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Abstract

Lanczos-type algorithms are prone to breaking down before convergence to an acceptable

solution is achieved. This study investigates a number of ways to deal with this issue.

In the first instance, we investigate the quality of three types of restarting points in the

restarting strategy when applied to a particular Lanczos-type algorithm namely Orthodir.

The main contribution of the thesis, however, is concerned with using regression as an

alternative way to deal with breakdown. A Lanczos-type algorithm is run for a number

of iterations and then stopped, ideally, just before breakdown occurs. The sequence of

generated iterates is used to build up a regression model that captures the characteristic

of this sequence. The model is then used to generate new iterates that belong to that

sequence. Since the iterative process of Lanczos is circumvented, or ignored, while using

the model to find new points, the breakdown issue is resolved, at least temporarily, unless

convergence is achieved. This new approach, called EIEMLA, is shown formally, through

extrapolation, that it generates a new point which is at least as good as the last point

generated by the Lanczos-type algorithm prior to stoppage.

The remaining part of the thesis reports on the implementation of EIEMLA sequen-

tially and in parallel on a standard parallel machine provided locally and on a Cloud

Computing platform, namely Domino Data Lab. Through these implementations, we

have shown that problems with up to 106 variables and equations can be solved with

the new approach. Extensive numerical results are included in this thesis. Moreover, we

point out some important issues for further investigation.
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Chapter 1

Introduction and Literature Review

1.1 Introduction

Systems of Linear Equations (SLE’s) are ubiquitous in science and engineering

applications. There are several approaches to solving them broadly classed as

direct methods and iterative methods.

There are two general classes of iterative methods to solve SLEs: station-

ary methods and non-stationary methods. Stationary methods which include

Richardson [38], Jacobi, Gauss-Seidel [4], and Successive Over-relaxation (SOR)

[19] among others, and Non-stationary methods which include Conjugate Gradi-

ent [54], BCG, BICG [41], GMRES, Arnoldi type [59], and Lanczos type [51, 52].

Non-stationary methods are generally more efficient and suitable for a large sys-

tems of linear equations. They are based on orthogonal polynomials. They are

often referred to as Krylov subspace methods [66].

Among the iterative methods, for solving large linear systems with a sparse

non-symmetric matrix, those based on the Lanczos process are the most effective.

1
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This is because they feature short recurrence relations for the generation of the

Krylov subspace, which means low cost and low memory requirement, [41].

They are, however, prone to breakdown, [7]. For these reasons, ways to avoid

breakdown in Krylov subspace algorithms have been researched extensively in

the last decades, resulting in new more robust and efficient algorithm.

In this thesis, we will briefly review the relevant literature, illustrate how these

algorithms can be derived, and provide an example of a Lanczos-type algorithm

namely Orthores, also referred to as A4, [6]. We will also recall a Lanczos-type algo-

rithm, namely the Method of Recursive Zoom (MRZ), [11, 12], which is designed

to avoid breakdown by jumping over the non-existent orthogonal polynomials.

This thesis is organized as follow. Chapter 1, as said above, introduces the

background theory of Lanczos-type algorithms for solving SLE’s. It also explains

the breakdown issue and recalls two of the main algorithmic approaches to deal

with it. Chapter 2 discusses restarting from three different points and how to

deal with the breakdown in Lanczos-type algorithms, using restarting. Chapter

3 investigates the use of interpolation and extrapolation as a means to overcome

the breakdown problem. Algorithm EIEMLA, or Embedded Interpolation and

Extrapolation in Lanczos-type Algorithm, is then presented. Chapter 4 exploits

restarting based on an output of EIEMLA; this restarting algorithm is referred

to as REIEMLA. Chapter 5 investigates the use of parallel processing as well as

cloud computing to handle large scale problems (upto 106 variables). Extensive

experimental results are included where necessary. Chapter 6 is the conclusion

and future work.
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1.2 Lanczos-type algorithms

In 1950, Lanczos proposed an iterative method for solving the Eigenvalue problem

[51]. In this method, an n × n matrix can be transformed into a tridiagonal

one in order to simplify the problem. The key feature of the method is that

no matrix to matrix multiplication or matrix inversion is ever required. The

algorithm uses at most matrix to vector multiplication. That is where its efficiency

resides. This approach was then adapted to solve systems of linear equations, [52].

The derivation of these algorithms is commonly done using Formal Orthogonal

Polynomials (FOP’s), [6, 7]. There are also alternative ways to derive them such

as matrix algebra, [13].

1.2.1 Krylov Subspace Methods

This section begins with the derivation of Krylov Subspace (KS) methods by

orthogonalizing the natural basis of KS.

Consider the system of linear equations

Ax = b (1.1)

where A ∈ Rn×n and vectors x and b ∈ Rn. Let Kk and Lk be two subspaces

of dimensions k. The projection method, [67], for solving the system (A.1.1) is

derived by choosing an initial approximate solution x0 and defining the sequence



1.2. Lanczos-type algorithms 4

of vectors {xk} by two conditions :

xk − x0 ∈ Kk (1.2)

rk = b − Axk ⊥ Lk. (1.3)

IfKk = Kk(A, r0) is a KS of dimension k defined by

Kk(A, r0) = span{r0,Ar0, . . . ,Ak−1r0} (1.4)

where r0 = b − Ax0 , then the projection method is called the Krylov subspace

methods (KSM), [5]. Moreover, the choice of Lk leads to several KSMs [14]. For

instance, ifLk = Kk(AT,y), for an arbitrary nonzero vector y , then the KSM method

is known as the Lanczos method.

1.2.2 Lanczos Methods

Let us compute the condition (1.2) with the KS as given in (1.4). From (1.2) , xk−x0

can be written as :

xk − x0 = −α1r0 − α2Ar0 − · · · − αkAk−1r0, (1.5)
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and thus, multiplying both sides by A, adding and subtracting b, we obtain :

A(xk − x0) = A(−α1r0 − α2Ar0 − · · · − αkAk−1r0),

Axk − Ax0 = −α1Ar0 − α2A2r0 − · · · − αkAkr0,

b − (Axk − Ax0) = b + α1Ar0 + α2A2r0 + · · · + αkAkr0,

b − Axk = (b − Ax0) + α1Ar0 + α2A2r0 + · · · + αkAkr0,

rk = r0 + α1Ar0 + α2A2r0 + · · · + αkAkr0. (1.6)

From the last relation, we can write rk as :

rk = Pk(A)r0, (1.7)

where Pk(t) = 1 + α1t + · · · + αktk, [12]. Applying the orthogonality condition in

relation (1.3), we obtain

〈(AT)
iy, rk〉 = 〈y,Airk〉 = 〈y,AiPk(A)r0〉 = 0, for i = 0, 1, · · · , k − 1, (1.8)

which leads to a system of linear equations in coefficients α1, α2, . . . , αk, as follows

α1〈y,Ar0〉 + α2〈y,A2r0〉 + · · · + αk〈y,Akr0〉 = −〈y, r0〉,

α1〈ATy,Ar0〉 + α2〈ATy,A2r0〉 + · · · + αk〈ATy,Akr0〉 = −〈ATy, r0〉,

...

α1〈(AT)
k−1

y,Ar0〉 + α2〈(AT)
k−1

y,A2r0〉 + · · · + αk〈(AT)
k−1

y,Akr0〉 = −〈(AT)
k−1

y, r0〉. (1.9)
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The above system is consistent if and only if the determinant

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

〈y,Ar0〉 〈y,A2r0〉 · · · 〈y,Akr0〉

〈ATy,Ar0〉 〈ATy,A2r0〉 · · · 〈ATy,Akr0〉

...
... · · ·

...

〈(AT)k−1y,Ar0〉 〈(AT)k−1y,A2r0〉 · · · 〈(AT)k−1y,Akr0〉

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(1.10)

is different from zero, [29]. Obviously, solving the systems (1.9) seems imprac-

tical. The easiest way to determine the solution of the system is by computing

recursively the polynomial Pk with considering the degrees of the polynomials in

the right- and the left-hand sides, and making them balanced. This is discussed

in the following section.

1.3 Formal Orthogonal Polynomials and their Use in
Lanczos Methods

Let c be a linear functional on the vector space of complex polynomials and let it

be defined by :

c(ti) = ci =
〈
y,Air0

〉
, for i = 0, 1, . . . (1.11)

For any polynomial P(t) = α0 +α1t + · · ·+αktk and by linear combination, we have

〈
y,P(A)r0

〉
= c(P(A)). (1.12)

So, relation (1.8) becomes

c
(
AiPk(A)

)
= 0, for i = 0, 1, . . . , k − 1. (1.13)
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The family of polynomials satisfying these conditions for all k is called the family

of orthogonal polynomials (FOP) with respect to c. We now have definition of a

family of orthogonal polynomials (FOP) as follows.

Definition 1 ([29]). The family of polynomials {Pk} are said to form the family of FOP
with respect to c if they satisfy

1. the degree of Pk is at most k, for all k

2. c(tiPk(t)) = 0, i = 0, 1, . . . , k − 1.

If we substitute Pk(t) = α0 + α1tA + · · · + αktk above into (1.11), we obtain a

system of linear equations

α0ci + α1ci+1 + · · · + αkci+k = 0, (1.14)

for i = 0, 1, . . . , k − 1. Adding an equation −Pk(t) + α0 + α1t + · · · + αktk = 0 to the

system, we obtain a (k+1)× (k+1) system of linear equations in αi for i = 0, 1, . . . , k

with the determinant of the matrix coefficient given by

Dk =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c0 c1 . . . ck

...

ck−1 ck · · · c2k−1

1 t · · · tk

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (1.15)

In fact, if we set a Hankel determinant matrix

Hk
(0) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c0 c1 . . . ck−1

...

ck−1 ck · · · c2k−2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (1.16)

then, Pk(t) can be expressed by the determinantal formula as follows :

Pk(t) =
Dk

Hk
(0)
, (1.17)
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[6]. It is clear that Pk exists and is unique if and only if the Hankel determinant is

different from zero. The normalization of Pk is obtained by the fact that Pk(0) = 1.

The detail of the computation of the recurrence relationships form of Pk can be

seen in [8] and is discussed as below.

Interestingly, it is possible to construct another formula of the family of FOP

by taking advantage of the orthogonality condition, [8]. Let us now consider the

linear functional c(1) which is defined by

c(1)(ti) = c(ti+1) = ci+1, for i = 0, 1, . . . (1.18)

A family of polynomials Pk of FOP, Pk
(1)(t) , can also be written in the determinantal

formula as follows :

Pk
(1)(t) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c1 c2 . . . ck+1

...

ck ck+1 · · · c2k−1

1 t · · · tk

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c1 c2 . . . ck+1

...

ck ck+1 · · · c2k−1

b0 b1 · · · bk

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(1.19)

where the bi’s are numbers which depend on k, [8]. It also satisfies the orthogo-

nality condition :

c(1)(tiPk
(1)) = 0, for i = 0, 1, . . . , k − 1. (1.20)

Both families of {Pk} and {Pk
(1)
} are called adjacent families of FOPs, [8].
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1.3.1 The Computational Recurrence Relationships of FOP in
Performing the Lanczos-type Algorithms

The FOP approach relies on a set of recurrence relations which express iterate xk

in terms of xk−1, xk−2 or even earlier iterates. This means that FOP’s of different

degrees are involved from the family of orthogonal polynomials, Pk, or adjacent

families of orthogonal polynomials, Pk
(1), [3, 6, 9]. In other words, FOP’s of a

certain degree can be written in terms of other FOP’s. Below is one example of the

derivation of Orthores, which is a Lanczos-type algorithm and based on formula

A4, [6], by using the theory FOPs.

The Formula A4

Consider for instance, the three term recurrence relationships below

Pk(t) = (Akt2 + Bkt + Ck)Pk−2(t) + (Dkt + Ek)Pk−1(t), (1.21)

with Pk(0) = 1. Multiplying both sides of (1.21) by ti for i = 0, 1, . . . , k − 1 and

imposing the orthogonality condition with respect to the linear function c, we

obtain

c(tiPk(t)) = Akc(ti+2Pk−2(t)) + Bkc(ti+1Pk−2(t)) + Ckc(tiPk−2(t))+

Dkc(ti+1Pk−1(t)) + Ekc(tiPk−1(t)), (1.22)

for i = 0, 1, . . . , k − 1. For i = k − 4, we get :

c(tk−4Pk) = Akc(tk−2Pk−2) + Bkc(tk−3Pk−2) + Ckc(tk−4Pk−2) + Dkc(tk−3Pk−1)+

Ekc(tk−4Pk−1)
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The only non-zero term of the relation is Akc(tk−2Pk−2). Since the left hand side of

this relation is also zero, while c(tk−2Pk−2) is never zero, we obtain

Ak = 0. (1.23)

For i = k − 3, we obtain :

c(tk−3Pk) = Akc(tk−1Pk−2) + Bkc(tk−2Pk−2) + Ckc(tk−3Pk−2) + Dkc(tk−2Pk−1)+

Ekc(tk−3Pk−1).

The remaining terms which are not zero are Akc(tk−1Pk−2) + Bkc(tk−2Pk−2). Since we

have (1.23) and since c(t(k−2)Pk−2) , 0 then we get

Bk = 0. (1.24)

For i = k − 2 , we get

c(tk−2Pk) = Akc(tkPk−2) + Bkc(tk−1Pk−2) + Ckc(tk−2Pk−2) + Dkc(tk−1Pk−1)+

Ekc(tk−2Pk−1).

All of the terms on both the right and the left sides are different from zero, but

Ekc(tk−2Pk−1). Consequently, we obtain

Ckc(tk−2Pk−2) + Dkc(tk−1Pk−1) = 0, (1.25)

by applying (1.23) and (1.24). For i = k − 1, we obtain :

c(tk−1Pk) = Akc(tk+1Pk−2) + Bkc(tkPk−2) + Ckc(tk−1Pk−2) + Dkc(tkPk−1)+

Ekc(tk−1Pk−1)
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which implies

Ckc(tk−1Pk−2) + Dkc(tkPk−1) + Ekc(tk−1Pk−1) = 0. (1.26)

If we apply the condition Pk(0) = 1 to (1.21), then we have relation of

Ck + Ek = 1. (1.27)

We now have a 3 × 3 system of linear equations in Ck,Dk and Ek of (1.25),(1.26),

and (1.27). This system has determinant and the right-hand side respectively as

follows

∆k =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c(tk−2Pk−2) c(tk−1Pk−1) 0

c(tk−1Pk−2) c(tkPk−1) c(tk−1Pk−1)

1 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= c(tk−1Pk−1)2 + c(tk−2Pk−2)c(tkPk−1) − c(tk−1Pk−1)c(tk−1Pk−2). (1.28)

b =


0

0

1


.

Solving the system above gives

Ck =
c(tk−1Pk−1)2

∆k
(1.29)

Dk =
c(tk−2Pk−2)c(tk−1Pk−1)

∆k
(1.30)

Ek =
c(tk−2Pk−2)c(tkPk−1) − c(tk−1Pk−1)c(tk−1Pk−2)

∆k
. (1.31)
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Now we substitute all of the coefficients into Pk in (1.21) to obtain

Pk(t) = CkPk−2(t) + (Dkt + Ek)Pk−1(t), (1.32)

with Ck, Dk, and Ek being given by (1.29),(1.30), and (1.31) respectively.

As an illustration of the use of the theory of FOPs, let us explain how rk can be

calculated recursively through the relation (1.32). Since rk = Pk(A)r0, we have

rk = Pk(A)r0

= CkPk−2(A)r0 + DkAPk−1(A)r0 + EkPk−1(A)r0

= Ckrk−2 + DkArk−1 + Ekrk−1. (1.33)

On the other hand, we have

rk = b − Axk,

and by re-ordering it, we obtain xk as follows.

Axk = b − rk

= b − (DkArk−1 + Ekrk−1 + Ckrk−2)

xk = A−1b −Dkrk−1 − EkA−1rk−1 − CkA−1rk−2

= xk−1 −Dkrk−1 − Ck(xk−1 − xk−2)

= (1 − Ck)xk−1 + Ckxk−2 −Dkrk−1

= Ekxk−1 + Ckxk−2 −Dkrk−1,

= Dk(
Ek

Dk
xk−1 +

Ck

Dk
xk−2 − rk−1)

= Dk(γkxk−1 + δkxk−2 − rk−1), (1.34)
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where the scalars γk and δk are computed as following

δk =
Ck

Dk

=
c(tk−1Pk−1)2

∆k

∆k

c(tk−2Pk−2)c(tk−1Pk−1)

=
c(tk−1Pk−1)
c(tk−2Pk−2)

(1.35)

and

γk =
Ek

Dk

=
c(tk−2Pk−2)c(tkPk−1) − c(tk−1Pk−1)c(tk−1Pk−2)

∆k

∆k

c(tk−2Pk−2)c(tk−1Pk−1)

=
c(tk−2Pk−2)c(tkPk−1) − c(tk−1Pk−1)c(tk−1Pk−2)

c(tk−2Pk−2)c(tk−1Pk−1)

=
c(tkPk−1) − δkc(tk−1Pk−2)

c(tk−1Pk−1)
. (1.36)

On the other hand, from (1.35) and (1.36), we have information that

δk + γk =
1

Dk
,

or

Dk =
1

δk + γk
. (1.37)

Similarly, relations (1.33) can be written as

rk+1 = Dk+1(Ark +
Ek+1

Dk+1
rk +

Ck+1

Dk+1
rk−1)

= Dk+1(Ark + γk+1rk + δk+1rk−1), (1.38)



1.3. Formal Orthogonal Polynomials and their Use in Lanczos Methods 14

where

δk+1 =
c(tkPk)

c(tk−1Pk−1)

=
〈y,Akrk〉

〈y,Ak−1rk−1〉

=
〈(AT)ky, rk〉

〈(AT)k−1y, rk−1〉

=
〈yk, rk〉

〈yk−1, rk−1〉
,

γk+1 =
c(tk+1Pk) − δk+1c(tkPk−1)

c(tkPk)

=
〈y,Ak+1rk〉 − δk+1〈y,Akrk−1〉

〈y,Akrk〉

=
〈(AT)ky,Ark〉 − δk+1〈(AT)ky, rk−1〉

〈(AT)ky, rk〉

=
〈yk,Ark〉 − δk+1〈yk, rk−1〉

〈yk, rk〉

and

Dk+1 =
1

δk+1 + γk+1
.

This algorithm for the computation of the vectors xk is known as Orthores, [83].

Its implementation can be seen in the Algorithm 1.

Formula A8

Formula A8 is obtained by calculating recursively the family of orthogonal poly-

nomial {Pk} from the P(1)
k−1 and Pk−1. Now we follow the computation of the

formula.
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Algorithm 1 Implementation of A4 (Orthores), [6]

1: Input :

• A, an n × n matrix,

• b, an n -vector,

• k, a positive integer less than or equal to n.

2: Output :

• the approximations solution, xk+1

• the norm of residuals , ‖rk+1‖

3: Fix the number of iterations to k and the tolerance ε to 1E − 13.
4: Initialization. Choose x0 and y. Set

r0 = b − Ax0,

y0 = y,
δ1 = 0,

γ1 =
〈y0,Ar0〉

〈y0, r0〉
,

D1 =
1
γ1
,

x1 = D1(γ1x0 − r0),
r1 = D1(Ar0 + γ1r0).

5: for k = 1, 2, . . . do
6: yk = ATyk−1

7: δk+1 =
〈yk,rk〉

〈yk−1,rk−1〉

8: γk+1 =
〈yk,Ark〉−δk+1〈yk,rk−1〉

〈yk,rk〉

9: Dk+1 = 1
δk+1+γk+1

10: xk+1 = Dk+1(γk+1xk + δk+1xk−1 − rk)
11: rk+1 = Dk+1(Ark + γk+1rk + δk+1rk−1)
12: end for
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Consider following relations

Pk(t) = AktP
(1)
k−1(t) + Pk−1(t), (1.39)

with Pk(0) = 1. Multiply both sides of (1.39) by ti for i = 0, 1, . . . , k − 1 and impose

orthogonality condition with respect to the linear function c to obtain :

c(tiPk) = Akc(ti+1P(1)
k−1) + c(tiPk−1) (1.40)

for i = 0, 1, . . . , k−1. In fact, for i = 0, 1, . . . , k−2, both sides agree each other. Now

shall we look at for i = k − 1. We have

c(tk−1Pk) = Akc(tkP(1)
k−1) + c(tk−1Pk−1). (1.41)

Since the left hand side of this relation is zero, we obtain the solution for Ak as

follows

Ak =
−c(tk−1Pk−1)

c(tkP(1)
k−1)

. (1.42)

The computation of the residuals rk = b−Axk = Pk(A)r0 and the corresponding

xk are given below.

rk+1 = Pk+1(A)r0

= Ak+1AP(1)
k (A)r0 + Pk(A)r0

= Ak+1Azk + rk. (1.43)

On the other hand, we have

rk+1 = b − Axk+1,
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and by re-order it, we obtain the form of the xk as follows.

Axk+1 = b − rk+1

= b − Ak+1Azk − rk

xk+1 = A−1b − zk − A−1rk

= xk − zk, (1.44)

where

Ak+1 =
−c(tkPk)

c(tk+1P(1)
k )

=
−〈y,Akrk〉

〈y,Ak+1zk〉

=
−〈(AT)ky, rk〉

〈(AT)ky,Azk〉

=
−〈yk, rk〉

〈yk,Azk〉
. (1.45)

Formula B6

It is obtained by calculating recursively the family of orthogonal polynomial P(1)
k

from the P(1)
k−1 and P(1)

k−2. Now we follow the computation of the formula.

Consider relations below :

P(1)
k (t) = BkP

(1)
k−2(t) + (t + Ck)P

(1)
k−1(t). (1.46)

Multiply both sides of (1.46) by ti for i = 0, 1, . . . , k−1 and impose the orthogonality

condition with respect to the linear function c(1), we obtain

c(1)(tiP(1)
k ) = Bkc(1)(tiP(1)

k−2) + c(1)(ti+1P(1)
k−1) + Ckc(1)(tiP(1)

k−1). (1.47)

Shall we apply some i’s into this relation to obtain the solutions. For i = 0, 1, . . . , k−
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3, both sides of (1.47) meet each other. For i = k − 2, we have

c(1)(tk−2P(1)
k ) = Bkc(1)(tk−2P(1)

k−2) + c(1)(tk−1P(1)
k−1) + Ckc(1)(tk−2P(1)

k−1)

0 = Bkc(1)(tk−2P(1)
k−2) + c(1)(tk−1P(1)

k−1)

Bk =
−c(1)(tk−1P(1)

k−1)

c(1)(tk−2P(1)
k−2)

=
−c(tkP(1)

k )

c(tk−1P(1)
k−2)

. (1.48)

For i = k − 1, we have

c(1)(tk−1P(1)
k ) = Bkc(1)(tk−1P(1)

k−2) + c(1)(tkP(1)
k−1) + Ckc(1)(tk−1P(1)

k−1)

0 = Bkc(1)(tk−1P(1)
k−2) + c(1)(tkP(1)

k−1) + Ckc(1)(tkP(1)
k−1)

Ck =
−Bkc(1)(tk−1P(1)

k−2) − c(1)(tkP(1)
k−1)

c(1)(tkP(1)
k−1)

=
−Bkc(tkP(1)

k ) − c(tk+1P(1)
k−2)

c(tk+1P(1)
k−1)

. (1.49)

Shall we now calculate formula zk by considering the form of zk = P(1)
k (A)z0. We

obtain

zk+1 = P(1)
k+1(A)z0

= Bk+1P(1)
k−1(A) + (A + Ck+1)P(1)

k (A)

= Bk+1zk−2 + Azk−1 + Ck+1zk−1, (1.50)
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where :

Bk+1 =
−c(tk+1P(1)

k+1)

c(tkP(1)
k−1)

=
−〈y,Ak+1zk+1〉

〈y,Akzk−1〉

=
−〈(AT)ky,Azk+1〉

〈(AT)ky, zk−1〉

=
−〈yk,Azk+1〉

〈yk, zk−1〉
. (1.51)

and

Ck+1 =
−Bk+1c(tk+1P(1)

k+1) − c(tk+2P(1)
k−1)

c(tk+2P(1)
k )

=
−Bk+1〈y,Ak+1zk+1〉 − 〈Ay,Ak+1zk−1〉

〈Ay,Ak+1zk〉

=
−Bk+1〈(AT)k+1y, zk+1〉 − 〈(AT)k+1y,Azk−1〉

〈(AT)k+1y,Azk〉

=
−Bk+1〈yk+1, zk+1〉 − 〈yk+1, zk−1〉

〈yk+1,Azk〉
(1.52)

We will apply the form this zk when the combination with the formula Bi is needed.

Formula A8/B6

The implementation of this combination is well known as the ORTHODIR algo-

rithm [6]. Let us now design an algorithm which combines A8 and B6for comput-

ing the approximate solutions xk+1 and the residuals rk+1. As we have (1.43) and

(1.44) in the formula A8, then we can apply B6 for the purpose of calculating zk

which is the result can be seen in (1.50). Thus together with all of the scalars are

put in the following algorithm.

Any number of algorithms can be established by following the steps explained
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Algorithm 2 Algorithm Orthodir, [6]

1: Initialization. Choose x0 and y. Set

• x = x0

• r0 = b − Ax0

• y0 = y

• z0 = r0

2: Fix the number of iterations to k and the tolerance ε to 1E − 13.
3: for k = 0, 1, 2, . . . do
4: yk = ATyk−1

5: Ak+1 =
−〈yk,rk〉

〈yk,Azk〉

6: xk+1 = xk − Ak+1zk

7: rk+1 = rk + Ak+1Azk

8: Bk+1 =
−〈yk,Azk+1〉

〈yk,zk−1〉

9: Ck+1 =
−Bk+1〈yk+1,zk+1〉−〈yk+1,zk−1〉

〈yk+1,Azk〉

10: zk+1 = Bk+1zk−2 + Azk−1 + Ck+1zk−1.
11: end for
12: sollast = xk

13: normlast = ‖rk‖

14: Stop.
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above. They differ by the degree of the orthogonal polynomials used in the re-

currence relationships. However, there is common sense advantage in using low

degree polynomials since only few coefficients will have to be identified. That

is why, as appears in [3, 29, 31], common Lanczos-type algorithms are mostly

obtained by forming the three-term recurrence relationship with the degree dif-

ference between the right and left hand-side being at most three.

1.4 The Breakdown Issue in Lanczos-type Algorithms

Although, in theory, Lanczos-type algorithms in exact arithmetic produce an exact

solution in at most n steps, where n is the dimension of the system, a satisfactory

approximate solution is often achieved in more than n steps. Breakdown in

Lanczos-type algorithms occurs in the computation of orthogonal polynomials

often, [8, 10], due to division by zero. However, it can also due to the non-

existence of some orthogonal polynomials, which is known as true breakdown

when computing the recurrence relationships, or because of the accumulation

of computation errors (ghost breakdown) when running these algorithms. When

breakdown happens in Lanczos-type algorithms, they stop. Therefore, strategies

which deal with this situation are continually being developed.

There are many such strategies; the look-ahead strategy, [7], also called the

Method of Recursive Zoom (MRZ), the look-around strategy, [39, 40], typically

try to get over and/or around the non-existing orthogonal polynomials. Other

strategies such as switching between Lanczos-type algorithms and restarting them

have also been considered, [29, 30, 32]. These latter ones have been shown to

perform better than MRZ in terms of robustness, [30, 32].
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1.4.1 Breakdown in Computing Orthogonal Polynomials when
Solving SLEs

Breakdown in Lanczos-type algorithms can be caused by either the non-existence

of some orthogonal polynomials or an inappropriate recurrence relationship is

used. Let us have a look at how the breakdown occurs when computing orthog-

onal polynomials, for more detail should we refer to [8],

Consider the three recurrence relationship of the monic polynomial Pk+1 as

follows :

Pk+1(t) = (αt + β)Pk(t) + γPk−1(t), k = 0, 1, . . .. (1.53)

This polynomial satisfies the conditions :

1. P−1(t) = 0,

2. P0(t) = 1,

3. c(tiPk) = 0, for i = 0, 1, . . . , k − 1 and c is a linear function.

Condition 2 leads to the equation,

1 = β + γ. (1.54)

Condition 3, which is also known as the orthogonality condition, gives :

c(tiPk+1) = αc(ti+1Pk(t)) + βc(tiPk(t)) + γc(tiPk−1(t)), (1.55)

for i = 0, 1, . . . , k . In particular, for i = k − 1 and i = k, we get relations

0 = αc(tkPk(t)) + γc(tk−1Pk−1(t)), (1.56)

0 = αc(tk+1Pk(t)) + βc(tkPk(t)) + γc(tkPk−1(t)), (1.57)
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respectively. As we can see, we now have a system of linear equations in α, β, γ,

the solutions of which is

α = 1

γ =
−c(tkPk(t))

c(tk−1Pk−1(t))

β =
γc(tkPk−1(t)) − ctk+1Pk(t)

c(tkPk(t))
. (1.58)

We can see here that in order for the relation (1.53) to be finite, the scalars

c(tk−1Pk−1(t)) and c(tkPk(t)) must not be zero, or sufficiently close to zero, i.e. small

enough to cause a NaN output in the computation. Otherwise, a breakdown

occurs.

1.4.2 The Method of Recursive Zoom

MRZ, also known as the look-ahead algorithm detects the non-existence orthogo-

nal polynomials and allows the process to jump over these and find existing ones

to continue with the solution,[11, 12].

Consider the family of orthogonal polynomials

Pk(t) = a0
(k) + a1

(k)t + · · · + ak
(k)tk. (1.59)

The normal condition is satisfied when a0
(k) = 1. In addition, the orthogonality
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condition (c(tkPk(t) = 0)) gives a systems of linear equations as following :

1 0 · · · 0

c0 c1 · · · ck

c1 c2 · · · ck+1

...

ck−1 ck · · · c2k−1





a(k)
0

a(k)
0

...

a(k)
0


=



1

0

...

0


(1.60)

Let Nk be the coefficient matrix of the system, dk be the right hand-side vector,

and zk the solution. Then we have

Nk zk = dk. (1.61)

Before going further, let us have a look at the block bordering method which plays

an important role in the derivation of the MRZ algorithm. Let Nk be an nk × nk

matrix. Consider the Nk+1 matrix

Nk+1 =


Nk Uk

Vk Mk

 (1.62)

where Uk, Vk, and Mk are matrices of dimension nk × mk, mk × nk, and mk × mk,

respectively. If Bk is the Schur Complement, [22], of Nk in Nk+1, then

Bk = Mk − VkN−1
K Uk. (1.63)

In fact, from the Schur Complement, we have

det Nk+1 = det Nk det Bk. (1.64)
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If Bk is non-singular then we obtain

N−1
k+1 =


N−1

k + N−1
k UkB−1

K VkN−1
k −N−1

k UkB−1
k

−B−1
k VkN−1

k B−1
k

 (1.65)

As we have (1.61), it is easy to follow that

Nk+1 zk+1 = dk+1 =


dk

fk

 (1.66)

where fk is a vector of dimension m. Thus we get

zk+1 = N−1
k+1


dk

fk


=


N−1

k + N−1
k UkB−1

K VkN−1
k −N−1

k UkB−1
k

−B−1
k VkN−1

k B−1
k



dk

fk


=


zk + N−1

k UkB−1
K Vkzk −N−1

k UkB−1
k fk

−B−1
k Vkzk + B−1

k fk


=


zk

0

 −

−N−1

k Uk

I

 B−1
k Vkzk (1.67)

If we multiply both sides of (1.83) by vector
[
1 t · · · tnk+1

]T

, then we obtain

zk+1 =


zk

0





1

t

...

tnk+1


−


−N−1

k Uk

I

 B−1
k Vkzk



1

t

...

tnk+1


(1.68)

Pk+1 = Pk(t) −Qk+1(t). (1.69)
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The problem is how to determine the polynomial Qk. However, from (1.68) we

know that the Qk+1 has degree at most (nk + 1) and satisfies

c(tiQk+1(t)) = c(tiPk(t)) − c(tiPk+1)(t)) =


0, for i = 0, 1, · · · ,nk−1

c(tiPk(t)), for i = nk,nk+1, · · · ,nk + mk − 1

(1.70)

Let P(1)
k be the monic polynomial of degree nk belonging to the family of formal

orthogonal polynomial with respect to the linear functional c(1) which satisfies :

c(1)(tiP(1)
k (t)) = c(ti+1P(1)

k (t)) = 0, (1.71)

for i = 0, 1, · · · ,nk − 1. Consider the form of Qk+1 as following

Qk+1 = t(β0 + β1t + · · · + βmk−1tmk−1)P(1)
k (t)

= twk(t)P
(1)
k (t), (1.72)

where wk is the polynomial of degree (mk − 1). According to the Draux’s theorem

in [24], the jumping mk is defined by the conditions

c(1)(tiP(1)
k (t)) =


0, for i = 0, 1, · · · ,nk + mk − 2

, 0, for i = nk + mk − 1
(1.73)

Thus this gives us

c(tiQk+1(t)) = c(ti+1wkP
(1)
k (t)) = 0, (1.74)

for i = 0, 1, · · · ,nk−1. Thus we obtain the systems of linear equations by applying

the values of i’s into (1.70). For i = nk
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c(1)(tnk(β0 + β1t + · · · + βmk−1tmk−1)P(1)
k ) = c(tnkPk(t))

β0c(1)(tnkP(1)
k ) + β1c(1)(tnk+1P(1)

k ) + · · · + βmk−1c(1)(tmk+nk−1P(1)
k ) = c(tnkPk(t))

βmk−1c(1)(tmk+nk−1P(1)
k ) = c(tnkPk(t)).

For i = nk + 1,

c(1)(tnk+1(β0 + β1t + · · · + βmk−1tmk−1)P(1)
k ) = c(tnk+1Pk(t))

β0c(1)(tnk+1P(1)
k ) + β1c(1)(tnk+2P(1)

k ) + · · · + βmk−1c(1)(tmk+nkP(1)
k ) = c(tnk+1Pk(t))

βmk−2c(1)(tmk+nk−1P(1)
k ) + βmk−1c(1)(tmk+nkP(1)

k ) = c(tnk+1Pk(t)).

...

For i = nk + mk − 1

c(1)(tnk+mk−1(β0 + β1t + · · · + βmk−1tmk−1)P(1)
k ) = c(tnk+mk−1Pk(t))

β0c(1)(tnk+mk−1P(1)
k ) + β1c(1)(tnk+mkP(1)

k ) + · · · + βmk−1c(1)(tnk+2mk−2P(1)
k ) = c(tnk+mk−1Pk(t)).

Thus we have the following triangular system of linear equations.


c(1)(tnk+mk−1P(1)

k ) c(1)(tnk+mkP(1)
k ) · · · c(1)(tnk+2mk−2P(1)

k )
...

0 0 · · · c(1)(tnk+mkP(1)
k )

0 0 · · · c(1)(tnk+mk−1P(1)
k



β0
β1
...

βmk−1

 =


c(tnkPk(t))

c(tnk+1Pk(t))
...

c(tnk+mk−1Pk(t))

.
(1.75)

The solutions of this system must be consistent since the coefficient matrix is a

non-singular. From (1.68), eventually we have formula for the Pk+1

Pk+1 = Pk − twk(t)P
(1)
k (t), (1.76)
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where

wk = β0 + β1t + · · · + βmk−1tmk−1, (1.77)

and the scalars β0, β1, . . . , βmk−1 can be calculated by solving the system (1.75). We

still need to compute the formula for P(1)
k+1 to complete the whole of the algorithm.

For that, let us consider the form of the monic polynomial qk of degree mk below

qk(t) = α0 + α1t + · · · + αmk−1tmk−1 + tmk , (1.78)

and also consider the recurrence relationship of the form

P(1)
k+1(t) = qk(t)P

(1)
k (t) − Ck+1P(1)

k−1(t), (1.79)

for k = 0, 1, . . .. Similarly, we multiply both sides of (1.79), applying the orthog-

onality condition with respect to the linear function c(1) we obtain a triangular

system of linear equations which means the solutions must exist.

c(1)(tiP(1)
k+1(t)) = c(1)(tiqk(t)P

(1)
k (t)) − Ck+1c(1)(tiP(1)

k−1(t)). (1.80)

Finally, the recursive computation of the residual rk+1 and the approximate

solutions xk+1 are considered by applying both formulae (1.76) and (1.79). The

resulting method is called the MRZ algorithm (or the Method of Recursive Zoom)

which guarantees that we will not face breakdown. The only breakdown possibly

faced is the incurable hard breakdown. After applying rk = Pk(A)r0 and zk =
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P(1)
k (A)r0, we have the relations as following :

rk+1 = Pk+1(A)r0

= Pk(A)r0 − Awk(A)P(1)
k (A)r0

= rk − Awk(A)zk, (1.81)

which is used to compute the residuals. To compute the approximate solutions,

we use the fact of rk = b − Axk and thus we obtain

Axk+1 = b − rk+1

= b − (rk − Awk(A)zk)

xk+1 = A−1b − A−1rk + wk(A)zk

= xk + wk(A)zk. (1.82)

For calculating zk+1, we do as following

zk+1 = P(1)
k+1(A)z0

= qk(A)P(1)
k (A)z0 − Ck+1P(1)

k−1(A)z0

= qk(A)zk − Ck+1zk−1. (1.83)

Altogether we have the following algorithm :
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Algorithm 3 Implementation of MRZ, [12]
1: Initialization. Choose x0 and y. Set r0 = b − Ax0, y0 = y, z0 = r0, n0 = 0.
2: for k = 1, 2, . . . do
3: if nk = n then
4: The solutions are obtained after n iterations.
5: STOP.
6: z1 = Az0.
7: end if
8: if 〈y, z1〉 = 0 and nk = n − 1 then
9: Incurable Breakdown.

10: STOP.
11: mk = 1.
12: end if
13: while 〈y, zmk〉 , 0 and mk < n − nk do
14: mk = mk + 1.
15: zmk = Azmk−1.
16: end while
17: if mk = n − nk and 〈y, zmk〉 = 0 then
18: INCURABLE BREAKDOWN.
19: STOP.
20: c0 = 〈y, rk〉,
21: d0 = 〈y, zmk〉,
22: βmk−1 = c0

d0
.

23: end if
24: for i = 1, 2, . . . ,mk do
25: y = ATy,
26: di = 〈y, zmk〉,
27: ci = 〈y, rk〉.
28: if i , mk , compute then
29: βmk−i−1
30: end if
31: if k , 0 and i > mk−1 then
32: pi = 〈y, zk−1〉

33: end if
34: rk+1 = rk − Awk(A)zk
35: xk+1 = xk + wk(A)zk)
36: if rk+1 = 0 then
37: SOLUTION REACHED.
38: STOP.
39: nk+1 = nk + mk
40: end if
41: if k = 0 then
42: C1 = 0
43: p0 = 0
44: else
45: Ck+1 = d0/p0
46: end if
47: αmk−i
48: if k = 0 then
49: pi = 0
50: end if
51: end for
52: for i = 0, 1, . . . ,mk do
53: zk+1 = qk(A)zk − Ck+1zk−1.
54: STOP.
55: end for
56: end for
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1.4.3 The Restarting Approach

Restarting of iterative methods to improve convergence and avoid breakdown is

not new. The restarting of an Arnoldi-type algorithm, namely GMRES, [81], has

been considered in, [76]. Restarting Lanczos-type algorithms is more recent; it has

been investigated in [29, 30] where it has been found to be effective. The idea is

either to stop the Lanczos-type algorithm pre-emptively and restart it with some

iterate or wait until breakdown occurs and then restart from some iterate. This

simple approach proves to be very effective although the pre-emptive variant is

very difficult to implement since it is not easy to detect breakdown prior to its

occurence. One important question on restarting is the quality of the restarting

point. This issue will be the subject of Chapter 2 where restarting will be treated

more comprehensively. The specific algorithm A8B6, also referred to the literature

as Orthodir, [6], will be considered.

1.5 The Aims of the project

The aim of this project is to investigate a number of strategies to deal with break-

down in Lanczos-type algorithms. This aim contains several individual objectives

as follows.

• Revisiting Lanczos-type algorithms and their derivation, reviewing the most

important work on the issue of breakdown in particular.

• Investigating the suitability of certain points as starting ones for a Lanczos-

type algorithm. These are the last iterate preceding breakdown, the iterate

with the lowest residual norm in the sequence of iterates generated so far,
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and the iterate whose entries are the median values of all entries of the

iterates generated so far.

• Introducing an alternative approach to dealing with breakdown by embed-

ding a regression model in the Lanczos-type algorithm. Provide a theoretical

justification for it and test it empirically within the framework of restarting.

• Solving large scale problems (upto 106 variables) with the suggested ap-

proach using local parallel computing facilities and those provided by Cloud

computing organisations.

• Comparing different approaches as appropriate on non trivial problems

and indicate, where possible, the superior approach on the residual norm

criterion.

1.6 Summary

In this chapter we have discussed the literature of Lanczos-type algorithms for

solving systems of linear equations, the theory of FOPs on which they are based

and how to derive them. An example of a Lanczos-type algorithm derived in this

way, namely Orthores (or A4), has been given. The aims of the project are also set.



Chapter 2

Restarting Lanczos-type Algorithms
from Specific Points

In this chapter, we focus on restarting from three specific points which are at-

tractive as starting points. These are the last iterate preceding breakdown, the

iterate with the lowest residual norm, and the iterate whose entries are the me-

dian values of all entries of the iterates generated so far. We will also look at the

theoretical aspect of restarting by following the results of [47]. Some numerical

results will be provided from solving large scale problems, ranging from 1000 to

70,000 dimensions.

2.1 Restarting Lanczos-type Algorithms

2.1.1 The Restarting Strategy

As an illustration of the restarting approach, [29, 30], to avoid breakdown in

a Lanczos-type algorithm, we consider the specific case of Orthodir algorithm,

[6]. Note, Orthodir algorithm is based on combination of formulae A8 and B6.

Formula A8 is obtained by calculating recursively the orthogonal polynomial {Pk}

from P(1)
k−1 and Pk−1, whereas formula B6 is obtained by calculating recursively the

orthogonal polynomial P(1)
k from P(1)

k−1 and P(1)
k−2.

33
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We run this algorithm on SLE’s Ax = b, where matrix A is given in (2.29),

[3], and x = (1, 2, . . . ,n)T is the solution of the system. For n = 200, x0 = 0, and

y = (1, . . . , 1)T, the problematic coefficient, i.e. the coefficient causing breakdown,

is Ak+1 =
−〈yk,rk〉

〈yk,Azk〉
= NaN, for k = 133. This coefficient is used in relations :

xk+1 = xk − Ak+1zk

rk+1 = rk + Ak+1Azk.

Putting xk (k = 133) above as an initial guess of Orthodir algorithm, does not seem

to create a breakdown immediately. In fact, it is reasonable to assume it would

not, since the process starts working in different Krylov space base, [29].

2.1.2 The Quality of the Restarting Point

Here, we consider different implementations of restarting from three different

points. RLLastIt restarts from the last iterate; RLMinRes restarts from the iterate

with the minimum residual norm; RLMedVal restarts from a point made up of the

median values of all the entries of previous iterates in a sequence generated by

the Lanczos-type algorithm under consideration. Restarting in all cases is of the

pre-emptive type as described in [30]. The aim is to see whether different starting

points lead to different performances.

2.1.3 Restarting from the Last Iterate

Suppose we generate the approximate solutions of a SLE using a Lanczos-type

algorithm. Assume that we stop the algorithm after k iterations. Note that a high

k may mean the algorithm may breakdown. After a pre-set number of iterations,



2.1. Restarting Lanczos-type Algorithms 35

we obtain the iterate xk, which is the last iterate, with residual norm ‖rk‖. Since

we use this iterate as a starting point, we initialize the algorithm with

x0 = xk, (2.1)

y = b − Ax0. (2.2)

Restarting Lanczos-type algorithms from the last iterate, or the RLLastIt algo-

rithm, is described in Algorithm 4. Here, firstly, we run a Lanczos-type algorithm

over a certain number of iterations, say k. We then check the residual norm of

the last iterate, normlast; if it is less than the tolerance, ε, then we have a good

approximate solution. Otherwise, we initialize the Lanczos-type algorithm with

(2.1) and (2.2).

Algorithm 4 The RLLastIt algorithm

1: Fix the number of iterations to, say k, and the tolerance, ε, to 1E − 13.
2: Run a Lanczos-type algorithm for k iterations and get the approximate solution

sollast = xk, as well as the residual norm normlast = ‖rk‖.
3: while normlast ≥ ε do
4: Initialize the algorithm with

x = sollast,

y = b − Ax.

5: Run the Lanczos-type algorithm for k iterations.
6: end while
7: Take sollast as the approximate solution.
8: Stop.

2.1.4 Restarting from the Iterate with Minimum Residual Norm

Because of the potential accumulation of errors, the last iterate after k iteration is

not necessarily the one with smallest residual norm. It is therefore reasonable to

consider restarting from the point among the k iterates with the lowest residual
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norm. Figure 2.1 illustrates the residual norm behaviour of the iterates after

running Orthodir algorithm, [6], when solving problems in 300 dimensions using

150 iterations. This figure describes the situation mentioned earlier that the last

iterate is not always the better one. In this case, the iterate with the lowest residual

norm is the 29th.

The procedures of finding the iterate with the minimum residual norm (LMin-

Res) can be seen in Algorithm 5. We collect all of the iterates generated in k

iterations and their residual norms.

datasol = {x1, x2, . . . , xk} , (2.3)

dataresnorm = {‖r1‖ , ‖r2‖ , . . . , ‖rk‖} . (2.4)

We then find the minimum value of (2.4) as

normmin = min(dataresnorm), (2.5)

and its index m. Our new solution is the iterate in (2.3) with index m.

Considering the iterate with the lowest residual norm as a restarting point

leads to a better solution. The idea is that the better the restarting point, the better

the solution after restarting. As in RLLastIt, restarting from the iterate with the

minimum residual norm (RLMinRes) is initialized as follows

x0 = xm, (2.6)

and y as in (2.2). If we repeat this step, we will find a good approximate solu-

tion as explained in the previous subsection. These procedures are presented in

Algorithm 6.
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Algorithm 5 The LMinRes algorithm

1: Initialize a Lanczos-type algorithm with x0 and y. Run it for k iterations.
2: Collect all k iterates as in (2.3).
3: Collect all of the residual norms as in (2.4).
4: Compute the minimum value as in (2.5) and specify the index of the minimum

value as m.
5: Obtain the approximate solution as well as the residual norm as follows

solmin = datasol(m) (2.7)
normmin = ‖rm‖ . (2.8)

6: Take solmin as the approximate solution.
7: Stop.

Algorithm 6 The RLMinRes algorithm

1: Fix the number of iterations to, say k, and the tolerance, ε, to 1E − 13.
2: Run the LMinRes algorithm for k iterations and obtain solmin and normmin.
3: while normmin ≥ ε do
4: Initialize the algorithm with

x = solmin,

y = b − Ax.

5: Run the LMinRes algorithm for k iterations.
6: end while
7: Take solmin as the approximate solution.
8: Stop.
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Figure 2.1: A typical behaviour of the residual norms of SLE’s in dim = 300.

2.1.5 Restarting from the Vector of Median Value Entries

Our investigation of the existence of a good iterate with a small residual norm

generated by Lanczos-type algorithms leads to the idea of using a statistical

description to find it. Therefore, we calculated the mean, the median, and the

mode of all the iterates. Let us have a look at this in detail.

Consider again relations (2.3) and (2.4). For each xi, i = 1, 2, . . . ,n, we set

w1 =
{
x1

(1), x2
(1), · · · , xk

(1)
}

w2 =
{
x1

(2), x2
(2), · · · , xk

(2)
}

(2.9)

...

wn =
{
x1

(n), x2
(n), · · · , xk

(n)
}

where wi is arranged such that it consists of the ith entry of each vector xi, for
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i = 1, 2, . . . ,n. For instance, w1 is set of all of the first entries of the iterates, w2 is set

of all of the second entries of the iterates, etc. If we calculate mean, median, and

mode values of each wi, and we use them as the first entry, the second entry, etc. of

a vector, it leads to a new vector solution. In other words, the new vector contains

the values of either mean, median, or mode of all the first entries, the second

entries, etc. of all the iterates. Our investigation of these entries showed that the

best results are obtained with the median values. The approximate solution based

on the median values of entries is as follows.

xmed =



x1
med

x2
med

...

xn
med


, (2.10)

and xi
med = med {wi}, for i = 1, 2, . . . ,n.

The procedure described above for creating an approximate solution from the

median values of entries of iterates generated by the Lanczos-type algorithm used

is presented in algorithmic form as Algorithm 7 or LMedVal. Firstly, we run a

Lanczos-type algorithm with a fixed number of iterations, say k. Secondly, we

collect all of k iterates and save them in datasol. Next, for i = 1, 2, . . . ,n, we set

wi as in (2.9), we then compute the median value of each wi. Hence we set all

of the median values to form a vector, called solmed, which is our new solution of

the system. We compute the residual vector, resmed, as well as the residual norm,

normmed, to check the accuracy of the approximate solution.

The approximate solution resulted in LMedVal, i.e. solmed, is then used as a
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restarting point in RLMedVal. It is described in Algorithm 8. Its initialization is

as follows.

x0 = solmed, (2.11)

and vector y as in (2.2), where xmed as in (2.10). The RLMedVal algorithm can be

seen in Algorithm 8.

Algorithm 7 The LMedVal algorithm

1: Initialize a Lanczos-type algorithm with guess solutions x0 and y. Run it for
k iterations.

2: Collect all k iterates as in (2.3).
3: for i = 1, 2, . . . ,n do
4: Set wi as in (2.9)
5: Compute the median value of the entries of each wi as follows

med(i) = median(wi).

6: end for
7: Compute the approximate solution as follows

solmed = med(1 : n)T.

8: Compute the residual norm of the solution as follows

resmed = b − Asolmed,

normmed = norm(resmed).

9: Take solmed as the approximate solution.
10: Stop.

2.1.6 The Theoretical Point of View

Suppose we solve the SLE’s using RLLastIt algorithm. We denote xk
(i), for i =

1, 2, . . . , s, and for any integer s > 0, as the kth iterate of the ith run of a Lanczos-

type algorithm. We assume that the residual norm of the first cycle is greater than
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Algorithm 8 The RLMedVal algorithm

1: Fix the number of iterations to k and the tolerance ε to 1E − 13.
2: Run LMedVal for k iterations and obtain solmed as well as normmed.
3: while normmed ≥ ε do
4: Initialize the algorithm with

x = solmed,

y = b − Ax.

5: Run LMedVal for k iterations.
6: end while
7: Take solmed as the approximate solution.
8: Stop.

the convergence tolerance, i.e. ∥∥∥rk
(1)

∥∥∥ > ε1, (2.12)

for any ε1 > 0. Considering the results in Subsection 2.1.3 and by the definition

of the Krylov subspace given in Chapter 1, particularly in Subsection ??, we now

have two conditions for the second cycle of restarting the Lanczos-type algorithm

xk
(2)
− x0 ∈ Kk(A, r0) and (2.13)

rk
(2) = b − Axk

(2)
⊥ Kk(AT, y), (2.14)

where r0 = rk
(1). Substituting (2.1) into (2.13), we get :

xk
(2)
− xk

(1)
∈ Kk(A, rk

(1)). (2.15)

Following the results in (1.6), we have :

rk
(2) = rk

(1) + α1Ark
(1) + α2A2rk

(1) + · · · + αkAkrk
(1)

= Pk(A)rk
(1), (2.16)
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where Pk(A) = 1 + α1A + · · · + αkAk. Calculating the norm of rk
(2) in (2.16) yields

∥∥∥rk
(2)

∥∥∥ =
∥∥∥Pk(A)rk

(1)
∥∥∥

≤ ‖Pk(A)‖
∥∥∥rk

(1)
∥∥∥ . (2.17)

If this residual norm is still bigger than the tolerance, we apply restarting again.

In this case, we will have the third cycle giving

rk
(3) = Pk(A)rk

(2), (2.18)

and calculating the norm of rk
(3) as

∥∥∥rk
(3)

∥∥∥ =
∥∥∥Pk(A)rk

(2)
∥∥∥

≤ ‖Pk(A)‖
∥∥∥rk

(2)
∥∥∥

≤ ‖Pk(A)‖2
∥∥∥rk

(1)
∥∥∥ since we have (2.17). (2.19)

If this procedure is continued, then for the sth cycle, we have :

∥∥∥rk
(s)
∥∥∥ =

∥∥∥Pk(A)rk
(s−1)

∥∥∥
≤ ‖Pk(A)‖s

∥∥∥rk
(1)

∥∥∥ . (2.20)

From (2.17), (2.19), and (2.20), and since ‖Pk(A)‖ > 0, we conclude that

∥∥∥rk
(s)
∥∥∥ ≤ ∥∥∥rk

(s−1)
∥∥∥ ≤ . . . ≤ ∥∥∥rk

(1)
∥∥∥ , (2.21)

where s ≥ 1 is the number of cycles. This leads to the following result.

Theorem 2.1.1. Suppose we solve a SLE using a Lanczos-type algorithm. Let xk
(1) be

the last iterate generated by this algorithm after k iterations. Given a tolerance ε > 0,
we assume that the associated residual norm

∥∥∥rk
(1)

∥∥∥ > ε. Restarting the algorithm with
xk

(1) allows it to generate an iterate with a better residual norm than those of the previous
iterates.
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In practice, breakdown may still occur between cycles which will cause the

algorithm to stop before reaching a good approximate solution. We cannot guar-

antee that a breakdown will not occur in the first cycle, or any cycle for that

matter.

2.2 Numerical Results and Discussion

We solved different size problems ranging from dimension 1000 to 70000. The test

problems are carried out in MatLab 2012b using two different systems, Windows

with processor RAM 6GB for solving the medium scale problems, and Unix0

with 256 GB for solving the large scale problems. We implemented RLLastIt,

RLMinRes, and RLMedVal algorithms as well as other supporting procedures

such as LMinRes and LMedVal. The experiments have been carried out via

Algorithm 9 which calls RLLastIt, RLMinRes, RLMedVal.

Algorithm 9 Restarting Lanczos-type algorithms from three different points
1: Fix the number of iterations to k and the tolerance to ε.
2: Run RLLastIt, RLMinRes, RLMedVal for k iterations.
3: while normlast ≥ ε do
4: Run RLLastIt for k iterations.
5: Run RLMinRes for k iterations.
6: Run RLMedVal for k iterations.
7: end while
8: Take sollast, solmin, and solmed as the approximate solution of each algorithm, respec-

tively.
9: Stop.

2.2.1 Test Problem

Before describing the test problem considered in [3], we briefly describe discretiza-

tion process.

Discretization is the process of transferring continuous differential equations
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into discrete or coupled equations. There are basically two main ways to discretize

differential equations, namely finite difference methods (FDMs) and finite element

methods (FEMs), [58, 79]. In this study, we focus on FDMs. FDMs use finite

differences to approximate differential operators. These methods are known as

the simplest and extensively used for solving differential equations. Typically,

FDMs are used on a regular mesh and yield matrices with a regular structure

that are easy to store in the computer memory, [79]. The model problem that was

widely used for testing algorithms is Poisson equation on the open unit square

Ω = (0, 1) × (0, 1), [58].

−∆u = −
∂2u
∂x2 −

∂2u
∂y2 = f in Ω,

u|∂Ω = 0, (2.22)

where ∂Ω is the boundary of Ω and f is given in an appropriate functional space.

To get an approximation on this problem, we cover Ω with a regular mesh Ωh

having m points in each direction. This gives a step size h = 1
m+1 .

Let ui, j be the approximation of u at
(
xi, y j

)
, where

(
xi, y j

)
∈ Ω. Then we

approximate ∂u
∂x at

(
i + 1

2h, jh
)

by the finite difference(
∂u
∂x

)
i+ 1

2 , j
≈

ui+1, j − ui, j

h
. (2.23)

Hence, (
∂2u
∂x2

)
i, j
≈

1
h

(∂u
∂x

)
1+ 1

2 , j
−

(
∂u
∂x

)
1− 1

2 , j

 ,
=

ui−1, j − 2ui, j + ui+1, j

h2 . (2.24)
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Doing this for both directions, we get an approximation of minus the Laplacian

∆, that we denote (after multiplication by h2) by −∆5.

(−∆5)i, j = −ui−1, j − ui, j−1 + 4ui, j − ui, j−1 − ui, j+1

= h2 f (xi, y j), i = 1, . . . ,m, j = 1, . . . ,m . (2.25)

The solution is already known for points on ∂Ω, that is for i = 0 or m + 1, j = 0

or m + 1, so we have m2 equations with m2 unknowns and a linear systems to

solve. If we numbered the points from left to right and from bottom to top, and

renamed the unknowns u into x, the systems can be written as

Ax = b, (2.26)

where

x =
{
u1,1,u1,2, . . . ,um,m

}T,

b = h2{ f1,1, f1,2, . . . , fm,m
}T, where fi, j being the value of f at point (i, j),

A =



T −I · · · · · · 0

−I T −I

...
. . . . . . . . .

...

... −I T −I

0 · · · · · · −I T


, (2.27)



2.2. Numerical Results and Discussion 46

where I is the m ×m identity matrix and T is a tridiagonal matrix of order m,

T =



4 −1 · · · · · · 0

−1 4 −1 . . .

...
. . . . . . . . .

...

... −1 4 −1

0 · · · · · · −1 4


. (2.28)

Our test problems used in this study arise in the 5-point discretisation of the

operator − ∂2

∂x2 −
∂2

∂y2 +γ ∂
∂x on a rectangular region, [3]. This yields the systems (2.26)

with

A =



B −I · · · · · · 0

−I B −I

...
. . . . . . . . .

...

... −I B −I

0 · · · · · · −I B


, (2.29)

and

B =



4 α · · · · · · 0

β 4 α . . .

...
. . . . . . . . .

...

... β 4 α

0 · · · · · · β 4


(2.30)

with α = −1 + δ, β = −1 − δ, and δ in our work here takes values 0.0, 0.2, 0.5,

0.8, 5.0, and 8.0. The parameter of δ plays an important role on the singularity of

matrix A. For instance, when δ = 0, A is symmetric matrix. The condition number
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of matrix A for this particular value of delta is large enough, i.e. 119.9999. Any

systems which are built by this matrix tend to be ill-conditioned, [17, 43]. When

the δ large enough, the matrix A can become well-conditioned.

In addition, the right hand side b is taken to be b = Ax, where x = (x1, x2, . . . , xn)T,

is the solution of the systems, and xi, i = 1, 2, . . . ,n is a random value between

0 and 1. We use Orthodir algorithm, or Algorithm 2, in this experiment as a

representative of Lanczos-type algorithms. We also use 100 iterations to make up

a cycle, which means that the intermediate solution is found after 100 iterations.

2.2.2 Test Problem I : δ = 0.0

According to the information available in Table 2.1, overall, RLMinRes has the

best performance, compared with RLLastIt and RLMedVal. It consistently con-

vergences in the smallest number of cycles. For instance, when solving the SLEs

dimensions 1000, RLMinRes needed 11 cycles with total time of 1.1293 seconds,

whereas RLLastIt and RLMedVal needed respectively 16 and 12 cycles with total

times are about 2.0159 and 1.9818 seconds. A significant difference of using the

time is made when solving a higher dimensions. For instance, when solving prob-

lems dimensions 9000, 10000, and 20000, RLMinRes needed respectively about 64,

80, and 318 seconds, RLMedVal took about 70, 94, and 1235 seconds, respectively,

whereas RLLastIt needed respectively about 161, 166, and 1285 seconds.

In term of robustness, there is no doubt that RLMinRes is more robust than

RLLastIt and RLMedVal, since it never experienced breakdown. The breakdown

itself in this experiment is shown by ”NaN” in the residual norm column. Ex-

perimental results show that, in general, RLLastIt experienced breakdown when
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solving medium scale problems, such as dimensions 2000, 6000, 7000, and only

one problem for a large dimension, namely 30000. In contrast, RLMedVal faced

breakdown when solving large scale problems, such as in dimensions 30000,

40000, 50000, and 60000.

The behaviour of the restarting from three different points is represented in

Figures 2.2 and 2.3. Breakdown in this algorithm is illustrated by the curves

which either do not appear, or do not reach a small residual norm values. For

instance, when solving a problem dimensions 2000, the red curve, which rep-

resents RLLastIt, appears on the top of the curve, and it runs for 3 cycles only.

Similarly, for a problem dimensions 3000, the red curve never hit a small residual

norm. It broke down before convergence. Furthermore, when solving problems

dimensions 6000 and 7000, the red curve appears with one dot only which also

indicates that breakdown occurred.

Similarly, the green curve, which represents RLMedVal, when solving a prob-

lem dimension 8000, was not visible. In other problems, the green curve seems to

be long, which means that it runs over many cycles.
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Table 2.1: Numerical results of RLLastIt, RLMinRes, and RLMedVal on problems with δ = 0.0.

Dim RLLastIt RLMinRes RLMedVal
n ‖rk‖ T(s) cycles* ‖rmin‖ T(s) cycles* ‖rmed‖ T(s) cycles*

1000 5.7290E − 14 2.0159 16 7.4630E − 14 1.1293 11 7.7686E − 14 1.9818 12
2000 NaN NA NA 7.9179E − 14 3.5393 10 7.2049E − 14 5.1083 8
3000 1608 NA 25 7.1515E − 14 8.0831 10 9.2942E − 14 10.2765 12
4000 6.6150E − 14 34.3719 24 7.1737E − 14 12.2651 9 9.7700E − 14 17.8791 12
5000 5.3701E − 14 79.1186 36 6.8902E − 14 18.5584 9 7.9847E − 14 24.7685 12
6000 NaN NA NA 7.1850E − 14 25.8040 9 7.4920E − 14 101.59 9
7000 NaN NA NA 7.9874E − 14 37.3090 12 7.4949E − 14 50.6792 12
8000 9.0251E − 14 67.9472 14 6.7684E − 14 45.5536 9 NaN NA NA
9000 6.0401E − 14 161.2933 24 7.0927E − 14 63.9086 10 8.5236E − 14 70.1496 11

10000 6.6456E − 14 165.7143 20 8.1881E − 14 79.8814 10 8.5545E − 14 93.5818 11
20000 7.2688E − 14 1285.500 40 7.4526E − 14 318.1595 10 9.9168E − 14 1234.488 12
30000 NaN NA NA 7.9381E − 14 22848.70 9 NaN NA NA
40000 9.5703E − 14 19798.6225 47 8.0789E − 14 9589.513 7 NaN NA NA
50000 202.3106 17797.106 10 8.5386E − 14 15375.207 10 NaN 24780.773 4
60000 0.0014 26531.409 10 7.5384E − 14 21178.311 10 NaN NA NA
70000 3.8427E − 08 50351.809 15 9.2520E − 14 30739.034 10 8.4645E − 14 64255.166 15

NA = Non Applicable. The computation time and cycles are not calculated if breakdown occurs which is indicated by ”NaN”
in the residual norm column.
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2.2.3 Test Problem II : δ = 0.2

The condition number of matrix A of the problem instances for this particular

value of delta is 98.6081 which is large enough too, which means that the matrix is

categorized as ill-conditioned. Similar to the previous case, RLMinRes is still the

best compared to RLLast and RLMedVal. It can be seen in Table 2.2, for instance,

that for SLEs dimensions 1000, RLMinRes needed 7 cycles with total time of about

0.8079 seconds, whereas RLMedVal needed 8 cycles with total time of about 1.9484

seconds, and RLLastIt needed 16 cycles with total time of about 2.0260 seconds.

Furthermore, RLMinRes needed to restart 7 and 8 times when solving SLEs

dimensions 9000 and 10000, with total times respectively 48.2827 and 61.9360

seconds. RLMedVal solved the same problems with 8 cycles with total times re-

spectively 106.9637 and 118.8027 seconds. The worst one is RLLastIt which cycled

21 and 25 times with total times of 152.2841 and 205.5778 seconds, respectively.

In addition, for solving large scale problems, i.e. dimensions 30000 to 70000,

RLMinRes was consistently stable and needed only few cycles with lower total

computation time than the other two. It can be seen from the table that breakdown

still occurs in RLLastIt and RLMedVal when solving systems dimensions 3000,

5000, 8000, 20000, and 40000.

The performance of RLLast, RLMinRes, and RLMedVal, can be seen in Figures

2.4 and 2.5. The explanation of some curves in this figure can refer to the previous

case.
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Figure 2.2: Performance of RLLastIt, RLMinRes, and RLMedVal on SLE’s of dimensions
from 1000 to 8000, for δ = 0.0
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Figure 2.3: Performance of RLLastIt, RLMinRes, and RLMedVal on SLE’s of dimensions
from 9000 to 70000, for δ = 0.0
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Table 2.2: Numerical results of RLLastIt, RLMinRes, and RLMedVal on problems with δ = 0.2.

Dim RLLastIt RLMinRes RLMedVal
n ‖rk‖ T(s) cycles* ‖rmin‖ T(s) cycles* ‖rmed‖ T(s) cycles*

1000 6.5481E − 14 2.0260 16 8.0389E − 14 0.8079 7 7.7606E − 14 1.9484 8
2000 3.3041E − 14 5.7515 14 1.2429E − 13 7.6131 14 7.9129E − 14 6.750 8
3000 NaN NA NA 8.7363E − 14 6.9168 8 NaN NA NA
4000 4.0211E − 14 23.8768 16 7.9746E − 14 9.8956 7 NaN NA NA
5000 NaN NA NA 5.1093E − 14 17.1567 9 NaN NA NA
6000 3.3399E − 14 49.6966 15 7.0909E − 14 21.6026 7 6.4865E − 14 45.89899 9
7000 5.4049E − 14 76.8363 17 7.3018E − 14 34.2061 8 8.6172E − 14 68.6571 10
8000 NaN NA NA 8.0677E − 14 35.25096 7 7.8672E − 14 71.3026 8
9000 5.0507E − 14 152.2841 21 6.6680E − 14 48.2827 7 8.9150E − 14 106.9637 8

10000 5.6855E − 14 205.5778 25 6.3812E − 14 61.9360 8 8.2954E − 14 118.8027 8
20000 NaN NA NA 7.4526E − 14 318.1595 10 NaN NA NA
30000 9.7800E − 14 1.1635E + 04 50 6.7992E − 14 3.1132E + 03 9 7.6804E − 14 7.1155E + 03 10
40000 NaN NA NA 5.9208E − 14 6.1620E + 03 8 NaN NA NA
50000 9.9120E − 14 3.6563E + 04 75 7.4136E − 14 7.3843E + 03 8 9.8225E − 14 1.3690E + 04 10
60000 9.9668E − 14 2.5750E + 04 44 8.3763E − 14 9.6811E + 03 7 8.5780E − 14 2.3055E + 04 11
70000 1.5299E + 03 5.5568E + 04 10 7.1895E − 14 1.5601E + 04 8 9.2065E − 14 2.7346E + 04 10

NA = Non Applicable. The computation time and cycles are not calculated if breakdown occurs which is indicated by ”NaN” in the
residual norm column.
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2.2.4 Test Problem III : δ = 0.5

The condition number of matrix A for this particular value of delta is 62.2227. The

SLEs with this matrix are categorized as ill-conditioned. Similar to the previous

case, RLLastIt and RLMedVal still suffered from breakdown in some problems

(such as dimensions 1000, 2000, 10000, and 20000), whereas RLMinRes remained

robust. As can be seen in Table 2.3, RLMinRes needed fewer cycles, compared

with the other two. When solving a problem dimensions 8000, for instance,

it managed with total time of about 24.9942 seconds only, while RLLastIt and

RLMedVal needed about 46.6633 and 32.3674 seconds, respectively.

Also, to solve the large scale problems which involve 40000, 50000, and 60000

variables, RLMinRes needed respectively 4959.626, 9216.815, and 9699.505 sec-

onds after total cycles of 6, 5, and 6, respectively. Slightly different from this,

RLMedVal converged after 7, 7, and 6 cycles, respectively, and with the total

time of about 10546.413, 17177.462, and 15538.778 seconds, respectively. In con-

trast, these numbers rose significantly when RLLastIt was used; total times were

about 13454.310, 13499.907, and 17342.312 seconds, respectively, and 18, 12, and

20 cycles needed, respectively.

The visualization of restarting Lanczos Orthodir from three different points

can be seen in Figures 2.6 and 2.7. We only highlight here that for solving a

problem dimensions 10000, the red and green curves have disappeared due to

breakdown. Other trends are similar to these of the previous cases.

We can conclude here, based on the results above, that RLMinRes, again, has

the best performance, RLMedVal be the second best performance, while RLLastIt
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Figure 2.4: Performance of RLLastIt, RLMinRes, and RLMedVal on SLE’s of dimensions
from 1000 to 8000, for δ = 0.2
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Figure 2.5: Performance of RLLastIt, RLMinRes, and RLMedVal on SLE’s of dimensions
from 9000 to 70000, for δ = 0.2
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has the worst performance. This is easy to explain; indeed of the three case, the

last iterate is the worst in terms of residual norm. This is because the process is

heading towards breakdown. That is why we stop it in the first place. RLMinRes

and RLMedVal restart from better points, hence they superior performance.
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Table 2.3: Numerical results of RLLastIt, RLMinRes, and RLMedVal on problems with δ = 0.5.

Dim RLLastIt RLMinRes RLMedVal
n ‖rk‖ T(s) cycles* ‖rmin‖ T(s) cycles* ‖rmed‖ T(s) cycles*

1000 NaN NA NA 6.7241E − 14 0.4985 6 8.0317E − 14 0.9676 6
2000 6.6028E − 14 3.0730 8 7.1644E − 14 1.6560 5 NaN NA NA
3000 2.0914E − 14 6.1322 8 2.9349E − 14 3.7583 5 8.2315E − 14 5.5742 7
4000 4.0636E − 14 10.5073 8 8.5704E − 14 6.8387 5 7.3850E − 14 8.6492 6
5000 5.3701E − 14 13.8288 7 8.7432E − 14 9.4709 5 6.6026E − 14 13.3348 7
6000 4.0015E − 14 14.3912 8 4.4088E − 14 13.5595 5 7.9435E − 14 19.0317 7
7000 1.9384E − 14 28.4045 7 6.1367E − 14 19.8723 5 9.3416E − 14 23.4865 7
8000 7.6507E − 14 46.6633 9 6.7684E − 14 24.9942 5 7.3388E − 14 32.3674 6
9000 2.0877E − 14 47.3239 10 8.1464E − 14 32.4579 6 7.5110E − 14 43.3506 6

10000 NaN NA NA 7.6418E − 14 36.7934 5 NaN NA NA
20000 NaN NA NA 5.5184E − 14 171.5886 6 7.9658E − 14 164.7378 6
30000 3.0472E − 14 456.2760 8 8.3265E − 14 435.3542 6 8.6487E − 14 438.9958 6
40000 9.1562E − 14 13454.310 18 7.6668E − 14 4959.626 6 8.5023E − 14 10546.413 7
50000 7.5725E − 14 13499.907 12 8.0480E − 14 9216.815 5 8.8901E − 14 17177.462 7
60000 9.5620E − 14 17342.312 20 7.8496E − 14 9699.505 6 8.1470E − 14 15538.778 6
70000 9.8198E − 14 33085.995 25 6.9337E − 14 11972.368 7 8.2264E − 14 23236.937 7

NA = Non Applicable. The computation time and cycles are not calculated if breakdown occurs which is indicated by ”NaN”
in the residual norm column.
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2.2.5 Test Problem IV : δ = 0.8

The condition number of matrix A for this particular value of delta is still a quite

big which is 44.3210. The SLEs which have this matrix are categorized as ill-

conditioned. As can be seen in Table 2.4, RLLastIt and RLMedVal experienced

breakdown when solving 7000, 8000, and 30000 dimensional problems. As an

illustration, we can see from Figures 2.8 and 2.9, that the red and green curves

have disappeared or are invisible due to breakdown. In contrast, RLMinRes con-

sistently converges without facing breakdown on all problems. In fact, it needed

less number of cycles to converge. We also highlight here that on all problems,

RLMinRes used the shortest time, followed by RLMedVal, and RLLastIt.
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Figure 2.6: Performance of RLLastIt, RLMinRes, and RLMedVal on SLE’s of dimensions
from 1000 to 8000, for δ = 0.5
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Figure 2.7: Performance of RLLastIt, RLMinRes, and RLMedVal on SLE’s of dimensions
from 9000 to 70000, for δ = 0.5
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Table 2.4: Numerical results of RLLastIt, RLMinRes, and RLMedVal on problems with δ = 0.8.

Dim RLLastIt RLMinRes RLMedVal
n ‖rk‖ T(s) cycles* ‖rmin‖ T(s) cycles* ‖rmed‖ T(s) cycles*

1000 4.6646E − 14 0.3.9578 4 1.2362E − 13 0.4031 4 1.9188E − 13 0.5585 4
2000 9.0517E − 14 2.7572 6 7.1644E − 14 1.6560 6 6.2576E − 14 3.0358 6
3000 5.2252E − 14 3.5538 5 9.9039E − 14 2.7697 4 9.1631E − 14 3.4874 5
4000 5.1236E − 14 6.2464 5 5.0994E − 14 4.8783 5 8.4532E − 14 6.1081 6
5000 2.6627E − 14 9.3331 5 4.6503E − 14 6.4221 4 7.5342E − 14 8.7590 6
6000 4.0015E − 14 14.3912 5 1.5693E − 14 13.8603 5 8.5979E − 14 14.7563 5
7000 NaN NA NA 6.4924E − 14 15.4388 5 NaN NA NA
8000 NaN NA NA 4.8607E − 14 25.5804 5 6.8697E − 14 24.2593 7
9000 7.2386E − 14 32.2374 5 6.9432E − 14 28.7406 4 8.7765E − 14 27.7122 5

10000 4.4203E − 14 40.7000 5 5.8453E − 14 30.8759 5 9.5466E − 14 35.9651 6
20000 3.3223E − 14 159.2071 5 6.9427E − 14 117.3181 4 8.1042E − 14 133.1245 5
30000 NaN NA NA 8.5189E − 14 408.2613 6 NaN NA NA
40000 9.3120E − 14 3433.988 14 9.9397E − 14 3840.327 5 9.7811E − 14 6969.433 4
50000 7.3387E − 14 3964.413 6 8.0193E − 14 4340.405 4 8.3000E − 14 7910.365 6
60000 7.7921E − 14 12950.531 8 9.4813E − 14 7505.311 4 8.0392E − 14 7492.451 6
70000 8.4024E − 14 19026.327 8 7.8985E − 14 9986.536 4 7.5368E − 14 13291.442 5

NA = Non Applicable. The computation time and cycles are not calculated if breakdown occurs which is indicated by ”NaN”
in the residual norm column.
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2.2.6 Test Problem V : δ = 5

The condition number of matrix A for this particular value of delta is 27.4932.

The SLEs which have this matrix tend to be well-conditioned. The trend in this

case is quite different from the previous cases where the 3 algorithms do not face

breakdown in all problems. In fact, RLMinRes is not the best one in this case

since it only achieved the approximate solution with a residual norm of 1E − 12.

Interestingly, RLMedVal has the best performance with residual norm of 1E − 13,

while the RLLastIt, was still the worst one.

As can be seen in Table 2.5, for solving dimension 10000, for instance, RLLastIt

reached the approximate solution with the residual norm of 1.0468E−13, needing

13 cycles with total time of about 81.2740 seconds; RLMinRes also needed 13

cycles with total time of 71.6121 seconds, and residual norm of 1.2264E − 13,

while RLMedVal managed with 74.9466 seconds, 7 cycles, and a residual norm

of 8.6507E − 14. For other problems, in dimensions 30000, 40000, 50000, 60000,

and 70000, RLLastIt managed the solution with the residual norms of 1E − 012

only, with computation times below the others; RLMinREs found the approximate

solution with residual norm of 1E−013, whereas RLMedVal achieved the solution

with residual norm of 1E − 014, with the longest computation time. To illustrate,

the performance of this particular case can be seen in Figures 2.10 and 2.11.
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Figure 2.8: Performance of RLLastIt, RLMinRes, and RLMedVal on SLE’s of dimensions
from 1000 to 8000, for δ = 0.8
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Figure 2.9: Performance of RLLastIt, RLMinRes, and RLMedVal on SLE’s of dimensions
from 9000 to 70000, for δ = 0.8
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Table 2.5: Numerical results of RLLastIt, RLMinRes, and RLMedVal on problems with δ = 5.

Dim RLLastIt RLMinRes RLMedVal
n ‖rk‖ T(s) cycles* ‖rmin‖ T(s) cycles* ‖rmed‖ T(s) cycles*

1000 6.6783E − 13 0.8566 9 1.1544E − 13 0.7058 9 7.5428E − 14 0.9535 9
2000 9.0517E − 14 2.4700 9 1.6451E − 13 2.1698 9 4.3856E − 14 3.0832 9
3000 8.9938E − 14 6.1439 8 1.1733E − 13 5.2819 8 5.1801E − 14 6.3681 8
4000 2.0649E − 13 9.8154 6 1.4507E − 13 8.6705 6 9.6175E − 14 12.1345 6
5000 2.0727E − 13 16.0040 8 1.3336E − 13 12.3384 8 8.6350E − 14 14.3220 7
6000 9.1796E − 14 21.2654 10 2.1285E − 13 19.3882 10 7.6867E − 14 21.5071 7
7000 9.2341E − 14 32.1371 13 1.1998E − 13 29.0991 13 9.6799E − 14 28.639 7
8000 9.4310E − 14 43.2287 12 1.1228E − 13 37.4504 12 9.4843E − 14 41.8971 6
9000 9.9740E − 13 45.5492 10 1.1051E − 13 40.1467 10 9.9463E − 14 45.5433 6

10000 1.0468E − 13 81.2740 13 1.2264E − 13 71.6121 13 8.6507E − 14 74.9466 7
20000 9.8099E − 14 785.5109 183 1.8305E − 13 758.8923 183 9.2670E − 14 222.3481 8
30000 2.5585E − 13 594.4041 8 1.3291E − 13 475.0696 8 9.3863E − 14 532.8888 8
40000 1.6819E − 12 5486.982 10 1.3931E − 13 4419.003 10 9.4113E − 14 8213.771 10
50000 1.3379E − 12 11607.939 12 1.5053E − 13 1.2285.904 12 9.5873E − 14 20937.437 12
60000 1.5239E − 12 14511.220 12 1.5722E − 13 12381.548 12 9.9868E − 14 23439.061 12
70000 1.2905E − 12 21904.942 13 1.5767E − 13 26015.439 13 9.8246E − 14 44072.510 13

NA = Non Applicable. The computation time and cycles are not calculated if breakdown occurs which is indicated by ”NaN”
in the residual norm column.
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2.2.7 Test Problem VI : δ = 8

The condition number of matrix A for this particular value of delta is 24.4970. The

SLEs having this matrix are categorized as well-conditioned. Similar to the case

of δ = 5, RLLastIt and RLMinRes are not as accurate as RLMedVal in solving most

problems, since they could only achieve solutions with residual norms of 1E− 12.

Therefore, RLMedVal performed best on medium and large scale problems.

As can be seen in Table (2.6) and Figures 2.12 and 2.13 for dimension 5000, for

instance, RLLastIt, which reached the approximate solution with residual norm

of 2.1612E − 13, needed 9 cycles with the total time of about 18.2973 seconds; the

RLMinREs also needed 9 cycles with a total time of 15.7859 seconds, with the

residual norm of 1.5348E − 13, while RLMedVal managed with 16.1618 seconds,

9 cycles, and achieved a residual norm of 8.2624E − 14. On other problems,

for dimensions between 10000 and 70000, RLLastIt managed the approximate

solutions with the residual norms of 3.3040E − 13 and 1.2417E − 13 respectively,

whereas RLMinRes found a good approximate solution with the residual norms

of 1.5087E − 13 and 3.9254E − 13, respectively. RLMedVal achieved the solution

with 9.8224E − 14 and 5.5118E − 13, respectively.



2.2. Numerical Results and Discussion 68

Figure 2.10: Performance of RLLastIt, RLMinRes, and RLMedVal on SLE’s of dimen-
sions from 1000 to 8000, for δ = 5
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Figure 2.11: Performance of RLLastIt, RLMinRes, and RLMedVal on SLE’s of dimen-
sions from 9000 to 70000, for δ = 5
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Table 2.6: Numerical results of RLLastIt, RLMinRes, and RLMedVal on problems with δ = 8.

Dim RLLastIt RLMinRes RLMedVal
n ‖rk‖ T(s) cycles* ‖rmin‖ T(s) cycles* ‖rmed‖ T(s) cycles*

1000 9.4847E − 14 0.8644 12 1.4204E − 13 0.7227 12 7.5478E − 14 2.0025 9
2000 9.7642E − 14 3.2058 18 1.2579E − 13 2.8480 9 6.2576E − 14 2.8289 9
3000 1.8544E − 13 7.3663 9 1.2535E − 13 5.7008 9 7.6937E − 14 6.4005 9
4000 2.6912E − 13 9.8464 9 1.0890E − 13 9.8928 9 9.6175E − 14 11.1164 9
5000 2.1612E − 13 18.2973 9 1.5348E − 13 15.7859 9 8.2624E − 14 16.1618 9
6000 2.4049E − 13 26.4696 9 1.8742E − 13 20.8982 9 8.7058E − 14 23.6583 9
7000 3.8371E − 13 33.9227 9 1.1998E − 13 30.0858 9 9.4308E − 14 32.8377 9
8000 1.0312E − 13 41.5876 8 1.4894E − 13 39.6557 8 9.8204E − 14 42.3492 8
9000 2.9206E − 13 55.3891 10 1.4201E − 13 50.4974 10 8.5654E − 14 57.2675 10

10000 3.3040E − 13 69.0426 9 1.5087E − 13 62.4519 9 9.8224E − 14 62.4430 9
20000 3.9022E − 13 276.9322 11 1.4875E − 13 259.4267 11 9.3115E − 14 288.0455 11
30000 NaN NA NA 8.5189E − 14 408.2613 6 NaN NA NA
40000 1.1998E − 12 12629.417 20 1.6024E − 13 6249.628 20 9.9614E − 14 7235.611 20
50000 8.5401E − 13 33035.391 26 1.0820E − 13 1.6956.171 26 9.9792E − 14 14038.619 26
60000 1.3279E − 12 32253.732 7 1.1333E − 13 17224.470 7 5.4308E − 13 20694.178 7
70000 1.2417E − 13 53545.694 10 3.9254E − 13 26515.312 6 5.5118E − 13 34015.217 7

NA = Non Applicable. The computation time and cycles are not calculated if breakdown occurs which is indicated by ”NaN”
in the residual norm column.
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2.3 Summary

In this chapter, we have discussed restarting of Orthodir algorithm from certain

points to combat breakdown when solving SLE’s. Restarting strategy for treating

breakdown has been previously investigated in [29, 30], where one starting point

considered. Here, we investigated the quality of starting points, particularly,

three different points were considered; each used in one of the implementations

RLLastIt, RLMinRes, and RLMedVal. The problems sizes also increased from the

previous work which solved up to 4000 dimensions only, to 70,000 dimensions.

We conclude that for the case of the ill-conditioned systems, the best restarting

point is the iterate with the minimum residual norm, or in this case it is the

RLMinRes implementation which is best. However, for systems which are well-

conditioned, restarting from the iterate with the median value, or RLMedVal,

is slightly more robust than RLMinRes. Between RLMedVal and RLLastIt, the

differences are too small to warrant any advantage in using one rather than the

other. RLLastIt, is worst on both well-conditioned and ill-conditioned systems.
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Figure 2.12: Performance of RLLastIt, RLMinRes, and RLMedVal on SLE’s of dimen-
sions from 1000 to 8000, for δ = 8
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Figure 2.13: Performance of RLLastIt, RLMinRes, and RLMedVal on SLE’s of dimen-
sions from 9000 to 70000, for δ = 8



Chapter 3

Enhancing the Stability in
Lanczos-type Algorithms by
Embedding Interpolation and
Extrapolation

3.1 Motivation

Breakdown can be avoided in a variety of ways. Here, we suggest regression as

a means for that purpose. When breakdown occurs, it is possible to remove the

last iterate that caused breakdown from the sequence of Lanczos-type algorithm

points, regress on this sequence (their entries) to find a suitable model and then

use this model to generate new points which are in the sequence of points that

would have been generated by the Lanczos-type algorithm if breakdown did not

occur.

The idea is to exploit patterns that may exist in the sequences generated by

Lanczos-type algorithms. After we have run such an algorithm for a certain

number of iterations, it is intentionally and pre-emptively stopped before it breaks

down. We then consider the generated iterates to see if any patterns exist. To

illustrate what we mentioned above, we consider a Lanczos-type algorithm such

74
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as Orthodir, [6], run it for 30 iterations to solve an SLE in 50 dimensions. We

collect all iterates and save them in (3.1) as follows.

datasol =



x1
(1) x1

(2) . . . x1
(50)

x2
(1) x2

(2) . . . x2
(50)

· · ·

x30
(1) x30

(2) . . . x30
(50).


(3.1)

We then plot all above iterates by using Parallel Coordinate System (PCS),

[33, 49, 62, 73]. To visualize high-dimensional data, PCS gives an insight into

the behaviour of high-dimensional iterates generated over a number of iterations.

This is the main motivation behind our idea to exploit patterns that may exist in

iterates generated by Lanczos-type algorithms to improve the robustness of these

algorithms.
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Figure 3.1: PCS representation of 30 iterates in 50 dimensions.
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Figure 3.1 illustrates the PCS representation of all iterates generated by Or-

thodir. The entries of the iterates are represented on the x axis, whereas the values

of those entries are represented on the y axis. As we can see here, after some times,

several iterates form similar shape. Our assumption of this fact is that these iter-

ates are close enough to the true solution. In other words, these iterates have a

small residual norms. We then investigate it further by exploiting the patterns at

the level of a single coordinate. More precisely, we are interested in the patterns

of the entries of the iterates. This allows us to work in single dimension.

If we have k iterates of a n dimensions problem, the following sequence S =

{x1, x2, . . . , xk}, holds them all. Now, consider the first entries of all iterates in S,

the second entries of all iterates in S, etc. A regression model over all first entries

will be used to generate the 1st entry of a new point; a regression model over all

2nd entries will be used to generate the second entry of the new point etc... In

this fashion, we will generate a new point which, we will establish later, belongs

to the sequence of iterates of the Lanczos-type algorithm that has been stopped

prematurely, according to some norm. This idea should be applicable for instance

when Lanczos process-based algorithms are used to generate eigenvalues and

eigenvectors and in any iterative process where breakdown is an issue.

Figure 3.2 illustrates the PCS representation of some entries of the iterates for

above problem. As can be seen in the panels of the figure, the coordinate values of

the entries at, for examples, 15th, 25th, 28th and 30th, settle down close to some value

which may be reasonable assumed to be the true value at convergence. Of course

this is not necessarily true for all coordinates. For instance in the case of 3.2(a),
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(a) The 15th entries (b) The 25th entries

(c) The 28th entries (d) The 30th entries

Figure 3.2: Representations of some entries of S

the entry values of coordinate 15 change in the last iterations, then settles down

again. These patterns are the ones we are concerned with and not the ones seen in

the PCS representation, although they are linked. We might use an interpolation

tool to find a good model. The function as a result of the interpolation process, is

used to predict a new point which is out of the sequence. In other words, we use

extrapolation to generate a new approximate solution. This approximate solution

is expected to be better than all of the sequences generated by the Lanczos-type

algorithm.

The above observations raise some important questions:

1. Is it possible to build a model which represents the solutions generated by
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Lanczos-type algorithms?

2. If so, after how many iterations does it settle and persist until convergence

occurs?

3. If such a model does exist, how good an approximate solution can be gen-

erated using it instead of the iterative process itself?

If the answers to questions (1) and (3) are, ”YES”, then we can stipulate that it

is possible to halt the iterative process to avoid breakdown and use the model to

generate better solutions instead.

Generally, since the above process uses few iterations, breakdown can be

avoided. Also, we avoid computing the approximate solution iteratively. Instead,

we embed a model function into a Lanczos algorithm to get a new point. This new

approach is called embedded interpolation and extrapolation model in Lanczos-

type algorithms (EIEMLA).

This chapter is organized as follows. The first section discusses the motiva-

tion of the EIEMLA. The second section explains in detail the EIEMLA method

including some theoretical results to justify that our approach works. The last sec-

tion provides some numerical results involving the embedded interpolation and

extrapolation model (EIEM) in various Lanczos-type algorithms, namely EIEM

Orthodir, EIEM Orthomin, EIEM A12.

3.2 Background Theories

We briefly gives some theories related to our new approach explained in the

previous section.
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3.2.1 Interpolation and Extrapolation

Numerical interpolation, [71], is a frequently used tool in numerical applications

that arise in a variety of domains. A common problematic situation is when a

function f of a set of points t1, t2, . . . , tn can not be cast in an analytic form. For

instance, f may represent some data points from experiments or the results of a

large-scale problem computation, or some physical quantity. We then may need to

evaluate the function f at some points t within the data set t1, t2, . . . , tn, but where

t differs from the tabulated values. In this case we are dealing with interpolation,

[61]. If t is outside then we are facing extrapolation, [65].

There are many interpolation methods. The most common is, possibly, the

polynomial interpolation which simply connects each data point with polynomial

functions. The other type is called piecewice-polynomial interpolation which is

based on the spline functions [36]. Splines are polynomials on subintervals that

are connected in a smooth way, [61]. A special case of spline functions is the cubic

spline which involves a polynomial of degree ≤ 3 as follows

f (t) = α3t3 + α2t2 + α1t + α0 (3.2)

This polynomial is known as the cubic spline function and an interpolation

which is based on it, is called the cubic spline interpolation, [20, 82]. Cubic splines

which use low-order polynomials are especially attractive for curve fitting because

they reduce the computational requirements and numerical instabilities that arise

with higher degree curves, [23]. The other type of spline interpolation is the cubic

Hermite spline interpolation which is based on the cubic Hermite function.
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Some methods, [36, 50, 82], claim that the cubic spline is smoother than the

cubic Hermite interpolation. It is reasonable since the spline has two continuous

derivatives, while the cubic Hermite interpolation has only one. However, the

cubic Hermite interpolation is guaranteed to preserve the shape, but the spline

might not. This special property is the main reason we choose to use it here.

3.2.2 Piecewise Cubic Hermite Interpolating Polynomial

Piecewise Cubic Hermite Interpolating Polynomial (PCHIP) has been proposed

to preserve the monotonicity, positivity, and convexity of the data, [35]. As above

mentioned, it is very important to preserve these properties of the data to get an

accurate interpolant and to get a good prediction. PCHIP is designed with these

purposes in mind.

Let a = t1 < t2 < · · · < tn = b be a partition of the interval [a, b], [50]. Let{
(ti, fi) : i = 1, 2, · · · ,n

}
be the given data, where fi ≤ fi+1 (monotonic increasing) or

fi ≥ fi+1 (monotonic decreasing). For t ∈ [ti, ti+1], i = 1, 2, · · · ,n − 1, p(x) is a cubic

polynomial which can be represented as follows.

p(x) = fiH1(t) + fi+1H2(t) + diH3(t) + di+1H4(t), (3.3)

where d j = p′(ti). j = i, i + 1 and Hk(t) are the usual cubic Hermite basis functions
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given by

H1(t) = φ
( ti+1 − ti

hi

)
H2(t) = φ

( t − ti

hi

)
H3(t) = −hiψ

( ti+1 − ti

hi

)
H4(t) = −hiψ

( t − ti

hi

)
, (3.4)

and hi = ti+1 − ti, φ(w) = 3w2
− 2w3, ψ(w) = w3

− w2. Fritsch and Carlson

[35] derived the necessary and sufficient conditions for the function (3.3) to be

monotonic. They also produced an algorithm for determining the derivative

values d1, d2, · · · , dn. Those values are used to make the piecewise cubic Hermite

polynomial in (3.4) monotonic. For more detail about PCHIP and its applications

refer to [2, 18, 20, 23, 34, 44, 46, 61, 82].

3.3 Embedded Interpolation and Extrapolation Model
in Lanzos-type Algorithms

This approach involves designing a model function as a result of interpolation

over a sequence of iterates generated by the algorithms. The sequence in question

is generated by a Lanczos-type algorithm over a certain number of iterations, say

k. We assume that the algorithm breaks down after k iterations. We then try to

predict the next iterate, xk+1, that would be generated by the algorithm if it did not

break (or has not been stopped). In other words, this iterate is linking up all the

previous iterates, x1, x2, . . . , xk, to the next one without a further iteration of the

process. How good is this new iterate, depends on the interpolation tool that we
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use to capture the existence of patterns in the sequence of the iterates generated

by Lanczos-type algorithms.

3.3.1 Derivation of EIEMLA

Consider k iterates which form datasol as in (2.3). As explained earlier, among the

xk, there are some iterates with small residual norms. These particular entries

might have a special property, such as increasing/decreasing monotonically. We

consider PCHIP to interpolate them, so that a model function as a result of this

process can represent the points considered.

Let xm, be the iterate with the lowest residual norm, ‖rm‖, where m ≤ k. Assume

that some good iterates, namely those with small residual norms, concentrate in

interval
[
m − j, k

]
, for some integer j. Set

V1 =
{
xm− j, xm− j+1, . . . , xk

}
, (3.5)

which is a subset of (2.3). Write the components of each iterate in (3.5) as

v1 =
{
xm− j

(1), xm− j+1
(1), . . . , xk

(1)
}

v2 =
{
xm− j

(2), xm− j+1
(2), . . . , xk

(2)
}

(3.6)

...

vn =
{
xm− j

(n), xm− j+1
(n), . . . , xk

(n)
}

namely, each vi contains all of the ith entries of iterates xl, for l = m− j,m− j+1, · · · , k,

and for i = 1, 2, · · · ,n. For instance, v1 contains all of the first entries of iterates

xl, v2 contains all of the second entries of iterates xl, etc. Thus, we find a function

which interpolates each set of vi’s using PCHIP interpolant. We assume that each
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sequence of xm− j
(i), xm− j+1

(i), . . . , xk
(i) is monotonic and convergent for some j and

i = 1, 2, . . . ,n, to its limit, [74], i.e.

lim
k→∞

xk
(i) = x∗(i). (3.7)

Let t be elements in R. Set

w1 =
{(

tm− j, xm− j
(1)

)
,
(
tm− j+1, xm− j+1

(1)
)
, . . . ,

(
tk, xk

(1)
)}

w2 =
{(

tm− j, xm− j
(2)

)
,
(
tm− j+1, xm− j+1

(2)
)
, . . . ,

(
tk, xk

(2)
)}

(3.8)

...

wn =
{(

tm− j, xm− j
(n)

)
,
(
tm− j+1, xm− j+1

(n)
)
, . . . ,

(
tk, xk

(n)
)}
.

Using PCHIP to interpolate each wi, for i = 1, 2, . . . ,n, yields functions fi. As it

is a regular interpolation process in R, then for some t = m − j,m − j + 1, . . . , k, fi

satisfy

fi(t) ≈ x(i)
t for i = 1, 2, . . . ,n. (3.9)

For instance,

fi(m − j) ≈ x(i)
m− j

fi(m − j + 1) ≈ x(i)
m− j+1 (3.10)

...

fi(k) ≈ x(i)
k for i = 1, 2, . . . ,n.

Since we use an appropriate interpolant to interpolate the data, i.e. the one

that preserves the monotonicity of the data, then the extrapolation based on this

interpolation process enables us to get the next point outside of the range. It
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means that if we calculate fi(t∗) with t∗ ∈ [k + 1, s] ⊂ R, where s ≥ k + 1 , then we

obtain

fi(t∗) ≈ x(i)
r for i = 1, 2, . . . ,n, (3.11)

where each x(i)
r has a similar property as x(i)

t in (3.9). In other words, if the sequence

of x(i)
t is monotonically increasing/decreasing, so is x(i)

r . Thus arranging vector xr,

with xr
(i) being the ith entries of the vector, yields an approximate solution of the

system.

Theoretically, since PCHIP captures the persistent pattern of the i − th entry,

i = 1, ...,n, of the iterates generated by a Lanczos-type algorithm, the entries of

the new iterate, as a result of the model function, are likely to behave as those

entries. Furthermore, we can produce as many vector solutions as we want by

applying the functions fi over t∗ ∈ R, without running Lanczos-type algorithms

again. However, we should be aware that the quality of these generated solutions

may not be good enough, in which case we must either restart the iterative process

from the best point or take the best solution found so far as the candidate solution.

It is therefore, reasonable to choose the integer s such that the residual norms of

the iterates generated by these functions, xk+1, xk+2, . . . , xs are small enough. In

this case, we obtain another sequence of the iterates generated by EIEMLA. It is

expected that these iterates replace the ”missing” iterates not generated by the

Lanczos-type algorithm due to breakdown.

3.3.2 Implementation of the EIEMLA Method

The above results suggest a procedure for EIEMLA method (see Algorithm 10).

As an illustration of the implementation of EIEMLA, consider (A.1.1) with n = 50.
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Orthodir is used to solve it for 50 iterations. Following the above procedures, we

first collect all of the 50 iterates as S = {x1, x2, . . . , x50}.

Algorithm 10 The EIEMLA method

1: Initialization. Choose x0 and y. Set r0 = b − Ax0, y0 = y, and z0 = r0.
2: Fix the number of iterations to, say, k, and the tolerance, ε, to E− 13 and run a

Lanczos-type algorithm.
3: if ‖rk‖ ≤ ε then
4: The solution is obtained
5: Stop
6: else
7: Collect all k vector solutions as in (2.3).
8: Choose some j such that m − j ≤ k.
9: Set wi as in (3.8), for i = 1, 2, . . . ,n.

10: Interpolate wi using PCHIP to get fi.
11: Choose t∗ ∈ [m, s] ⊂ R, where s ≥ m ≥ k is an integer, and calculate fi(t∗).
12: for q = 1, 2, . . . , l do
13: Arrange vectors

x∗q =


( f1

q)(t∗q)
( f2

q)(t∗q)
...

( fn
q)(t∗q)

 , (3.12)

where l = length([m, s]).
14: Calculate the residual norms of (3.12) as follows

‖r∗q‖ = ‖b − Ax∗q‖ (3.13)

15: end for
16: end if
17: The solutions of the systems are x∗(1), x(2)

∗ , . . . , x∗(l).
18: Stop.

The visualization of several entries of S is as shown in Figure 3.2, in Section

1.1. Secondly, we calculate index m of the iterate xm associated with the lowest

residual norm ‖rm‖. In this particular example, ‖rm‖ = 0.0067 with m = 17. Thus
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re-arranging S as in (3.6), would yield the sequence as follows

w1 =
{(

t7, x7
(1)

)
,
(
t8, x8

(1)
)
, . . . ,

(
t50, x50

(1)
)}

w2 =
{(

t7, x7
(2)

)
,
(
t8, x8

(2)
)
, . . . ,

(
t50, x50

(2)
)}

(3.14)

...

w50 =
{(

t7, x7
(50)

)
,
(
t8, x8

(50)
)
, . . . ,

(
t50, x50

(50)
)}
,

where t is an integer in [m − 10, 50]. The choice of this range is based on our

observation that some good iterates can be found in it. Also, based on Figure 3.2,

the entries of the iterates are increasing or decreasing monotonically in that range.

The next step is to interpolate each wi in (3.14) using PCHIP to get functions

fi. We use these functions to extrapolate and generate points which are out of the

range. In this case, we choose t∗ ∈ [17, 70]. Interpolation and extrapolation results

are captured in Figure 3.3. It represents the interpolation and extrapolation model

(EIM) of the data in Figures 3.2(a), 3.2(b), 3.2(c), and 3.2(d), respectively. As can

be seen here, PCHIP interpolates the data accurately and smoothly (see the blue

curves). However, extrapolation results in some points being of poor quality. In

Figure 3.3(a), for instance, the blue curve which represents the PCHIP data, goes

up after the 50th iteration. PCHIP curve, on the other hand, seems monotone after

the 50th iteration in Figures 3.3(b) and 3.3(c), 3.3(d).

Amongst the iterates generated by Orthdir, some entries behave as Figure

3.3(a). This means their trend goes up or down after k iterations. However, there

are many other entries which behave monotonically. Since we put all entries in

one vector, overall, the effect of the fluctuating entries is less which means that a
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(a) The IEM of the 15th entries (b) The IEM of the 25th entries

(c) The IEM of the 28th entries (d) The IEM of the 30th entries

Figure 3.3: The interpolation and extrapolation results of some entries of S

good approximate solution may be generated.

After calculating functions fi over t∗, we now have the approximate solutions

as in (3.12). We compute the residual norms accordingly. The behaviour of EIEM

Orthodir and Orthodir for this case, is represented in Figure 3.4. As can be seen

here, generally the residual norms of iterates generated by EIEM Orthodir (the

blue curve) are found below those generated by Orthodir (the red curve) from

iteration 17 to 50. In fact, at iteration 31, the residual norm hits the value of 0.003.

However, it goes up after iteration 71.

We can safely say that some iterates generated by EIEM Orthodir have smaller

residual norm than all previous iterates generated by the Orthodir. On its own, it
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Figure 3.4: Behaviour of EIEM Orthodir and Orthodir algorithms on SLE’s in 50
dimensions. The blue line which corresponds to EIEM Orthodir has some very good
points and grows much slower than that corresponding to Orthodir.

doesn’t find solutions with such low residual norms even with a high number of

iterations.

3.3.3 Formal Basis of EIEMLA

As mentioned in Section 3.2.2, the sequences generated by the Lanczos-type al-

gorithm have the property of monotonicity. Since we consider PCHIP which

preserves monotonicity, [21], to interpolate the sequences, we can assume that

points returned by the function, are also monotonic. This leads to the theorems

below which guarantee the monotonicity property of sequences generated by

Lanczos-type algorithms.

Theorem 3.3.1. Given a sequence {xk} of k iterates generated by a Lanczos-type algorithm,
sequences of xk

(i), i = 1, 2, · · · ,n, and k = 1, ... namely the entries of k iterates, are
monotonic.
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Proof. Consider sequences generated by Orthodir as follows.

xk+1 = xk − ak+1zk, (3.15)

where ak+1 is a constant defined as follows.

ak+1 =
−c(tkPk)

c(tk+1P(1)
k )
, (3.16)

c is a linear function and Pk is an orthogonal polynomial, [29]. We write (3.15) in

an extended form as follows

xk+1
(1)

xk+1
(2)

...

xk+1
(n)


=



xk
(1)

xk
(2)

...

xk
(n)


− ak+1



zk
(1)

zk
(2)

...

zk
(n)


.

Therefore, we now have a sequence for every single variable , namely

xk+1
(1) = xk

(1)
− ak+1zk

(1)

xk+1
(2) = xk

(2)
− ak+1zk

(2)

...

xk+1
(n) = xk

(n)
− ak+1zk

(n).

Thus, we show that every single xk
(i), for i = 1, 2, · · · ,n, is monotonically increas-

ing by assuming that variables other than xk
(i) are constant. A sequence xk

(i) is
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monotonically increasing if and only if

xk
(i)
≤ xk+1

(i)

≤ xk
(i)
− ak+1zk

(i)

0 ≤ −ak+1zk
(i)

ak+1zk
(i)
≤ 0. (3.17)

We claim that ak+1 > 0. Since we have (3.16), this last relation is valid. To prove

the above claim, we look at again the relation between this coefficient and some

variables involved in Orthodir algorithm. According to Algorithm 2 in Chapter

1, the residual vector is computed as follows

rk+1 = rk + ak+1Azk.

We want ‖rk+1‖ ≤ ‖rk‖, so in this case, we have to minimize ‖ak+1Azk‖. As (3.16),

coefficient ak+1 must be a large positive number. So, the claim is true. �

Suppose we have sequences as in (2.3), which are obtained by running Orthodir

for k iterations. If we generate the next single point using the same algorithm, we

have a sequence

V′ = {x1, x2, . . . , xk, xk+1} . (3.18)

Since EIEMLA enables us to predict some further points after k iterates, then we

need to guarantee that point, xmodel, for instance, is in the sequence (3.18). The

idea is that if it is in the sequence of V′, then it is the approximate solution of our

system. For that, we need to show that the distance between two vectors and xk+1
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and xmodel is sufficiently small.

Lemma 1. [48] Let A = VAV−1 be a nonsingular diagonalizable matrix, where V is a
matrix which consists of the eigenvectors of A, S is a diagonal matrix with aii ∈ σ(A)
being the diagonal entries, and σ(A) is the set of the eigenvalues of A. Then,

‖Pk(A)‖ ≤ κ2(V) max
λ∈σ(A)

|λ| ,

where κ2(V) is the condition of matrix V.

Proof. Let λ be any eigenvalue of matrix A. Then, we have

‖Pk(A)‖ =
∥∥∥VPk(S)V−1

∥∥∥
≤ ‖V‖ ‖Pk(S)‖

∥∥∥V−1
∥∥∥

= κ2(V) ‖Pk(S)‖

= κ2(V) max
λ∈σ(A)

|λ| , (3.19)

where κ2(V) is the condition number of matrix V. �.

Theorem 3.3.2. Let x1, x2, . . . , xk, xk+1 be the iterates generated by Orthodir algorithm.
Let xmodel be a vector returned by EIEMLA as explained in the previous section. Then, for
some ε > 0,

‖xk+1 − xmodel‖ ≤ ε, (3.20)

where ‖·‖ is the Euclidean norm.

Proof. Orthodir iterates are represented by

xk+1 = xk − αzk, (3.21)

where α is given in (3.16), and zk = Pk(A)z0. We write the vectors as their compo-

nents as

xk+1 − xmodel = xk − αzk − xmodel. (3.22)
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Taking the norm of both sides of (3.22) we get

‖xk+1 − xmodel‖ = ‖xk − αzk − xmodel‖

≤ ‖xk − xmodel‖ + |−α| ‖zk‖ . (3.23)

We split relation (3.23) into two terms, i.e. ‖xk − xmodel‖ and |−α| ‖zk‖. First, we

compute the term

‖xk − xmodel‖ =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

xk
(1)
− xmodel

(1)

xk
(2)
− xmodel

(2)

...

xk
(n)
− xmodel

(n)

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

xk
(1)
− f1(t)

xk
(2)
− f2(t)

...

xk
(n)
− fn(t)

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
, (3.24)

for some t ∈ [1, k]. Since fi(t), for i = 1, 2, . . . ,n are returned functions at some

above t, then we have

fi(t) ≈ xi
k.

Therefore, (3.24) is less than ε1, for some ε1 > 0.

The second term of (3.23) is computed as follows. Using the result given
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Lemma 1, [48], by putting (3.19) into the norm of zk, we obtain

‖−αzk‖ = |−α| ‖Pk(A)z0‖

= α ‖Pk(A)z0‖

= α ‖Pk(A)r0‖ , since z0 = r0 at the beginning of the iteration,

≤ α ‖Pk(A)‖ ‖r0‖ , since ‖.‖ is the induced norm.

≤ ακ2(V) max
λ∈σ(A)

|λ| ‖r0‖ .

We assume that the initial guess is chosen such that it is close to the true solution

so that ‖r0‖ ≤ ε2, for some ε2 > 0. So, we now have

‖−αzk‖ ≤ αε2κ2(V) max
λ∈σ(A)

|λ| . (3.25)

Hence we substitute (3.24) and (3.25) into (3.23) to get

‖xk+1 − xmodel‖ ≤ ‖xk − xmodel‖ + |−α| ‖zk‖

≤ ε1 + αε2κ2(V) max
λ∈σ(A)

|λ|

≤ max
{
ε1, αε2κ2(V) max

λ∈σ(A)
|λ|

}
. �

An alternative way to show that the generated point via regression belongs

to the sequence of points generated by the Lanczos-type algorithm is through an

envelope. Such a device could be found by fitting a couple of curves one to the

lower bounds on the the iterates in the Lanczos-type algorithm sequence, and the

other to the upper bounds on these same points. The conjecture is that any point

that falls within this envelope must belong to the sequence. Note, it is suggested

for further work to prove Theorem 3.3.2 using this idea.
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Based on the above theorem, we finally show that the residual norm of the

iterate generated by EIEMLA is always smaller or equal to that of the iterate

generated by the Lanczos-type algorithms considered. In other words, better

solutions are generated through this process.

Theorem 3.3.3. Let x1, x2, . . . , xk be the iterates generated by Orthodir algorithm. Let
rmodel be a residual vector which corresponds to the iterate generated by EIEMLA. Then,

‖rmodel‖ ≤ (1 + |α|) ‖rk‖ . (3.26)

Proof. Since we have proved that xmodel ≈ xk+1, i.e. xmodel is similar to the next

iterate when Orthodir was run for k iterations, then we can now prove that

‖rk+1‖ ≤ (1 + |α|) ‖rk‖ . (3.27)

Using the expression of xk given in (3.15), we have

‖rk+1‖ = ‖b − Axk+1‖

= ‖b − A(xk − αzk)‖

= ‖(b − Axk) − Aαzk)‖ (3.28)

= ‖rk − Aαzk‖

≤ ‖rk‖ + ‖Aαzk‖
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So,

‖rk+1‖

‖rk‖
≤ 1 +

‖Aαzk‖

‖rk‖

≤ 1 +

∥∥∥AαPk
(1)(A)r0

∥∥∥
‖Pk(A)r0‖

(3.29)

≤ 1 + ‖αA‖

∥∥∥Pk
(1)(A)r0

∥∥∥
‖Pk(A)r0‖

(3.30)

≤ 1 + ‖αA‖
maxλ∈σ(A) |λ|

maxλ∈σ(A) |λ|
,

≤ 1 + ‖αA‖

≤ 1 + |α|ρ(A)

≤ 1 + |α| since (ρ(A) < 1)

which proves the theorem. �.

3.4 Numerical Results and Discussion

Systems of varying dimensions are solved starting from the initial guess vector

x0 = (0, 0, . . . 0)T. We run a number of Lanczos-type algorithms for k = 100 and

k = 200 iterations, with k ≤ n. The choice of k is based on the observation that

Lanczos-type algorithms generally fail after 200 iterations.

The general matrix used in Chapter 2, Section 2.2, is also used here for the

case δ = 0.2. EIEM in Orthodir, Orthomin, and A12 algorithms, is applied. The

implementation of EIEM in A8B8 and Orthores algorithms can be seen in Appendix

A. Note that Orthomin is a Lanczos-type algorithm which is based on A5B10

formula. The derivation of formulae AiB j, for i, j = 1, 2, . . . , 10, as well as their

implementations can be seen in Chapter 1. These formulae were discovered by

Baheux, [3]. Algorithm A12, in addition, is a new implementation of the Lanczos
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process proposed by Farooq, [31]. This algorithm is based on formulae A12.

The aim of this experiment is to examine the reduction in the residual norm

of the iterate generated by EIEMLA, compared with the original Lanczos-type

algorithms. The other aim is the possibility of optimizing approximate solution

by increasing the number of iterations, from 100 to 200. All of the results are

recorded and the residual norms are represented graphically.

3.4.1 The Embedded Interpolation and Extrapolation Model in
Orthodir Algorithm

In this section, we will look at some results obtained with the implementation of

embedding the interpolation and extrapolation model (EIEM) in Orthodir. They

are recorded in Tables 3.1 and 3.2 for 100 and 200 iterations, respectively. Here,

we compare the residual norm of the iterate xk, the minimum residual norm of

iterate xm, where both are generated by Orthodir, and the minimum residual norm

of the iterate generated by EIEM Orthodir. Note that we obtained a sequence of

iterates after running EIEM Orthodir. The minimum residual norm is referred to

as ‖rmodel‖.

Overall, the approximate solutions generated by EIEM Orthodir are better

than all of previous iterates generated by Orthodir alone. This is clearly visible in

the decrease column of the table. For instance, when solving a problem of 1000

dimensions, the decrease is 8.3276; this means that the residual norm of the iterate

generated by EIEM Orthodir algorithm is about 8 times smaller than the lowest

residual norm of the iterates generated by Orthodir. Similarly, Orthodir with

EIEM performs better than Orthodir when solving 7000 dimensional problems.
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The residual norm of its solution is about 6 times smaller. The decrease factor

remains stable at 3 when solving large scale problems i.e. between 20000 and

70000 dimensions. We notice here that breakdown still occurs in the Orthodir

algorithm for some problems, such as in dimensions 20000 and 40000. This is

indicated by INF in the residual norms column.

We captured the residual norms behaviour of EIEM in Orthodir algorithm for

problems of dimensions ranging from 1000 to 70000 in Figure 3.5. These results

are for a selection of problems only; others can be seen in Appendix A. Here,

the red curve represents the residual norms of 100 iterates generated by Orthodir,

whereas the blue curve represents the residual norms of the approximate solutions

generated by EIEM Orthodir . Note, the blue curve does not start from iteration

1; instead, it begins from the iteration corresponding to the iterate with the lowest

residual norm, as explained in Algorithm 10. In Figure 3.5(e), for instance, we

only present few residual norms, whereas other figures have more than that. We

can say here that, overall, the blue curve is consistently under the red curve, before

it goes up considerably. It means that, EIEM Orthodir generates iterates which

are than those generated by Orthodir.

Table 3.2 provides some results of the implementation of EIEM Orthodir for

200 iterations. Overall, Orthodir with EIEM improved the residual norms. In

fact, for some problems, such as those in dimensions 5000, 7000, 8000, 9000,

10000, and 70000, the residual norms of the approximate solutions generated by

EIEM Orthodir are even better than those in Table 3.1. The comparison between

the residual norms of the iterates generated by EIEM Orthodir for 100 and 200
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Table 3.1: Comparison of the residual norms of the iterates generated by Orthodir and
those generated by EIEM in Orthodir over 100 iterations

Dim Orthodir Orthodir with EIEM
n ‖rk‖ ‖rm‖ ‖rmodel‖ Decrease Time(s)

1000 2.2003E + 04 7.0560 0.8473 8.3276 0.7566
2000 4.7374E + 02 5.0727 1.8774 2.7019 1.3513
3000 2.6217E + 02 17.0350 3.4173 4.9849 2.5198
4000 32.5071 7.3863 2.7530 2.6830 3.9224
5000 7.1466 7.1466 2.4345 2.9356 5.5196
6000 6.8731E + 02 8.8374 2.2929 3.8543 7.3874
7000 2.0905 17.8229 6.7562 5.7562 7.8552
8000 3.7821E + 02 9.0646 5.5186 1.6426 12.0198
9000 2.2027E + 03 25.1725 18.8932 1.3324 14.8194

10000 4.8718 3.4108 1.4640 2.3298 18.1777
20000 INF 5.6270 1.8035 3.1200 63.9889
30000 6.1941E + 02 34.1018 12.3647 2.7579 3.5772E + 02
40000 INF 16.0039 5.8027 3.3323 8.0827E + 02
50000 11.3670 8.2159 2.9005 2.8326 1.765E + 03
60000 1.0451E + 02 33.4570 10.6191 3.1506 1.7263E + 03
70000 28.8041 13.1793 4.3908 3.0016 2.179E + 03

iterations is described in Table 3.3. Here, we computed the percentage decrease

from 100 to 200 iterations. For instance, when solving a SLE of dimensions 7000,

the percentage decrease is about 89.76% . It means that the residual norm of the

iterate generated by EIEM Orthodir for 200 iterations, decreased by about 89.76%

from the one generated by EIEM Orthodir for 100 iterations. The significant im-

provement also appears for dimensions 8000 and 9000, where their percentage

decrease is about 50%. There are some problems for which there is no improve-

ment in the residual norms for 100 to 200 iterations. A clear comparison is made

in Figure 3.6.
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Table 3.2: Comparison of the residual norms of the iterates generated by Orthodir and
those generated by EIEM in Orthodir over 200 iterations

Dim Orthodir Orthodir with EIEM
n ‖rk‖ ‖rm‖ ‖rmodel‖ Decrease Time(s)

1000 4.6882E + 09 7.0560 0.8473 8.3276 0.5918
2000 5.1039E + 08 5.0727 1.8774 2.7019 1.5781
3000 2.6217E + 02 17.0350 3.4173 4.9849 2.4077
4000 1.4087E + 09 7.3863 2.7530 2.683 4.8380
5000 88.3012 7.1466 1.9527 3.6598 6.08
6000 5.3162E + 08 8.8374 2.2929 3.8543 9.2981
7000 INF 2.3138 0.6917 3.3451 10.7136
8000 2.4089E + 06 9.0646 2.7315 3.3185 14.0900
9000 1.5578E + 10 25.1725 9.3516 2.6918 19.871

10000 8.6226E + 04 3.4108 1.2703 2.6850 25.0024
20000 INF 5.6270 1.8035 3.1200 64.4431
30000 2.1509E + 08 34.1018 12.3647 2.7579 4.8966E + 02
40000 INF 16.0039 5.8027 3.3323 5.8288E + 02
50000 1.5989E + 05 8.2159 2.9005 2.8326 1.4261E + 03
60000 5.0367E + 02 30.5078 10.7341 2.8421 2.109E + 03
70000 2.3107E + 02 12.9988 3.7122 3.5016 4.7479E + 03

Table 3.3: Comparison of the EIEM Orthodir performances over 100 and 200 iterations

Dimension ‖rmodel‖ Percentage Decrease
n 100 iterations 200 iterations %

1000 0.8473 0.8473 0
2000 1.8774 1.8774 0
3000 3.4173 3.4173 0
4000 2.7530 2.7530 0
5000 2.4345 1.9527 19.8
6000 2.2929 2.2929 0
7000 6.7562 0.6917 89.76
8000 5.5186 2.7315 50.5
9000 18.8932 9.3516 50.5

10000 1.4640 1.2703 13.23
20000 1.8035 1.8035 0
30000 12.3647 12.3647 0
40000 5.8027 5.8027 0
50000 2.9005 2.9005 0
60000 10.7341 10.7341 0
70000 4.3908 3.712 15.46
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(a) Dim 3000 (b) Dim 5000

(c) Dim 20000 (d) Dim 40000

(e) Dim 50000 (f) Dim 70000

Figure 3.5: The performance of EIEM in Orthodir on a variety of SLE’s
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Figure 3.6: The residual norms behaviour of the iterates generated by EIEM Orthodir for
100 and 200 iterations

3.4.2 EIEM in Orthomin Algorithm

In this section, we will discuss some numerical results of running EIEM Or-

thomin for both 100 and 200 iterations. They are presented in Tables 3.4 and 3.5,

respectively. Similar to the previous subsection, the residual norms of the iterates

generated by EIEM Orthomin are also better than those of all the iterates gener-

ated by Orthodir. This improvement is measured as a decrease factor provided in

both tables. It describes the ratio of the lowest residual norm of the iterate gener-

ated by Orthomin to the residual norm of the approximate solution generated by

EIEM Orthomin. For instance, when solving problems of dimensions 5000 (see

Table 3.4), the decrease factor shows 4.5668. It means that the residual norm of

the iterate generated by EIEM Orthomin is about 5 times smaller than the lowest

residual norm of the iterate generated by the original Orthomin. Furthermore, for
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Table 3.4: Comparison of the residual norms of the iterates generated by Orthomin and
those generated by EIEM in Orthomin algorithm over 100 iterations

Dim Orthomin Orthomin with EIEM
n ‖rk‖ ‖rm‖ ‖rmodel‖ Decrease Time(s)

1000 4.2971E + 02 5.8802 2.5796 3.2801 1.1671
2000 8.9656 0.3085 0.1228 2.6380 2.5122
3000 53.6782 6.7353 1.9238 3.5010 5.0146
4000 27.4180 7.4770 3.2823 2.2780 8.4496
5000 13.8094 5.0350 1.1025 4.5668 12.7465
6000 6.1534E + 02 6.8183 2.9931 2.2780 18.0645
7000 1.4583E + 02 12.6500 5.2531 2.7783 15.9065
8000 59.8963 11.0986 4.5721 2.4274 31.5433
9000 11.0851 9.7388 1.5923 6.1162 39.7061

10000 56.4802 9.5349 1.8986 5.0221 42.6168
20000 4.03780E + 04 16.6678 13.7344 2.6043 1.7655E + 02
30000 2.6099E + 02 74.4084 19.7072 3.7757 2.7980E + 03
40000 1.7379E + 02 57.4135 26.7537 2.1460 2.4308E + 03
50000 2.4956E + 02 2.4307 0.6062 4.0097 1.1559E + 04
60000 5.0489E + 06 102.3427 38.1449 2.6829 7.5423E + 03
70000 64.8401 21.2823 7.9323 2.6829 2.4591E + 04

problems of dimensions 9000, 10000, and 50000, the decrease factors are about 6,

5, and 4, respectively. Similarly, in Table 3.5, the decrease factors of problems of

dimensions 10000 and 40000 are about 5 and 6, respectively, which indicate some

improvements have been made by the EIEM Orthomin.

Enhanced EIEM Orthomin for solving SLEs is also made by increasing the

iterations from 100 to 200. It is presented in Table 3.6 and is captured in Figure 3.7.

As can be seen here, for a problem of dimensions 3000, for instance, the percentage

decrease is about 67%. It means that increasing the iterations up to 200 leads an

improvement of the residual norm. The significant improvement is visible when

solving a problem of dimensions 8000, where the percentage decrease is about

99%. Other problems, in dimensions 30000, 40000, and 70000 dimensions, have

the percentages decrease 74%, 53%, and 66%, respectively.
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Table 3.5: Comparison of the residual norms of the iterates generated by Orthomin and
those generated by EIEM in Orthomin algorithm over 200 iterations

Dim Orthomin Orthomin with EIEM
n ‖rk‖ ‖rm‖ ‖rmodel‖ Decrease Time(s)

1000 4.2970E + 02 5.8802 1.7927 2.2795 1.2812
2000 92.1952 0.3085 0.1228 2.5287 3.997
3000 4.1797 1.2657 0.4446 2.8469 8.8176
4000 62.8293 7.4770 3.1823 2.3496 9.8983
5000 76.0691 2.4404 0.5713 4.2717 15.533
6000 65.6983 6.8183 2.5931 2.6294 31.1042
7000 1.4583E + 02 12.6500 4.5531 2.4081 17.2935
8000 35.1760 0.0701 0.0254 2.7598 55.4165
9000 11.2883 3.8938 0.8661 4.4958 69.2796

10000 56.4801 9.5349 1.8986 5.0221 42.9135
20000 4.0378E + 04 16.6678 6.4000 1.2136 1.7589E + 02
30000 5.4198E + 02 27.2705 5.1769 5.2677 1.5216E + 03
40000 56.7181 77.1316 12.6267 6.1086 2.5159E + 03
50000 59.1980 2.4307 0.6062 4.0097 1.9875E + 03
60000 2.2618E + 09 102.3427 38.1449 2.6829 5.3279E + 03
70000 1.6062 1.5868 0.4914 3.2291 8.5158E + 03

Table 3.6: Comparison of EIEM Orthomin performances over 100 and 200 iterations

Dimension ‖rmodel‖ Percentage Decrease
n 100 iterations 200 iterations %

1000 2.579 1.7927 30.49
2000 0.1228 0.1228 0
3000 1.9238 0.4446 76.89
4000 3.2823 3.2823 0
5000 1.1025 0.5713 48.18
6000 2.9931 2.5931 13.36
7000 5.2531 4.5531 15.37
8000 4.5721 0.0254 99.06
9000 1.5923 0.8661 45.6

10000 1.8986 1.8986 0
20000 13.7344 6.4000 53.4
30000 19.7072 5.1769 73.73
40000 26.7537 12.6267 52.8
50000 0.6062 0.6062 0
60000 38.1449 38.14491 0
70000 7.9323 2.6831 66.17
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Figure 3.7: The residual norms behaviour of the iterates generated by EIEM Orthomin
over 100 and 200 iterations

3.4.3 EIEM in A12 Algorithm

In this particular section, some numerical results obtained with EIEM A12 algo-

rithm are provided in Tables 3.7 and 3.8. The first one presents some findings of

the implementation of EIEM A12 for 100 iterations, whereas those for 200 itera-

tions are described in the second table. Here, we will look at the decrease factor

which represents the improvement factor made by EIEM A12. We will also look

at the percentage change of the algorithm from 100 to 200 iterations.

As can be seen in Table 3.7, overall, the residual norms of the iterates processed

in EIEM A12 improved slightly from those generated by the original A12. This

is indicated by the decrease factors which show the value of three in most of

problems. This trend also appears in Table 3.8. Our explanation of this fact is

that, according to [31], A12 is a Lanczos-type algorithm which is more stable than
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Table 3.7: Comparison of the residual norms of the iterates generated by A12 and those
generated by EIEM in A12 algorithm over 100 iterations

Dim A12 A12 with EIEM
n ‖rk‖ ‖rm‖ ‖rmodel‖ Decrease Time(s)

1000 1.0666 0.2077 0.0787 2.6391 0.6033
2000 0.1728 0.1500 0.0539 2.7829 2.0654
3000 0.4990 0.2386 0.0793 3.0088 3.5116
4000 1.9006 0.3920 0.1473 2.7434 5.394
5000 0.1894 0.1319 0.0488 3.2975 7.9718
6000 0.6113 0.3155 0.1128 2.7969 11.0885
7000 0.57347 0.3291 0.0872 3.7741 13.8402
8000 0.3459 0.2362 0.0786 3.0051 17.4355
9000 2.2946 0.4227 0.1466 2.8834 21.6374

10000 0.1613 0.1211 0.0359 3.3733 26.0479
20000 0.2352 0.2232 0.0856 2.6075 94.635
30000 1.1744 0.3562 0.1258 2.8315 1.9610E + 02
40000 5.9105 0.1309 0.0596 2.1963 1.8112E + 03
50000 0.5109 0.2461 0.0839 2.9333 3.8659E + 03
60000 1.1011 0.7062 0.2652 2.6629 7.0075E + 03
70000 1.6178 1.6178 0.6232 2.5959 9.4073E + 03

Orthodir, Orthomin, and other Lanczos-type algorithms discussed in [3]. In other

words, the approximate solutions generated by A12 are consistently closer to the

true solution than those generated by Orthodir and Orthomin. This, therefore,

makes EIEM A12 unable to improve on the residual norms significantly.

The percentage decrease of some residual norms of the approximate solutions

generated by EIEM in A12 as a result of increasing iterations from 100 to 200 is

described in Table 3.9. It is also illustrated in Figure 3.8. Although the percentage

change is made in most of problems, it is not significant. For instance, the highest

percentage decrease was made when solving 1000 dimensions, which was about

51%. In contrast, the lowest of the percentage decrease was made when solving

2000 dimension problems, which was about 2% only. Other problems have their

percentage decrease between these values.
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Table 3.8: Comparison of the residual norms of the iterates generated by A12 and those
generated by EIEM in A12 algorithm over 200 iterations

Dim A12 A12 with EIEM
n ‖rk‖ ‖rm‖ ‖rmodel‖ Decrease Time(s)

1000 0.1617 0.1027 0.0389 2.64010 0.775
2000 0.1497 0.1472 0.0535 2.7514 2.1049
3000 0.2259 0.1575 0.0590 2.6695 3.9526
4000 0.3745 0.2420 0.1420 1.5475 6.4392
5000 0.9537 0.1022 0.0400 2.0943 9.24
6000 0.39619 0.3155 0.1128 2.7969 12.296
7000 0.2134 0.1589 0.0502 3.1653 16.4137
8000 0.1866 0.1582 0.0574 2.7561 21.3164
9000 0.6881 0.4227 0.1466 2.8834 26.1331

10000 0.1731 0.1211 0.0359 3.3733 31.1463
20000 0.3791 0.1808 0.0579 3.1226 1.1765E + 02
30000 6.7972 0.3008 0.1108 2.7148 2.4268E + 02
40000 0.5451 0.1309 0.0396 3.3056 1.7166E + 03
50000 0.3696 0.2293 0.0779 2.9435 6.2089E + 03
60000 0.4791 0.4329 0.1466 2.9529 5.2633E + 03
70000 2.9535 1.5841 0.5487 2.8870 9.237E + 03

Table 3.9: Comparison of the EIEM A12 performances over 100 and 200 iterations

Dimension ‖rmodel‖ Percentage Decrease
n 100 iterations 200 iterations %

1000 0.0787 0.0389 50.57
2000 0.0539 0.0535 0.74
3000 0.0793 0.0590 25.6
4000 0.1473 0.1420 3.6
5000 0.0488 0.0400 22
6000 0.1128 0.1128 0
7000 0.0872 0.0502 42.43
8000 0.0786 0.0574 26.97
9000 0.1466 0.1466 0

10000 0.0359 0.0359 0
20000 0.0856 0.0579 32.36
30000 0.1258 0.1108 11.92
40000 0.0596 0.0596 0
50000 0.0839 0.0779 7.15
60000 0.2652 0.1466 44.72
70000 0.6232 0.5487 11.95
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Figure 3.8: The behaviour of residual norms of the iterates generated by EIEM A12 over
100 and 200 iterations

3.4.4 The Minimal Polynomial Extrapolation and EIEMLA

The technology for extrapolating sequences of iterates generated by some itera-

tive process is well developed. The work of [16, 75] and others is testimony to

that. Although the context is different in that they assume that only the sequence

of iterates, i.e. the approximate vector solutions are known, (A, b and the itera-

tive process itself are assumed unknown), ultimately they are looking for better

approximate solutions using extrapolation. For completeness, therefore, we com-

pare here the Minimal Polynomial Extrapolation (MPE) approach, one of the most

popular such approaches, against our own EIEMLA when the generating iterative

process is Orthodir. For the benefit of the reader, we recall briefly MPE which

is derived using the differences between every two consecutive vector solutions.

We follow the derivation of MPE given in [37, 77] to solve SLE’s.
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Since we only have the sequence of iterates x j, j = 0, 1, ..., we consider the

system

x j+1 = Ax j, (3.31)

for j = 0, 1, . . . Write

u j = ∆x j = x j+1 − x j, (3.32)

v j = ∆2x j = ∆u j = u j+1 − u j.

For a fixed integer k, we define matrices whose columns are the vectors of differ-

ences, [75],

U = [u0,u1, . . . ,uk−1],

V = [v0,v1, . . . ,vk−1]. (3.33)

We define vector c = [c0, c1, . . . , ck−1, 1]′ by

c =


−U+uk

1

 (3.34)

The solution of system 3.31, s, is obtained by

s = Xc/d, (3.35)

where X = [x0, x1, . . . , xk], and d = 1′k+1c, where 1 is a vector of 1’s. Here s is

a weighted average of the x j’s, with weights determined by the coefficients of

the minimal polynomial P(λ) of A with respect to u0, [75], i.e. the unique monic

polynomial of least degree such that

P(A)u0 = 0. (3.36)
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Table 3.10: Residual norms of iterates generated by MPE and those generated by EIEM
in Orthodir over 100 iterations; random x

Dimension Orthodir MPE in Orthodir EIEM in Orthodir
n ‖rortho‖ ‖rMPE‖ ‖rEIEM‖

1000 2.2003E + 04 4.0460E + 02 7.0560
2000 4.7374E + 02 6.1937E + 04 1.8774
3000 2.6217E + 02 9.1533E + 02 3.4173
4000 32.5071 2.0483E + 02 2.7530
5000 7.1466 5.3636E + 02 2.4345
6000 6.8731E + 02 1.0545E + 04 2.2929
7000 2.0905 1.8810E + 03 6.7562
8000 8.8099 1.5891E + 03 5.5186
9000 5.6547 62.1401 0.1466

10000 4.2341E + 02 3.1794E + 03 7.7580
20000 INF 7.1836E + 03 1.8035
30000 6.1941E + 02 2.9073E + 02 12.3647
40000 INF 4.0582E + 02 5.8027
50000 11.3670 9.77997E + 02 2.9005
60000 1.0451E + 02 3.1176E + 05 10.6191
70000 28.8041 7.1713E + 02 4.3908

As said earlier, MPE generates new points which converge, under certain

conditions to the true solution in the limit. Here, we compare it to EIEMLA on

several problems with b = Ax, where (i) the entries of x are chosen randomly

between 0 and 1, and (ii) x = [11 . . . 1]′.

Results are recorded in Tables 3.10 and 3.11. As can be seen, EIEMLA consis-

tently found the solution, in both cases, with smaller residual norms than MPE.

3.5 Summary

We have introduced the EIEMLA method for solving SLE’s as a novel strategy to

avoid breakdown in Lanczos-type algorithms. It takes advantage of the situation

where the residual norms of the iterates generated by Lanczos-type algorithms

fluctuate. The sequence of entries of some of these iterates, which are normally
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Table 3.11: Residual norms of iterates generated by MPE and those generated by EIEM
in Orthodir over 100 iterations; x = [1, 1, . . . , 1]′

Dimension Orthodir MPE in Orthodir EIEM in Orthodir
n ‖rortho‖ ‖rMPE‖ ‖rEIEM‖

1000 0.7822 7.3761 0.7306
2000 0.5420 46.7904 0.3171
3000 2.1440E + 12 1.6771E + 12 0.3631
4000 0.7903 9.9223 0.1453
5000 0.9815 20.5103 0.4604
6000 2.2391 88.8236 0.7925
7000 4.4812E + 03 3.0922E + 02 0.5479
8000 7.4063 5.1315 0.5634
9000 2.8746 57.4447 0.8081

10000 0.7822 7.3761 0.7306
20000 7.3996 6.4415 0.2816
30000 1.3825E + 02 8.1974E + 02 0.4201
40000 2.8530 4.3648 0.9119
50000 7.7647 12.9841 0.6299
60000 3.0733E + 04 5.9747E + 04 0.7303
70000 0.4211 20.9988 0.3394

associated with a small residual norm, form a pattern which leads to a model

function. Embedding this function into the Lanczos-type algorithm used yields,

through interpolation and extrapolation, a better approximate solution than all of

iterates generated by the original algorithms.

We have shown theoretically that the residual norm of the approximate so-

lution generated by EIEMLA is always smaller than all of the previous iterates

generated by the Lanczos-type algorithms used. This has been confirmed em-

pirically by solving SLE’s of dimensions ranging from 1000 to 70000. Further,

we have concluded that, although increasing the number of the iterations from

100 to 200, potentially causes breakdown in Lanczos-type algorithms, frequently,

EIEMLA produces a better approximate solution. Moreover, for completeness, we

have looked briefly at the so called Minimum Polynomial Extrapolation approach
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which builds up new approximate solutions to SLE’s from sequences of iterates

generated by some iterative process. MPE is then pitched against EIEMLA on a

number of problems of varying dimensions. EIEMLA comes on top.

It is to note that the length of the sequence to use by EIEMLA and indeed other

approaches such as MPE is arbitrary. This suggests a further investigation to find

the optimum number of iterations before breakdown occurs, in our case when

Lanczos-type algorithms are used.

The implementation of EIEM into a stable Lanczos-type algorithm does not

make a significant improvement. This warrants more investigations, particularly

since there are other regression approaches that can be tried.



Chapter 4

Restarting Lanczos-type Algorithms
from the Iterate Generated by
EIEMLA

4.1 Introduction

In Chapter 3, we have shown that EIEMLA enables to capture the properties of

the sequence x1, x2, . . . , xk of iterates generated by a Lanczos-type algorithm by

regressing upon this sequence of points. The regression model found is then

used to generate some points, xk+1, xk+2, . . . , xs, where s ≥> k+1, which have better

residual norms than any other points in the previous sequence. However, because

we assume that the regression model captures the properties of the Lanczos

sequence, these points belong to that sequence.

Although min{‖rl‖} ≤ ‖rk‖, where l = k + 1, k + 2, . . . , s, the minimum residual

norm of xl is still not low enough to indicate convergence. This is obvious since,

Lanczos-type algorithms typically take more than n iterations to converge, where

n is the dimensions of the problems. Here obviously we assume n >> 100 or k.

In this chapter, we investigate using one of these new points as a restarting

point for a Lanczos-type algorithm. There are some new points generated by

113
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EIEMLA that can be used as a restarting point, however, we use the better one,

called xmodel, i.e. the one with the minimum residual norm, to get a better result.

This point is then used to generate a finite sequence of points, say again a 100. The

regression is applied again and a new point is generated. This process continues

until a stopping criterion is satisfied.

4.2 Restarting EIEMLA

As explained in Chapter 2, restarting a Lanczos algorithm requires an iterate to

restart with. The iterate can be obtained either directly by the Lanczos algorithm

itself, such as RLLastIt and RLMinRes (see Subsections 2.1.3 and 2.1.4), or by mod-

ifying a sequence generated by the algorithm, such as RLMedVal (see Subsection

2.1.5). In this particular restarting, called REIEMLA, we take the iterate generated

by EIEMLA as a starting point. It is as illustrated in Figure 4.1. First, a Lanczos-

type algorithm generates the sequence x1, x2, . . . , xk, with assuming it breaks after

k iterations. The sequence is then regressed to get a model function. Using this

function, we generate a solution, xmodel
(1). Next, we restart the Lanczos-type al-

gorithm from this solution to get another sequence of iterates. We regress again

to get xmodel
(2). It is continued until xmodel

(m) is achieved, and the corresponding

residual norm is less than the given tolerance.

By Theorem 2.1.1 of Chapter 2, we know that the restarting framework allows

Lanczos-type algorithms to generate better iterates. This is expected here, too.

This restarting approach is described as Algorithm 11.
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Figure 4.1: The process of REIEMLA on SLE’s

Algorithm 11 REIEMLA

1: Initialization. Choose x0 and y. Set r0 = b − Ax0, y0 = y, and z0 = r0.
2: Fix the number of iterations to, say k, and the tolerance, ε, to 1E − 13.
3: Run EIEMLA for k iterations. Obtain a sequence of iterates {xk+1, xk+2, . . . , xs},

where s ≥> k + 1, and calculate the residual norms of these iterates.
4: Compute the minimum of the residual norms, name it as ‖rmodel‖.
5: if ‖rmodel‖ ≤ ε then
6: The solution is obtained, i.e. the iterate which is associated with this residual

norm, name it as xmodel.
7: Stop.
8: else
9: Initialize the algorithm with

x0 = xmodel

y = b − Ax0

10: Go to 3.
11: end if
12: Take xmodel as the approximate solution.
13: Stop.



4.3. Numerical Results Using Sparse Matrix Algebra 116

4.3 Numerical Results Using Sparse Matrix Algebra

Experiments have been carried out using five implementations of REIEMLA,

including restarting EIEM (REIEM) Orthores, REIEM Orthodir, REIEM Orthomin,

REIEM A8B8, and REIEM A12. The aim is to look at the performance of these

EIEMLA’s when they are put on the restarting framework. Particularly, we will

look at the robustness and the efficiency of each algorithm. The problems solved

range from 1000 to 400000 variables. We use sparse matrix technology which is

built in Matlab. Recall that a sparse matrix is one with most of its entries being

zero, [78].

In this experiment, the block matrix A is modified with the sparse technique

(see Appendix B). The values of δ are chosen as 0.2 and 5 only. These values lead

to problems with matrices having large and small condition numbers. We use a

cycle of 100 iterations to restart. In the following, we will discuss the results on

problems for particular values of δ.

4.3.1 REIEMLA on SLE’s with δ = 0.2

The results of this particular case are recorded in Table 4.1 and some residual

norms are captured in Figure 4.2, 4.3, and 4.4.

Overall, REIEM A8B8 found more accurate approximate solutions. This can

be seen in Table (4.1), particularly for dimensions between 60000 and 400000. It

also showed the best performance in term of efficiency; it consistently took the

shortest time on all problems. The second best performance came from REIEM

Orthodir. The rest of methods had mixed performances on both accuracy and
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efficiency.

Figures 4.2, 4.3, 4.4, and 4.5 represent the residual norms of all solutions

generated by all considered algorithms for dimensions ranging from 1000 to 8000,

9000 to 70000, and 80000 to 400000, respectively. We can see there, that most

of figures show that the red, blue, pink, and yellow curves, corresponding to

REIEM Orthodir, REIEM Orthores, REIEM A8B8, and REIEM A12, respectively,

have a similar shape. The green curve, on the other hand, which represents

REIEM Orthomin, appears on top of the other curves for some problems, such

as on Figures from 4.4(c) to 4.5(d). It means that it failed to reach the prescribed

convergence tolerance.
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Table 4.1: REIEMLA’s results on SLE’s of different dimensions (δ = 0.2).

Dim REIEM Orthodir REIEM Orthores REIEM Orthomin REIEM A8B8 REIEM A12

n ‖rmodel‖ T(s) cycles* ‖rmodel‖ T(s) cycles* ‖rmodel‖ T(s) cycles* ‖rmodel‖ T(s) cycles* ‖rmodel‖ T(s) cycles*
1000 1.0429E − 13 2.7754 7 7.4768E − 14 2.7204 7 1.0055E − 13 2.4289 7 8.8728E − 14 2.3128 7 1.1678E − 13 2.8407 7
2000 1.8022E − 13 4.7902 5 1.3016E − 13 4.7256 5 9.7620E − 14 4.7388 5 8.9780E − 14 4.5694 5 2.6154E − 13 4.8302 5
3000 9.5558E − 14 8.2847 6 1.9059E − 13 8.1635 6 1.8697E − 13 8.2978 6 1.3804E − 13 7.8779 6 6.6643E − 13 8.3374 6
4000 1.5314E − 13 11.1859 6 9.0616E − 13 11.0619 6 1.5536E − 12 11.2805 6 8.7363E − 14 10.6054 6 2.4647E − 13 11.2323 6
5000 8.8714E − 14 13.8305 6 1.7117E − 13 13.6183 6 1.1540E − 13 13.6849 6 8.9895E − 14 13.3218 6 1.5963E − 13 13.9249 6
6000 9.3580E − 14 16.6379 6 2.5422E − 13 16.4647 6 1.3951E − 13 16.5377 6 1.1735E − 13 14.9176 6 4.5703E − 13 16.6322 6
7000 8.8991E − 14 21.5419 7 9.4050E − 14 21.2915 7 8.7140E − 14 21.4752 7 1.0280E − 13 16.4627 6 1.1965E − 13 21.7140 7
8000 7.0246E − 14 26.1215 7 1.7535E − 13 26.6733 7 9.9997E − 14 27.6451 7 1.0766E − 13 24.4211 7 4.0340E − 13 28.7450 7
9000 1.2724E − 13 34.7815 6 2.3651E − 13 34.5213 6 2.7370E − 13 36.4677 6 9.3160E − 14 32.6551 6 1.3555E − 13 34.5217 6
10000 1.1770E − 13 43.3406 7 1.8943E − 13 42.9775 7 8.5523E − 14 42.2791 7 1.1804E − 13 36.6519 7 1.3061E − 13 43.7932 7
20000 1.3307E − 13 78.4202 6 2.5346E − 13 75.5837 6 1.3043E − 13 76.6608 6 9.6495E − 14 74.1202 6 2.1849E − 13 77.1374 6
30000 7.0624E − 14 1.3807E + 02 8 1.3414E − 13 1.3828E + 02 8 1.2435E − 13 1.1271E + 02 8 1.3085E − 13 1.2985E + 02 8 8.3067E − 14 1.4636E + 02 8
40000 8.7169E − 14 1.6587E + 02 7 2.0691E − 13 1.6405E + 02 7 1.1421E − 13 1.6513E + 02 7 1.5730E − 13 1.2543E + 02 7 1.3643E − 13 1.6427E + 02 7
50000 8.8856E − 14 2.0350E + 02 7 1.9407E − 13 2.0388E + 02 7 1.1142E − 13 2.0585E + 02 7 1.1251E − 13 1.7703E + 02 7 1.4125E − 13 2.0489E + 02 7
60000 1.0238E − 13 2.2516E + 03 6 2.5612E − 13 2.2548E + 03 6 5.7458E − 13 1.8015E + 03 6 5.7665E − 14 1.7265E + 03 6 1.0136E − 13 2.6891E + 03 6
70000 1.1291E − 13 2.3504E + 03 6 2.5633E − 13 2.3568E + 03 6 2.3774E − 07 2.8314E + 03 6 5.4051E − 14 2.3329E + 03 6 8.5146E − 12 9.6349E + 02 6
80000 1.1291E − 13 3.7782E + 02 6 5.5238E − 13 3.7811E + 02 6 9.5690E − 09 3.7915E + 02 6 6.9059E − 14 3.8115E + 02 6 2.5610E − 13 3.7799E + 02 6
90000 1.2560E − 13 4.1922E + 02 7 3.5634E − 13 4.1968E + 02 7 4.4348 4.2066E + 02 6 5.5320E − 14 4.2106E + 02 7 4.6976E − 11 4.2059E + 02 7

100000 6.7572E − 14 1.9632E + 03 6 2.7009E − 13 1.9678E + 03 6 2.2545E − 07 2.3319E + 03 6 1.8846E − 14 2.0884E + 03 6 2.0253E − 11 1.7952E + 03 6
200000 1.5334E − 13 3.0293E + 03 6 2.4225E − 12 3.0356E + 03 6 6.3091E − 09 2.8280E + 03 6 1.8846E − 14 2.7299E + 03 6 1.8905E − 13 3.1738E + 03 6
300000 3.5587E − 13 1.4159E + 03 6 1.3904E − 11 1.3917E + 03 6 2.9327E − 08 1.4026E + 03 6 9.1562E − 14 1.4166E + 03 6 3.4152E − 13 1.4245E + 03 6
400000 1.0917E − 13 3.0293E + 03 7 2.8929E − 13 2.1188E + 03 7 0.9752 2.1174E + 03 7 6.3743E − 14 2.0909E + 03 7 1.7095E − 11 2.1298E + 03 7



4.3. Numerical Results Using Sparse Matrix Algebra 119

4.3.2 REIEMLA on SLE’s with δ = 5

Slightly different from the previous case, according to the information available in

Table 4.2, REIEM A12 produced better approximate solutions than the others, for all

dimensions from 1000 to 50000. But, it took similar computation time to the others.

For large dimensions, as usual, REIEM A8B8 was the best, in terms of both accuracy

and efficiency. REIEM Orthomin, interestingly, performed better this time than

in the previous case. Although it could not meet the prescribed tolerance, it

produced approximate solutions with residual norms which are mostly 1E −

13. REIEM Orthodir and REIEM Orthores were similar in both accuracy and

computation time.

The behaviour of the residual norms of the five algorithms can be seen in

Figures 4.6, 4.7, and 4.8. The trend of each curve in this case is different from that

of the previous case, particularly for the behaviour of REIEM Orthores and REIEM

A12. For instance, in Figures 4.7(f), 4.8(a), and 4.8(b), the blue (REIEM Orthores)

and yellow (REIEM A12) curves appear on top. Both curves have similar trend,

namely go down at the beginning of restarting, then climb up before falling down

again to hit the tolerance. Nevertheless, in Figures 4.9(b), 4.9(c), and 4.9(d), they

seem to fluctuate at the end of the restarting process. The green curve (REIEM

Orthomin), as usual, is visible at the top of Figures 4.8(c), 4.8(d), 4.8(e), 4.8(f), and

4.9(a).
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(a) dimensions 1000 (b) dimensions 2000

(c) dimensions 3000 (d) dimensions 4000

(e) dimensions 5000 (f) dimensions 6000

Figure 4.2: The performance of REIEMLA’s for the case of δ = 0.2, dimensions 1000 to
6000
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(a) dimensions 7000 (b) dimensions 8000

(c) dimensions 9000 (d) dimensions 10000

(e) dimensions 20000 (f) dimensions 30000

Figure 4.3: The performance of REIEMLA’s for the case of δ = 0.2, dimensions 7000 to
30000



4.3. Numerical Results Using Sparse Matrix Algebra 122

(a) dimensions 40000 (b) dimensions 50000

(c) dimensions 60000 (d) dimensions 70000

(e) dimensions 80000 (f) dimensions 90000

Figure 4.4: The performance of REIEMLA’s for the case of δ = 0.2, dimensions 40000 to
90000
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(a) dimensions 100000 (b) dimensions 200000

(c) dimensions 300000 (d) dimensions 400000

Figure 4.5: The performance of REIEMLA’s for the case of δ = 0.2, dimensions 100000
to 400000
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Table 4.2: REIEMLA’s results on SLE’s of different dimensions (δ = 5)

Dim REIEM Orthodir REIEM Orthores REIEM Orthomin REIEM A8B8 REIEM A12

n ‖rmodel‖ T(s) cycles* ‖rmodel‖ T(s) cycles* ‖rmodel‖ T(s) cycles* ‖rmodel‖ T(s) cycles* ‖rmodel‖ T(s) cycles*
1000 9.2205E − 14 3.6807 3 7.0954E − 13 2.3924 3 0.1097 2.3823 3 1.0439E − 13 2.2722 3 6.2280E − 14 2.7175 3
2000 1.3970E − 13 4.6865 7 1.5625E − 13 5.9877 7 1.3651E − 13 4.6538 7 1.3778E − 13 4.5001 7 8.5383E − 14 6.0370 7
3000 1.4108E − 13 7.3545 8 1.1046E − 13 9.0448 8 1.1918E − 13 7.0775 8 1.0682E − 13 7.7034 8 9.1630E − 14 10.0885 8
4000 1.0034E − 13 9.5333 8 1.3915E − 13 10.5893 8 1.3337E − 13 9.4175 8 1.0416E − 13 10.3267 8 9.8464E − 14 13.4137 8
5000 1.7616E − 13 12.0375 9 1.3020E − 13 14.8674 9 1.3468E − 13 11.8063 9 1.0835E − 13 11.379 9 9.1978E − 14 18.0339 9
6000 1.8162E − 13 14.5665 8 1.0912E − 13 19.8708 8 1.4272E − 13 14.2930 8 1.3804E − 13 13.8562 8 8.7310E − 14 20.1106 8
7000 1.1937E − 13 16.5713 8 1.2771E − 13 18.6329 8 1.3908E − 13 16.4030 8 1.0015E − 13 18.1232 8 8.0583E − 14 22.9056 8
8000 1.5750E − 13 18.9288 9 1.3732E − 13 26.4188 9 1.3564E − 13 18.8584 9 1.2937E − 13 18.1689 9 9.7520E − 14 28.9404 9
9000 1.3838E − 13 21.4294 9 1.1833E − 13 26.8324 9 1.0973E − 13 23.9670 9 1.4105E − 13 20.6244 9 8.1333E − 14 32.8872 9
10000 1.2431E − 13 26.7284 11 1.3849E − 13 29.5336 11 1.5222E − 13 23.2247 11 1.5229E − 13 22.6042 11 8.9171E − 14 42.2168 11
20000 1.1944E − 13 63.2272 10 1.3334E − 13 88.5874 10 1.2719E − 13 63.0043 10 1.2001E − 13 61.3925 10 9.7934E − 14 1.0101E + 02 10
30000 1.4298E − 13 1.0852E + 02 13 1.5161E − 13 1.7418E + 02 13 1.3633E − 13 1.0848E + 02 13 1.3836E − 13 1.0556E + 02 13 9.5331E − 14 1.9779E + 02 13
40000 1.6153E − 13 1.4578E + 02 21 1.4877E − 13 3.7430E + 02 21 1.4449E − 13 1.4678E + 02 21 1.4733E − 13 1.4134E + 02 21 9.9270E − 14 4.0423E + 02 21
50000 1.4321E − 13 2.0199E + 02 26 1.5623E − 13 4.4489E + 02 26 1.3927E − 13 2.2374E + 02 26 1.4451E − 13 1.9683E + 02 26 9.8712E − 14 6.0989E + 02 26
60000 8.3824E − 14 2.7679E + 02 6 8.7462E − 11 2.7732E + 02 6 1.1849E − 13 2.7861E + 02 6 7.8359E − 14 2.7907E + 02 6 1.0358E − 13 2.7788E + 02 6
70000 2.9511E − 13 3.8868E + 04 4 7.3915E − 14 2.7901E + 04 4 2.1817E − 06 5.1809E + 04 4 6.0670E − 14 1.4090E + 04 4 2.6256E − 13 7.5767E + 04 4
80000 8.8285E − 14 3.6535E + 02 6 8.8453E − 12 3.6616E + 02 6 1.4822E − 12 3.7085E + 02 6 8.4575E − 14 3.6946E + 02 4 3.7197E − 13 3.7199E + 02 6
90000 9.6464E − 14 4.1400E + 02 6 1.4580E − 11 4.1426E + 02 6 3.5623E − 12 4.2111E + 02 6 8.9727E − 14 4.1873E + 02 6 5.6663E − 11 4.2041E + 02 6

100000 1.0683E − 13 4.6281E + 02 6 1.6064E − 11 4.6057E + 02 6 3.7188E − 13 4.6751E + 02 6 9.5076E − 14 4.6447E + 02 6 2.2224E − 10 4.6956E + 02 6
200000 9.7746E − 14 4.2975E + 03 9 1.1827E − 11 4.2766E + 03 9 1.1180E − 13 5.0559E + 03 9 9.7836E − 14 4.2813E + 03 9 7.5621E − 13 4.9268E + 03 9
300000 9.9296E − 14 4.6323E + 03 13 2.8400E − 13 5.3922E + 03 13 1.2935E − 13 4.2806E + 03 13 9.9620E − 14 4.0059E + 03 13 5.7770E − 13 4.6589E + 03 13
400000 5.5405E − 13 6.8255E + 03 5 5.5062E − 09 5.1609E + 03 5 4.4937E − 12 4.7509E + 03 5 4.4577E − 13 4.1279E + 03 5 1.9636E − 12 4.8695E + 03 5
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4.4 Comparison of REIEMLA, RLastIt, RLMinRes, and
RLMedVal

This section compares REIEMLA and other restarting of Lanczos-type algorithms

discussed in Chapter 2, including RLLastIt, RLMinRes, and RLMedVal. As ex-

plained in Section 2.1.1, for matrices with big condition numbers, such as those

with δ = 0.0, δ = 0.2, and δ = 0.5, RLMinRes experimentally performed the best

compared with RLLastIt and RLMedVal. On matrices with δ = 5 and δ = 8, on

the other hand, RLMedVal was the best. The aim of this study is to look at which

starting point improves the performance of Lanczos-type algorithms. In addition,

the stability of RLLastIt, RLMinRes, and RLMedVal will be checked for problems

ranging from 10000 to 1000000 dimensions, which are significantly larger than

those in Chapter 2.

4.4.1 RLLastIt Orthodir, RLMinRes Orthodir, and RLMedVal Or-
thodir vs REIEM Orthodir

In this section, we compare RLLastIt Orthodir, RLMedVal Orthodir, RLMinRes

Orthodir, and REIEM Orthodir. Findings of this particular comparison are in

Tables 4.3 and 4.4. The residual norms of the approximate solutions generated by

these restartings are captured in Figures 4.10, 4.11, 4.12, 4.13, 4.14, 4.15, and 4.16.

According to Table 4.3, overall, for δ = 0.2, REIEM Orthodir produced more

accurate approximate solutions than RLLastIt Orthodir, RLMedVal Orthodir, and

RLMinRes Orthodir. However, it was the slowest. RLMinRes Orthodir was the

second best for accuracy and it was the fastest. RLLastIt Orthodir, on the other

hand, was the worst overall. It still suffered from breakdown (see dimensions
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(a) dimensions 1000 (b) dimensions 2000

(c) dimensions 3000 (d) dimensions 4000

(e) dimensions 5000 (f) dimensions 6000

Figure 4.6: The performance of REIEMLA’s for the case of δ = 5, dimensions 1000 to
6000
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(a) dimensions 7000 (b) dimensions 8000

(c) dimensions 9000 (d) dimensions 10000

(e) dimensions 20000 (f) dimensions 30000

Figure 4.7: The performance of REIEMLA’s for the case of δ = 5, dimensions 7000 to
30000
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(a) dimensions 40000 (b) dimensions 50000

(c) dimensions 60000 (d) dimensions 70000

(e) dimensions 80000 (f) dimensions 90000

Figure 4.8: The performance of REIEMLA’s for the case of δ = 5, dimensions 40000 to
90000
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(a) dimensions 100000 (b) dimensions 200000

(c) dimensions 300000 (d) dimensions 400000

Figure 4.9: The performance of REIEMLA’s for the case of δ = 5, dimensions 100000 to
400000
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20000, 60000, 90000 column). Yet, for dimensions 1000000, RLLastIt Orthodir

produced an approximate solution with a residual norm of 299.2. RLMedVal

Orthodir was the third best on accuracy. The computational time of RLMedVal

Orthodir is rather low, compared to that of REIEM Orthodir.

For δ = 5, as can be seen in Table 4.4, the trend is slightly different. RLMed-

Val Orthodir was the best on accuracy, followed by REIEM Orthodir, RLMinRes

Orthodir, and RLLastIt Orthodir in that order. For instance, for problems with

dimensions between 10000 and 100000, RLMedVal Orthodir consistently man-

aged the approximate solutions with residual norms which satisfied the toler-

ance. However, for dimensions from 200000 to 100000, the residual norms of

the approximate solutions were slightly greater than the tolerance. The residual

norms of the approximate solutions produced by RLMinRes Orthodir and REIEM

Orthodir, on the other hand, have never satisfied the tolerance. In terms of com-

puting time, the order is the same as in the previous case, where REIEM Orthodir

was the slowest, and RLMinRes Orthodir was the fastest . RLMedVal Orthodir

time was double that of RLLastIt Orthodir. As expected, no restarting suffered

from breakdown.

The comparison of REIEM Orthodir, RLLastIt Orthodir, RLMedVal Orthodir,

and RLMinRes Orthodir for different values of δ can be seen in some figures above

mentioned. Figures in the first column show the behaviour of 4 restartings for

δ = 0.2, while those in the second column show that for δ = 5. We can see in the

first column, that for most problems, the red curve, which represents RLLastIt

Orthodir, is on top. It indicates that this restarting failed to achieve approximate
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solutions with the required tolerance. On the second column, in contrast, the red

curve along with other curves hit small residual norms.



4.4.C
om

parison
of

R
EIEM

LA
,R

LastIt,R
LM

inR
es,and

R
LM

edV
al

132

Table 4.3: Comparison of RLLastIt Orthodir, RLMinRes Orthodir, RLMedVal Orthodir, and REIEM Orthodir on SLE’s with δ = 0.2.

Dim RLLastIt Orthodir RLMedVal Orthodir RLMinRes Orthodir REIEM Orthodir
n ‖rlast‖ T(s) cycles* ‖rmedval‖ T(s) cycles* ‖rmin‖ T(s) cycles* ‖rmodel‖ T(s) cycles*

10000 1.0197E + 03 1.6417 8 8.2954E − 14 3.4869 8 6.3812E − 14 1.6030 8 7.2723E − 14 46.8517 8
20000 NaN 1.7079 7 NaN 8.2981 7 1.3651E − 13 3.1302 7 1.3778E − 13 83.4271 7
30000 1.1431E − 05 4.5129 8 1.0587E − 13 9.5411 8 5.6777E − 14 3.36974 8 7.0624E − 14 1.3811E + 02 8
40000 1.0034E − 13 5.1161 7 1.3915E − 13 11.6754 7 1.3337E − 13 15.0736 7 1.0416E − 13 1.4671E + 02 7
50000 1.9219E − 11 5.6047 7 3.0603E − 13 11.9592 7 1.2119E − 13 4.9212 7 8.8856E − 14 1.6158E + 02 7
60000 NaN 2.7684 2 NaN 16.8510 2 9.3471E − 14 5.7720 8 9.4736E − 14 2.1146E + 02 8
70000 8.6199E − 04 7.1957 7 5.1839E − 13 16.1976 7 1.1174E − 13 6.3761 7 8.8579E − 14 2.2149E + 02 7
80000 1.0629E − 13 8.3211 8 1.3325E − 13 20.0473 8 1.3564E − 13 6.5941 8 8.7312E − 14 2.8178E + 02 8
90000 NaN 15.0871 4 2.2863E − 13 22.4101 8 6.7621E − 14 9.1351 8 9.0221E − 14 3.1943E + 02 8
100000 8.4367E − 06 19.8926 6 2.7951E − 12 38.6984 6 1.4457E − 13 17.7201 6 6.7572E − 14 4.6079E + 02 6
200000 2.2371E − 07 53.0010 7 3.0373E − 13 92.9957 7 1.0271E − 13 42.4940 7 7.3917E − 14 1.0452E + 03 7
300000 3.6456E − 05 84.0492 8 2.9710E − 13 1.3644E + 02 8 9.7195E − 14 69.0920 8 5.7715E − 14 1.7206E + 03 8
400000 1.0269E − 06 1.2527E + 02 21 4.0323E − 13 2.0462E + 02 21 1.0179E − 13 1.0265E + 02 21 6.2753E − 14 2.2990E + 03 21
500000 4.0095 1.2553E + 02 7 4.9181E − 13 2.2944E + 02 7 1.1028E − 13 1.0562E + 02 7 7.5120E − 14 2.5773E + 03 7
600000 2.3792E − 08 2.1644E + 02 8 3.3380E − 13 3.3367E + 02 8 1.1534E − 13 1.6817E + 02 8 6.9701E − 14 3.5818E + 03 8
700000 8.8101E − 04 9.3461E + 02 8 4.8528E − 13 1.1483E + 03 8 1.4392E − 13 1.3074E + 04 8 9.6797E − 14 1.1499E + 02 8
800000 0.0018 1.0005E + 03 8 3.1252E − 13 1.3431E + 03 8 1.3669E − 13 8.7973E + 02 8 9.0274E − 14 1.3790E + 04 8
900000 1.7343E − 06 2.9709E + 02 9 3.5152E − 13 4.9551E + 02 9 1.0190E − 13 2.0792E + 02 9 7.8603E − 14 5.6509E + 03 9

1000000 299.2002 3.4414E + 02 10 2.7200E − 13 5.7312E + 02 10 1.1225E − 13 2.7021E + 02 10 7.8631E − 14 5.7529E + 03 10
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Table 4.4: Comparison of RLLastIt Orthodir, RLMinRes Orthodir, RLMedVal Orthodir, and REIEM Orthodir on SLE’s with δ = 5.

Dim RLLastIt Orthodir RLMedVal Orthodir RLMinRes Orthodir REIEM Orthodir
n ‖rlast‖ T(s) cycles* ‖rmedval‖ T(s) cycles* ‖rmin‖ T(s) cycles* ‖rmodel‖ T(s) cycles*

10000 1.5282E − 13 1.5647 7 8.6507E − 14 2.9339 7 1.1236E − 13 1.1503 7 1.2431E − 13 37.4049 7
20000 2.5421E − 13 2.0033 7 9.2670E − 14 5.3713 7 1.8305E − 13 1.9031 7 1.1944E − 13 74.7341 7
30000 2.5585E − 13 3.6599 8 9.3863E − 14 8.9491 8 1.3291E − 13 2.8207 8 1.4298E − 13 1.1495E + 02 8
40000 2.1163E − 13 4.1743 10 9.4974E − 14 13.2775 10 1.4665E − 13 4.3929 10 1.6153E − 13 1.4879E + 02 10
50000 2.1957E − 13 5.6835 11 9.4983E − 13 17.7897 11 1.4795E − 13 5.1027 11 1.4321E − 13 2.0707E + 02 11
60000 2.3518E − 13 6.6643 12 9.8109E − 14 21.1287 12 1.5621E − 13 5.9157 12 1.5946E − 13 2.5977E + 02 12
70000 1.4588E − 12 7.5442 13 9.9303E − 14 26.2691 13 1.6399E − 13 6.8447 13 1.5147E − 13 3.2813E + 02 13
80000 3.2856E − 13 8.3211 16 9.9896E − 14 20.0473 16 1.0001E − 13 6.5941 16 1.5778E − 13 3.2813E + 02 16
90000 1.0512E − 13 9.7338 19 9.8565E − 14 37.3427 19 1.5962E − 13 8.9901 19 1.6593E − 13 3.5163E + 02 19
100000 1.1403E − 13 10.2525 19 9.9112E − 14 37.9995 19 1.1024E − 13 10.0486 19 1.5772E − 13 4.0715E + 02 19
200000 2.6513E − 11 23.6909 5 7.3801E − 13 43.8722 5 6.9504E − 13 23.9239 5 6.0369E − 13 5.1194E + 02 5
300000 2.5185E − 10 34.5799 5 7.8724E − 13 64.6559 5 3.5092E − 13 33.9495 5 1.6898E − 12 7.7716E + 02 5
400000 2.5430E − 13 61.3019 6 7.8724E − 13 1.2496E + 02 6 2.2746E − 13 62.6279 6 4.9443E − 13 1.5736E + 03 6
500000 2.0284E − 12 74.2925 5 1.1518E − 12 1.4259E + 02 5 3.3174E − 13 73.4990 5 7.9202E − 13 1.7319E + 03 5
600000 9.7777E − 11 75.6925 5 1.6607E − 12 1.3715E + 02 5 3.6769E − 13 76.7997 5 8.4074E − 13 1.5827E + 03 5
700000 1.8568E − 12 7.2134E + 02 6 7.8956E − 13 1.1184E + 03 6 1.0062E − 13 5.1049E + 02 6 6.9662E − 13 1.3265E + 04 6
800000 1.2368E − 11 3.4720E + 02 6 1.2724E − 12 5.6019E + 02 6 1.1644E − 13 3.1915E + 02 6 1.0454E − 12 4.6898E + 03 6
900000 1.1575E − 13 1.4965E + 03 7 6.5957E − 13 2.5649E + 03 7 1.1459E − 13 1.0995E + 03 7 6.1413E − 13 2.9890E + 04 7

1000000 2.8962E − 12 6.2909E + 02 6 1.0127E − 12 8.2985E + 02 6 1.1586E − 13 5.1711E + 02 6 7.9511E − 13 6.3018E + 03 6
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4.4.2 RLLastIt A12, RLMinRes A12, and RLMedVal A12 vs REIEM
A12

Here we consider A12, [31], which according to the author, is more robust than

other Lanczos-type algorithms. Typically, A12 takes longer to breakdown than

Lanczos-type algorithms found in [3]. In fact, when we implemented REIEM

A12 (see Section 4.3), it also consistently showed a better performance than other

Lanczos-type algorithm. All of the findings are recorded in Tables 4.5 and 4.6

which respectively present results for cases with δ = 0.2 and δ = 5.

According Table 4.5, RLLastIt A12, RLMinRes A12, and REIEM A12 were simi-

larly robust. RLMedVal A12, in contrast, was less accurate on most of problems;

it also suffered from breakdown for dimension 20000. In terms of computing

time, REIEM A12 typically was the slowest, while RLMinRes A12 was the fastest.

RLLastIt A12 and RLMedVal A12 were in the middle.

The behaviour of the four restartings for the particular value δ = 5, is rather

different from that shown in the above commented results. We can see in Table

4.6, in general, RLMinRes A12 was more accurate than other restartings, though

the residual norms of the iterates were still larger than the tolerance. It is followed

by REIEM A12, RLMedVal A12, and RLLastIt A12. The trend in time consuming is

the same as the previous case.

Figures 4.17 , 4.18, 4.19, 4.20, 4.21, 4.22, and 4.23 show the accuracy of solutions

generated by RLLastIt A12, RLMedVal A12, RLMinRes A12, and REIEM A12, for

both δ = 0.2 and δ = 5, respectively. For instance, in the first column of the

figures, the blue curve appears over other curves for most problems, whereas in

the second column, the red curve is found on the top for most of problems. The
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(a) dimensions 10000; δ = 0.2 (b) dimensions 10000; δ = 5

(c) dimensions 20000; δ = 0.2 (d) dimensions 20000; δ = 0.2

(e) dimensions 30000; δ = 0.2 (f) dimensions 30000; δ = 5

Figure 4.10: The performances of RLLastIt Orthodir, RLMinres Orthodir, RLMedVal
Orthodir and REIEM Orthodir on SLE’s for δ = 0.2 and δ = 5, dimensions 10000 to
30000
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(a) dimensions 40000; δ = 0.2 (b) dimensions 40000; δ = 5

(c) dimensions 50000; δ = 0.2 (d) dimensions 50000; δ = 5

(e) dimensions 60000; δ = 0.2 (f) dimensions 60000; δ = 0.2

Figure 4.11: The performances of RLLastIt Orthodir, RLMinres Orthodir, RLMedVal
Orthodir and REIEM Orthodir on SLE’s for δ = 0.2 and δ = 5, dimensions 40000 to
60000
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(a) dimensions 70000; δ = 0.2 (b) dimensions 70000; δ = 5

(c) dimensions 80000; δ = 0.2 (d) dimensions 80000; δ = 5

(e) dimensions 90000; δ = 0.2 (f) dimensions 90000; δ = 5

Figure 4.12: The performances of RLLastIt Orthodir, RLMinres Orthodir, RLMedVal
Orthodir and REIEM Orthodir on SLE’s for δ = 0.2 and δ = 5, dimensions 70000 to
90000
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(a) dimensions 100000; δ = 0.2 (b) dimensions 100000; δ = 0.2

(c) dimensions 200000; δ = 0.2 (d) dimensions 200000; δ = 5

(e) dimensions 300000; δ = 0.2 (f) dimensions 300000; δ = 5

Figure 4.13: The performances of RLLastIt Orthodir, RLMinres Orthodir, RLMedVal
Orthodir and REIEM Orthodir on SLE’s for δ = 0.2 and δ = 5, dimensions 100000 to
300000
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(a) dimensions 400000; δ = 0.2 (b) dimensions 400000; δ = 5

(c) dimensions 500000; δ = 0.2 (d) dimensions 500000; δ = 0.2

(e) dimensions 600000; δ = 0.2 (f) dimensions 600000; δ = 5

Figure 4.14: The performances of RLLastIt Orthodir, RLMinres Orthodir, RLMedVal
Orthodir and REIEM Orthodir on SLE’s for δ = 0.2 and δ = 5, dimensions 400000 to
600000
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(a) dimensions 700000; δ = 0.2 (b) dimensions 700000; δ = 5

(c) dimensions 800000; δ = 0.2 (d) dimensions 800000; δ = 5

Figure 4.15: The performances of RLLastIt Orthodir, RLMinres Orthodir, RLMedVal
Orthodir and REIEM Orthodir on SLE’s for δ = 0.2 and δ = 5, dimensions 700000 and
800000
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(a) dimensions 900000; δ = 0.2 (b) dimensions 900000; δ = 0.2

(c) dimensions 1000000; δ = 0.2 (d) dimensions 1000000; δ = 5

Figure 4.16: The performances of RLLastIt Orthodir, RLMinres Orthodir, RLMedVal
Orthodir and REIEM Orthodir on SLE’s for δ = 0.2 and δ = 5, dimensions 900000 and
1000000
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other thing to notice is that the yellow curve which is in both the first and the

second column, appears below the pink curve for most problems.
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Table 4.5: Comparison of RLLastIt A12, RLMinRes A12, RLMedVal A12, and REIEM A12 on SLE’s with δ = 0.2

Dim RLLastIt A12 RLMedVal A12 RLMinRes A12 REIEM A12

n ‖rlast‖ T(s) cycles* ‖rmedval‖ T(s) cycles* ‖rmin‖ T(s) cycles* ‖rmodel‖ T(s) cycles*
10000 1.1395E − 13 0.9111 9 2.1911E − 13 2.8311 9 9.1387E − 14 0.9705 9 7.7202E − 14 38.6083 9
20000 1.0572E − 13 2.0039 8 NaN 4.6817 3 8.2156E − 14 1.8019 8 1.0677E − 13 71.0239 8
30000 1.2036E − 13 2.8893 8 1.0614E − 11 7.8855 8 1.4478E − 13 2.9199 8 8.3067E − 14 1.0552E + 02 8
40000 5.6816E − 14 3.7705 12 8.4546E − 14 13.0142 12 1.0515E − 13 3.8425 12 1.1670E − 13 1.4082E + 02 12
50000 2.7123E − 13 5.1914 8 7.7261E − 13 12.6740 8 9.8339E − 14 4.7926 8 1.1965E − 13 1.7529E + 02 8
60000 6.4499E − 14 6.1521 10 2.2694E − 13 17.7543 10 5.7380E − 14 5.4171 10 1.3297E − 13 1.9357E + 02 10
70000 6.2368E − 14 10.1749 12 5.8986E − 13 27.0398 12 9.4701E − 14 8.7917 12 1.1024E − 13 2.8047E + 02 12
80000 3.9066E − 14 9.1172 19 9.9861E − 14 36.4875 19 1.2571E − 13 10.5607 19 1.0825E − 13 3.3930E + 02 19
90000 2.0307E − 13 10.4320 9 2.7902E − 13 24.9229 9 1.0952E − 13 10.2247 9 9.1989E − 14 3.4409E + 02 9
100000 6.5739E − 14 11.3657 19 9.7209E − 14 44.9519 19 1.3900E − 13 10.2565 19 1.0604E − 13 7.3209 + 02 19
200000 1.8157E − 13 33.5512 11 1.7998E − 13 72.9424 11 9.2556E − 14 24.9164 11 1.1353E − 13 9.1544E + 02 11
300000 5.9051E − 14 40.1802 15 2.8456E − 13 1.4153E + 02 15 9.1524E − 14 52.3172 15 1.5013E − 13 1.8099E + 03 15
400000 8.3224E − 14 1.0201E + 02 14 1.6404E − 13 1.7227E + 02 14 9.7657E − 14 81.5764 14 1.2943E − 13 7.5495E + 03 14
500000 1.1030E − 13 6.4965E + 02 11 4.0941E − 13 4.7080E + 02 11 1.2828E − 13 1.7966E + 02 11 9.6065E − 14 2.5773E + 03 11
600000 1.0211E − 13 1.5877E + 02 11 3.6880E − 13 3.7680E + 02 11 1.0665E − 13 2.0973E + 02 11 9.0823E − 14 4.4756E + 03 11
700000 1.0126E − 13 2.8527E + 02 14 2.8299E − 13 7.0311E + 02 14 1.1074E − 13 2.2525E + 02 14 9.9619E − 14 6.9622E + 03 14
800000 2.3916E − 13 3.5925E + 02 11 4.2084E − 11 6.2091E + 02 11 1.0075E − 13 3.1237E + 02 11 9.8629E − 14 5.9613E + 03 11
900000 1.2672E − 12 4.2183E + 02 12 3.2157E − 13 6.0596E + 02 12 1.1223E − 13 3.5926E + 02 12 9.7263E − 14 7.1965E + 03 12

1000000 9.7307E − 14 3.5967E + 02 14 3.2669E − 13 7.5548E + 02 14 1.1015E − 13 3.5034E + 02 14 1.0235E − 13 8.9431E + 03 14
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Table 4.6: Comparison of RLLastIt A12, RLMinRes A12, RLMedVal A12, and REIEM A12 on SLE’s with δ = 5

Dim RLLastIt A12 RLMedVal A12 RLMinRes A12 REIEM A12

n ‖rlast‖ T(s) cycles* ‖rmedval‖ T(s) cycles* ‖rmin‖ T(s) cycles* ‖rmodel‖ T(s) cycles*
10000 1.8281E − 13 7.3084 11 6.7944E − 13 5.6726 11 1.1966E − 13 3.2605 11 9.6361E − 14 37.4127 11
20000 9.1375E − 09 4.8755 11 6.4979E − 13 7.6063 11 6.2927E − 13 4.1526 11 9.1728E − 14 71.9489 11
30000 7.0341E − 10 8.4317 11 1.1904E − 13 10.7368 11 7.3341E − 12 6.5926 11 9.7945E − 14 1.0635E + 02 11
40000 3.2725E − 11 17.2950 15 1.0309E − 13 18.5392 15 6.1552E − 10 15.3649 15 9.8554E − 14 1.8631E + 02 15
50000 5.0559E − 08 44.5313 27 2.9991E − 12 45.2498 27 4.1688E − 12 31.2646 27 9.8652E − 14 3.8606E + 02 27
60000 1.0285E − 07 7.9078 7 2.1248E − 12 16.7972 7 1.047E − 13 8.2064 7 2.5346E − 13 2.4950E + 02 7
70000 4.3529E − 07 8.6247 8 1.1799E − 08 19.8241 8 1.1393E − 13 8.6232 8 1.0651E − 10 2.5008E + 02 8
80000 4.6898E − 10 10.1676 9 2.3376E − 08 22.9596 9 1.0965E − 13 9.6831 9 2.9196E − 13 3.0086E + 02 9
90000 4.0313E − 08 7.6963 5 8.2471E − 08 16.6028 5 1.1498E − 13 7.0518 5 2.5325E − 12 2.1959E + 02 5
100000 1.4261E − 09 15.3556 11 3.3158E − 10 34.2262 11 1.1657E − 13 13.9603 11 1.8055E − 13 4.2915 + 02 11
200000 2.2120E − 09 26.9593 6 1.3579E − 10 49.8357 6 1.3313E − 13 27.2543 6 2.5797E − 12 5.6340E + 03 6
300000 3.6275E − 08 60.8363 9 4.2473E − 12 1.1266E + 02 9 1.1711E − 13 60.1272 9 9.1608E − 12 1.3719E + 03 9
400000 1.2404E − 10 94.5036 9 1.9132E − 12 1.6330E + 02 9 1.2487E − 13 95.3229 9 2.8754E − 12 4.4937E + 03 9
500000 2.2187E − 13 1.7289E + 02 8 4.4922E − 11 3.0280E + 02 8 2.4364E − 13 1.9042E + 02 8 6.1720E − 12 2.9615E + 03 8
600000 5.4853E − 10 1.5086E + 03 6 5.4888E − 12 1.2023E + 03 6 1.7595E − 13 7.0673E + 02 6 1.1055E − 10 7.1069E + 03 6
700000 2.9782E − 08 3.0449E + 02 10 7.8564E − 10 5.2249E + 02 10 2.0764E − 13 3.0176E + 02 10 1.0550E − 10 4.9793E + 03 10
800000 2.5890E − 07 2.0886E + 02 5 1.4378E − 09 3.4398E + 02 5 4.0240E − 13 2.3000E + 02 5 6.7190E − 12 3.3461E + 03 5
900000 3.4270E − 10 4.0327E + 03 6 2.9562E − 10 4.6774E + 03 6 1.3948E − 13 3.8044E + 03 6 2.1753E − 12 3.5051E + 04 6

1000000 4.7081E − 08 1.3421E + 03 14 1.5497E − 09 1.8816E + 03 14 2.6710E − 11 1.4518E + 03 14 6.8502E − 13 1.2079E + 04 14
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4.5 Summary

Restarting from the iterate generated by EIEMLA’s (REIEMLA’s) have been im-

plemented. They include REIEM Orthodir, REIEM Orthores, REIEM Orthomin,

REIEM A8B8, and REIEM A12. This kind of restarting uses an iterate generated

by EIEMLA as a starting point which is different from either those investigated in

Chapter 2 or in [29, 30], which is a novelty of our works. We can conclude here

that REIEMLA produced the best results as can be seen in Tables 4.3 and 4.4 of

Section 4.4, so they do agree with the theory expanded in Chapter 3. This means

that the method is comparatively better in terms of quality of solution. However,

given the time overheads required to find the regression model and restarting,

both REIEM Orthodir and REIEM A12 (as REIMLA) are not efficient in terms of

computing time.
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(a) dimensions 10000; δ = 0.2 (b) dimensions 10000; δ = 5

(c) dimensions 20000; δ = 0.2 (d) dimensions 20000; δ = 5

(e) dimensions 30000; δ = 0.2 (f) dimensions 30000; δ = 5

Figure 4.17: The performances of RLLastIt A12, RLMinres A12, RLMedVal A12 and
REIEM A12 on SLE’s for δ = 0.2 and δ = 5, dimensions 10000 to 30000
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(a) dimensions 40000; δ = 0.2 (b) dimensions 40000; δ = 5

(c) dimensions 50000; δ = 0.2 (d) dimensions 50000; δ = 5

(e) dimensions 60000; δ = 0.2 (f) dimensions 60000; δ = 5

Figure 4.18: The performances of RLLastIt A12, RLMinres A12, RLMedVal A12 and
REIEM A12 on SLE’s for δ = 0.2 and δ = 5, dimensions 40000 to 60000
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(a) dimensions 70000; δ = 0.2 (b) dimensions 70000; δ = 5

(c) dimensions 80000; δ = 0.2 (d) dimensions 80000; δ = 5

(e) dimensions 90000; δ = 0.2 (f) dimensions 90000; δ = 5

Figure 4.19: The performances of RLLastIt A12, RLMinres A12, RLMedVal A12 and
REIEM A12 on SLE’s for δ = 0.2 and δ = 5, dimensions 70000 to 90000
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(a) dimensions 100000; δ = 0.2 (b) dimensions 100000; δ = 5

(c) dimensions 200000; δ = 0.2 (d) dimensions 200000; δ = 5

(e) dimensions 300000; δ = 0.2 (f) dimensions 300000; δ = 5

Figure 4.20: The performances of RLLastIt A12, RLMinres A12, RLMedVal A12 and
REIEM A12 on SLE’s for δ = 0.2 and δ = 5, dimensions 100000 to 300000
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(a) dimensions 400000; δ = 0.2 (b) dimensions 400000; δ = 5

(c) dimensions 500000; δ = 0.2 (d) dimensions 500000; δ = 5

(e) dimensions 600000; δ = 0.2 (f) dimensions 600000; δ = 5

Figure 4.21: The performances of RLLastIt A12, RLMinres A12, RLMedVal A12 and
REIEM A12 on SLE’s for δ = 0.2 and δ = 5, dimensions 400000 to 600000
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(a) dimensions 700000; δ = 0.2 (b) dimensions 700000; δ = 5

(c) dimensions 800000; δ = 0.2 (d) dimensions 800000; δ = 5

Figure 4.22: The performances of RLLastIt A12, RLMinres A12, RLMedVal A12 and
REIEM A12 on SLE’s for δ = 0.2 and δ = 5, dimensions 700000 and 800000
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(a) dimensions 900000; δ = 0.2 (b) dimensions 900000; δ = 5

(c) dimensions 1000000; δ = 0.2 (d) dimensions 1000000; δ = 5

Figure 4.23: The performances of RLLastIt A12, RLMinres A12, RLMedVal A12 and
REIEM A12 on SLE’s for δ = 0.2 and δ = 5, dimensions 900000 to 1000000



Chapter 5

Solving Large Scale SLE’s on a Cloud
Computing Platform

Large scale SLE’s occur routinely in a variety of applications ranging from en-

gineering to finance and economics. It is therefore, important to show that our

algorithms can handle such problems. Here, we investigate the parallel imple-

mentation on the Cloud to solve SLE’s up to a million variables.

5.1 Parallel Computing

Parallel processing and programming are now well developed to the point where

even a novice can solve their problems on parallel and distributed computing

platforms. Recall that the aim of parallel processing is to speed-up the solution

of problems and applications where traditional sequential programming is not

effective. However, we must be aware that parallel processing does not always

deliver because applications and problems are not necessarily pre-disposed to

parallelisation. In other words, if an application is inherently difficult to segment

and solve in parallel, no interesting speed-ups can be achieved. It is also important

to know that in a distributed/parallel machine, not all processors (nodes) are

necessarily of the same specification. Some may be faster than others because

153
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of design, age, configuration, operating system etc. This means that the parallel

machine may not perform as one expects. It is also important to recall Amdahl’s

Law, [1], which stipulates that a parallel machine is only as fast as its slowest node!

This is a universal law which applies in other areas. For instance, a chain is only

as strong as its weakest link. Other issues have a great effect on performance as

well, outside the quality of the processors themselves (hardware); these include

load-balancing, good programming, code optimisation and other things, [68]. The

platform deals with it behind the scenes. However, it still remains to understand

the protocols of the parallel processing provider be they the local platform or

outside and commercial one, [69].

The solution of large scale SLE’s is time consuming, particularly on single

processor machines. Here we will try to exploit multiple processors and powerful

vector-oriented hardware to tackle this issue. In general, parallel algorithms can

be created by reformulating standard algorithms or by discovering new ones,

[42]. The implementation of parallel iterative methods for solving systems of

linear equations in high dimensions and other applications is well developed,

[25, 60, 63, 64, 70, 80]. Here, we rely on a parallel environment provided in Matlab

to implement our algorithms which are described in previous chapters.

5.1.1 Parallel Computing in Matlab

Parallel Matlab is an extension of Matlab that takes advantage of multi-core desk-

top machines and clusters. It allows us to solve large problems in parallel and

to handle data-intensive problems using multi-core processors, Graphics Process-

ing Units (GPU), and computer clusters, [57]. According to [57], by default, the
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toolbox provides twelve workers to execute applications locally on a multi-core

desktop. It means that without recoding, it allows to run the same application

on a computer cluster or a grid computing service. Matlab has built-in functions

for exploiting parallelism; (1) parfor-loop is used to run parallel algorithms tasks

on multiple processors, and (2) SPMD, or Single Program Multiple Data, is used

to handle large data sets and data parallel algorithms. Typically, the parfor-loop is

used when all iterations are completely independent of each other. SPMD, how-

ever, requires communication or synchronization between workers when running

a program on multiple data sets.

Running a program in parallel Matlab can be done locally on a PC using the

Parallel Computing Toolbox (PCT), and remotely on a cluster using the Matlab

Distributed Computing Server (MDCS). On a local machine, the PCT takes ad-

vantage of a maximum of 8 cores for running a program on a desktop, while

MDCS controls parallel execution of MATLAB on a cluster with tens or hundreds

of cores. The MDCS plays an important role in speeding up Matlab programs by

running them in a high-performance computing environment, such as those now

offered by Amazon EC2 and other cloud computing services, [57]. To solve larger

problems, it also can be used to scale up the computer cluster on the cloud com-

puting services. When using MDCS on the cloud computing services, we should

be aware of the license arrangements. The users should refer to [55] to under-

stand how MDCS works on the cloud services and should read [56] to understand

several licensing options for MDCS.
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Figure 5.1: The concept of parallel tasks on several CPUs, [57]

5.1.2 Understanding the parfor-loop Function in Parallel Matlab

The parfor-loop is useful in situations where many loop iterations of a simple

calculation are required. It divides the loop iterations into groups so that each

worker executes some portion of the total number of iterations. The parfor-loop

is also useful when the loop iterations take a long time to execute, because the

workers can execute iterations simultaneously, [57]. In principal, when using the

parfor-loop, the data is sent from the client to workers, and the results are sent

back to the client and pieced together. This is illustrated in Figure 5.1.

To begin using PCT Matlab, for instance the parfor-loop, we first open the

Matlab pool. This reserves a collection of Matlab workers sessions to run the loop

iterations. To do so, we write the command :

matlabpool open 4

Matlab returns the following :

Starting matlabpool using the ’local’ configuration ... connected to 4 labs.

It means that there are 4 workers active at the moment.
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Next, we call our program which contains parfor-loop in it. Suppose we have the

following code

FOR i = 1 : 1024
A(i) = sin(i ∗ 2 ∗ π/1024);
plot(A);

END

We can modify the code in order to run it in parallel by using parfor statement as

follows

PARFOR i = 1 : 1024
A(i) = sin(i ∗ 2 ∗ π/1024);
plot(A);

END

The only difference is the keyword parfor which replaces for. Note here that each

iteration must be completely independent of all other iterations. In the example

above, the worker calculating the value of A(100) might not be the same worker

calculating A(500). Also, in parallel processing, we can not guarantee a given

order of calculations, i.e. A(900) might be calculated before A(400), [57].

The parallel process is ended by writing instructions in the command window.

matlabpool close

5.2 Running EIEMLA in Parallel

We are concerned with the stability of the new approach when solving large scale

problems (up to 1000000 variables). To run EIEMLA using the cloud computing

service, the code should first be parallelized. Often parallelisation is done by

hand by the user as in [70]. Here, the pain of parallelisation is taken away by
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Figure 5.2: The embedded process in Lanczos algorithms

the parallel environment. In Matlab, it is achieved using the parfor-loop function.

This is illustrated in Figure 5.2.

First, the system Ax = b is processed by Lanczos algorithm to generate a se-

quence {x1, x2, · · · , xk}, of approximate solutions. The sequence is then used as an

input in the embedded process. In the client box, the re-arranged sequence is

sent to the workers where the interpolation and extrapolation of the sequence by

using PCHIP, [35], is carried out. There are n data sets that need to be interpo-

lated in this stage. As said earlier, the order of computations is not preset. The

amount of processing carried out on a given worker depends on the speed of the

processor and the load balancing implemented by the master processor. After

the whole embedded process is finished, the new approximate solution and the

corresponding residual norm are produced and then sent back to the client as the

final output.
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5.3 Numerical Results

This section presents the numerical results of the implementation of EIEMLA in

a parallel system. The comparison of the computation time between using for-

loop and parfor-loop is presented. We also present results obtained by restarting

EIEMLA (REIEMLA) in a parallel environment. We particularly compare the

performance of REIEMLA, in terms of CPU time, when run on a parallel machine

and on a sequential one. The test problems are solved under MATLAB 2012b

on Unix0 system provided by the University of Essex which includes hardware

that consists of 4 x AMD Opteron(tm) processors with 2.20 GHz speed and 48

cores, 128 GB RAM, and a 1000 Mbps ethernet interface. The Matlab PCT license

is available in this system with a maximum of 8 local workers. For running the

sequential algorithm, we used Matlab 2013a on a machine with 12 GB RAM.

5.3.1 Embedded Interpolation and Extrapolation Model in Or-
thodir Running on Parallel Systems

Table 5.1 presents the computation time of the embedded interpolation and ex-

trapolation model (EIEM) Orthodir algorithm in both parallel and serial environ-

ments. We solved several problems of dimensions ranging from 10000 to 1000000.

As we can see here, the table consists of 5 columns each of which presents respec-

tively the dimensions of the problems, the residual norms, the computation time

of EIEM Orthodir with for-loops and parfor-loops, and the speed up. The speed

up is calculated by taking the ratio of EIEM Orthodir with for-loops CPU times

and those of parfor-loops.

In general, the use of parfor-loops is able to reduce the execution time signifi-
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Table 5.1: Comparison of EIEM Orthodir in parallel and sequential environments

Dim Residual Norm Processing Time (sec.) Speed up
n ‖rmodel‖ Sequential EIEM Orthodir Parallel EIEM Orthodir x (times)

10000 4.0804 5.2229 1.2959 4.03
20000 2.0776 10.5466 2.2446 4.69
30000 14.4011 15.8540 3.2166 4.92
40000 6.7584 20.8902 3.9129 5.34
50000 3.3782 26.2809 4.9604 5.29
60000 12.3680 31.5569 5.8258 5.42
70000 5.1140 36.7257 6.8410 5.37
80000 1.3536 41.9938 7.8136 5.37
90000 5.8349 47.4259 8.8534 5.36

100000 1.0606 52.5293 9.7401 5.39
200000 5.0090 105.7368 19.2961 5.48
300000 30.4925 157.4330 28.4763 5.53
400000 30.8407 210.8508 38.6017 5.46
500000 44.7364 262.4477 49.2533 5.33
600000 71.9335 316.1252 56.3174 5.61
700000 62.2338 368.3247 65.9906 5.58
800000 16.7394 422.8909 74.7826 5.65
900000 34.0717 476.6024 83.9225 5.67

1000000 18.1782 549.0482 101.2656 5.42

cantly. To solve SLE’s with dimensions 10000, for instance, EIEM Orthodir with

parfor-loops runs four times faster than with for-loops. In addition, for dimensions

20000 and 30000, the speed up is 5 fold. For dimensions 40000 to 1000000, the

parallel program is 5 times, sometimes 6 times, faster than the sequential one.

These comparisons are clearly seen in Figure 5.3.

5.3.2 REIEMLA in Parallel Systems

In this section, we report on experiments with restarting EIEM (REIEM) Orthodir

on a parallel architecture. We used parfor-loops as a means to parallelize our

codes. Comparisons are on computation times of the algorithms with parfor-

loop and for-loops. Here again, problems are ranging from 100000 to 1000000

dimensions.

It can be seen in Table 5.2, that in general, REIEM Orthodir runs in parallel

significantly faster than sequentially. For instance, speed up is 4.04 for dimensions
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Figure 5.3: Comparison of for-loop and parfor-loop execution speeds
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Table 5.2: Comparison of REIEM Orthodir in parallel and in sequential environments

Dim Residual Norms Processing Time (sec.) Speed up
n ‖rmodel‖ Sequential REIEM Orthodir Parallel REIEM Orthodir x (times)

100000 6.7572E − 14 3.9749E + 02 98.3595 4.04
200000 7.3917E − 14 9.0306E + 02 2.3294E + 02 3.88
300000 5.7715E − 14 1.0328E + 03 3.6675E + 02 2.82
400000 6.2753E − 14 3.3668E + 04 4.9720E + 02 6.77
500000 7.5120E − 14 3.5596E + 03 5.5249E + 02 6.44
600000 6.9701E − 14 2.8829E + 03 7.2046E + 02 4.00
700000 9.6797E − 14 4.0071E + 03 8.8016E + 02 4.55
800000 9.0274E − 14 4.5529E + 03 9.8848E + 02 4.61
900000 7.8603E − 14 5.5275E + 03 1.1893E + 03 4.65

1000000 7.8631E − 14 6.1636E + 03 1.2373E + 03 4.98

100000, meaning REIEM Orthodir solved the problems in a parallel environment

4 times faster than restarting in a sequential environment. Also, when solving

400000 and 500000 variables, REIEM Orthodir with parfor-loops was about 7 times

and 6 times faster respectively than that with for-loops.

5.4 Execution of EIEMLA and REIEMLA on the Cloud
Computing Platform

In this section, we run the parallel codes on the cloud platform. We first look at

the background of cloud computing.

5.4.1 Cloud Computing

It its simplest from Landis, [53], gave this definition: ”Cloud computing is a style

of computing on the Internet, rather than on a PC. It simply means that we can

log onto a website to do whatever we might normally do on a PC”. He added

that cloud computing enables us to do all of our computing on the Internet such

as installing, upgrading, uploading, downloading, backing up and otherwise

managing physical hardware, operating systems and software. Furthermore,

with cloud computing, the actual processing and computing is done by remote
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servers (or virtual servers) and the PC is mainly used as a way to run a Web

browser, [53]

”Cloud computing is defined as a subscription-based service where we can

obtain networked storage space and computer resources”, according to [45]. These

services include incorporating infrastructure as a service (IIaS), the platform as a

service (PaS), and software as a service (SaS).

Buyya et al. [15] stated that ”Cloud computing has been coined as an umbrella

term to describe a category of sophisticated on-demand computing services ini-

tially offered by commercial providers, such as Amazon, Google, and Microsoft.

It denotes a model on which a computing infrastructure is viewed as a ”cloud”,

from which business and individuals access applications from anywhere in the

world on demand”.

According to [72], cloud computing has some essential characteristics such as

on-demand self-service, broad network access, resource pooling, rapid elasticity,

and measure service. The explanation of each characteristic can be referred to the

author.

There are different types of cloud platforms that we can subscribe to: (1) public

cloud, which can be accessed by any subscriber with an internet connection and

access to the cloud space; (2) private cloud, which is established for a specific group

or organization and limits access to just that group; (3) community cloud, which

is shared among two or more organization that have similar cloud requirements;

and (4) hybrid cloud, which is essentially a combination of at least two clouds,

where the cloud included are a mixture of public, private , or community, [45, 53].
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See Figures 5.4 for an illustration of the concept of cloud computing.

Figure 5.4: The concept of cloud computing

5.4.2 Domino Data Lab as a Provider

Domino Data Lab, founded by Nick Elprin in 2014, is a new cloud service that

allows us to run R, Python, and Matlab codes, [27]. In this article, it has been

claimed: ”Domino is a platform-as-a-service (PaaS) for data analysis, to equip

a larger group of users with functionality that has typically been inaccessible

to people without engineering abilities and a massive amount of time to set up

infrastructure and plumbing”. He also stated : ”Domino addresses three core

areas of functionality: (1) It runs R code (or Python, Julia, Matlab , and more)

on the cloud without any set-up or configuration. Domino handles Amazon

Machine Images (AMI) and package management, job distribution and secure

data transfer. It allows us to change our hardware with one-click, or to distribute

our analysis across multiple machines; (2) It automatically keeps a revision history

of our projectcode, data, and results, so we can browse and reproduce past work.
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Figure 5.5: Creating a project on Domino

Unlike traditional source control, Domino tracks large data files, and creates a

first-class association between our results (e.g. charts) and the code/data that

produced them; (3) It facilitates collaboration so it is easy to share results and

co-author analyses”. Readers who are interested to understand how to access

Domino may find informations in [28].

5.5 EIEMLA on Domino Cloud Platform

The Domino cloud was used in testing the algorithms. There are two different

ways of initiating a code execution Domino, namely (1) using command Windows,

and (2) directly using Domino websites.

In the first case, a Domino window is used to create project name inside which

files may be added in relation to the algorithm. An execution command file is

used to perform the computational run. Figure 5.5 illustrates the creating a project

entitled ”Embedded” and Figure 5.6 demonstrates the sequence of execution.

In the second case, the Domino website is used to execute a code directly

from some menus which are available on it. Figure 5.7 illustrates the Domino
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Figure 5.6: Running a project on Domino
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Figure 5.7: The general view of Domino

performance when we opened our account. The project entitled ”Embedded” has

been set as well as some related files.

Figure 5.8 describes some menus available on Domino, such as ”Runs”, ”Re-

sults”, ”Launchers”, ”APIEndpoints”, and ”Settings”. Also, as can be seen on the

figure, the last two menus at the bottom show our usage of hardware on Domino

and our project property. Here we discuss some Domino properties which are

related to our study.

Figure 5.9 shows the ”Files” menu which contains some codes such as ”main

parallel domino.m”, and figure 5.10 demonstrates the ”Settings” menu which

enables us to choose the variety of hardwares to run our codes.

To run a code on Domino, we simplify click on ”Runs” menu, as can be seen

in Figure 5.11, which is also the charge of the service started. If the execution is
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Figure 5.8: The Domino menu

Figure 5.9: The Domino files menu
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Figure 5.10: The setting menu on Domino

successful, we will get a notice as in Figure 5.12, and the results can be viewed

afterwards (Figures 5.13 and 5.14). As mentioned earlier, we also receive the

notifications of our results via email.

Domino has several options of hardwares, from 1 GB RAM and 1 core only,

to the XX large which contains 60 GB RAM and 32 cores. If the users need more

RAM than those available the Domino team will set up a special hardware, the so-

called ”Custome hardware”. In this study, we used the X-large and the XX-large

hardware which respectively contain 16 and 32 cores with 30 and 60 GB RAM. We

compared with Unix2 available at the university of Essex super computer with 48

cores and 256 GB shared RAM.
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Figure 5.11: The Domino runs menu

Figure 5.12: The notifications of our running
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Figure 5.13: The figure results on Domino

Figure 5.14: The text result on Domino
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Table 5.3: Performance of EIEM Orthodir on the Cloud when solving SLEs with δ = 0.2

Dim Computational Time (seconds)
n Domino Cloud (16 cores) Domino Cloud (32 cores)

100000 61.234 64.613
200000 1.2294E + 02 1.3160E + 02
300000 1.8518E + 02 1.9988E + 02
400000 1.9288E + 02 2.0844E + 02
500000 3.0886E + 02 3.1468E + 02
600000 3.6125E + 02 4.1542E + 02
700000 4.4078E + 02 4.4470E + 02
800000 4.9064E + 02 4.9886E + 02
900000 5.4645E + 02 4.8818E + 02

1000000 5.9574E + 02 5.6232E + 02

5.5.1 EIEM Orthodir on Domino Cloud : Numerical Results

The results are recorded in Tables 5.3 and 5.4. Note, Speed up 1* is the ratio of

the Domino Cloud with 16 cores CPU time and the CPU time of the local parallel

machine; Speed 2* is the ratio of Domino Cloud with 32 cores CPU time and that

of this same local parallel machine. This platform is the Unix2 machine of the

University of Essex which supports Matlab. The way we access it is similar to the

way we access the Domino cloud platform or any cloud providers for that matter.

Here we present experimental results comparing performance of EIEM Orthodir

on this local machine and on the Domino cloud computing.

As can be seen in Table 5.3, in most cases, the processing time of 32 cores on

Domino cloud is slower than 16 cores. This appears, for instance, on dimensions

ranging from 100000, to 800000. For problems of dimensions 900000 and 1000000,

however, the 32 cores is slightly faster than the 16 cores. This means that more

processors do not necessarily translate into performance because of many factors

including communication costs.
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Table 5.4: CPU times of EIEM Orthodir on the local platform and on the Domino Cloud

Dim Local Platform (8 workers) Speed up 1* Speed up 2*
n Computational Time (seconds)) x(times) x(times)

100000 9.7401 6.29 6.63
200000 19.2961 6.37 6.82
300000 28.4763 6.5 7.02
400000 38.6017 4.9 5.39
500000 49.2533 6.27 6.39
600000 56.3174 6.41 7.38
700000 65.9906 6.68 6.74
800000 74.7826 6.56 6.67
900000 83.9225 6.51 5.82

1000000 101.2656 5.88 5.55

Interestingly, the local platform is more efficient than the Domino Cloud, with

both 16 cores and 32 cores, as can be seen in Table 5.4. The processing time

in the local machine is consistently less than that of the Domino Cloud. For

instance, when solving 100000 dimensional problems, the execution time of the

EIEM Orthodir on the university machine is 6.29x faster than the processing time

on the Domino cloud with 16 cores. This factor is even bigger when we used 32

cores on Domino cloud; it is 6.6x faster. Speed up 1 and speed up 2, however, fell

to 4.9 and 5.39 respectively, when solving 400000 problems. The rest of the results

show the same trend.

5.5.2 REIEM Orthodir on the Domino Cloud: Numerical Results

Looking at Table 5.5, overall, the trend is similar to that of the previous section; the

execution time on the University Cloud is consistently less than that on Domino

Cloud. One thing to highlight is that, the 32 cores on Domino Cloud seems to

be slower than the 16 cores in some cases, while in some others it is faster. For

instance, for dimensions ranging from 50000 to 80000, 100000, 300000, and 400000,
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Table 5.5: Performance of Parallel REIEM Orthodir on SLEs with δ = 0.2

Dim Computational Time (sec.) Speed up 1* Speed up 2*
n Local Platform (8 nodes) Domino Cloud (16 cores) Domino Cloud (32 cores) x(times) x(times)

50000 49.9953 2.48E + 02 2.79E + 02 4.96 5.58
60000 66.3108 2.99E + 02 3.37E + 02 4.51 5.08
70000 75.5876 3.17E + 02 3.56E + 02 4.19 4.71
80000 79.946 4.02E + 02 4.46E + 02 5.03 5.58
90000 100.6326 4.75E + 02 4.65E + 02 4.72 4.62

100000 98.3595 4.67E + 02 5.11E + 02 4.75 5.19
200000 2.3294E + 02 1.052E + 03 9.97E + 02 4.52 4.28
300000 3.6675E + 02 1.544E + 03 1.650E + 03 4.21 4.49
400000 4.9720E + 02 2.325E + 03 2.409E + 03 4.68 4.85
500000 5.5249E + 02 2.866E + 03 2.650E + 03 5.19 4.79

the 32 cores is slower than the 16 cores. However, for dimensions 90000, 200000,

and 500000, the 32 cores is faster than the 16 cores. So far, we do not have enough

evidence to explain why this is the case, although communications overheads,

and sharing of the platform with other users may be the reason. We also suspect

that our code is accessing some shared resource (e.g., a global matrix). So, it is

possible that the underlying operating system is doing some locking to prevent

multiple threads from accessing that resource at the same time. If that is really

happening, then more threads could slow things down, [26].

5.6 Summary

In this chapter, we contribute in implementing our new approach EIEMLA and

REIEMLA using parallel as well as cloud computing. Regarding the first, the

experimental results show that the use of parfor-loop instead of for-loop is able to

speed up the computation. For further work, it is suggested to use other parallel

environments of such as SPMD, and CUDA GPU, [57].

Secondly, we have implemented EIEM Orthodir as well as REIEM Orthodir

on the cloud. We used the local parallel platform at the University of Essex and

Domino Cloud provider. The experimental results show that the use of local
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platform is more efficient than the Domino Cloud. This shows that often it is not

necessary to embark on expensive ventures to get good performance.

In conclusion, it can be said that parallel processing improves the performance

of our algorithms and presents and edge over the sequential implementation of

these algorithms. It is also unwarranted to assume that running parallel codes

on platforms with a large number of processors will deliver better speed up

than platforms with a low number of nodes. This has been substantiated in this

chapters where 16 nodes do better than 32.

It is also notable that we have managed to solve with algorithms we have

introduced here, large scale SLE’s with up to 106 variables.



Chapter 6

Conclusion and Further Work

6.1 Conclusion

The objectives set out in Chapter 1 have been largely achieved. We have re-

viewed the extensive literature concerning the Lanczos process, Lanczos-type

algorithms, their implementation and their failings in particular the phenomenon

known as breakdown. We have then looked at a particular approach to avoid-

ing breakdown, namely restarting, and investigated the quality of starting points

for restarting Lanczos-type algorithms to treat breakdown issue. It is important

since the starting point affects the behaviour and performance of the Lanczos

process. We considered three such points; the last iterate before breakdown oc-

curs (algorithm RLLastIt), the iterate with the lowest residual norm found before

breakdown (algorithm RlMinRes, and the iterate whose entries are from the me-

dian value of all iterates generated so far (algorithm RlMedVal). Restarting from

the iterate with the lowest residual norm among those generated in the previous

cycle, i.e. RLMinRes, showed the best performance in our experiments. A simple

explanation could be that such points are nearer the true solution by virtue of

their residual norm which is low.

176
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Our experience with running Lanczos-type algorithms supports the idea that

trends in sequences of iterates exist and can be exploited. These trends can be

seen when the iterates, and more precisely their entries, are represented in the

Parallel Coordinate System (PCS). To exploit these trends, as explained in Chapter

3, we resorted to regression. Polynomial interpolation is used to build a model

that captures the trend and extrapolation is then used to generate new iterates

which fall within the sequence of iterates that the Lanczos-type algorithm would

generate. This approach has been implemented as the Embedded Interpolation

and Extrapolation Model in Lanczos-type algorithms (EIEMLA). EIEMLA is a

good device for combating breakdown. The quality of the solutions it generates is

shown theoretically to be at least as good as that of the iterates on which regression

is based. This is from the point of view of the residual norm as a measure of quality.

Large scale problems, ranging from 1,000 to 70,000 dimensions have been solved

with EIEMLA. This work contributed to the improvement of stability of Lanczos

process for solving a large scale problems.

We have also investigated restarting with output from the EIEMLA; the re-

sulting algorithm is referred to as REIEMLA. This algorithm allowed us to solve

problems of up to 400,000 dimensions, coping well with the breakdown in the

process. Since EIEMLA and REIEMLA can work for any Lanczos-type algorithm,

we considered many of them including Orthodir, Orthores, Orthomin, A8B8, and

REIEM A12. Some test results can be found in Section 4.3.

Since the numerical solution of large scale SLE’s is a time consuming exercise,

we considered parallel processing to speed up the computational process. This
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has been addressed in Chapter 5 via the use of parallel platforms provided by

Cloud Computing organisations such as Domino. Our codes written in Matlab

lend themselves to parallelisation through the use of a facility provided by Matlab

called Parfor. This allowed us to run EIEMLA and REIEMLA in parallel over a

number of nodes up to 64. Computational gains were made although not when

using 64nodes. Clearly, there is a limit to how much can be gained in this way.

A more explicit parallelisation of the code, i.e. without relying on Parfor, using

PVM or MPI, may prove beneficial in this respect.

Moreover, our study has successfully addressed methods for solving SLE’s

with larger sizes than those that have been reported in the literature particularly

for the numerically stable strategies, namely restarting and switching, [29].

It is fair to say that our objective have been met on whole. The suggested

methods, however, are robust in that breakdown is avoided and convergence is

often achieved, but not as efficient as basic restarting and switching algorithms.

6.2 Further Works

There are a number of issues that could be followed up in this project. These

include

• Testing the algorithms put forward on the eigenvalue problem; note that the

Lanczos process has initially been designed for this problem.

• Some entries of iterates generated by Lanczos-type algorithms seem to settle

down to their final values early on; can a test be devised to recognise such

entries and take advantage of that computationally?
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• In EIEMLA, the returned functions fi(t∗), for i = 1, 2, . . . ,n, are of the poly-

nomial type. Can other functions work as well or better?

• Explore the possibility to extend this method to Non-Linear Systems of

Equations (NLSE’s).

• In all the restarting approaches considered, the number of iterations before

restart is arbitrary except when restarting follows a breakdown. Using an

appropriate number of iterations close to when breakdown occurs would

be beneficial since we may find the true solution or get closer to it faster.

• Exploring further parallel implementations of the algorithms put forward

in this thesis. An explicit parallel implementation which does not rely on

ready facilities such as Parfor of Matlab may lead to greater speed-ups.

• Investigate running the algorithms on GPU parallel platforms.
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Appendix A

Several Basic Concepts

A.1 Original Lanczos Method

Lanczos proposed a method for solving the eigenvalue problems, [51], where a

n × n matrix can be transformed into a tridiagonal one to simplify the problem.

Lanczos method is then extended to find the solution of a systems of linear

equations. We briefly define some concepts and show how Lanczos algorithm is

derived by orthogonalizing the natural basis of the Krylov subspace, [22]. Let us

consider a system of n linear equations in n unknowns .

Ax = b (A.1.1)

where A ∈ Rn×n and b ∈ Rn. We can transform the system (A.1.1) into:

Az = y (A.1.2)
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for a given z. Thus, we consider the matrix A in the sequence b,Ab,A2b, . . . and

compute the y′s as :

y1 = b

y2 = Ay1

y3 = Ay2 = A2y1

...

yn = Ayn−1 = An−1y1

yn+1 = Ayn = Any1

We set K = [y1,y2, . . . ,yn]. Then, we can write

AK = [Ay1,Ay2, . . . ,Ayn] = [y2,y3, . . . ,yn,Any1]. (A.1.3)

Assuming K is a non-singular. If we pre multiply both sides of (A.1.3) by K−1,

then we obtain

K−1AK = K−1[y2,y3, . . . ,yn,Any1], (A.1.4)

so that for the last column we have vector K−1Any1. Let c = −K−1Any1. Then we

can write

AK = K[e1, e2, . . . , en,−c] = KC, (A.1.5)
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Using the information that K is non-singular, then we obtain

C = K−1AK =



0 0 0 . . . −c1

1 0 0 . . . −c2

0 1 . . . 0 −c3

...
... 1

...
...

0 0 0 . . . −cn


(A.1.6)

where ei is the ith column of the identity matrix. In fact, C is a Companion matrix

and has the characteristic polynomial :

p(x) = xn +

n∑
i=1

cixi−1. (A.1.7)

The eigenvalue of A can be evaluated by reducing it into matrix C an considering

p(x) = 0. In practice, the form (A.1.6) is not easy to be calculated since finding

c requires (n − 1) matrix-vector multiplication by A and then solving a linear

system with K. We can not guarantee solving a linear system with K will be easier

than solving the original problem. Therefore, we can consider an orthogonal

matrix Q to replace matrix K such that every column of K and Q span the same

space which is called a Krylov Subspace. The Krylov subspace itself is defined by

Kn(A,b) = span(b,Ab,A2b, . . . ,An−1b). Let us follow the procedure below, [22]:

• Perform the QR decomposition K of K = QR, where Q is an orthogonal

matrix and R is an upper triangular matrix. Then, we obtain:
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C = K−1AK

= QR−1A(QR)

= R−1Q−1AQR

= R−1QTAQR, since Q is orthogonal

RC = QTAQR, or

QTAQ = RCR−1
≡ H (A.1.8)

Since R is upper triangular and C is upper Hessenberg, then H is also upper

Hessenberg. In other words, the matrix A can be reduced to an upper Hessenberg

matrix using the orthogonal transformation. For a symmetric case, in particular,

if A is a symmetric matrix, so is H = QTAQ and we write T = QTAQ, instead of

H, where T is a tridiagonal matrix (lower Hessenberg).

• Compute the columns of Q one at time : Let Q = [q1,q2, . . . ,qn]. Since

H = QTAQ yields AQ = QH, then we obtain

Aq j =

( j+1)∑
i=1

hi, j qi (A.1.9)

Also, since qi are orthonormal, we can pre-multiply both sides of (A.1.9) by

qm
T to get

qT
mAq j =

j+1∑
i=1

hi, j qm
Tqi = hm, j, 1 ≤ m ≤ j (A.1.10)

Furthermore, from (A.1.9) we also get

h j+1, j q j+1 = Aq j −

j∑
i=1

hi, j qi (A.1.11)

Now we have two forms of (A.1.9) and (A.1.10) which lead to the Arnoldi and the
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Lanczos methods as follows.

Algorithm 1. The Arnoldi Method

Inputs : (i) A, an n×n matrix, (ii) b, an n -vector, (iii) k, a positive integer less than

or equal to n.

Outputs : (i) a set of (k + 1) orthonormal vectors q1,q2, · · · ,qk+1, (ii) a (k + 1) × k

Hessenberg matrix H = (hi j).

Step 0. Normalize the vector q1 by using formula

q1 =
b
‖b‖2

Step 1

for i = 0 : k do

z = Aqi

for i = 0 : j do

hi, j = qi
Tz

z = z − hi, j qi

end for

h j+1, j = ‖z‖2

if h j+1, j = 0, stop.

q j+1 = z/h j+1, j

end for
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In case matrix A is symmetric, H = T is a tri-diagonal matrix of the forms

T =



α1 β1 0 . . . 0

β1 α2 β2 . . . 0

0 β2 α3 β3
. . .

...
...

. . . . . . βn−1

0 0 . . . βn−1 αn


Hence, we have AQ = QT. Equating column j on both sides, then we obtain

Aq j = β j−1 q j−1 + α j q j + β j q j+1. (A.1.12)

Since Q is orthonormal, pre-multiplying both sides of (A.1.12) by qT
j yields :

qT
j Aq j = β j−1qT

j q j−1 + α jqT
j q j + β jqT

j q j+1

= 0 + α j + 0 = α j

Thus, we have the different form of vector q for the Lanczos algorithm as follows.

Algorithm 2. The Lanczos Method

Inputs : (i) A, an n×n matrix, (ii) b, an n -vector, (iii) k, a positive integer less than

or equal to n.

Outputs : (i) a set of (k + 1) orthonormal vectors {q1,q2, ...,qk+1}, (ii) the entries α j

and β j of the symmetric tridiagonal matrix Tk.

Step 0. Set β0 = 0, q0 = 0, and q1 = b
‖b‖2

.

Step 1

1: for j = 1, 2, . . . , k do

2: z j = Aq j
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3: α j = qT
j z j

4: z j = z j − α jq j

5: β j+1 = ‖z‖2

6: if β j = 0 , quit.

7: q j+1 =
z j

β j+1

8: end for



Appendix B

Numerical Results

B.1 EIEMLA Implementation

B.1.1 EIEM Orthodir Algorithm: δ = 0.5

Slightly different from the case of δ = 0.2, Lanczos Orthodir performs better when

solving the SLE’s using 100 iterations. It can be seen in both Tables B.1 and B.2

that there is no Inf value in the tables, which means that there is no breakdown

occurs in this particular case. We also highlight here that the decrease numbers in

both tables are varies among the SLE’s. The extreme decrease number appears in

dimensions 3000, 5000, 9000, and 70,000 for 100 iteration; where at the average, the

residuals norm of the solution generated by the Orthodir with the EIEM are about

5 times smaller than the lowest residual norm of the iterate generated by Orthodir.

The percentage decrease of the improvement of using 200 iterations were

calculated in Table B.3 and the differences between the two are clearly seen in

Figure (B.1).

197
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Table B.1: Comparison between the residual norms of the iterates generated by the
original Orthodir algorithm and those generated by EIEM in Orthodir algorithm for 100
iterations, δ = 0.5

Dim Orthodir Orthodir with EIEM
n ‖rk‖ ‖rm‖ ‖rmodel‖ Decrease Time(s)

1000 1.8783 1.8214 0.8441 2.1578 0.5258
2000 5.5838 0.9944 0.4717 2.1081 1.5697
3000 1.0451E + 02 4.7064 1.0741 4.9849 2.8035
4000 7.1519 1.5904 0.5783 2.7501 2.8300
5000 1.0223E + 01 3.5704 0.7241 4.9308 6.0809
6000 5.7273E + 01 2.9810 0.9278 3.2130 8.1089
7000 8.3892 0.6367 0.1770 3.5972 10.5194
8000 4.6183 2.4319 0.6789 3.5821 13.1138
9000 6.0832E − 01 0.5488 0.0982 5.5886 16.0586

10000 7.934E + 01 4.7519 1.3328 3.5654 17.538
20000 2.0231E + 01 2.5695 0.7952 3.2321 67.9624
30000 3.8310 2.4905 0.8328 2.9905 3.5762E + 02
40000 1.1499E + 02 10.7960 3.8297 2.8326 5.8288E + 02
50000 1.6340E + 01 4.1429 1.5021 2.7581 1.0264E + 03
60000 7.0046E + 01 34.5209 10.5869 3.2607 1.5219E + 03
70000 3.3002E + 02 17.4342 3.9145 4.4538 4.7551E + 03

Table B.2: Comparison between the residual norms of the iterates generated by the
original Orthodir algorithm and those generated by EIEM in Orthodir algorithm for 200
iterations, δ = 0.5

Dim Orthodir Orthodir with EIEM
n ‖rk‖ ‖rm‖ ‖rmodel‖ Decrease Time(s)

1000 2.2942E + 06 1.3881 0.4077 3.4047 0.7443
2000 1.6882E + 07 0.9944 0.3608 2.7561 1.8638
3000 3.7536E + 07 4.7064 1.5181 3.1002 3.3828
4000 3.5346E + 08 1.5904 0.5771 2.7558 5.375
5000 5.7211E + 05 3.5704 0.8789 4.0624 6.7559
6000 2.1347E + 03 2.9810 1.0816 2.7576 9.6289
7000 1.6233E + 08 0.6367 0.1912 3.3300 13.3599
8000 7.9534E + 04 2.4319 0.7959 3.0589 14.2452
9000 9.7211E + 1 0.3483 0.0944 3.6896 19.6231

10000 7.934E + 01 4.7519 1.5626 3.0410 15.8286
20000 1.8967E + 07 2.5695 0.9323 2.7561 86.9935
30000 2.3109E + 04 2.4905 0.8328 2.9905 9.9763E + 02
40000 1.2275E + 09 10.2165 3.0543 3.3450 1.0778E + 03
50000 7.3204E + 04 2.7272 0.8135 3.3524 1.4354E + 03
60000 1.8828E + 04 31.2924 8.7724 3.5671 2.3105E + 03
70000 2.6128E + 07 17.4342 3.9145 4.4538 4.7551E + 03
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Table B.3: The comparison of the EIEM Orthodir implementation for 100 and 200
iterations, for the case of δ = 0.5

Dimension ‖rmodel‖ Percentage Decrease
n 100 iterations 200 iterations %

1000 0.8441 0.4077 51.7
2000 0.4717 0.3608 23.5
3000 1.0741 1.5181 41.3
4000 0.5783 0.5771 0
5000 0.7241 0.8789 21.3
6000 0.9278 1.0816 16.6
7000 0.1770 0.1912 8.02
8000 0.678 0.7959 17.4
9000 0.0982 0.0944 3.9

10000 1.3328 1.5626 17.2
20000 0.7952 0.9323 17.2
30000 0.8328 0.8328 0
40000 3.8297 3.0543 20.2
50000 1.5021 0.8135 45.8
60000 10.5869 10.7341 0
70000 3.914 3.91452 0

Figure B.1: The behaviour of residual norms of the iterates generated by EIEM Orthodir
for 100 and 200 iteration; the case of δ = 0.5
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B.1.2 EIEM Orthodir Algorithm : δ = 0.8

Similar to the previous case, the original Orthodir also performs better in this

particular case. There is only one problem where the breakdown occurs, namely

when solving SLE’s with 8000 dimensions (see Table B.5). If we look at the de-

crease number in Table B.4, the significant number appears in dimensions 70000;

where the residual norm of the Orthodir with the EIEM is 6.5 times smaller that

the residual norm of the iterates generated by Lanczos Orthodir. This factor re-

mains the same when we increased the iterations up to 200 (see Table B.5. Some

extreme decrease numbers also appears in dimensions 5000, 9000, and 40,000 for

100 iterations; where the residual norm of the iterates generated by Orthodir with

the EIEM are respectively about 5 times smaller than the residual norm of the

iterates generated by the original Orthodir. The explanations of Table B.6 and

Figure B.2 are similar to the previous cases.

B.1.3 EIEM Orthodir Algorithm : δ = 5

As can be seen Tables B.7 and B.8 that there is no breakdown occurs. In fact, the

improvement of the residual norms as a result in applying the EIEM in Orthodir

appear in all problems. For instance, in dimensions 2000, 6000, 9000, and 10000,

the residual norm of the iterates generated by the Orthodir with the EIEM were

about four times smaller than those of generated by original Orthodir. Other

problems seem similar with the average of the decrease number is about 3. In-

creasing the iterations up to 200, however, does not make significantly difference

on the residual norms in most of problems (see Table B.9. For instance, when solv-
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Table B.4: Comparison between the residual norms of the iterates generated by the
original Orthodir algorithm and those generated by EIEM in Orthodir algorithm for 100
iterations, δ = 0.8

Dim Orthodir Orthodir with EIEM
n ‖rk‖ ‖rm‖ ‖rmodel‖ Decrease Time(s)

1000 2.5926E + 01 0.2369 0.0860 2.7547 0.5059
2000 7.8379E − 02 0.0505 0.0164 3.0793 1.318
3000 5.1712E + 02 1.1776 0.2529 4.6564 2.4002
4000 2.5821E + 01 1.0768 0.3907 2.7861 3.7333
5000 3.7132 0.9833 0.3240 4.9308 5.9803
6000 2.0941E + 04 103.6807 34.6200 2.9948 8.0119
7000 1.0877 0.4585 0.1544 2.9696 10.2601
8000 6.9498E + 02 29.8434 9.8285 3.0364 13.0358
9000 1.8962E + 02 25.9947 5.0312 5.1667 14.8423

10000 5.5303E + 01 4.7815 1.4725 3.2472 18.0211
20000 1.1411E + 01 1.0164 0.2688 3.7813 66.0835
30000 2.9739E + 03 213.3377 84.6039 2.5216 2.0982E + 02
40000 2.3134E + 02 100.3546 23.4275 4.2836 1.2308E + 03
50000 3.8614E + 01 18.1606 6.5847 2.7579 1.1691E + 03
60000 1.5264E + 02 47.9573 17.3872 2.7582 1.9340E + 03
70000 2.8888E + 04 33.4808 5.1349 6.5201 3.2625E + 03

Table B.5: Comparison between the residual norms of the iterates generated by the
original Orthodir algorithm and those generated by EIEM in Orthodir algorithm for 200
iterations, δ = 0.8

Dim Orthodir Orthodir with EIEM
n ‖rk‖ ‖rm‖ ‖rmodel‖ Decrease Time(s)

1000 4.6289E + 08 0.2369 0.0860 2.7547 0.7443
2000 5.1205E + 03 0.0505 0.0164 3.0793 1.6161
3000 1.2108E + 06 1.1776 0.2529 4.6564 3.4088
4000 7.8175E + 08 0.9525 0.2848 3.3445 5.0934
5000 8.8165E − 01 0.5217 0.1559 3.3419 7.4046
6000 6.6716E + 07 103.6807 37.6200 2.7559 10.2061
7000 1.0877 0.4585 0.1544 2.9696 9.7593
8000 INF 29.8434 10.8285 2.7560∗ 18.4311
9000 6.6210E + 4 22.0634 6.5959 3.3450 21.119

10000 8.8350E + 01 2.3929 0.7154 3.3448 25.99416
20000 8.9179E + 05 1.0164 0.3688 2.7559 94.1729
30000 1.0942E + 10 233.3377 83.6039 2.7909 5.6078E + 02
40000 4.5991E + 09 100.3546 23.4275 4.2836 9.7072E + 02
50000 6.5309E + 06 18.1606 6.5847 2.7579 1.6362E + 03
60000 6.8522E + 03 42.4838 14.5559 2.9187 3.9056E + 03
70000 4.7767E + 07 33.4808 5.1349 6.5202 3.4996E + 03



B.1. EIEMLA Implementation 202

Table B.6: The comparison of the EIEM Orthodir implementation for 100 and 200
iterations, for the case of δ = 0.8

Dimension ‖rmodel‖ Percentage Decrease
n 100 iterations 200 iterations %

1000 0.0860 0.0860 0
2000 0.0164 0.0164 0
3000 0.2529 0.2529 0
4000 0.3907 0.2848 27.1
5000 0.3240 0.1559 51.9
6000 34.6200 37.6200 8.7
7000 0.1544 0.1544 0
8000 9.8285 10.8285 10.2
9000 5.0312 6.5959 31.1

10000 1.4725 0.7154 51.4
20000 0.2688 0.3688 37.2
30000 84.603 83.6039 1.2
40000 23.4275 23.4275 0
50000 6.58471 6.5847 0
60000 17.3872 14.5559 16.3
70000 5.1349 5.1349 0

Figure B.2: The behaviour of residual norms of the iterates generated by EIEM Orthodir
for 100 and 200 iteration; the case of δ = 0.8
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Table B.7: Comparison between the residual norms of the iterates generated by the
original Orthodir algorithm and those generated by EIEM in Orthodir algorithm for 100
iterations, δ = 5

Dim Orthodir Orthodir with EIEM
n ‖rk‖ ‖rm‖ ‖rmodel‖ Decrease Time(s)

1000 1.0992E + 01 2.9154 0.8082 3.6073 0.5196
2000 5.4979E + 01 4.4439 1.0776 4.1239 1.3042
3000 9.9974E + 01 7.4355 2.0682 3.5952 2.4186
4000 2.1689E + 01 5.8785 1.8285 3.2149 3.7985
5000 3.2033 3.8900 1.1868 3.2799 5.4061
6000 1.0238E + 01 6.5297 1.5716 4.1548 9.8097
7000 4.0638E + 01 2.1982 0.6719 3.2716 13.1614
8000 1.0653E + 02 6.5665 1.9771 3.3213 16.6412
9000 2.7395 1.7444 0.3711 4.7006 21.2535

10000 6.5232E + 01 15.1933 3.3391 4.5501 24.6426
20000 3.0549E + 01 7.3298 2.2799 3.2149 91.5777
30000 3.6463E + 01 11.0830 3.6449 3.0407 4.1047E + 02
40000 4.7312E + 02 17.7709 6.4433 2.7580 6.2475E + 02
50000 1.8226E + 01 4.3368 1.2724 3.4084 1.9825E + 03
60000 9.6296E + 01 25.4886 9.2417 2.7579 1.9826E + 03
70000 2.6510E + 01 17.9748 6.1187 2.9377 2.1842E + 03

ing large scale problems, i.e.dimensions 30000, 50000, and 70000, the percentage

decrease reached respectively 59%, 37%, and 62%. The differences of using bot

100 and 200 iterations can also be seen in Figure B.3.

B.1.4 EIEM Orthodir Algorithm : δ = 8

In this particular case, Lanczos Orthodir performs well to find a good approxi-

mate solution without facing breakdown. The EIEM in the algorithm is also worth

it. The significant improvement appears in dimensions 8000, where the decrease

number is about 4.12 which means that the residual norm of the model iterate is

about 4 times smaller than the lowest residual norm of the iterate generated by

original Orthodir (see Table B.10). Other problems also behave similarly where

the average of residual norm is three times smaller than the lowest residual norm
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Table B.8: Comparison between the residual norms of the iterates generated by the
original Orthodir algorithm and those generated by EIEM in Orthodir algorithm for 200
iterations, δ = 5

Dim Orthodir Orthodir with EIEM
n ‖rk‖ ‖rm‖ ‖rmodel‖ Decrease Time(s)

1000 4.1236 2.9154 0.6928 4.2081 0.87623
2000 2.4843E + 03 4.4439 1.0776 4.1239 1.5255
3000 2.3513E + 01 7.4355 2.0682 3.5952 2.7852
4000 2.0947E + 01 5.8785 1.8285 3.2149 5.2364
5000 5.0856E + 01 3.8900 1.4464 2.6894 6.7514
6000 1.0238E + 01 6.5297 1.5716 4.1548 9.8097
7000 4.0638E + 01 2.1982 0.6719 3.2716 13.1614
8000 1.0653E + 02 6.5665 1.9771 3.3213 16.6412
9000 2.7395 1.7444 0.3711 4.7006 21.2535

10000 6.5232E + 01 15.1933 3.3391 4.5501 24.6426
20000 3.0549E + 01 7.3298 2.2799 3.215 91.5777
30000 1.1460E + 02 4.5718 1.4835 3.0818 4.6338E + 02
40000 2.3758E + 01 17.771 6.4433 2.7581 1.2039E + 03
50000 3.4672E + 01 2.2300 0.8086 2.7599 1.3201E + 03
60000 1.7553E + 02 25.4886 9.1417 2.7881 2.6501E + 03
70000 2.7121E + 01 6.4980 2.3514 2.7635 3.2511E + 03

Table B.9: The comparison of the EIEM Orthodir implementation for 100 and 200
iterations, for the case of δ = 5

Dimension ‖rmodel‖ Percentage Decrease
n 100 iterations 200 iterations %

1000 0.8082 0.6928 14.27
2000 1.0776 1.0776 0
3000 2.0682 2.0682 0
4000 1.8285 1.8285 0
5000 1.1868 1.4464 21.87
6000 1.5716 1.5716 0
7000 0.6719 0.6719 0
8000 1.9771 1.9771 0
9000 0.3711 0.3711 0

10000 3.339 3.339 0
20000 2.2799 2.2799 0
30000 3.6449 1.4835 59.3
40000 6.4433 6.4433 0
50000 1.2724 0.8086 36.45
60000 9.2417 9.2417 0
70000 6.1187 2.3514 61.57



B.1. EIEMLA Implementation 205

Figure B.3: The behaviour of residual norms of the iterates generated by EIEM Orthodir
for 100 and 200 iteration; the case of δ = 5

of the previous iterates.

Similar to the previous cases, increasing the iterations up to 200 behaves well.

According the information in Table B.12, the percentage decrease reached about

56% in dimensions 30000 when the iterations increased. It followed by dimen-

sions 10000 and 5000 which hit 46% and 43% respectively. For large dimensions,

i.e. 40000 and 50000, the percentage decrease were about 34% respectively. In

dimensions 2000, however, the residual norm of the model iterate increased from

0.4887 to 2.57, or about 81% increased, when we increased the iterations from 100

to 200. All of the behavious differences by increasing the iterations from 100 to

200 are captured in Figure B.4.
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Table B.10: Comparison between the residual norms of the iterates generated by the
original Orthodir algorithm and those generated by EIEM in Orthodir algorithm for 100
iterations, δ = 8

Dim Orthodir Orthodir with EIEM
n ‖rk‖ ‖rm‖ ‖rmodel‖ Decrease Time(s)

1000 5.9686 2.3831 0.6694 3.5600 0.6919
2000 2.7284E + 01 1.2911 0.4887 2.6380 1.7023
3000 1.9115E + 01 21.9595 8.0749 2.7195 3.0265
4000 1.1805E + 02 20.6092 7.5124 2.7434 4.6145
5000 6.8169E + 01 26.7770 9.1505 2.9263 6.5283
6000 3.8709E + 01 15.6265 5.6164 2.7823 8.7754
7000 2.0905E + 01 17.8229 6.5562 2.7185 11.3243
8000 4.4907E + 01 19.6936 4.7774 4.1222 14.2098
9000 4.6669E + 01 30.6000 10.3877 2.9458 17.4346

10000 7.2719E + 01 16.9018 6.2070 2.7230 20.9478
20000 5.0573E + 01 33.9200 12.2611 2.7665 73.3194
30000 6.8594E + 01 44.9832 15.7708 2.8523 6.4489E + 02
40000 1.1651E + 02 79.6834 28.8917 2.7580 1.1728E + 03
50000 1.1204E + 02 42.7284 15.0339 2.8421 1.0261E + 03
60000 9.6487E + 01 40.6506 12.0781 3.3656 2.7166E + 03
70000 1.8619E + 02 136.2499 38.2304 3.5639 2.1882E + 03

Table B.11: Comparison between the residual norms of the iterates generated by the
original Orthodir algorithm and those generated by EIEM in Orthodir algorithm for 200
iterations, δ = 8

Dim Orthodir Orthodir with EIEM
n ‖rk‖ ‖rm‖ ‖rmodel‖ Decrease Time(s)

1000 7.7057 1.2911 0.4887 2.6419 0.7337
2000 3.7015E + 01 6.8989 2.5700 2.6844 1.9011
3000 3.0822E + 01 20.7521 7.5666 2.7426 3.3701
4000 6.0728E + 01 20.6092 7.9124 2.6047 5.1737
5000 1.5362E + 01 15.3617 5.2462 2.9282 7.2108
6000 9.0598E + 01 15.6265 5.6164 2.7823 9.8097
7000 6.3885E + 02 17.8229 6.9562 2.5622 12.7826
8000 2.5438E + 01 18.0309 6.6433 2.7141 15.9878
9000 1.3081E + 02 25.0825 9.2643 2.7074 19.7902

10000 1.8444E + 04 8.8147 3.3365 2.6419 23.9232
20000 6.9922E + 01 33.9200 12.2611 2.7665 84.2992
30000 6.0592E + 01 20.7679 6.9638 2.9823 5.87948E + 02
40000 5.6718E + 01 52.5156 19.0412 2.7579 9.8724E + 03
50000 6.4700E + 02 38.9168 14.0688 2.7662 1.2107E + 03
60000 56.4558 40.6505 12.0781 3.3656 2.6501E + 03
70000 2.7660E + 02 105.4887 38.2482 2.7580 2.6126E + 03
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Table B.12: The comparison of the EIEM Orthodir implementation for 100 and 200
iterations, for the case of δ = 8

Dimension ‖rmodel‖ Percentage Decrease
n 100 iterations 200 iterations %

1000 0.6694 0.4887 26.99
2000 0.4887 2.5700 80.98
3000 8.0749 7.5666 6.7
4000 7.5124 7.9125 0
5000 9.1505 5.2462 42.67
6000 5.6164 5.6164 0
7000 6.5562 6.9562 0
8000 4.7774 6.6433 39.06
9000 10.3877 9.2643 10.81

10000 6.2070 3.3365 46.25
20000 12.2611 12.2611 0
30000 15.7708 6.9638 55.84
40000 28.8917 19.0412 34.09
50000 15.0339 14.0688 34.09
60000 12.0781 12.0781 0
70000 38.2304 38.2304 0

Figure B.4: The behaviour of residual norms of the iterates generated by EIEM Orthodir
for 100 and 200 iteration; the case of δ = 8
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B.1.5 EIEM Orthomin Algorithm : δ = 0.5

It can be seen in both Tables B.13 and B.14 that there is no Inf value in the residual

norms column, which means that there is no breakdown occurs in this particular

case. We also highlight here that the decrease numbers in both tables are mostly

about 2 and 3. It means that the residual norms of the iterates generated by

Orthomin with the EIEM are mostly about two and three times smaller than the

lowest residual norms of all iterates generated by the original Orthomin.

The improvement of the residual norms of the iterates generated by the EIEM

in Orthomin as a result in increasing the iterations up to 200 can be seen in Table

B.15. This improvement is measured by computing the percentage decrease. For

instance, when solving 1000 dimensional problem, the residual norm of the iterate

generated by the EIEM in Orthomin decreased about 27% when we increased the

iterations Also, for dimension 30000, the percentage decrease was about 56%. In

contrast, the percentage increase was about 41%, when solving dimensions 2000.

This means that the residual norm of the iterate generated by Orthomin with the

EIEM using 100 iterations tends to go up when the iterations increased. Other

cases remain a stable when we increased the iterations.

B.1.6 EIEM Orthomin Algorithm: δ = 0.8

Similar to the previous cases, there is no breakdown occurs in this particular case.

In fact, there is improvement on the residual norm when using the EIEM in Or-

thomin (see Tables B.16 and B.17). It can be seen on the decrease column on both

tables. For instance, the residual norms of the iterates generated by the EIEM in
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Table B.13: Comparison between the residual norms of the iterates generated by the
original Orthomin algorithm and those generated by EIEM in Orthomin algorithm for
100 iterations, δ = 0.5

Dim Orthomin Orthomin with EIEM
n ‖rk‖ ‖rm‖ ‖rmodel‖ Decrease Time(s)

1000 5.9686 2.3831 0.6694 3.5600 0.6919
2000 2.7284E + 01 1.2911 0.4887 2.6380 1.7023
3000 1.9115E + 01 21.9595 8.0749 2.7195 3.0265
4000 6.3662 0.7867 0.2572 3.0587 8.6011
5000 1.7354 0.4538 0.1115 4.0699 12.8472
6000 3.8709E + 01 15.6265 5.6164 2.7823 8.7754
7000 2.0905E + 01 17.8229 6.5562 2.7185 11.3243
8000 4.4907E + 01 19.6936 4.7774 4.1222 14.2098
9000 4.6669E + 01 30.6000 10.3877 2.9458 17.4346

10000 7.2719E + 01 16.9018 6.2070 2.7230 20.9478
20000 5.0573E + 01 33.9200 12.2611 2.7665 73.3194
30000 6.8594E + 01 44.9832 15.7708 2.8523 6.4489E + 02
40000 1.1651E + 02 79.6834 28.8917 2.7580 1.1728E + 03
50000 1.1204E + 02 42.7284 15.0339 2.8421 1.0261E + 03
60000 9.6487E + 01 40.6506 12.0781 3.3656 2.7166E + 03
70000 1.8619E + 02 136.2499 38.2304 3.5639 2.1882E + 03

Table B.14: Comparison between the residual norms of the iterates generated by the
original Orthomin algorithm and those generated by EIEM in Orthomin algorithm for
200 iterations, δ = 0.5

Dim Orthomin Orthomin with EIEM
n ‖rk‖ ‖rm‖ ‖rmodel‖ Decrease Time(s)

1000 7.7057 1.2911 0.4887∗ 2.6419 0.7337
2000 3.7015E + 01 6.8989 2.5700∗ 2.6844 1.9011
3000 3.0822E + 01 20.7521 7.5666∗ 2.7426 3.3701
4000 9.2220 0.7867 0.2572 3.0587 11.0919
5000 3.0015 0.4538 0.1639∗ 2.7688 18.7678
6000 9.0598E + 01 15.6265 5.6164 2.7823 9.8097
7000 6.3885E + 02 17.8229 6.9562 2.5622 12.7826
8000 2.5438E + 01 18.0309 6.6433∗ 2.7141 15.9878
9000 1.3081E + 02 25.0825 9.2643∗ 2.7074 19.7902

10000 1.8444E + 04 8.8147 3.3365∗ 2.6419 23.9232
20000 6.9922E + 01 33.9200 12.2611 2.7665 84.2992
30000 6.0592E + 01 20.7679 6.9638∗ 2.9823 5.87948E + 02
40000 5.6718E + 01 52.5156 19.0412 2.7579 9.8724E + 03
50000 6.4700E + 02 38.9168 14.0688 2.7662 1.2107E + 03
60000 56.4558 40.6505 12.0781 3.3656 2.6501E + 03
70000 2.7660E + 02 105.4887 38.2482 2.7580 2.6126E + 03
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Table B.15: The comparison of the EIEM Orthomin implementation for 100 and 200
iterations, for the case of δ = 0.5

Dimension ‖rmodel‖ Percentage Decrease
n 100 iterations 200 iterations %

1000 0.6694 0.4887 26.99
2000 0.4887 2.5700 80.98
3000 8.0749 7.5666 6.7
4000 0.2572 0.2572 0
5000 0.1115 0.1639 42.67
6000 5.6164 5.6164 0
7000 6.5562 6.9562 0
8000 4.7774 6.6433 39.06
9000 10.3877 9.2643 10.81

10000 6.2070 3.3365 46.25
20000 12.2611 12.2611 0
30000 15.7708 6.9638 55.84
40000 28.8917 19.0412 34.09
50000 15.0339 14.0688 34.09
60000 12.0781 12.0781 0
70000 38.2304 38.2304 0

Orthomin are respectively 10 times and 14 times smaller than the minimum resid-

ual norm of the iterates generated by the original Orthomin when solving SLE’s

dimensions 8000 (for 100 iterations) and dimensions 40000 (for 200 iterations).

Other problems in both tables have similar decrease numbers, i.e. about 3, 4, and

5.

In Table B.18, the residual norms of some iterates generated by Orthomin with

the EIEM decreased by increasing the iterations up to 200. For instance, for prob-

lems with dimensions 1000, 2000, 3000, 5000, and 70000, the percentage decrease

are respectively 34%, 20%, 20%, 23%, and 88%. In contrast, for dimensions 8000

and 9000, the percentage increase are respectively 74% and 64%. These behaviour

are also captured in Figure B.6.
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Table B.16: Comparison between the residual norms of the iterates generated by the
original Orthomin algorithm and those generated by EIEM in Orthomin algorithm for
100 iterations, δ = 0.8

Dim Orthomin Orthomin with EIEM
n ‖rk‖ ‖rm‖ ‖rmodel‖ Decrease Time(s)

1000 1.5595 0.2748 0.0804 3.4179 0.7867
2000 6.7846E + 03 1.7972 0.8318 2.1606 2.4571
3000 5.6030E + 02 4.9488 1.4539 3.4038 5.0375
4000 1.3552E + 03 0.9227 0.4300 2.1458 8.4023
5000 2.8683E + 01 1.4975 0.5978 2.5050 12.6682
6000 1.2369E + 03 11.1826 4.7875 2.3358 14.1291
7000 1.1719E + 02 5.6363 2.0804 2.7092 24.2852
8000 5.7674E + 03 8.4599 0.7982 10.5987 32.0787
9000 4.0409E + 01 4.1724 0.5599 7.4520 40.1987

10000 2.1855E + 02 2.7536 0.8760 3.1434 49.0421
20000 3.7715E + 01 3.1585 1.3718 2.3024 1.8571
30000 8.8924E + 05 63.7004 23.7422 2.6830 1.2914E + 03
40000 4.6453E + 03 250.0413 17.4236 14.3507 1.2199E + 03
50000 6.1251E + 02 17.4355 1.6002 10.8958 1.9549E + 03
60000 1.7492E + 02 8.3668 3.1185 2.6829 2.9044E + 03
70000 2.0426 2.0426 0.6613 3.0888 5.9227E + 03

Table B.17: Comparison between the residual norms of the iterates generated by the
original Orthomin algorithm and those generated by EIEM in Orthomin algorithm for
200 iterations, δ = 0.8

Dim Orthomin Orthomin with EIEM
n ‖rk‖ ‖rm‖ ‖rmodel‖ Decrease Time(s)

1000 9.6541E + 01 0.2748 0.0532 5.1654 1.2095
2000 1.0237E + 05 1.7972 0.6699 2.6844 4.0583
3000 6.9982E + 02 3.1618 1.1585 2.7292 6.7418
4000 5.8047E + 01 0.9227 0.3539 2.6072 13.9629
5000 6.5222E + 02 1.4975 0.4581 3.2689 13.9149
6000 1.2369E + 03 11.1826 4.0680 2.7489 13.4683
7000 3.5167E + 02 5.6363 2.0008 2.81701 24.722
8000 1.5177E + 03 8.4599 3.0532 2.7708 53.7407
9000 2.2164E + 03 4.1724 1.5351 2.7179 55.2054

10000 2.1855E + 02 2.7536 0.9263 2.9727 44.4763
20000 1.8459E + 02 3.1585 1.1572 2.7294 2.4995E + 02
30000 1.9198E + 03 63.7004 21.7422∗ 2.9298 1.1511E + 02
40000 1.0280E + 05 250.0413 17.4236 14.3507 2.0618E + 03
50000 8.7788E + 05 17.4355 1.6002 10.8958 2.7704E + 03
60000 2.5536E + 04 8.3668 3.0185 2.7718 8.6801E + 03
70000 4.5035E − 01 0.0220 0.0782 0.2813 8.219E + 03
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Figure B.5: The behaviour of residual norms of the iterates generated by EIEM Orthomin
for 100 and 200 iteration; the case of δ = 0.5

B.1.7 EIEM Orthomin Algorithm: δ = 5

Slightly different from the previous cases, the improvement of the residual norms

after imposing the EIEM in Orthomin algorithm are not so significant (see the

decrease numbers on Tables B.16 and B.17). Also, increasing the iterations up to

200, does not make significant differences on those residual norms. For instance,

when solving dimensions 10000 and 20000, the percentage decrease reached re-

spectively 44%, and 42% , according to Table B.21. Only one problem where

increasing the iterations up to 200 make the residual norm of the iterate generated

by the EIEM in Orthomin increase, i.e. in dimension 6000 with the percentage

increase is 72%. It can be seen clearly in Figure B.7 .
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Table B.18: The comparison of the EIEM Orthomin implementation for 100 and 200
iterations, for the case of δ = 0.8

Dimension ‖rmodel‖ Percentage Decrease
n 100 iterations 200 iterations %

1000 0.0804 0.0532 33.83
2000 0.8318 0.6699 19.46
3000 1.4539 1.1585 20.31
4000 0.4300 0.3539 17.7
5000 0.5978 0.4581 23.39
6000 4.7875 4.0680 15.03
7000 2.0804 2.0804 0
8000 0.7982 3.0532 73.86
9000 0.5599 1.5351 63.5

10000 0.8760 0.9263 5.74
20000 1.3718 1.1572 18.5
30000 23.7422 21.7422 9.2
40000 17.4236 17.4236 0
50000 1.6002 1.6002 0
60000 3.1185 3.1185 0
70000 0.6613 0.0782 88.17

Table B.19: Comparison between the residual norms of the iterates generated by the
original Orthomin algorithm and those generated by EIEM in Orthomin algorithm for
100 iterations, δ = 5

Dim Orthomin Orthomin with EIEM
n ‖rk‖ ‖rm‖ ‖rmodel‖ Decrease Time(s)

1000 1.9590E + 01 2.4785 0.9238 2.6829 1.088
2000 8.3932 0.8013 0.2987 2.6835 3.5769
3000 2.1651E + 02 3.4239 1.1762 2.9109 4.3619
4000 7.9942E + 01 2.3600 0.8796 2.6830 9.8006
5000 6.2883E + 01 2.7989 1.0232 2.7354 12.0658
6000 4.2912E + 01 4.4958 1.5756 2.8534 17.0101
7000 1.0665E + 02 5.6275 2.1975 2.5609 22.6653
8000 2.5449E + 01 5.4889 2.0258 2.7095 29.2024
9000 6.2325E + 01 9.8697 2.6786 3.6846 38.1748

10000 1.9821E + 01 6.6903 2.2936 2.9169 47.7449
20000 8.8445E + 01 12.0115 4.3769 2.7443 1.8559E + 02
30000 3.0467E + 02 33.5764 11.5145 2.916 9.6699E + 02
40000 1.6658E + 02 6.9695 2.4015 2.9021 1.8796E + 03
50000 6.8389E + 01 16.7751 6.1524 2.7265 2.6762E + 03
60000 2.5799E + 01 18.7636 4.3952 4.2691 4.4875E + 03
70000 1.0788E + 01 10.4984 2.8920 3.6301 4.0578E + 03
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Table B.20: Comparison between the residual norms of the iterates generated by the
original Orthomin algorithm and those generated by EIEM in Orthomin algorithm for
200 iterations, δ = 5

Dim Orthomin Orthomin with EIEM
n ‖rk‖ ‖rm‖ ‖rmodel‖ Decrease Time(s)

1000 1.9590E + 01 2.4785 0.9238 2.68291 1.088
2000 5.2662E + 01 0.8013 0.2987 2.6835 3.5769
3000 7.6491 3.0467 1.0356 2.9413 7.6088
4000 3.1456E + 01 2.3600 0.8796 2.683 12.5411
5000 2.3570E + 01 2.7989 1.0232 2.7354 19.5972
6000 3.5480E + 01 4.4958 1.5756 2.8534 27.0477
7000 7.3411E + 01 5.6275 2.1975 2.5609 36.1136
8000 3.6774E + 02 5.4889 2.0258 2.7095 47.5767
9000 1.5230E + 01 9.8697 2.6786 3.6846 57.2231

10000 4.5607 3.7117 1.2834 2.89219 70.5569
20000 2.1882E + 02 7.0947 2.5443 2.7885 2.8146E + 02
30000 7.9728E + 02 33.5764 11.5145 2.916 9.8124E + 02
40000 4.7231E + 01 6.9695 2.4015 2.9021 2.3112E + 03
50000 2.0034E + 02 16.7751 6.1524 2.7265 3.3636E + 03
60000 4.7045E + 01 12.5977 4.3754 2.8792 5.13353E + 03
70000 8.2325E + 01 10.4984 2.8920 3.6302 7.7634E + 03

Table B.21: The comparison of the EIEM Orthomin implementation for 100 and 200
iterations, for the case of δ = 5

Dimension ‖rmodel‖ Percentage Decrease
n 100 iterations 200 iterations %

1000 0.9238 0.9238 0
2000 0.2987 0.2987 0
3000 1.1762 1.0356 13.7
4000 0.8796 0.8796 0
5000 1.0232 1.0232 0
6000 1.5756 5.6164 71.9
7000 2.1975 2.1975 0
8000 2.0258 2.0258 0
9000 2.6786 2.6786 0

10000 2.2936 1.2834 44.06
20000 4.3769 2.5443 41.87
30000 11.5145 11.5145 0
40000 2.4015 2.4015 0
50000 6.1524 6.1524 0
60000 4.3952 4.3754 0
70000 2.8920 2.8920 0



B.1. EIEMLA Implementation 215

Figure B.6: The behaviour of residual norms of the iterates generated by EIEM Orthomin
for 100 and 200 iteration; the case of δ = 0.8

B.1.8 EIEM Orthomin Algorithm: δ = 8

In this particular case, Lanczos Orthomin performs well to find a good approxi-

mate solution without facing breakdown. Applying the EIEM in the algorithm is

also worth it. It is indicated by the decrease numbers in both Tables B.22 and B.23

which is about 3; which means that the residual norm the iterate generated by the

EIEM is 3 times smaller than the lowest residual norm of the iterate generated by

the original Orthomin.

According the information in Table B.24, for dimensions 1000 and 9000, the

percentage decreased about 53% and 51% respectively when the iterations were

increased up to 200. The percentage, however, increased for dimensions 2000 and

20000 when the iterations increased, with the percentage increased are respec-
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Figure B.7: The behaviour of residual norms of the iterates generated by EIEM Orthomin
for 100 and 200 iteration; the case of δ = 5

tively 15% and 17%. All of the behaviour differences by increasing the iterations

from 100 to 200 are captured in Figure B.8.

B.1.9 EIEM Orthores Algorithm: δ = 0.2

Similar to the previous subsection, in this subsection, we will look at some results

of running EIEM in Orthores algorithm, for both 100 and 200 iterations. They

are provided in Tables B.25 and B.26. including some improvements of the resid-

ual norms of the iterates that might be made. might be made In particular we

Similar to the previous subsection, Based on the informations available in Table

B.25, overall, the EIEM in Orthores algorithm finds a good solution with a small

residual norm even smaller than all of the previous iterates. We noticed here that

in this particular case, the Orthores does not experience breakdown for both 100

and 200 iterations. The decrease number also improved in most problems, par-
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Table B.22: Comparison between the residual norms of the iterates generated by the
original Orthomin algorithm and those generated by EIEM in Orthomin algorithm for
100 iterations, δ = 8

Dim Orthomin Orthomin with EIEM
n ‖rk‖ ‖rm‖ ‖rmodel‖ Decrease Time(s)

1000 1.8994E + 02 6.1281 2.2841 2.6829 0.8016
2000 7.7451E + 03 4.0691 1.3167 3.0906 2.5555
3000 4.7707E + 01 12.3334 4.5569 2.7065 5.16
4000 1.5484E + 02 15.0122 5.2953 2.8350 8.6441
5000 2.0429E + 01 9.0788 3.3338 2.7233 12.9375
6000 8.6403E + 01 23.0560 8.8934 2.5925 18.1627
7000 7.5573E + 02 20.4577 6.6249 3.0880 24.5629
8000 1.5668E + 02 24.2072 9.5224 2.5421 29.5651
9000 4.6034E + 01 18.2494 6.4019 2.8506 37.4057

10000 5.9648E + 02 34.1580 11.7313 2.9117 46.0312
20000 1.9880E + 02 76.5965 19.8233 3.8639 3.2280E + 02
30000 2.6202E + 01 26.2026 7.1209 3.6797 9.6138E + 02
40000 1.7379E + 02 57.4135 22.3990 2.5632 1.3874E + 03
50000 3.5316E + 02 108.8633 37.1745 2.9284 4.3481E + 03
60000 2.1466E + 03 31.2251 12.6381 2.4707 4.0689E + 03
70000 1.5691E + 02 63.8185 20.0467 3.1835 4.7489E + 03

Table B.23: Comparison between the residual norms of the iterates generated by the
original Orthomin algorithm and those generated by EIEM in Orthomin algorithm for
200 iterations, δ = 8

Dim Orthomin Orthomin with EIEM
n ‖rk‖ ‖rm‖ ‖rmodel‖ Decrease Time(s)

1000 3.7592E + 01 3.4218 1.0754∗ 3.1819 0.907
2000 3.7015E + 01 4.0691 1.5166∗ 2.6830 2.9374
3000 7.8998E + 02 12.3334 3.5969∗ 3.4289 6.2075
4000 7.3054E + 01 15.0122 4.5953 3.2669 10.1714
5000 1.1803E + 03 9.0788 3.3438 2.7151 15.776
6000 4.9839E + 01 23.0560 8.6144 2.7823 22.4854
7000 3.2196E + 02 20.4577 6.6249 3.0880 30.1689
8000 1.0137E + 02 24.2072 9.3224 2.5967 39.1885
9000 4.8830E + 01 9.3011 3.1667∗ 2.9371 50.5056

10000 9.5600E + 03 34.1580 11.7313 3.1830 60.5066
20000 1.4116E + 02 69.0569 23.2909∗ 2.9649 4.4228E + 02
30000 4.7941E + 02 26.2026 7.1209 3.6797 8.7217E + 02
40000 6.2237E + 02 57.4135 22.3990 2.9596 2.7652E + 03
50000 1.2707E + 03 108.8633 37.1745 2.9284 4.8148E + 03
60000 5.6175E + 02 31.2251 12.6381 3.2398 4.9722E + 03
70000 1.1303E + 02 63.8185 20.0467 3.1835 6.9434E + 03
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Table B.24: The comparison of the EIEM Orthomin implementation for 100 and 200
iterations, for the case of δ = 8

Dimension ‖rmodel‖ Percentage Decrease
n 100 iterations 200 iterations %

1000 2.2841 1.0754 52.92
2000 1.3167 1.5166 15.18
3000 4.5569 4.5569 0
4000 5.2953 4.5953 13.2
5000 3.3338 3.3338 0
6000 8.8934 8.8934 0
7000 6.6249 6.6249 0
8000 9.5224 9.5224 0
9000 6.4019 3.1667 50.53

10000 11.7313 11.7313 0
20000 19.8233 23.2909 17.49
30000 7.1209 7.1209 0
40000 22.3990 22.3990 0
50000 37.1745 37.1745 0
60000 12.6381 12.6381 0
70000 20.0467 20.0467 0

ticularly when using 200 iterations. For instance, when solving 3000 dimensions

with 100 iterations, the residual norm of the model solution is 7 times smaller

than the lowest residual norm of the iterates generated by Orthores process. This

factor remained the same when using 200 iterations. Furthermore, when solving

dimensions 5000 using 100 iterations, the decrease number is about 3.7. This

factor rose up significantly to 6.24 when we increased the iterations. This trend

also occurs in large dimensions, such as in dimensions 20000, 40000, and 60000,

where the decrease numbers when using 100 iterations are respectively 3.9, 3.5,

and 4.2.

We also highlight here that the improvement as a result in increasing the it-

erations in the algorithm almost occurs in most problems (see Table B.27). For
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Figure B.8: The behaviour of residual norms of the iterates generated by EIEM Orthomin
for 100 and 200 iteration; the case of δ = 8

instance, when solving dimensions 1000, 6000, and 7000, the percentage decrease

appear significantly which are about 92%, 93%, and 96%. Note, the percent-

age decrease/increase in this table describes how far the model residual norm

decrease/increase from 100 iterations to 200 iterations. Furthermore, in large di-

mensions such as 20000, 30000, and 60000, the model residual norms when using

100 iterations are respectively about 1.32, 0.26, and 18.66, rose up considerably to

0.04, 0.05, and 0.04 respectively. In other words, the percentage decrease in these

cases are about 96%, 81%, and 99% respectively. Other cases have the percentage

decrase/increase are zero, which means that there is no improvement of the model

residual norms when we increased the the iterations. The improvements of the

residual norms as a results in increasing the iterations is illustrated in Figure B.9.
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Table B.25: Comparison between the residual norms of the iterates generated by the
original Orthores algorithm and those generated by EIEM in Orthores algorithm for 100
iterations, δ = 0.2

Dim Orthores Orthores with EIEM
n ‖rk‖ ‖rm‖ ‖rmodel‖ Decrease Time(s)

1000 2.4674 0.5201 0.1740 2.9891 0.698
2000 2.2724 0.9674 0.1986 4.8711 1.4259
3000 4.8757E + 03 39.6925 5.4254 7.3161 2.3106
4000 1.43872E − 01 0.1439 0.0480 2.9979 4.0736
5000 5.5639E + 01 26.7770 0.8679 3.7053 5.3188
6000 2.9042 2.9042 1.1009 2.6380 7.2979
7000 1.0182E + 01 2.8798 1.0745 2.6801 9.4892
8000 1.4693E + 01 14.1454 5.3622 2.6379 11.9616
9000 4.6987 1.7645 0.4689 3.7631 14.99

10000 1.5058E + 01 10.3933 3.8568 2.6948 18.0196
20000 2.4341E + 02 5.1874 1.3162 3.9412 64.3696
30000 9.1983E − 01 0.9057 0.2654 3.4126 1.6457E + 02
40000 1.2038E + 02 20.5881 5.7758 3.5646 1.7665E + 03
50000 1.5064E − 01 0.1011 0.0299 3.3813 1.5649E + 03
60000 4.2012E + 02 77.9312 18.6620 4.1759 3.1967E + 03
70000 5.4393 3.7597 1.3637 2.7569 3.5734E + 03

Table B.26: Comparison between the residual norms of the iterates generated by the
original Orthores algorithm and those generated by EIEM in Orthores algorithm for 200
iterations, δ = 0.2

Dim Orthores Orthores with EIEM
n ‖rk‖ ‖rm‖ ‖rmodel‖ Decrease Time(s)

1000 7.1654E − 02 0.0425 0.0137 3.1022 0.7924
2000 4.6799E − 01 0.0918 0.0221 4.1539 1.9527
3000 4.8757E + 03 39.6925 5.4254 7.3161 2.6044
4000 7.9202E − 02 0.0477 0.0113 4.2212 7.1707
5000 1.1375 0.6078 0.0973 6.2467 7.2108
6000 6.8539E − 01 0.2202 0.0777 2.8339 9.9596
7000 3.4682 0.1095 0.0415 2.6386 13.1762
8000 9.0036E − 01 0.3853 0.0804 4.7923 16.7186
9000 5.0894E − 01 0.2649 0.0953 2.7796 21.9828

10000 8.08204 3.5266 0.9218 3.8258 28.2759
20000 6.9922E + 01 0.1812 0.0456 3.9737 1.0085E + 02
30000 7.5801E − 01 0.1835 0.0510 3.5980 4.8194E + 02
40000 5.6718E + 01 20.5881 5.7758 2.7579 9.8724E + 03
50000 1.506E − 01 0.1011 0.0299 3.3813 1.5649E + 03
60000 1.7953E − 01 0.1511 0.0442 3.4186 3.2919E + 03
70000 1.4044E + 01 1.5592 0.4582 3.4029 3.3566E + 03
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Table B.27: The comparison of the EIEM Orthores implementation for 100 and 200
iterations, for the case of δ = 0.2

Dimension ‖rmodel‖ Percentage Decrease
n 100 iterations 200 iterations %

1000 0.1740 0.0137 92.13
2000 0.1986 0.0221 88.87
3000 5.4254 5.4254 0
4000 0.0480 0.0113 76.46
5000 0.8679 0.0973 88.79
6000 1.1009 0.0777 92.94
7000 1.0745 0.0415 96.14
8000 5.3622 0.0804 98.5
9000 0.4689 0.0953 79.68

10000 3.8568 0.9218 76.09
20000 1.3162 0.0456 96.54
30000 0.2654 0.0510 80.78
40000 5.7758 5.7758 0
50000 0.0299 0.0299 0
60000 18.6620 0.0442 99.76
70000 1.3637 0.4582 66.4

Figure B.9: The behaviour of residual norms of the iterates generated by EIEM Orthores
for 100 and 200 iteration; the case of δ = 0.2
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B.1.10 EIEM Orthores Algorithm: δ = 0.5

According to Tables B.28 and B.29, the decrease numbers mostly show a significant

improvement when the EIEM applied, particularly when we increased the num-

ber of iterations. For instance, for dimensions 1000 and 2000, the residual norms

of the model solution are about 4 times smaller respectively, than the minimum

residual norm of the iterate generated by the original Orthores. Furthermore,

for a large problems, such as dimensions 20000, 40000, and 60000, the decrease

numbers are about 4.1, 4, and 4.7 respectively. It means that the residual norms

of the model solutions are about respectively 4,4, and 5 times smaller than the

lowest residual norm of the previous iterates.

The changing of the residual norms of the model solutions as a result in in-

creasing the iterations can be seen in Table B.30 as well as in Figure B.10. We can

see here that the positive changing occurs in almost all of problems, only three

problems with no changing. For instance, the highest percentage decrease of the

residual norm of the model solution was obtained when solving 1000 dimen-

sions problem with 95%. It followed by dimensions 4000, 6000, and 8000 with

respectively 94%, 94, and 93% of decrease. For high scale problems, however, the

percentage decrease seems went down. For instance, in dimensions 40000, 50000,

and 60000, the percentage decrease are about 54%, 87%, and 64% respectively.

Only the highest dimensional problem gets a high percentage decrease which is

about 94%.



B.1. EIEMLA Implementation 223

Table B.28: Comparison between the residual norms of the iterates generated by the
original Orthores algorithm and those generated by EIEM in Orthores algorithm for 100
iterations, δ = 0.5

Dim Orthores Orthores with EIEM
n ‖rk‖ ‖rm‖ ‖rmodel‖ Decrease Time(s)

1000 6.4489E − 02 0.0375 0.0095 3.9474 0.6182
2000 6.8363E − 01 0.1686 0.0423 3.9858 1.3122
3000 1.6074E + 02 0.2312 0.0876 2.6393 2.3003
4000 9.1293E − 01 0.9129 0.3174 2.8762 3.7671
5000 2.4654E − 01 0.1761 0.0464 3.7953 5.3663
6000 3.1706 0.2218 0.0658 3.3708 7.3712
7000 1.6443E − 01 0.0802 0.0304 2.6382 8.4712
8000 3.4744 0.1608 0.0609 2.6404 11.8802
9000 4.7236E − 02 0.0472 0.0156 3.0256 14.6132

10000 8.4735E − 01 0.1311 0.0468 2.8013 17.7345
20000 8.9266 3.3489 0.8250 4.0593 64.6193
30000 6.8594E + 01 0.3350 0.0941 3.5600 1.5220E + 02
40000 4.7609 0.8977 0.2217 4.0492 6.2563E + 03
50000 6.8238E − 02 0.0652 0.0241 2.7054 1.0261E + 03
60000 5.0281E − 01 0.5028 0.1058 4.7527 2.7166E + 03
70000 1.3202 1.0184 0.3561 2.8599 3.2102E + 03

Table B.29: Comparison between the residual norms of the iterates generated by the
original Orthores algorithm and those generated by EIEM in Orthores algorithm for 200
iterations, δ = 0.5

Dim Orthores Orthores with EIEM
n ‖rk‖ ‖rm‖ ‖rmodel‖ Decrease Time(s)

1000 4.1693E − 03 0.0015 4.3499E − 04 3.44836 0.7556
2000 6.8364E − 01 0.1686 0.0423 3.9858 1.6578
3000 1.6074E + 02 0.2312 0.0876 2.6393 3.3701
4000 7.8225E − 02 0.0640 0.0191 3.3508 5.6576
5000 9.4144E − 02 0.0284 0.0067 4.2388 7.9878
6000 4.3752E − 02 0.0256 0.0040 6.4 11.1991
7000 5.0291E − 02 0.0295 0.0050 5.9 14.1003
8000 3.9382E − 02 0.0130 0.0046 2.8261 17.7754
9000 3.0444E − 02 0.0096 0.0030 3.2 22.1213

10000 6.1736 0.0500 0.0079 6.3291 27.6473
20000 8.8953E − 01 0.5075 0.1422 3.5689 89.9022
30000 1.7087 0.3350 0.0941 3.5600 2.3071E + 02
40000 6.8325E − 01 0.5429 0.1030 5.2709 9.6040E + 03
50000 3.4279E − 02 0.0329 0.0032 10.2813 1.5552E + 03
60000 5.7642E − 01 0.1875 0.0380 4.9342 4.1907E + 03
70000 1.6495E − 01 0.0736 0.0220 3.3455 4.7222E + 03
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Table B.30: The comparison of the EIEM Orthores implementation for 100 and 200
iteration, for the case of δ = 0.5

Dimension ‖rmodel‖ Percentage Decrease
n 100 iterations 200 iterations %

1000 0.0095 4.3499E − 04 95.42
2000 0.0423 0.0423 0
3000 0.0876 0.0876 0
4000 0.3174 0.0191 93.98
5000 0.0464 0.0067 85.56
6000 0.0658 0.0040 93.92
7000 0.0304 0.0050 83.55
8000 0.0609 0.0046 92.45
9000 0.0156 0.0030 80.77

10000 0.0468 0.0079 83.12
20000 0.8250 0.1422 82.76
30000 0.0941 0.0941 0
40000 0.2217 0.1030 53.54
50000 0.0241 0.0032 86.72
60000 0.1058 0.0380 64.08
70000 0.3561 0.0220 93.82

B.1.11 EIEM Orthores Algorithm: δ = 0.8

If we look at the decrease numbers in Tables B.31 and B.31, the significant numbers

appear in dimensions 60000 (for 100 iterations) which is 43.5, and in dimensions

7000 and 30000 (for 200 iterations) which are respectively 35.8 and 27.4 It means

that the residual norms of the model solutions are smaller than the minimum

residual norms of the iterates generated by the Orthores algorithm. Another

fantastic numbers also appear in dimensions 3000 and 40000 (for 100 iterations),

which are 6.9 and 6 .2 respectively, and for dimensions 60000, 9000, and 2000,

which are about 13.7, 11.7, and 10.6 respectively.

Based on the information on Table B.33, the highest percentage decrease is

obtained when solving 8000 problem which is about 100% decreased. There
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Figure B.10: The behaviour of residual norms of the iterates generated by EIEM Orthores
for 100 and 200 iteration; the case of δ = 0.5

are some problems which reached 99% of decreasing when we increased the

iterations, namely dimensions 3000, 4000, 7000, 20000, 30000, and 60000. Other

problems have the percentage decrease which are about 90%. The behaviour of

these residual norms are captured in Figure B.6.

B.1.12 EIEM Orthores Algorithm: δ = 5

In this particular case, increasing the iterations up to 200 does not make a signif-

icant changing of the residual norms od the model solutions in most problems.

The improvement is only appeared however, when solving large scale problems,

i.e. for dimensions 10000 and 30000, where the percentage decrease reached up

to 95% and 98% respectively, according to Table B.36. It followed by dimensions

40000 and 60000 with the percentage decrease are about 82% and 81% respec-

tively. The largest problem, surprisingly, only obtained 59% of decreasing. This
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Table B.31: Comparison between the residual norms of the iterates generated by the
original Orthores algorithm and those generated by EIEM in Orthores algorithm for 100
iterations, δ = 0.8

Dim Orthores Orthores with EIEM
n ‖rk‖ ‖rm‖ ‖rmodel‖ Decrease Time(s)

1000 3.7530E − 02 0.0082 0.0031 2.6452 0.6676
2000 1.3082E + 01 0.6285 0.1783 3.5249 1.548
3000 1.8496E + 02 21.2092 3.0499 6.9541 2.7656
4000 1.6492 1.3626 0.3561 3.8265 4.2714
5000 2.3216E + 01 3.2991 1.2506 2.6380 5.814
6000 1.0248E − 01 0.0984 0.0339 2.9027 7.6747
7000 1.1685E − 01 0.0724 0.0230 3.1478 10.1714
8000 9.5833 4.4633 1.6919 2.6380 12.7683
9000 1.5925 0.2431 0.0723 3.3624 16.0025

10000 1.2868 0.3596 0.0739 4.8660 19.3439
20000 2.8193E + 01 0.7484 0.2837 2.6379 68.7558
30000 1.4483E − 01 0.1448 0.0424 3.4151 1.6629E + 02
40000 2.6822E − 01 0.2682 0.0433 6.1939 8.3926E + 02
50000 4.6801E + 04 71.2207 26.3431 2.7036 1.3590E + 03
60000 7.2134 7.2134 0.1658 43.5066 1.9154E + 03
70000 5.5968E − 01 0.5597 0.1588 3.5246 2.1882E + 03

Table B.32: Comparison between the residual norms of the iterates generated by the
original Orthores algorithm and those generated by EIEM in Orthores algorithm for 200
iterations, δ = 0.8

Dim Orthores Orthores with EIEM
n ‖rk‖ ‖rm‖ ‖rmodel‖ Decrease Time(s)

1000 0.0034 0.0011 1.4073E − 04 7.8164 0.7337
2000 1.4715E − 01 0.0251 0.0063 3.9841 1.7895
3000 3.7463E − 02 0.0244 0.0035 6.9714 3.3701
4000 6.1324E − 03 0.0041 0.0012 3.4167 5.4888
5000 3.8861E + 01 2.0343 0.3769 5.3975 6.7686
6000 1.0248E − 01 0.0984 0.0339 2.9027 7.9037
7000 9.4114E − 03 0.0061 1.7048E − 04 35.7981 15.8099
8000 5.1757E − 01 0.2053 0.0331 6.2024 17.5319
9000 4.3398E − 02 0.0129 0.0011 11.7273 24.1204

10000 1.2177E − 02 0.0043 0.0013 3.3077 30.6657
20000 0189E − 02 0.0062 5.836E − 04 10.6237 84.2992
30000 1.1425E − 02 0.0048 1.7522E − 04 27.3973 2.3564E + 02
40000 9.2999E − 02 0.0332 0.0051 6.5098 5.5072E + 03
50000 6.4700E + 02 2.7680 0.6599 4.1946 1.2514.9E + 04
60000 1.7145E − 02 0.0107 7.8074E − 04 13.7049 1.8012E + 04
70000 1.2817E − 01 0.0400 0.0079 5.0632 1.8906E + 04
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Table B.33: The comparison of the EIEM Orthores implementation for 100 and 200
iterations, for the case of δ = 0.8

Dimension ‖rmodel‖ Percentage Decrease
n 100 iterations 200 iterations %

1000 0.0031 1.4073E − 04 95.46
2000 0.1783 0.0063 96.47
3000 3.0499 0.0035 99.89
4000 0.3561 0.0012 99.66
5000 1.2506 0.3769 69.86
6000 0.0339 0.0339 0
7000 0.0230 1.7048E − 04 99.26
8000 1.6919 1.7522E − 04 99.98
9000 0.0723 0.0331 54.36

10000 0.0739 0.0011 98.51
20000 0.2837 5.836E − 04 99.79
30000 0.0424 1.7522E − 04 99.58
40000 0.0433 0.0051 88.22
50000 26.3431 0.6599 97.49
60000 0.1658 7.8074E − 04 99.53
70000 0.1588 0.0079 95.03

behaviour can be seen clearly in Figure B.12.

B.1.13 EIEM Orthores Algorithm: δ = 8

In this particular case, imposing the EIEM in the algorithm is also worth it. The

decrease numbers in both Tables B.37 and B.38 were varies ; ranging between 3

and 7. For instance, the highest decrease number was obtained when solving

8000 problem with 100 iterations, i.e. it was approximately 6.98. It means that

the residual norm of the model solution is about 7 times smaller than the lowest

residual norm of all of the previous iterates generated by the original Orthores.

When using 200 iterations, however, it was achieved for solving dimensions 40000

with the decrease number was about 7.01. The lowest decrease numbers of both

using 100 and 200 iterations (i.e. respectively 2.66 and 2.95 ) were obtained when

solving dimensions 1000 and 2000 respectively.
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Table B.34: Comparison between the residual norms of the iterates generated by the
original Orthores algorithm and those generated by EIEM in Orthores algorithm for 100
iterations, δ = 5

Dim Orthores Orthores with EIEM
n ‖rk‖ ‖rm‖ ‖rmodel‖ Decrease Time(s)

1000 1.3199E + 01 2.7546 1.0190 2.7032 0.5031
2000 2.5579 0.7233 0.2742 2.6379 1.3359
3000 6.4057E + 01 4.1652 1.5789 2.6380 2.5045
4000 3.8162E + 02 0.9450n 0.3357 2.7434 3.9903
5000 1.7846E + 01 2.7709 0.9516 2.9118 5.8211
6000 1.4266E + 02 4.1558 1.5754 2.6379 7.9541
7000 3.8086E + 01 6.7323 1.8338 3.6712 10.5452
8000 8.9181E + 02 5.6826 1.1945 4.7573 13.2839
9000 2.8539E + 01 3.0953 1.1734 2.6379 16.5919

10000 1.7500E + 02 3.5354 1.3197 2.6789 20.1626
20000 1.3453E + 02 4.3751 1.2507 3.4981 67.2667
30000 3.2474E + 02 14.4268 5.4688 2.6380 1.5113E + 02
40000 1.4301E + 01 3.9251 1.4879 2.6380 8.6406E + 03
50000 6.8157E + 02 52.7413 19.8173 2.6614 8.5284E + 03
60000 4.7690E + 01 40.9302 12.6033 3.2476 1.1920E + 04
70000 1.5397E + 01 12.2256 4.6344 2.6380 1.7828E + 04

Table B.35: Comparison between the residual norms of the iterates generated by the
original Orthores algorithm and those generated by EIEM in Orthores algorithm for 200
iterations, δ = 5

Dim Orthores Orthores with EIEM
n ‖rk‖ ‖rm‖ ‖rmodel‖ Decrease Time(s)

1000 2.3456E − 01 0.2013 0.0602 3.3439 0.6424
2000 2.0746 0.7233 0.2742 2.6378 1.7676
3000 1.3875 1.3875 0.4148 3.3449 3.4424
4000 6.0728E + 01 0.9450 0.3357 2.8150 5.1737
5000 3.8175E + 01 2.7709 0.9516 2.9118 5.5528
6000 6.2632E + 01 4.1558 1.5754 2.6379 8.2538
7000 1.7872E + 01 1.0734 0.2773 3.8709 15.7251
8000 7.9552 1.6116 0.4818 3.3449 19.6892
9000 2.6287E + 01 3.0953 1.1734 2.6379 24.5682

10000 2.3455E − 01 0.2013 0.0602 3.3439 23.9232
20000 3.5497 2.1630 0.5980 3.6171 1.0006E + 02
30000 2.8936E − 01 0.2894 0.0865 3.3457 2.2438E + 02
40000 4.5911 0.8883 0.2656 3.3445 1.5960E + 04
50000 8.5273E + 01 40.6797 12.1614 3.3449 1.6936E + 04
60000 4.3547E + 01 9.6274 2.4449 3.9377 2.6050E + 04
70000 2.0613E + 01 7.9062 1.8882 4.1872 3.6839E + 04
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Figure B.11: The behaviour of residual norms of the iterates generated by EIEM Orthores
for 100 and 200 iteration; the case of δ = 0.8

The percentage decrease of the residual norms of the model solutions as a result

in increasing the iterations from 100 to 200 was put in Table B.39. The highest

of the percentage decrease, for instance, was reached when solving dimensions

30000 of the problem; i.e. up to 96%. It means that the residual norm of the iterate

generated by the EIEM was about 96% decrease when the iterations increased

up to 200. The lowest of the percentage decrease, however, was obtained when

solving 20000 dimensional problem which was 40%. Interestingly, about 3% of

percentage increase when solving 40000 dimensional problem, and there is no

changing of the two residual norms when solving dimensions 2000. All of the

behaviour of the residual norms of the model iterate by increasing the iterations

from 100 to 200 are captured in Figure B.13.
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Table B.36: The comparison of the EIEM Orthores implementation for 100 and 200
iterations, for the case of δ = 5

Dimension ‖rmodel‖ Percentage Decrease
n 100 iterations 200 iterations %

1000 1.0190 0.0602 94.09
2000 0.2742 0.2742 0
3000 1.5789 0.4148 73.73
4000 0.3357 0.3357 0
5000 0.9516 0.9516 0
6000 1.5754 1.5754 0
7000 1.8338 0.2773 84.87
8000 1.1945 0.4818 59.67
9000 1.1734 1.1734 0

10000 1.3197 0.0602 95.44
20000 1.2507 0.5980 52.19
30000 5.4688 0.0865 98.42
40000 1.4879 0.2656 82.15
50000 19.8173 12.1614 38.63
60000 12.6033 2.4449 80.6
70000 4.6344 1.8882 59.26

Table B.37: Comparison between the residual norms of the iterates generated by the
original Orthores algorithm and those generated by EIEM in Orthores algorithm for 100
iterations, δ = 8

Dim Orthores Orthores with EIEM
n ‖rk‖ ‖rm‖ ‖rmodel‖ Decrease Time(s)

1000 1.1182E + 02 12.1604 4.5689 2.6616 0.6034
2000 3.0349E + 02 6.2720 2.1240 2.9529 1.3823
3000 2.8841E + 01 19.4297 5.6712 3.4260 2.5522
4000 9.4642 9.4643 1.3299 3.6292 3.8659
5000 5.9627 4.8265 9.1505 2.9263 5.4138
6000 2.5258E + 01 20.2821 7.1811 2.8244 7.5282
7000 1.1174E + 01 4.3063 1.3689 3.1458 9.78
8000 1.1336E + 01 11.3369 1.6239 6.9813 12.2216
9000 1.046E + 02 21.6714 5.3962 4.0160 15.0955

10000 5.5428E + 02 12.0280 4.5595 2.6380 18.2792
20000 2.7060E + 02 50.9992 14.7468 3.4583 64.8147
30000 1.8367E + 03 67.5386 19.3364 3.4928 1.7858E + 02
40000 7.4530E + 01 48.7460 18.4784 2.6379 3.5438E + 03
50000 2.2490E + 02 113.0310 40.0828 2.8199 5.6528E + 03
60000 1.4372E + 02 59.8770 21.4780 2.7878 9.7571E + 03
70000 5.5557E + 01 31.3792 9.1514 3.4288 1.0918E + 04
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Table B.38: Comparison between the residual norms of the iterates generated by the
original Orthores algorithm and those generated by EIEM in Orthores algorithm for 200
iterations, δ = 8

Dim Orthores Orthores with EIEM
n ‖rk‖ ‖rm‖ ‖rmodel‖ Decrease Time(s)

1000 1.4196E + 01 3.2824 0.7113 4.6147 0.6395
2000 4.9479E + 01 6.2720 2.1240 2.9529 1.7602
3000 2.9939E + 01 11.2040 2.7154 4.1261 3.2809
4000 3.5545 2.4593 0.7352 3.3451 5.2631
5000 6.3762 2.6509 0.6040 4.3889 7.5837
6000 5.0436E + 01 15.5616 4.1370 3.7616 10.4562
7000 2.4665E − 01 0.2440 0.0729 3.3471 13.903
8000 2.7090 1.5714 0.4203 3.7388 17.6931
9000 2.4041 1.7006 0.4992 3.4067 21.9681

10000 1.0140E + 01 3.7178 1.0948 3.3959 26.9081
20000 8.5786E + 02 30.3630 8.8066 3.4478 1.0045E + 02
30000 1.1301E + 01 2.8657 0.7814 3.6674 4.7771E + 02
40000 23.4966 52.5156 19.0412 7.0181 2.6114E + 03
50000 2.4468E + 01 20.9844 5.4758 3.8322 1.9505E + 03
60000 8.5716E + 01 29.7359 6.7185 4.4259 5.5161E + 03
70000 3.8253E + 02 18.6180 3.7744 4.9327‘ 1.5804E + 03

Table B.39: The comparison of the EIEM Orthores implementation for 100 and 200
iterations, for the case of δ = 8

Dimension ‖rmodel‖ Percentage Decrease
n 100 iterations 200 iterations %

1000 4.5689 0.7113 84.43
2000 2.1240 2.1240 0
3000 5.6712 2.7154 52.12
4000 1.3299 0.7352 44.72
5000 9.1505 0.6040 93.4
6000 7.1811 4.1370 42.39
7000 1.3689 0.0729 94.67
8000 1.6239 0.4203 74.12
9000 5.3962 0.4992 90.75

10000 4.5595 1.0948 75.99
20000 14.7468 8.8066 40.28
30000 19.3364 0.7814 95.96
40000 18.4784 19.0412 3.05
50000 40.0828 5.4758 86.34
60000 21.4780 6.7185 68.72
70000 9.1514 3.7744 58.76
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Figure B.12: The behaviour of residual norms of the iterates generated by EIEM Orthores
for 100 and 200 iteration; the case of δ = 5

B.1.14 EIEM A12 Algorithm: δ = 0.5

It can be seen in both Tables B.40 and B.41 that there is no breakdown occurs in

this particular case. We also highlight here that the decrease numbers in both

tables mostly show the improvement when the EIEM applied in A12, particularly

when we increased the number of iterations. For instance, in dimensions 20000

and 30000, the decrease numbers are about 4.3 and 4.7 respectively. It means

that they are 4 and 5 times smaller than the lowest residual norms of the iterates

generated by the original A12.

The improvement of the residual norms of the model solutions as a result in

increasing the iterations can be seen in Table B.42 as well as Figure B.14. We can

see here that the positive changing occurs in almost all of problems, only three
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Figure B.13: The behaviour of residual norms of the iterates generated by EIEM Orthores
for 100 and 200 iteration; the case of δ = 8

problems with no changing. For instance, the highest percentage decrease of the

model residual norm was obtained when solving 10000 dimensions problem with

72%. It followed by dimensions 8000, 50000, and 6000 with respectively 61%, 59%,

and 53% of decrease. For high scale problems, however, the percentage decrease

seems go down. For instance, in dimensions 60000, 70000, the percentage decrease

are about 28% and 8% respectively.

B.1.15 EIEM A12 Algorithm: δ = 0.8

In this particular case, the A12 algorithm performs better to solve the SLEs than

the previous cases. It is indicated by some residual norms of the iterates generated

by the original A12 which are smaller than those were in other types algorithms.

This, interestingly, affects the improvement of the residual norms generated by

the A12 algorithm with the EIEM. It can be seen in Table B.43, the decrease num-
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Table B.40: Comparison between the residual norms of the iterates generated by the
original A12 algorithm and those generated by EIEM in A12 algorithm for 100 iterations,
δ = 0.5

Dim A12 A12 with EIEM
n ‖rk‖ ‖rm‖ ‖rmodel‖ Decrease Time(s)

1000 5.9969E − 02 0.0600 0.0227 2.6432 0.5615
2000 0.5972 0.1120 0.0352 3.1818 1.6065
3000 0.1005 0.0556 0.0311 1.7878 2.999
4000 0.1407 0.0701 0.0245 2.8612 4.9411
5000 0.4651 0.1919 0.0635 3.0221 7.7084
6000 2.5333E − 02 0.0253 0.0077 3.2857 10.8655
7000 7.8441 1.7013 0.6238 2.7273 13.6886
8000 3.1706 0.9685 0.4671 2.0734 17.8277
9000 0.3243 0.1412 0.0350 4.0343 22.3657

10000 0.2215 0.1808 0.0584 3.0959 26.8259
20000 2.6856 0.7996 0.1849 4.3245 99.5463
30000 0.8136 0.6000 0.1275 4.7059 1.9590E + 02
40000 0.5553 0.3511 0.1320 2.6598 3.1594E + 03
50000 1.7156 1.6121 0.4702 3.4285 5.3506E + 03
60000 2.3382 2.3382 0.7862 2.9741 7.2492E + 03
70000 0.4022 0.4022 0.1486 2.7066 9.883E + 03

Table B.41: Comparison between the residual norms of the iterates generated by the
original A12 algorithm and those generated by EIEM in A12 algorithm for 200 iterations,
δ = 0.5

Dim A12 A12 with EIEM
n ‖rk‖ ‖rm‖ ‖rmodel‖ Decrease Time(s)

1000 8.7937E − 02 0.0409 0.0141 2.9007 0.8212
2000 0.4517 0.1120 0.0352 3.18182 1.9448
3000 0.6605 0.0358 0.0134 2.6716 3.6717
4000 0.3924 0.0600 0.0173 3.4682 6.0855
5000 1.7385 0.1728 0.0533 3.2420 8.4621
6000 5.8629E − 02 0.0122 0.0036 3.3889 11.7
7000 4.9305 1.7013 0.6238 2.7273 15.2835
8000 0.5975 0.4901 0.1842 2.6607 20.0747
9000 1.0783 0.1412 0.0350 4.0343 24.8756

10000 1.4388 0.0545 0.0161 3.3851 30.6666
20000 5.8252 0.7330 0.1443 5.0797 1.2194E + 02
30000 0.2857 0.2504 0.0749 3.3431 2.4338E + 02
40000 0.2324 0.2072 0.0685 3.0248 2.3348E + 03
50000 2.6544 1.0521 0.1934 5.4400 6.2173E + 03
60000 2.2387 2.0271 0.5683 3.5669 1.0506E + 04
70000 0.3794 0.3661 0.1372 2.6684 1.3011E + 04
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Table B.42: The comparison of the EIEM A12 implementation for 100 and 200 iterations,
for the case of δ = 0.5

Dimension ‖rmodel‖ Percentage Decrease
n 100 iterations 200 iterations %

1000 0.0227 0.0141 37.89
2000 0.0352 0.0352 0
3000 0.0311 0.0134 56.91
4000 0.0245 0.0173 29.39
5000 0.0635 0.0533 16.06
6000 0.0077 0.0036 53.25
7000 0.6238 0.6238 0
8000 0.4671 0.1842 60.56
9000 0.0350 0.0350 0

10000 0.0584 0.0161 72.43
20000 0.1849 0.1443 21.96
30000 0.1275 0.0749 41.25
40000 0.1320 0.0685 48.11
50000 0.4702 0.1934 58.87
60000 0.7862 0.5683 27.72
70000 0.1486 0.1372 7.67

ber of dimensions 9000 is about 8.35; which means that the residual norm of the

model solution is 8 times smaller than the minimum residual norm of the iterate

generated by the algorithm without the embedded model. Similarly, when solv-

ing 6000, the decrease number is about 4.8. This trend, however, does not appear

in Table B.44, or when we use 200 iterations. Here, the decrease number seems

steady at the value of 3. Yet, for dimensions 5000 and 6000, the decrease number

are only 1.5 and 1.2 respectively.

The comparison of the residual norms of the model solutions when using 100

and 200 iterations can be seen Table B.45. According to the table, the highest of

the percentage decrease was obtained when solving 30000 dimensional problems,

i.e. about 95%. It is followed by dimensions 3000 which is about 84%, dimensions
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Figure B.14: The behaviour of residual norms of the iterates generated by EIEM A12 for
100 and 200 iteration; the case of δ = 0.5

8000 which is about 81%, dimensions 60000 and 70000 which are about 77%, and

dimensions 10000 which is about 75%. Only two cases with no improvement, i.e.

dimensions 4000 and 40000. The behaviour of these residual norms is captured

in Figure B.15.

B.1.16 EIEM A12 Algorithm: δ = 5

As we can see in Table B.46 and Table B.47 that the breakdown does not occur in

A12 algorithm using both 100 and 200 iterations. Slightly different from the pre-

vious cases that the improvement of the residual norms after imposing the EIEM

in the A12 algorithm are not too significant. The highest of the decrease factor

appears in dimensions 40000 which is about 4.1. The lowest one is about 1.8 for di-

mensions 1000. Other problems seem have similar value which are about 3. These

values also do not change significantly when we increased the iterations up to 200.
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Table B.43: Comparison between the residual norms of the iterates generated by the
original A12 algorithm and those generated by EIEM in A12 algorithm for 100 iterations,
δ = 0.8

Dim A12 A12 with EIEM
n ‖rk‖ ‖rm‖ ‖rmodel‖ Decrease Time(s)

1000 0.0066 0.0049 0.0019 2.5789 0.5547
2000 0.9513 0.1751 0.0491 3.5662 1.5953
3000 0.0254 0.0224 0.0082 2.7317 3.0537
4000 1.7353 0.2097 0.0570 3.6789 4.7695
5000 0.0083 0.0083 0.0031 2.6774 7.09
6000 0.6732 0.5791 0.1195 4.8460 9.7174
7000 0.0403 0.0169 0.0054 3.1296 12.7549
8000 0.5499 0.2931 0.1311 2.2357 16.2716
9000 0.0395 0.0192 0.0023 8.3478 20.2395

10000 0.9086 0.2477 0.0778 3.1838 24.6824
20000 0.1439 0.1438 0.0404 3.5594 92.0772
30000 8.6236 0.0471 0.0176 2.6761 1.9519E + 02
40000 39.3774 1.5916 0.5033 3.1623 1.9553E + 03
50000 0.2102 0.0956 0.0352 2.7159 4.7054E + 03
60000 1.7048 0.4816 0.1682 2.8633 5.2172E + 03
70000 0.2262 0.0872 0.0302 2.8874 9.9424E + 03

Table B.44: Comparison between the residual norms of the iterates generated by the
original A12 algorithm and those generated by EIEM in A12 algorithm for 200 iterations,
δ = 0.8

Dim A12 A12 with EIEM
n ‖rk‖ ‖rm‖ ‖rmodel‖ Decrease Time(s)

1000 2.2189E − 03 0.0022 7.9498E − 04 2.7674 0.6237
2000 0.2326 0.0653 0.0215 3.0372 1.9429
3000 0.1253 0.0110 0.0013 2.6191 3.5862
4000 0.3424 0.2097 0.0570 3.6789 5.8755
5000 3.8001E − 03 0.0034 0.0023 1.4783 8.6905
6000 5.4971 0.2346 0.1889 1.2419 12.0094
7000 1.4572 0.0169 0.0074 2.2838 16.1133
8000 0.1124 0.0882 0.0240 3.675 20.1751
9000 4.6968E − 03 0.0030 0.0011 2.7273 25.3264

10000 0.2705 0.0622 0.0191 3.2566 30.7491
20000 0.2949 0.0883 0.0298 2.9631 1.1584
30000 5.7830E − 03 0.0028 8.1290E − 04 3.4445 2.5266E + 02
40000 15.8617 1.5916 0.5033 3.1623 4.7842E + 03
50000 7.4341E − 02 0.0373 0.0117 3.1880 6.9698E + 03
60000 0.1201 0.1201 0.0378 3.1773 8.7285E + 03
70000 2.5516E − 02 0.0255 0.0069 3.6957 1.2646E + 04
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Table B.45: The comparison of the EIEM A12 implementation for 100 and 200 iterations,
for the case of δ = 0.8

Dimension ‖rmodel‖ Percentage Decrease
n 100 iterations 200 iterations %

1000 0.0019 7.9498E − 04 58.21
2000 0.0491 0.0215 56.21
3000 0.0082 0.0013 84.15
4000 0.0570 0.0570 0
5000 0.0031 0.0023 25.81
6000 0.1195 0.0889 25.61
7000 0.0054 0.0074 37.03
8000 0.1311 0.0240 81.69
9000 0.0023 0.0011 10.81

10000 0.0778 0.0191 75.45
20000 0.0404 0.0298 26.24
30000 0.0176 8.1290E − 04 95.38
40000 0.5033 0.5033 0
50000 0.0352 0.0117 66.76
60000 0.1682 0.0378 77.53
70000 0.0302 0.0069 77.15

As mentioned above that increasing the iterations does not affect significantly

in the residual norm. We can see in Table B.48, that most cases have 0% of in-

crease/decrease, which means that there is no improvement of the model solutions

when we increased the iteration from 100 to 200. there are only few improvement

of the residual norms of the model solutions, i.e. for dimensions 7000 and 8000

with the percentage decrease of 11% for both cases. This behaviour can be seen

clearly in Figure B.16.
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Table B.46: Comparison between the residual norms of the iterates generated by the
original A12 algorithm and those generated by EIEM in A12 algorithm for 100 iterations,
δ = 5

Dim A12 A12 with EIEM
n ‖rk‖ ‖rm‖ ‖rmodel‖ Decrease Time(s)

1000 6.5886 0.5906 0.3239 1.8234 0.7064
2000 12.908 0.9519 0.2324 4.0959 1.9039
3000 84.3474 1.8317 0.6791 2.6973 3.5194
4000 1.6182E + 03 5.0002 1.6106 3.1046 5.4087
5000 33.0722 0.4479 0.1296 3.4560 7.8716
6000 31.0726 0.7091 0.2660 2.6658 10.8356
7000 3.1264E + 03 6.9314 2.7275 2.5413 13.9267
8000 6.2828E + 02 4.9514 1.9969 2.4795 17.7319
9000 1.0063E + 02 0.6662 0.2070 3.2184 21.7344

10000 4.2937E + 02 4.0062 0.9987 4.0114 26.333
20000 42.0875 3.9950 1.5016 2.6605 95.9888
30000 6.9736 2.5030 0.8488 2.9489 2.0412E + 02
40000 3.5057E + 05 8.9589 2.1763 4.1166 3.1556E + 03
50000 58.5051 6.4544 2.2965 2.8105 4.8648E + 03
60000 74.8813 3.0424 1.0533 2.8885 3.7087E + 03
70000 6.6705E + 02 3.6396 0.9315 3.9073 6.3261E + 03

Table B.47: Comparison between the residual norms of the iterates generated by the
original A12 algorithm and those generated by EIEM in A12 algorithm for 200 iterations,
δ = 5

Dim A12 A12 with EIEM
n ‖rk‖ ‖rm‖ ‖rmodel‖ Decrease Time(s)

1000 0.1222 0.5906 0.3239 2.7611 0.5649
2000 14.7744 0.9519 0.2324 4.0959 1.665
3000 1.5413E + 02 1.8317 0.6791 2.6973 3.1346
4000 3.9391E + 02 5.0002 1.6106 3.1046 5.0613
5000 22.2256 0.4479 0.1296 3.4560 7.4937
6000 8.8872 0.7091 0.2660 2.6658 10.1608
7000 5.7503E + 02 6.9314 2.4275 2.8554 13.5824
8000 7.3417E + 01 4.9514 1.7749 2.7897 17.2963
9000 36.4292 0.6662 0.2070 3.2184 21.6702

10000 2.7589E + 02 4.0062 0.9987 4.0114 26.1259
20000 2.2992E + 02 3.9950 1.5016 2.6605 98.787
30000 68.6757 2.5030 0.8488 2.9489 2.1067E + 02
40000 2.2052E + 03 8.9589 2.1763 4.1166 2.1074E + 03
50000 1.1818E + 02 6.4544 2.5583 2.5229 5.0833E + 03
60000 1.7504E + 02 3.0424 1.0848 2.8046 6.6581E + 03
70000 4.5829E + 02 3.6396 1.0377 3.5074 7.198E + 03
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Figure B.15: The behaviour of residual norms of the iterates generated by EIEM A12 for
100 and 200 iteration; the case of δ = 0.8

Table B.48: The comparison of the EIEM A12 implementation for 100 and 200 iterations,
for the case of δ = 5

Dimension ‖rmodel‖ Percentage Decrease
n 100 iterations 200 iterations %

1000 0.3239 0.3239 0
2000 0.2324 0.2324 0
3000 0.6791 0.6791 0
4000 1.6106 1.6106 0
5000 0.1296 0.1296 0
6000 0.2660 0.2660 0
7000 2.7275 2.4275 10.99
8000 1.9969 1.7749 11.11
9000 0.2070 0.2070 0

10000 0.9987 0.9987 0
20000 1.5016 1.5016 0
30000 0.8488 0.8488 0
40000 2.1763 2.1763 0
50000 2.2965 2.5583 11.39
60000 1.0533 1.0848 2.9
70000 0.9315 1.0377 10.23
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Figure B.16: The behaviour of residual norms of the iterates generated by EIEM A12 for
100 and 200 iteration; the case of δ = 5



Appendix C

Algorithms

C.1 Lanczos-type Algorithms and Their Modifications

C.1.1 Orthodir
function [sol,last_norm] = algorithm_orthodir(A,b,x,y,num_it)

tol = 1e-13;

n = size(A);

x(:,1) = x;

y(:,1) = y;

r(:,1) = b - A*x(:,1);

z(:,1) = r(:,1);

res_norm(:,1) = norm(r(:,1));

d(:,1) = A*z(:,1);

A_{2} = -(y(:,1)’* r(:,1))/(y(:,1)’*d(:,1));

x(:,2) = x(:,1) - A_{2}*z(:,1);

r(:,2) = r(:,1)+ A_{2}*d(:,1);

%u(:,2) = x(:,2) - x(:,1);

res_norm(:,2) = norm(r(:,2));

At = A’;

y(:,2) = At*y(:,1);

B_{2} = 0;

C_{2} = (-(y(:,2)’*d(:,1)))/(y(:,1)’*d(:,1));

z(:,2) = d(:,1) + C_{2}*z(:,1);

k = 2;

while (norm(r(:,k))>tol) && (k <= num_it)

d(:,k) = A*z(:,k);

A_{k+1} = (-(y(:,k)’* r(:,k)))/(y(:,k)’*d(:,k));

x(:,k+1) = x(:,k) - A_{k+1}*z(:,k);

r(:,k+1) = r(:,k) + A_{k+1}*d(:,k);

y(:,k+1) = At*y(:,k);

B_{k+1} = (-(y(:,k)’*d(:,k)))/(y(:,k)’*z(:,k-1));

C_{k+1} = ((-B_{k+1}*(y(:,k)’* d(:,k-1)))- (y(:,k+1)’* d(:,k)))/(y(:,k)’*d(:,k));
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z(:,k+1) = d(:,k)+ B_{k+1}*z(:,k-1) + C_{k+1}*z(:,k);

%u(:,k+1) = x(:,k+1) - x(:,k);

res_norm(:,k) = norm(r(:,k));

k = k+1;

end

disp(’----------------------’);

disp(’Solution is ’);

%x(:,end-1) = [];

sol = x(:,end);

disp(’’);

disp(’----------------------’);

disp(’The norm of the residual is ’);

last_norm = res_norm(:,end)

C.1.2 RLMedVal Algorithm
function [med_val,norm_med] = algorithm_orthodir_modify_1(A,b,x,y,num_it)

tol = 1e-13;

n = size(A);

x(:,1) = x;

y(:,1) = y;

r(:,1) = b - A*x(:,1);

z(:,1) = r(:,1);

res_norm(:,1) = norm(r(:,1));

med(:,1) = 0;

%rd(:,1) = 0;

d(:,1) = A*z(:,1);

A_{2} = -(y(:,1)’* r(:,1))/(y(:,1)’*d(:,1));

x(:,2) = x(:,1) - A_{2}*z(:,1);

r(:,2) = r(:,1)+ A_{2}*d(:,1);

res_norm(:,2) = norm(r(:,2));

At = A’;

y(:,2) = At*y(:,1);

B_{2} = 0;

C_{2} = (-(y(:,2)’*d(:,1)))/(y(:,1)’*d(:,1));

z(:,2) = d(:,1) + C_{2}*z(:,1);

k = 2;

while (norm(r(:,k))>tol) && (k <= num_it)

d(:,k) = A*z(:,k);

A_{k+1} = (-(y(:,k)’* r(:,k)))/(y(:,k)’*d(:,k));

x(:,k+1) = x(:,k) - A_{k+1}*z(:,k);

r(:,k+1) = r(:,k) + A_{k+1}*d(:,k);

y(:,k+1) = At*y(:,k);

B_{k+1} = (-(y(:,k)’*d(:,k)))/(y(:,k)’*z(:,k-1));

C_{k+1} = ((-B_{k+1}*(y(:,k)’* d(:,k-1)))- (y(:,k+1)’* d(:,k)))/(y(:,k)’*d(:,k));

z(:,k+1) = d(:,k)+ B_{k+1}*z(:,k-1) + C_{k+1}*z(:,k);
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res_norm(:,k) = norm(r(:,k));

k = k+1;

end

disp(’----------------------’);

disp(’Solution is ’);

data_sol = x(:,1:k);

for i = 1:n

med(:,i) = median(data_sol(i,1:k));

%mn(:,i) = mean(data_sol(i,1:k));

end

med_val = med(:,1:n)’;

%mn_val = mn(:,1:n)’;

res_med = b - A*med_val;

norm_med = norm(res_med)

%res_mn = b - A*mn_val;

%norm_mn = norm(res_mn)

C.1.3 RLMinRes Algorithm
function [sol_mn,norm_mn] = algorithm_orthodir_modify_2(A,b,x,y,num_it)

tol = 1e-13;

x(:,1) = x;

y(:,1) = y;

r(:,1) = b - A*x(:,1);

z(:,1) = r(:,1);

res_norm(:,1) = norm(r(:,1));

d(:,1) = A*z(:,1);

A_{2} = -(y(:,1)’* r(:,1))/(y(:,1)’*d(:,1));

x(:,2) = x(:,1) - A_{2}*z(:,1);

r(:,2) = r(:,1)+ A_{2}*d(:,1);

res_norm(:,2) = norm(r(:,2));

At = A’;

y(:,2) = At*y(:,1);

B_{2} = 0;

C_{2} = (-(y(:,2)’*d(:,1)))/(y(:,1)’*d(:,1));

z(:,2) = d(:,1) + C_{2}*z(:,1);

k = 2;

while (norm(r(:,k))>tol) && (k <= num_it)

d(:,k) = A*z(:,k);

A_{k+1} = (-(y(:,k)’* r(:,k)))/(y(:,k)’*d(:,k));

x(:,k+1) = x(:,k) - A_{k+1}*z(:,k);

r(:,k+1) = r(:,k) + A_{k+1}*d(:,k);

y(:,k+1) = At*y(:,k);

B_{k+1} = (-(y(:,k)’*d(:,k)))/(y(:,k)’*z(:,k-1));

C_{k+1} = ((-B_{k+1}*(y(:,k)’* d(:,k-1)))- (y(:,k+1)’* d(:,k)))/(y(:,k)’*d(:,k));

z(:,k+1) = d(:,k)+ B_{k+1}*z(:,k-1) + C_{k+1}*z(:,k);
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res_norm(:,k) = norm(r(:,k));

k = k+1;

end

data_sol = x(:,1:k);

data_norm = res_norm(:);

[norm_mn,index] = min(data_norm)

disp(’----------------------’);

disp(’The minimum residual norm is ’);

norm_mn

disp(’The Min Solution is ’);

sol_mn = data_sol(:,index);
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