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Abstract 

Genetic analysis of animals involved in captive breeding and reintroduction 

programmes can provide valuable information to aid in maintaining wild type 

genotypes and genetic variability.  Hylobates moloch, also referred to as the silvery 

gibbon, is an Endangered primate species endemic to the Indonesian island of Java. 

As part of an overall conservation programme, a captive breeding and reintroduction 

programme is being organised.  In order to aid both the management decisions 

within the breeding programme and success rates of re-introductions analyses at 

three genetic regions were carried out, with DNA extracted from non-invasively 

collated faecal samples.  In order to assay if captively bred individuals were 

representative of their wild conspecifics, the population was split into two groups 

representative of wild born and captive born individuals.  Genetic analyses at 

mitochondrial DNA hypervariable region-I (mtDNA HV-I), 15 microsatellite loci and 

the second exon of the major histocompatibility complex (MHC) DRB region, were 

carried out to ascertain genetic variability levels, levels of inbreeding, signs of 

selection and confirm the pedigree.  Captive born individuals had markedly lower 

levels of variability at mtDNA HV-I, which was significant versus the wild group.  The 

second neutral marker of microsatellites revealed no differentiation between wild 

and captive-born; moreover measures of standardised heterozygosity demonstrated 

a fairly high level of genomic variability overall.  Pedigree analysis using the 

microsatellites produced information that differed from studbook entries.  This was 

further supported by haplotypic data compiled from the MHC DRB exon 2 analysis.  

The MHC study revealed a total of 14 DRB alleles, 10 of which are from unknown 

lineages when compared to human and chimpanzees.  As with microsatellites, no 

group differentiation between wild and captive has occurred but there are more rare 
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alleles present within wild individuals.  In conclusion, whilst genetic variation is both 

high and shows no deviation from wild-born to captive-born at neutral microsatellite 

loci, care should be taken to maintain rare mtDNA haplotypes and MHC DRB alleles 

in future generations.   
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1 Chapter one – Introduction 

1.1 The importance of conservation 

Extinction is a natural process representative of the end point of a species evolution.  

It has, however, become distorted by anthropogenic actions such as habitat 

destruction, excessive hunting and as a consequence of human induced climate 

change (Andrabi & Maxwell 2007).  These, often irreversible, activities have resulted 

in an acceleration of extinction rates of up to 1000 times their natural occurrence 

(Brooks et al. 2006).  The recent “Living Planet Report” (2014) published by the 

World Wide Fund for Nature International stated that vertebrate species have 

declined by over 50 percent within a forty year period (from 1970 to 2010).  

Extinctions are not solely a severely negative event for the species in question, but 

also have knock on effects on the ecosystem from which it is extirpated that can be 

extremely detrimental.  Alterations to species’ richness within habitats have been 

theoretically and empirically shown to change biotic interactions, such as those 

evinced within trophic webs, and also alter energy production levels within 

ecosystems (Chapin III et al. 2000; Nichols et al. 1998; Paine 1980; Worm et al. 

2006).  The consequences of alterations to an ecosystem and changes of faunal 

community structure have also resulted in losses of species richness within the 

localised habitat.  Paine (1971) observed that in an intertidal habitat the removal of a 

single carnivorous starfish (Stichaster australis) for a period of just 9 months 

resulted in the loss of 6 different species (from 20 to 14 species) owing to a change 

in predation and thus in the resources available.    
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Arguably, the most gainful approach to conserving wildlife species is to preserve 

their habitats; preferably on the largest scale possible.  This conservation strategy 

not only offers the potential to maintain biodiversity, but also achieves economies of 

scale as multiple organisms are safeguarded as opposed to focusing on a single 

species (Simberloff 1998; Pukazhenthi et al. 2006).  However, in practice this option 

is not always possible and the maintenance of a growing number of wildlife 

populations requires more taxon specific targeted management strategies.  One 

such strategy is that of captively breeding endangered species whose objectives 

involve future reintroductions of individuals into their wild environment.  If an 

Endangered species can be successfully bred in captivity, the resultant group has 

the potential to act as a metapopulation to their wild conspecifics (Britt, Welch & 

Katz 2003).  As a consequence of the acceleration of extinction rates of differing 

organisms, the practice of captive breeding is postulated to undergo a large 

increase, with estimates of 2000 to 3000 vertebrate species alone destined for 

captive breeding if they are to subsist for future generations (Frankham 2008).  This, 

of course, would only be able to transpire if space within zoological institutions and 

funds were to be made available.  In a bid to secure the future of the silvery gibbon, 

Howletts and Port Lympne, operating under the remit of the charitable organisation, 

the Aspinall Foundation, has selected the species for an overall conservation 

programme that includes both a captive breeding and re-introduction programme.  

Collectively, these zoo parks have already had great success in breeding the H. 

moloch gibbon thus increasing ex-situ population numbers (Aspinall Foundation 

2010).   
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1.2 Captive breeding and reintroduction programmes  

Captive breeding programmes, in particular those that include aims of 

reintroductions, have over the years recognised that naturalistic behaviours of 

species can be altered owing to the captive environment.  This phenomenon has 

been shown to negatively impact on the survival rates of captive-born released 

animals.  For example, after a long-term conservation project for golden lion 

tamarins (Leontopithecus rosalia rosalia) the survival rate of reintroduced captive-

born individuals was very low, owing to adaptation to their captive environment that 

impacted foraging and locomotor skills once released into the wild (Stoinski & Beck 

2004).  Other vital behaviours such as predator avoidance and hunting ability as 

evinced for example in carnivores, are not apparent after a number of generations in 

captivity (Jule, Leaver & Lea 2008; McPhee 2003).  All of these examples pose 

difficulties for conservation managers.  They are issues addressed in breeding and 

reintroduction programmes so as to bolster success rates.  However, another aspect 

which is equally valuable but is rarely addressed within such programmes, is that 

changes may be occurring at the genetic level as well as at the behavioural one.   

 

The IUCN recommends that conservation be carried out at three levels, the 

ecosystem, the species and at the genetic level (Frankham 2010).  The creation and 

maintenance of a captive breeding programme addresses the IUCN recommended 

approaches to conservation at the species level.  Many breeding programmes in 

zoological institutions then use a proxy measure known as Mean Kinship (Ballou & 

Lacy 1995) to address the issue of genetic conservation of their captive species 

(Rudnick & Lacy 2008).   
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The Mean Kinship method functions by using accurate studbook records that record 

the pedigree of individuals within a population.  It quantifies the relationship of an 

individual to all other members of the population by a kinship coefficient (𝑓!") that is 

defined by the likelihood of random alleles drawn from two individuals (𝑖 and 𝑗) and 

assumes that alleles are identical by descent (Falconer 1981).  The mean kinship of 

each individual is then ascertained by defining the average of the kinship coefficients 

of the individual under assay to all other living members within the population.  The 

calculation to ascertain mean kinship is as follows, where N is the number of 

individuals in the population (Ballou & Lacy 1995). : 

 

The result is used in the captive breeding process by selecting individuals who have 

a low mean kinship score.  Individuals with a high mean kinship value are deemed to 

have a high level of genetic representation amongst the breeding group.  Therefore, 

they will most likely be excluded from future pairings.  An assumption of the method 

is that founder individuals are unrelated, a deduction that may not be correct.  

However, it has been stated that including an extra step to test founder relatedness 

is of little benefit as the additional information, after computer simulation, was found 

to have a minimal impact on overall results (Ivy et al. 2009; Rudnick & Lacy 2008).  

Overall, the method is deemed to be an effective approach to maximise diversity 

and minimize inbreeding in a captive breeding programme (Montgomery et al. 

1997). 
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Whilst the mean kinship method derived from accurate studbooks appears to be a 

valuable measure of the levels of relatedness within a captive breeding population, it 

is only a proxy measure, inferring levels of inbreeding and genetic variability.  

Furthermore, it is reliant on studbook entries to be accurate, and thus if an entry 

were to be incorrect it would confound all data pertaining to that individual.  

Moreover, the true level of genetic diversity within the population, whether from the 

genetic ‘starting point’ of the group from its founders or the subsequent generations 

of captively born individuals is unknown.  Whilst the aim of zoological institutions 

may be to maintain a genetic structure representative of wild conspecifics (Ivy & 

Lacy 2010) within subsequent generations of captively born individuals, the method 

does not yield information pertaining to rare and potentially valuable alleles within a 

population.  An individual may harbour a rare allele but also be deemed to have a 

high mean kinship value and thus may be excluded from future pairings.  However, it 

is not known whether the rare allele has been transmitted to progeny and 

maintained within the population, or whether the allelic richness of the population is 

lowered by the exclusion of the individual.    

1.2.1 The problems of inbreeding, outbreeding and adaptation  

A pertinent issue for Endangered species within captivity is the risk of inbreeding, as 

a consequence of populations very often existing in small numbers (Frankham 

2005).  With a limited number of individuals in the available gene pool a trend 

towards homozygosity may be expected.  Genetic drift may become influential in 

small populations, and culminate in an overall diminished level of genetic diversity 

(Frankham, Ballou & Briscoe 2010).  Inbreeding depression is described as a 

universal event both in captivity and in the wild, owing to the fact that the population 

numbers of randomly mating individuals within any species is finite (Reed et al. 
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2003).  The effects in a small population, however, can result in severely negative 

results acting on attributes required for a successful captive breeding programme.  

With a decline in genetic heterozygosity, traits such as sperm production in males 

and fecundity levels within females have been reported to have been negatively 

affected, and juvenile survival rates have declined (Frankham 2005).  A further 

characteristic of inbreeding depression, that has been documented to impact 

species’ fitness levels is the fixation of deleterious alleles within a population.  The 

Californian condor, a ‘flagship’ species of North America suffered a drastic decline in 

population numbers that by the year 1987, just 27 individuals remained (Adams & 

Villablanca 2007).  Although numbers have since been bolstered owing to the 

remaining individuals being taken into captivity for breeding, a recessive allele 

known to cause chondrodystrophy, a mortal form of dwarfism, has been fixed within 

the population and is present at a relatively high frequency (Ralls et al. 2000). 

 

Genetic variability is described by Amos and Harwood (1998) as the “clay of 

evolution”.  This reflects the concept that organisms that possess high levels of 

genetic diversity are better equipped to respond to intrinsic and extrinsic threats to 

their survival (Reed & Frankham 2003)..  This ability to adapt is an extremely 

pertinent issue for individuals in a breeding program where they are destined for 

reintroduction to their wild environment.  There are reports of adaptations occurring 

owing to captive environments (e.g. Čížková et al. 2012; Christie, Marine & Blouin 

2012; Montgomery et al. 2010; Ping-ping et al. 2005), all be it largely within the 

context of laboratory conditions but the phenomena is considered by some such as 

Frankham (2008) to warrant a greater focus from the scientific community.  Under 
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laboratory conditions the eye size of fruit flies (Drosphila melanogaster) decreased 

over a number of generations possibly as a consequence of reduced light within 

their laboratory cage environment (Pelletier et al. 2009).  The impact that the 

number of generations that are born and remain in the captive environment, on 

genetic and phenotypic changes has been highlighted as a significant issue 

(Frankham 2008; Williams & Hoffman 2009).  For example, the Mallorcan Midwife 

toad (Alytes multensis) develops a tail during the tadpole lifestage which is 

presumed to function as a predator response mechanism to escape predation 

(Kraaijeveld-Smit et al. 2006).  After 9 to 12 generations in a captive breeding 

programme this predator defence mechanism not only matured on a slower scale 

than evinced in both wild counterparts and those bred within fewer generations, but 

the physical nature of the tail also changed.  This would render them potentially 

vulnerable to predators known to inhabit their native habitats.  In addition, a 

decrease in neutral genetic variation quantified by microsatellites was also observed 

(after an equal number of generations.)  After a prolonged period in captivity of over 

100 generations, the fecundity rate of large white butterflies (Pieris brassicae) 

increased and general morphological attributes such as body size also increased 

(Lewis & Thomas 2001).  For the butterflies in captivity these physical alterations 

may not pose a problem.  However, in the wild an increased body mass would mean 

that an elevated amount of trophic resources may be required and increased 

fecundity result in a greater number of butterflies, but both of these factors may 

result in a subsequent decline in numbers if the carrying capacity of the habitat is 

exceeded.  Christie et al. (2012) observed genetic adaptation to the captive 

environment in steelhead fish (Oncorhynchus mykiss) after just one generation.  The 
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fitness of captive-born steelhead was drastically reduced when compared to their 

wild counterparts when quantifying success of first generation hatchery fish.   

 

Adaptation to a localised environment has also been cited as one of the factors that 

can contribute to a reduction in fitness of progeny via outbreeding of two genetically 

dissimilar parents.   The concerns of outbreeding are that localised selection 

pressures may translate to phenotypic adaptations in a population, which may then 

be disrupted at the genetic level if an individual not bearing these adaptations were 

to mate with a localised individual (Sagvik, Uller & Olsson 2005).  Outbreeding has 

been reported in rainbow trout (Oncorhynchus mykiss) to affect fitness levels of 

progeny after only three generations (Tymchuk, Sundström & Devlin 2007).  A 

similar reduction in survival rates of offspring was observed in a small population of 

ornate dragon lizards (Ctenophorus ornatus) (LeBas 2002).  It was hypothesised 

that outbreeding was more detrimental to individuals born from distantly related 

parents than to those born to more inbred parents.  As the population had been 

physically and thus genetically isolated for a great deal of time it appeared that the 

introduction of new genes did not function well in their new environment (LeBas 

2002).  However, a more complex result from outbreeding events was studied 

between two populations of common frog (Rana temporaria) (Sagvik, Uller & Olsson 

2005).  In two populations, one large and a smaller one located 130km away found 

that when males from the small population mated with a female from the large 

population, tadpoles were smaller and more malformed.  However, this was not the 

case when males from the large population mated with females from the small 

population.  Therefore, it was advised that translocations or introductions between 
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populations be carried out with caution so as not to negatively impact on fitness 

levels (Sagvik, Uller & Olsson 2005).  There are those however, that believe that 

inbreeding is a more detrimental process than outbreeding and with careful 

introductions gene flow may improve fitness levels of isolated or small populations 

over time (Beauclerc, Johnson & White 2010; Frankham et al. 2010b; Hogg et al. 

2006).  The recommendations from Frankham et al. (2010b) are that to avoid of 

inbreeding depression, mixing of intra-species populations occur if genetic isolations 

has taken place for a period of less than 500 years and that habitats be similar.   

 

1.3 Hylobates moloch – the silvery gibbon 

Hylobates moloch, also referred to as the silvery gibbon or Javan gibbon, belongs to 

one of the four recognized genera (Hylobates, Hoolock, Nomascus and 

Symphalangus) of gibbons (Kim et al. 2011).   Each genus shows several unique 

characteristics including morphology, and in the case of the moloch species song 

bouts (Geissman & Nijman 2006), as well as karyotypes which range from 2n=38 to 

52 (Chan et al. 2010; Kim et al. 2011).  The H. moloch gibbon is a small arboreal 

ape endemic to the Indonesian island of Java.  The Hylobates genus is thought to 

be a monogamous taxon with the moloch group usually comprised of an adult male 

and female and with 1 to 3 immature offspring (Dallman & Geissman, 2009; Oka & 

Takenaka, 2001).   

 

According to the IUCN red list, all but one (Hoolock leuconedys, listed as 

Vulnerable) of the gibbon species is either Endangered or Critically Endangered 

(IUCN 2008).  A population survey of H. moloch carried out between 1994 and 2002 
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found that 4000 to 4500 individuals were present in habitat fragments in the west of 

Java, but also in central Java (Nijman 2004).  This estimate exceeded previous 

studies carried out on the species and thus the IUCN downgraded its status from 

Critically Endangered to Endangered in 2008 (IUCN 2008).  However, despite what 

appears to be positive news with this revised estimate of population numbers the 

trend noted by the IUCN is that the species is in decline.  This is of little surprise 

when considering that one of the major driving forces effecting losses of moloch 

individuals in the wild is anthropogenic actions, between 96-98% of their forest 

habitat has been subjected to deforestation (Geissman & Nijman 2006; Nijman 

2004). Consequently, the silvery gibbon is viewed as one of the most urgent 

conservation priorities of all Asian primates (Geissman & Nijman 2006).  

 

The global captive population of H. moloch totals 119 individuals, 71 of which are 

located in zoological institutions in Indonesia where attempts to breed the species 

have been largely unsuccessful (IUCN 2008).  Outside of Indonesia, however there 

are 48 individuals spread across several zoological institutions, and half of this 

number reside at Port Lympne and Howletts parks within the United Kingdom.  

 

1.4 The aims of this study 

It is evident that inbreeding, loss of genetic diversity and adaptation to the captive 

environment are factors that may negatively impact fitness levels and thus success 

levels of captive breeding programmes.  Whilst the Mean Kinship approach has 

been shown to be a valuable measure of some of these factors, it remains a proxy 

and thus not an actual measure of an individual’s genetics.  The aim of this study is 
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to analyse three genetic regions in a captive population of Endangered Hylobates 

moloch to provide vital and supplemental information to aid in pairing individuals and 

selecting individuals for captive breeding and reintroduction to Java.  The 

information will pertain to the actual levels of inbreeding within the population, how 

genetically variable the individuals are and whether any genetic processes are 

acting on the group that would affect how individuals are managed.  In addition, the 

genetic analyses will verify pedigree data in the studbook.   

 

1.5 The objectives of this study 

The objectives of the study were to analyse three differing genetic regions within H. 

moloch individuals.  The individuals included in the study were all residents of either 

Howletts or Port Lympne zoological institutions who are members of the European 

Association of Zoos and Aquaria (EAZA).  Collectively at the time the study 

commenced, they housed 24 moloch gibbon individuals, which is half of the global 

captive population (excluding Indonesia).  As one of the integral aims of a captive 

breeding programme is to maintain wild type genetic diversity within individuals who 

are captive-born, the study population was split into two groups to discern whether 

individuals born within the captive environment remained genetically similar to their 

wild conspecifics or whether they had been subjected to inbreeding, or losses in 

genetic diversity.  The first group was representative of wild type genetic levels 

derived from individuals previously extracted from their native habitat and were thus 

named the wild-born group.  The second group were all individuals born within the 

captive environment and were thus named the captive-born group.   
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There are very few studies published on the genetics of Hylobates moloch.  Studies 

of the moloch gibbon and indeed other members of the Hylobatidae family have 

largely focused on areas of mitochondrial DNA (mtDNA) (e.g Chan et al. 2010; 

Monda et al. 2007; Takacs et al. 2005; Thinh et al. 2010; Roos & Geissman 2001).  

This genetic region has received a great deal of focus as mtDNA is often employed 

in phylogenetic studies owing to its lack of recombination, and the phylogeny of the 

Hylobatidae is unresolved.  Andayani et al (2001), for example, proposed that as a 

consequence of a molecular study at the mtDNA H. moloch should be split into two 

sub-species.  This has been contested.  In 2014, Carbone et al. published findings 

procured from a genome assembly study of a northern white-cheeked gibbon 

(Nomascus leucogenys) which was the first study investigating a gibbon species on 

a large scale.  The lack of genetic studies that focus on the gibbon genera is 

surprising as they represent a unique node within primate phylogeny and have been 

described as having experienced a “near instantaneous” radiation approximately 5 

million years ago (Carbone et al. 2014).  Thus within the context of primate 

evolution, the Hylobatidae are an intriguing taxon as the observed chromosomal 

reshuffling has occurred on a relatively short time scale (Carbone et al. 2014; Kim et 

al. 2011; Müller, Hollatz & Wienberg 2003). 

 

Within this study two genetic markers that are presumed to evolve on a neutral basis 

were chosen for analysis as it was deemed that any deviations from neutrality would 

highlight if selection is acting on the population.  The first was derived from the 

control region of mtDNA known as hypervariable region-I.  This genetic region is 

known to evolve 5 to 10 times faster than nuclear DNA and provides information on 
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a differing timescale than derived from nuclear DNA.  This was deemed to be of 

value for comparing Wild and Captive groups as captive-born individuals represent a 

limited number of generations. The second neutral set of markers analysed were 

non-coding microsatellites derived from nuclear DNA, providing a more varied 

picture of genetic variability.  These repeat motifs of DNA are located throughout the 

genome in eukaryotes (Kelkar et al. 2011) and can be highly polymorphic (Morin et 

al. 2004) and thus are of benefit to confirm the pedigree of the population and also 

provide a measure of overall genomic diversity.  The third genetic region assayed 

differs in that it is of adaptive importance (Frankham 2010).  It was derived from the 

major histocompatibility complex (MHC), a complex gene family that has vital links 

with fitness owing to its involvement in immune function (Smith, Belov & Hughes 

2010) and is described as the most polymorphic within vertebrates (Ejsmond & 

Radwan 2011; Piertney & Oliver 2006).   
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2 Chapter two - Mitochondrial DNA analysis 

2.1 Mitochondrial DNA – Form and Function 

The mitochondrion is a unique eukaryotic cellular organelle that provides vital 

functionality predominantly, but not exclusively, owing to its role within cellular 

energetics.  It is unique in comparison to other cytoplasmic cellular components as it 

contains its own genetic material in the form of mitochondrial DNA (mtDNA), a 

significant factor that lead to the formulation of the theory that this organelle evolved 

via endosymbiosis (Sato & Sato 2013).  The overall structural formation is shown in 

Figure 1 which shows that the mammalian mitochondrial genome is organised in a 

closed double stranded circular configuration.  As opposed to its nucleus bound 

counterpart, mtDNA has a fairly conserved architecture within the Kingdom Animalia 

(Freeland 2005).  Mammalian mtDNA encodes for 13 polypeptides that form the 

blocks to create the bioenergetic pathway of the electron transfer chain, in addition 

to two rRNAs and 22 tRNAs (St. John 2014).  These 13 proteins work in conjunction 

with approximately 70 nuclear proteins (Chen & Butow 2005) to perform biogenesis 

of the cellular fuel known as adenosine triphosphate (ATP) via the oxidative 

phosphorylation process.  As functionality of this molecule is highly demarcated to a 

number of specific roles, the formation is purported to have evolved as a highly 

organised and efficient molecule with little overlap, if any between differing genes 

(Pereira et al. 2008).   
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Figure 1.  Mitochondrial DNA molecule (taken from Lacobazzi et al., 2013) 

 

Despite this apparent rigidity within its formation and function, there are two non-

coding regions embedded within the circular structure.  The first is an extremely 

small region comprised of just 30 base pairs located between the genes NADH 

dehydrogenase subunit 2 (ND2) and cytochrome oxidase I (COI).  The second is 

illustrated above in Figure 1 as the D-loop and located between ribosomal RNA (12s 

rRNA) and cytochrome b (Cytb) genes.  The D-loop, which is a diminutive term for 

displacement loop is also referred to as the control region of mtDNA.  Although the 

terminology D-Loop is widely used in the literature, Pereira et al. (2008) clarified that 

its use as an equivalent term to that of the control region is in fact a misnomer as D-

loop is actually descriptive of a loop formation created by early termination of the 

heavy strand synthesis at the 5’ of the region, and thus representative of a specific 

point in the control region rather than its entirety.  The exact functionality of this 

particular folding element within the control region is unknown.  However, theories 

postulated include that the D-loop modulates mutation rates within the molecule 

owing to the assumption that such secondary structures are binding sites for a 

number of transcription factors (Pereira et al. 2008).  
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The control region is the non-coding segment of mtDNA charged with the task of 

regulating transcription and replication of this molecule and in humans it extends 

approximately 1.1 kb (Tzen, Hsu & Wang 2008).  It is then defined into two further 

segments, the classifications of which elucidate the high variability of this section: 

hypervariable region–I (HV-I) and hypervariable region-II (HV-II).  Within primates, 

the HV-I region is purported to mutate at a rate 5 to 10 times faster than that of the 

nuclear genome (Andayani et al. 2001).  This section mutates at a rate significantly 

greater than any other mtDNA segment (Roos & Geissman, 2001; Whittaker et al., 

2007).  The central area of the control region that concatenates the two 

hypervariable regions is conserved in humans (Tamura & Nei 1993).   

 

A further attribute of the mtDNA molecule that sets it apart from nuclear DNA is that 

the molecule is transmitted as a haploid unit, with uniparental inheritance solely from 

the mother in most animal species (Frankham, Ballou & Briscoe 2010).  The exact 

mechanisms of how this occurs are not fully understood (Sato & Sato 2013), and the 

processes may differ from species to species (Birky, Jr 1995).  It is known in 

mammals that paternal mitochondria penetrate the oocyte cytoplasm post 

fertilization but the genetic information contained within is not then transmitted to the 

offspring (Sato & Sato 2013).  However, there have been reports of paternal 

‘leakage’ in some analyses (Lunt & Hyman 1997; Zhang & Hewitt 1996).  It has long 

been thought that recombination within this molecule does not take place in animals 

(Rokas, Ladoukakis & Zouros 2003).  However, Tsaousis et al (2005) note that 

recombination within the mtDNA molecule may be occurring within an increasing 

number of animal species than previously thought, and this could potentially impact 

on genetic studies of the molecule.  However, this phenomenon is unlikely to affect 
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the outcome of this study, as although it is possible that paternal mtDNA may be 

present within the H. moloch samples, prior studies have shown that haplotypes 

have not been sufficiently altered to produce a new haplotypic sequence (Rokas et 

al., 2003; Tsaousis et al., 2005).  

 

2.1.1 Mitochondrial DNA as a molecular marker 

Mitochondrial DNA has been used as a molecular marker since the end of the 1970s 

(Zhang & Hewitt 1996).  The nature of mtDNA such as its conserved structure, lack 

of recombination in most animal species and small size make it a more amenable 

molecule to assay than nuclear DNA.  With a conserved architecture, it is possible to 

utilise previously described generic primers that can be applied across a variety of 

species, thus conserving both finances and time (Frankham 2010).  In addition 

mtDNA is present at high numbers within the cell, for example reaching 250,000 

copies in the mature metaphase II oocyte (St. John 2014).  The number then 

fluctuates later in life as a result of differing metabolic demands, however this high 

copy number render it a more compliant molecule when utilised in the polymerase 

chain reaction (PCR) procedure.   

 

The applications of mtDNA within genetic analyses studies are numerous.  Studies 

include those focusing on phylogenetics (e.g. Belay & Mori, 2006; Whittaker et al., 

2007; Zenger et al., 2005), population structure (e.g. Ahlering et al., 2011; Caballero 

et al., 2013; Chow et al., 2009), disease (e.g. Kenney et al., 2014; Stewart et al., 

2008) and more recently a focus on the effects on health as a result of the post-

translational process of DNA methylation (e.g., Lacobazzi et al., 2013).  
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Owing to its haploid character, when analysing the mtDNA molecule the population 

under review is effectively a quarter of the actual population size.  Whilst this factor 

makes it a more amenable molecule to assay in many cases such as in studies of 

maternal lineage, it must be considered when calculating genetic variability.  A 

species’ mating system can also influence population genetic dynamics.  For 

example, low genetic diversity at this molecular region may not be as a result of a 

bottleneck as a result of a decline in population size, but may be attributable to the 

social dynamics of the target population in question.  For example, a study to 

ascertain genetic variability between and within populations of bull shark 

(Carcharhinus leucas), found that individuals exhibited low diversity at both the 

nucleotide and haplotype levels (Karl et al. 2011).  The results were not as a 

consequence of declining populations, this is not a species that is considered 

Endangered and enjoys a widespread global distribution, rather that female bull 

sharks showed a high degree of philopatry at nursing sites (Karl et al. 2011).   

 

The importance of understanding the underlying diversity of the mtDNA region is 

highlighted in a study of Black Rhinoceros (Diceros bicornis) (O'Ryan, Flamand & 

Harley 1994).  When selecting animals that have originated from different regions for 

breeding and reintroduction purposes the diversity at this region was considered 

with regards to outbreeding.  Diversity between the different subjects was low and 

therefore it was decided that to bolster numbers and mix gene flow, the different 

populations could be interbred.  A similar approach to conserve Eastern barred 

bandicoot (Perameles gunnii) was used where mtDNA variability was ascertained 

prior to mixing two different populations originating from different areas (Robinson 

1995).  Results obtained illustrated that there was a marked sequence divergence 
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from the two populations and therefore it was decided that mixing individuals may 

impact negatively on fitness owing to outbreeding.   

 

The neutral theory of molecular evolution was first described by Kimura in 1968, a 

hypothesis that was then further defined over the following decade and has become 

a core concept within population genetics (Kimura 1968).  The theory postulates that 

the process of selection is less of a factor in driving molecular variation, and rather 

that genotypes that persist in a population have equal neutrality with respect to each 

other when considering their connections with fitness traits (Hedrick 2005).  The 

mtDNA molecule appears to split opinion as to whether it follows a neutral pattern of 

evolution or whether it is under selection.  Many studies select mtDNA on the basis 

that it evolves in a neutral manner (Kanthaswamy et al., 2006; Nachman et al., 

1994).  This assumption may be based in the fact that the molecule is of such vital 

importance as the ‘power house’ of the cell that alterations within the structure may 

impair vital biological function.  To function at the most efficient level possible, it may 

follow that mtDNA is in fact a non-neutral marker and is susceptible to selection thus 

allowing change over future generations and to fixate the most desired alleles for 

optimal function.  One selective force postulated to influence mtDNA genes is that of 

alterations in climate (Mishmar et al., 2003; Tomasco & Lessa, 2014).  Alterations 

were observed in a number of mtDNA genes responsible for ATP production in 

accordance with different climates in the study by Mishmar and colleagues (2003) 

using samples derived from human populations from differing global regions.  A 

further study that also raises the notion that external environmental conditions 

influence mtDNA genotypes is that of Tomasco and Lessa (2014).  They postulated 

that in rodents, alterations in two mtDNA genes occurred as a result of modifications 
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in their ecological surroundings.  Changes within COX2 and CytB genes were 

discovered within two codons and were hypothesised to be under episodic selection 

in accordance with their external environmental conditions.  The species in the study 

is a subterranean rodent that dwells in low oxygen habitats but requires high energy 

levels for burrowing.  A further hypothesis surmises that there is strong purifying 

selection within mtDNA as a means to limit deleterious accumulations to resist 

disease (Stewart et al. 2008).  Modes of evolution within mtDNA may follow both 

selective and neutral theories of mutation and influential forces may come from both 

biotic and abiotic factors.   

 

2.2 Materials and Methods 

2.2.1 Sample population 

The sample population for the study was comprised of 21 Hylobates moloch 

individuals residing at Howletts and Port Lympne zoological institutions both of 

whom are EAZA (European Association of Zoos and Aquaria) members.  The 

studbook for the moloch gibbon is managed by Howletts for individuals within the 

United Kingdom.  There should have been a total of 24 H. moloch for the study, 

however three infants from the population would not take marked hand fed food 

items thus identification of faecal deposits was not possible.   

 

The population was then split into groups representative of wild-born individuals 

(Wild) and those born within the captive environment (Captive). Wild-born individuals 

(n=8) are denoted with the reference H.mol1 to H.mol8 and Captive-born individuals 

(n=13) with H.mol9 to H.mol21.  Further information for each animal is in Table 1.  
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All Mean Kinship values were provided by Howletts.  Missing values represent 

individuals that when MK values were created were no longer in the group.  

 

A further group of 31 wild H. moloch individuals were included in statistical analyses. 

The sequences derived from GenBank were the only other published data available 

on this genomic segment within this species.  This group is designated Wild_pop2 

and all sequences were deposited in GenBank with the following accession numbers 

by Andayani et al. (2001): 

AF338908.1, AF338906.1, AF338904.1, AF338902.1, AF338900.1, AF338898.1, 

AF338896.1, AF338894.1, AF338892.1, AF338890.1, AF338888.1, AF338886.1, 

AF338884.1, AF338882.1, AF338880.1, AF338878.1, AF338874.1, AF338907.1, 

AF338901.1, AF338899.1, AF338897.1, AF338895.1, AF338893.1, AF338891.1, 

AF338889.1,   AF338887.1,      AF338885.1,     AF338881.1,    AF338879.1,     AF338875.1,     

AF338873.1. 
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Table 1 - Hylobates moloch  sample population information.  Primates in bold are wild-born. 

 

Primate Ref Sex Year of Birth Generation 

H.mol1 F Unknown 1 

H.mol2 M Unknown 1 

H.mol3 F Unknown 1 

H.mol4 M Unknown 1 

H.mol5 M Unknown 1 

H.mol6 M Unknown 1 

H.mol7 M Unknown 1 

H.mol8 F Unknown 1 

H.mol9 M 2001 2 

H.mol10 F 1999 2 

H.mol11 M 2006 3 

H.mol12 F 2004 3 

H.mol13 M 2009 4 

H.mol14 F 2009 3 

H.mol15 F 1996 3 

H.mol16 M 1990 2 

H.mol17 M 1993 2 

H.mol18 F 1994 2 

H.mol19 M 2007 3 

H.mol20 F 2005 3 

H.mol21 F 1998 3 
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2.2.2 DNA extraction 

DNA was extracted from faecal samples collected from 21 of the 24 H. moloch 

individuals residing at Howletts and Port Lympne zoological institutions.  Faecal 

samples were allocated to specific individuals either by direct observation and 

collected immediately or by hand feeding foodstuffs containing maize that could then 

be identified on subsequent days.  Samples were immediately frozen upon 

collection.  Two faecal samples per individual were collected.  It has been widely 

reported that both DNA yield and quality derived from faecal samples is lower than 

that extracted from blood or tissue (e.g. Chaves et al., 2006; Marrero et al., 2009; 

Wasser et al., 1997).  However, faecal samples are a non-invasive medium from 

which to obtain genetic material, which is desirable from both a practical standpoint 

as it is not necessary to obtain licences but much more importantly it causes no 

stress to the animal under observation.   

 

DNA was extracted from the frozen faecal samples using the QIAamp DNA stool 

Mini Kit (Qiagen) following the Stool Larger Volumes protocol.  This commercially 

available kit was chosen as it included a step that involved binding secondary 

compounds found in plant matter that is present in herbivorous diets, which is 

applicable to the H. moloch species.  Plant secondary compounds negatively impact 

the PCR process by interfering with the taq polymerase enzymatic reaction (Marrero 

et al. 2009).  For each DNA extraction an amount of 400mg of frozen stool was used 

ensuring that both internal and external surfaces of the faeces were present as a 

precautionary measure as sloughed epithelial cells may not be homogenously 

distributed throughout the sample (Piggott & Taylor 2003). 



 

 

24 

2.2.3 Hypervariable Region I (HV-I) PCR amplification 

Once two DNA samples had been prepared for each individual, extracted DNA was 

used to amplify the desired target region of mtDNA, the HV-I.  The HV-I region of the 

mitochondrial DNA control region was amplified using the gibbon specific primers 

GIBDLF3 (5’-CTT CAC CCT CAG CAC CCA AAG C 3’) and GIBDLR4 (5’-GGG TGA 

TAG GCC TGT GAT C-3’) as published in Andayani et al., 2001.  Total volume of 

PCR mixture per reaction was 50μL consisting of: 1x Q Solution (a reagent that is 

part of the HotStarTaq® kit, modifies the melting behaviour of DNA and useful for 

difficult template DNA, Qiagen), 1x PCR buffer (contains Tris-CL, KCL, (NH4)SO4, 

15mM MgCL2) (Qiagen), 1.75mM MgCl2, 0.2μM dNTPs, 0.1μM Primer GIBDLF3, 

0.1μM Primer GIBDLR4, 2.5 Units HotStarTaq® DNA Polymerase (Qiagen), 20-50ng 

template DNA.  A negative control was included to monitor for contamination.  No 

positive control was used here as primers utilised were specific to the gibbon 

genera.  PCR reactions were run using a S1000 Thermal Cycler (Bio-Rad) with the 

following conditions:  95°C for 15 minutes to activate HotStarTaq, then 40 cycles of 

denaturing phase at 94°C for 1 minute, annealing at 60°C for 1 minute, extension at 

72°C for 3 minutes and a concluding extension stage at 72°C for 6 minutes.  The 

PCR product was then purified using SpinPrep™ PCR Clean-up kit  (Merck, KGaA).  

PCR products were visualised on a 0.8% agarose gel to ensure amplification 

success.  Successfully amplified products were then sequenced using Sanger ABI 

3730xl.  For quality control the process was repeated a second time. 
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2.2.4 HV-I data analysis 

The first step of data analysis was to reconcile the two HV-I sequences from each 

individual, to ensure that each pair of sequences pertaining to a specific individual 

were identical.  For control purposes, nucleotide quality at each site was first 

checked by viewing sequence chromatograms within 4Peaks version 1.7.2 

(Griekspoor & Groothuis 2006).  Then, duplicate sequences for each individual were 

aligned using ClustalX version 2.0 (Larkin et al. 2007).  Once duplicate sequences 

had been verified to be identical, the sequences taken from GenBank from the study 

of Andayani et al. (2001) known as Wild_pop2 were added to ClustalX.  All 

sequences were then aligned in accordance with the ‘multiple alignment mode’ as 

opposed to the ‘profile alignment mode’.  The multiple alignment mode functions by 

first analysing sequences in a pairwise manner and identifies regions of similarity 

between sequences.  The distances between each pair of sequences within the 

dataset were calculated in accordance with the ‘slow-accurate’ alignment 

parameters (as opposed to the fast but approximate).  Alignments were carried out 

with the default transition weighting of 0.5 as sequences were expected to be similar 

as they were all derived from the same species.  Although mtDNA control region 

data analysed is non-coding by default the programme assigns a protein weight 

matrix, thus BLOSUM was selected which is the most applicable for studies utilising 

similar evolutionary distances as evinced here.  

 

Once all sequences from the three groups (captive, wild and wild_pop2) were 

aligned they were edited within MacClade OSX version 4.08 (Maddison & Madison 

2005).  The wild_pop2 sequences were of the entire control region and thus they 
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were trimmed to equal the HV-1 segment.  The resultant segment length of all group 

sequences was 518bp. 

 

A consideration of aligned sequences from each individual is that there is a 

possibility that the target mtDNA segment may co-amplify with a similar sequence 

from nuclear DNA.  This is as a consequence of a phenomenon where mtDNA 

sequence copies are inserted into nuclear DNA and are referred to as nuclear 

mitochondrial sequences (NUMTS).  This occurrence has been reported in a 

number of different taxa (Hazkani-Covo, Zeller & Martin 2010) and with a differing 

number of mtDNA regions, for example an entire D-loop discovered in a domestic 

cat (Zhang & Hewitt 1996).  Investigations in both humans and rhesus monkeys 

found that sections within the control region NUMTs were rare which lead the 

researchers to deduce that this region is under-represented within the primate taxa 

(Tsuji et al. 2012).   

 

2.2.5 Statistical analysis 

Statistical tests of neutrality on the HV-I mtDNA segment carried out were Tajima D 

and Fu’s Fs test.  Both tests are applicable for intraspecies data sets and use 

nucleotide information to perform calculations.  Tajima D (Tajima 1989) compares 

the number of segregating nucleotide sites within a sequence with the mean 

pairwise difference between two random sequences.  It is defined as follows: 

𝐷 =
𝜃! − 𝜃!
𝑆!! − 𝜃! 
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Where 𝜃! is an estimator of 𝜃 based on the average number of pairwise differences, 

𝜃!  is an estimator of 𝜃 based on the number of segregating sites and 𝑆!!  is an 

estimate of the standard error of the difference of these two estimations.  The 

significance of the D value was tested by 1000 simulations (as recommended within 

the programme) using Arlequin version 3.5.1.3 (Excoffier & Lischer 2010).   

 

Fu’s Fs  test (Fu 1997) also analyses the nucleotide sequence information and 

assumes that no recombination has occurred but this computation is carried out at 

the haplotype level of data.  This statistic is given by the following equation: 

𝐹! = 1𝑛 
𝑆

1 −  𝑆
 

Where 𝑆 is an estimation of the probability of observing a random sample with the 

same number of alleles that are equal to or smaller than the observed value within a 

given haplotype dataset.  The significance of Fs was also tested by 1000 simulations 

(as recommended within the programme) using Arlequin version 3.5.1.3 (Excoffier & 

Lischer 2010).   

Statistical measures of genetic variability estimated were number of haplotypes, the 

number of polymorphic sites, gene diversity (H) and nucleotide diversity (𝜋) and 

mean number of pairwise differences. To ascertain measures of genetic 

differentiation between the three H. moloch groups a measure of FST was calculated. 

 

Gene diversity (also referred to as haplotype diversity) is representative of the 

probability that two random sequences are different and was calculated as follows 

(Nei 1987): 
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H = !
!!!

 1 −   𝑝!!!
!!!  

Where n is the number of sequences, h is the number of haplotypes and pi is the 

relative frequency of haplotype i.  This calculation was carried out using DnaSP 

version 5.0 (Librado & Rozas 2009). 

 

The measure of nucleotide diversity is representative of the average number of 

nucleotide differences per site and was carried out according to the following 

formula (Nei 1987).  : 

𝜋 = 𝑘/𝑚 

Where m is the total number of nucleotide positions inclusive of both variable and 

monomorphic sites, but excluding alignment gaps and k is the mean number of 

nucleotide differences calculated as follows: 

𝑘 =
2

𝑛(𝑛 − 1)
𝑑!"

!!!

 

Where n is the number of nucleotide sequences and dij  is the number of nucleotide 

differences between sequences i and j.  This calculation was also carried out in the 

software DnaSP version 5.0 (Librado & Rozas 2009). 

 

The mean number of pairwise differences between all pairs of haplotypes was 

calculated in Arlequin version 3.5.1.3 (Excoffier & Lischer 2010) as follows (Tajima 

1983) : 

Mean No. Pairwise Diffs. = !
!!!

  𝑝!!
!!!

!
!!! 𝑝!𝑑!" 
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Where 𝑑!" is an estimate of the number of mutations that have occurred since the 

divergence of haplotypes i and j, k is the number of haplotypes, 𝑝! is the frequency 

of haplotype i and n is the sample size. 

 

To ascertain if there is any differentiation between the three groups a test based on 

FST  was calculated.  Genetic distances were computed as pairwise FST  measures 

between populations and in accordance with Reynold et al. (1983) version for a 

short divergence time which was applicable to the groups under assay here: 

𝐹!" = 1 − 1 −
1
𝑁
)! ≈ 1 − 𝑒!!/! 

In order to estimate evolutionary distance and to visualise how haplotypes derived 

from the three H. moloch groups clustered, a phylogenetic species tree was created 

using MEGA version 5.2.2 (Tamura et al. 2013).  The algorithm chosen was the 

maximum likelihood method.  A constraint of the maximum likelihood model is that 

whilst the algorithm searches for the most applicable phylogenetic tree from the data 

presented, it is unable to search within every possible scenario of evolutionary 

relationships.  As the number of taxa input increases, the number of possible 

outcomes increases greatly and renders it extremely difficult to compute every 

possible topology (Vandamme 2009).  Preliminary tests however, showed that the 

percentage of branches that clustered together utilising the maximum likelihood was 

greater than by application of other algorithms (neighbour joining and UPGMA). 

UPGMA does not allow for the inclusion of an evolutionary model, which is also the 

case for maximum parsimony methods.  The maximum likelihood algorithm does 

allow this and thus it was a further factor contributing to the decision to use this 

approach.  This was pertinent for the mtDNA HV-I region sequences, as they are 
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known to evolve at a faster rate then in nuclear DNA and other genes within the 

mtDNA molecule.  A further important consideration to take into account within the 

analysis methodology was to acknowledge the inequality of the frequency of 

transitions and transversions that occur in mtDNA.  There is a large disparity 

between the occurrences of transitions (purine to purine or pyrimidine to pyrimidine), 

which are far more common, to the occurrence of transversions (purine to pyrimidine 

and vice versa) in primates (Hasegawa et al., 1985; Moritz et al., 1987).  In a study 

of both human and chimpanzee control region mtDNA sequences, 93.7% of 

mutations were represented by transitions (Seligmann, Krishnan & Rao 2006).  

Therefore, a test of 24 differing nucleotide substitution models was performed within 

MEGA which found that the Hasegawa-Kishino-Yano model (HKY) (Hasegawa, 

Kishino & Yano 1985) was the best model for the mtDNA data presented and scored 

the lowest Bayesian Information Criterion (BIC) score.  The HKY model recognises 

that transversions are less frequent that transitions, and also that base pairs do not 

occur at an equal frequency.  This HKY model is similar to the Kimura-2 parameter 

(Kimura 1980) model, but the latter assumes all nucleotide base frequencies are 

equal.   

 

To allow for the non-uniformity of the rate of evolution of the control region of mtDNA 

a discrete gamma distribution with a rate of 5 (the recommended gamma values 

range between 4 and 8) was also applied.  A heuristic methodology was also applied 

to aid in tree construction included within the software which will finalise 

computations once the superior log likelihood of the tree is computed.  In this case 

the nearest-neighbour-interchange heuristic algorithm was applied which functions 

by examining space within the tree and then rearranging the tree topologies, which 
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is representative of the pairwise distances of underlying nucleotide data.  If the 

resultant tree is deemed to be a better fit than the previous arrangement this tree is 

kept.  This process continues until it reaches the aforementioned optimal criterion.  

 

To ascertain the reliability of the tree produced by the maximum likelihood 

methodology the statistical non-parametric bootstrapping technique was also applied 

with 1000 replicates chosen which is as per programme recommendations.  This 

technique is the most widely employed in phylogenetic analyses (Schmidt & 

Haeseler 2009) to test branch support within the tree.  The technique approximates 

the underlying distribution of the data by the creation of replica data sets that are 

identical in size to the original data and then randomly resamples each nucleotide 

position column and creates a new tree.  This is then repeated in accordance with 

the number of times input by the user.  The column resampled may or may not then 

be used again in the pseudo sample sets that the technique creates.  Once all 

bootstrap replicates have been carried out the reliability that each branch was found 

within each bootstrap replication is shown as a percentage next to each branch 

within the tree.  There was no root utilised in the phylogram as all sequences 

analysed were derived from the same species.   

 

2.3 Results  

Amplified product bands in both runs did not produce multiple or unexpected bands 

after gel electrophoresis, which suggests that NUMTs were not present within 

sequences.  Both experimental rounds produced identical bands for each subject 

animal.  Furthermore, nucleotide sequences were also identical for each duplicate 
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PCR product for each individual.  In addition to this, Wild-born and Captive-born HV-

I sequences were akin to those aligned with the Wild_pop2 group data procured 

from GenBank. 

 

The HV-I sequence length derived from the H. moloch individuals (and then 

subsequently applied to the Wild_pop2 group) totalled 518 bp inclusive of gaps.  

This size is similar to that found in five Nomascus gibbon species (concolor, 

leucogenys, nasutus, gabriellae and hainanus) by Monda et al. (2007) of 477bp and 

to a phylogenetic study of the mtDNA control region of the Hylobates genus where 

sizes ranged between 487-520 bp dependent on the species (Whittaker, Morales & 

Melnick 2007).  One sample (sample h.mol 17 from the Captive group) was 

excluded from further analyses as the resultant amplified fragment length was 

considerably shorter after both PCR reactions.  It is thought that sequencing of the 

HV-I segment was unsuccessful in that particular individual. 

 

2.3.1 Genetic diversity results 

The measures of genetic diversity for the HV-I segment of mtDNA reveal a marked 

difference between captive born individuals and both wild born groups.  Despite a 

larger number of individuals assayed within the captive-born in comparison to the 

wild-born groups, the number of haplotypes observed within the latter group was 

three times greater than the captive-born.  The wild_pop2 exhibited a very high level 

of diversity with regards to the number of haplotypes and uniqueness to each 

individual.  With just 2 haplotypes in the Captive group it is perhaps not surprising 

that H exhibited a much lower value than within both wild groups.  At the nucleotide 
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level, the disparity between wild born and captive born is also evident.  A total of just 

4 polymorphic sites were observed within the Captive group and this low level of 

nucleotide variability is further illustrated in the value of π.  The greatest value of π 

was evinced in the 31 individuals in the wild_pop2 group and followed by the 8 in the 

wild-born group.  The greatest number of polymorphic sites was observed in the 

wild_pop2 group which was not surprising considering the high number of 

haplotypes harboured within this group.  Unique to this group was also the presence 

of both transitions and transversions, an occurrence not observed within the other 

two groups.  A factor, further illustrative of uniqueness within the wild_pop2 group is 

the number of private substitution sites which totalled 78, however only 1 private site 

was observed in the wild-born group and no private sites were evinced in the 

captive-born.  Finally, the greatest value of pairwise differences between haplotypes 

was detected in wild_pop2.  The group with the least value of pairwise differences 

was illustrated in the captive-born group, an unsurprising result considering that this 

group harbours just two haplotypes.  The wild-born group yielded a high value when 

considering the total number of haplotypes observed within this group was 6.   

 

There is no differentiation between the wild-born group and wild_pop2 (Table 2). 

There is significant differentiation, however, between the captive-born group with 

both wild groups. 
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Table 2 - HV-1 measures of mtDNA genetic diversity.  n is the number of individuals, H is gene 
diversity and π is a measure of nucleotide diversity. 

 Captive-born Wild-born Wild_pop2 

n 12 8 31 

No. of haplotypes 2 6 29 

H 
0.409 ± s.d 

(0.133) 

0.929 ± s.d  

(0.086) 

0.998 ± s.d 

(0.009) 

𝝅 
0.003 ± s.d 

(0.001) 

0.023 ± s.d 

(0.005) 

0.036 ± s.d 

(0.005) 

No. of polymorphic 
sites 

4 30 114 

Transitions 4 30 83 

Transversions 0 0 31 

Mean pairwise 
differences 

1.636 ± s.d 

(1.036) 

12.071 ± s.d 

(6.116) 

20.652 ± s.d 

(9.373) 

 

 

 

Table 3 - Measures of population differentiation using FST.  (*) indicates statistical significance 
p<0.05 

 Wild_pop2 Wild-born Captive-
born 

Wild-born 0.008   

Captive-born 0.187 (*) 0.225 (*)  

 

 

There were a total of 34 haplotypes observed over all three H. moloch groups.  

There is only one haplotype common to all three, haplotype 26 which was observed 
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in 9 individuals from the captive-born group, 2 from the wild-born group and 1 within 

wild_pop2.  The only other haplotype shared with wild_pop2 is number 18 which is 

present within 2 individuals from the wild-born group and 1 from wild_pop2.  

Haplotype 21 is shared with three H. moloch from captive-born and 1 individual from 

the wild-born groups.   

 

The MK values for wild and captive-born are shown with the mtDNA found within 

each individual.  The latter part of the table from H.mol 20 downward illustrate the 

most common haplotype within the two groups and individuals have the greatest MK 

values in this part of the table also.  Rare alleles highlighted in yellow however 

appear in individuals with an intermediate value such as in H.mol 2 (Table 5). 

 

 

Tests of neutrality, Tajima D and Fu’s Fs tests are positive for both the captive-born 

and wild-born groups (Table 6).  The wild_pop2 results, however, are negative, with 

a statistical significant value in the Fu’s Fs test. 
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Table 4 - HV-I mtDNA haplotype frequencies occurring in all three groups. 

Haplotype Number Captive-born Wild-born Wild_pop2 

Hap_1 0 0 0.032 
Hap_2 0 0.125 0 

Hap_3 0 

0 
 

0 0.032 

Hap_4 0 0 0.032 

Hap_5 0 0 0.032 

Hap_6 0 0 0.065 

Hap_7 0 0 0.032 

Hap_8 0 0 0.032 

Hap_9 0 0 0.032 

Hap_10 0 0 0.032 

Hap_11 0 0 0.032 

Hap_12 0 0.125 0 

Hap_13 0 0.125 0 

 Hap_14 0 0 0.032 

Hap_15 0 0 0.032 

Hap_16 0 0 0.032 

Hap_17 0 0 0.032 

Hap_18 0 0.250 0.032 

Hap_19 0 0 0.032 

Hap_20 0 0 0.032 

Hap_21 0.250 0.125 0 

Hap_22 0 0 0.032 

Hap_23 0 0 0.032 

Hap_24 0 0 0.032 

Hap_25 0 0 0.032 

Hap_26 0.750 0.25 0.032 

Hap_27 0 0 0.032 

Hap_28 0 0 0.032 

Hap_29 0 0 0.032 

Hap_30 0 0 0.032 

Hap_31 0 0 0.032 

Hap_32 0 0 0.032 

Hap_33 0 0 0.032 

Hap_34 0 0 0.032 
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Table 5 - mtDNA per individual from captive and wild-born groups and their mean kinship (MK) 
values.  Table sorted according to lowest MK value to greatest.  Highlighted cells represent 
unique mtDNA haplotypes 

 

Primate Ref 

 

MK 

mtDNA 

Haplotype 

H.mol8 -	 Hap_21	

H.mol21 -	 Hap_26	

H.mol17 -	 Hap_26	

H.mol6 0.0000	 Hap_18	

H.mol4 0.0000	 Hap_26	

H.mol3 0.0000	 Hap_18	

H.mol5 0.0083	 Hap_2	

H.mol1 0.0083	 Hap_12	

H.mol7 0.0208	 Hap_26	

H.mol15 0.0604	 Hap_21	

H.mol16 0.0688	 Hap_21	

H.mol2 0.0875	 Hap_13	

H.mol13 0.1083	 Hap_21	

H.mol20 0.1167	 Hap_26	

H.mol19 0.1167	 Hap_26	

H.mol14 0.1271	 Hap_26	

H.mol12 0.1271	 Hap_26	

H.mol11 0.1271	 Hap_26	

H.mol9 0.1354	 Hap_26	

H.mol10 0.1479	 Hap_26	

H.mol18 0.1521	 Hap_26	
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Table 6 - Results of Tajima D and Fu's Fs neutrality tests.  (**) indicates statistical signficance 
P<0.001 

 Captive-born Wild-born Wild_pop2 

Tajima D test 0.828  0.115  -1.139  

Fu’s Fs test  3.698  1.31  -12.732 (**) 

 

 

2.3.2 The phylogeny of mtDNA HV-I within Captive and Wild haplotypes 

Basal sequences within the topology are derived from two wild_pop2 sequences 

with a 99% probability after 1000 bootstrap replications.  Sequences from wild_pop2 

are largely clustered at the base of the tree, however there is one sequence from a 

wild-born individual that forms a clade with another wild_pop2 member.  There was 

an 85% probability that all three groups clustered within one clade which is 

presumably representative of Haplotype number 26, where 9 captive-born 

individuals share the same haplotype with 2 wild-born and one individual from 

wild_pop2.  Some nodes in the tree have yielded confidence levels below 50%.  

However, the overall topology appears to support results procured within the genetic 

diversity measures (section 2.3.1). 
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Figure 2 - Maximum likelihood phylogenetic tree illustrating evolutionary distances of mtDNA 
HV-I sequences.  Nucleotide substitution model used was Hasegawa-Kishino-Yano.  
Percentage of replicate trees is shown next to each branch (1000 bootstrap replications). 
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2.4 Discussion 

The amplification of the mtDNA HV-I region within the H. moloch population 

consisting of the two groups, wild born (Wild) and captive born (Captive) was 

successful in all but one (H.mol17) of the 21 individuals.  The results obtained, show 

a disparity between wild born and captive born groups with regards to levels of 

mtDNA diversity within the HV-I region. 

 

A clear lack of variability in the number of haplotype is illustrated in the Captive 

group in comparison to both the wild-born and wild_pop2 groups, with 2 haplotypes 

detected in 12 captive, 6 in 8 wild and 29 in 31 wild_pop2 individuals.  Low mtDNA 

haplotype counts have been observed in a number of species and the occurrence is 

attributed in some cases to female philopatry.  For example, the bull shark 

(Carcharhinus leucas), a species that enjoys a wide distribution across the globe 

was found within two populations (n=17 and 23) analysed to yield a total of 4 mtDNA 

control region haplotypes (Karl et al. 2011).  The apparent lack in maternal gene 

flow was in large attributed to a preference in females to remain in particular nursing 

areas, both mother and female progeny.  Similarly, the Brazilian stingless bee 

(Plebeia remota) is known to exhibit low female dispersal pattern within females and 

the outcome of this behaviour was shown to impact on mtDNA haplotype counts 

with only 1 haplotype occurring within two populations (n=12 and 13) (Francisco, 

Santiago & Arias 2013).  The American alligator (Alligator mississippiensis) was 

found to harbour just 3 haplotypes within the control region of mtDNA (n=25) and 

one of the contributing factors was deemed to be female philopatry to particular 

areas as with the bull shark (Glenn et al. 2002).  Fidelity to a particular area within a 

habitat is one observation that has been purported to maintain mtDNA haplotypes at 
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a low count: however, ecological barriers also serve as a limiting factor with regards 

to variability at this genetic region.  One such example is provided by a study into an 

endangered freshwater Saimma ringed seal (Phoca hispida saimensis) (Valtonen et 

al. 2012).  This seal species is an endemic organism found only in a landlocked 

Lake in Finland.  The ringed seal population consisting of fewer than 300 individuals 

is believed to have been genetically isolated since the last ice age.  A study of 

mtDNA variability found 8 haplotypes in the control region of 215 individuals.  This 

number is stated within the study to be low, however it is evidently greater than the 

Captive and Wild populations of H. moloch assayed here.  Although haplotype 

counts may increase with an increase in sample sizes across all groups, the ratio of 

haplotype count to number of individuals is further confirmation that captive-born 

group lack diversity at this mtDNA segment (captive-born = 0.16, wild-born, 0.75 and 

wild_pop2 0.93).   

 

The low count exhibited within the Captive group of H. moloch here however, can 

not be attributed to such an occurrence.  This is postulated to have occurred as a 

consequence of the limitations of captive breeding, which often involves a limited 

number of founders contributing wild type alleles when dealing with endangered 

species, such as here with H. moloch (Hedrick et al. 1997).  With a limited number of 

females available, and if those females do not fall within the prerequisites of desired 

mean kinship values, this number may be even smaller and thus mtDNA gene flow 

is likely to decrease.  This occurrence has also been reported in studies that have 

compared captive bred individuals to their wild conspecifics with captive groups 

exhibiting a lower genetic diversity.  A study of a group of captively bred and wild 

born Elliot pheasants (Syrmaticus ellioti) exhibited similar results to this study and 
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results were perhaps more akin to the Wild_pop2 and Captive H. moloch haplotype 

count results (Ping-ping et al. 2005).  Captive pheasants harboured 3 haplotypes 

which was observed within 36 individuals, however their wild counterparts, a group 

that totalled 17 individuals, exhibited 16 haplotypes that were unique to each 

individual. Further observations of disparity between wild and captive groups of the 

same species have been made in the wild Matschie tree kangaroo from Papua New 

Guinea (Dendrolagus matschiei) (McGreevy Jr et al. 2009), African giraffe (Giraffa 

camelopardalis) (Hassanin et al. 2007) and mallard (Anas platyrhynchos) (Čížková 

et al. 2012).   

 

The Captive group exhibited the least number of haplotypes and of the 12 

individuals assayed, 3 possess Hap_21 and the remaining 9 individuals maintain 

Hap_26.  Interestingly, this common haplotype within the Captive group is also 

present not only in the Wild group which was to be expected as haplotype number 

26 is also present in a dam derived from the Wild group, but it is also present in 

Wild_pop2.  The origins of individuals from the Wild_pop2 group are unknown, 

however the persistence of Hap_26 across all three groups suggests a level of 

matrilineal connectivity between the three groups.  This phenomenon has been 

observed in other species and subspecies.  In 16 populations, the koala 

(Phascolarctos cinereus) was observed to share particular haplotypes across 

differing geographical regions, although the species was thought to have had limited 

gene flow between the populations (Houlden et al. 1999).  Observations of a 

persistent mtDNA haplotype across species and sub-species taxonomic levels has 

also been observed within the Mexican wolf (Canis lupus baileyi) (Hedrick et al. 

1997), tiger (Panthera tigris) (Luo et al. 2004) and mahseer fish (Tor tambroides and 
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Tor douronensis) (Nguyen et al. 2006).  With an identical haplotype occurring across 

sub-species and within same species within differing geographical areas, it may be 

surmised that this occurrence is derived from a more ancient lineage and from 

previous distributions of the species in question (Hedrick et al. 1997).   

 

Uniqueness is clearly the greatest in the Wild_pop2 group as only one haplotype 

(Hap_6) is shared and only between two individuals.  All other 28 haplotypes within 

this group are unique to a particular individual.  This pattern is similar to the Wild 

group, where 2 haplotypes (Hap_18 and Hap_26) are shared with 2 intra-group 

individuals, the remainder are unique to an individual as within Wild_pop2.  This 

occurrence may be attributed to the social behaviour of the gibbon, whereby in the 

wild, offspring within a group will disperse and locate a new territory where they will 

seek to pair with a mate and reproduce themselves once sexual maturity is reached 

(Brockelman et al. 1998).  However, in captivity the potential partners available for 

mature offspring are limited with only 48 individuals thus the gene pool is already 

small.  In addition, H. moloch is a Cites Appendix I species, therefore procuring 

individuals from the wild to supplement mtDNA variability for captively bred 

individuals is prohibited (IUCN 2008). 

 

When viewing the mean kinship values with the haplotypes per individual there is a 

risk that a rare haplotype be lost if MK values were the only factor employed when 

selecting individuals for breeding.  A wild individual harbouring a unique haplotype 

has an MK value of 0.0875 and yet another wild individual harbours the most 

common haplotype yet has an MK value of 0.000.  
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The group with the least number of variable sites and subsequently the lowest value 

of 𝜋 , was the Captive group with 4 polymorphic sites and 0.003 (±0.001) for 

nucleotide polymorphism.  Even when considering that the number of haplotypes 

within this group totalled just 2, the level of diversity at the nucleotide level with only 

4 variable sites is clearly extremely low.  The two groups representative of wild 

alleles differed at both nucleotide values, with the Wild group exhibiting 30 variable 

sites, all consisting of transitions but the Wild_pop2 group had 114 variable sites 

and 31 of those were transversions.  This number of transversions observed is 

representative of approximately 27% of variable sites, a value that is greater than 

reported in chimpanzee and humans (Seligmann, Krishnan & Rao 2006; Tamura & 

Nei 1993).  The control region is not a coding segment of mtDNA, therefore the 

transversions will not produce altered amino acid sequences and therefore proteins.   

However there may be an evolutionary function as the region is responsible for 

regulating transcription and replication (Sbisà et al. 1997). 

 

The values for nucleotide diversity (𝜋) were 0.023 (±0.005) and 0.036 (±0.005) for 

the Wild and Wild_pop2 groups respectively, thus a lower value was illustrated in the 

H. moloch group assayed here in comparison to the larger population within 

Wild_pop2.  There may be an element of bias with regards to the sample number 

which is low in the Wild group and if looking at the large differential between 

haplotype sequence numbers it is not surprising that the Wild_pop2 group yielded 

larger values of diversity.  However, the differential between the two 𝜋 values is not 

particularly large, and when viewed in conjunction with gene diversity (0.929 for wild-

born and 0.998 for wild_pop2 individuals), the values are significantly different and 

are further corroborated by analysis of FST measures.  If taking just the Wild_pop2 
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nucleotide diversity measure of 0.036, it is an extremely similar value to that 

observed in a group of Hylobates klossii that is also an endemic gibbon species, but 

to the Mentawi islands in Indonesia (Whittaker 2005).  A measure of 𝜋 within the 

entire control region of H. klossii gibbons from North Siberut found that nucleotide 

diversity equalled 0.0314 (±0.024) from 3 haplotypes (n=3) (Whittaker 2005).  As a 

larger segment was analysed within the H. klossii group this may have allowed for 

greater nucleotide variability. 

 

In comparison to the Saimaa ringed seal (Phoca hispida saimensis), a species 

depauperate of mtDNA genetic variability, H. moloch variability (Valtonen et al. 

2012).  Similarly, the cheetah was found to harbour 7 haplotypes the nucleotide 

diversity of which was 0.0018 (Menotti-Raymond et al. 1999).  These values are 

more akin to the captive-born H. moloch assayed here (0.003), which certainly 

appears to illustrate a much lower variability and a contrast to their Wild and 

Wild_pop2 conspecifics.  This differentiation at the nucleotide level was also 

observed within captive born and wild born mallards (Anas platyrhynchos) where 𝜋 

was found to be 0.007 within the wild individuals but it was much lower with 0.002 

within the captive born group (Čížková et al. 2012).   

 

The wild_pop2 group deviated from the expected neutral equilibrium in the Fu’s Fs 

test.  This test incorporates haplotypic frequencies in its computations and is stated 

to be the most powerful when analysing regions of non-recombining DNA (which has 

been assumed to be the case in the HV-I region assayed here) in detecting 

alterations in the demographics of a species (Ramírez-Soriano et al. 2008).  A 
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negative result from the Fu’s Fs test can be interpreted in a number of ways, it may 

be indicative of a selective sweep that has occurred throughout the population, it 

may also be symptomatic of an expansion in population numbers (de Jong et al. 

2011; Houlden et al. 1999).  With the loss of habitat that H. moloch has experienced, 

population numbers have declined, and are purported to continue to decline (IUCN 

2008).  Genetic variability has the potential to be influenced by such environmental 

pressures, as populations that previously enjoyed a continuous distribution are 

forced into fragmented units (Moreira et al. 2010).  Therefore, this is an unlikely 

interpretation of neutrality results, and if further considered in conjunction with the 

number of transversions for wild_pop2 then a selective sweep may be the more 

applicable hypothesis.  If a selective sweep is indeed exerting positive selection on 

the mtDNA molecule then it would be detected within this genetic region alone, 

however if there has been a rapid expansion of population numbers within the H. 

moloch habitat then it would be detected within other loci.  The final test illustrative 

of mtDNA genetic disparity between captive born and both Wild groups is shown in 

population differentiation statistic (FST).    
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2.5 Conclusions 

Analysis of mtDNA HV-I variability and comparisons of population differentiation 

between the three groups, show that the captive-born group of H. moloch differs 

from its wild conspecifics and harbours a low variability at this genetic region.  Not 

only did the haplotype count within the 12 individuals analysed yield a low number of 

2, but the nucleotide sequences themselves show a great deal of homogeneity.  The 

disparity shown within the genetic diversity results between the Captive group in 

comparison to both Wild groups is then confirmed by the population differentiation 

statistic of FST.    

 

From the limited studies available that compare wild and captive born species at the 

mtDNA molecule, it appears that this phenomenon is not exclusive to the H. moloch 

species analysed here (e.g. Čížková et al., 2012; Luo et al., 2008; Miller et al., 2009; 

Ping-ping et al., 2005; Ray et al., 2013).  In most examples listed, there is a marked 

difference between wild and captive individuals with the latter exhibiting a lower 

diversity than the former.  However, efforts have been made in some breeding 

programmes to reverse the trend of a decline in mtDNA diversity by specifically 

addressing the issue within their captive breeding objects.  One such success story 

is exemplified in the tiger (Panthera tigris) whereby a worldwide collaboration of 

zoological institutions allowed for the introduction of between 1 and 10 novel 

haplotypes within the differing subspecies assayed (Luo et al. 2008).  This focused 

approach of breeding has resulted in a higher number of captive mtDNA haplotypes 

in comparison to wild tigers studied (Luo et al. 2008).  Thus, theoretically the captive 

tiger population has the potential to bolster diversity as a metapopulation to 

populations within the wild.  
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Although the example of the tiger breeding programme illustrates how the 

incorporation of molecular management can improve genetic variability, it is not 

advocated here that H. moloch be bred solely to increase mtDNA variability, and 

regard should also be given to markers derived from the nuclear DNA to 

complement the mtDNA data.  Although results showed that mtDNA analysis 

provided a greater scope of information as opposed to using MK values it is still 

advisable to look at nuclear markers.  This would allow for a wider understanding of 

the genome wide view of this species.  Thus, although it is evident that an increase 

of mtDNA variability is required for future generations of captively born H. moloch if 

an effort to mirror the wild type data is desired, it should not be effected at the 

detriment of nuclear DNA variability.   
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3 Chapter three - Analysis at the Nuclear DNA Level - Using 

Microsatellites to Estimate Genetic Diversity 

The next stratagem to further analyse the genetic variability of the Hylobates moloch 

population was to look beyond mtDNA and see if observations made within the 

maternally inherited molecule were also occurring within both neutral and adaptive 

regions within nuclear DNA.  This chapter evaluates diversity from a neutral nuclear 

marker.  

 

Microsatellites, also referred to as short tandem repeats (STRs) or simple sequence 

repeats (SSRs), are tandem repetitions of DNA motifs consisting of one nucleotide 

base pair up to six (Buschiazzo & Gemmell 2010).  Unlike mtDNA, microsatellites 

are inherited on a Mendelian basis and therefore provide genetic information from 

both the sire and dam in a subject.  They have been identified within both 

eukaryotes and prokaryotes (Buschiazzo & Gemmell 2010) and in eukaryotes, 

exhibit a vast and scattered distribution throughout the genome as a whole (Crouau-

Roy & Clisson 2000; Kelkar et al. 2010).  It has been postulated that a microsatellite 

loci is present every 6Kb (Zhang et al. 2001) however there are reports that this 

number could be even greater at every 2Kb (Guichoux et al. 2011) and in total they 

constitute approximately 3% of the entire human genome (Kelkar et al. 2011).  In 

addition to their abundance, there is further appeal in their use as a molecular 

marker within the field of conservation genetics as a consequence of the high level 

of mutation that can be found within these co-dominant markers.  Mutation rates 

have been reported to occur at 10-3 per locus, but further still that this can occur at 

every generation (Leclercq, Rivals & Jarne 2010).  Mutation of microsatellite loci 
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takes the form of either insertions or deletions of one or more tandem repeats.  The 

underlying mechanisms that effect these genetic alterations are not known exactly, 

but it is thought that mutation occurs as a consequence of a combination of DNA 

replication slippage and perhaps to a lesser extent, recombination events (Leclercq, 

Rivals & Jarne 2010).  DNA slippage is the process whereby repeats are added if 

newly synthesised DNA dissociates from the template DNA or lost if the template 

DNA chain dissociates (Chambers & MacAvoy 2000).  Viguera et al. (2001) stated 

that this occurrence takes place as a consequence of DNA polymerase pausing mid-

replication of a microsatellite region, which effects dissociation from the DNA.  The 

newly synthesised DNA then realigns itself with another repeat and the DNA 

polymerase resumes replication. 

 

Microsatellites follow a process that is akin to a life cycle, that is that they are born, 

undergo a period of maturation and then die (Kelkar et al. 2011).  The birth is 

representative of the appearance of tandem repeats that reach a liminal number that 

constitutes the definition of a microsatellite, the threshold of which remains under 

discussion.  Some authors designate the minimum definition of a microsatellite as 8 

nucleotides (e.g. Chambers and MacAvoy, 2000), consisting of dinucleotide motifs.  

Others class a microsatellite as one that is between 7 and 9 nucleotides in a 

mononucleotide locus and between 4 to 8 for di- to tetra-nucleotide loci (Kelkar et al. 

2011).  Once the minimum threshold has been met, the maturation phase is 

exhibited by elevated rates of DNA slippage (Kelkar et al. 2011).  The death of a 

microsatellite occurs when deletion events culminate in the loci contravening the 

minimum threshold prerequisite and thus slippage rates are no longer sustained.   
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A long-standing assumption with regards to the mutability of microsatellites is that 

they evolve on a neutral basis and are not actively involved in actual gene function 

(Buschiazzo & Gemmell 2010).  However, the role of this form of DNA sequence 

remains unresolved.  For example, dinucleotide microsatellites in human DNA 

appeared to show microsatellite mutability in a more systematic manner than would 

be expected under a neutral basis, with a greater tendency of mutations occurring at 

the 3’ end of the loci (Varela et al., 2008; Viguera et al., 2001).  This observation 

suggests that alterations are not random but have a specified direction within the 

loci.  Withal, reports of microsatellites mutating under possible selective pressure 

rather than as a consequence of random genetic drift have been suggested.  For 

example, a study of levels of infection with Plasmodium falciparum in children 

residing in Gabon, researched the role of reactive oxygen intermediates, which are 

known to be key players in the cellular nonspecific innate immune response 

(Uhlemann et al. 2004).  It was found that infection levels of Plasmodium falciparum 

which were designated within the study as severe and mild were dependent on a 

microsatellite positioned upstream of the promoter region for the NADPH oxidase 

gp91phox subunit.  It was deduced that the length of the microsatellite in question was 

responsible for regulating the NADPH oxidase activity, with a shorter TA11 offering 

greater protection against malaria versus TA16 repeats.  Further correlations, in 

humans, have been made between tri-nucleotide repeat loci and disease (Kruglyak 

et al., 1998; Rubinsztein et al., 1999; Varela et al., 2008) and examples of selection 

acting on microsatellites are highlighted by Galindo et al. (2009).  Within the cases 

reviewed links are made between microsatellite variation and animal morphology to 

polymorphisms influencing both human and non-human primate behaviour (Galindo 

et al. 2009).  



 

 

52 

Differences in allele lengths within orthologous microsatellites loci have been 

observed in cross species comparisons among human and non-human primates 

(Galindo et al., 2009; Lathuilliere & Crouau-Roy, 2000; Sainudiin et al., 2004).  

Microsatellite lengths within humans are comparatively longer than detected in non-

human primates and a number of explanations to account for this phenomenon have 

been suggested.  One theory postulates that within humans the DNA slippage rate is 

higher owing to a poorer functionality of DNA polymerase resulting in a longer 

microsatellite length.  As a microsatellite enters the maturation phase and 

experiences a higher rate of DNA slippage, the rate at which this occurs within 

monomorphic microsatellites has been reported to be lower than observed in 

polymorphic loci (Chambers & MacAvoy, 2000; Rubinsztein et al., 1999).  Whilst a 

locus within one species may be polymorphic, it is not certain that this will be the 

case within another species.  Thus it would be expected that a polymorphic loci be 

longer than its equivalent in another species that exists as a monomorphic locus.   

 

A number of mutational models have been devised as follows, all of which are based 

on the assumption that microsatellite are neutral markers and encompass the 

varying forms of mutation. 

 

The Infinite Allele Model (IAM) - (Kimura & Crow 1964) 

This theoretical model is the most simple.  It functions under the assumption that 

every novel mutation results in an allele that has not existed in the population 

previously.  Thus for each mutation a new allele is created (which has an infinite 

number of possible states), but it is counterbalanced by the effects of genetic drift, 
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thus creating an equilibrium.  Under the IAM microsatellites mutations can culminate 

in an increase or reduction of one or more motif repeats.   

K-Allele Model (KAM) - (Crow & Kimura 1970) 

This model poses a more restrictive approach.  Here, the number of possible allelic 

states are limited to ‘k’, each with an equal probability that it can mutate to any other 

of the existing allelic states. 

Stepwise Mutation Model (SMM) - (Kimura & Ohta 1978) 

The stepwise mutation model assumes that mutation occurs only within adjacent 

states and can manifest as an addition or a deletion of one repeat.  The assumption 

is that addition or deletion occur at equal frequencies.  Unlike the IAM, SMM 

mutations are not all presumed to create a novel allele within the population but may 

manifest as one already present.   

Two Phase Model - (Di Rienzo et al. 1994) 

This model functions as a two-step approach.  The two phases allow for the 

possibility that a microsatellite loci may mutate via one repeat length, or with multiple 

repeats.  The first phase of the model has a probability (p) that the descendent allele 

has mutated via one repeat, whether it is an addition or a deletion from its ancestral 

state.  The probability in the second phase has a probability of p-1 that the increase 

or decrease in allele length is longer than one repeat, the number of which is 

deduced by a prior specified distribution of alleles within the population.   

 

The development of models to better understand the evolution and nature of 

microsatellites are invaluable for downstream analysis and the derivation of 
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biologically meaningful results.  The theories are not an exhaustive list of 

microsatellite models, since their inception there are been alterations and updates to 

try and encompass the variable nature of these nuclear markers (Chambers & 

MacAvoy 2000).  However, it is this very complexity that renders modelling 

microsatellites a very difficult task.  The first difficulty lies in the fact that mutations 

do not occur exclusively as a one-step increase or decrease (Haasl & Payseur 

2011) therefore the stepwise mutation model may not be sufficient to analyse all loci.  

Although it is thought that the majority of observed alterations in length do occur as 

a consequence of one deletion or addition (Kruglyak et al. 1998).  Further 

complications are that that slippage rates and thus microsatellite lengths vary 

between species, and polymorphic markers mutate at a higher rate than 

monomorphic loci (Kruglyak et al., 1998; Sainudiin et al., 2004).  Both the stepwise 

mutation model and the two-phase model function on the basis that microsatellite 

loci mutate at a constant rate and moreover that they can increase or decrease 

without any upper or lower limitations of size.  It is evident that microsatellites do not 

expand exponentially as otherwise there would be a plethora of extremely long loci, 

but at the same time adding an upper band limit within a model is a difficult task as 

the value may not be a true representative of the loci in question and constrain 

results if in fact it can mutate longer than a stipulated limit (Sainudiin et al. 2004).   
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3.1 The advantages and disadvantages of microsatellites in analysing 

genetic variation and ascertaining pedigree 

In addition to analysing genetic variation the nuclear DNA marker was required to be 

able to evaluate the pedigree of the population.  Genetic testing of individuals may 

not only reinforce information already gained of a population but also, provide 

additional data that can serve to alter studbook entries (e.g. Jones et al., 2002).  H. 

moloch is a monogamous species.  This is also true of Hylobates muelleri.  

However, a study of the parentage of a group of wild muelleri gibbons found that in 

two of five groups studied, one subadult in each was not a descendent from the 

male or the female in their respective groups (Oka & Takenaka 2001).  Thus, in this 

case it appears that a group will allow a subadult gibbon that is completely unrelated 

to live with them.  There have been reports of extra-pair matings in parbonded 

species, including birds (Griffith, Owens & Thuman 2002), or in polygynous mating 

systems such as those evinced in Gorilla gorilla (Vigilant & Bradley 2004).  

Furthermore, captive individuals within a population may have originated from the 

wild and are therefore of unknown origins with regards to their parents.  This is the 

case for the H. moloch population.  Within the captive breeding programme remit, 

founder pairs are deemed to be unrelated, however this is not genetically verified in 

most cases. 

 

SNPs are present within both introns and exons of DNA and are a difference in a 

single nucleotide within a sequence and thus can be a change of up to four differing 

base pairs.  They have been heralded as a successor marker from microsatellites, 

albeit within large-scale studies and in model organisms (Varela & Amos 2010).  

One of the reasons for this apparent surge of appreciation and interest in this marker 
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is their ubiquitous presence throughout the mammalian genome and is 

representative of approximately 90% of human DNA sequence polymorphism 

(Varela & Amos 2010).  It is estimated that a SNP occurs at spacing of between 200 

to 500 base pairs in many species (Morin et al. 2004).  A further attraction of using 

SNPs is that as opposed to the numerous models that have been created to 

accommodate microsatellite mutations, SNPs are purported to evolve in accordance 

with a simple model such as the infinite sites model (Morin et al. 2004).    

 

However, several factors make microsatellites more applicable to the questions 

involved in this project and in addition, to the population under assessment.  In the 

first instance, Hylobates moloch is not a model organism.  It is an Endangered 

species existing in limited numbers both within captivity and in the wild.  As is the 

case with both the moloch species and other species within the Hylobates genus, 

there are few genetic data.  Although SNPs may be more widely distributed 

throughout the mammalian genome than evinced by microsatellites, a great deal of 

this information is derived from humans.  SNPs located within the human genome 

may not necessarily be present at the same loci in other species (Morin et al., 2004; 

Varela & Amos, 2010).  This renders replication from human data to other species 

such as the endangered Hylobates moloch more difficult.  In order to locate a 

sufficient number of SNP locations (the number of which depends on the information 

that is desired to be procured from the data) a screening process would need to be 

undertaken of a number of differing genome segments in the target population, the 

number of which Morin and colleagues (2004) state to be between seventy-five to a 

hundred.  From this, approximately 50 SNPs may be located.  Although 

microsatellites exist in smaller numbers in comparison to SNPS throughout the 
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mammalian genome, the ability to assess homologous loci across species is much 

greater (Buschiazzo & Gemmell 2010; Jarne & Lagoda 1996; Sharma, Grover & 

Kahl 2007).  This potential capacity to utilise a model organism, such as humans, as 

a basis to locate microsatellites within a differing species is beneficial from a 

laboratory and a cost viewpoint.  In addition primer sequences designed for human 

microsatellite analysis may potentially be applied in the desired target species.  

Therefore, the creation of species specific primers and of course subsequent testing 

within individuals may not be required, thus keeping costs at a minimum.  The 

success rate of utilising primers across species is deemed to decrease in 

accordance with an increasing evolutionary distance between target species (Jarne 

& Lagoda 1996).  With regards to primate taxa, cross species amplifications are 

frequently carried out utilising human loci and their respective published primer 

sequences (Arandjelovic et al. 2010; Bradley, Boesch & Vigilant 2000; Goosens et 

al. 2000; Zhang et al. 2001).  However, success rates either decrease or are 

completely absent when utilising the same loci applied to New World Monkeys 

(Coote & Bruford 1996).  This phenomenon is not exclusive to applications within 

primate studies, microsatellite primers designed for a particular species have been 

reported to be efficacious in cross species studies where the evolutionary distance 

between the subjects is not too disparate.  Examples have been made in a variety of 

differing species such as, snakes (Bushar, Maliga & Reinart 2001), nematodes 

(Temperley et al. 2009), fish (Scribner, Gust & Fields 1996) and cetaceans 

(Coughlan et al. 2006).   

 

 



 

 

58 

Quantifiable variation within microsatellites is potentially much greater than 

illustrated in SNPs.  SNPs are low information markers that exist in a diallelic form 

(Haasl & Payseur 2011).  In contrast, microsatellites may contain a high number of 

alleles within a population, often in excess of double figures (Guichoux et al. 2011).  

This provides a more effective measure of genetic variation, allowing a greater depth 

of genetic variation analysis.  Phenomena such as allelic richness or uniqueness 

within a population are more readily apparent with microsatellites (Guichoux et al. 

2011).  Furthermore, as a consequence of the potential high number of alleles the 

statistical power of microsatellites for pedigree analysis is greater than can be 

derived from SNPs.  To ascertain paternity of a population and reach an equilibrium 

of statistical power in differentiating it, a set of between three (with expected 

heterozygosity >0.8 and a minimum of 7 alleles per locus) (Hübner et al. 2013; 

Rodriguez-Barreto et al. 2013) and fourteen microsatellites (with an expected 

heterozygosity of between 0.6-0.8) are stated to be sufficient (Morin et al. 2004).  

However, to obtain the same information utilising SNPs, a panel of between forty 

and one hundred (with an expected heterozygosity between 0.2-0.4) would be 

required.  A further factor that would be of benefit for a conservation programme that 

incorporates a re-introduction of individuals from a captive environment, is that 

microsatellites have the ability to provide information as to the individual identity of a 

subject.  The utilisation of SNPs for this purpose is 2 to 4 times less powerful than 

employing microsatellites (Haasl & Payseur 2011; Morin et al. 2004).    

 

The previously stated rate of mutation also played a role in the selection of 

microsatellites as the nuclear marker to ascertain genetic variation within the captive 

H. moloch group.  The order of magnitude applicable to the mutation rate of SNPs in 
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comparison to microsatellites is much lower, with a typical rate of 10-9 compared to 

the previously quoted rate of approximately 10-3 (Guichoux et al. 2011; Leclercq, 

Rivals & Jarne 2010).  The greater rate of mutation is desirable for the captive 

moloch group as the number of generations within captivity is limited.  If any genetic 

divergence has occurred within the captive environment the microsatellite marker is 

more applicable to perceive this (Haasl & Payseur 2011) and furthermore genetic 

variability has the potential to be more easily quantified if the underlying data are 

more diverse. 

 

With all the beneficial traits that microsatellites offer as mentioned above, there are 

also factors that render them problematic in analyses.  The potential high level of 

polymorphism within microsatellites can convey and impart valuable information with 

regards to nuclear genetic variability within a population, and prove useful for the 

assignation of parentage.  However, a phenomenon known as size homoplasy may 

confound the biological significance of results.  Size homoplasy is particular to 

microsatellites, and derived from the evolutionary concept of homoplasy, which 

refers to a common character present within differing species but is not inherited 

from the same ancestral character.  Similarly, size homoplasy is an occurrence 

within microsatellites whereby different copies of a locus are identical when 

observing allele length, but that the driving force behind it is not via identity by 

descent but rather by a mutational event (Estoup, Jarne & Cornuet 2002).  

Chambers and MacAvoy (2000) describe this issue as potentially serious when 

attempting to understand microsatellite data.  The consequence of size homoplasy 

with regards to assessing genetic variation is that the overall allele count within a 

population may be lowered, and result in an overestimation of homozygous 
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individuals (Estoup, Jarne & Cornuet 2002; Jarne & Lagoda 1996).  This may then 

affect estimations of genetic differentiation between populations.  The most impact it 

may be argued, however, is on phylogenetic studies which heavily rely on data to be 

identical by descent rather than identical in state to allocate correct lineage within 

tree topologies.  The only one not to incorporate size homplasy is the Infinite Allele 

Model because this theorem dictates that a mutation is always novel.   

 

A further issue that is pertinent when reviewing results post-genotyping is the 

occurrence of stutter peaks as illustrated in Figure 3 below. 

   

Figure 3.  Image of a microsatellite profile illustrating two alleles both with stutter prior to the 
correct allele peak (Guichoux et al. 2011) 

 

The presence of stutter peaks when viewing microsatellite profiles can lead to an 

incorrect identification of the allele by one or perhaps more repeats.  This is a 

common problem, however, incorrect designation of an allele could result in an over 

estimation of alleles within a population. 

 

Finally, further difficulties of using microsatellites to analyse pedigree and genetic 

variation of a population are the phenomena known as allelic dropout and false 



 

 

61 

allele identification.  There is the potential to amplify PCR artefacts not related to the 

desired target PCR product, an occurrence which is of greater concern when 

utilising non-invasive samples such as faeces (Bradley, Boesch & Vigilant 2000; 

Gang et al. 2011; Goosens et al. 2000).  The issue of both low quantity and quality 

of genomic DNA extracted from faecal samples have been widely reported 

(Nsubuga et al. 2004).  Thus, it is not solely the low quantities of DNA that may lead 

to erroneous results, or render amplification difficult, but also the possibility that DNA 

from this medium may be degraded.  Allelic dropout, also referred to as null alleles, 

is the process where only one allele is amplified during the PCR procedure in a 

heterozygous individual.  This is exacerbated when using non-invasive mediums 

from which the genomic DNA is extracted.  The occurrence of allelic dropout will 

result in false homozygotes, thus skewing data. 

 

3.2 Materials and Methods 

3.2.1 Microsatellite analysis subjects 

To date, there are no available published microsatellite sequence data of H. moloch, 

therefore it was not possible within the microsatellite sample preparation to utilise a 

comparative outgroup of the same species.  It was not deemed biologically 

meaningful to compare the study population of moloch gibbons with another 

species.  Therefore, the sample population for the nuclear marker analysis of 

microsatellites was carried out solely from the H. moloch populations residing at 

Howletts and Port Lympne zoological institutions and split as in the previous chapter 

in to wild-born and captive-born.  
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3.2.2 DNA extraction 

DNA was extracted as per the protocol described in chapter 2.2.2 with two faecal 

samples per individual. 

3.2.3 Choice of microsatellite loci 

Microsatellites were chosen based on the following: the chromosome on which they 

had been located in previous studies (to maximise overall genetic variation a 

number of chromosomes were wanted), the phylogenetic distance from H. moloch 

(species closest on an evolutionary scale were preferred), and the polymorphism 

found within previous studies (although a polymorphic locus may be monomorphic in 

another species) (Galindo et al. 2009).  All loci tested including the primers and 

references are shown in Table 7.  References given are for the publications in which 

the loci were described, the primers however were not all included within the 

publications as shown and thus primers were based on human microsatellite loci 

and retrieved from GenBank.  
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Figure 4 – The molecular phylogeny of 61 primate genera taken from Perelman et al. 2011. 
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Table 7 - Microsatellite loci analysed with primer sequences.  References refer to loci tested in 
another primate species unless indicated with * 

Locus Primer Sequence Reference 

D1S548 5’ GAA CTC ATT GGC AAA AGG AA 

5’ GCC TCT TTG TTG CAG TGA TT * 
(Chambers et al. 
2004) 

D2S1329 5’ TTG TGG AAC CGT TCT CAA AT 

5’ GAA ACT TCC ACC TGG GTT CT * 
(Chambers et al. 
2004) 

D3S1766 5’ ACC ACA TGA GCC AAT TCT GT 

5’ ACC CA ATTA TGG TGT TGT TAC C 
(Chambers et al. 
2004) 

D3S2459 5’ CTG GTT TGG GTC TGT TAT GG 

5’ AGG GAC TTA GAA AGA TAG CAG G 
(Chambers et al. 
2004) 

D5S1457 5’ TAG GTT CTG GGC ATG TCT GT 

5’ TGC TTG GCA CAC TTC AGG 
(Chambers et al. 
2004) 

D10S1432 5’ CAG TGG ACA CTA AAC ACA ATC C 

5’ TAG ATT ATC TAA ATG GTG GAT TTC C 
(Chambers et al. 
2004) 

D13S321 5’ TAC CAA CAT GTT CAT TGT AGA TAG A 

5’ CAT ACA CCT GTG GAC CCA TC  
(Chambers et al. 
2004) 

D20S206 5’ TCC  ATT ATT CCC CTC AAA CA 

5’ GGT TTG CCA TTC AGT TGA GA 
(Chambers et al. 
2004) 

D11S1366 5’ GCT ACA ATG ATA GGG AAA TAA TAG A 

5’ GGT GGG ATC CTT TGC TAT TT 
(Whittaker 2005) 

D12S391 5’ AAC AGG ATC AAT GGA TGC AT 

5’ TGG CTT TTA GAC CTG GAC TG 
(Whittaker 2005) 

D17S1290 5’ GCC AAC AGA GCA AGA CTG TC 

5’ GGA AAC AGT TAA ATG GCC AA 
(Whittaker 2005) 

D19S714 5’ ATG CCC TCT TCT GTC TCT CC 

5’ GCA GAG AAT CTG GAC ATG CT 
(Whittaker 2005) 

D14S306 5’ AAA GCT ACA TCC AA ATTA GGT AGG 

5’ TGA CAA AGA AAC TAA AAT GTC CC 
(Whittaker 2005) 

D6S2854 5’ TCA TGA GCG TGC CAC TGC AC 

5’ CCG TAT ATT GCA ACC AGG AG 
(Otting et al. 2012) 
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D6S2859 5’ ACC CTG TCA TTC CAT GAA AC 

5’ CCA CTG TTC CAG AAG CCT TG 
(Otting et al. 2012) 

D7S513 5’ CAG GAG TGT TTT GAA GGT TGT AGG 

5’ GCA GGA AAG ATA GAC AGA TAG ATA G 
(de Groot et al. 
2008) 

D8S1106 5’ TTG TTT ACC CCT GCA TCA CT 

5’ TTC TCA GAA TTG CTC ATA GTG C 
(de Groot et al. 
2008) 

D3S1768 5’ GGT TGC TGC CAA AGA TTA GA 

5’ CAC TGT GAT TTG CTG TTG GA 
(de Groot et al. 
2008) 

D6S2833 5’  GTA AAG TGG TGC GAT CAC AG 

5’ AGT GGC TCA TGC CTT CAA TG 
(de Groot et al. 
2008) 

D6S2792 5’ ATC CAA TCA CCT CTG CTC AC 

5’ AGA TTT CAT CCA GCC ACA GG 
(de Groot et al. 
2008) 

D6S2810 5’ CTA CCA TGA CCC CCT TCC CC 

5’ CCA CAG TCT CTA TCA GTC CA 
(de Groot et al. 
2008) 

D6S2811 5’ TGG GCA ATG AGT CCT ATG AC 

5’ TGC CAT TTG GCC CTA AAT GC 
(de Groot et al. 
2008) 

D6S2972 5’ GAA ATG TGA GAA TAA AGG AGA 

5’ GAT AAA GGG GAA CTA CTA CA 
(de Groot et al. 
2008) 

D6S276 5’ TCA ATC AAA TCA TCC CCA GAA G 

5’ GGG TGC AAC TTG TTC CTC CT 
(de Groot et al. 
2008) 

D6S1691 5’ AGG ACA GAA TTT TGC CTC 

5’ GCT GCT CCT GTA TAA GTA ATA AAC 
(de Groot et al. 
2008) 

D11S295 5’ GCT CCT CCA GTA ATT CTG TC 

TTA GAC CAT TAT GGG GGC AA 
*** 

D13S765 5’ TGT AAC TTA CTT CAA ATG GCT CA 

5’ TTG AAA CTT ACA GAC AGC TTG C 
(Chambers et al. 
2004) 

D18S72 5’ GCT AGA TGA CCC AGT TCC C 

5’ CTG CAG AAA GGT TAC ATA TTC CA 
*** 

MFGT21 5’ AACTTCAGTAAGATAAGGACC 

5’ CCTGAGGTCTGGACTTTAT 
*** 
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D5S820 5’ ATT GAC TGG CAA CTC TTC TC 

5’ GTT CTT CAG GGA AAC AGA ACC 
*** 

DXS2506 5’ GGA GAA ATG GGG AGT AAC TG 

5’ ACA CAT GGC TGG CTA GCT T 
(Nagaraja et al. 
1997) 

MFGT18 5’ GCC CCA AAT GCC AGC AGA AC 

5’ TCT GAG AGC TGT GAT GGG AC 
(Oka & Takenaka 
2001) 

 

Loci with asterisks *** do not have a reference.  These loci and the respective 

primers were provided by the Biomedical Primate Research Centre, Netherlands. 

 

3.2.4 Microsatellite PCR optimisation 

Reactions commenced with the following components per 20µl reaction:  1x 

CoralLoad PCR buffer (Contains Tris·Cl, KCl, (NH4)2SO4,15 mM MgCl2, gel loading 

reagent, orange dye, red dye, Qiagen), 1x Q Solution (a reagent part of the HotStart 

Taq Plus kit which modifies the melting behaviour of DNA which is stated as useful 

for difficult template DNA, Qiagen), 0.2µM dNTP mix, 0.2 µM primer (F), 0.2µM 

primer (R) (primers as per Table 7), 1.75mM MgCl2, 2.5 units HotStarTaq® plus 

DNA polymerase (Qiagen), 8 to 198 ng/µl template DNA (quantified by Nanodrop 

ND 1000 spectrophotometer, Thermo Scientific).  Both a negative control and a 

positive control with 100ng/µl human DNA were added to each PCR cycle.  Reaction 

components were altered if PCR amplification was not successful.  These included 

increasing MgCl2  concentration and increasing template DNA concentration if bands 

were present but weak.  The addition of Bovine Serum Abumin (Sigma Aldrich) was 

utilised at 10% of the total reaction volume as a final resort for loci that continually 

failed to amplify after PCR.  There are conflicting reports as to the efficacy of adding 

BSA, however it is purported to act as a binding agent to PCR inhibitors (Chaves et 
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al. 2006; Ernest et al. 2000; Morin et al. 2001).  The addition of BSA did not improve 

results and loci that did not amplify sufficiently were discarded. 

 

PCR reactions were run using a S1000 Thermal Cycler (Bio-Rad) with the following 

conditions:  95ºC for 5 minutes to active HotStarTaq plus, then 45 cycles of 

denaturing phase at 95ºC for 30 seconds, annealing at (various – see Table 8) for 

30 seconds, extension at 72ºC for 30 seconds with a final extension at 72ºC for 30 

minutes.   

 

Annealing temperatures were initially calculated using the Ta Calculator function of 

the Thermal Cycler (Bio-Rad).  Then to optimise annealing temperatures, each loci 

was then tested using the resultant Ta calculator temperature as the median with a 

10ºC differential either side of this figure.   

 

All resultant products from the optimisation were visualised on a 1.2% agarose gel 

using the Gel Doc™ EZ System (Bio-Rad) and its affiliated software Image Lab 

version 3.0 (Bio-Rad).  Successfully amplified loci were then approximated in size 

using the 100bp ladder (New England Biolabs) that had been loaded with PCR 

products. 

3.2.4.1 Final PCR conditions 

After the optimisation period a number of loci were discarded owing to repeated 

failures after attempted amplification.  The following conditions applied to the 
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remaining loci: 20µl reaction:  1x CoralLoad PCR buffer (Qiagen), 1x Q Solution 

(Qiagen), 0.2µM dNTP mix, fluoresced modified primer (F) 0.02 µM (as per Table 8), 

primer (F) 0.18 µM, primer (R) 0.2µM (primer sequences as per Table 7), MgCl2 

1.75mM, HotStarTaq plus DNA polymerase 2.5 units, template DNA between 8 to 

198 ng/µl.   

  

Each locus had the addition of a fluoresced forward primer labelled at the 5’ of the 

primer sequence.  This was added so that when subsequent genotyping was carried 

out within the sequencer, amplified alleles would be detected.  Cycling conditions 

were carried out as listed above, with the addition of the following annealing 

temperatures as shown in Table 8. 

 

Table 8 - List of selected loci after optimisation with annealing temperatures and fluorescent 
labels 

Locus Annealing Temp. Primer Label 

MFGT21 58ºC 6-FAM 

MFGT18 58ºC 6-FAM 

DXS2506 58ºC 6-FAM 

D6S2972 49.2ºC 6-FAM 

D6S2859 50.9ºC HEX 

D6S2854 62.3ºC NED 

D6S2833 50ºC NED 

D6S2792 52.3ºC HEX 

D6S1691 45.9ºC HEX 

D5S820 58ºC HEX 

D5S1457 58ºC HEX 

D3S1768 58ºC 6-FAM 

D19S714 59ºC HEX 
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D18S72 58ºC NED 

D17S1290 59ºC 6-FAM 

D14S306  59ºC 6-FAM 

D13S765 58ºC NED 

D12S391 55ºC 6-FAM 

D11S295 58ºC HEX 

 

For quality assurance each loci for each subject animal was duplicated within the 

plate.  In order to size products after genotyping in the sequencer a ROX500 

standard was added to each well within the plate.   

 

3.2.5 Statistical analysis of microsatellites 

3.2.5.1 Viewing allele sizes – electropherogram analysis 

Electropherogram profiles of above listed loci were viewed and sized using 

GeneMapper® software version 5.0 (Applied Biosystems).  Alleles were sized in 

accordance with the ‘Microsatellite Analysis Method’ and its affiliated default 

parameters in the programme.  Peak Quality was set at 140 minimum peak height 

for homozygous results and 85 for heterozygous, maximum peak width 1.5, peak 

detection for all fluorescent labels was set at 50.  Alleles were first located by 

zooming in to the approximated size bands previously visualised on the agarose 

gels.  Allele peaks were not considered to be true alleles if the amplification value 

was less than 50.  In addition, if a peak was deemed to be too wide (in excess of 

1.5bp as per the default values within the programme), which results in a smooth 

apex and gradual inclines on both the positive and negative slopes then it was also 

disregarded. 
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3.2.5.2 Identification of possible genotyping errors 

In order to establish whether any possible genotyping errors were present within the 

population data, results were investigated using Micro-checker version 2.2.3 (van 

Oosterhout et al. 2004).  This programme allows for the detection of null alleles and 

the presence of stutter peaks.  Stutter peaks are detected by analysis of the largest 

and smallest of allele sizes within a given loci.  They will be flagged if there is a 

deficiency of heterozygotes within the population who exhibit allele sizes that differ 

by only one repeat and also if there is an excess of homozygotes who exhibit larger 

allele sizes, as the probability of stutter within larger alleles is greater than evinced in 

smaller ones (van Oosterhout et al. 2004).  Null alleles are detected based on 

observed frequencies of homozygotes within a study population (Brookfield 1996; 

Chakraborty et al. 1992).  If an apparent excess of homozygotes is observed in 

comparison to observed heterozygotes then there is a possibility that one allele has 

not been amplified within an individual.   

3.2.5.3 Measures of genetic diversity  

The first step to analyse genetic diversity within the two populations was to test 

whether all loci were in Hardy-Weinberg Equilibrium. The test assumes that the 

group under analysis is undergoing random mating and that factors of selection, 

mutation and migration are absent (Crow 1988).  Therefore, if the above parameters 

are met, genotype frequencies will not change from one generation to the next.  

Thus, loci that do not fall within the Hardy-Weinberg equilibrium may indicate events 

within the population such as inbreeding or population differentiation.  Tests of all 

loci for Hardy-Weinberg equilibrium were carried out using Arlequin, version 3.5.1.3 

(Excoffier & Lischer 2010).  The underlying methodologies within the software are 

based on Fisher’s exact test but the two-by-two table is replaced by an extended 
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version of a triangular table of random size (Guo & Thompson 1992).  The utilisation 

of an exact test was preferred here as the sample size is small (Balding 2006; 

Bartlett 1937; Guo & Thompson 1992).  Results were then tested using the Markov-

chain random walk algorithm (Guo & Thompson 1992) by the recommended 

100,000 forecasted chain lengths and 100,000 dememorization steps.  Loci that 

were deemed to be out of Hardy-Weinberg proportions were discarded.  In addition 

to this, any locus found to be monomorphic was also discarded.  This was 

performed so as not to skew data in further downstream analysis as a great number 

of software applications function on the basis that loci are mutating on a neutral 

basis, unless specifically stipulated and monomorphic loci do not provide a sufficient 

level of information to ascertain parentage or variability (Excoffier & Heckel 2006). 

 

Arlequin (version as above) was also used to calculate observed heterozygosity (Ho) 

(calculated as the number of heterozygotes within the population divided by the total 

number of individuals) and expected heterozygosity (He).  Expected heterozygosity 

is calculated within the programme according to the following formula: 

𝐻𝑒 =  
𝑛

𝑛 − 1
1 −  𝑝!!

!

!!!

 

Where 𝑛 is the number of gene copies in the sample, 𝑘 is the number of haplotypes 

and 𝑝!  is the sample frequency of the i-th haplotype.  Both aforementioned 

measures of heterozygosity are calculated for each locus. 

 

Heterozygosity was also measured at the individual level.  Amplification was not 

successful for every locus within every individual therefore, a standardised version 
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of heterozygosity was calculated (Hs).  Standardised heterozygosity was calculated 

as the individual heterozygosity divided by the overall mean heterozygosity of all 

typed loci (Coltman et al. 1999).  Thus calculations were according to the following 

formula: 

Hs = 
𝐻
𝑥𝐻!"

 

Where 𝑙 is a microsatellite loci genotyped for individual 𝑖. 

The Individual heterozygosity (Hs) measure of genetic diversity is purported to be a 

useful measure for assessing inbreeding on a more recent timescale (Coulson et al. 

1998).  A further test of genetic variability and inbreeding, devised by Coulson and 

colleagues (1998) is mean d2.  This is also a measure that applies to the individual 

within a population, but gives deeper insight of inbreeding events deeper within the 

pedigree.  The test functions by calculating the squared difference of allele lengths 

within a locus which is then averaged over the entire loci within the data set.  The 

calculation for mean d2 is carried out as follows: 

𝑀𝑒𝑎𝑛 𝑑! =  
(𝑖!! 𝑖!)!

𝑛

!

!!!

 

However, as with measures of Individual Heterozygosity, this calculation has also 

been standardised which limits loci that are more polymorphic than others making a 

greater contribution to results procured from the above illustrated mean d2 equation.  

The amended calculation is referred to as scaled mean d2 and incorporates the 

variance at each locus within the data set prior to giving the overall mean d2 

(Coulson et al. 1999).  The test is carried out with the following calculation: 
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𝑀𝑒𝑎𝑛 𝑑!"#$%&! 
!

(!!! !!)!

!!
!

!

!

!!!

  

 

A further test carried out to assess inbreeding levels is based on the estimation of 

parental similarity and is known as Internal Relatedness (IR) (Amos et al. 2001).  

This measure of inbreeding is based on alleles shared between individuals.  It 

assesses the frequency of alleles within a population and unique or rarer alleles give 

greater weighting within the result that with the more common alleles.  The 

calculation is based on a concept by Queller and Goodnight (1989).  The 

modification made by Amos and colleagues (2001) allows for comparisons between 

alleles within a locus as opposed to between pairs of individuals.  The calculation is 

carried out as follows: 

𝐼𝑅 =  
(2𝐻 − 𝑓𝑖)
(2𝑁 − 𝑓𝑖)

 

Where H is the number of homozygous loci, N represents the number of loci and 𝑓! 

is the frequency of the 𝑖th allele within the genotype.  A highly positive value may be 

indicative of inbreeding and conversely, a highly negative value is indicative of highly 

outbred individuals. 

 

To test correlation between the different indices of genetic diversity a Pearson 

coefficient (r) was calculated in Excel version 14.5.1 according to the following 

formula where 𝑥 and 𝑦 are the samples means of each index array: 



 

 

74 

𝑟 =   
𝑥 −  𝑥 𝑦 −  𝑦

𝑥 −  𝑥 ! 𝑦 −  𝑦 !
 

 

3.2.5.4 Measures of genetic variation between the two groups 

Further genetic variation measures were taken at the locus level and compared 

between the two populations.  The first was allelic richness and was calculated using 

the software programme FSTAT version 2.9.3.2 (Goudet 2001).  It was performed 

using a rarefaction method which calculates the number of alleles at a given locus 

independently of the sample size.  This was important as the captive-born group is 

larger than the wild-born.  Allelic richness is calculated using the following formula: 

𝐴𝑙𝑙𝑒𝑙𝑖𝑐 𝑅𝑖𝑐ℎ𝑛𝑒𝑠𝑠 =  1 −
!!!!!
!!
!!
!!

!

!!!

  

Where Ni is the number of alleles of size i among the 2N genes 

 

A further inbreeding statistic was also calculated which is referred to as Wright’s FIS 

(Wright 1951) using FSTAT version 2.9.3.2 (Goudet 2001).  This statistic is 

calculated by comparing both the observed and expected levels of heterozygosity 

within a population (and by locus) by the following formula: 

𝐹!" =  
𝐻! − 𝐻!
𝐻!

 

Where Hi  is the observed heterozygosity of an individual and Hs is the expected 

heterozygosity of an individual. 
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The final two measures of genetic diversity were carried out to ascertain if there was 

any differentiation between the two populations of captive-born and wild-born.  The 

first was a measure of FST based on the infinite allele model (Weir & Cockerham 

1984) and calculated using Arlequin version 3.5.1.3 (Excoffier & Lischer 2010).  

Here population differentiation is calculated as a count of differing alleles between 

two haplotypes.  The formula that the software utilises is as follows: 

𝑑 𝑥𝑦 =  𝛿!"

!

!!!

 (𝑖) 

Where 𝛿!" (𝑖) is the Kronecker function, thus equal to one if the alleles of the i-th 

locus are identical for both haplotypes and equal to zero if not. 

 

The other measure of population differentiation also calculated using Arlequin 

version 3.5.1.3 (Excoffier & Lischer 2010) was an analogue of Slatkin’s RST (1995) 

calculated using the stepwise mutation model.  This methodology counts the sum of 

the squared number of repeat differences between two haplotypes and calculated as 

follows: 

𝑑 𝑥𝑦 =  (𝑎!" − 𝑎!"

!

!!!

)! 

Where axi is the number of repeats of the microsatellites for the i-th locus. 

3.2.5.5 The pedigree of Hylobates moloch  

Parentage assignment for the H. moloch population was assayed using Cervus 

version 3.0.3 (Kalinowski, Taper & Marshall 2007).  The programme uses a 

likelihood-method approach to assign offspring to a prospective parent.  The 

likelihood method used within this version of the Cervus software is a modification of 
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the approaches of both Marshall et al. (1998) and Morrissey and Wilson (2005).  

Use of a likelihood based methodology as opposed to the exclusion method was 

preferred as the former approach allows for genotyping errors, null alleles and the 

possibility of mutations within the dataset (Jones & Arden 2003).  Within Cervus, the 

most likely parent or parent pair is calculated in accordance with calculations of a 

logarithm of the likelihood ratio (LOD).  Genotypes of offspring and potential parents 

are analysed and the likelihood of a potential parent of a particular offspring is 

divided by the likehood of the individuals under analysis being completely unrelated.  

Offspring are then assigned to a potential parent with the LOD score, which if it is a 

high score indicates that the likelihood is greater that the match is correct.  The 

number of loci used within the analysis totalled 15, but the minimum typed loci was 

stated as 10 (with proportion of loci typed stated as 0.95).  This allows for a degree 

of error that may be present within the genotypic dataset.  As it was known that not 

all sires and dams were present within the sample population, a figure to indicate 

this of 0.9 was used for the proportion of parents sampled.   

 

3.3 Results of Microsatellite genetic diversity and pedigree analysis 

After analysis in Micro-checker (van Oosterhout et al. 2004) four loci were indicative 

of the presence of null alleles: D6S2859, D3S1768, D17S1290 and D12S391.  In 

addition to the possibility of null alleles three of the aforementioned four loci deviated 

from the expected Hardy-Weinberg proportions.  Therefore, they were also removed 

from further analyses and do not appear in results reported below.  The locus 

D12S391 was found to be in Hardy-Weinberg equilibrium, and although the locus 

was flagged as potentially containing null alleles, the result was not significant thus 

was retained for further analysis. 
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3.3.1 Genetic diversity measures at the group and locus level 

The mean count of alleles within each group is very similar, as is the value of mean 

allelic richness (Table 9).  Both observed and expected heterozygosity values are 

greater within the captive-born group then in the wild-born.  The mean FIS value for 

the wild individuals is a positive number.  This can be illustrative of a deficiency of 

heterozygotes within the group, and thus a possibility of inbreeding.  The captive-

born group exhibit a negative FIS value which suggests the opposite, and that there 

maybe an excess of heterozygotes within the group.    

 

The mean d2 values show a high value for the wild-born group and a value of less 

than half of that within the captive-born group. However, both groups, and in 

particular the wild-born, procured extremely high standard deviation figures which 

suggest results are highly variable.  The Scaled Mean d2, Individual Heterozygosity 

and Standardized Heterozygosity values are all greater in captive-born individuals.  

The Internal Relatedness value for the Wild group is a positive number whilst it has 

yielded a negative number for the Captive group (Table 10).   
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Table 9 - Number of alleles (A), allelic richness (AR), allele size ranges, observed 
heterozygosity (Ho), expected heterozygosity (He) and FIS for the final selected panel of 15 loci 
in wild and captive groups 

Locus  Wild-born Captive-born Total per locus 

MFGT21 

Sample number 

No. Alleles  

Allelic Richness  

Size Range 

Ho 

He 

FIS 

3 

3 

3.00 

130-139 

0.333 

0.733 

0.600 

7 

3 

2.40 

130-135 

0.857 

0.582 

-0.532 

10 

4 

 

MFGT18 

Sample number 

No. Alleles  

Allelic Richness  

Size Range 

Ho 

He 

FIS 

7 

3 

2.359 

86-98 

0.429 

0.538 

0.217 

13 

5 

2.816 

82-104 

0.538 

0.646 

0.172 

20 

5 

 

DXS2506 

Sample number 

No. Alleles  

Allelic Richness  

Size Range 

Ho 

He 

FIS 

5 

3 

2.857 

281-289 

0.600 

0.711 

0.172 

12 

4 

3.112 

277-289 

0.583 

0.71377 

0.189 

17 

4 

 

D6S2972 

Sample number 

No. Alleles  

Allelic Richness  

Size Range 

Ho 

He 

FIS 

 

 

 

5 

5 

3.762 

123-137 

0.800 

0.800 

0.000 

12 

6 

3.242 

123-133 

0.833 

0.714 

-0.176 

17 

7 
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Locus  Wild-born Captive-born Total per locus 

D6S2833 

Sample number 

No. Alleles 

Allelic Richness 

Size Range 

Ho 

He 

FIS 

8 

6 

3.374 

233-247 

0.750 

0.683 

-0.105 

13 

6 

3.610 

230-247 

0.923 

0.778 

-0.195 

21 

7 

 

D6S2792 

Sample number 

No. Alleles  

Allelic Richness  

Size Range 

Ho 

He 

FIS 

4 

4 

3.679 

129-144 

0.750 

0.821 

0.100 

10 

4 

3.26 

129-144 

0.600 

0.742 

0.200 

14 

4 

 

D6S1691 

Sample number 

No. Alleles  

Allelic Richness  

Size Range 

Ho 

He 

FIS 

8 

3 

2.509 

184-190 

0.375 

0.567 

0.354 

12 

3 

2.308 

184-190 

0.333 

0.507 

0.353 

20 

3 

 

D5S820 

Sample number 

No. Alleles  

Allelic Richness  

Size Range 

Ho 

He 

FIS 

 

 

 

 

 

7 

3 

2.774 

171-187 

0.714 

0.670 

-0.071 

13 

4 

2.974 

171-187 

0.923 

0.705 

-0.327 

20 

4 
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Locus  Wild-born Captive-born Total per locus 

D5S1457 

Sample number 

No. Alleles  

Allelic Richness  

Size Range 

Ho 

He 

FIS 

6 

4 

3.561 

132-152 

0.500 

0.803 

0.400 

13 

8 

3.843 

126-152 

0.846 

0.803 

-0.056 

19 

9 

 

D19S714 

Sample number 

No. Alleles  

Allelic Richness  

Size Range 

Ho 

He 

FIS 

6 

7 

4.515 

226-260 

1.000 

0.879 

-0.154 

12 

4 

2.998 

226-252 

1.000 

0.707 

-0.443 

18 

7 

 

D18S72 

Sample number 

No. Alleles  

Allelic Richness  

Size Range 

Ho 

He 

FIS 

5 

3 

2.200 

308-314 

0.400 

0.378 

-0.067 

13 

3 

2.334 

308-314 

0.462 

0.542 

0.153 

18 

3 

 

D14S306 

Sample number 

No. Alleles  

Allelic Richness  

Size Range 

Ho 

He 

FIS 

 

 

 

 

 

8 

5 

3.863 

203-234 

0.750 

0.825 

0.097 

13 

6 

3.626 

203-324 

0.769 

0.788 

0.024 

21 

6 
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Locus  Wild-born Captive-born Total per locus 

D13S765 

Sample number 

No. Alleles  

Allelic Richness  

Size Range 

Ho 

He 

FIS 

5 

4 

3.067 

214-228 

0.800 

0.644 

-0.280 

13 

4 

3.336 

210-228 

0.846 

0.760 

-0.119 

18 

5 

 

D12S391 

Sample number 

No. Alleles  

Allelic Richness  

Size Range 

Ho 

He 

FIS 

7 

11 

5.505 

179-272 

0.857 

0.967 

0.122 

12 

8 

4.291 

217-272 

0.667 

0.859 

0.231 

19 

14 

 

D11S295 

Sample number 

No. Alleles  

Allelic Richness  

Size Range 

Ho 

He 

FIS 

7 

8 

4.611 

281-307 

0.857 

0.890 

0.040 

13 

7 

4.148 

281-305 

1.000 

0.849 

-0.186 

20 

10 

 

Totals 

Mean A (s.d.) 

Mean AR (s.d.) 

Mean Ho (s.d) 

Mean He (s.d) 

Mean FIS (s.d)  

 

4.80 ± 2.336 

3.442 ± 0.615 

0.661 ± 0.207 

0.727 ± 0.154 

0.095 ± 0.231 

5.0 ± 1.732 

3.220 ± 0.920 

0.745 ± 0.204 

0.713 ± 0.105 

-0.047 ± 0.265 
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Table 10 – Inbreeding measures for the captive and wild groups.  Standard deviation figures 
are shown in brackets. 

 Wild-born Captive-born 

N 8 13 

Mean d2 227.981 (± 202.792) 100.513 (± 49.303) 

Scaled Mean d2 0.019 (± 0.014) 0.026 (± 0.014) 

Individual Heterozygosity 0.688 (± 0.037) 0.747 (± 0.017) 

Standardised Heterozygosity 0.940 (± 0.370) 0.995 (± 0.180) 

Internal Relatedness 0.044 (± 0.346) -0.081 (± 0.185) 

 

The greatest correlation between above mentioned genetic diversity indices are 

between the standardised heterozygosity and internal relatedness values which are 

illustrative of a near perfect negative correlation.  The least correlation is evinced 

between internal relatedness and the scaled mean d2 results. 

 

Table 11 - Pearson coefficient (correlation) between genetic diversity statistics.  **  p<0.01 

 Scaled Mean d2 Standardised 
Heterozygosity 

Internal 
Relatedness -0.559** -0.962** 

Standardised 
Heterozygosity 0.588**  

 

 

Table 12 - Measures of population differentiation, RST and FST. 

 Captive-born (RST) Captive-born (FST) 

Wild-born 0.006 (NS) -0.022 (NS) 
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Neither value of FST and RST signify any statistically significant genetic deviation 

between the captive and wild-born groups (Table12). 

 

The values of standardised heterozygosity for each individual and mean kinship 

values are shown in Table 13.  Standardised heterozygosity values are generally 

high and more in alignment with mean kinship values than in the results from 

mtDNA.   

 

Table 13 -  Mean kinship (MK) and standardised heterozygosity values per individual.  Sorted 
by MK values. 

 

Primate Ref 

 

Mean Kinship  
Standardised 

Heterozygosity 

H.mol8 -	 1.210 

H.mol17 -	 1.073 

H.mol21 -	 1.028 

H.mol4 0.0000	 1.072 

H.mol3 0.0000	 0.698 

H.mol6 0.0000	 0.154 

H.mol1 0.0083	 1.195 

H.mol5 0.0083	 0.891 

H.mol7 0.0208	 1.210 

H.mol15 0.0604	 1.252 

H.mol16 0.0688	 0.678 

H.mol2 0.0875	 1.165 

H.mol13 0.1083	 0.775 

H.mol20 0.1167	 1.065 
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H.mol19 0.1167	 0.800 

H.mol14 0.1271	 1.163 

H.mol12 0.1271	 0.926 

H.mol11 0.1271	 0.805 

H.mol9 0.1354	 1.132 

H.mol10 0.1479	 1.163 

H.mol18 0.1521	 1.073 

 

3.3.2 Pedigree analysis  

In Table 14, cells that are shaded in candidate mother and father columns represent 

missing samples from either sire or dam (or both) according to zoological family 

records. Assignments of candidate parents for these offspring have low LOD scores 

and therefore reiterate assigned parents are incorrect.  For Hmol10 however the 

candidate mother has a positive LOD score which contravenes pedigree records. 

Candidate fathers highlighted in red do not match zoological pedigree records.  

Confidence levels (as shown by LOD scores) are only high for 5 other candidate 

parents. 
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Table 14 - Results of parentage analysis.  Cells highlighted in grey represent sires or dams not 
present in this dataset.  Text in red indicates a different parent from zoological records 

Offspring ID Loci 
typed 

Candidate 
mother 

LOD score Candidate 
father 

LOD score 

H.mol9 14 H.mol18 -4.87E+00 H.mol2 -2.19E+01 

H.mol10 15 H.mol18 6.41E-02 H.mol2 -1.43E+01 

H.mol11 15 H.mol18 -1.32E+01 H.mol2 -9.35E+00 

H.mol12 13 H.mol18 -4.61E+00 H.mol2 3.98E+00 

H.mol13 14 H.mol15 9.56E-01 H.mol7 -8.60E+00 

H.mol14 15 H.mol8 -1.90E+01 H.mol7 1.03E+00 

H.mol15 15 H.mol1 -1.60E+01 H.mol5 -2.31E+01 

H.mol16 14 H.mol8 -4.38E-01 H.mol17 -1.35E+01 

H.mol17 13 H.mol8 -1.14E+00 H.mol5 -8.72E+00 

H.mol18 15 H.mol8 -1.63E+01 H.mol2 -1.62E+01 

H.mol19 11 H.mol18 3.94E+00 H.mol17 -3.07E+00 

H.mol20 14 H.mol18 1.70E+00 H.mol17 1.45E-01 

H.mol21 13 H.mol1 -1.62E+01 H.mol7 -1.88E+01 
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3.4 Discussion – Does genomic DNA diversity follow the same patterns 

observed in mitochondrial DNA within the Hylobates moloch groups? 

It is a common issue that when researching endangered species, especially within a 

captive environment that the sample numbers are small.  Thus, the question arises 

within studies such as here where 21 individuals were analysed, just how much 

biologically informative knowledge a small group can yield with regards to making 

management decisions based on genetically derived data for conservation 

purposes.  Carrying out analyses to ascertain genetic variation within a small group 

may not identify all character states that may be present within a wider population 

and yield results of low variation as a consequence of this.  Walsh (2000) stated that 

to capture genetic polymorphism within a population in a population of infinite size, a 

sample size of 59 individuals would be required to yield a confidence value that 95% 

of character states have been captured within the population.  For a population of a 

finite size, this number can be reduced by 20% to derive results that mirror those 

from a finite population.  Crandall et al. (2000), however, cite a smaller number to 

achieve the same objectives as Walsh.  They base their guidelines to achieve 95% 

of genetic diversity within a population on sample sizes of between 20 to 50 

individuals, which they believe would encapsulate ancestral alleles present within a 

small group. 

 

Four of the microsatellite loci had observed heterozygosity levels in excess of 0.8 

and five had levels between 0.6 to 0.8 in both the captive and wild-born groups 

(Table 9).  Despite these results, confidence levels derived from parentage analysis 

were low even in progeny assigned to parents as per studbook records.   According 

to Harrison et al. (2012) if sample data does not contain all candidate parents, or if 
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genotyping errors may be present, then success within differing parentage programs 

(each with a different inference method) increases linearly with the number of loci.  

However, as indicated by the shaded boxes (Table 14) low assignment may be 

indicative of a lack of samples from the parents which has been experienced in other 

studies (e.g. Gerber et al., 2000; Trong et al., 2013) and it has lead to low 

assignment rates of offspring. 

 

For analyses of genetic diversity, the number of microsatellites used also varies in 

the literature.  For example in a study of genetic differentiation of European harbour 

seals (Phoca vitulina vitulina) 7 microsatellites were analysed (Goodman 1998), 8 

were employed in a study of the German wildcat (Felis silvestris) (Eckert et al. 

2010), 9 for understanding orang-utan (Pongo) sub populations (Kanthaswamy, 

Kurushima & Smith 2006), and 10 for both Hainan Eld deer (Cervus eldi hainanus) 

(Zhang et al. 2008) and great reed warblers (Acrocephalus arundinaceus) (Hansson 

et al. 2000).  However, Slate and Pemberton (2002) trialled a large panel consisting 

of 71 microsatellites, to test the robustness of inbreeding measures such as 

heterozygosity and mean d2 in a population of wild red deer (Cervus elaphus), a 

widespread and abundant species.  Their observations concluded that a very 

minimum of 10 microsatellite markers were required to draw biologically meaningful 

information from results, particularly if associations are being evaluated between the 

genetic diversity levels observed from the microsatellite genotypes and fitness traits 

within the species under assay.  
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Of the panel of 32 microsatellites within the Hylobates moloch assay only 19 loci 

were successfully amplified, representative of 56.25% of the total set.  The success 

rate here was higher than a previous study of Hylobates lar where only 8 

microsatellite loci were successfully amplified with the adequate credentials for 

analysis (i.e. loci were polymorphic and yielded reproducible results) out of a panel 

of 47 microsatellites previously located within humans (Chambers et al. 2004).  

 

Three loci (D31768, D6S2859 and D17S1290) deviated from Hardy-Weinberg 

proportions which manifested as an excess of homozygotes at the aforementioned 

loci in comparison to expected proportions.  There are a number of factors that may 

have effected this, the first is known as the Whalund effect (Sinnock 1975).  This 

hypothesis analyses allele frequencies within a single population and when an 

excess of homozygotes is detected it may be as a consequence of a genetic division 

within the group.  The occurrence of sub-populations within an apparent single 

population may arise for example, owing to adaptation to local environmental 

conditions.  The Wahlund effect is a viable theory as after a number of generations 

within captivity, individuals may adapt to the more relaxed conditions in captivity 

(Montgomery et al. 2010).  However, computations of population differentiation (FST 

and RST as shown in Table 12) for the H. moloch population did not support this 

theory as no genetic subdivision between wild and captive-born was detected.  

 

Values of FST have been reported to be lower than RST values (Jarne & Lagoda 

1996), which was shown here.  The rationale behind this is explained as the 

underlying mutation models that the theories assume.  Values derived from FST are 
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based on the Infinite Allele Model, which assumes that states observed within a 

population have been derived directly as a consequence of inheritance from 

previous descendants.  However, RST performs under the stepwise mutation model, 

which is described by some (Meirmans & Hedrick 2011) to be better suited to the 

multi-allelic nature of microsatellites and also incorporates the fact that there is a 

bias towards microsatellites increasing in size rather than undergoing reductions 

(Chambers & MacAvoy 2000; Meirmans & Hedrick 2011).  RST does take into 

account the sample size, which is a positive attribute here as the size is small.  

However, FST is described as being more applicable to studies whereby genetic 

differentiation between populations is not thought to be extreme.  

 

A second theory that may yield deviations from Hardy-Weinberg proportions is that 

the population is undergoing non-random mating and thus is experiencing 

inbreeding depression.  As with the Wahlund effect, this is also a viable theory 

considering the sample population under assay which is a captive, endangered and 

CITES Appendix I listed species.  Owing to these factors there is a small group of 

available mating partners available and thus there is a possibility that inbreeding is 

taking place.  The mtDNA analysis in the previous chapter illustrated that at the 

mtDNA level, genetic diversity was markedly lower in the captive-born group and 

there was evidence of genetic differentiation between the two groups as calculated 

by FST.  When compared however, with values of FIS, derived from the microsatellite 

genomic markers the comparison between the two groups are not statistically 

significant.  Thus genomic results were not concordant with mtDNA results for 

population differentiation.  It is highly probable that the wild-born FIS value is subject 
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to sample bias as the number of individuals within the group is small and 

furthermore, not all individuals within the group are typed at every locus analysed.   

 

A further explanation, which was deduced to be the most likely explanation for 

deviations from Hardy-Weinberg proportions was the presence of null alleles.  This 

was detected within all loci as previously mentioned using the Micro-Checker 

software.  All three loci (D31768, D6S2859 and D17S1290) were found to have null 

alleles present within the data set and furthermore that this was significant (p<0.01).  

Therefore, although loci outside of Hardy-Weinberg proportions may be included in 

further analyses within studies if they are deemed to have occurred from a 

biologically significant reason such as due to Wahlund effects or inbreeding 

(Goodman 1998), they were discarded in this study, as null alleles appeared to be 

the most probable cause. 

 

The 15 loci were representative of half of the 22 chromosomes archetypal of H. 

moloch (Müller, Hollatz & Wienberg 2003) and thus were deemed to give a broad 

overview of genetic variation for this study.  A caveat should be noted here however, 

that loci are categorized as per the human microsatellite classification (e.g. 

D3S1768 is situated on chromosome 3).  It is known that a microsatellite locus (and 

thus its flanking sequences) in one species may not appear on an analogous 

chromosome in another species.  This has been illustrated in genetic mapping 

studies in primates such as within rhesus macaques (Macaca mulatta) (Rogers et al. 

2006), baboons (Papio hamadryas) (Rogers et al. 2000) and even to other 

mammals such as the domestic cat (Felis catus) (Menotti-Raymond et al. 1999).   
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3.4.1 Genomic diversity of Hylobates moloch  

The mean number of alleles over all loci were similar not only between the wild-born 

and captive-born groups but also in comparison to two other species within the 

Hylobates genus.  Whittaker (2005) studied microsatellites within several 

populations of Kloss’s gibbons (H. klossii) and found that the average number of 

alleles within all loci was 2.3.  However, sample numbers utilised were very low, for 

example one of the populations was represented by only one individual, thus there is 

a possibility that this number would increase with a larger number of individuals.  A 

study of white-handed gibbons (H. lar) within 8 microsatellites and a minimum of 43 

individuals typed per locus, the overall mean allele count was found to be 7.0 

(Chambers et al. 2004).  Thus it would seem that the gibbon species with the widest 

geographic distribution, H. lar, maintains the most microsatellite alleles and this 

deduced from just 8 microsatellites, in comparison to the two endemic species of H. 

Klossii and H. moloch.  An analysis of three groups of other species of primate in a 

captive environment, gorilla (Gorilla gorilla gorilla) and two sub-species of orang-

utan (Pongo pygmaeus abelii and Pongo pygmaeus pygmaeus) consisting of 104, 

21 and 23 individuals respectively were found to have 6.48, 3.28 and 3.2 alleles 

averaged over all loci (Zhang et al. 2001).  Thus, the H. moloch groups, both 

Captive and Wild illustrated a greater number of alleles than the captive orang-

utans, but not quite as many as found within the gorilla population.   

 

The captive environment has been stated to be a cause of decline in microsatellite 

heterozygosity (Montgomery et al. 2010).  Within some empirical studies, 

observations have been made that a marked difference between populations 

analysed at microsatellite markers within captive populations to their conspecific wild 
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populations.  For example in commercially reared Artic charr (Salvelinus alpinus) 

overall variability at 8 microsatellites was lower than within their wild conspecifics 

(Ditlecadet et al. 2006).  Similarly, a decline in allelic richness was observed in 

captively bred mallards (Anas platyrhynchos) versus wild born individuals with a 

value of 16.554 in the wild group and 10.088 in the captive (Čížková et al. 2012).  

The results of the two groups of H. moloch here are very similar to those observed in 

wild and captively bred lesser kestrels (Falco naumanni) (Alcaide et al. 2010).  The 

number of alleles and allelic richness were similar in captively bred and wild born 

individuals.  Whilst this may be a consequence of careful management within the 

captive breeding programme, there is also the possibility that in these two species’ 

genetic variability has not been impacted as they have been bred within the captive 

environment within a limited number of generations.  The possibility of decreasing 

genetic variability has been postulated to occur after a number (which is not a set 

number and will alter from species to species in accordance with life history traits) of 

generations within the captive environment (Frankham 2008).  This has been 

observed within an empirical study of the Mallorcan midwife toad (Alytes muletensis) 

(Kraaijeveld-Smit et al. 2006).  Here genetic variation comparisons between wild 

born and captively bred individuals of up to 8 generations were very similar.  

However, after 8 generations of captive breeding a noticeable drop in both 

heterozygosity and allelic richness were observed.    

 

As with the mean count of alleles per group, the values for allelic richness were also 

similar.  The use of allelic richness to ascertain genetic diversity is described to be of 

‘key relevance’ by Rodrigáñez et al. (2008) in conservation programmes.  The 

rationale is that a depth of allelic richness allows a greater ability of selection 



 

 

93 

response for future generations of species to come, rather than solely focusing on 

the frequency of a specific allele within a population.  Thus, the desired outcome of 

allelic richness is for the value to be high, but of course is dependent on the number 

of alleles.  Values are low when compared to Western lowland gorilla populations 

(Gorilla gorilla gorilla) which varied between 4.97 to 5.60 with the latter value 

referring to a small sample size of 13 individuals (Le Gouar et al. 2009).  This study 

focused on populations that may have undergone a genetic bottleneck as a 

consequence of high mortality from outbreaks of Ebola (Le Gouar et al. 2009).  

Allelic richness was greater in one population after the outbreak, which may indicate 

that rare alleles were maintained in the surviving individuals.  A study of a captive 

population of the same species, found that values were lower ranging from 3.30 to 

5.19 (Nsubuga et al. 2010).   

 

Mean He values of 0.727 and 0.713 for the Wild and Captive groups respectively 

once again are illustrative of little differentiation occurring between the two 

aforementioned groups.  Values of Ho, however are greater in the Captive group with 

0.745 versus 0.661 within the Wild individuals.  This higher value may be as a 

consequence of a larger sample group within the captive individuals, however, and 

also as a consequence of incomplete typing within all loci for all individuals.  The 

Captive group exceeded expectations of the level of heterozygotes, which is a 

positive attribute as it illustrates that retention of heterozygosity within a number of 

individuals has been maintained.  Both values of observed and expected 

heterozygosity from the highly endangered Mediterranean monk seal (Monachus 

monachus) (Pastor et al. 2004) can serve to illustrate that the values obtained here 

for H. moloch are propitious.  Samples sizes were larger than the H. moloch groups 
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analysed here but an equal number of microsatellites were typed (15) yet the mean 

He value was found to be 0.41 and although no mean value of Ho was given the 

values ranged from 0.07 to 0.63 with most loci featuring at the bottom end of this 

scale.  These values in conjunction with other findings within the study lead to the 

conclusion that this species exhibits very low genetic diversity.  Owing to negative 

anthropogenic actions, an endemic cervid species the Chinese water deer 

(Hydropotes inermis inermis) is becoming rare and under threat in its wild habitat, 

and thus a number of captive populations have been established to aid in it’s 

conservation (Hu et al. 2007).  The observed heterozygosity was found to be 0.531 

in the captive populations.  The lesser kestrel (F. naumanni) captive breeding 

programme produced similar results in their analysis of 8 microsatellites to the H. 

moloch groups both with regard to the heterozygosity levels observed and the wild 

group yielded a slightly lower value than the captive with 0.64 and 0.68 respectively 

(Alcaide et al. 2010).  The white handed gibbon analysis (H. lar) found that He 

ranged from 0.49 to 0.857 and had an Ho  of between 0.739 to 0.957 (Chambers et 

al. 2004).  Thus observed heterozygosity is greater within the lar species, a second 

diversity measure that illustrates a greater genomic variability than in comparison to 

the moloch gibbons.  Which may be as a consequence of the wider distribution that 

this gibbon species enjoys in comparison to the endemic island nature of the moloch 

gibbon. 

 

3.4.2 Values of SCALED Mean d2, , Standardized Heterozygosity (SH) and 

Internal Relatedness (IR), to analyse inbreeding levels 

The scaled version of Mean d2  was calculated so as to allow for the inclusion of the 

variance at each locus, which provides a more balanced estimate of all loci under 
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assay rather than highly polymorphic loci contributing more than the less 

polymorphic loci.  This reversed the results from the Mean d2  calculations with the 

captive-born group yielding a value of 0.026 versus 0.019 in the wild-born group. 

The value within the Wild group is most likely lower as the variance within each loci 

for this group were all much greater than in the Captive dataset which intimates that 

there is a higher degree of variability within the Wild group.  The values in the H. 

moloch groups are similar to that observed within a study of zebra finches 

(Forstmeier et al. 2012) with a known pedigree.  The standardised Mean d2 value for 

all birds analysed was 0.0189, yet when 47 individuals known to be highly inbred 

were excluded this value lowered to 0.0028.  Thus, if this metric is designed to 

illustrate more outbred individuals by a greater value of Mean d2  then this result is 

unclear.  This measure of inbreeding is not usually used as a stand alone statistic as 

it is utilised here, but often analysed in conjunction with a fitness trait with the basis 

that a greater Mean d2  correlates with a greater level of fitness.  Studies that have 

found positive links between Mean d2  and survival have been made in red deer 

calves (Cervus elaphus) whereby females illustrated an elevated first winter survival 

rate in individuals with a higher Mean d2 (Coulson et al. 1999).  Coltman et al. (1998) 

found a correlation between harbour seal pups (Phoca vitulina) and survival to 

weaning and high Mean d2 levels, which as above was assumed to be as a 

consequence of the surviving individuals being more outbred than those who did not 

survive.  Further fitness links with this metric have also been drawn within harp seals 

(Phoca groenlandica) (Kretzmann et al. 2006).  In the harp seal study variability of 

loci was high (9 to 22 alleles) but also homozygosity in individuals was very low 

(Kretzmann et al. 2006).  But, as much as there may be studies drawing statistically 

significant fitness links with the Mean d2 measure, which is deduced to be as a 
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consequence of inbreeding, there are also many studies that find no correlation at 

all.  This has been reported in the grey seal (Halichoerus grypus) (Bean et al. 2004), 

Lippizan horses (Equus caballus) (Curik et al. 2003), zebra finches (Taeniopygia 

guttata) (Forstmeier et al. 2012), dice snake (Natrix tessellata) (Gautschi et al. 

2002), and the Chinese native chicken (Gallus gallus domesticus) (Liu et al. 2006).  

It is more suited to deeper events of inbreeding and also to detecting speciation 

events (Neff 2004; Slate & Pemberton 2002).  The metric also functions on the 

stepwise mutation model which does allow for a gain or a loss of a repeat within the 

microsatellite length, but this theory only allows for a single and not multiple repeat 

alteration.  Thus, this would confound results utilising the Mean d2 approach to 

ascertain inbreeding as there is a possibility that an allele within a population has 

culminated at a particular size larger or smaller by more than repeat than its 

ancestral state within one generation owing to either recombination events or DNA 

slippage (or possibly a combination of both).   

 

The observed values of heterozygosity increased within both groups once 

standardised (SH).  These values are illustrative of very little inbreeding within either 

group and would be meeting zoological objectives of maintaining high levels of 

heterozygosity.  This is then corroborated with values of mean kinship.  The results 

are not in complete harmony, with mean kinship increasing with standardised 

heterozygosity decreasing, however SH on the whole is high.  There is one anomaly 

that appears in H.mol6 where the lowest SH value is achieved but has the greatest 

MK value.  As with Mean d2, standardised multi locus heterozygosity and indeed 

heterozygosity values have been studied in many cases in conjunction with fitness 

traits and are heralded by some to be a more informative and draw more significant 
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links than with Mean d2 .  A strong correlation between heterozygosity levels and 

semen quality has been observed in the Iberian lynx (Lynx pardinus) (Ruiz-López et 

al. 2012).  Individuals exhibiting low levels of heterozygosity (0.333 or 0.730 for 

standardised mean heterozygosity) also yielded a low semen quality which was 

described as “extreme” by the researchers, and a potential risk for the species 

overall fitness and reproductive parameters.  A study into heterozygosity and growth 

levels in soay sheep (Ovis aries) found that no correlation existed, however a link 

between heterozygosity and the reproductive success of males was found (Di Fonzo 

et al. 2011).  A similar observation was made in two Scandinavian brown bear 

(Ursus arctos) populations (Zedrosser et al. 2007).  Measures of inbreeding and 

variability were measured at 18 microsatellite loci by application of heterozygosity 

and internal relatedness metrics.  Both values were found to be correlated with 

reproductive success within male brown bears.  

 

The values for internal relatedness for the H. moloch groups differed in that the 

captive-born individuals exhibited a negative value of IR, illustrative of an outbred 

group however the wild-born group yielded a positive value, which would allude to 

this group being more inbred.  As the IR metric utilises the frequency of homozygote 

alleles it would appear to be a useful measure to ascertain levels of variability within 

the group, with high frequencies of homozygous alleles suggesting high levels of 

relatedness between individuals within the group.  Despite the positive IR value 

within the wild-born individuals, other measures have illustrated that there is genetic 

variation within this group.  An explanation for the negative IR results is that the 

smaller sample group in comparison to the captive-born has influenced the outcome 

of results.  Furthermore, this value is very low which can be illustrated by reporting a 
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value derived from the common shrew (Sorex araneus) which is a species thought 

to undergo regular breeding with related individuals (Välimäki , Hinten & Hanski 

2007).  Within the populations assayed the greatest value of IR reached 0.261 

(n=21), and the correlation was made that those with the greatest IR values lost 

more trials set within the study.  Thus it was deduced that a competitive ability was 

held by those who were less inbred, an observation made within other species also, 

such as within the brown bears (Ursus arctos) (Zedrosser et al. 2007). 

 

3.5 Conclusions  

From a panel of 32 microsatellite loci tested within the Hylobates moloch groups, a 

resultant total of 15 were successfully amplified and were found to be in Hardy-

Weinberg equilibrium and thus allele frequencies observed were presumed not to 

have been disturbed by factors such as genetic drift and selection.  Despite yielding 

negative results in IR and FIS in the wild-born group, the result is likely to have been 

susceptible to the low number of moloch gibbons (n=8). Values of heterozygosity 

once standardised, which accounted for incomplete typing data for some individuals, 

were almost identical between wild and captive-born groups.  The same was also 

found in the overall mean number of alleles for each group.  The allelic richness, a 

measure of uniqueness with regards to private alleles in each group, is also 

extremely similar.  Hence, although splitting the groups can provide very useful data 

with regards to the genetic processes that generations in captivity may occur, the 

small group size for the wild-born individuals has confounded some results here.  

Therefore, the statistical measures that take into account sample size, or those that 

standardise data are preferable to make assumptions as to results procured. 
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Intra-species levels of variability in the two H. moloch groups are very similar 

confirmed by both RST and FST which is indicative that no deviation has taken place 

from the wild-born genetics to captive-born.  The inter-species comparisons show a 

moderate and comparative level with other primate species, including those within 

the Hylobates genus.  With regards to the latter primate comparisons, it was 

interesting to note that both endemic and island dwelling species of moloch and 

klossii gibbons showed a slightly lower level of variability than the more 

geographically widespread lar species.  This genetic differentiation between island 

and mainland species is widely reported in a number of different species (Frankham 

1997).  Despite this, however, the standardised values of heterozygosity in both H. 

moloch groups meet genetic management objectives often set within zoological 

institutions of 90% of heterozygosity retention (Ballou et al. 2010).   

 

The results of the pedigree analysis highlighted the difficulties in obtaining strong 

confidence levels for parental assignment when the sample dataset is small and 

incomplete.  From a total of 26 individuals, only 10 parental samples were available.  

Parental pairings matched zoological records in all but two individuals.  The 

candidate fathers for H.mol14 and H.mol15 suggested a different father than records 

state.   
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4 Chapter four - Analysis of an adaptive marker Class II of the Major 

Histocompatibility Complex  

The MHC is responsible for coding proteins involved in immune response and 

performs vital functionality with regards to infection, autoimmunity and inflammation 

(Horton et al. 2008).  It is a multigene family present within all Gnathostome taxa 

(Babik 2010), located on the short arm of chromosome 6 in humans (Horton et al. 

2008) and is described as the most polymorphic genomic region within vertebrates 

(Babik & Radwan 2007).  Within the MHC, the classical subdivision of genes 

encompasses three classes, two of which are the main immunological subgroups 

known as class I and class II (Piertney & Oliver 2006).  Whilst class III is involved in 

immune functionality, it does not code for antigen presenting molecules (Ujvari & 

Belov 2011).  MHC class I genes are expressed on almost all nucleated somatic 

cells, the molecules of which are comprised of a single polypeptide chain produced 

from a singular gene (Miller, Belov & Daugherty 2006).  Class I molecules function 

intracellularly, binding invading pathogens, chiefly viral, within the cell’s cytoplasm 

(Bernatchez & Landry 2003).  Class II molecules have a narrower distribution among 

somatic cells with expression occurring primarily on antigen-presenting cells such as 

B cells and macrophages, and their architectural form is a heterodimer with the 

differing chains coded for by separate genes (Miller, Belov & Daugherty 2006).  

Class II molecules monitor pathogenic activity external to the cell.  Their role in 

presenting antigens to helper T cells at the cell surface that have been procured 

from the binding of pathogenic peptides such as bacteria is vital to the adaptive 

immune system process (de Groot et al. 2009).  Further to classification of MHC 

genes into classes in accordance with their structure and immune function, there are 

further groupings of isotypes which in humans are designated HLA-DR, DQ and DP 



 

 

101 

(HLA is an acronym for Human Leukocyte Antigen) (Doxiadis et al. 2008).  Each 

grouping is then coded by one or more A or B genes (de Groot et al. 2009).  This 

overall structure has also been described in chimpanzees (Pan troglodytes) and 

macaques (Macaca mulatta and Macaca fascicularis) (de Groot et al., 2009; 

Doxiadis et al., 2006; Doxiadis et al., 2007).  The locus selected for analysis for this 

study of captive H. moloch was the class II DRB region. 

 

4.1.1 Choice of region for analysis – The MHC class II DRB Exon 2 

Despite both class I and class II genes playing integral roles within an organism’s 

immune response, both innate and acquired there are delineations of their 

respective actions as previously mentioned.  Whilst class I molecules function within 

the remit of innate immune response, they also serve as a bridge to the acquired 

immune system, for example via their interaction with killer-cell immunoglobulin-like 

receptors (Parham 2005).  Class II molecules however, function within the acquired 

immune system and their effectiveness with regards to recognizing and binding 

extracellular pathogens is greatly dependent on the variability of antigen binding 

sites (ABS), also referred to as peptide binding regions (PBR).  Within class II 

genes, the DR region is described as the most complex in humans (de Groot et al. 

2009).  This phenomenon, however, is largely communicated via genes of the DRB 

loci than from DRA genes as the latter have proved to be conserved within humans 

(Doxiadis et al. 2008).  Thus it was preferable to assay the DRB locus and the 

second exon was further selected as it is known to contain the PBR.   
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4.1.2 Hypotheses of driving forces behind MHC variation 

The high variability of the MHC is as a consequence of strong selective pressures 

(Sutton et al. 2011).  The reason why this genomic region merits such a description 

is rooted in the ways that variability manifests in different species.  Variation is not 

solely attributed to sequence variation at PBRs for example, it stems from differential 

counts of gene copies, number of alleles and variation within these loci at the 

sequence level themselves (Eimes et al. 2011; de Groot et al. 2009; Doxiadis et al. 

2007).  Furthermore, the configuration of how differing alleles are positioned within 

differing haplotypes culminates in an additional echelon of genetic diversity at this 

region (Doxiadis et al. 2007).   

 

Just as the manifestations of variability are diverse at the MHC both at the intra- and 

inter-species levels, the hypotheses that seek to elucidate them are numerous.  Two 

prominent theories of how MHC polymorphism is maintained are via parasite 

induced selection and sexual selection, both of which may very well function in 

conjunction with one another (Drury 2010).   

 

The theorem of pathogen induced selection primarily received little focus as links 

between MHC genes and autoimmune disease within humans had already been 

established (Piertney & Oliver 2006).  However, as experimental studies in both 

humans and other species on regions within the MHC increased, the interest in the 

relationship between susceptibility to disease or parasitic infection and specific MHC 

genes grew.  Subsequently, hypotheses were then created to explain new findings.  

The first theory was that of ‘over-dominance’ which inferred that fitness levels are 
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greater in individuals heterozygous for MHC alleles, as a consequence of their 

potential to present a greater array of antigens (Hughes & Nei 1988).  A further 

model is that of ‘negative frequency-dependent selection’ which denotes that an 

individual harbouring a rare allele or perhaps a new one within a population has a 

fitness advantage over individuals possessing more common isotypes.  If this novel 

allele is selected and proliferates into future generations, then frequency increases 

within the population (Slade & McCallum 1992).  A final concept is that of 

‘diversifying selection’.  This theorem incorporates both temporal and spatial 

variations that may be observed for differing genotypes within a population.  It 

incorporates selective pressures that may change at differing times of the year and 

thus only individuals that possess the necessary alleles to counteract these threats 

will proliferate (Hill 1991).  Under this concept, genetic variability is maintained as a 

constant but via fluctuating frequencies of differing alleles that are beneficial for the 

ecological context at a specific time.   

 

The hypotheses that have been devised that explore the rationale behind such 

decisions of MHC type within a mate are similar to those that drive diversity from 

pathogenic pressures.  The original impetus within this field of study stemmed from 

Lewis Thomas in 1974 who hypothesised that humans may be able to detect 

underlying HLA genes via human odour and thus influence their decision on 

selecting “histocompatibility donors” (Beauchamp & Yamazaki 1997).  Laboratory 

tests in mice observed that in a number of cases mice will choose to breed with a 

mouse possessing an MHC haplotype differing from their own (Yamazaki et al. 

1988).  This observation suggested that odour cues originating from MHC genotypes 

led mice to avoid inbreeding.  Further studies, again within mice, suggested that 
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individuals were able to detect conspecifics infected with a specific tumour virus 

(Beauchamp & Yamazaki 2003).  This was purported to be as a consequence of the 

immune response cascade of reactions stimulated by MHC class II genes, from 

which T cell apoptosis led to specific odours.  So, from laboratory studies with mice 

it appears that the MHC is involved in mate choice with regards to inbreeding 

avoidance and disease avoidance.  Beyond the laboratory studies however, different 

species have been hypothesised to use several different strategies, which have the 

potential to equip offspring with favoured genes to ensure survival (Schwensow et 

al. 2008).  One approach is referred to as dissassortative mating, whereby potential 

mates are chosen that harbour differing MHC types then their own, which has the 

potential to yield maximal MHC types within offspring (Bernatchez & Landry 2003).  

A second hypothesis is the ‘good genes’ approach, which is where an individual 

selects a mate that harbour specific alleles which may bestow offspring with a 

particular pathogenic resistance (Drury 2010).  There are some deviations from 

these concepts that appear to be specific to the species or population under assay.  

Two empirical studies conducted in differing bird species surmised two different 

strategies of choosing a mate.  A study at the PBR of a class I, exon 3 MHC region 

within a wild population of house sparrows (Passer domesticus) suggested that male 

sparrows were unsuccessful in securing a female mate if they harboured too few 

alleles at this locus but also if alleles were vastly different from their own (Bonneaud 

et al. 2006).  The conclusions drawn were that females attempted not only to 

diversify MHC genes in progeny by increasing allele numbers, but also to avoid 

males that may disrupt co-adapted genes within their own loci.  A similar preference 

but for locally adapted MHC alleles was found within MHC class II genes of the 

Great Snipe (Gallinago media), where mating success for males was not linked to 
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harbouring rare alleles, but rather those common to a specific habitat in the region 

(Ekblom et al. 2010).  This, it may be assumed is a tactic to provide a form of 

defence against a known threat for future progeny.  A further example of maintaining 

co-adapted genes was reported in three-spined stickleback fish (Gasterosteus 

aculeatus) (Eizaguirre et al. 2009).  In this study, females were reported to select 

males for reproduction who harboured intermediate allelic diversity at MHC class IIB 

genes, suggesting a preference for genes that would complement the female’s own 

genetic makeup at this region.  Furthermore, males that harboured a specific 

haplotype were more successful in finding a mate, as this linked group of alleles was 

hypothesised to have resistance against a parasite local to the population’s habitat.  

Studies of a number of different primate species however have concluded that male 

reproductive success is linked with heterozygosity, as opposed to harbouring rare 

alleles.  This was found in grey mouse lemurs (Microcebus murinus) (Schwensow, 

Eberle & Sommer 2008), mandrills (Mandrillus sphinx) (Setchell et al. 2010), rhesus 

macaques (Macaca mulatta) (Sauermann et al. 2001) and in microsatellites of ring-

tailed lemurs (Lemur catta) (Charpentier, Boulet & Drea 2008). 

 

There is however scepticism surrounding the link between MHC make up and how 

an animal chooses a mate.  The detection of MHC linked odours for choosing a 

mate requires an olfaction system to be able to discern the different odour profiles 

produced by different genotypes.  In mammals there is the main olfactory system 

and the vomeronasal (VNO) system, within which two superfamilies of pheromone 

receptors are present and believed to ascertain odours involved in mate choice 

(Horth 2007).  However, in Catarrhines the olfactory bulb is smaller than in most 

other mammals (Kim et al. 2014) and the accessory bulb which is believed to 
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process cues with regards to sexual selection is entirely absent as is the VNO 

(Alport 2004).  It is thought that in Catarrhines, the loss of these olfactory systems 

was as a consequence of the development of improved visual systems rendering the 

former more redundant (Kim et al. 2014).  This has lead to questioning as to the 

level of contribution that MHC odour profiles contribute to the process of choosing a 

mate and thus the validity of carrying out costly genetic analyses.  Furthermore, 

there are other cues which may be argued play a greater role in informing a potential 

mate of fitness levels, such as via sexual secondary sexual characteristics or odour 

profiles from scent glands (Setchell et al. 2010).  However, birds are believed to be 

anosmatic and the study of house sparrows (Passer domesticus) could find no 

correlation between mate choice success and visual fitness cues such as body 

mass (Bonneaud et al. 2006).  Yet there was a strong correlation between a 

partners MHC diversity and moreover, in relation to the bird’s own MHC make up. 

 

4.1.3 The value of analyses of MHC class II genes for captive breeding and 

reintroduction programmes 

Analysis of MHC class II genes, particularly at the PBR’s, can potentially provide 

extremely valuable information for captive breeding and reintroduction programmes.  

Analyses of neutral markers, such as microsatellite loci are used with on the basis 

that they are related to fitness levels within an individual or population.  The genes 

within class II of the MHC however are involved in an individual’s immune response 

and thus they may also be regarded as having a direct influence on fitness levels of 

an organism (Trowsdale 2011).  With regards to captive breeding, the selection 

process to pair individuals would benefit from knowledge of the levels of each 

individual’s genetic variability at this vital region.  The information would also provide 
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details of specific alleles and thus if rare alleles are harboured by a particular 

individual, information that is not available from proxy measures of genetic 

variability.  

 

The subject area of mate choice within the zoological environment has drawn a 

heightened level of focus within the last few years, with a symposium on the subject 

held in the United States in 2010 (Asa, Traylor-Holzer & Lacy 2011).  One of the 

major reasons for the interest is due to the subject of sustainability of zoo 

populations, or the lack of it.  The problem lies within unsuccessful breeding 

attempts, largely attributed to pair incompatibility (Asa, Traylor-Holzer & Lacy 2011).  

Furthermore, breeding of endangered species utilising the Mean Kinship objectives 

within breeding programmes often requires translocation of animals owing to small 

population numbers and desirability of inbreeding avoidance.  Moving animals, such 

as large mammals can be stressful for the organism in question, and costly and the 

success of pairings is an unknown factor.  So, if information can be derived from 

genetic data prior to translocation that has the potential to increase success of 

compatibility in addition to inbreeding avoidance then it would be most helpful.  For 

example, if rare alleles are more preferable in a species, a male with rare alleles 

may be selected and has the possibility to have an increased chance of acceptability 

by the female.  In some species, such as within primates, alterations of social 

groups such as introducing a new potential new mate, can have significant negative 

effects on behaviour often manifesting in aggression (Hosey 2005).  Thus, 

attempting to pair individuals that are not compatible has the potential to yield a two-

fold negative outcome in that breeding will be unsuccessful, and individuals may 

also be subjected to stress and aggression in the process.  A caveat should also be 
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added here however, it is possible that if any events of adaptation to the captive 

environment have occurred at the MHC owing to increased or decreased exposure 

to pathogenic pressures, the actual process of selecting a mate has the potential to 

change in accordance with this.  Thus, hypothetically speaking if a parasite residing 

in a specific species wild habitat influences mate choice for partners that harbour the 

necessary immune genes to combat infection, this behaviour may not be mirrored in 

a captive environment.  A study of MHC linked mate choice behaviour in rhesus 

macaques (Macaca mulattta) found that males were more successful in producing 

progeny if they were heterozygous at the DQB1 locus (Sauermann et al. 2001).  

However, the correlation was only found in free ranging populations and not in a 

captive population studied, where individuals receive regular veterinary care which 

includes bi-annual anti-helminth medication  

 

An issue highlighted by Frankham (2005) is how losses of genetic variability within 

small populations decrease a population’s capacity to environmental change.  

Individuals bred in captivity and destined for reintroduction are undoubtedly going to 

experience changes within their environment.  Alterations within environmental 

conditions are known to exert varying pressures on populations and thus ability to 

adapt is vitally important.  Examples of such responses cover a wide variety of taxa 

such as Acacia depranolobium, a tree found within the African savannah was found 

to have increased thorn length in trees that were subjected to herbivory by local 

goats, thus had formed a defence to protect itself (Young 1987).  A thirty year study 

into the evolutionary changes of Darwin’s finches illustrates how changes in abiotic 

factors such as climate and thus trophic availability has led to phenotypic alterations 

in order for their continued survival (Grant & Grant 2003).  Indeed, the 14 finch 
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species now residing on the Galápagos Islands have evolved from a common 

ancestor 2 to 3 million years ago and have experienced alterations in beak size so 

as to take advantage of differing trophic resources on differing islands and at 

differing periods of the year (Grant & Grant 2003).  The dramatic increase in the 

frequency of the melanic form of a number of moth species (Biston betularia, 

Odontoptera bidentata, and Apamea crenata) within industrialised areas of the 

United Kingdom is illustrative of an alteration in pigmentation so as to be 

camouflaged against trees that have been affected by pollution (Cook, Sutton & 

Crawford 2005).  The recent genome wide study of a Nomascus leucogenys 

individual revealed the genes that have been key players in forelimb development of 

the gibbon species, which after periods of positive selection has culminated in the 

long forelimbs enabling the brachiating movement within gibbons observed today 

(Carbone et al. 2014).  These examples are illustrative of natural selection, external 

environmental conditions exerting pressure on differing organisms that has then 

been translated into phenotypic variation in order to increase chances of survival.   

 

If ecological conditions serve as selective pressure then alterations in MHC genes 

may occur as a consequence to the captive environment.  At the MHC, two 

hypotheses may be postulated.  The first is that a reduction in MHC class II 

variability may occur as a consequence of the relaxed environment in captivity.  A 

zoological institution will give veterinary care to a sick animal to ensure the best 

health and welfare, thus relieving one of the pressures that would be present within 

a wild type environment.  Within the wild scenario, the individual will not have the 

chance to transmit genetic material to the next generation, however within the 

captive environment the opposite may be true and thus it is not just the fittest that 
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survive but also the weak.  The second hypothesis is that some pathogenic 

pressures may actually be greater in the captive environment, owing to factors such 

as food contamination and possible closer proximity of living enclosures enabling 

easier transmission.  The pathogenic threats within the captive environment may in 

fact surpass those present within the wild environment, and thus increase variation 

at class II genes over a number of generations.   

 

It is essential, however, that individuals destined for release back into their wild 

environment after habitation in captivity harbour the ability to react to novel 

pathogens.  These may be localised and specific to their wild habitat, but they may 

also arise as a consequence of climate change (Burek, Gulland & O'Hara 2008; La 

Porta et al. 2008).  Not only can climate change alter abiotic environmental 

conditions, but these can then cause alterations in biotic interactions and life cycles 

of the organisms inhabiting affected areas.  One such example is the prevalence of 

a chytrid fungus Batrachochytrium dendrobatidis that has been the root cause of a 

number of amphibian extinctions (Pounds et al. 2006).  One of the hypotheses that 

sought to find the aetiology of such great losses of amphibian numbers was that 

alterations in climatic conditions allowed for optimum conditions for the fungal 

organism to mutate and exhibit pathogenic characteristics (Fagotti & Pascolini 

2007).   

 

4.1.4 Choice of MHC DRB typing method  

The differing manifestations of polymorphism at the MHC such as allelic variation, 

and copy number variation render typing of this region difficult (Babik 2010; Doxiadis 
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et al. 2007).  The complexities of correctly encapsulating different alleles and 

furthermore how they may be positioned in haplotypes are difficulties in themselves 

but they can also differ among the same species (Babik 2010).  One issue 

highlighted by Babik in his review of MHC typing methods (2010) was the use of 

primers required to amplify a desired locus.  There is no current information 

available as to the MHC genomic organisation within H. moloch, rendering the 

creation of Sequence Specific Primers a difficult and costly task.  Among the 

different approaches listed by Babik (2010) is the utilisation of microsatellites linked 

to MHC genes.  The same issue remains however, as with the selection of primers 

to amplify the desired regions that the microsatellite must be identified and primers 

designed.  In addition, the microsatellite itself must be sufficiently polymorphic to 

identify differing MHC alleles in accordance with microsatellite allele lengths.  A 

microsatellite marker deemed to be a promising candidate for use within the H. 

moloch groups was published by Doxiadis et al. (2007).  A highly complex 

dinucleotide microsatellite marker known as D6S2878 was utilised in the 

aforementioned study to facilitate haplotyping of rhesus macaques (Macaca mulatta) 

at the MHC class II DRB exon 2 region.  The microsatellite is located within intron 2 

of the DRB region and thus adjacent to the highly polymorphic exon 2 containing the 

PBR.  This microsatellite had already been found within the human HLA-DRB genes 

which enabled the identification of 5 region configurations of differing haplotypes 

comprised of differing alleles with high allelic variation (de Groot et al. 2009; 

Doxiadis et al. 2007).  Within the macaques however, allelic variation was lower, but 

more than 30 region configurations were identified.  This approach to use D6S2878 

to explore DRB exon 2 variability has also been applied within chimpanzees (Pan 
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troglodytes troglodytes and Pan troglodytes verus) (de Groot et al. 2009) and long-

tailed macaques (Macaca fascicularis ) (de Groot et al. 2008).   

 

Prior studies utilising D6S2878 as a means to identify DRB alleles and haplotypes 

have stated that the sensitivity of this marker is so great it is able to distinguish 

highly similar alleles via the nature of both the content and length variability of the 

microsatellite (de Groot et al. 2008; de Groot et al. 2009; Doxiadis et al. 2007; 

Doxiadis et al. 2010).  As opposed to a more traditional microsatellite where two 

allele peaks manifest in heterozygotes and a single peak for homozygotes, 

constellations for this marker can be numerous, owing to its close association to 

differing DRB alleles at potentially differing loci. 

 

The chimpanzee research into DRB exon 2 utilised human primers which was 

successful, however the study by Doxiadis and colleagues (2007) on macaques 

(Macaca mulatta) utilised species specific primers developed for the species.  As 

Hylobates moloch shares membership of the primate superfamily ‘Hominoidae’ with 

humans (Müller, Hollatz & Wienberg 2003), it was decided that primers would be 

based on human HLA (Doxiadis et al. 2007). 
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4.2 Materials and Methods 

4.2.1 Sample population 

The sample population assayed at the MHC class II exon 2 region comprised of 21 

individuals as per chapter 2.2.1. 

 

4.2.2 DNA extraction 

DNA was extracted as per chapter 2.2.2. 

 

4.2.3 Parentage ascertainment 

In order to ensure accuracy for microsatellite-DRB haplotyping, results from 

microsatellite analyses in the previous chapter were utilised.  This was to observe 

that alleles are segregating in accordance with Mendelian inheritance parameters 

and thus D6S2878 microsatellite results can be correctly assigned within familial 

units.   

 

4.2.4 D6S2878 – DRB genotyping 

All laboratory procedures from this point were carried out at the Biomedical Primate 

Research Centre, Rijswijk, Netherlands. 

In order to encapsulate both the microsatellite D6S2878 and exon 2 of the MHC 

class II DRB region, a forward primer located at the end of exon 2 (5’ HLA-DRB-

STR_VIC: GAG AGC TTC ACA GTG CAG C) (Applied Biosystems, USA) and a 

reverse primer located within intron 2 (3’ HLA-DRB-STR: GAG AGG ATT CTA AAT 

GCT CAC) (Invitrogen, UK) were utilised (Doxiadis et al. 2007).  The forward primer 
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was labelled with a VIC fluorescent tag for detection during capillary electrophoresis 

and subsequent genotyping analysis.  The resultant PCR reaction components were 

as described by Doxiadis et al. (2007) and were performed in a 25μl reaction volume 

as follows: 1 unit of Platinum Taq polymerase (Invitrogen, UK), 0.1 μM of VIC 

labelled forward primer, 0.1 μM of the aforementioned reverse primer, 2.5mM MgCl2, 

0.2mM of each dNTP, 1xPCR buffer (At x10 concentration contains 200 mM Tris 

HCl (pH 8.4), 500 mM KCl) (Invitrogen, UK) and 100ng template DNA.  Lukas and 

Vigilant (2005) highlighted a number of approaches to minimise erroneous results 

when utilising faecal samples for studies within the MHC.  This study adhered to the 

majority of suggestions, such as quantification of DNA and replication of PCR for 

each individual.  

 

PCR cycling conditions were as follows: initial denaturation for 5 min at 94°C, then 5 

cycles of 1 min at 94°C, 45 sec at 58°C, 45 sec at 72°C.  Then 25 cycles 

commencing with 45 sec at 94°C, 30 sec at 58°C and 45 sec at 72°C.  The final 

extension period was set at 72°C for a period of 30 min.  Resultant PCR products 

were then run in a 1.4% ethidium bromide gel.  This process was then repeated for 

quality control purposes.  PCR products that exhibited clear, singular and bright 

bands under UV light were then selected and extracted and purified as per the 

protocol provided within the GeneJET Extraction Kit (Thermo Scientific, USA).  

Resultant PCR products were then prepared for genotyping via capillary 

electrophoresis in accordance with manufacturer’s guidelines and analysed on an 

ABI 3130xl sequencer (Applied Biosystems).  Genotyping analysis of microsatellite 

peaks were performed using GeneMapper® software version 5.0 (Applied 

Biosystems) as per the method described in chapter 3.2.5.1. 
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4.2.5 Cloning of PCR products and sequencing 

4.2.5.1 PCR preparation for cloning 

A second PCR was then carried out to procure the target gene segment as 

described above but to be utilised for cloning to obtain the differing alleles.  The 

fluorescently labelled forward primer utilised for DRB-STR genotyping was replaced 

by a generic unlabelled forward primer (5’ DRB-STR CGT GTC CCC ACA GCA CGT 

TTC).  The reverse primer was as used in D6S2878-DRB genotyping.  The PCR 

reaction components totalling 100μl per reaction were as follows: 4 units of Platinum 

Taq polymerase (Invitrogen, UK), 0.2 μM of forward primer, 0.2 μM of reverse 

primer, 2.5mM MgCl2, 0.2mM of each dNTP, 1xPCR buffer II (At x10 concentration 

contains 200 mM Tris HCl (pH 8.4), 500 mM KCl) (Invitrogen, UK) and 100ng 

template DNA.  The PCR cycling conditions were also as per the protocol for 

D6S2878-DRB genotyping. 

4.2.5.2 Preparation of competent cells 

The first stage of the cloning procedure was to prepare day culture bacterial 

colonies.  Preparation of the agar was carried out as follows by mixing 32g Luria 

Broth Agar (Invitrogen, UK) with 1L of distilled water.  This was then sterilised at 

121°C for 15 minutes then allowed to cool to 55°C.  A tetracycline solution was then 

made with 50mg tetracycline and 10ml 50% ethanol (thus resulting in a 5mg/ml 

solution).  For each individual plate, 30ml of LB broth was mixed with 60μl of 

tetracycline solution.  Bacteria, E.coli XL1-Blue (a tetracycline resistant strain) was 

then streaked onto the agar and stored in order to allow for colonies to develop. 
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4.2.5.3 Ligation and transformation 

The vector used for cloning DRB exon 2 alleles was the pJET 1.2 vector (Thermo 

Scientific, USA) which can be transformed by competent E.coli XL1-Blue strains of 

bacteria.  It functions via a lethal gene that is disrupted once a DNA amplicon is 

successfully inserted, thus only allowing bacterial cells that harbour the insert to 

propagate.   

 

As the PCR product from section 4.2.5.1 results in an amplicon with sticky ends, the 

protocol carried out for ligation commenced with a blunting reaction as per the 

instructions provided with the CloneJET PCR Cloning Kit (Thermo Scientific, USA).  

Workflow for ligation that followed was as per the protocol described with the 

exception of the final step where the ligation mix was put on a thermomixer at 22°C 

for two hours. 

 

The transformation procedure of the recombinant plasmids with the E.coli XL1-blue 

colonies was carried out as per the protocol described in the TransformAid Bacterial 

Transformation Kit (Thermo Scientific, USA).  The only exception was that at step 6 

of the protocol 10μl and 15μl (for strong bands and weak bands respectively) of 

ligation mixture were added to the pelleted cells in place of the 5μl stated within the 

instructions.  This was carried out to attempt to maximise results as DNA was 

extracted from faecal samples.  Transformed cells were plated on pre warmed LB 

agar plates that had been prepared as with the above mentioned protocol for E.coli 

XL1-Blue preparation.  As the vector pJET 1.2 contains an ampicillin resistant gene 

(β-lactamase) agar plates were prepared with this.  Ampicilline at a concentration of 
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50mg/mg.  Ampicilline solution was added to agar broth base solution at a 

concentration of 50μg/ml. 

4.2.5.4 Isolation of DRB exon 2 alleles 

After colonies containing the DNA insert were allowed to cultivate overnight they 

were then picked and added to a 96 deep well plate containing 1.25ml of ampicilline 

LB medium (with a concentration of 1ml of ampicilline to 500ml of LB medium).  For 

bands that had been clear and bright 48 colonies were picked for that individual and 

96 were selected for individuals that had exhibited weaker bands.  The plates were 

then covered with an airpore strip and placed in an incubator at 37°C and mixed 

overnight. 

 

The protocol that then followed was a modification from Qiaprep® Miniprep kit 

(Qiagen).  Deep well plates were removed from the incubator and centrifuged for 10 

mins at 3600rpm.  The supernatant together with sticks utilised to pick colonies were 

discarded.  An aliquot of 100μl of P1 reagent (Qiagen) was added to each deep well 

and then vortexed until the pellet was loosened.  This was then followed by the 

addition of 100μl of P2 reagent (Qiagen) and plates were gently shaken.  100μl of 

P3 (Qiagen) was then added to each well within a 5 minute time frame from the 

addition of P2 and plates were then placed on ice for 5 mins.  50μl of isopropanol 

was added to 1ml 96 DeepWell™ (Thermo Scientific) plates and then a 96 well filter 

plate was placed on top (Nunc™, Thermo Scientific).  Then 250μl of the lysate was 

added to the filter plate and both plates were then centrifuged at 3800rpm for 5 

mins.  Then filterplates were removed and the DeepWell™ plates were covered with 

a coverstrip and centrifuged at 3800rpm for a further 45 mins.  The resultant 
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supernatant was then discarded, with the pellets remaining in each well.  Plates 

were then placed upside down on paper.  To remove residual isopropanol pellets 

were then washed by the addition of 300μl of 70% ethanol and then centrifuged for 5 

mins at 4000rpm.  The ethanol was then discarded and plates placed upside down 

on paper and centrifuged for 2 mins at 900rpm.  To dissolve the pellet an amount of 

60μl of PCR water was added to each well and incubated at 37°C for 5 to 10 mins.  

Then finally each plate was vortexed.  Plates were then centrifuged once more for 1 

min. 

4.2.5.5 Sequencing 

Preparation for sequencing was carried out with the following steps.  An aliquot of 

6μl of DNA was added to the respective wells within the 96 well plate.  A sequencing 

master mix consisting of the following per reaction, was then prepared with 1μl of 

Big Dye™ v3.1 (Applied Biosystems), 1μl forward  for pJET 1.2 (CloneJET PCR 

Cloning Kit, Thermo Scientific), 2μl 5 x Big Dye™ v3.1 buffer (Applied Biosystems).  

Then 4μl of the sequencing master mix was added to each well and gently mixed.  

Plates were then placed in the PCR machine to mix solutions together with the 

following cycling conditions: 25 cycles of 94°C for 10 secs, 50°C for 10 secs, 60°C 

for 2 mins, then finally 4°C for 2 mins. 

 

A denaturation mix was prepared to precipitate DNA and to help specify base pairs 

so as to minimise adhesion of DNA to the Big Dye™.  A 30μl mix per reaction was 

prepared with 1μl PCR water, 1μl of 7.5M ammonium acetate and 28μl of 100% 

ethanol.  An amount of 30μl of denaturation mix was added to each well and then 

plates were centrifuged for 30 mins at 3800rpm.  The supernatant was discarded 
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and then 40μl of 70% ethanol was added to each well.   Plates were then placed 

upside down on paper and centrifuged for 1 min at 1000rpm.  The pellet was then 

re-suspended by the addition of 30μl of PCR water to each well.  Plates were then 

gently mixed by vortexing following by a final round in the centrifuge for 1 min at 

1000rpm.  The plates were then placed in the PCR machine and a 2 min heatshock 

at 94°C was carried out to break DNA strands.  Plates were then placed in the 

3130xl Genetic Analyzer for sequencing (Applied Biosystems). 

 

4.2.6 Data analysis  

Upon completion of capillary electrophoresis, files containing nucleotide sequences 

of Hylobates moloch DRB exon 2 and the microsatellite D6S2878 were imported into 

the software SeqMan Pro version 12.1.0 (DNASTAR) for analysis.  Sequences were 

manually aligned for each subject using HLA DRB1*0101 as a consensus sequence 

from which to work.  The software is pre-loaded with vector sequences such as the 

pJET1.2 (Thermo Scientific) utilised here.  This is a useful tool to easily identify 

vector nucleotide sequences from target amplicon sequences.  Sequence 

alignments were then analysed by using the BLAST® (Basic Local Alignment 

Search Tool, National Centre for Biotechnology Information) tool that is embedded 

within the programme to identify similar alleles already identified and published 

within the GenBank programme. 

Manually aligned sequences from SeqMan Pro software containing the DRB exon 2 

segment (excluding the microsatellite) consisting of 263 base pairs were then 

entered into the software programme MacVector™ version 13.0.7 (Oxford Molecular 

Group).  In order to identify loci and corresponding alleles for H. moloch sequences, 
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MHC class II DRB sequences and the corresponding D6S2878 sequences from 

human (HLA) and chimpanzee (Patr) and one sequence from a common marmoset 

(Caja) were aligned within MacVector™ using the embedded ClustalW multiple 

sequence alignment option, with default settings.  All sequences were provided by 

Dr. Gaby Doxiadis from BPRC, Netherlands.  MHC sequences may also be 

downloaded from the Immuno Polymorphism Database (EMBL-EBI) (Robinson et al. 

2014a&b). 

 

To further understand the lineage and identify genes and alleles for H. moloch 

sequences all aligned sequences were added into the software programme MEGA 

version 5.2.2 (Tamura et al. 2013) in order to construct a phylogenetic tree.  The first 

step carried out to construct a tree was to select the best model that corresponded 

to underlying nucleotide sequences.  This was performed in MEGA and the model 

with the lowest Bayesian Information Criterion was selected as per the programme 

recommendations.  The resultant model to estimate evolutionary distances was the 

Kimura 2-parameter method (Kimura 1980) with an added rate variation modelled 

with a gamma distribution of 0.9 as per programme recommendation parameters.  

This evolutionary model analyses homologous nucleotide sequences incorporating 

different weightings of occurrences of transitions to transversions, and assumes that 

transversion substitutions are less frequent.  The methodology utilised to construct 

the phylogenetic tree was the neighbour joining method (Saitou & Nei 1987) which 

has been employed for other analyses of this genetic region (eg. Doxiadis et al. 

2007).  This algorithm creates tree topologies based on underlying matrices of 

pairwise distances between nucleotide sequences.  The method identifies pairs of 

operational taxonomic units by way of minimum evolution between differing tree 
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branches whose lengths are minimized at each step of clustering (Saitou & Nei 

1987).  A bootstrap test of 1000 replicates was also carried out to ascertain the 

percentage of resultant trees that clustered together in the final topology selected.   

4.2.6.1 Tests for diversity and selection 

To ascertain nucleotide diversity 𝜋  within sequences the software programme 

DNaSP version 5.0 was used (Librado & Rozas 2009).  

 

To test for evidence of possible selection within the MHC class II exon 2 fragment, 

rates for synonymous (dS) and non-synonymous (dN) substitutions were calculated 

within MEGA version 5.2.2 (Tamura et al. 2013).  This was performed using the 

methodology of Nei and Gojobori (1986) with application of the Jukes Cantor 

correction (1969).  The variance estimation was performed with 1000 bootstrap 

replications.  The method is a simpler approach than in some other methodologies 

whereby differing weighting methods are applied if a codon bears a synonymous 

versus a non-synonyous substitution.  It also ignores differential weightings applied 

in accordance with the number of evolutionary pathways that may occur between a 

pair of codons.  In the Nei and Gojobori (1986) method, weighting for all pathways is 

equal.  The application of Jukes and Cantor (1969) also simplifies the computations 

as this approach gives equal weighting to both transitional and transversional 

substitutions, and thus all nucleotide alterations may occur at equal frequencies.  

Although these combined methodologies are simplified in their approach, they yield 

comparable results with more complicated versions (Nei & Gojobori 1986).  In 

addition, these methods are useful for studies of MHC sequences which are 
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potentially highly polymorphic and thus harbour a higher number of substitutions 

than other areas of the genome.  

 

A simple test for positive selection was then performed by calculating the dN / dS 

ratio.  If the result is greater than unity then the sequences under assay are 

assumed to be under positive selection.  To further scrutinize the dN / dS ratio a one-

tailed z test was also performed in MEGA version 5.2.2.  Neutral selection assumes 

that dS is equal to dN and positive selection assumes that dN  is greater than dS and 

both use the Nei-Gojobori (1986) method with the Jukes Cantor correction (1969) for 

calculations.  As with dN and dS calculations, the calculation was performed with 

bootstrap variance estimates using 1000 replications.  The Z- test calculation is 

computed as follows: 

𝑍 =
𝑑! − 𝑑!

𝑉𝑎𝑟 𝑑! + 𝑉𝑎𝑟 (𝑑!)
 

 

 

 

 

 

 

 

 

 



 

 

123 

4.3 Results for MHC Class II DRB exon 2 analysis 

4.3.1 MHC alleles and hypothesised haplotypes 

From the 21 individuals analysed within the H. moloch population a total of 14 MHC 

class II DRB exon 2 alleles were detected.  These have been deposited in GenBank 

with the accession numbers: KJ701253 – KJ701266.  The alleles are named and 

designated in accordance with Immuno Polymorphism Database – MHC 

nomenclature rules (Ellis et al. 2006) and are shown in Table 15.  In accordance 

with the nomenclature rules, alleles for H. moloch are named Hymo. 

 

Table 15 - New Hylobates moloch (Hymo) MHC class II DRB exon 2 allele designations. 

Hymo-DRB1*04:01 Hymo-DRB*W096:01 

Hymo-DRB1*04:02 Hymo-DRB*W096:02 

Hymo-DRB1*04:03 Hymo-DRB*W097:01 

Hymo-DRB1*04:04 Hymo-DRB*W100:01 

Hymo-DRB*W094:01 Hymo-DRB*W098:01 

Hymo-DRB*W094:02 Hymo-DRB*W098:02 

Hymo-DRB*W095:01 Hymo-DRB*W099:01 

 

Alleles in Table 15 designated with the letter ‘W’ are stated as workshop numbers as 

there are currently no HLA lineage equivalents (Doxiadis et al. 2000).  This is 

illustrated in Figure 5 where the phylogeny of Hymo, chimpanzee (Patr) and human 

(HLA) are shown.  The majority of Hymo sequences form their own clades and 

hence do not share lineages with either primate species with which sequences are 

aligned.  There are however, four sequences that form a clade with the human allele 
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HLA-DRB1*04:01:01 and have thus been associated with this allele group.  The only 

other Hymo allele that forms a clade with both chimpanzee and human alleles is that 

of Hymo-DRB*W095*01.  However, the genetic distance within the moloch species 

is too far from the HLA and Patr sequences and thus does not receive a 

homologous designation.  Table 16 incorporates the D6S2878 microsatellite 

sequence and further illustrates the similarities between the H. moloch, 

chimpanzees and humans.  It shows the compound nature of the D6S2878 

microsatellite and how it modifies in accordance with particular DRB alleles, some 

length variability is found even within the same DRB-linked DNA repeat.  For 

example alleles designated Hymo-DRB*W095:01, Hymo-DRB*W094:02 and Hymo-

DRB*DRB1*04:01 all have slight variations in length in the first section (GT) of the 

D6S2878 microsatellite.   
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Figure 5 - Neighbour joining phylogenetic tree of Hylobates moloch (Hymo) D6S2878 and DRB 
exon 2 alleles aligned with chimpanzee (Patr) and human (HLA) sequences.  The percentage of 
trees after 1000 bootstrap replications are shown next to the branches.  The root sequence is 
from a common marmoset (Caja). 
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Table 16 -– Aligned DRB exon 2 alleles with their respective D6S2878 microsatellite constituent 
parts.  Numbers in brackets correspond to number of repeats.  Part 2 highlighted sections  

Part 1 Part 2 Part 3 Part 4
DRB alleles (GT)n mixed (GA)n (GC)n

HLA-DRB1*13:02:01 (GT)20,30,31 (GA)10-12CA(GA)3CA (GA)6 (GC)2

Patr-DRB1*03:07 (GT)11-13 (GA)17-23 (GC)2

HLA-DRB1*11:01:01 (GT)22-26 (GA)5CA(GA)3CA (GA)6 (GC)2

Patr-DRB1*03:02 (GT)23-28 (GA)5AA (GA)6 (GC)4

HLA-DRB3*01:01:02 (GA)3(GT)13,14 (GA)9,10GGAA(GA)2CA(GA)3GG GA (GC)3

Patr-DRB1*07:01 (GT)2GGTT(GT)14 (GA)4GC (GA)2 CCGC

HLA-DRB1*07:01:01 (GT)11 (GA)8GC (GA)2 CCGC

HLA-DRB1*15:01:01 (GT)15-20 (GA)5-6CA(GA)4CA(GA)3GGAA (GA)6 (GC)2

Patr-DRB1*02:01 GTGA(GT)19-22 (GA)12-14CA(GA)4CA(GA)3GGAA (GA)6-7 (GC)2

HLA-DRB1*01:03:01 (GT)16 AAGAAA (GA)4 (GC)3

HLA-DRB1*01:01:01 (GT)16,17 AAGAAA (GA)4 (GC)3

Hymo-DRB*W098:01 (GT)6CT(GT)8,9 (GA)14 GC

Hymo-DRB*W098:02 GTGA(GT)5GA(GT)7 (GA)2(CA)2 (GA)4 GC

Hymo-DRB*W099:01 (GT)6,7CT(GT)13 (GA)11-13 GC

Hymo-DRB1*04:01 (GT)21-24 GA(CA)2 (GA)4 GC

Hymo-DRB1*04:02 (GT)19 GA(CA)2 (GA)4 GC

Hymo-DRB1*04:04 (GT)21 GA(CA)2 (GA)4 GC

HLA-DRB1*04:01:01 (GT)21-22 (GA)15,16 (GC)2

Hymo-DRB1*04:03 (GT)12 (GA)2(CA)2 (GA)4 GC

HLA-DRB1*10:01:01 (CT)2(GT)16 (GA)8 (GC)3

Hymo-DRB*W100:01 (GT)4GA(GT)2TT(GT)5 (GA)12GGAA GA GC

Patr-DRB1*10:01 (GT)9-10 (GA)11-12)CA(GA)4AA (GA)5 (GC)3

HLA-DRB5*01:01:01 (GT)18-24 (GA)5-8GGAA(GA)4CA(GA)2GG GA (GC)3

HLA-DRB5*01:02:01 (GT)22 (GA)8GGAA(GA)4CA(GA)7GGAA(GA)4CA(GA)2GG GA (GC)3

Patr-DRB5*03:10 (GT)4GA(GT)7 (GA)10GGAA(GA)4CA(GA)2GG GA (GC)3

Patr-DRB5*03:01 (GT)4GA(GT)7 (GA)10GGAA(GA)4CA(GA)2GG GA (GC)3

Patr-DRB5*03:06 (GT)4GA(GT)7 (GA)10GGAA(GA)4CA(GA)2GG GA (GC)3

Hymo-DRB*W096:01 (GT)20 (GA)2(CA)2 (GA)4 GC

Hymo-DRB*W096:02 (GT)13 GA(CA)2 (GA)4 GC

Hymo-DRB*W097:01 GC(GT)20 GACA (GA)7 GC

Hymo-DRB*W095:01 (GT)20-25 GG(CA)2 (GA)4 GC

Hymo-DRB*W094:01 (GT)18 GG(CA)2 (GA)4 GC

Hymo-DRB*W094:02 (GT)18,19 GG(CA)2 (GA)4 GC

Patr-DRB6*01:08 (GT)4 GAGGGCA(GG)2TC(GG)3GCAG (GA)6

Patr-DRB6*03:05 (GT)4 GGGAGGA(GG)3GTGGA(GG)2CGATAGG (GA)8

HLA-DRB6*02:01 (GT)13-24 (GA)11-14

HLA-DRB4*01:01:01 GTAT(GT)9-11 (GA)9-14(CAGA)1,2GGAA (GA)5 GC(GT)1,2(GC)1,2

Patr-DRB4*01:04 GTAT(GT)4-5 (GA)8-9(CAGA)2(GA)10CAGATGAA(GA)3AA GA GCGT(GC)2

HLA-DRB7*01:01:01 (GT)2TT(GT)3T (GA)5(CA)6

Patr-DRB7*01:01 (GT)2TT(GT)3T (GA)6(CA)5  
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Table 17 illustrates hypothesised haplotypes present within the H. moloch 

population as defined by the primary stage of genotyping and then confirmed by 

sequencing.  Where a question mark is present it signifies that a microsatellite was 

detected from the genotyping but the alleles could not be confirmed by sequencing.  

This configuration intimates that there are 11 haplotypes, with haplotype 3 appearing 

with two configurations as they only differ by one allele at the first locus.  Thus they 

are designated as 3a and 3b.  The alleles DRB*W094:02 differs from DRB*W094:01 

by only 3 base pairs resulting in 1 non-synonymous amino acid alteration.  Figure 6 

shows the pedigree data of how each MHC haplotype has been inherited. 

 

Table 17 - Hymo DRB haplotypes defined by both exon 2 sequencing and DRB-D6S2878 
microsatellite (STR) genotyping.  

Hap. 1st locus STR 2nd Locus STR 3rd Locus STR 

1 DRB*W094:02 155 DRB*W096:01 159   

2 DRB*W094:02 155 DRB*W099:01 169 DRB*W098:01 161 

3a DRB*W094:02 155 DRB*W099:01 169 DRB*W097:01 166 

3b DRB*W094:01 155 DRB*W099:01 169 DRB*W097:01? 166 

4 DRB*W095:01 160 DRB1*04:01 163 ? 146 

5 DRB*W095:01 166 DRB*W099:01 169   

6 * DRB*W096:02 149 DRB*W100:01 162 DRB*W098:02 143 

7 DRB1*04:01 165 DRB*W099:01 167 DRB*W098:01 163 

8 * DRB1*04:02 157 ? 160   

9 DRB1*04:03 143 DRB*W099:01 169 DRB*W098:01 161 

10 DRB1*04:04 161 DRB*W099:01 169 DRB*W098:01 163 
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Figure 6 - Pedigree of MHC haplotypes.  Shaded boxes represent individuals not sampled 
within this study and estimated haplotypes inferred from parents 

 

 

 

Table 18 shows the MK values and the respective MHC haplotypes per individual.  

There are three unique haplotypes which as seen in mtDNA are not all attributable 

to individuals with the lowest MK values.  The latter part of the table however shows 

more common haplotypes within the groups with increasing MK values which shows 

that the MK approach has worked. 
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Table 18 - Mean kinship (MK) values and MHC haplotypes per individual.  Sorted by MK value.  
Highlighted cells represent unique haplotypes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Primate Ref 

 

Mean Kinship  
MHC 

Haplotypes 

H.mol8 -	 7 8 

H.mol21 -	 9 10 

H.mol17 -	 4 7 

H.mol6 0.0000	 1 7 

H.mol4 0.0000	 - - 

H.mol3 0.0000	 1 4 

H.mol5 0.0083	 1 3a 

H.mol1 0.0083	 6 ? 

H.mol7 0.0208	 3a 5 

H.mol15 0.0604	 3b 4 

H.mol16 0.0688	 4 7 

H.mol2 0.0875	 3a 5 

H.mol13 0.1083	 3a 4 

H.mol20 0.1167	 2 7 

H.mol19 0.1167	 2 4 

H.mol14 0.1271	 5 10 

H.mol12 0.1271	 3a 5 

H.mol11 0.1271	 3a 5 

H.mol9 0.1354	 1 2 

H.mol10 0.1479	 9 10 

H.mol18 0.1521	 2 10 
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4.3.2 MHC class II DRB exon 2 measures of diversity 

Figure 7 shows how allele frequencies are distributed within the Captive and Wild 

groups.  The most common allele to both groups is DRB*W099:01, but the 

frequency is greatest with in the Captive group.  There are alleles private to each 

group, DRB*W094:01, DRB1*04:03 and DRB1*04:04  within the Captive individuals 

and DRB1*W094:02, DRB*W096:02, DRB1*W098:02 and DRB*W100:01 within the 

Wild group.   

 

 

Figure 7 - Allele frequencies in the Hylobates moloch population 
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Figure 8 shows how haplotypes are distributed in the H. Moloch population.  The 

distribution of haplotype 3a is equal within both Captive and Wild groups.  There are 

fewer unique haplotypes in the Wild group as evinced by haplotypes 6 and 8, 

however the Captive group maintain haplotypes 2, 3b, 9 and 10.   

 

 

Figure 8 - Haplotype frequencies in the Hylobates moloch population 

 

 

Table 19 illustrates the summary statistics of allelic variation and the number of 

haplotypes observed within each group.  Despite a lower number of individuals (n=7) 

a greater number of alleles are observed with the Wild group.  Diversity at the 

nucleotide sequence level is also greater within the Wild group by both number of 

polymorphic sites and 𝜋.  The Captive group harbour a greater number of purported 

haplotypes with a total of 9. 
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The results for signs of selection at the MHC DRB exon 2 loci are illustrated in Table 

20.  There is a higher rate of non-synonymous substitutions within alleles found 

within the Wild group.  The dN>dS Z tests for positive selection were not significant. 

 

Table 19 - Measure of sequence diversity within Hylobates moloch population. n is the number 
of individuals; π is nucleotide diversity. 

 
n 

No. 
alleles 

No. polymorphic 

sites 
π ± (s.d) 

No. haplotypes 

Wild 7 11 47 0.064 

± 0.006 

7 

Captive 13 10 36 0.054 

±0.005 

9 

 

 

Table 20 - Rates of synonymous (dS) and non-synonymous (dN) substitutions (± S.E ) in DRB 
exon 2 for Hylobates moloch population, including a positive selection (dN>dS) one tailed z-test. 

 n dN dS dN / dS Z p 

Wild 7 0.061  

± 0.012 

0.088 

± 0.025 

0.693 -1.080 NS 

Captive 13 0.049 

± 0.012 

0.082 

± 0.021 

0.596 -1.409 NS 
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4.4 Discussion 

4.4.1 Architecture of Hylobates moloch MHC class II DRB exon two, alleles 

and haplotypes 

This study is the first exploration into the genetic make up of the Hylobates moloch 

species within the MHC.  Furthermore, the MHC class II DRB exon 2 alleles were 

amplified and sequenced from non-invasively collected faecal samples.  Although 

this is not the first study to use this source type of DNA (e.g. Lukas et al. 2004; Wan 

et al. 2006) it is promising that sufficient quantity and quality of DNA was present.   

 

Although there are 8 individuals in the wild-born group, results were only procured 

from 7 individuals and failure of the target amplicon was as a consequence of the 

low DNA content extracted for that particular individual.  As stated in the materials 

and methods section, 48 or 96 clones were sequenced per individual.  However, not 

all recombinant clones were successful in each individual and therefore in some 

cases the number of successfully sequenced amplicons was lower.  However, in the 

case of the lowest number of sequences obtained (7) a total of 5 alleles were 

detected which exceeded the lowest count of 3 alleles that was evinced in a different 

individual.  Unsuccessful sequencing results were deemed to be those that were 

markedly shorter in length than comparable sequences and of course those that 

provided no information at all.  Similar low counts of resultant sequences from 

recombinant clones were observed in a study of the bank vole (Myodes glareolus) 

(Babik & Radwan 2007) yet the overall allele count procured was 15. 
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Within the H. moloch population as a whole, the lowest number of alleles present 

per individual was three and the greatest number was five.  Allele designation for 

Hymo alleles was performed by analysis of levels of similarity of DRB exon two 

together with adjacent D6S2878 microsatellite sequences, with recognized MHC 

DRB alleles.  In addition, designation was also carried out by how alleles clustered 

within the phylogenetic tree with human (HLA) and chimpanzee (Patr) sequences 

(as shown in Figure 5) (Doxiadis et al. 2000).  The only DRB region that Hymo 

sequences clustered with and showed sufficient sequence similarity to known HLA 

alleles was within DRB1.  Therefore four alleles belonging to the same group as 

HLA-DRB1*04:01:01 were designated as Hymo-DRB1*04:01 to Hymo-DRB1*04:04  

with the latter number designation indicating that although they cluster with the *04 

allele group each individual sequence differs by at least one nucleotide substitution 

that has resulted in a non-synonymous substitution.  There are only two other Hymo 

alleles that share branches with HLA sequences.  The first is designated Hymo-

DRB*W095:01 that has its own branch linked to two Patr-DRB6 and one HLA-DRB6 

gene, however the sequence disparity as illustrated by the shortened branch length 

rendered identification of the Hymo locus as unknown.  Furthermore, HLA- and Patr-

DRB 6 genes have been identified as pseudogenes as a consequence of both a 

missing component within exon one that codes for the leader peptide and the 

presence of stop codons (Doxiadis et al. 2000).  By utilising HLA-DRB1*01*01*01 as 

a consensus sequence from which to work all Hymo alleles were analysed within the 

Open Reading Frame Finder (NCBI 2014) to search for the presence of stop 

codons.  If the Hymo allele does indeed belong to the DRB6 locus group it was 

interesting to note that no stop codons were detected.  Although it is not possible to 

state for certain as mRNA analysis was not possible owing to the utilisation of faecal 
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samples for this study, the absence of stop codons may indicate that this allele is 

expressed within the Hylobates moloch species.  Furthermore, the DRB associated 

microsatellite sequence for this allele contained a fourth part (GC) which is absent 

within the pseudogenes both in the human and chimpanzee sequences.  The 

second allele that forms a separate clade with an HLA allele is Hymo-

DRB*W100:01.  Despite sharing this clade, this allele was also classified with a 

workshop designation, however from its placement it may be deduced that this is 

also an allele from the DRB1 locus.  All remaining Hymo alleles form clades that 

indicate a separate lineage from the HLA and Patr sequences as they solely contain 

H. moloch designations.  

 

The overall haplotypic structure for the moloch species appears to reflect a structure 

more akin to that found in humans than that reported for macaques (Macaca 

mulatta) (Doxiadis et al. 2007) and chimpanzees (Pan troglodytes spp.) (de Groot et 

al. 2009).  The number of loci per haplotype has a maximum count of three, 

whereas, the macaques (M.mulatta) and chimpanzees (P.troglodytes spp.) exhibited 

haplotypes that contained up to a maximum of 6 loci (de Groot et al. 2009; Doxiadis 

et al. 2007).  A striking difference however between H. moloch and human DRB 

exon two architecture is the number of alleles present per locus.  For example, the 

human species has been reported to maintain 542 alleles at the DRB1 gene alone 

(Busch, Waser & DeWoody 2008).   

 

 



 

 

136 

4.4.2 MHC Class II DRB variability 

There is no specific published delineation with regards to DRB allele counts within a 

population or species that categorises them as low or high.  Nevertheless, there are 

reports where allele counts within populations clearly illustrate a depauperate allele 

count at the DRB region (Sommer, Schwab & Ganzhorn 2002).  The causes and 

effects of this occurrence are varied.  

 

In 1992, Slade observed that MHC diversity in southern elephant seals (Mirounga 

leonina) was low.  It was hypothesised that the saline aquatic habitat hindered 

pathogen survival and in response the seals required a limited number of alleles to 

combat possible infections.  Although Slade (1992) referred to low sequence 

polymorphism within his study, Hoelzel et al. (1999) explored allele count and 

variability at the DQB locus in both the same and three other species of seal and the 

maximum number of observed alleles within a population of 109 individuals totalled 

just 8 sequences.  Low allele counts have also been observed within populations 

that are ecologically isolated either by physical barriers or as a consequence of their 

own social and mating systems.  For example, the critically endangered Malagasy 

giant jumping rat (Hypogeomys antimena), a monogomous rodent species that lives 

a solitary lifestyle was found to have just 5 alleles (identified from 22 individuals) at 

the DRB region (Sommer, Schwab & Ganzhorn 2002).  As with the prior mentioned 

marine mammals, reduced exposure to parasites, in this instance as a consequence 

of reduced lateral transfer of pathogens from their mode of living is one of the 

reasons postulated to contribute to this low allele count.  The endangered 

Galápagos penguin (Spheniscus mendiculus) (Bollmer, Vargas & Parker 2007) and 

island populations of black-footed rock-wallabys (Petrogale lateralis lateralis) 
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(Mason, Browning & Eldridge 2011) have also been observed to harbour low allele 

counts at the DRB and DAB MHC regions respectively.  In both studies, the 

populations in question have a narrow ecological niche and in intra-species 

comparisons with their conspecifics whose distributions are not limited to the 

confines of an island, they enjoyed a greater MHC allele count (Bollmer, Vargas & 

Parker 2007; Mason, Browning & Eldridge 2011).  It may be surmised that a 

contributing factor to a contraction in the number of alleles of island inhabitants 

mirrors the examples within the marine mammals and the Malagasy rodent, in that a 

greater scope of alleles at the MHC class II are not required as the suite of 

pathogens that interact with these species is smaller in comparison to conspecifics 

within more exposed habitats.  Another explanation may also be that gene flow is 

restricted in such constrained habitats.  Hylobates moloch is an endemic island 

species and in the previous chapter regarding microsatellites a reduced level of 

alleles was observed when compared to mainland H. lar species (Chambers et al. 

2004).  There are no data available to ascertain if this is also the case at the MHC 

DRB region however.   

 

Babik et al. (2009) studied two great crested newt populations (Triturus cristatus) 

inhabiting refugial and post-glacial areas.  The post-glacial population harboured just 

two DAB alleles, in comparison to the refugial population that maintained 24 alleles.  

One of the interesting factors of the study, was that the populations with the least 

number of alleles had proliferated for more than 10,000 years.  The grey seal 

(Halichoerus grypus) is reported to harbour a low number of MHC class II alleles at 

the DQB locus (de Assunção-Franco et al. 2012).  Within a large breeding 

population of grey seals residing on the Isle of May in the UK, a total of 5 alleles 
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were detected in pups and adults.  It was found that seals had a greater chance of 

survival if they had all 5 DQB alleles, however the strongest predictor of survivorship 

was found in one allele in particular.  Of 284 dead pups assayed the majority did not 

possess this allele and thus it was deduced that it plays a vital role in combatting 

pathogenic infection.  Thus, in this example it is the specificity of the allele itself that 

appears to confer resistance.  A similar observation was made in the talas tuco-tuco 

rodent (Ctenomys talarum) where of the 9 alleles identified within 87 individuals, it 

was as a consequence of a particular group of alleles (referred to as A within the 

study) that affected susceptibility of individuals to two pathogenic parasites (Cutrera, 

Zenuto & Lacey 2011).   

 

It seems that there are species that illustrate low variability at the MHC class II, yet 

do not appear to be affected and then others that show signs of fitness vulnerability 

as a consequence.  There also cases where specific alleles have been shown to be 

of benefit (de Assunção-Franco et al. 2012).  This is particularly pertinent for captive 

breeding and perhaps even more so for reintroduction programmes.  From 

examples provided, there appears to be habitat specific alleles that function 

proficiently within their areas, likely as a consequence of the pathogens present in 

these locations.  However, for animals that are reared in captivity and earmarked for 

release back into the wild, pathogen pressures possibly present within the captive 

environment may differ to that in the wild.  Although some examples such as the 

great crested newt proliferated over hundreds of generations with just 2 MHC class 

II alleles an alteration in ecological conditions and therefore possible pathogen 

presence, within their habitat could result in an increase in mortality.  So to reference 

the results from analyses of the Hylobates moloch population as a whole (both 
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captive and wild), a total of 14 alleles were detected from 20 of the 21 individuals.  

This count may mean that individuals are equipped to respond to a number of 

different pathogens whether in captivity or their endemic habitat.  However, when 

the count of alleles is viewed within each the two groups of Captive and Wild H. 

moloch, there are 10 alleles within the Captive group (n=13), and 11 alleles within 

the Wild group (n=7).  Although it appears to only be a loss of one allele, this lower 

count within the Captive group was found in almost double the number of individuals 

than that within the Wild.  Further reductions of allele count in future generations 

born in the captive environment would not be a desired trend.  Both Captive and 

Wild groups harbour rare alleles, and this occurs not only within their respective 

groupings, but in some cases only occurring within one individual.  The wild alleles 

not found within the Captive group are: DRB*W100:01, DRB*W098:02, 

DRB*W096:02 and DRB1*04:02.  Captive alleles not found within the wild group are: 

DRB*W094:01, DRB1*04:03 and DRB1*04:04.  The frequencies of all alleles within 

both groups are illustrated in Figure 7.  Although it is encouraging that the group as 

a whole have a moderate allele count, taking into consideration the differential of 

rare alleles between the Captive and Wild groups would be deemed to be of value 

when selecting individuals for breeding.  As yet, the role of each allele is unknown 

(i.e the binding capabilities harboured within each allele) and furthermore for H. 

moloch the pathogenic threats within their native habitat are unknown.   

 

DRB alleles are transmitted from generation to generation via haplotypes.  The 

haplotype frequencies within the Captive and Wild groups are illustrated in Figure 8.  

Two haplotypes are specific to the wild-born group, one of which contains 75% of 

alleles only found within one individual.  The four haplotypes specific to the captive-
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born group are composed of alleles present in other haplotypes shared in both 

groups.  This occurrence of identical alleles found at differing loci was observed in 

greater prairie chickens (Tympanuchus cupido) and researchers called the 

phenomenon “drift- across-loci hypothesis” (Eimes et al. 2011).  The overall effect of 

this occurrence is that copy number variation of alleles within the population is 

reduced.  Haplotypes 9 and 10 contain derivations of the DRB1 gene only found 

within captive individuals and haplotype 3b contains DRB*W094:01 which is also 

only found within the captive group and furthermore, only found within one individual.  

Haplotype 3b differs from 3a via this rare allele only via one non-synonymous 

mutation altering the amino acid from Tryptophan to Valine.  Although only found 

within one individual the variant of this allele was found in multiple recombinant 

clones derived from two separate PCR reactions and therefore, unlikely to be a PCR 

artefact.   

 

What was apparent from both the D6S2878 genotyping results and the inferred 

haplotypes, is the father for H.mol15 that is recorded within zoological records differs 

to results obtained here.  This information was also discovered in the microsatellite 

pedigree analysis.  As haplotypes are inherited on a Mendelian basis, it is expected 

that a haplotype from the father be present within progeny.  However, H.mol15 

maintains haplotypes 3b and 4, yet the father has 3a and 5.  This may be as a 

consequence of mutation but when viewed in conjunction with microsatellite results 

the entry may be incorrect.  A further explanation may be owing to contamination of 

faecal samples, or incorrect labelling of samples at the collection stage.  However, if 

upon further analysis, which is advocated here, a differing father from current 

records is confirmed then studbook entries should be amended.  This is of great 
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importance, as breeding decisions will be made based on an assumption of 

relatedness between particular individuals that may be incorrect. 

 

With regards to haplotype counts per group, the Captive group yield a greater overall 

sum however the differential between the two groups is small (2) when considering 

the number of individuals assayed (wild n=7, captive n=13).  What is observed is 

high frequencies of two haplotypes in particular (4 and 10) within the Captive group 

as a consequence of Mendelian inheritance from related individuals.  Whilst 

common alleles within a population have been reported to be maintained via sexual 

selection of partners (Bonneaud et al. 2006), which may be effected as a means to 

combat a common pathogen, or as a strategy to avoid the disruption of co-adapted 

genes this can not be confirmed here.  Caution should be taken by breeding 

individuals with identical haplotypes if it results in a loss of rare alleles.  The mean 

kinship values are greatest in individuals who harbour common haplotypes.  

However, it is not entirely fault free as unique haplotypes are present within 

individuals who have an MK value that is greater than 0.000.   

 

Copy number variation has been detected in some species such as the Tasmanian 

devil (Sarcophilus harrisii) (Siddle et al. 2010) and rhesus macaque (Macaca 

mulatta) (Otting et al. 2005) within the MHC class I region.  At the levels observed it 

was postulated to be a mechanism against pathogenic infections by having varied 

gene numbers and combinations as the actual nucleotide sequence variation 

evinced was low.  Although there is evidence in H. moloch of possible duplication of 
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loci, with particular alleles appearing in multiple haplotypes, the extent was not as 

great as that within the aforementioned species.   

 

Within the 14 alleles observed within the H. moloch population as a whole, the 

classification of some DRB alleles are indicative of a shared lineage.  For example 

there are four variants of the DRB1*04 allele group, two of DRB*094, *096 and *098.  

The captive-born group maintain 3 of the 4 DRB1 gene variants and amino acid 

substitutions between all four alleles total 9 variations.  Similarly both variants of the 

Hymo-DRB*W094 allele are found in the captive-born group whereas only one 

(Hymo-DRB*W094:02) is present within the wild-born.  Although each allele variant 

is a different form of immune defence from the Captive group it may be deduced that 

the DRB alleles present within this group are derived from fewer loci than within the 

Wild group.  This is only a hypothesis however, as the loci for the Hymo alleles are 

as yet unidentified.    

 

This nucleotide diversity at the MHC class II DRB region is much greater than 

evinced in the mitochondrial DNA analysis of the H. moloch population, which was 

expected owing to the normally high levels of polymorphism within this genetic 

region.  In isolated populations of brown trout (Salmo trutta) nucleotide diversity 

averaged over all populations assayed was 0.0543 derived from 24 alleles (Campos, 

Posada & Morán 2006).  The nucleotide diversity observed within the brown trout is 

almost identical to the Captive group of H. moloch.  This example of a population 

living in isolation can in some cases be akin to maintaining a population within the 

captive environment.  This correlation is made and is deemed to be applicable to the 
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H. moloch population as the number of individuals available for captive breeding can 

be small, in fact it is just 48 individuals for the moloch gibbons.  Thus in some cases 

breeding partners are limited in number, rather like isolated populations.  The 

Galápagos penguin (Sheniscus mendiculus) exhibited very low variability at the 

class II DRB region maintaining just 3 alleles and perhaps not surprisingly nucleotide 

diversity was just 0.013.  With 14 alleles observed and a greater value of π the 

moloch gibbons assayed here showed a greater genetic diversity.  An interesting 

observation within a species previously shown to harbour a low count of alleles 

within the MHC, was in the Bengal tiger (Panthera tigris tigris) (Pokorny et al. 2010).  

The study in question is one of the few studies that approach gene variability 

between captive and wild populations of the same species.  They observed that 

within captive (n=5) and wild (n=11) Bengal tigers only 4 alleles were maintained at 

exon 2 of the DRB, however the diversity of sequences was greater than evinced 

with H. moloch with a value of 0.097 (averaged over both captive and wild groups).  

As observed with H. moloch with there was no significant differentiation between the 

two groups.  This sequence variability may be the species’ mechanism for 

counteracting pathogenic threats and hence why nucleotide diversity appeared to be 

high with a low allele count.  With a similar number of individuals assayed, the H. 

moloch population as a whole may utilise a greater number of alleles rather than 

sequence polymorphisms to perform the same function. 

 

4.4.3 Tests for selection using dN and dS ratios 

For both the Wild and Captive H. moloch groups rates of non-synonymous 

substitutions were lower than the synonymous results (wild: dN 0.061 and dS 0.088, 

captive: dN 0.049 and dS 0.0817).  The synonymous substitutions also referred to as 
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silent substitutions do not culminate in a change of amino acid and are therefore 

often referred to as a neutral genetic alteration, although selection has been shown 

to occur at these sites within mammals (Stoletzki & Eyre-Walker 2011).  A test of 

selection utilising these ratios is the dN / dS  ratio, which if resulting in a value greater 

than unity, it is purported to indicate that the genetic region under assay is under 

positive selection.  The dN / dS  ratio for both groups of H. moloch did not exceed 1 

and were 0.693 for the Wild and 0.596 for the Captive individuals.  As results for 

both groups are lower than unity, the results may be interpreted that there is some 

evidence of negative or purifying selection occurring at this genomic region within 

the H. moloch population as a whole.  In one sense, this is not entirely unfeasible as 

the MHC is a very important genomic region with regards to immune response and 

as Stoletzki and Eyre-Walker (2011) noted, selection to reduce mutation at such 

important regions may maintain alleles required for optimum fitness or avoid fixation 

of alleles that may be detrimental for fitness.  Although the ratios may indicate 

purifying selection, it is not deemed that this is a phenomenon occurring within the 

study population here.  The first reason is that the sample group is small and a much 

wider array of individuals would be required to ascertain this, a factor highlighted by 

Ellengren (2005).  Furthermore, the results were not statistically significant.  The dN / 

dS  ratio is stated to be used with caution as it was created for inter-species 

comparisons of genetic regions and not for within-species studies (Kryazhimskiy & 

Plotkin 2008).  The rationale behind this being that comparisons of evolutionary 

fixation events are more reliable than if utilised with one species as substitutions are 

deemed to be true fixation events and not transient polymorphisms.  However, this 

ratio is used often for intra-species, for example in the bank vole (Myodes glareolus) 

(Babik & Radwan 2007), great crested newt (Triturus cristatus) (Babik et al. 2009), 
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striped mouse (Rhabdomys pumilio) (Froeschke & Sommer 2005), chacma baboon 

(Huchard et al. 2006), frogs (three families, Centrolenidae, Hylidae and Ranidae) 

(Kiemnec-Tyburczy et al. 2012) and black-footed rock wallaby (Petrogale lateralis 

lateralis) (Mason, Browning & Eldridge 2011).  

 

4.5 Conclusions 

There is no significant differentiation between the wild and captive-born groups of H. 

moloch with regards to allele and haplotype frequencies. The levels of allelic 

diversity are lower in the captive-born versus the wild-born groups as demonstrated 

by a lower count of polymorphic sites and from nucleotide diversity.  This is owing to 

an increased frequency of particular haplotypes within this captive individuals.  With 

the knowledge of which haplotype each individual has, this information can be 

incorporated into pairing decisions with the aim of maintaining diversity and rare 

alleles.  

 

There was no evidence that the captive environment has impacted on this genetic 

region with tests for selection at the MHC DRB exon 2 not statistically significant.  

With a limited number of generations of H. moloch in the sample group this is not a 

surprising outcome, but data provided can serve as a baseline from which to work 

for future progeny born in captivity.  The dN> dS z-test yielded negative values within 

both groups.  The value was greater in the Captive group and by looking at the rate 

of non-synonymous mutations observed within this group, which is markedly lower 

than in the Wild group it is evident why such a negative value has been obtained as 

synonymous rates within the groups are very similar.   
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The information within the MHC work reinforced findings within the microsatellite 

section in that the sire for h.mol15 may not be h.mol7 as stated in zoological 

records.   
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5 Chapter five - Summation of Findings and Recommendations  

5.1 Mean kinship versus genetic analysis 

Evaluating mean kinship values versus information obtained from genetic analysis it 

is evident that the proxy measure is both inexpensive and a good basis from which 

to start selecting individuals for captive breeding.  The results for the nuclear marker 

of microsatellites yielded comparable results which could mean that future work 

could exclude this step and save both time and money.  However, the genetic 

analysis did highlight a factor that renders data within the mean kinship as incorrect 

when one of the fathers appeared to be incorrectly stated in the pedigree.  This not 

only affects the individual in question, but has a knock on effect on all MK values 

thereafter as the measure incorporates how the group as a whole are related to one 

another.  For the MHC analysis, commonality of haplotypes was reflected in 

individuals with greater MK values which once again shows the usefulness of the 

MK method.  However, it was not without fault and if the values were taken as a 

means to select individuals for breeding and reintroduction there would be a 

possibility that rare alleles be lost as they appeared in individuals with intermediate 

MK scores.  The mtDNA results were not in line with prediction of MK values.  This 

particular marker is only inherited maternally and it is perhaps for this reason MK 

has not worked here particularly well.  

 

5.2 General summation 

Evidence within the mtDNA region showed a contraction of variability in captive-born 

individuals.  Although this does not yet reflect in nuclear DNA (as calculated by 

microsatellites) it is not a trend that a breeding programme would wish to see.  But 
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as Morin et al. (2004) stated, a better understanding of fitness within a population 

may be derived from markers known to be under selection, such as the MHC DRB 

alleles analysed here as it provides information with regards to selective adaptation 

at genes that are directly involved in fitness.  The 14 alleles found within the two 

groups confer resistance against pathogenic threats and equipped with the 

knowledge of each individuals haplotypes at this region, detailed decisions can be 

made with regards to pairing individuals.  This would prevent the loss of rare alleles 

which may provide a valuable role in the wild environment.  The results from the 

three genetic analyses address not only inbreeding and genetic diversity issues that 

proxy measures provide, but they provide information for most of the genetic 

problems that may arise as a consequence of the captive environment.  The data 

may also be applied in post-release monitoring purposes by analysis of faecal 

samples matched to results obtained here. 

Despite the fact that the addition of molecular studies to captive breeding and 

reintroduction programmes provides both a greater array and quality of information it 

is not routinely carried out and is underrepresented within the literature.  For 

example, a literature review that focused on the genetic aspects of reintroduction 

programmes found just 15% of over 450 papers referenced the subject between the 

years of 1990 and 2005 (Seddon, Armstrong & Maloney 2007).  A further publication 

found that from a literature search of ex-situ conservation programmes that 

incorporated genetic analyses between the years 1979 to 2010, only 188 studies 

had been published (Witzenberger & Hochkirch 2011).  
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Ultimately, captive breeding and more importantly, reintroduction programmes are 

two conservation strategies carried out to safeguard endangered species so that 

they may survive for future generations to come.  They are complex, costly and 

time-consuming.  Costs can vary from species to species, from € 14,467 published 

for the lacertid lizard (Psammodromus algirus) the costs of which were stated to 

cover a captive breeding a subsequent 50 day post-release monitoring programme 

(Santos et al. 2009).  The California condor (Gymnogyps californianus) re-

introduction programme which by 1993 had been in place for 14 years had up to that 

point cost in the region of $20,000,000 (Cohn 1993).  Despite the apparently low 

costing in the first example above, expenses from the condor programme are more 

akin to the average running costs which have been stated to be in the region of 

$500,000 per annum (Snyder et al. 1996).  When such large investments are made, 

ensuring high survival rates is key.  Therefore, although it is acknowledged that 

budgets will have to include an extra provision, but by implementing genetic 

analyses as carried out within this study of H. Moloch breeding and conservation 

managers would procure a depth of knowledge of the individuals and indeed the 

species that surpasses proxy measures of inbreeding, or studbook data.   

 

5.3 Mitochondrial DNA 

Further study of the mtDNA molecule can be of value to the wider scientific 

community as this is a marker of choice for phylogenetic studies and thus be applied 

to studies of primate evolution and phylogeny.  This is pertinent to Hylobates as 

there are differing opinions as to the number of species pertaining to the genus.  The 

HV-1 region of the mtDNA is a highly mutable genetic region and thus provides 

information as to genetic variability within a differing time scale than within nuclear 
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DNA.  From a laboratory point of view, this molecule is easy to manipulate.  

Although it provides genetic information from a uniparental perspective, contractions 

of variability at this molecule may be indicative of inbreeding beyond the mtDNA 

region, although this was not evinced here at least within the microsatellites.  

Results from the moloch gibbons illustrated that just two haplotypes within 

individuals born within the captive environment were maintained.  The comparison 

with wild individuals confirmed that this is not as a consequence of a life history trait 

but rather from decisions taken within the captive breeding process.  This was also 

evinced in the results showing that the captive-born and wild-born groups had 

undergone a significant level of population differentiation at this genetic region, 

despite the fact that they are managed as one entire population.  Thus, females may 

be chosen for future generations who do not maintain these two haplotypes and 

improve levels of genetic variability at this region.  Although the captive breeding 

programme within tigers (Luo et al. 2008) has been carried out with the aims of 

achieving greater variability at this region, it is not advocated here that this be 

carried out to the detriment of losing variability at other genomic regions, the 

breeding for particular alleles as discussed by Lacy (2000).   Information from both 

microsatellites and the MHC DRB region should also be considered as below. 

 

5.4 Microsatellites, the second neutral marker 

The differentiation between the wild and captive-born groups at the mtDNA level did 

not appear to have occurred with genomic DNA.  This was deduced from the second 

neutral marker analysed of microsatellites that were taken from 11 chromosomes of 

the 22 present with the H. moloch species.  Using the Mendelian inherited 

microsatellites, the desired levels of heterozygosity that captive breeding 
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programmes aim to conserve can physically be checked.  Standardized 

heterozygosity was fairly high in both wild and captive-born groups.  The molecular 

information gathered here also yielded a vital piece of information with regards to the 

species studbook, as results indicated that two fathers may be incorrectly assigned 

in zoological records. 

 

5.5 The major histocompatibility complex class II DRB region 

The MHC class II DRB region is extremely important for adaptive immune responses 

within individuals (de Groot et al. 2009; Mason, Browning & Eldridge 2011).  The 

second exon analysed here contains the peptide binding region for extra-cellular 

pathogenic binding (Doxiadis et al. 2007).  Therefore, the information derived from 

this genetic region was not only beneficial from a variability viewpoint, with high 

levels desired, but also owing to its direct links to fitness.  The alleles present within 

the wild-born individuals can now be monitored so as to ensure that they are 

promulgated in future generations and this is most important for individuals who will 

take part in the re-introduction programme.  As seen in mtDNA, high frequencies of 

particular haplotypes were also seen in the MHC results.  If this were to continue 

there is the possibility that rarer alleles be lost within the captive population, that 

may be of great importance within the wild habitat. 

 

5.6 Recommendations 

Owing to the large amount of investment required to orchestrate and run a captive 

breeding and reintroduction programme, it is surprising that genetic aspects are not 

incorporated on a more frequent basis owing to the fact that it is known that 
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inbreeding and losses of diversity have the potential to negatively impact on success 

rates.  Thus, it is recommended here that molecular analysis of individuals within 

captive breeding programmes if incorporating release strategies to the wild, be 

included on a routine basis so as to maximise fitness levels for those in the 

programme and to wild conspecifics.  For the moloch groups analysed here, a 

continuation of the strategy employed to include all individuals in the programme to 

provide information at the individual level but also to monitor deviations in genomic 

DNA from wild-born to captive-born individuals observed here.  Although data was 

insufficient to draw conclusions with regards to what type of mate choice mechanism 

H. moloch employs, further work is advocated to be carried out as this has the 

benefit to pair individuals with less aggression or stress and also be more akin to the 

decision making that would occur in their natural habitat.  
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Appendix I - Results summary information per individual 

 

Primate Ref mtDNA 

Haplotype 
Mean Kinship  Standardised 

Heterozygosity 
MHC 

Haplotypes 

H.mol1 Hap_12 0.0083	 1.195 6 ? 

H.mol2 Hap_13 0.0875	 1.165 3a 5 

H.mol3 Hap_18 0.0000	 0.698 1 4 

H.mol4 Hap_26 0.0000	 1.072 - - 

H.mol5 Hap_2 0.0083	 0.891 1 3a 

H.mol6 Hap_18 0.0000	 0.154 1 7 

H.mol7 Hap_26 0.0208	 1.210 3a 5 

H.mol8 Hap_21 -	 1.210 7 8 

H.mol9 Hap_26 0.1354	 1.132 1 2 

H.mol10 Hap_26 0.1479	 1.163 9 10 

H.mol11 Hap_26 0.1271	 0.805 3a 5 

H.mol12 Hap_26 0.1271	 0.926 3a 5 

H.mol13 Hap_21 0.1083	 0.775 3a 4 

H.mol14 Hap_26 0.1271	 1.163 5 10 

H.mol15 Hap_21 0.0604	 1.252 3b 4 

H.mol16 Hap_21 0.0688	 0.678 4 7 

H.mol17 Hap_26 -	 1.073 4 7 

H.mol18 Hap_26 0.1521	 1.073 2 10 

H.mol19 Hap_26 0.1167	 0.800 2 4 

H.mol20 Hap_26 0.1167	 1.065 2 7 

H.mol21 Hap_26 -	 1.028 9 10 
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Appendix II – Nucleotide sequences for mtDNA haplotypes and DRB 

exon 2 alleles.  Protein sequence for DRB exon 2 allele
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