
 

 

 

  

Abstract -- Three-phase grid-connected converters are widely 

used in renewable and electric power system applications. 

Traditionally, grid-connected converters are controlled with 

standard decoupled d-q vector control mechanisms. However, 

recent studies indicate that such mechanisms show limitations in 

their applicability to dynamic systems. This paper investigates 

how to mitigate such restrictions using a neural network to 

control a grid-connected rectifier/inverter. The neural network 

implements a dynamic programming algorithm and is trained by 

using backpropagation through time. To enhance performance 

and stability under disturbance, additional strategies are 

adopted, including the use of integrals of error signals to the 

network inputs and the introduction of grid disturbance voltage 

to the outputs of a well-trained network. The performance of the 

neural network controller is studied under typical vector control 

conditions and compared against conventional vector control 

methods, which demonstrates that the neural vector control 

strategy proposed in this paper is effective. Even in dynamic and 

power converter switching environments, the neural vector 

controller shows strong ability to trace rapidly changing 

reference commands, tolerate system disturbances, and satisfy 

control requirements for a faulted power system. 

 

Index Terms – neural controller, dynamic programming, 

backpropagation through time, grid-connected rectifier/inverter, 

decoupled vector control, renewable energy conversion systems  

I.  INTRODUCTION 

N renewable and electric power system applications, a 
three-phase grid-connected dc/ac voltage-source pulse-

width-modulated (PWM) converter is usually employed to 
interface between the dc and ac systems. Typical converter 
configurations containing the grid-connected converter (GCC) 
include: 1) a dc/dc/ac converter for solar, battery and fuel cell 
applications [1, 2], 2) a dc/ac converter for STATCOM 
applications [3, 4], and 3) an ac/dc/ac converter for wind 
power and HVDC applications [4-8]. Figure 1 demonstrates 
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the grid-connected dc/ac converter used in a microgrid to 
connect distributed energy resources. Conventionally, this 
type of converter is controlled using the standard decoupled d-
q vector control approach [5-8].  
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Fig. 1. Application of grid-connected rectifier/inverter in a microgrid 

Notwithstanding its merits, recent studies indicate that this 
control strategy is inherently limited due to its competing 
nature [9, 10]. Issues reported in the literature include: i) 
difficulty in tuning the proportional-integral (PI) controllers 
[3], ii) instability in low voltage applications [11], iii) 
fluctuating dc-link voltage [12], iv) malfunction such as 
unexpected trips [5], and v) difficulty to synchronize for initial 
connection of the GCC to the electric power grid [13].  

For example, in [3], it is noted that tuning PI parameters 
for a standard decoupled d-q vector controller in a STATCOM 
application is difficult. This finding is consistent with a result 
reported in this paper, which shows that tuning the PI gains is 
hard at a large sampling time. [14]-[16] show that the inner-
current controller and the phase-locked loop dynamics of 
conventional control techniques may be affected significantly 
in weak ac-system connections. [11] also informs of instable 
operability in such conditions. [12] indicates that there is a 
high fluctuating dc-link voltage using the conventional GCC 
control approach. [5], [17] and [18] show that wind farms 
periodically experience a high degree of imbalance and 
harmonic distortions, which has resulted in numerous trips. 
[13] and [19] point out that using conventional vector control 
methods, synchronization is always required for initial 
connection of a GCC to the electric power grid. [20] and [21] 
indicate that the poor performance of such technology has 
become an obstacle for GCCs in HVDC transmission under 
challenging ac-system conditions.  

To overcome the deficiencies, an adaptive control 
approach was proposed recently that employs a direct-current 
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control (DCC) strategy [22, 23]. However, a major challenge 
of the direct-current-based vector control mechanism is that no 
well-established systematical approach to tuning the PI 
controller gains exists, so that optimal DCC is hard to obtain. 
Other control methods have also been developed recently, 
direct power control [24-26] and predictive current control 
[27-29] in particular. Notwithstanding their merits, all these 
control methods show some limitations. This situation 
motivates the development of neural-network based optimal 
control techniques for GCC vector control applications, as 
presented in this paper. 

In recent years, significant research has been conducted in 
the area of dynamic programming (DP) for optimal control of 
nonlinear systems [30-34]. Classical DP methods discretize 
the state space and directly compare the costs associated with 
all feasible trajectories that satisfy the principle of optimality, 
guaranteeing the solution of the optimal control problem [35]. 
Adaptive critic designs constitute a class of approximate 
dynamic programming (ADP) methods that use incremental 
optimization combined with parametric structures that 
approximate the optimal cost and the control [36-38]. Both 
classical DP and ADP methods have been used to train neural 
networks for many nonlinear control applications, such as 
steering and controlling the speed of a two-axle vehicle [39], 
intercepting an agile missile [40], performing auto landing and 
control of an aircraft [41-43], controlling a turbogenerator 
[44], and tracking control with time delays [45]. As for GCC 
controllers, neural networks have been primarily used to 
generate external reference signals. In [46], a neuro-fuzzy 
external controller is developed to generate reference ac bus 
voltage signal to the PI controller of a STATCOM for 
coordinated optimal control of the STATCOM and two 
synchronous generators. In [47], an interface neuro-controller 
is proposed for coordinated reactive power control between a 
large wind farm equipped with doubly fed induction 
generators (DFIGs) and a STATCOM, while the GCC 
controllers within both DFIGs and the STATCOM have 
adopted conventional standard PI vector control structures.   

In [48], we developed a preliminary neural network vector 
control structure for GCCs in renewable and electric power 
system applications. However encouraging the results were, 
the design showed steady-state errors and was unable to track 
targets properly under variable system parameters. This paper 
has extended far beyond [48] by developing an improved 
neural network design to overcome these limitations and by 
testing the neural vector control strategy in a more practical 
nested-loop control condition. Moreover, a control signal can 
only be applied to an actual system through power converters, 
which involves continuous switching on and off of the 
converters [49] and hence distorts the ideal control signal. 
This switching impact is carefully evaluated in this paper. 

The rest of the paper is structured as follows. The basic 
topologies of the standard vector control method, DCC, DPC 
and PCC are briefly evaluated in Section II. Section III 
proposes a neural network vector control configuration. 
Section IV explains how to employ dynamic programming to 
achieve optimal neural vector control for the GCC system. 

The performance of the neural network vector control scheme 
is assessed in dynamic and power converter switching 
environments in Section V. Section VI analyzes the 
performance of the neural vector controller in a nested-loop 
control condition. Finally, the paper concludes with a 
summary of the main points. 

II.  CONVENTIONAL GCC CONTROL TECHNIQUES 

Figure 2 shows the schematic of the GCC, in which a dc-
link capacitor is on the left, and a three-phase voltage source, 
representing the voltage at the Point of Common Coupling 
(PCC) of the ac system, is on the right.  
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Fig. 2.  Grid-connected converter schematic  

In the d-q reference frame, the voltage balance across the 
grid filter is: 
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  (1)  

where ωs is the angular frequency of the grid voltage, and L 
and R are the inductance and resistance of the grid filter. In the  
PCC voltage-oriented frame [3, 50], the instant active and 
reactive powers absorbed by the GCC from the grid are 
proportional to the grid's d- and q-axis currents, respectively, 
as shown by Eqs. (2) and (3).  

( ) d d q q d dp t v i v i v i= + =           (2) 

( ) q d d q d qq t v i v i v i= − = −           (3) 

A.  Standard Vector Control  

The standard vector control method for the GCC, widely 
used in renewable and electric power system applications, 
deploys a nested-loop structure consisting of a faster inner 
current loop and a slower outer loop, as shown in Fig. 3 [3, 4, 
50]. In this figure, the d-axis loop is used for dc-link voltage 
control, and the q-axis loop is used for reactive power or grid 
voltage support control. The control strategy of the inner 
current loop is developed by rewriting Eq. (1) as:  

( )1d d d s q dv Ri L di dt Li vω= − + ⋅ + +       (4) 

( )1q q q s dv Ri L di dt Liω= − + ⋅ −         (5) 

in which the bracketed item in Eqs. (4) and (5) is treated as the 
transfer function between the input voltage and output current 
for the d- and q-axis loops, and the other terms are treated as 
compensation items [3, 4, 50]. However, it was found that the 
control signals generated by the d- and q-axis PI controllers do 
not contribute in a right way in terms of the decoupled dq 
control objectives [22]. Although there are compensation 
terms in Fig. 3, they do not contribute in a feedback control 
principle. Hence, this control structure has a competing 
control nature [22, 48], which could result in malfunctions of 
the system. 



 

 

  
Fig. 3 Standard vector control structure 

B.  Direct-Current Vector Control (DCC) 

The DCC [22, 23], developed recently to overcome the 
deficiencies of standard vector control techniques, is 
considered as a pilot adaptive vector control strategy. The 
theoretical foundation of the DCC is expressed in Eqs. (2) and 
(3), i.e., the use of d- and q-axis currents directly for active 
and reactive power control of the GCC system. Unlike the 
conventional approach that generates a d- or q-axis voltage 
from a GCC current-loop controller, the DCC outputs a 
current signal by the d- or q-axis current-loop controller (Fig. 
4). In other words, the output of the controller is a d- or q-axis 
tuning current i'd or i'q, while the input error signal tells the 
controller how much the tuning current should be adjusted 
during the dynamic control process. The development of the 
tuning current control strategy has adopted intelligent control 
concepts [23], e.g., a control goal to minimize the absolute or 
root-mean-square (RMS) error between the desired and actual 
d- and q-axis currents through an adaptive tuning strategy. 
Nonetheless, a major challenge of the DCC is that no well-
established systematical approach exists for tuning the 
controller PI gains, so an optimal DCC controller is difficult to 
obtain. Actually, the cross terms as shown in Fig. 4 imply that 
a neural network vector controller could be a better fit to meet 
the GCC control requirements. 

 
Fig. 4.  GCC direct-current vector control structure 

C.  Direct Power Control (DPC) 

The basic idea of the Direct Power Control approach, 
proposed by Noguchi [24], is the direct control of active and 
reactive power. In DPC, the inner current control loops and 
the PWM modulator are not required because the converter 
switching states are selected by a switching table based on the 
instantaneous errors between the commanded and the 
estimated values of active and reactive powers (Fig. 5). The 
active and reactive power errors are fed to hysteresis 
comparators and their outputs, together with the system’s 
vector phase, are used to select from the switching tables the 
best vector for the next control cycle. DPC has the advantages 
of high dynamic response to demands in active or reactive 
power and simplicity in implementation [25, 26]. But, primary 
disadvantages of this control technique are high harmonic 
distortion and unbalance in the system current, variable 

switching frequency under different operating conditions, and 
requirement of a high switching frequency [26], which causes 
major impacts to a GCC system. 

  
Fig. 5.  Direct power control configuration 

D.  Predictive Current Control (PCC) 

The predictive control algorithm first estimates the model 
parameters, including R and L of the grid filter and PCC 
voltage [27]. The model is then used to predict the current and 
to determine the voltage necessary to meet the control 
objective for each control interval. In Fig. 6, the PCC block 
involves a current prediction equation to estimate the grid 
current at the next sampling interval and a control equation to 
determine the next GCC control voltage [27, 28].  

A PCC has a fast current tracking response, which permits 
the minimization of the dc-bus capacitance, increases the 
voltage loop bandwidth, and reduces harmonic distortions in 
ac current waveforms [28, 29]. But, a PCC becomes unstable 
when the programmed filter inductance differs from its actual 
value. In addition, if the resistive part of the filtering inductors 
is not accurately measured and programmed, the predictive 
control presents a steady-state error. Since filter parameters 
vary along with inverter operation, it is difficult to achieve an 
adequate static and dynamic performance [29]. 

In summary, in order to meet to the optimal GCC control 
requirements it is important to develop new methods that 
integrate the advantages of different conventional control 
techniques and at the same time avoid their shortcomings. Our 
neural network controller proposal is a step in that direction. 

  
Fig. 6.  Predictive current vector control structure 

III.  STRUCTURE OF GCC VECTOR CONTROL USING 

ARTIFICIAL NEURAL NETWORKS  

The neural-network-based vector control structure of the 
GCC current-loop is shown in Fig. 7, in which the converter 
output voltage, grid PCC voltage, and grid current are 
consistent with those shown in Fig. 2. The neural network, 
known here as the action network, is applied to the GCC 
through a PWM mechanism to regulate the GCC output

PI  
V

*
dc

 

Vdc 

+ 

- 
i
*

d
 

PI  

id 

+ 

- 
v

’
d

 

 
- 

ωsL⋅iq 
+ 

v
*

d1
 

PI  
V

*
bus

 

Vbus 

+ 

- 
i
*

q
 

PI  

iq 

+ 

- 
v

’
q

 

 
- 

ωsL⋅id 
- 

v
*

q1
 

vd 
+ 



 

 

  

voltage va1,b1,c1 in the three-phase ac system. The ratio of the 
GCC output voltage to the output of the action network is a 
gain of kPWM, which equals to Vdc/2 if the amplitude of the 
triangle voltage waveform in the PWM scheme is 1V [49]. 

The integrated GCC and grid system is described by Eq. 
(1), which is rearranged into the standard state-space 
representation as shown by Eq. (6), where the system states 

are id and iq, grid PCC voltages vd and vq are normally 
constant, and converter output voltages vd1 and vq1 are the 
control voltages that are to be specified by the output of the 
action network. For digital control implementation and the 
offline training of the neural network, the discrete equivalent 
of the continuous system state-space model from Eq. (6) must 
be obtained [51] as shown by Eq. (7), where Ts represents the 
sampling period, k is an integer time step, F is the system 
matrix, and G is the matrix associated with the control voltage. 
In this paper, a zero-order-hold discrete equivalent is used to 
convert the continuous state-space model of the system in Eq. 
(6) to the discrete state-space model in Eq. (7). We used 
Ts=1ms in all experiments. 
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The discrete system model in Eq. (7) can be written more 
concisely as  

( ) ( ) ( )( )1
1 -dq dq dq dqi k i k v k v+ = ⋅ + ⋅F G

r r r r
       (8) 

The action network makes the control decision ( )1dqv k
r

 at 

each time step k in the above equation.  The action network is 
a fully connected multi-layer perceptron [52], and its position 
and role in the GCC architecture are shown in Fig. 7. As 
indicated in Fig.7, the inputs to the neural network are 

( ) ( ) ( )*, , and ( ),dq dq dqi k i k i k s k−
r r r r

   where ( )s k
r

represents is an 

integral term defined below in (9).  Since each of these inputs 
is a 2-dimensional vector (with d and q components), the 

action network has 6 inputs in total. The action network we 
used had 2 hidden layers of 6 nodes each, and 2 output nodes, 
and short-cut connections between all pairs of layers, with 
hyperbolic tangent functions at all nodes.   With the inputs and 
weight vector w

r
, we will denote the action network as the 

function ( ) ( ) ( )( )*, , ( ), .dq dq dqA i k i k i k s k w−
r r r r r

The integral-term 

input, ( )s k
r

, is defined by  

( ) ( )( )*

0
( )

k

dq dqs k i t i t dt= −∫
r rr

          (9) 

Prior work with this sort of neurocontroller utilized a 
similar set of neural inputs [46], except that in that work the 

integral input ( )s k
r

was not present. This system produced 

good tracking performance during testing when the system 
equation (8) was identical to that under which the network was 
trained, but when the system equation (8) was varied slightly 
(for example if the inductance L or resistance R of the plant 
deviated slightly), then the tracking system showed a steady-
state error. In this case the system was unable to track the 
reference dq current exactly. This is due to the fact that the 
feed-forward network was trained to act on slightly different 
plant dynamics than it was actually experiencing. The extra 
integral input term, given by (9) and introduced in this paper, 
is designed to resolve this steady-state tracking error. 

For a trained neural network controller, the integral term 
would provide a history of all past errors by summing them 
together. If there is an error in a given time step, it gets added 
to the integral term for the next time step. Thus, the integral 
term will only be the same as it was last time step if there is no 
error in this time step, preventing the neural network 
controller from staying at a non-target value after the 

controlled system reaches its steady state unless ( )*=
r r

dq dqi i . 

The other terms drive a controlled variable closer to the 
reference, and as the error becomes smaller, the integral term’s 
difference from its value for the prior time step diminishes, 
reducing its steady-state error influence and allowing the 
system to home in on the target.  
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For a reference dq current ( )*

dqi k
r

, the control action 

applied to the system is expressed by: 

( ) ( ) ( ) ( )( )*

1 , , ( ),dq PWM dq dq dqv k k A i k i k i k s k w= ⋅ −
r r rr r r

  (10) 

where A(•) represents the action network as described above. 

IV.  TRAINING NEURAL NETWORK FOR OPTIMAL VECTOR 

CONTROL OF  A GCC 

A.  Dynamic Programming in GCC Vector Control 

Dynamic programming employs the principle of optimality 
and is a very useful tool for solving optimization and optimal 
control problems. According to [34], the principle of 
optimality is expressed as: “An optimal policy has the 
property that whatever the initial state and initial decision are, 
the remaining decisions must constitute an optimal policy with 
regard to the state resulting from the first decision.”. The 
typical structure of the discrete-time DP includes a discrete-
time system model and a performance index or cost associated 
with the system [37]. 

The DP cost function associated with the vector-controlled 
system is: 

( )( ) ( ) ( )( )*
, ,

K
k j

dq dq

k j

J x j w U i k i kγ −

=

= ⋅∑
r rr r

      
(11) 

where γ is the discount factor with 0 ≤ γ ≤ 1, K is the trajectory 
length used for training, and U(•) is defined as 

( ) ( )( ) ( ) ( )( ) ( ) ( )( )
2 2

* * *
, .dq dq d d q qU i k i k i k i k i k i k= − + −

r r
 (12) 

The function J(•), dependent on the initial time j and the 

initial state ( )dqi j
r

, is referred to as the cost-to-go of state 

( )dqi j
r

 in the DP problem. The objective of the DP problem is 

to choose a vector control sequence, ( )
1dqv k

r
, k=j, j+1, ... , so 

that the function J(•) in Eq. (11) is minimized.  

B.  Backpropagation Through Time Algorithm 

The action network was trained to minimize the DP cost of 
Eq. (11) by using the backpropagation through time (BPTT) 

algorithm [53]. BPTT is gradient descent on ( )( ),
r r

J x j w with 

respect to the weight vector of the action network. BPTT can 
be applied to an arbitrary trajectory with an initial state 

( ),dqi j
r

and thus be used to optimize the vector control 

strategy. In general, the BPTT algorithm consists of two steps: 
a forward pass which unrolls a trajectory, followed by a 
backward pass along the whole trajectory which accumulates 
the gradient descent derivative. Algorithm 1 gives pseudocode 
for both stages of this process. Lines 1-9 evaluate a trajectory 
of length K using Eqs. (8)-(12). The integral inputs defined by 
(9) are approximated by a rectangular sum, in line 7 of the 
algorithm.   

The second half of the algorithm calculates the desired 
gradient, J w∂ ∂

r
. This would then be used for optimization of 

the function ( )( ),
r r

J x j w  by using multiple iterations and 

multiple calls to Alg. 1.  In this code, the variables ( )dqJ i k
−

r
, 

Algorithm 1: BPTT algorithm for GCC Vector controller 

1: 0J ←  

2: (0) 0s ←
rr

 {Integral input} 

3: {Unroll a full trajectory} 
4: for k = 0 to K-1 do  

5: ( ) ( ) ( ) ( )( )*

1 , , ( ),dq PWM dq dq dqv k k A i k i k i k s k w← ⋅ −
r r rr r r

 

 {Control action} 

6: ( ) ( ) ( )( )1
1 -dq dq dq dqi k i k v k v+ ← ⋅ + ⋅F G

r r r r
 

 {Calculate next state} 

7: ( ) ( ) ( ) ( )( )*
1 dq dq ss k s k i k i k T+ ← + − ⋅

r rr r
 

8: ( ) ( )( )*
,

k

dq dqJ J U i k i kγ← + ⋅
r r

 

9: end for 
  

10: {Backwards pass along trajectory} 

11: 0J w
−

←
r

 

12: ( ) 0dqJ i K
−

←
r

 

13: ( ) 0J s K
−

←
r

 

14: for k = K-1  to 0 step -1 do 

15: ( ) ( )
1

1
T

dq dqJ v k J i k
− −

← ⋅ +G
rr

 

16:  ( )
( ) ( ) ( )( )( )

( )

( ) ( )

( ) ( )( )( )
( )

*

1

*

, , ( ),

( 1) 1

,

dq dq dq

dq PWM

dq

T

dq s dq

dq dqk

dq

d A i k i k i k s k w
J i k k

di k

J v k T J s k F J i k

U i k i k

i k
γ

−

− − −

−
← ⋅

+ + + +

∂
+ ⋅

∂

r r r r r
r

r

rr r

r r

r

                 

                

 

17: ( )

( ) ( ) ( )( )( )
( )

( )

*

1

( 1)

, , ( ),

PWM

dq dq dq

dq

J s k J s k k

A i k i k i k s k w

s k

J v k

− −

−

← + + ⋅

∂ −
⋅

∂

r r

r r r r r

r

r

               

                

 

18: 

( ) ( ) ( )( )( )
( )

( )

*

1

, , ( ),

PWM

dq dq dq

dq

J w J w k

A i k i k i k s k w
J v k

w k

− −

−

← + ⋅

∂ −

∂

r r

r r r r r

r
r           

 

19: end for 

20: {on exit, J w
−

r
 holds 

J

w

∂

∂
r  for the whole trajectory} 

( )J s k
−

r
 and J w

−

r
are workspace column vectors of dimension 

2, 2, and dim( w
r

), respectively. These variables hold the 
“ordered partial derivatives” of J with respect to the given 

variable name, so that for example ( ) ( )dq dqJ i k J i k+

−
= ∂ ∂

r r
. 

This ordered partial derivative, as defined by Werbos [53, 54], 
represents the derivative of J with respect to ( )dqi k

r
, assuming 

all other variables which depend upon ( )dqi k
r

in lines 5-8 of 

Alg. 1 are not fixed, and thus their derivatives will influence 
the value of ( )dqJ i k

−

r
 via the chain rule. The derivation of the 

gradient computation part of the algorithm (lines 11-19) is 



 

 

exact, and was derived following the method described in 
detail by [54], which is referred to as generalized 
backpropagation [53], or automatic-differentiation [55]. In the 
pseudocode, the vector and matrix notation is such that all 
vectors are columns; differentiation of a scalar by a vector 
gives a column. Differentiation of a vector function by a 
vector argument gives a matrix, such that for example 
(dA/dw)ij=dAj/dwi.  

In lines 16-18, the algorithm refers to derivatives of the 
action network function A(•) with respect to its arguments, 

( )dqi k
r

, ( )s k
r

 and w
r

. These derivatives would be calculated 

by ordinary neural-network backpropagation, which needs to 
be implemented as a sub-module, and should not be confused 
with BPTT itself. The BPTT pseudocode also requires the 
derivatives of the function U(•), which can be found directly 
by differentiating Eq. (12).  The pseudocode uses matrices F 

and G which represent the exact model of the plant; there was 
no need for a separate system identification process or 
separate model network. For the termination condition of a 
trajectory, we used a fixed trajectory length corresponding to a 
real time of 1 second (i.e. K=1000).  We used γ =1 for the 
discount factor. 

C.  Training the Neural Controller 

To train the neural controller, the system data of the 
integrated GCC and grid system is specified for a typical GCC 
in renewable energy conversion system applications [6, 7, 22]. 
These include 1) a three-phase 60Hz, 690V voltage source 
signifying the grid, 2) a reference voltage of 1200V for the dc 
link, and 3) a resistance of 0.012Ω and an inductance of 2mH 
standing for the grid filter.  

The training was repeated for 10 different experiments, 
with each experiment having different initial weights. For each 
experiment, the training procedure includes 1) randomly 
generating a sample initial state idq(j), 2) unrolling the 
trajectory of the GCC system from the initial state, 3) 
randomly generating a sample reference dq current trajectory, 
4) training the action network based on the DP cost function in 
Eq. (11) and the BPTT training algorithm, and 5) repeating the 
process for all the sample initial states and reference dq 
currents. For each experiment, 10 sample initial states were 
generated uniformly from id=[100A, 120A] and iq=[0A, 20A]. 
Each initial state was generated with its own random seed. 
Each trajectory duration was unrolled during training for a 
duration of 1 second, and the reference dq current was 
changed every 0.1 seconds. Ten reference current trajectories 
were generated randomly, with each trajectory having its own 
seed too. Figure 8 shows a randomly generated reference 
current trajectory. The weights were initially all randomized 
using a Gaussian distribution with zero mean and 0.1 variance. 
Training used RPROP [56] to accelerate learning, and we 
allowed RPROP to act on 10 trajectories simultaneously in 
batch update mode. For each experiment, training stops at 
1000 iterations and the average trajectory cost per time step 
over the 10 trajectories was calculated. The trained network 
with the lowest average trajectory cost from the 10 
experiments is picked as the final action network. 

 
Fig. 8. A reference dq current trajectory for training neural controller 

The generation of the reference current considered the 
physical constraints of a practical GCC system. Both the 
randomly generated d- and q-axis reference currents were first 
chosen uniformly from [-500A; 500A], where 500A represents 
the rated GCC current in this paper. Then, these randomly 
generated d- and q-axis current values were checked to see 
whether their resultant magnitude exceeds the GCC rated 
current limit and/or the GCC exceeds the PWM saturation 
limit. From the neural network standpoint, the PWM 
saturation constraint stands for the maximum positive or 
negative voltage that the action network can output. Therefore, 
if a reference dq current requires a control voltage that is 
beyond the acceptable voltage range of the action network, it 
is impossible to reduce the cost (Eq. (11)) during the training 
of the action network. 

The following two strategies are used to adjust randomly 
generated reference currents. If the rated current constraint is 
exceeded, the reference dq current is modified by keeping the 
d-axis current reference id

* unchanged to maintain active 
power control effectiveness (Eq. (2)) while modifying the q-
axis current reference iq

* to satisfy the reactive power or ac 
bus voltage support control demand (Eq. (3)) as much as 
possible as shown by [22, 23]  

( ) ( ) ( )
2 2

* * * *

_ _maxsignq new q dq di i i i= ⋅ −      (13) 

If the PWM saturation limit is exceeded, the reference q-axis 
current is modified by  

( ) ( )

( )

2 2
* * * * *

1 1 1_max 1

* *

1

q d f d dq q

q d d f

v i X v v v

i v v X

= − = −

= −

   (14) 

which represents a condition of keeping the q-axis voltage 
reference vq1

* unchanged so as to maintain the active power 
control effectiveness while modifying the d-axis voltage 
reference vd1

* to meet the reactive power control demand as 
much as possible [22, 23, 48].    

Figure 9 shows the average DP cost per trajectory time step 
for one successful training of the action neural network. As the 
figure indicates, the overall average trajectory cost dropped to 
small number quickly, demonstrating good learning ability of 
the neural controller for the vector control application. 

  
Fig. 9. Average DP cost per trajectory time step for training neural controller 
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V.  PERFORMANCE EVALUATION OF TRAINED NEURAL 

VECTOR CONTROLLER 

To evaluate the performance of the neural network vector 
control approach and compare the neural controller with the 
conventional standard and DCC vector control methods, an 
integrated transient simulation system of a GCC system is 
developed by using power converter switching models in 
SimPowerSystems (Fig. 10). The power converter is a dc/ac 
PWM converter. The dc voltage source represents the dc-link. 
The converter switching frequency is 1980Hz, and loss of the 
power converter is considered. In the converter switching 
environment, the evaluation can be made under close to real-
life conditions, which includes 1) real-time computation of 
PCC voltage space vector position, 2) measurement of instant 
grid dq current and PCC dq voltage, and 3) generation of the 
dq control voltage by the controller in the PCC voltage-
oriented frame [23]. The PCC bus is connected to the grid 
through a transmission line that is modeled by an impedance. 
A fault-load is connected before the PCC bus for the purpose 
to evaluate how the controller behaves when a fault appears in 
the grid. For digital control implementation of the neural or 
conventional controllers, the measured instantaneous three-
phase PCC voltage and grid current pass through a zero-order-
hold (ZOH) block. The ZOH is also applied to the output of 
the controller before being connected to the converter PWM 
signal generation block.  

 
Fig. 10.  Vector control of GCC in power converter switching environment 

A.  Ability of Neural Controller to Track Reference Current  

The reference current is generated randomly within the 
acceptable GCC current range for the neural controller 
tracking validation. Figure 11 presents a case study of tracking 
the reference current by using neural vector controller in the 
power converter switching environment. The sampling time is 
Ts=1ms. In the figure, initial system states can be generated 
randomly and the reference dq currents can change to any 
values, within the converter rated current and PWM saturation 
limit, that are not used in the training of the neural network. At 
the beginning, both GCC d- and q-axis currents are zero, and 
the d- and q-axis reference currents are 100A and 0A, 
respectively. After the start of the system, the neural controller 
quickly regulates the d- and q-axis currents to the reference 
values. When the reference dq current changes to new values 
at t=2s and t=4s, the neural controller restores d- and q-axis 
current to the reference currents immediately (Fig. 11a). 
However, due to the switching impact, the actual dq current 
oscillates around the reference current. An examination of the 
three-phase grid current shows that the current is properly 
balanced (Fig. 11b). For any command change of the reference 

current within the converter rated current and PWM saturation 
limit, the system can be adjusted to a new reference current 
immediately, demonstrating strong optimal control capability 
of the neural vector controller. Since the rated GCC current 
used in this paper is 500A, for a d-axis reference current id

* 
within [-500A, 500A], the q-axis current iq

* cannot exceed the 
lower value calculated from (13) and (14). 

B.  Comparison of Neural Controller with Conventional 

Standard and DCC Vector Control Methods  

For the comparison study, the current-loop PI controller is 
designed by using the conventional standard and the direct-
current vector control methods, respectively, as shown in 
Section II. For the conventional standard vector control 
structure (Fig. 3), the gains of the digital PI controller are 
designed based on the discrete equivalent of the system 
transfer function, as shown in Eqs. (4) and (5) [7]. For the 
DCC vector control structure (Fig. 4), the gains of the digital 
PI controller is tuned until the controller performance is 
acceptable [22]. With the sampling time of Ts=1ms, no stable 
PI gains were obtained for the conventional standard vector 
control approach; for the DCC vector control method, it is 
easier to get a stable PI gain but the actual dq current oscillates 
around the reference current much higher than that of the 
neural network controller. 

 
a) dq current 

 
b) three-phase current 

Fig. 11. Performance of neural vector controller (Ts=1ms) 

Figures 12 and 13 present the performance of the standard 
and DCC vector controllers under the same conditions used in 
Fig. 11 but with a smaller sampling time of 0.1ms. Even so, 
compared to the neural network controller having the 
sampling time of 1ms, the actual dq current of the standard 
and DCC vector controllers oscillates worse than that of the 
neural network controller and there are more distortion and 
unbalance in the three-phase grid current.  

The comparisons were also conducted for many other 
reference dq current cases. All the case studies showed that the 
neural network controller always performs better than both 
conventional and DCC vector control mechanisms. In general, 
the neural network controller can get to a reference current 
very quickly and stabilize around the reference with very 
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small oscillations. This may give the neural network 
controlled GCC system the following advantages: i) low 
harmonic current distortion, ii) small ac system unbalance, iii) 
reduced sampling and computing power requirement, and iv) 
improvement of GCC connection to the grid without 
synchronization. In particularly, the synchronization for GCC 
grid connection has been an issue investigated by many 
researchers in the field [13, 19]. The advantage of the neural 
network vector controller in this perspective may result in 
important impact in developing new microgrid control 
technologies and overcome many existing challenges for 
control and operation of a microgrid. 

C.  Ability to Track Fluctuating Reference Current  

GCCs are typically used to connect wind turbines and solar 
photovoltaic (PV) arrays to the electric power grid. Due to 
variable weather conditions, the power transferred from a 
wind turbine or PV array changes frequently, making the GCC 
reference current vary constantly over the time. Over periods 
shorter than one hour, for example, wind speed can be 
approximated as the superposition of a slowly varying mean 
speed Vw plus N sinusoidal components having frequencies ωi, 
amplitudes Ai and random phases φi as shown by [57]. 

1

( ) cos( )
N

w w i i i

i

v t V A tω φ
=

= + +∑         (15) 

 
a) dq current 

 b) three-phase current 
Fig. 12. Performance of conventional standard vector controller (Ts=0.1ms) 

 
a) dq current 

 
b) three-phase current 

Fig. 13. Performance of DCC vector controller (Ts=0.1ms) 

Based on Eq. (15), a variable d-axis reference current is 
generated as shown in Fig. 14 while q-axis reference current is 
zero (i.e., zero reactive power), which corresponds to typical 
wind power production under a fluctuating and gusty wind 
condition. Due to the motor sign convention used in Fig. 2, 
power generation from a wind turbine is represented by 
negative d-axis current values as shown in Fig. 14. Again, the 
figure shows that the neural network performs very well in 
tracking the variable reference current in the power converter 
switching environment. 

 
Fig. 14. Performance of neural vector controllers under a variable reference 

current condition in power converter switching environment (Ts=1ms) 

D.  Performance Evaluation under Variable Parameters of 

GCC System  

GCC stability has been one of the main issues to be 
investigated in conventional vector controls. In general, such 
studies primarily focus on the GCC performance for either 
system parameter changes or for unbalanced or distorted ac 
system conditions. For instance, in [1], a small-signal model is 
used for a sensitivity study of the GCC under variable system 
parameter conditions. In [58], a control strategy is developed 
to improve the GCC performance under variable system 
conditions. In this paper, the neural control method is 
investigated for two variable GCC system conditions, namely 
1) variation of grid-filter resistance and inductance, and 2) 
variable PCC voltage.  

 
(a) Actual inductance is 60% above the nominal inductance 

 
(b) Actual inductance is 40% below the nominal inductance 

 
(c) Actual inductance is 50% below the nominal inductance 

Fig. 15. Performance of conventional standard vector controller (Ts=1ms) 
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It was found that the neural network controller is mainly 
affected by variation of the grid-filter inductance but not the 
resistance. Figure 15 shows how the neural vector controller is 
affected as the grid-filter inductance deviates from its nominal 
value used in training the network. In general, if the actual 
inductance is smaller than the nominal value, the performance 
of the neural controlled GCC deteriorates (Figs. 15b and 15c). 
If the actual inductance is larger than the nominal value, the 
performance of the controller is almost not affected (Fig. 15a). 
However, as the actual inductance is higher than the nominal 
inductance, it is easier for the GCC to get into the PWM 
saturation as explained in [22, 23], particularly for generating 
reactive power conditions. The study shows that when the 
actual inductance is over 50% below the nominal value, the 
impact becomes significant and high distortion and unbalance 
are found in the grid current (Fig. 15c). A comparison study 
also demonstrates that the neural controller is much more 
stable and that it performed better than both conventional 
standard and DCC vector control methods under the variable 
grid-filter inductance conditions. 

Regarding the variation of the GCC voltage, a special 
technique is employed in this paper to prevent the neural 
controller from being affected by the GCC voltage variation. 
Assume that the nominal and disturbance components of the 

PCC dq voltage are 
_dq nv

r
and 

_
,dq disv

r
respectively. Then, Eq. (6) 

can be rewritten as  

( )1 _ _dq dq dq dq n dq dis f

d
i i v v v L

dt
⎡ ⎤= − ⋅ − − +⎣ ⎦c

F
r r r r r

   (16) 

where Fc is the continuous system matrix. Since the training 
of the neural network in Section IV does not consider PCC 
voltage disturbance, the neural controller will be unable to 
track the reference demand or lose stability if a high voltage 
disturbance appears on the PCC bus. One way to overcome the 
disturbance impact is to introduce d- and q-aixs disturbance 
voltage terms to the network inputs. However, this makes the 
training more difficult and the improvement is not evident or 
worse. Instead of using the disturbance voltage as network 
inputs, this paper introduces the disturbance voltage to the 
output of a well trained action network, with the intention of 

neutralizing the disturbance. This makes the final control 
voltage applied to the system become 

( ) ( )( )1 _
,dq PWM dq dq dis PWMv k k A i k w v k⎡ ⎤= ⋅ +⎣ ⎦

rr r r
  (17) 

where 
_ _dq dq n dq disv v v= +

r r r
is the actual PCC voltage. With the 

introduction of the disturbance voltage to the output of the 
action network, the neural network vector control structure, 
different from Fig. 7, is shown by Fig. 16. The performance 
evaluation demonstrates that this strategy is very effective to 
maintain neural network performance under distorted PCC 
voltage conditions. 

 
(a) PCC bus voltage in per unit 

 
(b) dq grid current 

 
(c) Three-phase grid current 

Fig. 17. Performance of neural vector controllers for short-circuit ride through 

Figure 17 presents how the neural controller performs 
under variable PCC voltage caused by a fault. The fault starts 
at 1s and is cleared at 3s, which causes a voltage drop on the 
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Fig. 19.  Neural vector controller in nested-loop control condition 

PCC bus during this time period (Fig. 17a) depending on the 
fault current levels. As it can be seen from Fig. 17b, the neural 

vector controller can still effectively regulate the dq current 
even under a voltage drop of more than 80% at the PCC

caused by a fault, demonstrating strong short-circuit ride-
through capability of the neural controller. For many other 
cases, the neural vector controller demonstrates excellent 
performance from various aspects. At the start and end of the 
fault, there is a high peak in the dq current. However, it is 
necessary to point out that this peak does not mean a high grid 
current but represents a rapid transition from the previous 
three-phase current state to a new one (Fig. 17c). 

VI.  EVALUATION OF NEURAL VECTOR CONTROLLER IN 

NESTED-LOOP CONTROL CONDITION 

In many renewable and microgrid applications, the GCC 
control has a nested-loop structure consisting of a faster inner 
current loop and a slower outer control loop that generates d- 
and q-axis current references, id

* and iq
*, to the current loop 

controller [7, 22]. Figure 18 shows the neural network in the 
nested-loop control condition, in which the d-axis loop is used 
for dc-link voltage control and q-axis loop is used for reactive 
power or grid voltage support control [22, 23]. The error 
signal between measured and reference dc voltage generates a 
d-axis current reference to the neural network through a PI 
controller while the error signal between actual and desired 
reactive power generates a q-axis current reference. Figure 19 
shows the schematics of the neural vector controller in a 
ac/dc/ac converter structure, which is the typical situation for 
grid integration of distributed energy resources as shown in 
Fig. 1. In Fig. 19, the left side represents the grid and the right 
side represents a renewable energy source (RES) such as a 
wind turbine. The power transfers from the RES through the 
dc-link capacitor and the GCC to the grid. 

 
Figure 20 shows the performance of the neural control 

approach in the nested-loop structure. Before t=4s, the RES 
generates an active power of 100kW while the GCC reactive 
power reference is 100kVar, i.e., the GCC should absorb 

reactive power from the grid. The initial dc-link voltage is 
1200V. Although no synchronization control is employed at 
the start of the system, both the dc-link voltage and the GCC 
reactive power are adjusted around the reference values 
quickly and have very small oscillations by using the neural 
network control. At t=4s, the active power generated by the 
RES changes to 200kW, which causes more active power 
delivered to the grid through the dc-link and the GCC. The 
reactive power reference is unchanged. Therefore, the dc-link 
voltage increases. But, with the neural network vector control, 
the dc-link voltage are quickly regulated around the reference 
value. At t=8s, the reactive power reference changes from 
100kVar to -25kVar, i.e., the GCC should generate reactive 
power to the grid. At t=12s, the reactive power reference 
changes from -25kVar to 50kVar, i.e., a condition of 
absorbing reactive power. In general, for all the reference 
changes, the neural network controller demonstrates very good 
performance to meet the nested-loop control requirements. 

 
a) dc link voltage 

 
b) Instantaneous active/reactive power waveforms  

 
c) Grid three-phase current waveforms 

Fig. 20. Performance of neural controller in nested-loop control condition 
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Fig. 18. Nested-loop GCC neural vector control structure 
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VII.  CONCLUSIONS 

Three-phase grid-connected rectifier/inverters are used 
widely in renewable, microgrid and electric power system 
applications. This paper has analyzed the limitations 
associated with conventional vector control methods for the 
grid-connected converters. Then, a neural-network based 
vector control method was developed. The paper described 
how the vector controller was developed based on a dynamic-
programming technique and trained via a backpropagation 
through time algorithm.  

The performance evaluation demonstrated that the neural 
controller can track the reference d- and q-axis currents 
effectively even for highly random fluctuating reference 
currents. Compared to standard vector control methods and 
direct-current vector control techniques, the neural vector 
control approach produces the fastest response time, low 
overshoot, and, in general, the best performance.  

To improve neural controller performance and stability 
under disturbance conditions, we used additional strategies. 
These include adding integrals of error signals to the network 
inputs and introducing grid disturbance voltage to the outputs 
of a well-trained network rather than to the inputs of the 
network. We have proved that these strategies are effective. In 
both power converter switching environments and nested-loop 
control conditions, the neural network vector controller 
demonstrates strong capability in tracking reference command 
while maintaining a high power quality. Under a fault in the 
grid system, the neural controller exhibits a strong short-
circuit ride-through capability. 

For future work, we plan to purchase equipment and 
develop hardware experiment system for a laboratory setup as 
shown by Fig. 19. We believe that the successful hardware 
experiment would accelerate the commercialization of the 
proposed neural network vector control technology in power 
and energy industry. 
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