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Abstract

We examine a higher-order spatial autoregressive model with stochastic, but

exogenous, spatial weight matrices. Allowing a general spatial linear process

form for the disturbances that permits many common types of error specifica-

tions as well as potential ‘long memory’, we provide sufficient conditions for

consistency and asymptotic normality of instrumental variables and ordinary

least squares estimates. The implications of popular weight matrix normal-

izations and structures for our theoretical conditions are discussed. A set of

Monte Carlo simulations examines the behaviour of the estimates in a variety

of situations and suggests, like the theory, that spatial weights generated from

distributions with ‘smaller’ moments yield better estimates. Our results are es-

pecially pertinent in situations where spatial weights are functions of stochastic

economic variables.
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1 Introduction

Spatial autoregressive (SAR) models, due to Cliff and Ord (1973), have recently be-

come very popular in applied and theoretical research. These assume that, for an n×1

vector of observations yn, an n× k matrix of regressors Xn and n× n weight matrices

Wjn, j = 1, . . . , p, there exist unknown scalars λ1n, λ2n, . . . , λpn and an unknown k× 1

vector βn such that

yn =

p∑

j=1

λjnWjnyn +Xnβn + un, (1.1)

where un is an n × 1 vector of unobserved disturbances. The elements of Wjn mea-

sure distance between units, which may be geographic but in general can be (inverse)

economic distances. Wjn are sometimes normalized in ways that make their elements

dependent on n, e.g. row normalization, and Xn may contain spatial lags of basic ex-

planatory variables. Both points imply triangular arrays and justify the n subscripting

in (1.1), but the linear process type structure we permit for the disturbances also en-

tails n subscripting on these. Subsequently we will drop n subscripts for brevity, but

will occasionally remind the reader of the n-dependence of certain quantities.

While the majority of the literature on estimation and inference for SAR models,

e.g. Kelejian and Prucha (1998, 1999, 2001), Lee (2002, 2003, 2004), Robinson (2010),

Lee and Liu (2010), Su and Jin (2010), Lee and Yu (2013), Gupta and Robinson (2015),

has assumed the Wj to be deterministic, examples abound that imply stochastically

generated Wj . Most commonly a typical element of Wj is determined by economic

variables that may themselves be stochastic. Conley and Ligon (2002) study cross-

country spillovers in long-run growth rates using several distance measures. While one

of them, geographic distance, is evidently fixed the other two measures, United Parcel

Service shipping costs and airfare, are more difficult to justify to be fixed in repeated

sampling. Both, at the very least, are subject to random shocks in the economic con-

ditions of each pair of countries, among many other factors. Conley and Dupor (2003)
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take input-output relations as a measure of economic distance, and it is reasonable to

imagine that these relations are stochastic and not fixed. In Yuzefovich (2003) spa-

tial weight matrices are constructed using a variety of economic distances, e.g. trade

between two countries and competition in borrowing from a common lender. These

variables would generally be considered stochastic in econometric analyses that use

such data. Another example is Baltagi, Fingleton, and Pirotte (2014), who construct

a weight matrix using commuting frequencies between districts in the UK. Commuting

frequencies between two districts depend heavily on macro and microeconomic factors

that are stochastic, and therefore may be anticipated to be stochastic too. Souza

(2015) considers a SAR model in which networks may form stochastically, captured

by nonzero spatial weight matrix elements. Robinson (2008) briefly discusses a SAR

with stochastic weights in the context of correlation testing.

In this paper we will justify instrumental variables (IV) and ordinary least squares

(OLS) estimates for (λ′, β ′)′ with stochastic but exogenous Wj . Asymptotic theory

for IV estimates of SAR models was introduced first in Kelejian and Prucha (1998),

and subsequently also studied by Lee (2003). IV is employed because the Wjy are

endogenous in general, but Lee (2002) demonstrated that OLS can deliver consistent

and asymptotically normal estimates of SAR model parameters under certain circum-

stances, thus correcting a tendency to casually discard OLS as a suitable method for

SAR estimation and inference. A more general treatment by Gupta and Robinson

(2015) examined IV and OLS estimates for an increasing order version of (2.4) with

p, k →∞ slowly with n, but with iid u elements.

Theory has been developed for estimation with endogenous Wj . Kelejian and Piras

(2014) consider such a model and develop IV type estimates. Qu and Lee (2015) were

critical of their restrictive assumptions, and instead use the near epoch dependence

(NED) theory of Jenish and Prucha (2012) to establish consistency and asymptotic

normality of estimates in a more general setting. However the intermediate case, with
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stochastic but exogenous Wj has received little theoretical attention. This case can

cover situations of economic interest where spatial weights are generated by exogenous

regressors, and can be examined in a very general framework that does not require

NED process theory. For observations recorded at locations i and l the latter essentially

requires the locations to be geographic (in the sense that they are in Euclidean space)

due to a notion of dependence reducing as the distance between them increases. Thus

it is not generally applicable to data that do not have a geographic interpretation.

On the other hand, the SAR model has been considered to be particularly appealing

because of its ability to handle data in general economic spaces, such as income space,

where geographical interpretations may not be natural. If the locations indeed have a

geographical interpretation, NED based theory provides powerful results and a greater

ability to handle nonlinear models, cf. Xu and Lee (2015).

An additional innovation is that we allow for a general ‘spatial linear process’

structure in u, cf. Robinson and Thawornkaiwong (2012). They do not consider

models with spatial lags in the dependent variables explicitly, nor do they provide

theory for OLS estimates. In this sense we make a novel contribution to the literature

also in the fixed Wj case that we formally cover.

The paper is organized as follows: Section 2 contains asymptotic theory for IV

estimates, and Section 3 for ordinary least squares estimates. We discuss implications

of common weight matrix normalizations and structures in Section 4, while Section 5

contains a small Monte Carlo simulation study. Section 6 concludes the paper. Two

appendices contain theorem proofs and technical lemmas.

2 IV estimation

Let Z = Zn be a matrix of instruments with dimension n × p1, p1 ≥ p. Denoting

θ = (λ′, β ′)′, define the IV estimate of θ as
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θ̂ = n−1 ¯̄Q−1 ¯̄K ′J̄−1 [Z,X ]′ y = θ + ¯̄Q−1 ¯̄K ′J̄−1q, (2.1)

where ¯̄Q = ¯̄Qn = ¯̄K ′J̄−1 ¯̄K (dimension p + k) and ¯̄K = ¯̄Kn = n−1 [Z,X ]′ [R,X ]

(dimension (p1 + k)× (p+ k)), with R = [W1y, . . . ,Wpy], J̄ = J̄n = n−1 [Z,X ]′ [Z,X ]

(dimension p1 + k), q = n−1 [Z,X ]′ u. Throughout the paper C denotes a generic

positive constant, arbitrarily large but independent of n.

Assumption 1. (1.1) holds with u = un = (u1n, . . . , unn)′, and

urn = ur =
∞∑

l=1

crlεl, r = 1, . . . , n, n ≥ 1, (2.2)

where εl are scalar independent random variables with zero mean and unit variance,

crl = crln, and satisfy
∞∑

l=1

c2
rl < C, r = 1, . . . , n, n ≥ 1. (2.3)

Assumption 2. The elements of Wj, j = 1, . . . , p, are random variables that are

uniformly Op(1/hn), as n → ∞, with hn = h a bounded or divergent sequence that is

bounded away from zero.

Assumption 1 permits a wide variety of disturbance processes including SAR and

spatial moving average (SMA), and implies that each ui forms a triangular array. The

square summability of linear process coefficients in (2.3) allows spatial ‘long-memory’.

Robinson and Thawornkaiwong (2012), who introduced this assumption, discuss it in

detail. The time series literature commonly allows for martingale εl, but this is avoided

in spatial settings as there may be no natural ordering available. Assumption 2 is an

extension to stochastic weights of a commonly employed assumption that controls

spatial weights, cf. Lee (2002, 2004), Gupta and Robinson (2015).

Assumption 3. P (S is non-singular) = 1, for all sufficiently large n.
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Assumption 3 ensures that a reduced form exists almost everywhere (a.e.) for y.

Indeed, we can write (1.1) as

Sy = Xβ + u, (2.4)

where S = In −
∑p

j=1 λjWj , In denoting the s-dimensional identity matrix or, equiv-

alently, y = Rλ + Xβ + u. Assumption 3 implies that y = S−1Xβ + S−1u, a.e., so

R = A + B where A = [G1Xβ, . . . , GpXβ], B = [G1u, . . . , Gpu] and Gj = WjS
−1

for j = 1, . . . , p. Also define K̄ = K̄n = n−1 [Z,X ]′ [A,X ], Q̄ = Q̄n = K̄ ′J̄−1K̄ and

introduce user chosen real numbers ζi, i = 1, . . . , 12, such that 1 < ζi < C for each i

and ζ−1
j + ζ−1

j+1 = 1 for odd j. The ζi will be used in Hölder inequalities in the proofs.

Assumption 4. X, Wj and zr are independent of εl, r = 1, . . . , n, j = 1, . . . , p,

l = 1, . . . ,, where is zr is the r-th column of Z ′. Let arjn = arj denote the (r, j)-th

element of [Z,X ]. Then

max
1≤r≤n, 1≤j≤p1+k

E |arj|
2ζ1 < C, (2.5)

and, as n→∞,

K̄
p
−→ K, J̄

p
−→ J, (2.6)

where K, J are full-rank constant matrices, with J symmetric.

A consequence of Assumption 4 is that Q̄−Q = op(1), with Q = K ′J−1K. Condition

(2.5) implies finite fourth moments for instruments and regressors. The requirement

of the whole regressor matrix X being independent of the εl stems from the fact the

instruments are typically constructed using linearly independent columns of W s
jX,

j = 1, . . . , p, s ≥ 1, cf. Kelejian and Prucha (1998). Evidently a given instrument

vector then contains elements from different rows of X, as was noted by Gupta and

Robinson (2015).

For a generic matrix F , define ‖F‖ as the square root of the largest eigenvalue
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of FF ′ (the spectral norm), and ‖F‖R as the largest absolute row-sum of F (the

maximum row-sum norm). Denote

χn = n−
1
2 max

1≤j≤p

(
E ‖Wj‖

2ζ2ζ3
) 1

2ζ2ζ3

(
E
∥
∥S−1

∥
∥2ζ2ζ4

) 1
2ζ2ζ4 . (2.7)

Theorem 2.1. Let Assumptions 1-4 hold and

χn → 0, as n→∞. (2.8)

Then θ̂ − θ = op(1).

The condition (2.8) limits the extent of spatial correlation. Note that (2.8) does not

impose that ‖Wj‖ or ‖S−1‖ have finite 2ζ2ζ3-th or 2ζ2ζ4-th moments, but allows these

to grow with n. In this sense it is not as strong as may be imagined at first glance.

We will look at a specific example with potentially unbounded moments in Section 4.

There is an implication of being able to ‘trade-off’ the magnitude of moments of ‖Wj‖

and ‖S−1‖ in χn and aij by choices of ζi, i = 1, 2, 3, 4. Some of the existing literature

on SAR models with fixed weights imposes restrictions on ‖Wj‖R or ‖S−1‖R, but these

are evidently stronger than those based on the spectral norm. Indeed, taking ζi = 2,

i = 1, 2, 3, 4, for simplicity, the inequality ‖F‖2 ≤ ‖F‖R ‖F
′‖R immediately implies

χn = O (χn,R) with

χn,R = n−
1
2 max

1≤j≤p

(
E ‖Wj‖

8
R E
∥
∥W ′

j

∥
∥8

R
E
∥
∥S−1

∥
∥8

R
E
∥
∥S ′−1

∥
∥8

R

) 1
16
.

Let 1(·) denote indicator function.

Assumption 5. supl≥1 E (ε2l 1 (|εl| > δ))→ 0, as δ →∞.

Assumption 6. With a′r denoting the r-th row of [Z,X ] and Φ a positive definite
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(p.d.) constant matrix,

n−1

n∑

r,s=1

∞∑

l=1

crlcslara
′
s

p
−→ Φ, as n→∞, (2.9)

n−1 sup
l≥1

∥
∥
∥
∥
∥

n∑

r=1

arcrl

∥
∥
∥
∥
∥

2

p
−→ 0, as n→∞. (2.10)

Assumption 5 avoids identity of distribution for the εl, (2.9) simply asserts convergence

of the covariance matrix of n−
1
2 [Z,X ]′U while (2.10) is the form of the Lindeberg

condition required for the central limit theorem.

Theorem 2.2. Let Assumptions 1-6 and (2.8) hold. Then

n
1
2

(
θ̂ − θ

)
d
−→ N

(
0, Q−1K ′J−1ΦJ−1KQ−1

)
, as n→∞.

3 OLS estimation

Define the OLS estimate

θ̃ = n−1 ¯̄L−1 [R,X ]′ y = θ + ¯̄L−1w, (3.1)

where ¯̄L = ¯̄Ln = n−1 [R,X ]′ [R,X ] (dimension p + k), w = wn = n−1 [R,X ]′ u. Also

define L̄ = L̄n = n−1[A,X ]′[A,X ]. Assumption 2 needs to be strengthened to the

following sufficient condition:

Assumption 7. The ζi are chosen such that ζ5ζ7 = 2ζ11 and

max
1≤j≤p

E

({

max
1≤r,s≤n

|wrs,j |

}2ζ11
)

= O
(
h−2ζ11

)
,

where wrs,j is the (r, s)-th element of Wj, j = 1, . . . , p.

This assumption implies max1≤r,s≤n, 1≤j≤p |wrs,j | = Op (h−1). Various bounds depend-
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ing on the distribution of wrs,j exist in the extreme value literature for the expectation,

but Assumption 7 ensures also that the familiar case with fixed wrs,j = O (h−1) is for-

mally covered. The restriction ζ5ζ7 = 2ζ11 is satisfied in the case where the Cauchy

Schwarz inequality is used in place of the Hölder inequality, implying that ζi = 2 for

all i.

Assumption 8. X, Wj are independent of εl, l ≥ 1, j = 1, . . . , p. Let trjn = trj

denote the (r, j)-th element of [A,X ]. Then

max
1≤r≤n, 1≤j≤p+k

E |trj |
2ζ1 < C, (3.2)

and, as n→∞,

L̄
p
−→ L, (3.3)

where L is a constant, symmetric and non-singular matrix.

Define

πn = h−
1
2

(

max
1≤j≤p

E
∥
∥W ′

j

∥
∥ζ6ζ9
R

) 1
2ζ6ζ9

(
E
∥
∥S ′−1

∥
∥ζ5ζ8
R

) 1
2ζ5ζ8

(
E
∥
∥S ′−1

∥
∥ζ6ζ10

R

) 1
2ζ6ζ10 . (3.4)

Theorem 3.1. Let Assumptions 1-3, 7, 8 hold and

h−1 + χn + πn −→ 0 as n→∞. (3.5)

Then θ̃ − θ
p
−→ 0, as n→∞.

For consistency of OLS estimates h→∞ is necessary even with deterministic Wj (cf.

Lee (2002), Gupta and Robinson (2015)), and (3.5) strengthens the restrictions on

spatial correlation relative to h.

Assumption 9. supl≥1 E (ε4l 1 (|εl| > δ))→ 0, as δ →∞.
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This assumption seems hard to relax for a CLT. Indeed, even for (1.1) with p = 1,

Wj fixed and no linear process structure, Lee (2002) required E |ur|
4+η < C, for some

η > 0. Gupta and Robinson (2015) relaxed this slightly to Eu4
r < C, with increasing

p, k but restricted themselves to iid ur. Here we avoid identity of distribution of εl,

and ur, but require the uniform integrability of the ε4l that Assumption 9 entails.

Assumption 10. With t′r denoting the r-th row of [A,X ] and Ψ a p.d. constant

matrix,

n−1

n∑

r,s=1

∞∑

l=1

crlcsltrt
′
s

p
−→ Ψ > 0, as n→∞, (3.6)

n−1 sup
l≥1

∥
∥
∥
∥
∥

n∑

r=1

trcrl

∥
∥
∥
∥
∥

2

p
−→ 0, as n→∞. (3.7)

Theorem 3.2. Let Assumptions 1-3, 7-9 and (3.5) hold and

h−1n
1
2

(
E
∥
∥S ′−1

∥
∥2ζ12

R

) 1
2ζ12 −→ 0, as n→∞. (3.8)

Then

n
1
2

(
θ̃ − θ

)
d
−→ N

(
0, L−1ΨL−1

)
, as n→∞.

The proof requires some care to ensure that (2.3) does not need strengthening. Lee

(2002) established that asymptotic normality of OLS relies not just on divergence

of h, but sufficiently fast divergence, viz. n
1
2 = o(h). Condition (3.8) indicates the

additional requirement that arises when the Wj are stochastic.

In the Cauchy Schwarz case with all ζi = 2, we obtain

χn = n−
1
2

(

max
1≤j≤p

E ‖Wj‖
8 E
∥
∥S−1

∥
∥8
) 1

8

, (3.9)

πn = h−
1
2

(

max
1≤j≤p

E
∥
∥W ′

j

∥
∥4

R

) 1
8 (
E
∥
∥S ′−1

∥
∥4

R

) 1
4
, (3.10)
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(3.8) becomes h−1n
1
2

(
E ‖S ′−1‖4

R

) 1
4
→ 0, as n → ∞ and (2.5), (3.2) require finite

fourth moments for the arj and trj respectively.

4 Normalizations of weight matrices

In this section we discuss the effect of various normalizations of the Wj on (2.8) and

(3.5). For simplicity of exposition we will focus on the Cauchy Schwarz (ζi = 2, all

i) case, given in (3.9) and (3.10). Due to the n−
1
2 factor it is not necessary that the

elements of Wj and S−1 have finite eighth moments for (2.8) to hold, but is it not

sufficient either. Similarly due to the h−
1
2 factor and h → ∞ finite fourth moments

for elements of W ′
j or S ′−1 are neither necessary nor sufficient for (3.5) to hold. Both

(2.8) and (3.5) can be compared to conditions imposed in Gupta and Robinson (2015)

for deterministic Wj elements, where max1≤j≤p ‖Wj‖ + ‖S−1‖ ≤ C was assumed, for

which a necessary condition was boundedness of the elements of Wj, S
−1. Thus (2.8)

and (3.5) may be viewed as controlling the spatial correlation asymptotically, and in

particular controlling the magnitudes of the moments of the Wj and S−1 without them

necessarily existing.

Various sufficient conditions may be found for (2.8) and (3.5) to hold. For example,

suppose that

Wj =
∥
∥W ∗

j

∥
∥−1

W ∗
j , (4.1)

for some matrices W ∗
j . Then ‖Wj‖

s ≤ 1, for any s > 0, while

∥
∥S−1

∥
∥ ≤

∞∑

l=0

(
p∑

j=1

‖λjWj‖

)l

≤ C, (4.2)

if
p∑

j=1

|λj| < 1, (4.3)

11



the power series existing a.e. under Assumption 3. The Wj can have a special ‘single

nonzero diagonal block’ structure in some applications. Here there are mj×mj matrices

Vj , j = 1, . . . , p and
∑p

j=1 mj = n, such that each Wj has Vj as its j-th diagonal block

and zeroes elsewhere. In this case Gupta and Robinson (2015) prove that

max
1≤j≤p

|λj| < 1 (4.4)

can replace the more general condition given in (4.3). Thus under (4.1), condition

(2.8) is satisfied always if (4.3) holds for general Wj and (4.4) holds for Wj with

‘single nonzero diagonal block’ structure. Another popular normalization is row-

normalization, where each row of Wj sums to 1. If the elements of Wj are non-negative,

this implies that ‖Wj‖R = 1, and negligibility of χn,R follows if (4.3) holds in the gen-

eral case and (4.4) holds in ‘single nonzero diagonal block’ case, as illustrated for the

spectral norm. More generally, if ‖Wj‖M ≤ C, where ‖·‖M denotes a generic matrix

norm, then E ‖Wj‖
s
M ≤ C, any s > 0. A sufficient condition for E ‖S−1‖M ≤ C is that

∥
∥
∥
∑p

j=1 λjWj

∥
∥
∥
M

has a moment generating function. Some normalization of the Wj is

necessary to identify λj , and if these result in any of the favourable conditions listed

above then the difference from the deterministic Wj case is lessened.

On the other hand, all types of normalizations are not economically justified. For

instance Bell and Bockstael (2000) point out that row normalization is not justified

in certain models with real estate data while Lee and Yu (2014) discuss problems in

estimation that occur with row normalized weight matrices and present some simu-

lation evidence using non normalized matrices. Thus the moment conditions implied

by (2.8) and (3.5) will be different under various normalizations of Wj . The choice

of normalization ultimately lies with the practitioner, but it seems like (4.1) is the

most attractive option. Unlike row normalization it doesn’t change the content of the

spatial weight matrices because it preserves relative distances, and performs the task
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of stabilizing moments. Kelejian and Prucha (2010) provide an excellent discussion of

normalizations and their implications, particularly for parameter spaces.

For another sufficient condition we focus on p = 1 (writing W1 = W , λ1 = λ),

with W = Ir ⊗ Bm, Bm a symmetric m × m matrix, so n = rm. This is the type

of block diagonal weight matrix used by Case (1991, 1992), and sometimes referred

to as a Balanced Group Interaction (BGI) setting, cf. Hillier and Martellosio (2013).

It implies inter group independence for clustered data. Note that it does not have

‘single nonzero diagonal block’ structure. We take r,m→∞, which is a combination

of ‘increasing domain’ and ‘infill’ asymptotics. Suppose that the elements of Bm are

such that E ‖Bm‖
8 = O

(
mξ
)

and E
∥
∥(Im − λBm)−1

∥
∥8

= O
(
mψ
)
, ζ, ψ ≥ 0. Then

E ‖W‖8 = O
(
mξ
)

and E ‖S−1‖8
= O(mψ) due to their block diagonality with equal

blocks, implying χn = O
(
r−

1
2m

ξ+ψ
8
− 1

2

)
= o(1) always if ξ + ψ ≤ 4 and if m =

o
(
r

4
ξ+ψ−4

)
when ξ + ψ > 4. This condition allows unbounded moments for spatial

weight matrices.

5 Monte Carlo

Finite sample performance of IV and OLS estimates with fixed Wi has been exam-

ined before, cf. Gupta and Robinson (2015), and our aim in this section is rather

different from previous literature. We seek information on how estimates behave as

spatial weight moments change. Our design takes p = 2, k = 2 with λ1 = 0.2,

λ2 = 0.3, β1 = 1, β2 = 0.7, X generated from U(0, 1) and ui iid standard nor-

mal. The dependent variable is generated as y = λ1W1y + λ2W2y + Xβ + u. Our

setup has Wj with the ‘single non-zero diagonal block’ structure discussed earlier.

In particular we define W1 = diag
[
V1(m×m), 0(m×m)

]
,W2 = diag

[
0(m×m), V2(m×m)

]
,

so n = 2m, and generate Vj as iid replications using tv and χ2
v distributions with

v = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 100, and m = 48, 96, 144. Instruments were selected
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Figure 5.1: Monte Carlo bias (top row), variance (middle row) and size (bottom row)
for IV estimates (dotted line) and OLS estimates (solid line) with m = 48, W1 and W2

generated from tv, v = 1, 2, . . . , 12, 100

to be Z = [X,W1X,W2X].

Figures 5.1-5.6 display Monte Carlo bias (top row), variance (middle row) and size

(bottom row) for IV (dotted line) and OLS (solid line) estimates of θ. The left columns

display the results for λi and right columns for βi, with average statistics reported in

both cases. The horizontal axes in each figure correspond to values of v. Because of

variations in the range over which the statistics change, it is unavoidable to employ

different scales for the vertical axes across sub-figures and the reader should take care

to ensure that they note the scale.

If Z ∼ tv then EZ l = v
l
2

∏ l
2
i=1 (v − 2i)−1 (2i − 1), for even l such that 0 < l < v

and EZ l = 0, for odd l such that 0 < l < v. The expression for even l is evidently

decreasing in v for given l, implying that Z has ‘smaller’ moments for larger v. On the

other hand, for Z ∼ χ2
v we have EZ l = 2lΓ(v/2)−1Γ(l+v/2), where Γ(·) is the Gamma

function. This is evidently increasing in v, implying that Z has ‘larger’ moments as v

increases. Our conditions suggest that IV and OLS estimates have better properties
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Figure 5.2: Monte Carlo bias (top row), variance (middle row) and size (bottom row)
for IV estimates (dotted line) and OLS estimates (solid line) with m = 96, W1 and W2

generated from tv, v = 1, 2, . . . , 12, 100

for ‘smaller’ moments. Figures 5.1-5.6 seem to corroborate this. For spatial weights

generated by tv, the bias reduces dramatically as v increases for small values of v and

then reduces more modestly as v increases for large values of v. The property holds for

both autoregressive coefficients λi and regression coefficients βi. The converse is true

for weights generated using χ2
v (Figures 5.4-5.6), where the bias reduces as v decreases,

confirming our theoretical results. Variances follow a similar pattern, but the decrease

is not monotonic for IV estimates using either tv or χ2
v, while for OLS estimates it is

rather modest, with low variances throughout. The properties hold for all values of m.

The spikes in variances of β̂i in Figures 5.1 and 5.2 seem to be a result of randomness

and appear less marked in the largest sample size of Figure 5.3.

Empirical sizes are to be compared to the nominal size of 5%. With tv weights

(Figures 5.1-5.3) IV estimates undersize both for λi and βi. OLS estimates oversize

for λi and do not even touch 20% but converge to the nominal size for βi. The story

is much the same for χ2
v weights, except the approach to 5% for OLS estimates of
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Figure 5.3: Monte Carlo bias (top row), variance (middle row) and size (bottom row)
for IV estimates (dotted line) and OLS estimates (solid line) with m = 144, W1 and
W2 generated from tv, v = 1, 2, . . . , 12, 100

regression coefficients is rather slow, while IV doesn’t undersize as much as in the t2v

case, cf. Figures 5.4-5.6. The undersizing with IV estimates persists with χ2
v weights

for the smallest v, while there is oversizing for large v. For moderate v the sizes are

acceptable. This behaviour doesn’t seem to be different across values of m.

Experiments were also conducted with exactly the same design as above but W1

and W2 subsequently row normalized. The stabilization effect of this row normalization

is such that all statistics are acceptable, no matter which distribution generates the

weights and the value of v. We opt not to include figures here because fundamentally

these do not differ much from results already seen in the literature and our focus is

rather different. We recall from Section 4 that row normalization changes the content

of the spatial weight matrix and has been criticized, but division by spectral norm is

less controversial and has the same stabilising effect in simulations carried out but not

reported.
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Figure 5.4: Monte Carlo bias (top row), variance (middle row) and size (bottom row)
for IV estimates (dotted line) and OLS estimates (solid line) with m = 48, W1 and W2

generated from χ2
v, v = 1, 2, . . . , 12, 100

6 Conclusion and extensions

We examined IV and OLS estimates for the parameters of a SAR models with stochas-

tic weight matrices and spatia linear process dependence in disturbances, finding that

estimates perform better when spatial weights have smaller moments. We also dis-

cussed the implications of popular weight matrix normalizations on our conditions.

In the dependent disturbances setup that we consider, heteroskedasticity and auto-

correlation consistent (HAC) covariance matrix estimation is an important problem.

With deterministic Wj this has been considered in the literature, cf. Kelejian and

Prucha (2007, 2010) and Robinson and Thawornkaiwong (2012) for HAC estimation

with SAR/SMA disturbances and disturbances satisfying Assumption 1 respectively.

These approaches are straightforward to extend to the case with stochastic Wj and

using them in practice requires no change in earlier techniques. It is also reasonable

to anticipate the same lesson about spatial weight moments when constructing these

17



df
1 13

0

0.04

0.08

0.12

0.16

0.2

df
1 13

0

0.14

0.28

0.42

0.56

0.7

df
1 13

0

0.008

0.016

0.024

0.032

0.04

df
1 13

0

0.06

0.12

0.18

0.24

0.3

df
1 13

0

0.2

0.4

0.6

0.8

1

df
1 13

0

0.2

0.4

0.6

0.8

1

Figure 5.5: Monte Carlo bias (top row), variance (middle row) and size (bottom row)
for IV estimates (dotted line) and OLS estimates (solid line) with m = 96, W1 and W2

generated from χ2
v, v = 1, 2, . . . , 12, 100

robust covariance matrix estimates.
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for IV estimates (dotted line) and OLS estimates (solid line) with m = 144, W1 and
W2 generated from χ2
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Appendices

A Proofs of theorems

For any matrices F̄ and ¯̄F of equal dimension, we will write ¯̄∆F = F̄ − ¯̄F .

Proof of Theorem 2.1. By (2.1) θ̂− θ = Q̄−1 ¯̄∆Q
(
θ̂ − θ

)
− Q̄−1 ¯̄∆K′ J̄−1q+ Q̄−1K̄ ′J̄−1q,

so
(
Ip+k − Q̄

−1 ¯̄∆Q
)(

θ̂ − θ
)

= −Q̄−1 ¯̄∆K′ J̄−1q + Q̄−1K̄ ′J̄−1q. (A.1)

We first show ¯̄∆K = op(1). Write er for the n × 1 vector with unity in the r-th

position and zeroes elsewhere and bi for the i-th column of [Z,X ]. By the law of

iterated expectations, the expectation of the square of a typical (i, j)-th element, i, j =

1, . . . , p1 + k, of ¯̄∆K = n−1[Z,X ]′[B, 0] is

n−2E
(
b′iGjuu

′G′jbi
)

= n−2E

(
n∑

r,s=1

b′iGjerE (urnusn) e′sG
′
jbi

)

. (A.2)

Now E (urnusn) =
∑∞

k,l=1 crkcslE (εkεl) =
∑∞

k=1 crkcsk ≤ (
∑∞

k=1 c
2
rk)

1
2 (
∑∞

k=1 c
2
sk)

1
2 ≤ C,

by Assumption 5 and Cauchy-Schwarz inequality, so (A.2) is bounded by Cn−2 times

E

(

b′iGj

n∑

r,s=1

ere
′
sG
′
jbi

)

= E

(

b′iGj

n∑

r=1

ere
′
rG
′
jbi

)

= E
(
b′iGjG

′
jbi
)
. (A.3)

The term inside the expectation on the far right is bounded by ‖bi‖
2 ‖Gj‖

2 so, by the

Hölder inequality (for expectations), (A.3) is bounded by

(
E ‖bi‖

2ζ1
) 1
ζ1

(
E ‖Gj‖

2ζ2
) 1
ζ2 . (A.4)

The expectation inside parentheses in the first factor in (A.4) equals E (
∑n

r=1 a
2
ri)

ζ1 ,
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which, by the Hölder inequality (for sums of real numbers) is bounded by

n
ζ1
(

1− 1
ζ1

) n∑

r=1

E |ari|
2ζ1 = O

(
nζ1
)
, (A.5)

by (2.5). The second factor in (A.4) is bounded by

{
E
(
‖Wj‖

2ζ2
∥
∥S−1

∥
∥2ζ2

)} 1
ζ2 ≤

{(
E ‖Wj‖

2ζ2ζ3
) 1
ζ3

(
E
∥
∥S−1

∥
∥2ζ2ζ4

) 1
ζ4

} 1
ζ2

= O
(
nχ2

n

)
,

(A.6)

once again using Hölder’s inequality. Combining (A.5) and (A.6) yields

(
E ‖bi‖

2ζ1
) 1
ζ1

(
E ‖Gj‖

2ζ2
) 1
ζ2 = O

(
n2χ2

n

)
, (A.7)

whence Markov’s inequality implies that

∥
∥
∥ ¯̄∆K

∥
∥
∥ = Op (χn) = op(1), (A.8)

by (2.8). By (2.6) and (A.8),

∥
∥
∥ ¯̄∆Q

∥
∥
∥ ≤

∥
∥
∥ ¯̄∆K

∥
∥
∥
∥
∥J̄−1

∥
∥
(∥∥
∥ ¯̄∆K

∥
∥
∥+ 2

∥
∥K̄
∥
∥
)

= Op

(∥∥
∥ ¯̄∆K

∥
∥
∥
)

= op(1). (A.9)

Finally, the expectation of the square of a typical element of q is n−2E (b′iuu
′bi) =

n−2E
(∑n

r,s=1 b
′
ierE (urnusn) e′sbi

)
≤ Cn−2E ‖bi‖

2 ≤ Cn−1, so

q = Op

(
n−

1
2

)
. (A.10)

Using (A.8), (A.9), (A.10) and (2.6) in (A.1) we obtain the desired result.

Proof of Theorem 2.2. In view of (A.1), (A.8), (A.9) and (A.10) it suffices to show

n
1
2 q

d
−→ N (0,Φ). The proof now follows Robinson and Thawornkaiwong (2012)
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(henceforth RT), who modified one of Robinson and Hidalgo (1997). Write

d = dn = n−
1
2

n∑

r=1

arur = n−
1
2

∞∑

l=1

flεl,

where fl = fln =
∑n

r=1 arcrl. By Lemma A1 of RT, there exists a sequence N = Nn,

increasing in n without bound, such that d − dN = op(1), where dN = n−
1
2

∑N
l=1 flεl.

Writing E = En = n−1
∑N

l=1 flf
′
l , again Lemma A1 of RT implies that E

p
−→ Φ, by

Assumption 6. Let α ∈ Rp+k such that ‖α‖2 = 1 and cN = α′E−
1
2dN , vl = vln =

n−
1
2α′E−

1
2fl. Then cN =

∑N
l=1 vlεl, and Assumption 6 implies that {flεl, 1 ≤ l ≤ N}

is a martingale difference sequence for each N ≥ 1. We show cN
d
−→ N (0, 1), condi-

tional on X, zr and Wj , j = 1, . . . , p, which follows by Theorem 2 of Scott (1973) if,

conditional on X, zr and Wj , j = 1, . . . , p, as n→∞,

E

(
N∑

l=1

v2
l ε

2
l |εj , j < l

)
p
→ 1, (A.11)

and for all ξ > 0,

E

(
N∑

l=1

v2
l E
(
ε2l 1 (|vlεl| > ξ) |zr, X,W1, . . . ,Wp

)
)

→ 0. (A.12)

The LHS of (A.11) equals 1, while the LHS of (A.12) is bounded by

max
1≤l≤N

E





ε2l 1



ε2l >
ξ2

max
1≤l≤N

v2
l









E

(
N∑

l=1

v2
l

)

.

By Assumption 5, it suffices to show that max1≤l≤N v
2
l = op(1) as n → ∞, as the

rightmost factor equals 1. Now, max1≤l≤N v
2
l ≤ n−1

∥
∥
∥E−

1
2

∥
∥
∥

2

supl≥1 ‖
∑n

r=1 arcrl‖
2

=

op(1) by Assumptions 4, 5 and 6.

22



Proof of Theorem 3.1. By (3.1) θ̃ − θ = L̄−1 ¯̄∆L
(
θ̃ − θ

)
+ L̄−1w, so

(
Ip+k − L̄

−1 ¯̄∆L
)(

θ̃ − θ
)

= L̄−1w. (A.13)

Note that ‖w‖ ≤ ‖n−1[A,X ]′u‖ + ‖n−1[B, 0]′u‖, where the first term on the RHS is

readily shown to be negligible, as we deduced (A.10), but using (3.2) in Assumption 8

instead of (2.5) in Assumption 4 because here Z is replaced by A. Next n−1[B, 0]′u =

op(1) by (3.5) and Lemma B.3, so that w = op(1). It remains to prove that ¯̄∆L = op(1),

for which first note that

∥
∥
∥ ¯̄∆L

∥
∥
∥ ≤ n−1 ‖B‖2 + 2n−1

∥
∥[A,X ]′ [B, 0]

∥
∥ . (A.14)

The first term on the RHS is Op (πn), by the proof of Lemma B.3, and is negligible by

(3.5). The second term on the RHS is bounded exactly like
∥
∥
∥ ¯̄∆K

∥
∥
∥ = n−1[Z,X ]′[B, 0]

in the proof of Theorem 2.1, but again using (3.2) in Assumption 8 instead of (2.5) in

Assumption 4 because here Z is replaced by A, see also the proof of Theorem 4.1 in

Gupta and Robinson (2015). Therefore

∥
∥
∥ ¯̄∆L

∥
∥
∥ = Op (χn) = op(1), (A.15)

and the theorem is proved.

Proof of Theorem 3.2. We claim that it is sufficient to prove

n−
1
2 [A,X ]′u

d
→ N (0,Ψ), (A.16)

for which, in view of (A.13), (A.15) and w = n−1[A,X ]′u+ n−1[B, 0]′u it is enough to
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show that

n−
1
2 [B, 0]′u = op(1). (A.17)

To show (A.17), we can exploit Assumption 9 to obtain a sharper bound for [B, 0]′u

than the one used in the proof of Theorem 3.1, where Assumption 5 sufficed. Indeed,

by Lemma B.4, n−
1
2 [B, 0]′u = Op

(

n
1
2

(
E ‖S ′−1‖2ζ12

R

) 1
2ζ12 h−1

)

= op(1), by (3.8). The

proof of (A.16) follows exactly as the proof of asymptotic normality of n
1
2 q in Theorem

2.2, and we omit the details, noting only that here A replaces Z, and Assumption 10

replaces Assumption 6.

B Lemmas

Lemma B.1. Under the conditions of Theorem 3.1, the expectation of an absolute

typical element of G′jGj is O (π2
n), uniformly in j.

Proof. For r, s = 1, . . . , n, a typical absolute element of G′jGj is
∣
∣g′r,jGjes

∣
∣ =

∣
∣e′sG

′
jgr,j

∣
∣,

where g′r,j is the r-th row of G′j . Using Hölder’s inequality as before, this has expecta-

tion bounded by

(
E ‖gr,j‖

ζ5
R

) 1
ζ5

(
E
∥
∥G′j

∥
∥ζ6
R

) 1
ζ6 ≤

(
E ‖gr,j‖

ζ5
R

) 1
ζ5

(
E
(∥
∥W ′

j

∥
∥ζ6
R

∥
∥S ′−1

∥
∥ζ6
R

)) 1
ζ6 . (B.1)

Consider the first factor on the RHS of (B.1). gr,j has elements w′s,jS
−1er = e′rS

′−1ws,j ,

where w′s,j is the s-th row of Wj , s = 1, . . . , n, so this factor is

(

E

(

max
1≤s≤n

∣
∣w′s,jS

−1er
∣
∣ζ5
)) 1

ζ5

≤

(

E

(

max
1≤s≤n

‖ws,j‖
ζ5
R

∥
∥S ′−1

∥
∥ζ5
R

)) 1
ζ5

≤

(

E

(

max
1≤s≤n

‖ws,j‖
ζ5ζ7
R

)) 1
ζ5ζ7
(
E
(∥
∥S ′−1

∥
∥ζ5ζ8
R

)) 1
ζ5ζ8

=

(

E

(

max
1≤r,s≤n

|wrs,j |
ζ5ζ7

)) 1
ζ5ζ7
(
E
(∥
∥S ′−1

∥
∥ζ5ζ8
R

)) 1
ζ5ζ8
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= O

(

h−1
(
E
(∥
∥S ′−1

∥
∥ζ5ζ8
R

)) 1
ζ5ζ8

)

, (B.2)

by the Hölder inequality and Assumption 7. The second factor on the RHS of (B.1)

is bounded by
(

max
1≤j≤p

E
∥
∥W ′

j

∥
∥ζ6ζ9
R

) 1
ζ6ζ9
(
E
∥
∥S ′−1

∥
∥ζ6ζ10

R

) 1
ζ6ζ10 , (B.3)

by another application of Hölder’s inequality, whence the claim follows from (B.1),

(B.2), (B.3) and the definition of πn.

Lemma B.2. Under the conditions of Theorem 3.2, the expectation of the absolute

product of two typical elements of Gj is O

((
E ‖S ′−1‖2ζ12

R

) 1
ζ12 h−2

)

, uniformly in j.

Proof. For p, q, r, s = 1, . . . , n, the expectation of the absolute product of typical ele-

ments of Gj is

E
∣
∣w′r,jS

−1esw
′
p,jS

−1eq
∣
∣ ≤ E

(

max
1≤r≤n

‖wr,j‖
2
R

∥
∥S ′−1

∥
∥2

R

)

, (B.4)

which is bounded by
(
E
(

max1≤r≤n ‖wr,j‖
2ζ11

R

)) 1
ζ11

(
E ‖S ′−1‖2ζ12

R

) 1
ζ12 , whence the re-

sult follows by Assumption 7 because ‖wr,j‖R = max1≤s≤n |wrs,j |.

Lemma B.3. Under the conditions of Theorem 3.1,

n−1[B, 0]′u = Op (πn) .

Proof. First note that E ‖u‖2 =
∑n

r=1

∑∞
l=1 c

2
rl = O(n), by (2.3), so ‖n−1[B, 0]′u‖ =

Op

(
n−

1
2 ‖B‖

)
by Markov’s inequality. Next

E ‖B‖2 ≤ E (trB′B) = O

(

max
1≤j≤p

E
(
u′G′jGju

)
)

,
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the RHS being

Op

(

π2
n

n∑

r,s=1

∞∑

j,l=1

crjcslE (εjεl)

)

= Op

(

π2
n

n∑

r,s=1

∞∑

l=1

(
c2
rl + c2

sl

)
)

= Op

(

π2
n

n∑

r=1

∞∑

l=1

c2
rl

)

= Op

(
nπ2

n

)
,

by Lemma B.1, the inequality |ab| ≤ (a2 + b2) /2 for real numbers a, b and Assumption

1. The claim follows by Markov’s inequality,

Lemma B.4. Under the conditions of Theorem 3.2,

n−1[B, 0]′u = Op

((
E
∥
∥S ′−1

∥
∥2ζ12

R

) 1
2ζ12 h−1

)

.

Proof. Write grs,j for a typical element of Gj , r, s = 1, . . . , n. It is sufficient to evaluate

E (n−1u′Gju)
2

= n−2
∑n

r,s,t,v=1 E (urusutuv)E (grs,jgtv,j), with j = 1, . . . , p, and then

use Markov’s inequality. By Assumption 1 and Lemma B.2 the RHS is

n−2

n∑

r,s,t,v=1

∞∑

j,k,l,m=1

crjcskctlcvmE (εjεkεlεm)E (grs,jgtv,j)

= O

(

n−2
(
E
∥
∥S ′−1

∥
∥2ζ12

R

) 1
ζ12 h−2

[
n∑

r,s,t,v=1

∞∑

j=1

E
(
ε4j
)
crjcsjctjcvj+

+
n∑

r,s,t,v=1

∞∑

j,k=1

(crjcsjctkcvk + crjcskctjcvk + crjcskctkcvj)

])

. (B.5)

By Assumption 9 and the `p norm inequality, the first sum inside square brackets in

(B.5) is bounded in absolute value by a constant times

n∑

r,s,t,v=1

∞∑

j=1

|crjcsjctjcvj | ≤ C
n∑

r,s,t,v=1

∞∑

j=1

(
c2
rjc

2
sj + c2

tjc
2
vj

)

≤ C
n∑

r,s,t,v=1

∞∑

j=1

(
c4
rj + c4

sj + c4
tj + c4

vj

)
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≤ C
n∑

r=1

∞∑

j=1

c4
rj ≤ C

n∑

r=1

(
∞∑

j=1

c2
rj

)2

≤ Cn.

Now consider the first product inside parentheses in the second sum inside square

brackets in (B.5). By similar techniques this is bounded in absolute value by

n∑

r,s,t,v=1

∞∑

j,k=1

|crjcsj| |ctkcvk| =

(
n∑

r,s=1

∞∑

j=1

|crjcsj|

)2

≤ C

(
n∑

r,s=1

∞∑

j=1

(
c2
rj + c2

sj

)
)2

≤ C

(
n∑

r=1

(
∞∑

j=1

c2
rj

))2

≤ Cn2.

The remaining two products inside parentheses in the second sum inside square brack-

ets in (B.5) are similarly shown to be O (n2). We have established that the term inside

square brackets in (B.5) is O (n2), whence the claim follows.
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