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Highlights 

 A new multi-fidelity surrogate-model-based optimization framework is proposed to improve 

reliability and efficiency of existing frameworks. 

 A data mining method is proposed to address discrepancies between simulation models of 

different fidelities in the context of global optimization. 

 A new multi-fidelity surrogate-model-based optimization method is proposed for 

engineering optimization problems with quite long simulation time per candidate design, 

whose advantages are verified by mathematical benchmark and real-world problems. 
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Abstract

Integrating data-driven surrogate models and simulation models of di�erent ac-

curacies (or �delities) in a single algorithm to address computationally expen-

sive global optimization problems has recently attracted considerable attention.

However, handling discrepancies between simulation models with multiple �deli-

ties in global optimization is a major challenge. To address it, the two major

contributions of this paper include: (1) development of a new multi-�delity

surrogate-model-based optimization framework, which substantially improves

reliability and e�ciency of optimization compared to many existing methods,

and (2) development of a data mining method to address the discrepancy be-

tween the low- and high-�delity simulation models. A new e�cient global opti-

mization method is then proposed, referred to as multi-�delity Gaussian process

and radial basis function-model-assisted memetic di�erential evolution. Its ad-

vantages are veri�ed by mathematical benchmark problems and a real-world

antenna design automation problem.

Keywords: multi-�delity, multilevel, variable �delity,

surrogate-model-assisted evolutionary algorithm, expensive optimization
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1. Introduction

Solving many real-world engineering design problems requires both global

optimization and expensive computer simulation for evaluating their candidate

solutions. For example, computational models utilized in photonics and micro-

electromechanical system optimization require well over 1 hour simulation time5

per design [1],[2],[3]. For these problems, successful surrogate-model-assisted

local search methods have been developed [2], but in terms of global optimiza-

tion, many state-of-the-art surrogate-based optimization techniques are still pro-

hibitively expensive. In the context of global optimization, these tasks are con-

sidered as very expensive. Addressing such problems is the objective of this10

paper.

High cost of evaluating real-world simulation models often results from the

necessity of solving complex systems of partial di�erential equations using nu-

merical techniques or Monte-Carlo analysis. Direct handling of such models

is often computationally prohibitive and utilization of cheaper representations15

(surrogates) of the system at hand might be necessary. Two classes of such

replacement models are normally considered. The �rst type is function approx-

imation model (usually, data-driven surrogates constructed by approximating

sampled simulation model data, e.g., radial basis function). Optimization meth-

ods making use of such models are often referred to as surrogate / metamodel-20

based optimization (SBO) methods [4]. The other type is low-�delity simulation

model (e.g., coarse-mesh model in �nite element analysis), which exhibits re-

laxed accuracy but shorter evaluation time. Low-�delity model is typically used

with occasional reference to the high-�delity model. The methods using such

models are often referred to as multi-�delity / multilevel / variable-�delity op-25

timization (MFO) methods [5]. For simplicity, two-level modeling is considered

in this paper: the coarse model is referred to as the low-�delity model, whereas

the �ne model is referred to as the high-�delity model.

Recently, a trend to combine SBO and MFO in a single algorithm for further

speed improvement has been observed; successful examples include [6, 7, 8, 9].30

2
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References [6, 9] demonstrated an approach which iteratively updates a co-

kriging surrogate model [10] using samples from coarse and �ne model evalua-

tions accumulated over the entire optimization process. These techniques are

mathematically sound and often feature good reliability. However, the success

of these methods relies on a high-quality co-kriging surrogate model constructed35

by the initial one-shot sampling, which determines the e�ectiveness of the con-

secutive adaptive sampling. For higher-dimensional design spaces or complex

function landscapes, the computational cost of building the initial high-quality

co-kriging model may be prohibitive, as the necessary number of training sam-

ples grows exponentially with linear increase of the number of design variables40

[11].

In order to alleviate these di�culties, a new hierarchical algorithm structure

has been proposed in [7, 8]: It can be considered as an MFO, but SBOs are

used for some optimization stages with certain �delities to replace standard

optimization methods without data-driven surrogate models. For example, a45

coarse model is used for a surrogate model-assisted evolutionary algorithm to

explore the space and accurate but expensive �ne model evaluations are only

used for local search starting from the most promising solutions obtained from

space exploration [7, 12]. These methods are scalable if proper SBOs are used,

but the reliability of the MFO structure becomes a challenge, which is detailed50

as follows.

Because both the coarse and the �ne model describe the same function (or a

physical system), it is reasonable to use the cheaper coarse model for �ltering out

some non-optimal subregions. However, considering discrepancy between the

models of various �delities, there is a lot of uncertainty regarding the �promising�55

solutions found using the coarse model. Fig. 1 illustrates this issue using an

example of a microwave �lter. The problem is to minimize the maximum value of

the re�ection coe�cient, i.e., max(|S11|) for a given frequency range of interest.

It can be observed by sweeping one of the nine design variables of the device, that

although many non-optimal regions for the coarse model are also non-optimal60

for the �ne model, the two critical challenges appear:

3
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• wasting precious �ne model evaluations because some promising locations

of the coarse model-based landscape (such as A and its projection A',

which may correspond to multiple design variables) may have substantial

distance to the desired optimal regions of the �ne model-based landscape65

(like B' );

• making the MFO framework unreliable because the desired optimum such

as the point B' is di�cult to be reached from points such as A' by exploita-

tion. Note that only one variable is changed in Fig. 1. When considering

multiple design variables, the point B may have a low probability to be70

selected for exploitation because there may be quite a few points with

better �tness values according to the coarse model.

Clearly, the lower the �delity of the coarse model, the higher the e�ciency

of the space exploration stage of an MFO, but the higher the risk induced

by model discrepancy. Reference [8] investigates the discrepancy problem using75

practical antenna design cases and indicates that, in many cases, a large number

of �ne model evaluations may be needed which may result in the same or even

higher overall design optimization cost than that of direct optimization of the

�ne model; also, the MFO may simply fail to �nd a satisfactory design. There

are some methods that do not directly use the promising points from the coarse80

model optimization, include equalization of the computational e�ort for models

of each �delity [5], space mapping and model correction, where a correction

function is applied to reduce misalignment between the coarse and the �ne

model [8, 13]. However, the above two critical challenges still remain.

To address the above two challenges, a new MFO framework is proposed85

in this paper. Its goal is to make full use of available expensive �ne model

evaluations and substantially improve the reliability compared to existing MFO

frameworks, and thus, addressing the targeted very expensive design optimiza-

tion problems. Based on this framework, a data mining method is proposed to

address the discrepancy between the coarse and the �ne model. A new method,90

referred to as multi-�delity Gaussian process and radial basis function-model-

4
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Figure 1: Curves of coarse and �ne models

assisted memetic di�erential evolution (MGPMDE), is subsequently proposed.

Empirical studies on mathematical benchmark problems with di�erent charac-

teristics as well as a real-world antenna design automation problem verify the

advantages of MGPMDE.95

The remainder of this paper is organized as follows. Section 2 formulates

the optimization problem and introduces the basic techniques. Section 3 de-

scribes the new MFO framework, the data mining method and the MGPMDE

algorithm. Section 4 presents the experimental results of MGPMDE on test

problems. Concluding remarks are provided in Section 5.100

2. Problem Formulation and Basic Techniques

2.1. Problem Formulation

We consider the following problem:

min ff (x)

x ∈ [ā, b̄]d
(1)

where ff (x) is the �ne model function, which is expensive but accurate. There

is a coarse model function, fc(x), which is much cheaper than ff (x), but less

accurate than ff (x), and, consequently, with a distorted landscape. Reference105

5
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[5] provides an e�ective method to construct mathematical benchmark problems

for MFO, which is as follows.

ff (x) = fc(sf × (x− ss)) (2)

where fc(x) (also ff (x)) is a periodic function, and there exist minimal and

maximal values in each period. sf is called a frequency shift, which mimics

the loss of peaks of fc(x). For example, when fc(x) = cos(x), ff (x) can be110

cos(sf × (x)). When sf is set to 1.3, about 30% of the peaks are not accounted

for by fc(x). ss is called a spatial shift, which shifts the positions of the optimal

points. The frequency shifts and the spatial shifts often happen for expensive

evaluations obtained by solving suitable systems of partial di�erential equations,

where the coarse model is a coarse-mesh model and / or with reduced number of115

solver iterations. This kind of expensive optimization problem is very (if not the

most) popular in computationally expensive engineering design optimization,

because most physics simulations (e.g., electromagnetic simulation) are based

on solving partial di�erential equations.

It is worth to determine the focused extent of discrepancy before proposing120

methods to address it. From the point of view of practical industrial problems

[2, 5, 14, 15], we focus on reasonably large discrepancy between computational

models of various �delities in this work. �Reasonably large� discrepancy refers to

the fact that the optimal designs in terms of the �ne model cannot be obtained

by local exploitation based on the optimal points in terms of the coarse model,125

but the landscape(s) of the coarse model maintains the general shape of that

of the �ne model. Otherwise, a better coarse model (by increasing the �delity)

should be used. Also based on [2, 5, 14, 15], the focused optimization problems

have unimodal or multimodal landscapes and with 5-20 variables.

2.2. Blind Gaussian Process Modeling and Prescreening130

In MGPMDE, Gaussian process (GP) regression [16] is used. To model an

unknown function y = f(x), x ∈ Rd, GP modeling assumes that f(x) at any

point x is a Gaussian random variableN(µ, σ2), where µ and σ are two constants

6
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independent of x. For any x, f(x) is a sample of µ+ε(x), where ε(x) ∼ N(0, σ2).

By maximizing the likelihood function to ensure that f(x) = yi at x = xi

(i = 1, . . . ,K) (where x1, . . . , xK ∈ Rd and their f -function values y1, . . . , yK

are K training data points) and the best linear unbiased prediction:

f̂(x) = µ̂+ rTC−1(y − 1µ̂) (3)

the mean squared error is:

s2(x) = σ̂2[1− rTC−1r +
(1− 1TC−1r)2

1TC−1r
] (4)

where r = (c(x, x1), . . . , c(x, xK))T . C is a K×K matrix whose (i, j)-element is

c(xi, xj). c(xi, xj) is the correlation function between xi and xj , whose hyper-

parameters are estimated by maximization of the likelihood function [16]. y =

(y1, . . . , yK)T and 1 is a K-dimensional column vector of ones.

The above surrogate modeling mechanism is called the ordinary GP mod-135

eling. In the blind GP modeling [17, 18], the linear combination of some basis

functions
∑m
i=1 βibi(x) is used to replace µ̂ so as to capture a portion of the vari-

ations which is desirable to represent the general trend of f(x), so as to alleviate

the complexity of the ordinary GP modeling, which handles the residuals.

The blind GP modeling consists of the following steps: (1) based on the140

available training data points, an ordinary GP model is �rstly constructed by

identifying the hyper-parameter values; (2) given the hyper-parameters and the

candidate features, the bi(x) are ranked based on the estimated βi(i = 1, . . . ,m).

The ranking follows a Bayes variable ranking method [17, 18]. For simplicity and

e�ciency, only linear, quadratic items and two-factor interactions are considered145

as the candidate features (bi(x)) in this implementation; (3) the most promising

features among bi(x)(i = 1, . . . ,m) are selected and an intermediate GP model

with the original hyper-parameters is constructed. Its accuracy is subsequently

evaluated by a leave-one-out cross-validation method [17]. This step is repeated

until no accuracy improvement can be achieved; (4) given the selected features150

and the corresponding coe�cients, the likelihood function is re-optimized and

the �nal GP model is obtained. The details can be found in [18].

7
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For a minimization problem, given the predictive distribution N(f̂(x), s2(x))

for f(x), a lower con�dence bound (LCB) prescreening of f(x) is used:

flcb(x) = f̂(x)− ωs(x)

ω ∈ [0, 3]
(5)

where ω is a constant. More details can be found in [19].

2.3. Di�erential Evolution

The di�erential evolution (DE) algorithm [20] is used as the global optimiza-155

tion search engine in the MGPMDE method. There are quite a few DE mutation

strategies available which lead to various trade-o�s between the convergence rate

and the population diversity. The properties of di�erent DE strategies in SBO,

and more speci�cally, under the selected SBO framework for global optimization

in this work, have been investigated in [21]. Based on [21] and our pilot exper-160

iments, DE/current-to-best/1 (6) and DE/best/2 (7) are used in MGPMDE.

Suppose that P is a population and the best individual in P is xbest. Let

x = (x1, . . . , xd) ∈ Rd be an individual solution in P . To generate a child

solution u = (u1, . . . , ud) for x, DE/current-to-best/1 and DE/best/2 work as

follows:165

A donor vector is �rst produced by mutation: (1)DE/current-to-best/1

vi = xi + F · (xbest − xi) + F · (xr1 − xr2) (6)

where xi is the ith individual in P . xr1 and xr2 are two di�erent solutions

randomly selected from P ; they are also di�erent from xbest and xi. vi is the

ith mutant vector in the population after mutation. F ∈ (0, 2] is a control

parameter, often referred to as the scaling factor [20].

(2)DE/best/2

vi = xbest + F · (xr1 − xr2) + F · (xr3 − xr4) (7)

where xr3 and xr4 are two di�erent solutions randomly selected from P , and

di�erent from xbest, xr1 and xr2 .

Having the donor vector, a binomial crossover is applied to produce the child

solution with the crossover rate CR ∈ [0, 1]. More details can be found in [20].

8
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2.4. The ORBIT Algorithm170

In MGPMDE, the ORBIT algorithm [22] is utilized to perform local search

using expensive �ne model evaluations. ORBIT is a mathematically sound and

successful radial basis function (RBF)-assisted trust-region method and excel-

lent results have been reported in [22]. The main advantage of ORBIT is that

it tries to build a unique RBF model based on the sampled points for accurate175

predictions. Given a set of evaluated data, ORBIT realizes the following proce-

dures (more details about ORBIT and fully linear RBF model can be found in

[22]).

Step 1: Select points to build (if possible) an RBF model which is fully linear

within a neighbourhood of the current trust-region.180

Step 2: Include additional points if necessary to ensure that the model pa-

rameters remain bounded.

Step 3: Fit the RBF parameters (a cubic RBF is used in this implementation).

Step 4: If the model gradient is not too small, obtain a fully linear RBF

model within a small neighbourhood.185

Step 5: Determine a search step based on the RBF model.

Step 6: Update trust-region parameters.

Step 7: Perform exact evaluation at an additional point if the model is not

fully linear within the neighbourhood.

3. The MGPMDE Algorithm190

3.1. The New MFO Framework

The proposed MFO framework is as follows:

Stage 1: Coarse Model-based SBO: Construct the pool of representative

candidate solutions based on an e�cient and scalable SBO (should have

global search ability) using coarse model-based evaluations (CEs).195

9
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Stage 2: Data Mining: Generate the initial population for �ne model-based

optimization by clustering of the representative solution pool and self-

development using �ne model-based evaluations (FEs).

Stage 3: Fine Model-based Memetic SBO: Carry out memetic SBO from

the initial population in Stage 2 using FEs with an appropriate strategy200

balancing the surrogate-model-assisted global and local search.

Compared to most MFO frameworks, two distinct di�erences of the new

MFO framework are: (1) The initial candidate solutions for FE-based search are

generated based on a data mining process, instead of a set of selected �promising�

candidates based on CEs (starting FE-based optimization from the latter would205

lead to wasting FEs and degraded performance of the optimization process).

(2) Both global and local search are conducted in FE-based search, instead of

only using local exploitation.

The goal of Stage 1 and Stage 2 is to construct an expected good initial

population for FE-based optimization in Stage 3, using as few expensive eval-210

uations as possible. Two clari�cations are: (1) Despite discrepancies between

the models of di�erent �delities, it is reasonable to assume that the points vis-

ited by the CE-based SBO represent the positions of the decision space which

are worth to be studied. Many unpromising subregions are naturally �ltered

out in this process with the support of SBO. (2) Because the qualities of the215

representative candidates are not known in terms of FE, and the number of

FEs should be as few as possible for selecting truly good candidates, clustering

techniques are to be used. Because of the model discrepancy and the limited

number of FEs in this process, the candidates extracted at this stage may not

be of su�cient number and of su�ciently good quality when directly serving as220

the initial population of Stage 3. Hence, self-development using FEs based on

extracted good candidates (seed population) is necessary.

Although the number of FEs used in Stage 2 is small in the above framework,

more CEs have to be used than in most MFOs, since a complete global optimiza-

tion using the coarse model is necessary, instead of just selecting �promising�225

10
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candidates in the middle of the process. Nevertheless, the cost of CEs can still be

reasonable if the following three conditions are satis�ed: (1) CE is much cheaper

than FE, (2) the SBO used for CE-based optimization is e�cient enough (i.e.,

require fewer exact evaluations), and (3) the stopping criterion is appropriate.

More details are in Section 3.2.230

Only FEs are used in Stage 3. The e�ciency improvement comes from an

expected initial population with good optimality and diversity from Stage 2

and the memetic SBO. The prerequisites for the memetic SBO are: (1) to have

a global optimization ability instead of only performing local exploitation, (2)

to exhibit improved e�ciency compared to the selected SBO without sacri�c-235

ing the solution quality, (3) to have su�cient �exibility to �nd a reasonable

trade-o� between global exploration and local exploitation for problems with

prohibitively expensive FEs where global optimization is not possible.

In the following, an algorithm is proposed according to the above framework

and requirements of each stage, called MGPMDE. The surrogate model-aware240

evolutionary search (SMAS) framework [23] with blind GP surrogate modeling

is selected as the SBO for global optimization and the ORBIT algorithm with

RBF surrogate modeling is selected as the SBO for local optimization. Empirical

studies in Section 4 show that the use of SMAS and ORBIT is an appropriate

choice for the targeted very expensive problems, but note that it is not the only245

choice, and other successful SBO frameworks (e.g., [4]) can also be applied when

satisfying the requirements of each stage of the above framework.

3.2. Construction of the Representative Candidate Solution Pool

This subsection describes operation of Stage 1 of MGPMDE, which works

as follows:250

Step 1: Use Latin Hypercube Sampling [24] to allocate α solutions within the

decision space [ā, b̄]d, evaluate all these solutions using CEs and form the

initial database.

Step 2: If the di�erence of population diversity PD is less than δ1 in 50

11
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consecutive iterations, output the database; otherwise go to Step 3.255

Step 3: Select the λ best solutions from the database to form a population

P .

Step 4: Apply DE/current-to-best/1 (6) and binomial crossover on P to gen-

erate λ child solutions.

Step 5: Select τ nearest evaluated points (based on Euclidean distance) around260

the centroid of the λ child solutions as training data points [21]. Construct

a surrogate model using blind GP with the selected training data points.

Prescreen the λ child solutions generated in Step 4.

Step 6: Evaluate fc(x) (the value of the estimated best child solution from

Step 5) using CE. Add this evaluated solution and its function value to the265

database (i.e., representative candidate solution pool). Go back to Step 2.

The population diversity is calculated as [25]:

PD = 1
λ

∑λ
i=1minj∈{1,2,...,λ},j 6=idn(Pi, Pj)

dn(Pi, Pj) =
√

1
d

∑d
k=1(

Pi,k−Pj,k

b̄k−āk
)2

(8)

At this stage, an SMAS-based SBO is used to construct the representative

candidate solution pool, consisting of all the solutions which undergo CE. The

selection of SMAS is because of its e�ciency considering the expensiveness of

the targeted problem. The GPEME algorithm [23] based on SMAS and GP270

modeling ensures comparable results but uses considerably fewer number of ex-

act evaluations compared to SBOs with several popular frameworks, as veri�ed

using more than ten benchmark test problems. In an improved SMAS [21], the

e�ciency is further enhanced along with the exploration ability of the algorithm.

For example, the local optimum in the narrow valley of the 20/30-dimensional275

Rosenbrock function can be escaped by the improved SMAS, which is di�cult

for many global optimization-focused SBOs. Having in mind the prerequisites

for the SBO process formulated in Section 3.1, the following two clari�cations

on e�ciency of SMAS and the stopping criterion are provided below.

12
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The e�ciency of SMAS comes from high-quality surrogate modeling and the280

balance between exploration and exploitation. In each iteration, the λ current

best candidate solutions form the parent population (it is reasonable to assume

that the search focuses on the promising subregion) and the best candidate

based on prescreening in the child population is selected to replace the worst

one in the parent population. This way, only at most one candidate is altered285

in the parent population in each iteration; consequently, the best candidate

among the child solutions in several consecutive iterations may not be far away

with each other (they will then be evaluated and are used as the training data

points). Therefore, the training data points describing the current promising

region can be much denser than those generated by a standard EA population290

updating mechanism (in which the solutions may spread in di�erent subregions

of the decision space while there may not be su�cient number of the training

data points around the candidate solutions to be prescreened). For this reason

SMAS-based SBO is very e�cient.

To maintain the exploration ability, an appropriate strategy for generating295

the child population should be used so that a reasonably high diversity in or

around the promising subregions is introduced. Experimental results in [21]

show that by combing the promising subregion-emphasised search mechanism

and the DE/current-to-best/1 strategy, a good balance of exploration and ex-

ploitation is obtained and a good performance in terms of solution quality for300

10 to 30-dimensional multimodal benchmark problems is shown. More details

of SMAS are in [23, 21].

Similarly as in most SBOs, an intensive search (i.e., �ne tuning) may be

carried out around the �nally obtained optimum when using SMAS. However,

considering the discrepancy between the coarse and the �ne model, costing CEs305

in this intensive search process may not be necessary. Therefore, terminating

the search based on the population diversity PD seems to be a more reasonable

approach. When PD is within a very small range for a number of consecutive

iterations, a �ne tuning is expected to be applied to P , which is the appropriate

time to terminate. Note that the population diversity estimation method uti-310

13



Page 17 of 34

Acc
ep

te
d 

M
an

us
cr

ip
t

lized here takes into account the dimensionality and the search ranges in order

to obtain a good generality.

3.3. Population Initialization

This subsection describes Stage 2 (data mining) of MGPMDE, which works

as follows:315

Step 1: Divide the representative candidate solution pool into G groups based

on the fc(x) values. The ith(i = 1, 2, . . . , G) group has fc(x) values of

[min(fc(x))+ i−1
G (max(fc(x))−min(fc(x))),min(fc(x))+ i

G (max(fc(x))−

min(fc(x)))].

Step 2: Divide each group of solutions into n0 clusters (based on Euclidean320

distance) using the intelligent Kmeans method [26] and obtain n0 × G

centroids.

Step 3: Find the nearest point to each obtained centroid from the representa-

tive candidate solution pool and evaluate them using FEs to obtain ff (x).

Step 4: Cluster the group with the best ff (x) into λ0 clusters using the325

intelligent Kmeans method to form the seed population Ps.

Step 5: If ||Ps|| = λ, output Ps. Otherwise; go to Step 6.

Step 6: Apply DE/best/2 (7) and the binomial crossover on Ps to generate

||Ps|| child solutions.

Step 7: Use all the solutions in Ps as the training data points to construct a330

blind GP model. Prescreen the child solutions generated in Step 6.

Step 8: Evaluate the ff (x) value of the estimated best child solution from

Step 7. Add this evaluated solution and its function value to Ps. Go back

to Step 5.

Some clari�cations are as follows.335

14



Page 18 of 34

Acc
ep

te
d 

M
an

us
cr

ip
t

The representative candidate solution pool should not be directly clustered.

When preparing the representative solution pool (Section 3.2), the search grad-

ually transforms from global exploration to local exploitation. Hence, the earlier

visited solutions have much larger distances between each other than the later

visited ones. When directly clustering the representative solution pool (based340

on their distances), the earlier visited solutions will dominate the clustering.

Considering the overall similarity of the landscapes of the coarse and �ne mod-

els, we do not expect that many promising subregions in terms of FE are located

in the vicinity of the candidates visited in the space exploration phase. There-

fore, we approximately divide the representative solution pool into groups with345

comparable (or similar level) distances between each other and then perform

clustering in each group. fc(x) is selected as a reference to approximately re-

�ect di�erent phases of the search, in which the distances between solutions are

approximately on the same level. For clustering, the iKmeans clustering [26] is

used to prevent the uncertainty of the standard Kmeans clustering.350

Because the number of FEs in the data mining process should be as few as

possible, only a small number of samples (n0) can be used to represent each

group. Some optimal solutions in terms of FE may thus be missing. However,

�nding all the optimal candidates is not our goal at this stage. Instead, we aim

at constructing an initial population with good optimality and good diversity for355

the next stage (FE-based optimization). Therefore, a seed population derived

from the best group is �rstly constructed with expected reasonably good quality

and diversity. DE/best/2 is then used to promote both the optimality and the

diversity. The population size is continuously increasing until it reaches λ, and

in each iteration, all the evaluated solutions are used to generate and prescreen360

the child population.

3.4. Memetic SMAS

This subsection outlines implementation of Stage 3 of MGPMDE. SMAS is

selected as the basic SBO of this stage due to its e�ciency and global optimiza-

tion capability. According to the requirements listed in Section 3.1, introducing365
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surrogate-model-assisted local search to SMAS is necessary. The ORBIT algo-

rithm, which is a rigourous and successful method, is selected for this purpose.

It has been introduced brie�y in Section 2 and more details of ORBIT are in

[22]. A key issue is the method to control the use of SMAS and ORBIT.

When the population of SMAS enters the �ne tuning phase (within a small370

subregion of the search space) and the landscape in this local area is not very

rugged, we can reasonably assume that a surrogate-model-assisted local search

with less exploration ability can also obtain an optimal or satisfactory solution

using fewer exact evaluations. Due to this, ORBIT is used to replace SMAS

when the population diversity becomes small. Note that this is di�erent from375

many memetic SBOs, where global and local search are iteratively applied in the

entire optimization process. Because e�ciency is the top priority of MGPMDE

considering the targeted problem, local tuning of an intermediate and potentially

good solution cannot be a�orded. Hence, in MGPMDE, SMAS and ORBIT are

separated and ORBIT is applied only once. In addition, a surrogate-model-380

assisted local search method has ability (to some extent) to avoid getting stuck

in local optima because surrogate modeling itself smoothens the landscape. To

enhance this ability, a reasonably large initial trust-region radius is used.

In MGPMDE, The memetic SMAS works as follows:

Step 1: Starting from the initial population of Stage 2, iteratively carry out385

Step 3 to Step 6 in Stage 1 (Section 3.2) but with FEs until PD ≤ δ2 or

according to the predetermined computational budget setting.

Step 2: Calculate the Euclidean distances between each individual in the child

population and the centroid of the child population. Set the average and

the largest distance values as the initial radius and the maximum radius390

of the trust-region, respectively.

Step 3: Carry out ORBIT until the stopping criterion is met, which can be

a certain number of FEs according to the computational budget and / or

if the RBF gradient is smaller than a given tolerance.
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3.5. Parameter Settings395

Each stage of the MGPMDE algorithm has its own parameters. The SMAS

parameters and the ORBIT parameters have been well studied and the algo-

rithm performance is not sensitive to their values when following the setup rules

[23, 11, 22]. The new parameters that need to be studied are δ1, δ2, G, n0, λ0.

Their settings and our considerations are as follows:400

• δ1 and δ2 are normalized population diversity values calculated by (8). For

a given method, they are not di�cult to be obtained by empirical tests.

We assume that the search range is [−1, 1]d (or we can easily adapt δ1 and

δ2). We suggest δ1 = 0.03. δ2 is tuneable to �nd a reasonable trade-o�

between exploration and exploitation. If global optimization is expected,405

δ2 is suggested to be set to 0.06. For larger values, the local search is more

emphasized. Note that in some cases, δ2 may be replaced by a certain

number of FEs according to available computational budget.

• G is the number of groups the pool is divided into based on fc(x). Its

value should not be too small (otherwise the distances in each group are410

still not at the same level) nor too large (otherwise FEs will be wasted on

later steps). We suggest to set it between 4 and 6.

• n0 is the number of samples to represent each group. As mentioned above,

n0 should be small (Section 3.3). We suggest n0 = 2 or 3.

• λ0 is the size of the seed population. For the sake of reducing the number415

of FEs and considering the self-development process, λ0 is suggested to be

set around 10.

Although there are 5 parameters, the clear setup rules provided above and

their small suggested ranges, prevent parameter setting from being a problem.

To verify the robustness, we use the same parameters for various test problems.420

We use δ1 = 0.03, δ2 = 0.06, G = 5, n0 = 2 and λ0 = 10. For SMAS parameters

and ORBIT parameters, we follow [11] and [22]. For simplicity, α and λ are set

to 50 for all the tested problems.
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4. Experimental Studies

In this section, MGPMDE is tested using mathematical benchmark problems425

and a real-world antenna array design optimization problem. Six benchmark

functions of dimensionality 5 to 20 of increasing di�culty and with landscapes

of di�erent characteristics are �rst selected. Based on the method of Section

2.1 [5] , six multi-�delity test problems are subsequently constructed. The real-

world problem uses a cheap analytical model as the low-�delity model and a430

computationally expensive electromagnetic (EM) simulation model as the high-

�delity model, which is widely applied for antenna array design optimization [2].

Comparisons with standard DE and existing multi-�delity SBOs are provided.

4.1. Mathematical Benchmark Problem Tests

4.1.1. Test problems construction435

Six mathematical benchmark problems [27] with di�erent characteristics are

selected as the basic functions, as shown in Table 1. The speci�c challenges of

some of the problems are as follows: (1) The optimal point of the Dixon & Price

function is located in a narrow valley. (2) For the Styblinski-Tang function, the

local optima are far away from each other. (3) The Levy function has numerous440

local optima and the global optimum is located on a plate. (4) The Ackley

function has numerous local optima. It has a nearly �at outer region and with

a narrow peak at the centre.

These basic functions serve as either fc(x) or ff (x) when constructing the

test problems as in [5] (Section 2.1). For test problems that contain trigono-445

metric functions, both spatial shifts ss and frequency shifts sf are added with

increasing complexity. For all the functions, spatial shifts ss are added, which

are randomly generated with up to around 10% of the search ranges. The above

discrepancy setting is similar to [5], making sure that the optimal solutions of

the FE function are di�cult to be obtained by directly exploiting the optimal450

solutions of the CE function except F1, which is a unimodal problem. More

details are provided in the Appendix.
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Table 1: Basic Functions Used in the Experimental Studies

Problem Objective function Search range Global optimum Property

F1 Ellipsoid [−30, 30]20 0 unimodal,separable

F2 Dixon & Price [−30, 30]20 0 unimodal,non-separable

F3 Styblinski-Tang [−5, 5]5 -195.83 multimodal, non-separable

F4 Levy [−30, 30]10 0 multimodal,non-separable

F5 Ackley [−30, 30]10 0 multimodal,non-separable

F6 Ackley [−30, 30]20 0 multimodal,non-separable

Table 2: Statistics of the best function values obtained by MGPMDE for F1-F6

Problem best worst average std

F1 2.94e-8 2.81e-5 8.75e-6 8.55e-6

F2 0.67 0.94 0.76 0.09

F3 -195.83 -181.69 -194.42 4.31

F4 4.34e-14 3.28 0.52 0.89

F5 3.08e-4 0.91 0.06 0.23

F6 2.8e-4 0.91 0.09 0.28

4.1.2. MGPMDE performance study

The statistics of the best function values obtained by MGPMDE based on

30 independent runs are reported in Table 2. The number of CEs is determined455

by δ1 and the number of FEs is determined by δ2 and RBF gradient tolerance

(1e-4).

It can be inferred from Table 2 that MGPMDE consistently exhibits good

global optimization capability and robustness when using the same algorithm

setup. This is despite of various types and levels of discrepancies between the460

coarse and �ne models, as well as di�erent problem characteristics and complex-
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ity. The average values of 30 runs are close to the global optimum.

In terms of reliability and e�ciency, Fig. 2 to Fig. 7 show the comparison of

MGPMDE and the latest SMAS-based SBO [21], which is an improved version of

[23]. The reference method only uses FEs. For comparison purposes, we assume465

that the coarse model is 10 times faster than the �ne model, which is common

in industry [2]. The number of CEs used in MGPMDE is thus transformed to

�equivalent� FEs for comparisons.

The following conclusions can be drawn: (1) Considering model discrep-

ancy, good reliability of MGPMDE is shown, because the median performance470

of MGPMDE is not worse than the reference method (based on only FE and

SMAS) in terms of solution quality. (2) The initial population constructed from

the �rst two stages of MGPMDE exhibits good optimality. According to Figs. 2

to 7, the initial �tness values for F1-F6 are much better than those obtained by

means of the reference method using the same number of FEs. To verify this,475

Table 3 lists the best �tness values of the representative solution pool (where

CE is used) in terms of FE (frp), of the seed population (fsp), and of the initial

population for Stage 3 (finitp). It can be observed that most fsp are similar

to frp, which veri�es the method to generate the seed population (Steps 1-4 in

Stage 2). finitp shows clear improvement compared to fsp, which veri�es the480

self-development process in Stage 2 (Steps 5-8) in terms of optimality. (3) Good

overall quality (including both optimality and diversity) of the initial population

can be observed, because the convergence rate of MGPMDE is similar to the

reference method starting from the corresponding �tness values, except for F1

which is a little lower but still similar. Otherwise; the convergence rate should485

be much lower than that of the reference method or stuck at a local optimum

although starting from a population with good optimality. Conclusions (2) and

(3) indicate that the goals of the new MFO framework, speci�cally, obtaining

high quality initial population based on CE, data mining and a small num-

ber of FEs are met. Conclusion (3) also veri�es the overall good e�ciency of490

MGPMDE.

The memetic SMAS framework inherits the advantages in terms of com-
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Figure 2: Convergence curve of the objective function for F1 

 

 

 

 

 

 

 

Figure 3: Convergence curve of the objective function for F2

 

 

 

 

 

 

 

 

Figure 4: Convergence curve of the objective function for F3
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Figure 5: Convergence curve of the objective function for F4

 

 

 

 

 

 

 

 

Figure 6: Convergence curve of the objective function for F5 

 

 

 

 

 

 

 

Figure 7: Convergence curve of the objective function for F6
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Table 3: Best �tness values for the representative solution pool, seed population and initial

population (average over 30 runs)

Problem frp fsp finitp

F1 121.9 142.1 79.4

F2 3150.5 3823.6 1666.3

F3 -189.2 -186.5 -193.7

F4 4.9 7.6 5.3

F5 4.9 5.4 4.7

F6 5.3 5.8 4.9

 

 

 

 

 

 

 

 

Figure 8: Comparison of MGPMDE with / without ORBIT

putational e�ciency of SMAS and provides further improvements by applying

ORBIT at suitably selected step of the optimization procedure as explained be-

fore. A clear example is shown in Fig. 5, where ORBIT starts at around 680495

iterations. To further demonstrate the bene�ts of memetic SMAS, a represen-

tative example using F5 is shown in Fig. 8. MGPMDE is compared with a

method using the same �rst two stages but with only SMAS (without ORBIT)

used at the third stage. It can be seen that about 20% FEs are saved.
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4.2. Real-world Problem Tests500

MGPMDE is applied to a real-world antenna design automation problem

[28]. It is a 10 GHz 16-element microstrip patch antenna implemented on a

�nite 1.575-mm-thick Rogers RT5880 dielectric substrate, which is shown in

Fig. 9. The objective is minimization of the side lobes assuming ±8-degree

main beam. The design variables are excitation amplitudes ak, k = 1, 2, . . . , 16

with a range of [0, 1]16. The objective function is as follows:

min SLL(ak), k = 1, 2, . . . , 16 (9)

where SLL is the sidelobe level, i.e., the maximum relative power for the angles

0 to 82 degrees and 98 to 180 degrees.

The coarse model is an analytical array factor model assuming ideal isotropic

radiators [28], for which each calculation costs about 5× 10−3s. The �ne model

is an electromagnetic (EM) simulation model (no explicit analytical formula505

is available), for which each simulation costs about 30 minutes. In order to

make multiple runs and comparisons possible, the simulation-based superposi-

tion model has been created that ensures virtually the same accuracy as the

�ne EM simulation model but at the fraction of the cost of the latter. The

simulation-based superposition model is obtained as superposition of individu-510

ally simulated far �elds of all array elements. Each element is simulated within

the array in order to take into account EM couplings with all other elements.

30 runs of MGPMDE, SMAS and standard DE with the same parameters of

Section 4.1 are carried out. From practical standpoint, accomplishing the an-

tenna design process within 3 days can be considered as satisfactory. According515

to the computational budget, 100 �ne model simulations are used for Stage 2

and SMAS in Stage 3, and 50 �ne model simulations are used for ORBIT.

The results are shown in Table 4. The convergence trends of MGPMDE

and SMAS are indicated in Fig. 10. The time expenditure is calculated by

multiplying the average cost of each simulation by the number of simulations.520

The time spent on surrogate model training is less than half an hour (less than 1

FE), and it can be neglected. The following observations can be made: (1) The
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Figure 9: Layout of 16-element microstrip patch array antenna

Table 4: Statistics of the best function values obtained by MGPMDE (150 �ne simulations),

SMAS (550 �ne simulations), standard DE (30,000 �ne simulations)

Method best worst average std

MGPMDE -22.61 -21.24 -22.16 0.34

SMAS -22.24 -19.19 -21.43 0.86

Standard DE -23.14 -23.06 -23.12 0.02

 

 

 

 

 

 

 

 

Figure 10: Convergence curve of the objective function for the real-world antenna design

example
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result of MGPMDE using 150 �ne model simulations is of high quality either

using antenna theory or the standard DE result as a reference. (2) A large speed

improvement of MGPMDE can be observed compared to SMAS with �ne model525

simulations.

The di�erence between the best candidate design of Stage 1 (coarse model-

based SBO) and the �nal best design of Stage 3 are compared for 30 runs of the

algorithm. Among 16 design variables, the average di�erence spans from 7.2%

to 42.2% of the search range, and 8 out of 16 are larger than 20% of the search530

range. This indicates that the true optimum is di�cult to be found if following

the existing method of performing local exploitation around the CE-based op-

timal design. Furthermore, the average results of MGPMDE and standard DE

over 30 runs are compared. To obtain the average result of MGPMDE using 150

�ne model simulations, standard DE needs 3800 �ne model simulations. This535

indicates the substantial speed improvement o�ered by MGPMDE.

5. Conclusions

In this paper, the MGPMDE method has been proposed. The targeted prob-

lems are engineering design optimization tasks with very long simulation time of

the relevant computational models, for which even state-of-the-art global SBOs540

or MFOs may be too expensive. The main contributions of the work are: (1)

the development of the new MFO framework which substantially improves reli-

ability of the optimization process and makes comprehensive use of high-�delity

evaluations, (2) the development of the data mining method which provides a

good initial population for �ne model-based optimization in terms of both opti-545

mality and population diversity, and (3) the development of MGPMDE, showing

the combined advantages of high e�ciency, high reliability and high optimiza-

tion quality, as demonstrated by benchmark and antenna design automation

problems. The methodology developed under this research also considerably

decreases the risk related to usage of lower-�delity simulation models, as well550

as further improves the e�ciency of the optimization process. Future work will
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focus on constrained and multi-objective MGPMDE.
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A. F1: Ellipsoid Problem

fc(x) =
∑d
i=1 i× x2

i

ff (x) =
∑d
i=1 i× shi × (xi − ssi)2

i = 1, . . . , d

sh = [0.3, 0.4, 0.2, 0.6, 1, 0.9, 0.2, 0.8, 0.5, 0.7,

0.4, 0.3, 0.7, 1, 0.9, 0.6, 0.2, 0.8, 0.2, 0.5]

ss = [1.8, 0.4, 2, 1.2, 1.4, 0.6, 1.6, 0.2, 0.8, 1,

1.3, 1.1, 2, 1.4, 0.5, 0.3, 1.6, 0.7, 0.3, 1.9]

(.1)

B. F2: Dixon & Price Problem

fc(x) = (x1 − 1)2 +
∑n
i=2 i(2x

2
i − xi−1)2

ff (x) = fc(x− ss)

i = 1, . . . , d

ss = [1.8, 0.5, 2, 1.2, 0.4, 0.2, 1.4, 0.3, 1.6, 0.6,

0.8, 1, 1.3, 1.9, 0.7, 1.6, 0.3, 1.1, 2, 1.4]

(.2)

C. F3: Styblinski-Tang Problem

fc(x) = 0.5×
∑d
i=1(x4

i − 16x2
i + 5xi)

ff (x) = fc(x− ss)

i = 1, . . . , d

ss = [0.28, 0.59, 0.47, 0.16, 0.32]

(.3)
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D. F4: Levy Problem

fc(x) = sin2(sf × πwi) +
∑d−1
i=1 [1 + 10sin2(sf × πwi + 1)]

+(wd − 1)2[1 + sin2(2sf × πwd)],

wi = 1 + 0.25(xi − ssi − 1)

ff (x) = sin2(πwi) +
∑d−1
i=1 [1 + 10sin2(πwi + 1)]

+(wd − 1)2[1 + sin2(2πwd)], wi = 1 + 0.25(xi − 1)

i = 1, . . . , d

sf = 0.8, ss = [1.2, 0.3, 1, 0.3, 1.6, 0.8, 1.4, 0.7, 2, 1.5]

(.4)

E. F5,F6: Ackley Problem

fc(x) = −20e−0.2
√

1
d

∑d
i=1 x

2
i − e 1

d

∑d
i=1 cos(2πxi)

ff (x) = −20e−0.2
√

1
d

∑d
i=1(xi−ssi)2

−e 1
d

∑d
i=1 cos(2×sf×πxi−ssi)

i = 1, . . . , d

F5 : sf = 1.3, ss = [1.3, 0.1, 1.4, 0.8, 1.7, 1, 1.5, 0.6, 2, 0.4]

F6 : sf = 1.3, ss = [1.2, 0.2, 1.4, 0.8, 1.8, 1, 1.6, 0.6, 2, 0.4,

1.3, 0.3, 1.5, 0.9, 1.9, 1.1, 1.7, 0.7, 2.1, 0.5]

(.5)
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