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Abstract 
 
A change in environmental conditions often leads to changes of physiology and biochemical 

composition of microalgae. Temperature and light intensity are important environmental factors 

regulating the growth of microalgae. In this study, the elemental and biochemical composition 

were measured in 2 marine microalgae under different temperatures and light intensities in 

nutrient replete and deplete conditions. The effect of temperature was observed in the marine 

haptophyte Emiliania huxleyi (CCMP 1516) at nutrient replete semi-continuous cultures. 

Triplicate cultures were incubated different temperature from 14 to 22oC and under photon flux 

densities (PFD) 600 μmol photons m−2 s−1. The growth rate (GR) of E. huxleyi increased with 

temperature. Cell volume varied with temperature, being about 40% smaller at higher 

temperature (22oC). Cellular chlorophyll a (chl a), nitrogen, phosphorus, and carbon contents 

were also lower at 22oC than other temperatures. Protein, total amino acids from free and 

combined amino acid, and total pigments [mol accessory pigment (mol chl a)-1] were decreased 

with increasing temperature; however, the opposite response was observed in fatty acids. In 

addition to the effect of combined temperature and light intensity was investigated in the marine 

diatom Thalassiosira weissflogii (CCMP 1056) under nutrient-limited semi-continuous cultures. 

The cultures were incubated at 16 and 26°C and PFD of 50 ± 10 (low light; LL) and 500 ± 10 

(high light; HL) μmol photons m−2 s−1. HL incubated-cultures were diluted at 50% day-1 and LL 

incubated-cultures were diluted at 25% day-1. The GR were largely set by dilution rate (nitrogen 

limitation), but not by temperature and irradiance. The GR were around 0.72 d-1 in HL placed-

cultures and 0.32 d-1 in the LL placed-cultures. Temperature did not affect mean cell size, 

whereas mean cell size decreased with increased irradiance by 20 to 29 %. Both temperature 

and irradiance influenced cellular chl a, carbon and chl a specific light absorption. Cellular 

nitrogen and phosphorus varied with temperature and irradiance. Protein, total amino acid (free 

and combined amino acid) and total fatty acid increased with increased temperature and 

irradiance; however, the opposite response was found in carbohydrate. Overall, temperature 

and light affected elemental and biochemical composition in 2 marine microalgae. Both 

relationship of the chlorophyll (chl):carbon (C) and RNA:protein ratio and growth rate in E. 

huxleyi under variable temperature positively supported a bio-optical and growth rate hypothesis 

respectively. However, the opposite response was found in T. weissflogii. Instead the C:chl and 

RNA:protein ratio and growth rate in T. weissflogii under variable irradiance positively supported 

a bio-optical and growth rate hypothesis. 
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 Abbreviations 

AA Amino acid 

aChl Chlorophyll a specific absorption coefficient 

AQC 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate  

Beta C Beta carotene  

BSA Bovine serum albumin  

Chl a Chlorophyll a 

Chl c Chlorophyll c 

CHO Carbohydrate  

CLSM Confocal laser scanning microscope  

CTAB Cetyl-trimethyl-ammonium-bromide  

DAD Diode array detector  

DD Diadinoxanthin 

DHA Docosahexaenoic acid 

DMSO Dimethyl sulfoxide 

DNA Deoxyribonucleic acid 

DT Diatoxanthin 

E The molar extinction coefficient 

Ek Light saturation index (µmol photons m-2 s-1) 

EPA Eicosapentaenoic acid  

EXPO Exponential phase 

FA Fatty acid 

FAME Fatty acid methyl ester 

Fuco Fucoxanthin 

GC/MS Gas chromatography/mass spectrometer 

GR Growth rate 

GRH Growth rate hypothesis 

Hex-fuco 19’-hexanoyloxyfucoxanthin  

Hex-kfuco 4-keto-19’-hexanoyloxyfucoxanthin  

HL High light 

LL Low light 

MUFA Monounsaturated fatty acid 

NR Nile red 

P m
Cell Cell-specific light-saturated photosynthetic rate  (pg C cell-1 h-1) 

P m
Chl Chlorophyll a-specific light-saturated photosynthetic rate  (g C [g Chl]-1 h-1) 
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PE Photosynthesis-irradiance curve 

PFD Photon flux densities 

PN Particulate nitrogen 

PP Particulate phosphorus  

PUFA Polyunsaturated fatty acid 

RNA Ribonucleic acid  

RuBisCO Ribulose-1,5-bisphosphate carboxylase/oxygenase 

SFA Saturated fatty acid 

STAT Stationary phase 

UPLC Ultra performance liquid chromatography  

 The initial slope of the photosynthesis versus irradiance curve normalized to 

cell (pg C cell-1 h-1 [µmol photons m-2 s-1]-1) 

 

The initial slope of the photosynthesis versus irradiance curve normalized to 

chlorophyll (g C [g Chl]-1 h-1 [µmol photons  m-2 s-1]-1)  
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Chapter 1: General introduction 

 

1.1. Introduction 

Microalgae are photosynthetic organisms can be found in aquatic and terrestrial environments 

such as oceans, water, lakes as well as soil.  Most aquatic microalgae are free-living and are 

buoyant and float in the upper part of the ocean and are called plankton; however, some 

microalgae live in symbiotic association with a variety of other organisms (Muller-Parker & 

D’Elia 1997). For example, microalgae genus Symbiodinium have a mutually beneficial 

symbiotic relationship with many coral reef animals.  Microalgae are primary producers that are 

able to synthesize organic molecules from water and carbon dioxide via photosynthesis using 

sunlight as a source of energy. Algae account for approximately half of photosynthetic 

production of organic material by the global biosphere and are the main primary producers in 

many freshwater and marine environments. Marine microalgae can influence ecological 

systems because oceans are Earth’s largest ecosystem. In particular, marine microalgae can 

influence climate by affecting the carbon dioxide level in atmosphere since higher carbon 

dioxide levels leads to an increase in air temperatures as more of the outgoing radiation is 

intercepted and radiated back to our planet. 

 

Marine microalgae are a diverse group. One major group of algae are the diatoms of which 

there are approximately 8,400 species (Guiry 2012). Diatoms belong to the taxonomic 

phylum Bacillariophyta. Diatoms are unicellular with a silica-based cell wall called a frustule. 

Many diatom species are planktonic, suspended in the water column moving at the mercy of 

water currents. Planktonic diatoms may account for as much as 20% of global photosynthetic 

carbon dioxide fixation (Nelson et al. 1995). 

Another interesting group of the algae is coccolithophores are extremely widespread, with some 

species (e.g. Emiliania huxleyi, Gephyrocapsa oceanic) occasionally forming extensive algae 
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blooms (Ferńandez et al. 1993). Coccolithophores can form a layer of CaCO3 around their cells 

called a coccolith (Paasche 2001).  Calcification affects CO2 partitioning between atmosphere 

and ocean (Rost & Riebesell 2004). Moreover, when coccolithophores die, CaCO3 is 

accumulated as inorganic mineral matter into the deep sea approximately 0.1 Pg C/year or 6-

14% of annual production (Buitenhuis et al. 1999; Berelson et al. 2007).  

Both coccolithophorids and diatoms are valuable indicators of environmental conditions 

because they respond directly and sensitively to many physical, chemical and biological 

changes in ecosystem such as temperature, light and nutrient concentrations. The species-

specific sensitivity of their physiology to many environmental conditions is manifested in the 

great variability in biomass and biochemical composition (Thompson et al. 1992). Such a 

change results in a metabolic imbalance that requires biochemical and metabolic adjustments 

before a new steady state of growth can be established (Rost & Riebesell 2004). 

 

Microalgae produce organic matter (proteins, lipids, and carbohydrates) that can be used in 

both commercial and industrial applications such as health food, pharmaceuticals, 

biomolecules, agriculture and material in nanotechnology (Spolaore et al. 2006).  At present, 

different species from numerous algal classes can be grown in laboratory and outdoor cultures; 

among the best known algae are the diatoms (Bacillariophyta), the green algae (Chlorophyta), 

the blue-green algae (Cyanophyta) and dinoflagellates (Dinophyta).  

Microalgae can grow under unfavorable conditions often represent significant variations in their 

biochemical composition (Table 1-1).  Diatoms can be used in animal feed because of high 

protein and lipid contents, particularly polyunsaturated fatty acids (PUFAs) when they grow 

under stressful environmental condition. The importance of these PUFAs is nutritional value for 

aquatic organisms which animals cannot synthesize by themselves (Volkman et al. 1989; 

Goulden & Place 1990). For example, T. weissflogii is a potential candidate for larviculture such 

as fish, shrimp and copepod because it contains high value chemicals such as proteins and 

PUFAs especially eicosopentaenoic acid (EPA, C20:5n-3) and decosahexaenoic acid (DHA, 
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C22:6n-3) (Kiatmetha et al. 2011). Several studies have revealed that T. weissflogii enhanced 

survival and metamorphosis in the black tiger shrimp Penaeus monodon larvae (Kiatmetha et al. 

2011).  T. weissflogii also influences development and growth (total length) in the Indian white 

prawn Penaeus indicus larvae (Emmerson 1980). Moreover, T. weissflogii supported  

development of the copepod Acartia tonsa  through the entire life cycle from larval development 

and survival up to adulthood (Ismar et al. 2008) and egg production rate and hatching in the 

calanoid copepod Temora longicornis (Arendt et al. 2005). 
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1.2    Organisms 

 
Marine phytoplankton have evolved over many millions of years, modulating with carbon flux by 

the relative abundance of cocolithophores and diatoms, resulting in biological feedback on 

atmospheric CO2 between the atmosphere and ocean (Cermeño et al. 2008). Cocolithophores 

and diatoms are derived from a common Rhodophyte ancestor and found throughout in World’s 

ocean (Cermeño et al. 2008). Coccolithophorids, through the formation of calcium carbonate 

(CaCO3) shells, alter the inorganic carbon system and alkalinity of seawater and release CO2, 

which may escape to the atmosphere (Frankignoulle et al. 1994). In contrast, diatoms dominate 

the export flux of carbon, providing significantly to the long-term sequestration of atmospheric 

CO2 in the ocean interior (Smetacek 1999). Therefore the balance between coccolithophorids 

and diatoms potentially affects the CaCO3 to organic carbon export ratio, a major factor 

determining the partitioning of CO2 between the atmosphere and ocean (Cermeño et al. 2008). 

The dominance of diatoms in the oceans is reflected by their contributions to massive deposits 

of the mineral diatomite which has industrial applications as well as their contribution to 

petroleum reserves (Smetacek 1999).   Moreover, coccolithophorids and diatoms are the main 

providers of the oceans’ ecological and biogeochemical services because they generate the 

basis of the marine food web. E. huxleyi is the highest abundant cocolithophore in the world’s 

ocean (Lefebvre et al. 2012). T. weissflogii is one of the diatoms that has been widely used in 

many research such as live feed in aquaculture (García et al. 2012) and indicators of 

environment changes (Stevenson & Pan 1999). Therefore E. huxleyi, the representative of 

cocolithophore, and T. weissflogii, the representative of diatoms, will be the focus of the 

research described in this thesis. 
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           1.2.1 Characteristics of Emiliania huxleyi  

Emiliania huxleyi is a coccolithophorid marine phytoplankton which can produce calcium 

carbonate (CaCO3) scales (or plates) called coccoliths (Fig. 1-1). E. huxleyi is classified in 

systematic categories from the highest to the lowest as follows:                                                           

Kingdom: Chromista 

Phylum: Haptophyta 

Class: Prymnesiophyceae 

Order: Isochrysidales 

Family: Noelaerhabdaceae 

Genus: Emiliania 

Speicies: E. huxleyi  

 

(Source: http://www.algaebase.org/search/species/detail/?species_id=51619)  

 

E. huxleyi has a spherical shape, with a diameter that is approximately 4-5 µm and is often 

covered by 10-15 coccoliths in a single layer. Calcite-forming cells are nonmotile: lacking 

flagella and haptonema (Paasche 2001).  

Coccolithophorids play an important role in the oceanic carbon cycle (Brown & Yoder 1994) 

through their production of CaCO3 coccoliths and uptake of CO2 for photosynthesis. 

Coccolithophorids also contribute to the sulfur cycle via production of dimethyl sulfide (DMS). 

DMS is a precursor for cloud condensation nuclei that are small particles size of a cloud droplet 

and may influence regional albedo (the proportion of Sun’s radiation reflected from a surface) 

via increased cloud formation (Bates et al., 1987).  

 

 

 

http://www.algaebase.org/search/species/detail/?species_id=51619
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Figure 1-1. Scanning electron micrograph of a coccosphere of Emiliania huxleyi.                                                                                       

(Source: http://www.noc.soton.ac.uk/soes/staff/tt/eh/) 

 

Biological oceanographers and phycologists have been investigating the physiology and 

ecology of different groups of marine phytoplankton with the objective of understanding and 

ultimately predicting how marine primary productivity responds to climate change.  In particular, 

E. huxleyi has been the subject of extensive investigations because it is found ubiquitously in 

most parts of the marine environment except the Arctic and Antarctic (Brand 1994; Winter et al 

1994). For example, E. huxleyi has generated blooms extending over 250,000 square 

kilometres (km2) in the North Atlantic (Holligan et al. 1993) and over 200,000 km2  in the Eastern 

Bering Sea (North Pacific) and Bering Straits in 1997 (Sukhanova & Flint 1998). CaCO3 account 

for most of the inorganic carbons deposited in the deep sea. (Armstrong et al. 2002; Francois et 

al. 2002). CaCO3 levels have been estimated to be approximately 83 percent of the organic 

carbon contents to the seafloor (Zondervan et al. 2001; Klaas & Archer 2002).  

 

 

 

 

 

http://www.noc.soton.ac.uk/soes/staff/tt/eh/
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1.2.2 Characteristic of Thalassiosira weissflogii 

Thalassiosira weissflogii is a centric diatom that found widely in marine habitats.  T. weissflogii 

is identified in systematic categories from the highest to the lowest as follows:                                                           

Kingdom: Chromista 

Phylum: Bacillariophyta 

Class: Mediophyceae 

 Sub-class: Thalassiosirophycidae 

Order: Thalassiosirales 

Family: Thalassiosiraceae 

Genus: Thalassiosira 

Species: T. weissflogii 

(Source: http://www.algaebase.org/search/species/detail/?species_id=32240) 

 

The predominant feature of a diatom is a highly ornamented external cell wall made of 

amorphous silica, called a frustule (Hoagland et al. 1993). The frustule is composed of two 

plates called valves; the epitheca valve (top plate) fits onto the hypotheca valve (low plate) like 

a petri dish. A number of smaller plates called girdle bands link the two valves. The frustules 

have developed as mechanical protections for the cells from predators in pelagic food webs and 

biogeochemical cycles (Hamm et al. 2003).  

 

1.3    Effect of environment factors on algal growth and physiology 

1.3.2 Temperature  

Temperature is an important environmental factor that affects algal growth rate, biochemical 

composition, nutrient requirements, and cell size (Juneja et al. 2013). Microalgae can grow 

under a broad range of temperatures, for example the Bacillariophyceae  have optimal 

temperatures (Topt) that range from 5 to 25°C, the Dinophyceae range from 15 to 25°C, and the 

Chlorophyceae range from 20 to 36°C (Ras et al. 2013; Bernard  & Rémond 2012). A high 
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growth rate at optimal growth temperature is likely to reflect a good energy balance in the cell. 

Microalgae attempt to maintain a balance between energy consumption within the Calvin cycle 

and the photosynthetic energy supply by the thylakoid membranes. Environmental changes 

cause imbalance of energy supply and consumption often lead to a modification of 

photosynthetic apparatus such as amounts of Calvin cycle enzymes or photosynthetic unit size.  

Modifications due to temperature changes is named temperature acclimation (Öquist 1983). 

Below optimal growth temperature, growth rate (GR) increases with increasing temperature; 

however, GR declines remarkably above optimal temperature (Renaud et al. 2002).  

 

Temperature affects cell size and the efficiency of carbon and nitrogen utilization decreases 

under non-optimal temperature. This suggests that changes in cytoplasmic viscosity below 

optimal temperature result in a reduction of efficient carbon and nitrogen utilization (Raven & 

Geider 1988).  Several cellular mechanisms are associated with low temperature. There are 1) 

low temperature causes reduction of electron transport because CO2 fixation rate is slow, 2) low 

temperature often reduces carboxylase activity, 3) low temperature inhibits the active of oxygen 

species resulting in a decrease of photoinhibition by protecting photosystem II (PSII), and 4) low 

temperature also inhibits degradation of D1 protein during photoinhibition consequently leading 

to a block in the PSII repair cycle.  Moreover, low temperature influences the levels of fatty acids 

in lipid membranes. Psychrotrophic organisms change the fatty acid composition of membranes 

to regulate the fluidity of membranes at low temperature such as a buildup polyunsaturated, 

branched, short- chain or cyclic fatty acids (White et al. 2000). Unsaturated fatty acids were 

found in higher amounts in membrane lipids that play a key role in avoiding membrane 

rigidification at sub-optimal temperature (Morgan-Kiss et al. 2006). For example, saturated fatty 

acid (C16:0) increased from 18.8 % at 10oC to 25.8 % total fatty acid at 25°C in Phaeodactylum 

tricornutum, whereas, polyunsaturated fatty acids (PUFAs) increased gradually from high to low 

temperature (Jiang & Gao 2004). Therefore, lower temperature decreases the fluidity in the cell 

membrane and cells compensate by increasing levels of PUFA to increase fluidity. This also 



  

10 
 

makes the membranes more susceptible to damage by free radicals from photoinhibition 

(Raven & Geider 1988; Nishida & Murata 1996).  

 

On the other hand, above optimal temperature leads to reduction of protein synthesis and 

results in slower growth rates (Rhee & Gotham 1981). For example, protein content at high 

temperature (30°C) was below that of low temperature (15°C) at the exponential growth phase 

in the haptophyte Isochrysis galbana. Similarly, protein in the chlorophyte Scenedesmus sp. 

decreased at higher temperature (Rhee & Gotham 1981). Moreover, the rate of protein 

synthesis per unit RNA decreased with increased temperature from 20 to 30°C in macroalgae 

Ulva pertusa cultures and consequently resulting in lower protein content and greater free 

amino acid content in cells (Kakinuma et al. 2006). 

 

           1.3.2. Light 

Light intensity affects growth of microalgae as it influences photosynthesis. Light is the energy 

source in photosynthesis. Microalgae use light to convert carbon dioxide to organic compounds 

as primary product. The maximal growth rate is found at the saturation intensity, and the growth 

rate decelerates if the light intensity is below or above saturation (Sorokin & Krauss 1958). 

Falkowski & La Roche (1991) refer to processes that lead to changes in cell properties 

according to the availability of light as photoacclimation. Photoacclimation can affect growth 

rate, quantities and types of pigments, dark respiration or fatty acid content (Fábregas et al. 

2004), the number and density of thylakoid membranes and cell size (Berner et al. 1989).  For 

example, Anning et al. (2000) found that cell division rates in the marine diatom Skeletonema 

costatum were three times higher in cultures acclimated to 1,200 µmol photons  m-2 s-1 than in 

cultures acclimated to 50 µmol photons m-2 s-1. Cellular chlorophyll a and fucoxanthin contents 

were also higher but diadinoxanthin and diatoxanthin contents lower in cells grown at low light 

than in cells shifted to high light.  

Light intensity also affects the biochemical composition of microalgae. High light intensities tend 

to enhance polysaccharide production in microalgal cells. Friedman et al. (1991) reported that 
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Porphyridium sp. and Porphyridium aerugineum grown under increased light intensity from 75 to 

300 µmol photons m-2 s-1 had 0.6- and 3-fold increases in polysaccharide content respectively.  

Low light intensity has been observed to result in higher protein content. For instance, protein 

content was greater when Scenedesmus spp. grown at low light (50 µmol photons m-2 s-1) than 

high light conditions (400 µmol photons m-2 s-1) while lipid content and neutral lipid content was 

higher at high light than at low light (Liu et al. 2012). Many studies with microalgae of various 

groups suggest that the cellular content of lipids and total PUFAs including EPA, are negatively 

related to growth light intensity (Cohen 1999). Sukenik et al. (1989) reported that 40% of the 

total lipids of Nannochloropsis sp., grown under low light conditions (35 µmol photons m-2 s-1) 

were found to be galactolipids and 26 % were found to be triacylglycerols. However, high light 

(550 µmol photons m-2 s-1) led to an increased synthesis of triacylglycerol with a reduction in 

galactolipid synthesis. Sukenik et al. (1989) showed that Nannochloropsis sp. cultures were 

characterized by a high lipid content and high proportion of EPA under light-limiting conditions, 

whereas palmitic acid (C16:0) and palmitoleic acid (C16:1) increased gradually until to a 

saturated light level. Since PUFAs are the major constituents of the thylakoid membranes, low 

light-accumulated production of PUFA is commonly coupled with a concomitant increase in total 

thylakoid membranes in the cells (Berner et al. 1989). There are, however, some exceptions. 

PUFA decrease with increase in light intensity, possibly resulting from an increase in oxygen-

mediated lipid in E. huxleyi (Rontani et al. 2006). 

 

          1.3.3. Nutrients 

Nitrogen and phosphate are two main macronutrients for growth and metabolism of algal cells. 

Nitrogen is a fundamental element for the formation of amino acids which make up proteins. 

Nitrogen is also required for synthesis of chlorophylls and nucleic acids. In addition, nitrogen is 

also an integral part of energy transfer molecules such as adenosine triphosphate (ATP) and 

adenosine diphosphate (ADP). Phosphate is a part of the backbone of DNA and RNA, which 
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are essential macromolecules for all living cells. Phosphorus is also an important component of 

phospholipids (Juneja et al. 2013).  

 

Nitrogen generally accounts for about 7-10% of cell dry weight (Hu 2004).  It is not unusual to 

take advantage of nitrogen limitation to obtain high value-compounds. For example, nitrogen 

depletion shifts the lipid metabolism from membrane lipid synthesis to neutral lipid storage. The 

depletion of intracellular nitrogen generates a decline in chlorophyll content and an onset of lipid 

and carotenoid accumulation in Isochrysis galbana (Roopnarain et al. 2014). Although nitrogen 

limitation leads to lipid accumulation, reduction in protein content also occurs and consequently 

growth rate declines (Morris et al. 1974; Lynn et al. 2000). Microalgae grown in nitrogen-deplete 

condition are likely to divert their photosynthetically fixed carbon to carbohydrate and neutral 

lipid synthesis; however, the physical significance of this is not clear (Hu 2004; Juneja et al. 

2013).  

 

 

1.4   The growth rate hypothesis (GRH) 

Both N and P have major roles in protein synthesis and growth. N is required for amino acid 

synthesis and nucleotide synthesis. P is major component in ribosome and thus has a role in 

potential for limiting ribonucleic acid (RNA) since P-rich ribosomes are needed for protein 

synthesis. This is implicit that P-deficiency could limit protein synthesis and growth. The growth 

rate hypothesis states that ribosomes and rRNA contribute to rapid protein synthesis related to 

fast growth. GRH can links growth rate, RNA content and P content, especially when P is the 

factor that constrains growth. It implies that for many P-rich and fast- growing invertebrates, 

RNA constitutes a major faction of P content and that there is a close association between the 

specific P-content and growth rate (Hessen 1990; Andersen & Hessen 1991; Sterner & Hessen 

1994; Elser et al. 1996). There are many studies that apply GRH in various organisms. For 

example, studies by Karpinets et al. (2006) found that Escherichia coli (bacteria), Neurospora 

crassa (fungi) Saccharomyces cerevisiae (budding yeast), Streptomyces coelicolor (bacteria) 
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have correlation between the relative growth rate and P:N ratio which were calculated as a 

coefficient of determination (R2) from 0.67 to 0.99. In addition, they also found that this ratio in 

Prototheca zopfii (algae) and Selenomonas ruminantium (bacteria) is not correlated with the 

relative growth rate. . Thus, limiting nutrient and stoichiometric constraint influences food web 

dynamic (Anderson 1997; Elser et al. 1998).  

 

1.5   Testing of growth rate hypothesis 

 

To test the GRH, reliable measurements of the concentrations of protein and ribosome are 

needed. In general, the total concentrations of protein and RNA are measured and it is 

assumed that ribosomes densities are associated with RNA concentration. Flynn et al. (2010) 

discussed the limitations of the methods that are used to test the growth rate hypothesis. These 

include 1) errors in measurements of RNA and protein content, and 2) errors in measurement of 

growth rate. 

1) Measurements of RNA and protein 

GRH requires accurate measurements of RNA and protein in the cellular material of the 

organisms. Unfortunately, there are no methods that can measure the exact quantity RNA and 

protein (Ågren 2004, 2008; Flynn et al. 2010). Flynn et al. (2010) state that there are two 

common methods for measuring RNA: 1) orcinol determination of ribose and 2) binding of 

fluorescent compounds to RNA (Fara et al. 1996). A major problem of the orcinal method is 

interference with sugars, whereas a problem with the fluorescence methods is correcting for the 

amount of dye binding to DNA. Thus, the second measurement tends to overestimate the 

amount of RNA. The two most commonly used spectrophotometric assays for measuring 

protein are the Lowry and Bradford assays which measure different properties of proteins.  

When using BSA as the standard, the Lowry assay gives higher protein values for 

phytoplankton samples than the Bradford assay (Clayton et al. 1988; Berges et al. 1993; 

Crossman et al. 2000; Barbarino & Lourenco 2005). Thus, the accuracy of the RNA:protein ratio 

rely on the methods and standards used to measure RNA and protein. The quantities of 
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proteins in phytoplankton are likely to overestimate the RNA:protein and underestimate the rate 

of protein synthesis per ribosome. 

 

2) Growth rate 

Growth rate (GR) is a measurement of change in metabolism in organisms via biomass or cell 

number in the exponential phase. Flow cytometry, fluorescent staining and high pressure liquid 

chromatography are methods for measuring growth rate. However, these methods still rely on 

the same basic mathematical formulations for calculating exponential growth rate. Moreover, 

techniques for measuring growth rates of natural populations using measurement of rRNA 

content by using rRNA-targeted nucleic acid probes is not usually used because the principal 

method used  to demonstrate the growth-rate dependence of rRNA content by investigators 

who are developing the targeted rRNA approach (Binder & Liu 1998, Worden & Binder 2003). 

 

1.6  Evidence for support and against the application of the GRH to 

microalgae 

 

Karpinets et al. (2006) found that P:N ratios calculated from RNA and protein contents in 

bacteria, budding yeast, fungi and algae had similar positive relationships with growth rate and 

matched with the growth-rate hypothesis.  

 

Flynn et al. (2010) summarized the relationships between RNA:protein and growth rate (GR) for 

cyanobacteria and eukaryote microalgae (Table 1-2). The relationship between RNA and GR 

were exponential or sigmoidal; the relationship was not linear, as would be predicted by the 

GRH if protein concentrations were constant. Similarly, Worden & Binder (2003) reported that 

there were triphasic relationships between RNA and GR in different strains of marine 

prokaryotic photo-autotrophs (Prochlorococcus and Synechococcus), which were qualified by: 

(i) little change at low GR, (ii) linear increase in the ranged of medium GR, and (ii) a plateau 

and/or decrease at the highest GR. In Synechococcus WH 8103 there was a positive 

relationship between RNA and GR but not in strain WH 7803 and WH 8101 which expressed 
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the highest growth rate at intermediate RNA concentration. Thus, these two strains were not 

consistent with GRH. Selenastrum minutum and Scenedesmus spp. (3 species) were cultured 

in freshwater where light was limited. Both RNA and GR were increased. Thus, this study was 

consistent with GRH. However, when this two strains were cultured under temperature limition 

GR decreased and RNA was increased, opposite to the GRH (Schlesinger & Shuter 1981).  In 

Amphidinium carterae and Thalasssiosira nordenskioeldii cultured in sea water under 

ammonium and nitrate depletion and ammonium constraint condition, both RNA and GR 

decreased inparallel supporting the GRH (Dortch et al. 1983; Thomas & Carr 1985).  

 

Lourenco et al. (1998, 2002, 2004) studied protein and RNA content at different growth rates of 

10 phytoplankton and found that Prorocentrum minimum had the highest cell volume 

approximately 1395.0 µm3, RNA content 33 fg RNA per cell and protein content 1423.4 fg 

protein per cell (Table 1-3). Whereas Dunaliella tertiorecta gave the highest RNA content per 

gram protein of about 0.139 (g RNA (g protein)-1). At the same time, Chlorell minutissima, 

phytoplankton from Trebouxiophyceae, had RNA and protein content roughly 0.16 fg RNA µm-3 

cell and 5.28 fg protein µm-3 cell respectively. However, RNA content per cell volume varied  12-

fold and the RNA-specific rate of protein synthesis varied 10-fold. Therefore, there is a much 

greater range of RNA-specific protein synthesis rates than of growth rate.  
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Table 1-3. Organism’s growth rate versus RNA and protein per cell (Flynn et al. 2010). 
 

 
 

Bac, Bacillariophyceae; Ch, Chlorophyceae; Cry, Cryptophyceae; Cy, Cyanobacteria; Dino, Dinophyceae; 

Eus, Eustigmatophyceae; Pra, Prasinophyceae; Pry, Prymnesiophyceae; Tre, Trebouxiophyceae. 

a,b,cLourenco et al. (1998, 2002, 2004); dcalculated from columns 2-5. 

 

1.7 Bio-optical hypothesis 

 

Chlorophyll a (chl a) is commonly used as an index to quantify algal abundance (Bidigare et al. 

1987), even though chl a is a small component and variable part of phytoplankton biomass 

(Geider et al. 1997). Chl a and other photosynthetic pigments capture the sun’s energy and turn 

it into organic matter by photosynthesis. Chl a accounts for approximately 0.1-5 percent of 

organic matter (Geider et al. 1997).  

 

Light plays a major role in photosynthesis in marine phytoplankton which synthesize 

biochemical compounds from CO2 and water using light energy. The light reactions of 

photosynthesis separate electrons and protons from water and reduce NADP+ (Nicotinamide 

adenine dinucleotide phosphate) to NADPH and drive ATP (Adenosine triphosphate) production 

(Fallowski & Raven 2007). The NADPH and ATP are in turn used in the Calvin cycle to fix CO2 

into triose phosphates (Fallowski & Raven 2007).   

 

Organism 
Cell 

volume 
(µm

3
)
a
 

Growth 
rate (d

-1
)
a
 

fg RNA cell
-1   

 
(late log)

b
 

fg protein cell
-1

      
(late log)

b,c
 

g RNA  g
-1

  
protein  (late log)

d
 

fg RNA     
µm

-3
cell

d
 

fg protein 
µm

-3
cell

d
 

Net 
protein 

synthesis 

Synechococcus subsalsus (Cy) 2.3 1 0.2 11.9 0.016 0.08 5.25 62.5 

Chlorella minutissima (Tre) 1.3 0.5 0.2 6.7 0.03 0.16 5.28 16.7 

Dunaliella tertiolecta (Ch) 178 0.87 16.3 117.2 0.139 0.09 0.66 6.25 

Tetraselmis gracilis (Pra) 640 0.78 8 574.8 0.014 0.01 0.9 55.7 

Hilsea sp. (Cry) 190 0.64 22.6 246.3 0.092 0.12 1.3 6.96 

Isochrysis galbana (Pry) 60.8 0.87 1.9 38.8 0.049 0.03 0.64 17.8 

Nannochloropsis oculata (Eus) 13.3 0.64 0.3 19.3 0.016 0.02 1.45 40 

Phaeodactylum tricornutum (Bac) 124 1.12 2.5 59.3 0.042 0.02 0.48 26.7 

Skeletonema costatum (Bac) 110 1.2 12.1 144.2 0.084 0.11 1.31 14.3 

Prorocentrum minimum (Dino) 1,395 0.65 33 1,423.40 0.023 0.02 1.02 28.3 
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The relationship between growth rate and the chl a to C ratio is central to bio-optical models of 

algal growth (Kiefer & Mitchell 1983). The bio-optical model states that photosynthetic rate 

depends upon rate of photon capture. The effectiveness of utilizing photons relies on two 

coefficients: the absorption coefficient and the quantum yield of photosynthesis. The former 

represents the ability of the pigments to absorb photons and the latter represents the efficiency 

of absorbed radiation which is used to fix carbon (Bidigare et al. 1987). Kiefer & Mitchell (1983) 

hypothesized that growth rate should be proportional to the rate of light absorption times the 

quantum efficiency of photosynthesis. The chl a to C ratio varies from <0.01 to >0.1 g:g in 

phytoplankton cultures (Geider et al. 1987, 1993, 1997). Typically, the chl a to C ratio is higher 

under conditions of high temperature (25-30oC), low light (<20 µmol photons m-2 s-1) and replete 

nutrients (Geider et al. 1997). 

 

The relationship between chlorophyll concentration and phytoplankton carbon biomass in the 

ocean is non-linear not only because of the complicated influences of environmental conditions 

(light, nutrients and temperature) on the chl a to C ratio within particular species,  but also the 

different responses of variable phytoplankton groups and the structure size of the phytoplankton 

community (Armstrong 2006; Behrenfeld et al. 2002, 2005; Brown et al. 2003; Cullen 1990; 

Geider et al. 1996, 1997, 1998; Le Bouteiller et al. 2003; Wang et al. 2009). For instance, the 

chl a to C ratio is lower in large phytoplankton cells than in the small ones (Le Bouteiller et al. 

2003).   

 

1.8 Microalgae for biotechnological and industrial implications 

 

At the present, the high value compounds from microalgae play important role in many 

industries. The high protein contents of various microalgae are used widely as nutritional 

supplements for humans and as animal feed additives. In addition, microalgae can produce 

essential amino acid for humans and animals. The pigment content in microalgae is a specific 

feature of each species. For example, beta carotene is often found in the green algal Dunaliela 
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salina, whereas astraxanthin is usually found in Heamatococus pluvialis. Microalgal lipid can be 

esterified to saturated or unsaturated fatty acids and be used in commercial and industry 

applications (Table 1-4). The lipid content varies between 5 to 63 % but can reach 90 % of dry 

weight (Spolaore et al. 2006).  

Table1-4. The properties of fatty acid for biotechnological applications (modified form Mohan & 

Devi 2012).  

Fatty acid Lipid number Properties 

 

 

Caprylic acid C8:0 Commercial production of esters perfumes and dyes. As an antimicrobial pesticide 
 

Capric acid C10:0 Making of perfumes, greases food additives and medicines 
 

Lauric acid C12:0   Antibacterial, antioxidant and antiviral inhibitor 
 

Tridecanoic acid  C13:0   Ingredient in methyl ester formation 
 

Myristic acid C14:0  Manufacturing of Biofuels, cosmetics and tropical medicines 
 

Myristoleic acid  C14:1n9c Anti-inflammatory agent, pain reliever and an immune system modulator 
 

Pentadecanoic acid C15:0 Combustion, marker in butter fat composition 
 

Palmitic acid  C16:0  Biofuels and cosmetics preparation 
 

Palmitoleic acid C16:1n7 Combustion and skin care products 
 

Heptadecanoic acid  C17:0  Combustion of diesel engines  

Stearic acid C18:0   Biofuels and dietary supplements preparation 
 

Elaidic acid   C18:1n9t  Used in food industry 
 

Oleic acid C18:1n9c  Excipient in medicines, emulsifier and solubiliser in aerosols and combustion 
 

Linoleic acid  C18:2n6c Making of soaps, emulsifiers, beauty products, anti-inflammatory agent 
 

Arachidonic acid C20:0 Production of detergents, photographic materials and lubricants 
 

Cis-11-eicosenoic acid C20:1  Used as a lubricant 
 

Linolenic acid C18:3n3 Main component in drying of oils 
 

Behenic acid C22:0  Lubricating oils, making of detergents and hair conditioners.  
 

  
Also as a paint  remover and floor polisher 

 

Erucic acid  C22:1n9c Good lubricant properties, component in biodiesel, binder in paints 
 

Eicosapentaenoic acid (EPA) C20:5n3 Enhancing human health and treating a variety of diseases such as atherosclerosis, rheumatoid, 
 

  
arrhythmia, psoriasis, diabetes and cancers.  

Docosahexaenoic acid (DHA) C22:6n3 Infant diets, prevention and treatment of chronic diseases (such as coronary heart disease, 
 

  
hypertension, type II diabetes, ocular diseases, arthritis and cystic fibrosis) 

 

 

 

Many studies have mentioned that beta carotene and fucoxanthin are high value products 

because they possess properties that protect against cell damage and cancer by scavenging 

free radicals. Beta carotene is a precursor that can be converted into vitamin A (Chidambara-

Murthy et al. 2005), El Baz et al. 2002), Plaza et al. 2009).  The antioxidant properties from 



  

20 
 

carotenoid were claimed in nutraceutical applications resulting in the market value of 

carotenoids reached over US$ 1,000 million or approximately £ 630 million (Del Campo et al. 

2007).  In addition, carotenoids are used in cosmetics and food products as feed additives for 

poultry, livestock, fish/ ornamental fish and crustaceans (Del Campo et al. 2007). Recently, the 

growing market of carotenoid has increased due to the interest of bio-produced resources 

instead of synthesis.  Thus, it is good opportunities for microalgae to be one of the possible 

candidates for carotene production to reserve in many applications.  

 

Many microalgae have been found to grow rapidly and produce massive amount of 

triacylglycerols (TAGs) which are the primary lipid storage used as energy reserves. There has 

been widespread interest in the possibility of growing microalgae for use as a feedstock for 

producing biodiesel. Furthermore, the need to reduce consumption of fossil fuels to meet targets 

for reducing emission of CO2 is the main motivation for seeking alternative energy sources 

including plant and algae biomass. The commercialization of biomass as feedstock for the 

production of bio-energy depends on social, environment, economic system, industry as well as 

cost.  Biodiesel production from plants such as grain legume, palms, coconuts, jatropha, 

rapeseed etc. requires the use of large tracts of arable land and fresh water for cultivation. In 

addition, there is the possible competition with food production of direct use to man or animal 

that influences productivity. Moreover, the use of herbicides to get rid of agricultural pests leads 

to environmental pollution (Aktar et al., 2009).   

 

Marine microalgae are also important organisms in the production of polyunsaturated fatty acids 

(PUFAs) (Guschina & Harwood 2006) particularly eicosapentaenoic acid (EPA) and 

docosahexaenoic acid (DHA) (Table 1-5). Fatty acids can account for from 5 to 63 % dry weight 

of biomass and lipid productivity can account for from 0.2 to 3701.1 mg L-1 day-1 depending on 

cultivation conditions (Chen et al. 2011).  
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Table 1-5. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) content (percentage 

of total fatty acid) of microalgae. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Polyunsaturated fatty acids (PUFAs) have important roles in cellular and tissue metabolism, the 

regulation of membrane fluidity, electron and oxygen transport, as well as thermal adaptation 

(Funk 2001).  Many studies have shown that dietary supplementation with EPA and DHA for 

enhancing human health and treating a variety of diseases such as asthma, rheumatoid 

arthritis, psoriasis, inflammatory bowel disease, cardiovascular diseases, allergies, cancer, 

among others (Radwan 1991; Simopoulos 2002; Burdge et al. 2002; Field & Schley 2004; Doshi 

et al. 2004; Calder 2010; Mozaffarian & Wu 2011). There is increasing interest in a PUFA family 

particularly EPA and DHA.  Higher plants and some animals cannot synthesize PUFA because 

of lacking of enzyme. Thus, they have to receive them from their food. Although fish and fish oil 

are common sources of PUFAs as food additive; however, smell is unpleasant and poor 
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oxidative stability. Therefore microalgae is an alternative sources for serving biotechnological 

and industrial implications. 

 

1.9 Aims and objectives 

 

The aims of the research presented in this thesis were to expand the understanding of how 

environmental factors affect the physiological and biochemical composition of the marine 

haptophyte Emiliania huxleyi and the marine diatom Thalassiosira weissflogii. An improved 

understanding of E. huxleyi and T. weissflogii physiological and biochemical composition will 

allow better prediction to be made regarding the impending acclimation and adaptation 

requirements of microalgae to future climate scenarios. Moreover, high value-chemicals (such 

as, neutral lipid, polyunsaturated fatty acids, pigments etc.) can be obtained from microalgae 

grown under unfavorable environmental conditions resulting in the benefits for humans to apply 

in biotechnological industries.  

Accurate information on the concentrations of lipids, proteins and other compounds in 

microalgae is essential for understanding how cells adjust their physiology to changes in their 

environment and for optimizing production of desired products in algal biotechnology. However, 

many publish studies contain underestimates or overestimates of the concentrations of 

biochemical compounds, particularly neutral lipid (Doan & Obbard 2011) and protein (Flynn et 

al. 2010). Therefore, one of the goals of my research was to implement accurate, reliable 

methods for determining the neutral lipid and protein contents of microalgae (chapters 3 and 4). 

Neutral lipids are an important energy storage compound in microalgae and are a crucial aspect 

of research in the biotechnological application such as biofuels. Therefore the main objectives 

of chapter 3 were as follows:  

    (1)  To develop the optimal assay for accurate quantification of intracellular neutral lipids in 

the diatom T. weissfogii using a fluorescence dye.  
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    (2)  To evaluate the effect of the concentration of inorganic nitrogen in the growth medium on 

intracellular neutral lipid content T. weissflogii using a developed method.  

 

In microalgae and in other microorganisms a high growth rate requires a high rate of protein 

synthesis. Since proteins are synthesized by ribosomes, a high growth rate requires a high 

cellular content of ribosomes. These ideas lead to the growth rate hypothesis (GRH) which 

implies that growth rate should increase in parallel with increases of the ratio RNA:protein. Flynn 

et al. 2010 reported that the uncertainty of the RNA:protein ratio due to the accuracy of the 

methods for measuring RNA and protein can result in the misinterpretation of data for testing 

the growth rate hypothesis, and concluded that the RNA:protein ratio has a tendency to be 

overestimated in many published studies. Therefore the objectives of chapter 4 were:  

(1) To develop the protocol for determining the amino acid composition of proteins 

(combined amino acids) extracted from microalgae. 

(2) To evaluate recovery using BSA as a standard to developed a protocol was used for 

quantifying the combined amino acid contents in the marine haptophyte E. huxleyi (chapter 5) 

and the marine diatom T. weissflogii (chapter 6). 

 

The remainder of my research investigated how temperature, light and nitrogen availability 

affects the elemental and biochemical composition in two microalgae, E. huxleyi (chapter 5) and                   

T. weissflogii (chapters 6 and 7). In the algal physiology lab at University of Essex, McKew et al. 

(2013 a,b) studied an effect of light intensities and nutrient limitation on the growth rate of                 

E. huxleyi CCMP 1516. However, the effect of temperature on E. huxleyi CCMP 1516 grown 

under replete nutrient has not been studied. Furthermore, the application of the bio-optical 

model (Kiefer & Mitchell 1981) and growth rate hypothesis (GRH) to temperature-limited growth 

of E. huxleyi had not been investigated. The bio-optical model predicts that higher growth 

requires higher Chl a:C because faster growing cells require more energy which requires more 
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light-harvesting pigments to absorb more light energy, whereas the GRH predicted that growth 

rate should be correlated with RNA:protein. Therefore the objectives of chapter 5 were:  

1)  To determine the effect of temperature on growth rate and biochemical composition of   

E. huxleyi using the developed methods from chapters 3 and 4. 

2) To examine the correlations between growth rate and RNA:protein to test whether the 

growth rate hypothesis can be applied to temperature. 

3) To examine the correlations between growth rate and chl a:C to test whether the bio-

optical hypothesis can be applied to temperature. 

 

For the diatom T. weissflogii, the interaction between nutrient-limitation with temperature and 

irradiance has not been investigated previously. Therefore the effect of temperature and light on 

the diatom T. weissflogii was investigated (chapter 6) and focuses on the following objectives: 

1) To determine the effect of temperature and irradiance on biochemical composition of          

T. weissflogii in nutrient-limited cultures using the developed methods from chapters 3 

and 4. 

2) To examine correlations between growth rate and RNA:protein ratio to test whether the 

growth rate hypothesis can be applied to temperature and irradiance. 

3) To examine the correlations between growth rate and C:chl a ratio to test whether the 

bio-optical hypothesis can be applied to temperature and irradiance. 

4) To evaluate the imaging proportion of ultrastructure cell using the developed method 

based on the Nile red stain for neutral lipid droplets. 

 

Dilution rate is one of the key variables in the operation of microalgal cultures. Microalgae grown 

under the high load of nutrient lead to fast growth rate. In contrast, microalgae have slow growth 

rate when cells grown under low nutrient. T. weissflogii can typically flow with the currents which 

might contain low or high nutrients. To understanding the elemental and biochemical 

composition of T. weissflogii under different nutrient concentration, the examination of effect of 
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dilution rate in the cultures was set in a laboratory. Therefore the objective of chapter 7 was to 

determine the effect of dilution rate on growth rate and biochemical composition of                    

T. weissflogii. 
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Chapter 2: Materials and methods 

 

2.1 Microalgae and culture systems 

Organisms: Two species of eukaryotic marine microalgae, Emiliania huxleyi (CCMP 1516) and 

Thalassiosira weissflogii (CCMP 1051), were used in this research. The stains were maintained 

in batch system before they were used in research. They were incubated in 125 mL Erlenmayer 

flasks containing 50 mL of f/2 medium (Guillard & Ryther 1962) plus silicate for T. weissflogii 

and without silicate for E. huxleyi. The flasks were incubated in a culture room at 16oC under                    

a 14:10-h light: dark cycle using photon flux density around 500 µmol photons m-2 s-1 and 

without aeration.  

 

Culture media:  Cultures were grown in artificial seawater (Berges et al. 2001) with added 

selenium (1 nM Na2SeO3), typically enriched to f/2 medium (Guillard & Ryther 1962) for                     

E. huxleyi or f/2 plus silicate for T. weissflogii. Variations in the concentrations of NaHCO3, 

NaH2PO4, NaNO3, trace metals, and vitamins from the standard artificial seawater and f/2 

formulations were employed in most experiments as described in the methods section of 

Chapters 3 to 7. 

 

Culture systems: Techniques for culturing microalgae in this research are batch and semi-

continuous culture. Batch culture is widely used in laboratory and commercial industry because 

it is easy to operate (Lee & Shen 2004). A batch culture is a closed system. The sterilised 

culture media is inoculated with microalgae and there is no refill of media in this system.  In the 

beginning, microalgae do not increase the number of cell due to adaptation with the new 

environment and then they grow rapidly owing to availability of replete nutrients in the media.  

As time passes, they increase in number with rapid use nutrients and excrete toxic metabolites 

resulting in a slowdown of growth during the later stages of the process.  However, the number 
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of cells increases gradually or may remain constant.  Growth last stage, cells die because 

nutrients exhausted.  

Semi-continuous culture techniques have often been used to investigate cell growth, rate of 

nutrient consumption, and metabolite production (Quinlan 1986). The semi-continuous culture, 

culture volume is removed and an equal volume of fresh medium is immediately replaced at 

regular time intervals in accordance to the desired dilution rate. Hence, this technique is 

associated with instantaneously enhancing nutrient concentration and diluting cell 

concentration. This culture method can obtain stable and continuous production and also avoid 

re-starting microalgae cultures constantly (Fuentes-Grünewald et al. 2015). 

 

2.2 Determination of growth rate 

Algal cell number was determined using a haemocytometer (chapter 5 and 7) under light 

microscopy (x 400 magnification) or a Coulter counter (chapter 3 and 6) (Z2 Series COULTER 

COUNTER®, Beckman Coulter Inc., USA). Specific growth rate (µ) was calculated from cell 

counts. 

                                          

Where N (T1) is the cell concentration (cell mL-1) at time T1, N (T2) is the cell concentration at 

time T2, and T2-T1 is the time difference.  

 

2.3 Determination of chlorophyll a 

Samples (100 mL of algal suspension) collected on glass fibre filters (MF 200, Fisher Scientific 

UK Ltd., UK) were put in centrifuge tubes (15 mL). Methanol (100%, 5.0 mL) was immediately 

added and the samples were ground using a plastic rod until the filters were completely 

macerated. Then, the sample tubes were kept in the refrigerator at -20oC for 24 hr and 

centrifuged at 3000 x g for 10 min (Mistral 2000, DJB Labcare Ltd, UK) at room temperature 

ln [N (T2) / N (T1)]

T2 - T1

µ =
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(RT). The supernatant was removed and an absorbance spectrum measured from 350 to 800 

nm using a spectrophotometer (U-3000, Hitachi; Japan). Chlorophyll a (chl a) was determined 

using the following equation (Ritchie 2006): 

 

                        Chl a  (mg L
-1
)  =   -8.0962 (A652 – A750)+ 16.5169 (A665 – A750) 

 

  

2.4 Determination of particulate elemental and biochemical 

composition 

 

Samples of algal suspensions (typically 50 or 100 mL) for determination of particulate elemental 

composition (C, N, P) and biochemical composition (protein, carbohydrate, neutral lipid) were 

collected on a pre-combusted glass fiber filters by gentle filtration or centrifugation (for 

nucleotide).   

 

2.4.1 Particulate nitrogen (PN) 

Samples (50 mL of algal suspension) collected on glass fibre filters (MF 200, Fisher Scientific 

UK Ltd., UK). Filtered samples were dried in an oven at 35oC and stored in a vacuum desiccator 

until analysis.  For determination of particulate nitrogen (Bronk et al. 2000), the sample was 

placed in glass vial (diameter x length: 2.5 x 4 cm) and then 7.5 mL MiliQ water was added and 

1.0 mL oxidizing reagent (5.0 g potassium persulfate and 3.0 g boric acid in 35 mL of 1 N 

NaOH) added.   The glass vial was capped with polytetrafluoroethylene (PTFE) lined cap and 

then placed in a boiling water bath for 1 h. After the bottle was cooled to room temperature, the 

sample solution was centrifuged at 1,700 x g for 5 min and supernatant was removed to 

measure the optical density at 220 nm (Collos et al. 1999) using the spectrophotometer (U-

3000, Hitachi, Japan).  A standard curve was prepared using 0, 12.5, 25, 50, 100, 150 and 300 

µM NaNO3, with deionised water (Mili Q pore, Mili-Q® Gradient, France) used as a blank. 
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2.4.2 Particulate phosphorus (PP) 

To determine particulate phosphorus (Solόrzano & Sharp 1980), the filter containing the sample 

(50 mL) was soaked in a glass bottle (diameter x length: 2.5 x 4 cm) with 2 mL of 0.017 M 

MgSO4 and then dried in an oven at 80oC. The bottle was baked in a muffle furnace (AAF 1100, 

Cabolite Limited, UK) at 500oC for 2 h. After that, the bottle was cooled at room temperature 

(RT), 5 mL 0.2 M HCl was added and covered tightly and then incubated in an oven at 80oC for 

30 min. The bottle was allowed to cool and the supernatant was poured into a centrifuge tube 

and the bottle was rinsed with 5 mL of Milli Q water. The centrifuge tube was centrifuged at 

1,700 x g for 5 min, and the supernatant removed to determine phosphate concentration. For  

measuring phosphate level (Strickland & Parsons 1972), 0.1 mL oxidizing agent (mixed reagent: 

0.024 M ammonium molybdate solution, 0.23 M sulfuric acid, 0.31 M ascorbic acid solution and 

1.1 mM potassium antimonyl-tartrate solution following ratios 1:2.5:1:0.5 respectively) was 

added to 1 mL of sample. After allowing the solution to stand at room temperature for 30-60 

min, the absorbance was read at 885 nm using a spectrophotometer (Genway 6300, USA).  A 

standard curve was prepared using 0, 2.5, 5 and 10 µM NaH2PO4
.H2O, with deionised water 

used as a blank. 

 

2.4.3 Particulate organic carbon (POC)  

Samples (100 mL of algal suspension) collected on combusted-glass fibre filters (MF 200, 

Fisher Scientific UK Ltd., UK). Filtered samples were dried in an oven at 35oC.  Calcium 

carbonate was removed from the dried sample by adding 150 µl 2.0 M HCl and incubated at 

35oC for 3 hours. POC was measured using a solid sample module for total organic carbon 

analyser (SSM-5000A, Shimadzu, Japan). The acidified dried sample was placed in a ceramic 

boat that had been baked previously in a muffle furnace at 500oC for 5 h. The conditions for 
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analysis were as follows; air flow rate 0.5 L/min, pressure 200 KPa and temperature of 900oC. 

The TOC analyzer was calibrated using glucose as a standard (300, 750, 1500, 2250 and 3000 

µg C). 

 

2.4.4 Protein content  

Filtered samples were obtained by filtering 100 mL of algal suspensions on glass fibre filters 

(MF 200, Fisher Scientific UK Ltd., UK) and washing using 100 mL 0.5 M ammonium formate to 

remove salts. The filtered samples were placed in a centrifuge tube (15 mL) and 4.0 mL 0.5 N 

NaOH was added. The samples were incubated for 10 min at 100oC and were shaken 

occasionally. Afterward the samples were cooled quickly by running them with cold water, and 

samples were centrifuged at 6000 xg (Harrier 15/80, Sanyo, Japan) for 5 min at room 

temperature.  The supernatant was collected for protein assay and the pellet was re-extracted 

with 2.0 mL 0.5 N NaOH (Modified from Rausch 1981). The supernatants were pooled together 

and the final volume of the extract was 6.0 mL. Protein content in the sample was measured 

using the bicinchoninic acid (BCA) assay as modified by Walker (2002).  Bovine serum albumin 

(BSA) and bovine gamma globulin (BGG) were used as protein standards. The standard curves 

were prepared using concentrates of 0, 25, 50, 100 and 200 µg mL-1 and deionised water used 

as a blank. 

 

Samples or standards 25 µL were put in a 96 well microplate and 200 µL of BCA working 

reagent was gently added. The working reagent was prepared by mixing a 100:2 ratio reagents 

A and B.  Reagent A consisted of 1.0 g sodium bicinchoninate, 2.0 g Na2CO3
.H2O, 0.16 g 

sodium tartrate dihydrate, 0.4 g NaOH, and 0.95 g NaHCO3 made up to 100 mL with deionised 

water, pH 11.25. Reagent B consisted of 0.4 g CuSO4
.5H2O in 10 mL of deionised water. After 

adding the working reagent, the microplate was shaken for 30 seconds using a minishaker (IKA, 

USA). Microplates were incubated at 37oC for 30 min and allowed to cool at room temperature. 

The optical density at 562 nm was measured using a microplate reader (VersaMax, USA) and 

the protein contents were calculated by comparing with protein standard curve.  
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2.4.5 Carbohydrate content 

Filtered samples were dried in an oven (35ºC) overnight. Total carbohydrate (CHO) content was 

determined following Aslam et al. (2012). Briefly, total CHO consists of 4 fractions; these are 

colloidal CHO (fraction 1), intracellular-stored CHO (fraction 2), water-insoluble CHO (fraction 3) 

and residual CHO (fraction 4).  

 

Fraction 1 consists of the CHO in the cultured medium that was secreted by cell. This colloidal 

CHO was collected by filtering through the glass fibre filters (MF 200, Fisher Scientific UK Ltd., 

UK). Fraction 2 was obtained by extracting the filter in 3.0 mL 33% (v/v) NaCl (the same as 

NaCl concentration in media) at 100ºC in a boiling bath for 1 h (Clifton, Nickel-Elctro Ltd, 

UK). The samples were centrifuged at 3500 x g for 15 min (Mistral 2000, DJB Labcare Ltd, 

UK) and the supernatant was collected. Although this fraction consists primarily of 

intracellular-stored carbohydrates (mainly glucan), there could also be a contribution from 

some external carbohydrate coating the cell.   

 

Fraction 3 consists of the water-insoluble CHO (mainly mucilage from surface of the frustule) 

that was extracted using hot bicarbonate. 3.0 mL 0.5 M NaHCO3 was added into the pellet 

from the fraction 2 and incubated for 1 hour at 100ºC. The samples were centrifuged as 

described above and the supernatant was collected as CHO fraction 3.  Fraction 4 consists of 

the bicarbonate-insoluble CHO that was attached and linked with the silica cell wall. It was 

extracted by adding 2.0 mL 1 M NaOH and 0.2 M NaBH4 to the pellet, followed by incubating 

and centrifuging as described above. The supernatant was collected and CHO was liberated 

from the cell wall as CHO fraction 4. 

 

The CHO concentration in each of the extracts was determined using the phenol sulfuric assay 

(modified from Dubois et al. 1956). Briefly, 0.5 mL each extracted CHO fraction was added to a 

glass test tube (1.5 x 10 cm) and 0.5 mL 5% phenol solution was added. The samples were 

mixed using a vortex (MS2 Minishaker, UK).  Then 2.5 mL concentrated H2SO4 was added and 



  

32 
 

the sample mixed immediately and allowed to stand in a fume hood cabinet for 30 min before 

measuring the carbohydrate content using a spectrophotometer (GENESYS 10S UV-Vis, 

Thermo Fisher Scientific Inc., USA) at 490 nm. Glucose was used as a standard at 

concentrations of 0, 10, 20, 40, 60, 80, and 100 µg mL-1. The detection limits of glucose for 

phenolic sulfuric assay was 5 µg mL-1 (Aslam et al. 2012). Total carbohydrate contents were 

calculated from the collecting CHO part 1 to part 4 following equation:  

Total carbohydrate (µg mL-1)  =   (CHOfraction 1+ CHOfraction 2+ CHOfraction 3+ CHOfraction 4) 

 

2.4.6 Neutral lipid content 

2.4.6.1   Nile red (NR) preparation 

A stock solution of 500 µg mL-1 Nile Red (Nile red 99%, ACROS OrganicsTM, UK) was prepared 

by dissolving 5 mg NR in 1.0 mL acetone (HPLC grade). Aliquots (100 µL) of the NR solution 

were transferred into a brown-coloured bottles, each containing 900 µL of acetone. The 

aliquoted NR stock solution bottles were wrapped on top using parafilm and stored in a freezer 

(-20oC). The NR solution was thawed at room temperature (RT) before using.   

2.4.6.2   Triolein preparation  

Triolein (1,2,3-Tri(cis-9-octadecenoyl)glycerol) was used as a lipid standard in the neutral lipid 

assay. Triolein (>99%, Sigma-Aldrich, USA) 500 mg mL-1 (in chloroform) was diluted with 

isopropanol to make an intermediate stock of 1 mg mL-1.  Isopropanol has relatively low 

background fluorescence (Priscu et al. 1990). A working standard (100 µg mL-1) was prepared 

by bringing 500 µL of the intermediate stock to 5.0 mL with deionized water in a volumetric 

flask. The working stock was vortexed forcefully for about 1 min to form micelles before 

preparing a standard curve.  

The development of the neutral lipid assay is fully described in chapter 3. Briefly, 3 mL cell 

samples (9 samples from triplicate cultures) were collected in clear plastic cuvettes (length x 

width x high: 1 x 1 x 4.5 cm) and then kept in a freezer (-20oC) until analysis. The samples were 
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thawed at RT and then 150 µL dimethyl sulfoxide (DMSO) was added to reach 5% (v/v) for 

enhancing the efficiency of NR penetration into the algal cells.  6.3 µL of 500 µg mL-1 NR stock 

solution was added to obtain 1 µg mL-1 final concentration.  The top of cuvette was covered with 

parafilm to prevent the loss of acetone vapors, and the sample was mixed using a vortex mixer 

(MS2 Minishaker, UK) at speed 1800 rpm min-1 for 10 seconds. The samples were kept in a 

dark room for 5 min before measuring lipid using a fluorescence spectrometer (LS 50B, Perkin 

Elmer; UK) using a fixed excitation wavelength of 529 nm and emission wavelength of 589 nm. 

The excitation and emission slit widths were set 5.0 nm and scanned at speed 200 nm min-1. To 

allow quantification, standard curves of triolein suspensions were prepared to give 

concentrations of  0, 2.5, 5, 10, and 20 µg mL-1 and deionised water used as a blank. 

  

2.5 Determination of nucleotide 

2.5.1 Determination of RNA 

To obtain samples for RNA, algal suspensions (100 mL) were centrifuged at 6000 x g for 10 

min.  The supernatant was discarded and the pellet was washed three times using 20 mL of   

0.5 M ammonium sulfate to remove salts. The pellet was kept at -80oC if the sample was not 

extracted immediately. RNA from pellet was extracted using TRI reagent® (Sigma-Aldrich, 

USA). Then, RNA was measured content at 260 nm using a Nanodrop spectrophotometer 

(Labtech, UK). 

 

2.5.2 Determination of DNA 

Samples for DNA were collected in the same way as those for RNA. DNA was extracted from 

the pellet using a modification of Griffiths et al. (2009). The pellet was transferred to a silica (0.1 

mm diameter) beating tube and put on ice bath. Then, 600 µL of Cetyl-trimethyl-ammonium-

bromide (CTAB) and 500 µL of phenol:chloroform:isoamyl alcohol mixture; 25:24:1 (sigma, 

USA) were added, and the tube was put in a beating machine to break cells for 48 seconds (2 

times). After beating, the tube was put on ice and centrifuged at 15000 x g for 15 min. 700 µL of 
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supernatant was transferred into a sterile microcentrifuge tube and 1 mL of  30% PEG 6000 in 

1.6 M NaCl solution was added and left at room temperature overnight. The sample tube was 

centrifuged at 15000 x g for 5 min and supernatant was decanted. 500 µL of 70% ethanol was 

added to wash the pellet and centrifuged at 15000 x g for 5 min.  The supernatant was 

decanted and a tube was allowed to dry for 15 min before the DNA was resuspended with 40 µL 

deionised water and measured DNA content at 280 nm using a Nanodrop spectrophotometer 

(Labtech, UK). 

 

2.6 Photosynthesis parameters 

A 30 mL sample was taken for measuring the photosynthesis versus irradiance (PE) curve.  The 

sample was enriched to an activity of 1 µCi mL-1 of Na14CO3  and  24 x 1 mL aliquots dispensed 

into glass 8 mL (diameter 1.5 cm) scintillation vials. The aliquots were incubated over a gradient 

of irradiances in a temperature-controlled “photosynthetron” (Lewis & Smith, 1983). The 

temperature during the incubations was kept constant at 14, 18 and 22oC with a circulating 

water bath. Incubations were terminated after 30 min. Dissolved inorganic carbon was driven off 

by adding 250 µl of 3 N HCl and then the vials were left overnight without caps in a fume hood 

before adding 4.5 mL of scintillation cocktail (ULTIMA GOLDTM LLT, Perkin Elmer) and counting 

with liquid scintillation analyzer (Tricarb 2910 TR; Perkin Elmer, USA). Total activity of 

NaH14CO3  in the incubation was determined on 20 µl aliquots of sample taken directly into 4.5 

mL of scintillation cocktail with 200 µl of phenylethyamine.  

 

The CO2 fixation rate was calculated from: 
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 Where: DPM (sample) = disintegrations per minute in the sample 
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              DPM (T0) = disintegrations per minute in the time zero 

              DPM (TA) = disintegrations per minute in the total activity vial 

              Volume (TA) = volume of sample in the TA vial (e.g., 20 µL = 0.02 mL) 

              Volume (Sample) = sample volume (e.g., 1.0 mL) 

              TCO2 = total inorganic carbon concentration (mmol L-1) 

 

The total inorganic carbon concentration (TCO2) was measured on filtered (0.2 µm pore filter) 

medium using a liquid sample module for total organic carbon analyzer (SSM-5000A, 

Shimadzu, Japan).  

 

The CO2 fixation rate was converted from mmol L-1 to mg L-1 by multiplying by 12 (the atomic 

weight of C) and then dividing by the chlorophyll a concentration to obtain chlorophyll a-specific 

rates, and the results were fitted using least-squares non-linear regression  (Solver, Excel 2007) 

to the model of Platt et al. (1980). 

 

P𝐶ℎ𝑙 =  𝑃𝑚
𝐶ℎ𝑙  [1 − 𝑒𝑥𝑝 (

−∝𝐶ℎ𝑙  𝐸

 P𝑚
𝐶ℎ𝑙 )] 

 

Where:  P𝐶ℎ𝑙  is the rate of photosynthesis, normalized to Chl a (gC gChl−1 h−1) at irradiance E 

(µmol photons m−2 s−1),  P𝑚
𝐶ℎ𝑙  is the light-saturated photosynthesis rate and ∝𝐶ℎ𝑙 (gC gChl−1 h−1) 

(µmol photons m−2s−1)−1 is the initial slope of the PE curve. 

 

2.7 Light absorption 

Culture samples of 30 mL were collected and centrifuged at 3000 x g for 10 min (Mistral 2000, 

DJB Labcare Ltd, UK) at room temperature. The supernatant was removed and 3 mL of fresh 

medium was added.  The samples were mixed gently and an absorbance spectrum measured 

from 380 to 800 nm using a spectrophotometer fitted with an integrating sphere to collect 
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forward scattered light (U-3000, Hitachi, Japan). Fresh medium was used as blank.  The 

chlorophyll specific light absorption coefficient of light capture in the cultures was determined by 

following the equation:  

 

 

Where:   aChl is the chlorophyll specific light absorption coefficient [with units of m2 (g Chl a)-1]                                

              O.D. is the optical density in a 1 centimetre of path length cuvette                                                            

              [Chl a] is the chlorophyll a concentration in mg chl a L-1 in the sample (which is the      

                          same value as g m-3)                                                                                                                                        

0.01 is the conversion from centimetre to metre 

 

2.8  Pigment analysis 

2.8.1 Sample preparation and extraction 

 

Ultra performance liquid chromatography (UPLC) was used to quantify chlorophylls and 

carotenoids. Culture samples of 100 mL were filtered through glass fibre filters and stored in the 

freezer (-80oC) for E. huxleyi (chapter 5) and in liquid N2 for T. weissflogii (chapters 6 and 7) 

until analysis. Whilst still frozen, the filtered samples were placed in Teflon lined screw-capped 

tube and extracted using 2.0 mL 98 % buffered methanol (buffered with 2% 0.5 M ammonium 

acetate pH 7.1) under dim light. The samples were incubated in a beaker containing ice to 

reduce the conversion of chlorophyll a into chlorophyllide a by chlorophyllase. The samples 

were then ultrasonicated for 8 min for E. huxleyi and for 12 min for T. weissflogii. The extracts 

were filtered through a 0.2 µm pore polypropylene filter using a glass syringe to remove cell 

debris.  

 

 

O.D.

(0.01 [Chl a])

aChl = 2.303
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2.8.2 Pigment assay 

 

Pigment separation was performed using a method modified from Zapata et al. (2000, 2004). 

Briefly, the filtered MeOH extracts were automatically injected into the ultra performance liquid 

chromatography (UPLC) of ACQUITYTM Waters System (MS, USA).  A C8 column (50 mm x 2.1 

mm, 1.7 µM particle size, 100 Å pore size: Waters; MS, USA) was used to separate pigments. 

The column was thermostatted at 25oC and the sample chamber was held at 5oC. The mobile 

phases were HPLC glade. Eluent A was a mixture of methanol: acetonitrile: aqueous pyridine 

(0.25 M, pH adjusted to 5.0 with pure acetic acid) (50:25:25 v/v/v) while eluent B was comprised 

of acetonitrile: acetone (80:20 v/v). The programed flow rates and gradient is given in Table 2-1. 

Peak detection was determined using a diode array absorption detector (PDA Eλ Detector, 

Waters, USA). Pigments were identified by comparison of relative retention times given by 

Zapata et al. (2000, 2004) and reference absorbance spectra from Jeffrey et al. (2005). The 

detector was calibrated with a chlorophyll a standard (Sigma Aldrich, USA) run at 

concentrations of 0, 0.5, 1, 2, 4, 6, 8, and 10 µg mL-1. 

 

                        Table 2-1. The gradient elution of pigment analysis using UPLC. 

Time 
(min) 

Flow      
(mL min-1) 

% A % B Curve* 

0.00 0.2 100     0 - 

1.00 0.2 100     0 1 

2.57 0.2   80   20 2 

6.50 0.2     0 100 8 

9.00 0.2 100     0 6 
 

* Eleven gradient curves for the gradient segment. For example, No. 1: immediately specified 
condition, No. 2-5: convex, No. 6: linear, No. 7-10: concave, and No. 11: maintain start condition.  

 

2.8.3 Pigment quantification 

Chl a was used as reference pigment because it is a  common pigment in all marine algae, and 

the accessory pigments were quantified as pigment-to-Chl a (molar : molar) ratios. Light 
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absorption was measured at a wavelength of 440 nm and reported as integrated area unit (AU).   

The molar extinction coefficients (E) at 440 nm acquired from Jeffrey et al. (2005) were used for 

pigment quantification.  For 4-keto-19’-hexanoyloxyfucoxanthin (Hex-kfuco) whose molar 

extinction coefficients is not available, the molar extinction coefficient of 19’-

hexanoyloxyfucoxanthin (Hex-fuco) was used.   

 

2.9  Fatty acid profile 

2.9.1  Preparation of glassware 

Glassware, glass vials and PTFE lids were immersed in the dishwasher detergent for 2 hours 

and rinsed with water and then immersed in 5% hydrochloric acid bath at least for 2 hours. All 

glass and plastic ware was then rinsed with deionised water and methanol respectively.  

2.9.2  Lipid extraction 

Samples of algal suspensions (100 mL) were filtered onto glass fibre filters and stored in liquid 

N2 until analysis.  The filtered samples were placed into a glass screw-cap vial (20x80 mm).  

Lipids were extracted in 9.5 mL of a solution of methanol: chloroform: water (10:5:4 v/v/v) 

following Bligh & Dyer (1956). The glass vials were covered with PTFE lid and then sonicated 

for 30 min at room temperature. Then 2.5 mL chloroform and 2.5 mL deionised water were 

added to the samples, which were then placed in the freezer (-20oC) overnight to separate the 

two phases. The upper aqueous layer was removed using glass Pasteur pipette. The lipids 

were contained in the lower chloroform layer. The solvent combined in lipid extraction was 

evaporated under a stream of nitrogen gas at 37oC using a heating block. 

 

2.9.3  Preparation of methyl esterification  

The dried lipids were resuspended using 1.0 mL of the mixed reagent (toluene: methanol 1:1 

v/v). Then, 1.0 mL of 0.2 M methanolic potassium hydroxide was added to the sample to 

hydrolyse the lipids. The organic aqueous phase was swirled to mix and incubated at 37oC for 
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30 min, then 0.25 mL of 1 M acetic acid was added into the solution phase to stop the reaction 

and to neutralize the pH of the sample. Next, 5 mL of the mixed reagent (hexane: chloroform 

4:1 v/v) and 3.0 mL deionised water were added to the sample. The extract was sonicated for 

30 min and then kept in a refrigerator overnight to separate the two phases. The aqueous lower 

layer was removed using a glass Pasteur pipette and 3.0 mL of 0.3 M sodium hydroxide was 

then added to the sample.  The upper aqueous phase (the nonpolar organic solvent phase) was 

filtered using a glass syringe (10 mL) which contained the glass wool fibre with 300 mg of 

sodium hydroxide on top in order to absorb and remove water from aqueous phase.  The 

sample was evaporated under a stream of nitrogen at 20-25oC until dry. The dried fatty acids 

were resuspended with 0.5 mL of hexane before injection on GC/MS.  

2.9.4  GC/MS condition 

Fatty acids methyl ester (FAME) standards and samples were analysed using gas 

chromatography/mass spectrometer (GC/MS) (7890A, Agilent Technologies, USA) at an 

ionization energy of 70 eV for m/z range of 50-500, and using helium as carrier gas at a flow 

rate of 1.0 mL min-1.  A HP-5 capillary column (30 m x 0.25 mm x 0.25 µm; Agilent J&W, USA) 

consisted of 5%-phenyl methylpolysiloxane was used to separate the fatty acids. The injector 

(splitless mode) and detector temperatures were 310oC and 320oC, respectively. The initial 

column temperature was held for 5 min at 40oC, then increased at 25oC min-1 (ramp 1) to        

160oC, and then at 2oC min-1 (ramp 2) to 240oC, then finally increased at 25oC min-1 (ramp 3) to 

310oC and held for 5 min. A standard fatty acids methyl ester (37 component FAME, Supelco, 

USA) solution was prepared 50-800 µg mL-1 and 20 µg mL-1 of nonadecanoic acid methyl ester 

(C19:0) (Sigma-Aldrich, USA) was used as internal standard. A calibration curve between the 

peak abundance of each standard FAME and the peak abundance of the internal standard was 

established to calculate the concentration of each of the FAMEs in the samples.  Fatty acid 

identities were determined by comparison with the FAME standard retention time and mass 

spectra of the National Institute of Standards and Technology (NIST) spectral database version 

11.  
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Using the GC protocol outlined above, 33 peaks from 37 components of FAME standard were 

identified. This protocol was used to collect the data reported in chapters 5 and 6. A new GC 

protocol was therefore developed to obtain more FAME standard peaks. With the new protocol, 

35 of the 37 components of FAME standard could be identified. The new condition was held for 

1 min at 50oC, then increased at 4oC min-1 (ramp 1) to 160oC, and then at 3oC min-1 (ramp 2) to 

200oC, then finally increased at 10oC min-1 (ramp 3) to 230oC and held for 5 min. The flow rate 

was 1.2 mL min-1.  This protocol was used to collect the data reported in chapter 7.  

  

2.10  Amino acids assay 

2.10.1  Samples preparation 

 

Algal samples (50 mL) was centrifuged at 10000 x g for 5 min (Centrifuge 5403, Eppendorf, 

Germany) at the same temperature following the cultured cells. The supernatant was discarded 

and a pellet was washed three times using 20 mL of 0.5 M ammonium sulfate to remove salts. 

The pellet was transferred to a sterile microcentrifuge tube (2 mL) and stored at -80oC. 

2.10.2   Extraction of free amino acids  

Free amino acids were extracted from E. huxleyi (chapter 5) and T. weissflogii (chapter 6) using 

a modification of Salazar et al. (2012).  Briefly, a clean, sterile glass bead (diameter = 2 mm) 

was placed into a pellet sample tube. Then, 125 µL of ice cold 50% (v/v) methanol:deionised 

water was added to the sample tube, and the sample tubes were mixed using a minishaker 

(MS2 Minishaker, UK) at 1800 rpm/min for 3 min. The samples were incubated on a dry ice bath 

for 5 min and sonicated in an ultrasonic cleaner (Decon Ultrasonic, England) for 1 min. Then the 

samples were centrifuged at 15000 x g (Centrifuge 5403, Eppendorf, Germany) at 4oC for 5 

min. The supernatant was collected and a pellet was reextracted with 125 µL of an ice cold 50% 

(v/v) solution as described above. The supernatants were combined and stored at -80oC if the 

sample was not derivatised immediately. 
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2.10.3   Extraction of combined amino acids  

The pellets from 2.10.2 were extracted to obtain bound amino acids in cell using a modification 

of Kaiser & Benner (2005). Each pellet was transferred into an unused glass vial (1.5 x 10 cm).  

5 µL of 12 mM ascorbic acid (final concentration at 10 µL mL-1) was added to prevent oxidation 

of amino acids by nitrate (Kaiser & Benner claimed from Robertson et al. 1987).  500 µL of 6 M 

hydrochloric acid (HCl) was added and mixed gently using a vortex mixer (MS2 Minishaker, 

UK). Then, 5 µL of 100 mM phenol (final concentration at 1 mM) was pipetted in to the 

hydrolysis sample vials to protect tryptophan from hydrolysis and then mixed gently again. The 

hydrolysis glass vials were capped with polytetrafluoroethylene (PTFE) lined caps and purged 

with nitrogen gas for 5 min. Then the glass vials were placed on a heating block (BT3, Grant 

Instruments Ltd, England) at 110oC for 20 h. The hydrolysed samples were allowed to cool at 

room temperature. 1500 µL of deionised water was added and mixed. The sample solution was 

transferred to a microcentrifuge tube and centrifuged (5415D, Eppendorf, Germany) at 10000 x 

g for 10 min to remove cells debris. Next, 50 µL of the supernatant was transferred to an 

unused small HPLC vial (1 x 3 cm) and dried under a stream of nitrogen.  50 µL of water was 

added twice after drying the amino acid samples to ensure that all the HCl was removed. 

 

2.10.4   AccQ.Tag ultra amino acid derivatisation  

Prior to LC-MS/MS analysis, amino acids were derivertised with a 6-aminoquinolyl-N-

hydroxysuccinimidyl carbamate (AQC) based kit (Waters, Massachusetts, USA). For free amino 

acids, 10 µL of extracted sample was mixed with 70 µL of AccQ.Tag Ultra borate buffer. After 

that, 20 µL of AccQ.Tag reagent (1 mL of 2B reagent was added in 2A reagent bottle and mixed 

using vortex for 10 seconds and then the mixing solution reagent was incubated at 55oC for 10 

min). The sample solution was kept for 1 min at RT before incubating in an oven (Shake ‘n’ 

Stack, Themo Scientific Ltd., USA) for 10 min at 55oC. For bound amino acid, 80 µL with 

AccQ.Tag Ultra borate buffer was added to the vials containing the dried amino acid samples.  

Then 20 µL of AccQ.Tag reagent was added in each sample and as described above. A 
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standard curve was prepared from an amino acid standard solution containing 17 amino acids 

(Waters Massachusetts, USA) at concentrations of 0, 1, 2, 4, 6, 8, and 10 pM µL-1 and 

deionised water used as a blank. 

2.10.5   Amino acid quantification using LC-MS/MS 

Amino acids were analysed using a LC-MS/MS system (Acquity, Quatro Premier XE, Waters, 

Massachusetts, USA). Amino acids were separated using a 1.7 µm column (AccQ.Tag Ultra 

column, Waters, Massachusetts, USA) set to 55oC. A flow rate of mobile phase in column was 

0.7 mL min-1. Mobile phase was made using manufacturer’s solvents which consisted of 10% 

AccQ.Tag Ultra concentrate solvent A (eluent A, Massachusetts, USA), and 100% AccQ.Tag 

Ultra solvent B (eluent B, Massachusetts, USA). The amino acids were separated using a 

gradient method: 0-0.54 min (99.9% A), 5.74 min (90.0% A), 7.74 min (78.8% A), 8.04-8.64 min 

(40.4 %A), 8.73-10 min (99.9% A). The mixtures of amino acids were determined using multiple 

reaction monitoring (MRM) under ESi+ mode with the conditions and transitions as stated in 

Salazar et al. (2012). 

 

2.11  Microscopic image 

2.11.1  DAPI preparation 

 A stock solution of DAPI (4′,6-diamidino-2-phenylindole, InvitrogenTM, USA) was prepared by 

dissolving 5 mg mL-1 in distilled water under dim light and aliquots stored at -20°C. 

 

2.11.2  Sample preparation 

Cells grown under exponential phase were harvested at the cell density of approximately 1.5 - 

2.0 × 105 cells mL−1, placed in a sterile microcentrifuge (1.5 mL) and then centrifuged at 4,000 x 

g for 5 min. The pellet was resuspended using fresh media. DAPI was added to a final 

concentration of 10 µg mL-1. The sample was mixed gently and kept in the dark at room 

temperature (RT) for 2 min. Nile red solution (from 2.4.6.1) was added to a yield a final 

concentration of 10 µg mL-1 and kept at RT for 1 min.  
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           2.11.3  Microscopy 

For image acquisition, a Nikon A1si confocal laser scanning microscope (CLSM) was used with 

a planapochromatic VC 1.4 NA 60x magnifying oil-immersion objective (Nikon Corp., Tokyo, 

Japan). Images were acquired in four channels, using one-way sequential line scans. Nile red 

was excited at 488 nm, and its emission collected from 500 to 550 nm. Chlorophyll a 

autofluorescence in chloroplasts was excited at 637 nm, and its emission collected from 662 to 

737 nm. DAPI labelling dsDNA was excited at 405 nm, and its emission collected from 425 to 

475 nm. Differential interference contrast images for cellular outlines were acquired using the 

transmitted light detector. In all cases, no offset was used, and the scan speed was ¼ frame s-1 

(galvano scanner). The pinhole size was 34.5 μm approximating 1.2 times the Airy disk size of 

the 1.4 NA objective at 525 nm. Scanner zoom was centred on the optical axis and set to a 

lateral magnification of 55 nm pixel-1. Axial step size was 140 nm, with 30-50 image planes per 

z-stack. At least 50 cells with average to fair signal strength in all channels were examined. 

 

           2.11.4 Image processing and analysis  

                       2.11.4.1 Pruning  

Datasets should be checked for cellular integrity and signal strength. Cells that appear damage, 

with poor contrast, or that moved during image acquisition were excluded from the analysis.  

                      2.11.4.2 Cellular volume determination  

The cellular volume can be approximated by measuring a cylindrical shape of T. weissflogii 

calculated using geometric equation (Hillebrand et al. 1999).  
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                                                                  V  =  ¶ .  r2 .  h 

Where:    V  = cell volume (µm3) 

                ¶  = 3.14 

                r   = radius (µm) or half the diameter of the cylindrical shape 

                h  = high (µm) or length of cylindrical shape 

 

                       2.11.4.3 Volume quantification 

The MATLAB software (version R2012b with Image Processing Toolbox; Math Works Inc., 

Natick, Massachusetts, USA) was used to analysis the images in which objects are white and 

background is black.  The images were used to determine the volume of the objects of interest 

in each channel (Fig 2-1). 

 

 

Figure 2-1. The four acquired channels (top row) of differential interference contrast (DIC) for 

cell volume, DAPI for DNA, Nile red for neutral lipids, and autofluorescence of chlorophyll for 

chloroplasts. Radius (r), a half of diameter, and high (h) are determined in DIC images (first 

column), and cell volume (V) approximated using a cylindrical model. The volume of the 

subcellular, fluorescent components is determined by global thresholding (bottom row). 

Scalebar 5 μm. 

 



  

45 
 

Chapter 3: Development and application of Nile red 

(NR) fluorescence based method for quantification of 

neutral lipid content in a marine diatom                                                      
 

3.1 Introduction 

 

Increased fuel demand and dramatic changes in the climate including global warming have 

turned worldwide attention to the identification of alternative energy sources to replace fossil 

fuels. Microalgae are among possible candidates for biofuel production and may replace fossil 

fuel because they yield high quantities neutral lipid content (Singh & Gu 2010; Amaro et al. 

2011). The method for neutral lipids quantification needs to be an accurate determination. 

 

Chemical lipid extraction is a traditional technique used to quantify lipid content in microalgae; 

however, the method can be complex, time consuming and labor intensive. It requires a large 

sample size and causes decomposition or oxidation of the lipids. Fluorescence measurement is 

an alternative technique that employs fluorescent lipophilic dyes for quantification of neutral 

lipids in microalgae. Nile red (NR) has been suggested for use in screening and quantifying 

intracellular neutral lipid (Cirulis et al. 2012) because NR does not cause dye precipitation when 

determining lipid quantification (count) with cytometry (Cirulis et al. 2012).  Additionally, NR is a 

quick and inexpensive method (Lee et al. 1998; Huang et al. 2009; Orr & Rehmann 2014). The 

fluorescence intensity of the stained samples is correlated to the neutral lipid content using a 

calibration curve (Bertozzini et al. 2012). 

 

Nile red (9-diethylamino-5H-benzo[alpha]phenoxazine-5-one), or Nile blue oxazone, is a 

benzophenoxazone dye synthesized from Nile Blue (Fig. 3-1). The excitation and emission 

spectra of Nile red shift further toward the blue end of the spectrum as the polarity of the solvent 

decreases (Dutta et al. 1996).  Nile red fluoresces poorly in water, but in other solvents its 
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maximum fluorescence intensity is a good indicator of the dye’s hydrophobic environment (Jose 

& Burgess 2006; Stuart et al. 2005).    

 

                                    Figure 3-1. Structure of Nile red and Nile blue 

 
 

Recently, there have been several NR studies that have developed or improved techniques to 

achieve accurately quantification intracellular lipid (Pick & Rachutin-Zalogin 2012; Abdo et al. 

2014).  The factors, affecting the success of reading for lipid quantification staining approach, 

are presented as follow: 

1) the dyes   

NR  (2 µg mL-1) was found to be an optimal lipophilic dye for staining Scenedesmus dimorphus 

and Chlorella vulgaris to develop correlation between fluorescence intensity and cellular lipid 

content, compared with BODIPY 505/515 (4,4-difluro-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-

indacene) and Vybrant DiO-C18 (3,3’-dioctadecyloxacarbocyanine perchlorate). Using NR 

reduced the noncellular events and fluorescence variability in a flow cytometer (Cirulis et al. 

2012). Furthermore, Wu et al. (2014) found that both NR and BODIPY 505/515 can be used as 

staining dyes for the detection of intracellular neutral lipid content using a fluorescence 

spectrophotometer in the dinoflagellate Prorocentrum micans and the diatom Phaeodactylum 

tricornutum.  

2) Nitrogen in cell  

NR fluorescence emission in the N-deficient cells in the green microalgae Dunaliala salina 

showed a predominant emission peak of the maximal emission at around 580 nm that had a 

high lipid content. While N-saturated control cells with low lipid contents presented a much 

smaller peak at around 625 nm (Pick & Rachutin-Zalogin 2012).   

N2H
+

Nile red Nile blue
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                3)  NaCl concentration  

The maximum-emission wavelength of NR in D. salina incubated in 3 M NaCl was blue-shifted 

by about 20 nm, as compared to 0.5 M NaCl (Pick & Rachutin-Zalogin 2012).  

4)  Solvents  

Polar substituents on the aromatic rings of many fluorescent compounds are known to be 

sensitive to the chemical and physical properties of solvents which leads to different emission 

spectra (Table 3-1).  

Table 3-1. Solvent dependence of wavelength absorption and emission in Nile Red (Greenspan 

& Fowler 1985). 

Solvent                                                                    
 

λmax    
absorption (nm) 

λmax        
emission (nm) 

Water  591 657 

Ethanol 559 629 

Acetone  536 608 

Chloroform 543 595 

iso-Amyl acetate  517 584 

Xylene  523 565 

n-Dodecane  492 531 

n-Heptane  484 529 

 
 
The robust cell walls of many microalgae can prevent NR from crossing cell membrane and 

entering the cell (Chen et al. 2009). To overcome this problem, it has been suggested that using 

a permeabilisation treatment and extending incubation time may allow NR screening to be used 

on cells that possess robust cell walls (Krishnamoorthy & Ira 2001; Elsey et al. 2007; Doan & 

Obbard 2011). Dimethyl sulfoxide (DMSO), glycerol, and ethylene glycol are widely used to 

promote NR permeability into the cell (Doan & Obbard 2011; Natunen et al. 2014).   

Accurate information on the concentrations of lipids and other compounds in microalgae is 

essential for understanding how cells adjust their physiology to changes in their environment 

and for optimizing production of desired products in algal biotechnology. However, many publish 

studies contain underestimates or overestimates of the concentrations of biochemical 

compounds, particularly neutral lipid (Doan & Obbard 2011). Therefore, one of the goals of my 
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research was to implement accurate, reliable methods for determining the neutral lipid contents 

of microalgae (chapters 3 and 4). The objectives of this study were: (i) to find out the optimal 

assay for accurate quantification of intracellular neutral lipids in Thalassiosira weissfogii, and (ii) 

to evaluate the effect of the concentration of inorganic nitrogen in the growth medium on 

intracellular neutral lipid content and cellular chlorophyll content of T. weissflogii. 

 

3.2 Operating conditions and sampling 
 

3.2.1 Development of protocol to measure neutral lipid content 

 

Thalassiosira weissflogii CCMP 1051 was grown in 1,000 mL in pyrex flask with 400 litre 

working volume of artificial seawater (Berges et al. 2001) enriched to f/2 plus silicate (Guillard & 

Ryther 1962) medium, with 3 mM NaHCO3 and 1 nM Na2SeO3.  Duplicate batch cultures were 

incubated at 16°C and photosynthetic photon flux densities (PFD) of 500 ± 10 μmol photons 

m−2s−1 on a 14:10 h light:dark cycle. Cells in the late exponential phase were used to provide 

material for optimizing the neutral lipid assay.   

 

The relative neutral lipid content of cells was determined by fluorometric assay using the dye 

Nile red (NR). The assay was optimized by assessing the effects of NR concentration (0.5 to 2.0 

µg mL-1), incubation time (1-20 minutes), and incubation with DMSO as a carrier (0-20%), on 

the peak wavelengths of fluorescence excitation and emission and the intensity of the measured 

fluorescence.  Nile red (Nile red 99%, ACROS OrganicsTM) was dissolved in 100 % acetone 

(HPLC grade) and aliquots stored at -20°C. 3-12 µL of NR solution were added to 3 mL of 

sample to obtain final concentration of NR in the sample ranging from 0.5 to 2.0 µg mL-1.  

Excitation and emission spectra were measured using a fluorescence spectrometer (LS 50B, 

Perkin Elmer; UK) and fixed wavelength excitation at 529 nm, emission at 589 nm, and both slit 

of excitation and emission at 5 nm. Triolein (1,2,3-Tri(cis-9-octadecenoyl)glycerol) (≥99%, 

Sigma, USA) was used as lipid standard for calibrating the process. 
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3.2.2 Application of developed protocol: the effect of nitrogen on growth 

and elemental composition 

 

T. weissflogii CCMP 1051 was maintained in f/2 plus silicate medium, with 3 mM NaHCO3.  

Cells in the exponential phase were used to inoculate batch cultures, containing 20 µM 

NaH2PO4
.H2O, f/8 metals, 1 nM Na2SeO3, f/4 vitamins, and different concentrations of NaNO3 

(50, 100, 200 and 882 µM). The initial cell density was approximately 1x104 cells mL-1. Cultures 

were incubated in duplicate in 1-litre glass bottles at 16ºC on a 14:10 h light:dark cycle under 

fluorescent light of 500 μmol photons m−2 s−1. The cultures were gently stirred with a magnetic 

stir bar and continuously aerated with filtered air through a 0.22 µm membrane filter.  

 

Cultures were sampled daily to obtain material for chemical and physiological assays. Cell 

abundance was determined using a Coulter particle counter (Z2 Series COULTER COUNTER®, 

Beckman Coulter Inc., USA). Samples were collected for chlorophyll a content (see chapter 2), 

particulate nitrogen (PN), particulate phosphorus (PP) and lipid content. Lipid content was 

assessed using the optimized NR method developed for T. weissflogii CCMP 1051. 

 

3.3 Statistical analysis 
 

Statistical analysis was performed using Statistical Package for the Social Sciences (SPSS 

version 19). A paired sample student t-test was performed for pair-wise comparison, while an 

analysis of variance (ANOVA) with the post hoc test (Tukey HSD) used for multiple 

comparisons. 
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3.4 Results 

3.4.1 Development of fluorometric quantification of neutral lipid content 

 

The relative neutral lipid in T. weissflogii CCMP 1051 was determined by fluorometric assay 

using the dye Nile Red (NR). Initially, the excitation wavelength was set at 530 nm to obtain an 

emission spectrum from 500 to 800 nm for NR stained T. weissflogii  because this wavelength 

was used previously on T. pseudonana CCMP 1335 (Yu et al. 2009). When the excitation 

wavelength was fixed at 530 nm, the emission was scanned under conditions: an excitation slit 

width of 5.0 nm and emission slit width of 5.0 nm at a scan speed of 200 nm min-1.   Unstained 

T. weissflogii cells gave the highest peak at 684-686 nm (Fig. 3-2), which is the chlorophyll peak 

(Eltgroth et al. 2005; De la Hoz Siegler et al. 2012).  Cells stained with NR (1 µg.mL-1) gave 

peak emission at a wavelength of 589 nm (Fig. 3-2). Therefore, emission wavelength at 589 nm 

was fixed to optimize the excitation wavelength. 

Having shown in figure 3-2 that the maximum fluorescence emission was at a wavelength of 

589 nm, T. weissflogii  cells yielded maximum excitation at 529 nm when cells were stained with 

different NR concentrations (0.5, 1.0, 1.5 and 2.0 µg mL-1). In addition, concentration of NR at 

1.0 µg mL-1 gave the highest fluorescence intensity (Fig. 3-3). Therefore, 1.0 µg mL-1 of NR was 

be used to dye the samples.   
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Figure 3-2. Emission spectra of T. weissflogii CCMP 1051. The excitation wavelength was fixed 

at 530 nm. Unstained cells (the lowest black line) show the chlorophyll peak at 684-686 nm.  

Emission spectra of T. weissflogii stained with NR 1 µg mL-1 in samples containing different 

amounts of Triolein at final concentrations: 0, 10, 20, 30, 40, 50 and 60 µg mL-1.   

 

 

                               

Figure 3-3. Excitation spectra of T. weissflogii CCMP 1051 stained with four different amounts of 

Nile red (0.5, 1.0, 1.5, and 2.0 µg mL-1). The emission wavelength was fixed at 589 nm. 
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To improve NR staining of microalgae, extended incubation time of lipid accumulating algae with 

NR was recommended (Krishnamoorthy, 2001; Elsey et al. 2007). The optimal incubation 

duration for measuring lipid accumulation in T. weissflogii with NR 1.0 µg mL-1 was after 5 

minutes (Fig. 3-4A).  

To determine the optimal cell biomass concentration for assessing cellular lipid contents, T. 

weissflogii was diluted serially in f/2 medium before staining with NR. Although fluorescence 

intensity increased linearly with cell abundance (Fig. 3-4B), cell abundance was selected 

between 200,000 and 400,000 cells mL-1 because this gave fluorescence intensity within the 

range of the Triolein standard curve (< 20 µg mL-1). This concentration range is similar to the 

study by Yu et al. (2009) which used 600,000 cells mL-1 of T. pseudonana for determining 

neutral lipid content. 

 

Figure 3-4. The relationship between NR fluorescence intensity and incubation time for T. 

weissflogii. NR is shown in the relative fluorescence intensity at different times after adding 1.0 

µg mL-1 (A).  The relationship between relative fluorescence intensity and cell abundance for a 

culture of T. weissflogii stained with NR 1.0 µg mL-1 (B).  Values are mean ± standard deviation, 

n= 3.         
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DMSO as a carrier is also important for enhancing the lipid staining efficiency. 5% or 10% 

DMSO increased fluorescence intensity by approximately 10 % when compared with T. 

weissflogii (200,000 cells mL-1) incubated without DMSO (Fig. 3-5).              

 

Figure 3-5. Fluorescence intensity of T. weissflogii using NR with and without adding different 

amounts of DMSO. The bars labelled with the same letter were not significant different (one way 

ANOVA Turkey’s test; p< 0.05). Samples were incubated with NR 1.0 µg mL-1 for 5 minutes. 

Values are mean ± standard deviation, n= 3.         

 

In this study, the optimal method for quantifying neutral lipid in T. weissflogii CCMP 1051 using 

Nile red was fixed excitation at 529 nm, slit excitation 5 nm, emission at 589 nm slit excitation 5 

nm. Nile red concentration was 1.0 µg mL-1 for staining cell abundance 2-4 x 104 cells mL-1. The 

time for reaching a maximum of fluorescence intensity was 5 minutes and 5 % DMSO enhanced 

lipid staining efficiency of stained cells. Therefore, these conditions will be used in future 

experiments. 
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3.4.2 Application of fluorometric quantification of neutral lipid content 

in  a marine diatom 

 3.4.2.1 Growth rate 

The triplicate cultures of T. weissflogii were grown under different nitrogen concentrations (50, 

100, 200 and 882 µM NaNO3) in batch mode. The maximum cell abundance of T. weissflogii in 

stationary phase increased from 1.65 x 105 cells mL-1 in the lowest N concentration to 2.32 x 105 

cells mL-1 in the highest N concentration (Fig. 3-6A). The growth rate during exponential phase 

(days 0-2) ranged from 0.88 to 1.19 d-1, and did not differ between treatments (Fig. 3-6B). The 

growth rate dropped in all treatments at day 3.   

 

Figure 3-6. Time dependence of cell abundance (A) and growth rate (B) of T. weissflogii in 

batch cultures with different initial NaNO3 concentrations. Mean values ± standard deviation, 

n=3 at 50 (black circle), 100 (open circle), 200 (black triangle) and 882 µM (open triangle) 

NaNO3 are shown.  

                            3.4.2.2  Intracellular chlorophyll a  

T. weissflogii grown under 50 µM NO3 gave the lowest cellular chl a content, which dropped 

continuously from day 1, whereas chl a content from 100 to 200 µM declined after day 2         

(Fig. 3-7).  At 882 µM NaNO3, the highest cellular chl a content was observed on day 4 when it 

was around 5 times greater than the 50 µM NaNO3 treatment on the same day.  
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Figure 3-7. Intracellular chlorophyll a content of T. weissflogii grown under different nitrate (50, 

100, 200, and 882 µM NaNO3) concentrations. Values are mean ± standard deviation, n= 3.  

 

                          3.4.2.3 Particulate nitrogen (PN) and phosphorus (PP) levels 

Cellular N and P contents gradually dropped with increasing time in all treatments. Cells grown 

under 50 µM NaNO3, the lowest NaNO3 concentration, gave the lowest cellular N and P content 

(Figs. 3-8A,B).  The concentration of particulate N (µmol L-1) in the culture increased until day 3 

except in the 50 µM NaNO3 treatment which increased on day 2 and then dropped when cells 

entered the stationary phase (Figs. 3-8C,D). Although particulate P concentration increased 

until day 3, it was steady thereafter. 

The ratio N:P (mol:mol) of all treatments in exponential phase ranged between 16.95-18.55 and 

then dropped as time increased. Cells grown at replete condition of 882 µM NaNO3 had the 

highest N:P, whereas cells grown at 50 µM NaNO3  showed the lowest N:P (Fig. 3-8E).  
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Figure 3-8.  Intracellular concentrations of nitrogen (A) and phosphorus (B) in unit pg cell-1, 

particulate nitrogen (C) and particulate phosphorus (D) in unit µmol L-1, and N:P ratio (E) of T. 

weissflogii. Concentrations are expressed in units of mass per cell (pg cell-1) under nutrient 

limited batch cultures at 50, 100, 200 µM NaNO3 and replete batch culture at 882 µM NaNO3 

concentration. Values are mean ± standard deviation, n= 3.  
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                           3.4.2.4  Lipid content 

Cellular neutral lipid content was similar in all cultures during exponential phase; however, 

differences were observed at stationary phase. T. weissflogii, which was grown in 200 µM 

NaNO3,  showed the highest cellular lipid content which was approximately 3.5 fold higher than 

in the nitrate replete (882 µM NO3) at stationary phase (Fig. 3-9A,B). 

 

Figure 3-9. Lipid content in unit pg cell-1 (A) and lipid yield in unit mg L-1 (B) of T. weissflogii  as a 

function of time (day) at different NaNO3 concentrations (50, 100, 200, and 882 µM) in batch 

culture. Values are mean ± standard deviation, n= 9. 
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The lipid yield (mg L-1) and productivity (mg L-1 d-1) of T. weissflogii incubated in different nitrate 

concentrations are shown in Table 3-2. The highest lipid yield and productivity was observed at 

200 µM nitrate concentration, which was 3-time higher than that under nitrogen-replete 

condition (882 µM).  

 

Table 3-2 Lipid yield (mg L-1) and productivity (mg L-1 d-1) of T. weissflogii under different nitrate 

concentrations at day 7 of stationary phase. Values are mean ± standard error, n= 9.  Means 

with a column followed by the same letter are not significantly different (one way ANOVA 

Tukey’s test; p< 0.05).   

 

     Nitrate   
concentration     
      (µM) 

Lipid yield                       
  (mg L-1) 

    Lipid  
productivity    
(mg L-1 d-1) 

        50 2.1±0.1a 0.26±0.01A 

      100 3.6±0.1b 0.47±0.02B 

      200 5.9±0.2c 0.74±0.03C 

      882 2.0±0.1a 0.25±0.01A 
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3.5 Discussion  

3.5.1 Application of fluorometric quantification of neutral lipid content in         

a marine diatom 

 

In this study, the optimal excitation and emission wavelengths for lipid quantification were 529 

nm and 580 nm respectively. However, the wavelengths used depend upon the sample 

conditions (Elsey et al. 2007).  For example, Yu et al. (2009) determined lipid in Thalassiosira 

pseudonana and Phaeodactylum tricornutum (class Baccilariophyceae) using excitation and 

emission at 530 and 550-570 nm respectively under N-limited culture. In contrast, excitation at 

480 and emission at 570 nm were used for the dinoflagellate Prorocentrum micans and the 

diatom Phaeodactylum tricornutum maintained under N-deprived conditions (Wu et al. 2014).  

Therefore, the ability to effectively and successfully quantify lipid production from diversity of 

microalgae species requires the optimal excitation and emission wavelengths.  

 

NR dissolved in acetone was used for staining neutral lipid in T. weissflogii CCMP 1051 at a 

final concentration 1 µg mL-1. Cirulis et al. (2012) found that NR (2 µg mL-1) was a suitable dye 

and <1 % acetone in the sample for staining Scenedesmus dimorphus and Chlorella vulgaris. 

This suggests that the fluorescence of Nile red interacted with extreamely hydrophobic 

substances (i.e., neutral lipid droplets) leading to high relative fluorescence unit. 

 

DMSO is miscible in a range of organic solvents allowing it to be used broadly as a stain carrier 

(Chen et al. 2009). Using DMSO enhanced lipid staining efficiency and elevated the 

fluorescence unit of stained cells because DMSO promoted NR permeability and decreased 

hydrophobicity. This finding is consistent with the study by Doan et al. (2011) who found that 

DMSO stimulated the fluorescence intensity of stained cells more than glycerol in the green alga 

Nannochloropsis sp. Moreover, DMSO has been widely used as a carrier in other microalgae 

such as Chrysochromulina sp. in class Prymnesiophyceae, Mallomonas splendens in class 

Synurophyceae (Cooper et al. 2010), Chaetoceros muelleri in class Bacillariophyceae, Chlorella 
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vulgaris in class Trebouxiophyceae, Chlorococcum littorale in class Chlorophyceae, 

Botryococcus braunii in class Trebouxiophyceae, Nannochloris sp. in class Chlorophyceae, 

(Chen et al. 2011), Pseudochlorococcum sp. in class Chlorophyceae (Li et al. 2011).  

 

3.5.2 The effect of nitrate concentration on growth rate and chemical composition 

of marine microalgae  

 

There were no significant differences in growth rate during exponential phase in T. weissflogii 

grown under different NO3 concentrations.  Similarly, in green algae Nannochloropsis oculata 

and Chlorella vulgaris constant growth rate were observed at different nitrate concentrations 

(0.9, 1.8 and 3.5 mM NaNO3) grown in batch culture for 14 days (Converti et al. 2009). This 

could be inoculum cells maintained in replete medium before transferring to a batch culture 

remained in nutrient-replete exponential growth immediately following transfer to the 

experimental medium. 

 

Cellular N and P contents decreased gradually with incubation time but concentrations of 

particulate N and particulate P (µmol L-1) increased sharply until day 3 (late exponential phase). 

The N:P ratio also decreased gradually with incubation time owing to the reduction of nutrients 

in medium. This suggests that cells grew faster due to enrich nutrients and cells accumulated 

inorganics substance when serving in stressful environmental condition. The reduction of nitrate 

concentration led to a decrease in maximum biomass. Nitrogen limited conditions decrease 

growth; however, significantly increase the lipid content of many microalgae. Additionally, the 

reduction of nitrate may limit protein biosynthesis that lead to an increase the lipid or 

carbohydrate as energy source (Converti et al. 2009). 

 

T. weissflogii at 200 µM NaNO3 gave the highest lipid yield (approximately 6 mg L-1) and 

productivity (approximately 0.7 mg L-1 day-1) in term of fresh weight.  The lipid yield of cells 

under the nitrogen-limited condition (200 µM NaNO3) was more than double that under nitrogen-
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replete (882 µM NaNO3) conditions at day 7 of stationary phase. In another study, d’Ippolito et 

al. (2015) who studied T. weissflogii P09 and Cyclotella cryptica CCMP 331 grown in nitrogen 

limitation (~180 µM NaNO3) gave approximately 3.4-3.8 fold increase in lipid productivity 

(mg L−1 day−1) compared with nitrogen-sufficient condition (882 µM NaNO3). This suggests that 

under nitrogen limitation, the cultures positively affect oil production in these photoautotrophic 

organisms.    
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3.6   Conclusions 

 The developed method for quantifying neutral lipid in T. weissflogii using NR used an 

excitation wavelength at 529 nm, slit width 5 nm, with emission wavelength at 589 nm, slit 

width 5 nm. A Nile red concentration of 1.0 µg mL-1  was used for staining 400,000 cells              

mL-1. The incubation time for reaching the maximum fluorescence intensity was found to be 

5 min. Using 5 % DMSO enhanced lipid staining efficiency by approximately 10 percent.    

 This method was used to assess the effect of nitrate concentrations on lipid content of T. 

weissflogii.  Of particular interest was the influence of nitrogen concentrations on chlorophyll 

a, elemental composition as well as lipid content in stationary phase batch cultures of T. 

weissflogii. Although cellular contents of chlorophyll a, particulate nitrogen and particulate 

phosphorus levels decreased with time in stationary phase, the absolute values depended 

on the initial nitrate concentration in the culture medium. In contrast, cellular lipid content 

increased with time in stationary phase cultures. 

 The effect of nitrate concentration on T. weissflogii showed the lipid content and lipid yield 

increased with increasing concentrations of nitrate when cells were grown under nitrogen-

limited medium (50, 100, and 200 µM NaNO3). However, the lowest lipid content and yield 

was observed in nitrogen-enriched medium (882 µM NaNO3). 

 The highest lipid yield and productivity was observed at 200 µM nitrate concentration, which 

was three times higher than that observed under nitrogen-replete condition (882 µM). Since 

cells gave the greatest lipid content at 200 µM NaNO3. Based on these results, this 

concentration was used the experiments described in the remainder of this thesis. 
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Chapter 4: Development of a method for determining 

the combined amino acid composition of microalgae 

using ultra performance liquid chromatography 

(UPLC) 
 

4.1 Introduction 
 
 

Proteins are macromolecules consisting of many amino acids linked together through peptide 

bonds and cross-linked between chains such as sulfhydryl bonds, hydrogen bonds and van der 

Waals forces.  There are about 300 amino acids present in various animal, plant and microbial 

systems, but only 20 amino acids serves as building blocks of proteins (Gromiha 2010). Amino 

acid analysis can be used to quantify protein content and to identify proteins based on their 

amino acid composition. For example, tyrosine is the source of a group of excitatory 

neurotransmitters and hormones called catecholamines including adrenaline, noradrenaline 

and dopamine (Hardie 1991). Glutamate is the source of gamma-aminobutyric acid (GABA), a 

major inhibitory brain neurotransmitter (Shelp et al. 1999). 

 
The protein content of microalgae varies greatly and depends on both the species and 

environmental growth conditions. For example, the protein content of green algal species, e.g., 

Dunaliella tertiolecta, Nannochloropsis atomus is around 21.4- 99.9 pg cell-1 dry weight; of 

diatoms, e.g., Chaetoceros calcitrans, C. garacillis. P. triconutum, S. costatum, T. pseudonana 

is about 28.4-76.4 pg cell-1 dry weight; of haptophytes e.g. Isochrysis galbana, I. aff. galbanna 

(T-iso), Pavlova lutheri, P. salina is approximately 29.7-102.3 pg cell-1 dry weight (Brown 1991). 

 

Microalgae are capable of synthesizing amino acids and they can provide the essential amino 

acids to humans and animals which must come from diet. Such essential amino acids are 

histidine, isoleucine, leucine, lysine, methionine, phenylalanine, threonine, tryptophan, and 

valine. There are variations in the amino acid profiles in microalgae. For instance, aspartate and 

glutamate were generally found in highest contents approximately 7.6-12.4 % total amino acid, 
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whereas cystine, histidine, hydroxy-proline, methionine, ɣ-amino-butyric acid, ornithine, and 

tryptophan were found in the lowest concentrations around 0.04-3.23 % total amino acid at the 

end of exponential growth phase of 16 microalgal species (Brown 1991).  

 
The traditional method for determination of amino acid content is ion-exchange chromatography 

combined with post-column ninhydrin derivatisation (Boogers et al. 2008 cited Horwitz 2002). 

However, high-performance liquid chromatography (HPLC) in combination with pre-column 

derivertisation is more sensitive and faster. The reagents frequently used for pre-column 

derivitization include O-phthalaldehyde (OPA) (Gardner & Miller 1980; Blankenship et al. 1989), 

9-fluorenylmethylchloroformate (FMOC) (Brown 1991; Bank et al. 1996; Ou et al. 1996), 

phenylisothiocyanate (PITC) (Sarwar & Botting 1989; Shang & Wang 1996), and 6-

aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) (Hong 1994; Diaz et al. 1996; Boogers 

et al. 2008; da Silva Gorgônio et al. 2013).  

 

The AccQ . Tag method is widely used for the chemical derivitisation in analysis of amino acids 

(Boogers et al. 2008; Hou et al. 2009; Salazar et al. 2012). In this method, 6-aminoquinolyl-N-

hydroxysuccinimidyl carbamate (AQC) reacts with primary and secondary amines or amino 

acids to generate the first product which is a stable unsymmetrical amine derivative. The 

derivative is highly fluorescent (Fig. 4-1). The second product is the excess reagent reacts with 

H2O that is generated 6-aminoquinoline (AMQ), N-hydroxysuccinimide (NHS) and carbon 

dioxide. This process is a slower reaction. The derivertised amino acid and AMQ have the same 

excitation at 248 nm; however, amino acid products have an emission maxima approximately 

395 nm and the emission of maxima AMQ is around 520 nm. The different emissions do not 

interfere with the measurements of amino acid content (Cohen 2003). 
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Figure 4-1. 6-aminoquinolyl-N-hydroxy-succinimidyl carbamate (AQC)  reacts  with  amine  or 

amino acid to produce highly stable fluorescent products. The excess reagent reacts with water 

to generate a product with different fluorescence spectra.                                                                         

(Source: http://www.waters.com/waters/en_GB/AccQ%E2%80%A2Tag-and-

Pico%E2%80%A2Tag-Methods/nav.htm?cid=1000897&locale=en_GB) 

 

  

Ultra performance liquid chromatography (UPLC) has been widely used in the analysis of small 

molecules in pharmaceutical (Wren & Tchelitcheff 2006), food (Dadáková et al. 2009), and 

environmental areas (Mezcua et al. 2006) because UPLC is faster and provides improved 

resolution and sensitivity compared to high performance liquid chromatography (HPLC) (Swartz 

2005). Although UPLC offers many advantages over conventional HPLC, few applications in 

marine microalgae have been reported.  

 

The aims of this research were to (i) develop the protocol for determining the amino acid 

composition of proteins (combined amino acids) extracted from microalgae, and (ii) evaluate 

recovery using BSA as a standard to developed a protocol was used for quantifying the 

combined amino acid contents in the marine haptophyte Emiliania huxleyi (chapter 5) and the 

marine diatom Thalassiosira weissflogii (chapter 6). 

AQC reagent Derivatized Amino Acids

6-Aminoquinoline (AMQ)
bis-aminoquinoline urea derivatization peak

1 Amino Acid:
t 1/2  << 1s

2 Amino Acid:
t 1/2 << 1s

H2O
t 1/2   ~15s

N-hydroxy 
Succinimide 

+ CO2

AMQ

http://www.waters.com/waters/en_GB/AccQ%E2%80%A2Tag-and-Pico%E2%80%A2Tag-Methods/nav.htm?cid=1000897&locale=en_GB
http://www.waters.com/waters/en_GB/AccQ%E2%80%A2Tag-and-Pico%E2%80%A2Tag-Methods/nav.htm?cid=1000897&locale=en_GB
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4.2 Materials and methods 

 

4.2.1   Preparation of amino acids standard  
 

A stock solution of 100 pmol µL-1 amino acid hydrolysate standard containing 17 amino acids 

(WAT088122, Waters, Massachusetts, USA)  was prepared by transferring 40 µL amino acid 

standard into a plastic vial and mixing with 960 µL of deionized water (Mili Q pore, MiliQ® 

Gradient, France). The standard stock solution vials were mixed and stored in a freezer (-20ºC).  

4.2.2 Preparation of bovine serum albumin (BSA) 
 

  
A stock solution of 500 µg mL-1 BSA (A7906-10G, 98% BSA, Sigma Aldrich, USA) was 

prepared in 2 steps.  First, 10.0 mg of BSA were placed into a dried volumetric flask and 

deionized water was then added until a total volume of 5.00 mL was reached (final 

concentration 2,000 µg mL-1). Second, 250 µL of 2,000 µg mL-1 BSA were mixed with 750 µL 

deionized water. Aliquots of the BSA stock were kept in a freezer (-20oC).  

 

4.2.3 Preparation of glycine 13C  

A stock solution of 100 µg mL-1 glycine 13C (279439-250MG, glycine 13C, Sigma Aldrich, USA) 

was prepared in 2 steps.  First, 10.0 mg of glycine 13C were placed into a dried volumetric flask 

and deionized water was then added until a total volume of 5.00 mL was reached (final 

concentration 2.0 mg mL-1). Second, 50 µL of 2.0 mg mL-1 glycine 13C were mixed with 950 µL 

deionized water. The glycine 13C stock vials were stored in a freezer (-20oC).  

 

4.2.4  Extraction of amino acids in BSA 

50 µL of 500 µg mL-1 BSA (from 4.2.2) were pipetted into an unused glass vial (1.5 x 10 cm.) in 

triplicate and placed in an oven at approximately 40oC until dried. The BSA extraction was 

modified from Kaiser & Benner (2005). Briefly, 5 µL of 12 mM ascorbic acid (final concentration 

at 10 µL mL-1) were added into the dried BSA vial to prevent oxidation of amino acids by nitrate 

(Kaiser & Benner cited from Robertson et al. 1987).  500 µL of 6 M hydrochloric acid (HCl) were 

added and mixed gently using a vortex mixer (MS2 Minishaker, UK). Then, 5 µL of 100 mM 
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phenol (final concentration at 1 mM) were pipetted into the hydrolysis sample vials to protect 

tryptophan from hydrolysis and then mixed gently again. The hydrolysis glass vials were capped 

with polytetrafluoroethylene (PTFE) lined cap tightly and purged with nitrogen gas for 5 min. 

Then the glass vials were placed on a heating block (BT3, Grant Instruments Ltd, England) at 

110oC for  20 h. The hydrolysed samples were allowed to cool at room temperature. 1,500 µL of 

deionized water were added and mixed. The sample solution was transferred to a 

microcentrifuge tube and centrifuged (5415D, Eppendorf, Germany) at 10000 x g for 10 min to 

remove debris. Next, 50 µL of the supernatant were transferred to an unused small HPLC vial  

(diameter x length: 1 x 3 cm) and dried under a stream of nitrogen (Fig. 4-2) at room 

temperature (RT).  50 µL of deioised water were added twice after drying the amino acid 

samples to ensure that HCl was removed. 

 

 

 

Figure 4-2. The supernatant containing amino acids was dried under a stream of nitrogen 

before derivatisation of AccQ.Tag ultra reagent. 

 

4.2.5 Preparation of reconstitute AccQ.Tag ultra reagent powder 

1.0 ml of 2B reagent (WAT052887, Waters, Massachusetts, USA) was added in 2A reagent 

(WAT052887, Waters, Massachusetts, USA) powder bottle and mixed using vortex for 10 

seconds and solution reagent was then incubated at 55oC for 10-15 min and shaken 

occasionally until the powder dissolved.  
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4.2.6 AccQ.Tag ultra amino acid derivatisation  

 

Prior to UPLC-MS analysis, amino acids were derivertised with a 6-aminoquinolyl-N-

hydroxysuccinimidyl carbamate (AQC) based kit (Waters, Massachusetts, USA).  A standard 

curve was prepared from an amino acid standard solution (from 4.2.1) at concentrations of 0, 1, 

2, 4, 6, 8, and 10 pM µL-1 and deionized water used as a blank.  

The dried supernatant containing the amino acid (from 4.2.4.) was mixed with 80 µL of 

AccQ.Tag ultra borate buffer (WAT052887 Waters, Massachusetts, USA). After that, 20 µL of 

AccQ.Tag reagent (from 4.2.5) were added and mixed gently. The sample solution was kept for 

1 min at RT before incubating in an oven (Shake ‘n’ Stack, Themo Scientific Ltd., USA) for 10 

min at 55oC. 

4.2.7 Amino acid quantification using UPLC-MS 

 

Amino acids were analysed using a UPLC-MS system (Acquity, Quatro Premier XE, Waters, 

Massachusetts, USA). Amino acids were separated using C18 column (50 mm x 2.1 mm x 1.7 

µm, Waters, Massachusetts, USA) set to 55oC. The flow rate of mobile phase in the column was 

0.7 mL min-1. The mobile phase was made using the manufacturer’s solvents which consisted of 

10% AccQ.Tag Ultra concentrate solvent A (186003838 eluent A, Massachusetts, USA), and 

100% AccQ.Tag Ultra solvent B (186003839 eluent B, Massachusetts, USA). The amino acids 

were separated using a gradient method: 0-0.54 min (99.9% A), 5.74 min (90.0% A), 7.74 min 

(78.8% A), 8.04-8.64 min (40.4 % A), 8.73-10 min (99.9% A). To achieve a good separation 

efficiency by ions according to their mass to charge ratio (m/z) of amino acids, time setup was 

set in 4 types. Taurine, serine, arginine and glycine were group 1 separated at 0-4.2 min; 

aspartic acid, asparagine, glutamic acid, threonine, and proline were group 2 separated at 3.5-

6.6 min; cysteine, tyrosine, methionine, valine, and lysine were group 3 separated at 6.0-7.4 

min, and isoleucine and phenylalanine were group 4 separated at 7.4-10.0 min. The mixture of 



  

69 
 

amino acids was determined using multiple reaction monitoring (MRM) under ESi+  

(electrospray) mode with the conditions and transitions as stated in Salazar et al. (2012).  

 

4.2.8 Recovery of Glycine 13C  

 

50 µL of 100 µg mL-1 glycine 13C were placed into an unused glass vials (1.5 x 10 cm.) and 

dried in an oven at 40oC.  The dried glycine 13C was hydrolysed using hydrochloric acid 

following 4.2.4.  To test the recovery of substances, both hydrolysed glycine 13C and non-

hydrolysed glycine 13C were derivatised with AccQ.Tag ultra reagent following 4.2.6 and 

samples were injected by following 4.2.7.  The percentage of glycine recovery was calculated as 

follows:  

 

 

  

Area unit (AU.) of recovered substance after hydrolysis

Area unit (AU.) of substance before hydrolysis
X  100 % Recovery  =
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4.3 Results 
 

 

4.3.2 Amino acid standard curve  
 

Using the protocol described above, 17 peaks were detected in the amino acids standards 

within 10 min (Table 4-1).  Individual amino acids were identified using mass spectroscopy as 

shown in figure 4-3.   

The limit of detection of AccQ.Tag–derivertised amino acids was 62.5 fmol µL-1 and the 

coefficient of determination (R2) value was more than 0.96 when mixed amino acids were 

prepared concentration from 62.5 fmole to 1 pmole amino acids. 

Table 4-1. The retention time (min), R2, and mass to charge ratio (m/z) of amino acid standards. 

No. Amino acid 
 RT. 
(min) 

R2                                        
(from 62.5 fmol to 1 pmol µL-1) 

Parent 
ion (m/z) 

  1 Taurine 2.53                      1 296.11 

  2 Serine 3.39                      1 276.21 

  3 Arginine 3.59 0.99 345.21 

  4 Glycine 3.66 0.99 246.08 

  5 Aspartic acid 3.96 0.96 304.11 

  6 Asparagine 3.96                      1 303.13 

  7 Glutamic acid 4.40                      1 318.11 

  8 Threonine 4.75                      1 290.11 

  9 Sacrosine 5.25 0.98 260.17 

10 Proline 5.96                      1 286.17 

11 Cysteine 6.58 0.98 581.64 

12 Tyrosine 6.67 0.99 352.21 

13 Methionine 6.78                      1 320.21 

14 Valine  6.92 0.99 288.21 

15 Lysine 7.03 0.99 487.21 

16 Isoleucine 7.76                      1 302.21 

17 Phenylalanine 7.96                      1 336.21 
            

             *p: pico (10-12); f: femto (10-15) 
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Figure 4-3. UPLC chromatograms of AccQ Tag-derivatised amino acids standard with time 

(min). The time setup for separation of taurine, serine, arginine and glycine at 0-4.2 min (A), of 

aspartic acid, asparagine, glutamic acid, threonine, and proline at 3.5-6.6 min (B), of cysteine, 

tyrosine, methionine, valine, and lysine at 6.0-7.4 min (C), and of isoleucine and phenylalanine 

at 7.4-10.0 min (D). 
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Figure 4-4. The relationship between concentration of proline at concentrations of 0.0625 - 20  

pmol µL-1 and AU detected by UPLC. 

 

4.3.3 Recovery of amino acid in BSA 

 

Seventeen types of amino acids were detected in the hydrolysed BSA using the protocol 

described above.  We did not detect leucine or tryptophan, and could not differentiate between 

aspartic acid and asparagine, which co-eluted.  In addition, taurine and sacrosine, which were 

included in our amino acid standards, are not found in BSA published in the Universal Protein 

Resource (www.uniprot.org/). We can infer that taurine is actually histidine because the parent 

ion mass/charge ratio (m/z) of histidine was 326.21 in the chromatogram (Fig. 4-5A) while m/z 

of taurine is 296.11 (Salazar et al. 2012). We can also infer that sacrosine could be alanine 

because they also have the same parent ion at 260.17 (Fig. 4-5B). Therefore, in this 

experiment, we concluded that we detected both histidine and alanine in the hydrolysed BSA 

samples.  
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Figure 4-5. UPLC spectrum of parent ions (m/z) at 326.1 (histidine) and 260.17 

(sacrosine/alanine). 

  

The amount of each amino acid in the hydrolysed BSA was estimated using amino acid 

standard curves. Aspartic acid and asparagine were combined together in this work because 

asparagine can be degraded easily into aspartic acid. Good agreement was found between the 

amounts of amino acid that we detected in BSA and the expected values from the protein 

sequence obtained from Uniprot (http://www.uniprot.org/uniprot/P02769) as shown in Fig. 4-6. 

 

A

B
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Figure 4-6. The relationship between amino acid concentrations from the hydrolysed BSA 

sample (pmol µL-1) and number of residues of each amino acids reported for BSA from the 

universal protein resource (www.uniprot.org/). Each point in the graph refers to means and 

standard errors obtained from triplicates. 

 

To evaluate the recovery of individual amino acids from protein hydrolysates using the protocol 

described above, the mass of each amino acid residue from hydrolysed BSA that was detected 

was compared with the mass expected based on the amount of BSA used in the standard 

(Table 4-2). An example of how this calculation was performed follows: 

Example, 1). Calculation of mass residue of amino acid from hydrolysed BSA in an experiment. 

The concentration (pmol µL-1) of the amino acid in the derivatized sample was calculated from 

the peak area using a standard curve (example; valine standard curve (Fig. 4-7)): 

Y= aX + b from linear curve of amino acid, where Y is the amino acid concentration (pmol µL-1) 

and X is the peak area (Area Units = AU). 
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Figure 4-7. The relationship between concentration of valine at concentrations of 1, 2, 4, 6, 8, 

and 10 pmol µL-1 and AU detected by UPLC. 

 

The mass concentration (pg µL-1) of the amino acid was then calculated from the concentration 

(pmol µL-1) and the molecular weight. 

AA content in unit pg µL-1 (column 4) =  AA content in unit pmol µL-1 (column 2)  

 

It is necessary to correct for the proportion of the derivatized sample that was injected (2 µL of 

100 µL derivertised sample solution) and the conversion from pg µL-1 to pg mL-1 (1000 pg µL-1 =  

1 pg mL-1) to obtain mass detected. 

 

 

                2). Calculation of mass residue of amino acid from Uniprot. (source: 

http://www.uniprot.org/uniprot/P02769) 

The mass of a particular amino acid in one mole of BSA was calculated from the number (No.) 

of amino acid (AA) residues reported in Uniprot as follows:  

Mass of AA residue (column 8)  =  No. of AA residues (column 7) X Molecular weight (column 1)   
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 The proportion of mass AA of each amino acid to the total was then calculated as: 

 

 

The expected mass of the detected amino acids in the 500 g mL-1 BSA standard solution was 

then calculated from the sum of the masses of the individual amino acids in BSA, taking into 

account that we did not detect leucine or tryptophan.   

Mass expected-amino acid (column 10) = Proportion of mass AA (column 9) x BSA content  

The recovery was then calculated as:  

 

 

                       

 

 

 

 

 

 

 

 

 

Proportion of mass AA (column 9)  =  
Mass of each AA residue (column 8)  

Total mass of AA residue (column 8) 

 Mass detected-amino acid (column 5) 

Mass expected-amino acid (column 10) 
X  100  % recovery    = 

% recovery    =  
337.23 

445.46 
X 100   =   75.70 
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Table 4-2. The mass recovered-amino acid received from hydrolysed BSA and from the 

universal protein resource (www.uniprot.org/). 

 
Hydrolysed BSA 

    

Uniprot. 

  Amino acid    1    2  3      4      5    6 
 

    7      8        9     10 

 

 MW Mean 
(pmol µL-1) 

SE     AA            
  (pg µL-1) 

  Mass 
Detected 

  SE 
 

No. of 
residues 

Mass of 
residues 

Proportion      
  of mass 

  Mass 
Expected 

Alanine   71.09 5.21 0.27   370.23   18.51   0.97 
 

  47   3341.23 0.05   25.05 

Arginine 156.19 2.62 0.16   409.60   20.48   1.21 
 

  25   3904.75 0.06   29.27 

Asparagine*  114.60 7.61* 0.37   872.32   43.62   3.00 
 

  54*   6188.40 0.09   46.39 

Cysteine 103.15 3.69 0.46   380.20   19.01   2.35 
 

  35   3610.25 0.05   27.07 

Glutamic acid**  128.60 9.02** 0.38 1160.25   58.01   2.43 
 

  79** 10159.40 0.15   76.16 

Glycine   57.05 2.23 0.19   127.04     6.35   0.55 
 

  16     912.80 0.01     6.84 

Histidine 137.14 1.36 0.22   186.86     9.34   1.49 
 

  17   2331.38 0.03   17.48 

Isoleucine 113.16 1.46 0.07   165.58     8.28   0.37 
 

  14   1584.24 0.02   11.88 

Leucine 113.16 NT 

     

  61   6902.76 0.10 

 Lysine 128.17 7.19 0.34   921.09   46.05   2.15 
 

  59   7562.03 0.11   56.69 

Methionine 131.19 0.53 0.03     69.49     3.47   0.19 
 

    4     524.76 0.01     3.93 

Phenylalanine 147.18 2.79 0.09   410.02   20.50   0.66 
 

  27   3973.86 0.06   29.79 

Proline   97.12 3.07 0.05   298.36   14.92   0.22 
 

  28   2719.36 0.04   20.39 

Serine   87.08 3.30 0.17   287.41   14.37   0.72 
 

  28   2438.24 0.04   18.28 

Threonine 101.11 3.53 0.09   357.03   17.85   0.46 
 

  33   3336.63 0.05   25.01 

Tryptophan 186.21 NT 

     

    2     372.42 0.01 

 Tyrosine 163.18 2.19 0.12   356.96   17.85   0.57 
 

  20   3263.60 0.05   24.47 

Valine   99.14 3.76 0.24   372.26   18.61   0.69 
 

  36   3569.04 0.05   26.76 

Total 

   

6015.46 337.23 18.03 

 

585 66695.15 1.00 445.46*** 
 

 NT: not determined, MW: molecular weight, SE: standard error 

 *: Sum of asparagine and aspartic acid as these co-elute  

 **: Sum of glutamic acid and glutamine as these co-elute 

 ***: Sum of mass recovered without including leucine and tryptophan 

 

Amino acid content was positively correlated with the unit of residue and the coefficient of 

determination was 0.97 (Fig. 4-6). Moreover, 76 % of recovery was estimated from mass 

detected-amino acid by hydrolysed BSA compared with mass expected-amino acid from 

universal protein resource. This suggests that amino acids from hydrolysed BSA and 

subsequent derivatisation with AccQ Tag ultra reagent provided an efficient protocol to quantify 

amino acids in marine microalgae samples. 
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4.3.4  Recovery of glycine 13C 

  

The hydrolysed glycine 13C and non-hydrolysed glycine 13C were derivatised with AccQ.Tag 

ultra reagent to estimate the percentage of recovery substance. The parent ion of non-

hydrolysed glycine 13C is 248.03 (Fig. 4-8A) and area unit was integrated as shown in 

chromatogram (Fig. 4-8B). Percentage recovery was calculated as: 

 

The recovery of glycine 13C was 70.9 ± 2.8 % (mean ± SE). This is similar to the recovery of 

75.7 ± 2.6 % calculated for total amino acids in BSA. 

 

Figure 4-8. UPLC spectrum of parent ion glycine 13C (A) and integrated area of glycine 13C 

chromatogram (B). 

 

 

 

Area unit (AU.) of recovered substance after hydrolysis

Area unit (AU.) of substance before hydrolysis
X  100 % Recovery  =
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4.4 Conclusions 

• A UPLC amino acid analysis was developed for identifying and quantifying amino acids in 

microalgae. The method combining sensitive 6-aminoquinolyl-N-hydroxy-succinimidyl 

carbamate (AQC) amino acid derivatization with UPLC offered significant advantages such as a 

shorter runtime and enhanced chromatographic resolution relative to HPLC methods.   

      • Bovine serum albumin (BSA) was used as a standard to assess the efficiency of 

hydrolysis by hydrochloric acid and amino acid composition was quantified using the derivatised 

AQC reagent. This showed a high coefficient of variation (R2 = 0.97) with recovery 

approximately 76 %.  

     • The efficiency of the protocol was also tested using hydrolysed and non-hydrolysed glycine 

13C. Recovery was calculated to be 71% which was similar to that obtained for BSA.  

     • Thus, this protocol was found to be reliable and appropriate for quantifying free and 

combined amino acids in the marine haptophyte Emiliania huxleyi (chapter 5) and the marine 

diatom Thalassiosira weissflogii (chapter 6).  

• The developed UPLC amino acid analysis was found to be a valuable tool for measuring 

amino acids following the hydrolysis of proteins in samples of microalgae. 
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Chapter 5: The effect of temperature on growth rate of 

Emiliania huxleyi CCMP 1516 

   

5.1 Introduction 

 

Marine phytoplankton account for about 50% of global primary productivity (Field et al. 1998) 

and play important roles in marine ecology by providing the energy that sustains open ocean 

food webs, and in marine biogeochemistry by fixing CO2 into organic matter and consuming 

inorganic nutrients particularly calcium carbonate precipitation by coccolithophores.  

Phytoplankton productivity is affected by a wide range of environmental factors including light, 

nutrients and temperature.  Temperature affects phytoplankton growth as temperature activates 

enzymes that catalyse many metabolic processes. Below the optimum temperature, reactions 

proceed faster with increasing temperature; however, different phytoplankton species respond 

differently to temperature changes. Above the optimum temperature, growth rate declines due 

to high-temperature inactivation of key enzymes. 

 

5.1.1  Effect of temperature on algal growth and physiology  

 

Increasing atmospheric CO2 concentration caused from man-made and fossil fuels-combusted 

emission is leading to climate change and global warming (the greenhouse effect). Houghton et 

al. (2001) hypothesized that global warming will elevate the temperature of surface ocean water 

by 1-7oC. Microalgae and phytoplankton are able to acclimate or adapt to growth at different 

temperatures (Li 1980; Smith et al. 1994; Suzuki & Takahashi 1995). Temperature has a strong 

regulation on algal growth and photosynthesis (Raven & Geider 1988; Davison 1991). 

Temperature also plays a key role in influencing the outcome of competition between 

phytoplankton species in both the laboratory and outdoor cultures (Goldman & Ryther 1976; 

Goldman, 1977). For example, Skeletonema costatum predominated at temperature below 

10°C, Phaeodactylum tricornutum between 10-23°C, and other species (e.g., Amphora sp., 
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Nannochloris sp., Nitzschia closterium, Stichococcus sp.,) above 23°C when these species 

were maintained in outdoor culture. (Goldman & Mann 1980; Goldman & Ryther 1975, 1976; 

D'Elia et al. 1977).  

 

Many studies showed that temperature affects growth rate in phytoplankton (Thomas 1966; 

Rajadurai et al. 2005; Lassen et al. 2010). For instance, in the marine diatom Chaetoceros 

calcitrans, growth rates increased from 0.3 d-1 at 6oC to 1.0 d-1 at 15oC, and to 1.4 d-1 at 25oC 

(Anning et al. 2001). In addition, Cryptomonas sp., Rhodomonas sp. and Prymnesiophyte NT19 

growth rate increased with temperature between 25 to 30oC; however, growth rated declined at 

temperatures above 30oC (Renaud et al. 2002).  

 

Temperature influences not only growth rate, but also cellular carbon (C), nitrogen (N) and 

chlorophyll a (chl a) concentrations (Goldman, 1979; Yoder, 1979; Goldman and Mann, 1980; 

Montagnes & Franklin 2001). Cellular C, Chl a, and C:N increased with increasing temperatures 

in the diatom Thalassiosira pseudonana (Berges et al. 2002). Growth temperature also has a 

strong influence on the biochemical composition of algae. Protein content increased markedly in 

the chlorophyte Dunaliella tertiolecta and the haptophyte Isochrysis galbana grown at 

temperatures higher than 15oC (Thompson et al. 1992). Zhu et al. (1997) found that Isochrysis 

galbana TK1 gave the highest protein and carbohydrate contents at 15oC in exponential and 

stationary growth phase respectively, whereas lipid content was higher at 30oC than at 15oC at 

stationary growth phase. 

 

Phenotypic or genotypic changes algae species in response to temperature affects the 

photosynthetic rate (Davison 1991). For example, maximum photosynthetic rate (Pmax) 

increased progressively when benthic microalgae were maintained at increasing temperature up 

to 25oC (optimal temperature) and it declined at 30oC (Blanchard et al. 1997; Defew et al. 2004).  
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5.1.2 Aims and Objectives 

 

In the laboratory, the growth rate of E. huxleyi CCMP 1516 is correlated with RNA:protein under 

limited nutrient (N and P) and low and high light conditions (McKew et al. 2013a,b). However, 

the effect of temperature has not been studied.  Temperature affects how fast ribosomes can 

synthesize proteins; typically the rate of protein synthesis per ribosome should increase by 

about two times if temperature is increased by 10ºC.  If growth rate also doubles when 

temperature is increased by 10 ºC, then we should expect that the ratio of RNA-to-protein will 

not be affected by temperature. In contrast to enzymatic reactions and protein synthesis, 

temperature does not affect the rate at which chlorophyll a and other pigments absorb photons. 

Therefore, we can also predict that the ratio of chl a-to-RNA should increase when temperature 

increases 

 

Therefore, to test the hypotheses that  

1. RNA:protein will not be affect by temperature and  

2. that chl a:RNA will be higher at high temperature than at low temperature,  

 a study was conducted to evaluate the response of E. huxleyi CCMP 1516 to various 

temperatures with the following objectives: 

1) To determine the effect of temperature on growth rate and biochemical composition of 

microalgae. 

2) To examine the correlations between growth rate and RNA:protein to test whether the 

growth rate hypothesis can be applied to temperature. 

3) To examine the correlations between growth rate and chl a:C to test whether the bio-

optical hypothesis can be applied to temperature. 
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5.2 Operating conditions and sampling 
 

 
Emiliania huxleyi  CCMP 1516  was grown in 3 litre volume semi-continuous  cultures in artificial 

seawater (Berges et al. 2001), enriched to f/2 medium (Guillard & Ryther 1962)  with 3 mM 

NaHCO3 and 1 nM Na2SeO3. Cells in exponential phase were used to inoculate continuous 

cultures containing 20 µM NaH2PO4, 300 µM NaNO3, f/8 metals, and f/4 vitamins. Triplicate 

cultures were illuminated under photosynthetic photon flux densities of 600   10  μmol photons 

m−2 s−1 on a 14:10 h light:dark cycle.  Initially, E. huxleyi was grown in a batch culture mode at 

16oC.  After which, cells in exponential growth were moved to continuous culture mode and 

incubated at 18 ± 0.1oC using a temperature controlled water bath.  The cultures were gently 

stirred with a magnetic stir bar and continuously aerated with filtered air through a 0.22 µm 

membrane filter.  Cell abundance was determined daily using a hemocytometer and kept in the 

range of approximately 50-100 x104 cells mL-1 by adjusting the dilution rate in order to prevent 

nutrient limitation and minimize light attenuation due to self-shading .   

 

Cultures were harvested at intervals of 4 to 5 days to obtain material for chemical and 

physiological assays. Samples were typically collected in triplicate from each of the 3 replicate 

cultures on three occasions.  Specifically, 15x100 mL volumes of suspension were collected on 

glass microfiber filters for measuring chlorophyll a, particulate organic carbon (POC), protein, 

fatty acid profile and pigments. In addition, 6x25 mL of suspension was collected for measuring 

particulate nitrogen (PN), particulate phosphorus (PP) and 9x100 mL of culture suspension was 

centrifuged at 3000 x g for 7 min for measuring total amino acids, RNA and DNA. Moreover, at 

selected times when the radiotracer lab was available, 30 mL of culture suspension was 

collected for determining photosynthesis-light response curves.   Cell size (equivalent spherical 

diameter and volume) was determined using a Coulter particle counter and size analyzer (Z2, 

Beckman coulter Inc., USA).  Samples for POC were collected on pre-combusted filters, which 



  

84 
 

were baked at 500oC for 5 h in a muffle furnace (Carbolite, AAF 1100, UK). All elemental and 

biochemical composition were measured using the methods described in chapter 2. 

After samples were collected at 18oC (I, first treatment), the temperature was reduced from 

18oC (I) to 14oC and additional samples were collected in the same way as described above.  

Following this, the temperature was increased from 14oC to 18oC (II, second treatment) and 

then to 22oC respectively and sampling was repeated. 

 

5.3 Statistical analysis 

Statistical analysis was performed using Statistical Package for the Social Sciences (SPSS 

version 19). A paired sample student t-test was performed for pair-wise comparison, while an 

analysis of variance (ANOVA) with the post hoc test (Tukey HSD) used for multiple 

comparisons. 
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5.4 Results 

5.4.1 Growth rate, Chl a, PN, PP, and POC  

The abundance of E. huxleyi was maintained at between 5 and 10 x 105 cells mL-1 in all vessels 

(Fig 5-1A).  Cell abundances at 18 (II) and 22oC were higher than at 14oC. There were 

differences in growth rate (Fig 5-1B) and biovolume (Fig 5-1C) with elevated temperature.  

 

Figure 5-1. Temperature dependence of cell abundance (A), growth rate (B), cellular volume 

(C), and chlorophyll a content (D) of E. huxleyi CCMP 1516. Values are mean ± standard errors 

for three replicate vessels (n = 9) at temperatures of 18(I), 14, 18(II), and 22oC. Bars labelled 

with the same letter were not significantly different (one way ANOVA Tukey’s test; p< 0.05).               

 

The growth rate of E. huxleyi increased significantly with elevated temperature (Fig 5-1B; 

ANOVA, p<0.05).  The growth rate of E. huxleyi was about 2.7 times higher at 22oC (1.12 d-1) 

than at 14oC (0.41 d-1) with an intermediate growth rate observed at 18oC. Temperature 

significantly affected biovolume (ANOVA; p< 0.05), with the lowest value observed at 22oC (Fig 
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5-1C). Cellular chlorophyll a content decreased with increased temperature of 22oC while at 

temperatures of 18 (I), 14 and 18 (II)oC no significance was observed (Fig 5-1D).  

The intracellular nitrogen (N) and phosphorus (P) contents of E. huxleyi at temperature of 18 

(I)oC and 14oC  were not significantly different.  Lower N and P were observed at 18 (II) and 

22oC (Figs 5-2A,B). Whereas, intracellular carbon (C) content decreased with increased 

temperature (Fig 5-2C). When E. huxleyi was cultured at 22oC N:P ratio was approximately 

23.8, the highest N:P ratio observed.  However, the averages of  N:P ratios  were  15.7,  16.3,  

and 18.1 at temperatures of 18(I), 14, and 18(II)oC  respectively (Fig 5-2D).    

 

Figure 5-2. Intracellular content of nitrogen (A), phosphorus (B), organic carbon (C), and N:P 

ratios (D) of E. huxleyi CCMP 1516. Mean values ± standard errors are shown for three 

replicate vessels, n = 9 at temperatures of 18(I), 14, 18(II), and 22oC.   Bars labelled with the 

same letter were not significantly different (one way ANOVA Tukey’s test; p< 0.05).               
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The chl a to C ratio increased with temperature (Fig 5-3A) and the chl a : C  was positively 

correlated with growth rate (Fig 5-3B). However, the increase in growth rate was approximately 

3.3 fold, whereas the increase in chl a : C was only about 1.4 fold.  

 

Figure 5-3. The chl a to C ratio in unit g g-1 (A) of E. huxleyi CCMP 1516 under different 

temperatures of 18(I), 14, 18(II) and 22oC and the relationship between chl a : C and growth 

rate (d-1) (B). Values are mean ± standard errors for three replicate vessels. Bars labelled with 

the same letter were not significantly different (one way ANOVA Tukey’s test; p< 0.05).    

                       

5.4.2 Chlorophyll a (chl a) and elemental contents per volume  

Chl a content at 14oC was approximately 2.14 fg cell µm-3 (Fig 5-4A), about 25% lower than at 

higher temperatures.  There were no significant changes in chl a contents per cell volume (µm-3) 

with temperature at 18 (I), 18(II) and 22oC (p<0.05).  The PN, PP, and organic C contents had a 

tendency to decline with increasing temperature (Fig 5-2) following the same trend as cell size 

so biovolume may affect the contents of these. N per unit biovolume (fg cell µm-3) was highest 

at 22oC (Fig 5-4B).  There was no significant differences in carbon contents per biovolume at 

14, 18(II) and 22oC (Fig 5-4C). P content per unit biovolume was lowest at 18oC (II) (Fig 5-4D).  
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Figure 5-4.  Intracellular concentrations of chlorophyll a (A), nitrogen (B), organic carbon (C) and 

phosphorus (D) of E. huxleyi CCMP 1516.  Concentrations are expressed in units of mass per 

unit cell volume (fg µm-3) of cell. Values are mean ± standard errors for three replicate vessels 

(n = 9) at temperatures of 18(I), 14, 18(II), and 22oC.  Bars labelled with the same letter were 

not significantly different (one way ANOVA Turkey’s test; p< 0.05).                       

 

5.4.3 Protein contents and protein per volume  

Protein content was measured using two different standards for calibrating the assay. Using 

BSA as a standard provided the same protein contents as using BGG (Fig 5-5A). Protein 
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contents of approximately 8.4-9.1 pg cell-1. The lowest protein levels of about 3.5 pg cell-1 were 

observed at 22oC. In the same way, using BSA as a standard gave the same protein contents 
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no significant differences in protein concentration were observed at growth temperatures of 18 

(I), 14, and 18 (II) (ANOVA, p<0.05) exception 22oC. 

.  

Figure 5-5. Temperature dependence of cellular protein contents of E. huxleyi CCMP 1516.  

Values are mean ± standard errors for three replicate vessels (n = 9) of the two different 

standards (BSA; grey bar and BGG; white bar) used to calibrate the protein assays. Bars 

labelled with the same letter were not significantly different (one way ANOVA Turkey’s test; p< 

0.05).  

 

5.4.4 DNA and RNA contents 

 

E. huxleyi grown at 18(I), 14 and 18(II)oC had similar DNA contents, but  the lowest DNA 

content was found at 22oC (Fig. 5-6A).  The lowest RNA content was observed at 22oC (Fig. 5-

6B). When DNA and RNA content were compared with biovolume (µm3), both DNA:biovolume 

and RNA:biovolume gave the highest levels at 22oC (Figs. 5-6C,D). In the present study, 

RNA:DNA ratios were >1, and the  RNA:DNA ratio was not affected by temperature (Fig 5-7A). 

The growth rate was positively correlated with RNA:protein (Fig. 5-7B). However, the growth 

rate increased by about 3 fold from 14 to 22ºC, whereas RNA:protein increased by only about 

1.5 times over the same temperature range.  
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Figure 5-6.  Temperature dependence  of  DNA  content  (A), RNA content (B), DNA:biovolume 

(C), and RNA:biovolume (D) of   E. huxleyi CCMP 1516.  Values are mean ± standard errors for 

three replicate vessels (n = 9) at temperatures of 18(I), 14, 18(II), and 22oC.  Bars labelled with 

the same letter were not significantly different (one way ANOVA Turkey’s test; p< 0.05).       

                    

Figure 5-7.  RNA : DNA ratio (A) are expressed in unit of g. g-1of E. huxleyi  CCMP 1516 and the 

relationship between RNA : protein (g g-1) ratio and growth rate (d-1) (B). Values are mean ± 

standard errors for three replicate vessels (n = 9) at temperatures of 18(I), 14, 18(II), and 22oC.  
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Bars labelled with the same letter were not significantly different (one way ANOVA Turkey’s test; 

p< 0.05). 

5.4.5 Amino acids 

 

Seventeen free and combined amino acids were identified. The total amino acid content in cells 

is shown in Fig. 5-8 consisted of both free amino acids and combined amino acids. Total amino 

acid content decreased with increased temperature. Total amino acid at 14oC had the highest 

value of roughly 2.65 ± 0.30 pg cell-1, while at 22oC the lowest value was about 1.77 ± 0.23 pg 

cell-1.  

 

Figure 5-8.  Temperature dependence of total amino acid content of E. huxleyi CCMP 1516 in 

different vessels at temperatures 18(I), 14, 18(II) and 22oC. Values are mean ± standard errors 

for three replicate vessels (n = 3-6). Bars labelled with the same letter were not significantly 

different (one way ANOVA Tukey’s test; p< 0.05).  

 

The highest free amino acid content of the cells was approximately 0.062-0.064 pg cell-1 at 

18oC, whilst the lowest was at 22oC approximately 0.015 pg cell-1 (Table 5-1). Glutamic acid was 

the most abundant free amino acid at temperature ⩽ 18oC following alanine.  
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The amount of combined amino acids in all temperatures was greater than the amount of free 

amino acids (Table 5-2). Glutamic acid and arginine was the most abundant amino acid content 

in cells, accounting for approximately 11-16 % of total amino acids. Serine, glycine, asparagine, 

threonine, proline, lysine, tyrosine, alanine, and valine were all present at contents > 5 % of total 

amino acids. Six amino acids (histidine, cysteine, methionine, phenylalanine, tyrosine and 

isoleucine) were < 5 % of the total amino acids (Fig. 5-9 and Table 5-3).  Most of both free and 

combined amino acid composition at high temperature (22oC) was less than at low temperature. 

Table 5-1. Free amino acid (pg cell-1) of Emiliania huxleyi in response to different growth 

temperatures. Values are mean and standard errors for three replicate vessels, n = 3-6. Means 

with a row followed by the same letter are not significantly different (one way ANOVA Tukey’s 

test; p< 0.05).   

 

 

Amount of free amino acid (pg cell-1) in Emiliania huxleyi  

Amino acid 18 (I)oC 
 

14oC 
 

18 (II)oC 
 

22oC 
 

 
Mean SE Mean SE Mean SE Mean SE 

Essential amino acid 
       

Histidine 0.0001A 0.0000 0.0004A 0.0003 0.0001A 0.0001 0.0000A 0.0000 

Lysine 0.0046C 0.0003 0.0008A 0.0001 0.0021B 0.0006 0.0009A 0.0003 

Methionine 0.0015C 0.0000 0.0010B 0.0002 0.0017C 0.0002 0.0005A 0.0000 

Valine 0.0025B 0.0002 0.0014A 0.0002 0.0025B 0.0004 0.0011A 0.0001 

Phenylalanine 0.0025B 0.0002 0.0013A 0.0004 0.0026B 0.0005 0.0008A 0.0002 

Isoleucine 0.0005B 0.0002 0.0001A 0.0001 0.0005B 0.0001 0.0001A 0.0000 

Non-essential amino acid 
       

Arginine 0.0057B 0.0023 0.0010A 0.0003 0.0059B 0.0028 0.0006A 0.0003 

Serine 0.0052C 0.0000 0.0032B 0.0006 0.0057C 0.0007 0.0012A 0.0003 

Glycine 0.0017B 0.0000 0.0011A 0.0003 0.0018B 0.0002 0.0008A 0.0001 

Glutamic acid 0.0155B 0.0003 0.0117A 0.0010 0.0176C 0.0027 0.0013A 0.0006 

Asparagine* 0.0070D 0.0008 0.0031B 0.0005 0.0044C 0.0008 0.0022A 0.0006 

Proline 0.0017C 0.0001 0.0011B 0.0002 0.0019C 0.0002 0.0007A 0.0001 

Cysteine 0.0006A 0.0000 0.0008A 0.0001 0.0009A 0.0002 0.0009A 0.0002 

Tyrosine 0.0013A 0.0001 0.0012A 0.0000 0.0014A 0.0001 0.0012A 0.0000 

Threonine 0.0020C 0.0001 0.0013B 0.0003 0.0023C 0.0002 0.0006A 0.0000 

Alanine 0.0115D 0.0017 0.0056B 0.0012 0.0107C 0.0018 0.0017A 0.0005 

Total 0.0638 0.0065 0.0352 0.0060 0.0623 0.0116 0.0151 0.0033 
 

   * Average of asparagine and aspartic acid due to co-eluting 
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Table 5-2. The combined amino acid (pg cell-1) of Emiliania huxleyi in response to different 

growth temperatures. Values are mean and standard errors for three replicate vessels, n = 3-6. 

Means with a row followed by the same letter were not significantly different (one way ANOVA 

Tukey’s test; p< 0.05).   

 
Combined amino acid of  Emiliania  huxleyi 

  
Amino acid 18 (I)oC 

 
14oC 

 
18 (II)oC 

 
22oC 

 

 
Mean SE Mean SE Mean SE Mean SE 

Essential amino acid 
       Histidine 0.02A 0.00 0.03A 0.00 0.01A 0.00 0.01A 0.00 

Lysine 0.15A 0.04 0.23B 0.02 0.14A 0.03 0.14A 0.02 

Methionine 0.06A 0.02 0.09A 0.00 0.07A 0.01 0.06A 0.00 

Valine 0.15A 0.03 0.18A 0.03 0.16A 0.03 0.14A 0.01 

Phenylalanine 0.08A 0.02 0.12B 0.02 0.06A 0.02 0.11B 0.03 

Isoleucine 0.08A 0.03 0.12A 0.01 0.11A 0.03 0.08A 0.00 

Non-essential amino acid 
       Arginine 0.24A 0.01 0.30B 0.04 0.22A 0.06 0.21A 0.03 

Serine 0.10A 0.02 0.13A 0.00 0.13A 0.04 0.10A 0.01 

Glycine 0.10A 0.02 0.14A 0.01 0.11A 0.03 0.11A 0.00 

Glutamic acid 0.31B 0.05 0.38C 0.05 0.26A 0.05 0.26A 0.04 

Asparagine* 0.22B 0.02 0.26B 0.03 0.24B 0.05 0.11A 0.03 

Proline 0.11A 0.04 0.12A 0.02 0.11A 0.03 0.12A 0.01 

Cysteine 0.02A 0.01 0.02A 0.00 0.02A 0.00 0.01A 0.01 

Tyrosine 0.08A 0.02 0.14A 0.00 0.14A 0.04 0.10A 0.01 

Threonine 0.11A 0.03 0.17B 0.01 0.12A 0.02 0.11A 0.01 

Alanine 0.14A 0.03 0.16A 0.03 0.15A 0.02 0.17A 0.00 

Total 1.95 0.36 2.59 0.28 2.07 0.90 1.74 0.22                   

               *  Average of asparagine and aspartic acid due to co-eluting 
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Table 5-3. Total amino acid content (percentage of total amino acids) of Emiliania huxleyi in 

response to different growth temperatures. Values are mean and standard errors for three 

replicate vessels, n = 3-6. Means with a row followed by the same letter were not significantly 

different (one way ANOVA Tukey’s test; p< 0.05).   

 
Percentage of total amino acid*  

    Amino acid 18 (I)oC 
 

14oC 
 

   18 (II)oC 
 

22oC 
 

 
Mean SE Mean SE    Mean SE Mean SE 

Essential amino acid 
       Histidine   1.50D 0.19   1.17C 0.01   0.83B 0.04   0.71A 0.08 

Lysine   7.27B 0.58   8.85C 1.26   6.63A 0.03   7.62B 0.24 

Methionine   2.81A 0.40   3.39A 0.31   3.52A 0.39   3.10A 0.08 

Valine   7.42A 0.06   6.66A 0.84   7.62A 0.45   7.48A 0.13 

Phenylalanine   4.09B 0.19   4.47B 0.77   3.02A 0.15   5.93C 2.30 

Isoleucine   3.84A 0.63   4.48A 0.44   5.06B 0.29   4.20A 0.44 

Non-essential amino acid 
       Arginine 11.96A 2.00 11.39A 1.05 10.52A 0.41 11.37A 0.92 

Serine   5.81A 0.18   5.50A 0.09   7.20B 0.50   5.57A 0.29 

Glycine   5.14A 0.03   5.58A 0.25   5.38A 0.09   6.01B 0.42 

Glutamic acid 15.54B 0.51 14.58B 1.30 12.47A 0.31 10.57A 1.04 

Asparagine** 10.94B 0.99   9.65B 0.66 11.24C 0.17   5.79A 1.16 

Proline   5.46A 0.88   5.16A 0.84   5.10A 0.22   6.94B 0.10 

Cysteine   1.04A 0.29   0.96A 0.05   1.22A 0.05   0.61B 0.44 

Tyrosine   4.70A 0.07   5.62B 0.42   7.00C 0.70   5.35B 0.13 

Threonine   5.44A 0.30   6.46A 0.84   5.94A 0.32   5.84A 0.16 

Alanine   7.03A 0.07   6.09A 0.92   7.26A 0.68   9.02B 0.59                    

    *  Sum of free and combined amino acids 

    **  Sum of asparagine and aspartic acid due to co-eluting 

 

 

5.4.6 Photosynthesis rate 

The photosynthetic rate of E. huxleyi  at 18(I), 14, and 18 (II)oC increased linearly with photon 

flux density until the maximum level was reached at approximately 250-300 µmol photons m-2 s-1 

(Figs. 5-9 A-G) after which the photosynthetic rates remained constant at higher irradiances (or 

saturated light). In contrast, at 22oC the photosynthesis rate increased hyperbolically (Figs. 5-9 

D,H).  



  

95 
 

 

Figure 5-9. Temperature dependence of the chlorophyll a-specific rate of photosynthesis (PChl  

in unit g C  g Chl-1 h-1) at temperatures: 18(I)oC (A), 14oC (B), 18(II)oC (C), and 22oC (D). 

Temperature dependence of the cell-specific rate of photosynthesis (PCell in unit pg C  cell-1 h-1): 

18 (I)oC (E), 14oC (F), 18 (II)oC (G), and 22oC (H). Values are mean ± standard errors for three 

replicate vessels, n = 3. 
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The light saturated rate of photosynthesis rate is called Pmax.  Both Pmax per unit chlorophyll 

(P 𝑚𝑎𝑥
𝐶ℎ𝑙 ) and per cell (P 𝑚𝑎𝑥

𝐶𝑒𝑙𝑙 ) did not change significantly with increasing temperature (Table 5-4).  

The slope of the linear part of the PE curve is given the symbol α.  Both α from PChl and PCell did 

not increase progressively with increasing temperature.  Ek is the saturation irradiance, which 

was significantly greater at 22oC than at 14 and 18oC (Table 5-4).  

Table 5-4. Photosynthetic rate parameters of  E. huxleyi  at different temperatures.  

Parameter Temperature (oC) Photosynthetic rate derived from 

    Chlorophyll Cell 

 
18 (I)     3.50 (0.09)a     0.50 (0.01)A 

Pmax 14     3.20 (0.06)a     0.43 (0.08)A 

 
18 (II)     3.88 (0.07)a     0.64 (0.01)C 

  22     4.00 (0.02)a     0.41 (0.01)A 

 
18 (I)     0.021 (0.003)b,c     0.0033 (0.001)A 

α 14     0.019 (0.003)a,b     0.0034 (0.000)A 

 
18 (II)     0.019 (0.004)a,b     0.0034 (0.000)A 

  22     0.015 (0.002)a     0.0026 (0.000)A 

 
18 (I) 170 (20.00)a 168 (24.13)A 

Ek 14 161 (10.06)a 155   (8.21)A 

 
18 (II) 158 (11.43)a 146 (12.67)A 

  22 250 (13.64)b 238 (15.52)B 
 

* Unit:  P 𝑚𝑎𝑥
𝐶ℎ𝑙 : gC  gchl-1 h-1; P 𝑚𝑎𝑥

𝐶𝑒𝑙𝑙 : pgC  cell-1 h-1;  α (PChl): gC  gchl-1 h-1 (µmol photons  m-2 s-1)-1;                 

α (PCell): pgC cell-1 h-1 (µmol photons m-2  s-1)-1 ; Ek: µmol photons m-2  s-1.  Values given are the 

means and values in parentheses are the standard error of the estimates (n = 3). Entries 

labelled with the same letter were not significantly different (one way ANOVA Tukey’s test; p< 

0.05).  

 

5.4.7 Pigments 

Eight accessory pigments (beta carotene, chlorophyll c, chlorophyll c2, fucoxanthin, 4-keto-19’-

hexanoyloxyfucoxanthin, 19’-hexanoyloxyfucoxanthin, diatoxanthin, and diadinoxanthin), in 

addition to chlorophyll a, were found 19’-hexanoyloxyfucoxanthin gave the highest pigment ratio 

[mol (mol chl a)-1] while beta carotene gave the lowest content (Table 5-5). 4-keto-19’-
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hexanoyloxyfucoxanthin, 19’-hexanoyloxyfucoxanthin, and chlorophyll c2 ratios did not vary 

significantly with temperatures at confidence level 95 %. Total pigment to chl a ratios at 18(I), 

18(II) and 14oC were not significantly different, while at higher temperature (22oC) there was a 

slight decrease. Similarly, beta carotene, diatoxanthin, and diadinoxanthin ratios decreased with 

increasing temperature; however, fucoxanthin ratio increased with elevated temperature, from 

0.13 at 14oC to 0.24 at 22oC.  Chlorophyll c to chl a ratios at 18(I), 14 and 18(II) were not 

significantly different, whereas at 22oC the highest ratio was observed. The ratio of the 

photoprotective pigments diatoxanthin and diadinoxanthin (DT+DD) per chl a and per total 

fucoxanthin decreased at higher temperatures.  

Table 5-5. Pigment composition [mol accessory pigment (mol chl a)-1] of E. huxleyi grown under 

different temperatures. Values are mean and standard errors (SE) for three replicate vessels, 

n=3. Means with a row followed by the same letter are not significantly different (one way 

ANOVA Tukey’s test; p< 0.05). 

  Pigment composition [mol accessory pigment (mol chl a)-1] of E. huxleyi   

Pigment 18 (I) oC   14 oC   18 (II) oC   22 oC   

 

Mean SE Mean SE Mean SE Mean SE 

Beta C   (mmol) 9.19A 0.29 8.52A 0.62 9.10A 0.55 4.01B 0.22 

Hex-kfuco 0.09A 0.00 0.08A 0.00 0.07A 0.00 0.09A 0.01 

DT 0.11A 0.01 0.15A 0.01 0.10A 0.01 0.05B 0.00 

Chl c 0.17A 0.01 0.18A 0.01 0.19A 0.00 0.24B 0.01 

Fuco 0.21A 0.01 0.13B 0.01 0.22A 0.01 0.24A 0.02 

Chl c2 0.30A 0.01 0.30A 0.01 0.30A 0.01 0.33A 0.01 

DD 0.55B 0.02 0.64A 0.02 0.56B 0.02 0.19C 0.01 

Hex-fuco 1.33A 0.04 1.23A 0.05 1.24A 0.02 1.20A 0.02 

Total fuco  1.64A 0.05 1.44B 0.05 1.54A 0.03 1.53A 0.05 

Total pigment/ Chl a 2.78A 0.44 2.73A 0.77 2.70A 0.65 2.34B 0.34 

Total Chls c/ Chl a 0.46A 0.01 0.48A 0.02 0.49A 0.01 0.57B 0.01 

(DD+DT)/ Chl a 0.66A 0.03 0.80B 0.03 0.66A 0.03 0.24C 0.01 

Total Chls c/ T fuco 0.28A 0.01 0.33B 0.01 0.32B 0.01 0.37C 0.01 

(DD+DT)/ T fuco 0.40A 0.02 0.55B 0.02 0.43A 0.02 0.16C 0.01 

DT/ (DD+DT) 0.16A 0.00 0.19B 0.00 0.15A 0.00 0.22B 0.00 
 

Beta C: Beta carotene, Hex-kfuco: 4-keto-19’-hexanoyloxyfucoxanthin, DT: Diatoxanthin, Chl c: 

Chlorophyll c, DD: Diadinoxanthin, Chl c2 : Chlorophyll c2, Fuco: Fucoxanthin, Hex-fuco: 19’-

hexanoyloxyfucoxanthin, Total pigment = Σ(Beta C+ Hex-kfuco+ DT + Chl c + DD + Chl c2 + Fuco + Hex-

fuco ), Total fuco = Σ (Fuco+Hex-kfuco+Hex-fuco), and Total chls c = Σ (Chl c + Chl c2).  
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5.4.8 Fatty acid profile 

The fatty acid composition of E. huxleyi at the different temperatures is shown in Tables 5-6 and 

5-7. Total fatty acid content (fg cell-1) increased with decreasing temperature. Cells grown at 

14ºC gave the highest fatty acid content approximately 982 fg cell-1. Even though 21 fatty acids 

were detected, most of these contributed to < 3% of the total. The two fatty acids present in the 

largest amounts (>15 %) were myristic acid (C14:0; 20-23 % of total) and Oleic acid (C18:1; 18-

25 % of total). There were five components with lower amounts; palmitic acid (16:0; 8-10 % of 

the total), linolenic acid (C18:2; 3-7 % of the total), eicosapentaenoic acid (C20:5; 3-4 % of the 

total), docosahexaenoic acid (22:6; 5-9 % of the total) and behenic acid (C22:0; 4-6 % of the 

total).  Of these seven fatty acids, significant treatment effects were only found for linolenic acid, 

elaidic acid, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA). Oleic acid at 14oC 

was the highest percentage of fatty acid roughly 25 % of the total while at 22oC, this dropped to 

approximately 18 % of the total fatty acid.  Cells had the greatest percentage of EPA at highest 

growth temperature (4 % total of fatty acid at 22oC). There were no significant differences in 

DHA between 14 and 18oC; however, cells had higher percentage of DHA approximately 7-8 % 

of total fatty acid at these lower temperatures than at 22oC (6 % of total fatty acid). 

Saturated fatty acid and polyunsaturated fatty acid at 14oC had lower percentage (23 %) of total 

fatty acid than at higher temperatures; however, monounsaturated fatty acid was the highest 

percentage (37 %) of total fatty acid.  
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Table 5-6. Fatty acid composition (fg cell-1) in exponential growth phase in E. huxleyi grown at 

different temperatures. Values are mean and standard errors (SE) for three replicate vessels, n 

= 3. Means with a row followed by the same letter are not significantly different (one way 

ANOVA Tukey’s test; p< 0.05). Values shown in bold face are the most abundant fatty acids. 

 

  Fatty acid content (pg cell-1)           

Fatty acid (fg cell-1) 18 (I)oC   14oC   18 (II)oC   22oC   

 
Mean   SE Mean    SE Mean SE Mean   SE 

Lauric acid     6.9   0.8     7.4     0.6     7.6   1.2     5.6   0.6 
 
Myristic acid 155.8A 14.6 200.7B   10.7 122.3C   8.9 108.6D   9.0 
 
Pentadecanoic acid   18.2   4.6   16.6     5.5   12.5   0.8   11.5   1.1 
 
Palmitoleic acid   19.3   2.9   15.9     1.3   14.0   3.7     9.9   0.9 
 
Palmitic acid   74.1A   7.2   94.2B     7.1   52.3C   6.8   38.7D   2.9 
 
cis-10-Heptadecenoic acid     7.4   0.6     8.7     0.7     6.0   0.7     6.0   0.6 
 
γ-Linolenic acid   12.1   1.0   13.6     1.0     9.9   1.0     9.7   0.6 
 
Linoleic acid   38.6B   6.4   27.2A     6.3   37.0B   1.9   30.6A   1.8 
 
Elaidic acid   16.9   5.2   65.1     9.7   33.3   7.5   10.1   1.6 
 
Oleic acid 154.2B 15.1 250.7A   26.0 123.7C 14.2   84.5D   5.8 
 
Stearic acid   15.1   1.8   20.0     2.4   16.7   2.8     9.6   0.9 
 
Arachidonic acid   18.7   1.5   22.6     1.4   16.1   1.7   14.0   1.0 
 
cis-5,8,11,14,17-Eicosapentaenoic acid   25.2A   2.3   28.3A     1.4   24.0A   2.5   18.3B   0.9 
 
cis-8,11,14-Eicosatrienoic acid   16.4   2.0   22.2     1.6   15.1   1.6   12.8   0.9 
 
cis-11,14-Eicosadienoic acid   12.8   1.5   18.2     1.5   14.6   1.7     9.2   0.9 

cis-11-Eicosenoic acid     8.5   0.7     9.7     0.7     8.0   1.0     6.2   0.4 
 
cis-11,14,17-Eicosatrienoic acid     7.8   0.7     8.9     0.7     9.0   1.1     5.7   0.4 

Arachidic acid   11.9   3.0   10.8     1.0     8.0   1.1     7.0   0.4 
 
4,7,10,13,16,19-Docosahexaenoic acid   59.7B   5.8   80.1A   11.5   44.1C   6.2   29.2D   2.0 

Erucic acid     9.9   0.7   19.6     6.7     9.2   1.2   16.8   5.2 

Behenic acid   35.2A   4.2   41.5A     6.1   35.1A   7.1   26.8B   4.9 

Total fatty acid  724.4 82.4 981.9 103.6 618.6 74.4 470.7 42.5 

 

  Statistical analyses were not conducted using ANOVA on fatty acids less than 20 fg cell-1.  
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Table 5-7. Fatty acid composition (% fatty acid) of E. huxleyi grown in exponential growth phase 

at different temperatures. Values are mean and standard errors (SE) for three replicate vessels, 

n = 3. Means with a row followed by the same letter are not significantly different (one way 

ANOVA Tukey’s test; p< 0.05). Values shown in bold face are the most abundant fatty acids. 

  % total fatty acid            

Fatty acid  18 (I)oC   14oC   18 (II)oC   22oC   

 
Mean SE Mean SE Mean SE Mean SE 

Lauric acid   0.9 0.1   0.8 0.0   1.3 0.2   1.2 0.1 

Myristic acid 21.5A 1.4 20.5A 0.2 20.0A 0.5 22.9A 0.7 

Pentadecanoic acid   2.5 0.6   1.8 0.6   2.1 0.2   2.4 0.2 

Palmitoleic acid   2.7 0.3   1.6 0.1   2.1 0.3   2.1 0.1 

Palmitic acid 10.3A 0.9   9.6A 0.3   8.4A 0.3   8.2A 0.2 

cis-10-Heptadecenoic acid   1.0 0.0   0.9 0.0   1.0 0.0   1.3 0.1 

γ-Linolenic acid   1.7 0.1   1.4 0.0   1.6 0.0   2.1 0.0 

Linoleic acid   5.3B 0.7   2.8A 0.7   6.1B 0.3   6.6B 0.3 

Elaidic acid   2.5 0.8   6.6 0.7   5.2 0.6   2.1 0.2 

Oleic acid 21.2B 1.0 25.4A 1.5 19.9B 0.5 18.1BC 1.1 

Stearic acid   2.1 0.2   2.0 0.2   2.7 0.2   2.0 0.1 

Arachidonic acid   2.6 0.1   2.3 0.0   2.6 0.1   3.0 0.1 
 
cis-5,8,11,14,17-Eicosapentaenoic acid   3.5A 0.2   2.9A 0.1   3.9A 0.1   3.9A 0.1 
 
cis-8,11,14-Eicosatrienoic acid   2.3 0.2   2.3 0.1   2.4 0.1   2.7 0.1 
 
cis-11,14-Eicosadienoic Acid   1.8 0.1   1.9 0.1   2.4 0.3   1.9 0.1 

cis-11-Eicosenoic acid   1.2 0.1   1.0 0.0   1.3 0.2   1.3 0.0 
 
cis-11,14,17-Eicosatrienoic acid   1.1 0.0   0.9 0.0   1.5 0.2   1.2 0.0 

Arachidic acid   1.6 0.3   1.1 0.1   1.3 0.1   1.5 0.0 
 
4,7,10,13,16,19-Docosahexaenoic acid   8.2A 0.7   8.3A 1.3   7.0A 0.3   6.2B 0.2 

Erucic acid   1.4 0.1   2.0 0.7   1.5 0.1   3.5 0.8 

Behenic acid   4.8A 0.4   4.3A 0.6   5.7A 0.9   5.7A 0.9 

% SFA 43.7 3.8 39.9 2.0 41.4 2.3 44.0 2.1 

% MUFA 29.9 2.3 37.4 3.1 31.0 1.6 28.4 2.3 

% PUFA 26.4 2.1 22.7 2.3 27.6 1.3 27.6 0.8 

∑ n-3 12.8  12.1  12.4  11.4  

∑ n-6 11.8    8.7  12.7  14.3  

∑ n-3/ ∑ n-6   1.4    1.8    1.3    0.8  

 

Statistical analyses were not conducted using ANOVA on fatty acids less than 3 % fatty acid. 

SFA: Saturated fatty acid, MUFA: Monounsaturated fatty acid, PUFA: Polyunsaturated fatty acid 

∑ n-3: Sum of cis-5,8,11,14-eicosatetraenoic acid (C20:5n3),cis-11,14,17-eicosatrienoic acid 

(C20:3n3), and 4,7,10,13,16,19-docosahexaenoic acid (C22:6n3)   

∑ n-6: Sum of linoleic acid (C18:3n6), γ-linolenic acid (C18:2n6c), arachidonic acid (C20:4n6), 

and cis-8, 11, 14-eicosatrienoic acid (C20:3n6) 
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5.5 Discussion 

 

5.5.1 Growth rate, chl a, PN, PP, POC and protein content 

In this study, the growth of E. huxleyi was measured at different temperatures (from 14 to 22ºC) 

under nutrient-replete semi-continuous culture. The results showed that algal growth increased 

with raised temperature. Moreover, increased temperature stimulated the cell division rate of E. 

huxleyi. This is consistent with the linear dependence of growth rate with temperature that is 

typically observed in other microalgae when temperature is at or below the optimum for growth 

(Claquin et al. 2008). The optimal temperature for maximal growth has previously been reported 

to be 24.4oC (0.94 d-1) for E. huxleyi AC474 (Claquin et al. 2008) and optimal temperatures 

ranging from about 18 to 24oC have been found for other strains of E. huxleyi (Thomas et al. 

2012, Supplementary Table S5). Thus, the growth rate of E. huxleyi is linearly related 

to elevated temperature and the highest temperature (22oC) in this study is likely to be close to 

the optimum temperature which would lead to the selection of the best growth. 

 

E. huxleyi had the highest growth rate at high temperature (22oC); however, cells were the 

lowest cell size.  The decreased cell size are associated with increase in cell division rate. This 

indicates that smaller cell tended to have higher growth rate.  Similarly, Olson et al. (1986) 

found that the mean volume cell of Hymenomonas carterae Braarud and Fagerl (clone Cocco II) 

grown in laboratory decreased as temperature increased from 13 to 23oC. Moreover, the 

haptophyte cell sizes in the East China Sea were smaller in summer (average temperature 26.6 

± 1.5oC) than in spring (average temperature 19.4 ± 2.3oC) (Lin et al. 2014). The decrease of 

cell size may keep the balance between anabolic and catabolic processes in cell (von 

Bertalanffy 1960; Raven & Geider 1988; Geider et al. 1998). In addition to the decrease the 

average cell size of primary producers tends to affect the transfer of energy to higher 

temperature levels (Svensson et al. 2014). This implies that microalgae community size 

structure may vary across aquatic ecosystems under ongoing climate change. 
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The lowest cellular chl a content was found at the high temperature (22oC) which related to the 

deactivation of enzymes in the mechanism of chlorophyll biosynthesis and the maintenance of a 

constant carbon assimilation rate in photosysthetic carbon fixation (Dutta et al. 2009). This 

suggests that E. huxleyi appears to possess the ability to acclimate to high temperature. A 

similar behaviour was demonstrated for Phaeodactylum tricornutum, which exhibited maximum 

chlorophyll concentrations at the extremes of the temperature growth range (Goldman & Mann 

1980). Moreover, a similar result was found in the cold water diatom Skeletonema 

costatum which had higher variability in the chlorophyll a content per cell at low temperatures 

(Yoder 1979). 

 
 

Given the wide variation in how cell biovolume depends on temperature described above, one 

can expect that the cellular contents of C, N, P and chlorophyll may either increase, decrease, 

or be unaffected by temperature. It is thus more informative to examine how temperature affects 

the ratios C:biovolume etc. Microalgal biovolume is widely estimated to assess the relative 

abundance of co-occuring algae varying in shape and/or size under different environmental 

conditions (Hillebrand et al. 1999). 

 
Temperature affected nitrogen, phosphorus and carbon contents. The N:P ratio of E. huxleyi at 

low temperature was approximately 16-18, close to the Redfield ratio (16:1); however, N:P ratio 

shifted at a high temperature (22oC) to approximately 23.8.  This result was similar for I. galbana 

grown in f/2 medium with the N:P ratio increasing from 15:1 to 26:1 between 10oC and 20oC 

(Roleda et al. 2013). Geider & La Roche (2002) reported that N:P ratio under optimal nutrient-

replete growth conditions was ranged from about 5-19 mol N:mol P in a wide variety of 

microalgae. While Klausmeier et al. (2004) reported that N:P ratio of 29 algal species was 

flexible and depended on environmental conditions. This results suggest that the excess and 

nitrogen can be maintained as protein (free and combined amino acid) or stored into 

photosynthesis pigments (Rhee 1978; Spilling et al. 2015). 
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The C:N ratio (mol:mol) at low temperature (14oC) was higher than at high temperature (22oC).  

Uptake and storage of available NO3
− of E. huxleyi may lead to a lower C:N ratio. Whereas the 

C:N ratio of I. galbana was 9:1 and 10:1 at 10oC and 20oC respectively (Roleda et al. 2013). 

Generally, the range of C:N ratio in marine algae was around 4-17 (Geider & La Roche 2002). 

This implies that the higher C:N ratio at low temperature has the excess carbon which can be 

stored as an energy reserve such as lipid (Guschina & Harwood 2006).  

 

The ratio of chl a:C in E. huxleyi  progressively increased with elevated temperature. Cells 

responded to change in temperature by adjusting cellular chlorophyll levels to match in the 

demands for photosynthesis and this response is quantified by changes in the ratio of 

chlorophylls to carbon. The changes in chl a:C resulted form changes in growth conditions 

(Behrenfeld et al. 2005). In this study, chl a: C ratio also was positively correlated with growth 

rate (Fig 5-3A). This phenomenon is referred to as the bio-optical hypothesis. Similarly, the chl 

a:C ratio of the diatom Thalassiosira allenii  was positively correlated with temperature (>25oC) 

under both saturating and non-saturating light (Redalje & Laws 1983). The light saturation index 

(Ek) also showed a positive relationship with increasing temperature. Thus, the correlation of chl 

a:C with growth rate supports the bio-optical model.  

 

The protein content of E. huxleyi decreased significantly with increased temperature, and the 

lowest protein content (approximately 3.53-3.71 pg cell-1) was observed at 22oC. The 

nitrogen content was low at high temperature which had the lowest protein fraction. Additionally, 

the carbon content was at the lowest level which was probably a result of the low protein 

content fraction. Furthermore, the model protein also presented in carbon structure. Similarly, 

Raghavan et al. (2008) reported that C. calcitrans grown under increasing temperature (20, 25, 

and 30oC) had low protein at higher temperature but lipid content increased. Rhee & Gotham 

(1981) mentioned that there was an increase in protein concentration with decreased 

temperature in Scenedesmus sp. It is known that temperature affects growth of microalgae via 

control of enzyme kinetics. Thus, the decrease in the proportion of carbon incorporated in 
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proteins observed when temperature increase reflects the insufficiency of enzymes (Thompson 

& Guo 1992).  

 

5.5.2 DNA, RNA and RNA:protein  

DNA and RNA content of E. huxleyi decreased at high temperature with the lowest values at   

22oC. Phosphorus (P) influences by the concentration of P-rich ribosomes with their associated 

rRNA. Thus, decreasing rRNA in E. huxleyi has been presented to increase the N:P ratio.  

Olson et al. (1986) reported that cell size, cell protein content, and cell RNA content in marine 

phytoplankton may be possible controllers of the cell cycle. N is a component of both protein 

and nucleic acids, and P is an essential element of the nucleic acid skeleton. Therefore, the 

depletion of one or other nutrient should affect differentially to the internal concentration of both 

classes of macromolecules (Berdalet et al. 1994). 

 

The RNA: protein content of E. huxleyi was highly correlated with growth rate. This suggests 

that the increasing RNA: protein ratio reflects the control of the rate protein synthesis by the 

number of ribosome. When the growth rate increased, the rate of ribosome function approached 

a maximum value, corresponding to 21 amino acids polymerization (Bremer and Dennis 1996). 

This phenomenon is referred to as the growth-rate hypothesis (GRH).Therefore, this result 

supported GRH. This seems likely that some of the ratios involving DNA, RNA, and protein 

could characterise N or P content. 

 

 
5.5.3 Free and combined amino acids 

 

Glutamic acid, arginine, and asparagine (or aspartic acid) were the highest contents 

approximately 9.7-15.5 % of total amino acid in E. huxleyi grown at low temperature. These are 

the charged amino acid residues which cover the surface of the molecule and favour to contact 

with solvent because of their ability to form hydrogen bonds. Thus, the charged amino acid 
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residues were mainly found. This finding is similar to that reported for 16 species (six diatoms, 

four prymnesiophytes, two prasinophytes, two chlorophytes, one eustigmatophyte, and one 

cryptophyte) of microalgae in mariculture (Brown 1991).  In this work, the essential amino acids 

for humans and animals were not significantly affected by temperature.  Villanueva et al. 2004 

reported that protein and amino acid contents increased in Octopus vulgaris paralarvae which 

were fed by amino acids such as lysine, leucine, arginine, glutamate, and aspartate. Moreover, 

the octopuses had the high survivals rate when they compaired with control group. This implies 

that amino acids were produced by microalgae and were fed to aquatic animals, resulted in 

better health.  Thus, E. huxleyi, which has these amino acids, could be a good food for 

mariculture application.  

 

5.5.4 Photosynthesis rate 

Temperature affects growth of phytoplankton through its control of enzyme kinetics (Davison 

1991). The capacity for photosynthesis (P 𝑚𝑎𝑥
𝐶ℎ𝑙  and P  𝑚𝑎𝑥

𝐶𝑒𝑙𝑙  ) remained approximately constant, 

even though higher value of the saturation irradiance (EK) was observed at 22oC. This result 

suggests that this may be the optimal temperature range for photosynthesis. The Calvin Cycle 

enzymes of the dark reaction system might operate at a higher rate and thus consume NADPH2 

and ATP at a faster rate at higher temperatures (Kirk 1994).  However, Clanquin et al. (2008) 

reported that E. huxleyi, I. galbana and I. aff. galbana had maximal photosynthetic capacity at 

the optimal temperature for electron transport rate approximately at 24.4, 21.9 and 30.7oC 

respectively.  

The photosynthetic efficiency (α) for the rate of photosynthesis per unit chlorophyll (αChl) and per 

unit cell (αCelll) did not change significantly with temperature. However, E. huxleyi  CCMP 1516 

had a higher value of  αChl at 18oC than at 14 and 22oC.  This was because cell size and chl a 

concentration may be factors influencing  α  due to self-shading (Taguchi 1976).   



  

106 
 

The light saturation index (Ek)  is an indication of the optimum light intensity for cells to maintain 

a balance between capacity of the photosynthesis and photosynthetic energy capture 

(Falkowski & Raven 2007). The Ek value in E. huxleyi had a positive relationship with elevated 

temperature. This was likley due to incresed RUBISCO activity and various Calvin cycle 

enzymes that directly influence photosynthetic efficiency of PSII  in the light-adapted state 

(Raven & Geider 1988, Davison 1991, Kuebler et al. 1991).  

 

5.5.5 Accessory pigment  

 

Cellular chl a content in this experiment decreased with increased temperature; however, cell 

biovolume decreased even more, As a consequence, cellular chl a per unit of biovolume 

increased with increased temperature. The ratios of chl a:C and chl a:protein also increased 

with increasing temperature. Thomson et al. (1992) reported that chl a content increased at 

higher temperatures (10, 15, 20, and 25oC) in eight marine phytoplankton that could result from 

rate of declining enzymatic reaction rate at low temperatures. Additionally, in haptophyte 

Pavlova lutheri grown in batch mode, chl a and carotenoid contents increased with temperature 

(10, 14, 18, 22, and 26°C) regardless of the irradiance (Carvalho et al. 2009). This probably 

associated with adaptation of light-harvesting complex (LHC) of photosystem I (PS I) and II (PS 

II) to a stress environment and related to electron transport activities in both photosystems. 

Similarly, chl a content increased with an increase temperature and phosphorus concentrations 

increased in blue green alga Microcystis aeruginosa and green alga Scenedesmus obliquus 

(Chen et al. 2011). Moreover, temperature directly affected phytoplankton community size 

structure. This led to a decrease in cells of the community with increased temperature 

irrespective of ambient nutrient availability (Mousing et al. 2014).   

 

Plants-like microalgae, accessory pigments have difference function. Beta carotene as a singlet 

oxygen quencher is mainly localised in the reaction centre in core complex of PS II and PS I 
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and plays an key role in protecting the pigment-protein complexes (Young & Britton 1990), 

whereas xanthrophyll (DD and DT) cycle components are associated with LHC within PS I at 

lipid shield around the fucoxanthin chlorophyll protein (FCP) complexes (Lepetit et al. 2010).  

The highest pigment content was the ratio of Hex-fuco to chl a in this study. Moreover, this 

pigment was found in haptophytes Chrysochromulina acanthi, C. pringsheimii, C. throndsenii, 

and Emiliania huxleyi collected from Nervion River estuary (Spain) and cultured in f/2 medium, 

18 ± 1oC, a light intensity of 60-180 µmol photons m−2 s−1 under a 12 h Light: 12 h dark cycle 

(Seoane et al. 2009). Additionally, Stolte et al. (2000) reported that the Hex-fuxo was the major 

pigment content in different strains of E. huxleyi from the Atlantic Ocean; however, fucoxanthin 

was the main content in the Indian and Pacific Ocean strains.  This implies that Hex-fuxo as 

accessory photosynthetic pigment was exclusively found in chloroplasts of haptophyte origin. This 

can be investigated in phytoplankton taxonomy.  

 

DD and DT as photoprotectors are de-epoxidation/epoxidation and are turned over by the 

enzyme diadinoxanthin deepoxilase or diatoxanthin epoxilase under light-regulated cycle called 

xanthrophyll cycle (Arsalane et al. 1994). DD, DT, and (DD+DT) to Chl a ratio decreased with 

increased temperature accompanied by an increase in total fucoxanthin to chl a ratio at high 

temperature. These changes are similar to observations in diatom Chlorella calcitrans (Anning 

et al. 2001). Those may result from high temperature i) affected enzymatic reaction, ii) led to low 

turnover rate in xanthrophyll cycle (Fujiki et al. 2003) and iii) associated with the redox state of 

the plastoquinone pool (Escoubas et al. 1996). 

 

5.5.6 Fatty acid profile 

The fatty acid composition in the cells of E. huxleyi was influenced by temperature. The oleic 

acid and myristic acid were the main fatty acids in E. huxleyi.  Additionally, the oleic acid (C18:1) 

was dominant in neutral lipids of the haptophyte Isochrysis galbana, while the saturated fatty 

acids myristic acid (C14:0) and palmitic acid (C16:0) were mainly found in phospholipids of this 
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alga (Lin et al. 2007).  The fatty acid profile of E. huxleyi included myristic acid, palmitic acid, 

linoleic acid, oleic acid, behenic acid, EPA and DHA as a major fatty acid, which were also 

found by Pond & Harris (1996) in eight species of E. huxleyi.   However, Pond & Harris (1996) 

also found stearidonic acid (18:4n-3) and octadecapentaenoic acid (18:5n-3) in E. huxleyi. 

Isochrysis galbana CCMP 1332 (Prynesiophyceae) also contained stearidonic acid (18:4n-3) as 

the dominant fatty acids at all growth phases (Lin et al. 2007). In this study, stearidonic acid 

(18:4n-3) and octadecapentaenoic acid (18:5n-3) were not identified because these two 

components were not available in commercial FAME standards. However, unknown peaks were 

found in chromatographic analysis. Similarly, I. galbana CCMP 1324 (Prymnesiophyceae) 

contained some of the same components as E huxleyi except behenic acid and EPA.  

The proportion of MUFA was larger at 14oC (37 % of total fatty acid) compared to 22oC (28 % of 

total fatty acid). The most abundant MUFA was oleic acid (C18:1). This result was similar to that 

reported for the chlorophyte Derbesia tenuissima (Gosch et al. 2015). This is suggested that 

physiological membrane responses to water fluidity at lower temperature because unsaturated 

fatty acid has the melting point lower than saturated fatty acid (Thompson et al. 1992; Los et al. 

2013). Even though the increase of unsaturated fatty acid was found with the decreased 

temperature by increasing the biosynthesis of shorter-chain fatty acids in many algae, this is not 

the case in all species of algae (Renaud et al. 2002).   

 

Among n-3 PUFA, the EPA (20:5n-3) and DHA (22:6n-3) are the major essential for the growth 

and maintenance of aquacultures. DHA was found in a small amount in E. huxleyi (3-4 % of 

total fatty acid). Commonly, there was small amount EPA content in E. huxleyi; however, EPA 

was not found in some E. huxleyi species (Pond & Harris 1996). The n-3 to n-6 ratio is used to 

estimate the nutritional value of microalgal cells. The n-3 to n-6 ratio >2 was optimal for feeding 

larvae and juvenile oysters (Enright et al. 1986). Although stearidonic acid was not measured, 

the highest level of n-3 to n-6 ratio of the remaining fatty acids (~ 2) was achieved at 14oC of E. 

huxleyi which would make E. huxleyi suitable as a feed stock for aquaculture. 
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5.6  Conclusions 

 The haptophyte E. huxleyi cultures were under a range of temperatures from 14 to 22oC and 

examined for variation in elemental and biochemical composition as well as cell size.  

 Cell size and carbon content were non-linear relationship with temperature. Protein (both 

free and combined amino acid) and total pigments [mol accessory pigment (mol chl a)-1] 

decreased with increasing temperature; however, the opposite response was observed in 

fatty acids. This could lead to efficiency of the cell’s absorption and waste expulsion 

processes for survival in unfavorable condition. 

 When growth rate varied due to variable temperature conditions in nutrient replete 

conditions at constant light intensity, the growth rate was found to be positively correlated 

with RNA:protein, which is consistent with the growth rate hypothesis. In the same way, the 

relationship of chl:C and growth rate was used to test the applicability of a bio-optical 

hypothesis. Growth rate covaried with chl:C, which is consistent with the bio-optical 

hypothesis.  

 These changes of cell properties with temperature may have an impact on sinking rate of 

inorganic carbon, CO2 budgets, and potential changes of predators in ecological system. 
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Chapter 6: The effects of temperature and irradiance 

on Thalassiosira weissflogii CCMP 1056 in nutrient-

limited semi-continuous cultures 
 

6.1 Introductions 
 

 

Increasing ocean temperature can have an impact on aquatic communities and lead to shifts in 

population size (Boyce et al. 2010; Finkel et al. 2009), phenology (Edwards & Richardson 

2004), food web structure and productivity of phytoplankton. (Huertas et al. 2011; Thomas et al. 

2012). The effect of temperature on growth rate, elemental and biochemical composition may 

be both indirect and direct. Physical changes in ocean stratification due to temperature can 

indirectly influence biogeochemical cycles by the affecting inputs of essential elements into 

surface waters (Huertas et al. 2011). Temperature directly affects the individual plankton 

species present in a waterbody. Phytoplankton can grow under wide temperature ranges. 

Thomas et al. (2012) reported that the optimal temperature for phytoplankton varied across a 

gradient of ocean temperature. This suggests that phytoplankton are adapted to the 

temperatures in the environments where they are found. A difference in the optimal growth 

temperature in different species leads to differences in production of biomass.  

Temperature, together with light and nutrients, can directly influence phytoplankton physiology, 

biochemical composition and primary production (Rhee 1982; Kana et al. 1997; Geider et al. 

1998). The direct effect of temperature on physiology and growth is generally associated with 

the effect on enzymatic activity (Eppley 1972; Raven & Geider 1988; Davison 1991). The rates 

of enzymatic reactions typically increase by about a factor of two for each 10ºC increase of 

temperature. However, the rate of light absorption by pigment molecules is unaffected by 

temperature. 

Light is one of the essential factors influencing diatom growth. Many marine phytoplanktons are 

suspended in the water column and exposed to dramatic changes in the light field.  Therefore, 
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phytoplanktons have adapted to be able to survive the variable ecological conditions. Growth, 

biochemical composition and photosynthetic production of marine phytoplankton are also 

influenced by changes in light quality (Aidar et al. 1994). Blue light is predominant at greater 

depths in oceanic waters.  

Adaptation to light and temperature can occur through many mechanisms such as changes in 

growth rate, quantities of pigments, elemental and biochemical composition (Stramski et al. 

2002; Wang et al. 2009; Goiris et al. 2015). Additionally, adaptation can involve the change of 

cell morphology, cell volume, subcellular structure and density of thylakoid membranes 

(Bayraktaroǧlu et al. 2003).  

Many studies have used T. weissflogii to investigate the biochemical and physiology of cells 

grown under different temperatures and irradiances. For examples, i) the effect of temperature 

on cell volume, growth rate, and carbon and nitrogen content in dinoflagellates and diatoms 

including T. weissflogii grown in f/2 media, 16±1oC, PFD 50 μmol photons m−2s−1 on a 14:10 LD 

cycle (Montagnes & Franklin 2001), ii) the combined effect of temperature (18 and 23oC) and 

UVR on the photosynthesis performance of two diatoms T. weissflogii (Grunow) and 

Chaetoceros gracilis Schütt. (Halac et al. 2010), iii) the effects of temperature (15 and 20oC) 

and increased pCO2 (400 and 1000 ppm) on carbon uptake by two marine diatom species T. 

weissflogii and Dactyliosolen fragilissimus grown under PFD 100 μmol photons m−2s−1 on a 

14/10 h in all treatments (Taucher et al. 2015), iv) Influence of irradiances from 6 to 108 μmol 

photons m−2s−1 and temperatures from 10 to 29°C on the elemental and biochemical 

composition of T. weissflogii (Grun.)  grown in both NO3
–  and NH4

+  modified seawater medium 

containing high Fe (8.4 μM) contents (Strzepek & Price 2000), v) the interaction between 

photoacclimation and excessive photosynthetically active (PAR; 400–700 nm) and ultraviolet 

radiation (UVR; 280–400 nm) on T. weissflogii (Grunow) under exposure to high and low 

irradiance (van de Poll et al. 2006), vi) the influence of low (50) and high (150 μmol photons m−2 

s−1) light intensities on pigment composition of T. weissflogii and Heterocapsa sp. (Latasa 

1995), vii) the effect of changes in growth irradiance from high to low irradiance (593 to 72 μmol 
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photons m−2 s−1) and vice versa on physiological responses in T. weissflogii clone T-VIC  (Post 

et al. 1985), viii) the effects of temperature (13 - 23°C), light (10-70 μmol photons m−2 s−1) and 

nutrient (200 µM ammonium) limitation on the cell cycle of two marine phytoplankton species 

including T. weissflogii (Olson 1986). 

  

Aims and objectives 

 

Previous studies mentioned above have investigated the influences of temperature and 

irradiance on T. weissflogii; however, the interaction between nutrient-limitation with 

temperature and irradiance has not been investigated in the publication. In addition, the 

previous research cited above did not address directly either the bio-optical or the growth rate 

hypothesises described in chapter 1. Therefore, this study was conducted to evaluate the 

response of T. weissflogii CCMP 1056 to different temperatures (16 and 26oC) and irradiances 

(50 and 500 μmol photons m−2 s−1) with the following objectives: 

1) To determine the effect of temperature and irradiance on biochemical composition of this 

microalga in nutrient-limited cultures. 

2) To examine correlations between growth rate and RNA:protein to test whether the 

growth rate hypothesis can be applied to temperature and irradiance. 

3) To examine the correlations between growth rate and C:chl a to test whether the bio-

optical hypothesis can be applied to temperature and irradiance. 
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6.2 Operating conditions and sampling 
 

Thalassiosira weissflogii CCMP 1051 was grown in 2 litre pyrex vessels with 1.8 litre working 

volume in artificial seawater (Berges et al. 2001).  Cells in exponential phase were used to 

inoculate semi-continuous cultures that were grown into nutrient limitation in medium containing 

20 µM NaH2PO4, 200 µM NaNO3, f/2 silicate, f/8 metals, and f/4 vitamins (Guillard & Ryther 

1962) with 3 mM NaHCO3 and 1 nM Na2SeO3. Triplicate cultures were incubated at two 

different temperatures 16 and 26°C and two different photosynthetic photon flux densities of 50 

  10 (low light; LL) and 500   10 (high light; HL) μmol photons m−2 s−1 on a 14:10 h light:dark 

cycle.  

 

The semi-continuous process was started after cultures reached late exponential phase of 

growth. At this time, medium (900 mL) was removed as a dilution rate of 50% day-1 and the 

same volume of fresh sterile medium was fed into the culture every day at 16oC; high light (16 

HL) and 26oC; high light (26 HL) treatments to maintain steady state. Similarly, at 16oC, low light 

(16 LL) and 26oC, low light (26 LL) the medium was removed and fed into the culture every 

other day. The cultures were gently stirred with a magnetic stir bar and continuously aerated 

with filtered air through a 0.22 µm membrane filter. 

 

Samples were typically collected in triplicate from each of the 3 replicate cultures on two 

occasions during the exponential phase and then the cultures were allowed to grow until 

stationary growth phase (day 7).  Cell abundance was determined daily using a 

haemocytometer. Samples during the exponential phase were collected to measure particulate 

phosphorus (PP), nitrogen (PN), organic carbon (POC), cellular chlorophyll a, light absorption, 

amino acid, protein, pigments, DNA and RNA. While carbohydrate, neutral lipid, and fatty acid 

profiles were determined in both the exponential and stationary growth phases. All elemental 

and biochemical composition were measured using the methods described in chapter 2. 
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Moreover, 30 ml of culture suspension was collected for determining photosynthesis-light 

response curves as described in chapter 2.  In addition, cell size, nucleus (DNA), lipid droplet 

and chloroplast volumes were determined from microscopic images obtained using a confocal 

laser scanning microscope (Nikon A1si, Nikon Corp., Tokyo, Japan) as described in chapter 2.  

 

6.3 Statistical analysis 

 

Datasets of all measured parameters were analysed for significant differences between 

culturing conditions and tested parameters using an analysis of variance (ANOVA) with the post 

hoc test (Tukey HSD) used for multiple comparisons. For the volume size data, they were tested 

for normal distribution using Shapiro-Wilk test. Since the distributions were not normal, they 

were tested for significant differences using Kruskal-Wallis test with the post hoc test (Dunn's 

multiple comparison test). 
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6.4 Results 
  

6.4.1 Cell density and growth rate 

 

The effect of temperature and irradiance on the biomass of T. weissflogii grown in exponential 

growth phase is shown in Fig. 6-1. In the triplicate cultures at both 16 HL and 26 HL, cells 

increased for the first 3 days during the exponential phase and became constant until the 

stationary phase. A different growth pattern was observed in the cultures at 16 LL and 26 LL; 

that showed a lower cell density than high light regardless of temperature.  

 

 
 

Figure 6-1. Temperature and irradiance dependencies of cell abundance of T. weissflogii 

cultures harvested during the exponential (EXPO.; n=6) and stationary (STAT.; n=3) phases. 

Mean values ± standard errors are shown for the three replicate vessels at 16 HL (grey 

squares) and 16 LL (white squares) (A) and at 26 HL (grey dots) and 26 LL (white dots) (B). 

 

Temperature affected cell abundance of T. weissflogii under low light (from 16 LL to 26 LL); 

however, there were not significant differences under high irradiance (from 16 HL to 26 HL).  

Cell abundance increased with increased irradiance at both temperatures (Fig. 6-2A). HL 

placed-cultures had the highest cell abundance (16 HL and 26 HL) with a density of 2.0-2.1 x105 
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cells mL-1 was observed at 16 LL with an intermediate value of 0.8 x105 ± 5.0 x 103 cells mL-1 at 

26 LL. 

 
 

Figure 6-2. Temperature and irradiance dependencies of cell abundance (A), growth rate (B), 

and mean cell volume (C) in T. weissflogii. Mean values ± standard errors are shown for three 

replicate vessels at exponential phase (n = 6) of 16 HL, 16 LL, 26 HL, and 26 LL. Bars labelled 

with the same letter were not significantly different (one way ANOVA Tukey’s test; p< 0.05).  
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In these semi-continuous cultures, which were operated until cell abundances prior to each 

dilution reached stable values, the growth rate is expected to be determined by the dilution rate. 

Thus, the expected growth rate (GR) of the high light cultures should be GR = ln(1800/900)/(1 

day) = 0.69 d-1, whereas that of the low-light cultures should be GR = ln(1800/900)/(2 days) = 

0.34 d-1. The observed growth rates were close to these calculated values. The GR of               

T. weissflogii (mean ± SE) was about 2.4 times higher at 16 HL (0.75 ± 0.02 d-1) than at 16 LL 

(0.30 ± 0.03  d-1), whereas at 26oC presented a greater 1.7 fold GR from LL to HL (Fig. 6-1B). 

GR at 16 HL and 26 HL were not significantly different. Given the relatively small sample size  

(n = 52-87) and the high variance, the median is a better measure of the central tendency than 

the mean since the mean can be affected more by a small number of extremely high values  

(Fig. 6-2).  

Mean cell size was not significantly affected by temperature under low light (16 LL and 26 LL) at 

95% confidence level (Fig. 6-2C). However, mean cell size decreased with increasing irradiance 

from 16 LL; 740.4 ± 34.3 µm3 to 16 HL; 528.1 ± 24.2 µm3 (constant 16oC) by -28.7% and from 

26 LL; 787.8 ± 18.0 µm3 to 26 HL; 627.2 ± 30.8 µm3 (constant 26oC) by -20.4%. Median cell size 

decreased with decreased temperature and with increased irradiance (Fig. 6-2D). 

 

6.4.2 Cellular chlorophyll a (chl a) 

 

 

T. weissflogii had the highest cellular chl a content at 26 LL (7.4 ± 0.9 pg cell-1).  There were 

significant differences at cellular chl a with irradiance at low light cultures and temperatures (Fig. 

6-3A). The cellular chl a contents of the low light cultures were not significantly different at 16 

and 26ºC. Cellular chl a per cell volume (chl a µm-3) increased significantly with increasing 

temperature at high light, but decreased with increasing temperature under low light (Fig. 6-3B).  

 

 



  

118 
 

 
 

Figure 6-3. Temperature and irradiance dependencies of cellular chl a (A) and cellular chl a per 

cell volume (B) of T. weissflogii. Mean values ± standard errors are shown for three replicate 

vessels (n = 6) at 16 HL, 16 LL, 26 HL, and 26 LL. Bars labelled with the same letter were not 

significantly different (one way ANOVA Tukey’s test; p< 0.05).  
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a tendency to rise with increased temperature (Fig. 6-4C); however, the opposite response was 

observed with increased irradiance.  
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The N and P contents per unit biovolume varied with temperature and irradiance. N contents 

per unit biovolume increased significantly with increasing irradiance from 26 LL to 26 HL by 

about 34.0 % (Fig. 6-5A). While P contents per unit biovolume decreased significantly with 

increasing irradiance from 16 LL to 16 HL by about -37.3 % (Fig. 6-5B). There was no significant 

differences of carbon contents per biovolume at different temperature and irradiance (Fig.        

6-5C).  

 

Table 6-1.  Summary of trends in particulate nitrogen (PN), phosphorus (PP), organic carbon 

(POC), N:P, C:N, and C:P to increased temperature and irradiance in T. weissflogii. 

 

Parameters 

Increased temperature at    
    constant irradiance 

 

Increased irradiance at    
 constant temperature 

  
16 HL to 26 HL   16 LL to 26 LL                

 
       16 LL to 16 HL                26 LL to 26 HL                

PN         = 

  

 

 

PP         = 
   

 

POC 
 

   

 

N:P 
 

   

 

C:N 
 

  
       = 

 

C:P 
 

  

                        = 

     

 

 

 

 

 

 

 

 

   : increase,    : decrease, = : equal level in statistic  
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Figure 6-4. Temperature and irradiance dependencies of cellular N (A), cellular P (B), organic C 

(C), N:P (mol:mol) ratio (D), C:N ratio, and C:P ratio (F) of T. weissflogii. Mean values ± 

standard errors are shown for three replicate vessels (n=6) at 16 HL, 16 LL, 26 HL, and 26 LL. 

Bars labelled with the same letter were not significantly different (one way ANOVA Tukey’s test; 

p< 0.05).       
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Figure 6-5. Temperature and irradiance dependencies of cellular N per biovolume (A), cellular P 

per biovolume (B), organic C per biovolume (C), of T. weissflogii. Mean values ± standard errors 

are shown for three replicate vessels (n=6) at 16 HL, 16 LL, 26 HL, and 26 LL. Bars labelled 

with the same letter were not significantly different (one way ANOVA Tukey’s test; p< 0.05).       
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The C:chl a  ratio varied with temperature and irradiance (Fig. 6-6A) and the C:chl a ratio was 

also positively associated with growth rate  (Fig. 6-6B).  

 
 

Figure 6-6. C:chl a ratio in unit g per g (A) of T. weissflogii in different treatments 16 HL, 16 LL, 

26 HL, and 26 LL and the relationship between C:chl a ratio and growth rate (d-1) (B). Mean 

values ± standard errors are shown for three replicate vessels (n=6) at 16 HL, 16 LL, 26 HL, 

and 26 LL. Bars labelled with the same letter were not significantly different (one way ANOVA 

Tukey’s test; p< 0.05).       
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contents gradually increased with time in the stationary phase and became constant after day 6 

except 16 HL.  The neutral lipid content per volume was not affected temperature but an 

increase was observed under increased irradiance at both temperatures (Fig. 6-7F).  

 

Figure 6-7. Temperature and irradiance dependencies of protein (A), protein per biovolume (B), 

carbohydrate (C), and carbohydrate per biovolume (D). The neutral lipid content (E) at 

exponential (EXPO) and stationary (STAT) phases and neutral lipid per biovolume (F) at 

exponential phase of T. weissflogii. Mean values ± standard errors are shown for three replicate 

vessels (EXPO, n=6 and STAT, n=3) at 16 HL, 16 LL, 26 HL, and 26 LL. Bars labelled with the 

same letter were not significantly different (one way ANOVA Tukey’s test; p< 0.05).  
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The lipid yield (mg L-1) and productivity (mg L-1d-1) of T. weissflogii incubated at different 

temperatures and irradiances were shown in Table 6-2. The highest lipid yield and lipid 

productivity were found at low temperature and high light (16 HL).  The lipid yield and 

productivity at 16 HL were approximately 2.4-times higher than at 26 LL.   

 

Table 6-2. Lipid yield (mg L-1) and productivity (mg L-1d-1) of T. weissflogii under different 

temperatures and irradiances at day 7 of stationary phase. Values are mean and standard 

errors (SE) for three replicate vessels, n = 3. Means with a column followed by the same letter 

are not significantly different (one way ANOVA Tukey’s test; p< 0.05).  

Treatment Lipid yield (mg L-1)    Lipid productivity (mg L-1 day-1) 

 
 Mean       SE             Mean                  SE  

16  HL 20.08a 0.44              2.85A                 0.06  

16  LL 13.01b 0.38              1.83B                 0.05  

26  HL 15.45b 0.36              2.18B                 0.04  

26  LL   8.36c 0.29              1.19C                 0.04  

 

6.4.5 DNA and RNA contents 

 

Relatively small differences were observed in DNA per cell (Fig. 6-8A) and RNA per cell (Fig 6-

8B). The greatest DNA and RNA contents were observed at 26 HL, whereas the lowest DNA 

and RNA contents were found at 16 LL (Figs. 6-8A, B).  There was no significant difference in 

cellular DNA content with temperature in the high light treatments or with irradiance in the low 

temperature treatments, although a slightly higher value was observed in the 26HL treatment.   

RNA per cell was more variable than DNA per cell (Fig. 6-8B), and significant differences due to 

irradiance were observed in both the low and high temperature treatments. At constant 

irradiance, RNA per cell was significantly higher at the higher temperature.  

In the present study, RNA:DNA ratios were >1; however, the RNA:DNA ratio did not show 

significant differences amongst the treatments (Fig. 6-8D).  
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Growth rate was positively correlated with RNA:protein  (Fig. 6-9A). Growth rate increased by 

about 2.4 fold from 16 LL to 16 HL, whereas RNA:protein increased nearly by about 1.9 times 

over this irradiance range. In contrast, the growth rate increased by about 1.7 fold from 26 LL to 

26 HL, whereas RNA:protein increased nearly by about 2.6 times (Fig. 6-9B).  

 

Figure 6-8. Temperature and irradiance dependencies of DNA content (A), RNA content (B), 

RNA per biovolume (C) and RNA : DNA ratio (D) of T. weissflogii  in different vessels at 16 HL, 

16 LL, 26 HL and 26 LL. Mean values ± standard errors are shown for three replicate vessels. 

Bars labelled with the same letter were not significantly different (one way ANOVA Tukey’s test; 

p< 0.05). 
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Figure 6-9. RNA : protein ratio (A) which are expressed in unit of g g-1 of T. weissflogii; the 

relationship between RNA : protein (g g-1) and growth rate (d-1) (B). Bars labelled with the same 

letter were not significantly different (one way ANOVA; p< 0.05).   

 

6.4.6 Bioimaging of T. weissflogii 

 

Subcellular components were visualised with high contrast using fluorescent staining and 

autofluorescence approaches (Figs. 6-10,11). Lipid droplets were labelled with Nile red (green 

in Fig 6-10), the DNA was stained with DAPI (blue in Fig 6-10) and chloroplasts identified from 

chlorophyll autofluorescence (red in Fig 6-10). Temperature and irradiance affected the volumes 

of the subcellular components. Mean cell size and chloroplast volume decreased with increased 

temperature and irradiance while lipid volume increased with increased temperature and 

irradiance (Fig. 6-12). There were no significant differences in the mean nucleus (DNA-labelled 

volumes) amongst the temperature and irradiance conditions (Fig. 6-13 and Table 6-3).   

Given the relatively small sample size (n = 52-87) and the high variance, the median is a better 

measure of the central tendency than the mean since the mean can be affected more by a small 

number of extremely high values.  Data is not normally distributed then they were compared 

statistically using a non-parametric statistical test.  
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Figure 6-10. Confocal images of subcellular components of T. weissflogii grown under 16oC and 

high light condition (A). DNA image is labelled from DAPI as blue (B), lipid droplets are stained 

from Nile red as green (C), chloroplast is autofluorescence of chlorophyll a as red (D), 

transmission image is collected from transmission detector (TD) as grey (E), and single image is 

produced from merging channels (F).    

 

 

 

Figure 6-11. Visualisation of T. weissflogii, under 16oC and high light condition, in 3-dimensional 

reconstruction from merging channels.   

Graticule size 2.00 µm
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Figure 6-12. Three-dimensional reconstructions of Thalassiosira weissflogii, in semi-continuous 

culture phase, grown under different treatments: (A) 16°C and high light; (B) 16°C and low light; 

(C) 26°C and high light; (D) 26°C and low light. Red is chlorophyll fluorescence, blue is DNA 

and green is lipid droplets. 
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Table 6-3. Statistical comparison, using Kruskal-Wallis test with Dunn's multiple comparison 

test, of cell size, DNA, lipid, and chloroplast volume (µm3) in Thalassiosira weissflogii grown at 

different temperature and irradiance levels. Mean values ± standard errors (SE) are shown for 

three replicate vessels (n=6). Entries labelled with the same letter were not significantly different 

(p<0.05).  

Volume (µm3) Treatment      Median        Mean      SE 

Cell size 16 HL 492.6    528.1a 24.2 

 
16 LL 676.7    740.1bc 34.3 

 
26 HL 594.1    627.2b 30.8 

 
26 LL 758.4    787.8c 18.0 

DNA 16 HL   65.2      79.5a   5.5 

 
16 LL   71.9      90.1a 10.9 

 
26 HL   68.0      72.1a   3.8 

 
26 LL   66.4      71.3b   1.7 

Lipid 16 HL   39.3      46.2a   3.0 

 
16 LL   18.5      20.8b   1.7 

 
26 HL   55.5      60.7c   3.5 

 
26 LL   28.5      31.4d   1.2 

Chloroplast 16 HL 359.7    374.0a 17.4 

 
16 LL 565.9    585.0b 21.9 

 
26 HL 433.0    496.1c 28.7 

 
26 LL 645.0    679.8d 16.4 
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Figure 6-13. Temperature and irradiance dependencies of cell volume (A), nucleus (DNA) 

volume (B), lipid droplet volume (C), and chloroplast volume (D) in T. weissflogii grown at 16 HL 

(n=71), 16 LL (n=52), 26 HL (n=68), and 26 LL (n=87).  The horizontal line is the median and 

the box-whisker plots presents the upper and lower quartiles (Q3 and Q1) and the range of cell 

size. The data can be found in Table 6-3. 
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6.4.7 Amino acids 

 

Seventeen free and bound amino acids were identified. The total free amino acid content of the 

cells was approximately 1.9-5.7 pg cell-1 (Table 6-4) which in all cases was around 16-22 % of 

the total amino acids. 

Table 6-4. Essential and non-essential free amino acids (pg cell-1) of T. weissflogii grown under 

different temperature and irradiances. Values are mean and standard errors (SE) for three 

replicate vessels, n = 3. Means with a row followed by the same letter were not significantly 

different (one way ANOVA Tukey’s test; p< 0.05).   

  Amount of free amino acid (pg cell-1)     

Amino acid 16 HL 
 

16 LL 
 

26 HL 
 

26 LL 
 

 
Mean SE Mean SE Mean SE Mean SE 

Essential amino acid               

Histidine 0.25A 0.00 0.21A 0.17 0.26A 0.10 0.23A 0.08 

Lysine 0.07A 0.01 0.41C 0.04 0.07A 0.01 0.18B 0.03 

Methionine 0.25A 0.00 0.39B 0.11 0.25A 0.01 0.60C 0.02 

Valine 0.11A 0.01 0.59C 0.09 0.13A 0.01 0.33B 0.02 

Phenylalanine 0.08A 0.03 0.25B 0.00 0.06A 0.02 0.51C 0.08 

Isoleucine 0.07A 0.01 0.25B 0.04 0.12A 0.01 0.10A 0.02 

Non-essential amino acid 
       Arginine 0.14A 0.00 0.75C 0.15 0.15A 0.00 0.38B 0.01 

Serine 0.22A 0.01 0.60C 0.05 0.20A 0.00 0.46B 0.04 

Glycine 0.20B 0.04 0.07A 0.04 0.04A 0.00 0.22B 0.05 

Glutamic acid 0.10A 0.03 0.45C 0.03 0.15A 0.01 0.26B 0.05 

Asparagine* 0.04A 0.02 0.19B 0.06 0.21B 0.10 0.09A 0.04 

Proline 0.08A 0.01 0.41B 0.02 0.50B 0.25 0.45B 0.09 

Cysteine 0.01A 0.00 0.02A 0.04 0.02A 0.00 0.03A 0.01 

Tyrosine 0.02A 0.00 0.13B 0.09 0.03A 0.01 0.14B 0.08 

Threonine 0.24A 0.01 0.44B 0.08 0.21A 0.01 0.59B 0.04 

Alanine 0.05A 0.00 0.46C 0.10 0.07A 0.01 0.28B 0.00 

Sum 1.93 0.24 5.71 1.14 2.46 0.55 4.82 0.72 
               

             * Average of aspartic acid and asparagine. 

 

Glutamic acid was the most abundant amino acid in cells at 26 LL while cysteine was the lowest 

in all treatments (Tables 6-5 and 6-6). Glutamic acid accounted for approximately 13.7 % of total 

amino acids. Arginine, serine, glycine, aspartic acid, asparagine, threonine, proline, lysine, 
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valine and phenylalanine, isoleucine, alanine were all present at contents between 5-10 % of 

total amino acids. Four amino acids (cysteine, tyrosine, methionine and histidine) were < 5 % of 

total amino acids (Table 6-6).  

Table 6-5. Amino acid content (pg cell-1) from hydrolysed T. weissflogii grown at different 

temperatures and irradiances. Values are mean and standard errors (SE) for three replicate 

vessels, n = 3. Means with a row followed by the same letter were not significantly different (one 

way ANOVA Tukey’s test; p< 0.05).   

 

  Amount of combined amino acid (pg cell-1)     

Amino acid 16 HL 
 

16 LL 
 

26 HL 
 

26 LL 
 

 
Mean SE Mean SE Mean SE Mean SE 

Essential amino acid               

Histidine 0.13A 0.02   0.32B 0.09   0.18A 0.09   0.33B 0.16 

Lysine 0.67A 0.11   1.45B 0.05   0.89A 0.15   2.78C 0.06 

Methionine 0.23A 0.02   0.62C 0.02   0.36B 0.01   0.62C 0.05 

Valine 0.56A 0.02   1.29C 0.03   0.77B 0.10   1.35C 0.11 

Phenylalanine 0.64A 0.04   1.42B 0.07   0.90C 0.11   2.12D 0.03 

Isoleucine 0.54A 0.03   1.15B 0.07   0.71C 0.08   1.28B 0.08 

Non-essential amino acid 
      

Arginine 0.76A 0.03   1.61B 0.13   0.95A 0.17   1.85B 0.06 

Serine 0.47A 0.01   1.14C 0.04   0.66B 0.06   1.22C 0.01 

Glycine 0.38A 0.02   1.06D 0.02   0.53B 0.03   0.74C 0.04 

Glutamic acid 1.03A 0.15   2.68C 0.10   1.49B 0.09   3.89D 0.09 

Asparagine* 0.99A 0.16   2.33C 0.24   0.91A 0.34   1.74B 0.07 

Proline 0.49A 0.02   1.08B 0.09   0.66A 0.09   1.98C 0.05 

Cysteine 0.11A 0.01   0.25B 0.03   0.12A 0.05   0.39C 0.06 

Tyrosine 0.45A 0.01   1.05C 0.03   0.61B 0.05   1.62D 0.05 

Threonine 0.46A 0.02   1.06C 0.05   0.65B 0.05   1.71D 0.04 

Alanine 0.46A 0.04   1.29C 0.04   0.67B 0.03   1.79D 0.05 

Sum 8.38 0.70 19.80 1.09 11.06 1.49 25.41 1.00 
               

             * Average of aspartic acid and asparagine. 
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Table 6-6. Percentage of total amino acids in T. weissflogii grown at different temperatures and 

irradiances. Values are mean and standard errors (SE) for three replicate vessels, n = 3. Means 

with a row followed by the same letter were not significantly different (one way ANOVA Tukey’s 

test; p< 0.05).   

  Percentage of total amino acid  

Amino acid 16 HL 
 

16 LL 
 

26 HL 
 

26 LL 
 

 
Mean SE Mean SE Mean SE Mean SE 

Essential amino acid               

Histidine   3.75B 0.28 
       
  2.08A 0.34   3.29B 0.64   1.87A 0.48 

Lysine   7.16A 0.82   7.29A 0.40   7.10A 0.66   9.77B 0.23 

Methionine   4.65B 0.03   3.95A 0.08   4.49B 0.27   4.05A 0.20 

Valine   6.45B 0.23   7.38C 0.16   6.67B 0.40   5.57A 0.43 

Phenylalanine   6.99A 0.96   6.54A 0.04   7.06A 0.56   8.68B 0.13 

Isoleucine   5.92B 0.05   5.52B 0.10   6.12B 0.17   4.55A 0.29 

Non-essential amino acid 
       

Arginine   8.70A 0.39   9.26B 0.26   8.13A 0.74   7.35A 0.20 

Serine   6.75C 0.27   6.81C 0.13   6.37B 0.29   5.55A 0.07 

Glycine   5.66C 0.14   4.43B 0.26   4.23B 0.32   3.16A 0.19 

Glutamic acid 10.97A 1.09 12.24A 0.11 12.14A 0.95 13.71B 0.31 

Asparagine* 10.08C 1.12   9.85C 0.51   8.29B 2.22   6.06A 0.40 

Proline   5.54A 0.19   5.83A 0.20   8.56B 0.48   8.02B 0.23 

Cysteine   1.10A 0.16   1.42A 0.15   0.98A 0.30   1.40A 0.23 

Tyrosine   4.54A 0.39   4.64A 0.08   4.69A 0.29   5.81B 0.19 

Threonine   6.86B 0.16   5.91A 0.11   6.38A 0.22   7.61C 0.18 

Alanine   4.88A 0.09   6.87B 0.14   5.49A 0.41   6.85B 0.21 
               

       * Average of aspartic acid and asparagine. 

 

 

6.4.8 Photosynthesis rate 

The photosynthesis rate of T. weissflogii grown increased with photon flux density until the 

maximum level was reached at approximately 200 and 300 μmol photons m−2s−1 respectively. 

The chl a-specific light saturated rate of photosynthesis rate (P 𝑚𝑎𝑥
𝐶ℎ𝑙 ) increased with increased 

temperature and irradiance (Figs 6-14 A,B,C,D). P 𝑚𝑎𝑥
𝐶ℎ𝑙  increased approximately 1.4-1.9 fold 

after cells were exposed with high temperature and irradiance.  The slope (α) of the linear part 
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of the PE curve decreased with increased temperature, whereas α was not affected by 

irradiance (Table 6-7). Ek is the saturation irradiance, which increased with temperature and 

irradiance.  

 

 

Figure 6-14. Temperature and irradiance dependencies of the chlorophyll a-specific rate of 

photosynthesis (PChl in unit g C. g Chl-1 h-1) (A and C) and the cell-specific rate of photosynthesis 

(PCell in unit pg C. cell-1 h-1) (B and D) of T. weissflogii under different treatments: 16 HL, 16 LL, 

26 HL, and 26 LL. Values are mean and standard errors (SE) for three replicate vessels, n = 3. 
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Table 6-7. Photosynthetic rate parameters of T. weissflogii at different treatments. Values are 

mean and standard errors (SE) for three replicate vessels, n = 3. Means followed by the same 

letter were not significantly different (one way ANOVA Tukey’s test; p< 0.05).   

                         Photosynthetic rate derived from 

Parameter* Treatment Chlorophyll                  Cell 

  
   Mean   SE      Mean    SE 

Pmax 16 HL      3.52b   0.06     0.67A   0.06 

 
16 LL      2.49a   0.13     0.94B   0.07 

 
26 HL      6.65c   0.42     1.55C   0.06 

 
26 LL      3.64b   0.32     2.50D   0.42 

α 16 HL      0.024a   0.001     0.0044A   0.0001 

 
16 LL      0.021a   0.001     0.0081B   0.0003 

 
26 HL      0.016b   0.001     0.0040A   0.0001 

 
26 LL      0.012b   0.001     0.0083B   0.0003 

Ek 16 HL 149b   6 154A   2 

 
16 LL 119a   5 124B   4 

 
26 HL 416d   6 421C   4 

 
26 LL 295c 17 312D 18 

 

* Unit: P max
Chl  : gC  gChl-1 h-1; P max

Cell  : pg C cell-1 h-1; α (PChl) : gC  gChl-1 h-1 (µmol photons  m-2s-1)-1;  

α (PCell) : pg C cell-1 h-1 (µmol photons .m-2.s-1)-1 ; Ek : µmol photons m-2 s-1.  

 

6.4.9 Light absorption 

 

The magnitude and shape of the abosprtion spectra (aChl) for T. weissflogii varied in response to 

varying temperatures and irradiances (Fig. 6-15). Chlorophyll a specific absorption at the blue 

peak, aChl (440 nm), and at the red peak, aChl (675 nm), increased with increasing temperature 

and irradiance. The ratio of aChl (440) to aChl (675) also increased with increasing temperature 

and irradiance (Table 6-8). 
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Figure 6-15. In vivo chlorophyll a specific absorption spectra (aChl ) for Thalassiosira weissflogii. 

Shown are the mean values and standard errors (every 10 nm) for three replicate vessels (n=3) 

at temperature and irradiance of 16 LL and 16 HL (A) and 26 LL and 26 HL (B). Closed dots are 

low light and open dots are high light. 

 

Table 6-8. Values of aChl (440 nm), aChl (675 nm) and of the ratio aChl (440 nm): aChl (675 nm) in 

Thalassiosira weissflogii grown at different temperatures and irradiances. 

Treatments 
    aChl (m-2 g-1chl a) at wavelengths 

Ratio of aChl (440 nm) to aChl (675 nm) 
    440 (nm)                      675 (nm) 

16 HL     23.59                           16.19 1.46 

16 LL     15.01                           12.27 1.22 

26 HL     33.36                           21.93 1.52 

26 LL     23.48                           19.66 1.19 

 

6.4.10  Pigments 

Five accessory pigments (beta carotene, chlorophyll c, diatoxanthin, diadinoxanthin, and 

fucoxanthin), in addition to chlorophyll a, were found (Table 6-9). There were significant 

changes in total accessory pigments with temperature and irradiance. The 16 HL treatment had 

the highest ratio of the total pigments to chl a, whereas the 26 LL treatment had the lowest. The 

ratio of chl c to chl a ratio was not affected by temperature, but this ratio increased with 

increased irradiance at a constant 16oC. The ratio of photoprotective pigment (beta carotene) to 
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chl a varied with temperature and irradiance. The ratio of xanthophyll cycle pigments 

(diatoxanthin and diadinoxanthin) to chl a increased with increased irradiance. That ratio was 

3.5 times higher in the cells grown under 16 HL compared to the cells grown under 16 LL. 

 
 
Table 6-9. Pigment composition [mol accessory pigment (mol chl a)-1] of Thalasiosira weissflogii 

grown under different temperatures and irradiances. Values are mean and standard errors (SE) 

for three replicate vessels, n = 3. Means with a row followed by the same letter were not 

significantly different (one way ANOVA Tukey’s test; p< 0.05).   

 

 
Temperature (oC) and irradiance 

 
Pigment 16 HL 

 
16 LL 

 
26 HL 

 
26 LL 

 

 
Mean SE Mean SE Mean SE Mean SE 

Beta C  0.0049A 0.0005 0.0187B 0.0006 0.0056A 0.0002 0.0090C 0.0010 

DT 0.14A 0.01 0.03B 0.00 0.07C,D 0.01 0.05B,D 0.01 

Chl c 0.25A 0.00 0.13B 0.01 0.12B 0.01 0.12B 0.01 

DD 0.94A 0.04 0.12B,D 0.00 0.56C 0.03 0.15D 0.01 

Fuco 0.59A 0.01 1.18B 0.03 0.90C,D 0.04 0.85D 0.04 

DD+DT 0.92A 0.02 0.26B 0.00 0.73C 0.06 0.21B 0.01 

Total pigment 1.92A 0.08 1.50B 0.01 1.66B 0.09 1.17C 0.07 

(DD+DT)/Fuco 1.82A 0.02 0.13B 0.00 0.73C 0.07 0.21D 0.01 

DT/(DD+DT) 0.13A 0.02 0.21B 0.01 0.11A 0.00 0.26B 0.04 

Chl c/Fuco 0.21A 0.00 0.21A 0.00 0.14B 0.01 0.14B 0.00 
 

Beta C: Beta carotene, DT: Diatoxanthin, Chl c: Chlorophyll c, DD: Diadinoxanthin, Fuco: 

Fucoxanthin; Total pigment = Σ(Beta C+ DT + Chl c + DD + Fuco)                                                                                

  

6.4.11  Fatty acid profile 

There were significant differences in total cellular fatty acid content of T. weissflogii under 

different growth phases, temperatures, and irradiances (Fig 6-16). The total cellular fatty acid 

content increased significantly from exponential to stationary growth phase (two way ANOVA; 

p< 0.05). The cellular fatty acid content at 26 LL under stationary growth phase (138.4 ± 6.4 pg 

cell-1) was about 8 times higher than under exponential growth phase (17.4 ± 1.8 pg cell-1).  
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Figure 6-16.  Cellular fatty acid content of  T. weissflogii   in  semi-continuous  culture  phase 

(EXPO: grey bars) and stationary phase (STAT: white bars). Mean values ± standard errors are 

shown for three replicate vessels (n=6)  at  16 HL, 16 LL, 26 HL, and 26 LL.  Bars labelled with 

the same letter were not significantly different (two way ANOVA Turkey’s test; p < 0.05).          
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18 types of fatty acids from C12-C24 were detected. Most of these contributed < 1 pg cell-1 and 

< 1 % of total fatty acids (Tables 6-10 and 6-11). The five most abundant fatty acids were 

myristic acid (C14:0; 5-13% of total), palmitic acid (C16:0; 25-34% of the total), palmitoleic acid 

(16:1; 18-41% of the total), eicosapentanoic acid (C20:5; 14-27% of the total) and 

docosahexaenoic acid (22:6; 2-10% of the total) in both exponential and stationary phases. 

 

The saturated fatty acid (SFA) and monounsaturated fatty acids (MUFA) increased with time in 

stationary phase cultures, whereas polyunsaturated fatty acids (PUFA) dropped. The 

percentages of both SFA and MUFA declined with increased temperature (from 16 to 26°C) in 

the semi-continuous cultures, whereas the percentage of PUFA increased. SFA at 16 HL was 

the highest at approximately 48 % of the total fatty acids in the stationary phase. PUFA at 26 HL 

was the greatest at around 40 % of the total fatty acids.  

 

Eicosapentaenoic acid (EPA or C20:5n) was the main PUFA (30% total fatty acids, at 26 HL) 

and was followed by docosahexaenoic acid (DHA or C22:6n) (10%, at 26 LL).  The content of 

myristic (C14:0) and the palmitic (C16:0) acid as SFA and the palmitoleic (C16:1) as MUFA 

varied with temperature and irradiance. The palmitoleic and palmitic acid increased with age of 

culture, whereas the myristic acid, EPA, and DHA declined.  
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6.5 Discussion 

 

6.5.1 Temperature and irradiance versus cell abundance and growth rate 

 

The increase of cell abundance with dilution rate was observed in T. weissflogii grown in 

nutrient-limited semi-continuous cultures when the cultures reached steady-state biomass (Fig. 

6-1). Similarly, Chauton et al. (2013) reported that cell biomass production increased with 

increasing dilution rates and cell density was maximum at dilution rate 0.65 day-1 (from 0.33 to 

1.1 day-1) in the diatom Phaeodactylum tricornutum grown at 20oC and illuminated with 100 

µmol photons m-2 s-1 in 16:8 (light:dark) cycles. This suggests that dilution rates affected cell 

abundance of T. weissflogii. The growth rates (GR) of T. weissflogii grown under different 

dilution rates were close to theoretically calculated values, indicating that the supply rates of the 

culture medium. At higher dilution rate, cells might be able to grow faster due to high nutrient 

replacement of medium (Takeya et al. 2004). The results presented here are in agreement with 

the studies by Reichert et al. (2006) on nutrient-sufficient semicontinuous culture of the 

cyanobacterium Spirulina platensis, where a daily dilution rate at 25 or 50% (v/v) resulted in an 

increase growth rate.   

 

6.5.2 Temperature and irradiance versus chl a and elemental composition 

 

Intracellular chl a content increased with increased temperature under low light in T. weissflogii. 

This is associated with an increased in either the size or number of photosynthetic units 

(Sakshaug et al. 1997). In the same way, photosynthesis rate per chlorophyll a and cell (Pchl and 

Pcell) also increased. This effect of temperature on the cellular content of chl a is in accordance 

with the results of diatom Thalassiosira weissflogii in nutrient-deplete growth condition under 

either 100 μM nitrate or 100 μM ammonium (Strzepek & Price 2000) and of green algal 

Dunaliella tertiolecta grown under nutrient-replete growth conditions (Sosik & Mitchell 1994).  
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An increase of the C:N and C:chl a ratios with increased temperature was observed in this 

study. The C:N ratios were greater than the Redfield C:N ratio of 6.6 which allows optimal 

growth of non-limiting culture (Geider & La Roche 2002). This indicats that T. weissflogii was 

maintained under nitrogen-limited conditions.  Similarly, Stramski et al. (2002) mentioned that 

there was a reduction of cellular nitrogen and chl a in T. pseudonana grown under nitrogen-

limited chemostat culture (60 µM nitrate) when compared with replete nutrient culture. 

 

The cellular chl a content decreased with increasing irradiance in microalgae grown under 

nitrogen-limited condition which was previously observed in Phaeodactylum tricornutum (Ramos 

et al. 2012), in T. pseudonana (Stramski et al. 2002), in Dunaliella tertiolecta (chlorophyta), T. 

pseudonana, and Skeletonema costatum (Kolber et al. 1988).  In this investigation, the C:N ratio 

showed no consistent trend with increasing irradiance at 16oC, whereas the C:N ratio decreased 

with increasing irradiance at 26oC. Because the amount of organic carbon at low light was 

higher than at high light and nitrogen content varied under nitrogen limitation. Therefore, the 

variation of C:N ratios reflected changes in cell carbon. Stramski et al. (2002) reported that the 

increase of C:chl a ratio with increasing irradiance has been observed in T. pseudonana and the 

reduction of intracellular chl a content was accompanied by an increase of C:chl a ratio of 

diatom grown under nitrogen limitation. 

  

The results showed that the C:chl a ratio in T. weissflogii  progressively increased with elevated 

irradiance. Similarly, the C:chl a ratio of diatom Thalassiosira allenii  was positively correlated 

with temperature (>25oC) under both saturating and non-saturating light (Redalje & Laws 1983). 

The C:chl a ratio also was correlated with growth rate positively under the increased irradiance; 

however, this correlaion was not response with the increased temperature. Moreover, the light 

saturation index (Ek) as an indicator of plankton photoacclimation also showed a positive 

relationship with increased irradiance. These results agree with the bio-optical moldel. 

Therefore, the correlation of C:chl a with growth rate supports the bio-optical model. 
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6.5.3 Temperature and irradiance versus cell size  

 

Eukaryotic cell size is an important characteristic for survival and adaptation (Davie & Petersen 

2012). Cell size depends on growth rate which associates with metabolic rate and cell division 

rate.  There was no significant temperature-specific difference in the mean cell volume of          

T. weissflogii grown under nitrogen limitation, indicating that cell size did not influence growth 

rate.  That result could be consistent with findings of past studies by Sosik & Mitchell (1991) 

which suggested that cell size of Dunaliella tertiolecta did not vary systematically with growth 

rate at nitrogen-insufficient condition. Therefore, in this study, T. weissflogii grown under 

different temperature with high irradiance is likely to be at the constant division rate and cell 

abundance. Since the effect of temperature on cell size in diatoms grown under nitrogen 

limitation has been rarely studied. Therefore, cell size of microalgae grown under nutrient 

replete condition will be considered next. Different investigators have found different 

relationships between cell size and temperature under nutrient sufficient condition. For 

examples, cell size was found to increase with temperature in the diatoms T. pseudonana and 

Phaeodactylum tricornutum (Thompson et al. 1992), and in the green chlorococcal alga 

Scenedesmus obliquus (Cepák et al. 2007).  

 
 
In this study, cell size of T. weissflogii decreased with increased irradiance under nitrogen 

insufficient condition. This is supported by Sosik et al. (1989) which revealed that increasing cell 

size with decreasing irradiance was observed in T. weissflogii grown under nitrogen sufficient 

condition.  Additionally, cell size of 6 microalgae grown in nutrient-replete medium varied with 

irradiance from 25 to 750 μmol photons m−2 s−1; however, T. weissflogii, Chaetoceros gracilis 

and Coscinodiscus sp. decreased with increasing irradiance at a range of from 25 to 90 μmol 

photons m−2s−1 (Fujiki & Taguchi 2002). These phenomenon could be consistent with findings of 

past studies by Zachleder & Cepák (1987), which suggested that a decrease in light intensity 

caused a decrease of the mother cell size as well as the decrease of daughter cell number per 
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mother cell of alga Scenedesmus quadricauda grown under different light conditions. Cell size 

of daughter did not change under low light intensity due to the growth rate decreased markedly. 

Therefore, in this study, the division rate and cell abundance of T. weissflogii is likely to 

decrease under low irradiance. This implies that the sink rates of microalgae as well as their 

susceptibilities to zooplankton grazing are functions of cell size. Consequently, microalgal size 

is a major determinant of the food web and material transfer rates in the rivers, lakes and 

oceans. 

 

6.5.4 Temperature and irradiance versus nucleotide 
 

There were no significant differences observed in DNA content in T. weissflogii  grown under 

different temperatures and irradiances. This is confirmed by DNA volume when stained with 

DAPI (Fig. 6-13B). Temperature and irradiance affected RNA content. This indicates that RNA 

plays important role in growth and cell cycle (Olsen et al. 1986). 

The ratio of RNA:protein correlated well with the growth rates of T. weissflogii grown under 

different irradiances; however, it was not significantly correlated to the RNA:protein ratio under 

different temperatures. This suggests that increasing RNA:protein ratio under irradiances 

reflects the control of the rate protein synthesis by the number of ribosomes. When the growth 

rate increased, the rate of ribosome function approached a maximum value, corresponding to 

amino acid polymerization. This is parallel with total amino acid results responded with 

irradiance but did not react with temperature. This situation is referred to as the growth-rate 

hypothesis. Therefore, RNA:protein ratio supported growth rate hypothesis under variable 

irradiance. While temperature did not influence RNA:protein ratio, this is against growth rate 

hypothesis.  
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6.5.5 Temperature and irradiance versus biochemical composition 

 

            Protein  

 

In this study, the protein content of T. weissflogii grown under N limitation decreased with 

increased temperature with low light, reflecting increased metabolic activity. This results was 

consistent with previous observations of Phaeodactylum tricornutum grown under nitrogen 

limitation (40 µM ammonium) (Terry et al. 1985). Moreover, this finding is in accordance with the 

results of Harrison et al. (1990) who observed that protein content decreased in diatoms 

Isochrysis galbana, Chaetoceros calcitrans, and Thalassiosira pseudonana grown under 

nitrogen-limited medium (ratio of N: Si: P = 14: 26: 1). These phenomenon could decrease the 

growth rate and the efficiency of carbon utilisation at the non-optimal temperature condition 

(Raven & Geider 1988). Additionally, an increase in free amino acid concentration is an 

indicator of the lower protein content in T. weissflogii.  

 

The results showed protein contents decreased with the increasd irradiance. Similarly, Liu et al. 

(2012) found that protein contents were lower at high light (250 and 400 μmol photons m−2 s−1) 

in green alga Scenedesmus sp. 11-1 grown under nitrogen deficient condition.  This suggests 

that the light supply could influence the metabolic activity.  Post et al. (1985) demonstrated that 

the thylakoid stacking in chloroplast of T. weissflogii exposed with HL was fewer than with LL, 

reflecting high light intensity could damage the chloroplastidial activity.  Therefore, intracellular 

chl a content reduced at high irradiance which led to low efficiency of metabolic activity. The 

protein pathway is especially blocked by a lack of sufficient nitrogen under the high light. 

 
                    Carbohydrate  

 

The inconsistent variations of carbohydrate content with temperature were observed in T. 

weissflogii.  The finding is consistent with the results of Carvalho et al. (2009) who reported the 

inconsistent variation of the internal amounts of carbohydrate with temperature (10-26oC) for 

hapophyte Pavlova lutheri at the late exponential phase under five irradiance levels from 60 to 
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240 μmol photons m−2 s−1. Additionally, Srirangan et al. (2015) reported that there was no 

significant change of the starch contents with increasing temperature when Dunaliella viridis 

grown under high light. Those reports suggest that there are a correlation between the effects of 

temperature and light. This may lead to inverse variations in a biochemical parameter with one 

effect, depending on the stated value of the other effect (Carvalho et al. 2009). 

 

Carbohydrate contents also decreased with increased light intensity. There are variations of 

carbohydrate content in microalgae grown under different conditions. For example, Sun et al. 

(2014) found that carbohydrate content from Neochloris oleoabundans grown under nitrogen 

depleted condition increased with increasing light intensity from 50 to 100 μmol photons m-2 s-1, 

but decreased when the light intensity was increased from 100 to 300 μmol photons m-2 s-1. Ho 

et al. (2012) also mentioned that an increase in light intensity from 60 to 420 μmol photons          

m-2 s-1 could lead to an increase in carbohydrate content in Scenedesmus obliquus, but a further 

increase in light intensity did not improve accumulation of carbohydrates. Therefore, this 

suggests that the optimal light lead to high carbohydrate content while carbohydrate contents 

observed in T. weissflogii  decreased at the below and above optimal light intensity. 

 

                          Neutral lipid 

In this study, intracellular neutral lipid contents did not change in response to different 

temperature and irradiance under exponential phase. Similarly, Harrison et al. (1990) reported 

that the lipid as % ash-free dry weight remained relatively constant under nitrogen-limitation for 

all three microalgae and the amount of lipid per cell did not show a consistent trend with 

irradiances for three microalgae harvested mid-logarithmic growth phase. Neutral lipid per 

biovolume of T. weissflogii increased with irradiance. This result was similar to the results of Nile 

red-stained neutral lipid droplets seen under microscope (Fig. 6-13C), reflecting the relation 

between neutral lipid and cell size. 
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There are variations in neutral lipid content in the different treatments at stationary phase. Some 

investigators have reported that neutral lipid increased with increased temperature. For 

example, Scenedesmus obtusus XJ-15 grown under different temperatures (17, 25, and 33 °C) 

and light intensity 100 µmol photons m-2 s-1 at nitrogen-deplete condition had  neutral lipids 

increased with increasing temperature and that there was more lipid contents than nitrogen 

sufficient condition (Xia et al. 2015). Moreover, Chlamydomonas reinhardtii and Chlorella 

vulgaris mutants had more neutral lipid after temperature was increased when compared with 

the wild type under PFD 150 µmol photons m-2 s-1 (Yao et al. 2012).  

 

In this work, the highest lipid productivity achieved in cultures of T. weissfloii was recorded at 

2.85 mg L-1 d-1 under 16 HL and nitrogen limitation at stationary phase. Compared to the other 

studies on Thalassiosira species, this value was lesser because of characteristic of algal 

species (Griffiths & Harrison 2009). For example, d’Ippolito et al. (2015) reported lipid 

productivity of 0.43-0.54 mg L-1 d-1 in 2 species of T. rotula, of 3.48-7.27 mg L-1 d-1  in 3 species 

of T. weissfloii, and of 1.72 mg L-1 d-1 in T. pseudonana when cells grew in nutrient sufficient 

medium of 2-L polycarbonate flasks at 20°C, PFD 200 μmol m−2 s−1 on a 14:10 h light dark cycle 

and harvested under stationary phase (d’Ippolito et al. 2015). Although the lipid productivity of 

T. weissflogii was lower than other Thalassiosira stains, the high PUFAs concentration (EPA 

and DHA) is suitable for the calanoid copepod and fish diet (Kiatmetha et al. 2011).   

 

 
6.5.6 Temperature and irradiance versus amino acids 

 

Free and combined amino acids were observed in T. weissflogii grown under nitrogen limitation. 

Most studies reported the amino acid contents of microalgae grown under nitrogen replete 

conditions (da Silva Gorgônio et al. 2013; Becker 2007; Barbarino & Lourenço 2005; Kaiser & 

Benner 2005). To our knowledge, this is the first report showing 16 amino acids profile under 

nitrogen deplete conditions in T. weissflogii.  
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                Free amino acids 

In the data presented here, free amino acids accounted for around 16-22 percent of total amino 

acid content in T. weissflogii. Arginine, serine, glutamic acid, and valine had the highest free 

amino acid content. There are variations of amino acid profile in microalgae that depends on 

species and environment. For example, Derrien et al. (1998) reported that free amino acid in 5 

microalgae (Tetraselmis suecica, Skeletonema costatum, Chaetoceros calcitrans, Thalassiosira 

sp., and Isochrysis galbana) varied remarkably among different species.  

 

Temperature did not affect free amino acid content; however, the concentration of most free 

amino acid increased with decreased irradiance. The mechanism(s) responsible for the changes 

of free amino acid with combined temperature and irradiance are not clearly understood. 

However, Hernández-Sebastià et al. (2005) suggested that free amino acid asparagine 

probably has a role in the control of storage-product accumulation in developing seeds of low- 

and high-protein soybean lines.   

 
               Combined amino acids 
 
Glutamic acid was the most abundant amino acid (11-14 % total amino acid). In contrast, 

cysteine as a sulphur containing amino group had the lowest (1.0-1.4 % total amino acid) in all 

treatment. A small amount of cysteine is often found in plants and microalgae. These results are 

similar to da Silva Gorgônio et al. (2013) who found that glutamic acid and aspartic acid were 

the most abundant amino acids in all microalgae Dunaliella tertiolecta, Isochrysis galbana, and 

Tetraselmis gracilis grown under nutrient-replete condition.  

 

In this investigation, both temperature and irradiance influenced the amount of combined amino 

acid.  The combined amino acid content increased with increased temperature. Methionine, 

valine, phenylalanine and isoleucine as essential amino acid in animal and humans change 

significantly with temperatures while histidine was not affected. The combined non-essential 

amino acid profiles showed major variations among treatments. The combined amino acid 
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content increased with decreased light intensity. The increase in the synthesis of some amino 

acids under low light stress and nitrogen limited condition may be related to loss of 

photosynthetic activity under low light intensities (Salomon et al. 2013). However, the role of the 

amino acids accumulated during light stress and nitrogen limited-condition is presently not 

known for any microalgae (Chia et al. 2015).  

 

6.5.7 Temperature and irradiance versus accessory pigments 

 

Chl a specific absorption coefficient (aChl) is used widely as the fundamental index of light 

absorption by phytoplankton pigments. aChl varied in response to varying temperatures and 

irradiances due to changes in package effect and the relative proportion of chl a and accessory 

pigments (Bricaud et al. 1988). The package effect is used to describe the decrease of the 

absorption coefficient of pigments in a cell compared to the absorption potential for the same 

amount of pigment in solution (Geider & Osborne 1987; Kirk 1976).  

 

aChl was higher at low irradiance than at high irradiance regardless temperature or aChl was the 

highest at low growth rate. This observation was consistent with a previous study of T. 

pseudonana (Stramski et al. 2002) and marine chlorophyte Dunaliella teriolecta (Sosik & 

Mitchell 1994) under nitrogen limitation. Changes in pigment composition are associated with 

specific absorption at the blue chl a peak because absorption spectra of chl a and accessory 

pigments are overlapped in this region (Sosik & Mitchell 1994).  The response of the various 

accessory pigments to temperature and irradiance of cell grown under N-limitation leads to 

increase of aChl at low growth rate. 

 
Fucoxanthin (as light harvesting pigment) increased but DD+DT (as photoprotective pigment) to 

chl a ratio decreased with increasing temperature under high light. Additionally, the ratio of total 

accessory pigments to chl a was higher at low  temperature (14oC) than at high temperature 

(22oC), indicating the capacity of cell balance between energy trapped by temperature-

insensitive photochemical reactions (called energy source) and the energy utilized through 
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temperature-dependent metabolism, development, and growth (called energy sinks) (Ensminger 

et al. 2006; Hüner et al. 2013). This result, together with previous chl a analyses showing that 

changes of light harvesting pigment and photoprotective pigment reflects the ability of this 

diatom to tolerate with  low or high temperature and irradiance. Similarly, Anning et al. (2001) 

mentioned that temperature affected changes in excitation pressure of photosynthesis in diatom 

Chaetoceros calcitrans. The increase of photoprotective pigments are associated with light-

harvesting pigment at lower temperature that may protect an excess of excitation energy from 

reaction centre. In another study, Maxwell et al. (1994) examined effect of two different 

temperatures on pigment of green alga Chlorella vulgaris. The photoprotective pigments at low 

temperature (5oC) were higher than at high temperature (27oC).  

 

 

6.5.8  Temperature and irradiance versus photosynthesis rate  

 

The Chl a-specific light saturated rate of photosynthesis rate (P m
Chl) increased with increased 

temperature. The positive correlation between P m
Chl  and temperature is consistent with 

observations in diatom Leptocylindrus danicus grown under nitrogen-replete medium (Verity 

1981) and in Amphora cf. coffeaeformis grown in nitrogen-sufficient condition (Salleh & McMinn 

2011). The cell-specific light saturated rate of photosynthesis (P m
Cell) also increased with 

increased temperature. This finding is consistent with the results in Chaetoceros calcitrans 

grown under nitrogen-replete medium (Anning et al. 2001). Increases of P m
Chl and Ek values at 

high temperature are likely to have resulted from increased Rubisco activity when cells were 

shifted to a higher temperature as the rates of light-saturated photosynthesis are often 

controlled by the activity of Calvin cycle enzyes (Kuebler et al. 1991). These phenomena 

probably may be regulated by temperature (Oquist, 1983; Raven & Geider, 1988).  
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The decrease of slope (α) when cells were placed at high temperatures may result from 

damage of photosynthetic apparatus as indicated by the declines in the effective quantum yield 

that was observed in C. sublittoralis (Salleh & McMinn 2011).   

 

The P m
Chl increased when cells were grown at high irradiance. This change could result from the 

reduction of intracellular chl a at high temperature and light intensity. This finding is the same 

result as was found in Skeletonema costatum grown under nitrogen-sufficient condition and 

different irradiance (Anning et al. 2000). Conversely, the low P m
Cell observed at high irradiance. 

This observation is paralleled with nitrogen, suggesting that cell may lose the potential to carry 

out high rate of photosynthesis at nitrogen limitation condition (Osborne & Geider 1986).  Cells 

at lower irradiance have higher rate photosynthesis than at higher irradiance. This may be 

associated with the increase of intracellular carbon at low irradiance and Rubisco activity may 

shift in control of light-saturated photosynthesis and mimic the marine diatom Skeletonema 

costatum grown under nitrogen-replete medium that was observed by Anning et al. (2000).  

 

6.5.9  Temperature and irradiance versus fatty acid profile 

 
 
Five predominant fatty acids (C14:0, C16:0, C16:1, C20:5n, and C22:6n) were found in            

T. weissflogii. Similarly, Siegenthaler & Murata (2006) reported that the main fatty acids are 

often found in glycerolipids of chloroplast of marine algae, namely, α -linolenic acid (C18:3), 

palmitic (C16:0), eicosapentaenoic acid (EPA, C20:5) and docosahexaenoic acid (DHA, C22:6). 

Moreover,  the C14:0, C16:0, C16:1, and C20:5 were major components of the marine 

oleaginous diatom Fistulifera sp. strain JPCC DA0580 grown under both nutrient-deficient and 

nutrient-sufficient conditions (Liang et al. 2013), and of marine diatom Phaeodactylum 

tricornutum and Chaetoceros sp. grown under nitrogen-limited condition (Reitan et al. 1994). 

However, the distribution of fatty acid contents in diatoms depends on specific species and 

growth environmental conditions.    
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Total fatty acid increased with increased temperature in N-limited T. weissflogii. Similarly, 

Dunaliella salina grown in N-depleted medium gave lipid content that was 78% more than the N-

replete samples at 26oC, while the differential for 16oC was 28% (Liu et al. 2013). This may be 

indicated that a temperature-dependent enzymatic reactions (eg. RUBISCO) at low temperature 

are lower than those at high temperatures. 

 

The increase in percentage SFA and MUFA levels and the decrease of  PUFA levels with 

decreased temperature observed in T. weissflogii  is in accordance with the results of Hoffmann 

et al. (2010) who examined SFA and MUFA of chlorophyte Nannochloropsis salina grown in the 

different nitrate concentrations (75-1800 µmol L-1 NO3
-) and temperatures (17-26oC).  Nitrogen 

limitation might be lead to excess accumulation of electrons in the electron transport chain 

(ETC) generated by the light driven photosystems (Hoffmann et al. 2010). This accumulation 

stimulates an overproduction of reaction oxygen species (ROS) (Alscher et al. 1997) which 

negatively influence both membrane lipids and photosynthesis (Huner et al. 1996). The 

synthesis of long-chain (C18) fatty acid requires nicotinamide adenine dinucleotide phosphate 

(NADPH) as a reducing agent approximately 24 molecules which are higher than protein and 

carbohydrate synthesis (Hu et al. 2008). This is indicated that fatty acid synthesis results in a 

relaxation of an overreduced ETC (Rabbani et al. 1998; Mendoza et al. 1999; Hofmann et al. 

2010) which may occur under nitrate limitation. 

 
 
In this investigation, total fatty acid content increased with increased irradiance, consistent with  

results from Gonçalves et al. (2013) who observed the effect of light intensities (36, 72, 96, and 

126 μmol photons m−2 s−1) on the cultures of the chlorophytes Chlorella vulgaris and 

Pseudokirchneriella subcapitata grown under N-limitation, and from Solovchenko et al. (2008) 

who found the influence of light intensities (35, 200 and 400 μmol photons m−2 s−1) on the 

unicellular freshwater chlorophyte Parietochloris incisa under nitrogen limitation. The higher lipid 

content under high irradiance may result from the storage of excessive light energy into 
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chemical energy as fatty acid to avoid photooxidative cell damage (Niyogi 1999; Solovchenko et 

al. 2008).   

 
 
The results showed that EPA (C20:5) and DHA (C22:6) increased with increased irradiance. 

The increase of PUFAs at high light under nitrogen limitation probably related to reaction centre 

protein like D1/D2 (in PSII) into the thylakoid membrane and light harvesting protein complexes. 

Nitrogen-insufficient conditions may disrupt the assimilation of the chloroplast membrane and 

photosynthesis because cells were not capable to counteract the decreased chl a and protein 

inside the thylakoid membrane (Mock & Kroon 2002). Therefore, PUFAs play important role for 

the maintenance of photosynthetic membrane function (Klyachko‐Gurvich et al. 1999). These 

regulating mechanisms are probably used to establish membrane integrity and consequently 

active photosynthesis in algae or higher plants or sea ice diatoms (Mock & Kroon 2002).  

 

Apart from effect of temperature and irradiance, the total cellular fatty acid content increased 

significantly from exponential to stationary stages. These results are in accordance with 

Schwenk et al. (2013) reported total fatty acids increased significantly from exponential to 

stationary growth phase in 19 brackish and marine microalgae. Thus, T. weissflogii is known to 

produce the nutritionally important PUFAs: EPA and DHA for aquaculture or fish diet. The 

increased production of PUFAs in presence of stationary phase might add to the economic 

utility of this algal strain. 
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6.6 Conclusions 

 By growing the marine diatom Thalassiosira weissflogii in nitrogen-limited condition 

under different temperatures and irradiances, it was possible to generate cells which 

were different in their elemental and biochemical composition.   

 Cellular elemental composition varied with growth condition. Carbon content and C:N 

ratio were higher in cells with a reduced growth rate at low irradiance regardless of  

temperature.  

 The change of environmental conditons led to small cell size and high cell density of     

T. weissflogii grown at high radiance. This is implications on its ability to absorb nutrients 

quickly enough to feed itself for survival. 

 T. weissflogii acclimated to irradiance successfully through changes in the intracellular 

chlorophyll a content and provided the high photoprotective pigments content at high 

irradiance. 

 Amino acid concentration is maintained at different levels during the different 

environmental conditions. This would be of importance to know the right condition of 

culturing the algae. Moreover, algal amino acid containing essential and non-essential 

amino acid for humans and animals could be useful in pharmaceutical industry. 

 High neutral lipid, PUFAs, and lipid productivity (mg L-1 day-1) were observed when cells 

were grown at high light and low temperature. This indicates that cells need to produce 

substances (or secondary metabolites) to increase its chance of survival under these 

conditions and suggests that T. weissflogii was able to adapt to temperature and 

irradiance tested. 

 The temperature and irradiance affected the RNA content, whereas irradiance only 

affected the RNA:protein. Therefore, the relationship between growth rate and the 

RNA:protein supported the growth rate hypothesis under variable irradiance; however, 

that was not the case under variable temperature. In the same way, irradiance only 

affected the C:chl. The relationship between growth rate and the C:chl supported the 
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bio-optical hypothesis under variable irradiance; however, not under variable 

temperature. 
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Chapter 7: The effect of dilution rate on growth rate of 
diatom Thalassiosira weissflogii CCMP 1056 

 

7.1 Introduction 
 

 
Diatoms are unicellular or colonial eukaryotes mainly surrounded by an amorphous silica cell 

wall called a frustule. They are capable of converting solar energy to chemical energy via 

photosynthesis. Diatoms, like other microalgae, produce numerous metabolites including natural 

pigments (Pennington et al., 1988; Bertrand 2010; Xia et al. 2013), polyunsaturated fatty acids 

(Tonon et al. 2002; Wen & Chen 2003; Jiang & Gao 2004; Chautona et al. 2015), biopolymers 

(Hoagland et al. 1993; Wolfstein & Stal 2002; Underwood & Paterson 2003), and bioactive 

compounds (Mimouni et al. 2012; Raposo et al. 2013a,b). Those and other high-value 

chemicals are important sources that can be used in commercial and industrial applications 

such as pharmaceutical, food, fuel, and aquaculture products (Pulz & Gross 2004).  

The technique of algal culture plays a key role in determining the yield and composition of 

biomass. The semi-continuous technique involves supplying fresh medium to a culture at 

intervals to compensate for the withdrawal of culture from the bioreactor during the operational 

period (Yamanè & Shimizu 1984). The aim of semi-continuous culture is to maintain maximum 

growth rate during the exponential phase for maximum production. The semi-continuous system 

was used to grow the marine diatom Skeletonema costatum for amino acid and glucan 

production at different pH values from 6.5 to 9.0 (Taraldsvik & Myklestad 2000). Additionally, 

diatom Thalassiosila pseudonana grown in semi-continuous culture allowed a high nutritional 

production value, at lower operating costs (Vásquez-Suárez et al. 2013). In marine diatom, 

Phaeodactylum tricornutum grown at nutrient-sufficient condition also gave a stable chlorophyll 

a to carbon ratio under semi-continuous culture (Otero et al. 1998). Moreover, cyanobacteria 

Spirulina platensis maintained under a semi-continuous cultivation gave a high growth rate and 

high productivity that was two to four times higher than those obtained in batch cultivation 

(Reichert et al. 2006). 



  

158 
 

Dilution rate is one of the key variables in the operation of continuous and fed-batch cultures. 

Dilution rate is defined as the volumetric flow rate of replaced medium divided by the volume of 

the culture (Eq.1) 

D   %  = ( 
F

V
 )  X  100                             (1) 

Where: D is dilution rate (day-1), F is the volumetric flow rate of nutrient (litre day-1), and V is 

volume of the culture (litre).  

Dilution rate is one of the key variables in the operation of microalgal cultures. Microalgae grown 

under the high load of nutrient lead to fast growth rate. In contrast, microalgae have slow growth 

rate when cells grown under low nutrient.   T. weissflogii can typically flow with the currents 

which might contain low or high nutrients. To understanding the elemental and biochemical 

composition of T. weissflogii under different nutrient concentration, the examination of effect of 

dilution rate in the cultures was set in a laboratory.  Most studies have showed the accumulation 

of various chemicals in diatoms changes when the environment is modified. Therefore, the aim 

of this study was to examine the effect of the dilution rate on the growth rate and high-value 

chemicals of diatom T. weissflogii in a semi-continuous culture. 
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7.2 Operating conditions and sampling 

 
Thalassiosira weissflogii CCMP 1051 was grown in 2 litre pyrex vessels with 1.8 litre working 

volume in artificial seawater (Berges et al. 2001) enriched to f/2 plus silicate (Guillard & Ryther 

1962) medium, with 3 mM NaHCO3 and 1 nM Na2SeO3.  Cells in exponential phase were used 

to inoculate semi-continuous cultures that were grown into nutrient limitation in medium 

containing 20 µM NaH2PO4, 200 µM NaNO3, f/8 metals, and f/4 vitamins. Triplicate cultures 

were incubated at temperatures of 26°C and photosynthetic photon flux densities of 500 ± 10 

μmol photons         m−2 s−1 on a 14:10 h light:dark cycle. The semi-continuous process was 

started after cultures reached late exponential phase of growth. At this time, 540 mL medium 

was removed and the same volume of fresh sterile medium was fed into the culture every day to 

maintain at a dilution rate of 30% day-1. Similarly, to achieve a dilution rate of 60% day-1, 1,080 

mL sterile medium was replaced every day. The cultures were gently stirred with a magnetic stir 

bar and continuously aerated with filtered air through a 0.22 µm membrane filter.    

Samples were collected from each of the three replicate cultures on three occasions during the 

exponential phase and then the culture was allowed to grow without feeding into stationary 

phase (day 7). Cell abundance was determined daily using a haemocytometer. Samples during 

the exponential phase were collected to measure particulate phosphorus (PP), nitrogen (PN), 

organic carbon (POC), and protein. While carbohydrate, neutral lipid, pigments, and fatty acid 

profiles were determined both the exponential and stationary phases. Elemental (PP, PN, POC) 

and biochemical (carbohydrate, neutral lipid, protein, fatty acid) composition were measured 

using the methods described in chapter 2. 

 

7.3 Statistical analysis  

 

Statistical analysis was performed using Statistical Package for the Social Sciences (SPSS 

version 19). A paired sample student t-test was performed for pair-wise comparison, while an 

analysis of variance (ANOVA) with the post hoc test (Tukey HSD) used for multiple 

comparisons. 
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7.3 Results 

 

7.3.1 Cell density and growth rate 
       

The effect of dilution rate on the biomass of T. weissflogii grown under the exponential phase 

culture is shown in Fig. 7-1. In the triplicate cultures at a dilution rate of 30% day-1, cells 

increased during the first 3 days and became constant, with a density of 21 x104 ± 6 x 103 

(mean ± SE) cells mL-1 during the exponential phase and then gradually increased until on day 7 

of the stationary phase. A similar growth pattern was observed in the cultures at a dilution rate 

of 60% day-1; however, these showed a lower cell density (14 x104 ± 3 x 103) than in a dilution 

rate of 30% day-1.  

 

 

Figure 7-1. Dilution rate dependence of cell abundance of T. weissflogii cultures harvested 

during the exponential (EXPO.; n=9) and stationary (STAT.; n=3) phases. Mean values ± 

standard errors are shown for triplicate vessels at dilution rate 30% (grey dots) and 60% day-1 

(white dots). 
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Among the harvested cells during the exponential phase culture, growth rate at a dilution rate of 

60% day-1  was approximately 0.89 ± 0.02 (mean ± SE) day-1, whereas at a dilution rate of 30% 

day-1 the growth rate was 0.40 ± 0.1 day-1 (Fig. 7-2A). Intracellular chlorophyll a (chl a) content 

increased as dilution rate increased, following the same pattern as growth rate (Fig. 7-2B). 

Intracellular chl a at a dilution rate of 60% day-1 was significantly higher than at a dilution rate of 

30% day-1 (p<0.01).  

 

 

Figure 7-2. Dilution rate dependence of growth rate (A) and intracellular chlorophyll a content 

(B) in T. weissflogii harvested under the exponential phase.  Mean values ± standard errors      

(n = 9) are shown for triplicate vessels at dilution rate 30% (grey bar) and 60% day-1 (white bar). 

The asterisks indicate statistical significance (Student’s t-test; p<0.01).  

 

7.3.2 The particulate phosphorus (PP), nitrogen (PN), and organic carbon 

(POC) 

The impact of dilution rate on cellular PP, PN, and POC contents was significant. Cells grown at 

a dilution rate of 60% day-1 had the highest POP content roughly 2.80 ± 0.04 pg cell-1. Cellular 

PP content was approximately two-fold lower at a dilution rate of 30% day-1 (Fig. 7-3A).  
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Figure 7-3. Dilution rate dependence of particulate P (A), N (B), and organic carbon (C) in T. 

weissflogii.  Mean values ± standard errors are shown for triplicate vessels at dilution rate 30% 

(grey bar) and 60% day-1 (white bar). The asterisks indicate statistical significance (Student’s t-

test; p<0.01). 
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respectively 189:14:1 and 111:9:1, at a dilution rate of 30% and 60% day-1 (Fig. 7-4E) but the 

C:N were not significantly different (Fig. 7-4F). 

 

The C:chl a ratio decreased with elevated dilution rate while the C:chl a was negatively 

correlated with the growth rate (Figs. 7-4A,B). The C:chl a ratio at a dilution rate of 30% day-1 

was approximately 48 g C (g Chl a)-1, whereas at a dilution rate of 60% day-1 the C:chl a ratio 

was 29.  

 

Figure 7-4. Dilution rate dependence of the C:chl a ratio (A) and relationship of growth rate and 

C:chl a ratio (B) in T. weissflogii.  Mean values ± standard errors are shown for triplicate vessels 

at dilution rate 30% (grey bar) and 60% day-1 (white bar). 

 

7.3.3 Protein, carbohydrate, and neutral lipid 

 

The cellular protein content, determined during the exponential phase, was significantly higher 

at a dilution rate of 30% day-1 than of 60% day-1 (Fig. 7-5A). The cellular carbohydrate content, 

determined during the exponential and stationary growth phases, was higher at a dilution rate of 

30% day-1 than of 60% day-1 (Fig. 7-5B).  The carbohydrate content at a daily dilution rate of 

30% day-1 was significantly lower in the exponential phase than at the stationary phase, while 

that the opposite response (p<0.01) was observed at a dilution rate of 60% day-1.  
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Figure 7-5. Dilution rate dependence of protein and carbohydrate contents in T. weissflogii 

harvested under exponential ( ) and stationary phases ( ).  Mean values ± standard errors 

are shown for triplicate vessels at dilution rate 30% (grey bar) and 60% day-1 (white bar). The 

asterisks indicate statistical significance (Student’s t-test; p<0.01). 

 

Cellular neutral lipid content assessed using Nile red staining method was not significantly 
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Neutral lipid content gradually increased from the exponential to the stationary phase.  The 
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Figure 7-6. Dilution rate dependence of neutral lipid of T. weissflogii harvested at exponential 

(EXPO.; n=9) and stationary (STAT.; n=9) phases. Mean values ± standard errors are shown for 

of triplicate vessels at dilution rate 30% (grey dots) and 60% day-1 (white dots). 
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Figure 7-7. Dilution rate dependence of DNA, RNA contents, and the RNA:DNA ratio in T. 

weissflogii.   Values are mean ± standard errors for three replicate vessels (n = 6) at dilution 

rate 30% (grey bar) and 60% day-1 (white bar). The asterisks indicate statistical significance 

(Student’s t-test; p<0.01). 
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Figure 7-8. Growth rate dependence of the RNA:protein ratio in T. weissflogii.  Mean values ± 

standard errors are shown for triplicate vessels (n=6) at dilution rate 30% (grey dot) and 60%                 

day-1 (white dot).  
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fucoxanthin), in addition to chlorophyll a, were found in cells incubated at both dilution rates. As 

expected, the ratios of these accessory pigments to chl a were significantly higher during the 

stationary phase than the exponential phase in both the dilution rates of 30% and 60% day-1 

(Table 7-1). In addition, the ratios of the main pigment components to chl a at dilution rate 60% 

day-1 were lower than at dilution rate 30% day-1. The ratio of xanthophyll cycle pigment 

(diatoxanthin and diadinoxanthin) to chl a and to fucoxanthin increased during the stationary 

phase. The ratios of diatoxanthin to xanthophyll cycle were similar under the exponential phase 
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Table 7-1. Pigment composition (mol mol chl a-1) of Thalassiosira weissflogii grown under 

different dilution rates. Values are mean and standard errors (SE) for three replicate vessels, n 

= 6. Means with a row followed by the same letter are not significantly different (two way 

ANOVA Tukey’s test; p< 0.05). 

Pigments                  
(mol mol chl a-1) 

Dilution rate (day-1) 

0.3   0.6 

EXPO.     STAT.   
 

EXPO.     STAT.   

Mean SE  
 

Mean SE 
 

Mean SE 
 

Mean SE 

Beta C 0.01A 0.00   0.05D 0.00   0.03B 0.00   0.04C 0.00 

DT 0.19B 0.04 
 

0.04A 0.16 
 

0.07C 0.00 
 

0.86D 0.02 

DD 0.83B 0.30 
 

3.45D 0.14 
 

0.31A 0.01 
 

1.67C 0.03 

Chl c 0.30B 0.02 
 

0.70D 0.02 
 

0.11A 0.01 
 

0.43C 0.01 

Fuco 0.85B 0.02 
 

4.24D 0.23 
 

0.68A 0.01 
 

2.92C 0.05 

Chl c/Fuco 0.35B 0.02 
 

0.16A 0.02 
 

0.17A 0.01 
 

0.15A 0.01 

(DD+DT)/Chl a 1.02A 0.04 
 

6.43C 0.02 
 

0.38B 0.01 
 

2.53D 0.02 

(DD+DT)/Fuco 1.21C 0.04 
 

1.52D 0.02 
 

0.56A 0.01 
 

0.87B 0.01 

DT/(DD+DT) 0.19A 0.03 
 

0.46C 0.02 
 

0.18A 0.01 
 

0.34B 0.02 
 

Beta C: Beta carotene, DT: Diatoxanthin, DD: Diadinoxanthin, Chl c: Chlorophyll c, and Fuco: 

Fucoxanthin.  

 

7.3.6 Fatty acid profile 
 
 

The fatty acid compositions of T. weissflogii under different growth conditions are shown 

in Table 7-2. Total fatty acid content (pg cell-1) were three higher during the stationary growth 

phase than during the exponential growth phase at dilution rate 30 % day-1. Although 31 fatty 

acids were detected, most of these contribute to <1 % to the total fatty acid (Table 7-3). The six  

most abundant fatty acids were myristic acid (C14:0; 6.54-9.21% of total), pentadecanoic acid 

(C15:0; 1.93-2.97 % of the total), palmitic acid (C16:0; 17.58-21.61 % of the total), palmitoleic 

acid (C16:1; 26.84-43.79 % of the total), eicosapentanoic acid (C20:5; 12.88-26.82 % of the 

total) and docosahexaenoic acid (C22:6; 2.95-8.41 % of the total). Of these six fatty acids, there 

were no significant changes only in pentadecanoic acid during exponential growth phase at 



  

169 
 

dilution rate 30 % and 60 % day-1. The biggest change was observed for palmitoleic acid which 

was 20.95 % and 38.70 % higher during the stationary growth phase than during the 

exponential growth phase stage at dilution rate 30% and 60 % day-1 respectively.   

 

Eicosapentanoic acid (EPA) during exponential growth phase gave 24-27 % fatty acid; however, 

there was no significant change in fatty acid content in exponential growth phase in both dilution 

rates 30% and 60 % day-1. Meanwhile, docosahexaenoic acid (DHA) during exponential phase 

gave 7-8 % fatty acid. The long-chain fatty acids EPA and DHA during the stationary phase had 

lower % fatty acid content than the exponential phase at both dilution rates.  

 

The total monounsaturated fatty acids (MUFA) from exponential phase to stationary phases 

increased by 20 % (from 35.41 to 44.25 % total MUFA) and 36 % (from 29.79 to 46.86 % total 

MUFA) at dilution rate 30% and 60% day-1 respectively. Total saturated fatty acid (SFA) 

contents were similar in both growth phases and dilution rates. Polyunsaturated fatty acid 

(PUFA) dropped from the exponential phase to the stationary phase in both dilution rates of 

30% and 60% day-1.  
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Table 7-2. Fatty acid composition (pg cell-1) for Thalassiosira weissflogii grown under different 

dilution rates. Shown in bold face are the most abundant fatty acids. Values are mean and 

standard errors (SE) for three replicate vessels. Means with a row followed by the same letter 

are not significantly different (two way ANOVA Tukey’s test; p< 0.05). Values shown in bold face 

are the most abundant fatty acids. 

Fatty acid (pg cell-1) 

Dilution rate (day-1) 

0.3 
 

0.6 

EXPO. 
  

STAT. 
 

 

EXPO. 
  

STAT. 
 

Mean SE  

 

Mean SE 

 

Mean SE 

 

Mean SE 

Lauric acid   0.01 0.00 
 

0.00 0.00 
 

0.00 0.00 
 

0.01 0.00 

Tridecanoic acid   ND ND 

 

0.05 0.02 

 

ND ND 

 

0.02 0.01 

Myristic acid   1.16A,B 0.09 

 

5.07C 0.25 

 

0.86A 0.07 

 

1.37B 0.28 

Myristoleic acid   0.03 0.00 

 

0.09 0.01 

 

0.02 0.00 

 

0.05 0.00 

Pentadecanoic acid   0.40A 0.04 

 

1.64D 0.25 

 

0.22A,C 0.02 

 

0.55B 0.06 

cis-10-Pentadecenoic acid    0.07 0.00 

 

0.23 0.03 

 

0.04 0.00 

 

0.09 0.01 

Palmitic acid   3.23B 0.22 

 

11.91C 0.63 

 

2.04A 0.34 

 

3.96B 0.24 

Palmitoleic acid   5.79B 0.28 

 

23.21D 0.78 

 

3.12A 0.15 

 

9.19C 0.32 

cis-10-Heptadecenoic acid   0.04 0.00 

 

0.11 0.01 

 

0.03 0.00 

 

0.05 0.01 

Stearic acid    0.09 0.01 

 

0.24 0.02 

 

0.06 0.00 

 

0.14 0.01 

Elaidic acid   0.17 0.02 

 

0.40 0.04 

 

0.10 0.01 

 

0.27 0.03 

Oleic acid    0.14 0.01 

 

0.35 0.04 

 

0.09 0.01 

 

0.25 0.03 

Linolelaidic acid   0.00 0.00 

 

0.11 0.01 

 

0.02 0.01 

 

0.05 0.00 

Linoleic Acid   0.18 0.01 

 

0.37 0.04 

 

0.17 0.01 

 

0.25 0.02 

gamma-Linolenic acid   0.20 0.01 

 

0.39 0.04 

 

0.15 0.01 

 

0.26 0.02 

Arachidic acid   0.03 0.00 

 

0.09 0.01 

 

0.03 0.00 

 

0.04 0.00 

Linolenic acid   0.05 0.00 

 

0.11 0.01 

 

0.06 0.01 

 

0.09 0.01 

Eicosenoic acid   ND ND 

 

0.03 0.02 

 

0.01 0.01 

 

ND ND 

Heneicosanoic acid   0.02 0.00 

 

0.06 0.00 

 

0.03 0.00 

 

0.03 0.00 

cis-11,14-Eicosadienoic acid   0.08 0.00 

 

0.10 0.02 

 

0.05 0.01 

 

0.08 0.04 

cis-8,11,14-Eicosatrienoic acid   0.09 0.00 

 

0.28 0.02 

 

0.08 0.00 

 

0.16 0.01 

Behenic acid   0.04 0.00 

 

0.10 0.01 

 

0.04 0.00 

 

0.05 0.00 

cis-11,14,17-Eicosatrienoic acid   0.04 0.01 

 

0.11 0.01 

 

0.04 0.01 

 

0.06 0.00 

cis-5,8,11,14-Eicosatetraenoic acid   0.10 0.02 

 

0.45 0.03 

 

0.09 0.02 

 

0.26 0.02 

Erucic acid   0.02 0.01 

 

0.12 0.01 

 

0.04 0.01 

 

0.03 0.01 

Tricosanoic acid    0.01 0.01 

 

0.07 0.01 

 

0.03 0.00 

 

0.04 0.00 

cis-13,16-Docosadienoic acid   0.00 0.00 

 

0.06 0.00 

 

0.00 0.00 

 

ND ND 

cis-5,8,11,14,17-Eicosapentaenoic acid   4.20C 0.20 

 

7.58D 0.62 

 

3.12B 0.15 

 

2.70A 0.14 

Lignoceric acid   0.03 0.00 

 

0.05 0.00 

 

0.02 0.00 

 

0.03 0.00 

Nervonic acid    ND ND 

 

0.10 0.02 

 

0.06 0.01 

 

0.04 0.02 

4,7,10,13,16,19-Docosahexaenoic acid   1.18A 0.03 

 

1.63B 0.21 

 

0.98A 0.06 

 

0.84A 0.10 

Total fatty acid (pg cell-1) 17.39 0.98 
 

55.13 3.19 
 

11.62 0.89 
 

21.00 1.41 

 

SFA= Saturated fatty acid; MUFA= Monounsaturated fatty acid; PUFA= Polyunsaturated fatty 

acid; EXPO= exponential phase (n=6); STAT= stationary phase (n=3); ND= not detected. 

Statistical analyses were not conducted using ANOVA on fatty acids less than 1 pg cell-1. 



  

171 
 

Table 7-3. Fatty acid composition (% of total fatty acid) for Thalassiosira weissflogii grown under 

different dilution rates. Values are mean and standard errors (SE) for three replicate vessels. 

Means with a row followed by the same letter are not significantly different (two way ANOVA 

Tukey’s test; p< 0.05). Shown in bold face are the most abundant fatty acids. 

Fatty acid  

Dilution rate (day-1) 

0.3 
 

0.6 

EXPO. 
  

STAT. 
 

 

EXPO. 
  

STAT. 
 

Mean SE  

 

Mean SE 

 

Mean SE 

 

Mean SE 

Lauric acid 0.07 0.01 
 

0.01 0.00 
 

0.03 0.02 
 

0.00 0.00 

Tridecanoic acid ND ND 
 

0.10 0.04 
 

ND ND 
 

0.08 0.04 

Myristic acid 6.69A 0.36 
 

9.20B 0.67 
 

7.41A 0.24 
 

6.54A 0.64 

Myristoleic acid 0.17 0.02 
 

0.16 0.01 
 

0.19 0.04 
 

0.25 0.01 

Pentadecanoic acid 2.31A 0.17 
 

2.97A 0.17 
 

1.93A 0.03 
 

2.61A 0.19 

cis-10-Pentadecenoic acid  0.38 0.01 
 

0.42 0.06 
 

0.39 0.01 
 

0.44 0.03 

Palmitic acid 18.58A 1.13 
 

21.61A 1.28 
 

17.58A 1.64 
 

18.89A 0.94 

Palmitoleic acid 33.28B 1.24 
 

42.11C 3.37 
 

26.84A 1.58 
 

43.79C 1.45 

cis-10-Heptadecenoic acid 0.20 0.01 
 

0.19 0.01 
 

0.23 0.03 
 

0.23 0.02 

Stearic acid  0.53 0.02 
 

0.44 0.02 
 

0.53 0.01 
 

0.65 0.04 

Elaidic acid 0.99 0.07 
 

0.73 0.10 
 

0.86 0.05 
 

1.27 0.11 

Oleic acid  0.80 0.04 
 

0.63 0.08 
 

0.75 0.03 
 

1.21 0.14 

Linolelaidic acid 0.03 0.02 
 

0.20 0.02 
 

0.18 0.06 
 

0.23 0.01 

Linoleic Acid 1.03 0.02 
 

0.68 0.03 
 

1.48 0.05 
 

1.20 0.07 

gamma-Linolenic acid 1.14 0.04 
 

0.70 0.07 
 

1.28 0.08 
 

1.26 0.07 

Arachidic acid 0.18 0.01 
 

0.16 0.01 
 

0.27 0.01 
 

0.20 0.01 

Linolenic acid 0.30 0.01 
 

0.21 0.01 
 

0.52 0.05 
 

0.43 0.03 

Eicosenoic acid ND ND 
 

0.05 0.03 
 

0.07 0.04 
 

ND ND 

Heneicosanoic acid 0.12 0.02 
 

0.11 0.01 
 

0.24 0.01 
 

0.17 0.00 

cis-11,14-Eicosadienoic acid 0.45 0.03 
 

0.19 0.08 
 

0.42 0.06 
 

0.38 0.20 

cis-8,11,14-Eicosatrienoic acid 0.51 0.01 
 

0.51 0.01 
 

0.70 0.02 
 

0.77 0.04 

Behenic acid 0.21 0.01 
 

0.19 0.01 
 

0.31 0.01 
 

0.26 0.01 

cis-11,14,17-Eicosatrienoic acid 0.21 0.04 
 

0.19 0.02 
 

0.38 0.05 
 

0.31 0.01 

cis-5,8,11,14-Eicosatetraenoic acid 0.57 0.11 
 

0.82 0.03 
 

0.79 0.16 
 

1.25 0.06 

Erucic acid 0.13 0.05 
 

0.22 0.05 
 

0.38 0.05 
 

0.16 0.06 

Tricosanoic acid  0.06 0.03 
 

0.13 0.03 
 

0.28 0.01 
 

0.20 0.01 

cis-13,16-Docosadienoic acid ND ND 
 

0.12 0.02 
 

0.03 0.02 
 

ND ND 

cis-5,8,11,14,17-Eicosapentaenoic acid 24.14B 0.72 
 

13.75A 3.34 
 

26.82B 0.94 
 

12.88A 0.81 

Lignoceric acid 0.15 0.01 
 

0.08 0.01 
 

0.20 0.01 
 

0.16 0.03 

Nervonic acid  ND ND 
 

0.18 0.07 
 

0.49 0.07 
 

0.19 0.07 

4,7,10,13,16,19-Docosahexaenoic acid 6.77B 0.34 
 

2.95A 0.34 
 

8.41C 0.34 
 

4.02A 0.40 

Sum SFA 28.72 1.87 
 

34.90 1.88 
 

28.65 2.09 
 

29.53 1.94 

Sum MUFA 35.41 1.49 
 

44.25 3.90 
 

29.79 2.03 
 

46.86 1.77 

Sum PUFA 35.87 1.36 
 

20.84 4.76 
 

41.56 1.87 
 

23.61 2.52 

 

 

 

 

  

SFA= Saturated fatty acid; MUFA= Monounsaturated fatty acid; PUFA= Polyunsaturated fatty 

acid; EXPO= exponential phase (n=6); STAT= stationary phase (n=3); ND= not detected. 

Statistical analyses were not conducted using ANOVA on fatty acids less than 1% of total. 
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7.4 Discussion 

 

           7.4.1  Dilution rate versus growth rate, chl a and elemental composition 

The effect of dilution rate on the diatom Thalassiosira weissflogii CCMP 1051 growth has been 

observed in an exponential semi-continuous culture. Cell abundance dropped significantly as 

the dilution rate increased, in line with the chemostat theory (Rhee 1989). The findings are 

consistent with the results of Chauton et al. (2013) who observed the biomass of diatom 

Phaeodactylum tricornutum CCMP 2561 were grown in exponential fed-batch cultures at five 

different dilution rates under N or P limitation. The growth rate decreased at the low dilution rate 

because of the depletion of nutrients in medium. Higher growth rates require a higher flow-

through, i.e. more quantities of sterile medium. Moreover, the growth rate increased with the 

higher renewal rate in cyanobacterium Spirulina platensis LEB-52 that was grown during the 

semi-continuous culture (Reichert et al. 2006).   

 

The increased dilution rate resulted in higher cellular phosphorus (P), nitrogen (N), and organic 

carbon (C) contents. In general, the optimal N:P ratio was suggested to be around 16:1 of the 

Redfield ratio; however, in this study the N:P ratios <16 that suggested phosphorus is not an 

inhibiting element of T. weissflogii growth.  At both dilution rates of 30% and 60% per day-1, the 

C:N ratios were greater than the Redfield C:N ratio of 6.6 which allows optimal growth of 

nutrient-replete culture (Geider & La Roche 2002). This indicats that T. weissflogii was 

maintained under a nitrogen-limited condition. The cellular chl a content decreased with the low 

dilution rate in T. weissflogii. This has been previously observed in Phaeodactylum tricornutum 

and Spirulina platensis (Chauton et al. 2013; Reichert et al. 2006). Intracellular chl a content 

followed the same pattern as the growth rate due to high-nutrient supply rate. The C:chl a is a 

sensitive indicator of algal physiological condition and the growth rate that is highly variable 

depending on culture conditions of microalgae (Laws & Bannister 1980; Geider 1987).  This 

study showed a drop in the C:chl a ratio could result from limited nutrient and high cell density at 

a high dilution rate.   
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Both protein and carbohydrate content were significantly higher at a daily dilution rate of 30% 

than at a dilution rate 60% day-1 under the exponential phase. This indicates that the dilution of 

medium stimulated production of energy-rich compounds and promoted the formation of protein. 

It also suggests that the high carbohydrate as an energy source that is required for repair and 

maintenance of the damage induced by the high light (Chandrasekaran et al. 2014). Chen & 

Thornton (2015) mentioned that the total carbohydrate of Thalassiosira wessiflogii (CCMP 

1051), which was grown at different dilution rates under N-limited semi-continuous culture, were 

negatively correlated with growth rate.  The data in Morales-Sánchez et al. (2014) also showed 

that there was significant accumulation of lipid and carbohydrate in Neochloris oleoabundans 

(Class Chlorophyceae) grown under N limitation in heterotrophic fed-batch culture. This 

indicates that carbohydrate could be negatively correlated with growth rate because chl a and 

growth rate had the same pattern at different dilution rates.  Those results showed the growth 

rate was high and the cells consumed carbohydrate as the primary product of photosynthesis to 

produce structure component (mainly protein).  

 

           7.4.2  Dilution rate versus DNA, RNA, and RNA:protein  

DNA content of T. weissfolgii remained between 1 and 2 % of cellular carbon at dilution rate 30 

and 60% day-1 respectively. This finding is similar to what Holm-Hansen (1969) said, that the 

DNA content in unicellular algae is equal to approximately 1% to 3 % of the cellular organic 

carbon. RNA and protein synthesis are closely related in the process of growth. The ratio 

RNA:protein may be used to determine in situ growth rates; however, that depends on the 

developmental state of studied organism (Nicklisch & Steinberg 2009).  T. weissflogii showed a 

significant correlation between RNA:protein ratio and the growth rate during the exponential 

phase. Similarly, in the diatoms Cyclostephanos invisitatus and Stephanodiscus minutulus 

grown under saturated nutrients both RNA:protein and RNA:DNA  were positively correlated 

with a specific growth rate (Nicklisch & Steinberg 2009).  
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             7.4.3 Dilution rate versus accessory pigment   

Cells showed higher amount of photoprotection pigments (diadinoxanthin, fucoxanthin) at a 

dilution rate of 30% per day-1 than of 60% per day-1. This suggests that cells can cope with 

limited condition by generating more photoinhibition pigments.  The high amount of  

fucoxanthin, widely present in many picoeukaryotes and phytoplankton species, was found 

during both exponential and stationary phases at the dilution rate 30% day-1 because of  the 

captured green light; 490 - 570 nm (Di Valentin et al. 2012). Additionally, diadinoxanthin 

(epoxide-containing xanthophylls) presents at the antenna side of the photosystem I and II 

(Frank et al. 1996), which was mostly found in diatom incubated in high irradiance (Goss & 

Jakob 2010). Latasa (1995) stated that diadinoxanthin of T. weissflogii could be stimulated 

when the cells become harmful due to the high irradiance. This may indicate that a lower 

dilution rate would be best for the synthesis of xanthophyll pigments. The ratio of the 

xanthophyll cycle pigments to chl a increased at a  lower  dilution rate, similar to the case of 

diatom Phaeodactylum tricornutum Bohlin (CCMP 1327) grown under nutrient starvation 

(Geider et al. 1993). It is suggested that the increase of the xanthophyll pool generates strategy 

for quenching photo-oxidative damage. Moreover, those pigments constitute the increase 

dissipation of excitation energy in the pigment bed upstream from the reaction centres (Geider 

et al. 1993). 

 

            7.4.4 Dilution rate versus fatty acid profile 

   

The main six fatty acid constituents were identified in T. weissflogii including palmitoleic acid, 

palmitic acid, myristic acid, pentadecanoic acid, eicosapentanoic acid (EPA), and 

docosahexaenoic acid (DHA). This result   is similar to fatty acid profile found from frustules of 

T. weissflogii CCMP 1049 (Suroy et al. 2014). Moreover, diatom Chaetoceros muelleri had the 

same major fatty acid as in this study except arachidonic acid was replaced pentadecanoic acid 

(Liang et al. 2006). The data in Jeffryes et al. (2013) also showed similar results and reported 

that diatom Cyclotella sp. grown under silicon-depleted culture gave the three main fatty acids: 
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palmitoleic acid, palmitic acid and eicosapentanoic acid. EPA and DHA as regulators of 

biological functions decreased as the culture aged in this study.  

The fatty acid content was higher at low dilution (30%) than high dilution rate (60%) of medium 

per day. The pattern of fatty acid concentration was similar to the growth rate, suggesting that 

the concentration of fatty acid increased with increasing growth rate. Another effect of dilution 

rate on T. weissflogii was to prolong exponential phase. This leads to the high PUFAs as 

nutritional value for aquatic animals. However, the content of pamitic and palmitoleic acid were 

higher at stationary phase (44 % of total fatty acid) than exponential phase (27 % of total fatty 

acid). Thus, fatty acid production of T. weissflogii could be an alternative source for biofuel 

production. 
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7.5  Conclusions 

 

 The marine diatom Thalassiosira weissflogii was cultivated with different dilution rates during 

the autotrophic growth under semi-continuous conditions. Dilution rate in the present study 

affected the elemental and biochemical composition. A low dilution rates resulted in a higher 

cell density (cells mL-1) of smaller cells that contained lower particulate organic carbon 

(POC), particulate nitrogen (PN) and particulate phosphorus (PP) contents.  

 Cells grown at a low daily dilution rate of 30% per day had more high-value chemicals 

(pigments, lipid, and carbohydrate) than cells grown at the higher daily dilution rate of 60% 

per day. Fucoxanthin, an antioxidative agent, was at the highest pigment content under 

exponential and stationary phases. The palmitoleic acid (C16:1) was at the greatest content 

following palmitic acid (C16:0) and meristic (14:0) which are used in biofuels and cosmetics 

preparation.  EPA and DHA, long-chain polysaturated fatty acids (PUFAs), are found in cells 

grown under both dilution rates.  The advantages of exponential phase culture for PUFAs 

production are short duration and simple operation.  This results imply that T. weissflogii can 

be a commercial source for the spontaneous production under the exponential phase with a 

low dilution rate.  
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Chapter 8: General discussion 

In this chapter, the main findings with regard to the research goals are summarised and the 

general conclusion based on the findings of the studies presented in this thesis are described. 

Moreover, the experimental outcomes of the impact of biotechnological implication are 

considered and the suggestions for the further research into higher education are presented.  

Many issues need to be considered when developing link between protocol and research. 

These issues can be divided into the protocol development and the method implementation for 

research in chapters 5, 6 and 7. One of the aims of this research is to develop and implement 

the protocol to obtain accurate and reliable measurement. The studies presented in this thesis 

were focused on the development of fluorescence-based neutral lipid content using Nile red 

(NR) and the development of method for determining the combined amino acid composition of 

microalgae using ultra performance liquid chromatography (UPLC), which were presented in 

chapters 3 and 4 respectively. The central aim of the studies was to studies on the effects of 

environmental conditions on elemental and biochemical composition of two marine microalgae. 

Furthermore, the effect of dilution rate, the availability of substrates, in the culture media was 

also considered in this thesis.  The haptophyte Emiliania huxleyi grown under different 

temperatures was presented in chapter 5, whereas the diatom Thalassiosira weissflogii grown 

under the combined temperature and light was presented in chapter 6.  The overarching aim of 

the studies was to focus on the physiological and metabolic responses of two marine 

microalgae.  The findings of the studies reported in chapter 3 provided the optimal method for 

quantifying the neutral lipid in the diatom T. weissflogii; which was applied in chapters 6 and 7. 

While the studies reported in chapter 4 provided the efficient method for quantifying the 

combined amino acid in marine microalgae; which was used in chapters 5 and 6.   
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8.1 The method development for research 

8.1.1 Development and application of Nile red (NR) fluorescence based method   

for quantification of neutral lipid content in a marine diatom                                                      

Challenges of development in staining the lipid droplets in microalgae have obstructed owing to 

the rigid cell wall. Accurate characterisation of neutral lipid is a crucial aspect of research in the 

biotechnological application such as biofuels. The efficient, fast, convenient, and reproducible 

method for the quantification of neutral lipid using NR in the diatom T. weissflogii was presented 

in chapter 3. In this study, the optimum of excitation wavelengths for the neutral lipid 

determination was 529 nm and excitation wavelengths was 589 nm. The optimal concentration 

of NR is 1.0 µg mL-1 with the dimethyl sulfoxide (DMSO) concentration of 5 % (v/v) for 5 min 

incubation at range of cells concentration 200,000-400,000 cells mL-1 in darkness at room 

temperature. By using DMSO as a stain carrier to assist NR penetration across the cell 

membrane and decrease hydrophobicity, it enhances lipid staining efficiency and increases the 

fluorescence intensity of stained cells (Chen et al 2009; Doan & Obbard 2011). To date, there 

are no other reports on development and improvement of neutral lipid content using NR in the 

diatom T. weissflogii.  The success of the improved NR staining procedure in the diatom T. 

weissflogii suggests that this study opens a path to an intensive study on the diatom T. 

weissflogii for enhancing biomass and lipid productivity for biodiesel production and could 

decrease cost to achieve in commercial scale of biofuel production. 

 
 

        8.1.2  Development of method for determining the combined amino acid    

                         composition in microalgae 

 
Flynn et al. 2010 reported that the uncertainty of the RNA:protein ratio results in the 

misinterpretation of data for testing the growth rate hypothesis, which predicts a correlation 

between growth rate and phosphorus content in microalgae. Furthermore, the measurement of 

protein and nucleic acids are part of problems. The determined RNA:protein ratio depends on 

the selected method assay and protein standard. Consequently, the RNA:protein ratio has a 
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tendency to be overestimated. To overcome this problem, the development of method for 

determining amino acids in protein of microalgae was focused. The efficient and reproducible 

method for the quantification of the combined amino acid composition using UPLC was 

presented in chapter 4.  This method used 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate 

(AQC) [AccQ·Tag method] with pre-column derivatization to provide a shorter analysis time (10 

min) than conventional methods. This analysis provided better separation and sensitivity than 

previously existing methods. Moreover, the derivertised samples were stable up to one week in 

room temperature.  Bovine serum albumin (BSA) was used as a representative protein standard 

for hydrolysis of a hydrophobic peptide bond to obtain amino acid composition. 76 % of 

recovery was estimated from mass detected-amino acid by hydrolysed BSA compared with 

mass expected-amino acid from universal protein resource 

(http://www.uniprot.org/uniprot/P02769). This suggests that amino acids from hydrolysed BSA 

and subsequent derivatisation with AccQ Tag ultra reagent provided an efficient protocol to 

quantify amino acids in marine microalgae samples. The sensitivity and detection limits of amino 

acids by using mass spectrometry detector were achieved strictly. However, 24 % losing of 

recovery amino acids might result in the hydrolysed sample solution was oxidised during 

transferring from hydrolysis to dry process. To increase more percentage of amino acid 

recovery, a Water Pico.Tag Workstation® which can hydrolyse and dry sample under vacuum is 

recommended to ensure complete deaeration. 

   

8.2 The method implementation for research 

The Nile red fluorescence based method which was developed in chapter 3 allowed better 

quantification of cellular neutral lipid content for T. weissflogii grown under different temperature 

and irradiance during the exponential growth and stationary growth phase in chapter 6 and for 

T. weissflogii grown under dilution rates in chapter 7.  In these chapters, Nile red fluorescence 

intensity from stained cellular neutral lipids increased with culturing time. However, lipid content 

accumulation is different between each microalgal species, which depend on environment 
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conditions.  For example, the maximum neutral lipid accumulation was acquired at day 18 in 

green algal Chlorella saccharophila under heterotrophic growth conditions (Isleten-Hosoglu et 

al. 2012), and at day 7 in dinoflagellate Prorocentrum micans and diatom Phaeodactylum 

tricornutum under nitrogen deprivation (Wu et al. 2014) which measured by Nile red 

fluorescence based method. Therefore, this developed method would allow researchers to 

know the maximum neutral lipid content with time and to determinate cultivation. Although 

neutral lipid accumulation of T. weissflogii was determined until day 7 in both chapters 6 and 7, 

neutral lipid content should be measured continuously for conducting future research to know 

the highest lipid accumulation and harvest cells for lipid extraction. This suggests that the 

developed method is also a faster way for future researchers searching for potential lipid 

producing microalgal species and can be applied for up scaling in a cost-effective way. 

 

The method for determining the combined amino acid composition which was developed in 

chapter 4 allowed better quantification of E. huxleyi grown under different temperatures in 

chapter 5 and of T. weissflogii grown under different temperatures and irradiances in chapter 6. 

Seventeen amino acids were found in E. huxleyi and T. weissflogii.  The combined amino acid 

contents of two microalgae were lesser than their protein contents which were determined using 

bicinchoninic acid assay (BCA) and BSA was used as a protein standard.  This suggests that 

high protein contents from BCA assay might result from some interfering compounds which 

generate more BCA-Cu+ complex and lead to obtain more strongly chromogenic. This was 

found to result in an overestimation of the protein content. Those interfering compounds are 1) 

disulfide and sulfhydryl groups in protein, 2) aliphatic amines and ammonia or ammonium ion as 

well as 3) glucose as reducing agent from breaking cells (Smith et al. 1985; Lovrien & Matulis 

1995 see support protocol 2). This indicates that the developed method of the combined amino 

acid provides accurate protein content and can solve the problems the uncertainty of the 

RNA:protein ratio in microalgae.  
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 8.3  The effect of environmental conditions to the physiological and 

metabolic responses of marine microalgae 

 
These developed methods were used an implementation to measure the elemental and 

biochemical composition of microalgae grown under different environmental conditions in 

chapters 5, 6 and 7. The results showed new information on a variety of adaptive response of 

marine microalgae. The physiological and metabolic responses are measured by elemental and 

biochemical processes. The main physical factors regulating microalgal cell growth and 

metabolic activity are temperature and irradiance. Low temperatures have an effect by 

decreasing enzyme activity, membrane fluidity and electron transfer in electron transport chains 

therefore leading to a decrease of photosynthesis and consequently in reduction of growth in 

microalgae. High temperatures lead to a decrease in enzyme activity as well by denaturation 

and degradation of some proteins which disturb function of cell membranes because of changes 

in their composition and physical state. High temperature may reduce the efficiency of 

photosynthesis especially photosystem II and decrease of ribulose-1,5-bisphosphate (Rubisco) 

activity.   

 

Cells living under low light condition lead to increase light harvesting capacity and 

photosynthetic efficiency as well as reduce dark respiration. While cells are exposed to high 

light, light can stimulate the generation of excited states that can form deleterious singlet 

oxygen. To reduce the excitation pressure, cell will reduce the photosynthetic pigment in the 

cell. The interaction between temperature and light intensity can play an important role in algal 

growth and metabolic regulation.  
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Stressful conditions such as high or low temperature often in combination with high light can 

lead to unbalance of the energy equilibrium within a microalgal cell and an increase of excess 

free radicals. Apparently, at high light cellular chlorophyll a content of T. weissflogii (chapter 6) 

was lower than at low light. However, cells probably enhance survival by producing pigments 

such as beta carotene and fucoxanthin as antioxidant properties to interact with and detoxify 

these harmful compounds. Beta carotene and fucoxanthin content were found to increase at 

high temperature in E. huxleyi (chapter 5) while these pigments were found to increase under 

the combination of low temperature with low light in T. weissflogii (chapter 6).  

 

Microalgae can be grown under extreme environmental conditions or unfavourable conditions.  

The combined temperatures and light intensity are unfavourable conditions such as high 

temperature with high irradiance or low temperature with high irradiance etc. resulting in 

changes in elemental and biochemical composition of T. weissflogii (chapter 6). However, in this 

research nutrient limitation may influence factor coexistence resulting in growth limitation. The 

reverse can take place; light can have secondary effects on primary product (Wynne & Rhee 

1986).  

 

To survive in non-optimal conditions, microalgae trigger stimulation and/or reduction which 

generate different mechanisms. For example, beta carotene as antioxidant pigment in T. 

weissflogii (chapter 6) at high light had more content than at low light. While decreasing the 

proportion of saturated and unsaturated fatty acids by increasing cis-double bond or shortening 

fatty acid chains was found in T. weissflogii grown at high light. The unsaturated fatty acid 

particularly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) was produced to 

protect or compensate substance in the cell resulting in research applications and leading to the 

benefits to humans in pharmaceutical industry.  
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8.4 The biotechnological implications 
  
 
Microalgae are capable of increasing the nutrient value of the human food and animal feed, as 

well as pharmaceutical and cosmetic industries. The high value-compounds were obtained from 

this research such as amino acid, pigments, and fatty acid. 

Amino acids 

Seventeen amino acid components were identified from E. huxleyi (chapter 5) and T. weissflogii 

(chapter 6).  Six essential amino acids such as histidine, lysine, methionine, valine, 

phenylalanine, and isoleucine found in both microalgae are important role in building block 

hormones, proteins for humans and animals. Lysine and methionine found in both studied 

microalgae were used in animal feed. Those amino acids constitute the largest share (56%) of 

the total amino acid market (Leuchtenberger et al. 2005).  While three of eleven non-essential 

amino acids such as glutamic acid, aspartic and phenylalanine were used in food industry. 

Glutamic acid is a flavour enhancer of monosodium glutamate. Aspartic and phenylalanine are 

starting materials for the peptide sweetener (Leuchtenberger et al. 2005). This suggests that 

amino acids were found in this research could be an alternative source for serving 

biotechnological industry.   

 
Pigments 

Carotenoid contents were found in E. huxleyi and T. weissflogii, (in chapters 5, 6 and 7) and 

fucoxanthin was found in T. weissflogii (in chapters 6 and 7). Although both microalgae had low 

carotenoid content, many studies have mentioned that beta carotene and fucoxanthin are high 

value products because they possess properties that protect against cell damage and cancer by 

scavenging free radicals. Beta carotene also is a precursor that can be converted into vitamin A  

(Chidambara-Murthy et al. 2005; El Baz et al. 2002; Plaza et al. 2009).  The antioxidant 

properties from carotenoid were claimed in nutraceutical applications resulting in the market 

value of carotenoids reached over US$ 1,000 million or approximately £ 630 million (Del Campo 



  

184 
 

et al. 2007).  In addition, carotenoids are used in cosmetics and food products as feed additives 

for poultry, livestock, fish/ ornamental fish and crustaceans (Del Campo et al. 2007). Recently, 

the growing market of carotenoid has increased due to the interest of bio-produced resources 

instead of synthesis.  Thus, it is good opportunities for microalgae to be one of the possible 

candidates for carotene production to reserve in many applications.  

 

Fatty acids 

 

T. weissflogii (in chapters 6 and 7) is rich sources of EPA (19-30 % total fatty acids) and DHA 

(5-10 % total fatty acids), while E. huxleyi (in chapter 5) gave lower EPA (3-4% total fatty acids) 

and DHA (6-8 % total fatty acids).  Among the marine strains, the prymnesophytes as Isochrysis 

galbana and Pavlova lutheri gave DHA approximately 6-14% total fatty acids and EPA around 

5-26% of the total fatty acids (Carvalho & Malcata 2000), whereas diatoms as Phaeodactylum 

tricornutum is rich source of EPA (26% of the total fatty acids) (Hu et al. 2008). This is 

suggested that PUFAs microalgae were species-specific. Therefore, T. weissflogii could have 

possibility to use in nutraceutical and pharmacological applications. 

 

Nevertheless, since microalgae production is regarded high benefits, it is necessary to develop 

culture techniques to reach massive biomass production and high value-compounds for making 

biofuel feed stock, nutraceutical and pharmaceutical industries. There are some suggestions:    

• Mixotrophic/heterotrophic culture 

Since microalgae in this work were grown under phototrophic condition. The growth 

characteristics and high-value composition of microalgae are known to significantly depend on 

the cultivation treatments (Chen et al. 2011). Using organic carbon as both the energy and 

carbon source called heterotrophic cultivation in some microalgae which can not only grow 

under phototrophic conditions. While the situation when microalgae undergo photosynthesis use 

both organic compounds and inorganic carbon (CO2) as a carbon source for growth called 

mixotrophic cultivation. Mixotrophic/heterotrophic culture can reach high biomass and could 
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potentially reduce the cost of biodiesel production because using industrial effluent, municipal 

wastewater or food-processing wastes etc. as organic substrates. For example, Phaeodactylum 

tricornutum grown in bubble columns using glycerol gave significantly higher biomass 

productivity than those using fructose in the fed-batch cultures Ceron-Garcia et al. 2013).   

While mixed microalgae (Diatoms, Scenedesmus sp., and Chlorella sp.) from natural field grown 

under heterotrophic culture using domestic wastewater showed increase of lipid productivity.  

In addition, it promoted wastewater treatment efficiency as substrate degradation and nutrient 

removal (Devi et al. 2012).  

             • Carbon dioxide (CO2) 

Microalgae can fix carbon dioxide from atmosphere and industrial exhaust gases e.g. flue gas; 

however, CO2 in this work comes from air containing 400 parts per million (ppm) that is little 

concentration. CO2 concentration is varied to depend on species. For example, Cheatoceros 

muelleri cultivated under different CO2 aeration conditions (0.03–30%). C. muelleri presented 

the highest growth rate, the maximum biomass productivity, the highest total and neutral lipid 

accumulation when cell grew under 10% CO2 aeration levels. While Nannochloropsis oculata 

grown under 2% CO2 aeration treatment showed the maximal biomass and lipid productivity 

(Chiu et al. 2009). 

          • Salinity 

There are variations of salinity concentrations for lipid production in microalgae. T. weissflogii 

grown under different salinities (25, 30, 35, 40, 45 and 50 psu) showed the lipid production was 

higher at salinities < 35 psu (García et al. 2012). The diatom Nitzschia laevis grown under high 

salt concentrations 10 to 20 g/L gave the degree of fatty acid unsaturation of both neutral and 

polar lipid fractions increased sharply. This changes is suggested that a decrease in membrane 

permeability and fluidity under high salt concentration. In addition, under NaCl concentration of 

20 g/L this diatom obtained 71.3% of total EPA existed in polar lipid (Chen et al. 2008). 
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• Metabolic engineering 

The development of homologous recombination-based gene transformation has been reported 

in literatures. This may potential to understanding fundamental metabolic and cellular processes 

and conduct to improve lipid and PUFA content. The modified genes were widely done in 

microalgae such as Nannochloropsis oceanica (Kaye et al. 2015), Phaeodactylum 

tricornutum (Bowler et al.  2008), Chlamydomonas reinhardtii (Merchant et al. 2007; Nguyen et 

al. 2013), Thalassiosira pseudonana (Tonon et al. 2005; Armbrust et al. 2004), Cyanidioschyzon 

merolae (Matsuzaki et al. 2004 ), Ostreococcus tauri (Derelle et al. 2006), Ostreococcus 

lucimarinus (Palenik et al. 2007 ), and Micromonas pusilla (Worden et al. 2009). 

 

8.5  The ecological implications 

E. huxleyi is one of 5,000 species of phytoplankton and is extremely ubiquitous except the polar 

oceans (http://www.soes.soton.ac.uk/staff/tt/). Phytoplankton are the primary producers in 

ocean food webs, providing both the energy and the essential biochemical components (e.g., 

essential amino and fatty acids) required by zooplankton, fishes and other marine animals. For 

example, marine microalgae are important organisms in the production of polyunsaturated fatty 

acids (PUFAs) in marine food chains (Guschina & Harwood 2006). Both eicosapentaenoic acid 

(EPA) and docosahexaenoic acid (DHA) are generally found in diatoms and dinoflagellates 

(Volkman et al. 1989; Mansour et al. 2005; Boelen et al. 2013). However, the haptophyte   E. 

huxleyi cells contain more fatty acids at low temperature (chapter 5).  

 

Stress environmental conditions have a major impact on their food nutritional value of 

microalgae which could have implications for food web productivity (Huertas et al. 2011).  

Temperature changes due to global warming may affect food webs by affecting nutrient supply 

or due to preferential grazing (Huertas et al. 2011). It is probable that the influence of 

temperature on growth of E. huxleyi leads to the changed in physical and chemical properties, 

http://www.soes.soton.ac.uk/staff/tt/


  

187 
 

with the result being cells that a smaller at high temperature. While T. weissflogii (chapter 6) had 

a smaller size at high temperature and high light (26 HL). This is indicated that small cells are 

capable to adapt their cells to tolerate with increased temperature and it has been assumed that 

the climate change and global warming will benefit small-sized phytoplankton (Daufresne et al. 

2009; Morán et al. 2010).    
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Appendices 

Appendix 1. Calculation of free and combined amino acid content  

An example of how free and combined amino acid content calculation of Thalassiosila 

weissflogii (chapter 6) were performed follows: 

1.1 Free amino acid 

The calculation of free amino acid content was determined using the following equations and 

table 1. 

The concentration (pmol µL-1) of the amino acid in the derivatized sample was calculated from 

the peak area using a standard curve such as glutamic curve (Fig. 1).                                                                             

Y= aX + b from linear curve of amino acid, where Y is the amino acid concentration (pmol µL-1) 

and X is the peak area (Area Units = AU). 

 

Figure 1. The relationship between concentration of glutamic at concentrations of 0-8 pmol µL-1 

and AU detected by UPLC. 
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Table 1. Data for calculation of fee amino acid content of Thalassiosila weissflogii grown at 16 

HL. 

 
Free amino acid  

Amino acid 1 2 3 4 5 6 7 8 9 

 

MW. 
Mean AA 
(pmol µL-1 

from equation) 
SE 

Mean AA 
(pmol on 
column) 

SE 
Mean AA 
(pmol in 
culture) 

SE 
Mean AA 
(pg cell-1) 

SE 

Arginine 156.19   7.29 0.01 364.59 0.70 9114.65 17.41 0.14 0.00 

Serine 87.08 21.05 0.63 1052.72 31.25 26318.03 781.30 0.22 0.01 

Glutamic acid 128.6   6.29 2.07 314.64 103.37 7866.08 2584.28 0.10 0.03 

Cysteine 103.15  0.39 0.29 19.58 14.65 489.38 366.20 0.01 0.00 

Lysine 128.19  4.59 0.73 229.45 36.53 5736.29 913.15 0.07 0.01 

Phenylalanine 147.18  4.59 1.63 229.52 81.65 5738.01 2041.36 0.08 0.03 

Histidine 137.14 15.27 0.24 763.43 254.62 19085.82 304.66 0.25 0.00 

Glycine 57.05 17.34 12.12 866.81 605.84 21670.36 15145.97 0.20 0.04 

Threonine 101.11 19.96 1.09 998.00 54.60 24950.11 1365.01 0.24 0.01 

Proline 97.12   6.66 0.92 333.14 45.91 8328.46 1147.66 0.08 0.01 

Alanine 71.09   5.49 0.61 274.59 30.56 6864.73 763.90 0.05 0.00 

Tyrosine 163.18   0.11 0.74 5.33 37.00 133.13 925.06 0.02 0.00 

Methionine 131.19 15.57 0.09 778.59 4.45 19464.63 111.24 0.25 0.00 

Valine 99.14   8.83 1.29 441.70 64.48 11042.39 1612.08 0.11 0.01 

Isoleucine 113.16   5.21 0.64 260.36 32.13 6509.04 803.36 0.07 0.01 

Asparagine* 114.6   3.78 1.53 111.79 57.91 2794.78 1447.84 0.04 0.06 

Sum 
       

1.93 0.24 

* Average of aspartic acid and asparagine 

 

 

AA concentration on column                                                      
in unit pmol µL-1  (column 4)   

AA concentration from 
equation (column 2)  

 
Injected sample (2 µL) 

Total derivative solvent (100 µL) 

X = 

AA concentration of culture                                                      
in unit pmol µL-1  (column 6)   

AA concentration on column                                                      
in unit pmol µL-1 (column 4)   

 
Used sample (10 µL) 

Total extraction                         
volume (150 µL + 150 µL) 

X = 

   AA concentration in          
unit pg cell-1 (column 8)   

AA concentration of culture                                                      
in unit pmol µL-1 (column 6)   

 
Harvested sample (50 µL) 

Molecular weight (column 1) 

X = 
Cell abundance  (cells mL-1)                                              
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1.2  Combined amino acid  

 

The calculation of combined amino acid content was determined using the following equations 

and table 2.  The concentration (pmol µL-1) of the amino acid in the derivatized sample was 

calculated from the peak area using a standard curve. 

 

 

 

 

 

 

 

   

 

 

 

 

Percentage of amino acid was calculated: 

 

 

 

For example, % aginine of total amino acid 

 

 

 

 

 

 

 

 

 

AA concentration in          
unit pg cell-1 (column 8)   

AA concentration of culture                                                      
in unit pmol µL-1 (column 6)   

 
Harvested sample (50 µL) 

Molecular weight (column 1) 

X = 
Cell abundance (cells mL-1)                                              

%  amino acid      =  
Total of each free and combined AA in unit pg cell-1 

(column 5)  
Total of free and combined AA content in unit pg cell-1 

(column 5) 

X 100 

Amino acid (AA) concentration in unit pmol µL-1   = 
             from standard curve (column 2)  

Area unit (AU.) - b 

Slope (a) 

AA concentration on column                                                      
in unit pmol µL-1  (column 4)   

AA concentration from 
equation (column 2)  

 
Injected sample (2 µL) 

Total derivative solvent (100 µL) 

X = 

AA concentration of culture                                                      
in unit pmol µL-1  (column 6)   

AA concentration on column                                                      
in unit pmol µL-1 (column 4)   

 
Used sample (50 µL) 

Total volume (extraction 510 µL 
+ resuspension 1,500 µL) 

X = 

% aginine =  
Free AA (aginine  = 0.14 pg cell-1) + Combined AA (aginine  = 0.76 pg cell-1)   

X 100 
Total of free AA (aginine  = 1.93 pg cell-1) + Total of combined AA (aginine  = 8.38 pg cell-1)  

% aginine    =  
0.90  

10.31  
X 100  =  8.73 
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Table 2.  Data for calculation of combined amino acid content in T. weissflogii grown at 16 HL. 

 

T. weissflogii 

      

Amino acid  1 2 3 4 5 6 7 8 9 

 

MW. 

Mean AA   

(pmol from 

equation) 

SE. 

Mean AA 

(pmol on 

column) 

SE. 

Mean AA    

(pmol of 

culture) 

SE. 
Mean AA  

(pg cell-1) 
SE. 

Arginine 156.19 24.87 0.71 1243.36 35.65 49982.90 1433.09 0.76 0.03 

Histidine 137.14 4.96 0.77 247.85 38.25 9963.62 1537.83 0.13 0.02 

Serine 87.08 27.83 0.46 1391.73 22.78 55947.74 915.57 0.47 0.01 

Glycine 57.05 34.24 1.23 1711.91 61.27 68818.68 2463.15 0.38 0.02 

Glutamic 128.6 41.04 5.86 2051.98 293.10 82489.66 11782.61 1.03 0.15 

Threonine 101.11 23.39 0.74 1169.34 36.91 47007.48 1483.78 0.46 0.02 

Proline 97.12 25.98 0.83 1298.92 41.58 52216.50 1671.68 0.49 0.02 

Alanine 71.09 32.82 2.40 1641.06 120.22 65970.81 4832.76 0.46 0.04 

Cysteine 103.15 5.27 0.35 263.74 17.51 10602.36 703.76 0.11 0.01 

Lysine 128.19 26.56 4.18 1327.76 209.02 53376.14 8402.59 0.67 0.11 

Tyrosine 163.18 14.17 0.26 708.74 13.18 28491.24 529.97 0.45 0.01 

Methionine 131.19 9.04 0.58 452.09 28.90 18173.88 1161.97 0.23 0.02 

Valine 99.14 28.86 0.91 1442.85 45.55 58002.60 1831.15 0.56 0.02 

Phenylalanine 147.18 22.27 1.41 1113.54 70.40 44764.49 2830.06 0.64 0.04 

Isoleucine 113.16 24.38 1.37 1219.10 68.71 49007.75 2762.28 0.54 0.03 

Asparagine* 114.6 44.82 2.61 2241.21 11.47 90096.71 460.96 0.99 0.16 

Sum        8.38 0.70 

  * Average of aspartic acid and asparagine 
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Appendix 2: Calculation of pigment composition 

 

Pigment composition from Emiliania huxleyi (chapter 5) was employed as a calculation 

example.  

The UPLC chromatograms of 98 % buffered methanol, acetone and E. huxleyi were shown in 

Fig. 2.   

  
 

Figure 2.  UPLC chromatograms of 98% buffered methanol (A), of acetone (B), and of pigment 

component of E. huxleyi CCMP 1516 (D). Peak identification is as follows: 1=unknown; 

2=Chlorophyll C3 (chl c3) or Monovinyl chlorophyll c3 (MV chl c3); 3= Chllorophyll c2 (chl c2); 4= 

unknown; 5=Fucoxanthin (Fuco); 6= 4-keto-19’-hexanoyloxyfucoxanthin (Hex-kfuco); 7=19’-

hexanoyloxyfucoxanthin (Hex-fuco); 8=Diadinoxanthin (DD); 9=Diatoxanthin (DT); 10=unknown; 

11=non-polar Chl a; 12=unknown; 13= Chlorophyll a (chl a); 14= β,β-carotene (β,β-car). 
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An example of how accessory pigment calculation was performed follows: 

1). Chlorophyll a standard curve preparation  

Chlorophyll a (chl a) powder (C5753-1MG, Sigma Algrich, USA) was dissolved using 2.0 mL 

100 % acetone (HPLC glade).  Then the chl a was scanned from 350- 750 nm using a uv-visible 

spectrophotometer (GENESIS 10S UV-Vis, Thermo Fisher Scientific Inc.,USA). Chl a was 

determined using the following equation (Jeffrey et al. 2005).  

                                        Chl a  (g L-1)   =  
𝐴𝜆 𝑚𝑎𝑥

 𝛼  x  𝑑  
x 

𝑃𝑐

100
                  

                                                               =  
1.291

 88.15  x  1  
x 

100

100
                  

                                                               =  0.0146454   g L-1 or 14.65 µg mL-1    

Where:   𝐴𝜆 𝑚𝑎𝑥  =  the absorbance (absorbance units) at 𝜆 𝑚𝑎𝑥 (662.7 nm)       

               d  =  the cuvette path length (cm) 

               𝛼  =  the specific extinction coefficient (l g-1cm-1) [𝛼  of Chlorophyll a at 𝜆 𝑚𝑎𝑥     

                  (662.7 nm) is 88.15 l g-1cm-1 in 100% acetone (Jeffrey et al. 2005)] 

               Pc =  chromatographic purity of the primary pigment standard (%) [Pc was assumed 

100 % during to a fresh standard and preparation] 
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The chlorophyll a standard curve for pigment assay using UPLC is shown in Fig. 3 

 

Figure 3. The relationship between chlorophyll a concentrations of 1-10 µg mL-1 and AU 

detected by UPLC. Each point in the graph refers to means and standard errors obtained from 

duplicates. 

 

2) Pigment quantification 

Chlorophyll a  was used as reference pigment. The pigments were quantified as pigment 

component to chl a ratios (mol accessory pigment (mol chl a)-1). For 4-keto-19’-

hexanoyloxyfucoxanthin (Hex-kfuco) whose molar extinction coefficients was not available, the 

molar extinction coefficient of 19’-hexanoyloxyfucoxanthin (Hex-fuco) was used.  The chl c3 and 

MV chl c 3 peaks were not separately at 1.82 min (peak no. 2 from fig. 10-2C) called chlorophyll 

c (chl c). The molar extinction coefficients (E) (Table 3) acquired from Jeffrey et al. (2005) were 

carried out for pigment quantification. The peaks were absorbed at the 440 nm and integrated 

as area unit (AU).   

 

 

 

 

 

 

Chlorophyll a concentration ( g mL-1)
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R² = 0.9945



  

229 
 

Table 3. Retention time (min) of pigment component in E. huxleyii using UPLC and the molar 

extinction coefficient (E; l mol-1cm-1) and wavelength (nm) of pigment component in acetone 

from Jeffrey et al. (2005). 

Retention 
time (min) 

Pigment component 
Molar extinction 
coefficient (E)           
(l mol-1 cm-1) 

Wavelength 
(nm) in 
acetone 

1.82 Chlorophyll c3 218400 452.9* 

 
or MV Chlorophyll c3 218400 452.9** 

2.41 Chlorophyll c2 227000 443.8 

3.81 Fucoxanthin 109000 445 

4.27 4-keto-19’-hexanoyloxyfucoxanthin  109000 443 

4.63 19’-hexanoyloxyfucoxanthin  109000 445 

5.08 Diadinoxanthin  130000 447.5 

6.05 Diatoxanthin 119000 452 

7.97 Chlorophyll a   78750 662.7 

8.14 β,β-carotene 134000 454 
 

         *   100% acetone+1%pyridine 

         **   90% acetone+1%pyridine 

 

Fucoxanthin, which was employed as a calculation example, was determined using the 

following equations and table 10-4. 

 

 

 

 

 

 

 

 

 

   Fucoxanthin content [mol (mol chl a)-1] at 18oC (I) 
 

 

E chl a at 440 nm (column 5)  =  E chl a at 662.7 nm   X 
                                                      (see Table 3; 78750)   

AU chl a at 440 nm (column 1) 

AU chl a at 662.7 nm (column 3) 

E fuco at 443 nm (column 13)  =   E fuco at 443 nm    X         
                                                                  (see Table 3; 109000) 

AU fuco at 440 nm (column 7)   

AU fuco at 443 nm (column 9)   

Fuco / chl a  (mol/mol)     
       (column 13)  

AU fuco at 440 nm (column 7)   

AU chl a at 440 nm (column 1)   

E chl a at 440 nm (column 5)   

E fuco at 440 nm (column 11)   
X = 

1691.83   
 

64751.04   
Fucoxanthin [mol (mol chl a)-1]     

               4555.07   103659.91   
X = =  0.21   
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Appendix 3: Calculation of fatty acid content 

 

Fatty acid content of Thassasiosira weissflogii (chapter 6) grown in 16 HL culture was used as a 

calculation example. 

The concentration (µg mL-1) of the fatty acid as fatty acid methyl ester (FAME) in sample was 

calculated from peak area using a standard curve (eg. palmitic acid curve (Fig. 4)).  

 

Figure 4. The relationship between total ion chromatogram (TIC) abundance of palmitic acid 

concentration of 0-800 µg mL-1 and AU detected by GC/MS.  

 

The chromatogram of fatty acids standard and retention time (RT) were shown in fig. 5 and 

table 6. Fatty acid (FA) content (µg mL-1) in sample was then calculated following equation and 

table 5. 

Fatty acid content (µg mL-1) (column 4) =  FA content in unit µg mL-1 (column 1) X     

                                          Resuspension with acetone (column 3) X Harvested sample (100 mL) 

 

The conversion from µg cell-1 to pg cell-1 (1000000 pg cell -1 = 1 µg cell -1) to obtain FA detected.  

 

Palmitic acid concentration ( g mL-1)
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R² = 0.9963



  

232 
 

 

 

 

 

For example, lauric acid content (% of total fatty acid) 

% lauric acid content  = 

 

Table 5. Data for calculation of fatty acid content and % total fatty acid in T. weissflogii grown at 

16 HL. 

 
T. weissflogii 

Fatty acid 1 2 3 4 5 6 7 8 

 
Mean    

(µg mL-1) 
SE 

Solvent 
(mL) 

FA 
content 

(µg) 

FA 
content 
pg cell-1 

SE 
% total 

FA 
SE 

Lauric acid 0.87 0.05 0.50 0.004 0.02 0.00 0.12 0.01 

Myristoleic acid 0.99 0.05 0.50 0.005 0.02 0.00 0.13 0.01 

Myristic acid 62.54 5.66 0.50 0.313 1.53 0.11 8.34 0.56 

Pentadecanoic acid 11.53 0.75 0.50 0.058 0.28 0.01 1.54 0.03 

Palmitoleic acid 219.39 13.91 0.50 1.097 5.35 0.27 29.29 0.79 

Palmitic acid 184.54 13.17 0.50 0.923 4.50 0.26 24.56 0.53 

γ-Linolenic acid 3.59 0.40 0.50 0.018 0.09 0.01 0.49 0.06 

Linoleic acid 3.92 0.64 0.50 0.020 0.10 0.01 0.53 0.09 

Oleic acid 4.69 0.35 0.50 0.023 0.11 0.01 0.62 0.01 

Elaidic acid 0.74 0.05 0.50 0.004 0.02 0.00 0.10 0.01 

Stearic acid 3.18 0.18 0.50 0.016 0.08 0.00 0.43 0.02 

Arachidonic 2.33 0.06 0.50 0.012 0.06 0.00 0.32 0.02 

cis-5,8,11,14,17-Eicosapentaenoic acid 197.34 21.31 0.50 0.987 4.81 0.41 26.03 1.64 

cis-8,11,14-Eicosatrienoic acid 2.26 0.12 0.50 0.011 0.06 0.00 0.30 0.01 

Arachidic acid 1.10 0.01 0.50 0.006 0.03 0.00 0.15 0.01 

cis-4,7,10,13,16,19-Docosahexaenoic acid  49.21 3.93 0.50 0.246 1.20 0.08 6.57 0.37 

Behenic acid 1.21 0.03 0.50 0.006 0.03 0.00 0.16 0.01 

Lignoceric acid 2.36 0.03 0.50 0.012 0.06 0.00 0.32 0.02 

Total 
    

18.34 1.47 100.00 4.21 

% SFA 
      

35.62 2.92 

% MUFA 
      

30.15 2.00 

% PUFA 
      

34.23 5.39 
 

SFA: saturated fatty acid; MUFA: monounsaturated fatty acid; PUFA: polyunsaturated fatty acid 

  0.02 (pg cell-1) 

18.34 (pg cell-1) 

% total fatty acid content (column 7)  =  
Each FA content in unit pg cell-1 (column 5)  

Total FA content in unit pg cell-1 (column 5) 
 

X 100 

Fatty acid content (pg cell-1) (column 5) = 
=  

Fatty acid content (µg mL-1) (column 4)  

Cell abundance (cells mL-1) 
 

X 1000000 

X 100 =  0.12 
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% SFA = Sum of % lauric acid + myristic acid + pentadecanoic acid + palmitic acid + stearic    

                acid + arachidic acid + behenic acid + lignoceric acid 

 

% MUFA = Sum of % myristoleic acid + palmitoleic acid + oleic acid + elaidic acid 

 

% PUFA = Sum of % γ-linolenic acid + linoleic acid + arachidonic acid + cis-5,8,11,14,17- 

                  eicosapentaenoic acid + cis-8,11,14-eicosatrienoic acid + cis-4,7,10,13,16,19- 

                  docosahexaenoic acid 
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Table 6. FAME calibration standards, retention time (RT) and coefficient of determination (R2). 

 

 

 

No. components Scientific name Common name RT (min) 
 

R2 

  1 C6:0 Hexanoic acid methyl ester Methyl caproate 10.593 
 

0.999 
 

  2 C8:0 Octanoic acid methyl ester Methyl caprylate 12.668 
 

0.992 
 

  3 C10:0 Decanoic acid methyl ester Methyl caprate 15.151 
 

0.993 
 

  4 C11:0 Undecanoic acid methyl ester Methyl undecanoate 16.894 
 

0.994 
 

  5 C12:0 Dodecanoic acid methyl ester Methyl laurate 19.127 
 

0.994 
 

  6 C13:0 Tridecanoic acid methyl ester Methyl tridecanoate 21.889 
 

0.995 
 

  7 C14:1 cis-9-Tetradecenoic acid methyl ester Methyl  myristoleate 24.792 
 

0.996 
 

  8 C14:0 Tetradecanoate acid methyl ester Methyl myristate 25.171 
 

0.995 
 

  9 C15:0 Pentadecanoic acic methyl ester Methyl pentadecanoate 28.843 0.991 

10 C16:1 cis-9-Hexadecenoic acid methyl ester Methyl palmitoleate 32.025 
 

0.996 
 

11 C16:0 Hexadecanoic acid methyl ester Methyl palmitate 32.830 
 

0.996 
 

12 C17:1 cis-10-Heptadecenoic acid methyl ester Methyl 10-
heptadecenoate 

36.123 
 

0.996 
 

13 C17:0 Heptadecanoic acid methyl ester Methyl hepadecanoate 36.933 
 

0.996 
 

14 C18:3n6 6,9,12-Octadecatrienoic acid methyl ester  Methyl gamma linolenate 39.195 
 

0.992 
 

15 C18:2n6c 9,12-Octadecadienoic acid methyl ester Methyl linoleate 39.836 
 

0.995 
 

16 C18:1n9c 9-Octadecenoic acid methyl ester Methyl  oleate 40.092 
 

0.996 
 

17 C18:1n9t 9-Octadecenoic acid methyl ester Methyl elaidate 40.337 
 

0.996 
 

18 C18:0 Octadecanoic acid methyl ester Methyl stearate 41.112 0.995 

19 C19:0 Nonadecanoic acid  methyl ester Methyl nonadecanoate 45.268 - 
 

20 C20:4n6 cis-5,8,11,14-Eicosatrienoic acid methyl ester Methyl arachidonate 46.661 0.991 
 

21 C20:5n3 cis-5,8,11,14,17-Eicosapentaenoic acid methyl ester Methyl 5,8,11,14,17-
Eicosapentaenoate 

46.947 0.992 
 

22 C20:3n6 cis-8,11,14-Eicosatrienoic acid methyl ester Methyl 8,11,14-
Eicosatrienoate 

47.378 0.992 
 

23 C20:2 cis-11,14-Eicosadienoic acid methyl ester Methyl 11,14-
Eicosadienoate 

48.130 0.992 
 

24 C20:1n9 cis-11-Eicosenoic acid methyl ester Methyl 11-Eicosenoate 48.316 
 

0.995 
 

25 C20:3n3 cis-11,14,17-Eicosatrienoic acid methyl ester Methyl 11,14,17-
Eicosatrienoate 

48.433 
 

0.994 
 

26 C20:0 Eicosanoic acid methyl ester Methyl arachidate 49.342 
 

0.994 
 

27 C21:0 Heneicosanoic acid methyl ester Methyl heneicosanoate 51.878 0.990 

28 C22:6n3 cis-4,7,10,13,16,19-Docosahexaenoic acid methyl ester Methyl 
docosahexaenoate 

52.292 
 

0.988 
 

29 C22:2 cis-13,16-Docosadienoic acid methyl ester Methyl docosadienoate 52.863 
 

0.989 
 

30 C22:1n9 13-Docosenoic acid methyl ester Methyl erucate 52.904 
 

0.995 
 

31 C22:0 Docasanoic acid methyl ester Methyl behenate 53.212 
 

0.995 
 

32 C23:0 Tricosanoic acid methyl ester Methyl tricosanoate 54.460 
 

0.991 
 

33 C24:1n9 cis-15-Tetracosenoic acid methyl ester Methyl nervonate 55.439 
 

0.988 
 

34 C24:0 Tetracosanoic acid methyl ester Methyl lignocerate 55.707 0.990 

 


