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Summary 

To reduce bias in survey estimates, most longitudinal survey organisations, nowadays, 

prepare and include sets of weights in public use data files for use by analysts. Aside from 

correcting for non-coverage, the weights are usually designed to reflect the sample design 

as well as to correct for non-response error by combining design weights and non-

response weight adjustments together.  

With regard to non-response weights, many longitudinal surveys implement similar 

strategies (referred to as the standard weighting approach in this thesis) to create them. 

This approach is based upon a weighting model where: response is defined as responding 

at all conducted waves; all sample members whose eligibility is unknown are assumed as 

eligible and the model is estimated by using generic weighting variables and all sample 

members for which data are available on the weighting variables. However, there are 

several issues in longitudinal surveys that raise concerns regarding using this approach of 

weighting.  

In particular, this thesis is concerned with three challenging issues: non-monotonic 

response pattern which results in a large number of combinations of waves at which 

sample members could respond, and hence weights that result from an approach such as 

the one in question, which defines response as responding at all the conducted waves may 

not be appropriate for the analysis of data from a wave-combination that does not include 

all waves; unknown eligibility over time leads to including a proportion of ineligible units 

in the weights’ calculation (if they are assumed to be eligible as in the standard approach) 

which may result in biased estimates unless the actual ineligible units amongst units of 
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unknown eligibility are excluded; and the choice of the best covariates for the weighting 

model which may differ considerably across different subgroups of respondents in the 

same sample. In the standard approach only generic weighting variables are used in the 

weighting model, as all sample members are used in the estimation. Meanwhile, some 

variables, which may not be significant in predicting response for the whole sample, 

could be important in predicting the response in some subgroups.  

In this thesis, I provide three alternative approaches (each deals with one of the raised 

issues) for non-response weighting.  

I investigate each of the proposed approaches by incorporating relevant weight 

adjustments, as well as weights from the standard weighting approach, in a longitudinal 

multivariate analysis. I test the impact of weights from each alternative approach on 

estimates by comparing the resultant estimates with estimates resulting from the standard 

approach.     

I use data from the British Household Panel Survey (BHPS) to carry out the investigation.  

The findings suggest that the standard and alternative approaches, all help similarly in 

reducing non-response error. However, the standard approach may fail in tackling the 

effect of non-response in some estimates, as it does not take into account the three raised 

issues in the weighting of longitudinal data. In contrast, since they deal with the three 

issues under investigation (separately), the alternative approaches seem to handle non-

response even in estimates that are not affected by the standard weighting approach.    
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About longitudinal surveys 

Survey research represents one of the most important areas of measurement in applied 

social and economic research. This is particularly so in the last 60-70 years when 

household surveys (cross-sectional and longitudinal) have become a key source of data on 

social phenomena. A longitudinal survey, however, may be a more complex survey 

design than cross-sectional surveys, but it certainly offers several analytical advantages.  

Cross-sectional surveys are conducted at a single time point. Thus, they are relatively less 

expensive and take less time to conduct compared to cross-sectional surveys. The data 

that are collected in a cross-sectional survey may provide an opportunity to analyse many 

substantive outcomes, and can be helpful to achieve several objectives (e.g. public health 

planning). However, as they are conducted at a single point in time, cross-sectional 

surveys ignore the fact that the same sample units may provide different measurements on 

the same variables if a different time frame was chosen, and hence analysis of unit-level 

change is not possible in these surveys. 

Longitudinal surveys, on the other hand, may be more expensive and difficult to conduct, 

but they can provide data on the same set of units for a number of time points (waves). 

This enables the production of population cross-sectional measures every time data are 

collected, but more importantly allows the analysis of unit-level change. Experts in 

surveys analyse the advantages and disadvantages of both longitudinal and cross-sectional 

surveys in different ways, but the most recent, and probably the most informative 

discussion, available in (Lynn, 2009). There are two main types of longitudinal surveys:  
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Cohort studies focus on a particular population, but they sample from a specific age 

cohort. Typically, the sample drawn for a cohort study is selected from a birth cohort of 

individuals who were born in a single week or a month in a given year. The cohort study 

then follows the lives of the individuals selected in the sample and interviews them at 

particular ages at regular or (often) irregular intervals to explore patterns in specific socio-

economic phenomena such as health behaviour and family life. For example, a survey 

organisation may decide to follow the lives of a sample of new born children who will be 

born in a single week in the year 2020 to understand the factors associated with the 

change in their health at different ages.     

Panel studies also follow the same sample units and attempt to collect data from them at 

every data collection point. However, a major distinction between panel studies and 

cohort studies lies in the way that they select their samples. While a birth cohort studies 

sample from a specific age cohort, panel studies typically target the entire age range in a 

given country to explore the dynamic of change (in a wide range of phenomena) 

experienced by the resident population in the country. For example, a survey organisation 

may randomly select individuals from randomly selected households in a resident 

population in a given country, and interview them about various social phenomena. Every 

year, the same individuals can be contacted and asked similar questions and the reasons 

for any change. Panel studies tend to have more frequent data collection points (waves) 

compared to cohort studies. However, this can yield extremely specific and useful 

explanations of social phenomena. Thus, as they target larger populations and collect data 

more frequently than cohort studies, panel studies tend to be more complex and more 

difficult to conduct. As a result, they can suffer from more problems. The focus in this 
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research is on panel studies, in particular household panel studies, and specific type of 

problems (errors) that occur in these surveys which will be explained later.  

In recent decades, the world has seen the execution of large household panel studies. 

Some of these studies implement the best procedures in the art of survey design that 

survey research has developed. Some of the major household panel studies in the world 

are: 

The British Household Panel Survey (BHPS) conducted in Great Britain (1991-2008). 

The BHPS is a result of a proposal to the UK Economic and Social Research Council 

(ESRC) to establish an interdisciplinary research centre at the University of Essex (Lynn, 

2006). More details on the BHPS design, sample and other features will be given later as 

this is the main data source for this research. In 2009, Understanding Society took over 

from the BHPS (the BHPS was incorporated into Understanding Society) as the new UK 

household longitudinal study. With a sample of 100,000 individuals, Understanding 

Society is currently (2015) the world’s largest survey of its type. 

The Panel Study of Income Dynamics (PSID) is the oldest longitudinal panel study. PSID 

started in the USA in 1968 and has been collecting measurements from the same sample 

ever since (Duncan et al, 2004). 

The German Socio-economic Panel (GSOEP) is the household panel study of the 

population in Germany. It was started in 1984, and is conducted by the German Institute 

for Economic Research (DIW Berlin) (Kroh, 2009). 

The Household, Income and Labour Dynamic in Australia (HILDA) started in 2001 as 

Australia’s household-based longitudinal survey. HILDA pays more attention to family 
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and household formation, income and work than other socio-economic topics 

(Summerfield, 2010). 

The Swiss Household Panel (SHP) started in Switzerland in 1999. Based on the country’s 

telephone directory, the survey covers individuals who are resident in private households 

in Switzerland who have a registered landline or mobile phone (Plaza, 2008).  

Errors in surveys 

The term survey error does not necessarily mean a ‘mistake’ in the linguistic sense it is 

rather a deviation from the desired outcome (Groves et al, 2004).  

Surveys in general suffer from many types of error (explained in Groves et al, 2004 & 

Scheaffer et al, 1996). On the one hand, these errors may arise because the measurements 

collected from the set of sampled members that participated in the survey do not 

accurately reflect the underlying attributes that the survey was designed to study (errors of 

observations). In this case, the errors may result because: the survey fails to choose 

appropriate measures to represent the phenomena that are studied (validity); responses 

given to the survey questions may be incorrect (measurement error) either because the 

questionnaire used to collect the responses is not well designed or because the respondent 

intentionally provides incorrect responses; or in unfortunate situations the error may result 

during the process of editing the answers provided by survey respondents (processing 

error).  

On the other hand, errors arise in surveys because only a sample from the population is 

intended for measurement (errors of non-observations). In this respect, errors may emerge 

because the sampling frame used to select the sample may itself suffer from some 
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problems (coverage error). For instance, if the sampling frame does not include all units 

in the target population (non-coverage error), some units may not be subject to sampling, 

which may lead to misleading results if the non-covered units have different measures on 

the survey target variables than the units included in the sampling frame. Also, since not 

all units in the sampling frame are selected, the mechanism upon which sample members 

are included in the sample may, itself, result in some form of error (sampling error). For 

example, if the sample design does not allow some units in the sampling frame to be 

selected in the sample, and these units have different characteristics on the substantive 

survey variables than the rest of the units in the sampling frame, this may distort the 

results produced from the selected sample (sampling bias). Moreover, even for the 

sampled units, the obtained data may be incomplete (non-response error) or, in other 

words, a missing data problem might exist. The error that results from non-response could 

be one of the serious errors in survey research as will be explained in more detail in the 

next section. The subject of this thesis, however, is centred around dealing with this error 

at the analysis stage in household longitudinal surveys.  

To tackle errors of non-observations (including non-response), a range of techniques may 

be adopted. Some of these techniques can be implemented before and at the data 

collection stage. Other techniques may be applied after (i.e. at the analysis stage). 

Methods that are used after the data collection are referred to as ‘post-survey 

adjustments’. These methods (which will also be explained later) attempt to adjust the 

collected data to account for issues arising from non-observational errors. However, any 

post-survey adjustment method requires assumptions that may not necessarily hold, and 

in many cases may be difficult to verify. Thus, these methods are, themselves, subject to 
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error. The error that may result from post-survey adjustments (adjustment error) is also 

classified as a non-observational error (Groves et al, 2004).  

Non-response 

The term ‘non-response’ is used to describe the situation when the survey organisation 

fails to collect responses from some of the sampled members who are eligible for the 

survey (Lynn, 2008; Bethlehem, 2009). A partial failure is referred to as item non-

response, whereas a complete failure (i.e. no measurement is provided on any of the 

survey variables) is called unit non-response (de Leeuw et al, 2003 Lessler and Kalsbeek, 

1992; Madow et al, 1983). This thesis is concerned with unit non-response, and the term 

‘non-response’ may be used in this thesis to refer to unit non-response. Non-response 

occurs in every survey as it is very difficult to obtain all the required data from the 

selected sample. This includes even the most well designed surveys conducted by highly 

experienced survey organisations (Lynn, 2008).  

Reasons for non-response 

The propensity to respond to surveys differs across individuals. Some people are easy to 

approach, and may be also easy to obtain data from. Other people are not. Thus, there is a 

wide range of reasons for which non-response may arise. The literature on non-response 

generally distinguishes among five different reasons (see Lessler and Kalsbeek, 1992; 

Lepkowski and Couper, 2002; Lynn, 2008; Groves et al, 2004; Kish, 1965): (1) failure to 

locate sample members: it is sometimes impossible for the survey researcher to 

successfully locate sampled members if, for example, their address is incomplete, (2) 

failure to deliver the survey request to located sample members: this refers to a situation 
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where a sampled member is successfully located but the interviewer is unable reach them 

to conduct the interview because the sampled member is not available (e.g. not at home). 

Non-response that result from (1) and (2) is known as ‘non-contact’, (3) failure to gain 

cooperation from sample members: this happens when a successfully contacted sampled 

member is unwilling to take part in the survey. This depends mainly on factors such as the 

nature of sample members; some individuals are more cooperative than others due to 

culture, social class and the demographic categories they belong to. This type of non-

response is known as ‘refusal’, (4) incapacity or inability: in this case, the approached 

sampled member may be willing to take part in the survey; however, he or she is unable 

due to illness, illiteracy or a language barrier, and (5) loss of information: this refers to the 

accidental loss of data after the data collection. For example, questionnaire forms might 

get lost in the post or destroyed if neglected. 

Non-response that occurs through inability and loss of information generally only 

represents a small proportion of non-responding cases compared to non-contact and 

refusal. However, most of non-response in surveys nowadays is due to refusal rather than 

non-contact (Brick, 2013; Atrostic et al, 2001). 

In order to better understand the factors associated with the different reasons for non-

response, survey researchers usually analyse non-response, based on non-response 

correlates, into its main sources: refusal and non-contact.  

Refusal 

In sample surveys, correlates of refusal can be divided into five groups (Groves and 

Couper, 1998). These are: Social Environmental Factors which include factors such as 
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urbanity and crime rates in the neighbourhood; Respondent Factors include demographic 

characteristics, household composition and personal attitude; Survey Factors such as the 

survey design, survey sponsor, survey topic and data collection mode; Interviewer 

Factors are experience, gender, race, age and attitude towards the survey task; and 

Interaction between the Interviewer and the Respondents is the conversation between 

them which takes place during the interview.  

A few attributes have been found to be highly correlated with refusals (Groves and 

Couper, 1998). These are: 

Gender: females usually have lower refusal rates compared to males, since women are 

more inclined to engage in conversations than men (Smith, 1984). 

Urbanity: studies have shown that those who live in urban areas are more likely to refuse 

than those in non-urban areas (Steeth, 1981). This was explained by Groves and Couper 

(1998) as avoiding contact with others as a fear of crime since crime rates are higher in 

urban areas than in rural areas.  

Single-person household: some individuals who live alone may be socially isolated. 

Socially isolated individuals may not feel obligated by civic duty to cooperate with 

surveys, and may not be willing to be found by the interviewer (Brehm, 1993). 

Survey topic: individuals who are interested in the survey topic are more likely to 

cooperate than others (Groves, Presser and Dipko, 2004). For instance voters and those 

who are interested in politics are more likely to cooperate in election surveys (Couper, 

1997; Brehm, 1993). On the other hand, sensitive topics (e.g. self opinion about same sex 

marriage) are more associated with refusal (Lynn, 2008). 
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Survey sponsor: sponsors that have an authoritative nature generally have high 

cooperation rates. For example, government surveys generate fewer refusals than 

academic surveys, which in turn generate fewer refusals than commercial surveys 

(Groves and Couper, 1998).  

Survey design: surveys that implement strategies in their design to encourage sample 

members to cooperate tend to result in high cooperation rates. For instance, individuals 

may be less inclined to refuse if the survey offers a reward, like a gift, for those who 

participate (Laurie and Lynn, 2009). 

Non-contact 

In household surveys, where interviewers attempt to contact sample members at their 

homes, non-contact is primarily caused by the fact that sample members are not at home 

at the time of the contact attempt. This is usually referred to as At-home pattern. In 

addition, contact may not be established with sample members if their homes have 

restrictive access procedures that impede interviewers from making the contact (e.g. a 

gated house). This is called Access impediments. Both At-home pattern and Access 

impediments are highly associated with two issues: type of sample unit and mode of data 

collection.  

With regard to At-home pattern, for example, males, employed adults, and young single 

individuals spend more time away from home and are therefore difficult to contact 

(Groves and Couper, 1998). Also, in surveys that interview respondents over the phone, 

non-contact due to at-home pattern depends on the time of the call. Call attempts that are 
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made during evenings and weekends could be more successful than calls made during 

weekdays (Bates, 2003; Brick et al, 1996).  

As for Access impediments, this prevents contact in face-to-face interviews if 

respondents’ homes are based in, for example, locked blocks of flats, gated houses, 

buildings with security devices that limit contact with residents (Groves and Couper, 

1998). Such Access impediments are common in high-security neighbourhoods. In 

telephone surveys, Access impediments may be in a form of a device such as answering 

machines or caller identity device (Tuckel and O’Neill, 1995). 

Analysing non-response based on non-contact and refusal is useful. It improves our 

understanding of non-response based on two different causes of the phenomenon. 

Nonetheless, in my opinion, restricting the analysis of non-response to non-contact and 

refusal tells us little about the actual reasons for non-response. In fact it is not refusal or 

non-contact per se that causes non-response. The actual reasons for non-response are 

likely to be related to the circumstances of sample members at the time that the survey 

request is made. Such factors, which result in either refusal or non-contact, are not usually 

measured by the survey. In turn, with non-contact and refusal we can only get a one-level 

explanation which does not necessarily reflect the concrete reasons for non-response. In 

order to develop a deeper understanding of non-response, we may need to break the 

analysis down into another level and inspect why those who, for example, were not 

contacted were difficult to contact.  

For instance, some people may not be contacted because they are searching for a job 

outside their homes, other people may not be contacted because they have left the country 
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where the survey is conducted (by which they may not be part of the target population). 

These two explanations may lead to completely different consequences of non-response. 

Therefore, they can be useful in determining circumstances when we should worry about 

non-response and when we should not. Moreover, one can immediately notice that 

explanations of non-response on two different levels (e.g. level 1: non-contact, and level 

2: not available because looking for a job) do not contradict, they rather complement. 

Effect of non-response   

Non-response leads to one of two problems: (a) if many sample members do not 

participate in the survey, the sample size that one had hoped for at the design stage will be 

reduced. Thus, estimates derived from the smaller sample will be less precise. This is 

however a minor problem, as the sample size can be set to a required achieved sample 

according to a predicted non-response level (Lynn, 1996); (b) if many sample members 

do not respond to the survey, and those who do not respond have different values from 

respondents on variables that are components of the survey statistics, estimates based 

solely on information from respondents can be biased. The combination of (a) and (b), 

which increases the Mean Square Error (MSE) of survey estimates, is referred to as ‘non-

response error’1. However, the bias is the dominant component, and is the reason that 

concerns are raised about non-response error (Lynn, 1996). 

Non-response bias is a deviation in a statistic that is estimated on the set of responding 

sample from one that estimated on a full sample. This deviation results as a consequence 

of a systematic distortion of the response process. For estimates such as the mean of a 

                                                           
1In the same survey, non-response error varies across estimates. For example, if respondents are systematically different 

from non-respondents on a variable ‘y’ but similar to non-respondents on another variable ‘x’, estimates derived from 

‘x’ will be less affected by non-response error.  
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target variable Y (represented by the corresponding sample statistics 𝑦̅) non-response error 

is the deviation in the value of 𝑦̅ for respondents from the value of 𝑦̅ for the full sample. 

Taking the non-respondents into account, this can be expressed by equation (1). 

𝑦̅𝑟 − 𝑦̅𝑛= 
𝑚

𝑛
∗ (𝑦̅𝑟 −  𝑦̅𝑚)                                                                                                   (1) 

Where n is the selected sample size, m is the number of non-respondents and r denotes the 

respondents. Thus, 𝑦̅𝑟 is the value of 𝑦̅ for respondents; 𝑦̅𝑛 is the value of 𝑦̅ for the full 

sample; and 𝑦̅𝑚 is the value of 𝑦̅ for non-respondents. The left hand side of the equation 

represents non-response error, which is expressed in the right hand side as a product of 

the non-response rate and the difference between respondents and non-respondents in the 

estimate in question. 

Link between response rate and non-response bias 

In many surveys, one of the main concerns is to increase the response rate. Increasing the 

response rate is desirable since it automatically decreases non-response rate and hence 

may minimize the likelihood of the bias linked to non-response. This indicates that non-

response bias may strike surveys with low response rate more than surveys with high 

response rate. However, the magnitude of the response rate does not provide information 

about the existence or the size of non-response bias (Groves, 2006; Groves and 

Peytcheva, 2008).  

It is possible to have little bias even if the response rate is low if respondents and non-

respondents do not differ largely in terms of what is being estimated (i.e. if (𝑦̅𝑟 −  𝑦̅𝑚) is 

small). In fact, with a low response rate non-response bias might not even exist if 
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respondents and non-respondents are very similar in all the characteristics related to all 

the survey key variables. In return, it is also possible to have high bias with high response 

rate if respondents and non-respondents differ greatly in the characteristics in question 

(i.e. if (𝑦̅𝑟 −  𝑦̅𝑚)is large). Thus, the key component of non-response error is (𝑦̅𝑟 − 𝑦̅𝑚) 

(i.e. the difference between respondents and non-respondents in the estimated statistics), 

and not (
𝑚

𝑛
) (i.e. non-response rate). 

Survey researchers sometimes attempt to examine the existence of non-response bias, or 

in other words, estimate (𝑦̅𝑟 − 𝑦̅𝑚). Nonetheless, it is impossible to discover differences 

between respondents and non-respondents using data with respect to a survey target 

variable Y, because its measurements are only available for respondents. In other words, 

𝑦𝑚is not observed. However, auxiliary data that are available for both respondents and 

non-respondents can be used to inspect the differences between respondents and non-

respondents2, but may not necessarily provide good estimates of the bias with respect to 

the substantive survey variables. This is because it is sometimes difficult to assert that 

respondents and non-respondents are different with respect to a target variable even if 

they differ in terms of other auxiliary characteristics.  

There seems to exist a gap with regard to a method that can detect the existence of non-

response bias accurately. In return, the non-response rate (
𝑚

𝑛
) remains an important 

indicator, in this respect, which survey researchers try to minimise as protection against 

bias. Therefore, in recent years, the link between response rate and non-response bias has 

been an interesting topic among survey researchers. Although many survey researchers 

                                                           
2 Groves (2006) provides methods for assessing non-response bias and reviews their strengths and their weaknesses. 
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stress the importance of endeavouring to increase the response rate (for example Alreck 

and Settle, 1995), several studies on the other hand found that changes in response rates 

may not necessarily have an impact on the survey estimates (Curtin, Presser and Singer, 

2000; Merkle and Edelman, 2002). 

Non-response in longitudinal surveys 

In recent decades, more attention has been paid to longitudinal surveys and the way that 

they are carried out. This has resulted in a rapid improvement in the design and execution 

of longitudinal surveys. For example, the involvement of computer technology in data 

collection has resulted in a reduction in the cost of all surveys and also improved the 

quality of the data (Bethlehem, 2009). However, new problems also emerged. One of 

these is the increase in non-response rates. Despite the effort that survey organisations 

implement nowadays to improve the survey design in order to achieve the highest 

possible response rate, non-response rates are still rising in most longitudinal surveys in 

the world (Watson and Wooden, 2009). As a result, the implementation of post-survey 

adjustments is becoming more popular amongst survey researches.  

A distinctive feature of household longitudinal surveys is that they collect observations 

from individuals on multiple occasions. This design involves following individuals over 

time and continuing to collect data from them. However, respondents might not be 

available to participate in the survey every time data are collected. Therefore, non-

response can occur for a number of reasons that result in non-contact or refusal 

(Lepkowski & Couper, 2002). For example, if some sample members change their 

address without informing the survey organisation, this might result in non-response; also, 
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some respondents may refuse to respond at some point although they have participated in 

previous waves. Thus, the complexity of longitudinal surveys turns non-response into a 

dynamic event that accumulates over time when further waves are conducted (Watson 

and Wooden, 2009). This may be a dilemma for the survey organisation, especially if 

respondents were chosen via a probability sample design since they cannot be replaced. 

Logical questions that the survey organisation may face in these circumstances are: what 

advantage a probability sample has if it will (over time) suffer from high non-response? 

Would a non-probability sample be a better option even though it may not be 

representative of the population of interest?    

Non-response in longitudinal surveys can be in one of two forms: (1) Wave non-response 

refers to the process where a sample member is absent from the survey for at least one 

wave but returns to the survey in a later wave. (2) Attrition on the other hand occurs when 

a respondent participates in the survey for one or more waves but permanently stops 

participating at some point during the survey course. Although the former is not trivial, 

survey researchers are more concerned about the latter for at least three reasons: (a) more 

information is lost in the case of attrition; (b) the potential bias caused by non-response is 

more likely to occur (Chang, 2010); (c) any observed information collected in earlier 

waves become weak predictors as more waves are added (Chang, 2010). In surveys with 

an indefinite number of waves, it is always difficult to distinguish wave non-response 

from attrition as it is controlled by the respondents’ behaviour in the future. In contrast, 

the point of attrition can be identified in finite length surveys when no further waves are 

conducted (Uhrig, 2008). 
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Causes of attrition and wave non-response 

Attrition and wave non-response are special cases of non-response occurring in panel 

studies. The causes of non-response in longitudinal surveys may be similar to those in 

cross-sectional surveys but somewhat different in at least two ways: (a) in a longitudinal 

survey respondents are burdened by a constant long-term commitment to responding; and 

(b) changes occurring during gaps of data collection points may have a big effect on the 

response process.    

Therefore, some reasons for non-response may be specific to longitudinal studies. For 

example: 

(1) Failure to update contact information: If survey participants move houses between 

waves without informing the survey organisation, it could be too expensive if not 

impossible to track them and failure to do so will directly result in non-contact. 

(2) Loss of interest: Although some respondents may be interested in taking part in the 

survey at the start, their level of willingness to continue giving data at every wave is a 

function of the survey organisation’s effort to maintain their interest level (e.g. use of 

incentive). Failure to retain participation interest results in refusal. 

(3) Changes in health condition: Longitudinal surveys are conducted over a long period 

of time. Over this period, some respondents might suffer from a bad health condition 

leading them to have to drop out.   

 (4) Technical issues related to data collection strategy: Survey organisations may be 

forced sometimes to adopt changes in the data collection strategy. For example, a failure 
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in maintaining the interviewer from the last wave may affect the propensity to respond in 

the current wave. This is particularly common when the new interviewer is less 

experienced. Although there is no evidence that the change of interviewer results in non-

response, recent research shows that interviewer continuity is associated with low 

propensity for refusal (Lynn, Kaminska and Goldstein, 2014).   

The effect of non-response in the longitudinal context 

The potential bias and smaller sample size that result as a consequence of non-response 

may be more problematic in longitudinal surveys for at least two reasons:  

(1) The original sample may suffer from a monotonic decrease in its size. As a result, 

after a large number of waves, the survey organisation might end up with a relatively 

small sample that is incapable of producing precise estimates. In cross-sectional surveys, I 

mentioned that this is not a major problem since a required achieved sample size can be 

set according to a predicted non-response level. In contrast, in longitudinal surveys, even 

if the survey organisation invested in a very large sample size the reduction of the sample 

size may still be a problem in the long term, particularly in surveys of indefinite length. 

This distinction shows that the decrease in the sample size due to non-response is more 

problematic in longitudinal surveys, and in fact it is a typical feature of panel data. 

Therefore, it would be very wise for survey organisations to establish future plans at the 

design stage to deal with this problem in order to increase the size of the achieved sample 

and hence ameliorate the precision of the survey estimates.  

(2) The process in which respondents drop out of the study may not be random 

(Fitzgerald, Gottschalk and Moffitt, 1998; Watson, 2003) and it is plausible to assume 
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that some of the drop outs are because of the topics covered by the survey. For example, 

respondents may participate in one or two waves and then decide to drop out after they 

have discovered what the survey is about. If these drop outs are different from 

respondents in terms of what the survey is measuring, the sample becomes progressively 

unrepresentative of the population as more waves are conducted. Consequently, estimates 

derived from the achieved sample will be biased. 

Methods for dealing with non-response 

There are two broad categories of methods that are used to deal with the non-response 

problem. Before describing these categories, it is important to point out that it is a good 

idea to combine methods from both categories in order to tackle non-response effectively. 

The first group of methods is concerned with minimising non-response when collecting 

the data (Lynn, 1996; Stoop et al, 2010). In this regard, survey organisations may 

incorporate a mixture of techniques in the survey design in trying to decrease non-

response rate to its minimum. Groves et al (2004) provide a wide range of these. 

Examples of design features that may reduce non-response are:  

Increased number of contact attempts: it is well documented in the literature of non-

response that the larger the number of contact attempts, the higher the likelihood of 

successful contact (Goyder, 1985).  

Long data collection period: long data collection periods provide a higher chance for 

successfully delivering the survey request to a larger group of sample members.  
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Reduced number of sample members assigned to interviewers: if a large number of cases 

are assigned to an interviewer, less effort may be given to convince some cases to 

respond.  

Pre-notification letters: unexpected calls, or visits from ‘strangers’ (the interviewers) may 

cause some sample members to refuse.  

Use of incentives: offering a gift or money to sample members in return of their 

participation may encourage many people to take part in the survey (Laurie and Lynn, 

2009). 

Mixed-modes of data collection: some sample members can only be contacted through 

specific mode (e.g. face to face), other sample members may be contactable via a number 

of different modes (e.g. telephone, mail and web). Using a mixed-mode design, thus, 

increases the likelihood of contacting a larger number of sample members.  

Interviewer/ household matching: some interviewers may have characteristics that more 

‘acceptable’ to certain groups of sample members (e.g. female interviewers may be 

preferable to old women who are living alone). If these can be identified, it is wise to 

assign sample members to interviewers in a way that improves the likelihood of trust, and 

hence increase the response tendency.  

Although these methods are very useful in increasing the response rate, still, it is 

impossible to obtain 100% response rate, especially in surveys targeting households and 

individuals. 
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Thus, a second and important group of methods deals with non-response at the analysis 

stage. As mentioned before, these methods are referred to as ‘post-survey adjustments’. 

The rationale behind these methods is based on the idea of adjusting the distribution of 

the responding sample (achieved) in a way that makes it similar to the distribution of the 

target population. As a result, those who are missing from the sample will be 

compensated for through this adjustment. Consequently, estimates produced from the 

adjusted sample may be less biased. 

Before introducing the types of post-survey adjustments that are used to deal with non-

response, it is important to distinguish between different types of ‘missing data 

mechanisms’. A missing data mechanism is the process that generates the missingness. 

The choice of specific post-survey adjustment method to deal with missing data relies on 

our expectations on the missing data mechanism. 

Missing data mechanisms 

There are three main types of missing data mechanisms in the literature that can be 

distinguished (given by Rubin, 1976; Little and Rubin, 1987; 2002; Allison, 2000; 

Bethlehem, 2009). If Y represents a substantive survey variable for which some values are 

missing for some of the sample members; X represents a set of auxiliary variables that is 

fully observed for all sample members; Z is a variable that is external to the survey and is 

uncorrelated with X and Y; and R indicates whether values of Y are observed or not, then: 

Missing completely at random (MCAR) is a situation where the missingness is caused 

solely by the outside phenomenon Z (i.e. R and Z are correlated). In this case, estimates 

derived from Y will not be biased and post-survey adjustments are not necessary. 
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Missing at random (MAR) refers to the situation where the missingness depends on Z, but 

it may also depend on X so that there is an indirect relationship between Y and R (i.e. the 

relationship between Y and R is conditional on X). If this is the case, the missingness may 

cause bias to estimates derived from Y, but fortunately, by using X, a number of post-

survey adjustments may be used to adjust for this bias. If MAR holds and the parameters 

governing the missing data mechanism are distinct from the parameters to be estimated, 

the missing data mechanism is said to be ‘ignorable’. It is common to use the terms MAR 

and ignorable missingness interchangeably because, in practise, the parameters to be 

estimated are likely to be distinct from the parameters governing the missing data 

mechanism (Allison, 2000). 

Not missing at random (NMAR) is the case where there is a direct relationship between Y 

and R (and may be also between X and R; and Z and R). In other words, the missingness is 

caused by the survey variables. In this situation, estimates derived from Y will be biased. 

Unfortunately, this will limit the choice of the post-survey adjustments that can be used to 

deal with the problem, as some methods cannot help reducing the bias in this case.  

In practise, however, survey researchers will not know which of the three missing data 

mechanisms applies to the data. Because, such knowledge requires full measurements on 

the selected sample in terms of the survey key variables, which in turn makes addressing 

the problem of missing data unnecessary in the first place. Thus, survey researchers have 

to assume one of the three missing data patterns. MAR is the most assumed missing data 

mechanism, as it allows the implementation of a wider range of post-survey adjustments. 
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Although the concept of a single missing data mechanism is usually presented in the 

literature on missing data as operating at the level of the sample, in my opinion, the 

missingness mechanism in a substantive variable Y may very well be a combination of 

two or even the three missing data mechanisms (MCAR, MAR and NMAR). This may 

occur if there is no homogeneity between the non-responding sample members with 

respect to the actual reasons of non-response. In this case, for some sample members, data 

may be missing on Y under MAR, and for others may be under NMAR. Thus, assuming a 

single missingness mechanism may not necessarily reflect the actual missing pattern in 

the data. Nonetheless, it is helpful in terms of deciding between classes of missing data 

adjustments. One of the areas that is not fully understood is whether a multiple 

missingness mechanism rather than a single missingness mechanism affects the 

adjustment of missing data.  

Post-survey adjustments 

Post-survey adjustments are a class of methods that are used to tackle errors of non-

observations. The focus here is on non-response error. There are a number of post-survey 

adjustments that can be used to deal with the non-response problem. In this section, I 

discuss the most common methods. These are: Non-response Weighting; Post-

stratification; Calibration; Raking; Multiple Imputation; and the Selection Model 

Approach. Some of these methods, such as post-stratification, are not primarily used to 

adjust for non-response (as will be explained next); still, they may relatively reduce non-

response bias if they meet certain conditions as will be explained.   



38 
 

It is important to point out that all these methods rely on, and use a set of auxiliary 

variables ‘X’ to deal with non-response in the set of survey target variables ‘Y’. Some 

methods require X to be known for all cases in the target population, or otherwise the 

sampling frame (calibration; post-stratification; and raking). Other methods only require 

measurements on X for the selected sample (non-response weighting; multiple 

imputation; and the selection model approach). The important issue here is that X needs to 

be observed for both respondents and non-respondents to be able to deal with non-

response in one way or another. Also, to successfully adjust the responding sample to 

reduce non-response error, X needs to be associated with the response propensity. In the 

case of longitudinal surveys, substantive survey variables that were observed for all 

sample members from previous waves may also be included in X. Chapter 1 in this thesis 

provides details about the types and sources of auxiliary variables that can be used in this 

regard. 

In this section we provide a brief overview of the above post-survey adjustments. 

Weighting for non-response is a technique that assigns numerical values (weights) to the 

responding sample units, in order to modify them to also represent non-responding 

sample units (Lynn, 2005). As a result, it is hoped that the weighted distribution of the 

responding sample will be similar to that of the selected sample. More details on non-

response weighting, including the construction of the weights, will be discussed in the 

next sections as this is the subject of this thesis. However, the term ‘weighting’ will be 

used here as shorthand for non-response weighting.   
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Calibration is a method that assigns values (also called weights) to respondents so that 

known parameters of the auxiliary variables X, either from the population or another 

survey, can be reproduced (Sikkel, Hox and de Leeuw, 2009; Särndal and Lundström, 

2005). This procedure usually results in estimates with smaller standard errors. If the 

auxiliary variables used in calibration distinguish response from non-response (i.e. are 

correlated with the response propensity), non-response error can also be reduced. 

Post-stratification also assigns values to respondents so that their sums are equal to 

known population totals for certain sub-groups of the population (Biemer and Christ, 

2008). For example, if the population totals of subgroups defined by gender are known 

(maybe from the sampling frame or other external source), post-stratification assigns 

weights to respondents so that their distribution by the defined subgroups is the same as 

the known population distribution. In this respect, post-stratification can also be classified 

as a calibration method. The difference is that in calibration the known subgroups totals 

may not necessarily be from the population, they could be from another survey. Post-

stratification is used primarily to correct for non-coverage error, and to reduce the 

variance of survey estimates. It is not typically used to deal with non-response bias. 

However, if the auxiliary variables that form the subgroups in the post-stratification are 

powerful predictors of the response probability, post-stratification may also reduce non-

response bias.  

Raking is an extension to post-stratification. It is a process that performs 

multidimensional post-stratification (Cervantes and Brick, 2008). It assigns values to 

respondents in order to match known population distributions in a number of auxiliary 

variables (dimensions). Raking repeats this process a number of times until accepted 
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(tolerable) distributions are met. It is, thus, different from post-stratification by the fact 

that it does not reproduce the exact population distributions on the auxiliary variables. 

Another difference between raking and post-stratification is that, unlike post-

stratification, in raking, the joint distribution of the auxiliary variables (cross-tabulation) 

does not need to be known. Instead, raking can be used, if only the marginal distributions 

of two or more auxiliary variables are known.  

Multiple Imputation (MI) is different from single imputation (SI). The latter produces one 

synthetic value to replace a missing value in a target variable Y. This can be deterministic 

if, for example, the missing values in a variable replaced by the mean value of the 

variable; or random if the imputed values are selected randomly from the available values 

of the variable being imputed3. Bethlehem (2009) provides a rich discussion for a range of 

different SI methods. These are not discussed here as our focus is on MI. However, there 

are two major disadvantages of SI that can be mentioned (indicated by de Leeuw et al, 

2003): 1) using the observed data to impute the missing values emphasizes the structure 

of the observed data in the imputed data set; and 2) analysing the imputed data set 

involves using a spuriously large number of cases which may lead to biased significance 

tests.   

MI, on the other hand, may solve the problems of SI. MI produces a set of synthetic 

values to replace a missing value. The method originated in the 1970s in application to 

non-response (Rubin, 1976). The ordinary concept of MI (proposed by Rubin, 1987) is 

based on three steps: impute the missing values in the data m times (results in m complete 

                                                           
3 Deterministic imputation results in the same value if the imputation is repeated; whereas in random 

imputation the imputed value may change if the imputation is repeated.  
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data sets); perform the desired analysis (m times) on each of the complete data (imputed) 

sets; and combine the results obtained from the m-time repeated analysis into a single 

result. Although analysing the data m times may seem inconvenient, it is not difficult, 

especially with the existence of a number of powerful conventional software nowadays. 

What might be difficult is the generation of m data sets in an appropriate manner (de 

Leeuw et al, 2003). In MI, the imputed values must include an error term from an 

appropriate distribution (generally, the models used for the data generation should include 

variables that predict either the missingness or the outcome variable). This solves the 

problem of emphasizing the existing structure in the data. Also, analysing m data sets and 

combining the resultant estimates into an overall estimate resolves the problem of the 

biased significance tests.  

Over time, MI went through remarkable improvements to develop imputation models 

which use variables that predict both the missingness and the outcome of interest 

(Schafer, 1997) which results in a more efficient analysis. In recent years, a number of 

studies have demonstrated that MI can also be incorporated in dealing with non-response 

in substantive longitudinal data analyses (Goldstein, 2009; Carpenter and Plewis, 2011; 

Plewis, 2011). One important difference between imputation and calibration-based 

methods is that imputation attempts to produce a distribution that resembles the true 

distribution of the imputed variable, which is not required by calibration-based methods.  

All of the above post-survey adjustments assume MAR (although MI can also work under 

NMAR if the imputation model can correctly specify the missingness). In circumstances 

where survey researchers have reasons to believe that MAR does not hold, the missing 

data mechanism is not ignorable, and valid estimation may require modelling the 
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missingness as part of the estimation process. MI can produce valid estimates, in this 

case, if the model for missingness is correctly specified (Allison, 2000). However, these 

situations are fraught with difficulty. Because the very data that suffer from missingness 

cannot support the specification of an appropriate model that correctly predict the 

missingness.  

Another well-known method that is used for handling missing data when MAR is violated 

is the selection model approach. 

Selection Model Approach (SMA) is a method that assumes NMAR. As we mentioned, if 

data are not missing at random, there are no simple solutions. A specific model for 

missingness must be hypothesized. The SMA then postulates a model that links the 

missingness to the distribution of the outcome variable (Heckman, 1979; Hausman and 

Wise, 1979). In other words, it jointly models the substantive model of interest and the 

probability that the outcome variable is observed.  

However, there are a number of drawbacks in the SMA. Aside from the fact that there is 

no information in the data to help chose an appropriate model, there is no statistics that 

can show how well a chosen model fits the data and the results are often sensitive to the 

choice of the model (Little and Rubin, 2002). Furthermore, applying this method requires 

the availability of variables that are not correlated with substantive outcome. Fully 

observed instrumental variables (from previous waves in case of longitudinal data) that 

vary between units and predict the missingness may be good candidates. However, such 

variables, sometimes, are difficult to find as most available survey variables are 

respondents’ personal characteristics, in which case they are likely to be related to the 
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substantive outcome. Also, other variables such as characteristics of interviewers and 

interview condition have little variation across units (Fitzgerald, Gottschalk and Moffitt, 

1998). Recent studies that applied SMA to data from longitudinal surveys are Carpenter 

and Plewis (2011) and Plewis (2011). 

As mentioned earlier, adjusting for missing data appropriately depends on the 

missingness mechanism and the method that is used as a post-survey adjustment. 

However, a simulation study by Collins, Schafer and Kam (2001) reports that the MAR-

based methods result in little bias in estimates even when the missingness is NMAR. The 

only exception is that when some of the causes of missingness that are not included in the 

adjustment are strongly correlated with the substantive variable Y (with a correlation 

coefficient greater than 0.4). 

Weighting 

Weighting is an adjustment which is implemented at the stage of analysing the data. It is 

applied to compensate for the units missing from the selected sample (non-responders). It 

adjusts the responding sample so that its distribution is the same as the selected sample, 

and hence produces unbiased estimates. 

In weighting we calculate numerical entities (weights) that represent the influence of 

survey respondents on estimates. When constructing a survey-based estimate, weighting 

assigns the calculated weights to respondents as their contribution to the estimate in 

question (Lynn, 2005). The weight of a respondent can be interpreted as the number of 

individuals in the target population that are represented by the respondent.  
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Aside from non-response weighting and calibration-based weights, there is another type 

of weighting that is usually used in conjunction with non-response weighting. This 

weighting is used to reflect the selection procedure, when the sample is selected with 

unequal probabilities of selection. Weight values that result from this type of weighting 

are referred to as ‘Design weights’. In practise, the design weights are created first before 

adjusted with non-response weights. In this respect, the final analysis weight used to 

adjust for non-response is a combination of the design weight and non-response weight. 

Thus, it may be important to discuss the role of the design weights and their construction 

before explaining how non-response weights are created.  

The design weights 

The design weights are used to correct for the unequal probabilities of selection. This 

occurs when some of the units in the sampling frame have a different chance of being in 

the selected sample than other units. If a sample has been selected with unequal 

probabilities, estimates such as the unweighted sample mean are biased (Horvitz and 

Tompson, 1952). For example, consider a sample design that aims at randomly selecting 

one adult from each of H households. In this example the chance of an adult being 

selected from household h depends on the number of adults in this household. In other 

words, the probability of selection increases as the number of adults in the household 

decreases. Thus, ignoring the fact that the selection probabilities are different will result 

in bias in estimates due to an over-representation of households with fewer adults. This 

can be avoided if a correction is implemented to balance the probabilities of selection. 

This correction is the design weight: it adds more value to the cases whose probability of 

selection is low to represent more cases of their category, and decreases the value of the 
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cases whose probability of selection is high, in order to balance the sample. Therefore, the 

design weight for a given unit in the sample is the inverse of the selection probability for 

this unit. Thus, calculating the design weights is fairly simple. It only requires knowledge 

of the selection probabilities for every unit in the sample. The calculation of the design 

weight is given by equation (2). 

𝐷𝑖 =  𝑝𝑖
−1                                                                                                                          (2) 

Where 𝐷𝑖 is the design weight for case i; and 𝑝𝑖 is the probability of selection for unit i. 

If sample units were selected using a simple random sampling method, 𝑝𝑖 becomes 

constant. In this case, all sample units will have the same design weight which is the ratio 

of the number of units on the sampling frame to the number of units in the selected 

sample. Otherwise, the design weight must reflect the strategy of selection for each unit 

separately. 

Constructing non-response weights 

Although the rationale behind non-response weights is convincing and well established, 

there is no universally held protocol to compute them. Weights construction varies 

according to the differences in circumstances from sample to sample concerning the 

design and the availability of auxiliary information about the sample and the target 

population (GATS Sample Weights Manual, 2009). Thus, the actual stages for deriving 

the weights may vary from one survey to another. Therefore, the weights are usually 

created and released by the survey organisation. Nevertheless, there are general well-

known steps to constructing the weights, to compensate for non-response. These shall be 

discussed here. 
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Non-response weights are based on the response propensity which is measured by the 

probability of response. Those whose characteristics lead to low response probability 

should have high weight values to represent more individuals from their category, since 

they are less likely to respond. In turn, individuals with characteristics that lead to high 

response probability should have low weight values to represent fewer individuals from 

their category, since they are more likely to respond. Thus, a non-response weight is 

basically the inverse of the response probability (propensity). This is why part of the 

literature in this area refers to non-response weighting as ‘Inverse Probability Weighting 

(IPW)’. 

There are two ways to estimate the response probability for units in the sample in order to 

calculate the weights: weighting classes; and model-based methods.  

Weighting classes 

Weighting classes is a simple approach that involves dividing the sample into a number of 

non-overlapping sub-groups using a few auxiliary variables (also called weighting 

variables) that are known for both respondents and non-respondents (Kalton and Flores-

Cervantes, 2003; Little, 1986; Brick, 2013 & Biemer and Christ, 2008). The resultant sub-

groups are referred to as ‘weighting classes’. The response probability for each weighting 

class is then calculated as the class response rate. The non-response weight that is 

assigned to a responding unit is simply the inverse of the response probability of the class 

to which the unit belongs. For example, for a given class ‘c’, if the number of units is 

denoted by 𝑛𝑐, and the number of responding units is denoted by 𝑚𝑐, the response 

probability is defined by 𝑚𝑐/𝑛𝑐. Thus, the weight of a responding unit in class ‘c’ is 
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𝑛𝑐/𝑚𝑐. If there is homogeneity in terms of response propensity between all units in a 

weighting class (i.e. all units have the same response propensity), MAR holds, and non-

response bias will be eliminated by using the weights. Therefore, an alternative term to 

weighting classes, which is sometimes used in the literature, is Response Homogeneity 

Groups (RHGs), see for example (Brick, 2013).  

The disadvantage of this method is that classes are subjectively identified in one or two 

dimensions, by using one or two auxiliary variables. Also, classes with small number of 

respondents produce small response rates and, hence large weights. Larger values of 

weights may introduce large variances in estimates. Lynn (1996) suggests avoiding 

weighting classes with a response propensity that is less than one-fifth of the overall 

survey response rate. 

Model-based methods 

In a model-based method, usually a binary outcome regression model is used to estimate 

the response propensities for the sample units. This method was incorporated into the 

survey non-response problem by David et al (1983). It is an extension of the propensity 

score theory of Rosenbaum and Rubin (1983). Models used in this regard, often, are 

referred to as ‘Response Propensity Models (RPMs)’. With a suitable function, usually 

‘logit’ or ‘probit’, the probability of response can be modelled (response=1; and non-

response=0). The non-response weights can then be calculated, for responding units, as 

the inverse of the predicted values from the model. For example, if 𝑅𝑖 denotes the 

outcome variable in a RPM that uses a logit function (i.e. logistic regression), 𝑅𝑖 is an 
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indicator with the following values (𝑅𝑖= 1, if the ith sample unit responds; and 𝑅𝑖= 0, 

otherwise). 

Auxiliary variables (or weighting variables) that are available for both respondents and 

non-respondents, and are thought to be correlated with 𝑅𝑖 can then be used to estimate the 

model. 

For responding units, non-response weights are then computed as: 

𝑤𝑁𝑅𝑖 =  𝑟𝑖
−1                                                                                                                       (3) 

Where 𝑤𝑁𝑅𝑖 is non-response weight for unit i; and 𝑟𝑖
−1 is the inverse of the predicted 

value of  𝑅𝑖. 

Using a RPM to estimate the response probability for sample members may be more 

effective than applying the weighting classes approach (Grau, 2006). This is because a 

large mixture of dummy and continuous weighting variables can be used to fit a range of 

models, and therefore obtain more effective non-response adjustments. However, an 

important disadvantage is that the predicted response probabilities for some units may 

differ considerably. This may result in large weights variance. Large weights variance, in 

turn, will increase the variance of estimates. Nonetheless, the estimated response 

probabilities can be grouped into weighting classes, and weights can then be recalculated 

using either the mean predicted probability in the class or the observed response rate in 

the class. 

Since we always assume that being selected in the sample is independent of responding to 

the survey, the weight that is usually used in the analysis is constructed as the product of 
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the design weight and non-response weight. This way, every unit in the sample is adjusted 

using its chance of being selected in the sample and its tendency to respond to the survey 

simultaneously. The final analysis weight assigned to the ith responding case is shown in 

equation (4).  

𝑤𝑖= 𝐷𝑖 ∗ 𝑤𝑁𝑅𝑖                                                                                                                     (4) 

Where 𝑤𝑖 is the final analysis weight; 𝐷𝑖 is the design weight; and 𝑤𝑁𝑅𝑖 is the non-

response weight. 

Effect of weighting 

Weighting is done to reduce bias in survey estimates. The underlying assumption for this 

is that characteristics of respondents in a weighting class (or with a given set of 

characteristics of the auxiliary variables that predict the probability of response) are 

similar to the unobserved characteristics of non-respondents in the same class with 

respect to the survey target variables (Lynn, 2005). When this assumption holds, 

weighting will then successfully reduce bias from estimates. However, there is a 

downside to weighting. That is variability in the weights will increase the variance of the 

survey estimates. Thus, while un-weighted estimates may be biased but more precise, 

weighted estimates are less biased but also less precise. This is an inevitable trade-off to 

be made in weighting. However, to limit the extent of the increase in variance, survey 

researchers sometimes restrict large weights to some arbitrary maximum value at which 

they can tolerate its corresponding increase in variance. This technique is referred to as 

‘trimming’. 
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Why use weighting? 

Each of the post-survey adjustments has its advantages and disadvantages. They share 

similarities such as requiring auxiliary variables, but they differ in terms of the way they 

handle non-response. Weighting and calibration-based methods assign weights to 

respondents as compensation for those who are missing; whereas imputation methods 

attempt to estimate the missing values in the substantive variables. This raises the 

question as to whether weighting-based methods have advantages over imputation-based 

methods or vice versa. To give an insight into this issue, this section compares weighting 

with Multiple Imputation (MI) and the Selection Model approach (SMA).  

Weighting relies on the MAR assumption. SMA works on the basis of NMAR. MI could 

be used under both MAR and NMAR, but the latter may require MI to correctly specify 

the model for missingness. MI views both unit and item non-response as a missing data 

problem. Consequently, it corrects simultaneously for unit and item non-response. 

Weighting, on the other hand, can only deal with unit non-response. Also, weighting 

ignores the association between the auxiliary variables and the outcome variable, which 

may lead to inefficiencies in the analysis (Plewis, 2011). Meanwhile MI and SMA take 

the association between the auxiliary variables and the outcome variable into account by 

establishing models that link the outcome variable and the missingness mechanism. Thus, 

the estimation of different substantive models may need the application of different MI 

and SMA models.  

Weighting, however, is multipurpose. Once the weights are created they can be used in 

the estimation of different substantive models (i.e. the same set of weights is used every 
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time). In addition, for secondary data users, who are concerned about the effect of non-

response on their estimates, and who do not have the technical capabilities nor the 

necessary data to perform a procedure like MI or SMA, weighting may be a good option. 

It is relatively easy to use weights in most statistics software. The weights are in the form 

of a variable in the data set. Usually, users only notify the software that they would like to 

implement weighting in their analysis and simply identify the weighting variable. In 

return, the software carries out the necessary calculations and produces weighted survey 

estimates. Moreover, analysts are able to use many standard analysis techniques with 

weights. 

Weighting in longitudinal surveys 

It is common practise in longitudinal surveys that survey organisations prepare weights 

and include them in public use data files for use by analysts. Most of the household panel 

surveys implement a similar approach in terms of non-response weighting. To give an 

insight into this, in this section we describe and discuss this approach on the basis of two 

major surveys: the BHPS and HILDA; but more attention is paid to the BHPS since its 

data is used in this thesis.  

The BHPS 

Full details on the BHPS including the sample, survey instruments, fieldwork, measures 

and weighting procedures are well documented in Taylor (2010); Lynn (2006); and Uhrig 

(2008). 

The BHPS was conducted in the period 1991 to 2008. It followed its sample members 

every year to conduct interviews. Its main purpose was to explore the dynamics of change 
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experienced by the population in the UK. In addition, the BHPS was conducted so that 

secondary data users have micro-data sets available. These data sets can then be used to 

carry out a wide range of research across a range of social science disciplines, and for 

policy research. In general, the BHPS provides data in 9 main areas: labour markets, 

income, savings and wealth, household and family organization, housing, consumption, 

health, social and political values, education and training.  

Eligibility to the BHPS was restricted to individuals who were residents in private 

households in the UK. Those who were not alive, not resident in the UK, or were in the 

UK but institutionalised (i.e. living in nursing homes, military bases or prison) were not 

eligible for the survey. Using the small user Postcode Address File (PAF) as a sampling 

frame, 8,217 addresses were drawn as original sample units. The frame included all 

countries in Great Britain except Northern Ireland. There were three stages of selection: 

using a systematic sampling technique, the first stage selected 250 postcode sectors from 

stratified listing of all sectors on the PAF as Primary Sampling Units (PSUs); in the 

second stage, fieldwork delivery points (equivalent to addresses) were selected from the 

resultant PSU from the previous stage using analogous systematic procedure; and a final 

selection stage was conducted by interviewers at the address level. During the selection of 

households, interviewers excluded non-residential addresses and institutions. A household 

in the BHPS was defined as “one person living alone or a group of people who either 

share living accommodation or share one meal a day and who have the address as their 

only or main residence”.  

The first wave was conducted in 1991. Interviews were attempted with all household 

members who were aged 16 or over. This resulted in 10,248 individual interviews at wave 
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1. Subsequent to wave 1, the BHPS attempted following all sample members in wave 1 

responding households and interviewing them as well as all new household members 

living with wave 1 sample members. Letters were sent to sample members, in subsequent 

waves, notifying them that the interviewer will call them within a week. Only adamant 

refusals were excluded from the fieldwork. Non-contacts were coded as such after six call 

attempts.  

Weighting in the BHPS 

The weighting in the BHPS is documented in volume A of the user manual (by Taylor, 

2006). 

To adjust for non-response, the BHPS calculates weights both at the individual and 

household levels. Our discussion will be limited to weights at the individual level, since 

the analyses here, and in most research, are done at the individual level. There are two 

types of weights: cross-sectional and longitudinal. Cross-sectional weights are available 

in every wave, but they are only suitable for cross-sectional analyses (single-wave 

analysis) in the corresponding waves. Longitudinal weights are available in every wave 

from wave 2 onwards. Longitudinal analyses that use data from a number of waves (any 

wave-combination of more than 1 wave) should use longitudinal weights from the last 

wave in the wave-combination in question. For example, to analyse data from wave 1, 10 

and 18, or data from all waves up to wave 18, both scenarios should use the longitudinal 

weights at wave 18. In this section we describe the calculation of longitudinal weights.   

At wave 1, there were two general types of weights: design weights and non-response 

weights. The design weights were derived to account for the different probabilities of 
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selection due to the different stages of selecting the sample. These were calculated as the 

inverse of the probability of selection for every sample unit. However, our focus shall be 

on the creation of non-response weights. First, these were calculated at the household 

level using weighting classes. The variables used to identify the classes were region, 

socio-economic group (at the address level) and type of accommodation. In every class, 

the responding households were weighted by a factor that made their total number equal 

to the total number of responding and non-responding households in the class. A small 

number of cases within the responding households failed to respond at wave 1. However, 

information about these individuals were recorded during the household interview. To 

adjust for this, individual (within responding households) non-response weights were 

derived. A model-based method was used. By defining two outcomes: individual 

interview obtained=1; and individual interview was not obtained=0, a logit model was 

fitted. The variables used were age, gender, region, housing tenure, household size, 

marital status and employment status. For all responding cases, the weights were then 

defined as the inverse of the predicted probabilities from the model. These weights were 

then multiplied by the household non-response weight, and the resultant weights represent 

the individual non-response weights at wave 1. Note that BHPS does not release the 

design weights separately. The design weights were combined with the individual non-

response weights from wave 1. Thus, the final analysis weight for a responding case at 

wave 1 is a product of the design weight and the individual non-response weight at wave 

1 for that case. Final analysis weights in wave 1 represent the set of weights that is 

included in the BHPS wave 1 data file for analyses at the individual level.  
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In every subsequent wave, response was defined as responding in all waves up to and 

including the latest wave. In other words, both attrition and wave non-response were 

classified as absolute non-response. Non-respondents of unknown eligibility were treated 

as eligible non-respondents. The weights were then derived, every wave, (only) for those 

who responded at all waves up to the latest. Thus, the longitudinal weights at any wave 

are the product of subsequent weights accounting for losses between each adjacent pair of 

waves up to that point. Weighting in waves subsequent to wave 1, was done using 

weighting classes. A number of variables that were thought to be informative of non-

response and of interest in the substantive analyses of BHPS data were used to form the 

classes. These variables include age, gender, race, employment status, income, education, 

region and tenure. At every wave, the method used variables from the previous wave. To 

make the process manageable, an automatic interaction detection programme (SPSS 

CHAID) was used to create the weighting classes. The weight for respondents in a given 

class was defined as the inverse of the response rate of that class.  

Weighting in HILDA 

In HILDA there are also two types of weights: cross-sectional and longitudinal. For 

HILDA, the weighting is documented in Watson and Fry (2002), Watson (2004) and 

Summerfield (2010). 

At wave 1: First, the design weights were calculated as the inverse of the probabilities of 

selection of each household. Note that the design weight for a sample member in a 

household is the same as the design weight for that household, since the probability of 

selection of a person coincides with that of the household in which they reside. Second, 
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these weights are adjusted for non-response at the household level at wave 1. These steps 

are exactly the same as those of the BHPS. 

However, unlike the BHPS, which used weighting classes to create non-response 

adjustments, in HILDA, these were created based on a logistic regression model 

predicting the probability of response for each household (response=1; non-response=0). 

Data about both responding and non-responding households, that were used to estimate 

the model, came from: basic information about the selected households made by the 

interviewers; and from the 1996 census where descriptions about the neighbourhood to 

which the dwelling belongs are available (for the BHPS, the weighting variables came 

from the sampling frame). This information include: dwelling type, external conditions of 

the dwelling, security features of the dwelling, geographical location, density of area 

(population per square kilometre) and average household size. For responding 

households, the design weights were then multiplied by the inverse of the predicted 

probabilities from the model. Finally, and similar to the BHPS, within responding 

households, not everyone who was eligible for interview responded. However, 

information about these individuals was recorded during the household interview. This 

information was used in a logistic regression to predict the response probabilities for all 

persons. The variables used in the model include gender, age, marital status, labour force 

status, health condition, number of adults in the household, number of children in the 

household and housing tenure. For every responding person, the weight was calculated as 

the product of their inverse predicted probability from the model and their household 

weight (design and non-response). These are the initial persons weights that are available 

at wave 1 and suitable for cross-sectional analysis on data from wave 1.  



57 
 

The weighting steps from wave 2 onwards are also similar to those of the BHPS. The only 

difference is that HILDA uses a model-based method while the BHPS uses weighting 

classes. 

At wave 2: The initial persons weights were adjusted for non-response at wave 2. The 

method used a logistic model to predict the probability of response at wave 2 given that 

the person responded at wave 1. Non-respondents of unknown eligibility were treated as 

eligible non-respondents. The variables used to estimate the model were from wave 1. 

These variables included: gender, age, age-squared, marital status, employment status, 

education, health status, number of children in the household dwelling type, tenure and 

region. For a responding person, the initial longitudinal weight was then multiplied by the 

inverse of their predicted probability from the model.  

In every subsequent wave, the model is estimated using the same variables, from the 

previous wave, and the response probability in the current wave is predicted given that 

response is provided in the previous waves. For responding persons, the weights are then 

calculated as the product of their inverse predicted probabilities from the model in the 

current wave and their longitudinal weights from the previous wave. Thus, longitudinal 

weights in a wave ‘w’ are only available for responding persons in all waves together up 

to wave ‘w’. 

It is therefore obvious that calculating the weights in longitudinal surveys has a number of 

steps. First, the design weights are calculated in wave 1. The design weights are then 

adjusted by non-response weights in wave 1. The auxiliary variables used to create non-

response weights in wave 1 depend on the information available about respondents and 
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non-respondents. In some cases these are variables available from the sampling frame (as 

in the BHPS), and in other cases these are information from a national census or observed 

by the interviewer (as in HILDA). Once the survey has gone past wave 1, it becomes 

relatively straightforward to calculate the weights, but more importantly, weights in the 

current wave can be calculated using a large number of substantive variables (e.g. gender, 

age, education, etc…) from the previous wave. The response model at every wave 

predicts the probability of response in the current wave given that response was provided 

in the previous waves. The weights are then updated accumulatively, every wave, by the 

created weights in the current wave.  

Both the BHPS and HILDA implement this approach. The difference is that BHPS uses 

weighting classes to predict the probability of response, whereas HILDA applies a model-

based method. In any case, this approach, which is typical in household panel surveys, 

will be referred to, throughout this thesis, as the standard weighting approach (SWA).  

Apart from offering a single set of longitudinal weights at every wave, the SWA has the 

following principles: 

(a) Response is identified as responding in all waves up to the latest, and therefore 

weights are only provided for units responding in all waves up to the last one. In 

other words, those who skip responding in at least one wave are also identified as 

non-respondents and, thus, do not have weights (i.e. 𝑤𝑒𝑖𝑔ℎ𝑡𝑗=0; where j denotes 

attriters, wave non-responders and complete non-participants). 
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(b) Those who do not respond because they have left the study population (e.g. 

deceased or out of scope) but are not known as such are implicitly assumed to be 

eligible non-respondents.   

(c) After the first wave, the response probability is estimated using a mixture of 

common variables (from the previous wave) on which all sample members have 

measurements, and all sample members are used as one set in this estimation.  

However, the complexity of household longitudinal surveys raises concerns (linked to the 

above points a, b and c) with respect to using the SWA. In this thesis, we view these 

issues as limitations in the SWA. In return, we design, discuss and evaluate three different 

alternative weighting approaches, corresponding to these issues, throughout the chapters 

of this thesis. 

Concerns about the SWA 

(1) Ignoring non-monotonic response patterns  

Many household panel surveys implement a data collection policy that allows the 

possibility of wave-nonresponse followed by continuing participation. For a given 

respondent, this means that if he or she does not provide data in a particular wave (wave-

nonresponse), the survey organisation can also attempt collecting data from them in a 

later wave. In this setting, the response pattern, in terms of the number of respondents, 

may differ across wave-combinations. Thus, a single set of weights at every wave – as in 

the SWA - may not be the best strategy to deal with this type of non-response. This is 

because this single set of weights, in a wave ‘w’, is designed by reference to responding 

in all waves up to wave ‘w’. Thus, it identifies those who skip responding in at least one 
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wave between waves 1 and ‘w’ as non-respondents which may lead to excluding them, 

unnecessarily, from some analyses.  

For example, in a 10-wave survey, if an analyst would like to analyse data only from 

respondents responding, say at waves 1, 5 and 10, regardless of their responding status in 

the rest of the waves, in the SWA the appropriate set of weights for this analysis is the 

longitudinal weights at wave 10. However, this set of weights will rule out respondents 

who are not present in all of the 10 waves by assigning a weight of zero to them even if 

they responded in waves 1, 5 and 10. Therefore, using the SWA may be inefficient in this 

case. A more suitable weighting strategy, in this example, would define response as 

responding to waves 1, 5 and 10; and non-response otherwise. However, this implicitly 

suggests that weights should be created for all possible combinations of waves, but his 

might be impractical if a large number of waves is conducted. Therefore, limited number 

of sets of weights may be a solution. Nevertheless, even the issue of identifying the 

specific wave-combinations for weighting needs appropriate investigation and practical 

evaluation. 

(2) Treatment of unknown eligibility cases 

In representative samples all sample members who provide data for the survey must be 

eligible (part of the population of interest) for the survey administration. Otherwise, if 

some respondents are ineligible, they should be excluded from the sample.  

A common eligibility criteria for household longitudinal surveys is continuing to be alive 

and residing in the country where the survey is conducted. However, over time, eligibility 

status for some sample members may change. Sample members may die or move out-of-
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scope. The problem here is that, for some sample members, who were known to be 

eligible in earlier waves, eligibility status cannot be established in later waves if they 

cannot be contacted any longer. As a result, these will be classified as cases with 

unknown eligibility. Ideally, sample members whose eligibility is unknown but are 

actually ineligible should be excluded from weights creation (i.e. from the base of any 

weighting model). In the SWA, these are treated as eligible non-respondents. This may 

incorrectly increase the sizes of the weights in classes with more ineligible cases but are 

not known as such (recall that the weights are reciprocal of the probability of response). 

As a result, weighted estimates may be biased towards sample members from these 

classes.  

However, identifying ineligible cases amongst cases of unknown eligibility is a 

challenging task. In waves subsequent to the initial non-contact, it is impossible, 

sometimes, to identify eligibility status at the case level for those whose eligibility is 

unknown. A promising alternative that may need a detailed investigation is to use 

population eligibility information to estimate eligibility rates for subgroups in the sample 

that contain unknown eligibility cases. The weights in these subgroups can then be 

adjusted based on the estimated eligibility rates. 

(3) The choice of weighting variables and respondents for weighting 

Often, longitudinal surveys target large populations (typically a living population in a 

country). Sampled units from such populations are not usually homogeneous with respect 

to survey participation. Some sub-groups are more cooperative than others i.e. the 

response propensity may be driven by different factors for different sub-groups. Thus, 
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non-response predictors (weighting variables) in these sub-groups may differ from the 

general non-response predictors.  

In general, some variables are believed to be better weighting variables than others. For 

example, age and employment status are known as good weighting variables because of 

their strong relationship with the response probability and most substantive analyses’ 

outcome variables; while religious beliefs is not generally considered as a good weighting 

variable since it does not have a clear direct relationship with the response probability. 

Thus, using age and employment status together with other good predictors in weights 

creation generally yields a good set of non-response weights.  

However, the same weighting variables may not be powerful in predicting the response 

probability in some sub-groups in the same sample. For instance, age and employment 

status might not effectively predict the probability of response in the sub-group of women 

aged 80 or over (because in this sub-group variation in age is minimal and all respondents 

are likely to be retired). In fact, variables such as religious beliefs may be a better 

predictor in this case. The point here is that using a common set of variables from the 

previous wave to create a single set of weights in the current wave – as in the SWA - does 

not necessarily result in a set of weights that can tackle non-response successfully in all 

sub-groups in the sample. Some sub-groups could use an alternative set of weights 

created from another set of variables. Some of these subgroups are important and are 

frequently used for analysis. This may be an alternative approach of weighting, but it 

needs practical evaluation.  
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Survey research to date has not yet investigated these issues (the concerns about the 

SWA) in the development of non-response weights in longitudinal surveys. In addition, it 

is not yet known, empirically, whether the raised concerns have considerable negative 

impact on the weights resulting from the SWA. Many on-going surveys apply the SWA. 

On the other hand, most data users do not have the statistical knowledge or the data to be 

able to construct any type of adjustment for the purpose of their analysis. Consequently, 

such data users, if they would like to adjust for non-response, rely on the weights 

provided by the survey organisations to reduce non-response error in their estimates. 

Thus, investigating these issues is useful from both the survey organisation and data users 

perspectives.  

Moreover, the rapid rise in the improvement of survey designs (with the aid of current 

computer technology) which is faced by a rise in non-response rates, begs the question as 

to whether the SWA should also be improved to meet new challenges. However, at 

present, it is not known whether the SWA is able to deal with non-response error in all 

types of estimates. Also, other alternatives to weighting strategies are not being 

investigated extensively. Exploring other possibilities of weighting will benefit both 

surveys developing long-term weighting strategies and on-going surveys that need to 

improve their existing weighting. Thus, this thesis makes important and novel 

contributions to the development of non-response weighting for longitudinal surveys.   

The research in this thesis sets out to investigate whether the SWA appropriately tackles 

non-response error in different types of estimates from different types of analyses with 

respect to the three raised concerns. The study aims to explore alternative weighting 

approaches (AWAs) to deal with non-monotonic response patterns, unknown eligibility 
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whilst weighting and subgroup tailored-weighting. Also, the study evaluates the new 

approaches of weighting as opposed to the standard weighting approach. In the light of 

these objectives, the study seeks to answer the following questions: 

1) Like any ordinary weighting approach, the SWA can deal adequately with the main 

aspects of the survey design. However, given that the SWA does not take into account a 

few important aspects of the survey that result from the longitudinal nature of the survey 

(non-monotonic response pattern, unknown eligibility and the choice of weighting 

variables and respondents), can the SWA deal with non-response error in all survey-based 

estimates? 

2) If ‘non-monotonic response pattern’, ‘unknown eligibility’ and ‘the choice of 

weighting variables and respondents’ are taken into account to develop AWAs, will the 

AWAs have a different impact (in terms of magnitude and variance) on survey-based 

estimates compared to the SWA? 

3) If the AWAs have a different impact on survey-based estimates as compared to the 

SWA, does this result in very different estimates (i.e. is the difference between the 

equivalent estimates resulting from the SWA and the AWAs significant)? 

To achieve its objectives and answer its questions, this study is based on a specific 

analysis methodology. Aside from providing a rationalisation for the introduced 

approaches of weighting (AWAs), the analysis approach in this study is based on 

conducting empirical analysis on longitudinal data using the AWAs and the SWA, and 

comparing the results. It aims to provide practical examples for the evaluation of the 

AWAs based on longitudinal data from a major longitudinal survey. Namely, we use the 
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BHPS data for our evaluation. It is important to point out that the aim of our analysis in 

this thesis is not to compare the AWAs with each other. Rather, because each AWA is 

designed to address a particular limitation in the SWA, each AWA is compared in turn 

with the SWA to assess the effectiveness of the AWA in addressing the particular 

limitation.  

In addition, one can focus on testing the differences between the new sets of weights 

resulting from the AWAs and the set of weights from the SWA (by conducting some 

forms of statistical tests). This strategy can enable one to report on differences across all 

sets of weights. However, implementing such analysis strategy will not provide 

information on the impact of the introduced approaches on estimates, and whether this 

impact is different than the impact of the SWA. This is because constructing survey 

estimates will be eliminated from the comparisons. With regard to the impact of the 

AWAs on estimates, practical evaluation is needed.  

The remainder of this thesis is organised as follows: 

Chapter 1 is concerned with the issue of non-monotonic response patterns. The SWA 

assumes monotonic response and therefore results in zero weights for any sample units 

that did not respond at every wave. This is suboptimal for any analysis that does not 

require data from every wave. The chapter therefore explores an alternative approach that 

involves designing sets of weights for wave-combinations that are more likely to be used 

for analysis. Two sets of weights are created based on the SWA and the AWA. Statistical 

analysis is conducted on the same sample using the two sets of weights separately, and 

results are compared to disclose differences between the two weighting approaches.  
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Chapter 2 focuses on investigating a method for estimating eligibility rates for subgroups 

in the sample where eligibility is unknown for some cases, using data external to the 

survey. The chapter then introduces the AWA which makes use of the estimated 

eligibility rates in the weights creation. Empirical analysis is conducted using the SWA 

and the AWA. Conclusions are drawn based upon comparisons between the results.  

Chapter 3 is about the choice of weighting variables and the set of respondents used to 

create the weights. It explores another AWA (sub-group tailored-weighting), which 

recognises that the correlates of non-response could be different for different sub-groups. 

This approach is based on selecting a number of sub-groups from the sample and 

designing their weights by changing the weighting variables that are used in the SWA. 

Similar to the previous chapters, analysis is conducted using the SWA and the AWA. 

Evaluation of the AWA is based on comparing its results with results from the SWA.  
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1.1 Introduction 

The development of non-response weighting in longitudinal surveys requires paying 

attention to the complex aspects of the survey that emerge as a direct consequence of 

collecting measurements from the same units on multiple occasions. For an accurately 

weighted estimate, there should be a non-zero weight for all sample members who will 

contribute to the estimation process. Weighting that does not estimate weight values for, 

and therefore rules out, some of the respondents who should be used to construct the 

estimate in question, may not tackle non-response bias adequately. Moreover, it is an 

inefficient use of data in the estimation since some data are excluded even though they 

contain useful information.   

After many waves are conducted, say w waves, estimates of the relevant longitudinal 

population at wave ‘w’ can be constructed using data from all waves up to wave ‘w’, or 

from a number of other possible combinations of waves that include wave ‘w’, and that 

are subsets of the w waves. Different wave-combinations may be relevant to different 

analysis objectives.  If, in every wave-combination, response is defined as responding in 

all waves in the combination, each sample member may be defined as either a respondent 

or non-respondent, depending on which wave-combination is under consideration. As a 

result, each wave-combination may result in a different set of respondents both in terms 

of number and composition. It is very likely that the number of responding units in larger 

combinations (wave-combinations that contain large number of waves) is smaller than the 

number of the responding units in wave-combinations with smaller number of waves. 
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Survey organisations, typically, offer one set of longitudinal weights at every wave for 

analysts who would like to adjust for non-response in their analysis. The weights are 

designed by reference to responding in all the conducted waves up to the current one. i.e. 

the designing and offering of the weights is done based on the principles of the standard 

weighting approach (SWA) that we set out in the introduction of this thesis. Thus, the 

weights in a given wave ‘w’ adjust for the longitudinal non-response in all waves up to 

wave ‘w’. Consequently, weights are only available for those who responded in all waves 

up to ‘w’.  

Such weights can be very useful in reducing bias in estimates that are constructed using 

data from a balanced panel from all waves up to ‘w’. However, weighted estimates 

relating to the longitudinal population at wave ‘w’, which are constructed using data from 

a subset of any wave-combination that include wave ‘w’, will also use the longitudinal 

weights at wave ‘w’ (the only offered longitudinal weights that are relevant to the 

longitudinal population at wave ‘w’). In this chapter, we investigate whether the latter is 

suboptimal. In other words, we investigate whether it is efficient to use the longitudinal 

weights at wave ‘w’ to adjust for non-response in estimates based on data from subsets of 

waves that include wave ‘w’.  

Our concern stems from the fact that weights from the SWA at wave ‘w’ are only 

available for those who responded in all waves up to w. Whereas the responding sample 

in a subset of waves that include wave ‘w’, may contain sample members who did not 

necessarily respond in all waves up to w. As a result, with the SWA, these sample 

members will not be used to construct the weighted estimate in question, hence 

inefficient. Also, if these sample members (those who are part of the analysis sample but 
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are not used to construct the estimate of interest as a result of using the SWA) have 

different values on the variables that are used to construct the estimate in question than 

the rest of the sample, the resultant estimate may be biased. These issues may arise if the 

response pattern during the course of the survey – as in many surveys- is non-monotonic. 

The SWA does not take this into account. Section 1.4 explains the missing link between 

the SWA and the non-monotonic pattern of response in detail.  

With respect to a given wave-combination, weighting will be more appropriate if it 

estimates weight values for every respondent in this wave-combination irrespective of 

responding status in other wave-combinations. This implies that weighting should be 

done separately for all possible wave-combinations in terms of identifying response and 

the variables used to create the weights. However, creating subsets of weights for all 

possible combinations of waves may be impractical, especially after a large number of 

waves are conducted.  

An alternative approach may be providing extra sets of weights for a limited number of 

combinations of waves. A challenge for the survey organisation then is to identify the best 

possible wave-combinations for the additional weighting.  

In this chapter we introduce an alternative weighting approach (AWA) which creates sets 

of weights particularly for analyses restricted to specific wave-combinations. The AWA 

creates weights for wave-combinations that obtain data on the same theme. Such 

combinations are likely to be in demand from analysts as a base for analysis. We select 

one wave-combination of this nature from the BHPS. The selected combination contains 

data on wealth. For our evaluation, we create two sets of weights based on the SWA and 
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the AWA respectively. We investigate whether the SWA is efficient in adjusting for non-

response in data from the selected wave-combination. We also examine whether the 

AWA is more efficient in this case. The investigation is done by using the two sets of 

weights to analyse the same sample from the selected wave-combination separately, and 

compare the results.  

In addition, the chapter reviews the types and sources of auxiliary variables in general, 

and specifies the type of variables that is used for our weighting; and it sets out the type 

of response propensity models that are used to create the weights in the thesis as these 

issues are fundamental when designing non-response weights.  

1.2 Non-response weighting variables 

As mentioned in the introduction of this thesis, post-survey adjustments rely on auxiliary 

variables in their treatment of non-response. For decades, the term ‘auxiliary variables’ 

was mainly used to describe variables that are not of analytical interest. In cross-sectional 

surveys, such variables are typically available from the sampling frame from which the 

sample was drawn. Also, auxiliary variables may be available from sources external to the 

survey, for example, from a national census. Therefore, auxiliary variables may be 

available for the full sample. In this sense, auxiliary variables are by definition not of 

substantive interest to the survey, as designing a survey to collect variables that already 

exist is unnecessary. However, when longitudinal surveys emerged, they provided the 

opportunity to use substantive variables that were collected in earlier waves as auxiliary 

variables to adjust for missingness in later waves. Auxiliary variables that are used in 

weighting adjustment in particular are sometimes referred to as ‘weighting variables’ (see 
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for example Kreuter and Olson, 2011). In this research, regardless of the type of these 

auxiliary variables, we present them with the label ‘weighting variables’.   

The choice of weighting variables plays an important role in reducing non-response bias. 

In recent years, survey researchers have laid the foundation for principles to guide the 

selection of the best set of variables to adjust for non-response (Särndal and Lundstrom, 

2005; Little and Vartivarian, 2003; 2005). A variable is said to be powerful in reducing 

non-response bias if: it shows evidence of explaining the response propensity, it is highly 

correlated with the survey main variables, and it identifies or comes close to identifying 

one of the important domains in the population. Little and Vartivarian (2005) 

demonstrated that if the association between the weighting variables and the variable of 

interest is low, the weighted mean will have increased variance without decreasing the 

bias even if the association between the weighting variables and the response propensity 

is high.       

In sum, in order for non-response weights to be effective in reducing bias, the weighting 

variables have to be correlated with the substantive variable of interest and the response 

propensity. Additionally, to be able to create the weights, the weighting variables have to 

be observed for both respondents and non-respondents. However, even with fewer 

restrictions, the existence of a good set of weighting variables, in practice, may be rare. 

This is because, first, in practice, only a few variables are available for both respondents 

and non-respondents. Perhaps this is why, in recent years, survey researchers have 

extensively investigated alternative sources of variables that can be observed for all 

sample members, and advised survey organisations to move towards data collection 

modes that collect such variables. Second, even within the available variables, any given 
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variable is likely to differ in the strength of its correlations with the substantive survey 

variables (Kreuter and Olson, 2011). Third, no single variable is likely to predict the 

response propensity and be correlated with all substantive variables simultaneously 

(Kreuter, Lemay and Casas-Cordero, 2007; Groves, Wagner and Peytcheva, 2007; 

Kreuter and Olson, 2011).  This is why survey organisations should have plans to identify 

sources of potentially good variables and collect them at the data collection stage.  

Weighting variables can be drawn from multiple sources. These sources could be internal 

or external to the survey. Depending on the type of variables and the source, the main 

categories of weighting variables are: (a) variables about the process in which the survey 

data were collected. This type of variables is referred to as ‘paradata’; for example, what 

was the mode of data collection (phone, web, mail, or in person). (b) variables based on 

the interviewer’s observations about some characteristics related to the 

household/individual (e.g. type of accommodation). (c) variables taken from the sampling 

frame, i.e. traditional auxiliary variables. These are usually available if the sample is 

taken from administrative records (e.g. levels of proficiency or education). (d) variables 

linked from another database. Sometimes the sampling frame does not provide much 

information about sample units, for example, if the sample frame is the postcode address 

file (Lynn, 1996). In this example, although the postcode itself does not provide 

information about sample members living at the selected address, it can be used to link 

geographical information from another database such as credit scores (Lynn, 1996). (e) 

substantive survey variables. In the case of a longitudinal survey, these variables could be 

available in previous waves.  
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While longitudinal surveys are fortunate with (e), some of the available literature focus on 

(a), (b), (c) and (d) (for example Plewis, 2011; Kreuter and Kohler, 2009; Lynn, 2003; 

Lynn, 1996). The advantage of paradata, interviewer observations, sampling frame 

variables and variables used to link information from another database is that they are 

cheap to observe if not completely free and can be available for every unit in the sample. 

For instance, variables related to the accommodation type, neighbourhood characteristics, 

time interviewer arrived to the house, and number of previous contact attempts do not 

require respondents to report them; instead, they can be observed by the interviewer.  

Variables from (a), (b), (c) and (d) are successfully used in the literature to adjust for non-

response. For example, using data from a number of surveys, Kreuter et al (2010) found 

that the inclusion of these variables in response propensity models that were used to 

derive non-response weights reduces the mean-square error (MSE) in measures of central 

tendency adjusted by the resultant weights. However, they found that very few of these 

variables are associated with the response propensity. In contrast, using Receiver 

Operating Characteristic (ROC) curves, Plewis (2011) assessed the impact of including 

these variables in the response propensity models. He found that their inclusion may 

improve the accuracy of the models (i.e. they are associated with response propensity), 

but they have little effect when adjusting for non-response. Also, Lynn (1996) showed 

how, in the Scottish School Leavers Survey (SSLS), information about the level of 

qualification gained at school which was available in the sampling frame was used to 

analyse the response rate in connection to making weighting adjustment. Lynn (1996) 

demonstrated the way in which the post code in the Health Survey for England (1994) 
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was used to identify the area where the respondent lived as large urban/city centre, other 

urban/suburban or rural and then analysed the response rate accordingly.      

In longitudinal surveys, variables from the categories (a) to (d) are usually used to adjust 

for non-response in the first wave. After the first wave, it is common to use key variables 

from previous waves (i.e. category (e) variables) to analyse and/or adjust for non-

response in later waves. Most research has found variables such as gender, race, age, 

socioeconomic status, income and level of education to be good predictors of the response 

propensity and hence powerful weighting variables. For example, Watson (2004) states 

that from wave 2 onwards in HILDA, variables such as gender, age, marital status, labour 

force status, health condition in a current wave are used to create non-response weights in 

the next wave. Similarly, age, gender, race, employment status, income and education are 

used in the BHPS weighting after wave 1 (Taylor, 2006). Also, Siddiqui et al (1996) used 

proportional hazard regression in analysing the factors influencing dropout in longitudinal 

school-based smoking prevention studies; race, tobacco knowledge and academic 

performance were found to be significant factors. Kroh (2009) indicates that, in GSOEP, 

characteristics measured in 2007 (wave 23) such as gender, age, job status, income and 

savings were used to predict the probability of re-interviewing in 2008. Both Becketti et 

al (1988) and Fitzgerald et al (1998) showed that, excluding young respondents, attrition 

is positively associated with old age. Investigating attrition in the BHPS, Uhrig (2008) 

found that housing tenure, marital status, size of household, gender, race, region, mode of 

interview, employment, number of children in household, financial situation, education, 

health, income and social isolation are all associated with attrition. 
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In this thesis, the weights creation, in both SWA and AWA, is restricted to weighting 

variables from category (e). In every chapter, we use a model-based method to create the 

standard and alternative weights. Our response propensity models in a given wave include 

variables observed in previous waves. This enables us to take into account changes in 

respondents’ characteristics over time which is likely to be reflected in the response 

propensities and hence in the weights.  

1.3 Response propensity models for panel data weighting 

Before introducing our AWA and discussing the SWA with regard to non-monotonic 

response pattern, it is important to present the response propensity models that will be 

used to derive the weights for both weighting approaches4. This section sets out the type 

of response propensity model that we use in the thesis in general. In each chapter, the 

model is modified depending on the research problem and the waves from which data are 

used in the analysis.  

There are at least two methods to model the response propensity in order to derive 

weights for panel data: the first method estimates a marginal model at every wave. This 

model is defined based on the response status in the current wave conditional on response 

in the previous waves (note the response status in wave 1 is not conditioned on previous 

response). The overall response propensities are then estimated as the product of the 

predicted values from each of the wave-specific models, and the weights are set as the 

inverse of the overall response propensities. The second method creates wave 1 non-

response weights separately, then uses wave 1 as a base. It then estimates one weighting 

model based on response in all the conducted waves conditional on responding at wave 1 

                                                           
4 In this thesis we do not use the BHPS public-use weights. Instead, in each chapter, we design the weights 

that are relevant to the analysis for both the SWA and the AWA. 
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(response= responding at all waves; otherwise non-response). The resultant weights will 

then be multiplied by wave 1 weights.  

Thus, both methods define response as responding in all waves together up to the last one. 

Both methods define the same set of respondents as responding (those who responded in 

all waves up to the latest). The differences lie in the form of the model and the set of 

weighting variables. The first approach models non-response as a series of steps, while 

the second treats non-response as a single process. The first method can use variables 

from the previous wave as covariates in each model, while the second method only uses 

variables from wave 1. Both methods create a set of weights that aims at reducing non-

response bias in all estimates related to the longitudinal population at the last conducted 

wave.  

The advantage of the first method is that it takes into account the fact that some 

respondents characteristics may change over time (time-variant variables), and therefore 

may have a different effect on the response propensity at different time points. However, 

this may be at the price of estimating larger weights (recall that the response propensity 

here is estimated as a product of the predicted values from all the wave specific models). 

The disadvantage of the second method is that it ignores the effect of time-variant 

variables on the response propensity, but may be more parsimonious compared to the first 

method as only one model is estimated. 

To be able to take the effect of time-varying variables into account, in this thesis, we only 

apply the first approach. In other words, we only consider response propensity models 

that take into account changes in respondent’s characteristics over time. 
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For a simple illustration of this approach, consider a three-wave survey. Let 𝑅1, 𝑅2 and 

𝑅3 denote the response status in each of the three waves (𝑅𝑡=1 if response is observed; 

𝑅𝑡=0 otherwise; t=1,2,3). Let Z denotes a set of fixed characteristics related to sample 

members (individual/household characteristics or survey design variables) that are 

observed for all sample members at wave 1. Let 𝑋𝑡 (t=1, 2, 3) denote a set of time variant 

variables that are collected in the three waves, with 𝑋𝑡 observed if 𝑅𝑡=1. We can then 

estimate three logistic regressions: 

𝑅1 on Z, using all sample members; 

𝑅2 on Z and 𝑋1, if 𝑅1=1; and 

𝑅3 on Z and 𝑋2, if 𝑅2= 1 and 𝑅1=1. 

If 𝑟𝑡 are the estimated probabilities from model t (t=1, 2, 3), the weights for respondents 

in the three waves are: 𝑤1= 𝑟1
−1; 𝑤2= 𝑤1* 𝑟2

−1 ; and 𝑤3= 𝑤2* 𝑟3
−1 respectively.  

We apply the same approach on the BHPS data for the SWA, but we exclude sample 

members who become ineligible by the last wave in the waves-combination used for 

weighting. Also, we assume that sample members whose eligibility is unknown by the 

last wave in the waves-combination in question are eligible. For example, to construct the 

longitudinal weights at wave 10, we exclude sample members who become ineligible by 

wave 10 from the base of the weighting models used to create the weights as these cases 

are clearly not part of the longitudinal population that the weighting aims to represent. In 

addition, sample members whose eligibility is unknown by wave 10 will be assumed as 

eligible sample members. 

As for the AWA, the method may be modified slightly depending on the issue under 

investigation. Also, note that one would want to use the resultant longitudinal weights in 
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conjunction with the BHPS design weights to also account for the unequal probabilities of 

selection. Nonetheless, the BHPS does not release the design weights separately. These 

are released together (combined) with wave 1 non-response weights as explained in the 

introduction. Thus, we start modeling the response propensity from wave 2 onwards. This 

involves modeling the response in wave 2 conditional on responding in wave 1, modeling 

the response in wave 3 conditional on responding in waves1 and 2, and so forth. This 

way, the resultant longitudinal weights at wave ‘w’, will compensate for the longitudinal 

non-response from wave 2 up to wave ‘w’. However, when these are multiplied with the 

BHPS wave 1 non-response/design weights, the resulting set of weights will adjust for 

non-response from wave 1 up to wave ‘w’ as well as correcting for the unequal 

probabilities of selection.  

Thus, our general response propensity model can be given by: 

Logit Pr(𝑅𝑖,𝑡=1∕ 𝐶𝑖,𝑡−1=1)= 𝑓 (∑ 𝛃𝑗𝑍𝑗𝑖𝑗 +∑ 𝛃𝑘𝑋𝑘𝑖,𝑡−1𝑘 )                                                 (1.1) 

Where t is the wave number for which the model is estimated (t=2, 3,…, 18); i= 1, 2, …, 

𝑛1,..,𝑡−1, where 𝑛1,..,𝑡−1 is the number of respondents who responded at every wave from 1 

to t-1 and who are known or assumed as eligible by the time of wave T (T is the last wave 

in the waves-combination to which the analysis is restricted, 2 ≤ T ≤ 18); 𝑅𝑖,𝑡 is the 

response status at time (wave) t for respondent i (𝑅𝑖,𝑡=1 if response is observed at wave t; 

𝑅𝑖,𝑡=0 if response is not observed at wave t); 𝐶𝑖,𝑡−1=1 if 𝑅𝑖,𝑏=1 for all values of b from 1 

to t-1 (i.e. 𝐶𝑖,𝑡−1=1 indicates that the model in wave t is conditioned on response in all of 

the previous waves); 𝑍𝑗𝑖 is the set of time invariant variables for respondent i; 𝑋𝑘𝑖,𝑡−1 is 

the set of time variant variables for respondent i which are measured in wave t-1. 
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The model in (1.1) represents the base of our response propensity models in this thesis. 

Depending on the issue and the waves used in each chapter the model can be modified, 

for both the SWA and the AWA, as will be discussed in the relevant chapters.  

1.4 Non-monotonic response pattern and the SWA: what is the missing link? 

In longitudinal surveys, survey organisations may implement one of many data collection 

policies in terms of identifying the set of sample members who will be contacted for 

interviews at every wave. The major data collection policies are: attempt collecting data 

from sample members at every wave regardless of whether they participated in a previous 

wave or not; attempt collecting data only from wave 1 responding sample members or 

attempt collecting data only from sample members responding in the previous wave.  

A typical scenario in household panel surveys, including the BHPS, is the collection of 

data at every wave, if possible, regardless of participation in previous waves. Such policy 

of data collection is advantageous because it provides an opportunity to potentially collect 

data, at some point during the course of the survey, from sample members who are hard 

to contact or reluctant to participate. However, it is likely to result in a non-monotonic 

response pattern in which wave non-response can take place unconditionally at any 

wave(s) during the course of the survey. As a result of a non-monotonic pattern of 

response, the number of responding sample members will differ across different 

combinations of waves. For example, table 1.1 shows the effect of the BHPS non-

monotonic response pattern in the first three waves. The table displays the number of 

responding sample members in all possible combinations of waves. With just three 

waves, there are seven possible combinations of waves in which a sample member might 

respond. However, each of these combinations has a different responding sample size. In 
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general, responding in a larger number of waves is associated with a smaller sample size 

and vice versa. For instance, the number of those who responded in wave 1 and 3 is 8, 

419. Whereas 8,170 sample members responded in all of the first three waves.  

To understand the limitation of the SWA with regard to non-monotonic response pattern, 

four groups of sample members can be distinguished: a) those who have measurements in 

all waves (a balanced panel); b) those who only have measurements in wave 1, or in wave 

1 and the next consecutive wave(s), but they have no measurements in all of the waves 

(atritters); c) those who have measurements in one or more waves that are not necessarily 

consecutive, but they do not have measurements in all waves of the survey (wave non-

responders); and d) those who did not provide measurements at all during the course of 

the survey (outright non-responders). 

The SWA in a wave ‘w’ produces longitudinal weights to adjust for the missingness of 

sample members from group (b) to (d) in analyses that estimate parameters of the 

population at time (wave) ‘w’. However, depending on the wave-combination that is used 

in the analysis, the SWA may be suboptimal with regard to adjusting for sample members 

in group (c). For example, consider the first three waves of the BHPS in table 1.1. The 

standard longitudinal weights in wave 3 are available for those who responded in wave 1, 

2 and 3 (i.e. for 8,170 respondents). Those who did not respond in at least one of these 

waves their weights values are zeros. The weights are designed to adjust for non-response 

in estimates relating to the population at wave 3. Thus, for analysts who are constructing 

estimates by using respondents in waves 1, 2 and 3 (8,170 respondents), the weights are 

appropriate.  
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However, for analysts who would like to construct weighted estimates relating to the 

longitudinal population at wave 3 (and therefore will use the longitudinal weights at wave 

3), but would only like to use respondents in wave 1 and 3 (8,419 respondents) the 

weights are suboptimal. This is because 249 respondents (who skipped responding in 

wave 2) from the sample in this case will be assigned a zero-value weight. As a result, the 

weighting will cause an unnecessary loss of some respondents. 

If the weights are still used in the latter case, the sample size will be reduced to 8,170 

respondents instead of 8,419 respondents. This may potentially result in a different 

estimate because the two sets of respondents are different both in terms of size and 

composition. Weighted analyses that only use respondents from wave 1 and 3, will 

benefit from a weighting approach that estimates weights values for all of the 8,419 

respondents who are present in wave 1 and 3. i.e. a weighting approach that identifies 

response as responding in wave 1 and 3 regardless of responding in other waves.    

In short, as a result of non-monotonic response pattern, different wave-combinations may 

result in different sample sizes. The SWA ignores this effect of non-monotonic response 

pattern and produces a single set of weights at every wave ‘w’ for those who responded in 

all waves up to ‘w’. This set of weights is useful in analyses using a balanced panel from 

all waves up to w. However, it may be suboptimal in analyses that only use data from a 

subset of the ‘w’ waves because some cases in the sample, in this case, will be given zero-

value weights. 
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Table 1.1 Number of responding units in different wave-combinations in the first 3 waves of the BHPS 

 Wave 1 Wave 2 Wave 3 Number of 

respondents (%) 

1    10,248 (89.18) 

2    9,845 (85.68) 

3    9,600 (83.44) 

4    8,970 (78.06) 

5    8,736 (76.02) 

6    8,419 (73.27) 

7    8,170 (71.10) 
* The shaded areas indicate the wave-combination of which the number of responding sample members is 

given.% were calculated out of the number of the selected sample. 

 

1.5 The alternative weighting approach 

In theory, the way to account for the effect of non-monotonic response pattern is to design 

a subset of non-response weights for every possible combination of waves. However, 

providing weights for all possible combinations of waves might not be achievable in 

practice after several waves are conducted. After 𝑘 waves, there is a (2𝑘-1) possible 

combination of waves to provide weights for. For instance, with just 10 waves, there will 

be 1,023 possible combinations of waves that weights can be created for; and the number 

increases rapidly when more waves are added. In addition, in practice, it is unlikely that 

every possible combination of waves will be used separately for substantial weighted 

analysis. Some wave-combinations may not be of substantive analytical interest. 

Thus, alternatively, a limited number of subsets of weights may be produced for a limited 

number of wave-combinations. Our alternative weighting approach in this chapter rests 

on this strategy.  

Although the number of the limited subsets of weights may be decided subjectively, such 

strategy could be more useful than a single-set of weights strategy, and more practical 
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than designing all possible subsets of weights. Figure 1.1 illustrates this in a simple 

diagram. The figure shows that there are at least three possible strategies of weighting 

with respect to the number of weights sets: single set of weights (as in the SWA), all 

possible sets of weights and limited number of sets of weights. The limitations of the first 

and the second strategies are that they could be suboptimal and impractical respectively. 

The advantage of the third strategy is that it is practical, but may also be considered as 

‘optimal’. The word ‘optimal’ here does not reflect maximum statistical precision since 

not all possible sets of weights are created. It, rather, indicates that a limited number of 

sets of weights may be a good compromise.   

 

 

 

 

 

 

 

 

 

Figure 1.1. Three types of weighting strategy with respect to the number of weights sets. 
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Even if a limited number of sets of weights is considered, it is a challenging task to 

identify which specific wave-combinations should be selected in order to design their 

weights. There is very little literature in this area. In fact, the only effort that we are aware 

of is by Lynn and Kaminska (2010), suggesting criteria for selecting limited number of 

wave-combinations for weights creation. According to Lynn and Kaminska (2010), the 

following criteria should be considered when choosing combinations of waves: 

Survey Design: If a certain combination of waves is not available in the survey by design, 

it can be excluded. They give an example by stating “if a survey has a rule not to attempt 

data collection from any unit that has been non-respondent in three consecutive waves, 

then all combinations involving a respondent wave following three or more non-

respondent waves can be dropped”.  

Analytic Use: Weights should be produced for combinations that are more likely to be 

wanted by analysts.   

Level of Non-response: If the samples responding to two wave-combinations differ only 

by a few cases, it is unlikely that weights derived for one combination will make much 

difference to analyses for the other combination. Thus, one subset of weights could be 

derived for both wave-combinations.  

Correlates of Non-response: If the non-response process is very similar amongst a 

consecutive set of waves in terms of the covariates predictive of non-response, weights 

designed for a subset of waves from these consecutive waves might be similar to weights 

designed for the whole set. This may not include wave 2 and 3 as the attrition in these is 

believed to be distinctive. For example, there is evidence in the literature (e.g. Watson 
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and Wooden, 2009) that correlates of non-response at wave 2 and 3 are distinctive, but 

thereafter are similar across subsequent waves. Thus, weights derived for response at 

wave 1, 2, and 3 might be quite different from weights derived specifically for waves 1 

and 2, whereas weights derived for waves, say, 8, 9 and 10 might be quite similar to 

weights derived for waves 8 and 9.      

Impact on Estimates: This could be used to judge the consideration of the criteria used to 

identify the combination of waves for which weights should be produced. For example, 

subsets of weights that produce the same estimate as others could be dropped.      

For our AWA, the choice of wave-combinations for weighting is guided by the fact that 

some substantive estimates of the population can only be generated from data in specific 

wave-combinations. The idea of the AWA therefore, is based on providing extra sets of 

weights particularly for such combinations of waves. Thus, if the estimates in question 

need to be adjusted because of non-response, the AWA will have an advantage over the 

SWA. For example, a common feature of longitudinal surveys is a frequently asked 

module of questions where certain waves are conducted to obtain information about 

specific topic(s). For instance, wave 8, 13 and 18 in the BHPS provide data on 

neighbourhood, expectations of relationships and marriage in future. Such a wave-

combination is likely to be used separately to provide estimates about the social 

phenomena that are measured in its waves. Unlike the SWA, the methodology of the 

AWA is to design weights for this wave-combination by defining response as responding 

in waves 8, 13 and 18 regardless of response status in the other waves. As a result, non-

zero weights will be available for all responding sample members in this wave-

combination. Thus, weighted analysis based on waves 8, 13 and 18 may use the 
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alternative set of weights to avoid the potential loss of respondents that is associated with 

the standard weights at wave 18.  

1.6 Methodology 

To investigate the issue of non-monotonic response pattern in relation to the SWA, and to 

evaluate our introduced AWA, we selected a combination of waves from the BHPS that 

consists of waves 1, 5, 10 and 15. Although all BHPS waves, generally, provide data to be 

used for analysis in many of the social science disciplines, some waves are designed to 

cover certain topics extensively. Our chosen wave-combination collects data about 

wealth, assets and debt. Data from such subsets of waves might be used separately in 

studies of wealth dynamics and associated phenomena. However, the BHPS does not 

provide subsets of weights that are designed especially for the analysis of this 

combination of waves. The weights that are available for the analysis of data from this 

combination are the longitudinal weights at wave 15 (recall that these are designed by 

reference to responding in all the 15 waves, and are available for a balanced panel from 

wave 1 to 15, i.e. SWA). 

For our investigation in this chapter, we designed a set of longitudinal weights at wave 15 

using the SWA (response is defined as responding in all waves from 1 to 15). Also, we 

designed an alternative set of weights by identifying response as responding in waves 1, 

5, 10 and 15 regardless of responding in the other waves. The latter is presented as the 

AWA in this chapter. Both the SWA and AWA modeled the response propensity using 

the model in equation (1.1). Details on these models and weights construction are 

provided in the next section.  
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Our aim is to use our standard and alternative weights in the analysis of savings and debts 

based on the responding sample in the wave-combination under investigation (a balanced 

panel from waves 1, 5, 10 and 15).We compare estimates resulting from the standard and 

alternative weights to provide evidence for potential differences between the SWA and 

AWA. These details are in section 1.7. 

Potential differences between the SWA and AWA are due to differences in the sample 

members that each approach defines as responding.  

To explore differences between the responding units at waves 1, 5, 10 and 15 and in all 

waves up to wave 15, table 1.2 shows the number of respondents in these two 

combinations of waves. The table also presents (in brackets) the proportions of wave 1 

respondents for the two combinations. The number of respondents in waves 1, 5, 10 and 

15 is 5,132 (50.08% of those who responded at wave 1). This is 4.7% higher than the 

number of respondents in all the 15 waves 4,654 (45.41% of those who responded at 

wave 1). This difference is caused by 478 respondents who participated in waves 1, 5, 10 

and 15 but failed to respond in at least one other wave between 1 and 15. These results 

indicate that the standard weights at wave 15 are only available for 4,654 respondents 

who are identified as respondents by the SWA. Consequently, when the set of standard 

weights is used in the analysis of savings and debt which only uses the responding sample 

in waves 1, 5, 10 and 15 (5,132 respondents) it will rule out 478 respondents from the 

analysis. This is despite the fact that these sample members are actually respondents in 

these waves. This loss represents 9.31% of the balanced panel in waves 1, 5, 10 and 15. In 

contrast, the AWA produces weights for 5,132 respondents taking into account the 478 

cases missing in the AWA. This is because the weighting model, in the AWA identifies 
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these 478 cases as respondents. Therefore, in our analysis, it seems reasonable to expect 

more precise estimates from using alternative weights than from using standard weights. 

As for the bias, we do not have specific expectation for this as it cannot be assumed that 

the AWA will result in less biased estimates than the SWA. Even though the weighting 

model in the AWA identifies a different set of sample members as respondents by 

avoiding the loss of 478 cases, we cannot easily assume that its weights result in less 

biased estimates compared to weights from the SWA. The bias may be reduced if the 

additional 478 respondents are similar, in their savings and debt characteristics, to non-

respondents in wave 1, 5, 10 and 15. With data observed only for respondents, this 

assumption cannot be supported. Thus, in our comparison between estimates resulting 

from the two sets of weights, the analysis will focus on levels of precision rather than bias 

reduction.   

Table 1.2 Number of respondents and non-respondents at waves 1, 5, 10 and 15 and in all waves up to 15. 

 Respondents Non-respondents Total 

Waves 1, 5, 10 and 15 5,132 (50.08%) 5,116 (49.92%) 10,248 

All waves up to 15 4, 654 (45.41%) 5,594(54.59%) 10,248 

Difference 478   

* The total indicates the number of those who responded at wave 1. The percentages in brackets indicate 

proportions of wave 1 respondents. 

 

1.6.1 Construction of standard and alternative weights 

This section describes how the response propensities were modelled in the SWA and the 

AWA, and the derivation of the weights associated with each approach. Based on the 

principles of the SWA, standard longitudinal weights at wave 15 were designed by 

defining response as responding in all of the 15 waves. Whereas in the AWA response 
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was defined as responding in waves 1, 5, 10 and 15 regardless of responding status in the 

other waves.  

To apply the model in equation (1.1) in this context: for the SWA, the same model in 

equation (1.1) can be estimated by varying t from 2 to15 (i.e. estimate 14 models, one 

model at each wave starting from wave 2 up to wave 15); and then calculate the weights 

as the product of the inverse predicted probabilities from all of the models5. Note that 

according to equation (1.1) the model at wave t, models response at wave t conditional on 

responding in all of the previous waves, but it uses variables from wave t-1. Meanwhile 

for the AWA, we are only interested in response status in waves 1, 5, 10 and 15. Thus, t 

can only range between 5, 10 and 15 (i.e. only 3 models can be estimated). In other 

words, we will model the response in wave 5 conditional on responding in wave 1 (and 

use variables from wave 1), model the response in wave 10 conditional on responding in 

waves 1 and 5 (and use variables from wave 5), and then model the response in wave 15 

conditional on responding in waves 1, 5 and 10 (and use variables from wave 10), and 

calculate the alternative weights as the product of the inverse predicted probabilities from 

the three models. If this strategy is followed, aside from being different in terms of the 

way they define response, the two weighting approaches are also likely to differ in terms 

of the variables used to create the weights.  

However, to investigate differences between the resultant sets of weights, ideally, we 

would like to use the same set of covariates to create both sets of weights so that any 

                                                           
5 We did not use the standard longitudinal weights at wave 15 which are provided by the BHPS because these weights 

were created using a different approach (weighting classes) and a different set of covariates. To be able to examine 

potential differences between the SWA and AWA, weights resulting from both approaches should be created based on 

the same method and the same set of covariates so that differences can be said to be due to the different sets sample 

members that each approach defines as responding.    
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potential difference between the two sets of weights can be said to be due to differences 

between their weighting approaches in terms of how response is defined.  

Thus, for the SWA, we applied the model in equation (1.1), but inclusion of the time 

variant variables in each model was restricted to variables from wave 1, 5, 10 and 15. 

That is: models from wave 2 to 5 used variables from wave 1; models from wave 6 to 10 

used variables from wave 5; and models from wave 11 to 15 used variables from wave 

10.  

For those who responded in all of the 15 waves, the longitudinal weights at wave 15 were 

calculated as the product of the inversed predicted probabilities from all models, and 

wave 1 non-response/design weights (provided by the BHPS) as shown in equation (1.2).  

𝑆𝑊𝑖=𝐷𝑖*∏ 𝑟𝑡𝑖
−115

𝑡=2                                                                                                            (1.2) 

Where 𝑆𝑊𝑖 is the standard longitudinal weight at wave 15 for respondent i; 𝑟𝑡𝑖 is the 

predicted probability for respondent i from wave t model (t= 2, 3,…, 15); i= 1,..., 𝑛1,..,15 

(where 𝑛1,..,15 is the number of sample members who responded at every wave from 1 to 

15); and 𝐷𝑖 is wave 1 non-response/design weight for respondent i.  

Those who did not respond in all of the 15 waves had their weights set to 0.  

Turning to the AWA, the response propensity was modelled as follows: 

In wave 5, we modelled the response propensity conditional on responding in wave 1 

using fixed characteristics and time variant variables from wave 1 as shown in equation 

(1.3). 

Logit Pr(𝑅𝑖,5=1∕ 𝑅𝑖,1=1)= 𝑓 (∑ 𝛃𝑗𝑍𝑗𝑖𝑗 +∑ 𝛃𝑘𝑋𝑘𝑖,1𝑘 )                                                        (1.3) 

Where 𝑅𝑖,5 and 𝑅𝑖,1 are the response statuses in wave 1 and 5 respectively (𝑅𝑖= 1 if 

response is observed; 𝑅𝑖=0 if non-response, for both waves); i=1, 2,…𝑛1, where 𝑛1 is the 
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number of respondents in wave 1 who are known or assumed as eligible by the time of 

wave 15; 𝑍𝑗𝑖 is the set of time invariant variables for respondent i; and 𝑋𝑘𝑖,1 is the set of 

time variant variables measured in wave 1 for respondent i. 

In waves 10 and 15, modelling the response propensity is given by equation (1.4). 

Logit Pr(𝑅𝑖,𝑡=1∕ 𝐶𝑖,𝑡−1=1)= 𝑓 (∑ 𝛃𝑗𝑍𝑗𝑖𝑗 +∑ 𝛃𝑘𝑋𝑘𝑖,𝑡−5𝑘 )                                                 (1.4) 

Where t is the wave that we estimate the model for (t=10, 15); i= 1, 2,…, 𝑛1,..,𝑡−5, where 

𝑛1,..,𝑡−5 is the number of respondents who responded at every wave (in the waves-

combination in question) from 1 to t-5 and who are known or assumed as eligible by the 

time of wave 15; 𝑅𝑖,𝑡 is the response status for respondent i at wave t (t=10, 15; and 𝑅𝑖,𝑡=1 

if response is observed; 𝑅𝑖,𝑡=0 if response is not observed); 𝐶𝑖,𝑡−1=1 if 𝑅𝑖,𝑏=1 for all 

values of b (in the waves-combination in question) from 1 to t-5 (i.e. the model in wave 

10 is conditioned on 𝑅𝑖,1=𝑅𝑖,5=1, whereas the model in wave 15 is conditioned on 

𝑅𝑖,1=𝑅𝑖,5=𝑅𝑖,10=1); 𝑍𝑗𝑖 is the set of time invariant variables for respondent i; and 𝑋𝑘𝑖,𝑡−5 is 

the set of time variant variables for respondent i (measured at wave t-5). 

The longitudinal weights at wave 15 for those who responded in waves 1, 5, 10 and 15 

were calculated as the product of the inversed predicted probabilities from the three 

models as shown in equation (1.5).  

𝐴𝑊𝑖=𝐷𝑖* 𝑟5𝑖
−1* 𝑟10𝑖

−1* 𝑟15𝑖
−1                                                                                                (1.5) 

Where 𝐴𝑊𝑖 is the alternative longitudinal weight at wave 15 for respondent i; 𝑟𝑡𝑖 is the 

predicted probability for respondent i from wave t model (t= 5, 10, 15); ); i= 1,..., 𝑛1,5,10,15 

(where 𝑛1,5,10,15 is the number of sample members who responded at wave 1, 5, 10 and 

15) and 𝐷𝑖 is wave 1 non-response/design weight for respondent i. 

Those who did not respond in all of waves 1, 5, 10 and 15 had their weights set to 0. 
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Although 10,248 sample members responded at wave 1, both the SWA and the AWA 

restrict the analysis to respondents known or assumed to be part of the longitudinal 

population at wave 15 (8,961 cases). Our choice for the weighting variables (in both 

SWA and AWA) was guided by the variables used in the BHPS weighting, and the 

availability of the variables across the waves, particularly in waves 1, 5 and 10 as some 

variables are not measured at every wave. The variables used are: gender, race, age, age-

squared, health status, tenure, presence of children in the household, education, type of 

household, employment status, type of house, number in full-time employment in 

household and region. The results from the best models, for both the SWA and AWA, are 

displayed in table 1.3 and 1.4 respectively. Both tables present odds ratios. We consider 

coefficients to be significant if the relevant p-value < 0.05.  

The results of modelling the response propensity in the SWA and the AWA seem similar 

in general. Also, the results show that the most of explanatory variables used in the 

analysis are correlated with response propensity. These results are discussed, for both 

weighting approaches, in what follows:  

Gender: in most longitudinal surveys, females are more likely to respond than males (e.g. 

Hawkes and Plewis, 2006). Here we also find this to be the case in both the SWA and 

AWA.  

Ethnicity: the literature usually indicates that ethnic minority groups show lower tendency 

to response in comparison with the majority groups (Gray et al., 1996; Lepkowski and 

Couper, 2002). Ethnicity here is included in the models as a dichotomous variable 
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specifying if respondent is white or non-white6. This was only significant in the models at 

wave 5 and 10 of the AWA indicating that white respondents are more likely to respond 

compared to other ethnic groups. 

Age: age is known to be a good predictor of the response outcome. Excluding the oldest 

respondents, higher response is likely among older respondents than among their younger 

counterparts (e.g. Uhrig, 2008). In our models, apart from age, we also included age-

squared to capture variability in the oldest age groups. In both SWA and AWA, age and 

age-squared are significant in most models. However, while the increase in age is 

positively associated with the response, increase in age-squared is associated with non-

response indicating that respondents in the oldest age groups are less likely to respond.  

Health condition: this has five categories (excellent, good, fair, poor and very poor). In 

this analysis, these categories were reorganised. The first three categories were combined 

into one category (good health) and the last two were combined into another category 

(bad health). The former is the omitted category. The results show that those with a bad 

health status are less likely to respond than those with a good health status. This is more 

so (and more significant) in latter waves than in earlier waves as the effect of poor health 

on response is clearer. This result is in line with most of the literature in this area 

(Nicoletti and Buck, 2004; Lepkowski and Couper, 2002; Becketti et al., 1988).  

Housing tenure: this has two categories in our models: homeowners and non-home 

owners. Most research found that homeowners are more likely to respond compared to 

those who do not own their homes (Becketti et al., 1988; Fitzgerald et al., 1998; 

                                                           
6 The sample size for ethnic minority groups in the British Household Panel Survey sample are too small to allow for 

valid analysis of different ethnic groups.  
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Lepkowski and Couper, 2002; Watson, 2003; Nicoletti and Peracchi, 2005). Our 

explanation for this is that: maybe those who own their homes are less likely to move 

house and therefore are easier to establish contact with in successive attempts. Although 

housing tenure is only significant in a few models, its results confirm the general findings 

in the literature for both SWA and AWA.   

Education: in our models education is represented by a dummy variable indicating 

whether the respondent has a General Certificate of Education (GCE) level A-C (or 

equivalent) or above. Most results in tables 1.3 and 1.4 show that those who have a GCE 

or any higher qualification are more inclined to respond. This result is confirmed by a 

number of non-response studies (e.g. Watson, 2003; Gray et al., 1996; Lepkowski and 

Couper, 2002).   

Employment status: this is known to be problematic when trying to understand its 

relationship with response propensity (Watson and Wooden, 2004). Some studies found 

that the response propensity is high among unemployed sample members (e.g. Watson, 

2003; Nicoletti and Peracchi, 2005). This can be explained by the fact that unemployed 

sample members spend more time at home, and hence are more likely to be contacted. 

Other studies showed that there is a higher tendency to response among employed 

respondents (Gray et al., 1996; Lepkowski and Couper, 2002). The explanation for this 

may encompass the fact that employed sample members are more likely to be 

geographically immobile and hence easier to follow over time. Our results here are also 

mixed. When employment status is significant, most models show that employed 

individuals are less likely to respond than unemployed ones. However, the model in wave 
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14 of the SWA shows that employed individuals are more likely to respond than those 

who are unemployed.   

Presence of others during interview: if others are not present during the first interview, 

respondents tend to discontinue participating in the survey. This is likely because the 

presence of others is correlated with the household size and, therefore, with the possibility 

of making contact in subsequent waves (Uhrig, 2008). This is confirmed by a number of 

models in tables 1.3 and 1.4.  

Type of household: we distinguished between two types of households: single-person 

household and multi-person household (Reference category). Non-response literature 

indicates that response is more likely among multi-person household than amongst single-

person household (Brehm, 1993; Groves and Couper, 1998; Groves et al, 2002). This is 

partly because some individuals who live alone are less inclined to interact with others; 

and partly because establishing contact is less likely with single-person households than 

with multi-person households. When this variable is significant in our models, it indicates 

that single-person households are less likely to respond than multi-person households.  

The presence of children in household: this variable was included in the models under the 

assumption that the presence of children in a household increases the chance of contacting 

the household. Households with children are easier to locate and establish contact with 

since the presence of children is associated with residential stability and community 

integration activities such as taking the kids to the nursery or school. This variable was 

found significant in predicting response in a few waves as shown in tables 1.3 and 1.4. 
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The results support our assumption that households with children are more likely to 

respond than households without children.  

Type of accommodation: the type of accommodation that sample members reside at can 

influence likelihood of response. This is mainly because of potential access impediments 

attached to particular types of accommodation which may negatively affect the success of 

contact attempts (Groves and Couper, 1998). Prior research (Uhrig, 2008) found that 

living in blocks of flats where access to a number of apartments is through one entrance is 

more associated with non-response than living in houses that have their own entrance. In 

our analysis, ‘type of accommodation’ has three categories: living in a house (reference 

category) including detached, semi-detached terraced house; living in a flat; and living in 

other type of accommodation. The results in tables 1.3 and 1.4 show that this variable is 

only significant in a few models. However, our results are in line with the general 

findings of non-response literature.  

Number of employed individuals in household: on the one hand, the number of household 

members can be positively associated with the probability of making contact with the 

household. On the other hand, the chance of non-contact is higher if more household 

members are in full-time employment. Our results here show that, in some models, 

households with a number of persons in employment are less likely to respond than 

households with no person in employment (e.g. the models in waves 11 and 10 of the 

SWA and AWA respectively). In other models, it is the exact opposite (e.g. the models in 

waves 13 and 15 of the SWA and AWA respectively). 
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Region: region is included in the models as a number of dummies with London as the 

omitted category. In models where region is significant, the results are similar in which 

the majority of the areas are more likely to respond than London. This applies for both the 

SWA and AWA. This result is consistent with the findings of Uhrig (2008) in his analysis 

of BHPS attrition. Uhrig reported that the South-East, South-West, East Anglia and the 

North-East are more likely to respond than London.  
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Table 1.3 Response propensity models based on the SWA (wave 2 to 15): modelling response in wave t conditional on responding in all of the previous waves. 

 Wave2 Wave 3 Wave 4 Wave 5 Wave 6 Wave 7 Wave 8 Wave 9 Wave 10 Wave 11 Wave 12 Wave 13 Wave 14 Wave 15 

Female 1.15* 1.36*** 1.09 1.25* 1.06 1.14 1.37** 1.18 1.11 0.96 1.20 1.21 1.31* 1.51*** 

White 1.02 1.57** 1.47* 1.61** 1.21 1.49** 1.53* 1.09 1.64** 1.56* 0.99 1.63* 0.84 1.55* 

Age 1.07*** 1.08*** 1.07*** 1.08*** 1.06** 1.04* 1.11** 1.00 1.00 1.09*** 1.12*** 1.10*** 1.10** 1.12** 

Age-squared 0.99*** 0.99*** 0.99*** 0.99*** 0.99** 0.99* 0.99** 1.00 1.00 0.99*** 0.99*** 0.99*** 0.99** 0.99** 

Bad health 1.12 1.09 1.11 0.82 0.85 0.66* 0.93 0.88 0.89 0.72* 0.66* 0.56*** 0.88 0.51*** 

Home owner 1.19 0.94 1.11 0.97 0.84 1.07 0.98 1.22* 0.86 1.26 0.97 1.17 1.44* 0.98 
Has GCE qualification or above 0.92 1.21* 1.25* 0.89 0.87 1.08 1.25* 1.05 1.15* 0.89 1.46** 1.07 1.55** 0.90 

Employed 0.85* 0.89 0.83* 0.196 1.06 1.12 0.88 0.90 0.92 1.05 0.73* 0.72* 1.33* 0.82 

Others present in interview 1.11 1.05 0.91 0.95 1.42** 0.90 0.87 0.89 0.90 0.91 1.36* 1.24* 1.53** 0.86 

Single-person household 1.09 0.64* 1.06 1.09 0.76*** 0.90 0.84 1.06 1.04 0.62** 0.96 0.80* 0.92 0.91 

Household with children 

Living in a flat 
Living in other type of house 
1 or 2 persons in employment  

3 + persons in employment 

South-East 

South-West 

East Anglia 

The Midlands 

The North 

Wales 

Scotland 

1.49*** 
0.78 
1.27 
1.21 
0.97 
1.20 
1.19 
1.17 
1.11 
1.26** 
1.23* 
1.13 

1.07 
0.77 
1.40 
1.30 
0.87 
0.99 
1.20 
1.57* 
0.91 
0.95 
0.81 
0.79 

1.25* 
1.22 
1.60 
1.07 
1.22 
1.57** 
1.19 
1.89* 
1.25 
1.47* 
1.81* 
1.40* 

1.04 
1.21 
1.51 
1.04 
1.30 
1.69** 
1.52* 
2.27** 
1.53** 
1.40* 
1.35 
1.72** 

1.03 
0.74 
0.76 
0.79 
1.20 
0.99 
1.49* 
1.17 
1.00 
1.02 
0.69 
0.45*** 

0.82 
1.29 
0.64* 
0.77 
0.95 
1.26 
1.00 
2.61* 
1.24 
1.77* 
1.11 
0.96 

1.01 
1.15 
1.15 
0.91 
0.90 
0.96 
1.09 
1.23 
1.03 
1.26 
0.84 
0.62* 

1.02 
0.87 
0.76 
1.36 
0.71* 
1.39 
1.14 
2.17* 
1.18 
1.26 
1.03 
1.24 

0.98 
0.82 
0.70* 
1.01 
0.88 
1.64* 
1.31 
3.48** 
1.14 
1.74** 
1.26 
1.12 

1.05 
0.91 
1.16 
0.81 
0.46*** 
1.25 
1.05 
1.65 
1.34 
1.31 
1.19 
1.19 

1.71** 
0.78 
0.72 
1.02 
0.86 
1.04 
0.95 
1.34 
1.07 
0.98 
1.23 
0.67 

0.97 
0.89 
0.96 
0.86* 
1.56 
1.20 
1.10 
1.52 
1.51* 
1.09 
1.17 
1.81* 

0.89 
0.61* 
0.83 
1.11 
0.97 
1.53* 
1.57* 
2.22* 
1.63* 
1.38 
1.51 
1.13 

0.85 
0.92 
1.62 
1.24 
0.98 
1.88** 
2.60*** 
3.33** 
1.67* 
1.79** 
2.44** 
1.26 

N 8,961 8,126 7,683 7,354 7,016 6,720 6,418 6,248 6,031 5,864 5,679 5,528 5,412 5,287 
Pseudo R2 0.034 0.032 0.030 0.030 0.033 0.032 0.033 0.031 0.037 0.039 0.041 0.043 0.041 0.045 

* The entries are odds ratios. In every wave response is modelled conditional on responding in all of the previous waves. The models in waves 2 to 5 used variables from wave 1; 

models in waves 6 to 10 used variables from wave 5; and models in waves 11 to 15 used variables from wave 10. The reference categories of the categorical independent variables 

in the table are male, non-white, good health, not a home owner, does not have a GCE or above degree, unemployed and others not present when interviewed, multi-person HH, 

household with no children, living in a house, no HH member is in employment in and London * p< 0.05, ** p< 0.01, *** p< 0.001.
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Table 1.4 Response propensity models based on the AWA: modelling response in waves 5, 10 and 15. 

 Response in wave 

5 conditional on 

wave 1 

Response in wave 

10 conditional on 

wave 1 and 5 

Response in wave 

15 conditional on 

wave 1, 5 and 10 

Female 1.24*** 1.19** 1.30*** 

White 1.54* 1.61** 1.35 

Age 1.08*** 0.99 1.13*** 

Age-squared 0.99*** 1.00 0.99*** 

Bad health 0.89 1.08 0.62*** 

Home owner 0.88 0.91 1.21* 

Has GCE qualification or above 0.92 1.05 1.26** 

Employed 1.37* 1.04 0.94 

Others present when interviewed  1.11 1.09 1.19* 

Single-person household 0.63* 1.18 0.89 

Household with children 

Living in a flat 

Living in other type of accommodation 

1 or 2 persons in employment in HH 

3 or more persons in employment in HH 

South-East 

South-West 

East Anglia 

The Midlands 

The North 

Wales 

Scotland 

1.13*** 

0.98 

0.68** 

0.83* 

0.95 

1.34*** 

1.43*** 

1.99*** 

1.15 

1.22* 

1.31* 

1.16 

1.07 

0.96 

1.01 

0.90 

0.71* 

1.32* 

1.33* 

2.09*** 

1.08 

1.40** 

1.02 

0.79* 

1.15 

0.91 

0.93 

0.81* 

0.89 

1.37* 

1.30* 

2.03*** 

1.34* 

1.21 

1.49* 

0.98 

N 

Pseudo R2 
8,961 

0.038 

7,311 

0.029 

6,019 

0.040 

* The entries are odds ratios. The model in wave 5 used variables from wave 1; the model in wave 10 used variables 

from wave 5 and the model in wave 15 used variables from wave 10. The reference categories of the categorical 

independent variables in the table are male, non-white, good health, not a home owner, does not have a GCE or above 

degree, unemployed and others not present when interviewed, multi-person HH, household with no children, there is at 

least one person aged 75+ in HH, living in a house, no HH member is in employment and London * p< 0.05, ** p< 

0.01, *** p< 0.001. 

 

We created two sets of weights to adjust for the longitudinal non-response at wave 15: 

standard weights (SWs) and alternative weights (AWs). The SWs were derived from the 

models in table 1.3, whereas the AWs were derived from the models in table 1.4. The 

derivation of the weights was based on equation 1.2 (for SWs) and 1.5 (for AWs) as 

discussed earlier. Also, as mentioned before, for our evaluation purposes, the SWs and 

AWs will be used in the analysis of savings and debt using the responding sample in 

waves 1, 5, 10 and 15. Thus, we are interested in SWs and AWs for a balanced panel from 
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waves 1, 5, 10 and 15 (5,132 respondents). Table 1.5 and 1.6 show the distributions of 

these weights for both the SWs and AWs.  

Table 1.5 presents the measures of central tendency and dispersion for both of the SWs 

and AWs. The distribution of the AWs is similar to the SWs in terms of the mean, median, 

and first and third quantiles weights, but the dispersion in the latter is greater. This is 

indicated by the larger standard deviation (1.11), bigger coefficient of variation (0.53) and 

the wider range of weights (0-17.59) in the set of SWs. This larger dispersion in the SWs 

is caused by the zero-value weights that the SWs reserve for a proportion of respondents 

who are present in the balanced panel in question but did not respond in all 15 waves. It is 

also possible that part of the larger variation in the set of SWs is due to the larger number 

of response propensity models in the SWA (14 model) by which more error components 

were modeled as opposed to the AWA (only 3 models).  

Table 1.6 presents the frequency distribution for categorised weight values for both SWs 

and AWs. Excluding the first and last categories, for both sets of weights, respondents are 

rather evenly distributed across the weights values. In both sets of weights, most 

respondents have weights values between 1.51 and 2. The major difference between the 

values of the two sets of weights is that with the SWs 9.31% (or 478 cases) of our analysis 

sample will be assigned a weight of zero, whereas with the AWs all cases in the sample 

will have a non-zero weight. In addition, unlike the AWs, with the SWs more cases will 

have weights values above 2.  

Based on these results, it can be concluded that, overall, the distributions of SWs and AWs 

are similar. However, the SWs have more variability than the AWs. Also, while the AWs 

enable us to use every sample member in our balanced panel sample in the analysis we 
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intend to conduct, the set of SWs will reduce this sample by 9.31% by assigning a weight 

of zero to 478 respondents. Therefore, we can immediately expect that estimates resulting 

from the AWs to be more precise than the estimates resulting from the SWs.  

 

Table 1.5 Distribution of the standard and alternative weights for a balanced panel from waves 1, 5, 10 & 15 

 Mean Std.dev Min Q1 Median Q3 Max CV N 

SWs 2.09 1.11 0 1.63 2.03 2.56 17.59 0.53 5,132 

AWs 1.93 0.71 0.41 1.50 1.79 2.20 13.32 0.37 5,132 
*Std.dev is the standard deviation. CV is the coefficient of variation, cv=std.dev/mean.  

 

 

Table 1.6 Frequency distribution of the standard and alternative weights values 
Categorised 

weights values 
0 0.41-1.50 1.51-2.00 2.01-2.50 2.51-4.00 4.01-max 

SWs 478 

(9.31%) 

500 

(9.74%) 

1,533 

(29.87%) 

1,239 

(24.14%) 

1,166 

(22.72%) 

216 

(4.21%) 

AWs 0 

(0%) 

1,341 

(26.13) 

1,974 

(38.46%) 

1,062 

(20.69%) 

667 

(13.00%) 

88 

(1.71%) 

*The entries are the number of respondents that falls in the given category of weights values. Respondents 

are from a balanced panel from wave 1, 5, 10 and 15. 

 

1.6.2 Modelling savings and debts 

The BHPS provides detailed information on savings and debts at the individual level in 

our waves-combination of interest. In each of the waves, respondents were asked if they 

have money in savings and whether they owe money. If respondents have money in 

savings and/or owe money, they are then asked to state these amounts. This setting 

permits two main sets of outcome variables which were used in the analysis: (a) 

Dichotomous: these are two variables, one indicates whether an individual has savings or 

not and the other indicates if the individual is in debt (1=having savings, 0=having no 

savings; and 1=having debt, 0=having no debt); (b) Continuous: these are two variables 

reflecting the amounts of savings and debts.  
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The main independent variables used in the analysis are year of data collection (wave), 

gender, race, age, annual income, marital status, labour force status, whether respondents 

have their own children, financial status and household size, as these variables are 

important in predicting both the existence and level of wealth (Kan and Laurie, 2010). 

Gender, race and age were also used in the response propensity models; however, these 

three variables are fundamental in most analyses of social science processes.  

We analysed a balanced panel of those aged 16+ from waves 1, 5, 10 and 15 (5,132 

respondents) with our two sets of weights. Recall that the standard weights will reduce the 

size of the panel to 4,654. The analysis was carried out in STATA. The data was 

introduced as a panel data set so that the multiple observations per person are linked to 

one case rather than being treated as different cases. Since the proportion of missing 

values for the amounts of savings and debt were high (over 19% for saving, and over 7% 

for debt), the missing values were imputed to reduce any bias that might be brought into 

the analysis. The imputation was carried out using the common Hot-deck (built-in) 

command in STATA. The Hot-deck procedure performs random imputation, which 

involves categorizing the respondents in the sample into similar subgroups based on a 

number of variables. The variables used here were gender, age group, race and household 

size. These variables were chosen for the imputation because they are some of the best 

predictors of the amounts of savings and debt (Kan and Laurie, 2010). Missing data for 

respondents in any subgroup are randomly replaced with comparable data from 

respondents in the same subgroup. The values were only imputed for those who reported 

having savings or are in debt. Those who reported that they do not have money in savings 
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or are not in debt, their corresponding amounts of savings and debt were set to 0. The 

effect of this imputation is included in appendix A.2.  

Two types of analyses were done:  

First, descriptive statistics: with multiple observations per person type of data (panel data) 

interesting statistics in the context of analysing debt data are the transition probabilities 

into debt. Thus, for debt (1= in debt and 0= not in debt), we estimated a transition matrix 

using the standard and alternative weights. Additionally, we estimated weighted 

proportions of those who have savings and debt using the standard and alternative weights 

separately. The results from all of these analyses are compared and discussed in the next 

section. 

Second, multivariate analysis: the structure of the data (each case is linked to multiple 

observations collected at different times) allows for the application of panel data models 

such as random effects or fixed effects. Two panel data models, namely, random effects 

logistic regression models were used to estimate the determinants of having money in 

savings or being in debt respectively. However, each model was estimated twice using the 

two different sets of weights. Similarly, to model the amounts of savings and debts, two 

random effects OLS regression models were estimated in which every model was 

estimated two times using the two sets of weights. We used random effects models, rather 

than fixed effects, because some of our explanatory variables are time-invariant variables. 

With two different sets of longitudinal weights, eight models were estimated as each set 

of weights was used to estimate all of the four models separately.  

However, clustering and stratification were not specified in the analysis, as STATA – like 

many statistics software – does not allow this while estimating panel data models. 
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Therefore, this may lead to under-estimating the standard errors of estimates in this 

analysis. Nonetheless, although this may not result in precise estimates, any differences 

between the produced estimates will be due to the difference between the two sets of 

weights since the modeling strategy is held constant. Thus, it is possible to draw a 

conclusion on whether the two sets of weights have different impacts on the substantive 

analysis.  

 

1.7 Results  

1.7.1 Descriptive results 

Table 1.7 presents two 2x2 transition probability matrices for debt. The first matrix was 

estimated using SWs, whereas the second matrix was estimated using AWs. Both matrices 

were estimated as follows: 

We have two observed debt transitions (between wave 5 and 10, and between wave 10 

and 15). The overall transition probability matrix for debt (between wave 5 and 15), is 

therefore the sum of the two component transition matrices. We calculated the number of 

weighted transitions between wave 5 and 10, and between wave 10 and 15 amongst all 

categories of debt. We then combined (summed) the equivalent transition numbers before 

calculating the probabilities based on the summed numbers. 

The first matrix was estimated using the standard weighs (SWs), whereas the second 

matrix was estimated using the alternative weights (AWs). Overall, both of the SWs and 

AWs result in similar transition probabilities. For example, for the transition matrix 

estimated with the SWs, those who are not in debt transition into debt with a probability of 



106 
 

0.179, whereas the AWs indicate that this probability is 0.193. Also, the SWs show that 

those who are in debts may clear this with a probability of 0.427; meanwhile the AWs 

show that the equivalent probability for this is 0.442. While all equivalent probabilities 

are similar in general, each pair of equivalent probabilities indicates a difference of, 

mostly, 1% between the two probabilities. Such differences may, sometimes, have a 

significant impact on the interpretation of the results and, consequently, on the pertinent 

decision-making process. Thus, these differences indicate that the SWs and AWs are 

slightly different from each other. The additional 478 cases that are associated with the 

AWs change the transition counts amongst debt statuses (to higher numbers of transitions) 

and therefore resulted in, slightly, different transition probabilities compared to the SWs. 

Table 1.7 Debt transition probability matrix. 

 Using SWs Using AWs 

 Not in debt In debt Not in debt In debt 

Not in debt .821 
(.0047) 

.179 
(.0032) 

.807 
(.0045)  

.193 
(.0031) 

In debt .427 
(.0036) 

.573 
(.0028) 

.442 
(.0035) 

.558 
(.0026) 

* The rows reflect the initial statuses of debt, and the columns reflect the final statuses. The numbers in 

brackets are the standard errors.   

 

Table 1.8 presents weighted proportions of those who reported having savings and debt 

respectively and the corresponding standard errors of these proportions. The proportions 

were calculated using SWs and AWs separately. For savings, both of the SWs and AWs 

show that 43% of respondents have these. However, the standard error of the proportion 

is larger with SWs (.0038) than with AWs (.0022). As for debt, the relevant proportions 

are 35% and 36% with SWs and AWs respectively indicating a small difference (of 1%) 
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between the two proportions. The standard error of the proportion of those who have debt 

is also larger with SWs (.0037) than with AWs (.0021). 

These results confirm our expectations regarding differences in terms of precision 

between the resultant estimates. While both sets of weights result in similar proportions of 

those who have savings and debt, the corresponding standard errors of these proportions 

are smaller with the AWs than with SWs. This outcome is sensible as the sample size 

associated with the AWs is larger, and also because the AWs have smaller variance 

compared to the SWs.  

Table 1.8 Weighted proportions of those who have savings and debt. 

 Savings Debt 

 % SE % SE 

With standard weights 43 .0038 35 .0037 

With alternative weights 43 .0022 36 .0021 

* SE is the standard error of the given proportion. 

 

1.7.2 Results from the multivariate analyses 

 Possession of Savings and Debts 

Table 1.9 presents the results of the random effects logistic regressions of modelling the 

possession of savings and debt respectively. The table presents odds ratios and their 

standard errors. The models were estimated using a balanced panel from waves 1, 5, 10 

and 15. Each model was estimated with SWs and AWs. As can be seen from all models, 

the possessions of savings and debts are highly associated with financial situation, income 

and labour force status. For example, higher income is positively associated with having 
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both savings and debts (𝑏̂𝑆𝑎𝑣𝑒,𝑆𝑊𝑠 = 1.027, p< 0.001; 𝑏̂𝑆𝑎𝑣𝑒,𝐴𝑊𝑠= 1.028, p< 0.001; 

𝑏̂𝐷𝑒𝑏𝑡,𝑆𝑊𝑠 = 1.011, p< 0.001; 𝑏̂𝐷𝑒𝑏𝑡,𝐴𝑊𝑠= 1.011, p<0.001), meanwhile, those who are out 

of the labour force are less likely to have savings and debts than those who are employed 

(𝑏̂𝑆𝑎𝑣𝑒,𝑆𝑊𝑠= 0.618, p<0.001; 𝑏̂𝑆𝑎𝑣𝑒,𝐴𝑊𝑠= 0.603, p<0.001; 𝑏̂𝐷𝑒𝑏𝑡,𝑆𝑊𝑠 = 0.229, p<0.001; 

𝑏̂𝐷𝑒𝑏𝑡,𝑆𝑊𝑠= 0.245, p<0.001). 

Looking at the magnitudes of the coefficients resulting from the SWs and AWs, for both of 

our two substantive outcomes, one can immediately notice that the two models are 

approximately the same. However, there are a few differences: 

Unlike the AWs, using the SWs reduced the sample size, as expected, to 4,654 for both 

savings and debt models as 478 respondents are assigned a weight of zero. As a result, the 

standard errors of many coefficients in the AWs models are smaller. Consequently, in 

these models, the significance levels of some of the coefficients are increased in 

comparison with their equivalent coefficients in the models estimated with SWs.  

For instance, in the models of possession of savings, the standard errors of ‘living with a 

partner’ and ‘member of a large household’ dropped from (.043) and (.037) to (.035) and 

(.030) respectively as a result of changing the weights from SWs to AWs. Consequently, 

the significance levels of these variables are increased (𝑏̂𝑆𝑊𝑠 = 1.084, p< 0.05, 𝑏̂𝐴𝑊𝑠= 

1.095, p<0.01; 𝑏̂𝑆𝑊𝑠 = 0.882, p< 0.01, 𝑏̂𝐴𝑊𝑠= 0.864, p< 0.001) respectively.  

As for debts, the differences appear with the ‘year 2005’ and ‘member of a large 

household’. While the significance of ‘member of a large household’ is increased with 
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AWs (𝑏̂𝑆𝑊𝑠 = 1.093, p< 0.05, 𝑏̂𝐴𝑊𝑠= 1.134, p< 0.01), ‘year 2005’ only appears significant 

with AWs (𝑏̂𝑆𝑊𝑠 = 1.065, p> 0.05, 𝑏̂𝐴𝑊𝑠= 1.099, p< 0.05). 

These results clearly show the effect of the loss of 478 respondents from the analysis, 

which is associated with the SWA. These 478 respondents were picked up by the AWA 

and therefore changed the sample used in the estimation, and consequently produced 

more precise estimates. Also, another contributing factor to producing more precise 

estimates with the AWA is the fact that there is less variation in the AWs than in the SWs.  

Table 1.9 Random effects logistic regression models of possession of savings and debts. 
 Having Savings Having Debts 

 Using standard 

weights (SWs) 

Using alternative 

weights (AWs) 

Using standard 

weights (SWs) 

Using alternative 

weights (AWs) 

Year 2000 0.992 (.033) 1.002 (.033) 1.001 (.036) 1.032 (.036) 

Year 2005 1.017 (.034) 1.000 (.034) 1.065 (.038) 1.099 (.035)*a 

Female 1.106 (.043)** 1.032 (.042)** 1.047 (.045) 1.048 (.045) 

White 1.047 (.226) 1.007 (.106) 2.014 (.226)*** 2.021 (.226)*** 

Aged 26 to 45 0.973 (.077) 0.981 (.077) 0.735 (.058)*** 0.757 (.057)*** 

Aged 46+ 1.176 (.063)** 1.185 (.063)** 0.318 (.026)*** 0.339 (.026)*** 

Living with a partner 1.084 (.043)* 1.095 (.035)**a 1.042 (.046) 1.068 (.046) 

Financially okay 0.668 (.025)*** 0.680 (.025)*** 1.531 (.065)*** 1.530 (.065)*** 

Financially struggling  0.195 (.008)*** 0.200 (.008)*** 2.152 (.098)*** 2.163 (.097)*** 

Member of a large HH 0.882 (.037)** 0.864 (.030)***a 1.093 (.047)* 1.134 (.041)**a 

Has dependent children 0.790 (.037)*** 0.786 (.037)*** 1.153 (.055)** 1.146 (.055)** 

Annual income/1000 1.027 (.002)*** 1.028 (.002)*** 1.011 (.001)*** 1.011 (.001)*** 

Unemployed 0.543 (.030)*** 0.567 (.030)*** 0.620 (.035)*** 0.622 (.035)*** 

Out of the labour force 0.618 (.028)*** 0.603 (.028)*** 0.229 (.012)*** 0.245 (.010)*** 

Has a second job 1.374 (.080)*** 1.331 (.080)*** 1.518 (.092)*** 1.473 (.092)*** 

N 

σ  

ρ  

4,654 

1.24 

0.31 

5,132 

1.22 

0.31 

4,654 

1.36 

0.35 

5,132 

1.34 

0.35 
Note: The entries are odds ratios. The numbers in brackets are the standard errors. a indicates a difference in the significance level 

between the equivalent coefficients. The reference categories of the dependent variables are having no savings and having no debts 

respectively. The reference categories of the categorical independent variables in the models are year 1995, male, non-white, aged 16 

to 25, not living with a partner, having a good financial situation, having a small household, has no dependent children, employed and 
has no second job respectively. σ is the standard error of random effects (sigma u). ρ is the percentage of the total variance that is due 

to differences between units, ρ=sigma2𝑢/(sigma2𝑢 +sigma2𝑒). *p< 0.05, ** p< 0.01 and *** p<0.001. 
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Amounts of Savings and Debts 

The models in table 1.10 show the results of OLS random effects models of the amounts 

of savings and debts using the responding sample at wave 1, 5, 10 and 15. Both the 

amounts of savings and debt were modelled using SWs and AWs separately.  

Similar to the possessions of savings and debts, the results here show that the levels of 

savings and debt are also highly associated with financial situation, income and labour 

force status. For example, higher income is positively associated with the amounts of both 

savings and debts (𝑏̂𝑆𝑎𝑣𝑒,𝑆𝑊𝑠 = .0028, p< 0.001; 𝑏̂𝑆𝑎𝑣𝑒,𝐴𝑊𝑠= .0027, p< 0.001; 𝑏̂𝐷𝑒𝑏𝑡,𝑆𝑊𝑠 = 

.045, p< 0.001; 𝑏̂𝐷𝑒𝑏𝑡,𝐴𝑊𝑠= .042, p< 0.001). Also, those who are out of the labour force 

have lower amounts of savings and debts than those who are employed (𝑏̂𝑆𝑎𝑣𝑒,𝑆𝑊𝑠= -

0.012, p< 0.001; 𝑏̂𝑆𝑎𝑣𝑒,𝐴𝑊𝑠= -0.0216, p< 0.001; 𝑏̂𝐷𝑒𝑏𝑡,𝑆𝑊𝑠 = -0.858, p< 0.001; 𝑏̂𝐷𝑒𝑏𝑡,𝑆𝑊𝑠= -

0.799, p< 0.001). 

Turning to the effect of the different weighting approaches on the models, for both 

savings and debt, the SWs and AWs gave similar results. However, differences in terms of 

precision were found. For both saving and debt, the model estimated with AWs results in 

smaller standard errors for most coefficients in comparison with the model estimated with 

SWs as can be seen in table 1.10. This, in turn, increased the significance of a few 

variables in the models estimated with AWs. For the amount of saving model, for 

instance, ‘female’ appears significant only if the model is estimated with AWs (𝑏̂𝑆𝑊𝑠 = -

.0061, p> 0.05, 𝑏̂𝐴𝑊𝑠= -.0060, p< 0.05). Also, ‘living with a partner’ and ‘has dependent 

children’ are more significant with AWs than with SWs (𝑏̂𝑆𝑊𝑠 = .0082, p< 0.05, 𝑏̂𝐴𝑊𝑠= 

.0106, p< 0.01; 𝑏̂𝑆𝑊𝑠 = -.0153, p< 0.01, 𝑏̂𝐴𝑊𝑠= -.0166, p< 0.001) respectively. 
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Focussing on the amount of debts models, ‘has dependent children’ does not appear 

significant with SWs; whereas, using the AWs shows that this variable is significant at the 

level of 0.05 (𝑏̂𝑆𝑊𝑠 = 0.257, p> 0.05, 𝑏̂𝐴𝑊𝑠= 0.212, p< 0.05).  

These results are consistent with the results of modelling the possessions of savings and 

debt indicating that the results associated with the AWs are more precise, and hence 

implying that the AWA is more efficient in dealing with non-response than the SWA 

when non-monotonic response pattern applies. 

In sum, based on our descriptive and multivariate analyses, the SWA and AWA result in 

similar estimates. However, as a consequence of implementing different methodologies to 

identify response in the two approaches, weighted estimates may be affected differently. 

On the SWA part, some respondents are unnecessarily lost. As a result, the sample size 

used in the weighted analyses associated with the SWA is smaller leading to larger 

standard errors of estimates resulting from these analyses. Consequently, the importance 

of some factors in analyses that use weights from the SWA may be under estimated.  

On the other hand, the AWA identifies response by aiming to avoid losses of respondents 

whose data can be used in the given analysis. Thus, the sample size used in weighted 

analyses associated with the AWA is larger. This, in turn, produces estimates with smaller 

standard errors in comparison with the SWA. Consequently, some estimates appear more 

significant if estimated with AWs instead of SWs. 
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Table 1.10 Random effects OLS regression models of the amounts of savings and debts. 
 Savings Debts 

 Using standard 

weights (SWs) 

Using alternative 

weights (AWs) 

Using standard 

weights (SWs) 

Using alternative 

weights (AWs) 

Year 2000  .0054 (.004) .0043 (.003)  0.199 (.140) 0.165 (.127) 

Year 2005  .0006 (.004)  .0002 (.003) -0.132 (.140) -0.118 (.127) 

Female -.0061 (.004) -.0060 (.003)*a -0.521 (.128)*** -0.554 (.118)*** 

White -.0090 (.010) -.0095 (.010) -1.256 (.350)*** -1.009 (.319)*** 

Aged 26 to 45 .0007 (.008)  .0018 (.007) -0.518 (.309) -0.326 (.280) 

Aged 46+  .0001 (.009)  .0043 (.008) -1.265 (.311)*** -1.104 (.282)*** 

Living with a partner .0082 (.004)*  .0106 (.003)**a 0.006 (.141) 0.004 (.129) 

Financially okay -.0221 (.004)*** -.0216 (.004)*** 0.096 (.145) 0.101 (.133) 

Financially struggling  -.0419 (.004)*** -.0412 (.004)*** 0.706 (.152)*** 0.614 (.140)*** 

Member of a large HH -.0021 (.004) -.0040 (.004) -0.249 (.159) -0.166 (.146) 

Has dependent children -.0153 (.005)** -.0166 (.004)***a 0.257 (.179) 0.212 (.164)*a 

Annual income/1000 .0028 (.001)***  .0027 (.001)*** 0.045 (.005)*** 0.042 (.004)*** 

Unemployed -.0119 (.005)* -.0124 (.005)* -0.686 (.197)*** -0.612 (.178)*** 

Out of the labour force -.0212 (.005)*** -.0216 (.004)*** -0.858 (.165)*** -0.799 (.152)*** 

N 

σ 
ρ  

4,654 

0.07 

0.15 

5,132 

0.07 

0.15 

4,654 

1.14 

0.03 

5,132 

1.33 

0.04 
Note: The numbers in brackets are the standard errors. a indicates a difference in the significance level between the equivalent 

coefficients. The reference categories of the dependent variables are having no savings and having no debts respectively. The reference 
categories of the categorical independent variables in the models are year 1995, male, non-white, aged 16 to 25, not living with a 

partner, having a good financial situation, having a small household, has no dependent children, employed and has no second job 

respectively. σ is the standard deviation of the random effects (sigma u). ρ is the percentage of the total variance that is due to 

differences between units. * p< 0.05, ** p< 0.01 and *** p<0.001. 

 

1.8 Conclusion 

Allowing for non-monotonic response pattern by attempting data collection from sample 

members every wave regardless of their previous response statuses is beneficial in a 

number of dimensions. Apart from collecting data that can be useful to adjust for 

missingness, it assists identifying whether sample members who did not provide response 

for one or more waves are still eligible for the survey. However, it may result in different 

responding samples in different wave-combinations. Some of these combinations of 

waves may be used separately for analysis. 

In this chapter, we evaluated the SWA in the analysis of a subset of waves-combination 

when non-monotonic response pattern applies. We also introduced and evaluated an 
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AWA which is, unlike the SWA, creates a non-zero weight for every sample member in 

the responding sample in the wave-combination in question. Additionally, we 

distinguished between the two weighting approaches with respect to the number of sets of 

weights. The strategy of the SWA is to create a single set of longitudinal weights. The 

AWA, on the other hand, allows creating a number of subsets of weights for a number of 

wave-combinations. Each of these wave-combinations may be considered because it 

contains data on a particular social phenomenon, and hence may be used for analysis 

separately. 

By analysing wealth data from waves 1, 5, 10 and 15 of the BHPS, we found that using 

SWs results in a loss of 9.31% (478 respondents) of our analysis sample as their 

corresponding weight values in the SWs are zeros. In contrast, using the AWs assigned a 

non-zero weight for all the responding sample members in waves 1, 5, 10 and 15, and 

therefore, the full responding sample was used in the analysis.  

It is obvious that the SWA is disadvantageous when the analysis is restricted to a subset 

of wave-combinations as it allocates zero weights for some respondents in this case. The 

problem is due to the methodology of the SWA in identifying response which does not 

take into account the fact that the response pattern is non-monotonic. As a result, the 

SWA only identifies one group of sample members as responding (those who responded 

in all waves). In return, the AWA recognises that, with a non-monotonic pattern of 

response, the responding sample may differ across different wave-combinations. Thus, it 

creates its weights by identifying response as responding in the wave-combination used in 

the analysis. 
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Since wave-combinations that contain specific measures are likely to be used for analysis 

separately, and that the SWA may not be the best option in this case, we recommend that 

the AWA should be used to create subsets of weights for analyses restricted to these 

combinations of waves.  

Our findings, however, suggest that, even when the analysis is restricted to a subset of 

wave-combinations, the SWA and the AWA result in similar estimates. The difference is 

that the SWA may result in less precise estimates as a consequence of excluding a 

proportion of respondents from the analysis sample which can be avoided by using the 

AWA.  

It is important to notice that the findings here do not suggest that the AWA is a complete 

replacement of the SWA. As most longitudinal analyses are based on a balanced panel 

from all of the conducted waves, the SWA remains useful in many types of analyses. But 

it could be well supported if a limited number of additional subsets of weights are created 

based on the AWA introduced in this chapter. Our findings here support this argument. 

The extra sets of weights will serve as strong alternatives when analysis is restricted to 

wave-combinations that collect data on the same subject. Thus, for survey organisations 

that include a specific module of questions in particular combinations of waves, their 

weighting can be largely improved from creating extra subsets of weights for these 

particular wave-combinations in addition to the set of SWs.   

On the data analysts’ part, those who would like to construct estimates using a specific set 

of measures that are included in a particular waves-combination, but also like to adjust for 

non-response in their estimates, the SWs, as mentioned, may be suboptimal. However, 
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many analysts will just assume that the weights provided by the survey organisation will 

reduce non-response bias without affecting other aspects of their analysis, such as 

reducing the size of their analysis sample. As demonstrated in this chapter, with the SWA, 

this is not always the case.  

Even data users who can realise that the SWA is suboptimal in some analyses, but they 

are concerned about non-response bias, will be forced to use the SWs if these are the only 

weights offered in the data file. Even though this may be at the cost of reducing their 

analysis sample and hence reducing precision in their estimates. Consequently, those who 

cannot afford to increase the variance of their estimates, but at the same time they do not 

want to risk their estimates with potential non-response bias would face a rather tricky 

decision with the single option of SWs. 

Therefore, with the additional subsets of weights, survey organisations will provide a rare 

opportunity for weighted analyses that are only based on topic-specific wave-

combinations. When using the AWs instead of the SWs, analysts can ensure that the 

precision of their estimates is improved, while the estimates remain relatively unchanged 

as suggested by the evidence in this chapter.  

It may of course be the case that survey organisations realize that the SWA has its 

limitation with regard to non-monotonic response pattern. Still, the SWA is preferred. 

From a critical viewpoint, the issue is that many individuals, even within some academic 

survey organisations, are not convinced that a considerable proportion of data users will 

use any created weights. Moreover, most substantive analyses use a balanced panel from 

all waves for which the SWs are suitable. Thus, it is not necessary spend extra time 
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creating additional subsets of weights that might not be distinguished, by most data users, 

from the SWs let alone the fact that they may not be used.  

However, such attitude is - to an extent - hypothetical, and is in clear contradiction with 

the principles of providing comprehensive and reliable data sets that academic survey 

organisations adopt. Survey organisations carry the burden of creating and releasing non-

response weights. A reasonable assumption that has to be made, then, is that some 

analysts are concerned about non-response bias, and if they decide to use adjustments 

offered by the data providers, they may want to use the best available alternatives.   

Topic-specific wave-combinations are typically few, and are already defined by the 

survey design. Additionally, it is not difficult to modify the weighting model in the SWA 

to create the extra sets of weights. In return, it is advantageous and in line with the 

development in weighting schemes that leading longitudinal surveys implement.   

By using waves 1, 5, 10 and 15 from the BHPS, it was shown that the AWA could 

prevent the loss of 9.31% of the analysis sample. In similar combinations of waves in 

other surveys, the effect of this method could be more significant. This is particularly 

more likely in surveys with larger number of waves. Thus, for surveys that are designing 

a long-life panel, such as Understanding Society in the UK, this approach of weighting is 

worth considering. 

Aside from designing subsets of weights for wave-combinations that collect data on the 

same subject, survey organisations may use other criteria to decide on potential 

combinations of waves that require AWs. For example, to enhance the accuracy of survey 

estimates, survey organisations sometimes add extra information to the original sample. 
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For instance, two samples (from Scotland & Wales) were added to the BHPS in wave 9. 

Also, an additional sample (from Northern Ireland) added at wave 11. Thus, for the 

BHPS, providing subsets of weights for waves 9 onwards, and 11 onwards might be of 

interest. Other criteria were put forward by Lynn and Kaminska (2010). 

Although each suggested criterion may be useful, at present there is no approach that 

guides all of – or at least some of - these criteria simultaneously for a rational selection of 

wave-combinations for weighting. Instead, each criterion, if used, will be used solely. 

Meanwhile, weighting can benefit greatly by combining all or some of these 

considerations. Thus, a challenge for future research is to unite all these considerations 

into one constructive method that would guide the process of selecting wave-

combinations. 

In any case, the choice of specific waves-combination for weighting should be guided by 

a rule that takes into account two issues:  

(a) The subsample drawn for analysis from any chosen combination of waves should 

be considerably different (in size and composition) from the samples used in the 

SWA. 

(b) The selected combination of waves should be usable for analysis that achieves the 

objectives of the survey. 
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2.1 Introduction 

Household longitudinal surveys follow respondents over time and continue gathering data 

from them, which not only provide an opportunity for cross-sectional analysis on the data 

collected at each wave, but also allows the analyses of gross change. These features of 

longitudinal studies lead to a thorough understanding of dynamic populations, which 

cannot be achieved by conducting cross-sectional surveys. However, for this to be 

achieved, a well-designed representative sample is required.  

The sample selected for a panel study is usually designed to represent the population of 

interest at the start of the survey. Surely, the population of interest changes over time as 

people are born, immigrate, die and emigrate (Lynn, 2011). Through these changes, some 

units will leave the study population, while other units will enter this population. For 

example, if the study population is defined as ‘those who are alive and resident in 

households in the state where the survey is conducted’ (a common definition of eligibility 

for household panel surveys), those who die will no longer be part of the population 

(ineligible) and those who are newly born will enter the defined population. 

Thus, the sample should also be modified over time to maintain representativeness of the 

population of interest during the course of the study. New eligible members may join the 

sample through a specific mechanism that could be established by the sample design. For 

example, to represent the new births in the population, the survey might establish a rule 

that new born children of any eligible female sample member will be added to the sample 

as eligible sample members7. Accordingly, survey researchers can, relatively, control the 

                                                           
7This is how new births are represented in the sample of Understanding Society in the UK (Lynn, 2011). 
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system by which new members should join the sample, and hence new eligible sample 

members can be known. 

In turn, some sample members may die or move out of the scope of the survey, in which 

case they become ineligible for survey administration. These cases should be identified as 

they are no longer part of the population of interest, otherwise they might cause a number 

of complications in the survey as shall be discussed in this chapter. However, for some 

subgroups in the sample, identifying those sample members who become ineligible can be 

a challenging task. In most samples of longitudinal surveys, there is a proportion of 

sample members whose eligibility is unknown. A major reason for this is that survey 

organisations can lose track of sample members if, for instance, they change their 

residence address and contact details without informing the survey office. These cases, 

and any others where contact cannot be established, result in non-response. Non-response 

through non-contact obstructs the identification of the eligibility status of sample 

members, since little information about them is available. 

This is particularly a dilemma at waves subsequent to the last successful contact attempt 

as information about those who have not been successfully contacted for some waves may 

not be available at all. For example, consider a 10-wave survey, where sample members 

are eligible if they are alive. If, after wave 1, the survey could not re-establish contact 

with a group of sample members, some of whom may have been aged 90 or more at the 

start of the survey, it would be rather tricky to classify them as either eligible or ineligible 

by the time of wave 10. A plausible question in these circumstances is whether some of 

the sample members in question are in fact ineligible (deceased). Therefore, determining 
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the eligibility status for sample members whose eligibility is unknown is an important 

challenge for survey researchers. 

Unknown eligibility raises a number of practical concerns in longitudinal surveys. The 

major concerns are:  

(a) Disturbance of the calculation of survey quality measures: accurate calculation of 

important measures of the survey quality such as the response rate, contact rate and co-

operation rate can be affected if eligibility is unknown for a considerable proportion of 

sample members. In order to calculate the quality rates, it is important to identify the 

number of eligible sample members in the sample as it determines the base on which 

these rates are calculated. Thus, appropriate classification of those whose eligibility is 

unknown as either eligible or ineligible may be necessary. In this chapter, we briefly 

discuss the effect of unknown eligibility on the calculation of the response rate, contact 

rate and co-operation rate, but our main focus will be on 

(b) Potential distortion of non-response weighting: unknown eligibility may negatively 

affect non-response weighting. This is particularly likely if the treatment of cases whose 

eligibility is unknown is done as in the standard weighting approach (SWA). In the SWA, 

sample members whose eligibility is unknown are assumed to be eligible, and are 

therefore included in the process of estimating the weights for the responding cases. 

Consequently, if some of the cases whose eligibility is unknown are actually ineligible, 

the weights will encompass influence of units that are not part of the population of 

interest in the weighted estimates. In turn, weighted estimates may be biased.  
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In this chapter we investigate an alternative weighting approach (AWA). The AWA will 

adjust the standard weights (SWs), resulting from the SWA, to reduce the effect of 

potentially including ineligible cases during weights creation. The weights resulting from 

the adjustments made by the AWA will be used as the alternative weights (AWs). To 

make its adjustments, the AWA will use information on eligibility from the study 

population, which could be available from an external source. Details on the logic and 

methodology of the AWA are given in section (2.7). We use the BHPS sample to carry 

out the investigation. For the assessment of the AWA, we analyse data on subjective 

health status using the SWs and the AWs and compare the results. To check the sensitivity 

of the results generated from the AWA, we introduce a second alternative approach. The 

latter involves an imputation procedure to deal with unknown eligibility during 

weighting. Full explanation of the second alternative approach is also given in section 

(2.7). However, our attention is given to the AWA, and the second alternative is mainly 

introduced to provide a sensitivity analysis. 

Aside from survey-specific characteristics of ineligible sample members, the most 

common characteristics of being ineligible for a survey are: death, moving out of the 

geographical area that is covered by the survey (emigration) and being institutionalised – 

such as going to prison or residing in a military base -.  In all these cases, establishing 

contact may not be possible8. However, in this chapter, we limit our investigation to 

death. This is because of three reasons. First, unlike other forms of ineligibility, in most 

countries, information on mortality is usually well documented and available for public 

                                                           
8Contact is sometimes possible after death. This may happen, for example, if contact is established with 

another household member who can inform the interviewer of the death of the sample member in question. 

However, contact may not be established in circumstances where the deceased sample member had 

previously lived alone.   
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use. Often such information is recorded (by age and gender) for the whole population and 

can be obtained from a single external source such as national statistics institutes. In 

contrast, data on those who emigrate or move from a household to an institution, are not 

necessarily reported, and hence may not be accurately recorded by a single source. 

Furthermore, such data, if recorded, are not typically available for access by members of 

the public, and even if they are released they are often in aggregate levels which may not 

be useful for a thorough investigation.  

Second, death is a larger source of ineligibility compared to emigration and 

institutionalisation (Watson, 2014).   

Third, emigration and institutionalisation are more complex forms of ineligibility than 

death. With emigration and institutionalisation, it is possible for eligibility status of 

individuals to change (possibly multiple times) between ‘eligible’ and ‘ineligible’ at 

different time points causing difficulties in terms of estimating valid eligibility statistics. 

On the other hand, the terminal nature of death makes it a simple form of ineligibility. If a 

person is ineligible through death, they remain ineligible, which makes the use of 

mortality information relatively reliable.   

Thus, our AWA will focus on dealing with the group of dead sample members amongst 

those whose eligibility is unknown. The terms ‘dead’ and ‘ineligible’ (or alive and 

eligible) may be used interchangeably here.  

Additionally, the chapter discusses the concepts of eligibility and unknown eligibility in 

survey research in general; and reviews a number of methods used to estimate eligibility 
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rates amongst those whose eligibility is not known. Though, our major focus will be on 

dealing with unknown eligibility in the weighting context.  

2.2 Eligibility 

The objective of sample surveys is to make inference about a population based on 

information obtained from a sample. Usually, the population of interest is defined 

precisely according to specific characteristics. Sample units whose characteristics match 

the characteristics of the population of interest are referred to as eligible sample units. 

Defining eligibility is a crucial step in every survey. Conditions for being eligible vary 

between surveys, depending on the aim and objectives of the survey. In some surveys, the 

definition of eligibility is linked to a certain period or point in time. For example, in a 

survey of smokers, if being eligible is defined as being a smoker, the survey organisation 

should link the definition of eligibility to a specific time period, as individuals may start 

or stop smoking during the data collection period.  

Since the only usable data for analysis are collected from eligible sample units, ineligible 

cases are dropped from the sample, and as a result, the sample size is then reduced. Thus, 

especially in cross-sectional surveys, it is advantageous to increase the eligibility rate, by, 

for example, pre-screening the sample units before selecting the sample. This is because, 

at the sampling stage, sometimes it is difficult for the survey researcher to spot some of 

the undesirable or ineligible cases (cases that are not part of the population of interest) in 

the sample frame. For instance, in random dialling digit surveys the sample frame may 

contain non-working numbers (i.e. ineligible); however, it might be impossible to know 

this unless a contact attempt is made (Groves et al, 2004).  
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In contrast, in longitudinal surveys, pre-screening the sample may not be of great benefit 

in the long term. This is because individuals’ characteristics that match the characteristics 

of the population of interest can change overtime, introducing the possibility that sample 

members may be part of the population in earlier waves but not in later waves. For 

example, if being eligible in a survey is defined by living in the country where the survey 

is conducted, some sample members may leave the country after participating in a 

number of waves, and, as a result of this, they become out of the scope of the population 

of interest. This complexity demonstrates that dealing with eligibility in longitudinal 

surveys is more problematic.  

Although it is cost effective if ineligible sample members are identified before they are 

issued to an interviewer, often ineligible units are not identified as such until the 

interviewer makes contact and finds out that a sample member is ineligible. 

2.3 Unknown eligibility 

The term ‘unknown eligibility’ is used to refer to the status where there is not sufficient 

information about a sample member to allow them to be identified as either an eligible or 

ineligible after the data collection stage is completed.   

The most common outcomes of any contact attempt are: sample member is ineligible, 

completed interview, refusal or non-contact. In the case of ineligible sample members and 

completed interviews eligibility is defined. However, with non-response, which occurs 

through refusal or non-contact, information about non-respondents is very limited and 

sometimes not available. Therefore, the survey researcher may be able to identify 

eligibility for some of the non-respondents, but for a substantial proportion, eligibility 
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will remain unknown. With refusals however, it is possible sometimes, particularly in 

household panel surveys, to identify eligibility. This is because eligibility in most panel 

studies is mainly defined as being alive and resident. Thus, although the survey fails to 

gain cooperation from those who refused to participate, it is possible to classify them as 

eligible sample members.  

In panel studies, unknown eligibility can be resolved in the case of wave non-response, 

where sample members are not present for at least one wave, but they resume 

participation at some point during the course of the survey. In this case, information 

related to eligibility status during the period of absence can be collected in the current 

interview. In turn, a special case of unknown eligibility occurs through attrition. Attrition 

is the permanent dropout from a longitudinal survey after having participated at previous 

points of data collection (Chang, 2010). In this case, the survey researcher is unable to 

identify the eligibility status of sample persons even though they were eligible when they 

gave their last interview. Despite the use of different strategies to minimize attrition 

(McGonagle et al, 2011; Laurie and Lynn, 2009; Laurie et al, 1999), in some cases it is 

impossible to retain survey participation.  

In panel surveys, some of the non-contacted sample members will in fact have died and if 

these deaths are not reported to the survey organisation, deceased sample members will 

be classified as sample members whose eligibility is unknown. In consequence, this may 

turn the process of maintaining the representativeness of the sample over time into a 

challenging task since decisions about those whose eligibility is unknown cannot be made 

easily.  
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Therefore, and particularly in household panel surveys, it is very useful if eligibility status 

of sample members whose eligibility is unknown, but are actually deceased (ineligible) is 

estimated as accurately as possible. This will benefit both the calculation of response rates 

and non-response weights as will be explained in sections 2.5 and 2.6 respectively. While 

it is challenging to estimate eligibility at the case level for cases whose eligibility is 

unknown, a number of methods can be used to estimate proportions of eligible cases. 

These are discussed next.   

2.4 Methods for estimating the eligibility rate amongst cases of unknown eligibility 

There are several methods that are usually used to estimate the rate of cases of unknown 

eligibility that are actually eligible ‘e’. Most of the literature in this area assumes a 

random digit dialling survey (RDD) (Smith, 2003) as this is a context in which typically 

eligibility cannot be established for a high proportion of sample cases. Therefore, some of 

the methods are RDD specific.  

Minimum and maximum allocation: this is a simple method in which ‘e’ is assumed to be 

either 0% or 100% of the cases of unknown eligibility (Lessler and Kalsbeck, 1992; 

Smith 2003). Accordingly, more than one response rate can be produced. Taking ‘e’ as 

0%, gives the maximum possible response rate while substituting ‘e’ as 100% produces 

the lowest response rate. This will be shown in the next section when the calculation of 

the response rate is discussed. However, one can obtain a range of response rates by 

varying the values of ‘e’ from 0% to 100% before choosing a plausible value that does 

not inflate the rate.  
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Proportional allocation9: this method assumes that ‘e’, among the cases of unknown 

eligibility, is the same as among the cases whose eligibility is known (Frankel, 1983; 

Lessler and Kalsbeck, 1992; Smith, 2003; Barron, Khare and Zhao, 2008). Smith (2003) 

indicates that proportional allocation is conservative as it produces a high value of ‘e’, but 

it might produce a biased estimate of ‘e’ because the assumption that the eligibility rate 

among the unobserved sample is the same as among the observed sample is unlikely to 

hold true.  

Survival analysis: this method is the standard survival analysis method in which the 

number of contact attempts is used to estimate the eligible cases among the cases of 

unknown eligibility (Frankel et al, 2003). This method is considered to be a better 

approach to estimating ‘e’, since it uses more information from the sample than the other 

methods. However, it cannot be asserted that the statistical assumptions of survival 

analysis are properly met (Smith, 2003).   

RDD specific methods: there are a few methods used in random digit dialling surveys to 

estimate the eligibility rate among the unknown eligibility cases. The most commonly 

used of these are: allocation based on disposition codes and contacting telephone business 

offices. Under the disposition codes allocation approach, the outcome of the call attempt 

is used to identify whether a case is eligible or not (Smith, 2003). For example, in a 

survey, a researcher might establish a rule that all of the phone numbers with answering 

machines are eligible, while those resulting repeatedly in busy signals are not eligible. 

The limitation of this method is that the basis in which the disposition codes are allocated 

                                                           
9 Some of the literature on the response rate refers to this method as CASRO type II as it is proposed by the American 

Survey Research Organisations. 
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may not solely determine the eligibility. For example, a ring-no-answer alone is not 

enough to identify a case as being ineligible.  

As for the business offices10 approach, survey researchers sometimes contact local 

telephone business offices to enquire about the status of the unknown numbers (Frankel et 

al; 2003). However, this method is considered to be both money and time consuming, in 

addition to the fact that business offices usually refuse to give out information about 

phone numbers.     

Many studies have applied the above methods to estimate the eligibility rate among the 

cases of unknown eligibility. For example, Barron, Khare and Zhao (2008) applied the 

proportional allocation approach to estimate ‘e’, to calculate the response rate for the 

National Immunization Survey’s Cell Telephone Pilot study (NIS-CTP). Gasteiz (2007) 

indicates that the minimum and maximum allocation method was used (‘e’ was assumed 

to be 100%) to estimate the eligible cases among those cases where eligibility is unknown 

in the Population in Relation to Activity Survey (PRA). In a list-assisted RDD telephone 

survey about adolescent substance abuse, the Survey and Evaluation Research Laboratory 

(SERL) applied the proportional allocation approach to estimate the response rate (Ellis, 

2000).  

However, each of the methods used has its limitations, and as Smith (2003) states “At 

present none can be considered a gold standard for calculating “e””. In addition, most of 

these methods have mainly been implemented in cross-sectional studies. Longitudinal 

                                                           
10A telephone business office is a special type of firm in the United States that possesses telephone numbers 

directories for specific geographical areas. Such companies provide telephone numbers, addresses and 

directions for businesses and individuals within the specific areas. 
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surveys, on the other hand, may benefit from the investigation of an alternative method 

that takes the longitudinal aspect of eligibility into account. 

2.5 The effect of unknown eligibility on response rate, contact rate and co-operation rate 

When the data collection stage is completed, survey organizations usually publish some 

statistics such as the response rate, contact rate and co-operation rate, to reflect the main 

features of the data and inform data users about the quality of the data that the survey has 

gathered. These rates are widely reported in research reports. They indicate the quality of 

the survey and the effort put forward to contact sample members and achieve interviews. 

Also, these rates are, sometimes, used to compare survey quality between surveys, survey 

organisations and countries. In addition, response rates are important indicators of the 

likelihood of non-response bias. On the absence of good estimates of the differences 

between respondents and non-respondents in terms of the measurements used to construct 

the estimate in question, low response rates may be taken as indicators of a potential for 

bias.  

However, unknown eligibility can affect the calculation of these rates because each of 

them is defined as a ratio that contains the number of eligible sampled units in the 

denominator. Thus, the identification of eligible cases will affect the base on which these 

rates are calculated. Consequently, an incorrect classification of cases whose eligibility is 

unknown will result in under or over estimating response, contact and co-operation rates. 

Response rate  

The response rate measures the percentage of the completed interviews out of all the 

eligible units (CASRO, 1982; AAPOR, 2004). From this definition, it is obvious that the 
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calculation of response rate depends on a precise identification of outcome codes for 

sample cases. For example, does a partial interview count as ‘completed interview’? Also, 

in a random dialling digit (RDD) survey, can a ‘ring-no-answer’ indicate eligibility even 

though contact is not successfully established? 

Different survey designs may result in different outcome codes (or different distribution 

of cases over the same codes if the studied populations are different), and hence different 

calculations of response rates. Thus, it is not always possible to compare response rates 

between surveys because of design differences or population differences. In recent 

decades, efforts have been made by different organisations to standardise the calculation 

of response rates. For example, in the USA, the American Association for Public Opinion 

Research (AAPOR) published standard definitions for final disposition of case codes for 

both RDD and in-person surveys (AAPOR, 1998). Also, in the UK, Social Survey 

Division of ONS and the National Centre for Social Research developed a proposal for 

outcome codes and response rate calculation for use with government social surveys 

(Beerten, Lynn, Laiho and Martin, 2000).  

In any case, ineligible sample units should not be included in the calculation of the 

response rate if the rate is to be computed accurately. Based on the definition of the 

response rate, a general formula for calculating the rate can be written as  

𝑅𝑅 =
Number of eligible sample units with completed interviews

Number of eligible sample units
                           (2.1) 

Where RR is response rate. However, it is impossible to calculate the denominator 

precisely, if eligibility is unknown for some of the sample members. In almost every 
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survey, as long as there is an incidence of non-response, there will be a number of cases 

whose eligibility remains unknown.  

Thus, estimating the Number of Eligible Units whose Eligibility is Unknown (NEUEU) is 

a crucial component of the calculation of the response rate (Alsnih and Stopher, 2004). If 

the NEUEU is estimated, the response rate can be calculated using (2.2). 

𝑅𝑅 =
Number of eligible sample units with completed interviews

Number of eligible units whose eligibility is known + NEUEU 
                                                   (2.2)   

Overestimating NEUEU leads to underestimating the response rate, while 

underestimating NEUEU results in overestimating the response rate. Therefore, regardless 

of the method used to estimate NEUEU, it is advisable to utilize a value of NEUEU that 

does not inflate the response rate and hence give a false sense of valuing the quality of the 

data.       

Contact rate 

The contact rate (CR) denotes the proportion of sample members who were successfully 

contacted, even if they refused to participate in the survey or were unable to provide any 

type of information (Gasteiz, 2007). A general formula for calculating CR is given by 

equation (2.3). 

𝐶𝑅 =
Number of eligible sample units in which contact was made

Number of eligible sample units
                         (2.3)   

Similar to the response rate, the calculation of contact rate requires the estimation of 

NEUEU after which the rate can be calculated using (2.4). 
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𝐶𝑅 =
Number of eligible sample units in which contact was made

Number of eligible units of known eligibility + NEUEU
                               (2.4) 

Co-operation rate 

The co-operation rate (CoR) measures the proportion of achieved interviews among the 

cases in which contact was made (Gasteiz, 2007). CoR can be calculated using equation 

(2.5). 

𝐶𝑜𝑅 =
Number of sample units in which interview was conducted

Number of eligible sample units in which contact was made
                      (2.5)   

In many social science surveys (including the BHPS), a sample member is eligible if they 

are alive. In this case, calculating the co-operation rate does not require an estimate of 

NEUEU. This is because the denominator in the co-operation rate only consists of sample 

members who are successfully contacted and hence eligible (i.e. alive and living in the 

geographical area covered by the survey). 

Survey researchers recommend the calculation of contact and co-operation rates alongside 

the response rate (Beerten, Lynn, Laiho and Martin, 2000). The response rate on its own 

tells us little about the mechanism underlying the non-response process. By quoting the 

response rate alone, it is not possible to reflect on refusal and non-contact, for example. In 

turn, calculating contact and co-operation rates helps analysts to understand whether 

refusal or non-contact is the major component of non-response in the survey, and also 

helps survey organisations to tackle the problem more appropriately by dealing with the 

different causes separately.   
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The response rate may be redefined in terms of the contact rate and the co-operation rate 

as: 

Response rate (RR) = Contact rate (CR) * Cooperation rate (CoP)                               (2.6) 

In short, with unknown eligibility, the calculation of the different types of outcome rate 

encounters the problem of accurate estimation of the number of eligible sample units 

whose eligibility is unknown (NEUEU). NEUEU can be estimated using a number of 

practical methods (reviewed in section 2.4). Thus, regarding the calculation of the survey 

quality measures, unknown eligibility can –to an extent- disturb the calculation of some 

of these measures. Though, with a good estimation of NEUEU, one can still calculate the 

quality measures to the best possible approximation. However, with weighting, unknown 

eligibility may be more problematic. Our substantive investigation in this chapter is 

centred around this issue. In particular, we study the negative impact of unknown 

eligibility on the SWA and we suggest alternatives.  

2.6 Unknown eligibility and the standard weighting approach (SWA) 

In longitudinal surveys, apart from disturbing the calculation of the quality measures, 

unknown eligibility can also distort non-response weighting. Non-response weighting 

assigns higher values to some of the eligible respondents in the survey, in order to 

increase their influence so as to represent eligible individuals who are missing due to non-

response (Biemer and Christ, 2008; Lynn, 2005). Therefore, in order for the weights to 

modify the sample correctly, they should be estimated using eligible sample members 

only. Including ineligible sample members in the non-response model that is used to 
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derive the weights may lead to incorrect modification of the sample as will be 

demonstrated next.  

During weights creation, classification of sample cases as either eligible or ineligible must 

be made for every sample member. Clearly, unknown eligibility is a predicament in this 

situation. As we discussed in the introduction of the thesis, and the chapter, the SWA 

attempts to overcome this difficulty by assuming that all sample members whose 

eligibility is unknown are eligible. However, if some of these cases are actually ineligible, 

the weights may not be calculated accurately. More importantly, if a large number of the 

ineligible cases (who are not known as such) are clustered within specific weighting 

classes, the weights may result in estimates that are biased towards characteristics of 

sample members from these classes. 

To illustrate this problem for a given survey that applies the SWA, suppose that  

𝑛𝑖𝑗𝑘 indicates the number of sample units (where i, j and k denote eligibility status, 

knowledge of eligibility, and survey response status respectively); and that 

i = 1 if eligible; 2 if ineligible (actual status, regardless of whether this is known); 

j = 1 if eligibility status is known; 2 if it is not known; 

k = 1 if survey respondent; 2 if non-respondent. 

Thus, 

∑ ∑ ∑ 𝑛𝑖𝑗𝑘
2
𝑘=1

2
𝑗=1

2
𝑖=1 = n••• is the total sample size. 
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We can assume that 𝑛121 = 𝑛211 = 𝑛221 = 0 (i.e. that all respondents are 

eligible and known to be eligible). 

Accordingly, 

𝑛111 is the number of respondents; 

𝑛112 is the number of non-respondents known to be eligible; 

𝑛212 is the number of non-respondents known to be ineligible; and 

𝑛122+𝑛222 is the number of non-respondents whose eligibility is unknown (where 

𝑛122 is the number of non-respondents whose eligibility is unknown but are actually 

eligible, and 𝑛222 is the number of non-respondents whose eligibility is unknown but are 

ineligible).  

For illustration purposes, let us assume that the weighting is done using weighting classes 

method. For a given weighting class ‘c’, the response probability (Þ𝑐) is calculated by 

dividing the number of responding units by the total number of eligible sample members 

in the class; and the relevant non-response adjustment weight (w𝑐) is calculated as the 

inverse of the response probability in the class.  

Now, with unknown eligibility, the SWA assumes that sample members whose eligibility 

is unknown (𝑛122+ 𝑛222) are eligible. Thus: 

Þ1𝑐 = 
𝑛111

𝑛11.+ 𝑛122+ 𝑛222
     resulting in w1𝑐 = 

𝑛11.+ 𝑛122+ 𝑛222

𝑛111
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But, if we had perfect information about eligibility, this would be: 

Þ2𝑐 = 
𝑛111

𝑛11.+ 𝑛122
     resulting in w2𝑐 = 

𝑛11.+ 𝑛122

𝑛111
 

Note that w1𝑐>w2𝑐 as a consequence of not being able to correctly identify eligibility for 

sample units in 𝑛222 (ineligible units amongst units of unknown eligibility) during the 

calculation of w1𝑐. Ideally, the SWA should exclude sample units in 𝑛222, and should 

produce w2𝑐. However, because the SWA assumes that all units of unknown eligibility 

(𝑛122+ 𝑛222) are eligible, it results in w1𝑐. In turn, w1𝑐 will mistakenly over weight the 

responding cases in class ‘c’ if 𝑛222 is large. In addition, over time, the size of w1𝑐 may 

continue to increase incorrectly as more cases are added to n222. In other words, as more 

waves are conducted, the relevant weight in class ‘c’ will increase (mistakenly), if some 

of the new non-responders in the class become ineligible but are not identified as such. As 

a result, the increase in weights size may increase the standard errors of weighted 

estimates leading to less precision and less statistical power.  

Moreover, and even more importantly, this might cause a larger problem if ineligible 

cases among cases of unknown eligibility are not evenly distributed across weighting 

classes. If, in this case, the weighting classes are associated with some of the survey key 

variables, respondents in classes with larger proportions of unidentified ineligible cases, 

will have greater contribution (with the larger weights) to estimates constructed using the 

variables in question, but by using influence from units that are not part of the population 

of interest (𝑛222). Consequently, the weighted estimates will be biased towards the 

characteristics of respondents from classes where more ineligible cases are not identified.  
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Obviously, the problem also applies if a model-based method is used for weighting. In 

this case, units in 𝑛222 who possess a given set of characteristics that determine the 

relevant probability of response, may falsely induce the model to estimate a smaller 

response probability (as they are non-responders) and hence generate larger weights for 

the responding cases who share the same set of characteristics that are used as predictor 

variables in the model. Had the cases in 𝑛222 been identified and dropped from the 

weighting model, the estimated probability of response which is determined by the set of 

characteristics that cases in 𝑛222 possess would increase in size resulting in a smaller 

weight for the responding cases who share these characteristics.    

For most longitudinal surveys that intend to study a resident population in a given 

geographical area, death is an obvious ineligibility criterion. Accordingly, if the SWA is 

applied, deceased sample members who are not reported as such will be assumed as alive 

non-responders, and will be used in the weights calculation as was just explained. 

However, health studies have shown that death is associated with socio-demographic 

characteristics such as age and gender (Singh-Manoux et al, 2008; Dr Foster, 2004). That 

is to say, in most parts of the world women are expected to live longer than men, and 

mortality rates are higher among older age groups than among their younger counterparts. 

Therefore, estimates constructed based on a SWA which might mistakenly include dead 

(ineligible) sample members in the weights’ calculation may be biased towards 

characteristics of respondents from classes with higher death rates (e.g. respondents in the 

older age groups). Thus, the treatment of unknown eligibility cases by the SWA may not 

be the best option if other alternatives are possible.  
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2.7 The alternative weighting approach (AWA) 

As mentioned previously, the most common forms of ineligibility are: death, moving 

from the geographical area covered by the survey and being institutionalised. As is set out 

in the introduction of this chapter, the investigation here will be limited to death. 

The SWA results in relatively larger weights for the responding cases whose 

characteristics are similar to the deceased sample members. As a counter effect, the AWA 

will be based on a mechanism (as will be shown) that reduces the weights of these 

responding cases by implementing an adjustment that relies on the population mortality 

rates to estimate the adjustment factor. The rationale for estimating and applying this 

adjustment factor is explained in what follows. 

The sample – if representative - is a smaller image of the population. Thus, the rate of a 

given phenomenon in the population should be equal to the rate of the same phenomenon 

in the sample, under expectation. Based on this logic, the AWA involves estimating 

expected sample survival proportions, for classes identified by age and gender, using the 

population mortality data from the external source. It also calculates the equivalent 

observed rates in the sample. The latter would be obtained by assuming that those whose 

eligibility is unknown are alive. Note if those with unknown eligibility status in the 

sample are assumed to be alive, the observed survival rates in classes with larger 

proportions of unknown eligibility cases are likely to be higher in the sample than in the 

equivalent classes in the population. This is simply because some of the unknown 

eligibility cases within these classes in the sample may not be alive. Also, the standard 

weights in such classes are large (incorrectly). However, the ratio of the survival rate in 
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the population to the survival rate in the sample in each class, which will range between 0 

and 1, can be used to reduce the relevant weights to balance eligibility. 

For example, assume that the survival rate in a given population is 80%; and that a 

representative sample from this population shows that 50% are known to be alive, 10% 

known to be dead and 40% are of unknown survival status. If the weighting assumes that 

those with unknown survival status are alive, the weights will increase the values of the 

responding sample to represent 90% survival (50% + 40%) while it should only represent 

80% (the true rate in the population). Thus, it would be appropriate to adjust (multiply) 

the weights by 8/9 (80%/90%) to correct the survival imbalance. In this example, 8/9 is 

the adjustment factor. It is calculated as the ratio of the survival rate in the population to 

apparent survival rate in the sample. 

To show the calculation of the adjustment factor in terms of notations let Þ𝑆 and Þ𝑃 

denote the survival rate in the sample and in the population respectively. Note that Þ𝑆 

contains cases that are assumed to be alive (i.e. cases with unknown eligibility status). 

Thus: 

Þ𝑆 ≥ Þ𝑃                                                                                                                            (2.7)                                                                                                                                  

if 

ad*Þ𝑆 = Þ𝑃                                                                                                                     (2.8)                                                                                                               

Then ad is a fraction. 

ad is the adjustment factor that equalises the survival rates in the sample and the 

population. From equation (2.8) 
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ad= Þ𝑃/Þ𝑆                                                                                                                       (2.9)                                                                                                                      

From equation (2.9) it can be notice that ad takes a value between 0 and 1 since its 

denominator is larger.  

Our AWA in this chapter relies on the ad. After creating the weights using the SWA, the 

AWA, will classify the sample members in classes identified by age and gender. For each 

class, the AWA will calculate the ad as in equation (2.9). The standard weight of a given 

respondent will be multiplied by the value of ad in the class to which the respondent 

belongs. In classes where all units are known to be alive (Þ𝑃≈Þ𝑆), the value of the ad will 

be 1 resulting in no effect on the relevant weights. In classes where more units are 

assumed to be alive but they are actually deceased (Þ𝑃<Þ𝑆), the value of the ad will take a 

value below one, and will therefore decrease the weights values of the responding cases in 

these classes reducing the negative effect of unknown eligibility on weighting.  

At first sight, the AWA may seem as if it is merely a standard post-stratification method. 

Partly because both the AWA and post-stratification classify the sample into classes for 

which information is known for the same classes in the population; and partly because the 

weights in these classes are adjusted further by a constant that is constructed based on the 

population information. Although the two methods share similarities, they aim at, and 

achieve, different results. Differences between our AWA and post-stratification can be 

explained in a number of dimensions:  

First, the targets in post-stratification (often population totals) are known for the defined 

classes, whereas in the AWA the targets (eligibility rates) need to be estimated based on a 

combination of sample information (observed survival rates) and external information 
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(mortality rates). Second, the targets in post-stratification are estimates of the population 

distribution; whilst in the AWA, the eligibility rates calculated from the population 

information are estimates of the distribution of the sample (true rates of eligibility). Third, 

post-stratification should work in an upwards direction (increases the weights) to 

represent eligible units in the population that are missing from the sample, while the 

AWA only works in a downwards direction (it decreases the weights since 0 <ad <1) to 

reduce influence of ineligible units that were assumed to be eligible sample units. Fourth, 

the main goal of post-stratification is to adjust for non-coverage and sampling error, 

where the aim of the AWA is to correct for estimation error that would otherwise be 

caused by an incorrect assumption underpinning the non-response adjustment weighting.  

A second alternative approach 

An interesting alternative with respect to determining the eligibility status for those whose 

eligibility is unknown may involve a case-level survival/death imputation. In this 

approach, one can look at ‘eligibility status’ as a variable that indicates whether a sample 

member is eligible, ineligible or of unknown status. Within the variable ‘eligibility status’ 

values indicating unknown eligibility status can be treated as missing values. Imputation 

can then be used to impute the missing values as either eligible or ineligible (alive or 

dead). As a result, eligibility status will be decided, at the case level, for all sample 

members. Accordingly, the alternative weighting will exclude ineligible 

(known+imputed) sample members from the weights creation. In this approach, variables 

such as gender, age, race and health indicators may be strong candidate variables as 

predictors in the imputation model because of their strong relationship with mortality.  
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In this chapter, although our focus is on the adjustment factor approach that was 

previously introduced and labelled as the AWA, we also apply the imputation of 

unknown eligibility status. We create weights based on the outcome of the imputation of 

eligibility status as a second alternative weighting. The main purpose of the second 

alternative weighting is to test the sensitivity of the result from the AWA. Details of the 

imputation of eligibility status and the resultant set of weights are given in the next 

section.      

The advantage of the second alternative approach (imputation-based) is that it is relatively 

easy to apply since it uses information from within the survey (no need for seeking and 

utilising information from an external source). Thus, it might seem more practical to 

implement this approach as opposed to the AWA. However, there are some limitations to 

the second alternative approach that may raise concerns about the imputed eligibility 

status.  

First, to accurately impute the missing values of ‘eligibility status’ as either eligible or 

ineligible, the missingness mechanism should be MAR. If the MAR is not satisfied, the 

missingness mechanism may still depend on the missing values even after controlling for 

the observed variables used in the imputation. However, MAR is not an assumption that 

can be supported by the nature of missingness in the variable ‘eligibility status’ (recall 

that a missing value here indicates that eligibility is unknown). Although some values can 

be missing for random reasons that are not correlated with eligibility status, it is likely 

that many values are missing because their corresponding sample members are ineligible 

(deceased). In the latter case, there is a direct relationship between the missingness 

mechanism and the variable of interest (eligibility status). If the missingness still depends 
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on the true eligibility status (death) after controlling for the observed variables the MAR 

assumption is violated. 

Second, it could be tricky to take into account the time dependency of the predictor 

variables used in the imputation. For example, to impute eligibility for the BHPS sample 

members whose eligibility is unknown, one should use predictors from the same wave for 

both the cases used in the imputation and the cases whose eligibility is to be imputed. 

Namely, predictor variables should be from the wave at which unknown eligibility cases 

were last observed. However, the waves at which sample members of unknown eligibility 

were last observed are different which makes it challenging to incorporate the time 

dependency. Furthermore, the predictor variables that are suggested for the imputation 

may not be available across all waves. 

Despite a few limitations, the second alternative approach may still offer a better strategy 

to dealing with the cases of unknown eligibility whilst weighting in comparison with the 

SWA. This is because the second alternative approach uses information from the 

multivariate structure of the data (the relationship between eligibility status and the 

variables used in the imputation), which the SWA largely ignores.   

2.8 Methodology 

For our analysis we used respondents of the original sample of the BHPS who were aged 

16+ at the start of the survey (in 1991). These are 10,248 sample members who responded 

at wave 1 (and were therefore all alive at that time). By the end of wave 18 (in 2008), 

eligibility was known for 69.6% (7,130) of these sample members. The remaining 30.4% 

(3,118) were of unknown eligibility status. For those whose eligibility is known by wave 
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18, 5,588 (78.4%) of them are known to be alive (eligible), whereas 1,542 (21.6%) are 

known to be ineligible.  

We used this sample to investigate the issue of unknown eligibility and weighting by 

wave 18. The investigation involved creating non-response longitudinal weights at wave 

18 based on the SWA, the AWA and the second alternative approach (imputation-based 

method) as well as conducting substantive analysis using the resultant sets of weights. For 

our substantive analysis we used a balanced panel of those who responded in all of the 18 

waves. These are 40% (4,097 respondents) of the original sample.  

We classified the cases of the original sample of the BHPS by gender and their single-

year age in wave 111, and implemented the following steps:  

- estimating the survival rates in the sample in 2008 (wave 18) for each class of 

gender and age, by assuming that all observed statuses are correct and that all 

those whose survival status is unknown in 2008 are alive;  

- using annual population mortality statistics for each year between 1992 and 2008 

from two sources: Office for National Statistics (ONS) and government statistics 

(available on statistics.gov.uk) to construct the expected 1991-2008 survival rates 

for each class defined by gender and single year of age in 1991 (wave 1);  

- calculating the adjustment factor for each class of gender and age by dividing the 

population survival rate by the sample survival rate;  

- creating the standard longitudinal weights (SWs) at wave 18 using the SWA;  

                                                           
11It is necessary to use age at wave 1 to be able to estimate survival rates by 2008 from population 

information as will be shown later. 
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- creating the main set of the alternative longitudinal weights at wave 18 (𝐴𝑊𝑠1) 

using the AWA (i.e. multiplying the standard weights in each class of gender and 

age by the relevant adjustment factor);  

- carrying out eligibility status imputation for sample members whose eligibility is 

unknown, and creating a second set of  alternative longitudinal weights (𝐴𝑊𝑠2) by 

excluding sample members whose eligibility status is imputed as dead prior to 

applying the SWA (for sensitivity check purposes); and  

- assessing the effect of the AWA by conducting weighted analysis on subjective 

health status using a balanced panel from wave 1 to 18 with SWs, 𝐴𝑊𝑠1 and 

𝐴𝑊𝑠2 separately and compare the results.  

The details of each of these steps are provided in what follows. 

2.8.1 Calculating survival rates in the sample 

The BHPS provides details about the contact outcome at every wave. The main reported 

outcomes are full interview, proxy interview, telephone interview, refusal, non-contact, in 

institution, out of scope or dead. In a given wave, these outcomes lead to three categories 

of sample members in terms of eligibility status: a) Eligible sample members (alive) 

whose eligibility status is known are those who gave full interview, proxy interview, 

telephone interview or refused to participate; b) Ineligible sample members whose 

eligibility status is known are those who are in institution, out of scope or dead; and c) 

Sample members whose eligibility is unknown are those who were not contacted. Based 

on this classification, survival rates in the sample could be calculated by assuming that 
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those whose eligibility is unknown are eligible. Thus, the numerator for survival rates 

consists of sample members from category (a) and (c).  

Accordingly, for our original sample, which was classified by gender and single-year age, 

we first calculated the rates of those who were known to still be eligible at wave 18 (i.e. 

in 2008) for every class. These rates are presented separately in table 2.1. In addition, for 

the same classes of gender and age, we calculated the rates of those whose eligibility is 

unknown by wave 18 and also presented these separately in table 2.1. The combination 

(sum) of the known eligibility and unknown eligibility rates are the survival rates in the 

sample. However, for the purpose of understanding the distribution of the sample in terms 

of known/unknown eligibility status, these rates are presented separately in table 2.1. As 

will be shown in the next section, these are combined as a single-rate (survival rates in the 

sample) and presented together (in table 2.2) with the survival rates from the population. 

As for those who were known to be ineligible subsequent to wave 1 (category b), these 

were also calculated and displayed in table 2.1.  

Looking at the rates in table 2.1, overall, 46.4% of the males in the original sample of the 

BHPS who responded in the first wave (1991) are still eligible in 2008 while 20.1% of 

them are known to be ineligible and the remaining 33.5% are of unknown eligibility. As 

for females, the corresponding rates are 50.6%, 19.3% and 30.1% respectively. This 

shows that the known eligibility rate for females is higher than for males, whereas 

unknown eligibility is higher among males than among females. Perhaps this is because 

females are more likely to respond than males, but also may be because females are rather 

easier to track over time than males (e.g. in comparison with males, it is more likely for 

females to reside with children which in turn makes tracking easier).  
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In general, for both gender types, the eligibility rate increases with age until it reaches its 

peak at the age of 38 for males (67.4%) and at age 30 for females (70.2%). Then it starts 

declining as age increases, to reach its nadir (0%) at the ages of 81 and 82 for males and 

females respectively. Also, the ineligibility rate increases with age, more so in older ages 

than in younger ages. However, it increases faster for males than females. Ineligibility 

rates of 80% or above were registered for males as early as age 77, whereas for females 

rates as high as 80% were not registered until age 83. These findings are consistent with 

the literature on mortality, indicating that death rates are always higher amongst older age 

groups (Singh-Manoux et al, 2008) and life expectancy among females is higher than 

among males (Dr Foster, 2004).  

Additionally, for both males and females, the unknown eligibility rates are higher with 

younger sample members than with their older counterparts. The explanation for this is 

that young individuals are more mobile and hence more difficult to contact and follow 

overtime compared to older sample members. However, for both males and females, 

some of the sample members who started the survey at older ages (80+) registered 

considerable unknown eligibility rates by wave 18. For example, 33.3% of men and 

22.2% of women who were aged 89 in wave 1 are of unknown eligibility at wave 18 (17 

years later). It might be plausible to assume that some of these cases are ineligible 

(deceased). Nevertheless, the SWA, would assume these cases to be eligible.  
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Table 2.1. Proportions of eligible, unknown eligibility and ineligible cases in 2008 for the original 

sample of the BHPS (1991) by gender and single-year age. 
 Eligible UE Ineligible 
Age  Male Female Male Female Male Female 
16 58.6 59.5 39.8 39.2 1.6 1.2 
17 56.0 62.7 42.1 35.9 1.9 1.4 
18 54.1 55.6 43.5 42.9 2.4 1.5 
19 52.2 50.3 45.3 48.1 2.6 1.6 
20 46.7 52.0 50.6 46.4 2.7 1.6 
21 56.9 62.9 40.4 35.3 2.7 1.8 
22 47.1 58.4 49.8 39.7 3.2 1.9 
23 48.0 60.9 48.9 37.2 3.1 2.0 
24 46.9 66.9 49.7 31.0 3.4 2.1 
25 44.3 51.1 52.0 47.0 3.7 1.9 
26 54.3 61.1 42.0 36.8 3.8 2.1 
27 46.0 61.6 50.0 36.2 3.9 2.2 
28 52.7 56.1 43.4 41.7 3.9 2.2 
29 57.1 53.6 38.8 44.1 4.1 2.3 
30 52.2 70.2 43.6 27.5 4.3 2.3 
31 52.8 62.4 42.8 35.2 4.4 2.4 
32 52.9 58.6 42.7 39.0 4.5 2.4 
33 61.1 59.8 34.3 37.6 4.6 2.6 
34 53.5 67.7 41.9 29.8 4.6 2.6 
35 58.5 64.9 36.9 32.4 4.7 2.6 
36 49.0 56.0 46.3 41.3 4.7 2.7 
37 61.6 65.6 34.4 31.6 4.0 2.8 
38 67.4 59.6 27.8 37.5 4.8 3.0 
39 60.8 65.7 36.3 31.3 2.9 3.0 
40 55.5 58.3 39.7 38.2 4.9 3.5 
41 53.5 60.8 40.7 35.4 5.8 3.8 
42 54.0 55.8 40.1 40.3 5.9 3.9 
43 53.9 63.6 39.2 32.2 6.8 4.2 
44 59.2 59.7 33.9 35.6 6.9 4.8 
45 56.3 64.7 35.8 30.2 7.9 5.2 
46 44.6 66.7 47.4 27.8 8.0 5.5 
47 49.4 55.7 42.5 38.4 8.1 5.9 
48 55.4 50.0 36.1 43.2 8.5 6.8 
49 61.9 63.2 28.0 29.9 10.1 7.0 
50 56.9 62.7 30.6 29.7 12.4 7.6 
51 46.8 46.9 39.9 44.2 13.4 8.9 
52 50.6 63.2 37.0 27.6 12.4 9.2 
53 60.3 55.1 28.2 34.8 11.5 10.1 
54 50.0 56.7 29.8 32.2 20.2 11.1 
55 46.3 59.7 32.4 31.6 21.3 8.8 
56 60.4 57.1 25.9 32.5 13.8 10.4 
57 41.5 57.8 34.8 32.8 23.7 9.4 
58 58.3 59.3 18.8 27.1 22.9 13.8 
59 43.9 58.4 28.3 27.2 27.8 14.4 
60 58.5 57.8 26.5 27.0 26.4 15.2 
61 44.2 43.9 25.0 37.6 30.8 18.5 
62 41.3 38.2 30.7 40.9 28.0 20.9 
63 42.4 43.5 20.6 34.0 37.0 22.5 
64 33.9 39.6 23.9 34.5 42.1 25.9 
65 34.6 38.2 23.1 31.1 42.3 30.7 
66 22.8 38.8 27.1 27.8 50.1 33.5 
67 34.6 35.6 21.8 27.4 43.6 37.0 
68 30.4 31.1 17.9 28.7 51.8 40.2 
69 14.8 27.1 31.5 33.9 53.7 39.0 
* The table is continued in the next page. Entries are percentages per 100 persons. UE refers to unknown eligibility. 
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Table 2.1 (continued) 

 Eligible UE Ineligible 
Age Male Female Male Female Male Female 
70 25.4 26.3 23.7 24.1 50.9 49.6 
71 10.8 16.9 24.6 29.1 64.6 54.0 
72 16.7 12.7 19.4 32.1 63.9 55.2 
73 6.1 19.4 22.1 27.8 71.8 52.8 
74 8.8 12.3 17.7 29.8 73.5 57.9 
75 5.4 12.8 29.7 25.5 64.9 61.7 
76 10.3 15.0 13.8 27.5 75.9 57.5 
77 4.2 7.7 8.3 25.0 87.5 67.3 
78 3.7 2.0 14.8 28.0 81.5 70.0 
79 0.0 2.6 17.1 28.2 82.9 69.2 
80 5.6 0.0 33.3 21.9 61.1 78.1 
81 0.0 1.9 5.9 26.4 94.1 71.7 
82 0.0 0.0 17.4 27.6 82.6 72.4 
83 0.0 0.0 5.1 20.0 94.9 80.0 
84 0.0 0.0 10.0 8.3 90.0 91.8 
85 0.0 0.0 20.0 21.4 80.0 78.6 
86 0.0 0.0 8.8 6.3 91.2 93.8 
87 0.0 0.0 8.8 11.1 91.2 88.9 
88 0.0 0.0 8.2 33.3 91.8 66.7 
89 0.0 0.0 33.3 22.2 66.7 77.8 
90 or over 0.0 0.0 8.4 8.3 91.6 91.7 
Overall 46.4 50.6 33.5 30.1 20.1 19.3 
*Entries are percentages per 100 persons. UE refers to unknown eligibility. 

 

 

 

2.8.2 Estimating survival rates from population information 

To estimate the survival rates from population information, ideally, we would want to 

have mortality rates by gender and single-year age for the population in England, Wales 

and Scotland (the BHPS population) for every year from 1992 to 2008 since we know that 

everyone in the sample was alive in 1991 (wave 1). If this information were available, 

estimating survival rates by 2008 from population information would be fairly simple12. 

However, our analysis here encountered two obstacles in this regard:  

                                                           
12One may first turn the annual mortality rates into survival rates. Then, starting with rates in 1992, the 

survival rate by 2008 for every age is the product of the survival rates for the consecutive ages in the 

successive years up until 2008. An example of this is given later during the estimation of survival rates from 

population information. 
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First, mortality statistics are not typically available for the population in England, Wales 

and Scotland together (to match the target population of the BHPS original sample). 

Instead, most of the available informative statistics on mortality from the Office for 

National Statistics (ONS) or other government statistics authorities in the UK are for the 

population in England and Wales. Thus, to be able to use the available statistics, our 

calculation here assumed that survival/mortality rates for the population in England and 

Wales are the same as those for the population in England, Wales and Scotland.  

Second, although the ONS releases mortality rates for the population in England and 

Wales by gender and single-year age, unfortunately these rates are not available for all 

years in the period of 1992-2008. For years before 1999, the rates were released by 

gender and 10-year age bands.  

However, ONS releases the number of registered deaths for the population in England 

and Wales by gender and single year of age for the years in question. Appendix B.1 and 

B.2 show these numbers for all years from 1992 to 2008 by single-year age and for males 

and female respectively. Also, official government statistics websites (statistics.gov.uk 

AND nationalarchive.gov.uk) publish the number of residents for the population in 

England and Wales by gender and single year of age for every year in the period of time 

1992-2008. These numbers are shown for all years by single-year age and for males and 

females in appendix B.3 and B.4 respectively. We used this information (number of 

deaths from ONS and number of residents from statistics.gov.uk) to calculate the 

mortality rates by gender and single-year age for every year from 1992 to 2008.  
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For every year, and for every class of gender and single-year age, we calculated the 

mortality rate by dividing the number of registered deaths in the year by the total number 

of residents in the same year13. We used the resultant mortality rates to estimate the 

survival rates by 2008. This, first, involved calculating the annual survival rates for all 

years from 1992 up to 2008 (by subtracting mortality rates in these years from 1). Then, 

starting with the rates in 1992, the 1991-2008 survival rate for every single year of age, 

for each gender, was calculated as the product of the rates for the consecutive ages in the 

successive years up until the rate of the corresponding age in 2008. For example, for 

males aged 16 in 1991 (wave 1), the 1991-2008 survival rate was estimated by 

multiplying the survival rate of age 17 (in 1992) by the survival rate of age 18 (in 1993) 

and so forth up to the survival rate of age 33 (in 2008). This was done separately for both 

gender types and for all single-year ages. All the calculated survival rates by 2008 are 

shown by gender and age with their corresponding rates from the sample, and the relevant 

adjustment factors in table (2.2). 

As can be seen from table 2.2, for both gender types and all ages, the survival rates 

calculated from the sample are larger than those estimated from the population 

information (recall that sample survival rates here include those whose eligibility is 

unknown). This confirms our hypothesis that some of the unknown eligibility cases might 

not be alive (eligible). Nevertheless, overall, the differences are not worryingly large, and 

suggest only a small number of deaths amongst sample members whose eligibility is 

unknown. In fact, for all ages under 60, survival rates in the sample and the population are 

                                                           
13 This is how the ONS calculates mortality rates by gender and single-year age every year from 1999 

onwards (see for example National Statistics, 1999). 
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very similar indicating that most sample members who started the survey aged 59 or 

under, and whose eligibility status is unknown by 2008 (wave 18) may still be alive. 

In turn, the differences between survival rates in the sample and the population start 

increasing, for both gender types, from age 60 onwards. Older ages (70+) registered even 

larger differences compared to the relatively younger ones (60-70). These results indicate 

that a considerable proportion of those who started the survey aged 60+, and whose 

eligibility is uncertain by the time of wave 18 might be deceased. This is particularly 

more likely for those aged 70+ at wave 1 than for those aged between 60-70. 

In addition, these results suggest that sample members whose eligibility is unknown but 

are actually ineligible are not evenly distributed across the sample. Instead, these cases 

are rather clustered at one end of the age spectrum (age 60+). Consequently, the SWA 

which assumes that these cases are eligible, will mistakenly increase the size of the 

weights values for respondents aged 60+ as was explained earlier. As a result, 

respondents aged 60+ will have more influence (incorrectly) on weighted estimates, and 

therefore the results may be less precise, but might also be biased towards characteristics 

of those aged 60 or over. This is especially more likely in substantive analyses on social 

phenomena that are directly correlated with age such as changes in health status (the 

outcome variable in our substantive analysis).  

2.8.3 The adjustment factor (ad) 

The survival rates from the sample and the population in table 2.2 were used to calculate 

the ad (presented in the same table) by gender and age. For each class of gender and age, 
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the ad was calculated as the ratio of the survival rate in the population to the survival rate 

in the sample as was shown in equation 2.9.  

Figure 2.1 presents the distribution of the ad by gender and age in a two-dimension graph. 

As can be noticed from the graph, for both men and women who began the BHPS aged 

between 16 and 59, the values of the ad are almost the same and approximately equal to 

1. These values of ad were expected since there were no large differences between the 

survival rates in the sample and the population for ages under 60. However, for both men 

and women aged 60+, the factor shows a drastic decrease in its values as age increases 

because of the larger differences between the sample and the population survival rates of 

those aged 60 or above. 

Since the ad will be used in the AWA to adjust the weights resulting from the SWA, the 

results here suggest that the AWA may not have much effect on weights values of the set 

of responding sample who started the survey aged between 16 and 59 (0.91 ≤ ad ≤0.99). 

In contrast, the AWA will have a larger effect (reduction) on the weights of those started 

the BHPS aged 60+ (0.03 ≤ ad ≤0.86). Thus, while the SWA may incorrectly increase the 

sizes of the standard weights of those aged 60+ by including a proportion of ineligible 

cases in the weighting, the AWA decreases the values of these weights using our 

proposed method of adjustment. As a result, the negative effect of unknown eligibility on 

weighting will be reduced and hence estimates may be more precise and less biased.  
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Table 2.2 Estimated survival rates by 2008 for the BHPS original sample from population 

information, assumed survival rates in the sample and the adjustment factor. 
 Male Female 
Age  Population Sample ad  Population Sample ad 
16 97.6 98.4 0.99 98.3 98.7 0.99 
17 97.5 98.1 0.99 98.2 98.6 0.99 
18 97.4 97.6 0.99 98.2 98.5 0.99 
19 97.4 97.5 0.99 98.1 98.4 0.99 
20 97.2 97.3 0.99 98.0 98.4 0.99 
21 97.0 97.3 0.99 97.9 98.2 0.99 
22 96.8 96.9 0.99 97.9 98.1 0.99 
23 96.7 96.9 0.99 97.8 98.1 0.99 
24 96.5 96.6 0.99 97.7 97.9 0.99 
25 96.2 96.3 0.99 97.7 98.1 0.99 
26 96.0 96.3 0.99 97.6 97.9 0.99 
27 95.9 96.0 0.99 97.5 97.8 0.99 
28 95.9 96.1 0.99 97.5 97.8 0.99 
29 95.7 95.9 0.99 97.4 97.7 0.99 
30 95.6 95.8 0.99 97.4 97.7 0.99 
31 95.6 95.6 0.99 97.3 97.6 0.99 
32 95.5 95.6 0.99 97.3 97.6 0.99 
33 95.4 95.4 0.99 97.2 97.4 0.99 
34 95.3 95.4 0.99 97.2 97.5 0.99 
35 95.2 95.4 0.99 97.1 97.3 0.99 
36 95.1 95.3 0.99 97.1 97.3 0.99 
37 95.0 96.0 0.98 97.0 97.2 0.99 
38 94.7 95.2 0.99 96.4 97.1 0.99 
39 94.6 97.1 0.97 96.3 97.0 0.99 
40 94.3 95.2 0.99 96.2 96.5 0.99 
41 93.8 94.2 0.99 95.8 96.2 0.99 
42 93.1 94.1 0.98 95.4 96.1 0.99 
43 92.5 93.1 0.99 95.0 95.8 0.99 
44 91.8 93.1 0.98 94.5 95.3 0.99 
45 90.9 92.1 0.98 94.0 94.9 0.99 
46 90.4 92.0 0.98 93.6 94.5 0.99 
47 89.2 91.9 0.97 93.0 94.1 0.99 
48 88.2 91.5 0.96 92.3 93.2 0.99 
49 87.1 89.9 0.96 91.7 93.1 0.98 
50 85.6 87.5 0.97 91.0 92.4 0.98 
51 84.5 86.7 0.97 90.0 91.1 0.98 
52 82.5 87.6 0.91 88.9 90.8 0.97 
53 80.8 88.5 0.95 87.8 89.9 0.97 
54 76.1 79.8 0.95 86.5 88.9 0.97 
55 75.1 78.7 0.95 85.5 91.3 0.93 
56 75.7 86.3 0.98 83.8 89.6 0.93 
57 72.5 76.3 0.95 82.3 90.6 0.91 
58 70.1 77.1 0.91 79.5 86.4 0.92 
59 66.4 72.2 0.91 78.6 85.6 0.91 
60 64.0 85.0 0.86 76.0 84.8 0.89 
61 60.5 69.2 0.87 72.2 81.5 0.88 
62 57.2 72.0 0.79 69.5 79.1 0.87 
63 53.3 63.0 0.84 66.5 77.5 0.85 
64 49.6 57.8 0.85 63.2 74.1 0.85 
65 46.0 57.7 0.79 56.8 69.3 0.81 
66 41.3 49.9 0.82 53.2 66.6 0.79 
67 37.8 56.4 0.67 51.7 63.0 0.81 
68 33.4 48.3 0.69 46.5 59.8 0.77 
* The table is continued in the next page. Entries are rates per 100 persons. ad is calculated as the ratio of 
survival rate in the population to the survival rate in the sample. 
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Table 2.2 (continued) 

 Male Female 
Age  Population Sample ad  Population Sample ad 
69 29.3 46.3 0.63 42.5 61.0 0.69 
70 25.8 49.1 0.52 35.1 50.4 0.69 
71 22.2 35.4 0.62 30.8 46.0 0.66 
72 19.3 36.1 0.53 26.2 44.8 0.58 
73 15.2 28.2 0.54 25.2 47.2 0.53 
74 13.7 26.5 0.51 21.3 42.1 0.51 
75 10.1 35.1 0.28 16.2 38.3 0.42 
76 7.2 24.1 0.29 14.0 42.5 0.32 
77 3.1 12.5 0.24 10.1 32.7 0.31 
78 4.3 18.5 0.23 8.7 30.0 0.29 
79 3.4 17.1 0.19 7.1 30.8 0.23 
80 2.8 38.9 0.07 5.8 21.9 0.26 
81 1.1 5.9 0.18 4.9 28.3 0.17 
82 1.7 17.4 0.10 4.2 27.6 0.15 
83 1.1 5.1 0.21 3.6 20.0 0.18 
84 1.5 10.0 0.15 1.5 8.3 0.18 
85 1.4 20.0 0.07 2.1 21.4 0.10 
86 1.1 8.8 0.12 1.1 6.3 0.17 
87 1.1 8.8 0.12 1.3 11.1 0.11 
88 1.1 8.2 0.13 1.2 33.3 0.04 
89 1.1 33.3 0.03 1.2 22.2 0.05 
90 or over 1.1 8.4 0.13 1.1 8.3 0.13 
* Entries are percentages per 100 persons. ad is calculated as the ratio of survival rate in the population to 
the survival rate in the sample. 

 

 

Figure 2.1: The adjustment factor by gender and age. 
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2.8.4 Weights creation  

The standard weights (SWs) 

The investigation in this chapter used waves 1 to 18 of the BHPS. To create the standard 

longitudinal weights at wave 18, we modelled the response at each wave conditional on 

responding in all of the previous waves. We started the modelling from wave 2 since the 

design weights in the BHPS – which will be multiplied by the SWs- are combined with 

wave 1 non-response weights. The model at each wave used variables from the previous 

wave. There were 17 models in total. Those who are known to be ineligible by wave 18 

were not included in these models. Those whose eligibility is unknown by wave 18 were 

assumed as eligible cases and were included in the weighting models. In other words, we 

used the SWA illustrated by the model in equation 1.1 which was set out in chapter 1 of 

this thesis. For convenience, this model is rewritten as equation (2.10) below. 

Logit Pr(𝑅𝑖,𝑡=1∕ 𝐶𝑖,𝑡−1=1)= 𝑓 (∑ 𝛃𝑗𝑍𝑗𝑖𝑗 +∑ 𝛃𝑘𝑋𝑘𝑖,𝑡−1𝑘 )                                               (2.10) 

Where t is the wave number for which the model is estimated (t=2, 3,…, T=18); i= 1, 2, 

…, 𝑛1,..,𝑡−1, where 𝑛1,..,𝑡−1 is the number of respondents who responded at every wave from 

1 to t-1 and who are known or assumed as eligible by the time of wave 18; 𝑅𝑖,𝑡 is the 

response status at time (wave) t for respondent i (𝑅𝑖,𝑡=1 if response is observed at wave t; 

𝑅𝑖,𝑡=0 if response is not observed at wave t); 𝐶𝑖,𝑡−1=1 if 𝑅𝑖,𝑏=1 for all values of b from 1 

to t-1 (i.e. 𝐶𝑖,𝑡−1=1 indicates that the model in wave t is conditioned on response in all of 

the previous waves); 𝑍𝑗𝑖 is the set of time invariant variables for respondent i; 𝑋𝑘𝑖,𝑡−1 is 

the set of time variant variables for respondent i which are measured in wave t-1. 
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For the set of units who responded to all the 18 waves, the longitudinal SWs at wave 18 

were calculated as the product of the inversed predicted probabilities from all 17 models, 

and wave 1 non-response/design weights (provided by BHPS) as shown in equation 

(2.11).  

𝑆𝑊𝑖= 𝐷𝑖* ∏ 𝑟𝑡𝑖
−118

𝑡=2                                                                                                       (2.11) 

Where 𝑆𝑊𝑖 is the standard longitudinal weight at wave 18 for respondent i; 𝑟𝑡𝑖 is the 

predicted probability for respondent i from wave t model (t= 2, 3,…, 18); ); i= 1,..., 𝑛1,..,18 

(where 𝑛1,..,18 is the number of sample members who responded at every wave from 1 to 

18); and 𝐷𝑖 is wave 1 non-response/design weight for respondent i. 

As covariates in each non-response model, we used the same variables that were used in 

the SWA in chapter 1 with the exception of health status since this variable will be used 

in our model of interest. Thus, the variables used are: gender, race, age, age-squared, 

tenure, presence of children in the household, education, type of household, employment 

status, type of house, number in full-time employment in household and region.  

The final models are displayed in table (2.3). The table presents odds ratios. We interpret 

significance from p<0.05. Overall, the results here are in line with the SWA in chapter 1 

and the general non-response literature. For example, most of the models here indicate 

that females, white sample members, homeowners and those who have more education 

are more likely to respond than males, non-white, non-homeowners and those with less 

education respectively. In contrast, most of the models suggest that sample members who 

are single-person household and those who live in an apartment building or other types of 

accommodations that are not a house are less likely to respond compared to sample 

members from multi-person households and those who live in houses respectively. 



159 
 

Table 2.3 Response propensity models based on the SWA (wave 2 to 18):  modelling response in wave t conditional on responding in all of the previous waves. 

 Wave2 Wave 3 Wave 4 Wave 5 Wave 6 Wave 7 Wave 8 Wave 9 Wave 10 

Female 1.13* 1.39*** 1.15 1.25* 1.29 1.16 1.55** 1.18 1.07 
White 1.11 1.57** 1.71* 1.80* 1.21 1.42** 1.83* 1.13 1.67* 
Age 1.05*** 1.06*** 1.07*** 1.06*** 1.12*** 1.12*** 1.13*** 1.14*** 1.13*** 
Age-squared 0.99*** 0.99*** 0.99*** 0.99*** 0.99*** 0.99*** 0.99*** 0.99*** 0.99*** 
Home owner 1.11 1.20** 1.46** 1.53*** 1.28 1.32*** 1.10 1.12 1.19 
Has GCE qualification or above 0.97 1.33** 0.79 1.07 1.05 1.18 1.57*** 1.27 1.44* 
Employed 0.87* 0.92 1.01 1.15 1.16 1.21 1.45* 1.11 1.09 
Others present in interview 0.95 0.78 1.05 0.99 1.66** 1.49** 1.17 1.08 0.62** 
Single-person household 1.12 0.85** 0.73* 0.89 0.99 1.03 0.70* 1.24 0.62** 
Household with children 1.50*** 1.12 1.40* 1.31* 0.89 1.28 1.04 0.95 1.54* 
Living in a flat 0.88 0.85 0.77 0.87 0.85 0.85 0.92 0.67* 0.70* 
Living in other type of house 0.90 0.61* 0.60* 0.88 0.87 0.71 0.65 0.49** 0.92 
1 or 2 persons in employment  0.79 .68*** 0.81 0.96 0.94 1.23 0.94 1.05 0.88 
3 + persons in employment 0.87 0.59* 0.77 0.85 1.01 0.66** -1.06 1.09 1.05 
South-East 1.11 0.80 1.57* 1.50* 1.01 1.25 0.73 1.13 1.36 
South-West 1.16 1.01 1.17 1.17 1.84* 0.88 0.94 0.96 1.27 
East Anglia 1.07 1.02 2.32* 2.08* 1.20 1.56 1.86 1.68 2.08* 
The Midlands 1.06 0.70* 1.26 1.26 0.99 1.12 0.94 1.01 0.92 
The North 1.28* 0.74 1.65** 1.19 0.89 1.71* 1.05 1.05 1.53 
Wales 1.26* 0.70 1.84* 1.16 0.69 1.07 0.78 1.07 0.87 
Scotland 1.06 0.59* 1.55* 1.51 0.38** 1.15 0.43** 1.06 1.26 
N 8,706 7,906 7,483 7,172 6,850 6,571 6,282 6,132 5,931 
Pseudo R2 0.031 0.039 0.033 0.037 0.046 0.045 0.049 0.040 0.042 
* The table is continued in the next page for the models of waves 11 to 18. The entries are odds ratios. In every wave response is modelled conditional on responding in all of the 

previous waves. The model in a given wave used variables from the previous wave. The reference categories of the categorical independent variables in the table are male, non-

white, not a home owner, does not have a GCE or above degree, unemployed and others not present when interviewed, multi-person HH, household with no children, living in a 

house, no one is in employment in HH and London * p< 0.05, ** p< 0.01, *** p< 0.001.
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Table 2.3 (continued) 

 Wave 11 Wave 12 Wave 13 Wave 14 Wave 15 Wave 16 Wave 17 Wave 18 

Female 1.05 1.26 1.50** 1.19 1.43* 1.04 1.36* 1.44* 
White 1.87* 1.41 1.73* 1.61 1.69* 0.61 1.05 1.70 
Age 1.12*** 1.15*** 1.14*** 1.14*** 1.21** 1.19* 1.16* 1.12 
Age-squared 0.99*** 0.99*** 0.99*** 0.99*** 0.99** 0.99* 0.99* 0.99 
Home owner 1.50** 1.42* 1.42* 1.45* 1.21 1.52* 1.19 1.33** 
Has GCE qualification or above 1.12 1.60** 1.13 1.65** 1.15 1.20 1.18 1.16 
Employed 1.15 1.13 1.65** 1.62* 1.22 0.98 0.61 1.39** 
Others present in interview 0.90 0.93 1.11 0.86 0.97 0.98 1.31 0.91 
Single-person household 0.67* 0.88 0.91 0.95 0.97 0.83 0.78 0.70* 
Household with children 1.17 1.57*** 1.13 1.62* 1.14 1.20 1.29 1.19 
Living in a flat 1.03 0.62* 1.02 0.55** 0.79 1.43 0.97 0.94 
Living in other type of house 0.92 0.67 0.58 1.37 0.78 0.96 0.95 1.27 
1 or 2 persons in employment  0.80 0.80 1.11 0.93 1.55* 1.21 1.60* 0.58* 
3 + persons in employment 0.32*** 0.48** 1.13 1.21 1.92 1.41 1.38 0.43* 
South-East 1.20 1.09 1.08 1.91* 1.88* 1.92* 1.54 1.74* 
South-West 0.99 0.81 0.72 1.93* 1.98* 1.33 2.06* 1.50 
East Anglia 1.81* 0.96 0.96 2.05* 2.63* 1.76* 2.15* 1.40 
The Midlands 1.10 1.12 1.22 2.22** 1.30 1.62 1.31 2.01* 
The North 1.28 0.99 0.77 1.69* 1.82* 2.13* 1.65 2.16*** 
Wales 0.94 1.32 0.80 2.17* 1.65 2.41* 0.96 2.58* 
Scotland 1.01 0.75 1.26 1.47 1.10 1.35 1.53 1.23 
N 5,781 5,605 5,456 5,340 5,223 4,654 4,554 4,310 
Pseudo R2 0.045 0.046 0.049 0.045 0.046 0.048 0.047 0.043 
* The entries are odds ratios. In every wave response is modelled conditional on responding in all of the previous waves. The model in a given wave used variables from the 

previous wave. The reference categories of the categorical independent variables in the table are male, non-white, not a home owner, does not have a GCE or above degree, 

unemployed and others not present when interviewed, multi-person HH, household with no children, living in a house, no one is in employment in HH and London * p< 0.05, ** 

p< 0.01, *** p< 0.001.
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For the responding cases, the SWs were then derived from the models displayed in table 

2.3 (using equation 2.11). The distribution of these weights will be presented and 

discussed with the alternative weights in the next sections. However, as mentioned 

previously, there will be two sets of alternative weights. The first is 𝐴𝑊𝑠1, and it comes 

from the main AWA introduced in this chapter (the ad-based method). The second is 

𝐴𝑊𝑠2, and it is based on the second alternative approach that was explained earlier 

(imputation-based method). Thus, we shall next describe how 𝐴𝑊𝑠1 and 𝐴𝑊𝑠2 were 

created before discussing the distributions of all the created sets of weights. 

The first (main) set of alternative weights (𝑨𝑾𝒔𝟏) 

The set of 𝐴𝑊𝑠1 was derived by adjusting the SWs using the values of the ad that were 

estimated previously (in table 2.2). This was done separately for men and women by a 

single-year age. For a given case i, which falls in the class of the gender j and age k, the 

𝐴𝑊1 was calculated as the product of case i SW and the ad in the class of gender j and age 

k. This calculation is shown in equation (2.12). 

𝐴𝑊1𝑖𝑗𝑘= 𝑆𝑊𝑖𝑗𝑘*𝑎𝑑𝑗𝑘                                                                                                    (2.12)                                                                        

Where i indicates the number of respondents (i=1,2,…,4,097); j is respondent’s gender 

(j=0, 1; where 0=male and 1=female); k is the respondent’s single year of age at wave 1 

(k=16, 17, …, 90+); 𝐴𝑊1𝑖𝑗𝑘 is the first alternative weight of case i whose gender and age 

are j and k respectively; and 𝑆𝑊𝑖𝑗𝑘 is the standard weight of case i whose gender and age 

are j and k respectively.  

Based on 2.12, the 𝐴𝑊1 of a given respondent is the modification of their SW according to 

the value of the ad in the class to which the respondent belongs. For example, the 𝐴𝑊1 of 
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a female who responded in all of the 18 waves in our sample, and who was aged 16 at the 

time of wave 1 is 𝑆𝑊𝐹,16* 0.99, where 0.99 is the ad for females aged 16 (from table 2.2). 

In contrast, the 𝐴𝑊1 of a female who was aged 85 at wave 1 is 𝑊𝐹,85* 0.10 (0.10 is the ad 

for females aged 85). Accordingly, as we discussed earlier, the weights’ values for 

respondents in the panel who were aged under 60 at wave 1 will remain almost the same 

while the weights for those aged 60 or over change considerably. This comparison 

indicates that the AWA will have the same effect as the SWA on analyses restricted to 

respondents aged 16 to 59, whereas with analyses that are restricted to respondents aged 

60 or over, or analyses on all respondents aged 16+, it may seem reasonable to expect a 

different impact on estimates if the AWA is implemented. In the latter case, the AWA 

will reduce the weights of respondents aged 60+, which in turn will change the 

distribution of the weights for the responding sample as a whole (likely to have smaller 

weight’ values and variance), and may hence produce more precise and less biased 

estimates.   

The second set of alternative weights (𝑨𝑾𝒔𝟐) 

The creation of the 𝐴𝑊𝑠2 involved performing an imputation procedure to estimate 

eligibility status for those with unknown eligibility status by wave 18. Cases that were 

imputed as ineligible were excluded from the weights’ construction. 𝐴𝑊𝑠2 were then 

created using the same model-based method that we used to create the SWs with the 

exception of excluding the cases that were imputed as ineligible. To apply this approach 

we implemented the following: 
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By the time of wave 18, members of the original sample of the BHPS who responded in 

wave 1 are either known to be alive, known to be dead or of unknown eligibility status. 

This classification was set out when we calculated the sample survival rates in section 

2.8.1. Based on this information, we created an indicator to reflect the eligibility status 

(ES) of every case of the original sample by the end of wave 18. For every case, ES takes 

one of three values: 1=eligible (alive), 0=ineligible14 (dead) or .=eligibility is unknown. 

We then carried out random imputation on ES to impute the missing values (unknown 

eligibility statuses) as either 1 (eligible) or 0 (ineligible). The imputation was done using 

the hotdeck built-in command in Stata. This command performs random imputation 

which involves categorising the sample members into similar subgroups based on a 

number of specified variables. Missing values for sample members in any subgroup are 

randomly replaced with comparable values from sample members in the same subgroup. 

The variables used here were age (categorised)15, gender, race, health status and financial 

situation from wave 1. These variables were used because they are available for all cases 

in the original sample, and because of their strong relationship with life expectancy 

(Rogers, Hummer and Nam, 2000; Singh-Manoux et al, 2008). Tables (2.4) and (2.5) 

present the results of this imputation.   

By age at the start of the survey, table 2.4 shows the distribution of sample members with 

unknown eligibility status who were imputed as either eligible or ineligible cases. By 

wave 18 there are 3,118 cases of the original sample of the BHPS whose eligibility status 

is unknown. Recall that all of these cases were assumed as eligible cases and were used, 

along with those who are known to be eligible (5,588 respondents), for the weights’ 
                                                           
14  Note that the ineligible here include those who are institutionalised or emigrated.  
15 The age categories used were 16-29, 30-39, 40-49, 50-59, 60-69, 70-79, 80-89, 90+. It was necessary to use these age 

bands as they allow enough cases for imputation in every class constructed by the variables used in the imputation.  
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creation in the SWA. The imputation results here, however, suggests that 2,382 (76.4%) 

of those whose eligibility is unknown are eligible, whereas 736 (23.6%) cases are imputed 

as ineligible. Noticeably, in all ages under 60, more cases were imputed as eligible than 

ineligible. Conversely, in all age groups from 60+, more cases were imputed as ineligible 

than eligible. The majority of those who were imputed as ineligible are from age 60+ (453 

cases). These results are remarkably consistent with our results from the adjustment 

factors suggesting that most of the ineligible sample members whose eligibility is 

unknown are clustered within one end of the age spectrum (aged 60+).  

Table 2.5 presents the distribution of the eligibility status (ES) before and after the 

imputation. As can be seen from the table, the imputation increases the eligibility rate 

from 54.5% (observed) to 77.8% (observed + imputed). In turn, the 736 cases that were 

imputed as ineligible cases raised the ineligibility rate from 15.1% (observed) to 22.2% 

(observed + imputed).   

Based on the imputation result, we created our second set of alternative weights (𝐴𝑊𝑠2) 

by restricting the modelling of the response propensity to 7,970 sample members who are 

either known or imputed as eligible cases. Those who were known, or imputed as 

ineligible cases, were excluded from the weighting (2,278 cases). 

By excluding 23.6% (736 cases) of those whose eligibility is unknown, the values of 

𝐴𝑊𝑠2 are likely to be smaller in size compared to the SWs. This is especially in classes 

where more cases were imputed as ineligibles (those aged 60+ at wave 1). Since the 

weights of the AWA (𝐴𝑊𝑠1) are also expected to be smaller in size, for respondents who 

started the survey aged 60+, it might be reasonable to expect rather similar distributions 
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of the 𝐴𝑊𝑠1 and 𝐴𝑊𝑠2. In contrast, the distributions of the 𝐴𝑊𝑠1 and 𝐴𝑊𝑠2 may be 

different than the distribution of the SWs which is likely to have larger weights especially 

for older respondents. In consequence, one may not expect larger differences between 

estimates constructed using 𝐴𝑊𝑠1 and 𝐴𝑊𝑠2. However, estimates constructed based on 

the SWs, where weights sizes may be mistakenly large for respondents aged 60+, might 

differ from estimates constructed based on 𝐴𝑊𝑠1 and 𝐴𝑊𝑠2. With the SWs, estimates are 

likely to be less precise and may be biased towards characteristics of older sample 

members (aged 60+). 

Table 2.4 The distribution of the imputed cases whose eligibility is unknown by age at wave 1. 

Age 16-29 30-39 40-49 50-59 60-69 70-79 80-89 90+ Totals 

Eligible 872 

(27.97%) 

562 

(18.02%) 

479 

(15.36%) 

277 

(8.88%) 

143 

(4.59%) 

48 

(1.54%) 

1 

(0.04%) 

0 

(0%) 
2,382 

(76.4%) 

Ineligible 41 

(1.31%) 

81 

(2.60%) 

74 

(2.37%) 

87 

(2.79%) 

174 

(5.58%) 

170 

(5.45%) 

98 

(3.14%) 

11 

(0.36%) 
736 

(23.6%) 

* % were calculated out of the total number of the cases of unknown eligibility (3,118 cases). 

 

Table 2.5 The effect of imputing eligibility status (ES): distribution of un-imputed and imputed ES. 

 Un-imputed ES (observed)  Imputed ES 

 % N % N 

Eligible cases 54.5 5,588 77.8 7,970 

Ineligibles cases 15.1 1,542 22.2          2,278 

Unknown eligibility cases 30.4 3,118 - - 

*The imputation was done using hotdeck procedure. The variables used in the imputation were gender, age, 

race, health status and financial situation.  
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We applied the same models as the SWA (in equation 2.10) to model the response 

propensity for the purpose of deriving (𝐴𝑊𝑠2). The difference here is that we excluded 

the sample members who were imputed as ineligible cases. 

The final models of the second alternative weighting are presented in table (2.6). Overall, 

the results are somewhat similar to those from the SWA, and also in line with the general 

literature of non-response. The distribution of the weights derived from these models 

(𝐴𝑊𝑠2) is discussed in the next section together with the distribution of the SWs and the 

𝐴𝑊𝑠1.
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Table 2.6 Response propensity models of the second alternative approach:  modelling response in wave t conditional on response in all of the previous waves. 

 Wave2 Wave 3 Wave 4 Wave 5 Wave 6 Wave 7 Wave 8 Wave 9 Wave 10 

Female 1.14* 1.29** 1.21 1.36** 1.02 1.41* 1.61** 0.92 0.93 
White 1.71* 1.63** 1.60** 1.55*** 1.07 1.74* 1.70 1.31 1.51* 
Age 1.02** 1.04** 1.02* 1.3* 1.07* 1.01 1.01 1.08* 1.06 
Age-squared 0.99** 0.99** 0.99* 0.96* 0.99* 1.00 0.99* 0.99 0.99 
Home owner 1.08 1.32*** 1.39* 1.54*** 1.61** 1.29*** 1.22 1.27 1.25 
Has GCE qualification or above 1.37*** 1.41** 1.13 1.17 1.01 1.47* 1.57*** 1.43* 1.33** 
Employed 0.87 1.07 1.15 1.11 1.09 1.54* 1.69* 1.12 1.43 
Others present in interview 1.10 1.06 1.02 1.17 1.68*** 1.55* 1.15 1.17 0.52*** 
Single-person household 0.96 1.25 0.58* 0.49* 0.89 0.63* 0.62* 1.20 1.09 
Household with children 1.57*** 1.06 1.34*** 1.35* 1.13 1.57* 0.96 0.71 1.19** 
Living in a flat 0.80* 0.79 0.67* 0.73* 1.10 1.07 0.79 0.45** 0.59* 
Living in other type of house 0.82 0.46** 0.45** 1.22 0.95 0.92 0.79 0.37*** 0.58* 
1 or 2 persons in employment  1.12 0.74** 0.88 1.09 1.10 0.84 0.93 0.91 1.06 
3 + persons in employment 0.97 1.16 1.08 0.89 0.64 1.19 0.59 0.80 0.61 
South-East 0.91 0.84 1.74* 1.43 1.55 2.29** 0.34** 1.07 1.63 
South-West 1.03 1.10 0.97 0.94 2.25* 1.08 0.45* 0.84 1.06 
East Anglia 1.13 0.88 2.13* 1.58 2.14 2.93* 1.89 2.82* 3.22 
The Midlands 0.94 0.76 1.06 1.15 0.97 1.57* 0.52* 1.18 1.10 
The North 1.23** 0.84 1.63* 1.04 1.29 2.39** 0.83 1.11 2.15* 
Wales 0.96 0.52** 2.84* 0.78 1.62 1.61 0.36* 1.03 0.61 
Scotland 0.83 0.81 1.24 1.42 0.49* 1.711. 0.22*** 1.33 1.28 
N 7,970 7,270 6,946 6,770 6,606 6,435 6,265 6,090 5,913 
Pseudo R2 0.032 0.041 0.037 0.036 0.038 0.046 0.045 0.038 0.036 
* The table is continued in the next page for the models of waves 11 to 18. The models do not include those who were imputed as ineligible cases. The entries are odds ratios. In 

every wave response is modelled conditional on responding in all of the previous waves. The model in a given wave used variables from the previous wave. The reference 

categories of the categorical independent variables in the table are male, non-white, not a home owner, does not have a GCE or above degree, unemployed and others not present 

when interviewed, multi-person HH, household with no children, living in a house, no one is in employment in HH and London * p< 0.05, ** p< 0.01, *** p< 0.001. 
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Table 2.6 (continued) 

 Wave 11 Wave 12 Wave 13 Wave 14 Wave 15 Wave 16 Wave 17 Wave 18 

Female 1.17 1.32 1.06 1.07 0.93 0.86 1.36 1.32 
White 1.22** 0.74 1.87** 0.96 1.71** 0.22 1.22 1.26 
Age 1.04 1.06 1.01 1.17*** 1.14** 1.12* 1.02 0.97 
Age-squared 0.99 0.99 0.98 0.99** 0.99** 0.99* 0.99 0.99 
Home owner 1.29*** 1.23 1.32** 1.57* 1.16 1.22 1.25 1.58* 
Has GCE qualification or above 1.07 1.49* 1.09 1.46*** 1.61** 1.15** 1.11 1.07 
Employed 1.58** 0.95 0.93 0.98 0.65 0.80 0.67* 1.69 
Others present in interview 1.04 0.90 1.01 1.07 1.03 1.82 1.16 0.96 
Single-person household 0.57* 0.96 1.17 1.16 1.01 0.91 0.70 0.88 
Household with children 0.85 1.12 1.26 1.03 0.95 0.69 1.17 0.86 
Living in a flat 1.02 0.43** 1.13 0.75 1.14 1.31 0.79 1.17 
Living in other type of house 0.93 0.54* 0.38** 1.12 0.97 0.63 2.49 1.81 
1 or 2 persons in employment  0.51* 0.87 0.95 1.02 0.56* 1.01 1.12 0.54* 
3 + persons in employment 0.25*** 1.14 1.10 0.41* 0.36* 0.57 0.86 0.42* 
South-East 1.97* 1.76* 1.46 4.33*** 2.33** 3.46** 1.86* 1.94* 
South-West 0.70 1.01 0.78 2.66** 2.53** 1.41 1.99 2.30** 
East Anglia 1.79 1.72 0.64 6.44* 3.89* 6.14* 8.41* 1.65 
The Midlands 1.30 1.64 1.07 3.47** 1.37 2.64** 1.29 3.16 
The North 1.11 1.91* 0.93 193* 1.75* 2.91 1.55 2.46*** 
Wales 0.83 1.34 0.63 2.28* 1.87 6.21* 1.21 4.15 
Scotland 0.98 1.27 1.53 2.31* 1.80 1.91 2.42* 1.10 
N 5,773 5,583 5,440 5,285 5,197 4,596 4,375 4,189 
Pseudo R2 0.041 0.035 0.032 0.051 0.044 0.041 0.034 0.042 
* The entries are odds ratios. In every wave response is modelled conditional on responding in all of the previous waves. The model in a given wave used variables from the 

previous wave. The reference categories of the categorical independent variables in the table are male, non-white, not a home owner, does not have a GCE or above degree, 

unemployed and others not present when interviewed, multi-person HH, household with no children, living in a house, no one is in employment in HH and London * p< 0.05, ** 

p< 0.01, *** p< 0.001.
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2.9 Assessment of the AWA 

Assessing the effect of the AWA requires comparisons between the 𝐴𝑊𝑠1 and the 

weights resulting from the SWA (SWs). Aside from comparing the distributions of the 

weights themselves, the evaluation may involve constructing different types of estimates 

using SWs and 𝐴𝑊𝑠1 and comparing them. During this process, the set of weights from 

the second alternative approach (𝐴𝑊𝑠2) can be used to check whether our introduced 

AWA is robust to changing the method used to estimate the eligibility of those with 

unknown eligibility status. Thus, our assessment of the AWA includes a discussion about 

the distribution of the SWs, 𝐴𝑊𝑠1 and 𝐴𝑊𝑠2. In addition, we used the three sets of 

weights in different types of weighted analyses. The latter includes producing descriptive 

statistics and estimating panel data models (multivariate analysis). The substantive 

analysis involved identifying the determinants of Subjective Health Status (SHS) since 

this is likely to be affected by the problem of including ineligible (deceased) cases in the 

SWA, which the AWA is designed to address.   

We used a balance panel of those who responded in all of the 18 waves (4,097 

respondents). Since the effect of the AWA is expected to be different for respondents who 

started the survey aged 60 or older than for those aged 16 to 59, the analysis was done 

separately for these two groups and for the full sample.  

2.9.1 The distribution of the SWs, 𝑨𝑾𝒔𝟏 and 𝑨𝑾𝒔𝟐 

We start the evaluation of the AWA by presenting the distribution of SWs, 𝐴𝑊𝑠1 and 

𝐴𝑊𝑠2. Table (2.7) displays these, separately, for those who started the survey aged 16 to 

59, 60+ and 16+ (all respondents in the panel). 



170 
 

For those aged 16-59, the three sets of weights have rather similar distributions, both in 

terms of central tendency and dispersion measures. This result is expected as both of our 

alternative weighting approaches are not expected to have weights that are considerably 

different than the standard weights for those aged 16-59. 𝐴𝑊𝑠2, however, has less 

variability, indicated by the smaller Coefficient of Variation (CV), compared to 𝐴𝑊𝑠1 

and SWs (𝐶𝑉𝑆𝑊𝑠= 0.46; 𝐶𝑉𝐴𝑊𝑆1= 0.46; and 𝐶𝑉𝐴𝑊𝑆2= 0.37).  

As for those aged 60+ and the full sample, the distributions of 𝐴𝑊𝑠1 and 𝐴𝑊𝑠2 remain 

fairly similar, but they differ from the distribution of the SWs. The weights mean value is 

bigger in the SWs (𝑀𝑒𝑎𝑛60+= 4.96; 𝑀𝑒𝑎𝑛16+= 2.36) than in the 𝐴𝑊𝑠1 (𝑀𝑒𝑎𝑛60+= 3.02; 

𝑀𝑒𝑎𝑛16+= 2.15) and in the 𝐴𝑊𝑠2 (𝑀𝑒𝑎𝑛60+= 2.64; 𝑀𝑒𝑎𝑛16+= 1.93). In addition, the 

dispersion is noticeably larger in the SWs than in the 𝐴𝑊𝑠1 or the 𝐴𝑊𝑠2
16 more so for 

those age 16+ than for those aged 60+. This is indicated by the larger values of the 

standard deviation (SD) and CV in the SWs (𝑆𝐷60+= 4.52, 𝑆𝐷16+= 2.06; 𝐶𝑉60+= 0.91, 

𝐶𝑉16+= 0.87) compared to the SD and CV in the 𝐴𝑊𝑠1 (𝑆𝐷60+= 2.03, 𝑆𝐷16+= 1.16; 

𝐶𝑉60+= 0.67, 𝐶𝑉16+= 0.54) or the 𝐴𝑊𝑠2 (𝑆𝐷60+= 1.71, 𝑆𝐷16+= 0.88; 𝐶𝑉60+= 0.64, 

𝐶𝑉16+= 0.46). 

These results are in line with our expectation that the AWA (as based on the set of 𝐴𝑊𝑠1) 

may have a different impact than the SWA, on estimates constructed from the set of 

respondents aged 60+ or estimates constructed based on all respondents aged 16+. Since 

the 𝐴𝑊𝑠1 is both less affected by unknown eligibility and has less variability than the 

SWs, it is likely to produce more precise and less biased estimates. Additionally, since the 

                                                           
16 Recall that there are fewer non-respondents in the weighting models of the second alternative approach as 

those imputed as ineligibles were excluded from these models which reduces the size of the weights for 

respondents with largest weights (those who are similar to non-respondents). 
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distribution of the 𝐴𝑊𝑠1 is similar to the distribution of the 𝐴𝑊𝑠2, across all sets of 

respondents, one may not expect the substantive results from the alternative weighting to 

be sensitive to changing the method of estimating the eligibility status for those whose 

eligibility is unknown. 

Table 2.7 The distribution of SWs, 𝐴𝑊𝑠1 and 𝐴𝑊𝑠2. 

 Respondents aged 16 to 59 Respondents aged 60+ All respondents aged 16+ 

 SWs 𝐴𝑊𝑠1 𝐴𝑊𝑠2 SWs 𝐴𝑊𝑠1 𝐴𝑊𝑠2 SWs 𝐴𝑊𝑠1 𝐴𝑊𝑠2 

Std.dev 0.96 0.94 0.68 4.52 2.03 1.71 2.06 1.16 0.88 

Mean 2.07 2.03 1.85 4.96 3.02 2.64 2.36 2.15 1.93 

CV 0.46 0.46 0.37 0.91 0.67 0.64 0.87 0.54 0.46 

Min 0.41 0.41 0.35 1.24 1.06 0.85 0.41 0.40 0.35 

Q1 1.49 1.47 1.40 2.49 1.99 1.52 1.53 1.50 1.33 

Median 1.81 1.77 1.63 3.23 2.42 1.94 1.91 1.84 1.64 

Q3 2.40 2.34 1.91 4.59 3.24 2.37 2.60 2.44 2.03 

Max 10.94 10.83 8.89 49.18 25.08 19.89 49.18 25.08 19.89 

*CV is the coefficient of variation (CV=Std.dev/Mean). 

Turning to the substantive analysis, this was carried out to investigate subjective health 

status (SHS) in the BHPS using the SWs, 𝐴𝑊𝑠1 and 𝐴𝑊𝑠2. The following two sections 

summarise this analysis. 

2.9.2 Descriptive statistics 

In the BHPS, SHS is measured by asking respondents every year to rank their own health 

as excellent, good, fair, poor or very poor. The proportions of respondents in each of these 
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categories are calculated using the SWs, 𝐴𝑊𝑠1 and 𝐴𝑊𝑠2 and are displayed in table 2.8. 

The weighted proportions are presented for our three sets of respondents separately (aged 

16 to 59, 60+ and all respondents). To test whether there are differences between 

proportions constructed based on the alternative weights and the equivalent proportions 

constructed based on the standard weights, we used the built-in command prtest in Stata. 

Prtest performs a classical test of hypothesis on the equality of proportions. Using this 

command, the differences between the proportions calculated with the SWs were tested in 

turns with the equivalent proportions calculated with 𝐴𝑊𝑠1 and 𝐴𝑊𝑠2. The results of 

these tests are also included in table 2.8.      

Focussing on the first set of respondents (aged 16 to 59) first, the SWs, 𝐴𝑊𝑠1 and 𝐴𝑊𝑠2 

produced similar proportions across the categories of SHS, and all of the equality tests 

between the equivalent proportions do not show any significant differences. Thus, these 

results indicate that, for those who started the survey aged between 16 and 59, there are 

no significant differences between the proportions of SHS if the proportions are 

calculated using the SWs, 𝐴𝑊𝑠1 or 𝐴𝑊𝑠2. These results also confirm our expectation that 

the AWA does not change the standard weights of those who started the survey at a 

young age (between 16 and 59) because most ineligible sample members whose 

eligibility is unknown do not fall within this class of respondents. In addition, since 𝐴𝑊𝑠2 

also produced similar estimates as 𝐴𝑊𝑠1, the results indicate that the AWA may be robust 

to changing the method that determines the eligibility status of those with unknown 

eligibility.   

As for respondents who started the survey aged 60 or over, there are two significant 

differences here related to the categories ‘poor health’ and ‘very poor health’. The 
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proportions of these categories are significantly different (at the levels of p< 0.01 and p< 

0.05 respectively) if calculated with SWs, than if they are calculated using the 𝐴𝑊𝑠1 and 

𝐴𝑊𝑠2. The results show that these proportions are larger if calculated with SWs. These 

results clearly show the effect of including deceased sample members in the calculation of 

the SWs. Those deceased sample members, who were likely to be similar in their 

characteristics to older respondents with poor and very poor health, increased the sizes of 

the SWs of those respondents expanding their contribution to calculating the proportions 

of ‘poor’ and ‘v. poor’ health status. Furthermore, for the categories in question, the 

proportions calculated with the SWs have standard errors than the equivalent proportions 

calculated with the 𝐴𝑊𝑠1 and 𝐴𝑊𝑠2 indicating that the proportions calculated with 𝐴𝑊𝑠1 

or 𝐴𝑊𝑠2 are more precise. 

Finally, turning to all respondents in the panel, one significant difference is found. This is 

on the category ‘v. poor’. The proportion of this category appears to be significantly 

different (p< 0.05) with the 𝐴𝑊𝑠1 and 𝐴𝑊𝑠2 than with the SWs. Furthermore, the 

proportion calculated with SWs has a larger standard error than the equivalent proportions 

calculated using the 𝐴𝑊𝑠1 and 𝐴𝑊𝑠2. Thus, the result here is in line, and has the same 

explanation as the previous results from those aged 60+. Also, both results confirm our 

expectation that the AWA may have a different effect on estimates than the SWA both on 

analysis restricted to older respondents and analysis based on the full sample. Moreover, 

the results from the AWA do not appear to be sensitive to changing the alternative 

weighting approach as 𝐴𝑊𝑠1 and 𝐴𝑊𝑠2 resulted in similar estimates.  
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Table 2.8 Weighted proportions across the categories of subjective health status using the SWs, 𝐴𝑊𝑠1 and 𝐴𝑊𝑠2. 

 Respondents aged 16 to 59 Respondents aged 60+ All respondents aged 16+ 

SHS Using SWs Using 𝐴𝑊𝑠1 Using 𝐴𝑊𝑠2 Using SWs Using 𝐴𝑊𝑠1 Using 𝐴𝑊𝑠2 Using SWs Using 𝐴𝑊𝑠1 Using 𝐴𝑊𝑠2 

Excellent 23.16% 
(.0071) 

23.21% 
(.0070) 

23.38% 
(.0070) 

16.56% 
(.0166) 

18.74% 
(.0174) 

18.07% 
(.0171) 

21.48% 
(.0064) 

22.18% 
(.0065) 

23.05% 
(.0066) 

Good 47.65% 
(.0083) 

47.68% 
(.0083) 

47.72% 
(.0083) 

46.27% 
(.0222) 

48.33% 
(.0222) 

48.57% 
(.0222) 

47.30% 
(.0078) 

47.80% 
(.0078) 

46.90% 
(.0078) 

Fair 21.04% 
(.0068) 

20.98% 
(.0068) 

20.84% 
(.0068) 

25.95% 
(.0195) 

28.21% 
(.0201) 

29.34% 
(.0203) 

22.54% 
(.0065) 

23.53% 
(.0066) 

22.54% 
(.0065) 

Poor 6.62% 
(.0041) 

6.50% 
(.0041) 

6.47% 
(.0041) 

7.91%a 
(.0120) 

3.85%a ** 
(.0086) 

3.21%a ** 
(.0079) 

6.88% 
(.0040) 

5.46% 
(.0034) 

6.55% 
(.0039) 

V. Poor 1.63% 
(.0021) 

1.63% 
(.0021) 

1.59% 
(.0021) 

3.30%a 
(.0080) 

0.87%a * 
(.00413) 

0.81%a * 
(.0078) 

1.80%a * 
(.0021) 

1.03%a * 
(.0016) 

0.96%a * 
(.0015) 

*The numbers in brackets are the standard errors. a indicates a significant difference between the proportions produced from the alternative weighting approaches 

and the corresponding proportion produced from the SWA. The differences between the proportions were tested using the command prtest in Stata. * p< 0.05 

and ** p< 0.01. 
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2.9.3 Multivariate analysis 

The multivariate analysis was carried out to investigate factors affecting SHS. This was 

done by estimating three groups of panel data models as will be explained next.  

In this analysis, the five categories of SHS (excellent, good, fair, poor and very poor) 

were reorganised. The first three categories were combined into one category (good 

health status) and the last two were combined into another category (poor health status). 

Accordingly, SHS became a categorical variable with two categories, indicating whether 

the respondent has good or poor health status. This variable was used as the dependent 

variable in the analysis.  

𝑆𝐻𝑆𝑖 = {
1,   𝑖𝑓 𝑐𝑎𝑠𝑒 𝑖 ℎ𝑎𝑠 𝑎 𝑔𝑜𝑜𝑑 ℎ𝑒𝑎𝑙𝑡ℎ 𝑠𝑡𝑎𝑡𝑢𝑠.  
0,   𝑖𝑓 𝑐𝑎𝑠𝑒 𝑖 ℎ𝑎𝑠 𝑎 𝑝𝑜𝑜𝑟 ℎ𝑒𝑎𝑙𝑡ℎ 𝑠𝑡𝑎𝑡𝑢𝑠.

                                                  (2.13) 

Where 

𝑆𝐻𝑆𝑖 ≡Subjective health status. 

The explanatory variables used here are gender, race, age, number of visits to the GP 

since last interview, smoking status, income, cohabitation status and financial situation. 

These variables are available across the 18 waves of the BHPS. Furthermore, they are 

known for their effect on health status and were used in prior research on self-assessed 

health in the BHPS (for example Jones et al, 2004). 

We used a balanced panel from wave 1 to 18 (4,097 cases), and our three longitudinal sets 

of weights at wave 18 (SWs, 𝐴𝑊𝑠1 and 𝐴𝑊𝑠2) to estimate our substantive models. For 

each of our three sets of respondents (those who began the BHPS aged: 16 to 59, 60+ and 

16+) we modelled SHS by estimating a random effects logistic regression model. 



176 
 

However, for each group, the model was estimated three times using the SWs, 𝐴𝑊𝑠1 and 

𝐴𝑊𝑠2. This strategy allows the comparison between estimates resulting from each set of 

weights, separately for the three sets of respondents, while holding the estimation method 

constant.  

To identify significant differences between equivalent coefficients estimated with the 

different weights, we conduct hypotheses testing on the differences between estimates 

adjusted with the SWs and their equivalent estimates adjusted with 𝐴𝑊𝑠1 and 𝐴𝑊𝑠2 using 

95% Confidence Intervals (CI). Our test involves two essential steps. The first step is to 

construct 95% CIs of the difference between each two equivalent coefficients that are 

adjusted with the SWs and 𝐴𝑊𝑠1 or 𝐴𝑊𝑠2. Such CIs specify the range of values within 

which the difference between each two equivalent coefficients may lie. For example, if 

𝛽𝑆𝑊, 𝛽𝐴𝑊1 and 𝛽𝐴𝑊2 denote a given set of equivalent population parameters estimated by 

the equivalent set of coefficients 𝑏𝑆𝑊, 𝑏𝐴𝑊1 and 𝑏𝐴𝑊2 which are adjusted with SWs, 

𝐴𝑊𝑠1 and 𝐴𝑊𝑠2 respectively, we construct two CIs to test whether 𝑏𝑆𝑊 is different than 

𝑏𝐴𝑊1 and/or 𝑏𝐴𝑊2. These are CIs for (𝑏𝑆𝑊 - 𝑏𝐴𝑊1) and (𝑏𝑆𝑊 - 𝑏𝐴𝑊2). All CIs are 95% CIs, 

and are given by 2.14 below: 

(𝑏𝑆𝑊 - 𝑏𝐴𝑊𝑖) ±1.96*S𝑏𝑆𝑊−𝑏𝐴𝑊𝑖
                                                                                    (2.14) 

Where S𝑏𝑆𝑊−𝑏𝐴𝑊𝑖
 is the standard error of (𝑏𝑆𝑊 - 𝑏𝐴𝑊𝑖) and is given by 3.9 below; and 

i=1,2. 

S𝑏𝑆𝑊−𝑏𝑇𝑊𝑖
= √𝑆2(𝑏𝑆𝑊) + 𝑆2(𝑏𝐴𝑊) − 2 ∗ 𝐶𝑜𝑣(𝑏𝑆𝑊, 𝑏𝐴𝑊𝑖)                                          (2.15) 
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Where 𝑆2(𝑏𝑆𝑊) and 𝑆2(𝑏𝐴𝑊𝑖) are the variances of  𝑏𝑆𝑊 𝑎𝑛𝑑 𝑏𝐴𝑊𝑖 respectively; 

𝐶𝑜𝑣(𝑏𝑆𝑊, 𝑏𝐴𝑊𝑖) is the covariance of 𝑏𝑆𝑊 𝑎𝑛𝑑 𝑏𝐴𝑊𝑖; and i=1,2. 

The second step is to use the constructed CIs to test whether there is a significant 

difference between each two equivalent coefficients adjusted with the SWA and AWA 

(i.e. is there a significant difference between 𝑏𝑆𝑊 𝑎𝑛𝑑 𝑏𝐴𝑊𝑖?). That is to test the following 

hypothesis: 

𝐻0: 𝛽𝑆𝑊 - 𝛽𝐴𝑊𝑖 =0 against 𝐻𝑎: 𝛽𝑆𝑊 - 𝛽𝐴𝑊𝑖 ≠0; i=1,2. 

Note that 𝐻0 is rejected (i.e. there is a significant difference between 𝑏𝑆𝑊 𝑎𝑛𝑑 𝑏𝐴𝑊𝑖) if the 

relevant CI does not include 0.  

Table 2.9 presents the results of our substantive models. The table presents odds ratios 

and their standard errors. However, for ease of exposition, the 95% CIs that we used to 

test the differences between equivalent estimates adjusted with the different weights are 

not displayed in table 2.9. For all 95% CIs resulting from this analysis see appendix B.5. 

Overall, although the models capture significant relationships between SHS and most of 

the factors included in the analysis, the importance of these factors differs between those 

aged between 16 and 59 and those aged 60+. For example, respondents from white ethnic 

groups are more likely to report good health status than respondents from non-white 

ethnic groups. However, this is not significant if the model is restricted to the set of 

respondents who started the survey aged 60+ (𝑏̂60+,𝑠𝑤= 1.183, p> 0.05 and 𝑏̂60+,𝐴𝑊1= 

1.692, p> 0.05; 𝑏̂60+,𝐴𝑊2= 1.855, p> 0.05). Nonetheless, our focus here is on the 

comparison between estimates resulting from the SWs, 𝐴𝑊𝑠1 and 𝐴𝑊𝑠2 within each 
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group of respondents rather than differences in results across the different groups. 

Turning to this, the results of the comparison can be summarised in the following:  

First, our attention is paid to the models of respondents aged between 16 and 59. Just as 

expected, the three sets of weights resulted in similar estimates here. The coefficients are 

similar both in terms of their magnitudes and standard errors resulting in identical 

significance levels across the three models.  

Second, focussing on models for those aged 60+ and models for the full sample, some of 

the results generated from the SWs are different from the results derived from the 𝐴𝑊𝑠1 

and 𝐴𝑊𝑠2. Overall, 𝐴𝑊𝑠1 and 𝐴𝑊𝑠2 produced rather similar estimates, suggesting that 

results from our introduced AWA might not be sensitive to changing the method used to 

estimate eligibility status for cases of unknown eligibility. Estimates resulting from the 

𝐴𝑊𝑠2 have, somewhat, smaller standard errors than the equivalent estimates resulting 

from 𝐴𝑊𝑠1. However, this is expected since the dispersion in the distribution of the 

𝐴𝑊𝑠2 is lesser than in the distribution of the 𝐴𝑊𝑠1.  

On the other hand, comparing the estimates resulting from 𝐴𝑊𝑠1 and 𝐴𝑊𝑠2 with 

estimates resulting from the SWs, it can be noticed that, 𝐴𝑊𝑠1 and 𝐴𝑊𝑠2 produce more 

precise estimates compared with SWs. This difference is particularly clear for estimates 

based on those aged 60+ and less for estimates resulting from using all respondents aged 

16+. With those aged 60+, the AWs reduced the standard errors substantially, for a 

number of variables resulting in an increase in their significance level. Namely these 

variables are: gender, age, number of visits to the GP since last year, smoking status, 

income and financial situation. Some of these variables, such as age, did not even appear 
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to be significant with the SWs. Also, for estimates resulting from all respondents aged 

16+, the 𝐴𝑊𝑠1 and 𝐴𝑊𝑠2 have effects on two variables: gender and income. Both 

variables are not significant with the SWs. With 𝐴𝑊𝑠1 and 𝐴𝑊𝑠2, however, the standard 

errors of these variables are reduced, which resulted in more statistical power for their 

corresponding coefficients suggesting that they are in fact significant at 0.05 level. Such 

variables are important in the process of understanding change in health status, and if 

their effects are interpreted incorrectly, different conclusions may be drawn. Thus, these 

results indicate the significant effect that the AWA may have on some of the survey 

estimates.  

As for bias, this was checked by conducting our hypotheses testing (explained earlier) on 

the differences between equivalent estimates adjusted with the SWA and the AWT using 

the 95% CIs of the difference between the estimates (in appendix B.5). All tests indicate 

that the coefficients resulting from the SWA and AWA are not significantly different in 

terms of magnitude. This means that, unlike our descriptive statistics, our multivariate 

analysis does not show evidence of bias reduction. 

To sum up, both the descriptive analysis and the multivariate analysis in this chapter 

indicate that the results from the SWA and AWA are similar in general. However, for 

certain types of estimates, the SWA may result in less precision and may produce biased 

estimates as a consequence of not dealing appropriately with the cases of unknown 

eligibility who are actually ineligible. This is especially likely in estimates related to the 

likely characteristics of ineligible sample members such as poorer health conditions. On 

the other hand, the AWA endeavours to eliminate the effect of including ineligible sample 

members in the estimation of the weights by implementing the adjustment procedure 
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introduced in this chapter. The effect of the adjustment in the AWA is in a downwards 

direction reducing the incorrect sizes and the variance of the weights particularly for older 

respondents who started the survey aged 60 or over. As a result, estimates resulting from 

the AWA are more precise and, in some cases, less biased in comparison with the SWA. 

In addition, while the AWA produces - for some estimates - different results than the 

SWA, the results arrived at via the AWA do not seem to be sensitive to changing the 

weighting to the second alternative approach. 
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Table 2.9 Random effects logistic regression models for the determinants of good health status (subjective). 

 Respondents aged 16 to 59 Respondents aged 60+ All respondents aged 16+ 

 Using SWs Using 𝐴𝑊𝑠1 Using 𝐴𝑊𝑠2 Using SWs Using 𝐴𝑊𝑠1 Using 𝐴𝑊𝑠2 Using SWs Using 𝐴𝑊𝑠1 Using 𝐴𝑊𝑠2 

Year 1997 to 2002 0.941(.038) 0.938(.035) 0.938(.035) 0.993(.091) 

 

1.037(.070) 

 

1.078(.061) 

 

0.950(.035) 

 

0.961(.032) 

 

0.982(.030) 

Year 2003 to 2008 0.910(.037)** 0.895(.034)** 0.893(.033)** 
 

1.018(.094) 
 

1.048(.072) 
 

1.033(.058) 
 

0.928(.034)* 
 

0.931(.031)* 
 

0.942(.029)* 
 

Female 1.110(.073) 
 

1.128(.070) 

 

1.128(.070) 
 

0.558(.100)** 
 

0.621(.083)*** 
 

0.507(.055)*** 
 

0.991(.062) 
 

0.981(.055)* 
 

0.893(.047)* 
 

White  1.685(.207)*** 
 

1.767(.201)*** 
 

1.790(.203)*** 1.183(.673) 
 

1.692(.345) 
 

1.855(.327) 
 

1.677(.205)*** 
 

1.729(.194)*** 
 

1.728(.191)*** 
 

Age 0.991(.002)*** 
 

0.990(.002)*** 
 

0.990(.002)*** 
 

0.988(.007) 
 

0.983(.005)** 
 

0.980(.004)** 
 

0.991(.002)*** 
 

0.990(.001)*** 
 

0.989(.001)*** 
 

1 to 2 visits to GP since last year 0.352(.033)*** 
 

0.357(.031)*** 
 

0.357(.031)*** 

 

0.639(.112)* 
 

0.609(.078)*** 
 

0.511(.056)*** 
 

0.392(.032)*** 
 

0.408(.029)*** 
 

0.396(.027)*** 
 

3 to 5 visits to GP since last year 0.087(.008)*** 

 

0.087(.008)*** 
 

0.087(.007)*** 
 

0.252(.045)*** 
 

0.246(.032)*** 
 

0.202(.022)*** 
 

0.104(.009)*** 
 

0.112(.008)*** 
 

0.113(.008)*** 
 

6 + visits to GP since last year 0.016(.001)*** 
 

0.016(.001)*** 
 

0.016(.001)*** 
 

0.087(.015)*** 
 

0.084(.011)*** 
 

0.073(.008)*** 
 

0.021(.002)*** 
 

0.024(.002)*** 
 

0.025(.002)*** 
 

Smoker 0.696(.039)*** 
 

0.699(.037)*** 
 

0.700(.037)*** 
 

0.639(.110)** 
 

0.647(.083)*** 
 

0.635(.072)*** 
 

0.686(.037)*** 
 

0.688(.033)*** 
 

0.683(.032)*** 
 

Annual income/1000 1.007(.002)*** 
 

1.007(.002)*** 
 

1.007(.002)*** 
 

0.979(.006)** 
 

0.976(.004)*** 
 

0.975(.004)*** 
 

1.002(.003) 
 

1.003(.002)* 
 

1.005(.002)* 
 

Has a partner 0.983(.123) 
 

0.989(.099) 
 

0.925(.077) 
 

1.016(.054)* 
 

1.019(.051)* 
 

1.020(.050)* 
 

1.027(.050) 
 

1.042(.045) 
 

1.039(.042) 
 

Financially okay 0.860(.045)** 
 

0.872(.043)** 
 

0.874(.042)** 
 

0.727(.082)** 
 

0.707(.061)*** 
 

0.626(.045)*** 
 

0.840(.040)*** 
 

0.838(.035)*** 
 

0.795(.032)*** 
 

Financially struggling 0.568(.031)*** 
 

0.576(.029)*** 
 

0.577(.029)*** 
 

0.613(.072)*** 
 

0.598(.053)*** 
 

0.457(.033)*** 
 

0.569(.028)*** 
 

0.575(.025)*** 
 

0.532(.022)*** 
 

N 3,594 3,594 3,594 503 503 503 4,097 4,097 4,097 

σ  1.60 1.60 1.61 1.69 1.72 1.72 1.62 1.62 1.62 

ρ 0.44 0.44 0.44 0.46 0.47 0.47 0.44 0.45 0.45 

* Entries are odds ratios. The numbers in brackets are the standard errors of the coefficients. The reference categories of the categorical independent variables are: year 1991 to 

1996, male, non-white, no visits to the GP since last year, non-smoker, does not have a partner and having good financial situation. σ  is the standard error of the random 

effects (sigma u). ρ is the percentage of the total variance that is due to differences between units.* p<0.05, ** p <0.01, ***p <0.001.
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2.10 Conclusion 

In this chapter we investigated a limitation in the SWA in relation to dealing with cases 

of unknown eligibility. The SWA assumes that cases whose eligibility is unknown are 

eligible, and therefore, it includes all these cases in the base of the model from which 

non-response weights are derived. This may be a rather ‘naïve’ method of handling 

unknown eligibility. It is unlikely that all cases whose eligibility is unknown are eligible, 

especially after many waves of data collection are conducted. Accordingly, if a large 

number of those whose eligibility is unknown are actually ineligible, weights resulting 

from the SWA may be incorrectly large in terms of their size and variance, and hence 

they may produce less precise and biased estimates.  

The results from our investigation suggest the following: 

Most of the original sample members of the BHPS whose eligibility is unknown by wave 

18 are from the oldest age group in the sample, namely those who started the survey aged 

60 or over. Accordingly, the adjustment made in the AWA affects the weights of those 

aged 60+ mostly, but as a result it changes the distribution of the weights for the sample 

as a whole. The weights resulting from the AWA are smaller in size (particularly the 

weights for older respondents) and have less variability compared to the standard 

weights. Thus, the resultant estimates from the AWA are more precise than the estimates 

produced from the SWA.  

Despite differences in the weights distributions, overall, the SWA and AWA generate, 

rather, similar results. In general, for many of the estimates, the AWA do not change the 

conclusion arrived at via the SWA. However, for some estimates, the SWA and AWA 
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yield different results. In these cases, the smaller standard errors associated with the 

AWA enable some estimates to be more significant in models that use alternative 

weights than in models that use standard weights. In a few cases, some estimates, which 

do not turn out to be significant with the SWA, appear to be significant with the AWA. It 

is clear that the SWA masks the significance of some estimates as a result of not handling 

unknown eligibility appropriately.  

Moreover, supported by our descriptive statistics, the SWA may result in biased 

estimates. This is because most of the ineligible cases are clustered within certain classes 

in the sample (those who started the BHPS aged 60+). We found that the contribution of 

the larger standard weights of older sample members to some of the estimates was 

excessive. As a result, these estimates turned out to be significantly different from the 

equivalent estimates resulting from the AWA. With the SWA, the estimates in question 

contain influence of the ineligible sample members who are assumed as eligible, and who 

are similar in their characteristics to sample members who began the survey age 60+. 

Hence, these estimates were biased towards the characteristics of older sample members. 

Furthermore, with reference to the second alternative weighting, the results from the 

AWA do not seem to be greatly sensitive to changing the method of estimating eligibility 

status of sample members whose eligibility is unknown. Results from the AWA and the 

second alternative weighting are broadly similar.  

The findings from this investigation have a number of important implications in the 

development of non-response weighting.  
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First, perhaps we downplay the overall role of the SWA. In principle, the SWA is a non-

response weighting adjustment, which may be perfectly appropriate, particularly during 

the first few waves of the survey. Because, at the beginning of the survey, it might be 

plausible to assume that a large proportion of non-respondents are still eligible. 

Therefore, unknown eligibility may not be detrimental to weighting then. 

However, as more waves are conducted, not only does the number of ineligible cases 

accumulate over time, it may also become a systematic feature of certain classes in the 

sample as it is shown by the distribution of our adjustments factor. It may still be 

possible to obtain valid conclusions by using the SWA in a number of analyses, but in 

certain types of investigations, the results might be misleading. For example, for analysts 

who would like to construct estimates of the longitudinal population at later waves, 

especially estimates related to older respondents, using the SWA may be at the cost of 

underestimating the importance of some of the factors in their analysis, or even obtaining 

biased estimates in some cases as was shown by our descriptive statistics here.  

Second, and on the opposite side of the argument, the AWA offers a better system of 

dealing with uncertain eligibility compared to the SWA. It is convincing, robust and 

relatively easy to apply if information on eligibility is available at the population level. 

Furthermore, if the AWA is implemented, the interpretation of some weighted survey 

estimates may change considerably. In return, the new interpretations might change our 

understanding of the social process under investigation.  

Third, although bias reduction was not established empirically by our multivariate 

analysis (only our descriptive statistics indicate this), we expect different results if the 
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AWA is applied on different data, where larger proportion of the unknown eligibility 

cases are ineligible. In this case evidence for bias reduction are likely to be clearer both 

on estimates from multivariate and descriptive analyses. Thus, for surveys that suffer 

from high rates of unknown eligibility, and where eligibility is also defined by being 

alive and living in the geographical area covered by the survey, the method is highly 

recommended.  

However, when this approach is used, one should pay attention to the mortality rates that 

are used to calculate the adjustment factors. For accurate calculation of the adjustment 

factors, mortality rates should be up-to-date and reliable. For instance, the availability of 

mortality rates for the same population covered by the survey both in terms of time 

period and geographical area would improve the calculation of the adjustment factors. As 

an example, in this research, the BHPS sample was selected only from residential 

addresses, meanwhile registered population mortality statistics include people at all types 

of addresses (e.g. nursing homes). Thus, registered mortality rates may not perfectly 

match the rates in the population of interest, at least for the first two or three years of the 

survey (eventually, those initially institutionalised people will die, and all of the new 

institutionalised population will have been from the residential addresses covered by the 

survey, so at that point the survey should become representative of the entire population, 

i.e. the same population to which the mortality statistics refer). Moreover, the availability 

of population information on emigration and institutionalised individuals would be 

advantageous. Combining this information with mortality rates when calculating the 

adjustment factors will result in more accurate adjustment as all forms of ineligibility 

will be taken into account.     
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In surveys where ineligibility predominantly occurs by satisfying other characteristics 

(e.g. reaching a specific age or belonging to a certain social group) and maybe partially 

through death, the strategy of survival/death-based adjustment factor may not be very 

useful. This is because the calculation of the adjustment factor (which is based on 

comparing the survival proportions in the sample and the population) in this case will 

have not taken into account the main forms of ineligibility. The approach of the 

adjustment factor will be more effective if the main ineligibility form in the sample can 

be found in the records of population statistics, or other reliable external data, as the case 

in the current research (i.e. population mortality rates). Perhaps, in such a survey, the 

imputation-based approach (the second alternative) would be a better option.  

Finally, another alternative procedure (used in the Health Survey for England and 

HILDA) could be contacting the death register office. In almost every country there is an 

office where deaths are registered. These offices collect information such as name, time 

and date of death, place and date of birth, the last address, occupation, reason for death 

and contact information of a surviving person related to the person died (usually a spouse 

or civil partner). If the survey organisation is able to contact the death register office and 

obtain this information, death can be identified by matching the records of respondents of 

unknown eligibility with the information held in the register office. The advantage of this 

approach is that it produces precise estimates based on accurate information. However, 

apart from the fact that this approach is time consuming (need to be done for all unknown 

eligibility cases at every wave), in some countries, register offices may not be willing to 

co-operate, for reasons of confidentiality.   
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In any case, for panel household surveys that are similar to the BHPS, any method for 

dealing with unknown eligibility in the context of weighting should focus on sample 

members who started the survey at older ages (may be aged 60+) as most of the 

ineligible (deceased) cases are likely to be centred within this age group.  

 

 

 

 

 

 

 

 

 

 

 

 

 



188 

 

 

 

 

CHAPTER 3 

 

 

 

 

Non-response Subgroup-tailored Weighting: the Choice of Variables 

and the Set of Respondents Used to Estimate the Weighting Model 

 

 

 

 

 



189 

3.1 Introduction 

In panel studies, the use of the logistic regression model to predict the probability of 

response and create non-response weights is classic. In most cases, the model is 

estimated using typical weighting variables (such as age, gender, race, etc…) and all 

cases in the selected sample for which data is available on the weighting variables. This 

is a typical feature of the SWA in longitudinal surveys which was described in the main 

introduction to this thesis. Since all sample members are used in the process of modelling 

the response propensity and deriving the weights, it may be necessary for the SWA to use 

‘generic’ weighting variables. These are variables that are successful in predicting 

response for the sample as a whole and, also, may be correlated with some of the survey 

key variables. Consequently, variables that only distinguish response from non-response 

at a sub-group level may not be used in the SWA if they do not appear important at the 

full sample level.     

It is important to use variables that are correlated with the survey target variables in order 

to produce a set of weights that is successful in reducing non-response bias (Särndal and 

Lundstrom, 2005; Little and Vartivarian, 2003, Kreuter and Olson, 2011). However, the 

extent to which the bias is reduced is also based on a good specification of the model in 

terms of using variables that significantly explain the variation in the response propensity 

in all sub-groups in the sample. Otherwise, the weights will not reduce non-response bias 

in estimates related to sub-groups where variation in response propensity either is not, or 

is poorly, accounted for by the weighting variables. Moreover, the weights will reduce 

non-response bias to the maximum possible extent if they are used to adjust an estimate 

that is constructed using the set of respondents used to create the weights.   
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In practice, it is unlikely for the SWA to be able to account for the variation in the 

response propensity in all sub-groups in the sample, given that it is based on just one 

weighting model, using all sample members and common weighting variables. Because, 

even in the same survey sample, the phenomena that cause non-response can differ 

across different sub-groups, both in terms of scale and type.  

For example, consider a survey that collects data from individuals belonging to different 

social classes. For a particular social class, say one that is formed of teachers and 

lecturers, assume that there is a rate of non-response amongst this group. It may be 

plausible to assume that non-response rate in the sub-group in question is low compared 

to non-response rates in other sub-groups belonging to other social classes in the sample. 

This is because, individuals within academia may feel obligated to cooperate with the 

survey out of their academic scene of duty. In any case, in this example, it is likely that 

the factors responsible for non-response in the sub-group of teachers and lecturers are 

rather different than the usual non-response predictors (such as age, gender, race and 

education), which could be more responsible for non-response in other sub-groups in the 

sample. Meanwhile, with teachers and lecturers, variables such as age, gender, race and 

education might not explain much of the variation in the response propensity.  

In the light of this scenario, consider a case in which a researcher would like to construct 

an estimate using only the set of teachers and lecturers in the sample. However, the 

researcher decides to use non-response weights to reduce any potential bias in the 

estimate in question. Thus, a model that is correctly specified to predict response 

probability in general (i.e. SWA) which is based upon all sample units, using variables 

that may be strongly correlated with the response propensity in many sub-groups in the 
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sample but weakly correlated with the response propensity in the sub-group of teachers 

and lecturers, might result in a set of weights that successfully reduces non-response bias 

in many survey estimates but not necessarily in estimates which are constructed using the 

set of teachers and lecturers. With respect to any analysis that is restricted to this sub-

group, weights would be more effective if the weighting model is: 

a)  Estimated to deliberately account for the variance in the response probability in 

the sub-group of teachers and lectures by using variables that strongly affect their 

response propensity regardless of whether or not they also affect the response 

propensity in other sub-groups in the sample.  

b)  Estimated using the set of teachers and lecturers only.  

Since it is unlikely for a SWA to predict response in all sub-groups in the sample, an 

alternative weighting approach could set a modelling strategy that is able to account for 

the variation in the response propensity in a selected set of sub-groups. In this approach a 

number of different weighting models can be estimated with an intention to: explain a 

larger proportion of variance in response propensity in certain sub-groups in the sample 

(perhaps some of the main sub-groups in the sample which are more likely to be used for 

analysis); use a particular set of variables (rather than generic) which account for 

variation in the response probability in these sub-groups; and estimate the model by 

using sample members from the sub-groups in question only (i.e. by using the set of 

respondents that analysts will likely to use to construct estimates of interest). This way 

the weights derived from each weighting model can be more powerful in dealing with 

non-response bias in their relevant sub-groups in comparison with weights derived from 

the SWA. In addition, if the sub-groups selected for this type of weighting represent 
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some of the major domains in the sample, the resultant weights may also reduce non-

response bias in estimates constructed based on the whole sample (total sample 

estimates) if they are put together appropriately. This strategy of weighting is discussed 

as the AWA in this chapter.  

The chapter investigates whether there is evidence to show that designing weights for 

specific sub-groups in the sample can significantly affect survey-based estimates from 

these sub-groups to the extent that they become different from the estimates produced 

through the SWA. The introduced AWA will be referred to as ‘subgroup-tailored 

weighting approach’ (S-TWA) and weights produced from this approach will be called 

‘tailored weights’ (TWs). 

The BHPS sample will be used to study the differences between the SWA and the 

proposed S-TWA. As in the previous chapters, the investigation here is based on creating 

weights using the SWA (SWs) and weights based on the AWA (TWs), and compare 

estimates resulting from a substantive analysis that uses the SWs and TWs.  

The idea of the S-TWA will be investigated by selecting two sub-groups, from the BHPS 

sample, on which substantive analyses are intended to be done. The tailored weights will 

then be designed for these sub-groups by using variables that are thought to be associated 

with the response propensity in the sub-groups under investigation regardless of whether 

or not these variables are also used in the SWA. This means that the S-TWA will add 

new variables to the common variables that are usually used in the SWA to create the 

TWs. The new variables will be considered under the assumption that they are important 

predictors of the response in the selected sub-groups even if they are not important in 
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terms of predicting response in other sub-groups. In turn, some of the variables used in 

the SWA may not be used in the S-TWA if they do not distinguish response from non-

response in the sub-groups in question even if they are important in terms of predicting 

response in other sub-groups. Additionally, the tailored weights will also be created by 

restricting the weighting models to the sets of sample members in the selected sub-

groups. 

3.2 The choice of sub-groups 

The data used in this chapter were from the first eight waves of the BHPS17. The data 

cover the period 1991 to 1998. The analysis was restricted to sample members who 

responded at wave 1, and who were aged 16 or older at that time. The tailored weights 

(TWs) were designed to deliberately target non-response bias in estimates related to two 

sub-groups of sample members: 

1) Those who retired in the year 1991 or before. 

2) Those who were born in the year 1965 or after. 

The first sub-group refers to the group of retired sample members (relatively old sample 

members). These are sample members who started the survey as retired individuals. 

Therefore, this sub-group does not include respondents who retired at a later wave (i.e. in 

any year from 1992 to 1998). Since the analysis is restricted to sample members aged 16 

or older, the second sub-group identifies sample members who were within the age group 

16 to 26 at the start of the survey (younger sample members).  

                                                           
17 Some of the variables used in the analysis are not available across all waves.  
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While other types of sub-groups in the BHPS sample are important too (e.g. those who 

were born outside the UK or the set of disabled sample members), the selected sub-

groups here represent major domains in the sample. Also, both of these sub-groups 

contain enough sample members to allow valid investigation of the issue discussed in 

this chapter. In addition, both sub-groups, together, include a balanced set of sample 

members in terms of gender, age (young and relatively old respondents) and labour 

market status (out of the labour force and working age individuals). Furthermore, a large 

number of substantive analyses may be conducted on the selected sub-groups. Thus, 

whether a set of weights that is tailored to these sub-groups results in different estimates 

than estimates produced with the SWA is worth investigating. 

The sub-group choice in our analysis splits the sample into three non-overlapping sub-

groups: 1) retired sample members; 2) sample members who were born in 1965 or after; 

and 3) non-retired sample members who were born before 1965 (i.e. the rest of the 

sample). However, the S-TWA focuses on retired respondents and those who were born 

in 1965 or after. The tailored weights will be created to adjust for the longitudinal non-

response up to wave 8. Thus, the weights will be appropriate for analyses, on the selected 

sub-groups, that use a balanced panel from the first eight waves of the BHPS. 

Additionally, since we are using two of the major sub-groups in the sample, the weights 

are also likely to reduce non-response error in estimates related to full sample analyses.  

Before describing how the tailored weighting is done, the next section will briefly 

outlines the construction of the SWs. 
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3.3 Weights from the SWA (SWs) 

Constructing the SWs for this investigation was a typical SWA. In this chapter, we apply 

the same SWA that we applied in chapter 1 and 2 which was done on the basis of the 

SWA that we set out in chapter 1 (given by equation 1.1). The difference here is that we 

only model the response propensity up to wave 8, whereas in chapter 1 and 2 it was done 

up to wave 15 and 18 respectively. For convenience, we re-explain this process in what 

follows: 

There are eight waves in total for the current analysis (from wave 1 to 8). The SWs were 

created to adjust for the longitudinal non-response at wave 8. The process involved 

modelling the response propensity at each wave conditional on responding at all of the 

previous waves. Those who are known to be ineligible by wave 8 were not included in 

these models. Those whose eligibility is unknown by wave 8 were assumed as eligible 

cases and were included in the weighting models. Consequently, the analysis was 

restricted to sample members known (or assumed) to be part of the target longitudinal 

population at wave 8 which the weighting here aims to represent. The model at each 

wave used variables from the previous wave. The variables used to model the response 

propensity are the usual weighting variables in the SWA. Namely these are: gender, race, 

age, age-squared, tenure, presence of children in the household, education, type of 

household, employment status, type of house, number in full-time employment in 

household and region.  
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We started modelling the response propensity from wave 2 as the BHPS offers wave 1 

non-response weights combined with the design weights. Equation (3.1) below explains 

this process in notations. 

Logit Pr(𝑅𝑖,𝑡=1∕ 𝐶𝑖,𝑡−1=1)= 𝑓 (∑ 𝛃𝑗𝑍𝑗𝑖𝑗 +∑ 𝛃𝑘𝑋𝑘𝑖,𝑡−1𝑘 )                                                (3.1) 

Where t is the wave number for which the model is estimated (t=2, 3,…, T=8); i= 1, 2, 

…, 𝑛1,..,𝑡−1, where 𝑛1,..,𝑡−1 is the number of respondents who responded at every wave 

from 1 to t-1 and who are known or assumed as eligible by the time of wave 8; 𝑅𝑖,𝑡 is the 

response status at time (wave) t for respondent i (𝑅𝑖,𝑡=1 if response is observed at wave t; 

𝑅𝑖,𝑡=0 if response is not observed at wave t); 𝐶𝑖,𝑡−1=1 if 𝑅𝑖,𝑏=1 for all values of b from 1 

to t-1 (i.e. 𝐶𝑖,𝑡−1=1 indicates that the model in wave t is conditioned on response in all of 

the previous waves); 𝑍𝑗𝑖 is the set of time invariant variables for respondent i; 𝑋𝑘𝑖,𝑡−1 is 

the set of time variant variables for respondent i which are measured in wave t-1. 

Table (3.1) displays the results of the final models of the SWA. 
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Table 3.1 Response propensity models based on the SWA (wave 2 to 8):  modelling response in wave t conditional on responding in all of the previous waves. 

 Wave2 Wave 3 Wave 4 Wave 5 Wave 6 Wave 7 Wave 8 

Female 1.31* 1.22** 1.03 1.36* 1.13 1.29** 1.41** 
White 1.69* 1.80** 1.23 1.71* 1.05 1.66* 1.83** 
Age 1.07*** 1.08*** 1.10** 1.08** 1.11** 1.09** 1.12*** 
Age-squared 0.99*** 0.99*** 0.99** 0.99*** 0.99** 0.99** 0.99** 
Home owner 1.43* 1.39** 1.28* 1.08 1.03 1.04 1.58** 
Has GCE qualification or above 1.21* 1.04 1.13* 1.10 0.92 1.26* 1.19** 
Employed 0.89* 0.79 1.16* 1.24* 0.87 1.39 1.31 
Others present in interview 0.87 1.28* 1.07 1.22 1.37* 1.19 0.94 
Single-person household 0.72 1.18 0.76* 0.94 0.88* 0.91 1.08 
Household with children 1.39* 1.44* 0.89 1.06 1.58* 1.08 1.43 
Living in a flat 0.98 0.90 0.90 0.88 0.91* 0.87* 1.10 
Living in other type of house 1.12 0.91 0.75** 0.93 0.64* 1.21 0.87 
1 or 2 persons in employment  1.11 0.79* 0.94 0.89 1.22 1.31 1.07 
3 + persons in employment 0.93 0.63* 0.89 0.61* 1.12 1.16 0.88* 
South-East 0.93 1.27 1.86* 0.84 1.33 1.45* 1.42 
South-West 0.96 0.95 1.24 1.44 0.92 1.08 1.25 
East Anglia 1.03 0.88 2.03* 1.86* 0.96 1.14 1.28 
The Midlands 0.86 1.59 1.76 1.07 0.89 0.93 1.10 
The North 1.23** 0.72* 1.51* 1.22 0.87 1.48* 1.36 
Wales 1.44* 0.88 1.30 0.84 0.63* 1.26 0.79 
Scotland 0.91 1,33 0.85 1.72* 0.49* 1.24 0.61* 

N 9,593 8,699 8,218 7,863 7,496 7,152 6,878 
Pseudo R2 0.031 0.032 0.038 0.035 0.034 0.33 0.035 

*The entries are odds ratios. In every wave response is modelled conditional on responding in all of the previous waves. The model in a given wave used variables from the 

previous wave. The reference categories of the categorical independent variables in the table are male, non-white, not a home owner, does not have a GCE or above degree, 

unemployed, others not present when interviewed, multi-person HH, household with no children, living in a house, no one is in employment in HH and London * p< 0.05, ** p< 

0.01, *** p< 0.001.
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For the set of responding sample members in the 8 waves, the longitudinal SWs at wave 8 

were calculated as the product of the inversed predicted probabilities from the models in 

table (3.2), and wave 1 non-response/design weights (provided by BHPS) as shown in 

equation (3.2).  

𝑆𝑊𝑖= 𝐷𝑖* ∏ 𝑟𝑡𝑖
−18

𝑡=2                                                                                                         (3.2) 

Where 𝑆𝑊𝑖 is the standard longitudinal weight at wave 8 for respondent i; 𝑟𝑡𝑖 is the 

predicted probability for respondent i from wave t model (t= 2, 3,…, 8); ); i= 1,..., 𝑛1,..,8 

(where 𝑛1,..,8 is the number of sample members who responded at every wave from 1 to 

8); and 𝐷𝑖 is wave 1 non-response/design weight for respondent i. 

The distribution of the SWs is presented and discussed later on with the TWs.  

3.4 Proposed weighting variables for the subgroup-tailored weighting 

Aside from the variables that are used in the SWA, for each of our selected sub-groups, 

some variables may be of a particular interest in terms of predicting response in the sub-

groups under investigation. These variables are not used in the SWA as they do not 

associate with the response propensity for the sample as a whole. In this section, we shall 

propose and discuss two sets of these variables that will be used to create the tailored 

weights for our two sub-groups. In the next section we explain the methodology that will 

be implemented in the S-TWA.  

3.4.1 Proposed weighting variables for retired sample members 

1- Religion: having a religion is considered as a form of social participation. While some 

research suggests that social participation can negatively affect the contact attempt –by 

affecting the at-home pattern- (Lepkowski and Couper, 2002), other research supports 
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the idea that social participation is an indication of higher human interaction levels and 

therefore a person who is socially interactive is more likely to cooperate and provide data 

for the survey (Groves and Couper, 1998). As for the BHPS sample, Uhrig (2008) found 

that those who have religious beliefs are significantly more likely to respond than those 

who do not have religious beliefs. However, he found that this significant effect 

disappeared once other variables such as organisational participation (e.g. joining sport 

clubs and professional organisations) are included in the model. This is because 

organisational participation is also an indicator of higher human interaction levels and 

hence survey cooperation. However, some of the organisational participations are more 

common among working-age respondents than retirees especially if they require a high 

load of physical activities and/or someone within the labour force. In this research, it was 

assumed that organisational participation such as joining sport clubs and professional 

organisations is more common amongst working-age respondents than their retired 

counterparts and hence it can only affect the estimated association between religion 

beliefs and survey participation of working-age respondents. As for the retired 

respondents, religion can then be considered as a good predictor of non-response.  

2- Respondent’s energy compared to average at their age: the effect of this variable on 

response propensity can be viewed in two different ways. On the one hand, those who are 

more energetic than average at their age can be more mobile and are less likely to stay at 

home than those who have less energy. Thus, for surveys that make contact with 

respondents at their homes, it is more likely to find less energetic people at home than 

those with more energy. On the other hand, having less energy than average at their age 

may be associated with bad health conditions implying a lower level of cooperation or 
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even refusal due to health conditions. Prior research on non-response suggests that 

refusal for health reasons is common amongst elderly respondents (Uhrig, 2008). For the 

sub-group of retired respondents (relatively old sample members), energy compared to 

average at the same age can be seen as an important indicator for both at-home pattern 

and health condition. Thus, whether or not this variable affects response propensity in the 

sub-group of retired respondents is worth investigation.  

3- Whether respondent supports a political party: there is little research that has used 

political views and opinions to predict non-response since it is not clear that there is a 

direct relationship between the two factors. However, some of the literature in this area 

(e.g. Groves and Couper, 1998) implicitly indicate that those who have political views, 

such as supporting a political party, may be more aware of the government’s role in the 

society and therefore may feel more obligated to provide data for the survey. Some of the 

literature on political engagement suggests that it is lower amongst working-age persons. 

One reason for this is that working-age respondents often do not have the time to engage 

with politics (Brandon, 2012). On the other hand, retirees do not often face time 

problems; instead, they have the time to participate in politics. In fact, retirees may feel 

the need to be socially interactive and therefore may participate in politics. Moreover, 

retirees could support and vote for a political party for reasons such as protecting the 

valuable benefits they receive from the government. Thus, based on the assumption that 

supporting a political party can influence response propensity and it is more frequent 

amongst retired respondents (Brandon, 2012), this variable was considered as a good 

weighting variable for retired respondents. 
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4- Subjective financial situation: research on non-response has established the positive 

relationship between wealth/financial position and response propensity (Groves and 

Couper, 1998; Fitzgerald et al., 1998; Lepkowski and Couper, 2002). That is to say, 

those who are in better financial positions are more likely to respond than those who are 

less well off. However, for the BHPS sample, the evidence for subjective financial 

situation is in contradiction with the general financial findings. Previous research on 

subjective financial position on the BHPS has found that those who subjectively report 

themselves as being in better financial positions are less likely to respond than those who 

report themselves as being in worse financial positions (Uhrig, 2008). Nonetheless, the 

effect of subjective financial situation might change and confirm evidence from the 

general non-response literature once some sub-groups in the sample are controlled for 

(i.e. when the investigation is only done on retirees for example). For this reason, 

subjective financial situation was added to the set of weighting variables of retired 

respondents. 

5- Having access to a car: having access to a car for personal use is considered –to an 

extent- as an indication of wealth and a good financial situation (Uhrig, 2008). As for 

retired respondents, having access to a car may also be thought of – to some extent - as 

an indicator of a good health (since driving a car require performing a set of physical acts 

that may not be possible to conduct with a bad health condition). Thus, this variable was 

added here under the assumption that it is indicative of good health status and good 

financial situation. 
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3.4.2 Proposed weighting variables for those who were born in 1965 or after  

1- Liking the neighbourhood: this, in a way, expresses whether one is attached to one’s 

current neighbourhood. The feelings of respondents about their settlement in a 

neighbourhood are indicative of whether they will continue to live in that neighbourhood, 

and hence of the likelihood of locating and contacting them successfully. There is 

evidence in the literature that younger respondents are more likely to move house (Uhrig, 

2008). Thus, this variable is likely to have a distinctive effect on the response propensity 

for those who were born in 1965 or after (younger respondents) compared to their 

counterparts’ sub-groups. Thus, this variable was added to the weighting variables of this 

sub-group. 

2- School leaving age: it is well known that in the United Kingdom (UK) most people 

leave school at the age of 15 or 16. However, there are some exceptions where people 

may leave school at different ages, either aged less than 15 or more than 16. This may 

occur, for example, due to coming to the UK at the age of six and having to start school a 

year or two later than the average starting age (five years old). Circumstances in which 

one has to leave school at a different age than the average person may affect one’s 

tendency to participate in the survey. Regardless of the nature of these circumstances, 

their existence can be expressed through the school leaving age. In this analysis, it is 

assumed that the effect of the circumstances associated with the school leaving age on 

survey participation fades over time. In other words, the effect is stronger at a younger 

age than at an older age. This is because living longer enables one to experience more 

life-events that may reduce any influence on survey cooperation due to the reasons why 

they left school at a different age than the average person. Thus, the relationship between 
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school leaving age and non-response maybe of more interest for those who were born in 

1965 or after than for those who were born before 1965.      

3- Having children: this measures whether the respondent has his or her own children 

within the household. Non-response theory suggests that the presence of children in the 

household is positively associated with survey response (Groves and Couper, 1998; 

Lepkowski and Couper, 2002; Uhrig, 2008). This is regardless of whether or not these 

children are the respondent’s own children. Because, households with children are more 

settled and less likely to move house, and even if they move house, they are easier to 

relocate and contact since there are children in the household. This is especially 

important for younger respondents who are more mobile and less settled. Therefore, an 

item that measures if the respondent has their own children within the household for 

those who were born in 1965 or after (younger respondents) can be considered as a good 

weighting variable for this sub-group. This is because of its distinctive effect on the 

response process of those who were born in 1965 or after.  

4- Subjective financial situation: it was mentioned earlier that the evidence for subjective 

financial situation in the BHPS is in contradiction with the general financial findings (in 

the BHPS those in better financial positions are less likely to respond than those in worse 

financial positions). Thus, similar to the sub-group of retired respondents, it is worth 

testing the effect of subjective financial situation on the response propensity of those who 

were born in 1965 or after too.  

5- Having access to car: aside from being indicative of wealth, having access to a car 

may have a distinctive effect on younger survey participants. It can be argued that having 
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access to a car may affect the contactability of younger respondents. Therefore, this was 

included in the set of weighting variables of those who were born in 1965 or after. 

3.5 The subgroup-tailored weighting approach (S-TWA) 

In this analysis, our aim is to incorporate the proposed weighting variables to construct a 

set of weights that is tailored to two sub-groups in the sample: retired sample members 

and sample members who were born in 1965 or after. There are at least two ways to do 

this:  

Interaction-based approach: with this approach the response propensity can be modelled 

as done in the SWA, but interactions of the proposed variables for tailored weighting for 

the two sub-groups under investigation will be added to the models. For example, to 

capture the effect of religion (one of the proposed variable for the S-TWA) on the 

response propensity of retired sample members, one may add an interaction term of the 

variable that indicates whether a sample member is retired, and the variable that 

measures religion, to all of the weighting models estimated in the SWA. 

Testing interaction effects may be a task that should be performed when a response 

propensity model is estimated. However, including interactions in the response 

propensity models that are used to derive non-response weights is not a common practice 

amongst survey researchers (Brick, 2013)18. Moreover, it is certainly not one of the 

features of the SWA that we set out in the introduction of our thesis. Most survey 

organisations tend to rely on main effects when estimating their response propensity 

models for construction of weights. Furthermore, even in cases where interactions were 

                                                           
18  Unlike panel studies, some cohort studies such as the 1958 National Child Development Study (NCDS) in the UK 

used interactions to model the response propensities (Hawkes and Plewis, 2006). 
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used, the results suggest that weighting models with interaction effects have similar 

outcomes to weighting models with only main effects (e.g. Schouten, 2004). Perhaps this 

is because, even when the interaction effects are used, they are only considered between 

the standard non-response variables (variables that affect response probability for most 

sample members), rather than considering interactions between standard variables and 

variables that only predict non-response at a sub-group level. 

For example, as explained in the introduction of the thesis, the weighting in the BHPS 

was done, at every wave, using a weighting class method. In each class, the responding 

cases were weighted by a factor that made their total number equal to the responding and 

non-responding cases in the class. An automatic interaction detection programme 

(CHID) was used to define the weighting classes19. These classes are equivalent to 

interaction terms included in a response propensity model. However, the method relied 

on a number of variables that were thought to be informative of non-response in the 

BHPS sample as a whole and of critical interest in the analysis of the BHPS data (i.e. 

standard variables). At every wave, CHID was used to detect important interactions (in 

terms of response) amongst the predictor variables and define the classes. For instance, at 

wave 18, the candidate predictor variables used for weighting were: gender, age, race, 

tenure, health status, employment status, type of household, type of accommodation, 

region, household size, education, income, number of rooms in the accommodation and 

whether there is a dish washer in the accommodation. Important interactions in terms of 

predicting response were: age*gender, age*region, race*employment status, 

                                                           
19  CHAID is a statistical tool used for segmenting a population in terms of some dependent variable (in our cases the 

probability of response) using a set of predictor variables. Predictor variables are typically categorical. It successively 

scans all the variables in the predictor set to identify the ones which best discriminate cases on the basis of values of 

the dependent variable. It uses these variables to categorise the cases in the sample into a number of classes based on a 

user defined minimum class size. 
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income*region, age*race, tenure*whether there is a dish washer in the accommodation, 

household size*number of rooms in the accommodation, type of accommodation*region, 

health status*education and household size*employment status.  

For our subgroup-tailored weighting, after including all the necessary interactions in the 

weighting models, the tailored weights can then be calculated, as usual, as the product of 

the inversed predicted probabilities from the estimated models. The advantage of this 

approach is that it is relatively straightforward to apply. Also, it results in a single set of 

weights that is tailored to retired respondents and those who were born in 1965 or after. 

However, it may have some disadvantages. First, if there are many variables suggested 

for the S-TWA for each sub-group, the number of interaction terms becomes 

impractically large to include in one model. This is especially if some of the proposed 

variables for the S-TWA are categorical variables with many categories (more than 2 

categories). If too many interactions are included in the weighting model, this may result 

in less statistical power for other important variables in the model. Second, it uses all 

sample members to model the response propensity, including those who are not in the 

sub-groups under investigation. Thus, some variables, from the SWA, which are not 

associated with the response propensity in the sub-groups in question, will be kept in the 

weighting models because they may be correlated with the response probability in other 

sub-groups in the sample, and hence, they will be used in the tailored weighting. As we 

set out the principles of the S-TWA in the introduction, ideally, variables that do not 

distinguish response from non-response in the selected sub-groups should be excluded 

from the creation of the tailored weights for these sub-groups regardless of whether or 

not they predict response in other sub-groups. It may very well be argued that such 
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variables should be kept in the model if they predict response in other sub-groups even if 

they are not important predictors for the sub-groups under investigation. However, the 

resultant weights in this case may not be fully tailored to the sub-group in question, they 

are, to an extent, standard.  

Model the response propensity separately for each sub-group: with this approach the 

response propensity can be modelled separately for each sub-group in the sample by 

restricting the modelling to the given sub-group (i.e. estimate separate weighting models 

for each sub-group). The subgroup-specific weighting models will only use variables that 

are associated with the response probability in the relevant sub-group. Accordingly, the 

set of weighting variables for a given sub-group may exclude variables from the SWA 

that do not predict response in the sub-group in question, and include the variables that 

are proposed for the S-TWA for this sub-group. The weights will then be calculated, 

separately for each sub-group, as the product of the inversed predicted probabilities from 

the sub-group estimated models. Thus, applying this approach will result in a subset of 

tailored weights for each sub-group. However, the resultant subsets of tailored weights 

can be combined to form an overall set of TWs. 

It may be likely that the two approaches yield similar results. However, we tend to 

promote the second approach, especially if many categorical variables are suggested for 

the S-TWA since it will be more practical in this case, and also because it allows 

exclusion of the variables that are not significant at the sub-group level. 

In this investigation we apply both methods of subgroup-tailored weighting as AWAs. 

This strategy should enable us to report on whether the two approaches can result in 
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different outcomes. We refer to the tailored weights resulting from the interaction-based 

approach as 𝑇𝑊𝑠1, whereas weights resulting from modelling the response propensity 

separately for each sub-group are denoted as 𝑇𝑊𝑠2. The construction of the 𝑇𝑊𝑠1 and 

𝑇𝑊𝑠2 is explained in the next section.  

3.6 Construction of the tailored weights (TWs) 

3.6.1 Interaction-based approach 

To apply this approach we created two indicators. One of these is for retired sample 

members and the other is for those who were born in 1965 or after (1=retired, 0=non-

retired; and 1=born in 1965 or after, 0=was not born in 1965 or after). We used the same 

weighting models of the SWA, and we added interactions of each indicator and its 

relevant proposed weighting variables introduced in section 3.4. The results of modelling 

the response propensity using this approach are presented in table (3.2). Note that we do 

not include ‘age’ and ‘household with children’ in these models as there are two 

variables used in the tailored weighting that can substitute for these (‘born in 1965 or 

after and’ ‘has their own children’ respectively). 

We can already indicate that the results regarding the variables proposed for the S-TWA 

here are similar to those from modelling the response propensity separately for each sub-

group which will be presented next. Thus, the effect of including these variables in the 

weighting process will be discussed in details in the next section. However, the major 

findings here will be highlighted.  

First, with respect to the standard weighting variables (i.e. the variables used in the 

SWA), most variables have the same effect on the response propensity as in the SWA.   
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Second, none of the main effects of our new added variables appear to be significant in 

the models displayed in table 3.2 (with the exception of ‘has their own children’ as this 

substitutes for ‘household with children’). The significance of these variables is rather 

reflected in their interactions with the indicators of the two sub-groups in question. For 

example, the variables: religious and likes their current neighbourhood do not seem to be 

significant in predicting response for the sample as a whole. However, the interactions of 

these variables with retired sample members and those who were born in 1965 or after, 

respectively, appear to be significant suggesting that these variables are important in 

predicting response in the sub-groups under investigation.  

This finding confirms our hypothesis that non-response process may be different in the 

selected sub-groups than in the sample in general. In addition, it shows that some of the 

factors responsible for non-response in these sub-groups are different than the factors 

responsible for non-response in the other subgroups in the sample. Furthermore, based on 

this finding, one can expect our proposed variables to be significant when modelling the 

response propensity separately for each sub-group as will be shown next.  
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Table 3.2 Response propensity models based on the AWA (interaction-based): modelling response in wave t conditional on responding in all of the previous waves. 

 Wave2 Wave 3 Wave 4 Wave 5 Wave 6 Wave 7 Wave 8 

Female 1.21* 1.28*** 0.93 1.31** 1.12 1.27* 1.35** 
White 1.46* 1.53*** 1.30* 1.42* 0.88 1.51* 1.49** 
Home owner 1.15* 1.19* 1.22* 1.31** 0.89 1.33** 1.13 
Has GCE qualification or above 

Employed 
1.22* 
0.85 

0.92 
1.09 

0.87 
1.06 

1.08 
1.23* 

1.26* 
0.91 

1.11 
0.88 

1.39** 
1.19* 

Others present in interview 1.05 0.87 1.08* 1.04 1.39** 1.33* 1.07 
Single-person household 0.93* 1.30 0.88** 1.10 0.96 0.76* 0.92 
Living in a flat 0.96 1.14 0.89 0.83* 1.03 0.87* 0.92 
Living in other type of house 0.88 0.81 0.69* 0.92 0.94 0.72* 1.05 
1 or 2 persons in employment  1.05 0.93 0.92 0.89* 1.08 1.11 1.20 
3 + persons in employment 0.91 0.68* 1.11 0.88 0.92 0.65* 0.93 
South-East 0.94 0.93 1.36* 1.40* 0.77 1.07 0.85 
South-West 1.29 0.95 1.19 1.17 1.20 0.88 1.05 
East Anglia 0.91 0.93 1.66* 1.51* 0.89 1.03 1.33 
The Midlands 0.97 0.89 1.22 1.26 0.86 1.11 0.91 
The North 1.03 0.87* 1.34* 1.22 0.81 1.41* 1.19 
Wales 0.93 0.74* 1.58* 1.02 0.67* 0.95 0.86 
Scotland 0.89 0.81 1.29 1.44* 0.31** 1.10 0.83* 

Retired 1.21* 1.26 1.18* 0.92 0.53* 0.71* 1.06 

Religious 0.84 1.05 1.11 1.15 0.87 1.01 1.19 

Retired Χreligious 1.22* 1.15* 1.49 1.27* 1.68* 1.11 0.87 

Has more energy than average at their age 1.13 1.09 0.87 1.11 1.18 0.86 1.09 

Has less energy than average at their age 0.92 1.06 1.12 1.11 0.94 0.90 0.89 

Retired Χ has more energy than average at their age 1.11 0.97 1.59* 1.07 0.88 1.68* 1.39* 
* The table is continued in the next page for the rest of the variables. The entries are odds ratios. In every wave response is modelled conditional on responding in all of the 

previous waves. The model in a given wave used variables from the previous wave. Χ indicates an interaction term.* p< 0.05, ** p< 0.01, *** p< 0.001. 
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Table 3.2 (continued) 

 Wave2 Wave 3 Wave 4 Wave 5 Wave 6 Wave 7 Wave 8 

Retired Χ has less energy than average at their age 0.51*** 0.39*** 0.44** 0.38** 0.42** 0.78 0.91 

Supports a political party 1.08 0.93 1.11 1.05 0.92 0.88 1.07 

Retired Χ supports a political party 1.31* 1.30* 1.16 1.19 1.34* 1.33 1.08* 

Financially okay 0.89 0.81 0.78 0.91 0.85 1.11 1.22 

Financially struggling  0.88 0.93 0.82 0.87 0.77 1.09 0.90 

Retired Χ financially okay 0.96 0.94 0.87 1.12 0.90 0.82* 1.16 

Retired Χ financially struggling 1.10 0.85* 0.89* 1.24 0.84* 0.96 0.82* 

Has a car 1.29 1.31 1.13 0.94 1.03 1.12 0.92 

Retired Χ has a car 1.26* 1.19* 0.90 0.94 1.11* 0.71 1.09* 

Was born in 1965 or after 0.81* 0.79* 1.03 1.16 1.36* 1.20 1.41* 

Likes the current neighbourhood  1.22 1.28 1.10 1.31 1.22 1.30 1.02 

Born in 1965 or after Χ likes the current neighbourhood 1.14* 0.73 1.10* 0.77 1.26 1.29* 0.89 

Left school aged 14 or less 0.71 0.86 0.89 1.18 0.82 0.88 0.79 

Left school aged 17 or over 1.27 1.22 1.30 1.05 0.89 1.18 0.77 

Born in 1965 or after Χ left school aged 14 or less 1.15 0.81 0.73* 0.49* 0.91 0.78* 0.90 

Born in 1965 or after Χ left school aged 17 or over 1.17 1.19 0.84* 1.18 0.88* 0.91* 1.22 

Has their own children 0.92 1.25* 1.08 1.22* 0.97 1.19* 1.04 

Born in 1965 or after Χ has their own children 1.10 1.23* 1.07 1.26* 1.06 1.28* 0.87 

Born in 1965 or after Χ financially okay 0.92 0.89 1.02 1.12 1.11 1.18* 1.21* 

Born in 1965 or after Χ financially struggling 1.15* 0.75 1.28* 0.93 1.34* 0.86 0.79 

Born in 1965 or after Χ has a car 0.96 0.72* 0.83* 0.91 1.08 0.88* 1.21 

N 9,593 8,699 8,218 7,863 7,496 7,152 6,878 
Pseudo R2 0.030 0.033 0.036 0.035 0.032 0.034 0.033 
* The entries are odds ratios. In every wave response is modelled conditional on responding in all of the previous waves. The model in a given wave used variables from the 

previous wave. Χ indicates an interaction term. * p< 0.05, ** p< 0.01, *** p< 0.001. 
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For the set of responding sample members in the 8 waves, the 𝑇𝑊𝑠1 at wave 8 were 

calculated as the product of the inversed predicted probabilities from the models in table 

(3.2), and wave 1 non-response/design weights as shown in equation (3.3).  

𝑇𝑊1𝑖= 𝐷𝑖* ∏ 𝑟𝑡𝑖
−18

𝑡=2                                                                                                       (3.3) 

Where 𝑇𝑊1𝑖 is the interaction-based subgroup-tailored weight at wave 8 for respondent 

i; 𝑟𝑡𝑖 is the predicted probability for respondent i from wave t model (t= 2, 3,…, 8); i= 

1,..., 𝑛1,..,8 (where 𝑛1,..,8 is the number of sample members who responded at every wave 

from 1 to 8); and 𝐷𝑖 is wave 1 non-response/design weight for respondent i. 

The distribution of the 𝑇𝑊𝑠1 will be presented and discussed, together with the 𝑇𝑊𝑠2 

and the SWs in section 3.7. 

3.6.2 Modelling the response propensity separately for each sub-group 

To model the response propensity separately for each sub-group we estimated three 

different groups of weighting models. Recall that we have three sub-groups in the 

sample: retired sample members, sample members who were born in 1965 or after, and 

non-retired sample members who were born before 1965. However, the S-TWA focuses 

on the first two sub-groups. Thus, for each of these two sub-groups, the weighting 

models excluded some of the variables used in the SWA which are not important in the 

given sub-group in terms of predicting response, and included the relevant proposed 

weighting variables. This adjustment makes the sets of weighting variables used in the 

creation of the 𝑇𝑊𝑠2 for each of the selected sub-groups different from each other and 

from the set of variables used in the SWA. As for the weighting models of the third sub-

group (non-retired who were born before 1965), this used the same variables from the 

SWA. 
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The remainder of this section discusses, in detail, the results from modelling the response 

propensity separately for each sub-group. Our discussion here will be limited to the 

variables proposed for the SWA as the other variables result in similar results to the 

SWA. 

Modelling response propensity for retired sample members 

Some of the variables that were used in the SWA were dropped in this analysis, as 

described below. Also, new variables were added. The added variables are our proposed 

variables for the S-TWA for the retired sample members. Furthermore, the weighting 

models were estimated using only the set of retired sample members. The results of the 

weighting models of the retired sample members are presented in table 3.3. 

Dropped variables 

Employment status: employment status is an important factor that predicts response 

propensity in the analysis of non-response because it is a good predictor of the 

probability of contact. Normally, those who are in full-time employment are more 

difficult to contact since they are less likely to be at home (Groves and Couper, 1998). 

However, employment status was excluded from the set of weighting variables in this 

case as all of the sample members in this sub-group are retired.    

Number in employment in household: in any survey that contacts sample members at 

their home, a successful contact attempt with any household depends on whether some 

(or at least one) of the household members are (is) actually at home to respond to the 

contact attempt. Thus, in this context, the number of household members in employment 

can be negatively associated with successful contact attempts. Consequently, households 
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with more individuals in full-time employment are less likely to respond compared to 

households that have less number of individuals in full-time employment. This is 

confirmed by our results from the SWA in table 3.1. However, dealing with retired 

sample members guarantees that there is at least one household member who is not in a 

full-time employment and hence it is more likely to successfully establish contact in this 

case. Since this applies to all retirees, this variable was excluded from the choice of 

weighting variables for retired sample members.   

Added variables (proposed for the tailored weighting of retired respondents) 

Religion: religion was included in the model as a categorical variable with two 

categories: religious and non-religious (reference category). Most of the models in table 

3.3 show that those who have a religion are more likely to respond than those who do not 

have a religion. 

Respondent’s energy compared to average at their age: this variable was included in the 

weighting models as a dummy variable with three categories: has the same energy as 

average at the same age (reference category), has more energy compared to the average 

at the same age and has less energy compared to the average at their age. As it can be 

seen from table 3.3, most of the models indicate that those who have more energy than 

average are more likely to respond than those who have the same energy as average. In 

contrast, sample members with less amount of energy compared to the average at their 

age are less likely to respond than those who have the same energy as average at their 

age. The explanation here is that ‘energy’ may be a strong indicator of the physical 

ability of a retired sample member to take part in the interview. Thus, retired individuals 
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with more energy than average are likely to be in a good health condition, which may in 

turn increase the likelihood of successfully conducting the interview with older 

respondents. As for those who have less energy compared to people at their age, it is less 

likely that they will be cooperative compared to those with same energy as average.  

Whether respondent supports a political party: this is a categorical variable with two 

categories: supports a political party and does not support a political party (reference 

category). As expected, our response propensity models in table 3.3 show that when this 

variable is significant, those who support a political party are more likely to respond than 

those who do not. This is in line with our hypothesis suggesting that retired sample 

members who have political views may feel more obligated to respond to the survey.  

Subjective financial situation: the BHPS measures the subjective financial situation by 

asking respondents this question “how well would you say you yourself are managing 

financially these days?” In turn, respondents have to report their financial situation by 

selecting one of these options: living comfortably, doing alright, just about getting by, 

finding it quite difficult and finding it very difficult. Rearranging these options by 

combining the second option with the third, and the fourth option with the fifth, 

subjective financial situation was included in the models as a categorical variable with 

three categories: having a good financial situation (reference category), financially okay 

and financially struggling. The results suggest that, for retired respondents, those who are 

better off are more likely to respond than those who are less well off. The models 

indicate that both those who are financially okay and those who are financially struggling 

are less likely to respond than those with a good financial situation. These results are 

similar to the general findings of the effect of wealth on the response propensity. 
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However, recall that the evidence from the BHPS (for the whole sample) regarding 

financial situation is in contradiction with this finding (Uhrig, 2008). Thus, confirming 

our hypothesis, the results here indicate that the effect of financial situation on the 

response propensity is different for retired respondents than for the rest of the sample.  

Having access to a car: this was included in the model as a categorical variable with two 

categories: has a car and has no car (reference category). Most of the models in table 3.3 

show that retired respondents who have access to a car are more likely to maintain 

response than those who do not have access to a car. Our explanation for this is that, for 

retired sample members, having a car for personal use is indicative of a good physical 

health and relatively good financial situation.   
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Table 3.3 Response propensity models for retired respondents:  modelling response in wave t conditional on responding in all of the previous waves. 

 Wave2 Wave 3 Wave 4 Wave 5 Wave 6 Wave 7 Wave 8 

Female 1.12** 1.19* 1.02 1.23* 1.40 1.38 1.19 
White 1.31 1.68* 1.37* 1.13 1.26 1.64 1.59 
Age 1.01* 0.99 1.25*** 1.11*** 1.18*** 1.19*** 1.25* 
Age-squared 0.95* 0.98 0.99*** 0.99** 0.99** 0.99*** 0.99* 
Home owner 1.30* 0.99 0.84 0.97 1.14* 1.47 0.84 

Has GCE qualification or above 1.07 0.98 1.63* 1.20 1.41* 1.28 1.41 

Others present in interview 0.88 1.18* 1.22* 1.14 1.41 1.13 1.78 
Single-person household 0.99 0.97* 0.78** 1.17 0.64 0.73* 1.16 
Household with children 1.32* 0.87 0.83 1.62* 0.73 0.79 1.11* 
Living in a flat 0.60 0.73* 0.75 1.18 1.02 0.97 0.29 
Living in other type of house 1.32 0.92* 0.86 0.70* 0.60 0.69* 0.66* 
South-East 1.02 1.01 0.55 1.20 0.52 2.11 2.85 
South-West 0.98 1.16* 1.12 1.39 0.63 1.27 1.93 
East Anglia 1.41* 0.88 1.23* 1.35 0.67 1.51 1.20 
The Midlands 1.32 0.73 1.01 1.43 0.46 1.77 1.82 
The North 1.18 1.08 1.05 1.12 0.65 1.21 1.40 
Wales 0.89 1.17 0.86 1.14 0.40* 1.42 1.24 
Scotland 1.39 2.17 1.05 3.74* 0.50 0.96 0.87 
Religious 1.03* 1.56* 1.34* 1.39* 1.16* 1.84 0.82 

Has more energy compared to average at their age 0.92 1.06 1.24* 1.37 1.60 1.33* 1.46* 

Has less energy compared to average at their age 0.46*** 0.48*** 0.49** 0.55** 0.53* 0.61 0.88 

Supports a political party 1.08* 1.12* 0.86 0.94 1.10* 0.97 1.09* 

Financially okay 0.90 1.10 1.13 1.38 1.39 0.89* 1.29 

Financially struggling 1.04 0.87* 0.85* 0.93 0.88* 1.06 0.79* 

Has a car 1.08* 1.16* 0.52 1.01 1.21* 0.65 1.20* 

N 1,712 1,647 1,594 1,550 1,496 1,457 1,418 

Pseudo R2 0.037 0.038 0.039 0.035 0.038 0.036 0.036 
* The entries are odds ratios. In every wave response is modelled conditional on responding in all of the previous waves. The model in a given wave used variables from the 

previous wave. The reference categories of the categorical independent variables in the table are male, non-white, not a home owner, does not have a GCE or above degree, others 

not present when interviewed, multi-person HH, household with no children, living in a house, London, non-religious, has the same energy as average as their age, does not 

support a political party, having good financial situation and does not have a car * p< 0.05, ** p< 0.01, *** p< 0.001.
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For the set of responding retired sample members in the 8 waves, the tailored weights at 

wave 8 were calculated as the product of the inversed predicted probabilities from the 

models in table (3.3), and wave 1 non-response/design weights as shown in equation 

(3.4).  

𝑇𝑊𝑅𝑅𝑖= 𝐷𝑖* ∏ 𝑟𝑡𝑖
−18

𝑡=2                                                                                                     (3.4) 

Where 𝑇𝑊𝑅𝑅𝑖 is the tailored weight at wave 8 for retired respondent i, based on 

modelling the response propensity separately for retired sample members; 𝑟𝑡𝑖 is the 

predicted probability for retired respondent i from wave t model (t= 2, 3,…, 8); i= 

1,..., 𝑛1,..,8 (where 𝑛1,..,8 is the number of retired sample members who responded at every 

wave from 1 to 8); and 𝐷𝑖 is wave 1 non-response/design weight for retired respondent i. 

Modelling response propensity for those who were born in 1965 or after 

Similar to modelling the response propensity for retired respondents, the weighting 

models for those who were born in 1965 or after were estimated by changing some of the 

weighting variables used in the SWA and by using the set of sample members who were 

born in 1965 or after. The results of the weighting models of those who were born in 

1965 or after are displayed in table 3.4. 

Dropped variables 

Age: age is an important factor in predicting non-response. The literature indicates that, 

in general, elderly people are more likely to refuse to participate in the survey than 

younger respondents (Groves and Couper, 1998; Lepkowski and Couper, 2002). 

However, other research suggests that the youngest respondents in the sample are more 

difficult to locate as they have a higher tendency to move house, and even if they are 
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located, they are still difficult to contact because they are less likely to be at home 

(Stoop, 2005). This pattern is very common among the vast majority of younger sample 

members. In this research, respondents who were born in 1965 or after fell into the age 

group 16-26 by the time the first wave of BHPS was conducted. This age group forms 

the youngest age group in the sample. However, preliminary analysis for this age group 

showed that age is not an important factor to predicting non-response within this age 

group. Thus, the weighting models for those who were born in 1965 or after were 

estimated without including the variable age.  

Whether children in household: this variable was used to estimate the weighting models 

in the SWA. It indicates if there are children within the household. This is regardless of 

whether these children are the respondent’s own children (i.e. could be nephews, nieces, 

etc…). Non-response theory suggests that the presence of children in the household is 

associated with high levels of response. This is because the presence of children in the 

household indicates more social integration (e.g. taking the kids to school or nursery) and 

hence it is easier to locate and contact households with children than single-person 

households or households with no children (Groves and Couper, 1998; Uhrig, 2008). 

However, one of the proposed weighting variables for those who were born in 1965 or 

measures the respondent’s own children in the household. This variable somewhat 

substitutes for the presence of children in the household and therefore the latter was 

excluded from the weighting model of those who were born in 1965 or after.   
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Added variables (proposed for the tailored weighting of those born in 1965 or after) 

Liking the neighbourhood: Liking the neighbourhood was included in the models as a 

categorical variable with two categories: likes their current neighbourhood and does not 

like their current neighbourhood (reference category). As shown in table 3.4, when this 

variable is significant, it indicates that those who like living in their neighbourhood are 

more likely to respond than those who do not like living in their neighbourhood. This 

result indicates that one’s attachment to the neighbourhood where they reside may be 

particularly important in predicting response for those who were born in 1965 or after. In 

general, individuals who are not attached to their residence neighbourhood are likely to 

move house and hence may be difficult to track and re-establish contact with. However, 

this is especially more likely for younger sample members (those who were born in 1965 

or after in our case) who are usually more mobile compared to their older counterparts.  

School leaving age: To measure this variable, BHPS sample members were asked the 

following question: “how old were you when you left school”. In return, if not still at 

school, respondents reported the age at which they left school. The reported ages range 

between 9 and 22. These answers were categorised into three categories: left school aged 

14 or below, left school aged 15 or 16 (reference category) and left school aged 17 or 

above. At the time of wave 1, there was a small number of respondents who were still in 

school. This group of sample members does not allow valid estimation of the weighting 

models if they are treated as a separate category. This is especially the case in the 

weighting models after wave 2 as more cases from this category leave school as time 

goes on. Thus, these cases were classified with the category ‘left school aged 17 or 

above’ (since everyone in our sample aged 16+ at wave 1, eventually those who were 
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still in school at the time of wave 1 will have left school aged 17+). Most of our models 

here suggest that both those who left school aged 14 or below and those who left school 

aged 17 or above are less likely to respond than those who left school aged 15 or 16.  

Having children: In the BHPS data set there is a variable that refers to the number of the 

respondent’s own children in the household. The value of this variable ranges from 

between 0 and 9. This variable was used to indicate whether the respondent has children 

or not. It was categorised into two categories: has their own children in household (by 

combining the numbers from 1 to 9 in one category) and does not have their own 

children in household (reference category).  As expected, the results suggest that those 

who have their own children within the household are more likely to respond than those 

who do not have children in the household.  

Subjective financial situation: similar to modelling the response propensity for retired 

sample members, financial situation here was included in the models as a categorical 

variable with three categories: having a good financial situation (reference category), 

financially okay and financially struggling. Unlike the findings for retired sample 

members, the evidence here suggests that those who are less well off are more likely to 

respond than those who are better-off. This result confirms that financial situation is 

indeed an important factor for predicting response for both retired sample members and 

those who were born in 1965 or after. However, and more importantly, it shows that the 

effect of this variable is different for the two sub-groups. Thus, a weighting strategy like 

the SWA which might not recognise this as it estimates its weighting models by 

assuming that the effect of such variable is similar for all sub-groups may result in a set 
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of weights that does not properly adjust for non-response in estimates of financial 

phenomena which are related to the sub-groups in question. 

Having access to car: Having access to a car was included in the model as a categorical 

variable with two categories: has a car and has no car (reference category). The results 

for this variable indicate that those who have a car for personal transport are less likely to 

respond that those who do not have a car. One possible explanation for this is that, for 

younger sample members (those who were born in 1965 or after), having a car may be a 

factor that stimulates the ‘not at home pattern’. Thus, young sample members who have a 

car may be less likely to be contacted successfully than those who do not have a car.  
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Table 3.4 Response propensity models for those who were born 1965 or after: modelling response in wave t conditional on responding in all of the previous waves. 

 Wave2 Wave 3 Wave 4 Wave 5 Wave 6 Wave 7 Wave 8 

Female 1.09 1.36* 1.66 1.33 1.20* 1.95 1.25* 
White 1.27** 1.18* 1.22* 1.07 0.58 1.24 1.17* 
Home owner 1.12* 0.95 1.21 1.17 1.71 1.39** 1.57 
Has GCE degree or more 1.28 1.08* 1.49 1.19* 1.29 1.63 1.46 
Employed 0.71 0.94 1.07* 1.15* 1.37 1.13* 1.17 
Others present in interview 1.28 1.45 1.47 1.54* 0.83 1.14* 0.99 
Single-person household 0.80* 1.07 1.21 0.98 0.63* 0.87 0.69* 
Living in a flat 0.79 0.65 0.65* 0.59 1.32 0.72* 1.83 
Living in other type of house 0.84 0.66 0.55* 1.53 1.39 0.90 1.29 
1 or 2 persons in employment  1.20 1.01 1.11 1.10 0.64* 0.69 0.77* 
3 + persons in employment 0.90 0.53* 1.27 0.99 0.43* 0.78 1.93 
South-East 0.69 1.15 2.31 0.89 1.53 0.61 0.37 
South-West 1.13* 1.45 2.00 1.08 3.23 0.42 0.81 
East Anglia 1.74* 1.21 1.19 1.25 1.07 2.37* 1.46* 
The Midlands 1.05 1.21 1.16 0.69 1.67 0.70 0.64 
The North 1.38 1.02 2.53 0.91 2.37 0.80 0.69 
Wales 0.70 0.83 2.22 0.48* 1.30 0.53 0.39 
Scotland 1.20 1.12 1.55 0.62 1.06 0.54 0.32 
Likes their current neighbourhood 1.20* 0.98 1.42* 0.69 0.89 1.56* 0.97 
Left school aged 14 or less 0.91 0.56 0.64* 0.40* 0.51 0.53* 0.49 
Left school aged 17 or above 0.89 0.84 0.62* 1.04 0.77* 0.76* 1.06 
Has their own children 0.86 1.18* 1.52 1.55* 0.97 1.63* 1.50 
Financially okay 0.89 0.97 0.93 1.31 1.48 1.22* 1.11* 
Financially struggling 0.84 0.83 1.14* 0.88 1.21* 1.25 0.90 
Has a car 1.15 0.69* 0.86* 1.04 1.05 0.79* 1.18 

N 1,933 1,862 1,798 1,757 1,695 1,651 1,576 
Pseudo R2 0.030 0.034 0.035 0.038 0.036 0.039 0.035 
*The entries are odds ratios. In every wave response is modelled conditional on responding in all of the previous waves. The model in a given wave used variables from the 

previous wave. The reference categories of the categorical independent variables in the table are male, non-white, not a home owner, does not have a GCE or above degree, 

unemployed, others not present when interviewed, multi-person HH, living in a house, no one in employment in HH, London, does not like their current neighbourhood, left school 

aged 15 or 16, does not have their own children, having good financial situation and does not have a car * p< 0.05, ** p< 0.01, *** p< 0.001. 
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For sample members who were born in 1965 or after and who responded in the 8 waves, 

the tailored weights at wave 8 were calculated as the product of the inversed predicted 

probabilities from the models in table (3.4), and wave 1 non-response/design weights as 

shown in equation (3.5).  

𝑇𝑊1965𝑖= 𝐷𝑖* ∏ 𝑟𝑡𝑖
−18

𝑡=2                                                                                                   (3.5) 

Where 𝑇𝑊1965𝑖 is the tailored weight at wave 8 for respondent i (who was born in 1965 

or after) based on modelling the response propensity separately for sample members who 

were born in 1965 or after; 𝑟𝑡𝑖 is the predicted probability for respondent i from wave t 

model (t= 2, 3,…, 8); i= 1,..., 𝑛1,..,8 (where 𝑛1,..,8 is the number of those were born in 1965 

or after who responded at every wave from 1 to 8); and 𝐷𝑖 is wave 1 non-response/design 

weight for respondent i. 

Modelling response propensity for those who are non-retired and born before 1965 

The set of weighting variables used to estimate the weighting models for those who are 

non-retired and born before 1965 is the same as the set of weighting variables used in the 

SWA. However the models were only restricted to those who are non-retired and were 

born before 1965. Table 3.5 shows the results of modelling the response propensity in the 

8 waves for this part of the sample. As expected, the results here are similar to the ones 

from the SWA. Overall, the results indicate that response is higher amongst females, 

white sample members, those with more education, employed individuals and members 

of multi-person households or households with children.  
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Table 3.5 Response propensity models for non-retired respondents who were born before 1965: modelling response in wave t conditional on responding in all of the previous waves. 

 Wave2 Wave 3 Wave 4 Wave 5 Wave 6 Wave 7 Wave 8 

Female 1.14 1.38** 1.14 1.19* 1.13 0.98 1.53* 

White 1.29** 1.87** 1.44* 1.67* 0.70 1.83 1.33** 

Age 1.03* 1.08*** 1.07** 1.14*** 1.10*** 1.17*** 1.24*** 

Age-squared 0.99* 0.99*** 0.99*** 0.99*** 0.99*** 0.99*** 0.99*** 

Home owner 1.04 1.50** 1.38* 1.57** 1.13* 1.63* 1.21 

Has GCE degree or more 1.25** 1.11 0.96 0.98 0.91 1.01 1.22* 

Employed 1.07 1.02 1.25* 1.14 1.17* 1.08 1.20* 

Others present in interview 1.08* 1.12 0.86 1.05 1.07 1.51* 1.49 

Single-person household 1.29 0.91* 0.90 0.92 1.01 0.72* 0.83* 

Household with children 1.25** 1.06 1.30 1.32 1.02 1.05 1.26* 

Living in a flat 0.72 0.79* 1.09 0.87 0.77* 0.83 0.79 

Living in other type of house 1.05 1.28 0.46* 0.89 1.49 0.65* 1.64 

1 or 2 persons in employment  1.01 0.65* 0.93 0.96 1.25 1.08 0.71 

3 + persons in employment 0.90 0.56* 0.81 0.61 0.58 0.34* 0.42* 

South-East 1.09 0.80 1.37 1.75 1.41 1.19 0.80 

South-West 1.18 0.78 1.12 1.32 1.58 0.91 0.88 

East Anglia 0.92 0.84 2.05* 2.71* 0.89 1.34 1.17 

The Midlands 0.92 0.72 1.25 1.42* 1.22 1.15 0.82 

The North 1.31* 0.60 1.37 1.26 0.86 2.08** 0.89 

Wales 0.90 0.56 1.36 1.34 1.70* 1.59 1.20 

Scotland 0.84 0.45* 1.78 1.74 0.50 1.25 0.44* 

N 5,948 5,190 4,826 4,556 4,305 4,044 3,884 

Pseudo R2 0.029 0.033 0.034 0.033 0.032 0.034 0.034 

*The entries are odds ratios. In every wave response is modelled conditional on responding in all of the previous waves. The model in a given wave used variables from the 

previous wave. The reference categories of the categorical independent variables in the table are male, non-white, not a home owner, does not have a GCE or above degree, 

unemployed, others not present when interviewed, multi-person HH, household with no children, living in a house, no one is in employment in HH and London * p< 0.05, ** p< 

0.01, *** p< 0.001.
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For sample members who are non-retired and were born before 1965 (remaining sample), 

and who responded in the 8 waves, the tailored weights at wave 8 were calculated as the 

product of the inversed predicted probabilities from the models in table (3.5), and wave 1 

non-response/design weights as shown in equation (3.6).  

𝑇𝑊𝑅𝑆𝑖= 𝐷𝑖* ∏ 𝑟𝑡𝑖
−18

𝑡=2                                                                                                      (3.6) 

Where 𝑇𝑊2𝑖 is the tailored weight at wave 8 for respondent i (who is non-retired and was 

born before 1965) based on modelling the response propensity separately for sample 

members who are non-retired and were born before 1965; 𝑟𝑡𝑖 is the predicted probability 

for respondent i from wave t model (t= 2, 3,…, 8); i= 1,..., 𝑛1,..,8 (where 𝑛1,..,8 is the 

number of those who are non-retired and born before 1965 who responded at every wave 

from 1 to 8); and 𝐷𝑖 is wave 1 non-response/design weight for respondent i. 

Since the three sub-groups in the analysis are non-overlapping, the sub-sets of tailored 

weights resulting from modelling the response propensity for each sub-group were then 

put together to form our second set of tailored weights (𝑇𝑊𝑠2) as follows: 

𝑇𝑊𝑠2= 𝑇𝑊𝑅𝑅𝑇𝑊1965𝑇𝑊𝑅𝑆                                                                                     (3.7) 

The distribution of the SWs, 𝑻𝑾𝒔𝟏 and 𝑻𝑾𝒔𝟐 

In this section we discuss and present the distribution of the weights resulting from the 

SWA (SWs) and the two methods of the S-TWA (𝑇𝑊𝑠1 and 𝑇𝑊𝑠2). Table (3.6) presents 

the measures of central tendency and dispersion for the three sets of weights. For each set 

of weights, these statistics are presented separately for retired respondents, those who 

were born in 1965 or after and for all respondents.  
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By looking at the standard errors of the three sets of weights under investigation, we can 

notice that these weights have very similar dispersion within all sets of respondents. This 

is confirmed with the coefficients of variations (CV) which are almost identical for the 

three sets of weights across the three groups of respondents. Thus, with the same amount 

of variation in all sets of weights, it seems reasonable to expect rather similar results in 

terms of precision for equivalent estimates constructed with SWs, 𝑇𝑊𝑠1 or 𝑇𝑊𝑠2. 

As for the average weight value, this appears to show different results. While 𝑇𝑊𝑠1 and 

𝑇𝑊𝑠2 have the same average weight values across the three sets of respondents, SWs 

seem to have smaller weights sizes on average compared to the tailored sets of weights. 

This is also the case with the medians, and the first and third quintiles values indicating 

that, for most cases in the sample, 𝑇𝑊𝑠1 and 𝑇𝑊𝑠2 contains fairly larger weights 

compared to the SWs. These results suggest that the S-TWA resulted in somewhat 

different weights than the SWA in terms of the average weights value. Accordingly, we 

expect this to affect the magnitude of some of the estimates resulting from the S-TWA, 

possibly to an extent that makes them significantly different than their equivalent 

estimates resulting from the SWA. 

Additionally, we do not expect to find considerable differences between estimates 

resulting from 𝑇𝑊𝑠1 and 𝑇𝑊𝑠2 as the distributions of these two sets are very similar 

both in terms of dispersion and average weights value. This, in turn, suggests that our 

two approaches of sub-group tailored weighting may have similar effects on the resultant 

weights.  
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Table 3.6 The distribution of SWs, 𝑇𝑊𝑠1 and 𝑇𝑊𝑠2. 

 Retired respondents Born 1965 or after The whole sample 

 SWs 𝑇𝑊𝑠1 𝑇𝑊𝑠2 SWs 𝑇𝑊𝑠1 𝑇𝑊𝑠2 SWs 𝑇𝑊𝑠1 𝑇𝑊𝑠2 

Std.dev 0.66 0.68 0.69 0.67 0.68 0.69 0.63 0.65 0.66 

Mean 1.98 2.12 2.10 1.79 1.86 1.87 1.58 1.65 1.64 

CV 0.33 0.32 0.33 0.37 0.37 0.37 0.40 0.39 0.40 

Min 0.49 0.54 0.59 0.40 0.46 0.44 0.32 0.35 0.33 

Q1 1.61 1.71 1.73 1.42 1.58 1.55 1.26 1.31 1.36 

Median 1.80 1.89 1.87 1.69 1.76 1.77 1.49 1.54 1.55 

Q3 2.11 2.35 2.30 2.06 2.12 2.15 1.86 1.91 1.93 

Max 6.37 10.86 10.05 6.06 7.24 7.75 6.88 11.16 11.89 

*CV is the coefficient of variation (CV=Std.dev/Mean). 

 

3.7 Analysis and results 

At this stage, there are three different sets of weights in our analysis (SWs, 𝑇𝑊𝑠1 and 

𝑇𝑊𝑠2). Each set of weights is designed to adjust for cumulative non-response between 

waves 1 and 8. This means that the weights from each set are available for sample 

members who responded in all of the first 8 waves of the survey. Thus, for our 

substantive analysis we used a balance panel of those who responded in all waves from 

wave 1 up to and including wave 8 (6,753 respondents). In this sample, there are 1,402 

retired respondents and 1,525 sample members who were born in 1965 or after.  
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Our investigation focuses on whether 𝑇𝑊𝑠1 and 𝑇𝑊𝑠2 affect estimates produced from 

the sub-groups under investigation (retired respondents and those who were born in 1965 

or after) and estimates based on the whole sample differently compared to the SWs. In 

other words, we investigate whether our proposed S-TWA adjust for non-response 

differently as opposed to the SWA. 

To examine this, we carried out two sets of analyses. The first is concerned with retired 

respondents. In this analysis we estimate a model to investigate the determinants of 

psychological well-being for retired respondents. Psychological health is an important 

social aspect which is known to be affected, either positively or negatively, by later life 

transitions such as retirement (Kim and Moen, 2002). Thus, it might be appropriate to 

evaluate our weights by conducting this analysis on retired respondents. Since the set of 

weights resulting from the S-TWA contains weights for respondents from two major 

subgroups in the sample, we also test the effect of the S-TWA on full sample estimates. 

Therefore, we fit another model for the determinants of psychological well-being using 

the full sample. In both analyses (retired respondents and the full sample) we estimate the 

same model by using the SWs, 𝑇𝑊𝑠1 and 𝑇𝑊𝑠2 separately.   

The second set of analyses is concerned with those who were born in 1965 or after. In 

this part of our analysis we estimate a model to investigate the determinants of the desire 

for residential mobility (DRM). DRM is a social phenomenon that expresses individuals 

wish to change their address (Sadig and Banany, 2015). Since residential mobility is 

more common amongst younger individuals, it may be of interest to assess the S-TWA 

and the SWA by investigating DRM for those who were born in 1965 or after (the 

younger respondents in our sample). Also, and similar to the analysis of retired 
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respondents, we investigate the determinants of DRM for those who were born in 1965 

or after and for the whole sample separately. Yet again, in each analysis, we estimate the 

same model by using the SWs, 𝑇𝑊𝑠1 and 𝑇𝑊𝑠1 separately. 

Accordingly, there will be 12 substantive models in this investigation. Six of these are for 

the analysis of psychological well-being and the other six are for the analysis of DRM. 

For simplicity, we can identify these models as follows: 

Psychological well-being 

Model 1 is estimated using retired respondents and the SWs. 

Model 2 is estimated using retired respondents and the 𝑇𝑊𝑠1. 

Model 3 is estimated using retired respondents and the 𝑇𝑊𝑠2. 

Model 4 is estimated using the full sample and the SWs. 

Model 5 is estimated using the full sample and the 𝑇𝑊𝑠1. 

Model 6 is estimated using the full sample and the 𝑇𝑊𝑠2. 

DRM 

Model 7 is estimated using those who were born in 1965 or after and the SWs. 

Model 8 is estimated using those who were born in 1965 or after and the 𝑇𝑊𝑠1. 

Model 9 is estimated using those who were born in 1965 or after and the 𝑇𝑊𝑠2. 

Model 10 is estimated using the full sample and the SWs. 
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Model 11 is estimated using the full sample and the 𝑇𝑊𝑠1. 

Model 12 is estimated using the full sample and the 𝑇𝑊𝑠2. 

This strategy allows a fair comparison across the three sets of weights under 

investigation on different sets of respondents. This is because the same model will be 

estimated with each set of weights separately. Thus, differences between the equivalent 

estimates resulting from the application of different sets of weights can be said to be due 

differences between the weights as the estimation method is held constant. Consequently, 

this enables one to report on differences between the SWA and the S-TWA, but it also 

permits comparisons between the two different approaches that we used to create the 

tailored weights (interaction-based approach and modelling response propensity 

separately for each sub-group). 

3.7.1 Psychological well-being 

Measure of psychological well-being 

There is a range of variables that measures psychological well-being in the BHPS. But, 

the most appropriate variables are probably the ones that are available within the General 

Health Questionnaire (GHQ). This is because the GHQ variables are reliable measures of 

psychological well-being (Taylor, Jenkins and Sacker, 2011). These are 12 items and 

they are obtained by asking the following questions: 

- Have you recently been able to concentrate on whatever you're doing? 

- Have you recently lost much sleep over worry? * 

- Have you recently felt that you were playing a useful part in things? 
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- Have you recently felt capable of making decisions about things? 

- Have you recently felt constantly under strain? * 

- Have you recently felt you couldn't overcome your difficulties? * 

- Have you recently been able to enjoy your normal day-to-day activities? 

- Have you recently been able to face up to problems?  

- Have you recently been feeling unhappy or depressed? * 

- Have you recently been losing confidence in yourself? * 

- Have you recently been thinking of yourself as a worthless person? * 

- Have you recently been feeling reasonably happy, all things considered? 

Respondents are asked to rate each item on a four-point scale: better than usual, same as 

usual, less than usual and much less than usual. The codes assigned to each answer are 0, 

1, 2 and 3 respectively. Questions marked as * are coded in reverse. The GHQ items are 

added together to construct a general score which measures the mental distress of the 

cases in the sample. This score is known as the likert score (or likert scale). The likert 

score ranges from 0 to 36. Low scores indicate high feelings of well-being; meanwhile, 

high scores indicate high stress. The likert score was used in this analysis as the measure 

of psychological well-being (dependent variable).  

It should be noted that the GHQ in the BHPS is a self-completion questionnaire. 

Therefore, it is likely that those who complete such questionnaires are in relatively good 

health status. This may not necessarily be the case for all retired respondents (the older 

respondents in the analysis sample) which may affect the estimates resulting from this 

analysis. However, this issue applies across the three sets of weights that are being 
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evaluated. Thus, by holding the modelling approach constant and varying the weights, 

differences between the resultant estimates will be solely due to differences across the 

weighting schemes. Therefore, this analysis helps achieving the objective of this 

investigation.  

To test the effect of the S-TWA on descriptive statistics, we categorised the likert score 

into two categories indicating good psychological health and bad psychological health20. 

We calculated the proportion of retired sample members in each category using SWs, 

𝑇𝑊𝑠1 and 𝑇𝑊𝑠2 separately for a simple comparison. The resultant proportions and the 

associated standard errors are presented in table 3.7. As can be seen from the table, the 

standard errors of all proportions are almost identical indicating no difference in terms of 

impact on estimates precision levels across the three sets of weights. However, while 

𝑇𝑊𝑠1 and 𝑇𝑊𝑠2 resulted in similar proportions, SWs resulted in a slightly different 

proportion (with a difference of 1%). This result indicates that the S-TWA may have a 

different impact on the magnitude of the estimate as compared to the SWA.     

Table 3.7 Proportions of retired sample members with good and bad psychological health.  

 Using SWs Using 𝑇𝑊𝑠1 Using 𝑇𝑊𝑠2 

% SE % SE % SE 

Good Ps.health 86 .0029 87 .0028 87 .0029 

Bad Ps.health 14 .0029 13 .0028 13 .0029 

* Ps.health is psychological health. SE is the standard error.  

 

                                                           
20 Values from 0 to 18 represent good psychological health while values from 19 to 36 indicate bad psychological 

health. 
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Modelling psychological well-being 

The outcome variable in this analysis (likert score) is a continuous variable. Similar to 

chapter 1 and 2, the structure of the data (multiple observations per person) allows the 

application of panel data models. Thus, we estimated a random effects OLS regression 

model to investigate the determinants of psychological well-being for retired respondents 

and the whole sample separately. As explained earlier, each model was estimated three 

times by varying the weights between SWs, 𝑇𝑊𝑠1 and 𝑇𝑊𝑠2. Psychological well-being 

is known to be associated with measures of ethnicity, age, cohabitation, wealth and 

health, (Taylor, Jenkins and Sacker, 2011; Kohler, Behrman and Skytthe, 2005; Ryan 

and Frederic, 2006). Thus, the variables used to model psychological well-being were 

selected to correspond to these measures. These variables are: Race, age, whether 

respondent lives with a partner, savings, health status and income. Additionally, other 

variables such as time and gender were also included in the model for control.  

Before discussing the results from modelling psychological well-being, we first set out 

our criterion for identifying differences between estimates in both of our substantive 

analyses (psychological well-being and desire for residential mobility). We used the 

same hypotheses testing methods (using confidence intervals) that we used in the 

substantive analysis in chapter two to identify significant differences between equivalent 

estimates adjusted with different weights. For convenience, we re-explain this approach 

below. 

To identify significant differences between equivalent coefficients estimated with the 

different weights, we conduct hypotheses testing on the differences between equivalent 
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estimates adjusted with the SWA and S-TWA using 95% Confidence Intervals (CI). Our 

test involves two essential steps. The first step is to construct 95% CIs of the difference 

between each two equivalent coefficients that are adjusted with the SWA and S-TWA. 

Such CIs specify the range of values within which the difference between each two 

equivalent coefficients may lie. For example, if 𝛽𝑆𝑊, 𝛽𝑇𝑊1 and 𝛽𝑇𝑊2 denote a given set 

of equivalent population parameters estimated by the equivalent set of coefficients 𝑏𝑆𝑊, 

𝑏𝑇𝑊1 and 𝑏𝑇𝑊2 which are adjusted with SWs, 𝑇𝑊𝑠1 and 𝑇𝑊𝑠2 respectively, we 

construct two CIs to test whether 𝑏𝑆𝑊 is different than 𝑏𝑇𝑊1 and 𝑏𝑇𝑊2. These are CIs for 

(𝑏𝑆𝑊 - 𝑏𝑇𝑊1) and (𝑏𝑆𝑊 - 𝑏𝑇𝑊2). All CIs are 95% CIs, and are given by 3.8 below: 

(𝑏𝑆𝑊 - 𝑏𝑇𝑊𝑖) ±1.96*S𝑏𝑆𝑊−𝑏𝑇𝑊
                                                                                      (3.8) 

Where S𝑏𝑆𝑊−𝑏𝑇𝑊𝑖
 is the standard error of (𝑏𝑆𝑊 - 𝑏𝑇𝑊𝑖) and is given by 3.9 below; and 

i=1,2. 

S𝑏𝑆𝑊−𝑏𝑇𝑊𝑖
= √𝑆2(𝑏𝑆𝑊) + 𝑆2(𝑏𝑇𝑊𝑖) − 2 ∗ 𝐶𝑜𝑣(𝑏𝑆𝑊, 𝑏𝑇𝑊𝑖)                                         (3.9) 

Where 𝑆2(𝑏𝑆𝑊) and 𝑆2(𝑏𝑇𝑊𝑖) are the variances of  𝑏𝑆𝑊 𝑎𝑛𝑑 𝑏𝑇𝑊𝑖 respectively; 

𝐶𝑜𝑣(𝑏𝑆𝑊, 𝑏𝑇𝑊𝑖) is the covariance of 𝑏𝑆𝑊 𝑎𝑛𝑑 𝑏𝑇𝑊𝑖; and i=1,2. 

The second step is to use the constructed CIs to test whether there is a significant 

difference between each two equivalent coefficients adjusted with the SWA and S-TWA 

(i.e. is there a significant difference between 𝑏𝑆𝑊 𝑎𝑛𝑑 𝑏𝑇𝑊𝑖?). That is to test the 

following hypothesis: 

𝐻0: 𝛽𝑆𝑊 - 𝛽𝑇𝑊𝑖 =0 against 𝐻𝑎: 𝛽𝑆𝑊 - 𝛽𝑇𝑊𝑖 ≠0; i=1,2. 
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Note that 𝐻0 is rejected (i.e. there is a significant difference between 𝑏𝑆𝑊 𝑎𝑛𝑑 𝑏𝑇𝑊𝑖, 

i=1,2) if the relevant CI does not include 0.  

We apply the same test in both of our substantive analysis (psychological well-being and 

desire for residential mobility), and we present all 95% CIs for the difference between 

each two equivalent estimates (CI of [𝑏𝑆𝑊 - 𝑏𝑇𝑊1] and CI of [𝑏𝑆𝑊 - 𝑏𝑇𝑊2]) in the 

relevant results table.  

Table 3.8 and table 3.9 present the results from modelling psychological well-being for 

retired respondents and the full sample respectively. Starting with the results from the 

retired respondents models (in tables 3.8), it can be seen that all equivalent estimates 

across the three models have the same significance level. This result is consistent with 

the earlier observation that the weights have similar distributions in terms of dispersion.  

Additionally, we can immediately notice, as anticipated, that 𝑇𝑊𝑠1 and 𝑇𝑊𝑠2 result in 

very similar estimates. Most of the coefficients resulting from these two sets of weights 

are approximately equal. As for the coefficients resulting from the SWs, overall, these 

estimates are also similar to the estimates resulting from 𝑇𝑊𝑠1 and 𝑇𝑊𝑠2. However, the 

coefficient of ‘has a good health condition’ which is produced through the SWs appears 

to be significantly different from its equivalent coefficients estimated with 𝑇𝑊𝑠1 and 

𝑇𝑊𝑠2. The difference is indicated by the two CIs of the difference between (𝑏𝑆𝑊 - 𝑏𝑇𝑊1) 

and (𝑏𝑆𝑊 - 𝑏𝑇𝑊2) respectively, where b here is the coefficient of ‘has a good health 

condition’. Both CIs do not include 0 indicating that the estimate in question (adjusted 

with SWs) is significantly different than its equivalent estimates adjusted with 𝑇𝑊𝑠1 and 

𝑇𝑊𝑠2. Thus, as suggested by this result, the S-TWA and the SWA may result in 



237 

significantly different results with respect to estimates constructed from the sub-group 

selected for the tailored weighting. 

Focussing on the models for the whole sample (in table 3.9), the results here do not show 

evidence of significant differences between the estimates resulting from the SWs and 

their equivalent estimates constructed with 𝑇𝑊𝑠1 and 𝑇𝑊𝑠2. All CIs of the difference 

between (𝑏𝑆𝑊 - 𝑏𝑇𝑊1) and (𝑏𝑆𝑊 - 𝑏𝑇𝑊2) include a zero. However, we can still notice that the 

coefficient of ‘has a good health condition’ in the model estimated with SWs is rather 

different compared to its equivalent coefficients in the models estimated with 𝑇𝑊𝑠1 and 

𝑇𝑊𝑠2. Although our CI test here does not suggest that this difference is significant, such 

differences may matter in the interpretation of the results in some substantial analyses, 

and may play important role in modifying our understanding of some social phenomena. 

Thus, these differences are not trivial.  
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Table 3.8 Random effects OLS regression models of the determinants of psychological well-being for retired respondents. 

 Using SWs          Using 𝑻𝑾𝒔𝟏          95% CI of (𝒃𝑺𝑾 - 𝒃𝑻𝑾𝟏) Using𝑻𝑾𝒔𝟐         95% CI of (𝒃𝑺𝑾 - 𝒃𝑻𝑾𝟐) 

Years 1995 to 1998 0.131  0.030             -0.147                    0.349 0.084             -0.202              0.296 

Female 0.841**  0.884**            -0.351                     0.256 0.861**             -0.626              0.586 

White -0.979  -1.268            -2.245                     2.832 -1.766             -2.057              3.631 

Age 0.020  0.022            -0.020                     0.016 0.022             -0.038              0.034 

Living with a partner -1.027***  -1.042***            -0.452                     0.482 -1.103***             -0.392              0.544 

Has savings -0.135**  -0.335**            -0.073                     0.473 -0.322**             -0.086              0.460 

Has a good health condition -0.726*** a  -1.607*** a             0.321                     1.441 -1.605*** a              0.313               1.445 

Income/1000 -0.003  -0.004             -0.042                   0.026 -0.004             -0.024              0.026 

N 1,402                                 1,402                                   1,402                                  

σ 2.79                                   2.89                                    2.89                                    

ρ 0.46                                   0.47                                   0.47                                    

*All models are estimated by using a balanced panel of retired sample members who responded in the first 8 waves. The reference categories of the independent 

variables are: years 1991 to 1994, male, non-white, does not live with a partner, has no savings and has a bad health condition. a indicates a significant difference 

between the equivalent estimates adjusted with the SWs and  both sets of TWs. * p< 0.05, ** p< 0.01, *** p< 0.001. 
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Table 3.9 Random effects OLS regression models of the determinants of psychological well-being for the whole sample. 

 Using SWs       Using 𝑻𝑾𝒔𝟏    95% CI of (𝒃𝑺𝑾 - 𝒃𝑻𝑾𝟏) Using𝑻𝑾𝒔𝟐 95% CI of (𝒃𝑺𝑾 - 𝒃𝑻𝑾𝟐) 

Years 1995 to 1998 0.262         0.213         -0.067              0.165 0.248     - 0.089             0.117 

Female 1.217***         1.233***         -0.252             0.220 1.226***      -0.245             0.227 

White -0.580**        -0.575**        -0.519              0.509 -0.631**     -0.467            0.569 

Age 0.003*        0.006*         -0.009             0.003 0.005*      -0.008            0.004 

Living with a partner -0.482***        -0.485***        -0.180              0.186 -0.504***     -0.161            0.205 

Has savings -0.225***  -0.223***        -0.127              0.123 -0.228***     -0.123            0.129 

Has a good health condition -0.955***  -1.141***        -0.453             0.825 -1.162***     -0.394            0.808  

Income/1000 -0.001  -0.002        -0.006             0.008 -0.002     -0.005             0.007 

N 6,753                             6,753                              6,753                                    

σ 2.92                               2.93                                2.93                                      

ρ 0.36                               0.37                                0.37                                      

*All models are estimated by using a balanced panel of those who responded in the first 8 waves. The reference categories of the independent variables are: years 

1991 to 1994, male, non-white, does not live with a partner, has no savings and has a bad health condition. * p< 0.05, ** p< 0.01, *** p< 0.001. 
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3.7.2 Desire for residential mobility (DRM) 

Measure of DRM 

It might not be common for social surveys to include a direct question about whether 

respondents have a desire to change their address. However, in the BHPS, respondents 

are asked every year if they would prefer to move house. This item was used here as our 

outcome variable. Accordingly, if respondents report a preference for moving house, this 

was taken as an indication of a desire for residential mobility. Thus, the dependent 

variable in this part of the analysis was a binary variable, indicating whether respondents 

have DRM or not. This variable is identified by equation 3.8. 

𝐷𝑅𝑀𝑖 = {
1,   𝑖𝑓 𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑒𝑛𝑡 𝑖 ℎ𝑎𝑠 𝑖𝑛𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑡𝑜 𝑚𝑜𝑣𝑒 ℎ𝑜𝑢𝑠𝑒 
0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                (3.8) 

Modelling DRM 

To model DRM we used a random effects logistic regression. This was done for those 

who were born in 1965 or after and for the whole sample separately. For each set of 

respondents, the model was estimated, with the three sets of weights under investigation. 

The independent variables used in this analysis are gender, race, age, household size, 

number of rooms in the accommodation, possession of savings and housing tenure. Our 

choice for these variables was inspired by the literature of residential mobility (e.g. 

Sanbonmatsu et al, 2011) and the availability of these variables across the 8 waves used 

in this investigation.   

The results from modelling DRM are displayed in table 3.10 for those who were born in 

1965 or after, and in table 3.11 for the full sample. Both tables present odds ratios. As 
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was done in the analysis of psychological well-being, we will use 95% CIs of the 

differences between estimates constructed with SWs (𝑏𝑆𝑊) and their equivalent estimates 

constructed with 𝑇𝑊𝑠1 (𝑏𝑇𝑊1) and 𝑇𝑊𝑠2 (𝑏𝑇𝑊2) in turn to test if the SWA and the two 

S-TWA result in different estimates  

Focussing on the models for those who were born in 1965 or after (in table 3.10) first, we 

can see that, in general, the resultant estimates are similar across the three models. Aside 

from having the same significance levels, most coefficients are similar in terms of 

magnitude. This is more so between estimates resulting from 𝑇𝑊𝑠1 and 𝑇𝑊𝑠2 than 

between estimates resulting from SWs and either of the two tailored weights. 

However, SWs produced one major difference compared to 𝑇𝑊𝑠1 and 𝑇𝑊𝑠2. Namely, 

the coefficient of ‘member of a large household’ appeared to be significantly different 

than its equivalent coefficients estimated with 𝑇𝑊𝑠1 and 𝑇𝑊𝑠2. This is confirmed by the 

by the two CIs of the difference between this estimate and its two equivalent estimates 

which are constructed with 𝑇𝑊𝑠1 and 𝑇𝑊𝑠2. Both CIs do not contain 0. This result is in 

line with the results from the retired respondents’ models suggesting that the S-TWA 

may indeed result in some differences in comparison with the SWA, especially when the 

analysis is restricted to the sub-groups used to create the tailored weights.  

Turning to models concerning the whole sample (in table 3.11), the results here do not 

show significant differences across estimates. By reference to our 95% CIs test, it can be 

seen that all the CIs of the differences between estimates adjusted SWs and their 

equivalent estimates adjusted with 𝑇𝑊𝑠1 and 𝑇𝑊𝑠2 respectively include a zero value of 

the difference indicating that each two equivalent estimates are not significantly 

different. However, and similar to the analysis of psychological well-being, we can still 
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see a difference between the coefficient of ‘member of a large household’ in the model 

estimated with SWs and its equivalent coefficients in the models estimated with 𝑇𝑊𝑠1 

and 𝑇𝑊𝑠2. As discussed before, such differences might also be important, and they 

indicate that the S-TWA may also affect total sample estimates. Based on this result, it 

may be reasonable to expect significant differences between total sample estimates 

resulting from the S-TWA and the SWA if other sub-groups are considered for the sub-

group tailored weighting.  

To sum up, based on this investigation, the results suggest that the two approaches of 

weighting (SWA and S-TWA) are similar in their overall effect on estimates. However, 

the S-TWA may have a different impact on some estimates. Based on our CIs tests, these 

differences were proved to be significant. Assuming that the weighting models estimated 

in the S-TWA express the response process in the sub-groups under investigation better 

than the weighting models of the SWA, estimates that turned out to be different with the 

S-TWA are less biased than their equivalent estimates produced with the SWA.  

In addition, the two approaches of sub-group tailored weighting (interaction-based and 

modelling response separately for each sub-group) seem to be analogous in terms of 

their resultant weights. Their weights do not seem to affect estimates differently. 

Furthermore, the S-TWA has much more impact on estimates constructed from the sub-

groups in question compared to estimates constructed from full sample analysis. In the 

latter case, although the S-TWA has resulted in a couple of considerable differences, our 

analysis here indicates that these changes may not be as significant as the ones from the 

analyses restricted to the sub-groups selected for the S-TWA. Still, these differences 

indicate that the S-TWA may affect total sample estimates, and with other sub-groups, it 
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may be possible to prove that this effect can result in significant differences.    
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Table 3.10 Random effects logistic regression models of the determinants of the desire for residential mobility for those who were born in 1965 or after. 

 Using SWs          Using 𝑻𝑾𝒔𝟏              95% CI of (𝒃𝑺𝑾 - 𝒃𝑻𝑾𝟏) Using 𝑻𝑾𝒔𝟐        95% CI of (𝒃𝑺𝑾 - 𝒃𝑻𝑾𝟐) 

Years 1995 to 1998 1.137  1.175           -0.168             0.092 1.170         -0.163          0.097 

Female 0.866*  0.868*           -0.220             0.126 0.864*         -0.216          0.220 

White 1.041  1.081           -0.793             0.713 1.021         -0.320          0.360 

Age 1.045  1.044           -0.003             0.005 1.044         -0.003          0.005 

Member of a large household 1.057* a  1.133* a            -0.126            -0.026 1.136* a         -0.130          -0.028 

Lives in a house with 3 to 4 rooms 1.242*  1.255*           -0.246             0.220 1.251*         -0.242          0.224 

Lives in a house with 5+ rooms  1.365***  1.386***           -0.285             0.244 1.377***         -0.276          0.252  

Has savings 0.979  0.971           -0.088             0.104 0.970         -0.087          0.087 

House owned outright  0.845*  0.826*           -0.180             0.218 0.838*         -0.192          0.192 

House owned with mortgage 1.562***  1.560***           -0.221             0.225 1.532***         -0.583          0.643 

N 1,525                            1,525                             1,525                        

σ  1.44                              1.45                               1.45                          

ρ 0.38                              0.39                               0.39                          

* The entries are odds ratios. All models are estimated by using a balanced panel of those who were born in 1965 or after and who responded in the first 8 waves. 

The reference categories of the independent variables are: years 1991 to 1994, male, non-white, member of a small household (3 members or less), lives in a 

house with 1 or 2 rooms, has no savings and tenant. a indicates a significant difference between the equivalent estimates adjusted with the SWs and both sets of 

TWs.* p< 0.05, ** p< 0.01, *** p< 0.001. 
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Table 3.11 Random effects logistic regression models of the determinants of the desire for residential mobility for the whole sample. 

 Using SWs          Using 𝑻𝑾𝒔𝟏         95% CI of (𝒃𝑺𝑾 - 𝒃𝑻𝑾𝟏) Using 𝑻𝑾𝒔𝟐        95% CI of (𝒃𝑺𝑾 - 𝒃𝑻𝑾𝟐) 

Years 1995 to 1998 1.165  1.164      -0.048             0.049 1.164       -0.049             0.051 

Female 1.180*  1.171*      -0.120             0.138 1.181*       -0.130             0.128 

White 1.241*  1.243*      -0.313             0.309 1.202*       -0.271             0.349 

Age 0.964*  0.972*      -0.046             0.030 0.973*       -0.047             0.029 

Member of a large household 1.053**  1.107**      -0.130             0.022 1.109**       -0.132            0.020 

Lives in a house with 3 to 4 rooms 1.067*  1.068*      -0.132             0.130 1.083*        -0.147             0.115 

Lives in a house with 5+ rooms  1.191**  1.195**      -0.153             0.145 1.207**        -0.165             0.133 

Has savings 1.054  1.049      -0.053             0.063 1.53        -0.056             0.058 

House owned outright  0.836***  0.854***      -0.314             0.278 0.869***        -0.325             0.259 

House owned with mortgage 1.587***  1.569***      -0.125             0.161 1.579***        -0.135             0.135 

N 6,753                            6,753                            6,753                            

σ  2.25                              2.27                              2.26                              

ρ 0.60                              0.61                              0.61                              

* The entries are odds ratios. All models are estimated by using a balanced panel of those who responded in the first 8 waves. The reference categories of the 

independent variables are: years 1991 to 1994, male, non-white, member of a small household (3 members or less), lives in a house with 1 or 2 rooms, has no 

savings and tenant. * p< 0.05, ** p< 0.01, *** p< 0.001. 
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3.8 Conclusion 

In this chapter we introduced an alternative approach (subgroup-tailored weighting) to 

create non-response weights in longitudinal studies. The subgroup-tailored weighting 

approach (S-TWA) is based upon selecting certain sub-groups from the survey sample 

and customising the construction of non-response weights to these sub-groups. Unlike 

the SWA, in the S-TWA, the weights are created by using a set of weighting variables 

that affects the response probability in the selected sub-groups regardless of whether or 

not it also affects the response probability in the rest of the sample. Also, the estimation 

of the weighting models in the S-TWA may be restricted to sample members from the 

sub-groups in question. Additionally, we introduced two possible approaches to carry out 

the S-TWA: interaction-based approach and modelling the response propensity 

separately for each selected sub-group. 

The major findings of this chapter can be summarised in four main points: 

1. The effect of the S-TWA on estimates is generally similar to that of the SWA, in 

particular in terms of estimates precision levels. 

2. On some estimates, the S-TWA produces different results (in terms of magnitude) 

than the SWA. 

3. It seems possible for the S-TWA to affect both total sample estimates and 

estimates derived only from the sub-groups selected for tailored weighting. 

However, the effect seems to be stronger (significant) on the estimates 

constructed from the sub-groups selected for the tailored weighting. 
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4. The two introduced approaches of S-TWA appear to produce similar sets of 

tailored weights that result in the same effect on estimates.    

These findings encompass a number of propositions in the development of non-response 

weighting in longitudinal surveys. First, the findings suggest that the set of weights that 

can be produced from the S-TWA is somewhat different than the set of weights that 

results from the SWA. The difference emerged as a result of the different methodology 

followed to create the tailored weights. Changing the standard non-response covariates 

and restricting the weighting model to the sub-groups for which the tailored weights are 

created can result in a set of tailored weights that has different weight values than the 

standard weights. As a result, the tailored weights may drive some estimates to differ 

from their equivalent estimates constructed with standard weights. If both the changes in 

the non-response covariates and the set of respondents adopted in the S-TWA reflect the 

non-response process in the sub-groups in question better than the SWA, the S-TWA can 

be said to handle non-response in the sub-groups under investigation better than the 

SWA.  

Second, although our investigation here does not show evidence that the S-TWA results 

in significantly different estimates than the SWA when estimates are derived from full 

sample analysis, it shows that some of the total sample estimates may still change 

considerably in terms of their magnitude if adjusted with the S-TWA. We believe that 

such changes, sometimes, have different impact on the interpretation of the results, 

especially with sensitive measures in some of the socio-economic processes. Hence, 

different conclusions regarding some of the total sample estimates could still be drawn 

on the basis of the S-TWA.  
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Third, our analysis suggests that the two approaches of the subgroup-tailored weighting 

(interaction-based approach and modelling the response propensity separately for each 

selected sub-group) may substitute one another. However, one may still expect 

differences – maybe not to a large extent - between these two approaches if they are 

applied on a different data set or different sub-groups. This is especially so if the number 

of the proposed variables for the tailored weighting is large. Thus, if the S-TWA is 

considered, we recommend the application of the second approach (modelling the 

response propensity separately for each selected sub-group) because it has some 

advantages over the first one (interaction-based approach). One of these advantages is 

that the second approach avoids the complications associated with too many interactions 

in the weighting model. Another advantage is that it allows restricting the weighting 

model to sample members in the sub-group selected for tailored weighting, which in turn 

permits excluding variables that do not predict response in the sub-group in question. 

The availability of a large number of weighting variables in longitudinal surveys is 

advantageous. However, any weighting approach that depends on using a large number 

of variables to model the response propensity in the sample, but assumes that the effects 

of these variables are the same for different sub-groups (such as the SWA), may not 

always explain the non-response process well in all sub-groups in the sample. This is 

because samples in longitudinal surveys are large, and are often composed of units from 

a number of sub-populations which are not necessarily homogeneous in terms of the 

factors responsible for non-response. Successful weighting, in our opinion, depends on 

an independent and profound understanding of the non-response process in each of the 

major sub-groups in the sample rather than the number of variables included in a single 
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weighting model. Even in the same survey sample, the cause of non-response may differ 

vastly across some sub-groups suggesting different sets of weighting variables (both in 

terms of scale and type) for weighting. Thus, looking at the non-response reasons in the 

sample as a whole may lead to ignoring variables that may appear insignificant in general 

while they are in fact important to explain non-response in some sub-groups. The 

findings in this chapter have demonstrated this. For example, it is known that factors like 

‘age’ are powerful weighting variable while factors such as ‘religion’ are weak predictors 

of non-response; though, the results of this investigation showed the exact opposite 

within the subgroups on which we have focussed. At first glance, it may be hard to 

understand how a – well known - powerful auxiliary as ‘age’ could not be important in 

predicting response while a variable such as ‘religion’ is significant. However, once the 

cause of non-response is understood at a sub-group level, it can all be explained.  

We expect similar findings if the S-TWA is applied in other panel studies, such as 

Understanding Society for example. However, in such a large longitudinal survey, the 

application of S-TWA might be, to some extent, tricky. This is because identifying the 

number of sub-groups that the tailored weighting should be based on is a subjective 

matter. S-TWA may be more appropriate for specific analyses where the analyst wants 

the best possible weights for a specific purpose. As for general-purpose public-release 

weights, it could be challenging to produce the best possible set of tailored weights 

because, in longitudinal survey samples, sub-groups maybe identified in a number of 

dimensions. Therefore, it would be difficult to identify a number of sub-groups that 

allows the execution of the best subgroup-tailored weighting. However, it should be 

pointed out that the more sub-groups used to create tailored weights (bearing in mind that 
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the relevant sample sizes should be large enough to estimate non-response well) the 

stronger the effect of the overall set of tailored weights will be. Additionally, even if the 

number of the required sub-groups is accurately identified, the survey organisation will 

face the problem of identifying “which specific sub-groups should be used for tailored 

weighting?”  as this maybe a subjective matter too.  

Sub-groups can be non-overlapping (e.g. the sub-groups used in the analysis of this 

chapter). In this case, the sub-sets of tailored weights can be put together to form an 

Overall Set of Tailored Weights (OSTW). Accordingly, the OSTW can be beneficial in 

analyses that target the whole sample or analyses restricted to sub-groups. However, the 

sub-groups selected for tailored weighting maybe overlapping (e.g. sub-groups of males, 

disabled and white respondents). In this case, producing a OSTW is not possible via this 

method and, therefore, a number of sets of tailored weights may need to be released 

separately. However, this type of sub-group tailored weighting may not be appropriate 

for total sample estimates adjustment.  

Thus, a future research may investigate a procedure that decides on: 

 The number of sub-groups required for an effective overall set of tailored 

weights. 

 Whether sub-groups should or should not be overlapped.  

  Which specific sub-group should be selected for tailored weighting.  

Finally, as the S-TWA uses a different set of variables compared to the one used in the 

SWA, researchers who are deciding between tailored weights and standard weights 

should pay attention to the set of variables used to create the tailored weights. This is 
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because weights are also powerful in dealing with non-response bias if they are created 

using a set of variables that is strongly correlated with the main variable in the analysis 

(the dependent variable). Therefore, standard weights may also be a good choice if its 

weighting variables are more correlated with the dependent variable in the analysis. In 

this case it is a trade off between the reward of the tailored weights and the relationship 

between the dependent variable and the weighting variables used to create the standard 

weights. Thus, if a survey organisation considered S-TWA as an alternative, it may still 

want to keep standard weights in the public data files. Moreover, if a set of tailored 

weights is included in the data files, the survey organisation should properly document 

the process of weights creation as well as clearly stating the variables used to create the 

weights.  
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What have we studied? 

The focus in this thesis has been devoted to non-response weighting in longitudinal 

surveys. It is typically the responsibility of survey organisations to design the weights 

and release them to be used by analysts. Thus, it is also the responsibility of survey 

organisations to ensure that the weights are created in the most appropriate manner by 

considering alternative approaches in the development of the weights. This study has 

been conducted to contribute to this area.  

Most longitudinal surveys, nowadays, implement a similar approach in terms of non-

response weighting for which this thesis has assigned the label ‘the standard weighting 

approach’ (SWA). The thesis has set out the principles of a typical SWA as: response is 

identified as responding in all waves up to the latest, and therefore weights are only 

provided for units responding in all waves up to the last one; non-respondents whose 

eligibility is unknown are assumed as eligible non-respondents, and are therefore 

included in the calculation of the weights; and only variables that distinguish response 

from non-response for the sample as a whole are used in the weights creation, and 

therefore variables that are only important at a subgroup level are ignored. 

In return, one of the emphases in this thesis has been to disclose some weaknesses of the 

SWA with respect to its principles. In this regard, the thesis has raised three issues 

(corresponding to the three principles of the SWA) which are not taken into account by 

the SWA, and for which it has developed alternative weighting approaches (AWAs). 

These issues are: non-monotonic response pattern, unknown eligibility whilst weighting 

and subgroup-tailored weighting.  
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As has been demonstrated by this study, ignoring these issues in the process of producing 

the weights may yield less precise and, sometimes, biased estimates in substantive 

analyses that use the resultant weights. For survey organisations that apply the SWA, but 

are planning to embark on developing their non-response weighting, dealing with these 

issues should be part of that plan in order for weighting to more appropriately adjust the 

data and correct for non-response. In such cases, this thesis can be useful, as it suggests 

an alternative weighting approach (AWA) corresponding to each of the raised issues in 

conjunction with investigating the effects of ignoring these issues on weighting.  

The study findings 

By investigating the issues in question, a number of contributions to the SWA are made 

in this thesis. Some of the findings are chapter-specific and were discussed in details 

within the respective chapters (Weighting for Non-monotonic Response Pattern in 

Longitudinal Surveys, Unknown Eligibility whilst Weighting for Non-response: the 

Puzzle of who has Died and who is still Alive? and Non-response Subgroup-tailored 

Weighting: the Choice of Variables and the Set of Respondents Used to Estimate the 

Weighting Model). This section however will give a brief overview of the main finding 

in each chapter, and will synthesise these findings to answer the study’s three questions. 

Non-monotonic response patterns 

The thesis showed that when a non-monotonic response pattern applies, the weights 

resulting from the SWA may contain zero weights for some of the responding sample 

members in samples drawn for analysis from a waves-combination that does not contain 

all waves. This is because the SWA designs the weights by defining response as 
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responding at all waves up to and including the latest, whereas this is not necessarily the 

case for all sample members in the responding sample drawn from a possible 

combination of waves that does not contain all the waves. As a result, the SWA may 

isolate the influence of some responding sample members on estimates. It was therefore 

found that estimates resulting from the SWA are less precise, but they could also be 

biased if those respondents who are isolated by the SWA are different from those who 

are considered.  

In contrast, the analysis showed that the AWA (introduced in the thesis) may result in 

more accurate estimates compared to the SWA. This is because the AWA designs the 

weights by defining response as responding to the waves-combination under 

investigation, and hence weights from this approach do not contain zero weights for 

sample members responding in this waves-combination. Corollary, there will be no 

responding cases of which their influence on the estimate in question will be isolated. In 

other words, the AWA does take into account the fact that the response pattern is non-

monotonic. However, the evidences suggest that, overall, estimates resulting from the 

SWA and the AWA are similar and the differences are restricted to some estimates.  

Unknown eligibility whilst weighting 

It is unlikely that all sample members whose eligibility is unknown are eligible. 

However, the SWA does not recognise this. It assumes that all sample members for 

whom eligibility cannot be established during the estimation of the weights are eligible. 

Our investigation has shown that such treatment of unknown eligibility in the context of 

weighting may incorrectly result of larger weights as a consequence of including 
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influence from ineligible sample members (who are assumed as eligible by the SWA) in 

the construction of the weighs. The results indicate that the larger weights could affect 

the magnitude of the estimates, but it may also introduce more variability in the set of 

weights resulting from the SWA. Consequently, some estimates resulting from the SWA 

could be biased or/and less accurate.  

While it is not possible to identify eligibility status – at the case level - for all sample 

members, the thesis introduced another AWA by which it demonstrated how the effect of 

unknown eligibility (in terms of the larger weights) could be reduced. By reference to the 

population eligibility information from an external source, the AWA estimates the 

eligibility rate in the sample and use it to adjust the weights. The findings suggest that the 

adjusted weights result in similar estimates to the estimates produced from the SWA, but 

for some estimates, the AWA produced more precise and less biased estimates compared 

to the SWA.  

Subgroup-tailored weighting 

As it uses all sample members in weighting, the SWA relies on generic weighting 

variables that only predict the response propensity for the sample as a whole, and 

therefore it does not consider variables that are only important at a subgroup level. As 

non-response may differ (in terms of reasons) across subgroups in the same sample, the 

findings suggested that, for some subgroups, weights resulting from the SWA may not be 

the perfect adjustment for estimates based on these subgroups.  

In this respect, the AWA tailors the weighting for some subgroups (by using specific 

variables and respondents in the subgroups in question to create the weights) in the 
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sample. In general, the tailored-weights result in estimates that are similar to the 

estimates resulting from the SWA. However, for some estimates, the results indicate that 

the tailored-weights tackle non-response error – in the subgroups under consideration- 

better than weights based on the SWA (assuming that the variables used in the creation 

of the tailored-weights are more powerful in predicting response in the subgroups in 

question compared to the variables used in the SWA). 

According to all the findings, the research questions in this study can be answered as 

follows: 

1) Like any ordinary weighting approach, the SWA can deal adequately with the main 

aspects of the survey design. However, given that the SWA does not take into account a 

few important aspects of the survey that result from the longitudinal nature of the survey 

(non-monotonic response pattern, unknown eligibility and the choice of weighting 

variables and respondents), can the SWA deal with non-response error in all survey-

based estimates? 

The SWA cannot handle non-response error in all survey-based estimates. As a direct 

consequence of the complexity of longitudinal surveys coupled with the fact that the 

SWA does not take into account the three issues under investigation in this thesis, for 

some estimates, the SWA may not be successful in correcting the error.  

2) If ‘non-monotonic response pattern’, ‘unknown eligibility’ and ‘the choice of 

weighting variables and respondents’ are taken into account to develop AWAs, will the 

AWAs have a different impact (in terms of magnitude and variance) on survey-based 

estimates compared to the SWA? 
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Yes. Because they are developed by taking these issues (issues mentioned in the 

question) into account, the AWAs can also tackle non-response error, in the estimates 

that are not adjusted appropriately by the SWA.  

3) If the AWAs have a different impact on survey-based estimates as compared to the 

SWA, does this result in very different estimates (i.e. is the difference between the 

equivalent estimates resulting from the SWA and the AWAs significant)? 

In general, the results arrived at through all of the AWAs are consistent with the results 

from the SWA. In other words, generally, it can be said that the effect of the AWAs on 

survey-based estimates is similar to that of the SWA indicating no odd outcome from the 

alternative approaches. However, the AWAs seem to affect some of the estimates in the 

analysis differently. These estimates appear to be adjusted more appropriately with the 

AWAs reflecting, either increase in the sample size in some cases (chapter 1), or changes 

in the weights’ values and variance in other cases (chapter 2 and 3).  

It is therefore the recommendation of this thesis that survey organisations consider the 

issues investigated here, and plan to implement the alternatives alongside the SWA for 

more development on non-response weighting.  

Policy implication 

Dealing appropriately with non-response requires paying attention to three aspects of the 

phenomena: the first is understanding the mechanism by which non-response occurs; the 

second is putting together an effective data collection protocol to reduce non-response 

(e.g. use of incentive and mixed-mode designs); and the third is designing an efficient 

approach to dealing with non-response bias in estimation, e.g. through weighting 
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adjustment as suggested by the current study. However, despite the effort made to 

understand the mechanism of non-response (e.g. Goyder, 1987; Tourangeau et al, 2000), 

causes of non-response have not yet been understood at a “profound” level (Brick, 2013). 

Also, although data collection strategies that implement mixed-mode designs and 

incentives have been shown to increase response rates (e.g. De Leeuw, 2005; and Laurie 

and Lynn, 2009), a spate of research showed that the increase in response rates does not 

necessarily result in reduction in non-response bias (e.g. Curtin et al, 2000; and Groves, 

2006). As a result, relyiance on post-survey adjustments, such as weighting, is increasing 

(Brick, 2013).    

Therefore, survey organisations that apply weighting should pay more attention when 

establishing policies for weighting. One particular policy of the SWA is the production of 

a single set of weights that is based on a single modelling strategy. This policy aims at 

preparing one set of longitudinal weights at every wave and include it in the data file for 

public use. On the one hand, the aim of this policy is good since analysts who would like 

to use weights can easily find the weight-variable, and can use it in any analysis 

(multipurpose) since it is just one set (rather than digging in data files trying to find the 

appropriate weight-variable and might consequently end up with the wrong set of 

weights). On the other hand, the methodology of this policy may be of concern. Analysts 

always assume that the weight-variable reduces non-response error in any analysis and 

with any group of respondents from the sample. However, this is not necessarily the case. 

This study has used empirical findings to point out this fact.  

The main problem of only implementing the SWA is centred around the fact that, even 

for the same survey, the approach to creating powerful and accurate weights may differ 
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across different analyses objectives. Thus, the availability of alternatives such as the ones 

offered by this study is vastly useful. For sophisticated data analysts who understand the 

limitations of the SWA, but who may not have the data required for the construction of 

weights (e.g. initial probabilities of selection, auxiliary variables, etc…) that are most 

appropriate for their analyses, this is very convenient. For analysts who do not recognise 

the limitations of the SWA, the extra weights are a bonus. For survey organisations that 

design, collect and release longitudinal data, it is a development.  

Thus, in longitudinal surveys, it is worthwhile to create a number of sets of weights, 

especially for wave-combinations that obtain data on the same subject. This suggestion 

supports the recommendations of Lynn and Kaminska (2010) when they proposed 

criteria for designing sub-sets of non-response weights. In their proposal, Lynn and 

Kaminska recommended that weights should be created for wave-combinations that are 

more likely to be used for analysis.  

Also, using population information about survey eligibility to adjust the weights of the 

responding sample members is helpful. It reduces the weights of respondents who have 

similar characteristics to the ineligible sample members who were assumed to be eligible 

during the estimation of the weights. As a result, the influence of the ineligible sample 

members whose eligibility status is unknown will be reduced after the adjustment. This 

approach is similar – but not exactly the same - to that implemented in the Survey of 

Family, Income and Employment in New Zealand (SoFIE), which is presented by 

Statistics New Zealand (2011). SoFIE used information from New Zealand population 

census to determine the proportion of people who were not resident in the country 
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(ineligible). The figures were used to develop benchmarks of counts by age and sex, and 

counts by ethnicity and age. Weights were then calibrated to benchmarks.  

Additionally, although the idea of subgroup tailored-weighting is new and might have 

not been used before, the evidences from this study appear to support the fact that this 

approach is effective in reducing non-response error. This is because the tailored-weights 

can be designed using variables that are strongly related to the response probability in the 

sub-group under investigation. In the literature of weighting adjustment, there are a 

number of methods for choosing effective weighting variables when many variables are 

available. Brick (2013) provides a review of these methods. For example, search 

algorithm and regression models (Brick and Kalton, 1996). In these methods, the sample 

is divided into cells that discriminate between response and non-response or variables 

related with key outcome variables. These methods allow the identification of important 

variables interactions for bias reduction. Schouten (2007) is another example. He 

introduced a forward-backward strategy of variables selection similar to stepwise 

regression. These methods are improvement over the traditional approach of choosing 

weighting variables which relies on including demographic variables such as age, gender 

and geographical area even if they are not effective in reducing bias (Peytcheva and 

Groves, 2009). However, they still do not take into account the fact that the relation 

between a set of weighting variables and the response propensity may change 

dramatically across sub-groups in the sample. Therefore, combining any of these 

methods with the approach introduced in this study could be advantageous for selecting 

effective set of weighting variables.        
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In short, from the analysis point of view, a weighting policy that rests on implementing 

alternative approaches beside the SWA may be desirable and, above all, it could be very 

effective in dealing with non-response. From the survey organisation’s point of view, this 

may require re-establishing an existing weighting policy. It means extra time and effort 

to estimate more weighting models, involve population information to calibrate the 

weights and proper documentation on the new weighting before including weights in the 

data files. However, it is also a reflection of the development in the survey organisation 

in terms of the quality of what is offered to the public. 

Future research 

The complexity of longitudinal surveys makes the improvement of non-response 

weighting challenging. The scale of investigating alternatives should be extensive and 

multidimensional. To promote the understanding and generate comprehensive strategies 

with regard to weighting, there is a need for more research to allow further assessments. 

Exploring the following as future research directions can facilitate the attainment of this 

goal: 

 Reapplying the same approaches in this study on similar longitudinal data sets 

(e.g. data from the German Socio-economic Panel) may strongly support the 

findings of this study or otherwise lay out the foundation for different 

considerations.  

 Replicating the approach in chapter 1 on a different combination of waves (with 

different questionnaire topics); repeating the analysis in chapter 2 with different 
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substantive analyses; and reapplying the weighting strategy in chapter 3 on 

different sub-groups in the sample  

 The current study has introduced a number of alternative approaches; a future 

research may investigate a possibility of combining these techniques into one 

standardised and comprehensive weighting approach that can guide the 

development of non-response weights.  

 

Final statement  

Despite the benefit of adjustment weighting in terms of reducing non-response bias, in 

practice, and particularly in longitudinal surveys, weighting has encountered some 

obstacles (such as the ones investigated here) that precluded some of its advantages. In 

complex longitudinal surveys, weighting might not achieve all of the anticipated if it was 

done with an ordinary approach such as the SWA. Although the SWA can be helpful for 

a number of substantive analyses, in some cases its benefits may not be comprehensive 

as has been shown by this study. So, is it wise for new surveys to consider multiple 

approaches while establishing their weighting schemes? Is it worthwhile for existing 

surveys that only apply the SWA to introduce additional weighting approaches after all 

the waves that have been conducted? Would data analysts, who use weights in their 

analysis, prefer to continue using weights from the SWA or would they rather have the 

opportunity to alternate with weights based on the AWAs? And, if developing alternative 

weighting was intended in some survey organisations, should our introduced AWAs be 

considered in this development?   
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Chapter 1 appendices 

 

Appendix A.1: Earlier version of chapter 1 which was presented in the Second Italian 

Conference on Survey Methodology (ITACOSM), 2011. 

 

Non-response Weight Adjustments in Longitudinal Surveys 

Husam Sadig21 

Keywords: Non-response Error, Bias, Precision, Weighting. 

 

 
1. INTRODUCTION 

 

     The multi-wave feature in longitudinal surveys allows for data to be drawn for analysis from 

different combinations of waves. However, the set of responding units can differ across wave-

combinations offering potentially different subsamples for every possible combination. Thus, 

weights may be required for a number of combinations of waves too, as one set of weights might not 

be sufficient in handling non-response error in all subsets of data.  

     However, in the major longitudinal surveys in the world weighting for non-response is a single 

weighting strategy overlooking the fact that different wave-combinations can potentially provide 

different sets of respondents. In a single weighting strategy, weights are designed based on 

respondents from all waves up to the latest but used for analysis with data from any combination of 

waves. For instance, in the British Household Panel Survey (BHPS), longitudinal weights at any wave 

‘w’ are only available for a balanced panel from all waves up to wave ‘w’ (Taylor et al, 2010). 

Likewise, longitudinal weights in a current wave in the Swiss Household Panel (SHP) are designed to 

extrapolate to the population living in Switzerland at that wave using respondents from all waves up 

to the current (Plaza and Graf, 2008). This is also the case in the German Socio Economic Panel 

(GSOEP) and the Panel Study of Income Dynamics (PSID), where no particular combination of 

waves are provided with specially designed longitudinal weights; instead, weights in the latest wave 

are available for the set of respondents from all waves including the latest (Kroh, 2009; Gouskova, 

2001). 

     This single non-response weighting strategy, which is used in almost every survey, could be 

helpful and practical in reducing non-response bias, but may be inadequate in respect to the 

subsample being used for analysis. For example, for analytical purposes, data can be obtained for 

analysis from all waves or only subset of waves. Potentially, the set of responding participants is 

different in each case. Thus, a set of weights based on respondents at all waves will surely ignore any 
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group of respondents who are not present in all waves. Therefore, it is suboptimal if used with data 

from a subset of waves. The sub-optimality is based on the loss of respondents who should 

contribute to the estimation process. Furthermore, if those who responded to a particular 

combination of waves are systematically different (in terms of what is being measured) from those 

who responded at all waves, non-response bias might not be removed despite the use of non-

response weights.  

     In theory, the way out of this problem is to design a subset of non-response weights for every 

possible combination of waves. However, providing weights for all possible combinations of waves 

might not be achievable in practice sometimes. For example, after 𝑘 waves are conducted, there is a 

(2𝑘-1) possible combination of waves to provide weights for. Moreover, this number increases 

rapidly when more waves are added, and it could even outnumber the number of variables in the 

survey in a long term panel. However, in practice, not every possible combination of waves is of use 

for researchers. Therefore, only desirable subsets of weights should be produced. Nevertheless, it is a 

challenging task to identify combinations of waves that will be of interest for data users. But the 

possibility that a single weighting strategy might not be sufficient generates interest in the 

development of more subsets of weights. Hence, the investigation of this is an important aspect of 

weighting panel data.  

     Very little work has been done in this area. In fact, the only effort I have come across is by Lynn 

and Kaminska (2010), suggesting criteria for developing subsets of longitudinal non-response 

weights.    

     A common feature of longitudinal surveys is a frequently asked module of questions where 

certain waves are conducted to obtain information about specific topic(s). For example, wave 8, 13 

and 18 in the BHPS provide data on neighborhood, expectations of relationships and marriage in 

future. Thus, it might be useful to provide BHPS data users with a subset of weights designed 

specifically for the analysis of data from these waves. 

     In this paper, I use data from wave 1 to 15 from the British Household Panel Survey (BHPS) to 

investigate whether the use of a single weight adjustment in longitudinal surveys is adequate to 

handle non-response error. I also evaluate the choice of providing a subset of weights to a 

combination of waves that carry the same module of questions.  

 
2. METHODOLOGY 

 
This paper used data from wave 5, 10 and 15 (waves collect data about wealth, assets and debts) 

from the BHPS and designed a subset of non-response weights for this combination. Also, another 

set of non-response weights is designed based on respondents at all waves up to wave 15. Analysis 

was carried out on savings and debts data from wave 5, 10 and 15 using the two sets of weights. The 

issue of interest here is to compare estimation results produced from the use of the two sets of 

weights. 

     Both sets of weights were created using a model based method. The analysis was restricted to 

respondents aged 16 or above and alive during the course of the 15 waves. A large mixture of 

continuous and categorical variables from wave 1 was used to model the response propensity in the 
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two wave-combinations and create the weights. These variables were chosen from three categories of 

variables that are thought to affect the response propensity. These are: interview and interviewer 

characteristics (e.g. interviewer’s sex and length of interview), household characteristics (e.g. 

household size and household type) and individual characteristics (e.g. age, sex and savings) from 

wave 1 were used to estimate each model. 

     The British Household Panel Survey provides detailed information on savings and debts at the 

individual level for the years 1995, 2000 and 2005, representing waves 5, 10 and 15 respectively. In 

each of these waves, respondents were asked if they have money in savings and whether they owe 

money. Based on this setting, tow random effects logistic regression models were used to estimate 

the determinants of having money in savings or being in debts respectively. However, each model 

was estimated twice using the two different longitudinal sets of weights. The main idea is to assess 

the change on the regression coefficients when varying weight adjustments procedures. In particular, 

the point of interest is to spot the influence of creating non-response longitudinal weights based on 

the consideration of combination of waves with the same module of questions.  

 
3. RESULTS 

 
As seen in Table 1., there is much to be learnt from the comparison between models. For instance, 

the sample size associated with the use of weights based on the respondents from all waves (4,654) is 

smaller than the sample size associated with the weights based on respondents from wave 5, 10 and 

15 (5,132) by 478 respondents. This is because the former set of weights assigns a weight of zero to 

any case that is not present in all the 15 waves.  

Focussing on models concerned with savings, having a second job and being unemployed are 

significant in the first but not the second model. This is clearly showing the effect of the increase in 

the sample size used to estimate the first model on these particular variables. In other words, using a 

weights adjustment method based on respondents in all waves which is associated with the loss of 

478 respondents in the sample, results in underestimating the importance of having a second job and 

being unemployed. Moreover, although living with a partner is not significant in any of the two 

models, the signs of the coefficients in the two models are different.  

     As for debts, the coefficients of having a second job are highly significant in both models; 

however, they are different in magnitude. Also, having a dependent child is significant once weights 

based on waves 1, 5, 10 and 15 are used to estimate the model. 

 
4. DISCUSSION 

 
The substantive comparison between the models in this paper shows that using ordinary longitudinal 

non-response weights to analyse wealth data from waves 5, 10 and 15 from the BHPS does not take 

into account 478 respondents who have actually provided data usable for analysis in this 

combination of waves. Compared to a weighting strategy that is designed specifically to consider 

these 478 respondents, the ordinary weighting strategy provides different results. 
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     Weights from a single weighting strategy do take care of a part of non-response error on several 

estimates, but clearly fail in tackling the error introduced in other estimates due to the loss of 

information. 

     In longitudinal surveys non-response is not a one-off event, it is rather dynamic and can take 

different patterns among different sub-periods of time during the life of the panel. Therefore, non-

response error can vary not just between survey estimates but also within and between sub-periods 

of times for the same estimate in the same survey. Consequently, different combinations of data 

collection points might suffer from different sizes of non-response error. This variation might be 

due to changes in the sample size and/or the sample composition among different combinations of 

waves. Thus, an ordinary weighting strategy, which does not take into account the changes in the 

responding sample between wave-combinations, can only deal with the fixed part of non-response 

error. Instead, a subset of weights that takes into account the change in the responding sample can 

tackle the fixed as well as the variable part of non-response error. 

     The consideration of wave-combinations that have the same module of questions as a criterion to 
design subsets of weights evidently showed an impact on estimates. Hence, this can be considered as 
a more adequate strategy. However, other features of longitudinal surveys may push for different 
types of considerations to be taken into account too. For example, to enhance the accuracy of survey 
estimates, survey organisations sometimes add extra information to the original sample. For instance, 
two samples (from Scotland & Wales) were added to BHPS in wave 9. Thus, for BHPS, providing 
subsets of weights for wave 9 onwards might be of interest too. 
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Table a.1. Logistic regression models of possession of savings and debt. 
 
 

 
 Having Savings Having Debts 

Using 
weights 

based on 
waves 1, 5, 
10, and 15 

Using weights 
based on all 
waves up to 

wave 15 

Using 
weights 

based on 
waves 1, 5, 
10, and 15 

Using weights 
based on all 
waves up to 

wave 15 

Year 2000         0.057 0.080         0.037   0.060 

Year 2005         0.025 0.039    0.130**      0.116** 

Female     0.208***      0.201***    0.134**      0.147** 

Age    -0.007***    -0.008***    -0.040***      -0.041*** 

Financially okay    -0.841***    -0.832***     0.436***       0.468*** 

Having financial deficits    -2.384***    -2.439***     1.400***       1.401*** 

Mortgage payer        -0.117*        -0.122*     1.025***       0.995*** 

Council tenant    -0.416***    -0.422***     0.961***       0.948*** 

Private renter    -0.477***    -0.509***     0.922***       0.886*** 

Having a second job    -0.246***        -0.089    -0.466***     -0.242*** 

Having a dependent child    -0.302***    -0.297***         0.121*         0.105 

Living with partner         0.001        -0.012         0.024         0.062 

Member of a large household   -0.473**   -0.478**        -0.282        -0.247 

Unemployed        -0.116*        -0.152    -0.234***    -0.270*** 

Out of the labour force    -1.129***    -1.121***    -0.963***    -0.992*** 

Annual income/1000     0.018***     0.019***  0.004*  0.004* 

Constant     0.894***     0.933***         0.172         0.183 

N         5132         4654         5132         4654 

                         Note: * p< 0.10, ** p< 0.05, *** p< 0.01. 
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Appendix A.2: Effect of the imputation of the amounts of savings and debt. 

 

Table a.2 The distribution of the imputed and un-imputed amounts of savings and debts. 

 Mean Std.dev Min Q1 Median Q3 Max Skewness Kurtosis N% 

Saving 67 186 0 0 0 60 5,000 9.9 176 80.1% 

Imputed saving 67 182 0 0 0 65 5,000 9.4 165.6 100% 

Debt 1,430 6,250 0 0 0 500 400,000 28.2 1365.8 92.8% 

Imputed debt 1,489 6,845 0 0 0 600 400,000 31.2 1532.7 100% 

* The results indicate that the imputed variables have similar distributions to the un-imputed variables.  
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Chapter 2 appendices 

Appendix B.1: Males death registration in England and Wales from 1992 to 2008. 

Table b.1 Male registered deaths by single-year age (1992 to 2008). 

Age 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 

16 128 118 119 109 134 157 153 129 135 112 138 121 112 115 129 116 122 

17 205 205 190 192 208 211 178 198 176 189 192 175 177 193 193 173 174 

18 257 244 193 247 230 261 273 234 258 263 251 251 224 226 212 193 198 

19 282 260 227 252 225 242 271 264 250 280 235 220 218 246 231 219 213 

20 285 318 292 278 241 281 241 239 258 256 277 275 257 231 243 229 266 

21 333 318 276 324 267 310 251 240 256 250 252 253 212 248 229 252 222 

22 337 333 318 290 284 271 284 246 259 248 278 279 262 242 262 241 245 

23 316 307 314 330 295 290 302 266 279 229 249 286 274 260 241 243 264 

24 350 321 331 333 318 316 326 274 276 293 254 255 252 236 237 253 258 

25 316 345 329 337 348 375 322 297 286 288 276 266 268 281 276 255 236 

26 355 342 376 350 313 346 371 334 287 281 282 257 268 248 253 280 287 

27 365 381 349 391 339 318 380 364 368 324 298 242 263 248 288 269 277 

28 388 360 373 398 392 344 386 384 360 320 330 307 275 212 238 294 303 

29 377 416 358 415 400 406 393 400 399 394 349 335 299 280 283 262 287 

30 382 374 399 413 429 380 429 409 394 361 406 363 299 329 303 298 289 

31 400 426 436 448 469 428 423 396 401 418 396 399 360 311 323 322 307 

32 373 357 409 443 458 414 470 458 456 418 435 426 428 365 382 370 300 

33 385 427 464 449 433 444 493 463 442 491 434 428 414 433 378 382 378 

34 410 411 455 455 446 460 444 473 456 535 459 455 407 439 408 406 424 

35 432 437 426 437 482 415 492 513 499 493 474 483 490 450 467 461 496 

36 433 443 456 476 457 408 492 490 552 505 536 510 532 515 494 487 468 

37 436 436 461 484 470 485 515 495 595 520 577 555 541 562 520 498 498 

38 559 510 468 516 488 513 497 544 534 581 541 556 550 534 550 526 600 

39 553 534 527 526 586 557 556 559 586 623 604 614 625 581 595 607 581 

40 554 580 548 560 613 570 550 592 620 663 644 674 652 643 619 646 659 

41 636 621 618 646 602 607 629 653 669 621 671 706 610 724 704 656 742 

42 659 666 652 683 656 663 629 651 653 700 687 734 729 728 736 804 727 

43 773 709 727 763 741 721 719 676 677 728 776 813 810 822 774 773 823 

44 917 836 827 769 766 779 807 745 750 750 745 795 821 803 856 806 825 

45 1,016 975 850 887 924 811 880 827 783 828 900 797 826 899 881 885 929 

46 949 1,101 1,017 991 981 879 908 958 879 904 912 931 911 927 927 911 975 

47 1,072 1,052 1,176 1,124 1,062 1,080 1,049 993 1,005 1,010 1,020 1,019 974 990 1,010 954 1,072 

48 1,156 1,183 1,040 1,359 1,244 1,162 1,113 1,055 1,059 1,074 1,051 1,075 1,047 1,109 1,087 1,026 1,065 

* Continued in the next page. Source: Office for National Statistics (www.ons.gov.uk). 
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Table b.1 (continued) 

Age 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 

49 1,214 1,239 1,235 1,258 1,493 1,359 1,216 1,226 1,253 1,227 1,226 1,133 1,150 1,107 1,135 1,132 1,159 

50 1,262 1,360 1,310 1,410 1,289 1,567 1,419 1,396 1,473 1,252 1,306 1,317 1,197 1,247 1,207 1,156 1,297 

51 1,300 1,414 1,456 1,448 1,416 1,482 1,682 1,611 1,474 1,440 1,353 1,366 1,387 1,363 1,328 1,261 1,322 

52 1,559 1,469 1,522 1,564 1,663 1,584 1,641 1,863 1,713 1,630 1,554 1,481 1,532 1,424 1,403 1,340 1,360 

53 1,749 1,746 1,546 1,662 1,696 1,776 1,746 1,790 1,994 1,861 1,730 1,670 1,591 1,462 1,596 1,568 1,455 

54 1,840 1,890 1,729 1,696 1,778 1,865 1,952 1,914 1,722 2,198 1,959 1,908 1,802 1,630 1,682 1,660 1,635 

55 2,104 2,055 1,972 1,932 1,867 1,845 2,051 2,025 1,982 1,957 2,314 2,300 1,932 1,897 1,834 1,857 1,778 

56 2,237 2,246 2,123 2,192 2,154 1,993 2,052 2,151 2,287 2,197 2,095 2,513 2,241 2,048 2,109 2,014 1,875 

57 2,453 2,589 2,456 2,386 2,294 2,371 2,108 2,344 2,288 2,340 2,318 2,416 2,686 2,459 2,298 2,098 2,095 

58 2,736 2,731 2,549 2,580 2,572 2,539 2,550 2,296 2,245 2,491 2,547 2,467 2,328 2,764 2,646 2,501 2,227 

59 2,984 2,889 2,865 2,797 2,807 2,772 2,714 2,621 2,423 2,505 2,650 2,672 2,525 2,578 2,925 2,825 2,608 

60 3,422 3,280 2,998 3,144 3,085 3,009 2,946 2,948 2,834 2,580 2,734 2,930 2,829 2,888 2,777 3,065 2,997 

61 3,835 3,726 3,468 3,248 3,326 3,283 3,243 3,155 3,188 2,976 2,718 2,892 2,991 2,991 3,033 2,992 3,364 

62 4,229 4,136 3,862 3,709 3,559 3,468 3,487 3,415 3,347 3,316 3,185 2,993 3,139 3,169 3,220 3,236 3,108 

63 4,615 4,531 4,266 4,141 3,974 3,683 3,740 3,651 3,628 3,519 3,453 3,363 2,951 3,219 3,362 3,371 3,439 

64 5,059 5,085 4,765 4,698 4,473 4,147 4,056 3,926 3,781 3,718 3,793 3,745 3,495 3,279 3,347 3,549 3,602 

65 5,497 5,478 5,222 5,046 4,993 4,683 4,417 4,286 4,192 3,981 4,057 3,943 3,864 3,647 3,412 3,596 3,714 

66 6,191 6,057 5,558 5,605 5,292 5,048 4,906 4,706 4,399 4,307 4,238 4,208 4,180 3,939 3,824 3,597 3,689 

67 6,700 6,781 6,231 6,034 5,701 5,642 5,465 5,262 4,871 4,605 4,584 4,570 4,382 4,333 4,188 3,981 3,729 

68 7,176 7,072 6,784 6,455 6,270 6,066 5,829 5,666 5,332 4,895 4,868 4,906 4,677 4,555 4,515 4,471 4,346 

69 7,780 7,656 7,021 7,160 6,798 6,446 6,219 6,180 5,893 5,525 5,309 5,090 5,024 4,775 4,647 4,793 4,688 

70 8,563 8,113 7,696 7,588 7,569 7,027 6,829 6,581 6,206 6,035 5,721 5,361 5,246 5,039 5,001 4,825 4,981 

71 9,583 9,253 8,195 8,061 7,825 7,673 7,287 7,132 6,611 6,483 6,420 6,057 5,529 5,556 5,331 5,153 5,290 

72 9,948 10,018 8,892 8,612 8,458 8,026 7,934 7,603 7,111 6,840 6,784 6,478 6,241 5,840 5,604 5,541 5,562 

73 7,464 10,472 10,226 9,548 8,820 8,495 8,225 8,226 7,784 7,171 7,031 6,999 6,635 6,353 5,887 5,699 5,963 

74 7,455 7,836 10,315 10,415 9,733 9,169 8,878 8,375 8,402 7,796 7,572 7,452 6,931 6,982 6,472 6,174 5,900 

75 8,178 7,676 7,618 10,693 10,673 9,727 9,064 8,930 8,510 8,440 8,127 7,717 7,436 7,025 7,010 6,782 6,506 

76 9,282 8,667 7,437 8,004 10,777 10,712 9,915 9,241 8,766 8,651 8,647 8,229 7,636 7,647 7,352 7,354 7,015 

77 10,095 9,491 8,387 7,633 7,722 10,860 10,542 10,095 9,216 8,967 8,864 8,658 8,152 7,918 7,624 7,584 7,517 

78 10,244 10,288 9,268 8,775 7,611 7,779 10,867 10,771 10,007 9,216 8,986 8,723 8,662 8,203 7,845 7,774 7,772 

79 9,897 10,571 9,754 9,527 8,507 7,515 7,881 10,919 10,468 9,877 9,461 9,371 8,775 8,593 8,360 8,001 8,210 

80 9,875 10,259 9,959 9,871 9,404 8,399 7,424 7,571 10,467 10,435 9,954 9,368 8,896 8,702 8,602 8,278 8,236 

81 9,323 9,844 9,522 9,877 9,615 8,795 8,100 7,221 7,475 10,163 10,620 10,009 8,908 8,994 8,539 8,682 8,635 

82 9,155 9,345 9,131 9,737 9,460 9,292 8,605 8,095 7,025 7,309 10,269 10,443 9,475 8,809 8,821 8,790 8,631 

83 8,650 8,986 8,596 9,124 9,035 9,077 9,015 8,471 7,603 6,898 7,103 10,215 9,785 9,227 8,779 8,677 8,586 

84 7,963 8,590 8,323 8,376 8,360 8,503 8,635 8,649 7,912 7,282 6,462 6,863 9,642 9,543 8,980 8,651 8,691 

85 7,094 7,916 7,457 7,736 7,900 7,982 8,049 8,139 7,891 7,644 6,962 6,624 6,356 8,902 9,092 8,710 8,491 

86 6,317 6,912 6,628 7,200 7,181 7,133 7,281 7,393 7,478 7,368 7,067 6,594 5,890 6,191 8,653 8,744 8,671 

87 5,576 5,989 5,853 6,315 6,464 6,624 6,531 6,650 6,736 6,660 6,864 6,640 6,029 5,484 5,577 8,119 8,262 

88 4,676 5,214 5,046 5,429 5,609 5,759 5,759 6,025 5,940 6,203 6,354 6,300 5,846 5,533 4,816 5,262 7,699 

89 3,933 4,353 4,275 4,547 4,807 5,010 5,083 5,228 5,078 5,379 5,644 5,782 5,433 5,461 4,961 4,599 4,943 

90+ 9,165 14,087 13,818 15,418 16,117 16,800 17,510 18,522 19,020 19,579 20,818 22,124 21,775 22,976 23,083 23,496 23,810 

* Source: Office for National Statistics (www.ons.gov.uk). 
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 Appendix B.2: Female death registration in England and Wales from 1992 to 2008. 

 

Table b.2 Female registered deaths by single-year age (1992 to 2008). 

Age 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 

16 68 80 59 72 80 75 99 66 65 81 79 64 79 72 62 65 47 

17 95 83 74 76 84 92 92 97 69 83 84 76 72 80 84 83 71 

18 104 82 74 82 90 91 97 90 118 86 86 83 87 90 91 85 90 

19 108 98 91 92 99 87 92 86 107 77 99 98 113 94 88 81 94 

20 120 120 84 84 97 84 88 93 101 92 84 92 89 96 88 75 86 

21 127 116 106 101 108 103 80 105 88 104 97 90 98 85 83 99 94 

22 121 105 114 108 90 96 101 110 98 96 87 108 95 94 88 89 92 

23 122 103 110 107 111 92 96 73 105 92 97 103 114 107 86 83 92 

24 125 134 113 121 111 128 101 103 112 88 102 92 98 96 99 107 94 

25 131 125 117 117 136 125 137 95 116 100 103 98 110 106 107 88 98 

26 137 159 135 133 146 119 123 129 116 128 105 123 115 114 128 113 120 

27 124 184 153 190 157 119 142 129 136 126 108 112 103 128 110 94 111 

28 176 174 141 152 169 131 152 178 140 124 118 134 116 112 129 116 120 

29 172 154 179 161 165 186 163 139 156 154 142 155 132 127 111 132 137 

30 157 189 183 184 192 170 195 186 174 152 153 176 167 127 133 130 134 

31 196 197 195 177 182 213 198 181 195 197 196 174 169 152 129 126 140 

32 206 209 227 231 236 203 190 190 195 216 201 193 186 181 140 165 171 

33 205 189 230 250 239 214 245 238 227 210 216 210 204 207 193 179 198 

34 218 228 212 247 260 231 223 242 247 258 255 261 234 227 202 217 216 

35 256 216 248 271 262 283 265 269 286 315 251 249 257 214 234 236 215 

36 253 269 270 234 302 303 280 301 316 309 276 285 277 269 265 229 224 

37 268 270 289 268 283 315 300 301 300 301 300 288 309 308 289 276 289 

38 289 258 287 317 336 322 325 302 334 350 340 359 364 316 308 311 325 

39 328 313 337 340 328 355 340 352 343 354 364 359 372 359 370 355 358 

40 370 357 378 358 354 356 375 366 394 369 376 420 374 395 387 422 393 

41 379 436 407 404 397 360 426 420 418 414 378 419 430 396 417 441 440 

42 486 443 438 424 433 425 395 459 459 424 446 447 452 485 462 476 472 

43 470 508 487 464 494 485 449 484 492 535 497 501 488 502 514 523 532 

44 618 541 538 562 483 530 550 519 511 487 539 557 532 561 556 518 563 

45 693 691 637 614 566 546 561 561 541 548 571 551 563 537 594 614 597 

46 666 756 752 680 634 597 586 591 630 614 643 623 640 571 573 599 675 

47 685 717 853 781 720 760 640 663 680 642 664 704 688 660 665 666 659 

48 735 733 768 909 817 818 740 758 695 709 754 723 696 757 762 746 727 

* Continued in the next page. Source: Office for National Statistics (www.ons.gov.uk). 
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Table b.2 (continued) 

Age 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 

49 752 763 809 872 921 882 881 822 806 787 785 770 717 794 748 729 744 

50 808 907 913 925 949 1,054 1,035 1,002 919 916 823 872 855 832 855 840 907 

51 795 887 875 1,040 1,038 991 1,181 1,073 975 984 896 919 908 878 840 861 939 

52 980 954 922 1,043 1,045 1,085 1,066 1,222 1,234 1,093 1,018 1,014 877 982 967 869 915 

53 1,079 1,044 1,043 1,052 1,090 1,130 1,119 1,077 1,355 1,198 1,170 1,128 1,047 1,020 1,022 1,026 961 

54 1,143 1,150 1,106 1,071 1,061 1,192 1,268 1,230 1,273 1,493 1,365 1,250 1,148 1,144 1,073 1,122 1,167 

55 1,218 1,248 1,193 1,274 1,168 1,153 1,294 1,302 1,339 1,302 1,530 1,518 1,264 1,252 1,186 1,215 1,178 

56 1,322 1,332 1,288 1,368 1,262 1,200 1,245 1,340 1,429 1,410 1,440 1,657 1,531 1,429 1,409 1,290 1,230 

57 1,530 1,518 1,438 1,418 1,492 1,438 1,346 1,393 1,481 1,515 1,534 1,411 1,760 1,708 1,456 1,448 1,345 

58 1,636 1,633 1,463 1,607 1,617 1,575 1,535 1,419 1,460 1,546 1,560 1,617 1,570 1,856 1,699 1,590 1,499 

59 1,794 1,821 1,710 1,686 1,733 1,715 1,704 1,678 1,547 1,579 1,639 1,782 1,687 1,672 2,039 1,832 1,803 

60 2,074 2,006 1,833 1,830 1,837 1,928 1,864 1,902 1,774 1,632 1,730 1,871 1,858 1,719 1,735 2,124 2,055 

61 2,369 2,324 2,081 1,986 2,009 2,069 1,968 1,998 1,919 1,929 1,770 1,853 1,848 1,956 1,958 2,028 2,380 

62 2,624 2,619 2,336 2,226 2,171 2,213 2,158 2,134 2,069 2,029 2,013 1,830 1,913 2,035 2,100 1,996 2,047 

63 2,830 2,916 2,690 2,551 2,304 2,246 2,259 2,297 2,184 2,304 2,181 2,091 1,985 2,036 2,170 2,324 2,211 

64 3,188 3,046 2,942 2,864 2,721 2,516 2,499 2,486 2,520 2,362 2,410 2,371 2,233 2,134 2,196 2,319 2,439 

65 3,603 3,488 3,261 3,369 3,132 2,990 2,687 2,680 2,608 2,596 2,480 2,642 2,420 2,401 2,191 2,248 2,499 

66 3,843 3,864 3,627 3,528 3,336 3,404 3,106 2,917 2,862 2,720 2,828 2,682 2,717 2,772 2,521 2,380 2,392 

67 4,231 4,241 3,987 3,713 3,778 3,675 3,604 3,397 3,109 2,948 2,959 2,975 2,850 2,932 2,803 2,699 2,568 

68 4,814 4,592 4,424 4,332 4,197 4,034 3,848 3,718 3,470 3,299 3,198 3,191 3,213 3,013 3,127 2,885 2,913 

69 5,190 5,111 4,813 4,765 4,664 4,285 4,349 4,141 3,999 3,667 3,469 3,473 3,371 3,331 3,105 3,312 3,198 

70 5,882 5,792 5,367 5,273 5,213 4,879 4,711 4,600 4,343 4,224 3,867 3,743 3,526 3,486 3,485 3,558 3,492 

71 6,692 6,482 5,871 5,769 5,552 5,485 5,261 4,993 4,762 4,675 4,562 4,202 3,865 3,736 3,748 3,709 3,692 

72 7,451 7,349 6,694 6,370 6,193 6,096 5,915 5,554 5,088 5,048 5,045 4,886 4,460 4,301 4,004 3,991 4,004 

73 5,757 8,082 7,566 7,299 6,819 6,651 6,331 6,164 5,604 5,522 5,432 5,380 5,038 4,628 4,436 4,344 4,441 

74 5,960 6,261 8,168 8,248 7,578 7,054 6,930 6,794 6,473 5,940 5,805 5,827 5,581 5,313 5,082 4,777 4,684 

75 6,996 6,271 6,324 8,795 8,624 8,108 7,335 7,254 6,897 6,701 6,617 6,343 6,015 5,887 5,642 5,262 5,054 

76 7,990 7,515 6,370 6,855 9,305 9,125 8,535 8,054 7,543 7,229 7,190 6,937 6,456 6,389 6,028 6,020 5,782 

77 9,011 8,692 7,570 6,797 7,249 9,807 9,528 8,884 8,275 7,849 7,681 7,650 7,022 6,767 6,559 6,544 6,327 

78 9,569 9,724 8,666 8,105 7,391 7,543 10,217 10,212 9,073 8,414 8,451 8,171 7,796 7,470 7,060 6,858 6,956 

79 10,066 10,465 9,651 9,359 8,610 7,536 7,761 10,590 10,222 9,569 9,010 8,992 8,059 8,194 7,791 7,539 7,445 

80 10,494 10,981 10,588 10,537 9,784 8,922 7,817 8,220 10,872 10,765 10,244 9,721 8,870 8,633 8,253 8,193 8,040 

81 10,879 11,250 10,808 11,152 10,993 9,969 9,180 8,151 8,188 11,474 11,397 10,719 9,691 9,445 8,935 8,808 8,771 

82 11,211 11,665 11,155 11,373 11,582 11,458 10,431 9,646 8,287 8,609 12,038 12,172 10,686 10,058 9,431 9,398 9,222 

83 11,570 12,123 11,319 11,514 11,929 11,783 11,479 10,644 9,647 8,518 8,839 12,576 11,695 11,261 10,230 10,065 9,817 

84 11,762 12,234 11,544 11,929 11,849 11,758 11,998 11,705 10,647 9,908 8,746 9,413 12,114 12,205 11,281 10,724 10,413 

85 11,441 12,223 11,703 11,919 11,843 11,827 11,683 12,295 11,677 10,705 10,101 9,277 9,117 12,407 12,224 11,637 11,024 

86 11,245 11,787 11,466 11,935 12,059 11,817 11,771 12,040 11,723 11,435 10,827 10,429 8,732 9,016 12,180 12,527 11,694 

87 10,895 11,593 10,970 11,484 11,707 11,543 11,460 11,649 11,465 11,642 11,580 11,218 9,659 8,663 8,837 12,297 12,668 

88 9,923 10,891 10,457 11,017 11,208 11,364 11,259 11,201 11,064 11,141 11,590 11,586 10,276 9,604 8,336 8,697 12,730 

89 9,215 10,212 9,621 10,137 10,414 10,876 10,795 10,912 10,422 10,741 11,074 11,440 10,511 10,120 8,907 8,161 8,836 

90+ 42,751 48,212 46,465 50,987 52,117 54,062 55,682 58,390 57,462 58,488 61,277 64,018 61,193 63,060 61,384 62,433 62,875 

* Source is Office for National Statistics (www.ons.gov.uk). 
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Appendix B.3: Male resident population in England and Wales from 1992 to 2008. 

 

Table b.3 Male residents by single-year age (1992 to 2008).                                                                                                                          Thousands  

Age 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 

16 310.8 322.7 318.9 326.8 326.7 324.9 329 330.6 327.9 343.7 343.3 350.1 360.8 358.5 361.3 367.9 360.4 

17 315 326.9 323.1 331 330.9 329.1 333.2 330.6 330.7 330.6 347.1 346.9 353.9 365.6 361.3 364.7 370.6 

18 318.2 330.1 326.3 334.2 334.1 332.3 336.4 334.9 330.6 321.2 334 352.2 352.4 359.3 369.6 366 367.9 

19 307.4 319.3 315.5 323.4 323.3 321.5 325.6 337.6 335.2 313.9 325.2 341.9 359.5 359.8 366.8 376.8 370.4 

20 284 295.9 292.1 300 299.9 298.1 302.2 326.1 340.4 325.2 315.8 329.9 346.3 365.5 363.5 374.2 380.8 

21 280.6 292.5 288.7 296.6 296.5 294.7 298.8 304.6 328.7 325.7 327.4 320.5 335.3 353.8 373.6 373 379.7 

22 294 305.9 302.1 310 309.9 308.1 312.2 302.4 308.2 312.8 328.4 333.6 326.9 344.4 367.5 384.6 379.6 

23 308.5 320.4 316.6 324.5 324.4 322.6 326.7 317.0 306.9 297.4 316.6 336.3 340.6 336.8 358.3 379.3 391.9 

24 321.3 333.2 329.4 337.3 337.2 335.4 339.5 332.4 322.2 297.5 301.6 325.6 343.5 350.8 349.1 370.1 386.5 

25 347.4 359.3 355.5 363.4 363.3 361.5 365.6 346.1 340.6 318.8 301.2 311.8 331 349.7 360.1 356.6 376.8 

26 371.6 383.5 379.7 387.6 387.5 385.7 389.8 371.5 353.3 334.4 321.8 311.6 316.8 336.9 359.3 367 363 

27 391.2 403.1 399.3 407.2 407.1 405.3 409.4 395.5 378.3 345.8 336.9 324.2 316.2 322.1 341.7 365.6 373 

28 390.1 402 398.2 406.1 406 404.2 408.3 414.7 402.1 368.5 348 337.9 328.8 321.4 327.6 348 371.4 

29 402.6 414.5 410.7 418.6 418.5 416.7 420.8 413.1 420.9 388.1 370.2 348.7 341.8 333.4 329.5 333.1 353.2 

30 403.5 415.4 411.6 419.5 419.4 417.6 421.7 424.9 418.5 398.6 389.1 368.5 348.7 343.0 337.9 329 336.6 

31 415.3 427.2 423.4 431.3 431.2 429.4 433.5 425.2 429.7 396.1 399.5 387.2 368.5 349.6 347.1 337.2 331.7 

32 423.7 435.6 431.8 439.7 439.6 437.8 441.9 436.3 428.7 406.0 396.7 398.0 387.1 369.4 354.5 346.4 339.8 

33 431.7 443.6 439.8 447.7 447.6 445.8 449.9 444.2 439.8 409.6 406.9 395.2 397.7 387.6 372.6 353.8 348.8 

34 430.9 442.8 439 446.9 446.8 445 449.1 451.8 453.4 420.4 410.4 405.0 394.9 398.2 386.7 371.8 355.8 

35 420.1 432 428.2 436.1 436 434.2 438.3 450.7 452.2 412.4 419.9 408.6 405.5 396.9 397.4 388.3 355.8 

36 407.8 419.7 415.9 423.8 423.7 421.9 426 439.8 441.1 413.0 411.4 418.5 409 407.2 396.4 398.7 355.8 

37 396.5 408.4 404.6 412.5 412.4 410.6 414.7 427.3 428.5 410.1 411.7 417.9 418.9 410.6 405.9 397.6 398.2 

38 375.6 387.5 383.7 391.6 391.5 389.7 393.8 416.2 417.3 404.0 409.1 418.8 418.1 420.4 411 406.8 397 

39 362.3 374.2 370.4 378.3 378.2 376.4 380.5 395.3 396 394.9 403.1 414.4 418.9 419.2 422 411.8 397 

40 353.2 365.1 361.3 369.2 369.1 367.3 371.4 381.3 382.1 385.6 394.5 406.6 413.7 418.5 419.3 421.6 411.2 

41 339.8 351.7 347.9 355.8 355.7 353.9 358 372.2 372.7 372.1 385.7 396.4 405.7 413.0 419.4 421.6 420.9 

42 327.1 339 335.2 343.1 343 341.2 345.3 359.6 360.4 365.0 372.6 386.6 395.6 405.1 412.7 418.7 417.9 

43 316.7 328.6 324.8 332.7 332.6 330.8 334.9 345.9 346.1 360.3 365.8 372.7 385.6 394.7 402.7 412 417.8 

44 321.1 333 329.2 337.1 337 335.2 339.3 335.2 334.9 348.7 361 365.5 371.7 384.8 392.8 402.1 411 

45 318.8 330.7 326.9 334.8 334.7 332.9 337 339.3 338.9 336.3 347.2 323.9 364 371.0 383.7 390.2 401.3 

46 311.2 323.1 319.3 327.2 327.1 325.3 329.4 336.9 336.4 327.7 335 320.8 357.7 363.2 383.6 381.3 389.4 

47 318 329.9 326.1 334 333.9 332.1 336.2 329.2 328.7 329.9 326.1 322.0 344.2 356.8 362.5 366.3 380.4 

48 326 337.9 334.1 342 341.9 340.1 344.2 335.8 335.1 326.8 328.2 331.4 331.6 343.3 357.8 360.1 365.4 

* Continued in the next page. Source: statistics.gov.uk.  



295 

Table b.3 (continued)                                                                                                                                                                                       Thousands 

Age 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 

49 338 349.9 346.1 354 353.9 352.1 356.2 343.7 343.1 323.3 325.4 342.6 323 330.6 342.4 355.5 359.2 

50 361.5 373.4 369.6 377.5 377.4 375.6 379.7 355.2 354.5 324.3 321.8 323.9 325.1 321.7 329.1 340.7 354.7 

51 397 408.9 405.1 413 412.9 411.1 415.2 378.6 377.7 333.9 322.9 406.6 322.2 323.8 320.7 327.3 339.9 

52 302 313.9 310.1 318 317.9 316.1 320.2 413.9 412.4 345.4 332.5 396.4 318.9 320.7 321.5 318.8 326.4 

53 296.7 308.6 304.8 312.7 312.6 310.8 314.9 319.0 317.7 371.6 344.1 386.6 320.1 317.4 317.6 319.6 317.9 

54 298.1 310 306.2 314.1 314 312.2 316.3 313.5 311.7 392.4 368.8 372.7 329.2 318.5 315.1 319.6 318.4 

55 280.6 292.5 288.7 296.6 296.5 294.7 298.8 314.7 312.7 319.1 390.7 365.5 339.7 326.8 316.2 312.7 313 

56 253.7 265.6 261.8 269.7 269.6 267.8 271.9 297.0 294.8 312.1 317.5 359.2 364.7 336.9 324.1 313.4 310 

57 230.8 242.7 238.9 246.8 246.7 244.9 249 270.0 267.8 305.2 309.4 345.8 383.9 361.7 324.1 321.4 310.6 

58 244.4 256.3 252.5 260.4 260.3 258.5 262.6 247.0 267.8 291.2 302.8 333.2 311.7 380.6 359 331.9 318.6 

59 244.8 256.7 252.9 260.8 260.7 258.9 263 260.2 257.6 261.5 288.5 324.6 304.2 308.7 376.6 355.7 328.7 

60 241.3 253.2 249.4 257.3 257.2 255.4 259.5 260.3 257.4 244.7 259 326.7 296.1 300.0 304.4 370.4 352.7 

61 234.4 246.3 242.5 250.4 250.3 248.5 252.6 256.6 253.4 254.3 242.1 255.5 281.3 291.9 295.9 298.9 366.9 

62 227.1 239 235.2 243.1 243 241.2 245.3 249.4 246.1 254.2 251.3 238.9 251.5 277.1 288.1 290.6 295.7 

63 220.4 232.3 228.5 236.4 236.3 234.5 238.6 241.9 238.2 251.6 251.1 247.6 234.9 247.3 274 282.6 287.3 

64 209.7 221.6 217.8 225.7 225.6 223.8 227.9 234.8 230.7 244.6 248.2 247.1 243.2 230.8 244.8 268.6 279.1 

65 205.6 217.5 213.7 221.6 221.5 219.7 223.8 224.0 219.5 235.8 241 244.3 242.8 239.3 227.8 240.6 264.7 

66 208.6 220.5 216.7 224.6 224.5 222.7 226.8 219.3 214.7 227.8 231.9 236.8 239.7 238.7 235.2 223.9 236.8 

67 207 218.9 215.1 223 222.9 221.1 225.2 221.7 216.4 216.2 223.6 227.8 232.1 235.2 233.6 230.9 220.1 

68 199.1 211 207.2 215.1 215 213.2 217.3 219.7 213.9 212.3 211.9 219.0 222.8 227.4 228.8 229.1 226.6 

69 188.7 200.6 196.8 204.7 204.6 202.8 206.9 211.4 205.1 210.7 207.4 206.9 213.7 218.0 220.6 223.8 224.5 

70 181.5 193.4 189.6 197.5 197.4 195.6 199.7 200.6 194 207.1 205.1 202.5 201.5 208.3 211.4 215.6 218.8 

71 177.5 189.4 185.6 193.5 193.4 191.6 195.7 192.8 185.7 198.3 200.9 199.8 196.8 195.7 201.8 206.1 210.4 

72 173.8 185.7 181.9 189.8 189.7 187.9 192 188.2 180.4 188.3 191.9 194.9 193.5 190.9 188.8 196.2 200.7 

73 162 173.9 170.1 178 177.9 176.1 180.2 184.1 175.6 178.3 181.4 185.4 188.1 186.9 183.7 183.1 190.5 

74 153.7 165.6 161.8 169.7 169.6 167.8 171.9 171.8 163.1 173.0 171.1 174.6 178.2 181.3 179.2 177.6 177.2 

75 145.3 157.2 153.4 161.3 161.2 159.4 163.5 162.9 154 165.3 165 163.8 167.1 171.2 173.2 172.6 171.3 

76 143.4 155.3 151.5 159.4 159.3 157.5 161.6 154.4 145 154.7 157 157.3 156 159.5 162.9 166.1 165.6 

77 139.1 151 147.2 155.1 155 153.2 157.3 151.6 141.3 145.0 145.8 148.5 149 148.1 151.3 155.3 158.7 

78 134.2 146.1 142.3 150.2 150.1 148.3 152.4 146.6 135.9 136.0 136 137.3 139.9 140.6 139.8 143.5 147.7 

79 75.4 87.3 83.5 91.4 91.3 89.5 93.6 141.0 129.7 131.7 126.9 127.1 128.4 131.1 132.2 132 135.7 

80 63.4 75.3 71.5 79.4 79.3 77.5 81.6 86.0 129.7 126.8 122 117.9 117.8 119.7 122.4 123.9 123.8 

81 65 76.9 73.1 81 80.9 79.1 83.2 74.4 67.3 115.9 116.4 112.4 108.5 108.7 111 113.9 123.8 

82 62.3 74.2 70.4 78.3 78.2 76.4 80.5 75.1 67.1 78.5 106 106.7 102.6 99.5 99.8 102.3 105.2 

83 55.9 67.8 64 71.9 71.8 70 74.1 71.9 63.6 60.4 71.6 95.0 96.7 93.1 90.5 91.1 93.7 

84 47.2 59.1 55.3 63.2 63.1 61.3 65.4 65.3 63.6 59.1 54 65.0 84.6 87.0 83.8 81.9 82.6 

85 37.8 49.7 45.9 53.8 53.7 51.9 56 56.8 56.8 54.0 52 47.8 58.6 74.9 77.5 75.1 73.3 

86 28.1 40 36.2 44.1 44 42.2 46.3 48.2 48.9 49.2 46.8 45.6 41.7 52.3 65.6 68.6 66.5 

87 20.5 32.4 28.6 36.5 36.4 34.6 38.7 39.4 41 41.4 42.2 40.1 39.3 36.1 46.2 56.9 60.4 

88 13 24.9 21.1 29 28.9 27.1 31.2 32.3 33 34.0 35 35.9 33.8 33.4 30.7 40.9 48.6 

89 7.1 19 15.2 23.1 23 21.2 25.3 25.5 26.8 27.0 28.1 29.1 30 28.2 28 26.1 36 

90 53.7 65.6 61.8 69.7 69.6 67.8 71.9 76.3 80 77.0 81 85.1 89.5 93.9 95.9 98.5 98.7 

* Source: statistics.gov.uk. 
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Appendix B.4: Female resident population in England and Wales from 1992 to 2008. 

 

Table b.4 Female residents by single-year age (1992 to 2008).                                                                                                                       Thousands 

Age 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 

16 293.2 304.1 300.3 308.2 302.1 306.3 310.4 311.7 310 323.7 324.3 331.7 341 338.7 339.7 344.5 341 

17 299.3 310.2 306.4 314.3 308.2 312.4 316.5 311 311 312.6 325.9 327.6 334.7 344.9 340 342.2 347.6 

18 302 312.9 309.1 317 310.9 315.1 319.2 317.7 309.9 307.4 315.2 330.3 331.8 340.4 347 344.6 347.7 

19 290.7 301.6 297.8 305.7 299.6 303.8 307.9 320.6 315.4 308.7 311.6 321.7 335.9 339.9 343.5 354.5 353.5 

20 269.4 280.3 276.5 284.4 278.3 282.5 286.6 307.9 323.3 322.9 313.1 316.9 327.2 343.4 350 349.8 360.6 

21 266.2 277.1 273.3 281.2 275.1 279.3 283.4 288.4 310 325 328 318.5 323.4 336.3 355 357.7 357.5 

22 280.6 291.5 287.7 295.6 289.5 293.7 297.8 286.9 292.1 315 331.5 335.2 326.4 334.1 347.9 364.1 366.9 

23 294.9 305.8 302 309.9 303.8 308 312.1 302.5 291.9 303.1 322 338.3 342.7 336.3 343.9 356.4 372.6 

24 307.7 318.6 314.8 322.7 316.6 320.8 324.9 317.1 307.1 305.8 310.3 327.9 345.6 352.5 348.9 352.2 364.5 

25 329.8 340.7 336.9 344.8 338.7 342.9 347 330.1 324.1 315.5 309.9 312.3 332.2 352.7 357.8 353.2 353.2 

26 351.1 362 358.2 366.1 360 364.2 368.3 351.2 335.9 329.4 318.9 312.1 316.3 339.0 357.8 361.9 354.1 

27 372.3 383.2 379.4 387.3 381.2 385.4 389.5 372.1 356.3 343.2 332.8 320.9 315.5 322.1 344.3 361.4 362.6 

28 367.5 378.4 374.6 382.5 376.4 380.6 384.7 392.6 377.1 364.8 346.4 334.5 324 320.9 328.9 347.5 362.1 

29 382.8 393.7 389.9 397.8 391.7 395.9 400 387.3 396.4 386.9 367.9 347.8 337.4 328.7 327.1 331.7 348.1 

30 385.6 396.5 392.7 400.6 394.5 398.7 402.8 402.5 390.9 398.4 389.8 369.5 349 340.2 335.4 326.3 333.8 

31 397.1 408 404.2 412.1 406 410.2 414.3 404.6 405.1 394.6 401.2 392.0 370.6 351.3 346.4 334.6 328.1 

32 405.3 416.2 412.4 420.3 414.2 418.4 422.5 416.1 407.1 406.4 397 403.4 392.9 372.8 355.4 345.6 336.2 

33 412.4 423.3 419.5 427.4 421.3 425.5 429.6 423.8 418.2 409.8 408.6 399.1 404 394.7 374.6 354.5 346.9 

34 411.4 422.3 418.5 426.4 420.3 424.5 428.6 430.7 425.7 418.8 411.6 410.5 399.9 405.4 395.7 373.8 355.7 

35 402.9 413.8 410 417.9 411.8 416 420.1 429.7 432.1 421 419.6 412.3 410.9 400.7 405.4 396.2 374.2 

36 392.8 403.7 399.9 407.8 401.7 405.9 410 421.3 431.3 423 421.2 420.7 412.7 411.7 399.7 405.8 396.4 

37 380.9 391.8 388 395.9 389.8 394 398.1 410.9 422.4 419.4 422.9 422.7 421.1 413.3 411.8 400.1 406 

38 362.9 373.8 370 377.9 371.8 376 380.1 399 412 412.4 419.3 424.6 423 421.6 413.3 412.1 400.3 

39 356.5 367.4 363.6 371.5 365.4 369.6 373.7 380.9 400.2 402.2 412.3 420.8 424.8 423.3 422 413.5 412.1 

40 348.3 359.2 355.4 363.3 357.2 361.4 365.5 374.2 382 391.3 402.1 413.9 420.6 424.8 422.8 422.8 412.6 

41 337.2 348.1 344.3 352.2 346.1 350.3 354.4 366 375.2 375.8 391.3 403.4 413.7 420.6 424.3 423.5 421.8 

42 324.4 335.3 331.5 339.4 333.3 337.5 341.6 354.9 366.9 368.4 375.6 392.0 403.1 413.6 420 425 422.5 

43 314.2 325.1 321.3 329.2 323.1 327.3 331.4 341.9 355.5 363.2 368.5 376.4 391.7 403.0 412.6 420.4 424 

44 319.9 330.8 327 334.9 328.8 333 337.1 331.8 342.7 352.1 363.2 369.0 376 391.5 401.8 412.9 419.5 

45 317.9 328.8 325 332.9 326.8 331 335.1 337.3 332.3 340.2 351.4 363.4 368.1 375.5 390.4 401.4 412.8 

46 312.6 323.5 319.7 327.6 321.5 325.7 329.8 335.1 337.5 332.4 339.9 351.3 362.6 367.6 374.3 390.1 401.2 

47 317.2 328.1 324.3 332.2 326.1 330.3 334.4 329.6 335.4 334.9 331.5 339.6 350.4 362.0 366.1 373.9 389.8 

48 327.9 338.8 335 342.9 336.8 341 345.1 334.2 329.8 331.3 333.9 331.5 338.6 349.8 360.9 365.5 373.6 

* Continued in the next page. Source: statistics.gov.uk. 
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Table b.4 (continued)                                                                                                                                                                                       Thousands 

Age 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 

49 339.1 350 346.2 354.1 348 352.2 356.3 344.8 334.1 328.5 330.4 334.0 330.5 337.9 348.5 360.3 365.1 

50 363.9 374.8 371 378.9 372.8 377 381.1 355.7 344.7 330.5 327.7 329.5 332.7 329.3 336.4 347.1 359.1 

51 396.8 407.7 403.9 411.8 405.7 409.9 414 380.3 355.5 341 329.5 326.9 328.1 331.4 327.9 335 346 

52 305.3 316.2 312.4 320.3 314.2 318.4 322.5 413 379.8 351.3 340 328.7 325.5 326.7 329.8 326.5 333.8 

53 300.7 311.6 307.8 315.7 309.6 313.8 317.9 321.7 412.3 377.9 350.4 339.2 327.2 324.2 324.8 328.3 325.2 

54 301.1 312 308.2 316.1 310 314.2 318.3 317 321.1 397.4 375.4 349.2 337.5 325.6 322.6 323.1 327 

55 284 294.9 291.1 299 292.9 297.1 301.2 317.3 316.2 324.8 396.7 375.6 347.3 335.7 324.1 321.5 320.9 

56 257.2 268.1 264.3 272.2 266.1 270.3 274.4 300.1 316.2 317.7 324 394.7 373.4 345.3 334.2 322.8 319.2 

57 235.4 246.3 242.5 250.4 244.3 248.5 252.6 273.3 298.9 309.8 316 322.4 392.3 371.1 343.6 332.7 320.5 

58 249.5 260.4 256.6 264.5 258.4 262.6 266.7 251.5 272 296.8 308.5 315.1 320.5 389.9 368.6 342 330.4 

59 252.1 263 259.2 267.1 261 265.2 269.3 265.2 250.1 268.6 295.2 306.9 312.9 318.4 386.9 366.8 339.4 

60 248.7 259.6 255.8 263.7 257.6 261.8 265.9 267.7 263.9 252.8 267.2 293.3 304.9 311.4 315.2 384 365 

61 241.8 252.7 248.9 256.8 250.7 254.9 259 264.1 266.2 263 251 264.8 291.3 303.2 307.3 312.6 381.7 

62 237.2 248.1 244.3 252.2 246.1 250.3 254.4 257 262.5 263.9 260.9 248.8 262.8 289.5 298.8 304.6 310.9 

63 230.1 241 237.2 245.1 239 243.2 247.3 252.3 255.2 260.9 261.8 258.7 246.8 260.9 286.6 296 302.6 

64 222.1 233 229.2 237.1 231 235.2 239.3 245.1 250.2 255.1 258.7 259.3 256.4 244.9 258.5 283.8 293.8 

65 221.6 232.5 228.7 236.6 230.5 234.7 238.8 236.9 243.1 248.9 252.7 256.1 256.7 253.5 241.5 255.6 281.7 

66 225.5 236.4 232.6 240.5 234.4 238.6 242.7 236.2 234.5 241.7 246.4 250.1 253.4 253.7 251.5 238.9 253.4 

67 230.9 241.8 238 245.9 239.8 244 248.1 239.6 233.5 233.5 239.1 243.5 247.3 250.2 250.8 248.2 236.8 

68 229.1 240 236.2 244.1 238 242.2 246.3 244.6 236.5 233.5 230.9 236.0 240.3 243.9 247.1 247.4 245.7 

69 221.6 232.5 228.7 236.6 230.5 234.7 238.8 242.4 241.1 235.1 230.4 227.3 232.6 236.7 240.5 243.5 244.5 

70 215.6 226.5 222.7 230.6 224.5 228.7 232.8 234.5 238.2 237.3 231.4 226.6 223.7 229.0 233.2 236.8 240.3 

71 214.7 225.6 221.8 229.7 223.6 227.8 231.9 228.1 229.9 233.2 233 227.4 222.8 219.9 225.1 229.3 233.4 

72 214 224.9 221.1 229 222.9 227.1 231.2 226.5 223 225.7 228.6 228.7 222.8 218.5 216.1 221 225.7 

73 209.3 220.2 216.4 224.3 218.2 222.4 226.5 225.1 221.1 217.4 220.6 223.7 223.6 218.0 214 211.7 216.9 

74 206.5 217.4 213.6 221.5 215.4 219.6 223.7 220 218.8 216.1 211.9 215.4 218.2 218.3 213.1 209.2 207.4 

75 204 214.9 211.1 219 212.9 217.1 221.2 216.6 213 212.8 210.1 206.0 209.3 212.4 212.8 207.7 204.4 

76 206.9 217.8 214 221.9 215.8 220 224.1 213.4 209.1 206.7 206 203.6 199.7 202.9 206.3 206.7 202.3 

77 212 222.9 219.1 227 220.9 225.1 229.2 215.3 205.1 201.9 199.6 199.1 196.5 193.0 196.2 199.9 200.7 

78 212.7 223.6 219.8 227.7 221.6 225.8 229.9 219.5 206.3 197.3 194.1 192.0 191.4 189.3 185.7 189.4 193.2 

79 131.3 142.2 138.4 146.3 140.2 144.4 148.5 218.9 209.2 199.4 189.1 185.7 183.7 183.2 181.5 178.4 182.4 

80 119.2 130.1 126.3 134.2 128.1 132.3 136.4 140.9 207.5 201.2 189.9 180.0 176.9 175.2 175 173.5 170.7 

81 127 137.9 134.1 142 135.9 140.1 144.2 128.5 132.7 188.9 189.7 180.0 170.4 167.6 166.2 166.5 165.2 

82 128.9 139.8 136 143.9 137.8 142 146.1 134.8 120.1 134.8 178 179.1 169.2 160.5 157.8 157 157.4 

83 127.1 138 134.2 142.1 136 140.2 144.3 135.5 125.2 110.6 126.2 164.7 167.1 158.2 150 148.3 147.5 

84 116.5 127.4 123.6 131.5 125.4 129.6 133.7 132.5 124.8 114.1 101.9 117.9 151.9 155.2 146.4 139.5 138.1 

85 101.5 112.4 108.6 116.5 110.4 114.6 118.7 121.3 120.7 110.7 104.2 93.3 108.9 138.7 142.7 135.1 128.8 

86 87.6 98.5 94.7 102.6 96.5 100.7 104.8 106.7 109.2 108.1 99.9 94.2 84.2 99.8 125.7 130.5 123.5 

87 76.5 87.4 83.6 91.5 85.4 89.6 93.7 92.9 94.8 96.9 96.4 89.2 84.1 75.6 90.9 112.8 118.2 

88 64.8 75.7 71.9 79.8 73.7 77.9 82 82 81.6 84.2 85.3 85.0 78.4 74.3 67.1 82.5 99.8 

89 55.1 66 62.2 70.1 64 68.2 72.3 70.8 71.2 70.9 73 74.0 73.8 67.9 65.2 58.9 73.9 

90 258.5 269.4 265.6 273.5 267.4 271.6 275.7 283.8 290.9 262.7 269.1 275.4 280.1 284.8 286.2 286.4 279 

* Source: statistics.gov.uk.  
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Appendix B.5: 95% CIs of the difference between equivalent coefficients resulting from modelling subjective health status.  

 

Table b.5 Full results of the random effects logistic regression models of the determinants of subjective health status. 

 Respondents aged 16 to 59 Respondents aged 60+ All respondents aged 16+ 

 Using SWs Using 𝐴𝑊𝑠1 Using 𝐴𝑊𝑠2 Using SWs Using 𝐴𝑊𝑠1 Using 𝐴𝑊𝑠2 Using SWs Using 𝐴𝑊𝑠1 Using 𝐴𝑊𝑠2 

Year 1997 to 2002 0.941(.038) 
 

0.938(.035) 
(-0.098-0.104) 

0.938(.035) 
(-0.098-0.104) 

0.993(.091) 
 

1.037(.070) 
(-0.269-0.181) 

1.078(.061) 
(-0.300-0.130) 

0.950(.035) 
 

0.961(.032) 
(-0.104-0.082) 

0.982(.030) 
(-0.122-0.058) 

Year 2003 to 2008 0.910(.037)** 
 

0.895(.034)** 

(-0.083-0.113) 

0.893(.033)** 

(-0.080-0.114) 

1.018(.094) 
 

1.048(.072) 

(-0.262-202) 

1.033(.058) 

(-0.231-0.201) 

0.928(.034)* 
 

0.931(.031)* 

(-0.093-0.087) 

0.942(.029)* 

(-0.102-0.074) 

Female 1.110(.073) 
 

1.128(.070) 
(-0.216-0.180) 

1.128(.070) 
(-0.216-0.180) 

0.558(.100)** 
 

0.621(.083)*** 
(-0.318-0.192) 

0.507(.055)*** 
(-0.173-0.275) 

0.991(.062) 
 

0.981(.055)* 
(-0.152-0.172) 

0.893(.047)* 
(-0.054-0.250) 

White  1.685(.207)*** 
 

1.767(.201)*** 

(-0.648-0.484) 

1.790(.203)*** 

(-0.673-0.463) 

1.183(.673) 
 

1.692(.345) 

(-1.991-0.973) 

1.855(.327) 

(-2.139-0.795) 

1.677(.205)*** 
 

1.729(.194)*** 

(-0.605-0.501) 

1.728(.191)*** 

(-0.600-0.498) 

Age 0.991(.002)*** 
 

0.990(.002)*** 
(-.005-0.007) 

0.990(.002)*** 
(-0.005-0.007) 

0.988(.007) 
 

0.983(.005)** 
(-0.022-0.012) 

0.980(.004)** 
(-0.008-0.024) 

0.991(.002)*** 
 

0.990(.001)*** 
(-0.003-0.005) 

0.989(.001)*** 
(-0.002-0.006) 

1 to 2 visits to GP since last year 0.352(.033)*** 
 

0.357(.031)*** 

(-0.094-0.084) 

0.357(.031)*** 

(-0.094-0.084) 

0.639(.112)* 
 

0.609(.078)*** 

(-0.238-0.298) 

0.511(.056)*** 

(-0.117-0.373) 

0.392(.032)*** 
 

0.408(.029)*** 

(-0.101-0.069) 

0.396(.027)*** 

(-0.086-0.078) 

3 to 5 visits to GP since last year 0.087(.008)*** 

 

0.087(.008)*** 

(-0.022-0.022) 

0.087(.007)*** 

(-0.021-0.021) 

0.252(.045)*** 
 

0.246(.032)*** 

(-0.102-0.114) 

0.202(.022)*** 

(-0.048-0.148) 

0.104(.009)*** 
 

0.112(.008)*** 

(-0.032-0.016) 

0.113(.008)*** 

(-0.033-0.015) 

6 + visits to GP since last year 0.016(.001)*** 
 

0.016(.001)*** 

(-0.003-0.003) 

0.016(.001)*** 

(-0.003-0.003) 

0.087(.015)*** 
 

0.084(.011)*** 

(-0.033-0.039) 

0.073(.008)*** 

(-0.019-0.047) 

0.021(.002)*** 
 

0.024(.002)*** 

(-0.009-0.003) 

0.025(.002)*** 

(-0.010-0.002) 

Smoker 0.696(.039)*** 
 

0.699(.037)*** 

(-0.108-0.102) 

0.700(.037)*** 

(-0.109-0.101) 

0.639(.110)** 
 

0.647(.083)*** 

(-0.278-0.262) 

0.635(.072)*** 

(-0.254-0.262) 

0.686(.037)*** 
 

0.688(.033)*** 

(-0.099-0.095) 

0.683(.032)*** 

(-0.093-0.099) 

Annual income/1000 1.007(.002)*** 
 

1.007(.002)*** 

(-0.006-0.006) 

1.007(.002)*** 

(-0.006-0.006) 

0.979(.006)** 
 

0.976(.004)*** 

(-0.011-0.017) 

0.975(.004)*** 

(-0.010-0.018) 

1.002(.003) 
 

1.003(.002)* 

(-0.008-0.006) 

1.005(.002)* 

(-0.010-0.004) 

Has a partner 0.983(.123) 
 

0.989(.099) 

(-0.315-0.303) 

0.925(.077) 

(-0.226-0.342) 

1.016(.054)* 
 

1.019(.051)* 

(-0.149-0.143) 

1.020(.050)* 

(-0.148-0.140) 

1.027(.050) 
 

1.042(.045) 

(-0.147-0.117) 

1.039(.042) 

(-0.140-0.116) 

Financially okay 0.860(.045)** 
 

0.872(.043)** 

(-0.134-0.110) 

0.874(.042)** 

(-0.135-0.107) 

0.727(.082)** 
 

0.707(.061)*** 

(-0.180-0.220) 

0.626(.045)*** 

(-0.082-0.284) 

0.840(.040)*** 
 

0.838(.035)*** 

(-0.102-0.106) 

0.795(.032)*** 

(-0.055-0.145) 

Financially struggling 0.568(.031)*** 
 

0.576(.029)*** 

(-0.091-0.075) 

0.577(.029)*** 

(-0.092-0.074) 

0.613(.072)*** 
 

0.598(.053)*** 

(-0.160-0190) 

0.457(.033)*** 

(0.00-0.311) 

0.569(.028)*** 
 

0.575(.025)*** 

(-0.080-0.068) 

0.532(.022)*** 

(-0.033-0.107) 

N 3,594 3,594 3,594 503 503 503 4,097 4,097 4,097 

σ  1.60 1.60 1.61 1.69 1.72 1.72 1.62 1.62 1.62 

ρ 0.44 0.44 0.44 0.46 0.47 0.47 0.44 0.45 0.45 

* Entries are odds ratios, their standard errors and 95% CIs of the difference between the coefficients adjusted with 𝐴𝑊𝑠1 or 𝐴𝑊𝑠2 and the equivalent coefficients adjusted with 

SWs. All CIs include a zero indicating no significant difference between the equivalent coefficients estimated with the SWs and AWs. The reference categories of the categorical 

independent variables are: year 1991 to 1996, male, non-white, no visits to the GP since last year, non-smoker, does not have a partner and having good financial situation. . σ   is 

the standard error of the random effects (sigma u). ρ is the percentage of the total variance that is due to differences between units. * p<0.05, ** p<0.01, *** p<0.001.  


