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Programming
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Abstract—In adaptive dynamic programming, neurocontrol
and reinforcement learning, the objective is for an agent to learn
to choose actions so as to minimise a total cost function. In this
paper we show that when discretized time is used to model the
motion of the agent, it can be very important to do “clipping”
on the motion of the agent in the final time step of the trajectory.
By clipping we mean that the final time step of the trajectory
is to be truncated such that the agent stops exactly at the first
terminal state reached, and no distance further. We demonstrate
that when clipping is omitted, learning performance can fail to
reach the optimum; and when clipping is done properly, learning
performance can improve significantly.

The clipping problem we describe affects algorithms which
use explicit derivatives of the model functions of the environment
to calculate a learning gradient. These include Backpropagation
Through Time for Control, and methods based on Dual Heuristic
Programming. However the clipping problem does not signifi-
cantly affect methods based on Heuristic Dynamic Programming,
Temporal Difference or Policy-Gradient Learning algorithms.

I. INTRODUCTION

IN Adaptive Dynamic Programming (ADP) [1], Neurocon-

trol [2], [3], and Reinforcement Learning (RL) [4], [5], an

agent moves in a state space S ⊂ R
n, such that at integer

time step t, it has state vector ~xt ∈ S. T is a fixed set of

terminal states, with T ⊂ S. At each time t, the agent chooses

an action ~ut which takes it to the next state according to the

environment’s model function

~xt+1 = f(~xt, ~ut), (1)

thus the agent passes through a trajectory of states

(~x0, ~x1, ~x2, . . .), terminating only when (and if) a terminal

state is reached, as illustrated in Fig. 1. As shown in this

figure, clipping is the concept of calculating the exact fraction

in the final time step at which a boundary of terminal states

is reached, and stopping the agent exactly at this boundary.

The name clipping is taken by analogy to the concept in

computer graphics. Without clipping, the discretization of time

would cause the agent to penetrate slightly beyond the terminal

boundary, as shown in the figure.

On transitioning from each state ~xt to the next, the agent

receives an immediate scalar cost Ut from the environment

according to the function

Ut := U(~xt, ~ut). (2)

In addition, if the agent reaches a terminal state ~x ∈ T, then an

additional terminal cost is given by the scalar function Φ(~x).
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Fig. 1: A trajectory reaching a terminal state. The thick curved

line indicates a boundary of terminal states. In this diagram,

clipping does not take place, and the trajectory penetrates

beyond the terminal boundary. When clipping is used correctly,

we intend to stop the agent exactly at the point of intersection

between the trajectory and the terminal boundary.

Throughout this paper, subscripts on variables will be used

to indicate the time step of a trajectory. And from now on in

the paper, we will only consider episodic, or finite horizon,

environments; that is environments where all trajectories are

guaranteed to meet a terminal state eventually.

The ADP problem is for the agent to learn to choose

actions so as to minimise the expectation of the total long-term

cost received from any given start state ~x0. Specifically, the

problem is to find an action network A(~x, ~z), where ~z is the

parameter vector of a function approximator, which calculates

an action

~ut = A(~xt, ~z) (3)

to take for any given state ~xt, such that the following long-

term cost is minimised:

J(~x0, ~z) :=

〈
T−1∑

t=0

γtUt + γTΦ(~xT )

〉
(4)

subject to (1), (2) and (3); where T is the time step at which

the first terminal state is reached (which in general will be

dependent on ~x0 and ~z), where γ ∈ [0, 1] is a constant discount

factor that specifies the relative importance of long-term costs

over short term ones, and where 〈·〉 denotes expectation.

The function J(~x0, ~z) is called the cost-to-go function from

state ~x0, or the value function.

In this paper we show that when a large final impulse

of cost Φ(~x) is given at a terminal state ~x ∈ T, then

failure to do clipping in the final time step of the trajectory

can very significantly distort the direction of the learning

gradient used by certain ADP algorithms, and thus prevent

successful solution of the ADP problem. We also show that

this problem is not lessened by sampling the time steps of

the underlying continuous-time process at a higher rate. This
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problem affects the commonly used ADP algorithms Dual

Heuristic Programming (DHP) [6], [7], and Backpropagation

Through Time (BPTT) [8], both of which are described in

Section II, plus algorithms based on DHP such as Value-

Gradient Learning [9], [10], [11]. These algorithms are all

very closely related to each other [12], [13], and for purposes

of explaining clipping as clearly as possible, we will use BPTT

as the example.

BPTT works by calculating the quantity ∂J
∂~z

directly and

very efficiently for each trajectory sampled, enabling gradient

descent to be performed on J with respect to ~z. However if

clipping is omitted then the gradient that BPTT calculates can

be distorted enough to prevent learning. Fig. 2 illustrates the

problems that arise without clipping.
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(a) Spurious zigzag gradients can
occur when clipping is not used.
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(b) The graph of R versus θ yields
no useful local gradient informa-
tion. Hence minimising R with re-
spect to θ using only dR/dθ would
be impossible.

Fig. 2: An example of the problems that can occur when

clipping is not used.

In Fig. 2a the agent starts at O and travels in a straight line

at a constant speed, along a fixed chosen initial angle, θ. The

straight line AB is a terminal boundary (i.e. a continuous line

of states in T). The dotted arcs represent the integer time steps

that the agent passes through. If clipping is not used then the

agent will stop on the first integer time step (i.e. on the first

dotted arc) after passing the terminal boundary. This means

the agent will finally stop at a point somewhere on the bold

zigzag path from A to B. In Fig. 2b we see how the distance the

agent travelled before stopping (R) varies with θ. If the cost-

to-go function J was defined to be the total distance travelled

before termination (i.e. if J := R), and the parameter vector

of J was defined to be θ, then the ADP objective would be to

minimise R with respect to θ. But Fig. 2b shows that there is

no useful gradient information for learning, since ∂J
∂θ

= ∂R
∂θ

=
0, whenever it exists, and hence gradient descent on J with

respect to θ would fail without clipping.

Situations can get even worse than this: In Fig. 3 we show a

pathological example where the gradient of the graph is always

in the opposite direction of the global minimum of R. This

could occur for example if we were trying to minimise the

function J := R+y with respect to θ, for the situation in Fig.

2a, where y is the final y-coordinate of the agent, and R is

the distance travelled before stopping.

In general, increasing the sampling rate of the discretization

of time will not solve the problem, since that would simply

make the dotted arcs in Fig. 2a squeeze closer together, and

will make the teeth of the saw-tooth blade shape in Fig. 3 finer.
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Fig. 3: A pathological example: Local gradient is opposite to

global gradient.

The gradients in Figs. 2b and 3 would still not be helpful for

learning.

We show how to solve the problem by incorporating clip-

ping into the model and cost functions, f(~x, ~u) and U(~x, ~u),
when terminal states are reached. BPTT and DHP make

intensive use of the derivatives of these two functions, and

hence we must carefully differentiate through the clipped

versions of these functions. This is the important step that

we derive in this paper, and this step corrects the gradient
∂J
∂~z

to make it suitable for learning, and solves the problems

explained by Fig. 2 and Fig. 3.

As well as terminal boundaries in state space that deliver

impulses of cost, similar corrections would need making in

environments where the model and cost functions change

their behaviour discontinuously as the agent traverses a given

continuous boundary in state space. These boundaries would

act as refraction layers do to photons. As the agent crosses

them, the learning gradient ∂J
∂~z

would get twisted. The solution

to this problem is similar to the one we propose for terminal

boundaries, but we do not consider these non-terminal refrac-

tion layers any more in this paper.

The necessity for clipping affects any algorithm which cal-

culates the derivatives of the model function, i.e. ∂f
∂~x

directly,

and when terminal states that deliver impulses of cost are

present. For example the RL method of [14], which imple-

ments a continuous-time numerical differentiation to evaluate
∂J
∂~z

, will also be affected by this clipping problem. Likewise,

the ADP methods of BPTT, DHP, GDHP [15] and Value-

Gradient Learning are also affected by the requirement for

clipping.

Clipping is not necessary for any problem where the termi-

nation condition is simply when a fixed integer number of time

steps is reached, as we discuss further in Section III-D. Also

our experiments in this paper show that the ADP algorithm

called Heuristic Dynamic Programming (HDP, [6], [1], [7])

does not need clipping, since this algorithm does not make

significant use of the derivatives of the model function. For

the same reasons, the Policy-Gradient Learning methods of

[16], [17] do not require clipping either. We discuss Policy-

Gradient methods in Section V.

In the rest of this paper, in Section II we describe the

affected ADP algorithms for control problems. In Section

III we describe how to do the clipping and differentiate

through the modified model functions, as is required for

effective gradient descent. In Section IV we give experimental

details of neural-network control problems, both with and

without clipping. One of these problems is the classic cart-

pole benchmark problem which we formulate in a way that
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would be impossible for DHP to solve without clipping, and

we show that the clipping methods enable us to solve this

problem efficiently. In Section V we describe Policy-Gradient

Learning methods and discuss why they don’t require clipping,

despite the methods’ similarity to BPTT. That section also

reviews the pros and cons between BPTT and Policy-Gradient

methods. Finally, in Section VI, we give conclusions.

II. THE ADP/RL LEARNING ALGORITHMS

We describe three main ADP/RL algorithms first in their

forms without clipping. The modifications necessary for clip-

ping will be given in Section III.

A. Backpropagation Through Time for Control

Backpropagation Through Time (BPTT) can be applied to

control problems, as described by [8]. In this section we derive

and describe the algorithm. This is an algorithm that requires

clipping in the environments we consider in this paper.

BPTT is an efficient algorithm to calculate ∂J
∂~z

for a given

trajectory. The combination of the BPTT gradient calculation

with a gradient descent weight update can be used to solve

control problems, i.e. by the weight update ∆~z = −α∂J
∂~z

for

some small positive learning rate α.

Throughout this paper we make a notational convention that

all vectors are columns, and differentiation of a scalar by a

vector gives a column vector (e.g. ∂J
∂~x

is a column). We define

differentiation of a vector function by a vector argument as the

transpose of the usual Jacobian notation. For example,
∂A(~x,~z)

∂~x

is a matrix with element (i, j) equal to ∂Aj

∂~xi . Similarly, ∂f
∂~x

is

the matrix with element
(

∂f
∂~x

)ij
= ∂fj

∂~xi .

Parentheses subscripted with a “t” are what we call

trajectory-shorthand notation, which we define to indicate

that a quantity is evaluated at time step t of a trajectory.

For example
(
∂U
∂~u

)
t

is shorthand for the function
∂U(~x,~u)

∂~u

evaluated at (~xt, ~ut). Similarly,
(
∂J
∂~x

)
t+1

:= ∂J(~x,~z)
∂~x

∣∣∣
(~xt+1,~z)

,

and
(
∂A
∂~z

)
t
:= ∂A(~x,~z)

∂~z

∣∣∣
(~xt,~z)

For any given trajectory starting at state ~x0, the function

J(~x0, ~z) given by (4) can be written recursively using equa-

tions (1)-(3), as:

J(~x, ~z) := U(~x,A(~x, ~z)) + γJ(f(~x,A(~x, ~z)), ~z) (5)

with J(~xT , ~z) := Φ(~xT ) at the trajectory’s terminal state,

~xT ∈ T.
Differentiating (5) with respect to ~z, and applying the chain

rule, gives:
(

∂J

∂~z

)

t

=

(

∂

∂~z
(U(~x,A(~x, ~z)) + γJ(f(~x,A(~x, ~z)), ~z))

)

t

by (5)

=

(

∂A

∂~z

)

t

(

(

∂U

∂~u

)

t

+ γ

(

∂f

∂~u

)

t

(

∂J

∂~x

)

t+1

)

+ γ

(

∂J

∂~z

)

t+1

where we used the chain rule, equations (1)-(3) and trajectory-

shorthand notation. In this equation there are implied matrix-

vector products that make use of the matrix notation defined

above.

Expanding this recursion gives:

(
∂J

∂~z

)

0

=
∑

t≥0

γt

(
∂A

∂~z

)

t

((
∂U

∂~u

)

t

+ γ

(
∂f

∂~u

)

t

(
∂J

∂~x

)

t+1

)

(6)

This equation refers to the quantity ∂J
∂~x

which can be found

recursively by differentiating (5) with respect to ~x, and using

the chain rule, giving:

(
∂J

∂~x

)

t

=

(
∂U

∂~x

)

t

+ γ

(
∂f

∂~x

)

t

(
∂J

∂~x

)

t+1

+

(
∂A

∂~x

)

t

((
∂U

∂~u

)

t

+ γ

(
∂f

∂~u

)

t

(
∂J

∂~x

)

t+1

)

(7)

with (
∂J

∂~x

)

T

=

(
∂Φ

∂~x

)

T

(8)

at the terminal state, ~xT ∈ T.

Equation (7) can be understood to be back-propagating

the quantity
(
∂J
∂~x

)
t+1

through the action network, model and

cost functions to obtain
(
∂J
∂~x

)
t
, and giving the algorithm its

name. Pseudocode for the whole BPTT algorithm is given in

Alg. 1, where lines 2, 6 and 7 of the algorithm come from

equations (8), (6) and (7) respectively. In the algorithm, the

vector ~p holds the backpropagated value for ∂J
∂~x

. Qx and Qu

are the derivatives of the Q-function with respect to ~x and ~u
respectively, where the Q-function is defined by

Q(~x, ~u, ~z) := U(~x, ~u) + γJ(f(~x, ~u), ~z).

The Q-function is a model based version of the Q-function

defined in Q-learning [18]. It is similar to the cost-to-go

function’s recursive definition (5), but it differs in that it

allows the first action chosen to be independent of the action

network. This will be useful in deriving the clipping equations

in Section III, but for now Qx and Qu can just be treated as

internal variables in Alg. 1. The BPTT algorithm runs in time

O(dim(~z)) per trajectory step.

Algorithm 1 Backpropagation Through Time for Control.

Require: Trajectory calculated by (1) and (3).

1:
∂J
∂~z
← ~0

2: ~p←
(
∂Φ
∂~x

)
T

3: for t = T − 1 to 0 step −1 do

4: Qx ←
(
∂U
∂~x

)
t
+ γ

(
∂f
∂~x

)

t
~p

5: Qu ←
(
∂U
∂~u

)
t
+ γ

(
∂f
∂~u

)

t
~p

6:
∂J
∂~z
← ∂J

∂~z
+ γt

(
∂A
∂~z

)
t
Qu

7: ~p← Qx +
(
∂A
∂~x

)
t
Qu

8: end for

9: ~z ← ~z − α∂J
∂~z
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B. Dual Heuristic Programming (DHP) and Heuristic Dy-

namic Programming (HDP)

Dual Heuristic Programming (DHP) and Heuristic Dynamic

Programming (HDP) are ADP algorithms which use a critic

function, and can require clipping in the environments we

consider in this paper. Both of these algorithms were originally

by Werbos [6] and are described more recently by [7], [19],

[1], and we define them briefly here.

The use of critic functions allows these two algorithms

to apply their learning rule on-line, unlike the previously

described BPTT which needed to wait until a trajectory was

completed before it could apply the learning weight update.

DHP makes use of a vector-critic function G̃(~x, ~w) which

produces a vector output of dimension R
dim(~x). This could

be the output of a neural network with weight vector ~w and

dim(~x) inputs and outputs. The DHP weight update attempts

to make the function G̃(~x, ~w) learn to output the gradient ∂J
∂~x

.

HDP uses a scalar-critic function Ṽ (~x, ~w) which produces a

scalar output. This could be the output of a neural network

with weight vector ~w and dim(~x) inputs, and just one output

node. The HDP weight update attempts to make the function

Ṽ (~x, ~w) learn to output the function J(~x, ~z) for all ~x ∈ S.

HDP is equivalent to the algorithm “TD(0)” from the RL

literature [20].

Pseudocode for DHP is given in Alg. 2. Line 9 of the

algorithm trains the critic with a learning rate β > 0, and

line 10 implements a commonly used actor weight update

described by [7] (using a learning rate α > 0). The algorithm

uses the same matrix notation for Jacobians and trajectory-

shorthand notation as described in Section II-A, so that for

example
(

∂G̃
∂ ~w

)

t
is the function ∂G̃

∂ ~w
evaluated at (~xt, ~w).

Pseudocode for HDP is given in Alg. 3. Lines 8 and 9

give the critic and action-network weight updates, respectively.

Again the action-network weight update is the one described

by [7], but model-free alternatives which don’t require knowl-

edge of the derivatives of f are also possible (e.g. [4, ch.6.6],

or [21, sec 4.2]).

Backpropagation ([22], [23]) can be used to efficiently

calculate ∂Ṽ
∂ ~w

, ∂Ṽ
∂~x

and the products involving ∂A
∂~z

and ∂G̃
∂ ~w

.

Using this method, both DHP and HDP can be implemented

in a running time of O(n) operations per time step of the

trajectory, where n = max(dim(~w), dim(~z)).

III. USING AND DIFFERENTIATING CLIPPING IN

LEARNING

In this section we derive the formulae for the clipped model

and cost functions, and their derivatives. We will denote the

clipped versions of the original functions with a superscripted

C, so that fC , UC and JC will be the function names we

use for the clipped versions of the model, cost and cost-

to-go functions, respectively. The functions fC and UC are

only defined for any state ~xt that occurs immediately before a

terminal state is reached, i.e. for which ~xt /∈ T and for which

f(~xt, ~ut) ∈ T.

These three clipped functions, fC , UC and JC , are key

concepts in this paper, because defining them clearly allows

us to differentiate them carefully, and hence calculate the

Algorithm 2 DHP with a Critic Network G̃(~x, ~w) and

Action Network A(~x, ~z).

1: t← 0
2: while ~xt /∈ T do

3: ~ut ← A(~xt, ~z)
4: ~xt+1 ← f(~xt, ~ut)
5: ~p← G̃(~xt+1, ~w)

6: Qx ←
(
∂U
∂~x

)
t
+ γ

(
∂f
∂~x

)

t
~p

7: Qu ←
(
∂U
∂~u

)
t
+ γ

(
∂f
∂~u

)

t
~p

8: ~e← Qx +
(
∂A
∂~x

)
t
Qu − G̃(~xt, ~w)

9: ~w ← ~w + β
(

∂G̃
∂ ~w

)

t
~e {Critic network update}

10: ~z ← ~z − α
(
∂A
∂~z

)
t
Qu {Action network update}

11: t← t+ 1
12: end while

13: ~e←
(
∂Φ
∂~x

)
t
− G̃(~xt, ~w)

14: ~w ← ~w + β
(

∂G̃
∂ ~w

)

t
~e {Final critic update}

Algorithm 3 HDP with a Critic Network Ṽ (~x, ~w) and

Action Network A(~x, ~z).

1: t← 0
2: while ~xt /∈ T do

3: s← 1
4: ~ut ← A(~xt, ~z)
5: ~xt+1 ← f(~xt, ~ut)

6: ~p←
(

∂Ṽ
∂~x

)

t+1

7: Qu ←
(
∂U
∂~u

)
t
+ γ

(
∂f
∂~u

)

t
~p

8: ~w ← ~w+β
(

∂Ṽ
∂ ~w

)

t

(
sU(~xt, ~ut) + γṼ (~xt+1, ~w)− Ṽ (~xt, ~w)

)

{Critic network update}
9: ~z ← ~z − α

(
∂A
∂~z

)
t
Qu {Action network update}

10: t← t+ 1
11: end while

12: ~w ← ~w + β
(

∂Ṽ
∂ ~w

)

t

(
Φ(~xt)− Ṽ (~xt, ~w)

)
{Final critic

update}

learning gradients correctly. This is what allows us to solve the

clipping problem. Hence this section is the main contribution

of this paper, in terms of implementation details for solving

the clipping problem.

A. Calculation of the Clipped Model and Cost Functions

Suppose the agent is transitioning between states ~xt and

f(~xt, ~ut), and the state f(~xt, ~ut) would be beyond the ter-

minal boundary unless clipping was applied. To calculate the

clipping correctly, we imagine this state transition as occurring

along the straight line segment from ~xt to f(~xt, ~ut), i.e. the

straight line given parametrically by position vector

~r = ~xt + s~v, (9)

where

~v = f(~xt, ~ut)− ~xt, (10)
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~xt

f(~xt, ~ut)

fC(~xt, ~ut, ~P , ~n)
~v

~n ~P

Tangent Plane of
Terminal Boundary

Fig. 4: The final state transition of a trajectory crossing the

tangent plane of a terminal boundary. The unclipped line goes

from ~xt to f(~xt, ~ut). The line intersects the plane at a point

given by the new clipped model function fC(~xt, ~ut, ~P , ~n).

and s ∈ [0, 1] is a real parameter. This is illustrated in Fig. 4.

This straight line must intersect a boundary of terminal

states. At the point of intersection, the tangent plane of the

terminal boundary is given by (~r − ~P ) · ~n = 0 (i.e. where ~r
is an arbitrary position vector that lies on a plane which has

normal ~n and passes through a point with position vector ~P ,

and where “·” denotes the inner product between two vectors),

as illustrated in Fig. 4. The constants ~P and ~n should be

available from either the physical environment or from the

collision-detection routine of the simulated environment.

At the intersection of the line and the plane, we have

(~xt + s~v − ~P ) · ~n = 0

⇒s =
(~P − ~xt) · ~n

~v · ~n
.

This value of s is a real number between 0 and 1 which

indicates the fraction along the transition line from ~xt to

f(~xt, ~ut) at which the terminal boundary was encountered. We

will refer to the value s as the “clipping fraction”, and since

it depends on ~xt, ~ut, ~P and ~n, it is defined by the function:

s := S(~xt, ~ut, ~P , ~n) :=
(~P − ~xt) · ~n

(f(~xt, ~ut)− ~xt) · ~n
. (11)

Hence the clipped value of the final state is ~xt+1 = ~xt +
S(~xt, ~ut, ~P , ~n)(f(~xt, ~ut)− ~xt), which is found by combining

equations (9), (10) and (11). This gives the function for the

clipped model function as

fC(~x, ~u, ~P , ~n) := ~x+ S(~x, ~u, ~P , ~n)(f(~x, ~u)− ~x). (12)

Assuming that “cost” is delivered at a uniform rate during

the final state transition, the total clipped cost would be

proportional to the clipping fraction, giving:

UC(~x, ~u, ~P , ~n) := S(~x, ~u, ~P , ~n)U(~x, ~u). (13)

Since the final clipped time step has duration s ∈ [0, 1],
the terminal cost Φ(~xT ) should only receive a discount of γs

instead of the full discount γ. Hence, at the penultimate time

step, ~xT−1, the total cost-to-go is

JC(~xT−1, ~z) := UC(~xT−1, ~uT−1, ~P , ~n) + γsΦ(~xT ). (14)

Deciding to use γs in place of γ might seem like a trivial de-

tail, but when differentiated, it provides useful information for

the correct learning gradient, with clipping. This detail allows

us to solve a version of the cart-pole benchmark problem, in

Section IV-B, which would otherwise be impossible for DHP.

Alg. 4 illustrates how equations (1)-(3) and (11)-(14) would

be used to evaluate a trajectory with clipping.

Algorithm 4 Unrolling a Trajectory with Clipping.

1: t← 0, JC ← 0
2: while ~xt /∈ T do

3: ~ut ← A(~xt, ~z)
4: ~xt+1 ← f(~xt, ~ut)
5: if ~xt+1 ∈ T then

6: Identify ~P and ~n by inspection of the intersection

with the terminal boundary, T.

7: s← S(~xt, ~ut, ~P , ~n) {using (11)}
8: T ← t+ 1
9: ~xT ← ~xt + s (~xT − ~xt)

10: JC ← JC + (γt) (sU(~xt, ~ut) + γsΦ(~xT ))
11: else

12: JC ← JC + (γt)U(~xt, ~ut)
13: end if

14: t← t+ 1
15: end while

Note that ~P and ~n are required by equations (11)-(13).

These would be found during the collision-detection routine

(i.e. line 6 of Alg. 4), from knowledge of the terminal-

boundary orientation, together with knowledge of ~xT−1 and

f(~xT−1, ~uT−1). Knowledge of the orientation of the terminal

boundary could come from a model of the physical environ-

ment’s boundary; or if this model was not available, then a

physical inspection of the actual boundary would need to take

place. Examples of how these two vectors were found in our

experiments are given in Sections IV-A and IV-B.

B. Calculation of the Derivatives of the Clipped Model and

Cost Functions

The ADP algorithms described in Section II require the

derivatives of the model function, and hence they will require

the derivatives of the clipped model function fC(~x, ~u, ~P , ~n)
too. Fig. 5 shows how different the derivative of fC can be

from the derivative of f , and hence how important it is to get

this correct in ADP/RL. This figure clarifies why algorithms

that are dependent on ∂fC

∂~x
are critically affected by the need

for clipping, and also that just reducing the duration of each

time step tracking or simulating the motion will not solve the

problem at all.

Differentiating the formula for S(~x, ~u, ~P , ~n) in (11) gives:

∂S(~x, ~u, ~P , ~n)

∂~x
=

∂

∂~x

(
(~P − ~x) · ~n

(f(~x, ~u)− ~x) · ~n

)
by (11)

=
−~n

~v · ~n
−

(~P − ~x) · ~n

(~v · ~n)2
∂(f(~x, ~u)− ~x) · ~n

∂~x

using (10)
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Terminal Boundary

~xA

f(~xA, ~uA)
∆~xA

~xB

fC(~xB , ~uB , ~P , ~n)

∆~xB

∆f(~xA, ~uA)

∆fC(~xB , ~uB , ~P , ~n)

Fig. 5: This diagram shows how the derivatives of the model

function f(~x, ~u) radically change as the agent approaches

a terminal boundary. The straight line segment from ~xA to

f(~xA, ~uA) represents a state transition that is not intersect-

ing the terminal boundary. If the start of this line segment

is perturbed in the direction of the arrow ∆~xA then its

other end will move in the direction indicated by the arrow

∆f(~xA, ~uA). The line segment below, however, which starts

at ~xB , does reach the terminal boundary. If the start of this

line segment is moved in the direction of ∆~xB , then its end

will move in a perpendicular direction, as indicated by the

arrow ∆fC(~xB , ~uB , ~P , ~n). This indicates that
(

∂fC

∂~x

)

A
is very

different from
(

∂f
∂~x

)

B
, and hence this needs treating carefully

in the ADP algorithms.

=
−~n

~v · ~n
−

(~P − ~x) · ~n

(~v · ~n)2

(
∂f

∂~x
− I

)
~n (15)

where I is the identity matrix, and the matrix notation is as

defined in Section II-A. Similarly,

∂S(~x, ~u, ~P , ~n)

∂~u
=

∂

∂~u

(
(~P − ~x) · ~n

(f(~x, ~u)− ~x) · ~n

)
by (11)

=−
(~P − ~x) · ~n

(~v · ~n)2
∂(f(~x, ~u)− ~x) · ~n

∂~u
using (10)

=−
(~P − ~x) · ~n

(~v · ~n)2

(
∂f

∂~u

)
~n (16)

Using these derivatives of S(~x, ~u, ~P , ~n), we can now dif-

ferentiate the clipped model and cost functions, giving:

∂fC(~x, ~u, ~P , ~n)

∂~x
= I +

∂S

∂~x
~vT + s

(
∂f

∂~x
− I

)

by (10)-(12) (17)

∂fC(~x, ~u, ~P , ~n)

∂~u
=

∂S

∂~u
~vT + s

∂f

∂~u
by (10)-(12) (18)

∂UC(~x, ~u, ~P , ~n)

∂~x
=

∂S

∂~x
U(~x, ~u) + s

∂U

∂~x
by (13) (19)

∂UC(~x, ~u, ~P , ~n)

∂~u
=

∂S

∂~u
U(~x, ~u) + s

∂U

∂~u
by (13) (20)

The cost-to-go function for the penultimate time step, equa-

tion (14), can be rewritten as a Q-function of both ~x and ~u,

to give

Q(~xT−1, ~uT−1) :=UC(~xT−1, ~uT−1, ~P , ~n)

+ γsΦ(fC(~xT−1, ~uT−1, ~P , ~n)). (21)

Differentiating this with respect to ~uT−1 or ~xT−1 gives:
(
∂Q

∂•

)

T−1

=

(
∂UC

∂•

)

T−1

+ γs

((
∂fC

∂•

)

T−1

(
∂Φ

∂~x

)

T

+ (ln γ)

(
∂S

∂•

)

T−1

Φ(~xT )

)
(22)

where • represents either ~u or ~x.

This equation, which relies upon the derivatives of

fC(~x, ~u, ~P , ~n) and UC(~x, ~u, ~P , ~n) (as defined in equations

(15) to (20)), can be used to modify BPTT from Alg. 1 into

its corresponding “with clipping” version given in Alg. 5.

Equation (22) appears in the algorithm directly in lines 9-10.

The DHP and HDP algorithms need similar modifications

to convert them to include clipping. Pseudocode for DHP

with clipping is given in Alg. 6. In addition to those clipping

modifications included in this algorithm, a further useful

modification is line 4 which obviates the need for the “final

critic update” line which appears in Alg. 2. This modification

was included because G̃(~x, ~w) can change discontinuously at

the final time step of a trajectory, as indicated in Fig. 5, which

would cause a small but unnecessary difficulty for learning by

a smooth neural network.

Pseudocode for HDP with clipping can be generated by

replacing the line “~xt+1 ← f(~xt, ~ut)” of Alg. 3 by lines 4-13

of Alg. 4, and replacing the line that calculates Qu by lines

5-14 of Alg. 5.

Algorithm 5 Backpropagation Through Time for Control,

with Clipping.

1: Unroll full trajectory from start state ~x0 using Alg. 4, and

retain the variables ~xt, ~ut, T , s, ~P and ~n.

2:
∂J
∂~z
← ~0

3: ~p←
(
∂Φ
∂~x

)
T

4: for t = T − 1 to 0 step −1 do

5: if ~xt+1 ∈ T then

6: Calculate
(
∂S
∂~x

)
t

and
(
∂S
∂~u

)
t

by (15) and (16).

7: Calculate
(

∂fC

∂~x

)

t
and

(
∂fC

∂~u

)

t
by (17) and (18).

8: Calculate
(

∂UC

∂~x

)

t
and

(
∂UC

∂~u

)

t
by (19) and (20).

9: Qx ←
(

∂UC

∂~x

)

t

+γs
((

∂fC

∂~x

)

t
~p+ (ln γ)

(
∂S
∂~x

)
t
Φ(~xT )

)

10: Qu ←
(

∂UC

∂~u

)

t

+γs
((

∂fC

∂~u

)

t
~p+ (ln γ)

(
∂S
∂~u

)
t
Φ(~xT )

)

11: else

12: Qx ←
(
∂U
∂~x

)
t
+ γ

(
∂f
∂~x

)

t
~p

13: Qu ←
(
∂U
∂~u

)
t
+ γ

(
∂f
∂~u

)

t
~p

14: end if

15:
∂J
∂~z
← ∂J

∂~z
+ γt

(
∂A
∂~z

)
t
Qu

16: ~p← Qx +
(
∂A
∂~x

)
t
Qu

17: end for

18: ~z ← ~z − α∂J
∂~z
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Algorithm 6 DHP with Clipping.

1: t← 0
2: while ~xt /∈ T do

3: Evaluate ~xt+1, with clipping, by lines 3-13 of Alg. 4.

4: ~p←

{(
∂Φ
∂~x

)
t+1

if ~xt+1 ∈ T

G̃(~xt+1, ~w) if ~xt+1 /∈ T

5: Calculate Qx and Qu by lines 5-14 of Alg. 5.

6: ~e← Qx +
(
∂A
∂~x

)
t
Qu − G̃(~xt, ~w)

7: ~w ← ~w + β
(

∂G̃
∂ ~w

)

t
~e {Critic network update}

8: ~z ← ~z − α
(
∂A
∂~z

)
t
Qu {Action network update}

9: t← t+ 1
10: end while

C. Implementing Clipping Efficiently and Correctly

To demonstrate how clipping would be correctly imple-

mented with an ADP/RL algorithm, we use the BPTT al-

gorithm for illustration. In an implementation of BPTT with

clipping, we would first evaluate a trajectory by Alg. 4. During

this stage, we would record the full trajectory (~x0, ~x1, . . . , ~xT )
and actions (~u0, ~u1, . . . , ~uT−1) and also, during the collision

with the terminal boundary, we would record ~P and ~n and the

clipping fraction, s. We then have enough information to be

able to run the BPTT algorithm with clipping (Alg. 5).

To ensure the correctness of our implementations in each

experiment and environment which we tackled, we first veri-

fied all of the derivatives of S(~x, ~u, ~P , ~n), fC(~x, ~u, ~P , ~n) and

UC(~x, ~u, ~P , ~n) numerically, with respect to both ~x and ~u,

at least a few times. When all of these derivatives were all

satisfactorily programmed and checked, we then checked by

numerical differentiation that the overall BPTT implementa-

tion was calculating the derivative ∂JC

∂~z
correctly.

For an example of the numerical differentiations used,

the final check of BPTT was done by a central-differences

numerical derivative for each component i of the weight vector

~z, to verify that

∂JC

∂~zi
=

JC(~x0, ~z + ǫ~ei)− JC(~x0, ~z − ǫ~ei)

2ǫ
+O(ǫ2)

where ǫ is a small positive constant, and ~ei is the ith Euclidean

standard basis vector. In this verification equation, each JC(·)
term appearing in the right-hand side would be computed by

executing Alg. 4 from the trajectory start point ~x0; and the

theoretical value of ∂JC

∂~z
appearing in the left-hand side would

be computed by Alg. 5.

In HDP and DHP, the derivatives of S(~x, ~u, ~P , ~n),
fC(~x, ~u, ~P , ~n) and UC(~x, ~u, ~P , ~n) would be calculated and

verified as above. However with HDP and DHP it is more

difficult to check the overall critic weight updates numerically,

since they are not true gradient descent on any analytic

function [24]. For these algorithms, it is still possible to verify

the key algorithmic modifications related to clipping, by just

checking the derivatives of the Q-function given by (22). These

derivatives can be compared to the numerical derivatives of

(21) with respect to ~x and ~u.

D. Clipping with Trajectories of Fixed or Variable Length

In situations where trajectories are of predetermined

fixed length, clipping is not necessary. This is in contrast

to the problems considered in the introduction, which

were variable-length problems, since the trajectory lengths

were determined by the environment (e.g. a trajectory

terminates only when the agent crashes into a wall).

In this section we will consider the difference between

these two types of episodic problem, i.e. between fixed-

length and variable-length problems. Only in variable-

length problems is clipping necessary.

In the fixed-length problem, the clipping fraction defined

by (11) is always s ≡ 1, and therefore ∂S
∂~x

= ~0, ∂S
∂~u

= ~0 and

γs = γ. Hence the clipped model and cost functions are

identical to their unclipped counterparts, and therefore it is

not necessary to implement any program code specifically

to handle clipping. This might be one reason why the need

for clipping has not previously been noted in the research

literature, since most episodic problems considered have

been fixed-length.

However the fixed-length problem does have one minor

different complication, in that it is often necessary to

include the time step into the state vector. This is because

the optimal actions and cost-to-go function will often be

dependent upon the number of incomplete steps in a

trajectory.

Of course for both fixed-length and variable-length

problems, it is important to ensure the terminal cost

function Φ(~x) is learnt correctly by the learning algorithm.

The pseudocode shows explicitly how to do this (e.g. for

BPTT, see line 2 of Algs. 1 and 5. For DHP and HDP,

see lines commented as “final critic update”, and line 4 of

Alg. 6.)

IV. EXPERIMENTAL RESULTS

This section describes two neural-network based ADP/RL

control problems which require clipping to be solved well.

In all experiments the action and critic networks used were

multi-layer perceptrons (MLPs, see [25] for details). Each

MLP had dim(~x) input nodes, 2 hidden layers of 6 nodes each,

and one output layer, with short-cut connections connecting

all pairs of layers. The output layers were dimensioned as

follows: Each action network had dim(~u) output nodes; each

HDP critic network had 1 output node; and each DHP critic

had dim(~x) output nodes. All network nodes had bias weights,

as is usual in MLP architectures. The activation functions

used were hyperbolic tangent functions, except for the critic

network’s output layer which was always a linear activation

function (with linear slope as specified in the individual

experiments, below). At the start of each experimental trial,

neural weights were initialised randomly in the range [−.1, .1],
with uniform probability distribution.

A. Vertical-Lander problem

A spacecraft is dropped in a uniform gravitational field,

and its objective is to make a fuel-efficient gentle landing.

The spacecraft is constrained to move in a vertical line, and a
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single thruster is available to make upward accelerations. The

state vector ~x = (h, v, u)T has three components: height (h),

velocity (v), and fuel remaining (u). The action vector, a, is

one-dimensional (so that ~u ≡ a ∈ R) producing accelerations

a ∈ [0, 1]. The Euler method with time-step ∆t is used to

integrate the motion, giving model functions:

f((h, v, u)T , a) :=(h+ v∆t, v + (a− kg)∆t, (ku)u− a∆t)T

U((h, v, u)T , a) :=(kf )a∆t (23)

Here, kg = 0.2 is a constant giving the acceleration due to

gravity; the spacecraft can produce greater acceleration than

that due to gravity. kf = 4 is a constant giving fuel penalty.

ku = 1 is a unit conversion constant. We used ∆t = 1 in our

main experiments here.

Trajectories terminate as soon as the spacecraft hits the

ground (h = 0) or runs out of fuel (u = 0). These two

conditions define T. This is a variable-length problem, and

there is no need to use a discount factor, so we fixed γ = 1.

On termination, the algorithms need to choose values for ~P ,

and ~n which describe the orientation of the terminal-boundary

tangent plane. These choices are given for this experiment in

Table I. In the case that the final unclipped state transition

crosses both terminal planes, then the one that is crossed first

(i.e the one that produces a smaller clipping fraction by (11))

is to be used.

In addition to the cost function U(~x, a) defined above, a

final impulse of cost defined by,

Φ(~xT ) :=
1

2
mv2 +m(kg)h, (24)

is given as soon as the lander reaches a terminal state, where

m = 2 is the mass of the spacecraft. The two terms in the

final impulse of cost are the kinetic and potential energy,

respectively. The first cost term penalises landing too quickly.

The second term is a cost term equivalent to the kinetic energy

that the spacecraft would acquire by crashing to the ground

under free fall (i.e. with a = 0), so to minimise this cost the

spacecraft must learn to not run out of fuel.

The input vector to the action and critic networks was

~x′ = (h/100, v/10, u/50)
T

, and the model and cost functions

were redefined to act on this rescaled input vector directly.

The action network’s output y was rescaled to give the action

by A(~x, ~z) := (y + 1)/2 directly. We tested each algorithm

in batch mode, operating on five trajectories simultaneously.

Those five trajectories had fixed start points, which had been

randomly chosen in the region h ∈ (0, 100), v ∈ (−10, 10)
and u = 30.

Fig. 6 shows learning performance of the BPTT, DHP

and HDP algorithms, both with and without clipping. Each

graph shows five curves, and each curve shows the learning

performance from a different random weight initialisation. The

learning rates for the three algorithms were: BPTT (α = 0.01);

DHP (α = 0.001, β = 0.00001); and HDP (α = 0.00001,

β = 0.00001). The critic-network’s output layer’s activation

function had a linear slope of 20 in the DHP experiment and 10

in the HDP experiment. In BPTT and DHP, the true derivatives

of equations (23)-(24) were used where needed.

TABLE I: Terminal Boundary Planes used in vertical-lander

experiment. The state vector used here is ~x = (h, v, u)T .

Termination Position Vector Normal Vector

Condition Breached of Plane, ~PT to Plane, ~nT

h ≤ 0 (hits ground) (0,0,0) (1,0,0)

u ≤ 0 (no fuel) (0,0,0) (0,0,1)

Because HDP is an algorithm which requires stochastic

exploration to optimise the ADP/RL problem effectively [26],

in the HDP experiment we had to modify (3) to choose

exploratory actions. Hence for the HDP experiment we used

~ut = A(~xt, ~z) +Xσ, (25)

where Xσ is a normally distributed random variable with mean

zero and standard deviation σ = 0.1.

These graphs show the clear stability and performance

advantages of using clipping correctly for the BPTT and DHP

algorithms. The graphs also confirm that the HDP algorithm is

not significantly affected by the need for clipping. The reason

that clipping is important for BPTT and DHP is illustrated in

Fig. 8.

Fig. 7 shows that the need for clipping is not diminished

just by using a smaller ∆t value.
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Fig. 6: Vertical-Lander solutions by BPTT, DHP and HDP

using ∆t = 1.
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Fig. 7: Vertical Lander with ∆t = 0.01.
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v

h

Fig. 8: The tail end of an optimal trajectory in the vertical-

lander problem. As the spacecraft lands gently, it increases

the velocity (v) as it approaches the ground (h = 0), hence

making the curved trajectory shown. As the trajectory curve

approaches the terminal boundary, clipping affects the gradient
∂fC

∂~x
as shown in Fig. 5, and hence this twists the gradient ∂JC

∂~x

discontinuously at the terminal state ~xT .

F

θ

x

Fig. 9: Cart-pole benchmark problem. A pole with a pivot

at its base is balancing on a cart. The objective is to apply

a changing horizontal force F to the cart which will move

the cart backwards and forwards so as to balance the pole

vertically. State variables are pole angle, θ, and cart position,

x, plus their derivatives with respect to time, θ̇ and ẋ.

B. Cart-Pole Experiment

We investigated the effects of clipping in the well known

cart-pole benchmark problem described in Fig. 9. We con-

sidered the version of this problem used by [27], where the

total trajectory cost is a function of the duration that the

pole could be balanced for. Clearly, unless clipping is used

properly, the duration will be an integer number of time steps,

and since this is not smooth and differentiable, it will cause

problems (become impossible) for DHP and BPTT. Hence

traditionally when DHP or BPTT are used for the cart-pole

problem, a different cost function would be used, one that

is differentiable and proportional to the deviation from the

balanced position (e.g. see [28]). However in this section we

show that by using clipping, DHP and BPTT can be successful

with the duration-based reward. Since it is not possible to do

this without clipping, we assume this is the first published

version of this solution by DHP/BPTT.

The equation of motion for the frictionless cart-pole system

([27], [29], [28]) is:

θ̈ =
g sin θ − cos θ

[
F+mlθ̇2 sin θ

mc+m

]

l
[
4
3 −

m cos2 θ
mc+m

] (26)

ẍ =
F +ml

[
θ̇2 sin θ − θ̈ cos θ

]

mc +m
(27)

where gravitational acceleration, g = 9.8ms−2; cart’s mass,

mc = 1kg; pole’s mass, m = 0.1kg; half pole length,

l = 0.5m; F ∈ [−10, 10] is the force applied to the cart,

TABLE II: Terminal Boundary Planes used in cart-pole exper-

iment. The state vector used here is ~x = (x, ẋ, θ, θ̇, t)T .

Termination Position Vector Normal Vector

Condition Breached of Plane, ~PT to Plane, ~nT

θ ≥ π/15 (0,0,π/15,0,0) (0,0,−1,0,0)

θ ≤ −π/15 (0,0,−π/15,0,0) (0,0,1,0,0)

x ≥ 2.4 (2.4,0,0,0,0) (−1,0,0,0,0)

x ≤ −2.4 (−2.4,0,0,0,0) (1,0,0,0,0)

t ≥ 300 (0,0,0,0,300) (0,0,0,0,1)

in Newtons; and the pole angle, θ, is measured in radians.

The motion was integrated using the Euler method with a time

constant ∆t = 0.02, which, for a state vector ~x ≡ (x, θ, ẋ, θ̇)T ,

gives a model function f(~x, ~u) = ~x+ (ẋ, θ̇, ẍ, θ̈)T∆t.

The pole motion continues until it reaches a terminal state

or until the pole is successfully balanced for 300 time steps,

i.e. 6 seconds of real time. Terminal states (T) are defined to

be any state with |x| ≥ 2.4, or |θ| ≥ π
15 (i.e. 12 degrees), or

t ≥ 300. Termination plane constants are given in Table II.

The duration-based cost function of [27] is equivalent to

U(~x, u) := 0, (28)

for non-terminal states, and,

Φ(~x) :=

{
1 if T < 300,

0 otherwise,
(29)

for terminal states ~x ∈ T. When the above two cost functions

are used in conjunction with a discount factor γ < 1, and

when the pole eventually falls over (i.e. when T < 300), the

total trajectory cost is J(~x0, ~z) ≡ γT , where T is the time at

which the trajectory terminated. Since this function decreases

with T , minimising it will increase T , i.e. lead to successful

pole balancing.1

We tested the three algorithms BPTT, DHP and HDP

on this problem with a discount factor γ = 0.97. To en-

sure the state vector was suitably scaled for input to the

MLPs, we used rescaled state vectors ~x′ defined by ~x′ =
(0.16x, 15θ/π, ẋ, 4θ̇, t/300)T , with θ in radians, throughout

the implementation. As noted by [28], choosing an appropriate

state-space scaling can be critical to successful convergence of

actor-critic architectures in the cart-pole problem. Note that

our implementation also uses the time step t as an input

to the neural network, since the cost-to-go function that is

being learned does depend upon t. The output of the action

network, y, was multiplied by 10 to give the control force

F = A(~x, ~z) := 10y. The learning rates for the algorithms that

we used were: BPTT (α = 0.1); DHP (α = 0.001, β = 0.01);

HDP (α = 0.01, β = 0.1). The DHP and HDP critics used a

final-layer activation-function slope of 0.1. HDP used a policy

exploration rate of σ = 0.15 (using (25)), and the other

1Previously, other researchers may have used Φ(~x) := 1 instead of our
equation (29), and may have stopped training the neural networks as soon as
perfect balancing first occurs (e.g. [27]). We did not stop training like this,
and therefore found that using (29) produced more stable results for HDP than
the results when stopping training. It makes no difference to the performance
of the DHP/BPTT algorithms.
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algorithms used σ = 0. The exact derivatives of the model

and cost functions were made available to the algorithms.

During learning, each trajectory was defined to start at the

point x = 0, θ = 0, ẋ = 0.4, θ̇ = 0. This is a start state

from which the pole will quickly topple over, unless corrective

control actions are taken.

The performance of the three algorithms, both with and

without clipping, are shown in Fig. 10. Each graph shows

the balancing duration versus the training iteration, for an

ensemble of five different curves, with each curve representing

a training run from a different random weight initialisation.
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Fig. 10: Cart-pole solutions by BPTT, DHP and HDP.

The results show that using clipping correctly enables

both the DHP and BPTT algorithms to solve this problem

consistently, and without clipping it is impossible for both

algorithms. The results show that HDP is largely unaffected

by clipping.

This problem is interesting in that the cost functions

defined by (28) and (29) would be completely inappropri-

ate for learning with BPTT/DHP unless clipping is used

correctly, since they have zero derivatives everywhere, i.e.(
∂Φ
∂~x

)
T
≡ ~0, ∂U

∂~u
≡ ~0 and ∂U

∂~x
≡ ~0. The clipping algorithm

solves this problem through the expression in (22) given by

(ln γ)
(
∂S
∂•

)
T−1

Φ(~xT ), which appears in lines 9-10 of Alg.

5. This expression allows for a useful learning gradient to be

obtained. For it to work, we must have ln(γ) 6= 0, which

requires that γ < 1, and also we must have Φ(~xT ) 6= 0.

Furthermore, the derivatives of the clipping fraction, i.e. ∂S
∂~x

and ∂S
∂~u

, must be calculated correctly by (15) and (16) for the

pole-balancing problem to be solved.

V. A NOTE ON POLICY-GRADIENT METHODS

As we have seen, BPTT is an algorithm which can be

used for gradient descent on the total cost-to-go function

J(~x, ~z) with respect to ~z. Another class of algorithms which

do something similar are Policy-Gradient Learning (PGL)

methods. These include the REINFORCE algorithm by [16],

plus related methods (e.g. [17]). PGL methods are stochastic

algorithms which do gradient descent of the form

〈∆~z〉 = −α
∂〈J〉

∂ ~w
. (30)

Although these weight updates superficially look similar to

the BPTT design, they do not use any explicit derivatives of the

model or cost functions, and thus are not affected by the need

for clipping. For example, the REINFORCE weight update is

defined, for trajectories of length one, to be:

∆~z = −α
∂ln(g(~u0|~x0, ~z))

∂~z
(U(~x0, ~u0)− b)

= −α
1

g(~u0|~x0, ~z)

∂g(~u0|~x0, ~z)

∂~z
(U(~x0, ~u0)− b) (31)

where α > 0 is small learning-rate constant, and b is a constant

“baseline” scalar, and g(~u0|~x0, ~z) is a probability distribution

that forms the policy, such that action ~u0 is randomly sampled

from this distribution, and the distribution g(~u0|~x0, ~z) is

modelled by a function approximator with weight vector ~z
and input ~x0. Clearly this weight update (31) includes no

derivatives of f(~x, ~u), and hence has no need for clipping.

However the expectation of this weight update is proven by

[16] to be equivalent to (30), for any choice of the baseline

constant.

The BPTT weight update is ∆~z = −α ∂J
∂ ~w

. In stochastic en-

vironments, the BPTT weight update would therefore average

to

〈∆~z〉 = −α

〈
∂J

∂ ~w

〉
. (32)

The derivation of the BPTT algorithm, in Section II-A, shows

that this algorithm does require derivatives of f(~x, ~u), and

hence does require clipping.

So how do we reconcile that for two such similar algorithms,

BPTT requires clipping, but PGL does not? The answer lies

in the subtle difference between equations (30) and (32), i.e.

the fact that in general, the derivative of a mean can be

different from the mean of a derivative. In the PGL case, the

〈J〉 term has a blurring effect which first smooths out all of

the jagged bumps in the J versus ~z graph (for example as

shown in Fig. 2b), and then PGL performs gradient descent

on this blurred-out graph. In contrast, BPTT first calculates

the gradient of various randomly chosen points of this graph,

and then averages out the answer, and clearly in the case of

Fig. 2b, this approach will not work (unless clipping is done).

This shows that PGL methods have an advantage over

BPTT methods in avoiding the need for clipping. However

this complements the natural advantages that BPTT has over

PGL, which are that BPTT can accumulate a learning gradient

in just one trajectory, and therefore every single weight update

provides useful learning. In contrast, PGL must form the mean

from many weight updates before it can learn anything useful.

In fact, a major area of research for PGL methods is to reduce

the variance in these stochastic weight updates, so that the

mean forms faster [17].

Other differences between the methods are that PGL is

a model-free algorithm, whereas BPTT is model-based and

requires knowledge of the function f(~x, ~u) and its derivatives.

A flip side of being model-based, is that when BPPT is used,
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trajectories automatically bend themselves into locally optimal

shapes, but the model-free PGL methods require explicit (and

usually stochastic) exploration of the environment to achieve

this.

To summarise, it is clear that the rival methods of BPTT

and PGL have multiple relative pros and cons, and it is good

to be aware of all of these issues.

VI. CONCLUSIONS

The problem of clipping for ADP/RL and neurocontrol

algorithms has been demonstrated and motivated. Without

clipping, algorithms which rely on the derivatives of the model

and cost functions can fail to work. The solution is to apply

clipping, and then to correctly differentiate the model and cost

functions in the final time step. This solution has been given in

the form of the equations, plus in the form of clear pseudocode

for the two major affected ADP algorithms: DHP and BPTT.

Two neural-network experiments have confirmed the impor-

tance of applying clipping correctly. These included a cart-

pole experiment, where clipping was found to be essential,

and in a vertical-lander experiment, where clipping produced

a significant improvement of performance.

The situations in which clipping is needed have been made

clear, and those situations where it can be ignored have also

been specified.
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