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SIEVE-BASED INFERENCE FOR INFINITE-VARIANCE LINEAR
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We extend the available asymptotic theory for autoregressive sieve esti-
mators to cover the case of stationary and invertible linear processes driven
by independent identically distributed (i.i.d.) infinite variance (IV) innova-
tions. We show that the ordinary least squares sieve estimates, together with
estimates of the impulse responses derived from these, obtained from an au-
toregression whose order is an increasing function of the sample size, are
consistent and exhibit asymptotic properties analogous to those which ob-
tain for a finite-order autoregressive process driven by i.i.d. IV errors. As
these limit distributions cannot be directly employed for inference because
they either may not exist or, where they do, depend on unknown parameters,
a second contribution of the paper is to investigate the usefulness of boot-
strap methods in this setting. Focusing on three sieve bootstraps: the wild and
permutation bootstraps, and a hybrid of the two, we show that, in contrast to
the case of finite variance innovations, the wild bootstrap requires an infeasi-
ble correction to be consistent, whereas the other two bootstrap schemes are
shown to be consistent (the hybrid for symmetrically distributed innovations)
under general conditions.

1. Introduction. A large body of statistical literature exists around the re-
lated inference problems of consistent parameter estimation and hypothesis testing
within autoregressive and moving average models of (potentially) infinite orders.
Key applications include: (i) estimation of the (scale free) spectral density, (ii) in-
ference on impulse response functions, (iii) lag length selection in autoregressive
specifications and (sieve) approximations, (iv) point and interval forecasts. Fol-
lowing the pioneering work of Berk (1974), the majority of this literature has been

Received January 2015; revised November 2015.
1Supported by the Italian Ministry of Education, University and Research (MIUR), PRIN project

“Multivariate statistical models for risk assessment” (MISURA).
2Supported by the Fundação para a Ciência e a Tecnologia, Portugal (grants PTDC/EGE-

ECO/108620/2008).
3Supported by the Economic and Social Research Council of the United Kingdom under research

Grant ES/M01147X/1.
4Supported by the Danish Council for Independent Research, Sapere Aude | DFF Advanced Grant

(Grant nr: 12-124980).
MSC2010 subject classifications. Primary 62M10, 62M15; secondary 62G09.
Key words and phrases. Bootstrap, sieve autoregression, infinite variance, time series.

1467

http://www.imstat.org/aos/
http://dx.doi.org/10.1214/15-AOS1419
http://www.imstat.org
http://www.ams.org/mathscinet/msc/msc2010.html


1468 G. CAVALIERE, I. GEORGIEV AND A. M. R. TAYLOR

articulated in the familiar L2 norm and is therefore not applicable in the case of
time series driven by innovations which display infinite variance (IV). Such heavy
tailed data are widely encountered in many areas of application including finan-
cial, insurance, macroeconomic, actuarial, telecommunication network traffic and
meteorological time series; see, inter alia, Embrechts, Klüppelberg and Mikosch
(1997), Resnick (1997), Finkenstädt and Rootzén (2003) and Davis (2010).

The extension of these time series methods to the case of IV innovations is par-
ticularly challenging for at least two distinct reasons. First, under IV the asymptotic
distributions of estimators and statistics obtained from autoregressive and moving
average time series models are in general non-standard [in particular, they depend
on unknown nuisance parameters, such as the so-called “tail index”; see, for ex-
ample, Davis and Resnick (1985a)]. Second, the bootstrap techniques which are
frequently used to approximate the asymptotic distributions of these quantities in
the finite-variance case, tend not to be robust to infinite second-order moments and
require some modification. This is due to the fact that the bootstrap distributions
are dominated by sample extremes [Athreya (1987), Knight (1989)].

In the finite-variance case, sieve-based inference on linear stationary processes
is well understood and is based on fitting an autoregressive approximation whose
order increases with the sample size. Berk (1974) and Lewis and Reinsel (1985)
study the asymptotic distributions of the resulting sieve OLS estimators for univari-
ate and multivariate processes, respectively, while Kreiss (1997) and Paparoditis
(1996) demonstrate the asymptotic validity of the associated standard i.i.d. and
wild bootstrap sieve inference procedures. In this paper, we explore asymptotic and
bootstrap sieve-based methods of inference for stationary linear processes driven
by IV innovations, restricting our attention to ordinary least squares (OLS) esti-
mators. While other estimators, including M estimators [see, inter alia, Knight
(1987), and Davis, Knight and Liu (1992)], and estimators based on trimmed data
[Hill (2013), and references therein] can be more efficient than OLS [most notably
where the tail index is considerably below 2; see Calder and Davis (1998)], these
estimators are dominated by OLS in the finite variance case; see Maronna, Martin
and Yohai [(2006), page 269] for a comparison of M and OLS estimators. Impor-
tantly, OLS remains widely used by applied workers, especially in economics and
finance, and part of our contribution is to show how the small sample efficacy of
OLS-based methods can be considerably improved when the innovations are IV
using bootstrap methods.

For finite-order autoregression driven by i.i.d. IV errors, it has been established
that the OLS estimators of the autoregressive parameters are consistent but that
three possible types of asymptotic behavior can occur; see, inter alia, Hannan and
Kanter (1977) and Davis and Resnick (1985b, 1986). To illustrate this via a simple
example, consider the AR(1) process

Xt = βXt−1 + εt , t ∈ Z,



SIEVE-BASED INFERENCE 1469

where |β| < 1 and εt are symmetric i.i.d. in the domain of attraction of an α-stable
distribution (defined formally in Section 2) with tail index α ∈ (0,2). The large
sample behavior of the OLS estimate of β , denoted β̂ , depends on the unknown
distribution of {εt }. In particular, three possible cases arise:

CASE (i): If E|ε1|α = ∞, then there exists a sequence lT , slowly varying at infinity and de-
pending on the distribution of εt , such that

lT T 1/α(β̂ − β)
w→ 1 − β2

(1 − βα)1/α

S1

S0
,(1.1)

where S1 and S0 are independent α and α/2-stable random variables (r.v.’s), respectively; see
Davis and Resnick [(1986), page 557];

CASE (ii): If E|ε1|α < ∞ and limt→∞ P(|ε1ε2| > t)/P (|ε1| > t) = 2E|ε1|α , then there exists
a slowly varying sequence lT such that (1.1) holds but where S1 and S0 are now dependent α and
α/2-stable r.v.’s; see Davis and Resnick [(1985b), page 279];

CASE (iii): If E|ε1|α < ∞ and limt→∞ P(|ε1ε2| > t)/P (|ε1| > t) = ∞ (note that there are
no other possible values for this limit than 2E|ε1|α and ∞), then β̂ − β cannot be normalised
such that a non-degenerate limiting distribution obtains; see Davis and Resnick (1985b).

Our first contribution is to show that this asymptotic trichotomy carries over to
the general IV linear process case, thereby extending the range of available asymp-
totic theory for OLS sieve estimators to cover the case of i.i.d. IV innovations. In
doing so, we establish the consistency of the OLS sieve estimators and the rates at
which the order of the autoregressive approximation must increase with the sample
size for these results to hold. We also use these results to demonstrate the consis-
tency of two important estimators derived from the OLS sieve-based estimates,
namely estimates of the impulse responses and of the scale-free spectral density
function.

As the example above demonstrates, even with knowledge of the tail index, α,
asymptotic inference based on the OLS sieve estimator may not be possible and,
if it is, it will not be known which form of the asymptotic distribution should
be used. Our second contribution is then to investigate the usefulness of bootstrap
approximations to the distribution of the OLS sieve estimators in the IV case, com-
plementing the recent work of Kreiss, Paparoditis and Politis (2011) who highlight
the wide range of validity of autoregressive sieve bootstrap methods for the case
of finite-variance data.

Whilst standard i.i.d. bootstrap methods are inconsistent in the IV case, other
bootstrap methods can yield consistent inference for the case of the location param-
eter; these include the “m out of n” bootstrap [Arcones and Giné (1989)], a para-
metric bootstrap [Cornea-Madeira and Davidson (2015)], the permutation boot-
strap [LePage and Podgórski (1996)] and the wild bootstrap [Cavaliere, Georgiev
and Taylor (2013)]. Of these, the latter two preserve the sample extremes (even
asymptotically) and are therefore anticipated to lead to more concentrated ref-
erence distributions than the unconditional distribution estimated by the “m out
of n” and parametric bootstraps [see the numerical evidence in LePage (1992)],
and hence to deliver more powerful bootstrap tests. Moreover, issues surrounding
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sample length selection with the “m out of n” bootstrap and preliminary estima-
tion of the tail index and the asymmetry parameter with the parametric bootstrap
are avoided. For these reasons, our focus will be on the permutation bootstrap, the
wild bootstrap and a hybrid combination of the two.

In the context of the present problem, with the existence of asymptotic dis-
tributions not guaranteed in case (iii) above, we discuss consistency in terms of
the proximity between some conditional finite-sample distributions of the OLS
sieve estimate and their bootstrap counterparts. We show that the permutation and
hybrid bootstraps are consistent under general conditions (the latter provided the
innovations are symmetric), but that, in contrast to the case of finite variance in-
novations, the wild bootstrap is inconsistent unless an infeasible correction term is
added to the difference between the original and bootstrap sieve estimates. Monte
Carlo simulation results are presented which suggest that the permutation and hy-
brid bootstraps outperform the uncorrected wild bootstrap, “m out of n” bootstrap
and i.i.d. bootstrap procedures in terms of finite sample size properties (and the
latter two, also in terms of power). These results, consistent with the findings of
LePage (1992) and Cavaliere, Georgiev and Taylor (2013) for the location testing
problem, also show that the permutation, wild and hybrid bootstrap methods can
lead to considerable gains in the finite-sample precision of OLS-based inference
under IV, especially when the tail index is small, yet retain the superior properties
of OLS-based inference when the innovations have finite variance.

The plan of the paper is as follows. In Section 2, we detail our reference data
generating process (DGP) and introduce the autoregressive sieve approximation,
and associated OLS sieve estimators. In Section 3, we establish the large sample
properties of these estimators. Section 4 investigates the use of sieve bootstrap
methods. Results from a Monte Carlo study are reported in Section 5. An appli-
cation to impulse response functions is offered in Section 6. Main proofs are con-
tained in Section 7; additional theory and proofs are reported in the accompanying
supplement [Cavaliere, Georgiev and Taylor (2016)].

2. The DGP and sieve approximation. Suppose that

Xt =
∞∑
i=0

γiεt−i , t ∈ Z,(2.1)

is a stationary and invertible linear process with IV innovations. Specifically, the
following set of conditions is taken to hold.

ASSUMPTION 1. (a) The random variables εt (t ∈ Z) form an i.i.d. sequence
which is in the domain of attraction of an α-stable law, α ∈ (0,2); that is, the
tails of the distribution of εt exhibit the power law decay, P(|εt | > x) = x−αL(x),
for x > 0, with L(·) a slowly varying function at infinity, and limx→∞ P(εt >

x)/P (|εt | > x) =: p ∈ [0,1], limx→∞ P(εt < −x)/P (|εt | > x) = 1 − p. If
E|ε1| < ∞, it is assumed that Eε1 = 0.



SIEVE-BASED INFERENCE 1471

(b) There exists a δ ∈ (0, α) ∩ [0,1] such that
∑∞

i=0 i|γi |δ/2 < ∞.
(c) The power series γ (z) := ∑∞

i=0 γiz
i , where we set γ0 = 1 with no loss of

generality, has no roots on the closed complex unit disk.
(d) Its reciprocal 1 − ∑∞

i=1 βiz
i := (

∑∞
i=0 γiz

i)−1 satisfies
∑∞

i=0 |βi |δ < ∞,
where δ is as defined in (b).

REMARK 2.1. (i) The parameter α in part (a) of Assumption 1, which will be
treated as unknown in this paper, controls the thickness of the tails of the distri-
bution of εt , and, as such, is often referred to as the tail index, index of stability
or characteristic exponent; see, for example, Chapter XVII of Feller (1971). Mo-
ments E|εt |r are finite for r < α and infinite for r > α; the moment E|εt |α can be
either finite or infinite, discriminating between some results in Section 3. The tail
index is inherited by the limiting distribution of the appropriately normalised (and
for α = 1, also centred) sums of εt , belonging to the class of so-called stable dis-
tributions. Heavy tailed data are widely encountered in applied research; reported
estimates of α include 1.85 for stock returns [McCulloch (1997)], above 1.5 for
income, about 1.5 for wealth and trading volumes, about 1 for firm and city sizes
[all in Gabaix (2009), and references therein] and even below 1 for returns from
technological innovations [Silverberg and Verspagen (2007)].

(ii) Part (b) of Assumption 1 imposes strict stationarity on Xt , guarantees almost
sure convergence of

∑∞
i=0 γiεt−i (as well as some series in ε2

t ) and underlies the
asymptotics for sample correlations [Davis and Resnick (1985b), page 270, and
(1986), page 547]. This condition also implies that

∑∞
i=1 i2/δ|γi | < ∞. Therefore,

part (b) of Assumption 1 would also impose weak stationarity on Xt in the case
where the mean and variance of εt were both finite and constant. Part (c) ensures
that the MA polynomial, γ (z), is invertible, while part (d) implies, among other
things, that the infinite autoregressive series in (2.2) below converges absolutely
with probability one.

Under Assumption 1, Xt in (2.1) is strictly stationary and invertible and, equiv-
alently, solves the (potentially) infinite-order difference equation

Xt =
∞∑
i=1

βiXt−i + εt , t ∈ Z.(2.2)

The coefficients in (2.2) satisfy
∑∞

i=1 i2/δ|βi | < ∞ due to the analogous property
imposed on the {γi} in part (b) of Assumption 1; see Brillinger [(2001), pages 76–
77].

In this paper, we study inference based on a sieve approximation to (2.2); this
is obtained using the truncated autoregression

Xt =
k∑

i=1

βiXt−i + εt,k,(2.3)
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where the lag truncation parameter, k, is an increasing function of the sample size.
In (2.3), εt,k := εt + ρt,k where ρt,k := ∑∞

i=k+1 βiXt−i represents the sieve ap-
proximation error. The OLS estimates of the sieve parameters βk := (β1, . . . , βk)

′
in (2.3), given the sample observations (X1, . . . ,XT ), are given by β̂k :=
(Sk

00)
−1 ∑T

t=k+1 Xk
t−1Xt =: (β̂1, . . . , β̂k)

′, where Sk
00 := ∑T

t=k+1 Xk
t−1(X

k
t−1)

′ with
Xk

t−1 = (Xt−1, . . . ,Xt−k)
′.

3. Convergence results for OLS sieve estimators. Here, we establish the
large sample properties of the OLS estimators from the sieve regression (2.3) when
the DGP is a linear process driven by IV innovations, as in (2.1). We initially show
consistency of the OLS sieve estimators from (2.3). The usual Euclidean vector
norm is denoted by ‖·‖.

THEOREM 1. Let {Xt } be generated according to (2.1) under the conditions
of Assumption 1. Then, provided 1/k + k2/T → 0 as T → ∞, it follows that
‖β̂k − βk‖ = oP (1).

Having established the consistency properties of the OLS sieve estimators,
we now turn to studying the asymptotic distributions (where they exist) of the
OLS sieve estimators, demonstrating how the assumptions used so far need to be
strengthened to achieve finer results. We begin by stating a lemma which shows
how the asymptotic argument can be reduced to an analysis of the sample auto-
correlations. This lemma employs some additional notation that we introduce and
discuss next.

First, define aT := inf{x : P(|ε1| > x) ≤ T −1}. By part (a) of Assumption 1,
there exists a sequence lT , slowly varying at infinity, such that aT = T 1/αlT . For
the case where E|ε1|α < ∞ and limt→∞ P(|ε1ε2| > t)/P (|ε1| > t) = 2E|ε1|α , de-
fine ãT = aT ; otherwise, define ãT := inf{x : P(|ε1ε2| > x) ≤ T −1}. In the lat-
ter case ãT = aT l̃T for some l̃T , slowly varying at infinity, such that l̃T → ∞ as
T → ∞; see Davis and Resnick [(1985b), page 263, and (1986), page 542].

Second, define the infinite Toeplitz matrix � := (r|i−j |)∞i,j=0 formed from the
scale-free autocovariances, r|i−j | := ∑∞

s=0 γsγs+|i−j |. It is a standard fact that �

generates a bounded operator on the space 	2 of square summable sequences en-
dowed with the Euclidean metric; see Theorem 1.9 of Böttcher and Silbermann
[(1999), page 10]. Moreover, under Assumption 1, the operator generated by � is
invertible; see Theorem 1.15 of Böttcher and Silbermann [(1999), page 18]. We
denote the matrix of the inverse operator with respect to the canonical base of 	2
by �−1.

Finally, we denote by L a generic m × ∞ selection matrix of constants, with
(i, j)th element lij , and let Lk := (L·1, . . . ,L·k) denote the matrix formed from
the first k columns of L. The matrix L, and hence Lk , will determine the linear
combination(s) of the coefficients, βj , j = 1,2, . . . from (2.2) we are interested
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in conducting inference on, via constructing confidence intervals or, equivalently,
testing hypotheses of the generic form Lβ = l, where β := (β1, β2, . . .)

′ is the
∞ × 1 vector of AR coefficients from (2.2) and l is a m × 1 vector of constants.
For example: inference on β1 would require L = (1,0,0, . . .); inference involving
the sum of β1 and β2 would require L = (1,1,0, . . .); a joint simple hypothesis on
β1 and β2 would require the first row of L to be as in the first example above and
the second row to be (0,1,0, . . .). We are now in a position to state our preparatory
lemma.

LEMMA 1. Let the conditions of Theorem 1 hold, and assume further that
aT

∑∞
i=k+1 |βi | → 0 as T → ∞. Also assume that there exists some δ′ ∈ (δ, 2α

2+α
),

where δ is as defined in part (a) of Assumption 1, such that the selection matrix L

has δ′-summable rows under linear weighting (i.e., such that
∑∞

j=1 j |lij |δ′
< ∞,

i = 1, . . . ,m). Then, provided 1/k + k3/T → 0 as T → ∞, with the additional
condition that k is not a slowly varying function of T for the particular value
α = 1, it holds that∥∥∥∥∥Lk

{
(β̂k − βk) − dT

} − σ−2
T

∞∑
j=1

Aj

T∑
t=k+1

(εt−j εt − μT )

∥∥∥∥∥ = oP

(
a−2
T ãT

)
,

where: dT := (T −k)γ (1)μT (Sk
00)

−1uk with μT := E(ε1ε2I{|ε1ε2|≤ãT }) and uk a k-
dimensional vector of ones; σ 2

T := ∑T
t=k+1 ε2

t ; finally, Aj ∈ R
m (j ∈ N) are given

by Aj := ∑j
i=1 L(�−1)·iγj−i .

REMARK 3.1. (i) The analogue of our condition aT

∑∞
i=k+1 |βi | → 0 in the

finite-variance case is T 1/2 ∑∞
i=k+1 |βi | → 0; see Berk (1974) and Lewis and Rein-

sel (1985). Both conditions involve the order of magnitude of the (possibly cen-
tred) error sums

∑T
t=1 εt , respectively, aT and T 1/2 for infinite and finite variance.

Our condition entails that k is, in general, required to grow at a faster rate the
smaller is α. However, in the important special case of a finite-order autoregres-
sion, k is only required to be at least as large as the true autoregressive order, while
in the case where the βi , i = 1,2, . . . exhibit exponential decay (as happens for
finite-order ARMA processes), any power rate of the form k = T r [r ∈ (0,1)] is
sufficient uniformly in α. As regards the summability condition on the rows of L,
again a similar condition is imposed on L in the finite-variance case; see Theo-
rem 2(iv) of Lewis and Reinsel (1985).

(ii) An important implication of the approximation given in Lemma 1 is that the
large sample behavior of the OLS sieve estimator is determined by the same three
cases for ã−1

T

∑T
t=k+1(εt−j εt − μT ) studied in Davis and Resnick (1985b, 1986)

as in the finite-order autoregressive setup discussed in the Introduction. Cases (i)
and (ii), where an asymptotic distribution exists, will be detailed in Theorem 2
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below. Under case (iii), and as in Davis and Resnick (1985b), the OLS sieve es-
timators cannot be normalised such that a non-degenerate limiting distribution is
obtained.

(iii) Given part (a) of Assumption 1 and the assumption of δ′-row-summability
of L under linear weighting, the Aj (j ∈ N) are also row-wise δ′-summable under
linear weighting; that is,

∑∞
j=1 j |Aij |δ′

< ∞, i = 1, . . . ,m (see Section 7.2). This
property is sufficient for the series in Lemma 1 and Theorem 2 to be a.s. conver-
gent, and hence, for David and Resnick’s [(1985b) and (1986)] asymptotic theory
for sample autocovariances to be applied in Theorem 2 below. Notice that the up-
per bound on δ′ is used to control the convergence rate of the quantity Lk�

−1
k to

L�.

We now provide in Theorem 2 the asymptotic distribution of the OLS sieve
estimator from (2.3) under cases (i) and (ii) of the three possible cases outlined in
Section 1.

THEOREM 2. Let the conditions of Lemma 1 hold, including the rate condi-
tions on k imposed therein. Then we have the following:

CASE (i): If E|εt |α = ∞, then

a2
T ã−1

T Lk

{
(β̂k − βk) − dT

} w→ S−1
∞∑

j=1

AjSj ,(3.1)

where {Sj }∞j=1 is an i.i.d. sequence of α-stable r.v.’s and S is an a.s. positive α/2-
stable r.v. independent of {Sj }∞j=1, with remaining notation as in Lemma 1;

CASE (ii): If E|εt |α < ∞ and lim inft→∞ P(|ε1ε2| > t)/P (|ε1| > t) = 2E|ε1|α ,
then (3.1) holds with a2

T ã−1
T = aT , and where {Sj }∞j=1 and S are as described

in case (i) except that they are now dependent with joint distribution as given in
Theorem 3.5 of Davis and Resnick (1985b).

REMARK 3.2. (i) The requirement on the lag truncation parameter that
1/k + k3/T → 0, as T → ∞, is standard in analogous theorems in the finite-
variance case; see, inter alia, Berk [(1974), Theorem 6] and Lewis and Reinsel
[(1985), Theorem 2]. However, this rate condition can be weakened in our setting
to 1/k + kmax{2,1+α}+ζ /T → 0, as T → ∞, for some ζ > 0. Clearly, this condi-
tion becomes weaker the further α is from 2, while approaching the usual k3/T

rate as α approaches 2. This weaker rate entails that k is allowed to grow at a faster
rate the smaller is α.

(ii) If the distribution of {ε1} is symmetric (about zero), then so is the distri-
bution of ε1ε2, and the centering term dT in (3.1) will be zero. If the distribution
of {ε1} is asymmetric and α ∈ (0,1) ∪ (1,2), then the centering of (β̂k − βk) can
be omitted but at the cost of a location shift in Sj . In the case where α ∈ (0,1),
we have that T ã−1

T μT → (2p̃ − 1) α
1−α

as T → ∞, by Karamata’s theorem [see



SIEVE-BASED INFERENCE 1475

Feller (1971), page 283], where p̃ := p2 + (1 − p)2 [see Assumption 1(a)], and
so omitting dT requires Sj to be replaced by S̃j := Sj + (2p̃ − 1) α

1−α
in (3.1). For

α ∈ (1,2), omitting dT requires Sj to be replaced by Sj −ESj = Sj + (2p̃−1) α
1−α

again. The centering cannot in general (other than in the symmetric case) be omit-
ted when α = 1.

(iii) If the distribution of {ε1} is symmetric (about zero), then so is the distribu-
tion of Sj . In this case the ith component of the limit distribution in (3.1) is equal
in distribution to (

∑∞
j=1 |Aji |α)1/αS1/S. This is analogous to the finite-variance

case, where the same holds with α = 2, S1 standard Gaussian and S = 1. If a
consistent estimator α̂ of α were available, then (

∑∞
j=1 |Aji |α)1/α could be con-

sistently estimated. If a Studentising statistic growing at the rate of a−2
T ãT were

available (which is in itself an open question, as pointed out by a referee), then
an asymptotic test for one-dimensional restrictions could be constructed by ref-
erence to the quantity S1/S. However, and in contrast to the finite-variance case,
it does not seem possible to find a full-rank linear transformation of the limit in
(3.1) which depends on α alone, precluding a similar simplification of the joint
asymptotic test of several restrictions.

The asymptotic results given in this section highlight the infeasibility of classi-
cal asymptotic inference for testing linear hypotheses (or constructing confidence
intervals) concerning the elements of β . In particular, as Remark 3.2(ii) makes
clear, even under the special case discussed there inference would still not be fea-
sible without knowledge of which of cases (i) and (ii) held [and indeed, that it
was one of these cases, rather than case (iii) which held]. An obvious alternative
therefore, which we consider in the next section, is to explore bootstrap methods
of inference, which may be thought of as a device for approximating the finite
sample distributions of the test statistics involved. As in practice it is rarely clear
if the data exhibit IV, it will be desirable to have available bootstrap procedures
that are valid for testing hypotheses concerning the parameters of linear processes
driven either by finite variance or IV innovations.

4. Bootstrap methods. In this section, we propose and discuss three boot-
strap methods of inference for IV linear processes. First, we consider the wild boot-
strap (based on random sign changes in the residuals), which for the benchmark
problem of inference on the location has been shown to be robust to errors with
symmetric IV distributions; see Cavaliere, Georgiev and Taylor (2013). LePage
(1992) also shows that a wild bootstrap based on random signs can yield very sig-
nificant improvements in precision since it approximates a conditional version of
the test statistic’s distribution. Importantly for precision, in the IV case the ran-
domness due to conditioning remains in the limiting distribution of the bootstrap
statistic, in contrast to what happens in the finite-variance case. An alternative to
the wild bootstrap, which approximates a different conditional distribution of the
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test statistic with asymptotic randomness, is the permutation bootstrap proposed
by LePage and Podgorski (1996) in the context of regressions with fixed regres-
sors and IV errors. Unlike the wild bootstrap, the permutation bootstrap does not
require the assumption of distributional symmetry. Finally, we also consider a hy-
brid of these two, which we term the permuted wild bootstrap, where the residuals
are permuted and their signs drawn randomly.

In the problem of inference on the location [Cavaliere, Georgiev and Tay-
lor (2013)], a particularity of the wild bootstrap statistic used is permutation-
invariance. Only two of the three bootstrap schemes outlined above will deliver
statistics which have permutation-invariant distributions in the present setting and
it will turn out to matter for the asymptotic properties of the bootstrap approxi-
mation. Specifically, unlike the location case, here bootstrap statistics computed
by randomly changing the signs of the residuals (as is done with the wild boot-
strap) are not permutation invariant; they are used to approximate the distribu-
tion of the test statistics conditional on (essentially) {|εt |}Tt=k+1 and this distri-
bution changes when the elements in this sequence are reshuffled. To obtain a
permutation-invariant reference distribution, the residuals need to be permuted
explicitly, resulting in an approximation to the distribution of test statistics con-
ditional on (essentially) the order statistics of {εt }Tt=k+1 and {|εt |}Tt=k+1 for the
permutation bootstrap and the permuted wild bootstrap, respectively. Moreover,
because random permuting effectively enlarges the reference population, the ref-
erence distributions for the permutation bootstrap and the permuted wild bootstrap
can be expected to be more dispersed than that of the pure wild bootstrap, illus-
trating a cost of achieving permutation invariance.

4.1. Bootstrap implementations. In Algorithm 1 below, we formalise the three
bootstrap schemes that we will analyse in this section. To simplify notation and
ease exposition, we shall assume that L and Lk are 1 × ∞ and 1 × k, respectively,
corresponding to the case of a single linear restriction of the form Lβ = l. More-
over, we shall not Studentise the test statistics. Corresponding results for Wald-type
tests of multiple restrictions will be discussed in Remark 4.2(ix).

ALGORITHM 1. Step (i): Estimate (2.3) by OLS to yield the sieve estimates,

β̂i , i = 1, . . . , k, and the corresponding residuals, ε̂t := Xt − β̂
′
kXk

t−1, t = k +
1, . . . , T .

Step (ii): Generate the bootstrap errors ε∗
t := ε̂π(t)wt , t = k + 1, . . . , T , where

two options are considered for each of π and {wt }Tt=k+1, namely: (π id) π(t) = t ,
that is, π is the identity function on {k + 1, . . . , T }, or (πR) π is a uniformly dis-
tributed random permutation of {k+1, . . . , T }, and (w1) wt = 1 (t = k+1, . . . , T ),
or (wR) wt are i.i.d. Rademacher r.v.’s (wt = ±1 each occurring with probability
1
2 ). In all options, π and {wt }Tt=k+1 are independent of each other and the data.
The combinations (π id,wR), (πR,w1) and (πR,wR) correspond respectively to
the wild bootstrap, permutations bootstrap and permuted wild bootstrap.
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Step (iii): Construct the bootstrap sample using the recursion

X∗
t :=

⎧⎪⎨
⎪⎩

Xt, t = 1, . . . , k,
k∑

i=1

β̂iX
∗
t−i + ε∗

t , t = k + 1, . . . , T
(4.1)

and define the bootstrap product moment matrices S∗k
00 := ∑T

t=k+1 X∗k
t−1(X

∗k
t−1)

′
and S∗k

0ε := ∑T
t=k+1 X∗k

t−1ε
∗
t with X∗k

t−1 := (X∗
t−1, . . . ,X

∗
t−k)

′. The bootstrap ana-

logue of the OLS sieve estimator, β̂k , is β̂
∗
k := (S∗k

00 )−1 ∑T
t=k+1 X∗k

t−1X
∗
t .

Step (iv): Define the bootstrap statistic Lk(β̂
∗
k − β̂k) = Lk(S

∗k
00 )−1S∗k

0ε and use
its distribution conditional on the data to approximate an appropriate conditional
distribution of Lk(β̂k − βk).

REMARK 4.1. (i) As is standard, the distribution of the bootstrap statistic
Lk(β̂

∗
k − β̂k) conditional on the data is approximated by numerical simulation.

This is achieved by generating B (conditionally) independent bootstrap statis-

tics, Lk(β̂
∗(b)

k − β̂k), b = 1, . . . ,B , computed as in Algorithm 1 above, with B

large. The respective B simulated quantiles are then used as approximations for
the quantiles of Lk(β̂k − βk). For instance, in the case where inference is on the
null hypothesis H0 : Lβ = l against the (one sided) alternative H1 : Lβ > l, the
bootstrap p-value associated to the original test statistic Lkβ̂k − l is computed as

p̃∗
T := B−1 ∑B

b=1 I(Lk(β̂
∗(b)

k − β̂k) > Lkβ̂k − l).
(ii) Notice that in the implementation of the bootstrap procedures proposed in

Algorithm 1, deterministic normalising sequences (such as T 1/2 or a2
T ã−1

T as in
Theorem 2), are not required when applied simultaneously to the original and
bootstrap statistics, as bootstrap test outcomes are invariant to scaling. This ex-
empts one from the need to decide on an appropriate normalising sequence in ap-
plications and, in particular, is important for the robustness of bootstrap tests based
on the finite-variance normalisation T 1/2 to the presence of IV. Nevertheless, nor-
malisation is necessary in the asymptotic analysis of the bootstrap to prevent the
statistics at hand from vanishing as T diverges.

4.2. Asymptotic theory for the bootstrap. The next theorem, in the style of
LePage and Podgorski (1996), characterizes the large sample properties of the
three bootstrap methods introduced in Algorithm 1. It concerns the proximity (in
the Lévy metric ρL) of finite-sample distribution functions as T → ∞. Specifi-
cally, for a given η > 0, η-proximity of two cdfs F and F ∗ at a point x is evaluated
by means of the indicator

IF,F ∗
η (x) := I

(
F ∗(x − η) − η ≤ F(x) ≤ F ∗(x + η) + η

)
.
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Then, for F a (conditional) distribution function of a2
T ã−1

T Lk(β̂
∗
k − βk) and F ∗

a (conditional) distribution function of the bootstrap statistic a2
T ã−1

T Lk(β̂
∗
k −β̂k),

we will provide sufficient conditions such that the Lévy distance between F and
F ∗ vanishes in probability as T diverges:

ρL

(
F,F ∗) P→ 0, ρL

(
F,F ∗) := inf

{
η > 0 : ∀x ∈ R, IF,F ∗

η (x) = 1
}
.

In the theorem, we will discuss two forms of the bootstrap statistic. Along with
Lk(β̂

∗
k − β̂k), which is the usual bootstrap analogue of Lk(β̂k − βk), we will

consider an infeasible bootstrap statistic of the form Lk(β̂
∗
k − β̂k + �β̂

∗
k), where

�β̂
∗
k := (S∗k

00 )−1{∑T
t=k+1 wtX∗k

t−1(X
k
t−1)

′}(β̂k −βk) is a correction term. Although
this statistic cannot be computed in practice, it allows us to shed some light on
the properties of the wild bootstrap approximation in the present framework. The
statistics are normalised as in Lemma 1 and Theorem 2; see also Remark 4.2(viii)
below.

THEOREM 3. Let {Xt } be generated according to (2.1) under Assumption 1.
Let L be such that

∑∞
i=1 |L·i |δ < ∞, where δ is as given in Assumption 1. More-

over, let F ∗ and F ∗,� denote the bootstrap distribution functions conditional on
the data of, respectively, a2

T ã−1
T Lk(β̂

∗
k − β̂k) and a2

T ã−1
T Lk(β̂

∗
k − β̂k + �β̂

∗
k).

For distribution functions viewed as stochastic processes on the probability space
where {εt }∞t=−∞ are defined, and provided k is such that 1/k + k5/T → 0 and
aT

∑∞
i=k+1 |βi | → 0 as T → ∞, it holds that:

(a) If {εt } is symmetrically distributed, then ρL(F ∗,�,F |ε|) → 0 for the wild
bootstrap, (π id,wR), where F |ε| denotes the distribution function of a2

T ã−1
T ×

Lk(β̂k − βk) conditional on {|εt |}Tt=−∞.
(b) Provided k1+2/α+ζ /T → 0 for some ζ > 0 if α ≤ 1

2 , then ρL(F ∗,F e) → 0
for the permutations bootstrap, (πR,w1), where F e denotes the distribution func-
tion of a2

T ã−1
T Lk(β̂k − βk) conditional on {εt }kt=−∞ and the order statistics of

{εt }Tt=k+1.
(c) If {εt } is symmetrically distributed, and provided k1+2/α+ζ /T → 0 for some

ζ > 0 if α ≤ 1
2 , then ρL(F ∗,F |e|) → 0 for the permuted wild bootstrap, (πR,wR),

where F |e| denotes the distribution function of a2
T ã−1

T Lk(β̂k − βk) conditional on
{|εt |}kt=−∞ and the order statistics of {|εt |}Tt=k+1.

REMARK 4.2. (i) The result in part (a) of Theorem 3 shows that an asymp-
totically exact (in the Lévy metric) approximation of F |ε| by the wild bootstrap
requires the addition of the correction term, �β̂

∗
k , to β̂

∗
k − β̂k . In contrast, parts (b)

and (c) establish that the permutation bootstrap and the permuted wild bootstrap
approximations of, respectively, F e and F |e| are consistent (in the Lévy metric)
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with no need for a correction. Some further clarifications in regard to this are given
in Remark 4.2(iv)–(vii) below.

(ii) Because Lβ = Lkβk + o(a−2
T ãT ) under the conditions of Theorem 3, the

results there hold with Lk(β̂k −βk) replaced by Lkβ̂k −Lβ . Hence, the corrected
wild, permutation and permuted wild bootstraps always approximate a (condi-
tional) distribution of τ := a2

T ã−1
T (Lkβ̂k − Lβ) for the true Lβ . Under the null

hypothesis H0 : Lβ = l, the bootstraps approximate a distribution of the test statis-
tic τ 0 := a2

T ã−1
T (Lkβ̂k − l) since τ 0 = τ . On the other hand, if H0 does not hold,

then τ 0 = τ + a2
T ã−1

T (Lβ − l) diverges at rate a2
T ã−1

T , while it can be seen that
(under the conditional probability measures of Theorem 3) τ , and hence, its con-
sistent distributional approximations by the bootstrap, have lower orders of mag-
nitude. This implies consistency of the bootstrap tests of H0. The test based on the
uncorrected wild bootstrap is consistent for similar reasons.

(iii) Although in the case where α ≤ 1
2 additional rate conditions have been

placed on k in parts (b)–(c) of Theorem 3 in order to obtain the stated results
in a reasonably tractable way, we conjecture that these extra conditions could be
weakened. However, given the very limited empirical relevance of distributions
with small α, we have not attempted to do so.

(iv) The use of the correction term �β̂
∗
k is asymptotically equivalent to using the

true εt,kwt instead of ε∗
t = ε̂twt in the generation of the bootstrap data X∗

t . The cor-
rection term can only be calculated if β is completely specified under the null hy-
pothesis [specifying Lβ alone is not enough as (S∗k

00 )−1{∑T
t=k+1 wtX∗k

t−1(X
k
t−1)

′}
is not asymptotically equivalent to a scalar matrix]. Therefore, it is of limited prac-
tical interest. Nevertheless, it can be calculated in a simulation experiment in order
to evaluate its effect on the finite-sample performance of the bootstrap, as we shall
do in Section 5 below.

(v) Under IV, without permuting the residuals, the term �β̂
∗
k is not asymptoti-

cally negligible compared to β̂k − βk . In fact, conditionally on the data, the terms
S∗k

00 and
∑T

t=k+1 wtX∗k
t−1(X

k
t−1)

′ have the same order of magnitude in probability

as the squared extremes of the data, and so �β̂
∗
k has the same order of magnitude

as β̂k − βk .
(vi) The term �β̂

∗
k is not related to the fact that we do not centre the residu-

als, nor to the approximate nature of the autoregressions we estimate. The same
correction would be necessary even for an i.i.d. process with IV errors (γi = 0,
i ∈ N) to which an exact finite-order autoregression is fitted (say, with k = 1 and
coefficient β). Without permuting, in that (k = 1) case

�β∗ = β̂

(
T∑

t=3

ε2
t−1

)−1(
T∑

t=3

ε2
t−1wt−1wt

)
+ oP ∗(β̂)(4.2)
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in P -probability, where P ∗ denotes probability conditional on the data. Then, in
the sense of weak convergence of random measures,

L
(∑T

t=3 ε2
t−1wt−1wt∑T

t=3 ε2
t−1

∣∣∣∣{εt }T −1
t=2

)
w→ L

(∑∞
i=1 τ

−2/α
i δi∑∞

t=1 τ
−2/α
i

∣∣∣∣{τi}∞i=1

)

with τi (i ∈ N) distributed as the arrival times of a Poisson process with inten-
sity one, and {δi} an i.i.d. sequence of Rademacher r.v.’s jointly independent of
{τi}i∈N [LePage, Woodroffe and Zinn (1981)]. Rather, the correction is made
necessary by the IV of the regressors. This is in contrast to the case where∑T

t=3 ε4
t−1(

∑T
t=3 ε2

t−1)
−2 = oP (1), for example, when Eε4

1 < ∞.
(vii) In the context of Remark 4.2(vi), if a random permutation, say π , is applied

to the residuals, then the following expansion holds in place of (4.2):

�β∗ = β̂

(
T∑

t=3

ε2
t−1

)−1(
T∑

t=3

επ(t−1)επ(t)−1wt−1wt

)
+ oP ∗(β̂)(4.3)

in P -probability. Because π(t − 1) �= π(t) − 1 with high probability, the random
permutation avoids, with high probability, the squaring of errors in the numerator
of �β∗, in contradistinction to (4.2). Intuitively, since the cumulation of mixed
products of errors is of lower stochastic magnitude order than the cumulation of
squared errors, the order of magnitude of the leading term in expansion (4.3) is
lower than in (4.2). A rough but sufficient formal estimate confirming this is

E∗
∣∣∣∣
∑T

t=3 επ(t−1)επ(t)−1wt−1wt∑T
t=3 ε2

t−1

∣∣∣∣ ≤ 1

T − 3

(
∑T

t=1 |εt |)2∑T
t=3 ε2

t−1

= oP (1),

where
∑T

t=3 ε2
t−1 = OP (a2

T ), and
∑T

t=1 |εt | is OP (aT ), OP (T lT ) and OP (T ), re-
spectively, for α ∈ (0,1), α = 1 and α ∈ (1,2), with lT slowly varying at infinity.
Hence, by Markov’s inequality, �β∗ = oP ∗(β̂) in P -probability and no correction
of the bootstrap statistic is necessary.

(viii) Theorem 3 employs normalisation by the rates from the unconditional
analysis of mean corrected estimators (see Lemma 1 and Theorem 2), but does not
employ the mean correction itself. Omitting the mean correction may affect the or-
der of magnitude of the estimators (by a multiplicative slowly varying factor) only
for the case of asymmetric errors with α = 1 [see Remark 3.2(iii)]. The bootstrap
approximations remain valid also if the statistics are divided by this extra factor
because the conclusions of Theorem 3 can be shown to hold also if the normalisa-
tion sequence a2

T ã−1
T is replaced by a1+ε

T for small ε > 0 (for the wild bootstrap,
under the extra condition that a1+ε

T

∑∞
i=k+1 |βi | → 0 as k → ∞).

(ix) To test m linear restrictions on β , written as Lβ = l, where L satisfies the
assumptions of Lemma 1, a Wald statistic can be used:

W := T σ̂−2
T (Lkβ̂k − l)′

[
Lk

(
Sk

00
)−1

L′
k

]−1
(Lkβ̂k − l),
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where σ̂ 2
T := ∑T

t=k+1 ε̂2
t . Critical values from conditional distributions of W [with

the three conditioning options as in parts (a)–(c) of Theorem 3] can be approxi-
mated using the bootstrap distribution of the bootstrap counterparts (resp., feasible
and infeasible),

W ∗ := T
(
σ ∗2

T

)−1(
β̂

∗
k − β̂k

)′
L′

k

[
Lk

(
S∗k

00
)−1

L′
k

]−1
Lk

(
β̂

∗
k − β̂k

)
,

W ∗
� := T

(
σ ∗2

T

)−1(
β̂

∗
k − β̂k + �β̂

∗
k

)′
L′

k

[
Lk

(
S∗k

00
)−1

L′
k

]−1
Lk

(
β̂

∗
k − β̂k + �β̂

∗
k

)
,

where σ ∗2
T is the sum of squared residuals for the bootstrap data. The proper-

ties of the bootstrap approximation are analogous to those stated in Theorem 3
for the univariate non-Studentised statistics. More specifically, in the supplement
[Cavaliere, Georgiev and Taylor (2016)] we show that if a2

T ã−1
T Lk(β̂k − βk),

a2
T ã−1

T Lk(β̂
∗
k − β̂k) and a2

T ã−1
T Lk(β̂

∗
k − β̂k +�β̂

∗
k) are replaced by a4

T ã−2
T T −1W ,

a4
T ã−2

T T −1W ∗ and a4
T ã−2

T T −1W ∗
�, respectively, the conclusions of Theorem 3 re-

main valid, provided the row sequences of L decay sufficiently fast (cf. Lemma 1).

5. Finite sample properties. We now present results from a small Monte
Carlo simulation study comparing the finite sample size and power properties of
the three bootstrap procedures from Algorithm 1, together with a standard i.i.d.
bootstrap, an “m out of n” bootstrap and a non-bootstrap test which uses a crit-
ical value from the standard Gaussian distribution. Throughout the section, the
wild bootstrap is based on centred residuals, as we found that centring tends to
attenuate the size distortions due to the inconsistency [see Remark 4.2(i)] of this
bootstrap method. As a benchmark for comparison, results for the infeasible cor-
rected version of the wild bootstrap discussed in Remark 4.2(iv) are also included
in the cases of symmetric errors (where the correction is asymptotically valid). The
reference DGP is the MA(1)

Xt = εt + γ εt−1, t = 1, . . . , T(5.1)

with γ ∈ {±0.4,0} and T ∈ {100,500}. The errors {εt }Tt=0 are i.i.d. draws from
one of the following stable distributions: (1) symmetric with α = 1 (Cauchy);
(2) asymmetric with α = 1 and asymmetry parameter 0.75; (3) symmetric with
α = 1.5; (4) asymmetric with α = 1.5 and asymmetry parameter 0.75. As a bench-
mark case, we also include: (5) the standard Gaussian distribution (α = 2).

We evaluate the finite-sample size and power properties of tests for the null hy-
pothesis H0 : β1 = β̄ against the two-sided alternative H1 : β1 �= β̄ in the context
of the sieve autoregression (2.3) with k chosen such that the condition in Theo-
rem 3 that 1/k + k5/T → 0 as T → ∞ is satisfied. The same value of k is used
in step (iii) of Algorithm 1. Results are reported for the (two-sided) Studentised
t-type version of the bootstrap tests [see Remark 4.2(ix)] at the nominal 5% level
(tests based on non-Studentised statistics behave very similarly and so are not re-
ported). The results are based on 10,000 Monte Carlo and B = 1499 bootstrap
repetitions.
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TABLE 1
Empirical rejection frequencies under the null hypothesis: DGP (5.1)

γ −0.4 0.0 0.4

Case 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Panel A: T = 100
Wild 6.4 6.1 6.7 7.0 5.6 6.3 6.4 6.7 7.1 5.5 6.1 5.8 6.6 6.9 5.4
Wild (corr.) 3.5 − 2.8 − 3.2 3.5 − 2.9 − 3.3 3.6 − 2.8 − 3.4
Perm.-Wild 5.2 6.0 4.5 5.1 4.8 5.1 5.8 4.6 4.8 4.9 5.1 5.6 4.7 4.8 4.9
Permutation 5.2 6.1 4.7 5.2 5.0 5.1 5.9 4.7 5.0 5.0 5.2 5.8 4.8 5.0 5.0
i.i.d. 3.7 4.4 3.8 4.1 4.7 3.8 4.4 4.6 4.0 4.8 3.8 4.4 4.0 4.1 4.9
m/n 3.3 4.0 3.3 3.4 3.9 3.3 3.8 3.3 3.4 4.4 3.3 3.7 3.4 3.6 3.9
tN 3.7 4.4 4.6 4.7 6.9 3.6 4.2 4.6 4.7 6.8 3.7 4.0 4.6 4.7 6.7

Panel B: T = 500
Wild 5.8 6.0 7.2 7.9 4.7 5.9 5.9 7.2 8.0 4.8 5.8 5.6 7.2 8.0 4.8
Wild (corr.) 4.2 − 4.4 − 4.3 4.3 − 4.4 − 4.3 4.1 − 4.3 − 4.3
Perm.-Wild 4.7 6.9 5.1 5.0 4.8 4.8 6.8 5.1 4.9 4.8 4.7 6.5 5.0 4.9 4.8
Permutation 4.7 6.1 4.9 5.3 4.7 4.9 6.2 4.9 5.2 4.6 4.7 5.9 4.9 5.1 4.7
i.i.d. 2.8 3.7 4.0 3.8 4.6 3.0 3.8 4.0 3.8 4.6 2.9 3.4 4.0 3.9 4.7
m/n 2.9 3.9 3.9 3.7 4.4 2.9 4.0 3.9 3.7 4.4 2.9 3.5 3.9 3.6 4.4
tN 2.4 3.5 3.6 3.5 5.0 4.0 3.4 3.6 3.4 5.0 2.5 3.0 3.7 3.4 5.0

Notes: (i) Tests of H0 : β1 = β̄ with β̄ = γ under the null hypothesis. (ii) “Wild”, “Perm.-Wild”, “Per-
mutation”, “i.i.d.”, and “m/n”, denote the wild, permuted wild hybrid, permutation, i.i.d. and “m out
of n” bootstraps, respectively, based on Studentised tests; (iii) “tN ” denotes the (non-bootstrapped)
Studentised test based on standard Gaussian critical values; (iv) “Wild (corr.)” indicates the infea-
sible wild bootstrap with the correction term included, see Remark 4.2(iv); (v) the lag truncation in
both the sieve regression (2.3) and its bootstrap analogue is set to k = 25T 1/5/ lnT �; the size of the
“m out of n” bootstrap samples is set to m = 3T/ lnT �.

Empirical rejection frequencies (ERFs) under the true null hypothesis, H0 : β1 =
γ , are reported in Table 1. The results for stable symmetric cases (1) and (3) sug-
gest that the permutation and hybrid bootstraps outperform the wild bootstrap, “m
out of n” bootstrap and i.i.d. bootstrap procedures as well as the tN test in terms of
finite-sample size control. The same observation can be made for the asymmetric
stable cases (2) and (4), although here we do observe a degree of oversizing for
the hybrid bootstrap in case (2) when T = 500 (recall that the hybrid bootstrap
was not shown to be theoretically valid under asymmetry). As expected on theo-
retical grounds, the wild bootstrap test under cases (1)–(4) is oversized, with size
distortions appearing to increase slightly, other things being equal, as the sample
size is increased. Notice also that the infeasible corrected wild bootstrap appears
to, if anything, overcorrect in small samples. Under case (5), where the errors are
Gaussian, all of the procedures are asymptotically valid and little is seen between
them, save to note that the “m out of n” bootstrap remains moderately undersized.
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TABLE 2
Empirical rejection frequencies under the alternative hypothesis

β̄ −0.1 0.1

Case 1 2 3 4 5 1 2 3 4 5

Panel A: T = 100
Wild 62.5 68.9 32.3 29.5 15.2 62.4 52.1 33.2 33.5 15.2
Wild (corr.) 62.9 − 30.1 − 11.2 63.9 − 29.2 − 10.9
Perm.-Wild 31.3 38.3 19.2 19.5 14.1 31.3 24.3 18.1 18.4 13.7
Permutation 31.3 38.9 19.2 20.1 14.4 31.0 24.2 18.4 19.0 14.0
i.i.d. 7.7 12.9 11.3 12.5 14.1 7.7 4.2 10.6 9.7 13.4
m/n 6.4 11.3 9.7 10.9 12.1 6.3 3.4 8.9 7.9 11.7
tN 7.5 13.0 12.8 13.8 17.7 7.3 3.9 12.5 11.4 17.5

Panel B: T = 500
Wild 94.7 98.0 83.2 84.9 59.4 95.1 89.6 83.3 80.4 58.6
Wild (corr.) 95.7 − 83.3 − 58.0 95.2 − 82.9 − 58.4
Perm.-Wild 91.7 97.5 75.8 74.7 58.7 91.2 80.8 75.1 74.4 59.2
Permutation 91.8 97.2 75.4 75.3 58.9 91.1 78.8 74.9 74.9 59.1
i.i.d. 89.9 96.0 73.0 71.6 58.4 89.1 71.9 72.1 72.0 58.9
m/n 90.8 96.8 72.0 69.8 57.4 89.9 74.4 71.0 70.7 57.8
tN 84.6 96.1 67.1 64.4 59.9 83.4 63.6 65.7 67.0 60.1

Notes: (i) Tests of H0 : β1 = β̄ under the alternative hypothesis H1 : β1 = γ = 0. See also notes to
Table 1.

ERFs under the false null hypotheses H0 : β1 = β̄ for β̄ ∈ {−0.1,0.1} when in
fact γ = 0 are provided in Table 2. The reported results show that under cases (1)–
(4) the permutation and hybrid bootstraps, and to an even greater extent, the wild
bootstrap, can lead to significantly more powerful tests than their i.i.d. and “m out
of n” bootstrap counterparts, as well as the tN test. Power gains are particularly
apparent for T = 100 and are considerably greater for α = 1 vis-à-vis α = 1.5,
other things equal. These results are consistent with previous evidence in the liter-
ature [LePage (1992); see also the first two paragraphs of Section 4] documenting
that in the IV case, inference based on conditional distributions tends to be more
precise relative to unconditional inference. The precision gains decrease when α

approaches 2, as the conditional distributions get closer to the corresponding un-
conditional distributions (at least in large samples).

It should be recalled, however, that the wild bootstrap is not size controlled,
and this is the price one pays for the additional finite sample power it dis-
plays relative to the permuted and hybrid bootstraps under cases (1)–(4). Tak-
ing these two aspects of the wild bootstrap together, these results are arguably
in accordance with a strand in the recent literature on the possible finite-sample
advantages of inconsistent bootstrap procedures with respect to their consistent
modifications [Samworth (2003); cf. Pötscher and Leeb (2009), for inconsistent
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model selection]. The permutation and hybrid bootstraps display almost identi-
cal power throughout, suggesting that the permutation bootstrap should be pre-
ferred, given its theoretical validity under both symmetric and asymmetric stable
cases.

Overall, our Monte Carlo results suggest that, in particular in situations where
the practitioner desires inference robust to the possibility of IV, rather than infer-
ence specifically designed for the case of IV, the implementation of OLS estima-
tion in conjunction with the permutation and hybrid bootstrap methods appears
to be very useful. Furthermore, the wild bootstrap may also constitute a rele-
vant inference device, given its validity in finite variance autoregressive models
[Kreiss (1997); Gonçalves and Kilian (2007)] and its superior power properties
under IV.

6. Further applications. In this section, we briefly discuss how our results
can be applied to the examples of analysing the impulse response (MA) coeffi-
cients and the power transfer function (scale-free spectral density) of the process.
Proofs of the results in Corollaries 4 and 5 can be found in the accompanying
supplement, Cavaliere, Georgiev and Taylor (2016).

Theorem 1 can be used to obtain the consistency properties of the associated
sieve-based estimates of the impulse response (MA) coefficients in (2.1). To that
end, let γ k := (γ1, . . . , γk)

′ denote the vector formed from the first k MA coeffi-
cients from (2.1). It is well known that γ k and βk are related via the recursive rela-
tion γ k ≡ �kβk , where �k is the lower triangular Toeplitz matrix with first column
(1 : γ ′

k−1)
′. Given β̂k , a sieve-based estimator of γ k can therefore by obtained via

the recursive relations γ̂ k ≡ �̂kβ̂k , where �̂k is the lower triangular Toeplitz ma-
trix with first column (1 : γ̂ ′

k−1)
′. The consistency of γ̂ k =: (γ̂1, . . . , γ̂k)

′ for γ k is
established in the following corollary of Theorem 1.

COROLLARY 4. Let the conditions of Theorem 1 hold. Then, provided 1/k +
k2/T → 0 as T → ∞, it follows that ‖γ̂ k − γ k‖ = oP (1).

The impulse response estimates, γ̂1, . . . , γ̂k , can in turn be used to obtain a sieve-
based estimate of the power transfer function (scale-free spectral density) of the
process Xt , C(λ) := |1 + ∑∞

j=1 γje
ijλ|2, λ ∈ (−π,π ], where i is the imaginary

unit. Specifically, the sieve-based estimator of C(λ) is given by ĈT (λ) := |1 +∑k
j=1 γ̂j e

ijλ|2, λ ∈ (−π,π ]. The following corollary of Theorem 1 establishes the
uniform consistency of this estimator.

COROLLARY 5. Let the conditions of Theorem 1 hold. Then, provided
1/k + k2/T → 0 as T → ∞, it follows that supλ∈(−π,π ] |ĈT (λ) − C(λ)| =
oP (1).
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We now use Theorem 2 to obtain the asymptotic distribution of the sieve-based
estimate γ̂ k , introduced above, of the vector of the first k impulse response coeffi-
cients in (2.1), γ k , via the relation γ̂ k − γ k ≡ �̂kβ̂k − �kβk .

COROLLARY 6. Let the conditions of Theorem 2 hold, including the rate con-
ditions on k stated therein. Then a2

T ã−1
T Lk{(γ̂ k −γ k)− �̂2

kdT } w→ S−1 ∑∞
j=1 ÃjSj ,

where S and {Sj }∞j=1 are as under cases (i) and (ii) in Theorem 2, and where

Ãj := ∑j
i=1 L�2(�−1)·iγj−i (j ∈ N) and � is the infinite-order lower tri-

angular Toeplitz matrix with first column γ := (1, γ1, γ2, . . .)
′. The centering

term, �̂2
kdT , can again be omitted under the circumstances outlined in Re-

mark 3.2(ii).

The bootstrap schemes outlined in Section 4 extend naturally to tests of re-
strictions on the MA coefficients γ 1 := (γ1, γ2, . . .)

′. For example, for a null hy-
pothesis of the form Lγ 1 = l, where L satisfies the assumptions of Lemma 1,
in the Wald statistics W and W ∗ one should replace Lkβ̂k − l, Lk(S

k
00)

−1L′
k ,

β̂
∗
k − β̂k and Lk(S

∗k
00 )−1L′

k by Lkγ̂ k − l, Lk�̂
2
k (S

k
00)

−1�̂′2
k L′

k , γ̂ ∗
k − γ̂ k and

Lk(�̂
∗
k )2(S∗k

00 )−1(�̂∗′
k )2L′

k , respectively, where γ̂
∗
k is obtained from β̂

∗
k through the

recursive relations γ̂ ∗
k := �̂∗

k β̂
∗
k , with �̂∗

k denoting a Toeplitz lower triangular ma-
trix with first column (1 : γ̂ ∗′

k−1)
′.

7. Proofs. We employ the matrix norms ‖ · ‖2 := sup‖x‖=1 ‖(·)x‖ induced by
the Euclidean vector norm and ‖ · ‖ := [tr{(·)′(·)}]1/2, with tr denoting the trace
operator. In particular, for square positive semi-definite matrices, ‖ · ‖2 = λmax(·),
the largest eigenvalue.

7.1. Consistency of OLS sieve estimators. The proof of Theorem 1 uses the
next lemma [proved in the supplement, Cavaliere, Georgiev and Taylor (2016)].
Let �k := (r|i−j |)k×k , with r|i−j | := ∑∞

s=0 γsγs+|i−j |; under Assumption 1, the
eigenvalues of �k are bounded and bounded away from zero as k → ∞ [see Berk
(1974), and the related discussion of � preceding Lemma 1].

LEMMA 2. Under Assumption 1 and the condition k2/T + 1/k → 0 as T →
∞, for every ε > 0,

(a) Sk
00 := ∑T

t=k+1 Xk
t−1(X

k
t−1)

′ has ‖Sk
00−�kσ

2
T ‖2 = OP (lT ãT )max{kεak, k},

where σ 2
T := ∑T

t=k+1 ε2
t , lT = 1 for α �= 1 and lT is slowly varying for α = 1;

Moreover, (Sk
00)

−1 exists with probability approaching one and ‖(Sk
00)

−1 −
�−1

k σ−2
T ‖2 = OP (lT ãT a−4

T )max{kεak, k}.
(b) Sk

0ε := ∑T
t=k+1 Xk

t−1εt,k satisfies ‖Sk
0ε − ∑T

t=k+1 Xk
t−1εt‖ = oP (a

1−ζ
T ) +

OP (a2
T )

∑∞
j=k+1 |βj | and ‖Sk

0ε‖ = oP (kεaklT ãT ) + OP (a2
T )

∑∞
j=k+1 |βj | with

ζ > 0 sufficiently small and lT as in (a).
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PROOF OF THEOREM 1. From ‖β̂k − βk‖ = ‖(Sk
00)

−1Sk
0ε‖ ≤ ‖(Sk

00)
−1‖2 ×

‖Sk
0ε‖ and the triangle inequality we obtain that, for ε > 0,

‖β̂k − βk‖ ≤ [{
λmin(�k)

}−1
σ−2

T + ∥∥(
Sk

00
)−1 − �−1

k σ−2
T

∥∥
2

]∥∥Sk
0ε

∥∥
= OP

(
a−2
T

)[
oP

(
kεaklT ãT

) + OP

(
a2
T

) ∞∑
j=k+1

|βj |
]

(7.1)

= OP

(
aka

ε−1
T

) + OP

( ∞∑
j=k+1

|βj |
)

= oP (1)

using Lemma 2(a), (b), the stochastic boundedness of a2
T σ−2

T (which converges
weakly to an a.s. finite r.v.), the convergence of

∑∞
j=1 |βj | and the condition

k2/T + 1/k → 0. �

7.2. Asymptotic α-stability. As the row dimension m of the restriction design
matrix L is fixed, it is enough to provide proofs for m = 1 (in the case of limiting
distributions, by the Cramér–Wold device). Thus, L = (l1, l2, . . .) is 1 × ∞ in this
section.

First, using estimates of the decay rates of the off-diagonal elements of � and
�−1, we discuss the well-definition of the random series in Lemma 1 and its proof.
As assumed in that lemma, let δ′ ∈ (δ, 2α

2+α
) be such that

∑∞
j=1 j s |lj |δ′

< ∞.

Regarding �, the estimate ri ≤ c(1 + i)−2/δ for some c > 0, δ as in Assump-
tion 1(b) and all i ∈ N is implied by the convergence of the series

∑∞
i=1 i2/δ|ri |

which is straightforward to establish under Assumption 1(b). This estimate of ri
implies that � ∈ Q2/δ , an algebra studied by Jaffard (1990), and by his Propo-
sition 3, also �−1 ∈ Q2/δ . Equivalently, if �−1 =: (sij )i,j∈N, then there exists
a c′ > 0 such that |sij | ≤ c′(1 + |i − j |)−2/δ (i, j ∈ N). As a consequence, for
L�−1 =: (l̃1, l̃2, . . .), s ∈ {0,1} and δ′ as previously, we find that

∞∑
i=1

is |l̃i |δ′ ≤
∞∑
i=1

is
∞∑

j=1

|sji |δ′ |lj |δ′ ≤ (
c′)δ′ ∞∑

j=1

[ ∞∑
i=1

is

j s

(
1 + |i − j |)−2δ′/δ

]
j s |lj |δ′

,

where
∞∑
i=1

is

j s

(
1 + |i − j |)−2δ′/δ

=
j∑

i=1

is

j s

(
1 + |i − j |)−2δ′/δ +

∞∑
i=j+1

is

j s

(
1 + |i − j |)−2δ′/δ

<

j∑
i=1

i−2δ′/δ +
∞∑
i=1

(i + j)s

j s
i−2δ′/δ < 3

∞∑
i=1

is−2δ′/δ < ∞
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because δ′ ∈ (δ,1). Hence, with c′′
s := 3(c′)δ′ ∑∞

i=1 is−2δ′/δ < ∞, it holds that∑∞
i=1 is |l̃i |δ′

< c′′
s

∑∞
j=1 j s |lj |δ′

, and further,
∑∞

i=1 is |l̃i |δ′
< ∞ because∑∞

j=1 j s |lj |δ′
< ∞. Finally, regarding Aj , for s ∈ {0,1} and δ′ as previously,

∞∑
j=1

j s |Aj |δ′ ≤
∞∑

j=1

j∑
i=1

j s |l̃i |δ′ |γj−i |δ′ ≤ 2
∞∑

j=1

j∑
i=1

{
is |l̃i |δ′}{

(j − i + 1)s |γj−i |δ′}

≤ 2

{ ∞∑
i=1

is |l̃i |δ′
}{ ∞∑

j=0

(j + 1)s |γj |δ′
}
,

so
∑∞

j=1 j s |Aj |δ′
< ∞ holds given that

∑∞
i=1 is |l̃i |δ′

< ∞ and
∑∞

j=1 j s |γj |δ′
<

∞. This guarantees that the series below are absolutely convergent a.s. (with s = 0)
and asymptotic results of Davis and Resnick can be invoked (with s = 1, for use
in the proof of Theorem 2).

PROOF OF LEMMA 1. Let L̃k := (l̃1, l̃2, . . . , l̃k) = (L�−1)k consist of the first
k entries of L�−1. Then β̂k − βk = (Sk

00)
−1Sk

0ε satisfies∣∣∣∣∣Lk(β̂k − βk) − σ−2
T L̃k

T∑
t=k+1

Xk
t−1εt

∣∣∣∣∣ ≤ ‖Lk‖(B1 + B2) + B3,(7.2)

where ‖Lk‖2 ≤ ∑∞
i=1 l2

i < ∞ for all k, and Bi (i = 1,2,3) are defined next and
shown to be oP (a−2

T ãT ) provided k3/T + 1/k → 0. First,

B1 :=
∥∥∥∥∥β̂k − βk − (

Sk
00

)−1
T∑

t=k+1

Xk
t−1εt

∥∥∥∥∥ ≤ ∥∥(
Sk

00
)−1∥∥

2

∥∥∥∥∥Sk
0ε −

T∑
t=k+1

Xk
t−1εt

∥∥∥∥∥,
where ‖(Sk

00)
−1‖2 = OP (a−2

T ) as in (7.1). Thus, using also Lemma 2(b), B1 =
oP (a−1

T ) + OP (1)
∑∞

j=k+1 |βj | = oP (a−1
T ) = oP (a−2

T ãT ), given that

aT

∑∞
j=k+1 |βj | → 0. Second, by Lemma 2(a) and because ‖∑T

t=k+1 Xk
t−1εt‖ =

oP (kεaklT ãT ) for all ε > 0 [see the proof of Lemma 2(b)], it holds that

B2 := ∥∥(
Sk

00
)−1 − �−1

k σ−2
T

∥∥
2

∥∥∥∥∥
T∑

t=k+1

Xk
t−1εt

∥∥∥∥∥ = oP

(
ã2
T a−4

T lT akk
ε max{ak, k}),

using the property that multiplication preserves slow variation. Under k3/T →
0 it is checked directly that ã2

T a−4
T lT kε = o(aε−2

T ) for all ε > 0 and that
aε−2
T ak max{ak, k} = o(a−2

T ãT ) for small enough ε > 0, so B2 = oP (a−2
T ãT ).

Third,

B3 := σ−2
T

∥∥∥∥∥(
Lk�

−1
k

)∞ − L�−1‖2‖
T∑

t=k+1

(
Xk

t−1
)∞

εt

∥∥∥∥∥,
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where (·)∞ denotes the infinite sequence (or infinite matrix) obtained from a vector
(resp. a matrix) by appending a tail of zeroes (resp., in both dimensions), and the
norm is in 	2 (resp., its dual space) in order to comply with the notation of The-
orem 3.1 of Strohmer (2002); that theorem ensures the estimate ‖(Lk�

−1
k )∞ −

L�−1‖2 = O(k1/2−s) provided that ri ≤ c(1 + i)−s and li ≤ c(1 + i)−s for some
s > 1, c > 0 and all i ∈ N. Under Assumption 1(b), ri ≤ c(1 + i)−s was shown
above to hold for s = 2/δ > 1/2 + 1/α and some c > 0. As, under the hypotheses
of Lemma 1, also li ≤ c(1 + i)−s (i ∈ N) for some s > 1/2 + 1/α, c > 0, we can
define a new s > 1/2 + 1/α such that ‖(Lk�

−1
k )∞ − L�−1‖2 = O(k1/2−s) does

hold. Using also that ‖∑T
t=k+1(X

k
t−1)

∞εt‖ = ‖∑T
t=k+1 Xk

t−1εt‖ = oP (kεaklT ãT )

for all ε > 0, we find the product of norms in the definition of B3 to be
oP (k1/2−s+εaklT ãT ) = oP (k−ωlT ãT ) for some ω > 0 defined by fixing a suf-
ficiently small ε > 0. For α �= 1 (and lT = 1), this magnitude order is oP (ãT ),
whereas for α = 1 the extra assumption that k grows faster than any slowly vary-
ing function of T yields the same magnitude order, so B3 = oP (a−2

T ãT ) because
σ−2

T = OP (a−2
T ). Hence, from (7.2),

Lk(β̂k − βk) = σ−2
T L̃k

T∑
t=k+1

Xk
t−1εt + oP

(
a−2
T ãT

)
.(7.3)

Next, define J1 := ∑∞
j=1(

∑j
i=k+1 l̃iγj−i )

∑T
t=k+1 εt−j εtI|εt−j εt |>ãT

and J2 :=∑∞
j=1(

∑j
i=k+1 l̃iγj−i)

∑T
t=k+1(εt−j εtI|εt−j εt |≤ãT

− μT ). Then we can write

L̃k

T∑
t=k+1

(
Xk

t−1εt − ukμT γ (1)
)

=
∞∑

j=1

(min(k,j)∑
i=1

l̃iγj−i

)
T∑

t=k+1

(εt−j εt − μT )(7.4)

=
∞∑

j=1

Aj

T∑
t=k+1

(εt−j εt − μT ) + J1 + J2.

First, observe that J1 = oP (ãT ), since

E
∣∣ã−1

T J1
∣∣δ′ ≤ a−δ′

T T E
(|ε1ε2|δ′

I|ε1ε2|>ãT

) ∞∑
j=1

∣∣∣∣∣
j∑

i=k+1

l̃iγj−i

∣∣∣∣∣
δ′

≤ O(1)

( ∞∑
j=1

|γj |δ′
)( j∑

i=k+1

|l̃i |δ′
)

= o(1)
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by Karamata’s theorem [KT] and the fact that
∑∞

i=k+1 |l̃i |δ′ → 0 as k → ∞. Sec-
ond, J2 = oP (ãT ), since

EJ 2
2 =

∞∑
j,h=1

( j∑
i=k+1

l̃iγj−i

)(
h∑

i=k+1

l̃iγh−i

)

×
T∑

t,s=k+1

E
{
(εt−j εtI|εt−j εt |≤ãT

− μT )(εs−hεsI|εs−hεs |≤ãT
− μT )

}

≤ 4T E
(
ε2

1ε
2
2I|ε1ε2|≤ãT

)( ∞∑
j=1

|γj |
)2( ∞∑

i=k+1

|l̃i |
)2

= o
(
ã2
T

)

by KT and because
∑∞

i=k+1 |l̃i | → 0 as k → ∞. The lemma then follows by com-
bining (7.3) and (7.4) with J1 + J2 = oP (ãT ). �

PROOF OF THEOREM 2. Given that ak/aT = o(1) and ãk/ãT = o(1) as T →
∞, and

∑∞
j=1 j |Aj |δ′

< ∞ by the previous argument, it follows respectively from
the proof of Theorem 4.4 of Davis and Resnick (1986) and from their Theorem 3.5
in (1985b) that(

a−2
T

T∑
t=k+1

ε2
t , ã

−1
T

∞∑
j=1

Aj

(
T∑

t=k+1

εt−j εt − μT

))
w→

(
S,

∞∑
j=1

AjSj

)
,

with the limit distribution respectively as in the two parts of Theorem 2. This con-
vergence and Lemma 1 prove Theorem 2. �

7.3. Bootstrap approximations.

7.3.1. Notation and preparatory results. Without loss of generality, in this
section we set X∗

t = 0, t = 1, . . . , k. Let V̂k be the k × k matrix V̂k :=
(β̂k,u1, . . . ,uk−1)

′, where ui is the ith canonical basis vector in R
k , and let

γ̂ j :k := V̂
j
k u1 = (γ̂j , . . . , γ̂j−k+1)

′, γ̂i := 0 (i < 0). Then X∗k
t = ∑t−k−1

j=0 γ̂ j :kε∗
t−j ,

t = k + 1, . . . , T .
Further, as a benchmark, we introduce the (infeasible) bootstrap errors ε

†
t :=

επ(t)wt (t = k + 1, . . . , T ), which are a transformation of the true errors εt in-
stead of the residuals ε̂t , with π and {wt }∞t=k+1 defined respectively as in the wild,

permutations or permuted wild bootstrap. Associated with ε
†
t we define the in-

feasible bootstrap sample X
†
t = 0 (t = 1, . . . , k) and X†k

t = ∑t−k−1
j=0 γ j :kε

†
t−j , t =

k + 1, . . . , T , where X†k
t := (X

†
t , . . . ,X

†
t−k+1)

′, γ j :k := (γj , . . . , γj−k+1)
′, γi := 0

(i < 0), as well as the product moments matrices S
†k
00 := ∑T

t=k+1 X†k
t−1(X

†k
t−1)

′ and
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S
†k
0ε := ∑T

t=k+1 X†k
t−1ε

†
t,k , where ε

†
t,k := ε

†
t + ρ

†
t,k , ρ

†
t,k := ∑t−k−1

i=k+1 βiX
†
t−i . Equiva-

lently,

X
†
t =

{
0, t = 1, . . . , k,

β ′
kX†k

t−1 + ε
†
t,k, t = k + 1, . . . , T .

In order to prove Theorem 3, we will need the following Lemma 3 [proved in the
supplement, Cavaliere, Georgiev and Taylor (2016)]. We denote by P † probability
conditional on {εt }Tt=−∞ (equivalently, on {εt }Tt=−∞ and the data, as the latter are
a measurable function of {εt }Tt=−∞).

LEMMA 3. Under Assumption 1 and the conditions k4/T + 1/k → 0,
aT

∑∞
i=k+1 |βi | → 0 as T → ∞, it holds in P -probability that:

(a) ‖S∗k
00 − S

†k
00‖ = oP †(kaka

1+ε
T ) for all ε > 0 and λ−1

min(a
−2
T S∗k

00 ) = OP † (1) in
P -probability.

(b) If π is the identity, then ‖S∗k
0ε − S

†k
0ε − σ1‖ = oP †(a1

T ), where σ1 :=∑T
t=k+1 X∗k

t−1(ε̂t − επ(t),k)wt . If π is a random permutation [r.p.], then ‖S∗k
0ε −

S
†k
0ε‖ = oP †(T ε−1/2k1/2akaT ) for all ε > 0.

(c) ‖S†k
0ε‖ = OP †(a

1+ε
k ãT ) for π equal to the identity and all ε > 0, and

‖S†k
0ε‖ = OP †(hT k) for an r.p. π , with hT k = min{ k1/2

T 1/2 a
2
T , k

T
max{T 2, a2

T l2
T }} and

lT as in Lemma 2.

7.3.2. Proof of Theorem 3. Let the bootstrap statistic and its corrected version
be τ ∗ := a2

T ã−1
T Lk(β̂

∗
k − β̂k) and τ ∗

c := a2
T ã−1

T Lk{(β̂∗
k − β̂k) − (S∗k

00 )−1σ1}, where
σ1 = ∑T

t=k+1 X∗k
t−1(ε̂π(t) − επ(t),k)wt . We need to evaluate the Lévy distance be-

tween the distribution of τ ∗ and τ ∗
c conditional of the data and three conditional

distributions of τ := a2
T ã−1

T Lk(β̂k − βk). To this end, we introduce some auxil-
iary r.v.’s and evaluate sequentially several distances involving them as well as τ ∗,
τ ∗
c and τ , such that our desired evaluation then follows by the triangle inequal-

ity. The auxiliary r.v.’s are τ † := a2
T ã−1

T Lk(S
†k
00)−1S

†k
0ε , τ̆ := a2

T ã−1
T Lk(S̆

k
00)

−1S̆k
0ε

and τπ := a2
T ã−1

T Lk(S
πk
00 )−1Sπk

0ε , where we define S̆k
00 := ∑T

t=k+2 X̆
k

t−1(X̆
k

t−1)
′

and S̆k
0ε := ∑T

t=k+2 X̆
k

t−1επ(t) with X̆
k

t−1 := ∑t−k−2
j=0 γ j :kεπ(t−j−1), while Sπk

00 :=∑T
t=k+2 Xπk

t−1(X
πk
t−1)

′ and Sπk
0ε := ∑T

t=k+2 Xπk
t−1(επ(t) + ρπ

t,k) with, Xπk
t−1 :=∑t−k−2

j=0 γ j :kεπ(t−j−1) + ∑∞
j=t−k γ j :kεt−j and finally ρπ

t,k := ∑∞
i=k+1 βi ×

(
∑t−k−i−1

m=0 γmεπ(t−m−i) + ∑∞
m=t−k−i γmεt−m−i). The sequential distances are as

follows.
1. The bootstrap statistics τ ∗ and τ ∗

c , as measurable functions of the data, π and
{wt }Tt=k+1, have the same distribution conditional on the data. Specifically, condi-
tional on the data and all past {εt }Tt=−∞ it holds that ρ1c := ρL(L∗(τ ∗

c ),L†(τ ∗
c )) =
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0 and ρ1 := ρL(L∗(τ ∗),L†(τ ∗)) = 0, where ρL denotes Lévy distance, L stands
for law, the ∗ superscript for conditioning on the data, and the † superscript for
conditioning on the data and {εt }Tt=−∞.

2. If π is the identity, then τ ∗
c = a2

T ã−1
T Lk(S

∗k
00 )−1(S∗k

0ε − σ1) = τ † + oP †(1)

in P -probability (proved below), whereas if π is an r.p., also τ ∗ = τ † + oP †(1)

in P -probability independently of the specification of {wt }Tt=k+1 (proved below).
Hence,

ρ2c := ρL

(
L†(

τ ∗
c

)
,L†(

τ †)) = oP (1),

ρ2 := ρL

(
L†(

τ ∗)
,L†(

τ †)) = oP (1).

3(a) Under bootstrap schemes wR and symmetry of εt , it holds that ρ
|ε|
3 :=

ρL(L†(τ †),L|ε|(τ̆ )) = 0, where the |ε| subscript denotes conditioning on
= {|εt |}Tt=−∞.

3(b) Under scheme (πR,w1), τ † = τ̆ so ρ
†
3 := ρL(L†(τ †),L†(τ̆ )) = 0.

4(a) Under symmetry of εt , τ̆ = τπ + oP |ε|(1) in P -probability (discussed be-
low), resulting in ρL(L|ε|(τ̆ ),L|ε|(τπ )) = oP (1). Two conclusions follow.

Where π is the identity, it holds that τπ = τ , so the previous convergence be-
comes ρ

|ε|
4 := ρL(L|ε|(τ̆ ),L|ε|(τ )) = oP (1).

Instead, where π is an r.p., τ conditional on {|εt |}kt=−∞ and the order statis-

tics of {|εt |}Tt=k+1 is distributed like τπ conditional on {|εt |}Tt=−∞, so now ρ
|e|
4 :=

ρL(L|ε|(τ̆ ),L|e|(τ )) = oP (1), with |e| standing for conditioning on {|εt |}kt=−∞ and
the order statistics of {|εt |}Tt=k+1.

4(b) Generally, τ̆ = τπ + oP †(1) in P -probability (discussed below). As τ

conditional on {εt }kt=−∞ and the order statistics of {εt }Tt=k+1 is distributed like
τπ conditional on {εt }Tt=−∞ (equivalently, under P †), it follows that ρe

4 :=
ρL(L†(τ̆ ),Le(τ )) = oP (1), with e standing for conditioning on {εt }kt=−∞ and the
order statistics of {εt }Tt=k+1.

Next we combine the previous evaluations. First, we can conclude that, for π

equal to the identity (scheme π id, wild bootstrap),

ρL

(
L∗(

τ ∗
c

)
,L|ε|(τ )

) ≤ ρ1c + ρ2c + ρ
|ε|
3 + ρ

|ε|
4 = oP (1),

which is equivalent to the convergence in Theorem 3(a). On the other hand, for an
r.p. π ,

ρL

(
L∗(

τ ∗)
,Le(τ )

) ≤ ρ1 + ρ2 + ρ
†
3 + ρe

4 = oP (1) for (πR,w1),

ρL

(
L∗(

τ ∗)
,L|e|(τ )

) ≤ ρ1 + ρ2 + ρ
|ε|
3 + ρ

|e|
4 = oP (1) for (πR,wR);

hence, Theorem 3(b), (c).
It remains to complete steps 2 and 4 outlined above.
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Step 2. Let σ id
1 := Iπ=idσ1. The next evaluation is valid for Lk �= 0 of type m×k,

m ∈ N:

‖Lk‖−1∥∥Lk

(
S∗k

00
)−1(

S∗k
0ε − σ id

1
) − Lk

(
S

†k
00

)−1
S

†k
0ε

∥∥
≤ ∥∥(

S∗k
00

)−1 − (
S

†k
00

)−1∥∥∥∥S∗k
0ε − σ id

1

∥∥ + ∥∥(
S

†k
00

)−1∥∥
2

∥∥S∗k
0ε − σ id

1 − S
†k
0ε

∥∥
≤ ‖(S†k

00)−1‖2
2‖S∗k

00 − S
†k
00‖

1 − ‖(S†k
00)−1‖2‖S∗k

00 − S
†k
00‖

(∥∥S†k
0ε

∥∥ + ∥∥S∗k
0ε − σ id

1 − S
†k
0ε

∥∥)

+ ∥∥(
S

†k
00

)−1∥∥
2

∥∥S∗k
0ε − σ id

1 − S
†k
0ε

∥∥
with P †-probability approaching 1 in P -probability, as ‖(S†k

00)−1‖2‖S∗k
00 − S

†k
00‖ =

oP †(1) in P -probability by Lemma 3. Using again Lemma 3 and the conditions
k4/T → 0 (for π id) and k5/T → 0, k1+2/α+ζ /T → 0 (for πR and some ζ > 0) it
follows that for small enough ε > 0,

‖Lk‖−1∣∣Lk

(
S∗k

00
)−1(

S∗k
0ε − σ id

1
) − Lk

(
S

†k
00

)−1
S

†k
0ε

∣∣
≤ oP †(kaka

ε−3
T )

1 + oP †(1)

(
Iπ=idaka

1+ε
T + Iπ=r.p.

{
hT k + T ε−1/2k1/2akaT

})
+a−2

T oP †
(
Iπ=idaT + Iπ=r.p.T

ε−1/2k1/2akaT

)
= oP †

(
a−1
T

)
in P -probability

for all the three bootstrap schemes, from where step 2 follows.
Step 4. This step is analogous to step 2, prepared by Lemma 3’s estimates in-

volving ρ, with sgn εt playing the role of wt .
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SUPPLEMENTARY MATERIAL

Supplement to “Sieve-based inference for infinite-variance linear pro-
cesses” (DOI: 10.1214/15-AOS1419SUPP; .pdf). In this supplement, which con-
tains additional theoretical results and proofs, we provide: a lemma with two tail
inequalities regarding the series of the coefficients from the AR(∞) representa-
tions; a proof of Lemma 2 and corollaries from Section 6; proofs of the results
given in Section 7.3.1; a discussion of multiple restrictions.

http://dx.doi.org/10.1214/15-AOS1419SUPP
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