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ABSTRACT 

The research that is described in detail in this thesis investigates key characteristics of the 

operation of Tunable Laser Diodes (TLDs), such as Continuous Wave (CW) operation, 

discontinuous, continuous and quasicontinuous wavelength tuning and direct Intensity 

Modulation (IM) (small-signal analysis). Two software simulation tools were used to 

model the TLDs and investigate their operation, Crosslight PICS3D and VPI (Virtual 

Photonics Incorporated). Two different Free-Carrier (FC) contributions to the refractive 

index change of the TLD during FC tuning were investigated, the FC plasma effect and 

the band-filling effect which uses the Kramers-Kronig (KK) relations (KK effect). It was 

found that the band-filling effect is heavily underestimated due to the lack of its 

investigation in published literature as it is the main contributor to the refractive index 

change instead of the plasma effect. Investigation on different types of wavelength tuning 

also took place. It was found that with careful design of the passive sections, such as the 

κL product, grating composition, section length and passive waveguide thickness the 

discontinuous, continuous and quasicontinuous tuning range can be enhanced greatly.  

The issue of output power decrease during discontinuous tuning in bulk and Multiple 

Quantum Well (MQW) TLDs was also addressed and it was found that the power drop 

can be delayed at latter stages of the tuning range by carefully selecting the Lorentzian 

lineshape of the gain spectrum. A power stabilisation was realised with continuous 

tuning. A small-signal analysis of directly intensity modulated TLDs during 

discontinuous tuning was also made and was found that the increase of the resonance 

frequency depends mainly on the increase of the differential gain with the wavelength 

change. 
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Throughout the centuries of human civilisation, interaction and communication 

between people everywhere in the globe was always one of the most significant parts of 

their culture. It helped them cooperate with each other to make their lives easier and form 

societies so that they would not face alone the dangers of a wild world. The main forms 

of communication in the first stages of civilisation were mainly oral (people speaking to 

each other over small distances), sonic (with the use of drums, trumpets and other 

acoustic devices over greater distances) and visual (with the use of smoke signals, fire 

beacons, moving flags or lit torches, reflecting mirrors, etc. over even greater distances).  

As civilisation progressed and the centuries passed, a breakthrough in terms of 

human communication took place with the invention of writing, first by carving letters in 

stone and making marks in animal skin in a primitive form and later by using ink to write 

in scrolls and paper (typography, books). It quickly became one of the most popular 

means of communication over very long distances, also known as telecommunications, 

and together with the other three described above remained the only types of human 

communication for many centuries until the technological revolution that took place in 

the 19th century and onwards. 

It was during this century that a breakthrough of extreme importance took place 

with the discovery and manipulation of electricity, which revolutionised the area of 

telecommunications up to that point. The most significant inventions of the time were the 

telegraph by Samuel F. B. Morse in 1838 and the telephone by Alexander Graham Bell in 

1876, which used electrical signals to transmit information in long distances by using a 

copper cable [1] and completely changed people’s lives in the way they communicated 

with each other. These new types of telecommunications were called electrical 

communication systems and were able to cover distances over 1000 km [2]. From that 

point and on the development of telecommunication systems became rapid compared to 
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the progress that took place in the previous centuries. The potential of these unique 

inventions opened new scientific paths and led to the idea of networking. 

The realisation of this idea became apparent in the form of a worldwide telephone 

network when an increasing number of people started using the telephone in the years 

after the Second World War ended. This led to the need for greater bandwidth in the 

communication channel (copper cable) that was used and a significant growth in the 

transmitted information through that channel. Therefore, the transmission of electrical 

signals would have to take place at greater transmission rates or bit rates (bit / sec), 

however the copper cable during the 1940’s could not support transmission frequencies of 

over 10 MHz because of its design issues and the losses it introduced which caused an 

additional problem to the whole situation [2].  

For this reason, new types of telecom networks were initially developed in 1948 

that could support bandwidths above 10 MHz. They were called microwave systems 

because their operation band was between 1 and 10 GHz and their evolution was so rapid 

that by 1975 they could achieve bit rates of 274 Mbps (Mbits/sec) with the use of coaxial 

cables instead of the copper wire pair [1]. The drawback of these systems though was that 

their repeater (device which retransmits the same signal it receives in a specific direction) 

spacing had to be up to 1 km. However, their Bit rate–Distance (BL) product (evaluates 

the performance of a system, where B is the bit rate and L is the repeater spacing 

multiplied together B x L) was rather high (around 100 Mbps x km [2]) for the 

technology of the time and almost reached the fundamental transmission capacity of the 

copper cable. 

It therefore became obvious that a transmission medium other than the copper cable 

had to be used in order the increasing demand for greater BL products to be satisfied. For 

this case, the idea of using optical waves instead of electrical signals for the transmission 
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of information in telecom networks was suggested because of their high travelling speed 

in a medium and high achievable BL products. Therefore, various optical network 

components (transmitter, transmission medium, receiver, amplifier, regenerator) begun to 

be implemented in order to be used accordingly in an optical network. 

The invention of the LASER (Light Amplification by Stimulated Emission of 

Radiation) in 1960 [3] brought closer the achievement of this goal as it is the ideal 

transmitter for optical networks. It is a device that generates monochromatic light (optical 

waves in the form of photons) with a highly concentrative beam which is very coherent 

and can be easily waveguided through a transmission medium. The idea of using gas 

lenses in order to confine light [4] was proposed during the 1960’s as a transmission 

medium but it was not until 1966 that the invention of the optical fibre [5] made it the 

dominant medium for the new type of telecommunications, the optical communications.  

Optical fibres became extremely popular as a transmission medium for optical 

networks because they could guide optical waves (light) in the same fashion as the copper 

cable could transfer electrical signals and radio frequency waves. However, in the early 

stages of their use in optical networks during the 1960’s fibres introduced high losses of 

over 1000 dB/km in the wavelength region that optical signals were transmitted, which 

was their main disadvantage. This problem was finally solved after 1976 [6], when lasers 

started to operate near the wavelength region of 0.8-1 μm where the fibre losses were 

much lower and around 20 dB/km.  

From that point and on this new type of systems, also called lightwave systems, 

which utilised lasers and optical fibres as the main type of transmitter and medium have 

dominated the area of telecommunications until today. Their main advantage compared 

with previous systems in the past years is their ability to transmit huge amount of data 

over very long distances with relatively low losses and thus achieving very high BL 
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products in terms of Tbps x km. They can historically be categorised in five generations 

according to the BL products and bit rates they achieved. 

First generation (mid 1970’s-1980): From 1975 these systems continued to evolve 

until they achieved in 1980 [7] a bit rate of 45 Mbps with a very long repeater spacing of 

10 km compared to repeater spacings used by previous systems. Their operating 

wavelength was around 0.8 μm but further investigations showed that operating around 

the 1.3 μm wavelength region would reduce the losses introduced by the fibre as low as 1 

dB/km. 

Second generation (1980 - mid 1980’s): In the early 1980’s these systems could not 

manage to achieve bit rates higher than 100 Mbps while operating around the wavelength 

region of 1.3 μm because the multimode (guiding multiple wavelengths) fibres that were 

used for transmission at that time introduced high dispersion at that region [8]. A rapid 

increase in terms of bit rates took place though with the realisation of the single-mode 

(guiding only a single wavelength) fibre, when an extraordinary at that time bit rate of 1.7 

Gbps (Gbits/sec) with a repeater spacing of 50 km was achieved in 1987 [1]. Further 

research showed that systems which were operating around the 1.5 μm wavelength region 

would achieve a minimum fibre loss of 0.2 dB/km [9] which later made it the most 

popular operating wavelength region. 

Third generation (mid 1980’s - 1990): The progress that was made during the mid 

1980’s led to the commercial achievement of a bit rate of 2.5 Gbps for these systems 

operating at 1.5 μm in 1990 [1] which could potentially reach the value of 10 Gbps in the 

following years. The drawback in their performance though was that they required a quite 

short for that time repeater spacing of 60-70 km and mainly the fact that high dispersion 

values were introduced by fibres in the 1.5 μm wavelength region. The realisation of the 
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dispersion-shifted fibres though which compensated the dispersion values in that region 

and the fabrication of single-mode lasers during that time led to the solution of that issue. 

Fourth generation (1990’s): During the 1990’s these systems managed to achieve 

bit rates of 10 Tbps (Tbits/sec) and higher by using the Wavelength Division 

Multiplexing (WDM) technique and also used the newly developed optical amplifiers 

which amplified the optical signal strength and dramatically increased the repeater 

spacings to thousands of km. The main advantage of the WDM technique was that it 

could combine together many different transmitted wavelengths (each wavelength acting 

as one channel (signal) with a bit rate of up to 40 Gbps during the 1990’s) into one main 

signal, so that when it is guided through the fibre the total capacity of the system would 

immediately increase to tens of Tbps. This breakthrough in terms of system capacity 

revolutionised optical communications and WDM became the most popular technique of 

transmission in optical networks increasing rapidly their capacity every 6 months. An 

indicative example of this is that these systems reached in 2000 a BL product higher than 

25000 Tbps x km by combining 300 channels with a bit rate of 11.6 Gbps each while 

using a repeater spacing of 7380 km [10]. 

Fifth generation (2000’s - today): During the last 17 years these systems have 

experienced significant growth in their evolution and they are estimated to reach bit rates 

as high as 160 Gbps for a single channel while operating in the wavelength region of 1.53 

– 1.57 μm which includes the Short (S band), Conventional (C band) and Long (L band) 

wavelength window [1]. Significant success has been made in the area of amplifiers with 

the realisation of the Raman amplification technique and the area of fibres with the 

fabrication of the dry fibre which introduced very low losses in the 1.3 – 1.65 μm 

wavelength region [1]. Another record was also established in a 2010 experiment, when a 
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transmission of 640 WDM channels with a 12.5 GHz spacing spanned in both the C and 

L band with an overall bit rate of 64 Tbps was realised over 320 km [1].  

All of the types of lightwave systems and optical networks that are mentioned 

above mainly use semiconductor lasers as the primary source of transmission. Single-

mode lasers and especially the Tunable Laser Diode (TLD) have revolutionised the area 

of optical communications and their use in optical networks has been of paramount 

importance for the improvement and optimisation of the network performance. Their 

applications also cover a broad scientific spectrum and have been heavily investigated in 

published literature.  

A historical background of semiconductor lasers and TLDs from the early years 

until recently and their applications is covered in Chapter 2. Published papers concerning 

these topics are reviewed and discussed.  

Chapter 3 describes the basic theory of semiconductor lasers, such as multi-mode 

lasers and TLDs. The basic rate equations for photon generation are shown, the selection 

of lasing mode and the expression for gain at lasing conditions is described as well as 

various tuning mechanisms in the case of TLDs.  

Chapter 4 concerns with the two different software packages that were used in this 

research, Crosslight PICS3D and Virtual Photonics Incorporated (VPI). A comparison 

between them is made and the advantages and disadvantages of each one is presented. 

The reason why they were used in this thesis is also given. The equations from 

semiconductor laser theory that these packages use in order to run all simulations are 

described in detail. 

Chapter 5 investigates two different Free-Carrier (FC) contributions to the 

refractive index change of a bulk TLD with typical parameters during FC tuning. These 

contributions are the FC plasma effect and the band-filling effect which is calculated by 
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using the Kramers-Kroning (KK) relations (KK effect). It is shown that the band-filling 

effect instead of the plasma effect is the dominant contributor to the real part of the 

refractive index change, which also shapes the corresponding wavelength tuning 

performance of the device. This shows that the band-filling effect is heavily 

underestimated due to the lack of investigation of this effect in published literature as a 

contributor to the refractive index change. It is also found that the available refractive 

index change is not necessarily converted into the corresponding lasing wavelength shift 

due to design issues which are explained in Chapter 6. 

Chapter 6 investigates the performance of a TLD similar to the one in Chapter 5 

under different types of wavelength tuning. Some limitations in the tuning range due to 

the κL product are highlighted in the case of discontinuous tuning. It is shown that an 

optimisation of the device with careful design of the κL product and the grating 

composition enhances greatly the discontinuous tuning range. It is also found that the 

continuous and quasicontinuous tuning range can be increased by a careful selection of 

the phase section length and passive waveguide thickness. 

Chapter 7 addresses the issue of output power decrease during discontinuous tuning 

in bulk and Multiple Quantum Well (MQW) TLDs. It is found that the power drop can be 

delayed at latter stages of the tuning range by carefully selecting the Lorentzian lineshape 

broadening function of the gain spectrum. It is also shown that the output power can be 

stabilised when the TLD is continuously tuned. The PICS3D simulation tool is used to 

simulate all TLDs in Chapters 5, 6 and 7. 

Chapter 8 deals with the small-signal analysis of a directly intensity modulated 

TLD during discontinuous tuning.  The VPI software simulation tool is used in all 

investigations here for a TLD model which has exactly the same parameters with the one 

in Chapter 7. Firstly, it is shown that the results from basic characteristics of laser 
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operation of the TLD in VPI are in excellent agreement with the ones of the TLD in 

PICS3D. When the TLD is directly intensity modulated during discontinuous tuning there 

are three parameters that affect its resonance frequency; the differential gain, the 

unmodulated output power and the lasing wavelength. A significant increase of the 

resonance frequency at the end of the tuning range is observed. It is concluded that this 

increase is caused mainly by the great increase of the differential gain with the 

wavelength change. The change of power and lasing wavelength during tuning is much 

smaller than the change of the differential gain and contributed little to the change of the 

resonance frequency. 

Chapter 9 includes all the conclusions and some recommended work for the future. 
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2.1 Historical background of semiconductor lasers and TLDs 

 

Semiconductor lasers were developed and had a rapid growth in the second half of 

the 20th century. The prediction of the existence of photons was first given by Einstein 

[11] in 1917 when he explained the photoelectric effect. He stated that not only 

spontaneous photon emission and absorption takes place, but also stimulated emission 

where a photon can stimulate an excited atom to emit a quantum of the same properties. 

In 1955, almost 50 years after Einstein’s work, Gordon, Zeiger and Townes [12] made 

the first experiment of an electromagnetic wave amplification with the use of a NH3-

maser (Ammonia-Microwave Amplification by Stimulated Emission of Radiation). After 

three years in 1958, Shawlow and Townes [13] argued that this amplification can also 

happen for wavelengths of the optical region.  

A few years after their findings, Maiman [3] was the first to fabricate a laser in 

1960 with a ruby active medium and an emission wavelength of 694 nm. In addition, 

Javan [14] was able to fabricate a gas laser with a He-Ne (Helium-Neon) active medium 

in 1961. That was also the year that Fox [15] showed the oscillation of resonant lasing 

eigen-modes in a maser interferometer with a Fabry-Perot (FP) cavity, which 

characterised this kind of lasers as multi-mode lasers. 1962 was a year of historical 

significance for optical semiconductor devices, as the first semiconductor lasers with 

homo-junction structures grown on GaAs substrates were reported independently by 

Nathan [16], Hall [17] and Quist [18], confirming von Neumann’s prediction in 1953 [19] 

that semiconductors can be used as optical amplifiers [which was the first idea of the 

Semiconductor Optical Amplifier (SOA)]. Holonyak [20] also reported in 1962 a 

semiconductor laser grown on a GaP substrate.  
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Four years later in 1966 Kao [5] suggested the possibility of optical fibre networks 

with a low loss and wideband optical glass fibre as a transmission medium. This led to 

the realisation that semiconductor lasers can be used as transmitters in optical fibre 

communications and research was then focused on the fundamental properties of 

semiconductor lasers. Such properties are their high-speed direct modulation investigated 

by Ikegami in 1967 [21] and Nishimura in 1970 [22], the mode competition investigated 

by Nishimura in 1971 [23] by developing a dynamics theory, the basics of optical beam 

theory demonstrated by Kogelnik in 1965 [24] and the potential for photonic integrated 

circuits shown by Miller in 1969 [25].  

Important experiments conducted by Alferov [26] and Hayashi [27] in 1970 

reported semiconductor lasers operating in Continuous Wave (CW) at room temperature. 

They used hetero-junctions instead of homo-junctions in a GaAlAs/GaAs device 

structure, leading to better photon and carrier confinement in the active region. The idea 

of hetero-junctions in the device structure of semiconductor lasers was first suggested by 

Kroemer in 1963 [28]. However, these early GaAlAs/GaAs lasers were using a gain-

guiding waveguide with a FP resonator as an optical cavity as in Yonezu in 1973 [29]. 

Therefore, they were lasing in the multi-mode regime which made them unstable and 

unsuitable for optical fibre networks. As a result, research was focused on the realisation 

of lasers operating in a stable single-mode regime with a strong lasing wavelength 

selectivity. Such lasers, called single-mode lasers were the Distributed FeedBack (DFB) 

laser and Distributed Bragg Reflector (DBR) laser. 

Kogelnik in 1971 [30] was the first to demonstrate single-mode operation with a 

DFB dye laser based on a periodic structure. One year later, he presented a couple wave 

theory which predicted single-mode operation in semiconductor DFB lasers [31]. 

Kaminow was the first to realise a DBR dye laser in 1971 [32]. In the field of 
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semiconductor lasers, Suematsu in 1973 [33] suggested a semiconductor laser with an 

active refractive index waveguide as an optical cavity which operated in a stable 

transverse single-mode regime. A year later [34], he made a general  analysis  of two 

distributed Bragg reflectors with a phase shift of π/2 between them in longitudinal single-

mode lasers, which solved the problem of the operation of two modes in refractive-index 

coupled DFB lasers predicted by [31].  

In 1973, Nakamura [35] was the first to realise an optically pumped GaAlAs/GaAs 

DFB laser. Streifer in 1975 [36] ensured single-mode operation with the use of external 

reflectors in DFB lasers and Nakamura in the same year [37] demonstrated CW operation 

at room temperature of a GaAlAs/GaAs DFB laser. Also in 1975, GaAlAs/GaAs lasers 

monolithically integrated with a wavelength selection filter and various optical 

components were developed by Reinhart [38] and Hurwitz [39], as well as Suematsu [40] 

who presented an Integrated Twin-Guide (ITG) laser with a single-mode pulsed 

operation. 

Single-mode semiconductor lasers proved to be very useful for optical fibre 

communications and the next step for researchers during the 1970’s was to find 

appropriate wavelength regions for optical transmission in optical fibres following Kao’s 

proposal in 1966 [5]. Kapron in 1970 [6] managed to fabricate with chemical vapour 

deposition a low-loss silica fibre which became very industrially popular in optical fibre 

networks. In the early and mid-1970’s, two other experiments of historical significance in 

optical communications took place. The first one from Keck in 1973 [41], showed that 

there is small attenuation in silica optical fibres around the long wavelength region of 1.5 

μm. The second one from Payne in 1975 [42] demonstrated that there is zero material 

dispersion at the wavelength region of 1.3 μm. Therefore, research was shifted on the 
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finding of appropriate semiconductor materials of lasers in order to emit wavelengths in 

that regions. 

In the following years, Hsieh [43] and Oe [44] in 1976 realised InGaAsP/InP 

Double Hetero-structure (DH) lasers in CW operation grown on InP substrates emitting at 

1.1 μm and 1.3 μm, respectively. Itaya [45] and Yamamoto [46] also demonstrated in 

1977 InGaAsP/InP lasers emitting at 1.3 μm. Two years later in 1979, Akiba [47], 

Kawaguchi [48], Kaminow [49] and Arai [50] realised InGaAsP/InP DH lasers operating 

at the long wavelength of 1.55 μm as well. In the same year of demonstration of lasers 

operating at 1.55 μm, Miya [9] reported a single-mode fibre with a very low attenuation 

of 0.2-dB/km at 1.55 μm. 

After the realisation of DH lasers emitting at the long wavelengths of 1.3 μm and 

1.5 μm during the 1970’s, research was focused during the next decade on lasers with 

strong lasing mode selectivity which can be used as transmitters in fibre optic networks 

under direct modulation. The first operation of a directly modulated InGaAsP/InP DBR 

laser emitting at the 1.5-μm region was reported by Kawanishi in 1978 [51]. In 1980 

Sakakibara and Utaka demonstrated InGaAsP/InP DBR-ITG lasers operating in the 1.3-

μm region [52] and 1.5-μm region [53], respectively. The year later in 1981 directly 

modulated InGaAsP/InP DBR-ITG lasers emitting at 1.53 μm (Utaka [54]) and 1.55 μm 

(Utaka [55] and Tanbun-Ek [56]) were also reported.  

Following the realisation of DBR lasers, Utaka in 1981 [57] and Matsuoka in 1982 

[58] presented CW operation at room temperature of directly modulated InGaAsP/InP 

DFB lasers emitting at the 1.5-μm region. By increasing the laser operation temperature 

they also demonstrated thermal wavelength tuning which was the first notion of a new 

category of semiconductor lasers, the wavelength tunable laser diodes (TLDs). Three 

years later in 1984 Sekartedjo [59] demonstrated a phase-shifted DFB laser operating at 
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the 1.5-μm region and this type of semiconductor lasers became the most commonly used 

for long-haul optical networks.  

Semiconductor lasers had a great improvement in their basic performance during 

the 1980’s with the use of Multiple Quantum Wells (MQWs) in their active region. Van 

der Ziel [60] was the first to demonstrate a conventional MQW laser in 1975 with the use 

of optical pumping followed by Rezek in 1977 [61] who injected current into them 

instead. The idea of applying strain in the conduction and valence subbands of quantum 

wells in order to improve their optical gain was later proposed in 1983 by Osbourn [62]. 

Another idea for MQW semiconductor lasers with low threshold current and high 

efficiency with the use of band structure engineering was also proposed by Adams in 

1986 [63].  

In the following years, semiconductor lasers with a MQW active region benefited 

from the quantum well technology by showcasing higher speed, better temperature 

characteristics, higher output power and lower threshold currents than lasers with a bulk 

active region [64]. Many semiconductor lasers which are commercially available 

currently [65]–[69] and also appear in published literature use quantum wells in their 

active region in order to exploit all the advantages described above. 

Further enhancement of the performance of semiconductor lasers came with the 

introduction of quantum wires and Quantum Dots (QD), which were proposed by 

Arakawa in 1982 [70]. Asada in 1986 [71] made an analysis that quantum dots could 

decrease the threshold current and yield higher gain when used in semiconductor lasers. 

Seven years later in 1993, Leonard [72] showcased the performance of self-assembled 

quantum dots on GaAs surfaces. A year later in 1994, Hirayama [73] was the first to 

achieve the operation of a tensile-strained InGaAs/InGaAsP/InP QD laser and Ohira in 

2005 [74] was able to demonstrate the low-threshold and high-efficiency operation of a 
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quantum wire laser. The operation under 10 Gbps modulation of a QD laser which is 

insensitive to temperature changes was presented in 2004 by Otsubo [75]. Recent 

publications on QD lasers can be found in [76]–[79]. 

As was mentioned before, a new type of semiconductor lasers which emerged in the 

early 1980’s was the wavelength tunable lasers. According to the published literature, 

Suematsu in 1980 [80] was the first to propose a Three-Section (3S) tunable DBR laser 

which, apart from the active (gain) section, it also had a phase tuning section responsible 

for continuous wavelength tuning and a tuning section with a wavelength selective Bragg 

reflector responsible for discontinuous wavelength tuning. Tuning was possible by 

injecting current through electrodes into the tuning sections which caused changes of the 

refractive index and in turn changes of the lasing wavelength with the use of the free-

carrier plasma effect. In 1983, the first InGaAsP/InP tunable laser was realised by 

Tohmori [81]. A butt-joined built-in DBR laser with a phase tuning phase section was 

monolithically integrated into the tunable laser which performed a continuous wavelength 

tuning range of 0.4 nm.  

Four years later in 1987, Murata [82] demonstrated a 3S tunable DBR laser lasing 

at 1.5 μm with electrodes on both the tuning sections which achieved a continuous range 

of over 5.8 nm. Other multi-section TLDs with considerable tuning ranges were also 

realised by Amann in 1989 [83], who presented a novel twin-guide TLD with continuous 

tuning range and by Öberg in 1991 [84], who achieved with a 3S TLD a 22 nm tuning 

range with the use of both the plasma effect and thermal tuning. Because of their wide 

tuning range (over 5 nm), TLDs such as the ones in [82]-[84] would be called Widely 

Tunable (WT) lasers. A typical example of the structure of a 3S TLD can be observed in 

Fig. 2.1. It should also be noted here that all the lasers that have been mentioned so far, 
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such as the FP, DFB and DBR laser as well as TLDs are also called edge-emitting lasers 

because of their lasing at the edges of their structure. 

 

Fig. 2.1: A typical 3S TLD consisting of an active (Gain), Phase and Bragg section 

with length La, Lp and LB, and injected with current Ia, Ip and IB at its isolated top contact, 

respectively. The active section has an InGaAsP bulk active region (in grey) with 

bandgap wavelength λg=1550 nm and the passive sections have an InGaAsP waveguide 

region (white) with bandgap wavelength λg=1300 nm. The cladding and substrate are 

made of InP (After Ref. [85]). 

 

After 1993, a breakthrough in terms of tuning range took place with the 

development of new types of gratings that, when introduced in WT lasers, would lead to 

wide tuning ranges of over 40 nm up to hundreds of nm. These new types of gratings 

were the Sampled Grating (SG) and the Super-Structure Grating (SSG). The lasers which 

implemented these types of gratings were Four-Section (4S) TLDs because they would 

consist of one grating section acting as a front mirror, a phase section and a gain section 

in the middle and another grating section acting as a rear mirror.  

The first WT SG-DBR laser was demonstrated by Jayaraman and Coldren in 1993 

[86], and it achieved a 57 nm discontinuous tuning range by carrier injection. In the same 

year [87], Tohmori realised the first WT SSG-DBR laser with carrier injection which 

could reach an impressive discontinuous tuning range of 103 nm. WT SG-DBR and SSG-
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DBR lasers demonstrate wavelength tuning ranges which are one order of magnitude 

greater than the ones of WT DBR lasers with simple grating sections. Two reasons are 

responsible for this fact. The first one is that the tuning rates of the refractive index 

variations in the tuning sections of simple WT DBR lasers limit their overall tuning 

range. The second one is that WT SG-DBR and SSG-DBR lasers exploit the Vernier 

effect, as was explained by Coldren [86] who developed TLDs with wide tuning ranges 

for commercial use [88], [89]. Recent examples in published literature of WT SG-DBR 

and TLDs in general can be found in [90]–[94]. 

Another category of semiconductor lasers which is widely used today in telecom 

applications is the surface-emitting lasers, such as the Vertical Cavity Surface-Emitting 

Laser (VCSEL). Their key difference with edge-emitting lasers is that lasing now takes 

place at the (usually top) surface of the laser instead of the edges, therefore lasing is 

perpendicular to the plane defined by the active region. The main feature of VCSELs is 

that they have a very short cavity length which requires very high reflectivities of over 

99% for an adequate optical feedback, which is provided by many layers (typically 20-

40) of Bragg reflectors with alternating high and low refractive indeces one on top of the 

other as is illustrated in Fig. 2.2. VCSELs are ideal for short and medium distance optical 

communication such as Ethernet and data links and single-mode VCSELs are especially 

useful for sensor applications.  
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Fig. 2.2: A typical VCSEL with a GaAs/GaAlAs quantum well active region and 

GaAlAs Bragg reflectors (After Ref. [95]). 

 

From a historical point of view, Koyama [95] was the first to realise the CW 

operation of a GaAs VCSEL at room temperature in 1988 followed by Lee in 1989 [96]. 

Other types of VCSELs operating with high performance were also extensively 

developed such as the WT VCSEL presented by Chang-Hasnain in 2000 [97]. A detailed 

review of the development of VCSELs throughout the 1980’s until 2000 is given by Iga 

[98] and many recent publications of their operation in literature can be found in [69], 

[99]–[103]. 

 

2.2 Applications of TLDs 

 

A tunable laser, as the name implies, is a type of laser, whose output radiation can 

be tuned across some range in the infra-red, visible and ultra-violet regions of the 

electromagnetic spectrum. It consists of an optical gain medium, a pumping process to 

stimulate the medium and a wavelength selective optical feedback. According to the 
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implemenation of the optical feedback, a TLD can consist of two, three or four sections 

(one for the gain medium).  

Depending on what they are used for, the tuning can take place on a specific value 

of a wavelength, producing only discrete ones, or over a wide continuous tuning range of 

wavelenghts. The tuning mechanism is to inject current into the section which is 

responsible for the optical feedback and by varying the value of injection current to 

change the emitted wavelength in the optical output of the laser.  

There are many types and categories of tunable lasers. Their lasing medium can be 

gas, liquid, and solid state. Among the types of tunable lasers are excimer 

lasers, CO2 lasers, dye lasers (liquid and solid state), transition metal solid-state lasers, 

semiconductor crystal and diode lasers and free electron lasers [104]. 

Tunable lasers find applications in spectroscopy [105], metrology, 

photochemistry, atomic vapor laser isotope separation [106], [107] and, of course, optical 

communications. Some of their competitive advantages over other types of lasers and 

methods, according to each sector, are listed below; 

In spectroscopy [108], TLDs can improve significantly the diagnostic 

investigations, by launching coherent high output powers into fibre-optic catheters. Their 

ability to tune quickly and accurately, allows accurate snapshots in constantly changing 

environments. In metrology [108], TLDs have improved the resolution, accuracy and 

precision of the output results, in comparison with those produced by helium-neon lasers, 

which were used by traditional metrology applications. 

In optical communications, tunable lasers have many advantages, which, compared 

with other single–mode lasers, such as the DFB and DBR lasers, makes them more 

suitable transmitters for WDM systems [85]. The greatest advantage is, of course, the fact 

that a specific wavelength can be chosen for the emission light, by simply changing the 

http://en.wikipedia.org/wiki/Excimer_laser
http://en.wikipedia.org/wiki/Excimer_laser
http://en.wikipedia.org/wiki/CO2_laser
http://en.wikipedia.org/wiki/Dye_laser
http://en.wikipedia.org/wiki/Solid-state_laser
http://en.wikipedia.org/wiki/Crystal
http://en.wikipedia.org/wiki/Diode_laser
http://en.wikipedia.org/wiki/Free_electron_laser
http://en.wikipedia.org/wiki/Spectroscopy
http://en.wikipedia.org/wiki/Photochemistry
http://en.wikipedia.org/wiki/Atomic_vapor_laser_isotope_separation
http://en.wikipedia.org/wiki/Optical_communications
http://en.wikipedia.org/wiki/Optical_communications
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operation current that is injected into the section responsible for the optical feedback of 

the laser. This is not possible for normal single-mode lasers, because a different laser has 

to be constructed for each time light emission at a different nominal wavelength is 

required. This, however, is a more costly procedure in this specific case. The major 

problem with single-mode lasers, e.g. DFB lasers, is that their wavelength stability comes 

at the expense of tunability [109].  

Other advantages of tunable lasers when they are used as transceivers in WDM 

networks, are that no wavelength planning is required before ordering, that they have 

simplified logistics, that the sparing costs for them can significantly be reduced and that 

they allow automated provisioning [110]. Tunable lasers have also been accepted as the 

best testing method in the manufacture of telecom components because they are faster, 

more accurate and lower in noise [108]. TLDs have reduced testing times of complex 

interleavers and multiplexers from hours to seconds [108], and are also widely exploited 

by networks and systems that use add-drop multiplexers, as well as systems that use 

technologies such as Video on Demand (VoD) and Voice over IP (VoIP) [110].  

Referring to the matter of commercial availability of TLDs in the industry, a very 

informative example can be presented by the company Santec [111]. One of its devices is 

the tunable laser TSL-510, which can be seen in Fig. 2.3. The specifications of the device 

are as follows: 

 

Fig. 2.3:  The TSL-510 device of tunable laser by Santec [111]. 
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The device comes with four different versions: 

 

 Type A: Standard model with +10 dBm or more peak output power, +8 dBm or 

more full tuning range and 35 dB or more Signal to Noise Ratio (SNR) 

 Type B: Low noise model with high SNR of 65 dB or more 

 Type C: High wavelength accuracy model of ±5 pm or less with built-in 

wavelength monitor 

 Type D: Low noise (High SNR) and high wavelength accuracy model 

 

All four types have the following specifications: 

1) 130 nm tuning range within the emission wavelengths of 1260-1680 nm, 

which is split into three categories: 

a) 1260-1360 nm 

b) 1500-1630 nm 

c) 1560-1680 nm 

2) 100nm/s sweep speed 

3) Mode-hop-free wavelength sweeps 

4) <1 pm wavelength resolution (Fine tuning) 

5) GPIB and USB interfaces with the industry standard SCPI command 

 

Some of the applications of the TSL-510 tunable laser can be found in: 

 Optical component characterisation  

 Fibre optic transmission testing  

 Fibre optic sensors  
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 Optical spectroscopy 

 Photonic material characterisation 

 

The previous discussion gives a general idea of how TLDs operate and are 

generally available and commercially applicable in the industry. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



    24 

 

 

 

Chapter 3 

 

Theory of semiconductor lasers 
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3.1 Electrons, holes, photons and phonons in semiconductors 

 

The field of optoelectronics includes the science of optics and electronics in a single 

material or device [112]. The material that is chosen needes to allow both the propagation 

of light inside it as well as the flow of electrical current and permit these two to interact 

with each other. In the case of electrical conductivity, metals are the best candidates but 

are not suitable for light propagation. In the case of light propagation, glass and similar 

dielectric materials (like optical fibres) can allow and guide light waves inside them but 

are perfect electrical insulators.  

There is one material type though that combines both features and can even be 

designed to permit the transformation of eletrical current into light (which is the basic 

consept of a laser) and vice versa. This material type is the semiconductors and they are 

the most popular material for the fabrication of lasers with the widest range of 

applications in optical communications.  

The flow of electrons is the reason for the conduction of electrical current. 

However, most electrons are not allowed to move freely as they are attached to single 

atoms in a specific quantised number of shells or discrete energy levels according to 

Bohr’s atomic model [113]. There are some electrons though which are loosely bound to 

the outer shell of the atom and can be released to become free electrons or conduction 

electrons. When these electrons are released, the atoms that are left behind have a lack of 

electron and become positively charged or else ions. These atoms are also called valence 

electrons or holes because of this loss of electron in their outer shell and the fact that 

there is an empty space now in the outer shell than can be filled by another free electron. 
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The net charge however from this whole process in the semiconductor is zero, since free 

(conduction) electrons and ions (holes) have exactly the same number.  

Apart from the free conduction electrons the valence electrons (holes) can also 

make a transition from one atom to another, therefore the positive charges can also move. 

In this way electrical current can be carried by both conduction and valence electrons, 

which are both also called carriers for this reason. Because of the discrete energy levels 

(shells) of the atom, these carriers are separated by an energy gap Eg. Therefore, in order 

for the valence electrons to become conduction electrons they need to receive a value of 

energy at least equal to the gap energy Eg. This gap energy is in the order of 1 eV in 

semiconductors. 

The amount of energy that is required for a valence electron to become a 

conduction electron can be provided by light if it has a wavelength equal or shorter than 

the gap wavelength λg, which is defined as: 

 eVE

nm

E

hc

gg

g

1240
       (3.1) 

where h is the Planck constant and c is the speed of light in vacuum.  

According to the wave-particle duality theory, light can be represented both as a 

wave produced by a combination of electromagnetic fields with a wavelength λ and as a 

series of particles produced by a stream of energy packets (quanta) called photons, which 

have an energy Eph defined as:  




 hv
hc

Eph       (3.2) 

where   is the reduced Planck constant, v is the frequency of the propagating photon and 

v 2  is its angular frequency.  
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Therefore if a photon with an energy Eph equal or greater than the gap energy Eg 

interacts with a valence electron, it can excite it to become a conduction electron and 

generate an electron-hole pair. The exact opposite though can also happen if a conduction 

electron becomes a valence electron (electron-hole recombination) by releasing energy 

equal to the gap energy in the form of light. The photon that is generated by this process 

will have an energy Eph = Eg. The key physical mehanism which takes place in 

optoelectronic devices is this energy exchange and interaction between electrons and 

photons and will be described in more detail in section 3.4. 

If the interaction between conduction and valence electrons is considered by the 

point of view of the atom, in the case of semiconductors the valence electrons belong to 

the outermost electron shell (energy level) of the atom which is fully occupied and no 

more electrons with the same energy are allowed. According to the number of electrons 

in the outermost shell of the atom semiconductors are categorised into types, so that type 

III semiconductors like Gallium (Ga), Aluminium (Al) and Indium (In), type IV 

semiconductors like Silicon (Si) and Germanium (Ge) and type V semiconductors like 

Nitrogen (N), Arsenic (As) and Phosphorus (P) have three, four and five electrons, 

respectively in the fully occupied outermost shell of their atom. Type III-V 

semiconductors is the most popular group for the fabrication of semiconductor lasers and 

are widely used in telecom applications. 

To continue the previous discussion, when more than one atoms of the 

semiconductor are put together in a crystal lattice then the electrons of the atoms start to 

interact with each other and the valence energy levels are slightly separated forming as a 

result a valence energy band as is shown in Fig. 3.1. 
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Fig. 3.1: A single atom and its electron energy levels (left) and the energy bands when 

many atoms are joined in a solid semiconductor crystal lattice (right) (After Ref. [112]). 

 

Within this band it is possible that electrons can move and exchange places, 

however there can be no flow of charge there unless a hole (valence electron) is 

generated. The generation of holes can be achieved when electons are excited in some 

way, by absorbing a photon for example as was described above, and move to the next 

higher energy band which is called the conduction band. The energy difference (gap) that 

exists between the conduction and valence band is therefore called the energy bandgap. 

Initially, without any external excitation of electrons and holes in the lattice 

structure and with zero internal temperature T=0 K of the semiconductor the conduction 

band is completely empty of electrons and the valence band is fully occupied with 

electrons (system at equilibrium).  Therefore, the electrical conductivity σ of the 

semiconductor is defined according to the concentration n of electrons in the conduction 

band and the concentration p of holes in the valence band as follows: 

pn epen          (3.3) 

where e is the electron charge and n  and p  is the mobility of electron and holes, 

respectively. 
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 The electron and hole concentrations changes with the temperature of the 

semiconductor when there is no external energy supply. If the temperature rises, then the 

crystal lattice vibrates more strongly and more transitions of electrons from the valence 

band to the conduction band take place. Therefore, the conduction band starts filling with 

electrons while the valence band starts having a lack of electrons and a generation of 

holes takes place.  

The vibrations of the crystal lattice are also called lattice waves and depending on 

the direction of the atom movement are classified into two categories. The first one is the 

longitudinal (L) waves where the oscillations of the atom are in the travel direction of the 

lattice wave. The second one is the transversal (T) waves where the oscillations of the 

atom are normal to the travel direction of the lattice wave. Depending on the relative 

movement of neighbouring atoms the lattice waves can also be classified into two 

additional categories. The first one is the acoustic (A) waves where the neighbouring 

atoms are moving in the same direction and the second one is the optical (O) waves 

where the neighbouring atoms are moving in the opposite direction in ionic crystals. 

When light passes through the crystal lattice and the electric field moves ions with 

different charges in different directions, then the optical waves interact directly with the 

incoming light waves. 

The smallest portion of energy which is generated by the lattice vibrations is called 

a phonon and it can be considered to be a particle.  Four types of phonons can therefore 

exist according to the above classification, LA, LO, TA and TO. During the crystal lattice 

vibrations electrons and holes can interact with phonons by generating and absorbing 

them, which in turn can cause changes in the electron-hole energy. 
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3.2 Fermi levels and density of states in semiconductors 

 

As was discussed above, electrons can occupy bands with different energy or 

different energy levels. The probability that an electron (hole) exists in an energy level 

with energy E  at a temperature T is given by the Fermi-Dirac distribution function 

  Ef pn  which is a function of the energy E  and is defined as: 

   
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where 
 pnFE  is the electron (hole) Fermi level energy and kB is the Boltzmann constant 

(kBT  25 meV at room temperature T=300 K).  

The electron (hole) Fermi level represents the highest energy state that an electron 

(hole) can occupy at T=0 K and it separates energy levels that are occupied by electrons 

from energy levels that are not occupied by electrons. The Fermi level for electrons and 

holes is the same at equilibrium in pure semiconductors and typically is set in the middle 

of its bandgap between the conduction and valence band as is shown in Fig. 3.2 (left). 
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Fig. 3.2: Semiconductor conduction and valence band (left), density of states (middle), 

Fermi-Dirac function at different temperatures (right) and illustration of the Fermi energy 

at equilibrium (After Ref. [112]). 

 

However, an increase in the temperature in the semiconductor leads to an increase 

of the amount of electrons that are excited and move from the valence to the conduction 

band. The number of possible energy states (levels) that an electron is allowed to jump to 

and make a transition when it is excited is called density of (electron) states  ED . In 

bulk semiconductors, the density of states  EDc  and  EDc  in the conduction and 

valence band, respectively is a parabolic function of the transition energy E [shown in 

Fig. 3.2 (middle)] if electrons and holes are considered as (quasi-) free particles and is 

defined as: 
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where  pnm  is the electron (hole) effective mass in the semiconductor. 

Apart from bulk semiconductor structures where particles are free to move in three 

dimensions (3D), there are other types semiconductor structures such as the quantum well 

and quantum dot which are widely used in the fabrication of semiconductor lasers with 

numerous applications and are described by the field of quantum mechanics. 

A quantum well is a thin layer structure of a few nanometres thickness also called a 

potential well which is a region that has a minimum potential energy that can not be 

converted to any other type of energy. Because of this structure, the quantum well 

confines particles to two dimensions (2D) instead of three as in the bulk 3D structure and 

forces them to occupy a planar region. When the quantum well thickness becomes 

comparable to the de Broglie wavelength (explained below) of the carriers (electrons and 

holes) the effect of quantum confinement takes place which leads to discrete quantised 

energy levels also called energy subbands. The energy band structure of a typical 

quantum well is illustrated in Fig. 3.4 (left). 

The de Broglie wavelength appears in this discussion because of the wave-particle 

duality which is one of the fundamental features of quantum mechanics. Thus, it is more 

appropriate to describe the behaviour of electrons within a semiconductor crystal by 

considering electrons as waves with a wave vector k and a wavelength λ which is called 

the de Broglie wavelength and is typically a few nanometres (λ ~ nm) in semiconductors. 

The wave vector k is related to wavelength λ as 


2
k  and the de Broglie equation gives 

for the wavelength λ in a semiconductor at temperature T: 
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where ump n  is the momentum of the electron and 
n

B

m

Tk
u

3
  is its velocity in the 

semiconductor. 

The energy of the electron En in the semiconductor is therefore related to the wave 

vector k as follows: 
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22
        (3.7) 

As was mentioned above, the conduction and valence band of a semiconductor 

quantum well is split in a number of energy levels (states) or subbands each having a 

quantum number m=1, 2, … . The energy states at the bottom of the conduction band are 

n-like with zero orbital angular momentum and are isotropic in space. The energy states 

at the top of the valence band, however, are p-like with non-zero orbital angular 

momentum and are anisotropic in space with three independent states. These are the 

Heavy-Hole (HH) state, the Light-Hole (LH) state and the Split-off (SO) state. Most of the 

electron transitions take place between the conduction subbands and the HH and LH 

valence subbands, however there are also band to band transitions between the HH and 

LH band which is caleed valence band mixing. The SO valence subband is separated by a 

specific value of energy called the split-off energy (hence the name of the subband) from 

the HH and LH valence subbands and therefore is less important in the process of 

electron transitions.  

Vertical transitions of electrons between subbands of the conduction and valence 

band are allowed only for subbands with the same quantum number. Electron transitions 

between subbands of different quantum number are therefore forbidden. This process is 

illustrated in detail in Fig. 3.3, where the “allowed” and “forbidden” electron transitions 
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between subbands of the conduction and valence (HH and LH) band with quantum 

numbers m=1, 2 are plotted as a function of the wave vector k of the electron. 

 

Fig. 3.3: Conduction (C1 and C2) and valence (Heavy-Hole HH1 and HH2 and Light-

Hole LH1 and LH2) subbands (with quantum number m=1, 2) as a function of the wave 

vector k in a semiconductor quantum well and their allowed and forbidden transitions 

(After Ref. [112]). 

 

The density of states for the conduction and valence subbands of a semiconductor 

quantum well depends on the number of subbands n=1, 2, …, it is inversely proportional 

to the quantum well thickness dw and is defined as: 
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The quantum well density of states has a step-like behaviour which is illustrated in 

Fig. 3.4 (middle) as a function of transition energy E compared with the bulk density of 

states. 
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Fig. 3.4: Energy band structure of a quantum well of thickness dw with bandgap energy 

Eg, conduction band energy Ec, conduction subband energy Ee1, valence band energy Ev, 

valence subband energy  Eh1 (left) and density of states as a function of energy for the 

case of a bulk (dotted line) and quantum well (solid line) semiconductor (middle) and the 

case of a semiconductor quantum dot (right) (After Ref. [85]). 

 

The other semiconductor structure that was mentioned before and is widely used in 

the fabrication of semiconductor lasers is the quantum dot. It is a nanocrystal which is 

small enough to have quantum mechanical properties and is made of semiconductor 

materials. A fundamential property is that excitons (electron-hole pairs) in this structure 

are confined in all three spatial dimensions and the electronic states that emerge due to 

this confinement are quantised. The volume of a quantum dot is comparable to the de 

Broglie wavelength, therefore it can be described as a zero-dimensional box (0D) and in 

many respects it behaves like an artificial atom. The density of states of a quantum dot is 

illustrated in Fig. 3.4. (right) and is defined as a Dirac (delta) function δ(Ε-Εn) for each 

energy state n=1, 2, … with energy Εn as: 
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In the three structures of semiconductor lasers (bulk 3D, quantum well 2D and 

quantum dot 0D) the concentration  En  and  Ep  of electrons and holes, respectively or 

else carrier density depends on the density of states of  the conduction and valence band 

(and their subbands in the quantum well case) and is defined as a function of energy E as: 
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If Fermi statistics are taken into account, then the general expression for the 

electron and hole concentration n and p, respectively is: 
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where 2/1F  is the Fermi integral of order one-half which is calculated by integrating the 

two equations in (3.10) and Nc and Nv is the effective density of states for the conduction 

and valence band, respectively and is defined as: 
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The Fermi integral of order one-half can also be numerically evaluated by using the 

approximation: 

      8
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3.3 Doping in semiconductors 

 

Doping in semiconductors takes place when impurity atoms are introduced in the 

semiconductor crystal lattice in order to increase the concentration of electrons and holes. 

When an impurity or dopant contributes a free electron in the crystal then it is called a 

donor. Donors have a concentration ND and energy levels with energy ED which are 

slightly below the conduction band as is illustrated in Fig. 3.5. In similar fashion when a 

dopant contributes a valence electron (hole) in the crystal then it is called an acceptor. 

Accordingly, many acceptors have a concentration NA and energy levels with energy EA 

which are slightly above the valence band as is shown in Fig. 3.5. 

 

Fig. 3.5: Donor and acceptor levels between the conduction and valence band with 

energy Ec and Ev, respectively in a semiconductor with bandgap energy Eg (After Ref. 

[112]). 

 

There are two types of doping in semiconductors, n-doping and p-doping. The 

process of n-doping takes place when donors become positively charged ions by releasing 

an electron into the conduction band, therefore providing an additional free electron to the 
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crystal. The process of p-doping takes place when acceptors become negatively charged 

ions by receiving an electron from the valence band, therefore providing an additional 

valence electron (hole) to the crystal. By this process the semiconductor (bulk case) 

becomes degenerate and the actual position of the Fermi level EF is determined at 

thermal equilibrium by the charge neutrality condition which is: 

DA ppnn        (3.14) 

where nA is the concentration of the negatively charged ionised acceptors and pD is the 

concentration of the positively charged ionised donors and is defined as: 
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      (3.15) 

where gA and gD is the degeneracy number of the acceptors and donors, respectively with 

typical values gA=4 and gD=2 [112]. 

When an external carrier injection or an absorption of light takes place in a 

degenerate semiconductor then non-equilibrium electron and hole concentrations are 

generated, which could be above the equilibrium level. The Fermi functions in (3.11) can 

still describe accurately the electron and hole concentrations, however the Fermi levels 

for electron and holes are not at the same level any more but are separated into two quasi-

Fermi levels.  

The quasi-Fermi level for electrons is not in the middle of the semiconductor 

bandgap any more (Fig. 3.2) but has a higher energy value and moves to a level slightly 

below the bottom of the conduction band. The quasi-Fermi level for holes is also not in 

the middle of the semiconductor bandgap (Fig. 3.2) but has a lower energy value and 

moves to a level slightly above the top of the valence band.  
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This process can be showcased in more detail in Fig. 3.6 for a case of a 

semiconductor double heterostructure laser under forward bias U. This type of laser has 

an undoped semiconductor material acting as an active region which is surrounded by 

two semiconductor materials (one of n-type and one of p-type) of higher bandgap energy 

so that carriers inside the active region are confined and cannot escape to the n-type and 

p-type regions and are forced to recombine. 

 

Fig. 3.6: A semiconductor double heterostructure laser under forward bias U with an 

undoped active region of thickness d between a n-type and p-type region, and a 

conduction band energy Ec, electron quasi Fermi level energy EFc, valence band energy 

Ev and hole quasi Fermi level energy EFv (After Ref. [85]). 

 

3.4 Rate equations and optical gain in semiconductors 

 

The generation of light relies on electrons and holes that are placed in various 

energy levels (bands) in a semiconductor material, such as a p-n junction structure or 

double heterojunction structure, and react (recombine) with each other [114]. This 

reaction is basically a transition from the levels (states) with higher energy to the levels 

with lower ones, or the opposite, and can be separated into four categories [114]: 
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1) Spontaneous carrier recombination (photon emission): It is the case when electrons 

from a higher energy level, with energy E1, jump spontaneously (without any external 

force or influence) to a lower energy level, with energy E2, where there is a gap (hole) 

that can be filled there. This procedure is followed by the generation of a photon with 

frequency  that corresponds exactly to the difference between the energy levels E1 – E2 

= h, according to Planck, where h is the Planck constant. In this process we say that 

there is a recombination between electrons and holes or that the free charge carriers 

(electrons or holes) recombine to produce photons. The more the electrons make jumps 

per unit time to fill holes, the higher is the recombination rate and the more photons are 

generated, which is the fundamental physical process necessary (but not yet sufficient) 

for the lasing. 

2) Stimulated carrier generation (photon absorption): In this case, an electron in a 

lower energy state, with energy E2, is hit (stimulated) by an incoming photon with 

frequency  and causes it to jump to a higher energy state with energy E1, where (E1 - E2) 

/ h corresponds to the frequency of the photon as it was described above. In this case, the 

photon is absorbed as it gives all its energy to the jumping electron. 

3) Stimulated carrier recombination (coherent photon emission): It is the exactly 

opposite case of 2), as now an incoming photon stimulates an electron in a higher energy 

state E1 and makes it fall to a lower one E2, generating a new photon with a unique 

frequency  = (E1 – E2) / h. In this case, we will have two photons, the one that stimulated 

the electron and the generated one, with exactly the same characteristics and direction 

(coherent photons). This case is the most important condition for lasing, as it causes the 

chain generation of the photons, because each new photon can stimulate new electron-

hole transition in turn. 
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4) Nonradiative recombination: In this case, electrons recombine with holes by 

jumping from higher to lower energy levels, but no photons are generated, because all the 

released energy becomes heat and is absorbed by the semiconductor material. The four 

categories of electronic transitions described above are illustrated in Fig. 3.7. 

 

Fig. 3.7: The four categories of electronic transitions between the conduction and 

valence band with energy Ec and Ev, respectively. Rsp, R12, R21 and Rnr is the spontaneous 

carrier recombination, stimulated carrier generation, stimulated carrier recombination and 

nonradiative recombination rate, respectively. z is the axis of photon propagation (After 

Ref. [114]). 

 

After explaining the basic forms of electronic transitions, it is time to give the basic 

rate equations that describe mathematically this process. First of all, we should mention 

that every laser has a region where all carriers recombine to produce photon emission, as 

well as useful gain of photons that will contribute to lasing. This region is called the 

active region. 

The first rate equation describes how the number of carriers are generated in the 

active section and how they recombine to produce photons. The generation of carriers in 

the case of semiconductor laser structures can be done by simply injecting current into the 

active region. This increases the amount of electrons and holes in the active region 

compared with the equilibrium state, which in turn increases the number of 
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recombination transitions. The carrier density inside the active region volume is defined 

as: N = number of carriers / volume. The resulting carrier density change per unit time is 

then defined by the balance or the rate equation as: 

recgen RG
dt

dN
       (3.16) 

where genG  is the rate of the electron injection into the active region and recR is the rate 

of recombination of the electrons per unit volume in the active region. But the number of 

injected electrons into the whole active region per second is eIi / , where I is the 

injection current, e is the electron charge and i  is the current injection efficiency, which 

is the fraction of terminal current that generates carriers in the active region. So, genG  

can be written as the rate of injected electrons per unit volume: 

eV

I
G i

gen


        (3.17) 

where V is the volume of the active region. 

The rate of recombining electrons consists of the four types of recombination that 

were described above and is defined as: 

stlnrsprec RRRRR       (3.18) 

where spR  is the spontaneous recombination rate, nrR  is the nonradiative recombination 

rate and stR  is the stimulated recombination rate for both stimulated photon absorption 

and emission. Finally, lR  is the rate of carrier leakage inside the cavity, as there are 

always carriers that escape from the active region before recombination takes place and 

do not contribute to the generation of light. The first three terms of the right side of (3.18) 

correspond to unstimulated recombination (loss) of carriers inside the cavity and can also 
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be described as the total carrier density N over the time these carriers remain in the cavity 

before they recombine, which is called carrier lifetime τc or  

lnrsp

c

RRR
N




      (3.19) 

It has been found that spR  ~ BN2, where B is called the bimolecular or radiative 

recombination coefficient and lnr RR   ~ AN + CN3, where A is called the linear or 

Shockley-Read-Hall recombination coefficient and C is called the Auger recombination 

coefficient. So, (3.19) can be written as 

 232 CNBNANCNBNAN
N
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


    (3.20) 

or     21
CNBNA

c




      (3.21) 

The rate of stimulated emission stR  represents the electron-hole recombination 

initiated by the present photons in the cavity that leads to the increasing generation of 

photons, which is a gain process. It is defined as pgst gNvR  , where vg is the group 

velocity of the emitted photons, Np is the photon density and g is the gain process. The 

gain coefficient is defined as the relative amount of increased photon density (ΔNp / Np) 

per unit length Δx, or mathematically as  
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     (3.22) 

in accordance with the above expression. The laser cavity gain depends on the density of 

the carriers injected into the cavity.  

 From a quantum mechanical point of view gain takes place when an incoming 

photon in the cavity causes the transition of an electron from a higher to a lower energy 

band or else the stimulated recombination of an electron-hole pair. Therefore a second 
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photon is created which is coherent with the incoming one and the amplitude of the 

monochromatic wave is doubled. The second photon in turn can stimulate a new electron-

hole pair in order to create a third photon and by repaeting this process strong light 

amplification can be achieved. 

The opposite process of light amplification is the photon absorption and the 

generation of new electron-hole pairs which leads to loss of light in the cavity. When 

more electrons exist in the conduction band with a higher energy level than in the valence 

with a lower energy level, then a carrier population inversion takes place which leads to 

gain instead of absorption. This inversion can be realised in a p-n junction structure when 

conduction band electrons are placed in the n-doped side and valence band holes are 

placed in the p-doped side. 

By forwardly biasing the p-n junction with a low injection current the band to band 

absorption still dominates and the optical gain is negative  0g . By increasing the 

injection current, there comes a point where the stimulated emission and the absorption 

are equal and the gain is zero  0g . In this case the material becomes transparent or 

else reaches transparency conditions and the injection current which causes these 

conditions is called transparency current. With further increase of the injection current 

the stimulated emission dominates, there is strong light amplification and the gain 

becomes positive  0g . 

The optical gain is proportional to the probability that a given photon causes an 

electron transition from a higher energy level j to a lower energy level i. This process as 

is already mentioned produces a new photon with energy hv which must be equal to the 

transition energy Eij = Ej - Ei which is the energy difference between levels j and i. This 
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probablitiy has been calculated in many publications [112] and the general expression for 

gain as a function of photon energy Eij=hv is given by: 
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2 1

2 
   (3.23) 

where m0 is the electron mass, ε0 is the dielectric constant of vacuum, n is the real part of 

the complex refractive index ninn   of the semiconductor material,   2

ijEM  is the 

transition matrix element (described in detail in [112]) which defines the strength of the 

transition between the energy levels j and i and is also the most important parameter for 

the calculation of gain,  jj Ef  and  ii Ef  is the Fermi function that gives the probability 

that the energy level Ej and Ei, respectively, is occupied by electrons and  
ijr ED  is the 

density of allowed electron transitions between the two bands (levels) j and i and is 

defined in the case of a bulk semiconductor as: 
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where mr is the reduced effective mass which is defined as: 
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In the case of a quantum well with thickness dw the reduced density of states for 

each subband is constant and defined as: 
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
       (3.26) 

The expression in (3.23) is valid in the case case of a bulk semiconductor if the 

levels j and i are replaced with the conduction and valence band, respectively. The same 
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applies in the case of a qunatum well where the gain is expressed as in (3.23) if the levels 

j and i are replaced with the subbands of the conduction and valence band, respectively. 

The gain spectrum of a bulk semiconductor and a quantum well for band to band electron 

transitions as a function of photon energy hv is illustrated in Fig. 3.8.  

As is seen in Fig. 3.8, the gain varies with photon energy and the reduced density of 

states defines the lower energy limit where the gain is positive. When the Fermi factor 

    1 iijj EfEf  or when   1jj Ef  at the upper energy level and   0ii Ef  at the 

lower energy level, then the gain reaches its maximum value. As the photon energy hv 

increases however, the Fermi factor decreases until it becomes zero when the photon 

energy is equal to the quasi-Fermi level distance 
ijij FFF EEE  . At that point the gain 

is also zero. For higher photon energies after that point the gain becomes negative as the 

band to band absorption dominates. Therefore no band to band electron transitions can 

take place at photon energies higher than the difference between the Fermi level energies 

ijFE  of the levels j and i and the gain spectrum is limited according to this fact which is 

called the Bernard-Duraffourd condition:  

ij FFg EEhvE       (3.27) 

In Fig. 3.8 it can also be observed that the shape of the gain spectrum of the 

quantum well is rather sharp compared with the smooth shape of the gain spectrum of the 

bulk semiconductor because of the constant density of states for each subband of the 

quantum well. However, the shape of the quantum well gain spectrum can become 

smoother due to the intraband relaxation of the electron transitions in the quantum well 

which results to the transition energy broadening of the gain spectrum with the use of a 

lineshape broadening function (typically Lorentzian) as will be explained in Chapter 7. 
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Fig. 3.8: Gain spectra, reduced density of states and Fermi level difference for band to 

band electron transitions as a function of photon energy hv for (a) a bulk semiconductor 

from the conduction to the valence band and (b) a quantum well at different energy levels 

E1 and E2 (After Ref. [112]). 

 

It is obvious that the expression of gain in (3.23) has a quite complex mathematical 

form which is not very useful for the expression of the rate equations, however it turnes 

out that at or near the lasing state assuming that this happens at the gain peak the 

expression in (3.23) can be approximated by the linear function: 

 trNNg  ,      (3.28) 
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where α is called differential gain equal to 
dN

dg
  and Ntr is the carrier density at 

transparency conditions ( 0g  at trNN  ) or else transparency carrier density. So, the 

rate of stimulated emission can be written now as 

  ptrgst NNNvR        (3.29) 

And (3.18) can be written as 

  ptrg

c

rec NNNv
N

R  


     (3.30) 

As a result, the first rate equation that describes the recombination of electrons and 

holes ( NNN holel  ) becomes: 

  ptrg

c

i NNNv
N

eV

I

dt

dN
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


.    (3.31) 

In a working laser, after a certain current injection (pumping) point, the carrier 

density in a cavity is clamped, which means that it does not increase any more. This is the 

steady state for the laser. At the laser threshold, which is the condition just before the 

lasing operation starts, the stimulated recombination rate can be put to zero and (3.31) 

becomes 

ci
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c

i eVN
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N

eV
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


 0 ,     (3.32) 

which defines the value of the injection current at threshold Ith if we know the carrier 

density at threshold Nth. 

The second rate equation describes the generation and loss of photons inside the 

cavity. Physically it is the exact equivalent of the first rate equation, only instead of the 

electron density, one has to use the photon density Np. So, the resulting rate of the photon 

generation inside the active region over time is described as: 
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where p  is the photon lifetime, which describes the photon loss process due to the 

internal optical losses in the cavity and the photon escape from the cavity through the 

mirrors, sp  is the spontaneous emission factor and Γ is the confinement factor. The 

spontaneous emission factor is the reciprocal of the number of optical modes in the 

bandwidth of the spontaneous emission. The confinement factor is an electron-photon 

overlap factor in the active region and is defined as V / Vp, where V is the active region 

volume that is occupied by electrons and Vp is the cavity volume occupied by photons, 

which is usually larger than V. 

The third rate equation describes how the phase of propagating photons changes in 

time and is as follows [41]: 
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where 
Nn

Nn
H






/

/
  is called the linewidth enhancement factor (or alpha or Henry 

factor) and it defines the additional linewidth broadening due to coupling between the 

real part n  and the imaginary part n   (defines gain or absorption) of the refractive index 

ninn  . It shows how wide the spectrum of a single mode will be in the frequency 

domain at the output of the laser. This equation is of a particular importance in the 

analysis of the laser operation in optical networks, as it describes such effects as e.g. the 

frequency chirping. 

 

 



    50 

 

3.5 The Fabry-Perot laser 

 

The general description of the FP laser cavity which defines the active region of the 

laser is shown in Fig. 3.9. 

 

Fig. 3.9: A typical FP laser cavity (After Ref. [85]). 

 

It consists of a homogenous and amplifying medium (gain medium) with a complex 

refractive index and two reflective facet mirrors on the right and the left side, with power 

reflectivities R2 and R1 respectively. As current starts to be injected inside the active 

region, the free electrons and holes (carriers) inside the cavity start to recombine and 

produce photons which propagate as a wave back S- and forth S+ inside the cavity. Each 

time they hit a facet, a small portion of light passes through the facet and the greatest 

portion gets reflected back to the cavity, according to the value of each facet. During this 

round trip of light, its gain always increases due to the amplifying cavity material [75].  

In order to describe the mathematical form of the forward and backward wave, S+ 

and S- respectively, propagating along the +z axis, we have to solve the general form of 

the wave equation: 
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by which we denote for the wave E(z,t) that propagates in the +z axis and in time t: 

    0,, 0   zeAtzE zti       (3.36) 

where A0 is the constant amplitude of the wave and nk0  is the propagation constant 

of the wave in the gain medium, where k0 is the propagation constant (wave vector) of the 

wave in vacuum (also equal to 
0

0

2




k , where λ0 is the nominal wavelength in vacuum) 

and n is the refractive index of the gain medium.  

The refractive index is complex because of the amplifying medium structure and is 

defined as ninn  , where n’ is responsible for the refraction of light inside the 

medium and 
02k

g
n net  is responsible for the amplification (gain) or absorption (loss) of 

light inside the medium, where netg  is the net modal gain of the medium and is defined as 

inet agg  mod , where mgg mod  is the wavelength dependent modal gain caused by 

the active-medium material gain mg  and ia  stands for the average internal optical 

losses in the waveguide (e.g., scattering, absorption).  

Depending on the value of netg , there is amplification  0netg  or absorption 

 0netg  of light inside the cavity. So,   can now be written as: 

2
0000

netg
inkniknknk      (3.37) 

Now that we have the general form of the wave propagating along the +z axis and 

in time t, we can extract the form of the wave propagating forwards S+(z) along the +z 

axis, which depends only on z and not time t as follows: 
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        zititizizti eAzSezSeeAeAtzE   ,  

The same procedure can be followed in order to take the form of the wave 

propagating forwards S-(z) along the +z axis: 

        zititizizti eAzSezSeeAeAtzE   ,  

The steady-state oscillation condition requires that the field at any axial reference 

plain z=z0, reproduces itself in magnitude and phase after one cavity roundtrip along the 

indicated lightpath. Therefore, this means that the complex cavity roundtrip gain must be 

unity, which can be expressed mathematically as 

12

21  Lierr        (3.38) 

where the cavity length is denoted by L, and the mirror amplitude reflectivities r1 and r2, 

are assumed to be real.  

We can now derive the wave oscillating conditions of the FP cavity in order steady-

state lasing to take place: 
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where m is an integer that defines the longitudinal mode number (or the number of comb 

modes), which equals the number of half-wavelengths that fit into the laser cavity of 
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length L and n’ depends on the wavelength of each mode λm. This is the phase oscillation 

condition of the lasing modes. 
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This is the gain oscillation condition of the lasing modes as its solution gives the 

cavity gain peak wavelength λp. 

So the two oscillation conditions are: 
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In the FP laser m is usually very large 1000m  for the lasing mode(s), so the 

distance between neighboring comb modes is very small. If we assume that the refractive 

index does not depend on the mode wavelength, then we can denote the mathematical 

expression of the mode spacing Δλm: 
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Therefore, since 1
2


Ln

m , the mode spacing m  around the m mode wavelength 

m  is almost constant 
Ln

m
m




2

2
 . 

In the case that  mn   depends on m , then m  can be given by the complicated 

expression: 
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is the group refractive index, which includes the dispersion of  mn   around m .  

The presentation of basic theory of light propagation in an optical cavity, which 

was done in this section treated the optical cavity as one material of refractive index n. 

However, in real devices where there is a laser core and claddings that surround it, the 

optical cavity is planar (slab) waveguide formed by a combination of materials (layers). 

Therefore in this case in all equations in this section the refractive index n has to be 

substituted with an effective refractive index neff which is an average of the refractive 

indices of the different laser materials.  

The FP laser is the simplest type of laser which has only an optical cavity and lases 

in the multimode regime. However, this regime is not suitable for telecom applications 

and therefore single-mode lasers such as the TLDs are more preferable. In section 3.3 the 

basic theory of TLD operation is presented, however the principles of light propagation in 

an optical cavity are the same as in the case of the FP laser. 
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3.6 Three-section tunable DBR laser 

 

A three-section tunable DBR laser consists, as the name implies, of three sections, 

which are the Active section, the Phase section and the DBR (Bragg) section, as it is 

shown in Fig. 3.10. 

 

Fig. 3.10: A typical structure of a three-section tunable DBR laser (After Ref. [85]). 

 

The active region is the area where all the emitted photons are generated. It has two 

facets (mirrors) with a certain value of reflectivity R, which are used for reflecting light 

back and forth, so that the gain process increases. The facet reflectivity R1 of the active 

section has a constant value while the the facet reflectivity of the DBR section is almost 

zero (anti-reflection coating). The lasing operation starts when a current is injected into 

the active region (Ia=IActive). The procedure for the generation of lasing modes (gain 

condition) is the same as was described in section 3.2, however the optical cavity of the 

TLD is now a composite cavity fomed by the active section, the phase section and the 

DBR penetration depth as will be explained below. Since tunable lasers are single-mode 

lasers, the selection of each mode takes place in the DBR section [85].  

The DBR section consists of a material with steps with distance Λ between each 

step, which have the form of a pulse sequence and is called grating. The discontinuous 
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mode selectivity of the TLD is defined by the DBR grating which acts as a wavelength-

selective mirror/reflector. The reflectivity coefficient Rg of the grating depends on the 

lasing wavelength and it substitutes R2 in (3.39). Only wavelengths which serve a specific 

case are selected and reflected back to the active region, while the rest of them just pass 

through the laser and are absorbed. The reflected wavelengths are called Bragg 

wavelengths and are defined as: 

 effB n'2       (3.42)  

where effn'  is the real part of the effective refractive index effn .  

The spectrum )( gR  as a function of wavelength shift B   of the lasing 

wavelength λ from λB is given by the following expression [85], [114]: 
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where L is the length of the DBR section, 
22   , Δβ is the deviation of the 

propagation constant β of the wave, which leaves the active region and enters the DBR 

section, from the Bragg propagation constant β0,   )/2( 2

0 BgDBRn , 

where gDBRn  is the group refractive index of the DBR material and κ is the coupling 

coefficient defined as 
Bgg n  /2  , where Γg is the optical confinement factor of the 

grating region and 21 nnng
  is the difference of the real parts of the refractive indices 

of the two materials 1n  and 2n  which form the grating. 

The bandwidth Rg  of the DBR reflectivity spectrum (3.43) is directly obtained 

from the above expressions as: 
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As is seen, Rg  is proportional to  and inversely proportional to L. Depending on 

the value of the ratio 


L
, Rg  will be defined by either  or L, or by both parameters,  

and L. 

The gain oscillation condition of the TLD is now given as follows: 
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where effpaTLDeff LLLL ,  is the effective length of the composite TLD cavity, La and 

Lp, is the length of the active and phase section, respectively and 
 




2

tanh L
Leff   is the 

DBR penetration depth. 

In order for the TLD to achieve lasing conditions the most important condition is 

that the net gain is equal to the losses created by the two mirrors with reflectivities 1R  

and  gR . These losses are called mirror losses ma  and therefore defined as in (3.45) 

netm ga  . 

The phase oscillation condition of the TLD states that the phase change   must 

be an integer multiple of 2π after a complete roundtrip and is given as:  
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where   is the phase of the grating reflection. 

The mode spacing m  of the three-section TLD is different than the one in (3.40) 

and is defined as: 

 effgDBRpgpaga

B
m

LnLnLn 


2

2
      (3.47) 



    58 

 

where gan , gpn , and gDBRn  is the group refractive index of the active, phase and DBR 

section, respectively. 

The are three types of wavelngth tuning, the discontinuous, continuous and 

quasicontinuous tuning. Discontinuous (or DBR) tuning is achieved when current 

IDBR=IBragg is injected in the DBR section, which changes the effective refractive index 

and therefore the Bragg wavelength, which leads to a different emitted wavelength each 

time. This discontinuous (DBR) shift of wavelengths ΔλDBR takes place around some 

specific basic modes, which are called comb modes and are defined in the phase section. 

The phase section is responsible for the determining of the comb modes. By 

injecting different values of current in this section, the total roundtrip time is changed, 

which is the time that the photons need to travel from the one side of the laser to the 

other. Therefore, the group velocity of the photons is changed as well, leading to a shift in 

the basic modes, as the propagating wavelength of these modes depends on group 

velocity. This is the case of continuous (or phase) tuning, however the wavelength shift 

happens only between the lasing mode and its sidemode periodically, so the maximum 

continuous wavelength range Δλc is limited by the inter-mode distance.  

In case both the DBR and phase section are injected with current simulataneously 

and ΔλB=Δλc then a wider continuous tuning range can be achieved. If however 

cB   , then several continuous wavelength ranges can be achieved in different 

discontinuous steps which is the case of quasicontinuous tuning. 

The key element that makes TLDs different than the rest of the industrial lasers is 

their wavelength tuning ability. By inspecting equations (3.42) and (3.46) it is easy to 

conclude that by varying the real part of the effective refractive index effn  of the TLD 

structure both the Bragg wavelength (and in turn the lasing wavelength λm since λm is 



    59 

 

always close to λB) and the comb-mode spectrum can be modified. The relation between 

the wavelength shift Δλ from the initial lasing wavelngth λ0 and the change  0effn  of 

the real part of the effective index of the TLD structure, which depends on λ0, is given by: 
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      (3.48) 

In practice always effeff nn   and as result 0  . 

The change of effn  of the TLD can be achieved with numerous physical 

mechanisms. These physical mechanisms depend on the change of various physical 

parameters, such as the carrier density N of the tuning sections of the TLD (free-carrier 

plasma effect and band-filling effect), the temperature T of the TLD (thermal tuning) and 

the electric field E when applied to the TLD (quantum confined Stark effect). These 

methods are described in detail as follows: 

 

3.6.1 Free-carrier plasma effect 

 

The Free-Carrier (FC) plasma effect is the physical mechanism that is most 

frequently used for TLD tuning in the published literature. It is usually claimed that it 

provides the largest contribution to the wavelength tuning [85]. It takes place when 

electrons and holes are injected in a semiconductor, creating displaced free carriers in the 

energy bands. In presence of light the intraband free-carrier absorption, causes in turn a 

change Δn’ in the real refractive index n’ of the semiconductor. The imaginary part of the 

refractive index n’’ defines the gain/absorption of the material, which will be dealt with 

in section 3.3.2 in the investigation of the band-filling effect through the KK relations. In 
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calculating 'n  due to the FC plasma effect, the simplest approach is to use the Drude 

classical model. 

A general expression for the dielectric function of the bulk material which 

incorporates the effect of band structure and the effect of free carriers (electrons and 

holes) in the conduction and valence band is: 
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where  'n  is the real part of the refractive index of the semiconductor with the free 

carriers present and bn  is the background refractive index which is related to the bandgap 

energy gE  of the material. This relation for light frequencies below the bandgap energy is 

approximately given by the Lorentz model ( 0E  is a constant 190 E eV, which is a 

typical value in most semiconductors materials as in [115]): 
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The term in brackets in (3.49) describes the effect of free carriers on the refractive 

index of the material. Here   is the angular frequency of the emitted light and p  is the 

plasma angular frequency. The plasma frequency depends on the concentration N of 

electrons and P of holes injected in an undoped semiconductor (with N=P, as is usually 

assumed [116]) as follows: 
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where e is the electron charge, nm  and pm  is the electron and hole effective mass, 

respectively, and 2

bn  is the static dielectric constant of the material. 
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In order to obtain an expression between the real part of the refractive index change 

Δn’ and the change of the injected carrier density N , equation (3.49) needs to be 

transformed: 
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Then using (3.51) and taking into account that bnn '  and 
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 , where λ is the 

lasing wavelength in vacuum, one obtains for the refractive index change due to FC 

plasma effect: 
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   (3.53) 

The term pl  is also called the plasma coefficient and it is negative so that 'n  and λ both 

decrease when the FC plasma effect is used for tuning. 

The discontinuous wavelength shift DBR due to the change of the refractive index 

in the DBR section DBRn  is connected with the injected carrier density in the DBR 

section DBRN  and is derived from (3.48) and (3.53) as follows ( DBRDBReff nn  ) [85]: 

DBR

effg

BDBRpl

DBR N
n ,
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



      (3.54) 

where pl  is the FC plasma coefficient, DBR  is the transverse confinement factor of the 

DBR section, B  is the Bragg wavelength and effgn ,
  is the real part of the effective group 

index of the TLD. 
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3.6.2 Band-filling effect 

 

One of the main features of semiconductors is that when they are injected with 

varying values of carrier density, a change of their gain takes place, which in turn causes 

a change in their refractive index at the peak gain energy. This happens because of the 

strongly asymmetric spectral shape of the gain curves of semiconductors. However, a 

change in gain corresponds to a change of the imaginary part of the refractive index as 

was shown in section 3.2. Therefore, in order to calculate the change  n  of the real 

part of the refractive index  n  (which depends on the angular frequency ω) from the 

gain change  g  at the gain peak angular frequency ω’, the Kramers-Kronig 

dispersion relation [117] can be used: 
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where P indicates a principal value integral, c is the speed of light in vacuum, ω’ is the 

gain peak angular frequency and ω is the lasing angular frequency around ω’.  

In Fig. 3.11, schematic plots are shown of the refractive index changes caused by 

the injection of two different carrier densities, where the upper plot displays the gain 

curves for the two carrier densities. 
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Fig. 3.11: (a) Spectral gain curves in a semiconductor for different carrier densities, (b) 

Changes in the real and imaginary part of the refractive index due to injected carrier 

density, (c) alpha factor aH variation. All three are plotted versus frequency (wavelength) 

(After Ref. [85]). 

 

3.6.3 Thermal tuning 

 

Thermal tuning is the method where an increase in the temperature T of the laser, 

leads to an increase of the value of the emission wavelength. This happens because the 

Fermi-Dirac distribution and the bandgap energy in the laser cavity are sensitive to 

temperature changes. Therefore the gain peak wavelength λp and the refractive index n 

can be controlled by temperature changes. 
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Fig. 3.12: Lasing wavelength vs Temperature for a 1500-nm InGaAsP/InP FP and 

single-mode laser and the gain of the active region (After Ref. [85]). 

 

In Fig. 3.12, it is shown how the emission wavelength increases according to the 

increase of temperature in the case of a 1500-nm InGaAsP/InP multi-mode FP laser and 

in the case of 1500-nm InGaAsP/InP a single-mode DFB and DBR lasers. It can be seen 

that there is a change of about 0.5 nm/K for the FP laser and 0.1 nm/K for the DFB and 

DBR lasers. It can also be shown that the gain curve of the FP laser has some mode 

jumps when the temperature increases. Although for each longitudinal mode of the FP 

laser the increase of the emission wavelength is rather small (0.1 nm/K), on average there 

is a high temperature dependence of 0.5 nm/K. On the contrary, the wavelength of the 

DFB and DBR lasers increases by only 0.1 nm/K over the entire temperature range. This 

can be explained by the fact that the wavelength of each longitudinal mode of the FP laser 

and the mode of a single-mode laser are functions of the refractive index and do not 

depend explicitly on the gain curve. 
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3.6.4 Quantum Confined Stark Effect 

 

The Quantum Confined Stark Effect (QCSE) takes place in multiple quantum well 

(MQW) structures in the laser cavity, when a strong electric field is applied, that leads to 

changes in the refractive index. This can be done by placing QW within a reversely 

biased p-n junction, in order the refractive index to be influenced by the applied electric 

field. 

 

Fig. 3.13: (a) Application of an electric field to a QW structure, (b) Inclined band edges, 

displaced wavefunctions and reduced effective bandgap energy (After Ref. [85]). 

 

An illustration of how the QCSE takes place is shown in Fig. 3.13, where the band 

edges and wave-functions for electrons and holes in a single QW are displayed, without 

the application of an electric field E=0 (a). When an electric field is applied E>0 (b), the 

band edges become inclined and the electron and hole wave-functions become displaced 

away from each other. Thus, the energy difference between the lowest-order wave-

functions in the conduction and valence band will be reduced, which will result in the 

change of the effective bandgap energy and the element of the optical matrix. This will 

produce the built-in electron-hole dipole that will interact with the propagating light 

wave. A further increase of the applied electric field will change the dipole and lead to 
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the modification of the refractive index. It should be noted that significant effects on the 

refractive index are achieved only for photon energies near the bandgap energy, where 

absorption also occurs. 

In Fig. 3.14 a comparison between the above discussed tuning mechanisms of 

TLDs is shown in terms of practically achievable performance and typical optical 

parameters. 

 

 

Fig. 3.14: Comparison of different physical tuning mechanisms used for TLDs (After 

Ref. [85]). 
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Chapter 4 

 

Physics and technology of tunable 

laser diodes 
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4.1 Introduction 

 

Two commercial software packages were used to obtain all the results of this 

research, Crosslight PICS3D and VPI. The reason for dealing with two separate software 

packages is that they deal with semiconductor devices from a completely different 

perspective. As it was already mentioned the scope of this thesis is to investigate different 

aspects of TLD operation as a stand-alone laser and its dynamic behaviour under small-

signal modulation. PICS3D was chosen for the first part of this investigation, as it is a 

physics-based software designed to simulate very accurately laser diodes and related 

waveguide photonic devices (with good agreement to published experiments) based on 

detailed analysis of semiconductor and optical wave theory and equations.  

VPI on the other hand, is designed to simulate various optical systems and their 

components (transmitters, amplifiers, fibres, regenerators, receivers, etc.) with also good 

agreement to published experiments as in the case of PICS3D. However, it does not take 

into account all physical and material parameters when it simulates semiconductor 

devices like PICS3D. VPI does allow though direct modulation of semiconductor lasers 

for both small-siganl and large-signal analysis something that cannot be done in PICS3D. 

This is why it was chosen for the second part of the investigation of this thesis.  

Together, both these packages, each from a different point of view, are able to 

simulate well all aspects of a semiconductor device and carry out various investigations 

concerning its operation.It should be noted though that these software packages are 

merely tools used in order to obtain results from the designed setups of this investigation. 

The design of the TLD models and optical networks presented in this thesis was done 

from scratch and in detail by the author and the selection of their parameters was done 
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carefully according to the published literature. This was a quite time-costly and tideous 

process as the setups had to work properly with reasonable parameters before the 

investigation described in Chapters 5, 6, 7 and 8 could take place. In sections 4.2 and 4.3 

all the properties of the operation of these two software packages will be described. In 

section 4.4 a summary of the advantages and disadvantages of these two packages will be 

given. 

 

4.2 Crosslight PICS3D 

 

Crossligth PICS3D is a three dimensional (3D) simulation tool which is used in 

many publications (see list of publications in [118]) and can simulate very accurately 

optical transmitters (in our case TLDs) taking into account all physical models (both 

electrical and optical) and solving optical wave equations of semiconductor laser theory. 

All these models and equations will be described in the current and next sections and the 

accuracy of simulated results will be checked with the published literature. It will be 

shown that by importing parameters from published experiments the acquired results are 

in very good agreement with the experimental results.  

Various semiconductor optoelectronic devices can be simulated by PICS3D, such 

as FP, DFB and DBR lasers, as well as VCSELs and multiple–section TLDs. PICS3D 

also gives a lot of options to the user to investigate parameters of the laser from the 

optical and electrical point of view, as it can show L-I (optical power vs current) and I-V 

(current vs voltage) characteristics, electron (carrier) and hole distributions, mode 

spectrums, band energy diagrams, Fermi levels, electric fields, plot material gain and 
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spontaneous emission spectrums and many other fundamental laser features, which help 

the user to observe in detail what happens inside the laser structure.  

It also allows the user to design his laser model layer by layer, to choose the type of 

material and the material composition that he wants and the option to create gratings and 

bulk or quantum well layer structures. Some of its disadvantages though, is that it cannot 

provide output laser results in the time domain or allow large-signal direct laser 

modulation or simulation of other optical network components, such as fibres, optical 

switches, multiplexers, regenerators and photodiodes.  

However, PICS3D provides reliable results when it is compared with experimental 

work from the published literature, even though it is a software simulation tool. To 

showcase this fact, the calculation of the change of the real part of the refractive index of 

a bulk GaAs material system (waveguide) as a function of photon energy when the 

system is injected with current is illustrated in Fig. 4.1. The design and material 

parameters of the bulk GaAs waveguide are borrowed and imported in PICS3D from the 

experimental work of [119].  

The calculation of the change of the real part of the refractive index of the GaAs 

material due to the current injection was made according to the modified formula of the 

Kramers-Kronig relations which PICS3D uses [120] and is described in section 5.3 of 

Chapter 5. The solid line in Fig. 4.1 represents the change of the real part of the refractive 

index (real index change as is stated in the label of the y axis of Fig. 4.1) as is calculated 

in PICS3D and the dotted line represents the data obtained from [119]. It can therefore be 

concluded that the results obtained from PICS3D are in good agreement to those from the 

experimental work of [119]. 
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Fig. 4.1: Change of the real part of the refractive index of a bulk GaAs material under 

current injection as a function of photon energy in PICS3D and the experimental work of 

[119] (After Ref. [120]). 

 

In section 4.2.1 a general description of how PICS3D is designed to run a 

simulation is given, together with a description of all the input and output files generated 

during this process. In sections 4.2.2-4.2.4 all the physical models used by PICS3D to 

simulate laser models are described in detail. 

 

4.2.1 File structure 

 

In Fig. 4.2 the file structure and the flow chart of a typical PICS3D simulation is 

shown as a series of boxes, where each file is described in detail below. 
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Fig. 4.2: File structure and flow chart of a typical PICS3D simulation. 

 

1. The .layer file is the main file where the user defines the structure of the device. A 

device can be designed as one section corresponding to one .layer file or multiple 

sections, with each section corresponding to a separate .layer file. The .layer files 

of the multiple section device can then be linked together with a specific 

command in order to be treated by PICS3D as one device. As the name implies, 

the .layer file designs a device or a device section as a series of data blocks or 

layers, with each layer describing a specific region. These regions can be active 

regions, passive waveguides, gratings, n+ or p+ regions, barriers, QW regions and 

many others. The user can define the thickness of each layer, its material and 



    73 

 

material composition, its doping (n+ or p+), the number of mesh points used to 

calculate all the spatial characteristics of the layer (the more mesh points the 

better the accuracy of the calculations) and whether the layer is an active or 

passive region. The length and width of the whole device or device section can 

also be specified, as well as the type of contact used for current injection. After 

any change made to the device structure the .layer file needs to be processed in 

order to generate the .geo, .doping and .mater files, the use of which is described 

in the steps 2, 3 and 4 below, respectively. 

 

2. The .geo file is an input file which contains information about the device geometry 

and the initial mesh allocation. When it is processed, it generates the .mplt file, 

which is described in step 5. 

 

3. The .doping file is an input file which contains about the doping of each layer and is 

used by the .sol file described in step 7. 

 

4. The .mater file is another input file which contains information about the material 

and the material composition of each layer and is used by the .sol file. 

  

5. The .mplt file is an input file designed to plot the mesh which is generated from the 

.geo file. 

 

6. The .gain file is another important input file which is used to plot the material gain 

spectrum, spontaneous emission rate spectrum, quantum well subbands, and other 
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critical physical properties. It is very useful for the user to make estimations 

before the main simulation starts. 

 

7. The .sol file is the main input file that defines the material properties and controls 

the bias and other conditions of the main equation solver. Different free-carrier 

contributions to the refractive index change can be defined as well as the accuracy 

of the solver. Various currents and biases can be controlled independently for 

different sections of a device. 

 

8. The .std files are output files created in the form of .std 0001, .std 0002, etc., after 

every run of the .sol file. They contain numerical output data from the main 

equation solver and are used by the .plt file in order to plot diagrams in 2D and 3D 

graphics. 

 

9. The .out files are output files created in the form of .out 0001, .out 0002, etc., after 

every run of the .sol file and have the same use as the .std files. 

  

10. The .plt file is the main file used to plot all the data produced during a software 

run and are stored in the .out output files. It generates a Postscript .ps file which 

can either be opened with a Gnuplot platform or be converted to a .pdf file. The 

.plt file uses a set of commands to plot various electrical and optical properties of 

TLDs as a function of applied bias or injected current in any contact such as: I-V 

and L-I characteristics, lasing wavelength vs tuning current and optical power vs 

tuning current. It can also plot 2D and 3D spatial distributions of TLD electrical 

and optical properties such as: energy band diagrams (both for the conduction and 
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valence band including Fermi levels), electron and hole concentrations (carrier 

density) in linear and logarithmic form, refractive index change due to injected 

current, current densities, local modal gain or absorption in active or passive 

regions, electric fields, electric flux, intensity of the propagating optical wave 

inside the TLD. All the spatial distributions can be plotted as a crossection of one 

axis vs the other two in 2D or across all axis in 3D. Lastly, the .plt file can plot the 

lasing mode spectrum of the optical cavity. 

 

4.2.2 Carrier transport model 

 

PICS3D uses the drift-diffusion model to simulate the transport of carriers in 

semiconductor devices and TLDs. The drift-diffusion model universally describes 

situations where excess carriers are introduced locally in an area, causing a condition of 

non-uniform carrier distribution, like in the injection of carriers from a junction [121]. 

Whenever there exists a gradient of carrier concentration or density, processes of drift 

and/or diffusion occur by which the carriers migrate from the region of high 

concentration toward the region of low concentration, to drive the system toward a state 

of uniformity. This description is very adequate for the conditions that exist in laser 

diodes. For example, in the cladding regions the carriers are mainly driven by the applied 

electric field, but once the carriers are injected into the central region (waveguide) of the 

active or passive sections, their transport there is mainly handled by diffusion. 

The basic set of equations includes the Poisson’s equation for the electrostatic 

potential V: 

pnNNV
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s 
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    76 

 

 

where n is the electron density, p is the hole density, ND(A) is the donor (acceptor) doping 

density, e is the electron charge, 0  is the dielectric constant of vacuum, and s  is the 

relative dielectric constant of the material. 

The electron and hole densities in semiconductors are defined by Fermi-Dirac 

distributions. Assuming parabolic density of states this yields [121] for the local free 

carrier densities: 
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where )(vcN  is the effective density of states in the conduction (valence) band,  pFnE  is 

the electron (hole) quasi-Fermi level, )(vcE  is the conduction (valence) band energy, Bk  

is Boltzmann’s constant, T is the temperature, and F1/2 is the Fermi integral of order 1/2 

[121]. The quasi-Fermi levels  pFnE  and the band edge energies )(vcE  are in general local 

functions of the coordinates. The spatial profiles of )(vcE  are completely defined by the 

local electrostatic potential V. 

In the quasi-Fermi levels approximation the local electron Jn and hole Jp current 

densities are given by simple equations: 

Fnnn EnJ   ,        Fppp EpJ       (4.3) 

where )( pn  is the electron (hole) mobility. Note that the equations (4.3) are valid for 

both cases of degenerate and non-degenerate carrier statistics. The carrier mobilities in 

general depend on the local electric field strength [112]. However, in typical laser diode 

structures the transport is characterised by relatively weak electric fields and we ignore 
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this dependence. At the same time, the doping and the composition dependence of the 

mobilities in each layer are taken into account. 

The equations (4.1) – (4.2) alone cannot provide solutions for all unknowns. The 

current continuity equations for the electrons and the holes must be added for a complete 

description of the carrier transport: 
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           (4.4) 

where )( pnR is the electron (hole) recombination rate. Here we will use standard 

expressions [112] for the recombination rates which are the functions of the carrier 

density: 

               32 NCNBNAR NNNN          (4.5) 

where the coefficients NA , NB , and NC  describe Shockley-Read-Hall (SRH) 

recombination, spontaneous radiative recombination, and Auger recombination, 

respectively, of the electrons )( nN   and the holes )( pN  . Note that these coefficients 

are different in each layer of the hetetrostructure, and in general they are different for 

electrons and holes.  

However, when the high-density carriers are injected into the central region of each 

section, it is a good approximation to use pn   (electroneutrality condition) in this 

region. Then each recombination mechanism in the central region can be described by a 

single coefficient which is the same for the electrons and holes. At the same time in case 

of vertical carrier leakage from the central region into the adjacent regions, the 

recombination of the minority leaked carriers is mainly described by the SRH 

mechanism, and the corresponding coefficients NA  are different for the electrons and 

holes. All these features are taken into account in our model. 
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The above set of equations (4.1) – (4.5) completely describes the 3D carrier 

transport in each layer of the structure, except the device contacts and the 

heterostructure’s interfaces. At the contacts the transport is defined by the boundary 

conditions (discussed below in section 4.2.4), while at the heterointerfaces the PICS3D 

uses the thermionic emission model [121]. 

 

4.2.3 Optical model and field equations 

 

The optical part of the TLD modelling concerns with the spatio-temporal solutions 

for the propagating electro-magnetic fields in a composite cavity. Under the scalar wave 

assumption the electric field with the frequency  propagating along the cavity in the z-

direction is written as: 

),()(),exp()( yxzEEtjEtE        (4.6) 

The transverse modes ),( yx  describe the field distribution along the lateral x-

direction and the transverse y-direction. The modes are obtained from the solution of the 

equation: 
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Here ),,,( zyxn   is a local complex refractive index, c is the speed of light in vacuum, 

and ),( zneff   is the z-dependent effective refractive index which defines the z-dependent 

propagation constant ),()( zn
c

z eff 


  . As is seen from (4.7), the complex propagation 

constant )(z  contains all information about optical properties of the structure. 
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Under the assumption of relatively weak z-dependence of n , the solution of 

equation (4.7) is obtained by the effective index method. The z-dependent part )(zE  is 

given by the equation: 
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     (4.8) 

where )(zf  is the Langevin’s noise source caused by the spontaneous emission 

contribution into the lasing mode. The function )(zf  is obtained by the averaging of the 

original Langevin’s source ),,( zyxF  in the initial Maxwell’s equations over the lateral 

directions using the obtained from equation (4.7) transverse modes [122], [123]. 

Equation (4.8) is the basic equation used for the optical field calculations in the 

PICS3D package. The effective refractive index ),( zneff   and the complex propagation 

constant )(z  in each section depend on the optical frequency (material and waveguide 

dispersion), on the section design (the waveguide geometry, material properties, gratings, 

etc.), and on the injected carrier density (FC effect) and the photon density (due to gain 

compression) [122]. 

In PICS3D, equation (4.8) is solved using the Green’s function method [122], [123] 

to find the longitudinal modes and the intensity distributions along the TLD composite 

cavity. In the active section PICS3D uses the output from the carrier transport simulations 

to obtain the local gain. In passive sections the data from the electrical simulation are 

used to calculate the local values of the real and the imaginary parts of the refractive 

index. Thus, the lasing frequency tuning and possible wave gain/attenuation in passive 

sections are self-consistently described by the model. Since meshing of the electrical and 

the optical problems are different, the values from the electrical problem are linearly 

interpolated from the electrical mesh planes onto the optical mesh points [122]. 
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4.2.4 Boundary conditions 

 

The boundary conditions for electrical equations (4.1) and (4.4) refer to ohmic 

contacts and the abrupt heterointerfaces. In PICS3D ohmic contacts are implemented as 

simple Dirichlet boundary conditions, where the surface potential Vs and the electron and 

the hole quasi-Fermi levels s

FnE  and s

FpE  are fixed [122]. The quasi-Fermi potentials of 

the minority and the majority carriers at the electrodes are equal to each other and set to 

the applied bias Vapplied of the electrode: 

applied

s

Fp

s

Fn eVEE        (4.9) 

The potential Vs at the boundary is fixed at a value consistent with the charge 

neutrality condition 0 pnNN AD . With the defined electrical potential Vs and the 

quasi-Fermi levels at the boundaries, one then can use equations (4.2) to calculate the 

boundary carrier densities sn  and sp .  

It should be pointed out that the charge neutrality assumption in the contacts 

implicitly assumes a high level doping in the vicinity of the contacts in order for the 

contacts to serve as an efficient injector. Otherwise, for low-doped regions near the 

contact there would be the induced carrier depletion (or the carrier accumulation) in these 

regions under high current injection levels. This would disturb the ohmic operation 

regime of the contacts, and the conditions (4.9) will become invalid. For typical laser 

structures this is not a problem as the cladding regions are usually heavily doped.  

At the device heterointerfaces there is an abrupt change of the electrical properties. 

The equations (4.3) for the current densities become invalid here due to possible quasi-

Fermi potential discontinuity. The current flow on both sides of the interface is described 

by the equations (4.3), however at the interface the carrier transfer is handled by 
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completely different physical mechanisms. In general, this may include various quantum 

tunnelling mechanisms and/or thermionic emission. A completely rigorous treatment of 

the interface carrier transfer is a very difficult problem due to non-linearity of the 

phenomena. The solution of this problem would require to find the quasi-Fermi levels on 

each side of the interface and then calculate the interface transfer current densities for the 

electrons and the holes and match them to the drift-diffusion current densities in (4.3). 

PICS3D uses a simplified approach in solving this problem. It assumes that the main 

interface transfer mechanism is the thermionic emission currents which are uniquely 

defined by the temperature and the carrier densities on each side of the interface. This 

approximation is reasonable for typical laser heterostructures. 

Regarding the boundary conditions for the optical problem, they are the usual 

continuity conditions for the electromagnetic field components at each interface of the 

composite cavity. 

 

4.3 VPI 

 

Virtual Photonics Incorporated (VPI) (started as Virtual Photonics Pty Ltd) was 

founded in 1996 by Arthur Lowery [124] in order to create a program (VPI) that 

simulates optical circuits. The TLD models that are used in this thesis are based on the 

Transmission-Line model which was created by Johns [125] as a time-domain model to 

simulate microwave cavities. VPI has excessively been used in both the fields of 

academia and industry with a wide list of publications [126]. 

VPI allows the design of different types of optical networks, as it provides a full 

variety of components, such as lasers, fibres, amplifiers, regenerators, photodiodes, and 
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anything else that the user might need in order to create his own network. It also offers 

Bit-Error Rate (BER) and SNR calculations, eye diagrams, figures in the frequency and 

time domain, and gain figures. The user has the option to use a laser separately as a sole 

system to test its operation in the dynamic regime, to apply direct modulation and optical 

injection-locking to it, or use it as a transmitter in an optical network setup. It provides 

information mainly from the optical point of view of the laser, allowing the user to 

modify some key optical parameters, but it does not give any information about basic 

physics or electronic features of the laser, as in PICS3D. The laser structure here is more 

encrypted as it is presented as a closed box, where the user cannot see the internal layer 

structure of the laser or observe various physical elements, such as electron (carrier) and 

hole distributions, band energy diagrams, Fermi levels and the flow of current inside the 

device.  

Therefore, the main disadvantage of VPI against PICS3D, is the fact that the user 

cannot have a very detailed laser setup, where he can control both its optical and 

electronic or physical aspects. The main equations that VPI uses to simulate 

semiconductor lasers are given in sections 4.3.1-4.3.3 and a description of how it works 

during a simulation is given in Chapter 8. Below follows a description of the models VPI 

uses to implement semiconductor devices and simulate their operation. 

The TLDs which are used in all simulations presented in Chapter 8 are based on the 

Transmission-Line Laser Model (TLLM) of VPI which uses the Transmission-Line 

Model (TLM or Photonics TLM) method to describe all types of photonic devices. 

According to this method [127], both time and space are descetised with a time step Δt 

and spatial step Δz=vgΔt, where vg is the group velocity of the propagating wave in the 

modeled device. This spatial discretisation leads to the formation of nodes which recreate 

the modeled device and are considered as lumped scattering nodes which are connected 
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with each other with trnasmission lines of zero loss. All transmission lines have a signal 

delay of one time step Δt according to the chosen spatial step. In this way calculations 

(which is the scattering of incoming waves in order to produce outgoing waves) can be 

made for each scattering node independently from other nodes, with the use of 

information provided by adjacent nodes or previous iterations.  

The spatial discretisation of a TLLM device which uses the TLM method is 

confined in only one dimension which is the axis of wave propagation z along the built-in 

waveguide of the device and is shown in Fig. 4.3. The device is divided in k sections, 

with each device section consisting of m smaller TLM sections of size Δz=cΔt/ng,k, where 

c is the speed of light in vacuum and ng,k is the group refractive index of the kth section. 

Each one of the m TLM sections contains a scattering node which represents the noise 

(spontaneous emission), loss (scattering and absorption), gain (stimulated emission) and 

grating-induced reflection (if any) that the propagating optical wave sustains as it passes 

through the section [128]. 

The scattering nodes of adjacent TLM sections are connected with transmission 

lines (which represent pure waveguide propagation delays) from where the output optical 

field from each TLM section is passed through with no changes to the adjacent TLM 

sections and is used at the next iteration as the input optical field for them. Each 

scattering node m generates output forward and backward propagating optical waves 

out

mFE ,  and 
out

mBE , , respectively from its incident forward and backward propagating optical 

waves in

mFE ,  and in

mBE , , respectively. 
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Fig. 4.3: A TLLM semiconductor device in VPI with k device sections and m 

scattering nodes (TLM sections) (After Ref. [129]). 

 

Although VPI is a software simulation tool, it also provides reliable results when it 

is compared with experimental work. As an example of that, in Fig. 4.4 is presented a 

case where the design and material parameters of a three-section TLD in [82] are 

imported and used as TLLM device in VPI. The phase section is injected gradually with 

current from 0 to 40 mA while the DBR section remains inactive. The output frequency 

and power variation during phase wavelength tuning of the TLD in the time domain is 

illustrated in Fig. 4.5 and Fig. 4.6, respectively and the results are found to be in good 

agreement to those of [82]. 
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Fig. 4.4: A three-section TLD model in VPI according to [82] (After Ref. [129]). 

 

Fig. 4.5: TLD output frequency versus time during phase wavelength tuning (After 

Ref. [129]). 

 

Fig. 4.6: TLD output power versus time during phase wavelength tuning (After Ref. 

[129]). 
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4.3.1 Travelling-wave equations for optical fields 

 

VPI uses the travelling-wave equations for the propagation of the electro-magnetic 

field in the composite optical cavity of a TLLM device. The propagating electric field 

 trE ,


 along the axis of propagation z in time t inside the active region of the TLLM can 

be represented as a superposition of the forward and backward travelling optical wave 

with complex envelope amplitude  tzA ,  and  tzB , , respectively as [129]: 
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where 0f  is the frequency of the propagating wave in vacuum and  0, frF 


 is the profile 

of the electric field which describes the fundamental mode(s) in the area between 

sections. 

Amplitudes  tzA ,  and  tzB ,  are varying slowly in time but are rapidly oscillating 

along the propagation axis z so it is more useful to introduce in the calculations the 

amplitudes  tza ,  and  tzb ,  which are slowly oscillating in both time t and along z and 

are defined as: 
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where  0
02

fn
c

f
eff


   is the complex propagation constant and 

     000 fnifnfn effeffeff
  is the complex effective refractive index which depends on 

the propagating wave frequency 0f . 

The travelling-wave equations can now be derived by substituting (4.10) and (4.11) 

into the Maxwell equations which gives for the forward and backward propagating wave 
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with complex amplitudes  tza ,  and  tzb , , respectively, which are slowly-varying in t 

and z [129]: 
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where gg ncv /  is the group velocity of the optical mode of the propagating wave, 

where c is the speed of light in vacuum and ng is the group refractive index of the cavity, 

 Ng  is the optical gain in the active region which depends on the carrier density N 

which in turn varies in time according to the rate equations described in section 4.3.2 and 

Naaa FCiFCi ,  is the coefficient for the optical losses caused by the internal losses ai 

of the cavity and Free-Carrier (FC) absorption which has a linear dependence with the 

carrier density N according to the coefficient aFC. 

The average photon density  tS  in the active region of the TLLM device for a 

small amount of length Δz in time t can be determined by the amplitudes  tzA ,  and 

 tzB ,  of the forward and backward propagating optical fields, respectively and is 

defined as [129]: 
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where 0hfEph   is the photon energy for the frequency 0f  of the propagating wave in 

vacuum and Γ, w and d is the optical confinement factor, width and thickness of the 

active region, respectively. 
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4.3.2 Rate equations for carrier density dynamics 

 

The processes of generation and recombination of electron-hole pairs in the active 

region of a TLLM device are governed in VPI by the rate equation responsible for the 

variation in time t of the density N of electrons and holes in the conduction and valence 

band, respectively which is assumed to be equal according to the charge neutrality 

condition. In the the case of a bulk active region this variation is defined by the first rate 

equation already described in section 3.4 as [129]: 

     tSNgvNR
eV
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dt

dN
g


    (4.14) 

where I is the injection current into the active region, η is the current injection efficiency, 

e is the electron charge, V is the volume of the active region and 

  32 CNBNANNR   is the carrier density dependent recombination rate of carriers 

responsible for the spontaneous and non-radiative recombination of electron-hole pairs, 

where A is the non-radiative Shockley-Read-Hall or linear recombination coefficient, B is 

the bimolecular or radiative recombination coefficient and C is the non-radiative Auger 

recombination coefficient. 

 In the case of a MQW active region the generation and recombination of electron-

hole pairs are described by two separate rate equations, one for the Separate Confinement 

Heterostructure (SCH) regions (two symmetrical regions before and after the MQW 

region which are used for better electronic and optical confinement) and one for the 

MQW region which are defined as [129]: 

SCH

MQW

esc

MQW

cap

SCH

SCH

SCH

d

dNN

eV

I

dt

dN




     (4.15) 
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     tSNgvNR
N

d

dN

dt

dN
MQWgMQW

esc

MQW

MQW

SCH

cap

SCHMQW



  (4.16) 

where VSCH is the volume of one SCH region, NSCH and NMQW is the carrier density of one 

SCH and MQW region, respectively, cap  and esc  is the carrier capture and escape time, 

respectively of the exchange of carriers between the SCH regions and the quantum wells 

(which also describes the capture and escape process, respectively of the confined 

electrons in the quantum wells and the unconfined electrons in the SCH regions) and 

dMQW and dSCH is the thickness of the MQW and one of the SCH regions, respectively. 

In equation (4.15), the term 
SCHeV

I
 defines the injection of carriers into the SCH 

regions, the term 
cap

SCHN


 defines the transport/dwell or capture of the carriers in the SCH 

regions and the term 
SCH

MQW

esc

MQW

d

dN


 defines the thermionic emission or escape of the 

carriers from the quantum wells. 

In equation (4.16), the term 
MQW

SCH

cap

SCH

d

dN


 defines the injection or capture of carriers 

from the SCH regions into the quantum wells, the term 
esc

MQWN


 defines the thermionic 

emission or escape of the carriers from the quantum wells, the term  
MQWNR  defines the 

spontaneous and non-radiative recombination of the electron-hole pairs in the quantum 

wells and the term    tSNgv MQWg  defines the stimulated gain and absorption processes 

in the quantum wells. 
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4.3.3 Stimulated emission (gain) models 

 

Stimulated emission or gain in the active region of a TLLM device can be 

represented in VPI in five ways or models: 1) the flat gain model, 2) the linear gain 

model, 3) the logarithmic gain model, 4) the parabolic gain model and 5) gain modeling 

with information loaded by a data file. 

In the flat gain model, the gain is frequency independent and only dependent on 

carrier density N. It is assumed to be flat around the region of the gain peak  Ng peak  and 

is therefore defined as:  

   NgNg peak        (4.17) 

In the linear gain model, the gain is frequency independent and only dependent on 

carrier density. The gain peak  Ng peak  has a linear dependence on the carrier density and 

is therefore defined as [129]: 

   trlinpeak NNNg       (4.18) 

where lin  is a constant coefficient called linear differential gain and Ntr is the 

transparency carrier density which are both specified by the user in VPI. 

In the logarithmic gain model, the gain is frequency independent and only 

dependent on carrier density. The gain peak  Ng peak  has a logarithmic dependence on 

the carrier density and is therefore defined as [129]: 

 

  









tr

peak
N

N
Ng loglog      (4.19) 
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where log  is the constant coefficient logarithmic differential gain which is specified by 

the user in VPI.  

 In the parabolic gain model, the gain depends on both the frequency f and the 

carrier density N and has, as the name implies, a parabolic shape. It is defined in VPI as 

[129]: 

   
 

  



























2

2/
1,

Nf

Nff
NgNfg

peak

peak     (4.20) 

where  Ng peak  has either a linear or logarithmic dependence on the carrier density, 

 Nf peak  is the carrier density dependent frequency at the gain peak and  Nf  is the 

bandwidth of the gain spectrum which is the range of frequencies where the gain is 

positive. 

 According to [129], in the parabolic gain model for carrier densities greater than the 

transparency carrier density  trNN  , the gain is zero for frequencies lower than the 

bandgap frequency gapf  of the material of the active region  
gapff  , positive for 

frequencies within the gain bandwidth  ffff gapgap   and negative for higher 

frequencies outside the gain bandwidth  fff gap  . For carrier densities smaller than 

the transparency carrier density  trNN  , the gain is zero for frequencies lower than the 

bandgap frequency  
gapff   and negative for frequencies higher than the bandgap 

frequency  
gapff  . 

The bandgap frequency is found in the parabolic gain model in VPI with the use of 

a reference gain curve which is created by the user according to a reference carrier 

density refN , a gain peak frequency  
refpeak Nf  corresponding to refN  and a gain 
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bandwidth  
refNf  according to refN , all three also specified by the user. The bandgap 

frequency can therefore be defined as [129]: 

 
 
2

ref

refpeakgap

Nf
Nff


       (4.21) 

The gain curves of any carrier density and frequency can be recreated according to 

the reference gain curve and the gain bandwidth  Nf  and gain peak frequency 

 Nf peak  of any gain curve dependent on any carrier density can therefore be defined as 

[129]: 

   
 

 refpeak

peak

ref
Ng

Ng
NfNf       (4.22) 
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2 refpeak

peakref

refpeakpeak
Ng

NgNf
NfNf    (4.23) 

For the case where the carrier density of the gain curve is smaller than the 

transparency carrier density ( trNN  , negative gain) then the gain peak  Ng peak  is zero 

and the frequency dependent only gain is given by [129]: 

   
 

2

2/ 


















ref

gap

refpeak
Nf

ff
Ngfg      (4.24) 

The gain curves for different carrier densities (smaller and greater than the 

transparency carrier density) which are based on the reference carrier density Nref=N1 are 

illustrated in Fig. 4.7. 
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Fig. 4.7: Parabolic gain model in VPI for different carrier densities with N1=Nref (After 

Ref. [129]). 

 

For better accuracy of the parabolic gain model, the gain curve is approximated 

with the use of high-order Lorentzian functions. This is also what takes place in the case 

where the gain curve is given by a data file (from experimental or theoretical work) 

which is loaded as input in VPI. The software uses the raw data and then does an 

approximation with the use of high-order Lorentzian filters in order to recreate as 

accurately as possible the gain spectrum of the input data file which will be used in all 

simulations. The higher number of Lorentzians which are specified by the user the better 

the accuracy of the recreated gain spectrum. 

 

4.4 Conclusion 

 

The two different software packages which were used in this research, Crosslight 

PICS3D and VPI, were described in a comprehensive way. A comparison between them 



    94 

 

was made and the advantages and disadvantages of each one were presented. The reason 

why they were used in this thesis was also given. The physical models based on 

semiconductor laser theory that are used for all calculations of the electric and optical 

problem in those packages were described in detail. 

In this thesis, it is prefered to have a simulation software package that combines 

both the strengths of PICS3D and VPI but, unfortunately, there is no such software 

currently available. Therefore, it was decided first to create a TLD model and optimise its 

performance with proper results in PICS3D and then use these results to implement a 

TLD model in VPI which has exactly the same material and design parameters and 

exhibitS the same laser operation as in PICS3D, so that it can be simulated under direct 

Intensity Modulation (IM). 
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Different free-carrier contributions 

to the refractive index change in 

semiconductor materials and 
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5.1 Introduction 

 

Wavelength tuning in TLDs is determined by three basic physical mechanisms, 

such as the free-carrier (FC) injection, the electro-optic effect, and the thermal tuning. 

Only the FC tuning mechanism will be taken into account in the investigations in this 

Chapter.  

In the FC injection tuning, the lasing frequency shift is achieved by the FC 

contribution to the refractive index change Δn. It is the most common method of 

wavelength tuning, particularly in the telecom applications of TLDs. Since in 

semiconductor lasers the carrier density in the active section remains constant (clamped), 

the injection current change above the threshold does not yield any contribution to the FC 

refractive index change.  

As a result of this, a typical design of a TLD consists of one or more passive 

sections which, together with the active section, make a composite optical cavity. The FC 

refractive index change in passive sections in its turn is caused by various physical 

phenomena, such as the Burstein-Moss effect (band-filling), band renormalisation (band 

shrinkage), the plasma effect, etc. The band-filling effect shows a spectral dependence of 

the refractive index change due to the change of gain when current is injected into a 

semiconductor laser or waveguide. The plasma effect shows that the refractive index 

change depends linearly on the change in carrier density when current is injected into a 

semiconductor laser or waveguide. There are plenty of theoretical publications that 

discuss in detail these contributions to the FC refractive index change for various 

semiconductor materials [130]–[134] as well as the relevant experimental works [119], 

[135]–[142]. 
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However, in the majority of these papers a semiconductor material was used, which 

was usually a waveguide instead of a semiconductor laser. The main issue in question 

was the refractive index change due to the plasma effect which was considered to be the 

most usual and popular contribution to Δn. This reason was that the plasma effect is the 

easiest contribution to Δn to investigate because one simply injects current into a 

semiconductor material and just observes the linear change of its refractive index due to 

the change in injected carrier density.  

However, the band-filling effect which is another major contributor to Δn was left 

out of the investigations of half of the above mentioned papers [130], [132], [135], [136], 

[138], [141], [142], because it is more complex to measure experimentally or calculate 

theoretically through the Kramers-Kronig relations. Therefore, the contribution from the 

band-filling effect is investigated only in a few publications in the published literature 

[119], [131], [133], [134], [137], [139], [140]. Among them, the experimental work in 

[119] for a GaAs laser and the theoretical work in [131] for an InGaAsP waveguide 

material show that the contribution from the band-filling effect to the refractive index 

change is actually greater than the contribution from the FC plasma effect. It is also stated 

in [131] that the predictions that were made for the refractive index change are in good 

agreement with the available experimental data for the InGaAsP material.  

Therefore, it is very difficult to distinguish the FC contributions to Δn of both the 

plasma and band-filling effect in a semiconductor material, let alone a semiconductor 

laser such as the TLD, where different FC contributions to Δn affect the overall 

wavelength tuning. The main reason is because a comprehensive analysis of real TLD 

devices is a very challenging problem. A useful and most often used approach is to 

investigate the optical and the carrier transport problems separately. In this case, the FC 

injection problem is firstly solved in a device lasing at a fixed (i.e. not tuned) frequency, 
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which allows to establish the relationship between the injection current and the average 

carrier density in each passive section of the cavity. Then one uses the relationships 

between the carrier density and the refractive index change (which must be known a 

priory) and assigns the corresponding refractive index change to each passive section. 

Next, the pure optical problem is solved for the TLD lasing spectrum, which is now tuned 

due to the above inputted refractive index modification in the passive sections of the 

composite cavity. However, in real devices this is not what usually takes place. 

Typically, the injected carriers have spatially inhomogeneous transverse 

distributions across each section. This in turn results in an inhomogeneous distribution of 

the local refractive index change, which is seen by the light propagating in a composite 

waveguiding cavity. In addition, in monolithic multi-section TLDs the sections are not 

completely isolated from each other and this may also influence the longitudinal carrier 

distributions (horizontal current leakage) making the corresponding refractive index 

profile more inhomogenous. At high injection currents, when the vertical leakage effects 

become important, the situation becomes even more complex. Thus, the only adequate 

approach to the tuning problem in TLDs is to investigate the tuning performance of an 

operating device self-consistently for charge carrier transport and photon field 

propagation, including the real refractive index change (tuning) in the passive sections 

under the FC injection. 

In terms of wavelength tuning, there are numerous recent theoretical models which 

demonstrate wide tuning ranges and are in agreement with the experimental data. In these 

cases, WT SG DBR lasers have been used. Representative examples are the theoretical 

models of [143], [144], [145] which have demonstrated tuning ranges of 40 nm, 47.3 nm, 

and 100 nm, respectively. However, all these works, except [144], do not model devices 

self-consistently, but use the refractive index change (due to plasma effect only) as an 
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input parameter. 

In this Chapter, to the best of the author’s knowledge, the first comprehensive 

numerical model of TLD operation is presented with wavelength tuning based on 

simultaneous consideration of optical and transport phenomena in a complex multisection 

device. A 3-D simulation model of a three-section InGaAsP/InP TLD operating at 1550 

nm CW with a bulk optical cavity is developed by using the Crosslight PICS3D software. 

The effect of not only the plasma effect but also the band-filling effect (which is usually 

not investigated in published literature) to Δn of the TLD is investigated and measured in 

detail by the sophisticated solver of PICS3D for each effect seperately and for both 

effects combined.  

In section 5.2, the simulated device structure and its parameters are described in 

detail. Section 5.3 includes all the acquired results from the invesigations, which are 

explained in a comprehensive way. The two main FC contributions to Δn is the plasma 

effect and the changes in the interband transitions (band-filling effect), which are 

calculated by using a modified formula of the Kramers-Kronig (KK) relations (KK effect) 

in PICS3D. The results show that the KK (band-filling) effect is heavily underestimated 

by the lack of investigation in published literature as it is the main contributor to Δn, a 

statement which is also supported by the experimental work of [119] and the theoretical 

work of [131]. Section 5.4 includes all the conclusions that can be made from all the 

investigations of this Chapter. 
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5.2 Device structure and parameters 

 

The setup which is used in our simulations is a typical 3S TLD with a bulk 

In0.61Ga0.39As0.84P0.16 optical cavity operating at 1550 nm. Its structure is shown in Fig. 

5.1, and a complete set of design and material parameters is given in TABLE I. These 

were typical parameters taken from both simulation and experimental data in the 

published literature and various textbooks and are widely used for the design of TLDs. 

The reason was that it was very difficult to find a single published paper on TLD 

operation either by experiment or even simulation which presented a complete set of 

design and material parameters for a single TLD structure. Therefore the parameter 

values that we used cannot be linked unfortunately to any experimental TLD or TLD 

model, which means we could not recreate the results of their investigations.  

However, as was shown in Chapter 4, when PICS3D uses a complete set of 

experimental data as input, it does produce results which are in very good agrement with 

those from the setup of the experimental paper it borrowed the data from. We can 

therefore trust that PICS3D will produce adequate and valid results when we use typical 

parameters according to literature in our TLD model. It should be noted here that PICS3D 

is a very complex software tool which requires very careful selection of parameters in 

order for its solver to work properly and simulate the TLD model. The results from all the 

investigations in Chapters 5, 6 and 7 which use this PICS3D TLD model have come from 

tedious and meticulous trial-and-error work in order to finalise a properly working model 

and be able to optimise its performance. A description of the TLD model structure 

follows: 
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Fig. 5.1: The three-section TLD model. 

 

The structure of the bulk TLD that was used in PICS3D is shown in two 

dimensions (y and z), with y being the axis of device thickness and z being the axis of 

photon propagation. It consists of three sections, each section of which consists of 

multiple layers of different colour. The total length of the device is 800 μm, the total 

width, which is the same for all sections and layers, is 1.5 μm and the total thickness, 

again the same for all sections but not for all layers, is 3.33 μm. 

Each section has its own bottom and top contact for injecting currents and applying 

voltages. Although the separate pair of contacts to each section would minimise 

horizontal current leakage between sections, it is difficult to practically make individual 

bottom contacts to each section, as this would require removal of the substrate and local 

ion implantation in the n-layer. The main reason to use the separate bottom contacts in 

our model is to get around of the PICS3D’s embodiment of the bias setup. In order to 

avoid spurious currents between top contacts, in PICS3D the common bottom contact 



   102 

 

must always be pre-biased [120]. This means that there is a small current injection into 

each section. We found that the pre-biasing has no effect on the AR operation, but it 

decreases the available range of FC refractive index change in the passive sections. Our 

set up allows circumventing the latter problem at no physical cost. 

 

TABLE I 

STRUCTURE AND MATERIAL PARAMETERS 

Symbol Parameter Name Value Units 

Ra Left facet reflectivity 0.3 (z=0) - 

Rr Right facet reflectivity 10-4 (z=800 μm) - 

w TLD width 1.5 μm 

da Active region thickness 0.18 μm 

dp Waveguide region thickness of phase section 0.38, 0.58 μm 

dDBR Waveguide region thickness of DBR section 0.38 μm 

dg Grating region thickness 0.2 μm 

Eg,a Active region bandgap 0.7986 eV 

Eg,p Waveguide region bandgap of passive sections 0.85 eV 

κ Coupling coefficient 180 cm-1 

i  Average internal losses 5 cm-1 

A Linear recombination 1 x 108 s-1 

B Bimolecular recombination 2 x 10-10 cm3 s-1 

C Auger recombination 3.5 x 10-29 cm6 s-1 
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Nn Doping of the n+ region 1 x 1018 cm-3 

Np Doping of the p+ region 1 x 1018 cm-3 

Nth Threshold carrier density 1 x 1018 cm-3 

 

 The active section (AR) of the TLD (400 μm length) is on the left side, the phase 

section (variable) is in the middle, and the DBR section (variable) is on the right side.  

In the active section, the pink layer is doped with electrons, which makes it the n-

layer of n-doping (electron doping=1x1018 cm-3) and has a thickness of 1.5 μm. The 

yellow layer in the middle is the bulk active layer (active region) or the optical cavity, 

where all the photon generation takes place and has a total thickness of 0.18 μm. The 

green layer is doped with holes, which makes it the p-layer of p-doping (hole 

doping=1x1018 cm-3) and has a thickness of 1.55 μm. Exactly below and above the AR, 

there are two purple layers of thickness of 0.05 μm each. These are barriers that are put 

there for better optical confinement and are also called the Separate Confinement 

Heterostructure (SCH) regions. They also enhance the potential barriers and improve 

carrier confinement in the optical cavity preventing possible vertical electron leakage 

from the AR into the p  region under high injection. 

In the phase section, the pink layer is the n-layer (1.5 μm thickness and electron 

doping=1x1018 cm-3), the light blue layer is a passive waveguide (WG) of no doping and 

the green layer is the p-layer (1.45 μm thickness and hole doping=1x1018 cm-3). 

In the DBR section, the pink layer is the n-layer (1.3 μm thickness and electron 

doping=1x1018 cm-3). The grating layer consists of two InGaAsP materials (blue and 

purple), with one etched into the other, one of bigger refractive index and one of smaller 

refractive index. The light blue layer is a passive WG of no doping (0.38 μm thickness) 
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and the pink layer is the p-layer (1.45 μm thickness and hole doping=1x1018 cm-3). The 

WG layer of the passive sections is an In0.66Ga0.34As0.74P0.26 quaternary with a bandgap 

wavelength gp 1.46 μm. The refractive index of each layer and their spectral 

dependence on the photon energy are calculated according to the Adachi model [146]. 

 

5.3 Results and discussion 

 

The main focus of the investigation here is on the effect of different FC physical 

mechanisms on the refractive index change and on the tuning performance of the TLD. 

This effect is investigated in PICS3D for each mechanism separately as well as for all 

mechanisms combined together. In the case of the plasma effect, PICS3D uses the 

equations from the theory presented in Chapter 3. However, in the case of the KK effect, 

PICS3D uses a modified version of the KK relations which is presented as follows:         

As was already mentioned in section 3.6.2 with the use of (3.55), the KK relations 

allow to calculate the refractive index change 'n  due to the change g  in the gain of the 

material around the photon energy E under the free carrier injection, since gain is related 

to the imaginary part ''n of the refractive index '')/4( ng  . The index change is now 

given as: 

  
   

  
'

''

'
'

0

0 dE
EEEE

EgEg

e

c
En 










    (5.1) 

Equation (5.1) is a modified version of the Kramers-Kronig formula, which was at 

first suggested in [119] and is later used in PICS3D [120]. It is the one which is taken into 

account by the optical solver in order to calculate comprehensively the KK effect. 

However, some helpful modifications can be introduced in order for the software to carry 
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out effectively numerical integration in equation (5.2). This is necessary because the 

integral in (5.2) is numerically difficult to compute due to the integrand’s singularity at 

E=E’ [119]. For this, the integral in (5.2) is separated into three parts by the PICS3D 

solver, as is suggested in [120]: 
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where  is a small number.  

As 'EE  , the integrand of the third term approaches the finite limit
 

dE

Egd
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1
  [119]. 

Therefore, it may now be written as: 
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It is visible that the integrand of the integral is no longer singular and can now be 

easily evaluated by the optical solver, in order to give accurate results concerning the KK 

effect. We can now proceed to the presentation of the acquired results from the 

investigations in this Chapter. 

In the laser setup used in this Chapter, the AR is activated by injecting current in the 

top contact. During the passive section tuning, it operates at a given value of injected 

current Ia=15 mA, which provides the output power of 5.4 mW, as can be seen in the L-I 

characteristic in Fig. 5.2. The threshold current Ith of this laser is Ith=5.31 mA. The band 

profile of the AR under the 15 mA injection is shown in Fig. 5.3. It is interesting to 

observe that the quasi-Fermi level of the electrons FnE  is continuous at all interfaces, 

while for the holes FpE  has a discontinuity at the cladding interface. This indicates that the 
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electron injection into the AR is completely controlled by the drift-diffusion transport, 

while the hole injection is controlled by the thermionic emission.  

In the current investigation only the case of DBR tuning is presented, where bias 

VDBR is applied to the top contact of the DBR section from 0 V until the maximum value of 

VDBR=1.5 V is reached. This voltage corresponds to an equivalent value of the DBR 

current IDBR of around IDBR ≈ 140 mA, as is shown in the I-V characteristic of the DBR 

section in Fig. 5.4. The phase section remains inactive during all simulations that 

concerned tuning with a value of Vp=0 V of applied bias. Since each section in our model 

has a separate pair of the top and bottom contacts and can be driven completely 

independently, it is more convenient in the simulation of tuning to apply the bias to the 

passive section rather than specifying the injection current value. 

 

 

Fig. 5.2: L-I characteristic of the TLD. 
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Fig.  5.3: Band structure profile of the active section under 15 mA injection. 

 

Fig. 5.4: I-V characteristic of the DBR section. 

 

The PICS3D simulator has the option of activating and deactivating various FC 

contributions to the real part of the refractive index change 'n . In this investigation, three 

cases are taken into consideration. The first one takes place when only the plasma effect is 

a contributor to 'n  during tuning the DBR section. The second one takes place when only 



   108 

 

the KK effect is activated as a contributor to 'n  and the third one when both 

contributions are activated. The effect of all three cases on the output wavelength change 

is also investigated. 

The main results are shown in Fig. 5.5, which demonstrates the contribution to 'n  

from the plasma effect (red line, number 1) and from the KK effect (blue line, number 2) 

separately, as well as when they are combined together (black line, number 3). The index 

change is plotted as a function of injection current (bias). The initial value of refractive 

index 'n  is around 'n ≈3.4025, before tuning starts by applying bias to the DBR section. It 

remains constant until 0.6 V of the applied bias, and then begins decreasing with further 

increase of the bias. At the final bias VDBR=1.5 V, 'n  reaches the value of 'n ≈3.3805 in the 

case where only the plasma effect is activated (  plasman'  ≈ -0.022), the value of 

'n ≈3.3685 when only the KK effect is activated (  KKn'  ≈ -0.034), and the value of 

'n ≈3.3465 for the combined effect (  KKplasman &'  ≈ -0.056). As can be seen, a quite large 

'/' nn  ≈ 1.65% has been achieved, particularly in the case were both effects are 

contributing. 

As is seen from Fig. 5.5, the contribution to 'n  from the KK effect is almost double 

the contribution from the plasma effect for the same range of applied biases. It can also be 

observed that the plasma effect requires higher values of applied bias than the KK effect in 

order to achieve the same value of 'n . Therefore it is concluded from the above 

observations that the KK effect gives a dominant contribution to 'n , which is also 

supported by the experimental work of [119] and the theoretical work of [131]. 
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Fig.  5.5: Real part of refractive index in WG region of the DBR section as a function 

of the DBR bias. 

 

In Fig. 5.6, the corresponding wavelength tuning of the DBR section is shown, when 

each effect is activated separately and when both are activated together. As in Fig. 5.6, the 

red line (number 1) shows the tuning curve when only the plasma effect is activated, the 

blue line (number 2) when only the KK effect is activated and the black line (number 3) 

when both are activated. The initial value λ0 of the emitted wavelength λ of the TLD for all 

three cases, without any tuning of the passive sections (Vp=0 V, VDBR=0 V), is around λ0 ≈ 

1.5502 μm. In all three cases λ remains constant as 'n  is decreasing, until the required 

value of 'n  is reached, which causes the mode jump to a shorter wavelength. The size of 

this jump is defined by the inter-mode distance Δλm, which for our device was Δλm=0.7 

nm. 

As can be observed in Fig. 5.6, the plasma effect gives a blue wavelength shift 

Δλ(plasma) of around Δλ(plasma)≈6.2 nm since the last wavelength jump happened at 

λ(plasma)≈1.544 μm. The KK effect gives a blue wavelength shift Δλ(KK) of around 
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Δλ(KK)≈9.2 nm since the last wavelength jump happened at λ(KK)≈1.541 μm. The combined 

effect when both mechanisms are activated gives a blue wavelength shift Δλ(plasma & KK) of 

around Δλ(plasma & KK)≈10.2 nm since the last wavelength jump happened at λ(plasma & 

KK)≈1.540 μm.  

It is also visible that the KK effect requires smaller values of VDBR than the plasma 

effect in order to give the same wavelength jumps and achieve the same tuning range. It is 

also shown that the wavelength tuning saturates for the KK effect at around VDBR ≈ 1.3 V, 

although the refractive index continues decreasing with further bias increase (see Fig. 5.5). 

The wavelength tuning continues for the plasma effect contribution even after VDBR=1.5 V 

and it saturates at a much greater value of VDBR.  

The same observations can be made for the tuning curve of the combined effect, 

where the wavelength jumps happen at smaller bias values and the tuning saturates much 

earlier than in the case of each effect separately. From the above, it can be concluded that 

the KK effect gives the main contribution to the output wavelength tuning and defines the 

tuning behaviour of the DBR section. 

 

 

Fig. 5.6: Lasing wavelength as a function of current (bias) in the DBR section. 
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In the case where both effects are activated, wavelength tuning saturates at around 

VDBR ≈ 1.1 V, although the refractive index is still changing with further bias increase 

(actually more than 50% of available 'n  is not converted into the corresponding 

wavelength tuning). The reason for such behaviour has to do with the design of the TLD 

and will be discussed in Chapter 6. 

 

5.4 Conclusion 

 

Different FC contributions to the real part of the refractive index change were 

investigated, as well as their effect on the output lasing wavelength of the device. The FC 

contributions in question were the plasma effect and the inter-band optical transitions 

which were calculated by using the KK relations (band-filling effect). The contribution of 

each effect was investigated separately by activating one effect each time as well as when 

they acted together. It was shown that the band-filling effect instead of the plasma effect 

is the dominant contributor to the real part of the refractive index change, which also 

shapes the corresponding wavelength tuning performance of the device. This shows that 

the band-filling effect is heavily underestimated due to the lack of investigation of this 

effect in published literature as a contributor to the refractive index change, a statement 

which is also supported by the experimental work of [119] and the theoretical work of 

[131]. It was also found that the available refractive index change is not necessarily 

converted into the corresponding lasing wavelength shift due to design issues which will 

be explained in Chapter 6.  
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Design and optimisation of tunable 

laser diodes with enhanced tuning 

range 
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6.1 Introduction 

 

The maximum achievable tuning range is one of the most important goals in the 

modelling and fabrication of TLDs for telecom applications. Indicatory of this is the fact 

that there are many pablications available in literature which concern TLDs with a wide 

tuning range. In Shi [147] for example, the dynamic range of a sampled-grating (SG) 

DBR laser is discussed, where the achieved tuning range was 50 nm. Another theoretical 

model in Dong [143] simulates a WT SG-DBR laser, which uses a travelling-wave model 

with a digital filter approach. The time-domain traveling-wave method and the frequency-

domain transfer-matrix method are both integrated in a single process. One of their results 

was to achieve a tuning range of 47.3 nm. It was also claimed that their theoretical data 

were in agreement with the experimental data of Mason [148], where a continuous tuning 

range of 41 nm was reached. As part of their experiment, they used a four-section buried-

ridge SG-DBR laser with an integrated ElectroAbsorption (EA) modulator and a bulk 

active section.  

In another experiment in Akulova [149], similar tuning range results of 40 nm are 

found, when in a similar fashion a SG-DBR laser is implemented, which is integrated 

with a SOA and an EA modulator. It was also managed to achieve an error-free 2.5 Gbps 

transmission over a 350 km standard single-mode fibre span. Finally, in Kim [150] a new 

TLD structure has been implemented, where a SG-DFB laser diode is monolithically 

integrated with a SG distributed Bragg reflector, which can give a continuous tuning 

range of up to 27 nm. 

The main focus of the investigation in this Chapter concerns the effect of specific 

material and design parameters of a TLD model on the discontinuous wavelength tuning 
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and how to achieve the maximum tuning range by optimising these parameters. The 

parameters in question are the composition of the materials which form the Bragg grating 

of the TLD and the length L of the DBR section. It is shown that different material 

compositions and different lengths L have strong effect on the Bragg reflectivity spectrum 

and the DBR tuning range. Investigations on how to enhance the tuning range by 

optimising specific design parameters of the simulated TLD are also made. Continuous 

and quasicontinuous tuning ranges are also presented in the optimised setups. All the 

TLD models in this Chapter are designed with the use of the Crosslight PICS3D software. 

Section 6.2 includes all the acquired results from the various invesigations, which 

are explained in a comprehensive way. Section 6.3 includes all the conclusions made 

during the investigations. 

 

6.2 Results and discussion 

 

6.2.1 Effect of the κL product on the TLD discontinuous tuning performance 

 

The setup and parameters of most of the simulated devices in this section is the 

same with the one described in Chapter 5. In all the simulated TLDs during the DBR 

section tuning the AR operates at a fixed injection current Ia=15 mA which provided the 

output power between 4.5 mW and 5.5 mW in various simulated TLDs.  

We have already investigated the refractive index change in the DBR section due to 

different FC contributions in Chapter 5. In all our simulations in this Chapter both 

contributions are always activated. This means that only their combined effect on the 

wavelength change is calculated here. The real part of the refractive index in the WG 
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region of the DBR section is plotted as a function of the DBR bias in Fig. 6.1. Fig. 6.2 

shows the corresponding wavelength tuning of the DBR section. A DBR tuning range of 

≈10 nm has been achieved in this device. 

 

Fig.  6.1: Real part of refractive index in WG region of the DBR section as a function 

of the DBR bias. 

 

As it was observed in Chapter 4 the tuning performance of the TLD is not optimal. 

It was seen that the wavelength tuning saturates at around VDBR=1.05 V, although the 

refractive index is still changing with further bias increase and more than 50% of the 

available 'n  is not converted into the corresponding wavelength shift. This also happens 

in spite of the fact that more longitudinal modes are still available for further wavelength 

hops, as is shown in the lasing modes spectrum in Fig. 6.3 for this case. An expanation of 

this observation will be given in this section. 

 

 



   116 

 

 

Fig.  6.2: DBR wavelength tuning in a TLD with κ=180 cm-1 and L=300 μm. 

 

Fig.  6.3: Lasing spectrum of the TLD with κ=180 cm-1 and L=300 μm taken at the 

DBR section bias VDBR=1.1 V. 

 

In order to understand the underlying physical reason of such an unusual behaviour 

of the lasing wavelength we have to inspect the comb mode spectrum in Fig. 6.3, taken at 

the point of the tuning saturation (VDBR=1.1 V), and also consider in detail the DBR 

reflectivity spectra as was dicussed in section 3.3. 
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In Figs. 6.4 and 6.5,  gR  spectra are shown as a function of the wavelength 

deviation from the Bragg wavelength, B  , for different values of  and the DBR 

section length L. For all curves in these figures the Bragg wavelength, as an example, was 

chosen to be B=1.550 m and the group index of the DBR section was 4.3gDBRn . 

 

Fig.  6.4: DBR reflectivity spectra for various  and L=300 μm, B=1.55 m. 

 

 

Fig.  6.5: DBR reflectivity spectra for various L and =200 cm-1, B=1.55 m. 
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The tuning behaviour of the TLD strongly depends on the shape of the )( gR  

dependence. For our simulated device the length of the DBR section was L=300 μm and 

the grating consisted of In0.8Ga0.2As0.44P0.56 and In0.93Ga0.07As0.16P0.84 materials. They 

have refractive index difference of gn' = 0.0853 which corresponds to the value of the 

coupling constant =180 cm-1. This results in κL=5.4 and the reflectivity spectral width 

gR = 4 nm within which the reflectivity is almost 100%. Fig. 6.6 shows the DBR 

reflectivity spectra for this device (black curve). The Bragg wavelength in this device is 

1B =1.5518 m. This value was chosen such that it corresponds to the lasing wavelength 

0 =1.55 m (1.5502 m, to be exact) at the beginning of the tuning, in agreement with 

the results shown in Fig. 6.2. 

As can be seen from Fig. 6.3, there are roughly 6 modes next to the lasing mode at 

=1.540 m within the spectral range  equal to the DBR reflectivity bandwidth, 

gR  = 4 nm, since the comb mode spacing is Δλm=0.7 nm. Also, all these modes 

have a very small Side Mode Suppression Ratio (SMSR) and are competing with each 

other in order to become the dominant lasing mode. This in turn makes it difficult to 

select a particular lasing mode from the competing modes at the tuning point. As a result 

of poor wavelength selectivity, the TLD is lasing in a multimode regime. It is also found 

that the SMSR deteriorates as the DBR bias (injection current) increases. A good 

discussion of the matter of SMSR in TLDs is given in [151]. 

It is interesting to note that the TLD tuning performance is very good at smaller 

biases, even though there was more than one cavity mode (actually, 4-6 modes) within 

the reflectivity bandwidth 
gR . This is in contrast with the usual requirement for the 

wavelength tuning that there must always be only one cavity mode within the reflectivity 
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bandwidth [85]. We explain this behaviour of the TLD tuning by the shape of the gain 

spectrum and the DBR reflectivity, and in particular by the mutual spectra positioning at 

the lasing wavelength. 

As was shown in [152], [153] (see also [85] and [114]), for a good SMSR (i.e. for 

good mode selectivity in our case) the cavity gain for the lasing mode should exceed the 

gain of the nearest side mode by about 5 cm-1. This condition is better satisfied at the 

longer lasing wavelength if the reflectivity spectrum is red-shifted with respect to the gain 

peak wavelength, as will be confirmed by the following simulations. 

With the deeper tuning the lasing wavelength becomes shorter (blue-shifted) and 

the peak of the reflectivity spectrum moves towards the gain peak wavelength. If in 

addition the reflectivity spectrum is flat over a few comb modes, the SMSR will decrease 

and the wavelength selectivity will become more difficult to achieve. The deterioration of 

the tuning performance of the TLD with the tuning depth clearly shows that the separate 

consideration of the carrier injection transport problem and the optical problem may lead 

to wrong conclusions about the actual device tuning performance. As was already 

mentioned, the refractive index change will continue to increase with the injection current 

increase, but this will not be converted into the wavelength tuning. 

In order to investigate how the tuning can be improved, we have considered 

different TLD designs. In particular, we will use such parameters of the DBR that the 

reflectivity bandwidth remains practically the same as in the previous device, 
gR = 4 

nm, but its spectral shape is changed. This case corresponds to the red curve in Fig. 6.6. 

Here the composition of the two grating materials (In0.83Ga0.17As0.37P0.63 and 

In0.9Ga0.1As0.23P0.77) corresponds to the refractive index difference gn'  = 0.0411 which 

gives the coupling constant =89 cm-1. The length of the DBR section was also chosen 
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shorter, L=167 μm. This results in κL=1.48. The Bragg wavelength in this device is 2B = 

1.5504 m. The reflectivity bandwidth was kept the same, 
gR = 4 nm. The reflectivity 

spectrum has now a much steeper peak around λΒ2 and a smaller reflectivity peak value, 

Rg=0.8. This value of Rg is reasonable and does not considerably change the threshold 

current. The tuning curve and the lasing spectrum for this device are shown in Fig. 6.7 

and Fig. 6.8, respectively. 

 

Fig.  6.6: DBR reflectivity spectra of two TLDs with 
gR = 4 nm. 

 

Fig.  6.7: DBR wavelength tuning in a TLD with κ=89 cm-1 and L=167 μm. 
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Fig.  6.8: Lasing spectrum of the TLD with κ=89 cm-1 and L=167 μm taken at the DBR 

section bias VDBR=1.5 V. 

 

As can be seen in Fig. 6.7, the DBR tuning range is now increased from 10 nm to 

17 nm for the same injection current. The tuning does not saturate, but further increases 

with the bias increase. Moreover, the cavity mode spectrum in Fig. 6.8 exhibits 

considerable improvement of the SMSR compared with the spectrum in Fig. 6.3. A single 

mode can now be selected even at higher DBR bias VDBR=1.5 V (VDBR=1.1 V for the 

device presented in Fig. 6.3). The neighboring modes are now well suppressed and the 

dominant lasing mode can be clearly distinguished, although the SMSR deteriorates at 

higher bias. 

A physical explanation of why the steeper )( gR  shape in the second design has 

improved the TLD’s tunability (even though the reflectivity peak drops significantly) can 

be provided from the inspection of Fig. 6.9. Here the net gain gnet spectra of the AR is 

plotted together with the mirror losses am spectra of the composite cavity created by the 

left facet (Ra=0.3) and the DBR with wavelength-selective reflectivity )( gR  for two 

TLDs with different parameters of the DBR sections: κL=5.4 (black curve) and κL=1.48 



   122 

 

(red curve), respectively. Since we calibrated both devices to lase at 0 =1.55 m at the 

beginning of the tuning, the Bragg wavelengths 2,1B  are slightly different for each 

device: B1=1.5518 m for the first device (black curves) and B2=1.5504 m for the 

second device (red curves). The mirror losses can be defined as in (3.45) [114]: 


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where effpaTLDeff LLLL ,  is the effective length of the composite TLD cavity and 
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Leff   is the DBR penetration depth. 

 

 

Fig. 6.9:  Spectra of the net gain gnet and the cavity mirror losses am at the beginning of 

tuning (lasing wavelength 0=1.55 m) for two TLDs with κL=5.4 (black curve) and 

κL=1.48 (red curve), respectively. The reflectivity bandwidth is kept the same (4 nm) for 

both curves. 
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It must be noted that the curves in Fig. 6.9 do not satisfy exactly the lasing 

condition (the net gain equals the mirror losses), since we do not have the exact values of 

the optical confinement factors. We use these factors as fitting parameters in Fig. 6.9 to 

satisfy the lasing condition at the beginning of tuning (0=1.55 m) as close as possible. 

However, Fig. 6.9 does correctly reflect the shapes and the mutual positions of the gain 

and the reflectivity spectra. Different Bragg wavelengths for the two simulated devices 

explain the shift of the mirror losses spectra in Fig. 6.9 with respect to each other (the 

spectra have different gain peak wavelengths). 

The material gain spectra are directly calculated in PICS3D at the lasing threshold. 

The mirror losses )(ma  were calculated separately using equation (6.1) and the 

parameters of the simulated device. Although the gain is clamped at the threshold carrier 

density thN , this density is different for devices with different )( gR . We first 

simulated both devices with no current injection into the phase and the DBR passive 

sections and have found that the corresponding threshold carrier densities were 

18)1( 101thN  cm-3 and 18)2( 1035.1 thN  cm-3  for TLDs with κL=5.4 and κL=1.48, 

respectively. 

These densities are then used in PICS3D to calculate the material gain spectra. The 

net gain spectra which are shown in Fig. 6.9 were calculated using the best estimates for 

the optical confinement factors. As is seen, the achieved gain - mirror losses balance is 

very good. The gain spectra are quite flat near the peak wavelengths p1=1.535 m and 

p2=1.515 m. 

As is seen from Fig. 6.9, even for the TLD with the flat Rg(Δ) spectrum (L=5.4) 

there is a strong asymmetry in the cavity mode selectivity. The neighboring cavity modes 
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within the reflection bandwidth which are located on the red side with respect to the 

lasing wavelength 0 will have larger difference between the mirror losses and the net 

gain, while the opposite is true for the comb modes on the blue side of the range with 

respect to 0. Thus, the neighboring cavity modes which are red-shifted with respect to 0 

will have larger SMSR compared with the blue-shifted modes. For the first device (black 

curves) the lasing condition is satisfied only for a single comb mode located practically at 

the very edge of the blue side of the reflectivity bandwidth. Inspection of the lasing 

spectrum at the beginning of the tuning shows that the SMSR is well above 30 dB for the 

nearest side mode in this device.  

This asymmetry of the SMSR becomes even more important when the TLD is 

tuned, since actually not more than half of the comb modes within the 
gR  bandwidth 

will compete with each other and the mode selection is still possible. However, as the 

tuning becomes deeper, the tuned lasing wavelength approaches the region near the peak 

gain wavelength p where both the gain and the mirror loss spectra are flat. The above 

asymmetry becomes weaker and thus more modes are now equally competing with the 

lasing mode. This makes the mode selection and further tuning more difficult. 

The presented analysis of the tuning operation is in a qualitative and quantitative 

agreement with the results shown in Fig. 6.2 where the device with many cavity modes 

within the DBR reflectivity bandwidth is still tuning well at the beginning over the range 

of 10 nm. As the lasing wavelength approaches the peak gain wavelength, the tuning 

saturates and the TLD enters the multimode lasing regime. 

The tuning performance is very different in the second device (κL=1.48). Here the 

reflectivity spectrum has a sharp peak (no flat region) and the mirror losses increase 

rapidly away from the peak wavelength. Inspection of the lasing spectra (not presented 
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here) shows that the SMSR of the nearest mode is above 40 dB at the beginning of the 

tuning. As a result, the single mode selection in this device is considerably better. 

Another useful contribution to the improvement of the tuning stems from the blue shift of 

the material peak gain wavelength due to higher threshold carrier density. This 

considerably increases the tuning range as is shown in Fig. 6.7. Since even at the bias 

VDBR=1.5 V the (tuned) lasing wavelength =1.533 m is still considerably further away 

from the flat part of the gain spectrum (red curve in Fig. 6.9), the tuning does not saturate 

in this device. 

We now investigate whether the tuning can be improved by reducing the 

reflectivity bandwidth 
gR . We again compare two devices which have almost the same 

peak reflectivities (Rpeak  1 and Rpeak  0.8) as before, but the reflectivity bandwidth is 

decreased twice to 
gR = 2 nm. The corresponding reflectivity spectra are shown in Fig. 

6.10. 

 

Fig. 6.10:  DBR reflectivity spectra of two TLDs with 
gR = 2 nm. 
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The first device has the following DBR parameters: grating consists of 

In0.84Ga0.16As0.36P0.64 and In0.89Ga0.11As0.24P0.76 materials, gn' = 0.0389, =83 cm-1, 

L=389 μm, κL=3.24 (black curve in Fig. 6.10). In the second device the grating consists 

of In0.85Ga0.15As0.34P0.66 and In0.88Ga0.12As0.26P0.74 materials, gn' = 0.0253, =50 cm-1, 

L=300 μm, κL=1.5 (red curve in Fig. 6.10). The tuning performance of these TLDs is 

shown in Fig. 6.11 and 6.12, respectively. As is seen, the tuning range of the first device 

is increased from 10 nm to 17 nm due to better mode selectivity in the DBR with the 

narrower reflectivity bandwidth. The tuning range of the second device remains almost 

the same (17 nm) as in Fig. 6.7. Here the effect of the sharp reflectivity peak dominates 

the wavelength selection. 

 

 

Fig. 6.11:  DBR wavelength tuning in a TLD with κ=83 cm-1 and L=389 μm. 
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Fig. 6.12:  DBR wavelength tuning in a TLD with κ=50 cm-1 and L=300 μm. 

 

It is obvious from the above analysis that the largest tuning tuning range was 

achieved in the devices with smaller κL product (κL1.5). This is because the reflectivity 

spectrum in this case is characterised by a sharp peak which improves the SMSR and 

allows to avoid the tuning saturation effect. 

 

6.2.2 TLD passive section limitations on high carrier densities and electronic 

properties of the Bragg grating in discontinuous tuning 

 

In this section we demonstrate that in the relatively optimised setup, a 

discontinuous tuning range of discont = 30 nm can be achieved. This value is close to the 

record 22 nm continuous tuning obtained in the experimental work [84]. However, it is 

necessary to point out that in our device the 30 nm tuning is due to the forward current 

injection only, while in [84] the forward injection provides only 4 nm tuning (due to the 

FC plasma effect). A further 18 nm wavelength shift was due to the thermal tuning by 
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reverse biasing the Bragg section which results in a “soft breakdown” of the diode and 

efficient heating of the waveguide. 

We start by investigating the case of extreme tuning in the device shown in Fig. 

6.12 (grating consists of In0.85Ga0.15As0.34P0.66 and In0.88Ga0.12As0.26P0.74 materials, gn' = 

0.0253, =50 cm-1, L=300 μm, κL=1.5, red curve in Fig. 6.10). In all the simulated TLDs 

in this section, during the DBR section tuning the AR operates at a fixed injection current 

Ia=15 mA which provided the output power between 4.5 mW and 4.6 mW in the 

simulated TLDs.  

The DBR section was designed to accommodate very high carrier densities. In 

practice the maximum carrier density in the passive sections is limited by four factors: (a) 

carrier leakage from the WG region into the adjacent layers (this mainly takes place for 

the electrons due to higher position of the electron quasi-Fermi level because of smaller 

electron density of states in comparison with the holes); (b) possibility of lasing in the 

passive section at high injection; (c) increased optical losses; (d) device overheating. 

Since Joule’s heating is not included in the current model, we have investigated the 

limitations (a), (b), (c) only. 

Case (a) can be prevented by the extra potential barrier on the p-side of the central 

WG region. For simplicity, in order to investigate the high carrier density case, we have 

increased the conduction band discontinuity in the DBR section to ΔEc = 0.8ΔEg = 0.4 eV. 

In all previous simulated devices we used ΔEc = 0.4ΔEg = 0.2 eV, which is a typical value 

for InP/InGaAsP heterobarriers. The leakage current in all our devices was below 3% 

even at very high injection levels. By making this optimisation, we were able to bias the 

DBR section with a voltage as high as VDBR=3.5 V which corresponds to the injection 

current of IDBR700 mA as is shown in the I-V characteristic in Fig. 6.13. This also gives 
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a carrier density value in the WG region of the DBR section of 181031.6 N  cm-3. 

Most of the applied bias drop (~2.1 V) was in the p-InP region due to low hole mobilities. 

Another interesting observation is that at high currents in the passive DBR section, the 

electron injection is mainly controlled by the thermionic emission. This follows from a 

very large electron quasi-Fermi level discontinuity (EFn  0.2 eV), which is seen from 

the band profile inspection in Fig. 6.14.  

The tuning curve of the TLD is shown in Fig. 6.15, and the 3D wave intensity 

distribution in the cavity is shown in Fig. 6.16. As one can see, the tuning range of 

=26 nm at VDBR=3.5 V was achieved without any sign of saturation. Although the 

IDBR700 mA current is too high, it is only the last few tuning steps which are mainly 

contributing to this value. If we restrict the tuning range to =22 nm at VDBR=2.4 V, the 

maximum required current is IDBR   400 mA, which is a quite reasonable value. 

 

 

Fig. 6.13: I-V characteristic of the DBR section of the TLD with κ=50 cm-1 and L=300 

μm. 
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Fig.  6.14: Band structure profile of the DBR section of the TLD with κ=50 cm-1 and 

L=300 μm taken at bias VDBR=3.5 V. 

 

 

Fig. 6.15:  DBR wavelength tuning performance of the TLD with κ=50 cm-1 and L=300 

μm at high injection levels. 
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Fig. 6.16:  3D intensity distribution in the TLD with κ=50 cm-1 and L=300 μm at bias 

VDBR=1.5 V. 

 

Case (b) is also not a problem even at extremely high carrier densities, provided 

that the external facet of the DBR section has antireflection coating and the B 

wavelength is at least 10 nm away from the bandgap wavelength gp of the passive 

section (in our devices B1.55 m and gp1.46 m). 

Case (c) requires special consideration. Since the FC tuning always blue-shifts the 

lasing mode m, the deeper is tuning the closer is m to gp, and thus the higher optical 

losses are. This can be shown in Fig. 6.17, where the optical losses in the WG region of 

the passive sections are increasing with the tuning depth. On the other hand, in TLDs one 

cannot choose too big difference between the passive and the active region bandgaps, as 

this decreases the FC refractive index change 'n  at the lasing wavelength, [130], [131], 

due to spectral dependence of 'n .  
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We have discovered a very subtle effect which can counterbalance the optical 

losses with the tuning depth. The effect can be understood in Fig. 6.18 from inspection of 

the gnet and αm spectra of the TLD described in case (a). As is seen, the FC tuning always 

moves the DBR reflectivity up the ascending gain spectrum curve. This in turn results in 

an increase of the gain of the next lasing mode (dg/d > 0). This would increase the 

lasing mode power if the losses remain the same. If the passive section optical losses also 

increase, the two effects may in principle counterbalance each other. 

 

 

Fig. 6.17:  Optical losses in the WG region of the passive sections at different lasing 

wavelengths for the TLD with κ=50 cm-1 and L=300 μm. 
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Fig. 6.18:  Spectra of the net gain gnet and the cavity mirror losses am at the beginning of 

tuning (lasing wavelength 0=1.55 m) for the TLD with κ=50 cm-1 and L=300 μm.  

 

 

Fig. 6.19:  The output power of the TLD as a function of the DBR section bias. The main 

curve shows the total power variation and the insertion shows the power variation for a 

few lasing modes. The TLD is the same as in Fig. 6.15. 
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Fig. 6.19 shows the power variation in the TLD with the DBR tuning. Initially, the 

power P increases from 4.5 mW to 5.27 mW due to the lasing mode gain increase, as was 

explained above. As the lasing modes are further blue-tuned, the optical losses increase, 

the gain variation dg/d flattens, and the two effects compensate each other. For even 

deeper tuning, an increase in the optical losses in the passive section dominates, and the 

output power decreases from 5.27 mW to 5.1 mW.  

For the above described case of extreme tuning (tuning range of =22 nm at 

VDBR=2.4 V), the power continues to decrease with further wavelength blue-shift from 

5.27 mW to 4.69 mW (with a power change ΔP of ΔP = 5.27 - 4.69 = 0.58 mW) as is 

shown in Fig. 6.20. This means that the power decreases quite considerably by 

PP / ≈11%.  

 

Fig. 6.20:  The output power of the TLD with gp=1.46 m as a function of the DBR 

section bias. 

 

Another proof of the interaction between the lasing mode gain and the increasing 

optical losses with the tuning depth can be found by the inspection of the threshold 
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current of different lasing wavelengths of the tuning range (=22 nm) taken at different 

positions of gnet when the TLD is in CW operation.  

 

Fig. 6.21:  Threshold current of different lasing wavelengths of the =22 nm tuning 

range for the TLD with κ=50 cm-1 and L=300 μm. 

 

As is shown in Fig. 6.21, the threshold current decreases from 5.8 mA to 4.6 mA 

for a range of wavelengths from 0=1.55 μm until =1.539 μm, as the lasing mode gain 

increase dominates the optical losses increase (less current needed to achieve lasing 

conditions). It then reaches its minimum value of 4.6 mA at =1.539 μm, when the gain 

variation dg/d flattens and the two effects compensate each other. At longer 

wavelengths, the threshold current starts increasing again from 4.6 mA to 4.96 mA until 

the last =1.525 μm of the tuning range, as the increase in the optical losses in the passive 

section dominates (more current needed to achieve lasing conditions). 

One way to resolve this problem is by selecting a gp to be far enough away from 

m so that the optical losses are neglectable during extreme tuning and the power can 
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stabilise. To illustrate this effect, two TLDs were designed with gp=1.4 m and gp=1.3 

m, respectively. The power variation in the TLDs with the extreme DBR tuning is 

shown in Fig. 6.22 and Fig. 6.23, respectively. The rest of the design parameters were 

kept the same as the TLD in Fig. 6.19. As can now be observed in Fig. 6.22, the power 

drop with the wavelength blue-shift has improved considerably for gp=1.4 m (from 

5.35 mW to 5.1 mW only, with PP / ≈4.7%). However, the distance of gp from m 

during extreme tuning was not enough to eliminate the effect. This was done in the latter 

case of gp=1.3 m, where the power has now stabilised around 5.4 mW with the 

wavelength blue-shift, as is shown in Fig. 6.23. 

 

 

Fig. 6.22:  The output power of the TLD with gp=1.4 m as a function of the DBR 

section bias. 
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Fig. 6.23:  The output power of the TLD with gp=1.3 m as a function of the DBR 

section bias. 

 

Unfortunately, as was mentioned above, the drawback for using WG bandgap 

wavelengths well away from the AR bandgap wavelenth is that it reduces the available 

'n  range, which in turn reduces the Δλ range. It was indeed found that 'n  ≈ -0.078 and 

Δλ≈22 nm for the TLD with gp=1.46 m, 'n ≈-0.065 and Δλ≈18 nm for the TLD with 

gp=1.4 m, and 'n ≈-0.055 and Δλ≈14 nm for the TLD with gp=1.3 m, for the same 

VDBR=2.4 V. Therefore, it is concluded that there is a trade-off between the maximum 

achievable wavelength tuning range and the smallest possible output lasing power 

decrease with the tuning depth in a TLD. It is important that the curves in Fig. 6.18 can 

be engineered by varying gp and stabilising the power within the required tuning range, 

but the effect cannot be eliminated completely. 

With the above insight into the passive section limitations, we have optimised the 

TLD design in order to further increase its tuning. This was achieved by improving the 

electronic properties of the Bragg grating. We keep the same value of κL=1.5 as in the 
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TLD in Fig. 6.15, but change the material composition of the grating layers to: 

In0.66Ga0.34As0.74P0.26 and In0.68Ga0.32As0.69P0.31. Note that this requires very careful 

composition selection as gn' = 0.0253 must remain the same. The simulated TLD was 

biased up to a maximum value of VDBR=3.5 V as in the previous case of Fig. 6.15. The 

tuning curve of the TLD is shown in Fig. 6.24. 

 

Fig. 6.24:  DBR wavelength tuning performance of the optimised TLD with κ=50 cm-1 

and L=300 μm at high injection levels. 

 

As can one see, the tuning range of =30 nm was achieved this time with this 

optimisation, which is 4 nm bigger than that of Fig. 6.15. If we restrict the applied bias to 

a reasonable value of VDBR=2.4 V (IDBR400 mA), we also get quite a high tuning range 

of =26 nm, which is also 4 nm bigger than that of Fig. 6.15 for the same DBR bias. It 

is impressive that the optimised TLD needs only around 50% of the injected current 

required for the TLD in Fig. 6.15 (IDBR700 mA) in order to achieve the same tuning 

range of =26 nm.  
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The main physical reason for such large improvement of  in comparison with 

Fig. 6.15, is the increased transverse overlap between the optical wave and the injected 

carriers. The effective bandgap of the grating in the TLD in Fig. 6.14 was Eg,eff1.12 eV, 

and for the optimised TLD Eg,eff0.86 eV (shown in Fig. 6.25) due to different grating 

material compositions. As a result, the injected FC density in the grating region of the 

optimised TLD is about an order of magnitude higher. Taking into account that the 

grating thickness (0.2 m) is comparable to the WG thickness (0.38 m), this means that 

the propagating mode in the optimised TLD has considerably better overlap with the 

region of the FC refractive index change. The latter effect is responsible for the tuning 

range increase. 

 

Fig.  6.25: Band structure profile of the DBR section of the optimised TLD with 

Eg,eff0.86 eV taken at bias VDBR=3.5 V. 

 

It is interesting to note that this effect does not necessarilly lead to a bigger 'n  or 

N in the WG region of the optimised TLD for the same VDBR=3.5 V. It was found that 
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'n  ≈ -0.082 and 181043.5 N  cm-3 for the optimised TLD, while for the TLD in Fig. 

6.15 they were 'n  ≈ -0.091 and 181031.6 N  cm-3, for the same VDBR=3.5 V. This is 

also visible by a careful observation of the DBR band structure of the optimised TLD, 

where the quasi-Fermi level FnE  has a slightly smaller energy value than the FnE  in Fig. 

6.14. 

A possible explanation of this result would be that the grating region in the 

optimised TLD is now treated as an “effective” WG region with 18105N  cm-3 as is 

seen in Fig. 6.14. This means that the amount of injected carriers in the DBR section will 

now be distributed homogenously in a wider area, the WG region (dDBR=0.38 μm) and the 

grating region (dg=0.28 μm) in a total area of 0.58 μm. Therefore, there will be fewer 

carriers for the same amount of injected current (IDBR ≈ 700 mA). In the TLD in Fig. 6.14, 

most of the injected carriers were distributed in the WG region ( 181031.6 N  cm-3), 

leaving the grating region with a carrier density of only 17101N  cm-3. 

Our grating design is different from usual designs in which the grating consists of 

InP and the WG quaternary, and thus have the same problem of poor overlap between the 

lasing mode and the FC index change, as our TLD in Fig. 6.15. The drawback of our 

optimised design is that it is more difficult to fabricate, but it is capable to considerably 

increase . 

 

6.2.3 Effect of design parameters of the phase section on the continuous and quasi-

continuous tuning performance  

 

In this section we investigate the effect of different design parameters of the TLD 

phase section, such as the thickness dp of the WG region and the section length Lp, on the 
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continuous and quasi-continuous tuning behaviour. We report a continuous range of 

cont = 10 nm and a quasi-continuous range of quasicont = 26 nm in the optimised 

design. 

The TLD that is used here is the same as the one decribed in section 6.2.2 and 

shown in Fig. 6.24 with the following parameters: grating consists of 

In0.66Ga0.34As0.74P0.26 and In0.68Ga0.32As0.69P0.31 materials, gn' = 0.0253, =50 cm-1, 

L=300 μm, κL=1.5, dp=0.38 μm, Lp=100 μm. The AR is driven at a constant current of 

Ia=15 mA during tuning. At first, the tuning behaviour of the phase section is 

investigated, so the DBR section remains inactive with VDBR=0 V. The phase section is 

driven at a maximum bias of Vp=2.5 V, which gives an injection current of Ip ≈ 143 mA 

and its tuning behaviour is shown in Fig. 6.26.  

 

Fig.  6.26: Phase wavelength tuning performance of the TLD with dp=0.38 μm and 

Lp=100 μm. 
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As can be seen in Fig. 6.26, there are 6 continuous tuning ranges which cover the 

whole inter-mode distance of Δλm ≈ 0.6 nm until the last bias value of Vp=2.5 V. This 

means that a continuous range of at least 6 x 0.6 = 3.6 nm can be achieved with this TLD, 

which is rather small. 

In order to improve the continuous range of the TLD, we take into consideration the 

observations made in section 6.2.2 for the improvement of the DBR wavelength tuning 

range. As was discussed there, the selection of a grating effective bandgap close to the 

WG bandgap led to a wider region of injected carriers (grating + WG region). This, in 

turn, increased the transverse overlap between the optical wave and the injected carriers 

in this region and improved the discontinuous tuning range.  

For this reason, we increased the thickness of the WG region of the phase section to 

dp=0.58 μm. This led to an increase of the transverse optical confinement factor of the 

phase section Γp,xy from Γp,xy=0.654 in the TLD in Fig. 6.26 to Γp,xy=0.822 in the new 

TLD. All the other design parameters of the TLD remained the same as the one in Fig. 

6.26. The tuning behaviour of the phase section of the TLD for the same Vp=2.5 V is 

shown in Fig. 6.27. 

 

Fig.  6.27: Phase wavelength tuning performance of the TLD with dp=0.58 μm and 

Lp=100 μm. 
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 As can be seen now in Fig. 6.27, the number of continuous tuning ranges 

(wavelength changes) has increased from 6 to 7 compared with Fig. 6.26, which means 

that a continuous range of at least 7 x 0.6 = 4.2 nm can be achieved with this TLD. 

Another proof of the increased optical overlap in the WG region of the TLD with dp=0.58 

μm compared with the one with dp=0.38 μm can be observed in Fig. 6.28 and Fig. 6.29, 

respectively. In these figures, the spatial wave intensity distribution of the phase section 

is plotted in the direction of section thickness. 

 

 

Fig. 6.28:  Wave intensity distribution in the TLD with dp=0.58 μm and Lp=100 μm at 

bias Vp=2.5 V. 
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Fig. 6.29:  Wave intensity distribution in the TLD with dp=0.38 μm and Lp=100 μm at 

bias Vp=2.5 V. 

 

Again, it was found that this effect does not lead to a bigger 'n  or N in the WG 

region of the TLD with dp=0.58 μm for the same Vp=2.5 V. The values for the TLD with 

dp=0.58 μm were 'n  ≈ -0.07 and 181027.4 N  cm-3, while for the TLD with dp=0.38 

μm they were 'n  ≈ -0.078 and 18105N  cm-3, for the same Vp=2.5 V. 

Further investigations showed that the continuous range of 4.2 nm can be improved 

considerably by increasing the phase section length. The thickness of the WG region was 

kept the same at dp=0.58 μm and the phase section length is now given a value of Lp=300 

μm. With this modification, for the same number of continuous tuning ranges (7), the 

required refractive index change and carrier density in the WG region of the phase section 

has decreased considerably at 'n  ≈ -0.023 and 18101N  cm-3, respectively. The 

required value of applied bias has also decreased at Vp=1.08 V which corresponds to a 

value of injected current of Ip ≈ 17 mA.  
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This means that for the same values of N, 'n  and Vp as in the TLD with dp=0.58 

μm, Lp=100 μm, the number of accessible continuous tuning ranges will inevitably 

increase. The corresponding injection current for Vp=2.5 V was measured to be Ip ≈ 430 

mA, which is within reasonable limits as was also stated for IDBR ≈ 400 mA during 

extreme DBR tuning in section 6.2.2. The tuning behaviour of the phase section of the 

TLD for the same Vp=2.5 V is shown in Fig. 6.30. 

 

Fig.  6.30: Phase wavelength tuning performance of the TLD with dp=0.58 μm and 

Lp=300 μm. 

 

As can be observed in Fig. 6.30, the number of continuous tuning ranges has now 

increased considerably from 7 to 22 compared with Fig. 6.27. The main reason for this 

increase is that there is better longitudinal confinement of the optical wave across the 

TLD in Fig. 6.30. This can also be proved by calculating the longitudinal optical 

confiment factor Γp,z of the phase section of the two devices in Fig. 6.27 and 6.30. Taking 

into account that 
tot

p

zp
L

L
 , , where Ltot is the total TLD length, it was found that Γp,z has 
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increased from Γp,z=0.125 (Lp=100 μm, Ltot=800 μm, Fig. 6.27) to Γp,z=0.3 (Lp=300 μm, 

Ltot=1000 μm, Fig. 6.30). It should also be noted that the increase of the cavity length of 

the TLD in Fig. 6.30, led to a smaller inter-mode distance of Δλm ≈ 0.47 nm (also seen in 

Fig. 6.30). This means that a continuous range of at least 22 x 0.47 ≈ 10.34 nm can be 

achieved with this TLD.  

The achieved continuous tuning range was actually found to be cont ≈ 11 nm 

(from 1550-1539 nm) by simultaneous driving of the phase and DBR section of the TLD. 

It is shown in Fig. 6.31 as a function of Vp.  

 

Fig.  6.31: Continuous wavelength tuning performance of the TLD with dp=0.58 μm and 

Lp=300 μm for the cont = 1550-1539 nm range. 

 

It should also be mentioned that the range of wavelengths from λ=1539 nm to 

λ=1524 nm within the 26 nm discontinuous range, which was achieved in section 6.2.2, 

can also be accessed continuously. This can be done by splitting the 1539-1524 nm range 

into two 11 nm continuous tuning ranges, cont = 1539-1528 nm and cont = 1535-1524 

nm. The first cont range can be accessed by driving at first the DBR section, which blue 
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shifts λ until the value of λ=1539 nm is reached. Then by driving both passive sections all 

wavelengths until λ=1528 nm can be accessed continuously. The same can be done for 

wavelengths within the cont = 1535-1524 nm range. The achieved ranges of cont = 

1539-1528 nm and cont = 1535-1524 nm are shown in Fig. 6.32 and Fig. 6.33, 

respectively. 

 

 

Fig.  6.32: Discontinuous and continuous wavelength tuning performance of the TLD 

with dp=0.58 μm and Lp=300 μm for the discont = 1550-1539 nm and cont = 1539-1528 

nm range, respectively. 
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Fig.  6.33: Discontinuous and continuous wavelength tuning performance of the TLD 

with dp=0.58 μm and Lp=300 μm for the discont = 1550-1535 nm and cont = 1535-1524 

nm range, respectively. 

 

A quasi-continuous tuning range of quasicont = 26 nm was also achieved as is 

shown in Fig. 6.34. 

 

Fig.  6.34: Quasi-continuous wavelength tuning performance of the TLD with dp=0.58 

μm and Lp=300 μm for the quasicont = 1550-1524 nm range. 
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6.3 Conclusion 

 

A completely self-consistent model of a multi-section TLD was developed and 

applied to investigate the wavelength tuning performance by using the commercial 

Crosslight PICS3D software simulation tool. Both the optical and FC transport 

phenomena were modeled on the same footage for the calculation of the wavelength 

tuning. Strong effects of the DBR grating design and various material parameters on the 

FC tuning and lasing spectral purity were  demonstrated and explained. In depth physical 

analysis of the FC tuning process and the TLD design optimisation were presented. 

The analysis of the TLD operation suggested that the optimal design for the 

enhanced tunability is to use such κL products for the DBR section which resulted in the 

reflectivity spectrum with narrow bandwidth (covering 2-3 cavity modes) and sharp peak 

(i.e. without high reflectivity flat region) at the Bragg wavelength. The sharp peak was 

very important in order to avoid tuning saturation. By carefully tailoring the mutual 

positions of the gain spectra and the mirror reflectivity spectra, it was possible to 

considerably enhance the tuning range. The best performance of the TLD was achieved 

when the peak of the reflectivity is red-shifted with respect to the gain peak wavelength. 

In this case, good mode selection and reasonable (~10 nm) tuning was achieved due to 

asymmetry of the SMSR even for the DBR mirror reflectivities with a wide bandwidth 

covering many comb modes. However, the wavelength tuning of such devices would 

inevitably saturate as the lasing wave-length approached the gain peak wavelength. The 

saturation was avoided and the tuning range increased 2-3 times in the structures in which 

the DBR reflectivity had a sharp peak. 

Further improvement was achieved by modifying electronic properties of DBR 
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grating and by modifying the length of the phase section and thickness of its passive 

waveguide. Even for a basic 3-section TLD a record high FC tuning discont = 30 nm, 

cont = 11 nm and quasicont = 26 nm was reported.The obtained results should be useful 

for practical development of real TLDs. The model can further be extended to more 

complex multi-section integrated photonic devices. 
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Chapter 7 

 

Investigation of power performance 

of bulk and multi-quantum-well 

tunable laser diodes with 

wavelength tuning and main 

limiting factors  
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7.1 Introduction 

 

The TLD output power stability during wavelength tuning is one of the most 

important factors for adequate laser operation in optical transmission systems and is 

sought at all times. The main effect which disrupts this stability and usually leads to a 

power decrease is the existence of losses in the tuning sections. These losses are either 

internal losses of the tuning region medium or they are caused by Free-Carrier 

Absorption (FCA) and Inter-Valence Band Absorption (IVBA). The second type of losses 

produces even more problems because the losses vary during the wavelength tuning. This 

happens because both the FCA and IVBA are proportional to the carrier density in the 

tuning regions, which increases under the current injection.  

The impact of absorption losses on the laser power performance is reported in many 

works in the published literature for all kinds of tunable lasers, such as tunable DFB 

lasers [154], Two Section (2S)-tunable DBR lasers [155]–[157], 3S-tunable DBR lasers 

[151], [158]–[165], WT DBR lasers with a two-wavelength DBR laser array [166], WT 

digital supermode (DS) DBR lasers [167], [168], WT DBR lasers using a digital 

concatenated grating with multiple phase shifts [169], WT lasers with an interleaved SG 

rear mirror [170], WT SG-DBR lasers [86], [149], [150], [171]–[174], and WT SSG-

DBR lasers [175]–[177].  

In order to compensate the power loss in the tuning sections the most common 

method is to inject more current into the gain section throughout the tuning procedure as 

in [159], [177]. Apart from this method, several other proposals for the compensation of 

absorption losses have been made in various publications, such as the integration of the 

active section of the laser with a SOA [149], [169]. An alternative approach was proposed 
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in [170], where the TLD used a SG rear reflector with interleaved connections for 

wavelength tuning and lasing mode selection. The other proposals include using the 

thermal tuning method (which has advantages of power and linewidth stability, as was 

first investigated in [161] and [163], although this tuning method is very slow), or 

inserting a thin layer of active material into the tuning regions in order to generate some 

gain there which would balance the absorption loss in these regions [160], or special 

bandgap engineering by selecting a tuning layer bandgap wavelength (λg=1.48 μm) very 

close to that of the active layer (λg=1.56 μm) so that the gain spectra of the active and the 

passive regions overlap due to the bandgap tail states in the tuning region providing an 

additional gain contribution to the emission spectrum [164]. 

However, most theoretical works are based on the rate equation model which 

reveals no actual information about the gain spectrum shape and its interaction with the 

cavity lasing mode during tuning [149]–[151], [154], [155], [157], [159]–[166], [168]–

[177]. Some models [86], [156], [158], [167], assume for simplicity a broad flat gain 

spectrum. In real photonic devices though, the expression for the gain spectrum is more 

complex, especially in MQW lasers. There are some exceptions as in [175], which 

provides experimental data for the gain spectrum shape and in [157], where an 

approximate power expansion up to the cubic terms of the modal gain spectra was used 

for a particular two-section TLD design, and near 50% power decrease with tuning has 

been demonstrated.  

In this Chapter it will be shown that, apart from losses due to FCA and IVBA, the 

TLD output power performance is also affected by the shape of the gain spectrum and the 

positioning of the DBR reflectivity in respect to this spectrum during discontinuous 

tuning. It will also be demonstrated that a power stabilisation could be achieved during 

continuous tuning, with specific gain spectrum shapes and a careful selection of tuning 
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currents. For this purpose, two 3-D simulation models of a 3S InGaAsP/InP TLD model 

operating at 1550 nm CW have been developed, one with a bulk optical cavity and one 

with a MQW optical cavity. A comparison of the power performance of these two models 

under discontinuous tuning will be made and the main differences highlighted. All the 

TLD models in this Chapter are designed with the use of the Crosslight PICS3D software. 

One of the main factors which affects the shape of the gain spectrum is the 

intraband carrier relaxation due to various scattering mechanisms. This causes spectrum 

broadening and deforms and reduces its peak values [178], [179], [180]. The effect 

becomes particularly strong in the case of MQW lasers [181]–[184] where the gain 

spectrum shape broadens and smoothens despite the sharp step-like density of QW states. 

PICS3D allows to incorporate the intraband electronic relaxation model [120], [185] into 

the gain spectrum  G  of a MQW laser via a convolution integral: 

     


 
gE

cvcvcv dEELEgG       (7.1) 

where  G  is the gain coefficient as a function of photon energy   which includes 

the effect of the intraband relaxation,  cvEg  is the optical gain defined in (3.23) in 

section 3.4 and [186] without intraband relaxation which is caused by photon-induced 

transitions of electrons from a conduction subband with energy cE  to a valence subband 

with energy vE  in the quantum-well,  cvEL   is a lineshape broadening function 

defined by the intraband relaxation effects, vccv EEE   is the carrier transition energy 

and 

gE  is the bandgap between the two subbands. A simplified version of (7.1) can be 

applied to bulk lasers if the QW subbands are replaced with the conduction and valence 

bands of the bulk semiconductor, respectively, and 
gg EE '  is the bulk bandgap. 
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Several theoretical methods have been developed to approximate the lineshape 

function, such as in [187] (and its simplified version in [188]), where it was shown using 

a density matrix approach that the electron state decay with time obeys initially a 

Gaussian and then an exponential dependence. Other approaches give a Lorentzian 

lineshape, as in [189], where the scattering rate out of a state depends on the position of 

the state in the band and the band filling. PICS3D uses a Lorentzian lineshape for a very 

accurate calculation of the gain spectrum (also described in Chapter 3) in accordance with 

the detailed studies of [185], [190]: 

 
   22

/

/1

incv

in
cv

E
EL














     (7.2) 

where in  is the average intraband relaxation time. As we will show, a variation of in  

results in a significant change in the MQW TLD tuning and the output power 

performance. 

For comparison reasons we consider two different simulation setups. The first setup 

which is used in our simulations is a 3S TLD with a MQW AR operating at 1.55 μm. The 

AR contains 5 unstrained 7-nm thick In0.56Ga0.44As0.94P0.06 QWs and 6 unstrained 22-nm 

thick In0.74Ga0.26As0.57P0.43 barriers. The second setup is a 3S TLD with a bulk 

In0.61Ga0.39As0.84P0.16 AR also operating at 1.55 μm. A complete set of design and material 

parameters of the setup is given in TABLE II. 

The waveguide (WG) layer in all the passive sections is an In0.66Ga0.34As0.74P0.26 

quaternary with a bandgap wavelength gp 1.46 μm. The grating layer consists of an 

In0.68Ga0.32As0.69P0.31 material etched into the WG quaternary. Between the WG and the 

p  region in both the DBR and the phase section there is a 6-nm thick In0.53Ga0.4Al0.06As 

electron stopper layer with a bandgap wavelength  gpgb  1.46 μm in order to prevent 
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current leakage into the DBR 
p  region. The refractive index of each layer and their 

spectral dependence on the photon energy are calculated according to the Adachi model 

[146]. 

The device has a common bottom contact for all sections and three mutually 

isolated individual top contacts for each section. According to PICS3D’s embodiment of 

the bias setup [120], the bottom contact should always be pre-biased in order to avoid 

spurious currents between the top contacts. We applied a 3.0bV V pre-bias bottom 

contact voltage to all simulated devices. The optical solver in PICS3D is switched on 

only at biases when the AR injection current is near the threshold current. Prior to this 

point, in order to avoid severe convergence problems, it is required first to apply a 

voltage (not a current) bias aV  to the top contact and solve the electrical problem only. 

Once the threshold is reached and the Fermi levels in the AR are clamped by the large 

stimulated recombination term, the electrical solver is switched to current biasing and the 

coupled 3D electrical and optical problems are solved self-consistently.  

For all the investigated TLDs during the passive section tuning the AR operated at a 

fixed injection current Ia=15 mA, almost double the threshold current Ith ≈ 7-8 mA. The 

reported output power Po when the passive sections were unbiased was around Po ≈ 2-3 

mW. The band profile of the MQW AR (a) when the bottom and top contact are unbiased 

( 0bV V and 0aV V) at equilibrium, (b) when only the bottom contact is under forward 

bias ( 3.0bV V and 0aV V) before threshold, (c) when both the bottom and top contact 

are under forward bias ( 3.0bV V and 3.0aV V) before threshold and (d) when the 

bottom contact is under forward bias and the top contact is under current injection 

( 3.0bV V and 15aI mA) after threshold is shown in Fig. 7.1(a), 7.1(b), 7.1(c) and 
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7.1(d), respectively, where Ec(v) is the conduction (valence) band energy and EFn(p) is the 

electron (hole) quasi-Fermi level. The corresponding electron and hole concentration of 

the MQW AR under top contact injection current 15aI mA after threshold is shown in 

Fig. 7.1(e). Wavelength tuning takes place by applying a forward voltage bias to the top 

contact of the corresponding passive section.  

 

TABLE II 

STRUCTURE AND MATERIAL PARAMETERS 

Symbol Parameter Name Value Units 

Ra Left facet reflectivity 0.3 (z=0) - 

Rr Right facet reflectivity 10-4 (z=800 μm) - 

w TLD width 1.5 μm 

La Active section length 400 μm 

Lp Phase section length 100 μm 

LDBR DBR section length 300 μm 

da,bulk Bulk active region thickness 0.18 μm 

da,MQW Total MQW active region thickness 0.167 μm 

dp Waveguide region thickness of phase section 0.58 μm 

dDBR Waveguide region thickness of DBR section 0.38 μm 

dgr Grating region thickness 0.2 μm 

Ega Bulk active region bandgap 0.7986 eV 

Egp Waveguide region bandgap of passive 

sections 

0.85 eV 
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ia  Average internal losses 5 cm-1 

κ DBR Coupling coefficient 50 cm-1 

A Linear recombination 1 x 109 s-1 

B Bimolecular recombination 2 x 10-10 cm3 s-1 

C Auger recombination 3.5 x 10-29 cm6 s-1 

Nn Doping of the n+ region 1 x 1018 cm-3 

Np Doping of the p+ region 1 x 1018 cm-3 
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Fig. 7.1: Band structure profile of the MQW AR under forward bottom bV  and top 

contact aV  bias (a) 0bV V and 0aV V, (b) 3.0bV V and 0aV V, (c) 3.0bV V and 

3.0aV V, respectively before threshold and (d) under forward bottom contact bias 

3.0bV V and top contact injection current 15aI mA after threshold. (e) Electron and 

hole concentration of the MQW AR under top contact injection current 15aI mA. 

 

The parameters in TABLE II are similar to those used for the TLD model decribed 

in section 6.2.2 and Fig. 6.24. Here the main investigation concentrates on how different 

intraband relaxation times of the Lorentzian broadening function of the MQW TLD affect 

its gain spectrum. In turn, the interaction of the gain spectrum with the mirror losses 

spectrum of the TLD will also be discussed. Subsequently, this interaction will mainly 

affect the TLD operation during wavelength tuning in terms of output power causing a 

variation that will be described in detail below. The acquired results will be compared 

with the case of a bulk TLD with exactly the same design parameters as the MQW TLD. 
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7.2 Results and discussion 

 

PICS3D uses a self-consistent 3D laser model based on a drift-diffusion description 

of the carrier transport and traveling wave approach in describing the optical field in the 

cavity by a transfer matrix formalism. The interface carrier transport at the 

heterojunctions is described by the thermionic emission model. As is seen from Fig. 

7.1(d), the hole quasi-Fermi level EFp discontinuity at the right heterobarrier clearly 

indicates that the hole injection is actually controlled by thermionic emission. In QW 

lasers the carrier transport across the QW regions is described in terms of the carrier 

capture/escape mechanism. PICS3D utilises a phenomenological model [114] in which a 

fraction of thermionic emission currents at each QW/barrier interface is captured/escaped 

into/from the QW. The heterojunction capture/escape coefficient   is proportional to the 

microscopic scattering probability between the 3D and 2D states. 

Different meshes are used for electrical and optical solvers. However, since the 

simulation of a TLD requires calculation of the local refractive index and modal gain as 

functions of the carrier density, these optical parameters are directly interpolated from the 

electrical mesh at every iteration of the Newton solver. As a result of this computational 

approach all PICS3D simulations of TLDs are carried out in a full 3D model [120]. 

We first investigate the case of discontinuous tuning of the MQW TLD. The QW 

capture/escape parameters were defined as 2.0e  and 05.0h  for the electrons and 

holes, respectively. The intraband relaxation time in the Lorentzian broadening function 

was at first chosen to be τin=1 ps. We tune the DBR section by applying a voltage bias 

DBRV  to the contact varied from 0 V to a maximum value of 2 V, which corresponds to the 



   161 

 

maximum injected DBR current IDBR 400 mA, as is seen from the I-V characteristic in 

Fig. 7.2. 

 

Fig. 7.2: Current-Voltage (I-V) characteristic of the DBR section. 

 

The DBR carrier density at this bias was NDBR  5.861018 cm-3. The phase section 

remained unbiased during this regime. The injected carriers cause a change n  of the 

real part of the refractive index in the DBR WG region. The two main free-carrier 

contributions to the refractive index change in our TLD structures are the band filling 

effect and the plasma effect which are both activated in all our simulations with PICS3D. 

Fig. 7.3 demonstrates a record wavelength tuning range achieved in our TLD structure. 

At a maximum DBR bias we have obtained the total refractive index change of 

086.0n , which results in a large wavelength tuning range of Δλ=32 nm. The inter-

mode distance Δλm was measured to be Δλm=0.63 nm. 
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Fig. 7.3: DBR wavelength tuning performance of the MQW TLD with τin=1 ps. 

 

As can be easily observed, the injection levels that were used to achieve this tuning 

range are quite high. The main issue that can emerge here is the high carrier leakage from 

the WG into the adjacent layers (especially electrons), which can lead to Joule heating of 

the device. It was indeed found that the InGaAsP/InP structure (for the WG and 
p  

region respectively) that was used initially led to leakage currents of over 73% for 

VDBR=2 V. The main reason is that this structure has a band offset ΔΕc / ΔΕg = 0.4, which 

gives a conduction band discontinuity of only 0.2 eV (InGaAsP WG Eg=0.85 eV, InP 

Eg=1.35 eV) in our TLD. This discontinuity is not enough to prevent electron spillover 

during high injection. 

For this reason we introduce a thin 6-nm thick InGaAlAs layer between the 

InGaAsP WG and the InP 
p  region, which can work as a potential barrier for electrons. 

The InGaAlAs/InP structure has a band offset ΔΕc / ΔΕg = 0.72, which increases the 

conduction band discontinuity to 0.36 eV (InGaAlAs Eg=0.85 eV) as it is shown in the 

band diagram of the DBR section in Fig. 7.4. As a result of this optimisation, the reported 
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leakage current was below 3% in all our devices even at very high injection levels ~400 

mA. 

 

Fig. 7.4: Band structure profile of the DBR section under 400 mA injection. 

 

Fig. 7.5: The output power of the MQW TLD with τin=1 ps as a function of the DBR 

section bias. 

 

In Fig. 7.5 the reported output power of all modes of the TLD during tuning is 

plotted as a function of the applied DBR bias. As can be observed, a significant decrease 

(roughly half the initial value) of the output power takes place with deeper tuning. It will 
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be shown that this happens because of the interaction of the gain spectrum of the AR with 

the mirror losses and the increasing optical losses in the WG region of the passive 

sections during tuning. The WG optical losses are divided in two types. 

The first type concerns losses caused by the absorption of a part of emitted photons 

from the AR in the WG region of the passive sections in the case where the passive 

sections are not under injection. The reason for this absorption is the ‘tail’ of the gain 

spectrum gp of the passive sections which enters the tuning range region (1.55 μm-1.518 

μm) of the gain spectrum of the AR. This happens because the calculation of gain in the 

passive sections in PICS3D is also done with the use of a Lorentzian broadening function 

as is the case of the gain in the AR. In our case the gain spectrum in the passive sections 

was already broadened by default in PICS3D with an intraband relaxation time τin=0.2 ps 

causing the ‘tail’ of gp to enter the tuning range region, a fact which has also been 

described in the theoretical study of [180]. It was also found that the ‘tail’ of gp in the 

tuning range region is negative therefore the bandgap tail states of gp would cause 

absorption to the lasing mode m in that region. As m is blue-shifted towards the 

bandgap wavelength gp=1.46 μm of the passive sections during tuning, the negative gain 

values (absorption) of this ‘tail’ are increasing, which leads to increasing optical losses. 

In the case where the passive sections are pumped, electrons and holes in the WG 

region start to recombine emitting photons with higher energy than the AR photons and 

the WG region expresses gain (no absorption, no losses). This gain is of small magnitude 

though and there is no lasing in the DBR section, because gp has high values at much 

shorter wavelengths (at least 50 nm away from the tuning range region). During 

discontinuous tuning which is the case in our simulations, the pumped DBR section 

expresses gain in the WG region, however the losses described above are still present 



   165 

 

because the phase section remains unpumped. 

One way to reduce these losses is by selecting a shorter gp so that the gain values 

of the ‘tail’ of gp entering the tuning range region are smaller. Indeed, in this case the 

reported TLD power decrease during tuning was much smaller for the same VDBR=2 V 

(shown in section 6.2.2). The drawback with this case though is that the available 'n  is 

also decreased which in turn reduces the Δλ range, as was stated in section 6.2.2. 

A visualisation of the above discussion can be shown in Fig. 7.6, where the optical 

losses in the WG region of the passive sections are plotted for several different lasing 

wavelengths within the tuning range (=1.55 μm to =1.518 μm) for three different gp 

(gp=1.4 μm, gp=1.42 μm and gp=1.46 μm) when the passive sections are unpumped. 

 

Fig. 7.6: Optical losses in the WG region of the passive sections at different lasing 

wavelengths. 

 

The second type of optical losses concerns losses in the WG region of the passive 

sections which are caused by FCA and IVBA and are presented as FCa  and IVBAa , 

respectively. PICS3D takes into account this type of absorption in all calculations 

successfully. They are directly proportional to the WG carrier density N and are defined 
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as [85]: 
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where )( pnm  is the electron (hole) effective mass, )( pn  is the electron (hole) mobility, e 

is the electron charge, λ is the lasing wavelength in vacuum, c is the speed of light in 

vacuum, n is the WG refractive index, 0  
is the dielectric constant of vacuum and FCk  

and IVBAk  are constant coefficients for the FC absorption and IVBA, respectively. They 

have a value of 19102 FCk  cm2 and 18102 IVBAk  cm2 in all our simulations.  

The main difference of this type of losses with the internal losses 5ia  cm-1 is 

that they keep increasing with deeper tuning due to the increasing DBR carrier density, 

whereas the internal losses remain constant. Therefore, the WG FC and IVBA losses in 

the DBR section will have the value of 17.1FCa  cm-1 and 72.11IVBAa  cm-1, 

respectively, at the end of DBR tuning where the value of 181086.5 DBRN  cm-3 is 

reached (VDBR=2 V). This additional 89.12 IVBAFC aa  cm-1 is also a contributing factor 

to the ~50% power decrease of Fig. 7.5.  

However, the FC and IVBA losses do not influence the TLD power behaviour 

during tuning as much as the losses caused by the interaction of the gain spectra of the 

AR and the passive regions which were described previously (first type of WG optical 

losses). This observation was made when we used the same TLD as in Fig. 7.5 for DBR 

tuning, but we deactivated FCa  and IVBAa  since this option is available in PICS3D. All the 

other parameters and features, including the passive region spectra and the internal losses 
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5ia  cm-1 remained the same. The TLD power behaviour during DBR tuning is shown 

in Fig. 7.7. As can be seen, the initial and final output power value has slightly increased 

by 0.1 mW compared with the ones in Fig. 7.5, due to the lack of FC and IVBA losses. 

However, the rate of the power decrease with deeper tuning is still roughly the same as 

the one in Fig. 7.5 (around 50%), which means that the power decrease is mainly 

influenced by gp.  

 

Fig. 7.7: The output power of the MQW TLD with τin=1 ps and 0 IVBAFC aa  cm-1 as 

a function of the DBR section bias. 

 

Another major factor which influences the TLD power behaviour of Fig. 7.5 is the 

interaction of the lasing mode with the gain spectrum and the optical losses during tuning. 

This is illustrated in Fig. 7.8. Here the net gain netg  spectrum of the AR for a threshold 

carrier density 181086.1 thN cm-3 at the beginning of tuning (initial lasing wavelength 

0=1.55 m) is plotted together with the mirror losses ma  spectrum of the TLD as was 

described in section 6.2.1.  
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Fig. 7.8: Spectra of the net gain gnet and the cavity mirror losses am of the MQW TLD 

at the beginning of tuning (lasing wavelength 0=1.55 m, τin=1 ps).  

 

As is seen in Fig. 7.8, the FC tuning always moves the DBR reflectivity up the 

ascending gain spectrum curve. This in turn results in an increase of the gain of the next 

lasing mode (dg/d > 0). In the case where the increase of gain of the lasing mode is 

greater than the optical losses increase, an increase of the lasing mode power will also 

take place.  

In similar fashion, a decrease of the lasing mode power will happen if the passive 

section optical losses increase with a greater rate than the lasing mode gain. If the lasing 

mode gain and the optical losses increase with the same rate, the two effects may in 

principle counterbalance each other and stabilise the lasing mode power around a specific 

value. These effects are depicted clearly in Fig. 7.5 and the power variation with DBR 

tuning can be explained more thouroughly.  

Initially, the power P increases from 3 mW to 3.1 mW because the lasing mode 

gain increase is greater than the optical losses increase, as was explained above. As the 

lasing modes are further blue-tuned towards the gain peak, the gain variation dg/d 
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flattens. Therefore, the increase of both the lasing mode gain and the optical losses have 

roughly the same rate. This means that the two effects compensate each other and the 

lasing power stabilises around its maximum value of 3.1 mW.  

For even deeper tuning (past the gain peak), the gain of the lasing mode will always 

decrease (dg/d < 0), which means that the increase in the optical losses in the passive 

sections will dominate. The result of this interaction was to significantly decrease the 

output power at the end of tuning by more than half the maximum power, from 3.1 mW 

to 1.5 mW ( PP / ≈51.6%). It is therefore concluded that these output power variations 

mainly depend on the shape of the gain curve, which in turn is formed by τin. It will be 

later shown in this Chapter that this output power behaviour can be altered by changing 

the shape of the gain curve and the positioning of the mirror losses spectrum accordingly. 

However, a few more observations have to be made first about Fig. 7.5. 

 

Fig. 7.9: Interaction of the cavity modes inside the am stopband with the net gain gnet of 

the MQW TLD at the beginning of tuning (lasing wavelength 0=1.55 m). 

 

Apart from the increase and decrease of output power in Fig. 7.5, numerous 

repeating power fluctuations, and in turn SMSR fluctuations, also take place. These 
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fluctuations happen in every wavelength change during Bragg tuning and can be 

explained by observing the positioning of the cavity modes inside the mirror losses 

spectrum and the interaction of these modes with netg  in Fig. 7.9. This interaction is 

shown at the beginning of tuning with an initial lasing wavelength at 0=1.55 m, which 

is positioned at point A (blue line). As the ma  stopband is blue shifted during tuning the 

lasing mode 0 in point A moves towards point B (red line), where the wavelength 

change takes place (Δλm=0.63 nm). The lasing mode experiences decreasing mirror losses 

as it approaches the bottom of the ma  stopband leading to an increase of its optical power 

and an increase of SMSR.  

At the bottom of the ma  stopband the mirror losses are minimum, 0 reaches its 

maximum power and SMSR takes its highest value. As the ma  stopband is further blue 

shifted, the lasing mode experiences increasing mirror losses and its power starts to drop. 

When 0 reaches point B, it ceases to lase as the conditions for lasing are no longer 

suitable (not enough gain to compansate the mirror losses, minimum SMSR) and its 

power drops significantly. During the procedure of 0 moving from point A to point B its 

sidemode m, which was positioned at shorter wavelengths, was moving towards point A 

with increasing power, since it experienced decreasing mirror losses. It reaches point A at 

the same time when 0 reaches point B and starts lasing. It then moves towards point B 

with the same power fluctuation as was described above for 0. 

Having described the power behaviour of the TLD in Fig. 7.5, we can return to the 

main problem of the TLD performance, which is the significant power loss almost at the 

beginning of tuning. This is clearly derived by observing Fig. 7.3 and 7.5, where the 

power loss starts at the first wavelength change at VDBR=0.42 V. The main reason why the 
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power drops so early during tuning is the proximity of the mirror losses spectrum to the 

gain peak as is shown in Fig. 7.8. Therefore, in order to delay this power reduction so that 

it starts at a shorter wavelength of the tuning range, we either need to change the gain 

spectrum shape or move the mirror losses spectrum at a longer initial wavelength.  

By doing the second, the ascending part of the netg  curve will be longer during 

tuning and the power loss will start at a shorter wavelength compared with Fig. 7.5. 

Furthermore, a significant output power increase will also take place for the first few 

wavelength changes during tuning. Therefore, we attempted to red shift the mirror losses 

spectrum to the longest possible wavelength, so that 0 would be positioned at the bottom 

of the ascending part of the gain curve. However, it was found that not even a red shift of 

1 nm was possible in order for tuning to commence at 0=1.551 μm. The reason is that 

instead of 0=1.551 μm, lasing actually took place at around ≈1.548 μm. This happened 

because a sideband of the m  spectrum interacted with the netg  spectrum as is shown in 

Fig. 7.10, for a threshold carrier density 18102thN cm-3. 

 

Fig. 7.10: Spectra of the net gain gnet and the cavity mirror losses ma  of the MQW TLD 

for the attempt to lase at 0 =1.551 m (τin=1 ps). 
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A careful observation of Fig. 7.10, shows that the mode inside the ma  sideband at 

≈1.548 μm has a greater netg  value than the mode at the bottom of the ma  stopband at 

0=1.551 μm, therefore the conditions for lasing are more suitable for the first one. The 

main reason of this jump to a lasing wavelength shorter than the wavelengths inside the 

ma  stopband is the steepness of the ascending part of the gain curve. This steepness 

creates very high mirror losses for the modes inside the ma  stopband as it is red shifted at 

longer wavelengths towards the bottom of the ascending part of the gain curve. The 

combination of very high mirror losses together with the very small values of netg  in that 

wavelength region will make it impossible for these modes to lase at any point. 

To further support this argument we simulated the ‘ideal’ case of a TLD with 

exactly the same parameters as the one in Fig. 7.5, but with an unbroadened gain 

spectrum. In order to design this, we used a scattering time of τin=10 ps for the Lorentzian 

function, as scattering times of τin  10 ps yield a gain curve identical to the unbroadened 

one [191]. The interaction of the new netg  spectrum with the ma  losses for 

181085.1 thN cm-3 is shown in Fig. 7.11. It was found that lasing is impossible at 

0=1.55 μm because of the almost vertical steepness of the ascending part of the gain 

curve which causes wavelength jumps similar to the one in Fig. 7.10. The only region 

where lasing could actually take place was at the descending part of the gain curve past 

the gain peak at 0=1.547 μm. Therefore, it is easy to conclude that a power loss would 

immediately occur at the very beginning of the tuning range if DBR tuning was 

attempted. The slope of the descending part of the gain curve also indicates that a greater 

power reduction than the one in Fig. 7.5 would take place because of the fast decreasing 

gain values towards shorter wavelengths. 
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Fig. 7.11: Spectra of the net gain gnet and the cavity mirror losses ma  of the MQW TLD 

at 0=1.547 m (τin=10 ps). 

 

The above discussion led to the conclusion that in order to take advantage of the 

positive effect of the ascending part of the gain curve on the TLD power behaviour, we 

need to use a broader gain spectrum, since a red shift of the ma  spectrum failed to provide 

adequate results. 

Therefore, in order to broaden the shape of the gain curve we used a TLD with 

exactly the same parameters as the one in Fig. 7.5, but with a smaller scattering time of 

τin=0.1 ps. In this way, we were able to red shift the ma  spectrum by as many as 6 nm in 

order for tuning to commence at 0=1.556 μm. An attempt to further red shift the ma  

spectrum in order lasing to happen at 0=1.557 μm failed, with a jump at a shorter 

wavelength similar to the one in Fig. 7.10. However, the broadening of the gain spectrum 

improved the power behaviour of this TLD, as the power drop started at shorter 
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wavelengths of the tuning range as is shown in Fig. 7.12. There was also a significant 

power increase of 55% from 2 mW to 3.1 mW for the first six wavelength changes. 

 

 

Fig. 7.12: The output power of the MQW TLD with τin=0.1 ps as a function of the DBR 

section bias. 

 

This is also explained by the fact that the ma  spectrum is now further away from the 

gain peak of the optimised TLD compared with the TLD in Fig. 7.8. The mutual 

positioning of the netg  spectrum taken at 181021.2 thN cm-3 and the ma  spectrum of 

the optimised TLD at the beginning of tuning is shown in Fig. 7.13. 
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Fig. 7.13: Spectra of the net gain gnet and the cavity mirror losses ma  of the MQW TLD 

at the beginning of tuning (lasing wavelength 0=1.556 m, τin=0.1 ps). 

 

Further investigation on the issue of the effect of the gain shape on output power 

performance during discontinuous tuning was carried out in the case of a TLD with a 

bulk In0.61Ga0.39As0.84P0.16 active region. It has exactly the same parameters as the MQW 

TLD in Fig. 7.1 and Table II and is operating at 1.55 μm with a bandgap wavelength of 

g=1.553 μm. The investigation led to the exactly opposite results than the ones acquired 

in the case of the MQW TLD in terms of the power performance for the same τin.  

It was found that for a scattering time of τin=0.1 ps a power reduction of 33% took 

place during DBR tuning, after roughly 10 wavelength changes, which is quite early in 

the tuning range. An initial non significant power increase of 3% also took place. The 

power performance of the bulk TLD is shown in Fig. 7.14. Two reasons are responsible 

for this power behaviour; (1) the selection of a small τin which significantly broadened the 

gain spectrum making it almost flat and (2) the proximity of the ma  spectrum to the gain 

peak. The smoothness of the ascending part of the gain curve especially, is the reason of 
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the very small power increase (3%) in the first part of the tuning range before the gain 

peak is reached. The interaction of the gain spectrum taken at 18101thN cm-3 with the 

ma  spectrum of the bulk TLD is depicted in Fig. 7.15.  

 

Fig. 7.14: The output power of the bulk TLD with τin=0.1 ps as a function of the DBR 

section bias. 

 

Fig. 7.15: Spectra of the net gain gnet and the cavity mirror losses ma  of the bulk TLD at 

the beginning of tuning (lasing wavelength 0=1.55 m, τin=0.1 ps). 
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The situation significantly improved when a higher τin=1 ps was used for a bulk 

TLD identical to the one in Fig. 7.14. In this case, the gain spectrum became sharper and 

the ma  spectrum moved further away from the gain peak compared with the TLD in Fig. 

7.15. The gain spectrum of the new bulk TLD taken at 18102.1 thN cm-3 and its ma  

spectrum is shown in Fig. 7.16.  

 

Fig. 7.16: Spectra of the net gain gnet and the cavity mirror losses ma  of the bulk TLD at 

the beginning of tuning (lasing wavelength 0=1.55 m, τin=1 ps). 

 

As can be clearly observed in Fig. 7.16, the ascending part of the gain curve is now 

much steeper than the one in Fig. 7.15, which led to a quite substantial power increase of 

75% of the TLD for the first 15 wavelength changes during tuning. It also delayed the 

following power drop to shorter wavelengths in the tuning range as is shown in the TLD 

power performance in Fig. 7.17.  
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Fig. 7.17: The output power of the bulk TLD with τin=1 ps as a function of the DBR 

section bias. 

 

A red shift of the ma  spectrum in both TLDs with τin=0.1 ps and τin=1 ps failed with 

a result similar to the one in Fig. 7.10 because of the very small gain values close to the 

band edge (λg=1.553 um). It should be kept in mind that the gain spectrums of the bulk 

TLDs are by definition broader than the ones of the MQW TLDs for the same τin because 

of the higher number of electron transitions from different subbands of the quantum wells 

in the AR. 

It was shown in Fig. 7.17 that in the case of the bulk TLD with τin=1 ps a significant 

power increase was achieved during discontinuous tuning. However, Fig. 7.17 also shows 

that a power drop of 30% at the end of the tuning range still takes place, which is a fact 

that also needs to be taken into account.  

Further investigation on this matter showed that this power reduction can be 

eliminated completely in the case of continuous tuning. For this reason both passive 

sections of the TLD in Fig. 7.17 were driven simultaneously with a careful selection of 

applied bias for each one so that the wavelength changes caused by phase and DBR 
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tuning coincide. In order to limit possible leakage currents below 3% in the phase section, 

the same InGaAlAs layer between the WG and the p  region of the phase section was 

introduced, as the one in the DBR section.  

Thus, the phase section was driven from 0 V to a maximum value of applied bias of 

Vp=1.8 V, which corresponds to a value of injected current Ip of Ip 125 mA and a high 

carrier density pN  of 18103.5 pN cm-3. The DBR section was driven to a maximum 

VDBR=0.6 V, which corresponds to IDBR 3.9 mA and 18107.0 DBRN cm-3. The 

achievable continuous tuning range as a function of the phase section bias was 5.7 nm as 

is shown in Fig. 7.18. 

 

Fig. 7.18: Continuous wavelength tuning performance of the bulk TLD with τin=1 ps. 

 

However, the main improvement in terms of power performance is shown in Fig. 

7.19, where a 40% power increase takes place, followed by a power stabilisation until the 

end of the tuning range. The power variation is plotted as a function of the phase section 

bias. 
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Fig. 7.19: The output power of the bulk TLD with τin=1 ps as a function of the phase 

section bias. 

 

The desired TLD power stabilisation in Fig. 7.19 happened for two reasons. The 

first one is the fact that the two passive sections are always pumped during continuous 

tuning. As it was discussed previously, this means that the passive WG regions will 

express a small amount of gain under injection, eliminating any kind of photon absorption 

in the form of optical losses which could reduce the TLD output power. The second 

reason is that during continuous tuning, the lasing mode is always positioned at the 

bottom of the ma  stopband, where it experiences minimum mirror losses and high SMSR. 

Thus, the increasing gain values of the ascending part of the gain curve will dominate in 

the interaction with the ma  spectrum and will eliminate the power loss and the power 

fluctuations in Fig. 7.17. 
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7.3 Conclusion 

 

A model of two 3S TLDs, one with a bulk and one with a MQW optical cavity, was 

developed in order to investigate their output power behaviour during wavelength tuning 

by using the simulation software PICS3D. In the case of the MQW TLD, the monitored 

power variation during discontinuous tuning (discont = 32 nm) consisted of a small 

power increase in the first few wavelength changes of the tuning range followed by a 

significant power decrease with deeper tuning. This variation was caused by the shape of 

the gain spectrum and its interaction with the mirror reflectivity spectrum and the 

increasing optical losses of the passive regions during tuning.  

The shape of the gain spectrum of the TLD was formed by a Lorentzian lineshape 

broadening function which in turn was defined by the intraband relaxation time τin. By 

carefully selecting τin and the positioning of the mirror reflectivity spectrum in respect to 

the gain peak, the power increase could be significantly enhanced. The opposite results 

were acquired for the same relaxation times in the case of the bulk TLD due to the 

proximity of the mirror reflectivity spectrum to the band edge and the by default broader 

gain spectrum of its AR due to the lack of energy subbands compared with the case of the 

MQW TLD.  

The significant power decrease was managed to be eliminated leading to an output 

power stabilisation with deeper tuning in the case of continuous tuning for the proposed 

optimised TLD setup.  
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8.1 Introduction 

 

The term small-signal analysis refers to the direct Intensity (Amplitude) Modulation 

(IM or AM) or Frequency Modulation (FM) of a laser by injecting a small (~1-6% of the 

threshold current) sine-wave Alternating Current (AC) on top of the Direct Current (DC) 

into its active region. The main reason for this process is the determination of a frequency 

of the modulated output power of the laser which is at resonance with the frequency of 

the sine-wave AC modulation injection current over a certain period of time. This 

frequency is called Relaxation Oscillation Frequency (ROF) and is calculated through a 

transfer function which takes into account the modulated output power of the laser and 

the AC modulation current. 

Most papers in the published literature deal with ways to enhance as much as 

possible the ROF in single-mode semiconductor lasers [192]–[209]. The most common 

method is by increasing the DC injection current of the active region. In the case of 3S 

and 4S TLDs there are also various papers discussing this process [192], [195], [198], 

[199], [202], [203], [206]–[209], however most of them treat the TLD as a single-mode 

laser and no tuning is taking place with the exception of [206]. Therefore, the TLD 

performance under direct intensity modulation during tuning and the possible 

enhancement of its ROF during this process has not be thoroughly investigated in 

published literature. 

In this Chapter, the main focus of the investigation concerns the small-signal 

analysis of directly intensity modulated TLDs during discontinuous tuning. This is done 

by injecting a small (~0.5 mA, 6% of the threshold current) modulation AC current on 

top of the DC current in the active section and by sweeping a number of frequencies with 
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a tiny step until a frequency is found where the TLD is at resonance with. It is found that 

the ROF can be significantly increased not by increasing the DC current of the active 

region as is usually suggested in literature, but by taking advantage of the increase of the 

wavelength dependent differential gain during discontinuous wavelength tuning. 

All the investigations take place with the use of the VPI software for the case of a 

bulk TLD, all the device parameters of which are taken from the bulk TLD setup 

described in Chapter 7 with the use of PICS3D (same device structure, same optical and 

electronic parameters, same gain profile) and shown in Fig. 7.16 and 7.17. Some basic 

optical characteristics are plotted (L-I characteristic, carrier density, optical spectrums, 

optical power vs DBR current during DBR tuning), which are in good agreement with the 

ones acquired from PICS3D.  

It is shown that in the small-signal analysis the ROF increases during DBR tuning 

mainly due to the significant increase of the wavelength dependent differential gain of the 

gain spectrum as the TLD is tuned to smaller wavelengths. The acquired results from all 

these investigations are described and explained in a comprehensive way in section 8.2 

and all the conclusions made are included in section 8.3. 

 

8.2 Results and discussion 

 

8.2.1 Device setup 

 

The TLD which is used in all the investigations of this Chapter is designed in VPI 

and is similar to the bulk TLD which was designed in PICS3D, used in Chapter 7 and 
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shown in Fig. 7.16 and 7.17. As a reminder, the structure and material parameters of the 

TLD designed in PICS3D are shown in Table III. 

 

TABLE III 

STRUCTURE AND MATERIAL PARAMETERS OF THE BULK TLD USED IN 

PICS3D 

Symbol Parameter Name Value Units 

Ra Facet reflectivity at z=0 μm 0.3 - 

Rr Facet reflectivity at z=800 μm 10-4  - 

w TLD width 1.5 μm 

La Active section length 400 μm 

Lp Phase section length 100 μm 

LDBR DBR section length 300 μm 

da Active region thickness 0.18 μm 

dp Waveguide region thickness of the passive 

sections 

0.38 μm 

dgr Grating region thickness 0.2 μm 

Ega Active region bandgap 0.7986 eV 

Egp Waveguide region bandgap of the passive 

sections 

0.85 eV 

iaa  Internal losses of the active region 15 cm-1 

ipa  Internal losses of the waveguide region of the 

passive sections 

5 cm-1 
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Γa Confinement factor of the active region 0.34 - 

Γp Confinement factor of the waveguide region 

of the passive sections 

0.822 - 

κ Coupling coefficient 50 cm-1 

Aa Linear recombination of the active region 1 x 108 s-1 

Ba Bimolecular recombination of the active 

region 

2 x 10-10 cm3 s-1 

Ca Auger recombination of the active region 3.5 x 10-29 cm6 s-1 

Ap Linear recombination of the waveguide 

region of the passive sections 

1 x 108 s-1 

Bp Bimolecular recombination of the waveguide 

region of the passive sections 

1 x 10-10 cm3 s-1 

Cp Auger recombination of the waveguide 

region of the passive sections 

1.5 x 10-29 cm6 s-1 

 

 

Fig. 8.1: The three-section TLD model in VPI. 

 

The structure of the bulk TLD in VPI is shown in Fig. 8.1. It consists of three 

sections, the yellow and light-blue one on the right labeled “Laser” being the active 
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section, the grey and blue in the middle labeled “Passive” being the phase section and the 

grey and blue on the left labeled “DBR” being the DBR section. Each section is in fact a 

Transmission Line Laser Model (TLLM) of a semiconductor laser which can also be used 

as a separate device. However, when wired together with some modification of their 

optical parameters, they can act as a uniform TLD. The reason for choosing this structure 

is because there is no single component (box) in VPI which can act as a uniform three-

section TLD. The TLD is shown in two dimensions, with y being the axis of device 

thickness and z being the axis of photon propagation and device length. The axis of 

propagation z moves now from right to left with z=0 μm at the right facet of the active 

section and z=800 μm at the left facet of the DBR section. Therefore the z axis moves in 

the opposite direction compared with the PICS3D TLD structure described in Chapter 5 

(Fig. 5.1).  

The active section of the TLD is a TLLM of a FP laser with a top input used for 

injecting current (connected with a DC source at steady-state or an AC source for 

modulation) and a top output used for plotting the carrier density when connected with a 

signal analyser. The right input can be used for optical injection but in this setup it is 

connected with a null source (white triangle). The right output used for plotting the optical 

signal in the time or frequency domain when connected with a signal analyser. The left 

input and output is connected with the right output and input of the phase section, 

respectively. The parameters of the active section are shown in Fig. 8.2.  
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Fig. 8.2: Parameters of the active section of the TLD in VPI. 

 

The parameter NominalFrequency refers to the bandgap frequency fg=c/λg of the 

active region, where c is the speed of light in vacuum defined in the global parameters 

(shown later) and λg=1.553 μm is the bandgap wavelength of the active region, in order to 

provide an energy bandgap of Eg=1.24/λg=0.7986 eV. The InternalLossCarrierDependence 

parameter is the 19102 FCk  cm2 coefficient responsible for free-carrier absorption 
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which was used in Chapter 7. Unfortunately, VPI provides no option for IVBA losses 

therefore the 18102 IVBAk  cm2 coefficient was simply added to the 

InternalLossCarrierDependence parameter ( 18102.2  IVBAFC kk  cm2) in order to take 

into account all losses as in the PICS3D TLD in Chapter 7. This value will be the same in 

all sections. The InterfaceReflectionCoefficient parameter defines the mirror reflectivities 

of each facet and the set of values [0 0.3] means that the left facet reflectivity is zero (all 

light is transmitted into the phase section with no reflection at the interface) and the right 

facet reflectivity Ra is 0.3. The GainShapeModel parameter defines the type of model 

used in VPI for the shape of the gain spectrum. If set to “File”, as in this case, then VPI 

takes straightforward the gain values needed for solving all equations at lasing conditions 

from a data file specified in the GainDataFile parameter. However, there are other types 

of gain models that can be specified as it will be discussed in the next subchapter. As a 

reminder, the gain spectrum of the VPI TLD which was imported from PICS3D is shown 

in Fig. 8.3. 

 

Fig. 8.3: Spectra of the net gain gnet and the cavity mirror losses ma  of the bulk TLD 

(VPI and PICS3D) at lasing wavelength 0=1.55 m. 
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The phase section of the TLD is a TLLM of a passive semiconductor device with 

zero gain and no grating, which is practically used as an optical waveguide. It has a top 

input used for injecting current (connected with a DC source for phase tuning) and a top 

output used for plotting the carrier density when connected with a signal analyser. 

However in this setup it is grounded (black triangle). The right input and output is 

connected with the left input and output of the active section. The left input and output is 

connected with the right output and input of the DBR section, respectively. The 

parameters of the phase section are shown in Fig. 8.4. 

Parameters ActiveRegionType, ActiveRegionWidth and ActiveRegionThickness 

define the type, width and thickness of the passive waveguide of the phase section, 

respectively. The bandgap wavelength here is λg=1.46 μm, in order to provide an energy 

bandgap of Eg = 1.24/λg = 0.85 eV. The InterfaceReflectionCoefficient parameter is zero 

for both facets which means that all light is transmitted from the active section into the 

DBR section and vice versa with no reflection at the interfaces. The DifferentialIndex 

parameter defines the coefficient of the FC plasma effect and will be discussed again 

when theTLD is tuned. This parameter has the same value in the DBR section as well. 
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Fig. 8.4: Parameters of the phase section of the TLD in VPI. 

 

The DBR section of the TLD is a TLLM of a passive semiconductor device with 

zero gain but with an option of a grating. It practically works as a passive waveguide with 

Bragg reflection. It has a top input used for injecting current (connected with a DC source 

for DBR tuning), a top output used for plotting the carrier density when connected with a 

signal analyser (grounded in this setup), a left input connected with a null source (which 
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can also be used for optical injection) and a left output which is grounded. The right input 

and output is connected with the left output and input of the phase section, respectively. 

The parameters of the DBR section are shown in Fig. 8.5. 

 

Fig. 8.5: Parameters of the DBR section of the TLD in VPI. 
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Parameters ActiveRegionType, ActiveRegionWidth and ActiveRegionThickness 

define the type, width and thickness of the passive waveguide of the DBR section, 

respectively. The bandgap wavelength here is λg=1.46 μm, in order to provide an energy 

bandgap of Eg = 1.24/λg = 0.85 eV. The left facet reflectivity Rr is 10-4 and the right facet 

reflectivity is zero (all light is transmitted into the phase section with no reflection at the 

interface). The GratingModel parameter defines the design of the grating structure by 

VPI. If set to “Coupling” as in this case, then VPI uses the coupling coefficient to define 

the grating structure. The GratingStopbandFrequency parameter is the Bragg frequency 

fB=c/λB of the active region, where λB=1.5503 μm is the Bragg wavelength. The 

IndexCoupling parameter is the coupling coefficient κ=50 cm-1. 

In the following figures, some basic characteristics of the VPI TLD operating at 

steady-state will be shown in comparison with the same characteristics from the PICS3D 

TLD operation. Fig. 8.6 and Fig. 8.7 show the L-I characteristic of the VPI TLD and the 

PICS3D TLD, respectively. As can be seen the two curves are very similar which means 

that VPI recreates properly the TLD setup used in PICS3D.  

 

Fig. 8.6: Output power-Injected current (L-I) characteristic of the TLD in VPI. 
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Fig. 8.7: Output power-Injected current (L-I) characteristic of the TLD in PICS3D. 

 

The threshold current Ith was measured to be Ith 8.5 mA for the VPI TLD which 

was very close to Ith8.3 mA for the PICS3D TLD. The threshold carrier density Nth was 

found to be 18102.1 thN cm-3 for a lasing wavelength λ0 of λ0=1.55 μm which is 

exactly the same Nth for the PICS3D TLD for the same λ0. The threshold carrier density 

as a function of time is shown in Fig. 8.8.  

 

 

Fig. 8.8: Threshold carrier density as a function of time of the TLD in VPI. 
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The VPI TLD was free-running for 8 ns and at the start of the TLD operation a few 

oscillations can be observed until the TLD relaxes around the value of Nth. The time 

period (6 ns) of these oscillations is the turn-on delay of the TLD in order to achieve 

steady-state operation. The pulse response in the time domain of the VPI TLD for the 

same 8 ns is shown in Fig. 8.9 and the optical spectrum (wavelength domain) of the VPI 

TLD at λ0=1.55 μm is shown in Fig. 8.10. 

 

Fig. 8.9: Pulse responce as a function of time of the TLD in VPI. 

 

Fig. 8.10: Optical spectrum in the wavelength domain of the TLD in VPI at λ0=1.55 μm. 
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The values of the x axis of Fig. 8.10 show the wavelength shift in nm from the 

center wavelength λc=1.536265 μm. The center wavelength is at the exact center of the 

optical spectrum (zero position) and its role will be explained later in the following 

subchapter. As can be seen, the lasing wavelength λ0 is shifted by roughly 13.7 nm from 

λc, therefore λ0=1.55 μm. 

The VPI TLD performance under DBR tuning was also investigated. The DBR 

section was injected with a value of current IDBR of IDBR 400 mA, which corresponds to a 

DBR carrier density DBRN  of 181086.5 DBRN  cm-3 (same DBRN  for the PICS3D TLD 

for the same IDBR). The DBR carrier density is plotted as a function of time in Fig. 8.11. 

The phase section is not injected with current (Ip=0 mA) in all the investigations of this 

Chapter, therefore no phase tuning is taking place. 

 

Fig. 8.11: Carrier density of the DBR section of the TLD in VPI as a function of time 

for IDBR 400 mA. 

 

The TLD is discontinuously tuned from the initial lasing wavelength λ0=1.55 μm to 

the lasing wavelength of λ=1.518 μm, which is a tuning range of ΔλDBR=32 nm (as in the 
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case of DBR tuning of the PICS3D TLD). The wavelength shift ΔλDBR is connected with 

the injected carrier density in the DBR section DBRN  as in (3.54) 

 
DBReffgBDBRplDBR Nn ,/   , where pl  is the FC plasma coefficient, 822.0DBR  

is the confinement factor of the DBR section, 5503.1B  μm is the Bragg wavelength 

and 4.3, 
effgn  is the real part of the effective group index. Unfortunately, VPI considers 

the FC plasma effect as the only contribution to the refractive index change, which is 

responsible for wavelength tuning. However, in PICS3D the spectral dependence of the 

refractive index from the Kramers-Kronig relations was also present. Therefore, in order 

to include both contibutions to n  in VPI, the value of pl  had to be increased from 

26107.0  xpl  m3 in PICS3D to 261047.1  xpl  m3. This value is given to the 

DifferentialIndex parameter of both the phase and the DBR section. 

The optical spectrum in the wavelength domain of the VPI TLD at λ=1.518 μm 

(shifted by roughly -18.2 nm from λc) is shown in Fig. 8.12. The inter-mode distance Δλm 

was measured to be Δλm=0.63 nm which was the same as in the PICS3D TLD. 

 

Fig. 8.12: Optical spectrum in the wavelength domain of the TLD in VPI at λ=1.518 

μm. 
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Fig. 8.13 shows the output power from all modes of the TLD during DBR tuning as 

a function of the injected DBR current. Again, as can be observed the power variation is 

very similar to the one of the PICS3D TLD during DBR tuning for the same value of IDBR 

(shown in Fig. 8.14).  

 

Fig. 8.13: The output power of the TLD in VPI as a function of the DBR section 

current. 

 

Fig. 8.14: The output power of the TLD in PICS3D as a function of the DBR section 

current. 
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It can be therefore concluded that the representation of the PICS3D TLD in VPI 

was done successfully with very similar results of laser operation. 

 

8.2.2 Small-signal analysis of bulk TLDs during discontinous tuning 

 

The next part of the investigation in this Chapter is the performance of the TLD 

under direct intensity modulation with and without DBR tuning. The global parameters of 

the setup which was used in all simulations are shown in Fig. 8.15. 

 

Fig. 8.15: Global parameters of the IM setup in VPI. 

 

The TimeWindow parameter defines the simulation time for which the setup is 

running (3.2 ns in this case). The SampleModeBandwidth parameter defines the range of 

frequencies in the frequency domain in which the simulation takes place and is also the 

inverse of the TimeWindow parameter (SampleModeBandwidth = 1/ TimeWindow). Its 
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value in this setup is 5.12 THz or 42 nm in the wavelength domain. It also defines the 

length ΔL of the sections in which the TLD is divided during a simulation (a kind of 

meshing as in the case of PICS3D). It therefore defines the accuracy of the obtained 

results and it is recommended to have a value of at least 5.12 THz or higher. The 

bandwidth of the imported gain spectum is also 42 nm in the wavelength domain and it is 

defined by the Gbw parameter. The lo parameter defines the starting wavelength of the 

gain spectrum and has a value of 1.557 μm.  

Therefore the wavelength range of the gain spectrum will be [1.557, 1.515] μm. 

The SampleModeCenterFrequency parameter defines the center frequency fc of the 

SampleModeBandwidth which divides it in two equal parts as follows [-2.56, fc, 2.56] 

THz. The value of fc is fc=c/λcg, where the c parameter defines the speed of light in 

vacuum and has a value of 299792458 m/s and λcg = lo-(Gbw/2) = 1.536265 μm is the 

center wavelength of the gain spectrum in the wavelength domain. Therefore, it was 

chosen for the SampleModeBandwidth and the gain spectrum to have the same range in 

THz/nm and the same center frequency/wavelength in the frequency and wavelength 

domain, respectively. Fig. 8.16 shows the simulated setup for all investigations of the 

TLD performance under direct IM. 

 

 

Fig. 8.16: The setup of the TLD under direct intensity modulation in VPI. 
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The three-section TLD is directly IM modulated as follows: A DC current Idc is 

injected from the top contact of the active section with the component FuncSineEl. It is 

defined by the DUT_DC_Bias parameter and has a value of 19 mA > 2Ith  as is shown in 

the global parameters. On top of that current, an AC current is also injected to the active 

section by FuncSineEl. This is the modulation current Iac which is defined by the 

ModulationDepth parameter and has a small value of 0.5 mA. The setup then uses a 

sweep function which modulates the TLD with a range of modulation frequencies starting 

from 0 GHz and increasing with a small frequency step until it reaches the value of 10 

GHz. The frequency step fs is reversely proportional to the TimeWindow and is defined 

as fs = 1/TimeWindow = (10/32)x109 = 0.3125 GHz. The TLD is therefore swept with all 

these modulation frequencies until one frequency is found where it is in resonance. This 

frequency will be the ROF fR in Hz of the TLD,.  

The modulated output power Pm of the TLD is then measured with the 

TimeResolved_Freq_Power_vtms1 component and then passed to the 

TwoPortAnalyzer_vtms1 component. This component measures the root mean square 

(rms) value of Pm and it divides it with Iac. It then sends this data from the ‘A’ 

(Amplitude) output port to the 2D component where they are plotted in the y axis. The 

TwoPortAnalyzer_vtms1 component also sends the modulation frequency bandwidth [0 : 

0.3125 : 10] GHz from the ‘F’ (Frequency) output port to the 2D component where they 

are plotted in the x axis. 

The IM response of the setup when the TLD is directly intensity modulated for the 

frequency bandwith of [0, 10] GHz for the case of no tuning (λ0=1.55 μm, IDBR=0 mA) 

(black curve) is shown in Fig. 8.17.  
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Fig. 8.17: IM responses of the TLD for Idc=19 mA with (λ=1.54 μm, λ=1.52 μm) and 

without tuning (λ0=1.55 μm). 

 

The ROF was measured to be fR=2.19 GHz. The unmodulated output power Pdc 

which corresponds to Idc=19 mA was measured to be Pdc=3 mW. In order to check its 

accuracy this result was compared with the value of ωR which can be obtained from the 

laser theory of small-signal analysis and is defined in rad/s as [114]: 

 
 dc

mga

mia

R P
ahVn

aa 
      (8.1) 

where a  is the confinement factor of the active region, ia  are the average internal 

losses, ma  are the mirror losses, -34x106.62606957h  m2kg/s is the Planck constant, 

aawdLV   is the volume of the active region, gan is the group index of the active region, 

dN

dg
  is the differential gain, Pdc is the unmodulated output power of the laser and λ is 

the lasing wavelength. The equation of ωR refers to the dominant lasing mode of the laser 

so in principle it can be applied to both multi-mode and single-mode lasers, as in a TLD in 

this case.  

The average internal losses are defined as:  
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 

TLDeff

effpipaia

i
L

LLaLa
a

,


  

where effpaTLDeff LLLL ,  is the effective length of the composite TLD cavity and 

   2/tanh deff LL   is the DBR penetration depth.  

The term    mgamia ahVnaa /  in (8.1) is constant so the only terms that need to 

be measured every time are  , Pdc and λ. The differential gain was measured from the 

gain spetrum to be 201067.1  x
dN

dg
  m2, where the value dg  was taken at λ0=1.55 

μm for a very small 181001.0 xdN   cm-3 around thN  which was measured as 

18102.1 thN cm-3.  

Equation (8.1) now gives fR = ωR/2π = 2.33 GHz (transformation in Hz) which is in 

a 93% agreement with the measured one. Therefore, the obtained results from the VPI 

simulation are in very good agreement with the small-signal analysis theory of lasers.  

The next investigation focused on the behaviour of the directly intensity modulated 

TLD under DBR tuning in the tuning range of Δλ=32 nm ([1.55, 1.518] μm as was shown 

in Fig. 8.12). The DBR section was injected with a value of current of IDBR=15.5 mA, 

which caused a wavelength shift of 10 nm with lasing taking place now at λ=1.54 μm. 

The IM response of the setup is plotted in Fig. 8.17 (blue curve) and the ROF was 

increased and measured to be fR=4.69 GHz. 

The unmodulated output power was also increased to Pdc=4 mW as was expected 

from Fig. 8.13 since the gain peak was not yet reached (Fig. 8.3). The threshold carrier 

density was accordingly decreased to 181097.0 thN cm-3 as less carriers are required to 

achieve lasing conditions because of the increase of the gain values (it should be noted 

that λ=1.54 μm is still on the ascending part of the gain spectrum). The differential gain 
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was now increased greatly and measured to be 201039.6  x  m2. Equation (8.1) now 

gives fR=5.27 GHz which is in a 88% agreement with the measured one. It can therefore 

be derived that the reason of the ROF increase is the increase of both   and Pdc. The 

decrease of λ did not affect the ROF increase as much because the rate of the increase 





d

d
 and 

d

dPdc  of   and Pdc, respectively during tuning was much greater than the rate of 

decrease 


d
 of λ. 

The TLD was further tuned by injecting the DBR section with a value of current of 

IDBR=330 mA, which caused a wavelength shift of 30 nm with lasing taking place now at 

λ=1.52 μm. The IM response of the setup is plotted in Fig. 8.17 (red curve) and the ROF 

was again increased and measured to be fR=5.94 GHz. 

The unmodulated output power was now decreased to Pdc=3.65 mW as was 

expected from Fig. 8.13 since λ=1.52 μm is now past the gain peak (Fig. 8.3). The 

threshold carrier density was accordingly increased to 181003.1 thN cm-3 as more 

carriers are required to achieve lasing conditions because of the decrease of the gain 

values (it should be noted that λ=1.54 μm is now on the descending part of the gain 

spectrum). The differential gain was still increased greatly and measured to be 

201004.12  x  m2.  

Equation (8.1) now gives fR=6.86 GHz which is in a 87% agreement with the 

measured one. It can therefore be concluded that the main reason of the ROF increase is 

the increase of  . The decrease of λ and Pdc did not affect the ROF increase as much 

because now the rate of the increase 




d

d
 of   during tuning was much greater than the 

rate of decrease 


d
 and 

d

dPdc  of λ and Pdc, respectively. 
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This last conclusion can be more strongly supported if the same process described 

above (variable Pdc) is repeated and Pdc is kept stable (the same with Pdc=3 mW at λ0=1.55 

μm) during tuning by carefully adjusting Idc at each wavelength shift. The TLD was again 

tuned to lase at λ=1.54 μm by injecting a current of IDBR=15.5 mA in the DBR section. 

The power Pdc=3 mW was kept stable by adjusting the DC current to be Idc=15.5 mA this 

time. The measured ROF was now fR=4.06 GHz, with 181097.0 thN cm-3 and 

201039.6  x  m2 remaining the same as before at λ=1.54 μm. Equation (8.1) now gives 

fR=4.57 GHz which is in a 89% agreement with the measured one.  

In similar fashion with the tuning process of variable Pdc, the TLD was further tuned 

to longer wavelengths at λ=1.52 μm by injecting a current of IDBR=330 mA in the DBR 

section. The power Pdc=3 mW was kept stable by adjusting the DC current to be Idc=16.75 

mA this time. The measured ROF was now fR=5.46 GHz, with 181003.1 thN cm-3 and 

201004.12  x  m2 remaining the same as before at λ=1.52 μm. Equation (8.1) now gives 

fR=6.22 GHz which is in a 88% agreement with the measured one. 

The measured ROFs are plotted for the two cases of variable (black curve) and 

stable (blue curve) Pdc during tuning as a function of lasing wavelength in Fig. 8.18. The 

measured values of   during tuning as a function of lasing wavelength are shown in Fig. 

8.19. 
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Fig. 8.18: ROFs for variable (black curve) and stable (blue curve) Pdc during tuning as a 

function of lasing wavelength. 

 

Fig. 8.19: Differential gain during tuning as a function of lasing wavelength. 

 

It can easily be concluded by observing Fig. 8.18 and Fig. 8.19 that the rate of the 

increase of the differential gain dominates the performance of the TLD under direct 

intensity modulation during tuning and is the main reason for the increase of ROF during 

DBR wavelength tuning. 

 



   207 

 

8.3 Conclusion 

 

The performance of a bulk TLD in CW operation and under direct intensity 

modulation during discontinuous tuning has been investigated. The modeling of the TLD 

was done with the use of the commercial software simulation tool VPI. All the physical 

and material parameters of the VPI TLD were taken from the bulk TLD modeled with the 

use of PICS3D, described in Chapter 7 and shown in Fig. 7.16 and 7.17. The two TLDs 

had the same device structure, the same optical and electronic parameters and the same 

gain profile. Some basic optical characteristics were plotted (L-I characteristic, carrier 

density, optical spectrums, optical power vs DBR current during DBR tuning), which 

were in very good agreement with the ones acquired from PICS3D.  

The TLD was directly intensity modulated during discontinuous tuning and it was 

shown that there are three parameters that affect its resonance frequency; the differential 

gain, the unmodulated output power and the lasing wavelength. A significant increase of 

the resonance frequency at the end of the tuning range was observed. It was proved that 

this increase was mainly caused by the great increase of the differential gain with the 

wavelength change. The change of power and lasing wavelength during tuning was much 

smaller than the change of the differential gain and contributed little to the change of the 

resonance frequency. 
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Chapter 9 

 

Conclusions and future work 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   209 

 

9.1 Overall conclusions 

 

An overview of all the conclustions made Chapter by Chapter in this thesis is 

presented in this subsection. 

In Chapter 5, different FC contributions to the real part of the refractive index 

change were investigated, as well as their effect on the output lasing wavelength of the 

device. The FC contributions in question were the FC plasma effect and the inter-band 

optical transitions which were calculated by using the Kramers-Kronig (KK) relations 

(band-filling effect). The contribution of each effect was investigated separately by 

activating one effect each time as well as when they acted together. It was shown that the 

band-filling effect instead of the plasma effect is the dominant contributor to the real part 

of the refractive index change, which also shapes the corresponding wavelength tuning 

performance of the device. This shows that the band-filling effect is heavily 

underestimated due to the lack of investigation of this effect in published literature as a 

contributor to the refractive index change, a statement which is also supported by the 

experimental work of [119] and the theoretical work of [131]. It was also found that the 

available refractive index change is not necessarily converted into the corresponding 

lasing wavelength shift due to design issues which will be explained in Chapter 6.  

In Chapter 6, a completely self-consistent model of a multi-section TLD was 

developed and applied to investigate the wavelength tuning performance by using the 

commercial Crosslight PICS3D software simulation tool. Both the optical and FC 

transport phenomena were modeled on the same footage for the calculation of the 

wavelength tuning. Strong effects of the DBR grating design and various material 

parameters on the FC tuning and lasing spectral purity were  demonstrated and explained. 
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In depth physical analysis of the FC tuning process and the TLD design optimisation 

were presented. 

The analysis of the TLD operation suggested that the optimal design for the 

enhanced tunability is to use such κL products for the DBR section which resulted in the 

reflectivity spectrum with narrow bandwidth (covering 2-3 cavity modes) and sharp peak 

(i.e. without high reflectivity flat region) at the Bragg wavelength. The sharp peak was 

very important in order to avoid tuning saturation. By carefully tailoring the mutual 

positions of the gain spectra and the mirror reflectivity spectra, it was possible to 

considerably enhance the tuning range. The best performance of the TLD was achieved 

when the peak of the reflectivity is red-shifted with respect to the gain peak wave-length. 

In this case, good mode selection and reasonable (~10 nm) tuning was achieved due to 

asymmetry of the SMSR even for the DBR mirror reflectivities with a wide bandwidth 

covering many comb modes. However, the wavelength tuning of such devices 

wouldinevitably saturate as the lasing wave-length approached the gain peak wavelength. 

The saturation was avoided and the tuning range increased 2-3 times in the structures in 

which the DBR reflectivity had a sharp peak. 

Further improvement was achieved by modifying electronic properties of DBR 

grating and by modifying the length of the phase section and thickness of its passive 

waveguide. Even for a basic 3-section TLD a record high FC tuning discont = 30 nm, 

cont = 11 nm and quasicont = 26 nm was reported.The obtained results should be useful 

for practical development of real TLDs. The model can further be extended to more 

complex multi-section integrated photonic devices. 

In Chapter 7, a model of 2 three-section TLDs, one with a bulk and one with a 

MQW optical cavity, was developed in order to investigate their output power behaviour 
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during wavelength tuning by using the simulation software PICS3D. In the case of the 

MQW TLD, the monitored power variation during discontinuous tuning (discont = 32 

nm) consisted of a small power increase in the first few wavelength changes of the tuning 

range followed by a significant power decrease with deeper tuning. This variation was 

caused by the shape of the gain spectrum and its interaction with the mirror reflectivity 

spectrum and the increasing optical losses of the passive regions during tuning.  

The shape of the gain spectrum of the TLD was formed by a Lorentzian lineshape 

broadening function which in turn was defined by the intraband relaxation time τin. By 

carefully selecting τin and the positioning of the mirror reflectivity spectrum in respect to 

the gain peak, the power increase could be significantly enhanced. The opposite results 

were acquired for the same relaxation times in the case of the bulk TLD due to the 

proximity of the mirror reflectivity spectrum to the band edge and the by default broader 

gain spectrum of its AR due to the lack of energy subbands compared with the case of the 

MQW TLD.  

The significant power decrease was managed to be eliminated leading to an output 

power stabilisation with deeper tuning in the case of continuous tuning for the proposed 

optimised TLD setup.  

In Chapter 8, the performance of a bulk TLD in CW operation and under direct 

intensity modulation during discontinuous tuning has been investigated. The modeling of 

the TLD was done with the use of the commercial software simulation tool VPI. All the 

physical and material parameters of the VPI TLD were taken from the bulk TLD modeled 

with the use of PICS3D, described in Chapter 7 and shown in Fig. 7.16 and 7.17. The two 

TLDs had the same device structure, the same optical and electronic parameters and the 

same gain profile. Some basic optical characteristics were plotted (L-I characteristic, 
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carrier density, optical spectrums, optical power vs DBR current during DBR tuning), 

which were in very good agreement with the ones acquired from PICS3D.  

The TLD was directly intensity modulated during discontinuous tuning and it was 

shown that there are three parameters that affect its resonance frequency; the differential 

gain, the unmodulated output power and the lasing wavelength. A significant increase of 

the resonance frequency at the end of the tuning range was observed. It was proved that 

this increase was mainly caused by the great increase of the differential gain with the 

wavelength change. The change of power and lasing wavelength during tuning was much 

smaller than the change of the differential gain and contributed little to the change of the 

resonance frequency. 

 

9.2 Recommended future work 

 

As part of future work, the author could give some recommendations on the areas 

on which further investigation can take place with the use of VPI: 

 

 Small-signal analysis of a TLD with a MQW active region and investigation of the 

increase of ROF due to the huge increase of the MQW differential gain (indicatory of 

MQW lasers) during tuning. 

 Large-signal analysis (injection of electric rectangular pulses as an AC modulation 

current roughly twice the threshold current on top of the DC current in the active section) 

of both bulk and MQW TLDs during tuning as a stand-alone laser at various modulation 

speeds and for different bit generation formats [Non-Return to Zero (NRZ) and Return to 

Zero (RZ)]. 
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 The use of the above TLD as a transmitter in an optical network at various bit rates 

and the investigation of the factors that limit its performance such as the effect of 

chirping of the TLD and attenuation, dispersion and non-linearities of the optical-fibre. 

 Investigation of the enhancement of the modulation bandwidth in an optically 

injection-locked TLD (the effect of the external optical injection from the master laser 

into the modulated TLD on the maximal modulation speed). 

 

The proposals below concern investigations in an optical network: 

 

 Investigation of the effect of various intrinsic noise sources on the output bit stream 

of an optical network. 

 The effect of Cross Phase Modulation (XPM) and the corruption that the optical 

fibre causes to the signal during transmission, due to its attenuation, dispersion and 

nonlinearities. 

 The effect of intensity noise and Turn-On Delay Jitter (TOJ) on the general 

performance of the optical system. This can be estimated in terms of the power penalty of 

the system, eye diagrams of the received signal, and BER and signal-to-noise ratio (SNR) 

calculations. The sensitivity and other attributes of the photodiode that are used as a 

receiver can also be examined. 
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Appendix 

 

In this Appendix the source code of the most basic files of the modeled three-

section bulk TLD in PICS3D is given. 

 

The my.mac file contains all the material parameters of the 

three-section bulk TLD 

$************************************************ 

$ my.mac file 

 

$ ******************************** 

$ macro : inp  

$ [free-style] 

$ Bulk InP at 300K. 

$ Typical use: 

$   load_macro name=inp mater=#m 

$ ******************************** 

 

begin_macro inp 

$ Use the same type of velocity model as GaAs 

material type=semicond band_valleys=(1 1) && 

  el_vel_model=n.gaas hole_vel_model=beta   

dielectric_constant value=12.56 

electron_mass value=0.078 

hole_mass value=0.588 

band_gap value=1.347 

affinity value=4.4 

$ From "GaInAsP alloy semiconductors" by Pearsall p. 203 

electron_mobility variation=function 

function(total_doping) 

mu_max=0.52; 

mu_min=0.04; 

ref_dens=3.0d23; 

alpha=0.42;  

mu_min+(mu_max-mu_min)/(1+(total_doping/ref_dens) 

**alpha) 

end_function 

$ From "properties of InP" by INSPEC. 

hole_mobility variation=function 

function(total_doping) 

mu_max=0.017; 

mu_min=0.001; 

ref_dens=4.87d23; 

alpha=0.62; 

mu_min+(mu_max-mu_min)/(1 +(total_doping/ref_dens) 

**alpha) 

end_function 

beta_n  value=2. 

electron_sat_vel value=1.d5 

beta_p  value=1. 

hole_sat_vel  value=1.d5 

norm_field value=4.e5 

tau_energy value=1.d-13 

lifetime_n value=1.e-7 

lifetime_p value=1.e-7 

radiative_recomb value=1.d-16 

auger_n value=1.5d-41 

auger_p value=1.5d-41 

real_index value=3.167 
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absorption value=0. 

thermal_kappa value=46. 

end_macro inp 

 

$ 

************************************************* 

$ macro ingaasp_active 

$ [free-style] 

$ Bulk In(1-x)Ga(x)As(y)P(1-y)  lattice  matched to InP at  

$ 300K 

$                Relation between x and y: 

$                x=0.1894y/(0.4184-0.013y) 

$ Typical use: 

$ load_macro name= ingaasp_active var1=#y mater=#m  

$ var_symbol1=y  

$ 

************************************************* 

begin_macro ingaasp_active 

material type=semicond band_valleys=(1 1) && 

  el_vel_model=n.gaas hole_vel_model=beta    

dielectric_constant variation=function 

function(y)  

12.56 + 1.5 * y 

end_function 

electron_mass variation=function 

function(y) 

0.078 - 0.050 * y +0.014 * y **2  

end_function 

hole_mass variation=function 

function(y) 

( 0.588 ** (3 / 2) + (0.12 - 0.069*y )** (3 / 2)  ) ** (2 / 3) 

end_function 

band_gap variation=function 

function(y) 

1.347 - 0.778*y + 0.149*y**2 

end_function 

affinity variation=function 

function(y) 

off=0.4; 

eg=1.347 - 0.778*y + 0.149*y**2; 

eg0=1.347; 

4.4 + off*(eg0-eg) 

end_function 

max_electron_mob variation=function 

function(y)  

0.52 + 0.65*y 

end_function 

min_electron_mob value=0.04 

electron_ref_dens value=3.0d23 

alpha_n value=0.42 

max_hole_mob value=0.017 

min_hole_mob value=0.001 

hole_ref_dens value=4.87d23 

alpha_p value=0.62 

norm_field variation=function 

function(y) 

4.e5 + 8.e5 * y 

end_function 

tau_energy value=1.e-13 

beta_n value=2. 

electron_sat_vel variation=function 

function(y) 

1.e5 - 0.225e5*y 

end_function 

beta_p value=1. 

hole_sat_vel value=1.0e5 

radiative_recomb value=2.d-16 

auger_n value=1.75d-41 

auger_p value=1.75d-41 

lifetime_n value=1.e-8 

lifetime_p value=1.e-8 

real_index variation=function 

function(y) 

3.167 + 0.316*y 
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end_function 

absorption value=0. 

thermal_kappa value=46. 

end_macro ingaasp_active 

 

$ 

************************************************* 

$ macro ingaasp_ passive 

$ [free-style] 

$ Bulk In(1-x)Ga(x)As(y)P(1-y)  lattice  matched to InP at  

$ 300K 

$                Relation between x and y: 

$                x=0.1894y/(0.4184-0.013y) 

$ Typical use: 

$ load_macro name= ingaasp_ passive var1=#y mater=#m  

$ var_symbol1=y  

$ 

************************************************* 

 

begin_macro ingaasp_passive 

material type=semicond band_valleys=(1 1) && 

  el_vel_model=n.gaas hole_vel_model=beta    

dielectric_constant variation=function 

function(y)  

12.56 + 1.5 * y 

end_function 

electron_mass variation=function 

function(y) 

0.078 - 0.050 * y +0.014 * y **2  

end_function 

hole_mass variation=function 

function(y) 

( 0.588 ** (3 / 2) + (0.12 - 0.069*y )** (3 / 2)  ) ** (2 / 3) 

end_function 

band_gap variation=function 

function(y) 

1.347 - 0.778*y + 0.149*y**2 

end_function 

affinity variation=function 

function(y) 

off=0.4; 

eg=1.347 - 0.778*y + 0.149*y**2; 

eg0=1.347; 

4.4 + off*(eg0-eg) 

end_function 

max_electron_mob variation=function 

function(y)  

0.52 + 0.65*y 

end_function 

min_electron_mob value=0.04 

electron_ref_dens value=3.0d23 

alpha_n value=0.42 

max_hole_mob value=0.017 

min_hole_mob value=0.001 

hole_ref_dens value=4.87d23 

alpha_p value=0.62 

norm_field variation=function 

function(y) 

4.e5 + 8.e5 * y 

end_function 

tau_energy value=1.e-13 

beta_n value=2. 

electron_sat_vel variation=function 

function(y) 

1.e5 - 0.225e5*y 

end_function 

beta_p value=1. 

hole_sat_vel value=1.0e5 

radiative_recomb value=1.d-16 

auger_n value=0.75d-41 

auger_p value=0.75d-41 

lifetime_n value=1.e-8 

lifetime_p value=1.e-8 

real_index variation=function 
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function(y) 

3.167 + 0.316*y 

end_function 

absorption value=0. 

thermal_kappa value=46. 

end_macro ingaasp_passive 

 

 

$************************************************ 

$ bulk In(1-xw)Ga(xw)As(yw)P(1-yw) lattice matched to InP 

$ [free-style] 

$ This can be considered a speccial case of quantum well  

$ except that information regarding the barrier is not required. 

$ Please note that for In(1-x)Ga(x)As(y)P(1-y) system, the  

$ lattice matches to InP if x and y is related by 

$  x=0.1894*y/( 0.4184-0.013*y ) 

$  The band gap of lattice matched ingaasp is given by  

$  E_g=1.347- 0.778*y + 0.149*y**2  

$ There is no need to specify xw since it can be calcualted  

$ from yw 

$ Typical use: 

$ get_active_layer name=InGaAsP  mater=#m var1=#yw  

$ var_symbol1=yw  

$************************************************ 

 

begin_active_layer InGaAsP 

layer_type type=bulk valley_gamma=1 valley_l=4 && 

  valley_hh=1 valley_lh=1  

eg0_well variation=function  

function(yw) 

1.347 - 0.778*yw + 0.149*yw**2 

end_function 

lband_well variation=function   

function(yw) 

delega=0.28 ; 

delein=1.1 ; 

deleip=0.608 ; 

delegp=-0.09 ; 

xw=0.1894*yw/( 0.4184 -0.013*yw ) ; 

term1=(1. - xw)*yw*delein+(1. - xw)*(1. -yw)*deleip ; 

term2=xw*yw*delega+xw*(1. -yw)*delegp ; 

term1+term2 

end_function 

delta_so_well variation=function   

function(yw) 

xw=0.1894*yw/(0.4184 -0.013*yw) ; 

delga=0.34 ; 

delin=0.43 ; 

delip=0.10 ; 

delgp=0.10 ; 

term1=(1. -xw)*yw*delin+(1. -xw)*(1. -yw)*delip ; 

term2=xw*yw*delga+xw*(1. -yw)*delgp ; 

term1+term2 

end_function 

mass_gamma_well variation=function   

function(yw) 

emnga=0.064 ; 

emnin=0.023 ; 

emnip=0.08 ; 

emngp=0.17 ; 

xw=0.1894*yw/( 0.4184 -0.013*yw ) ; 

term1=(1.- xw)*yw*emnin+(1. -xw)*(1. -yw)*emnip ; 

term2=xw*yw*emnga+xw*(1. -yw)*emngp ; 

term1+term2 

end_function 

mass_l_well value=0.56 

gamma1_well variation=function  

function(yw) 

g1ga=6.85 ; 

g1gp=4.1 ; 

g1in=20.4 ; 

g1ip=5.0 ; 

xw=0.1894*yw/(0.4184 -0.013*yw ) ; 

term1=(1. -xw)*yw*g1in+(1. -xw)*(1. -yw)*g1ip ; 
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term2=xw*yw*g1ga+xw*(1. -yw)*g1gp ; 

term1+term2 

end_function 

gamma2_well variation=function  

function(yw) 

g2ga=2.1 ; 

g2gp=0.49 ; 

g2in=8.3 ; 

g2ip=1.5 ; 

xw=0.1894*yw/( 0.4184 -0.013*yw ) ; 

term1=(1. -xw)*yw*g2in+(1. -xw)*(1. -yw)*g2ip ; 

term2=xw*yw*g2ga+xw*(1. -yw)*g2gp ; 

term1+term2 

end_function 

lattice_constant value=5.8688 

end_active_layer InGaAsP 

$************************************************ 

 

The active.layer file contains all the design parameters of the 

active section of the three-section bulk TLD 

$************************************************ 

$ active.layer file 

begin_layer 

use_macrofile macro1=my.mac 

column column_num=1 w=1.5  mesh_num=2  r=1.0 

bottom_contact column_num=1 from=0.0 to=1.5 &&    

  contact_num=1 

layer_mater macro_name=inp column_num=1 &&  

  n_doping=1.e+24 

layer  d=1.5  n=38  r=0.8  

layer_mater macro_name=ingaasp_active var1=0.492462  

  && column_num=1 var_symbol1=y 

layer d=0.05 n=34 r=0.9 

layer_mater macro_name= ingaasp_active var1=0.84 &&  

  column_num=1 var_symbol1=y active_macro=InGaAsP  

  && avar_symbol1=yw avar1=0.84 

layer d=0.18 n=34 r=1.1 

layer_mater macro_name= ingaasp_active var1=0.492462  

  && column_num=1 var_symbol1=y 

layer d=0.05 n=34 r=1.1 

layer_mater macro_name=inp column_num=1 &&  

  p_doping=1.e+24 

layer  d=1.55  n=39  r=1.2 

top_contact column_num=1 from=0.0 to=1.5 contact_num=2 

end_layer 

$************************************************ 

 

The phase.layer file contains all the design parameters of the 

phase section of the three-section bulk TLD 

$************************************************ 

$ phase.layer file 

begin_layer 

$ Make sure the program knows there is a segment before  

$ this structure. The programs needs this information to  

$ generate the material numbers correctly. 

previous_layer  file=active.layer 

column column_num=1 w=1.5  mesh_num=2  r=1.0 

bottom_contact column_num=1 from=0.0 to=1.5 &&  

  contact_num=1 

layer_mater macro_name=inp column_num=1 &&  

  n_doping=1.e+24 

layer  d=1.35  n=38  r=0.8 

$ Passive waveguide material declared to be "active" so that  

$ interband optical model for index change can be used. 

layer_mater macro_name= ingaasp_passive var1=0.745159  

  && column_num=1 active_macro=InGaAsP && 

  avar1=0.745159 && var_symbol1=y avar_symbol1=yw 

layer d=0.58 n=39  r=1.0 

layer_mater macro_name=inp column_num=1 &&  

  p_doping=1.e+24 

layer  d=1.4  n=39  r=1.2 

top_contact column_num=1 from=0.0 to=1.5 contact_num=3 

end_layer 

$************************************************ 
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The Bragg.layer file contains all the design parameters of the 

Bragg section of the three-section bulk TLD 

$************************************************

$ Bragg.layer file 

begin_layer 

$ Make sure the program knows there is a segment before  

$ this structure. The programs needs this information to  

$ generate the material numbers correctly. 

previous_layer  file=phase.layer 

column column_num=1 w=1.5  mesh_num=2  r=1.0 

bottom_contact column_num=1 from=0.0 to=1.5 &&  

  contact_num=1 

layer_mater macro_name=inp column_num=1 &&  

  n_doping=1.e+24 

layer  d=1.35  n=38  r=0.8 

$ The grating structure is modeled as an embedded material  

$ with active regions so that interband optical model for  

$ index change can be used. 

$ Passive waveguide material declared to be "active" so that  

$ interband optical model for index change can 

$ be used. 

layer_mater macro_name= ingaasp_passive var1=0.7255159  

  && active_macro=InGaAsP avar1=0.7255159 &&  

  column_num=1 embedded_structure=1 var_symbol1=y &&  

  avar_symbol1=yw 

grating_compos column_num=1 &&  

  hi_macro_name=ingaasp_passive && 

  hi_active_macro=InGaAsP &&  

  lo_macro_name=ingaasp_passive &&  

  lo_active_macro=InGaAsP d_high= 0.1 d_low= 0.1 &&  

  d_fall=0. d_rise=0. grating_order=1 hi_var_symbol1=y &&  

  hi_var1=0.745159 hi_avar_symbol1=yw && 

  hi_avar1=0.745159 && lo_var_symbol1=y && 

  lo_var1=0.695159 && lo_avar_symbol1=yw && 

  lo_avar1=0.695159 

layer  d=0.2  n=39  r=0.9 

layer_mater macro_name= ingaasp_passive var1=0.745159  

  && column_num=1 active_macro=InGaAsP && 

  avar1=0.745159 && var_symbol1=y avar_symbol1=yw 

layer d=0.38 n=39 r=1.0 

layer_mater macro_name=inp column_num=1 &&  

  p_doping=1.e+24 

layer  d=1.4  n=39  r=1.2 

top_contact column_num=1 from=0.0 to=1.5 contact_num=4 

end_layer 

$************************************************ 

 

The active.gain file contains all the information for the gain 

spectrum of the active section of the three-section bulk TLD 

$************************************************ 

$ active.gain file 

begin_gain 

use_macrofile macro1=my.mac 

plot_data plot_device=postscript 

$ Apply Lorentzian broadening lineshape function to gain  

$ with intraband relaxation time τin = 1 ps, FC absorption  

$ coefficient aFC = 6x10-23 m2 and IVBA coefficient  

$ aIVBA = 6x10-22 m2 

active_reg broadening=lorentzian tau_scat=1e-12 a_scat=0  

  && thickness=0.18 mater=3 ncarr_loss=6.e-23 &&  

  pcarr_loss=6.e-22   

temperature temp=300 

include file=active.mater 

gain_wavel wavel_range=[1.4 1.6] conc_range=[5e23 5e24]  

  && curve_number=20 

sp.rate_wavel wavel_range=[1.4 1.6] && 

  conc_range=[5e23 5e24] curve_number=20 

  index_wavel wavel_range=[1.4 1.6] && 

  conc_range=[5e23 5e24] curve_number=20 &&  

  init_conc=1.5e24  

current_conc conc_range=[1.4 1.6] data_point=30 &&  

  use_macro=yes fit_outfile=tmp.data 

gain_density wavel_range=(1.4 1.6) conc_range=(5e23 5e24)  
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  && pn_ratio=1 data_point=30 

gain_spon wavel_range=(1.4 1.6) conc_range=(5e23 5e24)  

  && pn_ratio=1 data_point=30 

end_gain 

$************************************************ 

 

The phase.gain file contains all the information for the gain 

spectrum of the phase section of the three-section bulk TLD 

$************************************************

$ phase.gain file 

begin_gain 

use_macrofile macro1=my.mac 

plot_data plot_device=postscript 

$ Apply Lorentzian broadening lineshape function to gain  

$ with intraband relaxation time τin = 0.2 ps, FC absorption  

$ coefficient aFC = 2x10-23 m2 and IVBA coefficient  

$ aIVBA = 2x10-22 m2 

active_reg broadening=lorentzian tau_scat=0.2e-12 a_scat=0  

  && thickness=0.58 mater=6 ncarr_loss=2.e-23 &&  

  pcarr_loss=2.e-22   

temperature temp=300 

include file=phase.mater 

gain_wavel wavel_range=[1.4 1.6] conc_range=[5e23 5e24]  

  && curve_number=20 

sp.rate_wavel wavel_range=[1.4 1.6] && 

  conc_range=[5e23 5e24] curve_number=20 

  index_wavel wavel_range=[1.4 1.6] && 

  conc_range=[5e23 5e24] curve_number=20 &&  

  init_conc=1.5e24  

current_conc conc_range=[1.4 1.6] data_point=30 &&  

  use_macro=yes fit_outfile=tmp.data 

gain_density wavel_range=(1.4 1.6) conc_range=(5e23 5e24)  

  && pn_ratio=1 data_point=30 

gain_spon wavel_range=(1.4 1.6) conc_range=(5e23 5e24)  

  && pn_ratio=1 data_point=30 

end_gain 

$************************************************ 

 

The Bragg.gain file contains all the information for the gain 

spectrum of the Bragg section of the three-section bulk TLD 

$************************************************ 

$ Bragg.gain file 

begin_gain 

use_macrofile macro1=my.mac 

plot_data plot_device=postscript 

$ Apply Lorentzian broadening lineshape function to gain  

$ with intraband relaxation time τin = 0.2 ps, FC absorption  

$ coefficient aFC = 2x10-23 m2 and IVBA coefficient  

$ aIVBA = 2x10-22 m2 

active_reg broadening=lorentzian tau_scat=0.2e-12 a_scat=0  

  && thickness=0.2 mater=9 ncarr_loss=2.e-23 &&  

  pcarr_loss=2.e-22 

active_reg broadening=lorentzian tau_scat=0.2e-12 a_scat=0  

  && thickness=0.38 mater=10 ncarr_loss=2.e-23 &&  

  pcarr_loss=2.e-22   

temperature temp=300 

include file=Bragg.mater 

gain_wavel wavel_range=[1.4 1.6] conc_range=[5e23 5e24]  

  && curve_number=20 

sp.rate_wavel wavel_range=[1.4 1.6] && 

  conc_range=[5e23 5e24] curve_number=20 

  index_wavel wavel_range=[1.4 1.6] && 

  conc_range=[5e23 5e24] curve_number=20 &&  

  init_conc=1.5e24  

current_conc conc_range=[1.4 1.6] data_point=30 &&  

  use_macro=yes fit_outfile=tmp.data 

gain_density wavel_range=(1.4 1.6) conc_range=(5e23 5e24)  

  && pn_ratio=1 data_point=30 

gain_spon wavel_range=(1.4 1.6) conc_range=(5e23 5e24)  

  && pn_ratio=1 data_point=30 

end_gain 

$************************************************ 

 



   245 

 

The Bulk_TLD.sol file is where the main equation solver is 

used and the simulations are run. 

$************************************************ 

$ Bulk_TLD.sol file 

begin 

use_macrofile macro1=my.mac 

3d_solution_method 3d_flow=yes z_connect=no 

z_structure uniform_length=400. zseg_num=1 zplanes=3 

z_structure uniform_length=100. zseg_num=2 zplanes=2 

z_structure uniform_length=300. zseg_num=3 zplanes=3 

load_mesh mesh_inf=active.msh zseg_num=1 

load_mesh mesh_inf=phase.msh zseg_num=2 

load_mesh mesh_inf=Bragg.msh zseg_num=3 

output sol_outf=TLD.out 

begin_zmater zseg_num=1 

include file=active.gain 

include file=active.doping 

end_zmater 

begin_zmater zseg_num=2 

include file=phase.gain 

include file=phase.doping 

end_zmater 

begin_zmater zseg_num=3 

include file=Bragg.gain 

include file=Bragg.doping 

end_zmater 

$ Waveguide settings 

direct_eigen 

init_wave backg_loss=500 boundary_type=(2 2 1 1) && 

  init_wavel=1.554 wavel_range=(1.4, 1.6) 

newton_par damping_step=10. var_tol=1.e-9 res_tol=1.e-9  

full_ionization mater=1  

full_ionization mater=2  

full_ionization mater=3 

full_ionization mater=4 

full_ionization mater=5 

full_ionization mater=6 

full_ionization mater=7 

full_ionization mater=8      

full_ionization mater=9  

full_ionization mater=10  

full_ionization mater=11 

$ Activate contributions only from the FC plasma effect and  

$ the bandfilling effect to the effective refractive index  

$ change 

index_model free-carrier=yes free_carr_passive=yes &&    

   use_l.w.e.factor=no l.w.e.factor=4 interband=yes &&  

   sample_mesh=no sample_point=200 linear_active=no &&  

   linear_passive=no 

$set_active_reg  

$ scanline = 1 

equilibrium 

rtgain_phase  density=1.e24 zseg_num=1 

rtgain_phase  density=1.e24 zseg_num=2 

rtgain_phase  density=1.e24 zseg_num=3 

newton_par damping_step=1. var_tol=1.e-4 res_tol=1.e-4 

$ Voltage bias on bottom electrode to avoid short-circuits  

$ between top electrodes 

$ scanline = 2 

scan var=voltage_1 value_to=-0.3 

$ Initial current bias 

$ scanline = 3   

scan var=current_2 value_to=-10.0e-3 &&      

  init_step=1e-5 min_step=1e-6 max_step=1.e-4 &&  

  auto_finish=rtgain auto_until=0.95 auto_condition=above   

$ Ramp up gain section to above threshold  

$ and start 3D c-RTG solver 

$ scanline = 4 

scan var=current_2 value_to=-15.0e-3 &&      

  init_step=1e-5 min_step=1e-10 max_step=1.e-3 && 

  solve_rtg=yes   

$ Tune device 

$ scanline = 5 

newton_par damping_step=1. var_tol=1.e-3 res_tol=1.e-3 
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scan var=voltage_4 value_to=2.0 &&    

  var2=current_2 value2_to=-15.0e-3 && 

  init_step=1e-6 min_step=1e-20 max_step=1.e-3 && 

  print_step=0.1 solve_rtg=yes 

add_mainmemory sparse_fill=1 

end 

begin_zsol 

longitudinal ref_wavel=1.5505e-6 left_f_refl=0.3 && 

  right_f_refl=1e-4 

section  length=4.e-4  sec_num=1  mesh_points=20 

section  length=1.e-4  sec_num=2  mesh_points=20 

section  length=3.e-4  sec_num=3  mesh_points=20 

mode_srch adjust_range=no && 

  wavel_xrange=[1.530e-6 1.553e-6] srch_sidemode=yes && 

  sort_mode=total omega_xrange=45 

end_zsol 

$************************************************ 

 

 

 

 

 

 

 


