the data obtained in these experiments, additional 

analyses of the RNA ( e.g. by RT-qPCR) and proteins ( e.g. by immunostaining, western blot, 

ELISA)are required.  

The challenge of analysing the dataset of the breast cancer WBC (GSE16443) has been 

that WBCs are a mixture of different types of cells. Also each sample was taken from different 

individuals at varying stages of disease progression. This may be the cause for the variability of 

individual gene levels in the same cohort of healthy donors or breast cancer patients. Such 

variations were also reported in the peripheral blood mononuclear cells of patients with advanced 

renal cell carcinoma (Twine et al. 2003). It will be interesting to identify whether this high level 

of variability could be correlated with any clinical categories of diagnosis or response to 

treatment.  

 In this chapter the analysis was done on the gene expression data of the WBCs of breast 

cancer patients. The gene expression profiles of breast cancer patients were compared with 

healthy donors using Students T-Test to give 506 significantly expressed genes with a “p”- value 
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cutoff of <0.05 and fold change of ±1.2 (Table4.1). Compared to the analysis done by Aarøe et 

al., 2010 there were 49 genes which overlapped with the analysis done in this chapter. Four 

genes which had a fold change of more than +2 in breast cancer patients. They were Lipocalin2 

(LCN2), Lactotransferrin (LTF), Orosomucoid (ORM1) and murine retrovirus integration site 1 

homolog (MRVI1). LCN2, also known as neutrophil gelatinase-associated lipocalin, is involved 

in innate immunity and its function is to sequester iron that limits bacterial growth. LCN2 is used 

as a biomarker for kidney injury (Devarajan, 2010) and is also present at elevated levels in urine 

and tissue samples of breast cancer patients and increases tumour cell migration (Yang et al., 

2009). Lactotransferrin (LTF) is present in secreted fluids such as milk, tears, saliva and also 

present in neutrophil secondary granules. LTF also has iron binding properties LCN2 and binds 

to bacterial wall lipopolysaccharides. Both LTF and LCN2 have similar antimicrobial properties 

and also have anti-inflammatory properties (Adlerova et al., 2008; Shashidharamurthy et al., 

2013). 

Gene ontology analysis revealed that genes involved in inflammatory response were 

overexpressed in the WBCs of breast cancer patients. The altered genes which were common 

with lung cancer patient WBC study (Rotunno et al., 2011) were 

CD9,CPA3,DOCK10,HEBP1,NKTR,S100A12 and colorectal cancer WBC study (Xu et al., 

2013a) were DOCK10,FKBP5,EPB41L3,F5,CLEC12A. Functional analysis was done using gene 

ontology, pathway enrichment analysis and gene regulatory network construction. Gene ontology 

analysis was directed at the immune system processes, cell death and cell migration. The number 

of genes which were involved in immune system processes was 52. Further gene ontology 

analysis revealed that genes positively regulating WBC activation, antigen recognition, 

processing and presentation were under-expressed in the breast cancer cohort. Some of the 

altered genes involved in the antigen presentation are also responsible for lymphocyte activation 

were down-regulated. But the genes involved in the inflammatory response were up-regulated. 
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These ontology results correlated with pathway analysis where the antigen processing and 

presentation pathway was down-regulated as was the JAK-STAT signaling pathway which 

positively regulates the antigen presentation pathway. The immune response ontology analysis 

and pathway analysis suggests that antigen presentation in the innate immune cells, leukocyte 

activation and lymphocyte activation are affected in the WBCs of breast cancer patients. 

Although the genes involved in inflammation were up-regulated. Chronic inflammation caused 

by diseases such as Crohn’s disease, schistosomiasis, Hepatitis C infection and Heliobacter 

pylori infection can cause cancer in the bowel, liver and stomach respectively (Coussens and 

Werb, 2002). It has also been reported that immunosupression after organ transplant increases 

the probability of developing a tumour between 5-6% (Penn and Starzl, 1973). 

Notably, the WBCs in breast cancer patients had properties associated with cell 

proliferation. Thus, the genes involved in induction of apoptosis were down-regulated and genes 

in positive regulation of cell growth were up-regulated. It was previously reported  that Fas 

ligand attracts inflammatory cells into the tumour microenvironment to induce apoptosis 

(O’connell et al., 1996; Whiteside, 2002), however the data in this study only represent 

peripheral blood WBCs not the WBCs infiltrating the tumour. 

It has been shown in several studies that leukocyte migration is inhibited in various 

carcinomas (Brandes and Goldenberg, 1976; Kadish et al., 1976; Lee et al., 1977). Analysis of 

differentially expressed genes involved in cell migration revealed that all the genes negatively 

affecting cell migration were overexpressed in the breast cancer patient cohort. The gene 

network analysis also demonstrated that the hub genes which changed were involved in cell 

proliferation and regulation of cell localisation or migration. The hub genes which were involved 

in major cell processes were JAK1, STAT1 and NFKBIA. NFKBIA codes for Nuclear Factor of 

Kappa Light Polypeptide Gene Enhancer in B-Cellsa member of the NFκB inhibitor family. 

NFκB has been implicated to play a central role in inflammation and cancer, and is required for 
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B-cell maturation and survival (Karin, 2006). TNFα, IL61, VEGF and IL6  have been known to 

be secreted in tumour microenvironments which also activate NFκB(De Visser et al., 2006). The 

gene expression analysis provided potential biomarker candidates which would be compared in 

tandem with the proteomics data from the previous chapter to provide a shortlisted list of 

biomarker candidates. 
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Chapter 5: Characterisation and Validation of novel Biomarkers for Breast 

Cancer from White Blood Cells 
 

5.1 Introduction 

 The understanding of molecular signatures of different types of cells has greatly 

increased over the past decade due to rapid technological advances. The clinical need in finding 

cancer biomarkers led to huge investments into this area. Since 1986 there has been over 5000 

projects funded by the US National institute of Health for biomarker discovery. Between 1990 

and 2008 the number of publications relating to biomarkers alone have exceeded 4000 (Ptolemy 

and Rifai, 2010). Approaches using technologies such as microarrays, highthroughput DNA 

sequencing, highthroughput proteomics and other modern methods have been useful in 

identifying potential biomarkers for different disease conditions. However, despite huge research 

efforts the number of biomarkers used in the clinic is very small. One of main problems is the 

failure of the biomarkers to pass the validation or clinical stages when the study is expanded to 

include larger sample numbers. This has been explained and discussed in detail in Chapter 1 

(Section 1.10).Another challenge in biomarker discovery is data reduction to shortlist candidates 

for the next step in the biomarker discovery pipeline. Different research groups have combined 

both the genomics and proteomics approaches to identify biomarkers with the results of the 

combined data better than just analysing the data from one approach (Chen et al., 2002; 

Nishizuka et al., 2003; Orntoft et al., 2001).Using both genomic and proteomic approaches will 

reduce the overwhelming volume of data to be considered for preliminary biomarker selection. 

However the integration of gene expression and protein data needs to be approached with caution 

as the experimental and data processing methods vary which might lead to increase in the 

probability of obtaining false positives. In this chapter the results from the microarray dataset 

(Chapter 4) and the proteomic analysis (Chapter3) have been combined to shortlist a panel of 
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biomarkers. Additionally data from another study conducted by Dr. Dawn Farrar from our 

laboratory was also included in the shortlisting process. The latter study is described in the 

following Section. 

5.2 Advanced breast cancer pilot study 

 The aim of this investigation (acronymed Abs) was to explore the changes in the WBCs 

in patients with advanced breast cancer (also referred to as metastatic breast cancer, or MBC) in 

response to chemotherapy and endocrine therapy, using the 2D-gel electrophoresis method. This 

was a collaborative study between the Department of Oncology at the Colchester Hospital 

University NHS Foundation trust and the University of Essex. Experiments for this study were 

conducted by Dr. Dawn Farrar (Senior Research Fellow) from Prof. Elena Klenova’s laboratory 

5.2.1 Background of the study 

 The advanced (recurrent) breast cancer is often associated with distant spread or 

metastasis of tumour cells from the primary tumour. The incidence of advanced breast cancer is 

between 5%-10% of total number of breast cancers diagnosed newly and the mortality rate in 

this group is 80% (Cardoso et al., 2012). The pathology of advanced metastatic breast cancer is 

discussed in detail in Chapter 1.2. Currently the assessment of response to therapy relies on both 

subjective and objective measures. Subjective assessments can be confounded by the side effects 

of the therapy and objective measurements are not usually indicative of response until a number 

of cycles of chemotherapy or several months of hormonal therapy have been given. Some 

patients do not have easily measurable disease and the response to treatment can only be 

assessed on purely subjective measures. The currently available circulating markers e.g. CEA 

and CA15-3 are not ideal in metastatic breast cancer as they are not routinely elevated and do not 

reliably show an early change with therapy.  
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The clinical response is categorised subjectively based on the concept above as complete 

response (CR), partial response (PR), stable disease (SD, progressive disease (PD) and non-

evaluable disease (NE). This type of classification of treatment response is based purely on 

disease progression which changes rapidly in patients because metastatic breast disease is very 

aggressive and breast cancer at molecular level is diverse. The discovery of a suitably sensitive 

blood biomarker could potentially replace and/or complement the assessment currently 

performed using imaging such as CT, Isotope bone scans and MRI. The focus of the 

investigation was on the identification of WBC–based biomarkers for monitoring of anti-cancer 

treatment based on simpler biochemical tests. Such biomarkers are required to be sensitive, 

specific and more reliable for prognosis of metastatic breast cancer to therapeutic treatment 

which can also complement the existing methods of investigation. The focus of the investigation 

was on the identification of WBC–based biomarkers for monitoring of anti-cancer treatment 

based on simpler biochemical tests. The study was conducted in collaboration between the 

Colchester General Hospital and the University of Essex. 

5.2.2 Patient recruitment and blood sample collection 

 Patients with MBC were recruited for the study before the treatment commenced, with 

the written consent obtained from the participants. Two types of treatment were as follows: 

Chemotherapy (6 cycles) and Endocrine therapy (3 cycles). Patients in the final stages of the 

disease with less than 3 months of life expectancy did not participate in the study.  The blood (10 

ml) was collected from the patients before the beginning of the treatment and before each 

treatment cycle. Patients were assessed by physicians before each cycle using radiological 

investigation techniques. Samples were collected at 6 weeks and 12 weeks after the beginning of 

treatment for endocrine therapy patients. The WBCs were fractionated from whole blood 

samples in the lab according to the protocol in Chapter2 (Section2.1) and the WBCs were split 

into different parts for various experiments. 2D-gel electrophoresis was performed on pre- and 
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post-treatment WBC samples according the protocol in Chapter 2 (Section 2.2.3). Protein spots 

of interest were identified through image analysis using Samespots and the protein identification 

was done by Mass spectrometry. 

5.2.3 Results for the Advanced breast cancer pilot study 

Thirty one patients were recruited for this study. Twenty patients had chemotherapy, two 

patients had both therapies and nine had endocrine therapy. The patients responses at the end of 

the treatment were varied; CR=1, PR=8, SD=4, PD=14 and NE=1. Three patients had died 

during or immediately after the course of treatment. The 2D gel electrophoresis was performed 

on the WBC samples and 64 protein spots were identified to be potential biomarker candidates 

for prognosis which showed correlation with treatment response and treatment type. Figure 5.1 

shows the 2D- gel image of the WBCs from patient Abs013 where the64 significant protein spots 

are shown. The protein spots were identified using mass spectrometry and 75 protein 

identifications were obtained. Table 5.1 gives the list of these proteins. 

5.3 Aims of the Chapter 

 In this Chapter genomic data from the GSE16443 dataset analysis (Chapter 4), proteomic 

data (both high throughput proteomics and 2D-PAGE) ( Chapter 3) and data from the advanced 

breast cancer study conducted by Dr. D Farrar have been combined to identify a panel of 

potential WBC biomarkers to be validated using the reverse transcriptase quantitative PCR (RT-

qPCR) method first. Based on the results from RT-qPCR promising candidates were chosen for 

further validation by western Blotting (WB). 
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Figure 5.1 Identification of novel Metastatic Breast Cancer biomarkers from WBCs: Blood 

samples were collected from MBC patients before treatment and over the course of treatment. 

2D- gel electrophoresis was carried out on each sample and gels were run in triplicates. Protein 

spots (n=64) which changed over the course of treatment and with types of metastasis were 

identified using Samespots software. Fold change in protein concentration was taken into 

consideration. Protein ids were obtained through mass spectrometry. (Experiments were 

performed by Dr D. Farrar). 
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Table 5.1 List of protein spot identifications obtained by comparing WBC protein 

expression profiles over the course of chemotherapy and endocrine therapy from 

Metastatic breast cancer (MBC) patients: Blood samples were collected from MBC patients 

before treatment and over the course of treatment. 2D- gel electrophoresis was done on each 

sample and gels were run in triplicates. Protein spots (n=64) which changed over the course of 

treatment and with types of metastasis were identified using Samespots software. Fold change in 

protein concentration was taken into consideration. Protein ids were obtained through mass 

spectrometry. 

Gene symbol Gene name Gene symbol Gene name 

ACTN1 Actinin, alpha 1 LDHB Lactate dehydrogenase B 

ADH5 Alcohol dehydrogenase 5  LTF Lactotransferrin 

ALDOA Aldolase A, fructose-

bisphosphate 

MMP8 Matrix metallopeptidase 8  

ALDOC Aldolase C, fructose-

bisphosphate 

MMP9 Matrix metallopeptidase 9  

ANXA11 Annexin A11 MPO Myeloperoxidase 

ANXA3 Annexin A3 MSN Moesin 

ANXA6 Annexin A6 MYH9 Myosin, heavy chain 9, non-

muscle 

ANXA7 Annexin A7 NONO Non-POU domain-containing 

octamer-binding protein 

 

ARHGDIB Rho GDP dissociation 

inhibitor (GDI) beta 

NCF4 Neutrophil cytosolic factor 4, 

40kDa 

ARPC2 Actin related protein 2/3 

complex, subunit 2, 34kDa 

P4HB Procollagen-proline, 2-

oxoglutarate 4-dioxygenase 

(proline 4-hydroxylase), beta 

polypeptide 

BASP1 Brain abundant, membrane 

attached signal protein 1 

PCNA Proliferating cell nuclear antigen 

CALR Calreticulin PDIA4 Protein disulfide isomerase 

family A, member 4 

CAPG Capping protein (actin 

filament), gelsolin-like 

PGAM1 Phosphoglyceratemutase 1 

(brain) 

CAPZA1 Capping protein (actin 

filament) muscle Z-line, alpha 

PGK1 Phosphoglycerate kinase 1 
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1 

CAT Catalase PGLYRP1 Peptidoglycan recognition 

protein 1 

CHIT1 Chitinase 1 (chitotriosidase) PKM2 Pyruvate kinase, muscle 

CLC Charcot-Leyden crystal 

protein 

PNP Purine nucleoside phosphorylase 

CORO1A Coronin, actin binding 

protein, 1A 

PPP1CA Protein phosphatase 1, catalytic 

subunit, alpha isoform 

CPNE3 Copine III PPP2CA Protein phosphatase 2 (formerly 

2A), catalytic subunit, alpha 

isoform 

CTSG Cathepsin G PRKCSH Protein kinase C substrate 80K-

H 

DEF6 Differentially expressed in 

FDCP 6 homolog (mouse) 

PRTN3 Proteinase 3  

DSP Desmoplakin PTPRC Protein tyrosine phosphatase, 

receptor type, C 

FLNA Filamin A, alpha (actin 

binding protein 280) 

PYGL Phosphorylase, glycogen 

G6PD Glucose-6-phosphate 

dehydrogenase 

RAN RAN, member RAS oncogene 

family 

GAPDH Glyceraldehyde-3-phosphate 

dehydrogenase 

RPIA Ribose 5-phosphate isomerase A 

(ribose 5-phosphate epimerase) 

GNAI3 Guanine nucleotide binding 

protein (G protein), alpha 

inhibiting activity polypeptide 

3 

RPS3A Ribosomal protein S3A 

GNB2L1 Guanine nucleotide binding 

protein (G protein), beta 

polypeptide 2-like 1 

S100A8 S100 calcium binding protein A8 

HBB Hemoglobin, beta SERPINA1 Serpin peptidase inhibitor, clade 

A (alpha-1 antiproteinase, 

antitrypsin), member 1 

HNRNPA1 Heterogeneous nuclear 

ribonucleoprotein A1 

SERPINA3 Serpin peptidase inhibitor, clade 

A (alpha-1 antiproteinase, 

antitrypsin), member 3 

HNRNPA2B

1 

Heterogeneous nuclear 

ribonucleoprotein A2/B1 

SERPINB1 Serpin peptidase inhibitor, clade 

B (ovalbumin), member 1 

HSP90AA1 Heat shock protein 90kDa 

alpha (cytosolic), class A 

member 1 

SERPINB10 Serpin peptidase inhibitor, clade 

B (ovalbumin), member 10 

HSPA1A Heat shock 70kDa protein 1A SERPINB6 Serpin peptidase inhibitor, clade 

B (ovalbumin), member 6 
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HSPA8 Heat shock 70kDa protein 8 TALDO1 Transaldolase 1 

ITGAM Integrin, alpha M  TKT Transketolase 

ITGB2 Integrin, beta 2  TPM3 Tropomyosin 3 

LCN2 Lipocalin 2 (oncogene 24p3) VCP Valosin-containing protein 

LDHA Lactase dehydrogenase A WDR1 WD repeat domain 1 

XRCC6 X-ray repair complementing 

defective repair in Chinese 

hamster cells 6  

YWHAE Tyrosine 3-

monooxygenase/tryptophan 5-

monooxygenase activation 

protein, epsilon polypeptide 
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5.4 Results 

5.4.1 Selection process of new WBC candidate biomarkers for further characterisation 

and validation 

5.4.1.1 Comparing genomic and proteomic data to identify common overlaps 

 The short listing of biomarkers involved comparing the data from both genomics and 

proteomics approaches. Significant genes or proteins had been obtained by comparing expression 

profiles of the WBCs of breast cancer patients and healthy donors, using appropriate fold change 

and p-value cut-offs. The next step was to compare the list of these significant genes to find 

common overlaps. The data from the metastatic breast cancer study was also was also used to 

identify common overlaps. Figure 5.2 shows the comparison of the three datasets and the number 

of overlapping molecules between each of the datasets. The list from the highthroughput protein 

analysis and 2D-gel electrophoresis analysis of primary breast cancer patients were combined to 

give the primary breast cancer proteomic dataset. It was surprising to observe that there were 

only four overlaps between the microarray dataset and proteomics dataset of primary breast 

cancer patients. Seventeen proteins overlapped between the proteomic datasets of primary breast 

cancer and metastatic breast cancer. Eleven overlaps were found between primary breast cancer 

microarray dataset and the metastatic breast cancer dataset. There were no common proteins 

between all the three datasets. The table in Figure 5.2 gives the list of those genes which have 

overlapped in more than one dataset. 

5.4.1.2 Short listing of candidates for validation using RT-qPCR 

 The common overlaps were identified by comparing the list of genes or proteins between 

different datasets. The next step in short listing involved several criteria such as: normal presence 

in WBC, correlation with clinical response/data, relative levels to healthy donor, function in 

immune response and association with cancer through literature search. Genes or proteins which 
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were involved in purely metabolic processes were excluded. Genes with immune system 

functions were given priority while shortlisting. Fifteen genes which appeared in more than one 

dataset were chosen for validation on these criteria for validation by RT-qPCR.  For example, 

ALOX5, OSTF1 and FGL2 were chosen based on their WBC expression profiles of breast 

cancer patients from the highthroughput proteomics dataset. FGL2 was not present in the healthy 

donor cohort but present in the breast cancer cohort. ALOX5 and OSTF1 were chosen because of 

their fold change of +1.6 in the breast cancer cohort. The list of the proteins is given in Table 5.2 

along with the details of their presence in different types of datasets.The presence in metastatic 

breast cancer cohort is denoted by ‘X’ and the fold change is not included since the initial 

analysis did not include comparison with healthy donors. 
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A 

Category Overlapping candidate biomarkers 

Between Primary Breast 

cancer Genomics and 

Proteomics data ( 4 

candidates) 

CAMP,CSTA,ITGA4,RHOA 

Between Primary Breast 

cancer  and Metastatic 

Breast cancer proteomics 

data (17 candidates) 

ACTN1,ARPC2,CAPG,CAPZA1,CHIT1,CORO1A,GNAI3,HNRNPA1,IT

GAM,MSN,NCF4,PGAM1,PYGL,SERPINB1,SERPINB6,TKT,YWHAE 

Between Primary Breast 

cancer Genomics data and 

Metastatic Breast cancer 

proteomics data (11 

candidates) 

ANXA3,BASP1,CALR,CPNE3,LCN2,LTF,NONO,PGLYRP1,S100A8,TP

M3,WDR1 

B 

Figure 5.2 Overlapping data between genomic and proteomic approaches presented as 

Venn diagram. Data was obtained by comparing the WBC profiles of breast cancer patientsand 

healthy donors using microarray expression dataset (GSE16443) and proteomic dataset 

(highthroughput protein profiling and 2D-gel electrophoresis. This was compared with the 2D-

gel electrophoresis analysis results for metastatic breast cancer patient WBC to find overlapping 

proteins to be shortlisted for characterisation and validation. 
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Table 5.2 Short listed candidates chosen for validation by RT-qPCR: Genes common from 

different datasets comparing healthy donors, primary breast cancer patients and metastatic breast 

cancer patients were obtained. The overlapping genes were further shortlisted based on several 

criteria; normal presence in WBC, correlation with clinical response/data, relative levels to 

healthy donor, function in immune response and association with cancer through literature search 

to give a 15 panel gene list to be validated using RT-qPCR. Red coloured cells indicate 

overexpression; green indicates underexpression; pink overexpression only in low grade breast 

cancer.The presence in metastatic breast cancer cohort is denoted by ‘X’ and the fold change is 

not included since the initial analysis did not include comparison with healthy donors 

 

Candidates Primary 

Breast cancer-

2D-gel 

electrophoresis  

Primary 

Breast 

cancer- 

High 

throughput 

proteomics  

Primary 

Breast cancer 

-Microarray 

(GSE16443) 

Metastatic 

Breast cancer-

2D-gel 

electrophoresis 

No of 

categories 

of the 

overlap 

SERPINB1 +1.3 +1.46  X 3 

CALR   +1.4 X 2 

YWHAE  +1.46  X 2 

CPNE3   +1.2 X 2 

ANXA3   +1.97 X 2 

ANXA1 +1.3 +1.49   2 

LTF   +2.37 X 2 

NONO   +1.21 X 2 

ITGA4  -3.4 -1.28  2 

WDR1   -1.23 X 2 

RHOA  +1.4 +1.5  2 

LCN2   +2.16 X 2 

ALOX5  +1.6   1 

FGL2  +   1 

OSTF1  +1.23   1 
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5.4.1.3 Description of genes selected for validation using RT-qPCR 

5.4.1.3.1 SerpinB1 (SERPINB1) 

 SerpinB1 is also known as neutrophil elastase inhibitor. The protein encoded belongs to a 

class of protease inhibitors. SerpinB1 inhibits neutrophil serine protease, elastase, cathepsin G 

and proteinase-3 (Farley et al., 2012). It also is involved in neutrophil extravasation and 

formation neutrophil extracellular traps SerpinB1 is associated with cancer as both tumour 

suppressor and promoter (Chou et al., 2012; Cui et al., 2014; Tseng et al., 2009). 

5.4.1.3.2 Calreticulin (CALR) 

 Calreticulin is a chaperone protein which binds to calcium and is involved in several 

functions of the immune system such as Major histocompatibility complex folding and assembly, 

phagocytosis (Raghavan et al., 2013). Calreticulin is also implicated in breast cancer 

aggressiveness and metastasis (Lee et al., 2012; Lwin et al., 2010). It is also proposed that 

Calreticulin is serum biomarker for lung cancer and bladder cancer (Kageyama et al., 2004; Liu 

et al., 2012a). 

5.4.1.3.3 Tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, 

epsilon (YWHAE) 

 YWHAE belongs to the family of 14-3-3 proteins which are involved in various 

biological processes such as cell signalling, cell cycle, apoptosis and regulation of transcription 

(Tzivion et al., 2001). Reduced YWHAE expression is shown to contribute to the epithelial to 

mesenchymal transition of hepatocellular and gastric cancer cells (Leal et al., 2012; Liu et al., 

2013). Increased expression has also been reported in breast cancer and lung cancer (Li et al., 

2006; Qi et al., 2005). 
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5.4.1.3.4 Copine 3 (CPNE3) 

 Copine3 is a ubiquitously expressed protein but its function is unknown. It belongs to a 

family of phospholipid binding protein. Copine 3 is upregulated in tumour cells and interacts 

with ErbB2 to promote tumour cell migration (Cowland and Carter, 2003; Heinrich et al., 2010). 

5.4.1.3.5 Annexin A1 and Annexin A3 

 Annexins are also called lipocortins and belong to family of calcium dependent 

phospholipid binding proteins located on the cytosolic face of the plasma membrane. ANXA1 

and ANXA3 both inhibit phospholipase A2 which causes inflammation (Walther et al., 

2000).Reduced ANXA1 expression is linked to invasiveness of breast cancer, gastric cancer and 

neck cancer (Pedrero et al., 2004; Yom et al., 2011; Yu et al., 2008a). ANXA3 also correlates to 

tumour progression in thyroid cancer and hepatocellular carcinoma (Jung et al., 2010; Pan et al., 

2013). 

5.4.1.3.6 Lactoferrin (LTF) 

 Lactoferrin is secreted protein that is found in various bodily fluids such as milk, saliva, 

tears and nasal secretions. LTF is an iron-binding protein antibacterial, anti-carcinogenic and 

antioxidant effects. LTF is expressed in three different isoforms and first was isolated form 

neutrophils (Levay and Viljoen, 1995). LTF has been shown to inhibit cancer growth and 

metastasis (Bezault et al., 1994; Damiens and Yazidi, 1999). 

5.4.1.3.7 Non-POU Domain Containing, Octamer-Binding (NONO) 

 NONO is a RNA-binding protein which plays various roles in cellular processes 

including transcriptional regulation and RNA splicing (Amelio et al., 2007). NONO is implicated 

in progression of malignant melanoma (Schiffner et al., 2011). 
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5.4.1.3.8 Integrin Alpha 4 (ITGA4) 

 ITGA4 is also known as CD49d belongs to the family integrin alpha chain proteins which 

are involved in cell adhesion and migration.Integrin receptors are critical for cell attachment to 

the extracellular matrix (ECM) and this is mediated through integrin-fibronectin interaction 

(Barczyk et al., 2010). Integrins are also involved in transendothelial migration of leukocytes 

which is very important for the functioning of the innate immune system (Williams and 

Solomkin, 1999).  

5.4.1.3.9 WD Repeat domain 1 (WDR1) 

 WDR1 protein contains nine WD domains that are involved on protein-protein 

interactions. The function of WDR1 is unclear but it may help actin cytoskeletal rearrangement 

and cell migration. This protein has been reported to be overexpressed in ovarian cancer 

(Haslene-Hox et al., 2013). 

5.4.1.3.10 The Ras Homolog Family Member A (RHOA) 

RHOA is a small GTPase protein which regulates the formation of actin fibers linking 

which connects the receptors on the plasma membrane. RHOA overexpression has been linked 

to tumour progression/invasion in breast cancer, prostate cancer and testicular cancer (Hodge et 

al., 2003; Kamai et al., 2004; Pillé et al., 2005). 

5.4.1.3.11 Lipocalin 2 (LCN2) 

LCN2 protein is associated with multiple cellular processes such as apoptosis, innate 

immunity etc. Its molecular function is sequestering iron siderophores which limits bacterial 

growth. LCN2 overexpression was found to be associated with aggressive breast tumors (Yang 

et al., 2009) and linked to breast cancer patient response to neoadjuvant chemotherapy 

(Wenners et al., 2012). 
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5.4.1.3.12 Arachidonate 5 Lipoxygenase (ALOX5) 

 ALOX5 plays a role in synthesis of leukotrienes from arachidonic acid. Leukotrienes are 

important mediators of inflammation. ALOX5 has been linked to promoting prostate cancer and 

breast cancer cell survival (Ghosh, 2003; Hu et al., 2011). 

5.4.1.3.13 Fibrinogen-like 2 (FGL2)  

 The function of FGL2 is unknown but it may play a role physiologic lymphocyte function 

at mucosal sites.FGL2 has been implicated playing a role in conversion of prothrombin to 

thrombin. It has shown to be overexpressed in colon, breast, lung, gastric, oesophageal and 

cervicalcancers (Liu et al., 2012b). 

5.4.1.3.14  Osteoclast Stimulating Factor (OSTF1) 

 OSTF1 is produced by osteoclasts and indirectly induces osteoclast formation and bone 

resorption. Breast cancers commonly cause bone metastasis and this process is dependent on 

osteoclast-mediated bone resorption (Thomas et al., 1999). 

5.4.2 Optimisation of RNA extraction and quality control to study gene expression from 

WBCs 

5.4.2.1 Background  

 Relative quantification of RNA is a popular method to study the gene expression changes 

to cells in response to biological stimuli. To obtain high quality results for this analysis it is 

important to (i) obtain high quality RNA and (ii) identify a suitable reference gene to normalise 

the expression of the target gene. Purification of RNA from white blood cells (fresh or 

cryopreserved) can be very challenging. The RNA yield is often very low when extracting due to 

the presence of residual red blood cells in the WBC mixture, the RNA quality is poor because of 

the salts carried over from RNAlater and purity is not satisfactory due to contaminating genomic 
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DNA. Furthermore, RNA degrades rapidly by exogenous and endogenous RNA nucleases, 

storage in cryostate over the time and also exposure to heat. These changes in RNA integrity can 

lead to falsely altered gene expression patterns. 

5.4.2.2 Optimisation of RNA extraction from WBCs 

In order to obtain RNA samples of sufficient quality from WBCs to be used for RT-qPCR the 

procedure of RNA purification needed to be optimised as the initial experiments resulted in the 

WBCs RNA of poor quality and low amounts.  The conventional phenol extraction protocol was 

modified to suit WBCs to extract RNA of satisfactory quality and purity (see Section 2.3.1). The 

total RNA yield was low when 5x10
6
 cells were originally used and stored in RNAlater. The 

WBCs numbers were therefore increased up to 1x10
7
 cells for preservation in RNAlater at -80

0
C. 

The purity of RNA which was extracted was assessed by the use of Nanodrop UV/vis 

spectrophotometer (see Section 2.3.3). A ratio of absorbance at 260, 230and 280 nm 

(A260:A280 and A260:A230) greater than 1.8 is usually considered as an acceptable indicator of 

RNA purity (Glasel, 1995). It was essential that the chloroform step was to be repeated twice for 

the 260/280 values to be higher than 1.8. The RNA had to be washed at least twice with 70% 

ethanol for the 260/230 values to be higher than 1.8. 

Treatment of RNA with DNase is recommended to eliminate DNA contamination after 

RNA extraction in tissues and cell lines (Becker et al., 2010).In our experiments, RNA was 

treated with DNase (see Section 2.3.2) to eliminate DNA contamination. After DNase treatment, 

RNA was evaluated for their integrity using Agilent 2100 bioanalyzer and the results are 

presented in Figure 5.3. The bioanalyzer analysis does not show the presence of DNA 

contaminations. The electropherogram peaks in Figure 5.3 indicate the RNA marker, 5sRNA, 

18sRNA and 28sRNA in the order of appearance from left to right respectively. A value of 

above1.5 for the ratio between 28sRNA and 18sRNA is generally viewed as acceptable for RNA 
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integrity. The gel image also shows if there is degradation in RNA samples. Examples of both 

good quality RNA and poor quality RNA are shown in Figure 5.3. It can be observed from the 

gel image and the electropherogram that RNA obtained from sample Brca1501 had degraded 

while RNA from sample HD3 is not. The final product was then converted to cDNA using RNA 

reverse transcriptase using the protocol described in Section 2.3.5. The absence of contamination 

with genomic DNA was confirmed in RNA preparations treated with DNAse and also in cDNA 

samples by PCR using β-actin primers (Forward primer- CTGGGACGACATGGAGAAA and 

reverse primer- GGGATAGCACAGCCTGGATA). The actin primers were designed across 

different exons so that they can both amplify cDNA and genomic DNA. After quality control the 

cDNA was used to gene expression studies to validate WBC biomarkers using RT-qPCR. 
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Figure 5.3 Quality control of Total RNA extracted from WBCs using Agilent 2100 

Bioanalyzer: Total RNA was extracted by a modified phenol-chloroform protocol as described 

in Section 2.3.1. Electropherograms for two samples (HD3 and Brca1501) have been shown with 

the gel images on the right. The samples were treated for DNA contamination with DNase and 

Agilent 2100 bioanalyzer was used to assess RNA integrity. Samples with 28s:18s ratio lower 

than 1.5 were not selected for further analysis. 
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5.4.3 Selection of suitable reference gene for RT-qPCR reactions from cDNAs 

 The selection of reference gene to normalise the expression of a target gene across 

different samples from different conditions is important to obtain and interpret the biological 

meaning of the data. In this study we are analysing for the difference in gene expression of 

candidate biomarkers in the WBCs of breast cancer patients. The samples are obtained from 

different participants at different stages of the disease (Healthy donor and breast cancer) and 

breast cancer is a heterogeneous disease at the molecular and cellular level. Also, the WBCs are 

a mixture of different types of cells at varying proportions among participants. Therefore, it is 

important to identify a reference gene which can be applied for specific conditions and the 

varying nature of samples. Although several reference genes have previously been suggested for 

the whole blood (Dheda et al., 2004) and neutrophils (Ledderose et al., 2011), it was important to 

test a panel of the candidate reference genes in our experimental settings. 

The reference gene should meet several criteria: have a constant level of expression 

across different samples, have stable expression across different disease conditions and have a 

low Ct range across the samples. To achieve this aim equal amount (500ng) of RNA was taken 

and converted to cDNA. Expression of six reference genes (HuPO- human acidic ribosomal 

protein; CycloB- cyclophylinB; B2M- β2-microglobulin; HPRT- hypoxanthine phosphori-

bosyltransferase; 18sRNA- 18S ribosomal RNA; RPL32- ribosomal protein 32; TBP- Tata box 

Binding Protein) were evaluated to find the reference gene with the lowest variance among the 

samples. The primers used for each reference gene are given in Table 2.2 in Chapter 2. The 

cDNA from six WBC samples (Breast cancer-4, Healthy Donor-2) were used for the analysis. 

Quantitative PCR was performed using the cDNAs and the mean Cq values were obtained and 

the Box plots were constructed using SPSS (Figure 5.4). It was observed that RPL32 was the 

best, with high consistency and low variance among the samples.TBP showed low variation but 
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the Cq values were high. B2M and HuP0 had the highest variability. RPL32 was chosen as the 

housekeeping gene to normalise the expression of the target genes to be validated. 
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Figure 5.4 The RT-qPCR cycle threshold values in RNA fromWBC samples: Expression 

levels of genes are shown as medians (lines), 25th percentile to the 75th percentile (boxes), and 

ranges (whiskers) for 6 human WBC samples (4 breast cancer patients and 2 healthy donors). 

HuPO, human acidic ribosomal protein; CycloB, cyclophylinB; B2M, β2-microglobulin; HPRT, 

hypoxanthine phosphoribosyltransferase; 18sRNA, 18S ribosomal RNA; RPL32, ribosomal 

protein 32; TBP, Tata box Binding Protein. 
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5.4.4 Validation of a panel of 15 biomarkers using RT-qPCR in the WBCs of breast 

cancer patients 

For experiments described in this section RNA was extracted by a modified protocol as 

described in Section 5.4.2. DNase treatment was done and the integrity of RNA was assessed 

using the Agilent 2100 bioanalyzer. The RNA was then converted to cDNA (refer to Section 

2.3.5). This cDNA was used to validate the biomarker candidates obtained by the selection 

process described in Section 5.4.1. The primers for the candidate genes were designed to span 

different exons. The details about the primers and the cycling conditions uses are given in Table 

2.3. The RT-qPCR was conducted as explained in Section 2.3.7 using RPL32 as the reference 

gene. Three technical repeats were performed for the experiment. In the initial series of 

experiments, the WBC samples from ten breast cancer patients (Panel 1) and five healthy donors 

were used (the patient details are given in Table 5.3).The qPCR was performed and the data was 

analysed using the Biorad CFX manager software. The software calculated the Cq values and 

normalised the expression values with respect to RPL32. These expression values for each 

sample were taken and box plots were constructed using SPSS. The Mann-Whitney U test was 

performed between the healthy donors and breast cancer patients with a p value cut-off of 0.05 to 

find significant differences in gene expression. RT-qPCR of the 15 different genes revealed that 

the differences in expression of three genes, ITGA4, CPNE3 and LCN2 were significant (P 

value<0.05) between the WBCs of breast cancer patients and healthy donors. The respective fold 

changes were -1.03,-1.6 and -3.28 in breast cancer patients. The box plots of the expression 

values are given in Figure 5.5 along with the P values obtained from the T-test.WDR1 had a p 

value of 0.053 which is very close to the cut-off and had a fold change of -1.4. All the other 

genes tested had higher p values. The genes which passed the threshold were tested again with an 

extended panel of primary breast cancer patients and metastatic breast cancer patients. This is 

explained in the following Section. 
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Table 5.3 Clinical data for breast cancer patient samples used for validation by RT-qPCR: T size- Tumour size, T Grade- Tumour grade, T 

stage- Tumour stage, DCIS- Ductal Carcinoma in situ, IDC- Invasive Ductal Carcinoma, LCIS- Lobular carcinoma in situ and ILC- Invasive 

Lobular Carcinoma. Nodes indicate if the tumour had spread to the lymph nodes. 

 

Study No AGE T SIZE T 

STAGE 

T GRADE NODES DIAGNOSIS 

Panel 1       

1535 67 20 II 1 NEG IDC 

1477 46 8 I 1 NEG IDC,DCIS(LOW 

GRADE) 

1560 82 20 II 3 NEG IDC 

1532 73 10 II 3 NEG IDC+DCIS 

1492 47 >50 III 1 POS LCIS+ILC 

1556 46 25 NA High NA DCIS 

1512 74 23 II 2 POS ILC+LCIS 

1561 41 25 II 2 POS ILC+DCIS 

1438 53 9 NA Intermediate ND DCIS 

1490 81 40 II 2 NA IDC+ILC+DCIS+LCIS 

Panel 2       

1276 64 10 II 1 POS Tubulo-lobular+DCIS 

1499 67 15 I 1 NEG IDC+DCIS+Tubulo-

lobular 

1432 63 20 II 2 POS IDC+DCIS 

1500 65 23 II 2 POS IDC+DCIS 

1553 36 20 II 2 POS IDC+DCIS 
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1558 85 15 II 2 POS IDC 

1516 46 14 III 3 NEG IDC+DCIS 

1528 84 20 II 3 NEG IDC+DCIS 

1494 66 25 II 3 NEG IDC+DCIS 

1554 65 30&3 II  3 NEG IDC+DCIS 
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Figure 5.5 Validation of the 15-gene signature in WBCs of breast cancer patients using RT-

qPCR: RT-qPCR was performed on the cDNA obtained from the WBCs of breast cancer 

patients (n=10) and healthy donors (n=5). RPL32 was used as the housekeeping gene to 

normalise the target genes and the expression values were used to construct a box plot using 

SPSS. Mann-Whitney U test was performed to identify the significance of the expression values 

between both groups to identify gene targets which have p value<0.05. Expression levels of 

genes are shown with medians and their quartile ranges. HD-Healthy Donor, Brca-Primary breast 

cancer. *pvalue<0.05 
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5.4.4.1 Validation of ITGA4, CPNE3 and LCN2 using an extended panel of primary and 

metastatic breast cancer patients 

 The WBC expression profiles of ITGA4, CPNE3 and LCN2 showed a significant 

difference between the healthy donors and primary breast cancer patients when tested using RT-

qPCR. These three genes were therefore chosen for validation using an extended panel which 

included ten more participants (Panel 2, Table 5.3). The RNA samples from 7 pre-treatment 

metastatic breast cancer patients were also included in this panel. The rationale behind including 

metastatic samples was that it may provide biomarkers to diagnose or predict distant organ 

tumour metastasis. After the samples were analysed by RT-qPCR, the data were compiled 

together by normalising different runs using the expression values of a common sample used in 

both RT-qPCR runs and scatter plots were generated in SPSS. The different groups were then 

compared for significance by performing a Kruskal-Wallis test and a confidence interval of 95% 

(p value<0.05) was considered. 

 Figures 5.6, Figure 5.7 and Figure 5.8 show the box plots of the normalised expression 

data of ITGA4, CPNE3 and LCN2 respectively (see Figure legends for details). It was observed 

that ITGA4 expression was significantly less in the WBCs of primary breast cancer (average fold 

change= -1.54) and metastatic breast cancer patients (average fold change= -2.21) when 

compared to the healthy donor cohort. CPNE3 expression was significantly higher (fold change= 

+2.37) in the metastatic breast cancer cohort when compared to both healthy donor and primary 

breast cancer cohorts. LCN2 expression was less in the primary breast cancer patients (fold 

change= -1.35) and significantly higher (fold change= +3.13) in the metastatic breast cancer 

patients. 
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Figure 5.6 RNA expression profiles of Integrin Alpha 4 (ITGA4) in the WBCs of Healthy 

donors and Breast cancer patients: RT-qPCR was performed using RNA obtained from the 

WBCs of healthy donors, primary breast cancer patients and metastatic breast cancer patients to 

detect the expression of ITGA4. RPL32 was used as the reference gene in all experiments. The 

data was normalised using the expression value of sample HD3 which was used in all 

experiments. Kruskal-Wallis test was performed to test for significance between the different 

sample cohorts used. Expression levels of genes are shown with medians and their quartile 

ranges. HD-Healthy Donor, Brca-Primary breast cancer, ABS- Advanced breast cancer.. 
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Figure 5.7 RNA expression profiles of Copine3 (CPNE3) in the WBCs of Healthy donors 

and Breast cancer patients: RT-qPCR was performed using RNA obtained from the WBCs of 

healthy donors, primary breast cancer patients and metastatic breast cancer patients to detect the 

expression of CPNE3.RPL32 was used as the reference gene in all experiments. The data was 

normalised using the expression value of sample HD3 which was used in all experiments. 

Kruskal-Wallis test was performed to test for significance between the different sample cohorts 

used. Expression levels of genes are shown with medians and their quartile ranges. HD-Healthy 

Donor, Brca-Primary breast cancer, ABS- Advanced breast cancer. 
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Figure 5.8 RNA expression profiles of Lipocalin2 (LCN2) in the WBCs of Healthy donors 

and Breast cancer patients: RT-qPCR was performed using RNA obtained from the WBCs of 

healthy donors, primary breast cancer patients and metastatic breast cancer patients to detect the 

expression of LCN2. RPL32 was used as the reference gene in all experiments. The data was 

normalised using the expression value of sample HD3 which was used in all experiments. 

Kruskal-Wallis test was performed to test for significance between the different sample cohorts 

used. Expression levels of genes are shown with medians and their quartile ranges. HD-Healthy 

Donor, Brca-Primary breast cancer, ABS- Advanced breast cancer.  
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5.4.4.2 Validation of SERPINB1using RT-qPCR in an extended panelof primary and 

metastatic breast cancer patients 

 Leukocyte elastase inhibitor (SERPINB1) was found to be upregulated in the WBCs of 

breast cancer patients in this study by both highthroughput proteomics (Fold change= +1.46) and 

2D gel electrophoresis (Fold change= +1.46).  SERPINB1 was also found to be positively 

correlated with mortality and disease progression in the experiments using the WBCs of 

metastatic breast cancer patients.  These combined results are presented in Figure 5.9. 

Although the RNA levels of SERPINB1 were measured using RT-qPCR in the WBCs of 

primary breast cancer patients and results were not significant when compared to the levels in the 

healthy donors (Section 5.4.4), it was possible that SERPINB1 may be linked to metastatic breast 

cancer and not primary breast cancer. We therefore assessed SERPINB1 mRNA levels using the 

extended panel with metastatic patients. The results presented in Figure 5.10 demonstrate 

significantly higher levels of SERPINB1 mRNA (Fold Change= +3.4) in the WBCs of metastatic 

breast cancer patients when compared to both healthy donors and primary breast cancer patients. 

The difference was not significant between primary breast cancer cohort and the healthy donors. 
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A  

B  

C  

Figure 5.9 Levels of SERPINB1 in WBCs of Breast cancer patients: protein spots identified 

as SERPINB1 in primary breast cancer patients by (A) 2D-gel electrophoresis,(B) 

Highthroughput proteomics and in (C) metastatic breast cancer patients by 2D-gel 

electrophoresis. PD- Progressive Disease, SD- Stable Disease, HD-Healthy donor, Brca- Breast 

cancer. The error bars indicate the standard deviation. 
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Figure 5.10 RNA expression profiles of SerpinB1 in the WBCs of Healthy donors and 

Breast cancer patients: RT-qPCR was performed using RNA obtained from the WBCs of 

healthy donors, primary breast cancer patients and metastatic breast cancer patients to detect the 

expression of SERPINB1. RPL32 was used as the reference gene in all experiments. The data 

was normalised using the expression value of sample HD3 which was used in all experiments. 

Kruskal-Wallis test was performed to test for significance between the different sample cohorts 

used. Expression levels of genes are shown with medians and their quartile ranges. HD-Healthy 

Donor, Brca-Primary breast cancer, ABS- Advanced breast cancer.  
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5.4.5 Validation of biomarkers at protein level using western blotting 

 The fifteen shortlisted candidates obtained by combining the data from different 

approaches were validated using RT-qPCR. Four genes ITGA4, CPNE3, LCN2 and SERPINB1, 

passed the significance test and showed considerable difference between the healthy donor and 

primary breast cancer and/or metastatic breast cancer cohorts. Out of these candidates CPNE3, 

LCN2 and SERPINB1 were chosen for further validation at protein level using western blotting. 

ITGA4 was not chosen because the difference in Cq values and the normalised expression ratios 

between healthy donors and breast cancer patients were low. Antibodies for Copine3 (cat no: 

ab97919), SerpinB1 (cat no: ab47731), and Lipocalin2 (cat no: ab63929) were purchased from 

Abcam. All antibodies were rabbit polyclonal antibodies and, according to Abcam specifications, 

were suitable for western blotting. The secondary antibody used was anti-rabbit horseradish 

peroxidase (HRP) conjugated from Abcam (cat no: ab99697). The antibody for loading control 

(β-Actin) was the anti β-Actin antibody from Sigma (cat no: A1978). Western blotting was 

carried out as described in Chapter 2 (Section 2.2.1) and the antibody signal was visualized. The 

samples were normalised with each other by normalising the target signal with the actin signal. 

5.4.5.1 Evaluation of Copine 3 protein expression in breast cancer patients 

 Breast cancer patients’ samples (Primary and Metastatic) were compared with healthy 

donors using western blotting. Samples from nine healthy donors, 22 primary breast cancer and 

twelve metastatic breast cancer patients were used for this analysis. The membrane was probed 

with the anti-Copine 3 (CPNE3) antibody; the results of western blotting are shown in Figure 

5.11. The positive control was the lysate from 293T cell and the negative control was the lysate 

from NB4 cell. A band around 60kDa was observed in the WBC samples and the positive 

control. The intensity values were obtained using Image J as described in Section 2.2.1.4; the 

CPNE3 values were normalised to β-Actin for each sample. The values between different 

western blotting analyses were normalised with each other using the expression values of 
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common samples in different westerns assays. The combined results from different westerns are 

represented as a box plot in Figure 5.12 and Kruskal-Wallis was performed using SPSS to 

confirm significance in difference between different sample cohorts. It was found that CPNE3 

expression in WBCs was highly variable and there were no significant differences between the 

healthy donor and primary breast cancer and metastatic cancer cohorts. The expression data did 

not show any correlation between any clinical data and we therefore concluded that Copine 3 

was not likely to be a suitable biomarker for diagnosis and prognosis for breast cancer. 
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Figure 5.11 Protein expression of CPNE3 in WBCs of breast cancer patients using western 

blotting: western blot analysis showing expression of CPNE3 in the WBCs of healthy donors, 

primary breast cancer patients and metastatic breast cancer patients. Lysates from breast cancer 

cell line 293T was used as a positive control and actin as loading control. The proteins were 

resolved by SDS - PAGE, blotted and probed with CPNE3 IgG (rabbit) antibody and 

visualized.(Br - Breast cancer, HD - Healthy donor, Abs- advanced breast cancer study, ACTB- 

beta-actin). 
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Figure 5.12 Scatter plot of Protein expression of Copine3 (CPNE3) in WBCs of breast 

cancer patients: western blotting was performed using the lysates obtained from the WBCs of 

healthy donors, primary breast cancer patients and metastatic breast cancer patients to detect the 

expression of CPNE3. Β-Actin was used as the loading control. Kruskal-Wallis test was 

performed to test for significance between the different sample cohorts used. Expression levels 

of genes are shown with medians and their quartile ranges. HD-Healthy Donor, Brca-Primary 

breast cancer, ABS- Advanced breast cancer. 
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5.4.5.2 Analysis of SERPINB1protein levels in breast cancer patients 

 SERPINB1 protein expression was evaluated by western blotting in the breast cancer 

cohorts and compared with healthy donors. A band of approximately 43kDa was observed. The 

SERPINB1 signal was normalised using the β-Actin using Image J. Expression values between 

westerns were compared by normalising the expression values from the common sample used in 

each experiment (usually a sample from a healthy donor). Figure 5.13 represents a typical 

western showing expression of SERPINB1. It can be clearly observed that expression in 

metastatic patients is much higher than in healthy donors and primary breast cancer patients. 

Figure 5.14 shows the combined data in scatter plots. The fold change in primary breast cancer 

was +3.9 and metastatic breast cancer was +7 when compared to healthy donor cohort. Around 

47% of primary breast cancer patients had higher levels of SERPINB1 when compared to 

median of healthy donors. Also 90% of metastatic breast cancer patients had higher SERPINB1 

levels when compared to primary breast cancer patients. The p values were low (<0.05) between 

the different cohorts. Since SERPINB1 levels were higher in metastatic breast cancer patients, 

SERPINB1 expression was correlated in primary breast cancer patients with the node status. 

Figure 5.15 shows the expression of SERPINB1 between the node positive and node negative 

breast cancer cohorts. The p value was not significant but the median of node positive samples 

was higher than node negative samples. 
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Figure 5.13 Protein expression of SerpinB1 in WBCs of breast cancer patients using 

western blotting: western Blot analysis showing expression of SERPINB1 in the WBCs of 

healthy donors, primary breast cancer patients and metastatic breast cancer patients. β-Actin was 

used as loading control. The proteins were resolved by SDS - PAGE, blotted and probed with 

SERPINB1 IgG (rabbit) antibody and visualized. (Br - Breast cancer, HD - Healthy donor, Abs - 

advanced breast cancer study, ACTB- β Actin, M-protein marker). 
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Figure 5.14 Scatter plot of Protein expression of SerpinB1 in WBCs of breast cancer 

patients: western blotting was performed using the lysates obtained from the WBCs of healthy 

donors, primary breast cancer patients and metastatic breast cancer patients to detect the 

expression of SERPINB1. Β-Actin was used as the loading control. Kruskal-Wallis test was 

performed to test for significance between the different sample cohorts used. Expression levels 

of genes are shown with medians and their quartile ranges. HD-Healthy Donor, Brca-Primary 

breast cancer, ABS- Advanced breast cancer. 
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 Figure 5.15 Scatter plot of Protein expression of SerpinB1 in WBCs of breast cancer 

patients according to node status: western blotting was performed using the lysates obtained 

from the WBCs of healthy donors and primary breast cancer patients to detect the expression of 

SERPINB1. Β-Actin was used as the loading control. Kruskal-Wallis test was performed to test 

for significance between the different sample cohorts used. Expression levels of genes are shown 

with medians and their quartile ranges. HD-Healthy Donor, NN-Node Negative primary breast 

cancer, NP-Node Positive primary breast cancer. 
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5.4.5.3 Evaluation of SerpinB1 protein expression in metastatic breast cancer patients as a 

marker of prognosis 

Since SERPINB1 was present in the metastatic breast cancer dataset its levels were tested 

in WBCs of metastatic breast cancer patients before and after treatment to assess whether it may 

be a marker of treatment efficacy and prognosis. Figure 5.16A shows the levels of SERPINB1 in 

such paired metastatic breast cancer WBC samples; five paired samples from patients who 

underwent chemotherapy and four samples from patients who underwent endocrine therapy 

patients were used. Out the nine patient samples tested, in two samples SERPINB1 levels 

decreased after treatment (Abs065 and Abs048) and in all other samples increased. The patient 

data for the samples used in these experiments are presented in Figure 5.16,including the 

information regarding the type of metastasis and survival in months. The overall tendency was 

for increased levels of SERPINB1 to correlate with diminished response to therapy and poorer 

survival. For example, in the case of participant Abs048, complete response for the treatment 

was observed, the participant was alive after 18 months and the SERPINB1 levels decreased 

after treatment. In participants Abs054 and Abs061 the amount of SERPINB1 was about two-

fold higher after treatment; these patients survived for only two and four months, respectively. 

However, the pattern of changes in SERPINB1 levels in participant Abs059 cannot be explained 

by this hypothesis. Unfortunately, due to time restraints, it was not possible to perform these 

experiments using a large panel of samples, which in addition to the first and the last samples 

would include intermediate time points. These experiments are currently being carried out in our 

laboratory.  
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5.4.5.4 Evaluation of Lipocalin 2 protein expression in breast cancer patients 

 The Lipocalin 2 (LCN2) protein was another promising WBC biomarker and it was 

selected for further validation by western blotting (Figure 5.17 shows these results). The 

predicted size for LCN2 is 23 kDa; there was no signal from the anti-LCN2 antibody in this 

range. The LCN2 protein was previously reported to be present in MCF7 cells (Yang et al., 

2009). Therefore the MCF7 cell lysate was included in this experiment as a positive control; 

however no band was detected in this sample. The presence of sufficient amount of protein in all 

specimens was confirmed be re-probing the membrane with the anti -Actin antibody. We 

concluded that the anti-LCN2 antibody tested was not suitable for western blotting experiments; 

these assays will need to be repeated with another antibody.  
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A 

Sample 

ID 

SERPINB1 Fold 

Change after 

Treatment 

Treatment Type Metastasis type Prognosis 
Survival in months 

(as on 31-05-2012) 

Abs048 -1.10078 Endocrine Lung CR Alive 

Abs050 1.421607 Chemotherapy Liver, Lung, Bone SD 10 

Abs054 3.328652 Chemotherapy Liver, Bone SD 4 

Abs057 1.384492 Chemotherapy Liver, Lung, Bone, Brain PD 8 

Abs059 1.565282 Endocrine Lung SD Alive 

Abs061 2.062586 Chemotherapy Lymph nodes PR 2 

Abs063 1.427723 Endocrine Bone PR 7 

Abs065 -1.2011 Chemotherapy Liver, Lung, Bone, Brain PR 6 

Abs067 1.068564 Endocrine Liver, Bone, Skin SD 10 

 

B 

 Figure 5.16 Expression of SERPINB1 in metastatic breast cancer patient samples from 

before treatment and after treatment: (A) The WBC samples from metastatic breast cancer 

patients who underwent two types of treatment (Chemotherapy and endocrine therapy) were 

used. SERPINB1 levels were assessed by western blotting. Samples were loaded analysed in 

pairs (before and after treatment). The images obtained by western blotting was analysed by 

Image J and SERPINB1 levels were normalised against β-Actin values. (B) Patient information 

and levels of SERPINB1 for samples used in the experiments shown in panel A. The fold change 

of SERPINB1 after treatment is also given along with disease survival. SD= Stable Disease, PD = 

Progressive Disease, CR = Complete Response, PR = Partial Response. 
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Figure 5.17 Protein expression of Lipocalin 2 in WBCs of breast cancer patients using 

western blotting: Expression of LCN2 in the WBCs of healthy donors, primary breast cancer 

patients and metastatic breast cancer patients has been analysed; β-Actin was used as loading 

control. The proteins were resolved by SDS - PAGE, blotted and probed with the anti-LCN2 IgG 

(rabbit) antibody and visualized. Br - Breast cancer, HD - Healthy donor and ACTB- β Actin. 

 

 

 

 

 

 

 



 

183 

 

5.5 Discussion 

The aim of the work described in this chapter was to identify potential biomarkers using three 

different experimental datasets and then validate the selected candidates using RT-qPCR and 

western blotting.  

 In order to carry out RT-qPCR, RNA had to be extracted from WBCs and converted into 

cDNA. The WBCs were stored in RNAlater solution at -80
0
C so that RNA could be extracted at 

convenience. Extracting RNA from WBCs proved to be difficult as the yield and the quality of 

RNA (purity and integrity) were initially very poor. Indeed this has been noted by several groups 

using RNA form peripheral blood (Debey et al., 2004; Feezor et al., 2004; Wang et al., 2004). 

According to Minimum Information of Quantitative real-time PCR experiment (MIQE) 

guidelines the assessment of nucleic acid purity and integrity is essential (Bustin et al., 2009). 

According to the modified protocol for RNA extraction described in this chapter the second 

chloroform step and an additional ethanol wash was required to obtain pure RNA without protein 

or salt contamination. The yield of RNA from WBCs which were stored in RNAlater was very 

low (10 million cells were used to obtain only around ~200ng of RNA. Alternatively the RNA 

yield was observed to be higher when WBCs were freshly lysed after separation from whole 

blood using Trisure (300ng/10 million cells). This lysate prepared by using Trisure could only be 

stored at -80
0
C but only for a maximum of four weeks according to the manufacturer’s 

instruction. Due to large numbers of sample collection and delayed availability of clinical 

diagnosis data RNAlater was used and RNA extraction protocol was optimised to it. 

 DNA contaminations in RNA preparations can cause significant problems in gene 

expression analysis. The conventional phenol-chloroform method for RNA extraction does not 

completely eliminate DNA. There are no RNA extraction procedures available that completely 

avoid DNA contamination and also there are no techniques available to detect DNA in RNA 
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preparations other than PCR. In our study the RNA preparations had DNA contamination which 

was detected in cDNA preparations. RT-qPCR analysis and cDNA preparations are expensive, 

therefore DNase treatment is essential and ensured that RNA was DNA-free. 

The selection of a suitable reference gene in RT-qPCR reactions is important as it 

determines the significance of the results. In this study it was observed that reference genes like 

β-actin, human acidic ribosomal protein and β2-microglobulinproduced false results when the 

target genes were normalised with the reference genes, especially if the change in target gene 

levels were low. RPL32showed minimum transcription range across the tested samples and was 

chosen as a reference gene. A recent study (Xu et al. 2013) used several reference genes to 

validate candidate genes from the WBCs of colorectal cancer patients. Although this approach it 

is very labor- and time-consuming, it ultimately improves the outcomes of the RT-qPCR 

reactions. 

The shortlisting of candidates from the three different datasets proved to be very 

challenging as the datasets were very large and involved significant amount of computing. The 

main criteria for the shortlisting process were (1) presence of the same candidate in more than 

one dataset, (2) biological function in WBC (in particular, in immune response) and (3) 

association with cancer. An initial panel of 15 biomarkers was chosen using the above criteria to 

be validated by RT-qPCR in the first instance. Table 5.4 shows the list of candidates chosen to 

be validated by RT-qPCR and the results in the form of fold change. Only YWHAE, ANXA3 and 

ALOX5 were overexpressed in the breast cancer cohort. All the other genes tested were 

overexpressed in the primary breast cancer cohort. It was observed that out of the 12 genes 

which were overexpressed in the high throughput data (both genomic and proteomic) only 

CPNE3, ANXA3 and ALOX5 followed the same trend in RT-qPCR analysis. ITGA4 and WDR1 

showed consistent negative change in breast cancer patients in RT-qPCR analysis and the 

microarray data. This result is consistent with other groups where only 25-30% of genes 
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correlate at both RNA and protein levels (Lundberg et al., 2010; Tian et al., 2004; Vogel et al., 

2010).ITGA4, CPNE3 and LCN2 showed significant difference (T-test p value<0.05) in the 

primary breast cancer cohort. Although SERPINB1 did not show significance at RNA levels in 

primary breast cancer patients it was chosen for further validation based on the information 

obtained from proteomics and also the RNA expression in metastatic breast cancer patients. 

All four genes (ITGA4, CPNE3, LCN2 and SERPINB1) showed significant difference at 

the RNA expression levels in the metastatic breast patient cohort (Section 5.4.4.1 and 5.4.4.2). 

Only ITGA4 had negative expression in both breast cancer and metastatic breast cancer cohort. 

Others showed significantly higher expression levels in metastatic breast cancer patients. 

Of note, it has been reported in the literature that protein levels do not always correlate 

with the levels of corresponding mRNA (Lundberg et al., 2010; Tian et al., 2004; Vogel et al., 

2010). Therefore, it is likely that the number of potential candidate biomarkers discovered in the 

course of this study is much higher.  The integration of genomics and proteomics provided 

stricter pre-requisitions and helped us to shortlist a manageable panel of candidates for 

validation. 
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Table 5.4 Candidate WBC biomarkers chosen for validation by RT-qPCR and the 

summary of RT-qPCR results: Genes common from different datasets comparing healthy 

donors, primary breast cancer patients and metastatic breast cancer patients were obtained. The 

overlapping genes were further shortlisted to give a 15 panel gene list to be validated using RT-

qPCR. Fold change refers to fold change in primary breast cancer cohort. Red coloured cells 

indicate overexpression; green indicates underexpression; pink overexpression only in low grade 

breast cancer. *T-test p value<0.05. The presence in metastatic breast cancer cohort is denoted 

by ‘X’ and the fold change is not included since the initial analysis did not include comparison 

with healthy donors. 

 

Candidates Primary 

Breast cancer-

2D-gel 

electrophoresis  

Primary 

Breast 

cancer- 

High 

throughput 

proteomics  

Primary 

Breast cancer 

-Microarray 

(GSE16443) 

Metastatic 

Breast cancer-

2D-gel 

electrophoresis 

Fold 

Change 

in RT-

qPCR 

SERPINB1 +1.3 +1.46  X -1.16 

CALR   +1.4 X -1.4 

YWHAE  +1.46  X +1.03 

CPNE3   +1.2 X 
-1.47* 

ANXA3   +1.97 X +1.98 

ANXA1 +1.3 +1.49   -1.02 

LTF   +2.37 X -1.60 

NONO   +1.21 X -1.08 

ITGA4  -3.4 -1.28  
-1.4* 

WDR1   -1.23 X -1.46 

RHOA  +1.4 +1.5  -1.39 

LCN2   +2.16 X 
-1.35* 

ALOX5  +1.6   +1.28 

FGL2  +   -1.23 

OSTF1  +1.23   -1.56 
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The results of RT-qPCR identified four candidates: ITGA4, LCN2 and CPNE3. The 

LCN2 and CPNE3 proteins were then validated at a protein level using western blotting. 

Additionally, SERPINB1 was added to this panel to be validated by western blotting. Although 

CPNE3 expression at RNA levels in both primary breast cancer and metastatic breast cancer 

cohorts were significantly different from the healthy donor cohort, western blotting revealed that 

CPNE3 expression was not significantly different in both breast cancer cohorts, with CPNE3 

expression hugely varying in the primary breast cancer cohort. If the panel was extended CPNE3 

could be correlated with the clinical data to observe if it could be used as prognosis marker.  

SERPINB1 levels were significantly higher (Fc=+7) in the metastatic breast cancer 

cohort and also in the primary breast cancer cohort (Fc=+3.5).  From these data it can be 

concluded that SERPINB1 represents a very attractive candidate to be used as a biomarker of 

metastatic breast cancer. There was also positive correlation of SERPINB1 protein levels to 

lymph node metastasis state in the primary breast cancer cohort, whereby participants who had 

lymph node metastasis had higher levels of SERPINB1.Therefore, higher SERPINB1 may be an 

indicator/predictor of metastasis and hence used as a prognostic biomarker. Further retrospective 

studies will be required to assess how levels of SERPINB1 correlate with the recurrence and 

survival. This was not possible with the samples collected for this study as the information was 

not available. 

The levels of SERPINB1 were also measured to observe if it could be used as a 

prognostic marker for treatment response and survival. The initial 2D gel electrophoresis study 

revealed that higher SERPINB1 levels could indicate poor prognosis. The analysis carried out in 

this study was not conclusive as the sample numbers were low. Regarding ITGA4 and LCN2 the 

RT-qPCR results look very promising and antibodies could be used to validate them at protein 

levels in the future. 
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There is still lack of standardised protocol for protein biomarker development pipeline 

while the validation protocols are well developed for the pharmaceutical industry for drug 

development (Buyse et al., 2010).Western blotting is an effective method to validate biomarker 

candidates initially but it is limited to the sample number which could be used at the same time. 

Although many protein analytical techniques are available for validation ELISA still dominates 

in a clinical setting. ELISA is a very effective technique to validate potential biomarkers in a 

clinical setting quantitatively and also a large number of samples could be used. Further 

validation of SERPINB1 by ELISA would be helpful to gain further data to continue on to the 

clinical phase in the biomarker development pipeline. 
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Chapter 6: General Discussion 
 

6.1  The challenging field of breast cancer biomarkers 

 Although the survival for female breast cancer has greatly improved in the recent years, 

breast cancer remains a very serious condition. Breast cancer is challenging to screen or diagnose, 

it is fast growing once it reaches critical mass and possesses high ability to metastasise to multiple 

sites in the body. It has been suggested that breast cancer metastasis occurs 5 years even before 

the primary tumour is clinically detected (Engel et al., 2003). The current major clinical diagnostic 

technique for breast cancer is the use of mammograms which detects abnormal lumps of tissue in 

the breast. Mammography has a high rate of false negatives (10-15%) where the tumour is present 

and is not detected (Heywang-Köbrunner et al., 2011); this may endanger patients’ lives. On the 

other hand, over-diagnosis may also take place in these screenings because the number of false 

positives in mammography is also high. In addition, mammograms do not provide information 

about the abnormal lump i.e. whether it is benign or malignant. As a result, for final diagnosis 

tissue biopsies may be required which puts patients under unnecessary anxiety and stress.  

This justifies the need for biomarkers for screening, diagnosis and prognosis of breast 

cancer. Currently there are six FDA approved biomarkers: three are tissue based (estrogen 

receptor, progesterone receptor and HER2/neu) and three plasma based (circulating tumour cells, 

CA 15-3 and CA 27-29), to monitor breast cancer disease progression and response to therapy 

(Füzéry et al., 2013). These biomarkers are not accurate in predicting response to treatment and 

also cannot be used for diagnosis or screening. With the rapid development of the “omics” 

technologies several groups have tried to identify breast cancer biomarkers in tissue and plasma 

(refer to Section 1.7, 1.8 and 1.9); however still no biomarkers have been discovered to screen or 

diagnose breast cancer. In this study we have hypothesized that breast tumour would interact with 

the immune system causing a systemic change in immune expression profile. This could be 
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exploited to find novel biomarkers for breast cancer and in this study we have explored 

biomarkers in a novel source, the white blood cells 9WBCs). We also applied these findings to 

elucidate the effects of the breast tumour on the immune system. 

6.2  Protein profiling expression analysis of WBCs from breast cancer patients 

 In this study we used several approaches for biomarker discovery. The High throughput 

proteomics using mass spectrometry is more efficient than genomics technologies because almost 

all of the clinical diagnostics techniques are antibody based assays targeting proteins. Moreover 

RNA levels do not always correspond to the translated protein levels in the cell. Drabovich et.al 

2014 has proposed an integrated protein biomarker discovery pipeline. This study has almost 

followed the steps in the proposed pipeline even though the group published the work just recently 

(Figure 1.3). However it has to be noted that none of the existing breast cancer biomarkers have 

been discovered using mass spectrometry based approaches. This may be due to the lengthy 

period of validation, clinical trials and the approval process following the protein biomarker 

discovery. It is therefore possible that the candidate biomarkers first discovered in the 2000s may 

obtain the FDA approval very soon if they satisfy all the criteria.  Regardless of the status with the 

biomarkers currently in the FDA pipeline, the search for breast cancer biomarkers continues. 

 The proteomic technologies used in this study were the high throughput profiling by 

OrbitrapVelos mass spectrometer and conventional 2D-PAGE. The high throughput proteomics 

approach resulted in the detection of around 2577 proteins in the membrane fraction of WBCs. 

This comparison illustrates the sensitivity of the mass spectrometry over the 2D-PAGE. The 

comparison between the protein profiles of healthy donors and breast cancer patients using high 

throughput proteomics gave 136 significant proteins while 2D-PAGE gave only 18 significant 

proteins. Performing 2D-PAGE was time consuming, costly and prone to experimental errors such 

as inter-gel variation, differences in staining intensities, low sensitivity to low abundant proteins,  
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poor inter-gel normalisation techniques and reduced resolution compared to mass spectrometry. 

The results from the both analyses showed that the genes which changed had less fold change 

range when compared to the data obtained from tumour tissues (from literature). The 

heterogeneity (variability) in the significant protein levels was also high due to the multiple cell 

type composition of WBCs and also the dynamic nature of the immune system. The heterogeneity 

of breast cancer subtypes might also be the cause for this. Three proteins appeared in both 

analyses; SERPINB1, JUP and ANXA1. SERPINB1 became an important candidate later in our 

biomarker pipeline. This will be discussed in the following sections. The data from the soluble 

fraction of the high throughput proteomics is still to be analysed. This will lead to discovery of 

more biomarkers. 

6.3  Gene expression analysis of WBCs in breast cancer patients 

 There is a vast amount of information in the microarray data produced and deposited so 

far. This includes the gene expression data for peripheral blood samples in breast cancer patients, 

although such data have been limited to only a few studies. In our investigation, we used these 

existing data to compare the expression profiles of blood samples from breast cancer patients and 

healthy donors. These data deposited in the GEO (id-GSE16443) (Aarøe et al., 2010) were from 

the gene expression analysis of RNA samples extracted from peripheral blood cells of 67 primary 

breast cancer patients and 54 healthy donors. The microarray method is fast and high throughput 

enabling to compare many genes simultaneously but it has several limitations. Experimental 

method drawbacks include frequent problems with quality/integrity of RNA, artefacts in the 

image after hybridisation, batch effects of hybridisation, difficulty in data reduction and lack of 

standard procedures for data collection/analysis. The high throughput RNA-sequencing (RNA-

Seq) has outdated the microarray technology and also overcame several limitations of microarray 

technology such as high background noise, poor detection of unknown transcripts and relative 
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quantification. Any future experiments related to WBC biomarker discovery are now likely to be 

performed using the RNA-Seq to avoid the limitations of microarrays.   

 The facts that for the gene expression studies the RNA samples were extracted from the 

whole blood (all blood cells plus serum) and also the heterogeneous nature of blood cells were 

important factors to consider in the data analysis performed in Chapter 4. This was reflected, for 

example, in the variation in expression levels of individual genes obtained after comparison 

between the individuals in breast cancer patient cohort and the individuals in the healthy donor 

cohort. Another notable phenomenon was that the majority of the genes obtained after comparison 

between the two cohorts was with fold change were less than ±2. The systemic changes in the 

blood would have been minimal because of the influence of tumour on immune cells, which is 

reason the fold change cut-off for genes was set at ±1.2. The comparison resulted in the 

identification of 506 differentially expressed genes in the breast cancer patient cohort. These data 

were combined with the proteomics data (Chapter 3) to shortlist biomarkers for further validation 

by RT-qPCR and Western blotting. Furthermore microRNAs are another promising source of 

biomarkers in blood. MicroRNAs like (miR-10b, miR-21, miR-125b, miR-145, miR-155 miR-191 

and miR-382) (George and Mittal, 2010; Mar-Aguilar et al., 2013) have shown promise and are 

currently in the development pipeline. 

6.4 Integrating data to understand the effect of breast tumours on the immune system 

 The relationship between tumours and the immune system is very complex and not fully 

understood. Tumours interact with the surrounding tissues and the immune system, and the 

changes in the cells of the immune system reflect such communications. The tumour, for example, 

manipulates the immune system to escape antigen recognition and also utilises the immune 

response for survival leading to metastasis (describe in Section 1.10. in more detail). In this study, 
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together with discovery of novel cancer biomarkers from WBCs, we used the data to investigate 

differences related to the immune system functions. 

 Functional analysis of both datasets (genomics and proteomics) showed overall consistent 

functional changes in the WBCs of breast cancer patients. The GO analysis of the gene expression 

data revealed that genes involved in WBC activation, antigen recognition, processing and 

presentation were downregulated in breast cancer patients.  These observations were 

complemented by the outcomes of the pathway analysis performed using KEGG database, 

showing that the JAK-STAT pathway downregulated. This analysis also revealed that some genes 

involved in the transendothelial migration, inflammatory response and cell proliferation were 

upregulated, but others down-regulated in the breast cancer cohort. The protein profiling data 

demonstrated that inflammatory response was upregulated in the breast cancer patients. The GO 

analysis also revealed that proteins involved in cell migration and cell survival were upregulated. 

The pathway analysis showed that leukocyte transendothelial migration pathway was upregulated.  

 The data obtained in these analyses suggest that systemic inflammatory response is 

increased in breast cancer patients. Breast cancer cells secrete various pro-inflammatory factors 

such as TNF-α, IL-8, IL-10, VEGF etc along with several chemokines which attract the immune 

cells to sites of inflammation. Interestingly, systemic inflammation markers such as neutrophil-

lymphocyte ratios, levels of platelets and platelet-lymphocyte ratios have been used as prognostic 

indicators of cancer outcome (Fox et al., 2013). In addition, elevated neutrophil counts, elevated 

platelet counts and low lymphocyte counts were predictors of low overall survival in renal 

carcinoma patients. This observation could play an important role in biomarker discovery process 

as several proteins are expressed at different levels in different cell types of the immune system. 

 The GO analysis specifically indicated that 30% of proteins which changed were involved 

in cellular localisation. In particular, proteins involved in cell migration were positively regulated 
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in the WBCs of breast cancer patients. This complements the fact that highly invasive tumours 

have increased immune cell (Dendritic cell, T-cell) infiltrations in breast tumour which correlates 

with poor prognosis (DeNardo et al., 2011; Leek et al., 1996; Ruffell et al., 2012). Some of the 

genes involved in WBC migration are also involved in tumour cell metastasis where a process 

similar to WBC migration occurs. The cell migration factors secreted by WBCs could be used by 

tumour cells to enhance cell adherence and invasion. It has been shown in several studies that 

leukocyte migration is inhibited in various carcinomas (Brandes and Goldenberg, 1976; Kadish et 

al., 1976; Lee et al., 1977). 

The observations regarding changes in the functions of the WBC could be validated using 

primary tumour tissue or cells and the WBC samples. Extracts from tumour tissues or cell culture 

media supernatants from breast cancer cell lines can be applied to WBC to induce changes in their 

functions related to cancer. These functions could be measured by appropriate assays such as 

migration, apoptosis, survival, reactive oxygen species measurement and other assays. 

Components of breast tumour tissue supernatants could be profiled using mass spectrometry to 

identify factors inducing WBC functions. This work is already progressing in our laboratory (data 

not shown) with the aims to identify factors inducing tumour specific molecules in WBCs. This 

study shows the importance of the effect of breast cancer on systemic WBC migration.   

6.5 Shortlisting and validation of breast cancer biomarker candidates 

 The shortlisting of candidates for validation had been very time consuming as the volumes 

of data generated by both genomic and proteomic approaches were very high.  The results from 

the third independent study performed using the WBCs of metastatic breast cancer patients were 

also used in the study ( see Section 5.2) to complement the shortlisting process. It was surprising 

to find that only 15 candidates overlapped between proteomics and genomics considering the 
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large number of significant genes obtained from gene expression analysis, while 21 candidates 

were common in both primary breast cancer and metastatic breast cancer proteomics datasets. 

 The first step of validation was to assess the RNA levels of 15 genes obtained from the 

shortlisting described above, in both primary breast cancer cohort and healthy donor cohort. RT-

qPCR revealed that out of the nine genes chosen for validation from the genomics dataset only 

three genes ANXA3, ITGA4 and WDR1 had the same trends in RNA expression as in the 

microarray data. Also only three genes CPNE3, LCN2 and ITGA4 passed the significance test in 

the RT-qPCR analyses. These genes were tested in an extended panel of primary breast cancer 

patients and metastatic breast cancer patients. ITGA4 levels were downregulated in both primary 

and metastatic breast cancer patients. Both CPNE3 and LCN2 showed similar RNA expression 

patterns, namely, downregulated in the WBCs of primary breast cancer patients and upregulated 

in metastatic breast cancer patients. SERPINB1did not pass the significance test in the primary 

breast cancer panel at mRNA levels, but it was significantly (by more than 3-fold) higher in the 

WBCs of metastatic patients. Two candidates, SERPINB1 and CPNE3, were validated at the 

protein levels to identify their potential use as breast cancer biomarkers. The levels of CPNE3 

were not significantly changed in the WBCs of primary breast cancer patients or metastatic breast 

cancer patients; the variance in the levels of CPNE3 was very high suggesting very low 

specificity. This disqualifies CPNE3 as a potential biomarker to be taken to the clinical stage. On 

the other hand, promising results were observed for SERPINB1. 

6.6 SERPINB1 as a potential biomarker for breast cancer progression and metastasis  

6.6.1 Biological functions of SERPINB1 

 SERPINB1 is the neutrophil elastase inhibitor, it was first characterised in neutrophils but 

it is present in most of the subsets of WBCs. SERPINB1 inhibits serine proteases elastase, 

cathepsin G and proteinase-3 (Farley et al., 2012). Neutrophil elastase is an inflammatory protein 
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which is involved in anti-microbial action and is released at sites of inflammation. Neutrophil 

elastase dissolves cellular junctions and aids in transmigration of WBCs across epithelial cells 

(Ginzberg et al., 2001). SERPINB1 also inhibits Granzyme H (Wang et al., 2013) which is used 

by natural killer cells to induce cell death in the  antigen presenting cells and tumour cells 

(Trapani and Smyth, 2002). SERPINB1 is involved in neutrophil extravasation and formation 

neutrophil extracellular traps to contain inflammation (Farley et al., 2012).The association of 

SERPINB1 with cancer is complex, thus BERPINB1 can be a tumour suppressor and promoter, 

at the same time, depending on the specific biology of the disease, microenvironment and other 

factors (Cui et al., 2014; Tseng et al., 2009). 

6.6.2 SERPINB1 as a prospective biomarker 

 SERPINB1 showed promising results when the protein levels in WBCs were measured by 

Western blotting. Thus, SERPINB1 levels were 3.5 times higher in 50% of the primary breast 

patient WBCs and 7 times higher in more than 90% of the metastatic breast cancer patient WBCs. 

Furthermore, SERPINB1 levels were higher in the WBCs in participants with node positive 

primary breast cancer than in node negative participants. If follow up clinical data could be 

collected for primary breast cancer patients to observe for recurrence and metastasis, SERPINB1 

could be correlated to those parameters to assess further its prognostic significance. Collectively 

the data suggests the possibility that SERPINB1 could be a marker of lymph node metastasis for 

primary breast cancer patients and a general metastatic breast cancer biomarker of prognosis. 

Metastatic breast cancer patients who initially had higher levels of SERPINB1 had poorer 

prognosis. More samples from metastatic breast cancer patients should be evaluated to identify 

changes in levels of SERPINB1 to validate it as a prognostic biomarker for disease progression 

and treatment response. These findings demonstrate that SERPINB1 could be taken to the next 

phase of biomarker development. It would be also important to design an ELISA based test for 

SERPINB1 because Western blotting will not be practical for clinical settings. The function of 
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SERPINB1 in the WBCs of breast cancer patients could point towards other biomarkers by 

searching for the factor that induces elevated SERPINB1 expression in WBCs of breast cancer 

patients. The expression of SERPINB1 could also be evaluated in the WBCs obtained from 

patients who have other types of cancer.  

6.7 Future work 

 Developing a clinical biomarker for diagnosis and screening is a time consuming process 

which is typically much longer than the period of a postgraduate research study. In this study we 

developed a pipeline for biomarker discovery and identified one prospective biomarker, 

SERPINB1, for prognosis of the disease and response to treatment. This investigation is 

continuing and Lyudmyla Pavlova, a current PhD student, who has taken over this project, 

confirmed the main findings described in this report using a larger panel of WBCs whereby the 

levels of Serpin-B1 were higher in the WBCs of patients with breast cancer than in healthy 

donors, the WBCs from lymph node positive participants had more SERPINB1 than from node 

negative and the highest  levels of Serpin-B1 were in the WBCs from the metastatic breast cancer 

cohort ( Figure 6.1). Another possible application for SERPINB1 is the biomarker of response to 

treatment. Recent experiments performed by Lyudmyla Pavlova in WBCs from the metastatic 

breast cancer cohort during chemotherapy and endocrine therapy treatment revealed the potential 

of SERPINB1 to predict the treatment efficacy and outcome (data not shown). SERPINB1 will 

also need to be evaluated in the WBCs of other cancer patients (e.g. prostate cancer and colorectal 

cancer patients- these materials are available in our laboratory and will be tested in due course). 

Development of the methods based on ELISA will be important; they will facilitate screening of 

larger numbers of samples and precisely establish the levels of SERPINB1 in WBCs, which in 

turn can be more accurately correlated with clinical parameters. Proteins ITGA4 and LCN2 are 

still to be validated at the protein levels as they showed promising results in RT-qPCR 

experiments. 
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Figure 6.1 Expression of SERPINB1 in the WBCs of breast cancer patients: SERPINB1 

protein levels were assessed in the WBCs by Western blotting and normalised to β-Actin levels. 

Data were produced by Lyudmyla Pavlova.  
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It has to be noted that only 15 candidates were chosen in the validation phase after a 

very stringent shortlisting process. More candidates for validation can still be obtained from our 

datasets. For example S100 family of proteins have been associated with the progression of 

breast cancer (Emberley et al., 2004). S100A8 and S100A12 appear in the microarray data 

analysed. S100A8 also appears in the metastatic breast cancer patient cohort. SERPINB6 was 

observed in the primary breast cancer and metastatic breast cancer proteomic datasets. The 

validation pipeline used in this study can be applied for validation using initially a small 

number of samples and then expanded with larger panel.  

 The value of this investigation will not only be relevant to the biomarker field but also for 

basic research, i.e. to elucidate the mechanisms of biological processes involved in the 

interaction between the tumour and immune system. The data generated for this study has given 

insight of how the immune system is altered in the breast cancer patients. The effect of breast 

tumour supernatant on immune cells have been previously studied (Eichbaum et al., 2011; 

Kusmartsev and Gabrilovich, 2006; Luboshits et al., 1999). Peripheral WBCs or cell lines can be 

treated with conditioned media after exposure with fresh tissues (normal and breast tumour) or 

selected regulatory molecules (chemokines, cytokines, growth factors).  The effects of these 

factors on WBCs biology in general, or expression of particular genes, including the candidate 

biomarkers identified in this study can be evaluated. Alternatively, immune cell functions such 

as antigen presentation (evaluation of innate and adaptive immune receptors), migration (cell 

migration assays), reactive oxygen species production etc can be tested to identify the systemic 

effect of tumour on the immune system. Purification of individual cell types from the whole 

WBCs population will help understand the function of these cells with the tumours. 



 

200 

 

6.8 General conclusions 

 The proposition that the tumour affects the WBCs in breast cancer patients resulting in 

the changes in the RNA and protein profiles provided the rationale for this study to discover 

novel breast cancer biomarkers. This aim was achieved and a panel of potential biomarkers has 

been generated. One biomarker in particular (SERPINB1) has shown promising results, but more 

samples will have to be analysed before it could be taken to the clinical phase of validation. 

Other shortlisted biomarkers found in this study (ITGA4 and LCN2) show promise but they need 

to be tested further. More additional candidate biomarkers can be selected from the initial list of 

biomarkers using this pipeline. The functional analysis of the data has also provided the insight 

into the immune response to cancer which now needs to be validated by laboratory based 

functional assays. 
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