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Abstract -- This paper investigates how to train a recurrent (GCC) is a key component that physicallgnoects wind
neural network (RNN) using the LevenbergMarquardt (LM)  turbines solar panels, or batteries to tiped [1], [2], and [3]
algorithm, as well ashow to implement ogimal control of a grid- A critical issue for energy generation from renewable sources
connected converter (GCC) using a RNNTo successfullyand  and for smart grid integration is the control of the G@@en
efficiently train a RNN using the LM algorithm, a new Foward - poxes in Fig.1). Traditionally, this tpe of cowerter is
Accumulation Through Time (FATT) algorithm is proposed to controlled using a standard decoupled-gl vector control
calculate the Jacobian matrix required by the LM algorithm. -

approach [4]. However, recent studiehave noted the

This paper explores how to incorporate FATT into the LM limitati fth dard I P icall
algorithm. The results show thatthe combination of the LM and imitations of the standard vector controllg4]. Practically,

FATT (LM -FATT) algorithms trains RNNs better than the these limitationssould result in low power quality, inefficient
conventional Backpropagation Through Time (BPTT) algorithm. POwer generation and transmission, and a possible loss of
The paper presents an analytical study on the optimal control of electricity, all of which cause loss of dollars for both electric
GCCs, including theoreticaly ideal optimal and suboptimal utility companies and electric energy customers.

controllers. To overcome the inapplicability of the optinal GCC

controller under practical conditions, a new RNN controller with Solar Charging

an improved input structure is proposed to approximate the ideal RS Staten oSy

optimal controller. The performance of an ideal optimal g‘_"’%
controller and a well-trained RNN controller was compared in 5 v . O
close to r_ealllfe power converter switching environments, ... et Eoll Energy
demonstrating that the proposed RNN controller can achieve == | g g s Storage
close to ideal optimal control performance even under low T mﬁ "'MGCC#_

sampling rate conditions. The excellent performance of the ! oy 690V X b

proposed RNN controlle under challenging and distorted system ~ ) DC/AC
conditions further indicates the feasibility of using a RNN to . /// - “[Controller]
approximate optimal control in practical applications. ‘

Index Terms — optimal control, recurrent neural network,
LevenbergMarquardt, Forward Accumulation Through Time, i Fuel cell
. . . . K Wind
Jacobian matrix, Backpropagation Through Time, dynamic Fia LA mi id with GCGinterfaced distributed
programming, d-g vector control, grid -connectedconverter 9.1 A microgrid wi -intertaced distributed energy sources
Recent research[5] has shown that recurrent neural
I. INTRODUCTION networks (RNNs) can be trained and used to control grid

N modem electric power systems, power electroni€onnected converterin [5], the RNNimplemenéeda dynamic
I converters play an increasingly important rofe the Programming (DP) algorithm and was trained using
integration of smart gridsienewable energy resourcesda Backpropagation firowgh Time (BPTT). BPTT wascombined
energy storage devices (Fij). A grid-connected converter With Resilient PropagatiorRPROB to acceleratehe training
Compared to conventional standard vector control methods,
the neuralnetwork vector controllerproduca an extremely
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behavior even thoughthe RNN controller watrained entirely  1l. OPTIMAL CONTROL OF GRID-CONNECTEDCONVERTER
offline. However, for such an integrative neural network, .. ~ . o4 convertdodel

control structure,training the RNN controller was very ] ) ] )
difficult using BPTT combined with RPRORiue to issues 19 2 shows the schematic afGQC, whichhasa delink
such asslow convergence and oscillation problems th&gPacitor on the left and a thrpbase voltage source
usually cause training to divergeThis paper also addressed€Presenting the voltage at thiint of Common Coupling
the practical limitations thatmay preventthe creation ofan (PCC) Of the ac system on the rigit. the dq reference
optimal neural network controllebased orDP. Both issues Tame; the voltage balance across the grid filtgiven inEg.
have caused great challengasapplyingthe neural network (1), wherew is the angular frequency of the grid voltage, and

controller to a realife system, whiclserved ashe motivation L and Rrepresent the inductance and resistance of the grid

for theresearctpresented here filter.

In [8], Real Time Recurrent Learning (RL) was v i ali ¥ v
proposed to train a RNNHowever the high computational { d}: R{"}r L—|:.d:|+ws L{ . q}{ m} (1)
cost of the RTRL causesit to be appropriateonly for the Va lq dtjig Iy Va

online training of a small RNN [8]-[10]. Alternatively,
Extended Kalman FiltsfEKF) haveprovenuseful intraining ~
RNN controlers for linear and nonlinear dynamical systems
[11]-[13]. Neverthdess EKFs are also computationdy
expensivebecausesach estimation requiresimerousmatrix Vae | &
calculatiors. In addition the eventual success and quality of
EKF training dependshighly on professional experience,
including anappropriate selection dfie network architecture, y
learning ratesand networkinputs [10]. LevenbergMarquardt Fig. 2 Grid-connected converter schematic

(LM)  ([14]-[16]) is used widely to ftrain feedforward FromEq. (1), the statespacemodelof the integrated GCC
networls. Although ®meresearcthas shown the potentiaf gng grid system can be obtaineding Eq. (2), wherethe
training RNNs using LM [17]-[19], it has not been used

broadly for this purposeFurthermore none of thesestudies
have describel how the Jacobian matrixwas defined and normally constant, and converter output voltaygsandv,,
calculated for a RNN. In the study presented in this paper
investigatedhow the Jacobian matrix can be evaluateda
RNN by unrolling it forward through time.

In summary, e purpose othe study wago implement
optimal GCC control under practical constraintsand to
investigate how to utilizeLM to improve RNN training ] ) : ] )
Accordingly, the definingfeatures and contributions of the?€rod andk is an integer time stee used, =0.001sin
paper include1) an analytical study othe ideal optimaland all experiments.To simplify the expressionshé discrete
suboptimal GCC controlers, 2) a Forward Accumulation system model ifEq. (3) is rewritten irEq. (4), where u—dq(k) is
Through Time (FATT)algorithm to calculate theJacobian
matrix efficienly for RNN training 3) an approach to represented bizq. (5).

integrateFATT with LM to accelerate RNN training, and 4) a d‘rd} - {R/L _Q’S}Ed} _,1{\/"1} E{Vd} )
dt

system stateare i, and iq, grid PCC voltage¥ and Vv, are

are the control voltages that are to be specified by the output
of the controller. For digital control implementatiarsing
neural networksthe continuous statgpace model of the
systemin Eq. (2) must be convertetb the discrete statgpace
modelrepresented byEg. (3), whereT, stand for the sampling

newRNN vector controller witimprovedinput structure fom ig o, RILJ[ig| L[Va| L[V,
GCC to increase RNN adaptabilitto broadvector control i (KT, +T.) iy (KT Vo (KT)= v,
applications { o } = { § } { - } 3)
The remainderof the paper i®rganizedas follows First, 'a (KT, +E) 'Q(EI—S) _V"( kT) Va
Section Il introducesa GCC vector control model and lgq(K+1) = Aiy, K)+Bu, (k) 4)
analyesideal optimalGCC control characteristicsSection Ill U (K) = Vi (K = Vi, (5)
dg\ ") = Vaq dq

illustrates the proposed RNN controller structuie also
explains how to extend LM to traira RNN and how t0 g gccvector Control
calculatethe Jacobian matrix required by LM faofficient
RNN training SectionlV compares theéraining performance
of theproposed=ATT-LM training algorithm with that othe

Typically, a GCC has a nestedoop vector control
structure consisting of a faster inner current loop and a slower
outer loop, as shown iRig. 3 [4]. In this figure, the €hxis

BPTT training algorithm Section V' compares the loop is used folctive power odclink voltage control, and
performanceof the ideal optimal controller andhe neural pisu . P ) ge cc '
éhe gaxis loop is used for reactive wer or grid voltage

network controller andevaluates the performance of th 2 Upport control. The active and reactive bower control is
proposedRNN controllerunder challenging GCC operating PP ' P

conditions Finally, the paper concludes with a summaryhef f:onverted Into _decoupled o gurrent °°”tT°' which
mainpoints implements the final control function by applying a voltage

signal to the convertgR0].



The control signal applied directly the converter is a Then, accordingo Eq. (4), the optimakontrol problem can be
threephase sinusoidal voltage. The general strategy ®&wolveddirectly by
tr.ansfé)rmlrllg T ctonttr((;llsm';:r.lad |3nt9 thrhe.ep*hasz §|nus;)t:dal U—m(k) _ B’l[m(k+l)—Ai—dq(k)J (9)
Signasis a-so llustrated in Fig. 3, in whictj, and v, arethe wherek = |, j+1,...c0. Based onEg. (5), the control voltage
d- and gaxis output voltages generated by the controller. The .

. can be obtained by

two ¢ and gaxis voltages are converted to the thpbase . Al _ .
sinusoidal voltage signals,, , v, andv, , through Park Vaq (K) = B [qu_ref(k+l)_Aldq(k):|+qu (19
transbrmation P1] to control the voltagsource converter. Furthemore consider a special case the steadystatein
The m@tio of the GCC output voltage, andv,,, to the output which iy, & (k +1) =i44(K). Eq. (9) canbe simplified as

voltage of the currerdoop controllerv,, andv,, , is a gainof Uge(K) =B (1 =A )igg(K) 1y
Keww » Which equalsv,/2 if the amplitude of the triangle where B™ (I A ) is a stabilizationmatrix proposedn [7] and
voltage waveform in the PWM scheme ¥ 122]. [25].
Ve + The ideal optimal controllein Eq. (10) can regulate the
Vie ‘ T systemto catch up with the reference currem®onetime step,
Vie yoner lo_rer et Vo Vi — Vi - which is the fastest respontme. However, the Eeal optimal
o contol ifﬁ?,l i —— “’—r_;;},— controller may generate a control voltage signgl beyond
bus T lo_rer % %m %al the convertés pulse width modulatiofPWM) constraintin
Vi R orderto meet the immediate current tracking requiremé&at
L avoida largecontrol voltage signalan extensionof the one

< step ideal optimal controllerwas alsostudied and will be
— i i . discussed later; is alsoa special analyta solution to the DP
[ & —oh [ problem The controller use a constant control signal

mva uTq(k)zuT,q to catch upwith the reference withinL time

N3
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)
o
o

Fig. 3 Standardrector control structure .
steps. Then,from Eq. (4), igq(k + L) can besolvedrecursvely,
C. Dynamic Programming in GCC Vector Control

) ) as shown by
Dynamic programming (DP) employs Bellman’s . . —
optimality principle [23] for solving optimization and optimal igq(K+ L) = Alig() + (AS 4+ A+ B -y,
control problems. The typical structuretbédiscretetime DP . AL — 12
includes a discrettme system model and performance = A"idq K }———B-uyq

index or cost associated with the sys{ew. I-A

The DP cost function associated with the vectamtrolled Hence therequiredu—;q can be foundsfollows:
system iglefined as

-1
N & L , —— | 1-A"t — —
Clin(1) = 27" Wy i 0.0 7 1 (@ U= [WB} o ek D-AtTgk)]  @3)
=]
where y is adiscount factarandU is defined as Based onEg. (5), the control voltage can be obtained as
follows:

U(e,(K) =] &(R+ &k ) )
, e D N [ L Ry — L a] o
={[id K )—id_ref K i' +|:iq K )—iq_ref K :' } i >( qul(k) - _ij :| [qu_ré?(k L) A qu(k):| qu (14)

in which « is a constant The functionC(:) , which depends Eqg. (15)provesthat Eq.(9) is thelimit form of Eq. (13):

: — - -1
on the initialtime | and the initialstate  (j) , is referred to as = |1-Al — — —
i M g =| B ik D ATl ] vl @)

the costto-go of state@(j) of the DP problemThe objective L
FurthermoreEq. (10) is the limit form of Eq. (14)Therefore

is to choose a vector contreéquence,, (k) that minimizes Eq. (14) can beconsidereca suboptimal controllerl( >1) in
the functionC() in Eq.(6). the sense that the controllerssponseseed is determined by

time stepL . After Q catches up with, ., that is, when it

. : - . reaches a steady state, Efl) is applied to control the system.
The GCC dynamic modeh Eq. (4) is linear sotheideal Fig. 4illustrates arexample of the idealptimal controller,

optlma_l control probleﬂ can be rep.Lesente%d as as specified in Eq(10), for the GCC system. The figure
min(C) =0 U (g (k)= 0 g (K)~ i« ()= 0 (8) reveals that the ideal optimal controllexhibits perfect
tracking, thefastest response without any delay, no overshoot,

D. Ideal Optimaland SuboptimalVectorControl Modes



and no steadgtate errorFig. 5 demonstrates the soptimal function, as shown in Fig. 6The first 4 input nodesare

controller, Eq.(14), for GCC controlwith L equal to 1, 3, 5, tanhg,. /Gain) and tanh,, /Gain2), where
7, and 9, respectively. As shown kig. 5,the controller can ! ‘

follow the reference curreotverexactly L time seps. €yq (K) = g (K) — gq_rer(K) 16)
200 is refered to as the “error input terfrand
|+| +Iq—|d ref Iqref gq(k):"‘ok-rsa‘(bdl (17)
< 10 ? ‘ is referred to as the “integral terimJnlike [6], this papemlso
o 100 propogsan RNN controllerthat achievesan improvedinput
§ " structureby using two error terms and twategral terms as
R e the network inputs, i.e., removinthe dq current input
g l \ indicated by the bluedashed lines in Fig. 7This network
0 input schemeis particularly important when some network
J——-T-—J statescannot be measured, suchthe rotor currentsn the
50 cortrol of asquirretcage inductiormotor. This improvement
0 20 40 . 60 80 100 alsoreducesthe number of weights betweehne input layer
ime step . . - . .
and the first hiddetayerandrequiredess calculation effort in
Fig. 4 Idealoptimal controller for GCC thereal control loop.
1
° R T T T e a R “nput Preprocess /
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forer Fig. 6RNN controller structure
2 4 6 8 10 12 14

Time step
.5 GCC aiboptimalcontrollerin L steps

5

©
o
I

!
,f

d-q Currents (A)

5
o
I

N
o
-

B. DefineRNN controller function
Based on the proposed RNN controller structtire,RNN

NEURAL NETWORK VECTORCONTROLLER ANDPROPOSED  canbe denoted aR(g, (K, s,( B, W, which is a function of
- aeen FTNT T'LMkT\;‘A'N'NiALGOIT'THM 6 (K, 5.(K andw. If the RNN takesi, (k) asinputs, the
: euralNetwork Vector Controller . e
The ideal optimal controller, Eqg. (10, and suboptimal function R() canalso beienoted AR (iog (W), Eiq (K Sl By -
controller, Eq. (14), were deduced under the assumptibat Thus the control actioru,, (k) is expressed by
theexactGCC system parametengreknown.In practice, the TN T (o Y o W w
systemparameters may deviasignificantly from its nominal Hea () = Ve (W =l Re( K o kW ¥ (19
values.Particularly,the inductancef the grid filtercould be where Koy IS the PWMgain,as explained in Section I1.B.
affected by the temperature and grid voltage frequency.
Changes inhe system parameters will affect the performance The converter output voltageg; and V,, are proportional
of both the ideal optimal and suboptimal controllers. Thugg the control voltage of the RNN outpwts explained in
thesecontrollers are not robugt practice Therefore aRNN  Section 11B. Although Fig. 6 shows a fegdrward network
vectorcontrolleris employedo approximat the ideal optimal configuration, he controlleris considered a recurrent network
controller because the feedback signal generated by the sistq (5)
Fig. 7 depicts theverall RNN vectorcontrol structure of acts as a recurrent network connection from the output of the
the GCC currenloop, which combineshe vector control  system shown in Fig. 7 back to the input.
technique with the Diased neurahetwork design. The ] )
neural network componentshown in Fig. 7 is a fully C- Backpropagation Through Time (BPTT)
connected multiayer perceptron26] with 2 hidden layers  Before defining the main algorithm of this paper,,i.e.
having 6 nodes each, and 2 output nodes, with hyperbok®!+FATT, we first review the BPTT method used in [6] for
tangent functions at all nodess detailed in Fig. 6. this GCC problenfor the purpose otomparisonas discussed
To avoid neurl network input saturatigrithe inputs are in Section IV
regulatedto the range {1, 1] using the hyperbolic tangent

Fi

a



Hidden

Fig. 7 GCC neural network vector control stture. Va1 p1cirepresents th&CC output voltage in the thrgghase ac systenand the
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corresponding voltages in thegdeference frame ang; andvy.. Vap,cis thethreephasePCC voltageand the corresponding voltages in
the dq reference frame ang andv. iapc Stands for théhreephasecurrent flowing from the PCC to the GCC, and the apoading

currents in the 4 reference frame arg and i, va; and vy are the d and gaxis voltages from the RNN controller, and the
corresponding contraloltage in thehreephasedomain isVai p1ca

Algorithm 1: BPTT algorithm for training a GCBNN vectol

controller

8:
9:

: C«0,6,(0)« 0,54(0)« 0,

: {Unroll a full trajectory}
: for k=0toN-1do

Voo (K) < Koy R T K & B, 54 K
E,;(k+1)<—Ai’d;(k)+B[v‘d;(k)_7qu
ulk+ D Ik )Ty (ke

- — o T — .
Skt D) SR+ (& e D+ g ¥

C« C+7"U(g,(k+1)

end for

10: {Backward pass alontyajectory}

11:

12

13:

14:

15:

16:
17:

18

ac acC e

oW

— <« 0, — , — «~ 0
ow Digq (N) 0344(N)
: for k=N-1 to O step-1do
iC « BT __6C
Ve (K) Oigg(k+1)
ocC oC oR(k) aC
———— + Koy — —
0844(K  0g,(k+1) ENE CAA S
OR( k
—a‘C < PWM —'( ) ic AT —'aC
digy (k) Bigy (k) OVyq (K) Oig(k+1)
TS[ oC ac ] L OU (8,0(K)
+=2 — +—= + —
2| 05, (k+1) 03( K 0 1o( K
oC oC oR(k) acC
==t Koy = T—
ow  ow OW(K) 0V (K
end for
. oC .
: {on exit, — holds for the whole trajectory}

BPTT is gradient descent cm(ﬂj;(j),v“v) with respect to

the weight vector of the recurrent neural network. In general,
the BPTT algorithm consists of two stepsforward passhat
unrolls atrajectory, followed by a backward pass along the
whole trajectory, which accumulates the gradient descent
derivative.

Alg. 1 providegpseudacode for both stages of this process.
Lines 19 evaluate a trajectory of lengtd usingEgs.(4) and
(5). The second half of the algorithnfrom lines 1018,

calculates the desiregradienC/ow. The derivation of the
gradient computation part of the algorithiings 1118) is
exact andfollows the methoddetailed in [27], which is
referred to as generalized backpropagat8), [or automatic

differentiation R9]. The derivativesR(K)/ow, dR(K) /0, (k)

and aR(k)lagq( R are calculated according the standard

neural networkbackpropagation ruledQ], which is basically
the chain rule for computing the derivatives of the
composition of two or more functions.

During the evaluation of the trajectory forward pass (lines
3-90f Alg. 1), and in allsubsequerpseudo code this paper,
the integral input ternof Eq. (17) was evaluated usinthe
following trapezoid formulan Eq. (19), instead of thierward
Eulerformula in [6}

gq( K) ~ Eiw' a;(o): 0 (19

This approximation can also bewritten asa recurrene
relation:

Si(K=8(k-)+ T . §40) 0 (20
Hence Eq. (20) appears as line 7 of Alg. 1.

€ (k=D + &y(¥
2

D. LevenbergMarquardtalgorithm, and its applicabilityto
RNNs

The Levenbergviarquardt(LM) algorithmis widely used
to train feedforward network and provides a nice
compromise between the speed of Newton’s method and the
guaranteed convergence tife steepest descentThus LM
appears to be the fastest neural network training algorithm for



a moderate number of network paramet8}.[AlthoughLM  selection ofthe constant numbetr has an important impact
has achieved great success in trairfepforward network, on RNN training Better convergenciem RNN training can be
it is not sufficiently straightforward foruse intraining RNNs achievedwhen « is a fractional numberas demonstrated in
directly. This paper develops a mechanisynwhichto train a Section IV

recurrent network based &M, whichcan be applied to any | order to use.M for any « values, the cost functio€(’)

problemin which the RNN has fixed target outputs at eacgefined in Eq. €) must be modified Consider the cost
time step, such ake GCCtrackingcontrolproblem.
LM can minimize a nonlinear sumof-squares cost function C= Zyk lu(qm(k)) in which y=1, j=1, and
function, such adn a case in whichhe costfunction can be k=i
written asC(w) = ZV( P’ , where pis the training “pattern”
p

k=1...,N.Then C(}) can be writteras

= UE() “Uoc S (upy

k1

defineV (k )=,/U

index, andV(p)is the error for patterrp. Then the LM @4

algorithmconsists of the followingveightupdate[30]:

LW W] XV @

where J(W) is the Jacobian matrivof V with respect to the

andthe gradienté‘C/@Vv can be written i matrix formas

N

o VW,

_ 8V(k) TRy
weight vector of the neuraketwork V is defined by oW ow ZZ\/(k) 2Jw V- (29
J V.(l) 22 F. Forward Accumulatiomhrough Time (FATT)
V(.N) In order to calculate the Jacobian mat}()?v) for a RNN

efficiently, a newalgorithm Forward AccumulationThrough

where| is the identity matrixand x is a scalar regulation Time (FATT), is proposd. FATT combinesthe computation
parameter that is dynamically adjusted during learning (se
f the Jacobian matrixd(w) and theunrolling of the system

Fig. 8).The quantityJ(wW)" J(W is called the GausSewton
matrix, and itapproximateshe Hessian matrix for the cost
function[31]. Hence LM approximate the Newton methoth 5V (K)/aw, the kth row of the Jacobian matrd(w) , at time

solving the cosminimization problem.
ste kT,. The following proposed FATT is suitable for a
To extend the applicability of LM to the RNN case, we pt = g prop

simply defineV (k) as theerror of the output of the RNN atgeneral constant.

time stepk . Hence, if there areN time steps in the state 10 find the kth row of the Jacobiarmatrix J(w) ,
trajectory andM weights in the neural network, thehe derlvat|ve6V(k)/6W|s expressed as

Jacobian matrixJ(W) is defined for a RNN as

trajectory, and calculates both system staggék) and

V(K V(K 084K
V() V(@) ow el ow 26
ow ow, : o
I = ) E 23 According to Iihe definition o¥/ (k) in Eq.a(24),
V(N av(N) VO _ 0 e é(B)e]
k d
oW, oW, 0e,(K oy (Rk @7
This completes the definition that extends LKbr 5 2
= k)2
applicabilityto RNNs.Derivatives of the formoV (k) / owy will . L a(ed € € ( ) [e (K ¢Chl
be dependentipondV (j)/ow for j<i (by the chain rule) Differentiating e, (k) oqu. (16)y|flds
therefore the Jacobian matrixmustbe calculated with care. o€, (K 0igy(K) 29
The FATT algorithm presented in Section IlIl.F shothe ow  ow

correct way to perform this calculation The derivativedi, (k +1)/ow is found based on thecursive

E. LevenbergMarquardtalgorithm fornonsumof-squares formulain Eg. (4) and the definition of the RNN controllar

costfunctions Eqg. (18):
If the performancerror function is not a sunof squares, 6E(k +1) _A Gm(k) B au—m(k) 29
then_the LM weight updateequation(Eq. (21) is not directly ow ow * ow
applicable. DifferentiatingEq. (18) andutilizing Eq,. (28) yields
In the definition ofthe cost functionC(-) and thelocal au—(k) oR(K 6T(k) ORB S (k) 8FH
costU (-), thereis aconstanumbere . Whena =1, the cost (;LV‘.V: "\ s (8 2‘LW s daq oW 30
q q

functionis just thesumof squares oérrors In suchcases, LM
can be applied directly to train the RNN.However the



where 0s,, (k) / 0 w is calculated according t6q. (L9)
05,(K) T {a@( k1) 0 e a}

ow 24| aw ow

A3 )

(31)

i=0 oW 2 ow
Calculatingdi, (k)/aw requiresa loop from j =0 to j =K .

Thus the process for calculati,, (k)/@w and 6V(k)/6w
is integrated into the process of unrolling the trajectory.

Algorithm 2: FATT algorithmto calculate the Jacobian
matrix.

1. C«0, qjq(0)<— 0, %q (0)« 0;

”q( ) <020~
oW ow

2: {Calculate Jacobian matrix (w) }

3: for k=0to N-1do

40 Ug(K) < ko R B S K W

5 6qu( k) ago(k) 1 0 qu( K)
' ow T ow 2 ow
6u—dq(k)(_k OR(K) 6E(k) OR R 054(R LORK
ow "loe (K ow 6§q(K ow o w
7. Ok ) digl) o 0ug(K)

ow ow ow
8 gy (k+1) < Aig(k)+Buy ()

9: (k+D)« iy (k+D)—igy o k+D)

dCL ref

10: %(k+1)<—§4(k)+33<€4( ke 1)+ g y)
11:  C« C+U(g,(k+1)
a&(kjl) (_ a&ik)+ 6E(kjl)
ow ow ow
V(k+D) _ aV(k+D) Ol (K +1)
ow 0g (k+l) ow
vV (k+1)
ow

12:

13:

14:  the(k+1) th row of) =

15: end for
_{on exit, the Jacobian matrid(w) is finished for the
" whole trajectory}

Alg. 2 shows theentire FATT processfor calculatingthe
Jacobian matrixJ(Vv) for a complete trajectoryln the

— k. - A (i - i
algorithm, 69 = Y i () and?2W) 32 all)_oplcD) Al
i ow T3 ow ow ow

The proposed FATT algorithnalso can be applied to
develop neural network vector controllers of other dynamic
systems. To utilize FAT®n another dynamic system, the new
statespace model of the system must be incorporated into the
FATT algorithm (Alg. 2), i.e., only those formulas that are
related to the systeémstatespace model need to be modified.
This shows thegeneralizability and brad scope of the
potential impact of our novel approach.

G. Computationatomplexitystudy

In Alg. 2, N denotes the trajectory lengthhe most time
consumingpart of Alg. 2 is the matrix multiplicationghat
involve m by M dimensional matricesvhere M stands for
the number of all the weightand m representshe dimension
of the RNN output layerwhich is also the dimension of the

state vectoridq , i.e., m=2. For example, line6 of Alg. 2
involves matrix multiplication between ma mx m matrix
6R(k)/6e,q(l<) and an mx M matrix 8| (k)/aw . Using
standard matrix multiplication, this will take¥ M floating-

point operations (flops). Thyusombiningit into the loopof
N time steps for thentire length of thérajectory, the FATT

algorithm takesO(m? NM) flops tocompletel (w) .

H. Training algorithm for RNNLM plus FATT

Fig. 8illustrates the entire process for incorporatiigr T
into LM. In Fig. 8, u,.,Stand for the maximunacceptable: ,
B and g signify the decreasing and increasing factors,

respectivelythat areusedto adjust thdearning rateduring the
training Epoch,, represents theaximumnumber oftraining

epochs and”&C / 6?\4 _

min

denotes thenorm of the minimum

acceptable gradient

Besides calculatinghe Jacobiamatrix, FATT can also
outputthe DP cost as shownin line 11 of Alg. 2. FATT* in
Fig. 8 refers to the process for calculating B¥@ cost which
involveslimiting the running ofines5-7 and 2-13in Alg. 2
to save calculation timeThe sandardLM procedurewas
followed duringthetrainingin [16] and[30] (Fig. 8). In order
to acceleratethe calculation the weightsin Eq. (21) were
updated usingCholesky factorization, which is roughly twice
as efficient as LU decomposition for solving systems of linear
equations 32].

The procedurdor adjusing ¢ alsoappearsn Fig. 8. The
parameter u is dynamically adjusted to ensuthat the

training follows the decreasing directiorof the DP cost
function When p increass, it approaches the steepest descent
algorithm with a small learning rate; whendecreasg the
algorithm approaches Gaudlgwton which provide faster
convergenceThe followingthree training stoppingonditions
used are 1) when thetraining epoch reaches th@maximum
number oftraining epoclts, Epoch,,, , 2) when x is larger

Lines 5, 6, 7 and 13 of Alg. 2 come from Egs. (31), (30), (29)

and (26) respectively



than 4, , and 3) when the gradient is smaller than th® WM saturation constraints3§ and [5], 3) selectingthe
sampling timeas T, =1ms and the entire duration @faining

as 1 second,and 4) randomly generating initial network
weights using a Gaussian distribution with zero reeaml 0.1
variance.

A. FATT is equivalent to BPTT

To verify the proposedlgorithm,the gradierg generated
using FATT (Eq. (5)) were comparedwith thosecomputed
using BPTT (Alg. 1). Table| shows the comparison results,
which demonstratethe equivalence of the two method$e
matrix W3 in Tablel denotes the wghts of the output layer
of the RNN and itsdimension 7x2. The meansquare error
(MSE) for calculated weights W8 2.704%10™ with a 95%
confidence interval [1.360x10"% 6.248x10%. For all
calculated neutanetwork weights, the totaMSE value is
4.437%10™ with a 95% confidence interval3[381%10™,
5.937%10%. The MSE was calculated using 32-bit
MATLAB with double precision. Thus the gradients
calculated using FATT and BPTT are basically the sdimeir
differences are limitetb roundng errors.

TABLE |
GRADIENT COMPARISON BETWEENFATT AND BPTT

W3 (1.0e+009)

Initialize training
Epoack—1
Initialize training parameters
oc
Ho Hionas B+ Bae » EPOCH ‘
Dw Imin,
]
Initialize Weightsw with smal
random numbers
FATT calculatesDPcost and
outputs Jacobian matriJ:(G,)

oC
— >

owl owl

Epoch—Epoch+1|
3 GomputeAVv using Choles?
L YE
factorization

FATT* calculatesDP’ cost
with w « w+Aw

N
poch< Epoch,

YES
A 4

Increase
M= X fy

FATT BPTT

NO—

Update We|ghtwe w J
Training Stop

and Decreage<— u/ 3,
Fig. 8 Training algorithm for RNN:M+FATT

I. Off-line training vsondine training
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The proposedATT algorithm for calculatinghe Jacobian B. RNN training algorithm comparison: LM+FATT and
BPTT+RPROP

matrix does notrequire backward computing Thus it is
suitable for ofline training andalso can be combined with
other algorithm, such as RPROPfor online learning. To

can yield the needed gradiexsithe system propagates.

LM is not appropriatefor online learningbecauseeach
training epoch may contain several iteratiotteus LM +
FATT training in this paper wasonductedoff-line. The
neural network trainedff-line with the proposetlM + FATT
demonstrateé great performance undewariable system
parameters and noismnditions as demonstratd in Section
V.

IV. COMPARISON OFFATT-LM AND BPTT IN TRAINING AN
RNN CONTROLLER

To train the RNN controller, data fora typical GCC in
renewable energy conversiapplicationswerespecified[33],

1200V for the dc link, and 3) a resistance of 0.012€ and an

Fig. 9 shows the average DP cost per trajectory time step

for training the neural networkvector controller using
compute the gradierdV (k+1)/dw at each time step, FATT FATT+LM and BPTT+RPROP respectively The trainingof
both algorithmausesthe sameparametersincluding thesame
initial weights starting d-q currents and dqg reference

currents
10° e :
— FATT+LM
7] AN BPTT+RPROH
o
(]
o
[a)
® 10° N
> —
<
(] ™\
z BV
M
\\—\M—-
1 [T
10 0 2
10 0 i 10
Iteration

Fig. 9 Comparison of average DP cost per trajectory time stepaining
[34], and[35]. These include: 1) a threephase 60Hz, 690V RNN controller using FATTEM and FATT+RPROP

voltage source signifying the grid, 2) a reference voltage of

In theory,LM is faster than RPROE@nN [36]), as verified

by Fig. 9. The overall average trajectory caktcreasedo a
mall number much faster usingv than using RPROR
emonstratinghe excellent learning ability of the proposed

statei,,(0), 2 randomly generating a sample referente Tt algorithm with LM for training the RNN controller.

current trajectorywith consideration of the rated current andhe results also revealed a major drawbaclRBROP an

inductance of 2mH for the gridilter. Training took the
following policies: 1) randomly generating a sample initi



oscillation problem during the trainingsillustrated inFig. 9, controllers for many other power and energy system
which maycausehe training tagetstuckata high average DP applicationsmakingRNN controllersareality.

cost level. E. Comparison of optimal controller and RNN controller

C. Differentconstanta effects in traininga RNN Fig. 12 comparesthe performanceof an ideal optimal
Fig. 10 compares the average DP cost for training tlee@ntroller, a suboptimal controller and a RNN controlldre
recurrent network with differentz valuesusing FATT+M. RNN controller used for thiscomparison was trained
For a =1, we used the square roots of #werage DRcost in sufficiently well when the average DP cost per trajectory
Fig. 10 in order to compatheaverage DRost corresponding droppedto a small valueand stabilizd there, as indicated by
to @=1/2. Fig. 10 shows that =1/2 yielded bette and Fig. 11 Basically no st.eadyjtate errorexisteqlfor the_RNN
faster convergencéVhena =1, the training had difficulty controller afterthe twentieth time ;tepaccordmg to Fig. 12.
converging to the required resulfhis also indicates the Compared to the 28tep suboptimal controller, the RNN

necessity ofransformatiorEq. @4). Directly usingthe MSE controllerhad a smallepvershootFig. 12 also indicates that
as a RNN training objective, which is the general case f(SPe RNN contrber properly approximatéthe ideal optimal

controller.
feedforward neural netwosg doesnot work well.
200
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lteration Fig. 12 Controllerperformance comparison between ideal optimal controller,

Fig. 10 Comparison of average DP cost per trajectory time step wighedif ~ 20-step controller and RNN controller.
a values using FATTEM
V. PERFORMANCEEVALUATION OF TRAINED NEURAL

D. Comparison oRNNcontrollers with different input NETWORKVECTORCONTROLLER
structures

. - To evaluate the performance of theural networkvector
Fig. 11 compares the average DP cost for training the . . .
. o controler trained with the proposed=ATT+LM algorithm
recurrentnetwork using the FATTEM when 1) all six inputs . :
_ andto compare the performancé theideal optimal controller
including Iy, , indicated bythe blue dastedlinesin Fig. 7,are and the neural network vector controlleran integrated

used as the network inputs, and 2) only two error terms df@nsient simulation system of a GGgstemwas developed

two integral terms are used as the network inputs, Big. 6.  Using SimPowerSystem@ig. 13). The converter switching
5 frequencywas 3000Hz. In the switching environmentthe

10 . s
performancewas evaluated under close to rlf conditions

[35]. The PCC buswas connected to the grid through a

transmission line modeled bgn impedance.For digital

18 \Y control implementation, the measured instantaneous -three

phase PCC voltage and grid current pdghrough a zero

orderhold (ZOH) block[37].
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= Grid System Transmission Cc c
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Fig. 11 Average DP cost per trajectory time step for training RNN dlamtro
with two different network input schemes using FATM-

Discrete
PWM Generator

Uref Pulses

As illustrated in Fig. 11, with the RNN input structure @b B>
shown in Fig. 6, the training actually convemjgo good fdeal optimal conller Manual e
performancefaster In addition, reducingthe RNN input g@g
variablesreduces thecalculation efforts needed in retiihe

RNN

control, which allows the proposed RNN controlleto be Fig.13Vector control of GCC in power converter switching environment
applied easilyin hardware.This optimized RNN controller

would make itmore pratical to develomeural network vector ~ S€ction V.A compares the performancé the ideal

optimal controller andhe neural network controllerwhile
Sections V.BV.D evaluatethe performance ofthe neural



network vector controller under differestringentconditions

sufficiently small e.g, T,=2e-6s , which is also the

including distorted grid voltage, PWM saturation and voltaggamp"ng time generally used to simulate hardware sgstem

control mode. In each experiment, the proposed neural

the ideal optimal controlleexhibitedvery good performange

network controller structur¢only two error terms and two g5would be expected theoreticallfig. 4). Howeversuch a

integral termsfed into the neural network vector contro)lerhi

wasused as the network inputss indicated in Fig6.

A. Performancecomparisonof neural networkvector
controller andidealoptimal controller
Fig. 14 compares the performancé the neuralnetwork
vector controllerand the ideal optimalcontrollerin tracking
the dq reference currentsThe first four plots showthe
performance of thaeal optimal controller undehe different
sampling ratesof T, =0.001s, T, =0.000%, T, = 0.0000%,

and T, = 2e— 6s. The fifth plot shows th@erformancef the

neural network vector controlleunder a sampling ratef
T, =0.003s.
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Fig. 14 Performanceomparisorbetween neural network vector controller
and ideal optimal controlled-qcurrens.

Small discretization is requiree tmakean ideal optimal
controller work properly.When the sampling timebecame

gh sampling frequencwith f =1/T, =1/2e- 6= 50MHzis
computationdy expensive and can cause potential overrun
problemsin hardwareimplementation In addition, the ideal
optimal controller could not tolerate anlganges in theystem
parametes. All of these factors makée practical application
of ideal optimal controlles difficult. The fifth plotin Fig. 14
demonstrates the good tracking performancéhefproposed
neural network vector controller with sampling time of

T, =0.003s, which is very close to the performancethé

ideal optimal controllewith asampling timeof T, = 2e— 65,

corresponding to the fourth plot Fig. 14. However, undea
sampling rateof T, =0.001s , the ideal optimal controller

performed very poorlyFig. 14illustratesthat the proposed
neural network controller achieved very good tracking
performance close tothat of theideal optimal controller
under a low sampling rate, which makes optimal control
feasible in reality using neural networks.
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Fig. 15 Performanceomparisorbetween neural network vector controller
and ideal optimal controllethreephase currest

Fig. 15 compares the actual thypkase currentsising
the ideal optimal controller witha sampling time of
T, =2e-6s and the neural network controller witha

sampling timeof T, =0.001s. Even thoughthe actual eh

current oscillatd around the reference currdmtcause othe

switching impact (as indicated by Fig4), the actual three
phase grid currentvas properly balanced and the neural
network vector controller perfored close totheideal optimal

controller.

B. Performanceevaluationof neural networkvector
controller underdistortedgrid voltageconditions

The grid voltage oftens distortedin reality and shows
high-order harmonics, which is caused by nonlinear loads in
general. Fig. & shows the performance of the neural network
vector controller under a distorted grid voltage condition. The



voltage distortion appears between 0.5s and 1WBas D. Performanceevaluationof neural networkvector

distorted grid voltage (Fig.6h) would cause difficultywith controller undergrid voltagecontrol mode

the vector control. However, the neural network vector Fig. 18 depicts the performance of thetrained neural

controller still performed very well under this conditioas network vector controllein PCC voltage control mode. In the

shownin Fig. 16b, which demonstrates the robustness of thigure, a grid voltagefault simulated by connecting with a

neural netwrk vector controller trained using the proposeflult loadappears between 4md 6s, causing a sudden PCC

FATT+LM algorithm. voltage reduction However, the controller trained using the
500 proposed FATT+LM algorithm performed very welas

AAA/\ M\M\AM\A (\/{WWI\A AA/}{\A/\{( shovxf[n i'ntFit% 1§.NNDue ttt) t|r|1e con\I/(cjartert's PWL\/I sat\;uralgi?:nC
constraint, the controller could not maintain the
VLYY VYUY V\}/VVVV VIV Goring tre tatt (Fi. 1820, meteads « operated by maintaining

N
a
=]

PCC voltage (V)
o

the effectiveness of theakis current control while providing
- PCC voltage support control as much as possible (Fig. 18b).
0.45 0.475 0.5 0.525 0.55 0.575 0.6
Time (sec) At t=6s, when the fault was cleared, the neural network vector
a) PCC voltage controller returned to its normal operating condition, and the
PCC bus voltagquickly recovered to the rated bus voltage.
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controller underPWM saturation e T e

®»)

100

In practice outerloop controllers(Fig. 3) may generate a
d-q reference currergignal thatcould cause the converter tog
exceedits PWM saturation limit.When theactual inductance
is higher than the nominal inductance, it is easier for the GGClw
to reachPWM saturationas explained i{35], particularly °

nt

Curr

under reactive powergenerationconditions. Under PWM 20, 1 5 3 4 5 5 7 8
saturation, the conventional vector control method will Time (sec)
malfunction f]. However, he RNN controller trained by b) d-g current

FATT+LM can automatically maintain thedfectiveness of the
d-axis current control while satisfyirthe g-axis control neesl
as much agossible as shown in Fig. 17. The controller VI. CONCLUSIONS

automatically operates in thisodeduring the period between ) _ )

1s and 2svhen there is a high demand for reactive power 1S paper investigatehow to useLevenbergMarquardt

This property would ensure theppropriateoperation of the (LM) to t_rain a RNN for optimal cpntrol Of,a GCC and stutlie
GCC under PWM saturation constraints the relationshifpetweerthe RNN, ideal optimatontrollerand

suboptimal controller for GCCs. In particular, we explained
300 . . . how to extend the LM algorithnfior training a RNN by
!—id_,ef—iq_,ef S iql showing how the Jacobian matrix can be defined and found
for RNNs. The paper demonstrates that the proposed LM
FATT algorithm is efficientand reliable and converges faster.
The training results show that the proposed -ERMTT
algorithm can solve the RNN tracking problem very well.

The study shoedthat although an ideal optimal controller
for a GCC can track a target in one time step, itallgu
requires a control voltage that is beyond the physical system
constraints. Other issues associated with an ideal controller
include sensitity to variations insystem parameterand
noises and poor performance at a low sampling rate.

Fig. 18 RNN controlleunderPCC voltage control mode
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However, the pposed RNN vector controller achievelose [16] M. T. Hagan and M. B. MenhajTraining Feedforward Networks with
; ; the Marquardt Algorithni IEEE Transactionson Neural Networksyol.
to |dea_l contr_oller performanceven under m_anﬁ/_ challer&gl_ng 5. No. 6, November 1994p. 989993,
dynamic, variable, and power converter switc Ing condition$y) v, Tanoto,W. Ongsakul and CO.P.Marpaung‘LevenbergMarquardt
The RNN controller can use a much lower sampling rate than Recurrent Networks for Long Term Electricity Peak Load

that used for the ideal optimabntroller while maintaining Forecasting,TELKOMNIKA Vol. 9, Na 2, August 2011pp. 257-266.
performance equivalent to that of the ideal optimal controllgf] L. Chan andC. Szeto, “Training Recurrent Network witrBlock-

. . . e g Diagonal Approximated Levenbebldarquardt Algorithm,”Proceedings
at a h|gh sampllng rate. This would S|gn'f'camly redtice of 1999 International Joint Conference on Neural Netwprks
computing time and enhance the deployment of the proposed washington, DCVol. 6, 1999,pp. 40434047.

RNN controller to realife systems. [19] L. Chan and C. Szeto, “Weigkroupings in theTraining of Recurrent
Networks,” Proceedings of 2000 International Joint Camiee on
Neural Networks, Como, Italy/ol. 3, 2000,pp. 21-26.
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