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This paper proposes a method of buffering instructions by software-based prefetching,
which, with a minimum of logic and power overhead, can be employed in low-end pro-
cessors to improve their instruction throughput. Low-end embedded processors do not
employ cache for mainly two reasons i.e. the overhead of cache implementation in terms

of energy and area is considerable, and, as the cache performance primarily depends
on the number of hits, increasing misses could cause the processor to remain in stall
mode for a longer duration, which in turn makes a cache become more of a liability than
an advantage. In contrast, the benchmarked results for the proposed software-based
prefetch buffering shows a 5–10% improvement in execution time, along with at least
a 4% reduction in energy-delay-square-product (ED2P) and a maximum reduction of
40%. The results show that the performance and efficiency of the proposed architecture
scales with the number of multicycle instruction. The benchmarked routines tested are
widely deployed components of embedded applications.
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1. Introduction

Our paper presents an instruction prefetching architecture that strives to reduce

overall instruction latency and at the same time achieving stall-free pipeline op-

eration using control words that are added to instructions at compile time by a

compiler or by some other suitable software tool when code is generated. The ar-

chitecture also seeks to reduce energy consumption in a way that is compatible with

the previous two aims. The control words, which specify the addresses of instruc-

tions to be fetched, are placed in code memory one instruction ahead (assuming a

two-stage pipeline), so that during execution the instruction or instructions required

in the next cycle can be fetched seamlessly. Key to stall-free operation during con-

ditional branches is intervention at the micro-architectural level through provision

of a dual instruction buffer. This buffer is also of assistance when an instruction is

encountered that takes-up two words, one of which is a target address.

Pre-fetch instruction can be contrasted with cache memories. Cache memories

were primarily introduced to bridge the gap between processor and memory perfor-

mance. With processors operating at remarkable speeds and DRAM operating at

a fraction of those speeds, multi-level cache hierarchies provided a viable solution

to maintain the trend that follows Dave House’s revision of Moore’s law, which

predicts the doubling of computer performance every 18 months 1. Cache memo-

ries have been widely used in microprocessors for faster data transfer between the

processor and main memory. However, energy-constrained processor architectures

typically do not employ a cache for mainly two reasons: 1) the overhead of cache

implementation in terms of energy consumption and area is considerable; and 2) as

the cache performance primarily depends on the number of hits, increasing misses

can cause the processor to remain in a stall mode for longer periods, which can

make the cache turn into a liability rather than an advantage 2. In fact, research
3 4 has shown that caches may consume up to 50% of a microprocessor’s total en-

ergy. Therefore, in this paper, all the designs do not employ a cache, as is common

for low-end embedded processors. As an alternative to the typical cache structure,

software-controlled prefetching has been investigated over the years 5 in various

ways explored in Section 2.

The proposed prefetch instruction buffering architecture takes advantage of the

single-cycle memory latency supported by many low-end processors due to on-chip

code and data memories. As an example, one such processor is the 8-bit Atmel AVR
6 microcontroller family, with a two-stage instruction pipeline in which many of the

instructions take a single cycle to execute. However, instructions such as conditional

and unconditional branches, function calls and returns, indirect loads and stores

(using pointers) require more than one cycle to execute. The extra cycles include

time for address calculation, while, in our scheme, software-calculated control words

are placed in advance to reduce the number of cycles of such multi-cycle instructions.

The proposed prefetch control-words not only reduce the number of cycles for such

multi-cycle instructions by half (see Section 5) but also help to minimize the energy-
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delay-square product (ED2P) i.e. an appropriate metric for energy performance

trade-off analysis 7 8. The software-generated control words are inserted where

required and a null control word can put the bus into a high-impedance state for

minimal energy consumption. Use of control words implies that additional code

memory storage is required, as some instructions consist of the original instruction

code and an additional control code. Although on the one hand this type of software

assisted prefetch buffering increases the code memory size, on the other hand it also

results in an overall increase of the instruction throughput and greater prefetch

accuracy.

An outline only of some of these ideas has been filed as a U.S. patent application
9, though without relevant prior research papers, consideration of the context, or

performance results and analysis, as now occurs in this paper, which includes a

longer description of the innovation and broadens the treatment. The dual buffer

techniques should be applicable to low-end microprocessors and microcontrollers.

What is required is that the processor cycle time should be greater than or equal

to that of the associated data memory (i.e. the time to perform a memory read

or memory write). The instruction memory read cycle time should be less than or

equal to that of the processor. These conditions as restrictive because, for example,

they are met by the AVR processor, which has on-chip code and data memory,

allowing single cycle access. The AVR processor is widely deployed. For example,

the AVR processor is embedded within the Arduino board, with 700,000 official Ar-

duino boards in circulation in 2013 10. In the proposed modification, the instruction

memory should also be capable of providing access to at least two locations in one

cycle. Many processors also implement register files as dual-ported or multi-ported

SRAM and, of course, (Video) VRAM is normally dual-ported DRAM.

The remainder of this paper is organized as follows. Section 2 considers related

work on the topic of software guided prefetching. This work has augmented the

normal prefetch instruction buffer and Section 3 considers the context in which

additional buffering has been introduced in the past. Section 4 is a more detailed

description of the proposed architecture and its principal features. The architecture

has been implemented in reconfigurable hardware, which was then employed to

benchmark the performance, as recorded in Section 5. Finally, Section 6 considers

some of the implications of the new compiler-controlled architecture.

2. Related Work

A large body of the research on prefetch buffering focuses on complementing the

multi-level cache hierarchy with prefetch buffers in order to reduce miss rates. The

IBM Single Source Research Compiler for the Cell processor (the SSC Research

Compiler) uses a software cache and buffers to prefetch the data 11. However, for

irregular references, as in the cases of indexed arrays, hash tables, and multi-level

pointers, this type of prefetching also suffers from high miss rates. Chen et al. 12

proposed a scheme using run-time libraries, through which the compiler can identify
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the irregular references to target, and distribute each of the loops containing them

into an address collection loop and a computation loop. In this way, DMA operations

for prefetching are overlapped and the overhead of context switching is reduced

for the cache miss handler. Another such hybrid or hardware/software prefetch

scheme was proposed by Solihin et al. 13, in which, by exploiting a multi-threaded

architecture, a thread analyzes the history of data accesses to predict future access

with the help of an intelligent-memory processor residing in system main memory.

However, for all of the above techniques, random memory accesses may result in

increased miss rates 14.

Another approach that handles the issue of random access is to pre-execute the

code by a thread and prefetch the data as per the requirements predicted in the

pre-execution. One such scheme is proposed by Annavaram et al. 15 in which a

Dependency Graph Pre-computation scheme (DGP) was used. When a load/store

instruction that is likely to cause a cache miss enters the Instruction Fetch Queue

(IFQ), a Dependency Graph Generator (DGG) follows the dependency pointers,

which are already fetched from the previous instruction, to generate the dependence

graph of those instructions yet to be executed. The dependency graphs generated

by the DGG are then fed to a Pre-computation Engine (PE) that executes them

to generate the load/store addresses early enough for timely prefetching. Another

example of using helper threads for pre-execution can be found in a work by Luk
16.

A sophisticated approach was proposed by Zilles et al. 17, in which, to avoid

cache misses and branch mispredictions associated with problem instructions, a

code fragment called a speculative slice 18 is constructed that mimics the compu-

tation leading up to and including the problem instruction. However, Zilles et al.
18 generated these speculative slices manually. Therefore, adopting this technique

for real systems would require some software-assisted method to accurately gener-

ate them. Although all of the above pre-execution techniques result in lower miss

rates, in the case of random memory accesses, they require careful synchronization

between the main thread and pre-execution thread. As instruction throughput has

been the only metric generally employed to judge the performance of such methods,

extra energy overhead by pre-execution threads has not been accounted for in most

cases.

Branch Target Buffering is another approach that is closely related to our work.

Branch Target Buffering combines branch prediction with a prefetch of target in-

structions into a Branch Target Buffer (BTB). However, branch prediction for mod-

ern architectures can consume up to 10% of the power of a processor 19. Therefore,

research has been undertaken to reduce this power. Kahn et al. 20 proposed two

mechanisms, i.e. serial-BTB and filter BTB, through which power can be reduced.

Both the techniques aim to buffer only necessary data; however, these methods

introduce an extra delay. Therefore, for a 51% reduction in dynamic power con-

sumption using both techniques, instruction throughput is decreased by 1.2%.

Gu et al. 21 proposed an instruction-cache architecture called Reduced One-
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Bit Tag Instruction Cache (ROBTIC). In the said architecture, the cache size is

reduced and the tag field only contains the least significant bit of the full tag.

The reduction in tag field size affects the cache mapping to only a segment of the

memory. This architecture takes advantage of a dynamic cache mapping scheme to

map any memory location. The result is lower power consumption due to a smaller

cache size but on average an instruction throughput degradation of up to 1.4% can

be observed.

3. Context

A considerable number of low-power cache designs 22 are centered on the principle

of adding an extra cache or buffer, usually small in size, and designing the system

to fetch data directly from this buffer. This technique thereby prevents altogether a

direct access to the original cache. Because the buffer is relatively small, it is possible

to achieve significant power savings if one can ensure a high hit-rate to the buffer
22. Another term that is used in the same context is ‘filter cache’ 23. It has been

observed 24 that instruction fetch and decode can consume up to 50% of processor

power. Experimental results across a wide range of embedded applications showed

that the filter cache of 23 results in improved memory system energy efficiency. An

instruction filter cache or level-zero cache in 25 can be placed between the CPU core

and the instruction cache to service the instruction stream. The filter cache can be

efficiently optimized 23 by predicting the subsequent fetch addresses at run-time

to identify whether the next fetch address is in the filter cache. In case a miss is

predicted, the miss penalty is reduced by accessing the instruction cache directly.

Consideration of these filter caches shows in hardware some of the features that we

now delegate to software, though without using a cache-based memory hierarchy.

One disadvantage of such architectures and those of Section 2 is inaccurate

prefetching due to misprediction of branch targets. By software intervention through

compiler-controlled prefetch buffering, misprediction can be reduced. At the same

time by placing more of the processing logic in software, energy-consuming predic-

tion hardware is bypassed. Equally, address calculation is performed in advance in

software, also reducing energy consumption.

The hardware architecture targeted embodies tri-state data busses and a dual-

ported memory structure. In Figure 1, the code memory is divided into control

words (shown in grey) and the current instruction itself (shown in black). Control

words containing the pre-fetch addresses for the next instruction are inserted for

multi-cycle instructions. As outlined in Section 1, control words are calculated by

a compiler in advance and placed with a prior instruction to enable pre-fetching of

instructions or data without the need for address calculation. In so doing pipeline

stalls are reduced, as the number of cycles taken up by a multi-cycle instruction

is reduced. In the special case of conditional branches, the need for prediction

hardware is avoided by pre-calculating the instruction addresses of both the true and

false branch targets. This allows two instructions to be prefetched into instruction
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buffers.

Fig. 1: Processor architecture with prefetch instruction buffering

One buffer is always available as a default location if a branch is taken (called

True) and the other if the branch is not taken (called False). (Refer to Figure 1

in which these instruction buffers are shown after the instruction decoder.) Impor-

tantly, for normal operation, i.e. not a conditional branch or an instruction with

associated target address, instructions are only placed in one buffer, the default

True buffer. Because more than one instruction at a time will need to be prefetched

when a conditional branch occurs, the code memory should be dual-ported, as

shown in Figure 2.

4. Compiler Controlled Instruction Prefetch Buffering

Figure 3 illustrates the logical operation of the instruction buffer. The control-words

control prefetching of instructions into the dual instruction buffers. Not shown in

the diagram is instruction decoding that takes place before instructions are placed in

the buffer. Alternatively, instructions could be placed in the prefetch buffer without

decoding and after fetching be decoded as a third-stage prior to execution. Figure 4

is a timing diagram for operation of the two-stage instruction pipeline during a

conditional branch. During the first clock cycle a first instruction fetch (IF) occurs.

While this instruction is executed (EX), the second instruction is fetched and two

possible target instructions are prefetched. Conditional on the outcome of the sec-
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Fig. 2: Dual-ported memory organization to fetch Instruction(s) and Control words

in one cycle

ond instruction (true or false) one of the two prefetched instructions is subsequently

fetched.

Fig. 3: Logical view of instruction buffer architecture

For most instructions except a conditional branch, the buffer operates in the

same manner as that of a typical two-stage pipelined processor i.e. in the first

cycle only one instruction fetch is performed, and in the following cycle the first

instruction is executed and the next instruction is fetched (see Figure 5). As the

single-cycle operation without a branch does not require any control word, it would

be carried out uninterruptedly until a branch occurs. For multicycle instructions,

the control words seek to reduce the number of cycles by placing pre-calculated

addresses as code words with the instruction. If the subsequent instruction is a

conditional branch, then two instructions are prefetched at a time for true and false
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Fig. 4: Timing diagram of Instruction Buffer operation

Fig. 5: Control Word fetch during buffer operation

operations. The address of these two instructions is indicated beforehand by the

preceding control words. These two instructions will then be held at fixed locations

in the dual instruction buffers i.e. there is one fixed location for true and another

for false. If the branch is taken then the instruction from the True buffer location is

executed; otherwise the instruction in the False buffer is executed. The non-branch

instructions are stored and executed from the default buffer which can be either of

the two. This type of buffer accelerates the instruction throughput of the processor

which otherwise has to stall until the branch is resolved. Similarly, for unconditional

branches or function calls/returns two-word long instructions that also indicate the

target address are prefetched. The proposed buffer architecture allows prefetching

both the words in a cycle and, thus, reducing the execution time by one cycle.

To summarize across the types of instructions catered for by the architecture.

For simple single-cycle instructions, prefetch occurs as normal but null code words

can be used to place a tri-state bus in a high-impedance state. For conditional

branches, two alternative target instructions are prefetched and placed in a dual

buffer structure. For multicycle instructions control words are used to specify pre-

calculated addresses in order to reduce the number of cycles. Finally, for two-word
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instructions both words of the instruction are pre-fetched at the same time, thereby

taking advantage of the dual buffer structure.

5. Architecture Implementation and Findings

5.1. Implementation details

5.1.1. Software Implementation

Fig. 6: Control Word insertion during compile time

The control words are inserted at compile time of the code. The software scans

the compiled binary for target instructions i.e. branches, jumps, function calls etc.

The software then inserts control words an instruction before the target instruction,

so that at run-time, the prefetch unit gets the address beforehand when branch will

be taken. In case the branch is not taken then prefetch buffers already knows the

succeeding address is the one to buffer at second location. For example, in Figure 6,

the software detects the address 0010b is the instruction before a branch, therefore

a control word is inserted at this location. The control word contains the target

address in case the branch is taken, that is 0Bh or 1011b. Similarly, all the compiled

code is scanned and control words are inserted where required.

5.1.2. Hardware Implementation

The proposed architecture was implemented on an open-source, cycle accurate,

VHDL implementation of an AVR core 26, hereby referred to as Original architec-

ture and the one with the proposed instruction buffer architecture is referred to as

Buffered architecture. Thus, both the Original and Buffered architectures are based

on an ATMEL AVR core based on the VHDL Atmega103(L) model 27, which does

not has any cache memory. The on-chip program code memory in both architec-

tures is 64k×16bits in size, which again is the same as that of the Atmega103 model
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26. In the Original architecture, instructions are transferred directly to an instruc-

tion register prior to instruction decoding in a two-stage pipeline. The Buffered

architecture is similar but naturally includes a pre-fetch buffer.

The Atmega103(L) core, based on the ATMEL AVR, is an 8-bit enhanced RISC

processor, which, because it executes most of its instructions in a single machine

clock cycle, achieves instruction throughput approaching 1 MIPS per MHz. As

shown in Fig. 7, there are 32 general-purpose registers, all of which are connected

directly to the ALU. This arrangement allows two independent registers to be ac-

cessed in one machine cycle. A Harvard memory architecture is employed. The data

memory size is 4k×8 bits, which is implemented as SRAM in the core. The Atmega

AVR core also contains four level and four edge-triggered interrupts, together with

a 16-bit timer and a UART.

Fig. 7: Architecture of the Atmega103(L) core

The proposed architecture was implemented using Xilinx ISE 13.1 28, verified

by simulation using Mentor Graphics Modelsim 6.1 29 and mapped to a Xilinx

XC3S500E Field Programmable Gate Array (FPGA). The power consumption es-

timation was carried out using the Xilinx XPower tool 30. The Xilinx Xpower tool

is a spreadsheet-based tool that helps estimate the worst-case power consumption.

In general, it can be used at any stage of the design cycle but in an FPGA’s case it

is normally employed at an early stage to determine whether power consumption

will be within the bounds set for an application. In particular, the Xpower tool

takes into account all the components of the design including on-chip Dual Ported
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(DP)-RAM when used in the proposed design. The well-known HP lab’s CACTI

tool 31 was not used, as CACTI is specialized to cache power estimation, not to the

buffer used in the proposal.

The proposed buffered architecture consumes 5721 LUTs and 866 Logic Slices

compared to 2940 LUTs and 797 LogiSc Slices for the original un-buffered archi-

tecture. The proposed design was still able to fit into the target FPGA platform,

with a maximum operating clock frequency of 33 MHz, which is the same clock

frequency range as the Original architecture.

5.2. Findings

The per-cycle power consumption of the buffered architecture was found to be 111

mW compared to 100 mW of the original architecture. However the proposed archi-

tecture achieves greater energy efficiency by reducing the number of cycles required

to execute an application. Notice that the results presented in this paper are based

upon the FPGA implementation of both the Original and Buffered Architectures.

Therefore, commercial viability of the proposed embodiment can only be verified

using a chip design tool chain. The reader is reminded that we do not make a

comparison with use of an instruction cache, as the low-end embedded processors

considered in this paper do not use caches. The introduction of the control words

into the user application can be performed during compilation, by the compiler

or can be done after compilation. The experimental setup used post-compilation

software to identify and place control words with the appropriate instruction.

The proposed architecture was tested using seven applications from the MiBench
32 benchmark suite i.e. (1) Basic Math, (2) Quick Sort, (3) CRC-32, (4) FFT,

(5) Dijkstra, (6) Matrix Multiplication, and (7) FIR Filter. All the benchmark

applications except CRC-32 showed an overall energy overhead of up to 6% and

in case of CRC-32 energy savings of around 10% are observed(see Figure 8(a)).

The general trend of execution time savings (see Figure 8(b)) is for a 6–10% saving

for most of the applications except for the CRC-32 application that experienced

around 18% saving in execution time. The Matrix Multiplication application was

slightly below the execution time saving trend, with a 5% saving.

It was due to the nature of benchmarks that different amounts of execution time

savings occurred. Figure 9 shows profiles of all the benchmark applications used to

evaluate the proposed architecture. It can be observed that almost all benchmarks

have around 10% of instructions that the proposed buffered architecture addresses

i.e. Jump, Branch, Program Memory Load, and Call. The CRC-32 application is

exceptional, as it has around 30% of its instructions buffered as a result of control

words inserted at compile time. Since the proposed architecture is most suitable

for workloads where multicycle instructions are greater, therefore CRC-32 shows

an overall energy savings of up to 10%. This observation is further supported by

the fact that FFT application has a mere 1.15% energy overhead (see Figure 8(a)),

and has around 20% multicycle instructions (see Figure 9(d)).
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Fig. 8: Buffered Architecture (a) Energy, (b) Time Savings, and (c) Normalized

ED2P

A more comprehensive metric to observe the impact of execution time and en-

ergy consumption simultaneously is the Energy Delay Square Product (ED2P) 7 8,

shown for each benchmark in Figure 8(c). The average ED2P for the buffered archi-

tecture when normalized against the original architecture was found to be around

90% and the least amount of ED2P reduction was observed for Matrix Multiplica-

tion i.e. around 4% of the original one that is due to the least amount of multicycle

instructions i.e. around 12% (see Figure 9(f)). For the CRC-32 benchmark 40%

ED2P reduction is observed, as compared to the original non-buffered architecture.

It may be noted that although the per-cycle power consumption of the buffered

architecture is around 11% more than the original one; a significant amount of sav-

ings when expressed as energy and time combined through the ED2P metric could

be observed for applications where multi-cycle instructions account for more than

20% of the total workload.

6. Conclusion

In this paper a software-controlled instruction buffering architecture for low-end

processors was introduced. The proposed architecture was implemented using

VHDL over an available open-source microcontroller core. The architecture in gen-

eral showed 6–10% improvement in execution times for a good number of bench-

marks, with matching ED2P reduction of 4–40%. The latter maximum occurred for

CRC-32, which made frequent use of the prefetch buffer. For widely deployed low-

end processors such as the AVR there are potentially many embedded applications
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Fig. 9: Benchmark Profiles for (a) Basic Math, (b) Qsort, (c) CRC32, (d) FFT, (e)

Dijkstra, (f) matrixmul, and (g) FIR Filter

that will gain from this reduction in execution time, as we have sought to show by

benchmarking algorithmic staples such as the FFT and CRC. The design exploits

the single-cycle latency of typical embedded processors to achieve these startling

results. The proposed architecture is applicable when low-power operation is desir-
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able. It is particularly appropriate as an alternative way to achieve energy-efficient

operation for battery-powered, embedded processors where multi-cycle instructions

account for more than 20% of the total workload.
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