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Abstract

We prove that a universal preference type space exists under more general
conditions than those postulated by Epstein and Wang (1996). To wit, it
suffices that preferences can be encoded monotonically in rich enough ways
by collections of continuous, monotone real-valued functionals over acts, which
determine—even in discontinuous fashion—the preferences over limit acts. The
proof relies on a generalization of the method developed by Heifetz and Samet
(1998a).

1 INTRODUCTION

Classical game theory has largely been developed under the assumption that players
have Savage (1954) preferences, and can hence be modeled as maximizing subjective
expected utilities. In single-person decision problems, in contrast, a voluminous
literature axiomatizes and analyzes many additional classes of preference relations,
which are obviously relevant in strategic interactions as well. How should games of
incomplete information be modeled and handled with such more general preferences?

With Savage (1954) preference relations, games with incomplete information are
modeled by probabilistic type spaces (Harsanyi (1967-68)). Each type of each player is
associated with a probabilistic belief over the space of states of ‘nature’—the players’
von Neumann and Morgenstern (1944) utility indices from their action profiles, the
external signals they get, etc.—and the other players’ types. A strategy of each player
is a measurable mapping from her types to her actions. Thus, from each player’s
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perspective, her own actions coupled with the strategy profiles of the other players
constitute acts from their types and nature into the space of everybody’s action profiles;
integration with respect to the probabilistic belief of each of the player’s types of the
payoffs associated by nature to each action profile defines a Savage (1954) preference
relation over these acts. Moreover, by considering the type’s marginal belief over
nature, over nature and the other players’ marginal beliefs on nature, etc., we see how
each type’s belief encapsulates an infinite hierarchy of beliefs of all orders.

Type spaces can be readily extended to more general classes of preferences by
endowing each type directly with a preference relation over acts which are measurable
functions from nature and the others’ types into everybody’s action profiles. The
type’s marginal preference over constant acts, over acts which are measurable with
respect to the other players’ marginal preferences over constant acts, etc., form a
hierarchy of preferences. In the particular case in which the preference relations
satisfy Savage (1954) axioms and for each player states of nature associate real-valued
von Neumann and Morgenstern (1944) payoffs to the players’ action profiles, each of
these preference relations can be represented by a probability measure over nature
and the other players’ types, as in Harsanyi’s formulation.

Given a class of preference relations over acts, does the corresponding class of
type spaces contain a universal space, i.e. one which ‘embeds’ all others in the sense
of containing all preference hierarchies which appear in some type space? This is
a pertinent question since, in applications, ‘small’ type spaces are tailored to the
problem at hand, and it is important to know whether any generality is lost by this
restriction or rather the same analysis could, in principle, be carried out in a universal
space and deliver the same result. Furthermore, robustness results are most relevant
if they obtain in a universal space, which allows for all possible perturbations, rather
than within any particular, restricted type space.

For the case of preferences based on probabilistic beliefs, Mertens and Zamir
(1985), followed by Brandenburger and Dekel (1993), Heifetz (1993), and Mertens
et al. (1994) showed that under suitable topological or regularity assumptions, the
set of all hierarchies of probabilistic beliefs constitutes a type space, which is hence
universal.1 In the absence of regularity, however, Heifetz and Samet (1999) showed that

1 Other developments under regularity assumptions include Battigalli and Siniscalchi (1999) for
conditional beliefs in dynamic games, Mariotti et al. (2005) for compact possibility models, Ahn
(2007) for compact sets of probabilistic beliefs, Gul and Pesendorfer (2010) to study interdependent
preferences that accommodate reciprocity, Bergemann et al. (2011) to study strategic distinguisha-
bility of types, Heifetz et al. (2012) to study unawareness, and Heifetz and Kets (2012) to study
bounded reasoning. Lee (2013) constructs the universal type space for lexicographic preferences
under topological assumptions.
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there exist hierarchies of beliefs which are not types in any type space. Nevertheless,
Heifetz and Samet (1998a) showed that even in the absence of regularity, the set of
all profiles of belief hierarchies appearing in type spaces is itself a type space, which
is universal.2

What happens with more general classes of preferences? Epstein and Wang (1996)
showed, under topological assumptions, that when preferences are regular in the
appropriate sense, the set of all preference hierarchies forms a type space and Chen
(2010) proved that it is universal. Alternatively, if one restricts attention to algebras
of events then Di Tillio (2008) showed that a universal space exists under very mild
conditions. However, what happens in the absence of regularity and when the pertinent
class of events forms a σ-algebra?

In this paper, we show that a universal space exists under milder and more general
conditions on preferences than those postulated by Epstein and Wang (1996). To
wit, it suffices that preferences can be encoded monotonically in rich enough ways
by finite or countably infinite collections of continuous real-valued functionals over
acts, which determine—even in discontinuous fashion—the preferences over limit
acts. For example, a lexicographic preference represented by a (finite or countably
infinite) sequence of |L| continuous functionals is not itself continuous, since an act
may be superior to all acts in some increasing sequence, but inferior to their limit.
Nevertheless, there does exist a universal space in the category of type spaces where
each type is associated with a lexicographic preference representable by a collection
of |L| continuous functionals over acts. Furthermore, this existence result applies to
both well-founded3 and non-well-founded lexicographic preferences.4

To prove this result we proceed in two steps. First, in Section 3, generalizing
Heifetz and Samet (1998a), we collect all hierarchies of preference representations
that appear in type spaces in the category, and show that the resulting collection
is a universal type space. A crucial point of the argument made in Proposition 3 is
that even if the ever-extended preference representation is not itself continuous, the

2 Meier (2008), Pinter and Udvari (2011), Heinsalu (2012), Kets (2012), and Pinter (2012) provide
recent developments of more general type spaces using the Heifetz and Samet (1998a) approach,
while Moss and Viglizzo (2004) formulate type spaces as coalgebras and show the existence of a final
coalgebra which provides the universal type space.

3 Well-founded lexicographic beliefs are sequences of beliefs such that the “most important” belief
in any subsequence is always well-defined. Rényi (1956) explored notions closely related to non-well-
founded lexicographic beliefs.

4 The epistemic characterization of iterated admissibility in Lee (2015b) uses hierarchies of lexi-
cographic beliefs that can be extended to non-well-founded lexicographic beliefs but not extended
to well-founded ones. This suggests that the analysis in Lee (2015b) could be carried out in type
spaces, which are simpler objects than hierarchy spaces.
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fact that it is encoded by continuous functionals is sufficient to imply that the limit
preference representation is uniquely defined. One must then furthermore show that
this limit preference representation varies in a measurable way with the hierarchy.
This follows from a functional monotone class theorem employed in Lemma 1.

Second, in Section 4 we partition the universal type space into equivalence classes
of types whose preference representations express the same preference relation over
acts that depend on nature, on nature and others’ preference relations over acts that
depend on nature, etc. We show that this quotient space is universal in the category
of preference type spaces, i.e. type spaces partitioned to members consisting of types
with the same preferences on acts over nature and the other players’ partition members.
Heifetz and Samet (1998a) bypassed this second step by working in the first place with
the standard representation of each Savage preference relation, namely the functional
which attaches the value 0 to the constant act 0 and the value 1 to the constant act 1.
This standard representation of the Savage preference relation constitutes integration
with respect to a probability measure, interpreted as the type’s “belief”. However,
for more general classes of preferences, such as lexicographic preferences, there does
not necessarily exist within the cone of preference representations a “standard” rep-
resentation which is preserved under type morphisms, and hence the need to work
explicitly with equivalence classes of preference representations.

The paper is organized as follows. Section 2 introduces preliminary notation and
definitions. Section 3 contains the definitions and statement of the results for the
existence of the universal type space, which is the main result of the section. Section 4
introduces and develops the notion of a preference type space and contains the main
result of the paper: the existence of the universal preference type space. Section 5
concludes by discussing the main conceptual ideas and challenges of the paper. All
proofs are collected in the Appendix A. A supplementary appendix provides examples
of preferences for which the present paper’s results apply: Appendix B.1 considers
lexicographic expected utility and shows (in Section B.1.1) that the representation
of lexicographic expected utility preferences satisfy a key monotone determination
property (7). Appendix B also provides additional examples of preferences to which
the present results apply.
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2 PRELIMINARIES

Let L be a countable index set and � be a partial order on R
L for which the upper

and lower contour sets for all r “ pr�q�PL P R
L

tr1 P R
L : r1 � ru and tr1 P R

L : r � r1u (1)

are Borel. For any measurable space Y with an associated σ-algebra ΣY , we denote by
FpY q the set of all real-valued bounded acts, i.e., bounded ΣY -measurable functions
from Y to the set of outcomes R. We say that a reflexive and transitive binary
relation Á over FpY q, henceforth termed a preference relation, admits a monotone
continuous pL,�q-representation if there exists a function

U : FpY q Ñ R
L

that satisfies the following three conditions.

1. Representation: For f, g P FpY q

g Á f ðñ Upgq � Upfq. (2)

2. Representation continuity: For tgnuně1 Ď FpY q and g P FpY q,

p@y P Y gnpyq Ñ gpyqq ùñ U�pgnq Ñ U�pgq (3)

for all � P L with U� denoting the �-th coordinate of U .5

3. Representation monotonicity: For f, g P FpY q,

f ě g ùñ U�pfq ě U�pgq (4)

for all � P L.

Definition 1. R is called a representation class if, for any measurable space Y , RpY q
is some set of monotone continuous pL,�q-representations equipped with the σ-algebra

5 This is not continuity of the preference relation. It is only the continuity of the representation
functions U “ pU�q�PL. For example, this condition is satisfied by lexicographic expected utility
preferences, which are not continuous.
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generated by sets of the following form.

rf Ě� gs “ tU P RpY q : U�pfq ě U�pgqu f, g P FpY q, � P L

For measurable spaces Y and Z and a measurable function φ : Y Ñ Z, define the mapqφ : RpY q Ñ RpZq as follows.

@U P RpY q @f P FpZq qφpUqpfq “ Upf ˝ φq (5)

The map qφ, if well-defined (see the next definition) is measurable because, for every
f, g P FpZq and � P L,

qφ´1prf Ě� gsq “ tU P RpY q : U�pf ˝ φq ě U�pg ˝ φqu P ΣRpY q.

Definition 2. Representation class R is image-regular if, for all measurable spaces
Y and Z and every measurable function φ : Y Ñ Z, the map qφ is well-defined.

Given that φ : Y Ñ Z can be viewed as a projection map from tpy, zq P Y ˆ Z |
z “ φpyqu on its second coordinate Z, image-regularity is simply the requirement
that, for each r P RpY q, the corresponding “marginal representation” of preferences
on FpZq is well-defined.

For the remainder, fix a representation class R and assume that it is image-regular.
Image-regularity is sufficient for the existence of a universal type space, as defined in
Definition 5 in Section 3.1 below.

For all f, g P FpY q, let

rf Ě gs “ tU P RpY q : Upfq � Upgqu.

Then rf Ě gs P ΣRpY q since the sets in (1) are Borel.6

The set of players is I and I0 “ I Y t0u denotes the set of players and “nature”
(player 0). As usual, for any collection tYiuiPI0 , Y´i “ Ś

i1PI0ztiu Yi1 . We consider the
6 Since L is countable, this follows from noting that (i) if B Ď R

L is Borel then

tU P RpY q | Upfq R Bu “ RpY qztU P RpY q | Upfq P Bu
and (ii) if B1, B2, ¨ ¨ ¨ Ď R

L are Borel then

tU P RpY q | Upfq P
8ď

n“1
Bnu “

8ď
n“1

tU P RpY q | Upfq P Bnu
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product, finite or infinite, of measurable spaces as a measurable space with the product
σ-algebra.

3 TYPE SPACES

Let S be a measurable space of states of nature. Fix the countable index set L and
partial order � satisfying (1).

Definition 3. An pL,�q type space on S is a tuple xpTiqiPI0 , pmiqiPIy “ xT, my, such
that

1. T0 “ S; and

2. for each i P I0, Ti is a measurable space; and

3. for each i P I, mi : Ti Ñ RpT´iq is measurable.

Given a type space xT, my and i P I, elements of T are called states of the world
and an element of Ti is called an i-type. For any f, g P FpT´iq, let

rf Ě� gsi “ tti P Ti : miptiq�pfq ě miptiq�pgqu

and the belief operator rf Ě gsi is defined as

rf Ě gsi “ tti P Ti : miptiqpfq � miptiqpgqu.

Then recalling that rf Ě gs “ tU P RpT´iq : Upfq � Upgqu, we have that

rf Ě gsi “ m´1
i prf Ě gsq.

Let xT, my and xT 1, m1y be pL,�q type spaces on S. Type morphisms, defined
next, are mappings that preserve the representation structures as given by m and m1.

Definition 4. A type morphism from xT, my to xT 1, m1y is a function φ “ pφiqiPI0 : T Ñ
T 1 such that

1. φ0 : T0 Ñ T 1
0 is the identity on S; and

2. for each i P I0, φi : Ti Ñ T 1
i is measurable; and

3. for each i P I and ti P Ti, m1
ipφiptiqq “ qφipmiptiqq, i.e., for every f P FpT 1́

iq,

m1
ipφiptiqqpfq “ miptiqpf ˝ φq. (6)

7



Then, it can be verified that a type morphism φ preserves belief operators, i.e., for
each i P I, f P FpT 1́

iq,

φ´1
i prf Ě gsiq “ rf ˝ φ´i Ě g ˝ φ´isi. (7)

3.1 THE UNIVERSAL TYPE SPACE

Definition 5. An pL,�q type space xT ˚, m˚y on S is universal if, for every pL,�q
type space xT, my on S, there exists a unique type morphism from xT, my to xT ˚, m˚y.

The existence of a universal type space is the main result of this section and is
established in the remainder.

3.2 MAIN MEASURE-THEORETIC LEMMA

The main measure-theoretic lemma needed for the construction of the universal type
space is the following.

Lemma 1. Let pY, ΣY q be a measurable space. Let F0 Ď FpY q be such that the
σ-algebra ΣY is generated by

AF0 “ tf´1pEq : f P F0, E Ď R is Borelu

and such that F0 satisfies the following properties.

1. The constant function 1 P F0

2. For any f, f 1 P F0 and α, α1 P R, αf ` α1f 1 P F0.

3. For any f, f 1 P F0, mintf, f 1u P F0.

Let ΣF0 be the σ-algebra on RpY q generated by sets of the form

rf Ě� gs for � P L and f, g P F0.

Then ΣRpY q “ ΣF0.

3.3 HIERARCHIES OF REPRESENTATIONS

We now define spaces of hierarchies of preference representations Hk
i for each k ě 0

and i P I0. For every k ě 0, Hk
0 “ S and for every i P I, H0

i is a singleton. As usual

8



Hk “ Ś
iPI0

Hk
i . We define inductively

Hk`1
i “ Hk

i ˆ RpHk
´iq “ H0

i ˆ
˜

k1ą
k“0

RpHk1
´iq

¸
. (8)

The space of i-hierarchies for player i P I is

Hi “ H0
i ˆ

˜ 8ą
k“0

RpHk1
´iq

¸
(9)

and the projection from Hi to Hk
i is denoted �k

i .
Given an pL,�q type space T , we can define an i-description map hi : Ti Ñ Hi for

each i P I0 as follows. For all k ě 0, let hk
0 be the identity on S. For i P I, h0

i : Ti Ñ H0
i

is uniquely defined since H0
i is a singleton. Inductively, define hk`1

i : Ti Ñ Hk`1
i for

k ě 0 by

hk`1
i ptiq “

´
hk

i ptiq, qhk
´ipmiptiqq

¯
“

´
h0

i ptiq, qh0
´ipmiptiqq, . . . , qhk

´ipmiptiqq
¯

(10)

where qhk´i : RpT´iq Ñ RpHk´iq is the mapping between the sets of representations as
defined by (5) in Section 2. Now define hi : Ti Ñ Hi, i P I as the unique function that
satisfies for all k ě 0, hk

i “ �k
i phiq, i.e.,

hiptiq “
´

h0
i ptiq, qh0

´ipmiptiqq, . . . , qhk
´ipmiptiqq, . . .

¯
(11)

and define h0 to be the identity on S. The first result is as follows.

Proposition 1. Type morphisms preserve i-descriptions.

We can now define the universal type space by setting T0̊ “ S and Ti̊ to be the
set of all i-descriptions in Hi, i.e., all hierarchies ti̊ P Hi for which ti̊ “ hiptiq for some
ti P Ti in some type space xT, my over S. The σ-algebra of Ti̊ is the one inherited
from Hi. We define mi̊ : Ti̊ Ñ RpT ˚́

iq by

m˚
i ptiq “ qh´ipmiptiqq. (12)

The next result establishes that xT ˚, m˚y thus defined is a pL,�q type space.

Proposition 2. xpTi̊ qiPI0 , pmi̊ qiPIy is a pL,�q type space on S.

Proposition 3. For every pL,�q type space xT, my, the description map h : T Ñ T ˚

is a type morphism.
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Lemma 2. The hierarchy description maps hi : Ti̊ Ñ Ti̊ are the identity maps.

We now state and prove the result on the existence of the universal pL,�q type
space.

Theorem 1. xpTi̊ qiPI0 , pmi̊ qiPIy is the universal pL,�q type space on S.

4 PREFERENCE TYPE SPACES AND
THE UNIVERSAL PREFERENCE TYPE SPACE

Having shown the existence of the universal type space for representations, we now
establish the main result of the paper: the existence of the universal preference type
space, as defined in Definition 14 in Section 4.3 below. This is essential since, in general,
many representations may stand for the same preference, whereas it is the preference
relation itself that is of economic relevance. We first introduce some terminology and
notation.

4.1 PRELIMINARIES

Definition 6. Let Y be a measurable space. A filtration of ΣY is a sequence pΣk
Y qkě0

of sub-σ-algebras on Y such that

1. Σk
Y Ď Σk`1

Y for all k ě 0; and

2. ΣY is generated by
Ť

kě0 Σk
Y .

Definition 7. Representation class R is preference monotone determined if, for every
measurable space Y , the two statements below are equivalent for all U, V P RpY q and
for every filtration pΣk

Y qkě0 of ΣY .

1. For all k ě 0, the preferences represented by U and V coincide on Σk
Y -measurable

acts.

@k ě 0 @f, g P FpΣk
Y q, Upfq � Upgq ðñ V pfq � V pgq

2. The preferences represented by U and V coincide on all ΣY -measurable acts.

@f, g P FpΣY q Upfq � Upgq ðñ V pfq � V pgq

10



Monotone determination, in the familiar setting of expected utility preferences,
is the property that when and if an extension of a projective system of probability
measures (i.e., a sequence of probability measures on an inverse system of measurable
sets) exists, then it is unique. This property is used by Heifetz and Samet (1998a)
to obtain their universal type space result. In the more general settings allowed here,
monotone determination says that if an inverse system of preferences (i.e., a sequence
of preferences over acts defined on a projective system of measurable sets) has an an
extension to a preference over acts defined on the projective limit of the system, then
it is unique. In the appendices, we prove that monotone determination is satisfied by
several well-known classes of preferences that are of interest.

Definition 8. We say that R is regular if it is both image-regular and preference
monotone determined.

For the remainder, assume that R is regular. Regularity of R is sufficient for the
existence of a universal preference type space. Given a regular representation class R,
we define the corresponding preference class P as follows.

Definition 9. For any measurable space Y , given a regular representation class RpY q
let PpY q denote the set of preference relations Á on FpY q that admit a representation
in RpY q. Each ÁP PpY q is identified with the equivalence class of all U P RpY q that
represent Á.

PpY q is equipped with the σ-algebra generated by sets of the following form.

rrf Ě gss “ tÁP PpY q : f Á gu f, g P FpY q

Definition 10. For each U P RpY q, let pY pUq denote the equivalence class in PpY q
to which U belongs. The map pY : RpY q Ñ PpY q is measurable because

p´1
Y prrf Ě gssq “ rf Ě gs for every f, g P FpY q.

Definition 11. For measurable spaces Y and Z and a measurable function φ : Y Ñ Z,
define the map pφ : PpY q Ñ PpZq as follows.

@ ÁP PpY q pφpÁq “ tqφpUq | U PÁu

The map pφ is measurable because, for every f, g P FpZq,

pφ´1prrf Ě gssq “ tÁP PpY q : f ˝ φ Á g ˝ φu P ΣPpY q.

11



4.2 PREFERENCE TYPE SPACES

We now introduce the notion of a preference type space and a preference type morphism
between preference type spaces.

Definition 12. A pL,�q preference type space on S is a tuple xpΠiqiPI0 , pμiqiPI0y “
xΠ, my such that for some pL,�q type space xT, my on S, for every i P I0, Πi is a
measurable space which is a partition of Ti, i.e., Πi consists of the partition members
tΠiptiq | ti P Tiu, where the following are satisfied.

1. Π0 is the partition of S to singletons, i.e., Π0psq “ tsu for all s P S, endowed
with the σ-algebra inherited from S, i.e., E Ď S is measurable in S iff

tΠ0psq : s P Eu “ ttsu : s P Eu is measurable in Πi.

2. For all i P I, μi : Πi Ñ PpΠ´iq is a measurable map defined by

μipΠiptiqq “ pΠ´i
pqΠ´ipmiptiqqq @ti P Ti.

3. For all i P I0, the map ti ÞÑ Πiptiq is measurable.

We say that xΠ, μy is based on xT, my.
In particular, the condition in Definition 12.2 implies that μipΠiptiqq “ μipΠipt1

iqq
whenever Πiptiq “ Πipt1

iq.
In general, there may be many preference-type spaces based on the same xT, my. In

particular, xT, my itself can be viewed as a preference type space based on itself where,
for all i P I, Πi is the partition of Ti into singletons and the measurable structure of
Πi is inherited from that of Ti and μi “ pΠ´i

˝ qΠ´i ˝ mi.7

Definition 13. Let xΠ, μy and xΠ1, μ1y be pL,�q preference-type spaces on S. A
preference-type morphism from xΠ, μy to xΠ1, μ1y is a function φ “ pφiqiPI0 : Π Ñ Π1

such that

1. φ0 : Π0 Ñ Π1
0 is the identity on S,

2. for each i P I0, φi : Πi Ñ Π1
i is a measurable function, and

3. for each i P I and πi P Πi, μ1
ipφipπiqq “ pφ´ipμipπiqq.

7 That is, Πiptiq “ ttiu for all ti P Ti and E Ď Ti is measurable in Ti if and only if

tΠiptiq : ti P Eu “ tttiu : ti P Eu
is measurable in Πi.
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4.3 THE UNIVERSAL PREFERENCE TYPE SPACE

Given that, as explained above, every type space xT, my can be viewed also as a
preference type space where Πi is the partition of Ti to singletons for all i P I, and
given that it is the preferences of types ti P Ti which is of economic relevance, not
merely the particular representation miptiq of these preferences, it is of interest to
know if a universal preference type space as defined next exists.

Definition 14. A pL,�q preference-type space xΠ˚, μ˚y on S is universal if, for every
preference-type space xΠ, μy on S, there exists a unique preference type morphism
from xΠ, μy to xΠ˚, μ˚y.

The positive answer to this existence question, which is the main result of this
paper, is given by the following theorem.

Theorem 2. There exists a universal preference-type space on S.

We prove this result by constructing the putative universal pL,�q preference type
space xΠ˚, μ˚y as a preference type space based on xT ˚, m˚y and establishing that
there is a unique preference type morphism to xΠ˚, μ˚y from any preference type space
xΠ, μy.

xΠ˚, μ˚y is constructed as follows. For each k ě 0, let Π˚,k
0 be the partition of

T0̊ “ S into singletons. Let ΣΠ˚,k
0

be σ-algebra inherited from ΣT ˚
0

“ ΣS. For each
i P I and k “ 0, let Π˚,0

i “ tTi̊ u. For each i P I and k ě 0, define Π˚,k`1
i inductively.

Suppose that we have already defined the partitions Π˚,0
i , . . . , Π˚,k

i for each i P I.
Let Π˚,k`1

i be the partition of Ti̊ into equivalence classes of types that induce the
same preferences on FpΠ˚,k

´i q, i.e.,

@t˚
i P T ˚

i Π˚,k`1
i pt˚

i q “ ty˚
i P T ˚

i : pΠ˚,k
´i

pqΠ˚,k
´i pm˚

i pt˚
i qqq “ pΠ˚,k

´i
pqΠ˚,k

´i pm˚
i py˚

i qqqu

Let ΣΠ˚,k`1
i

be generated by the following family of sets.

trf Ě gsi : f, g P FpΠ˚,k
´i qu

Let Πi̊ denote the join (coarsest common refinement) of the weakly refining sequence
of partitions pΠ˚,k

i qkě0 “ pΠ˚,0
i , Π˚,1

i , Π˚,2
i , . . . q, i.e.,

Π˚
i “

ł
kě0

Π˚,k
i

13



Let ΣΠ˚
i

denote the σ-algebra generated by the union of the weakly refining sequence
of σ-algebras pΣΠ˚,k

i
qkě0 “ pΣΠ˚,0

i
, ΣΠ˚,1

i
, ΣΠ˚,2

i
, . . . q.

Finally, define μi̊ : Πi̊ Ñ PpΠ˚́
iq by the following.

@t˚
i P T ˚

i μ˚
i pΠ˚

i pt˚
i qq “ pΠ˚

´i

´qΠ˚
´ipm˚

i pt˚
i qq

¯
Then μi̊ is well-defined, i.e., μi̊ pΠi̊ pti̊ qq “ μi̊ pΠi̊ pt˚1

i q, whenever Πi̊ pti̊ q “ Πi̊ pt˚1
i q due

to the monotone determination property (Definition 7). The next result establishes
that xΠ˚, μ˚y is indeed a preference type space based on xT ˚, m˚y.
Proposition 4. For all i P I, μi̊ is measurable.

Let xΠ, μy be a preference-type space based on the type space xT, my. Let η0 be
the identity on S. For each i P I, let ηi : Πi Ñ Πi̊ be defined by the following.

@ti P Ti ηipΠiptiqq “ Π˚
i phiptiqq

where hi is the representation i-description map associated with xT, my.
Proposition 5. η is a preference-type morphism.

To establish that η is in fact the unique preference type morphism from any
preference type space to xΠ˚, μ˚y, we first establish a property of any preference type
morphism. Let xΠ, μy be a preference-type space based on the type space xT, my. Let ψ

be a preference-type morphism from xΠ, μy to xΠ˚, μ˚y. Then μi̊ pψipπiqq “ pψ´ipμipπiqq
for each i P I by Definition 13.3. Furthermore, we can inductively define ψk : Π Ñ Π˚,k

for each k ě 0 as follows. For each k ě 0, let ψk
0 be the identity on S. For each i P I,

ψ0
i : Πi Ñ Π˚,0

i is uniquely defined because Π˚,0
i is a singleton. Let ψk`1

i “ pψk´i ˝ μi.

Lemma 3. For all i P I0 and k ě 0, ψk
i “ Π˚,k

i ˝ ψi.

The next result establishes the uniqueness of η, which completes the proof of
Theorem 2.

Proposition 6. If ψ is a preference-type morphism from xΠ, μy to xΠ˚, μ˚y, then
ψ “ η.

5 CONCLUDING REMARKS

The universal type space and universal preference type space construction above can
be applied to wide-ranging classes of preferences. These include lexicographic expected
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utility preferences (Appendix B.1), continuous preferences under risk and ambiguity,
and some instances of preferences over menus (Appendix B).

In the construction of a universal preference for preferences, our starting point was
the main conceptual idea of Heifetz and Samet (1998a), namely to collect from all the
type spaces in the category all the hierarchies that describe the state of mind of each
player about nature, about nature and the others’ state of mind about nature, and
so forth. The collection of these description hierarchies would constitute a universal
space if each such hierarchy determines uniquely the limit state of mind of the player
in a measurable way. When such a continuity property does not hold (like in the case
of dichotomous knowledge, see Heifetz and Samet (1998b), a universal space fails to
exist. While implementing this idea when a “state of mind” is a preference relation
over acts rather than a belief, we had to address several challenges.

First, whereas for the case of probabilistic beliefs, (Heifetz and Samet, 1998a,
Lemma 4.5) used a monotone class theorem to prove the measurability of the limit
state of mind, for the case of preferences we had to to employ a stronger tool, namely
a double application of a functional monotone class theorem (Lemma 1). Second, and
more importantly, we are able to cater to classes of preferences of economic relevance,
like lexicographic preferences, that are themselves discontinuous but nevertheless
satisfy a weaker, limit determination property: for each hierarchy of states of mind
there exists a unique limit state of mind and this limit is determined by the hierarchy,
even if in a discontinuous way. We showed how this weaker property is sufficient
for a universal space to exist. Last, in the classes of preferences of interest, the
same preference relation may be represented by numerous functional tuples, and from
within the positive cone of representations of the same preference relation there might
emerge no natural candidate as the “standard” representation, a standardization
which would be preserved under type morphisms. Thus, unlike in the case of Savage
(1954) preferences over acts, which have a standard representation by the integral of
these acts with respect to a probability measure, for lexicographic expected utility
preferences of 3 or more levels, for example, such an anchor representation does not
exist. This challenge led us to proceed in two steps.

First (Section 3), we constructed the universal type space in the category of type
spaces actually used by game theorists, namely type spaces in which each type is
associated in a measurable way with a particular representation of the preference
relation of that type. In this universal space, there are numerous types which, albeit
with different representations, entertain the same preference relation on acts over
nature and the other players’ types. Therefore in the second step (Section 4), we
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partitioned the universal type space to equivalence classes of types whose preference
representations express the same preference relation over acts that depend on nature,
on nature and others’ preference relations over acts that depend on nature, and so
on (Definition 14). We showed that this quotient space is universal in the category
of preference type spaces, i.e. type spaces partitioned to members consisting of types
with the same preferences on acts over nature and the other players’ partition members
(Definition 12).

The class of type spaces forms a sub-class of preference type spaces, because each
type space can be viewed, in particular, as a preference type space by partitioning each
player’s types to singletons, and associating each such singleton with the preference
relation represented by the functional-tuple of that type. It is this preference relation
(within its measurable structure) rather than the particular preference representation
(within its stronger, coordinate-wise measurable structure of functional-tuples) that
is of economic relevance, and hence the significance of the existence of a universal
preference type space (Theorem 2), into which every type space can be embedded in
a unique way by a preference type morphism. The universal preference type space
might be guaranteed to be a type space itself (selecting for each type a functional-
tuple representing its preference relation in a measurable way) only under very specific
topological assumptions (see for example Lee (2015a)). Here, in contrast, like in Heifetz
and Samet (1998a), we adopted a purely measurable approach, and hence the strength
and wide potential applicability of the results.
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A PROOFS

Proof of Lemma 1. Clearly ΣRpY q Ě ΣF0 , since ΣRpY q is generated by

trf Ě� gs | f, g P FpY q, � P Lu

which is a subset of the family of sets

trf Ě� gs | f, g P F0, � P Lu

that generates ΣF0 . We now establish in two steps that ΣRpY q Ď ΣF0 . First, let
F 1 Ď FpY q be the collection of acts f such that rf Ě gs� P ΣF0 for all g P F0 and
� P L. We prove that F 1 Ě FpY q by employing the functional monotone class theorem
(Dellacherie and Meyer, 1978, theorem 22.3, p.15-1).8 Given assumptions (i)-(iii) on
F0, and the fact that FpY q is the set of ΣY -measurable acts while ΣY is generated
by AF0 , it remains to show that F 1 is closed under bounded monotone convergence.
Indeed, let tfnu8

n“1 be a bounded monotonically increasing sequence of functions in F 1

converging to f P FpY q.9 Then for all g P F0 and � P L, by representation continuity
8 The corresponding notation there has H “ F 1 and C “ F0.
9 That is, tfnu8

n“1 is a sequence for which (i) there exists M ă 8 such that 0 ď fnpyq ď M for
all y P Y and n “ 1, 2, . . . and (ii) fnpyq is increasing in n for all y P Y .
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(3) and monotonicity (4),

rf Ě� gs “
8č

k“1

8ď
m“1

č
něm

„
fn Ě� g ´ 1

k

j
P ΣF0

and hence f P F 1, as required.
Second, let F2 Ď FpY q be the collection of acts g such that rf Ě� gs P ΣF0 for

all f P F 1 “ FpY q and � P L. Here too we prove that F2 Ě FpY q by employing
the functional monotone class theorem, and the crucial step is to show that F2 is
closed under bounded monotone convergence. Indeed, let tgnu8

n“1 be a bounded
monotonically increasing sequence of functions in F2 converging to g P FpY q. Then
for all f P FpY q

rf Ě� gs “
č
ně1

rf Ě� gns P ΣF0

and hence g P F2, as required. From the two steps together we conclude that FpY q ˆ
FpY q “ F 1 ˆ F2 is the collection of act-pairs pf, gq for which rf Ě� gs P ΣF0 for all
� P L. Hence ΣF0 contains all the generators of ΣRpY q, and therefore ΣRpY q Ď ΣF0 .

Proof of Proposition 1. Let φ : T Ñ T 1 be a type morphism. We have to show that
h1

ipφiptiqq “ hiptiq for all ti P Ti and i P I0. For i “ 0, this follows immediately since
φ0, hk

0, h0, h1k
0 , h1

0 are all the identity map on S. For i P I, h0
i ptiq “ h10

k pφiptiqq since H0
i is

a singleton. Suppose, inductively, that we have already proved that hk
i ptiq “ h1k

i pφiptiqq
for every ti P Ti and every i P I0. In the following sequence of equalities, the second
equality stems from the fact that type morphisms preserve preference representations
(6) and the induction hypothesis is used in the third equality. For any f P FpHk´iq

qh1k
´ipm1

ipφiptiqqqpfq “ m1
ipφiptiqqpf ˝ h1k

´iq
“ miptiqpf ˝ h1k

´i ˝ φ´iq “ miptiqpf ˝ hk
´iq “ qhk

´ipmiptiqqpfq

It then follows that

h1k`1
i pφiptiqq “

´
h1k

i pφiptiqq, qh1k
´ipm1

ipφiptiqqq
¯

“
´

hk
i ptiq, qhk

´ipmiptiqq
¯

“ hk`1
i ptiq

as needed.

Proof of Proposition 2. To show that xT ˚, m˚y is a type space on S, we have
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to show that mi̊ is a measurable mapping for each i P I. For ti̊ , let ti be the
i-type used to define mi̊ pti̊ q P RpT ˚́

iq Ď RpH´iq, i.e., mi̊ pti̊ q “ qh´ipmiptiqq. Con-
sider the preference relation on FpHk´iq induced by m˚pti̊ q, i.e., q�k´ipmi̊ pti̊ qq whereq�k´i : RpH´iq Ñ RpHk´iq is the representation mapping defined in (5) corresponding
to the projection �k

i : Hi Ñ Hk
i . Then,

q�k
´ipm˚

i pt˚
i qq “ q�k

´ipqh´ipmiptiqqq (13)
“ qhk

´ipmiptiqq since hk
i ptiq “ �k

i phiptiqq (14)
“ pk ` 1qth coordinate of hiptiq (15)
“ pk ` 1qth coordinate of the hierarchy t˚

i (16)
” pt˚

i qk`1 (17)

Let Gk Ď FpH´iq be the set of acts that are measurable with respect to Hk´i, i.e., Gk

is the set of acts fk such that for every Borel measurable E Ď R there exists some
measurable Ek Ď Hk´i for which f´1

k pEq “ p�k´iq´1pEkq. Let

G “
8ď

k“0
Gk

Then AG “ tf´1pEq : f P G, E Ď R Borelu is the collection of all cylinders with
finite-dimensional bases, which generates the σ-algebra on H´i. Moreover, (i) the
constant act 1 is in G0 and hence in G. Furthermore, if f, f 1 P G then f P Gk and
f 1 P Gk1 for some k, k1, and if, without loss of generality k ě k1 then f 1 P Gk. It thus
follows that (ii) αf ` α1f 1 P Gk Ă G for every α, α1 P R, and (iii) mintf, f 1u P Gk Ă G.
Lemma 1 then implies that ΣRpH´iq “ ΣG, i.e., that ΣRpH´iq is generated by the sets
of the form

trf Ě� gs | f, g P G, � P Lu “
8ď

k“0
trfk Ě� gks | fk, gk P Gk, � P Lu

But if fk, gk P Gk, � P L, then denoting by fk, gk P FpHk´iq the acts on Hk´i for which
fk “ fk ˝ �k´i, gk “ gk ˝ �k´i, from (13) we get that

pm˚
i q´1prfk Ě� gksq “ tt˚

i | pm˚
i pt˚

i qq�pfkq ě pm˚
i pt˚

i qq�pgkqu (18)
“ tt˚

i | ppt˚
i qk`1q�pfkq ě ppt˚

i qk`1q�pgkqu (19)

which are hence measurable subsets in Hi. This proves that mi̊ is a measurable
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mapping as required.

Proof of Proposition 3. The functions phiqiPI , are measurable and h0 is the identity.
Since the range of hi is Ti̊ , it is also measurable as a function to Ti̊ . Also, from (13),
it follows that for acts fk in FpH´iq that are measurable with respect to the σ-algebra
on Hk´i, pmi̊ pti̊ qq�pfkq does not depend on the specific type ti chosen to define mi̊ pti̊ q,
since there exists fk P FpHk´iq such that fk “ fk ˝ �k´i and so

pm˚
i pt˚

i qq�pfkq “ ppt˚
i qk`1q�pfkq “ pqh´ipmiptiqqq�pfkq “ pmiptiqq�pfk ˝ h´iq (20)

for any ti such that hiptiq “ ti̊ and every � P L. Now, every measurable act f P FpH´iq
is a pointwise limit of a sequence of functions fk P FpH´iq which are, respectively,
measurable with respect to the σ-algebra on Hk´i. The continuity of pmi̊ pti̊ qq� and
pmiptiqq� in (3) then implies that

pm˚
i pt˚

i qq�pfq “ lim
kÑ8pm˚

i pt˚
i qq�pfkq “ lim

kÑ8pmiptiqq�pfk ˝ h´iq “ pmiptiqq�pf ˝ h´iq (21)

for every � P L and i P I, which proves that h is a type morphism.

Proof of Lemma 2. It suffices to show that for each k and i P I, the function
hk

i on T ˚ is the projection on Hk
i . We show this by induction on k. It is clearly

true for k “ 0. Suppose that hk “ �k. By definition, phipt˚qqk`1 “ qhk´ipmi̊ pti̊ qq.
Using the induction hypothesis we get qhk´ipmi̊ pti̊ qq “ q�k´ipmi̊ pti̊ qq, implying that
phipt˚qqk`1 “ q�k´ipmi̊ pti̊ qq “ pti̊ qk`1.

Proof of Theorem 1. For any type space xT, my, the description map h : T Ñ T ˚

is a type morphism by Proposition 3. We need to show that it is unique. Suppose
φ : T Ñ T ˚ is a type morphism. Then for each i P I and ti P Ti, hiptiq “ hipφiptiqq
by Proposition 1. However, from Lemma 2, we get hipφiptiqq “ φiptiq. Hence, φi “ hi

and the result follows.

Proof of Proposition 4. Measurability of μ‹
i follows from the measurability of pΠ˚

´i
,qΠ˚́

i, and m‹
i .

Proof of Proposition 5. For all i P I, ΣΠ˚
´i

is generated by pΣΠ˚,k
´i

qkě0. Due
to monotone determination, it therefore suffices to show the following for all ΣΠ˚,k

´i
-

measurable f, g P FpΠ˚́
iq.

η´1
i prrf Ě gssiq “ μ´1

i prrf ˝ η´i Ě g ˝ η´issq

22



Note that η´1
i prrf Ě gssiq is equal to the following by definition.

“ tπi P Πi : ηipπiq P rrf Ě gssiu
“ tΠiptiq : ηi ˝ Πiptiq P rrf Ě gssi ^ ti P Tiu (replacing πi with Πiptiq where ti P Ti)
“ tΠiptiq : Π˚

i ˝ hiptiq P rrf Ě gssi ^ ti P Tiu (using ηi ˝ Πi “ Π˚
i ˝ hi)

“ tΠiptiq : Π˚
i ˝ hiptiq P tπ˚

i P Π˚
i : μ˚

i pπ˚
i q P rrf Ě gssu ^ ti P Tiu (expanding rrf Ě gssi)

“ tΠiptiq : μ˚
i pΠ˚

i ˝ hiptiqq P rrf Ě gss ^ ti P Tiu (replacing π˚
i with Π˚

i ˝ hiptiq)

This is in turn equal to the following.

“ tΠiptiq : μ˚
i ˝ Π˚

i phiptiqq P rrf Ě gss ^ ti P Tiu
“ tΠiptiq : pΠ˚

´i
˝ qΠ˚

´ipm˚
i phiptiqqq P rrf Ě gss ^ ti P Tiu (by definition of μ˚

i )

“ tΠiptiq : qΠ˚
´ipm˚

i phiptiqqq P rf Ě gs ^ ti P Tiu (by definition of pΠ˚
´i

)

“ tΠiptiq : m˚
i phiptiqq P rf ˝ Π˚

´i Ě g ˝ Π˚
´is ^ ti P Tiu (by definition of qΠ˚

´i)
“ tΠiptiq : qh´i ˝ miptiq P rf ˝ Π˚

´i Ě g ˝ Π˚
´is ^ ti P Tiu (since h : T Ñ T ˚ is a type morphism)

“ tΠiptiq : miptiq P rf ˝ Π˚
´i ˝ h´i Ě g ˝ Π˚

´i ˝ h´is ^ ti P Tiu (by definition of qh´i)
“ tΠiptiq : miptiq P rf ˝ η´i ˝ Π´i Ě g ˝ η´i ˝ Π´is ^ ti P Tiu (using ηi ˝ Πi “ Π˚

i ˝ hi)
“ tΠiptiq : qΠ´i ˝ miptiq P rf ˝ η´i Ě g ˝ η´is ^ ti P Tiu (by definition of qΠ´i)
“ tΠiptiq : pΠ´i

˝ qΠ´i ˝ miptiq P rrf ˝ η´i Ě g ˝ η´iss ^ ti P Tiu (by definition of pΠ´i
)

“ tΠiptiq : μipΠiptiqq P rrf ˝ η´i Ě g ˝ η´iss ^ ti P Tiu (because xΠ, μy is based on xT, my)
“ tπi P Πi : μipπiq P rrf ˝ η´i Ě g ˝ η´issu (replacing Πiptiq, ranging over ti P Ti, with πi P Πi)
“ μ´1

i prrf ˝ η´i Ě g ˝ η´issq

It remains to be shown that ηi : Πi Ñ Πi̊ is measurable for all i P I0. The map
η0 : Π0 Ñ Π0̊ is measurable because it is the identity on S. For i P I, we proceed by
induction. For k “ 0, ηi : Πi Ñ Πi̊ is pΣΠi

, ΣΠ˚,0
i

q-measurable by definition.
Suppose ηi : Πi Ñ Πi̊ is pΣΠi

, ΣΠ˚,k
i

q-measurable for k ě 0. We want to show
that ηi : Πi Ñ Πi̊ is pΣΠi

, ΣΠ˚,k`1
i

q-measurable. The σ-algebra ΣΠ˚,k`1
i

is generated by
sets of the form rrf Ě gssi for ΣΠ˚,k

´i
-measurable f, g P FpΠ˚́

iq. We therefore need to
show that η´1

i prrf Ě gssiq Ď Πi is measurable for all ΣΠ˚,k
´i

-measurable f, g P FpΠ˚́
iq.

Let f, g P FpΠ˚́
iq be ΣΠ˚,k

´i
-measurable. Then f ˝ η´i and g ˝ η´i are measurable by

the inductive hypothesis. It then follows that η´1
i prrf Ě gssiq is measurable because

η´1
i prrf Ě gssiq “ μ´1

i prrf ˝ η´i Ě g ˝ η´issq and μi is measurable.
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Proof of Lemma 3. It is trivial that ψ0
i “ Π˚,0

i ˝ψi. Assume the inductive hypothesis
that ψk

i “ Π˚,k
i ˝ ψi. Recall that ψk`1

i “ pψk´i ˝ μi.

ψk`1
i “ pψk

´i ˝ μi “ ppΠ˚,k
´i ˝ pψ´iq ˝ μi “ pΠ˚,k

´i ˝ p pψ´i ˝ μiq
“ pΠ˚,k

´i ˝ pμ˚
i ˝ ψiq

“ ppΠ˚,k
´i ˝ μ˚

i q ˝ ψi

“ Π˚,k`1
i ˝ ψi

Proof of Proposition 6. The inductive definition of pψkqkě0 depends only on ψ0.
The inductive definition of pηkqkě0 depends only on η0. However, if ψ and η are
type morphisms, then ψ0 “ η0. It follows that pψkqkě0 “ pηkqkě0, which implies the
following.

@i P I ψipπiq “
č
kě0

pΠ˚,k`1
i ˝ ψiqpπiq “

č
kě0

ψk`1
i pπiq “

č
kě0

p pψk
´i ˝ μiqpπiq

“
č
kě0

ppηk
´i ˝ μiqpπiq “

č
kě0

ηk`1
i pπiq “

č
kě0

pΠ˚,k`1
i ˝ ηiqpπiq “ ηipπiq

Furthermore, ψ0 “ η0 because ψ and η are preference-type morphisms. Therefore,
ψ “ η.

Proof of Theorem 2. xΠ˚, μ˚y is a preference type space by Proposition 4. For
any preference type space xΠ, μy, η is a preference type morphism to xΠ˚, μ˚y by
Proposition 5 and it is unique by Proposition 6. The result follows.

B APPLICABLE CLASSES OF PREFERENCE RELATIONS

B.1 LEXICOGRAPHIC EXPECTED UTILITY PREFERENCES

When L Ď N and � is the lexicographic order on R
L, then Á admits a lexicographic

expected utility representation if each U� is a continuous linear functional. The following
results in Section B.1.1 show that this representation class satisfies the monotone
determination property (Definition 7) and hence the results of Section 4 apply to
provide the existence of the universal preference type space.
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B.1.1 Lexicographic probability systems: preference monotone determination

Suppose L “ N and RpY q is the set of all monotone continuous pL,�q-representations
of lexicographic expected utility (LEU) preferences on FpY q for any measurable space
Y . We show that R satisfies preference monotone determination (Definition 7) in
Corollary 1 below, which follows from results that we prove next.

While we assume that L is countably infinite, the proofs below establish monotone
determination for LEU preferences represented by both finite and countably infinite
LPSs. LEU preferences that can be represented by finite LPSs are those that have
“minimal” representations with a “repeating tail” in a way that will become clear in
Definition 16.

Let UpY q denote the set of all bounded linear functionals on FpY q so that RpY q “ś
�PL UpY q and let ělex denote the lexicographic order.

Definition 15. Let �1 P L and let pU�q�ď�1 P ś
�ď�1 UpY q. pU�q�ď�1 is non-minimal

if there is some �2 ă �1 such that, for all f, g P FpY q:

pU�pfqq�ď�2 ělex pU�pgqq�ď�2 ðñ pU�pfqq�ď�2`1 ělex pU�pfqq�ď�2`1

pU�q�ď�1 is minimal if it is not non-minimal.

Definition 16. Let U “ pU�q�PL P RpY q. U is minimal if, for all �1 P L, it must be
the case that either pU�q�ď�1`1 is minimal or U�1 “ U�1`1. That is, a minimal U will
either have no non-minimal initial segment or have a minimal initial segment and a
repeating tail.

p
min. init. segmenthkkkkkkkikkkkkkkj
U1, U2, . . . , U�1 , U�1 , U�1 , . . .loooomoooon

repeating tail

q

The arguments showing the following remarks can be seen in Blume et al. (1991)
(Theorem 3.1 and the subsequent discussion on p.66), which axiomatizes lexicographic
expected utility preferences.

Remark 1. Let �1 P L and let pU�q�ď�1 , pV�q�ď�1 P ś
�ď�1 UpY q be minimal. Furthermore,

let the following hold for all f, g P FpY q:

pU�pfqq�ď�1 ělex pU�pgqq�ď�1 ðñ pV�pfqq�ď�1 ělex pV�pfqq�ď�1

This is equivalent to the following: There is some ppα�
jqjď�q�ď�1 P ś

�ď�1
ś

jď� R such
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that pα�
�q�ď�1 ą p0q�ď�1 and

pV�q�ď�1 “
˜ÿ

jď�

α�
jUj

¸
�ď�1

.

Remark 2. Let �1 P L and let pU�q�ď�1`1 P ś
�ď�1 UpY q be non-minimal. If pU�q�ď�1 is

minimal then there is some pα�1
j qjď�1 P ś

jď�1 R such that

U�1`1 “
ÿ
jď�1

α�1
j Uj

Lemma 4. Let pΣn
Y qně0 be a filtration of ΣY . Let U P RpY q and �1 P L such that

pU�q�ď�1 is minimal and denote by Un the restriction of U to acts in FpY q that are
Σn

Y -measurable. Then there is some N�1 such that, for all n ě N�1, pUn
� q�ď�1 is minimal.

Proof. The proof is by induction as follows.
Base case. The case when �1 “ 1 is trivial.
Inductive hypothesis. There is some N�1 such that, for all n ě N�1 , pUn

� q�ď�1 is
minimal.

Inductive Step. Suppose that pU�q�ď�1`1 is minimal. We need to show that there
is some N�1`1 such that, for all n ě N�1`1, pUn

� q�ď�1`1 is minimal. Suppose by way
of contradiction that, for all N�1`1, there is some n ě N�1`1 such that pUn

� q�ď�1`1 is
non-minimal. Without loss of generality, let N�1`1 ě N�1 . Since pUn

� q�ď�1 must be
minimal by the inductive hypothesis, there is exactly one pα�1

j qjď�1 such that

Un
�1`1 “

ÿ
jď�1

α�1
j Un

j (22)

due to the required linear independence. Note that if Un`1
�1`1 “ ř

jď�1 α�1
j Un`1

j , then it
must be the case that Un

�1`1 “ ř
jď�1 α�1

j Un
j . This is due to the fact that Un and Un`1

coincide on FpΣn
Y q by definition since Σn

Y Ď Σn
Y . It follows that (22) must hold for all

n ě 1 for some fixed pα�1
j qjď�1 . From this and Remark 2 it follows that

U�1`1 “
ÿ
jď�1

α�1
j Uj

which contradicts the fact that pU�q�ď�1`1 is minimal.
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Proposition 7. Let pΣn
Y qně0 be a filtration of ΣY . Let U, V P RpY q so that

@n @f, g P FpY q that are Σn
Y -measurable, Upfq � Upgq ðñ V pfq � V pgq. (23)

Then pY pUq “ pY pV q, which is equivalent to

@f, g P FpY q Upfq � Upgq ðñ V pfq � V pgq.

Proof. Let FpY, Σn
Y q Ď FpY q denote the Σn

Y ´measurable acts and denote by Un, V n

the respective restrictions of U, V to FpY, Σn
Y q. Without loss of generality, assume

that U and V are minimal. The proof is by induction on �1. What we want to prove
is that the following holds for all f, g P FpY q.

@�1 P L pU�pfqq�ď�1 ělex pU�pgqq�ď�1 ðñ pV�pfqq�ď�1 ělex pV�pgqq�ď�1

Base Case. We can rewrite (23) more succinctly as

ppY,Σn
Y qpU |FpY,Σn

Y qq “ ppY,Σn
Y qpV |FpY,Σn

Y qq,

which makes it obvious that Un
1 “ V n

1 for all n. Furthermore, if Un
1 “ V n

1 for all n,
then U1 “ V1. Therefore, for all f, g P FpY q:

pU�pfqq�ď1 ělex pU�pgqq�ď1 ðñ pV�pfqq�ď1 ělex pV�pgqq�ď1

Inductive Hypothesis (�1). For all f, g P FpY q:

pU�pfqq�ď�1 ělex pU�pgqq�ď�1 ðñ pV�pfqq�ď�1 ělex pV�pgqq�ď�1

Inductive Step. We want to show that, for all f, g P FpY q,

pU�pfqq�ď�1`1 ělex pU�pgqq�ď�1`1 ðñ pV�pfqq�ď�1`1 ělex pV�pgqq�ď�1`1

If pU�q�ď�1 is the longest minimal initial segment of U , then no further work is needed.
Therefore, now consider the case when pU�q�ď�1`1 is minimal.

By Lemma 4 and the minimality of U and V , there is some N�1`1 such that, for
all n ě N�1`1, pUn

� q�ď�1`1 and pV n
� q�ď�1`1 are both minimal.10

10 Apply Lemma 4 to U and V separately to find the corresponding N�1`1 for each and take the
maximum of the two numbers.
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By (23) and Remark 2, there is some pα�1`1
j qjď�1`1 such that α�1`1

�1`1 ą 0 and

V n
�1`1 “

ÿ
jď�1`1

α�1`1
j Un

j .

By the minimality of pUn
� q�ď�1`1, there is exactly one such pα�1`1

j qjď�1`1. Therefore,
the analogous property carries over to the limit extensions, i.e.,

V�1`1 “
ÿ

jď�1`1
α�1`1

j Uj,

which, when combined with the Inductive Hypothesis, shows the Inductive Step by
Remark 2.

Corollary 1. R satisfies monotone determination.

Proof. This is immediate because Proposition 7 holds for all nonempty measurable
Y .

B.2 CONTINUOUS PREFERENCES UNDER RISK AND AMBIGUITY

If |L| “ 1 and � is the usual order ě on R, Á admits a continuous representation for
preferences under risk and ambiguity. These preferences include uncertainty-averse
preferences (Cerria-Vioglio et al., 2011) and vector expected utility preferences (Sinis-
calchi, 2009) and cumulative prospect theory preferences (Wakker and Tversky, 1993).
For these classes of preferences, as we describe below, there exist ‘standard’ repre-
sentations of beliefs, as separate from tastes, such as the representation of monotone
continuous Savage (1954) preferences by a countably additive probability measure.
The standard representation is unique and the result of Section 3 provides the ex-
istence of a universal type space in the category of type spaces where each type is
associated in a measurable way with the standard representation of the preferences.

However, it is also possible to consider representations where beliefs and tastes
are not separated and a standard representation may not exist. In particular, for
many preferences, the standard representations capture the ‘belief’ part of preferences
and not the ‘tastes’ part. The latter would be, for example, the so-called Bernoulli
or von Neumann-Morgenstern utility function u which captures the risk attitude in
the case of Savage (1954) preferences. The Bernoulli utility function is typically only
identified up to positive affine transformations. That is, u and u1 “ αu ` β, α ą
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0, β P R both represent the same risk attitude. Representations which do not separate
beliefs and tastes have been extensively studied under the label of ‘state-dependent’
representations, See, for example, Karni et al. (1983) and references therein. In this
case, there typically does not exist a ‘standard’ or unique representation that also
incorporates differences in tastes. However, the approach of Section 4, by working
with the equivalence classes of representations, provides the existence of the universal
preference type space where the representations do not distinguish between tastes and
beliefs.

Below, we first provide a list of standard representations of the belief part of
preferences, for many preferences under risk and ambiguity to which the results of
this paper are applicable.11 Uniqueness of the standard representation implies that
R is image regular (Definition 2) and results of Section 3 provide the existence of
the universal type space where preferences are uniquely represented. We then discuss
the case of state-dependent representations for which there may not be a standard or
unique representation in the relevant class of representations and where the results of
Section 4 apply to provide the existence of the universal preference type space.

B.2.1 Standard representations of beliefs12

For uncertainty averse preferences, let RpY q be encoded by the set of all lower semi-
continuous and linearly continuous functions G : RˆΔσpY q Ñ p´8, 8s, where ΔσpY q
is the set of all countably additive probabilities over pY, ΣY q. The results of Cerria-
Vioglio et al. (2011) (Theorem 7, Lemma 48, Lemma 57) imply that each element
of RpY q uniquely represents a continuous functional U over FpY q that represents
preference Á over FpY q, where

Upfq “ min
pPΔ

G

ˆż
f dp, p

˙
and

Gpt, pq “ sup
"

Upfq
ˇ̌̌̌
f P FpY q,

ż
f dp ď t

*
11 The list is certainly not comprehensive and is only meant to indicate the scope of the present

paper’s approach.
12 The results of Heifetz and Samet (1998a) already cover the case of preferences where beliefs

are represented by continuous non-additive measures or capacities, (see Schmeidler (1989) for an
axiomatization of such preferences).
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Examples of uncertainty averse preferences, such as multiple prior preferences, varia-
tional preferences, smooth ambiguity preferences and the specific functional form of
Gp¨q for each, are provided in Cerria-Vioglio et al. (2011). Restricting R to the set of
all G corresponding to any of the above subclasses also satisfies image regularity.13

For vector expected utility preferences, axiomatized in Siniscalchi (2009), let RpY q
be encoded by a collection of tuples pp, n, pζiq0ďiďn, Aq where p P ΔσpY q, n P NY t8u,
pζiq0ďiďn P FnpY q, A : Rn Ñ R satisfy the following conditions.14

For every 0 ď i ď n, Eprζis “ 0
App0q0ďiďnq “ 0 and

Appriq0ďiďnq “
$&%App´riq0ďiďnq if priq0ďiďn “ pEprζi ¨ f sq0ďiďn for some f P FpY q

0 otherwise.

The result of Siniscalchi (2009) (Theorem 1) implies each element of RpY q is a con-
tinuous functional U over FpY q, which represents vector expected utility preference
Á over FpY q where

Upfq “ Eprf s ` A ppEprζi ¨ f sq0ďiďnq .

For cumulative prospect theory preferences, axiomatized in Wakker and Tversky (1993),
let RpY q be encoded by a collection of continuous capacity pairs pν1, ν2q P bvmσ

1 pY q ˆ
bvmσ

1 pY q, where bvmσ
1 pY q is the collection of set functions on ν : ΣY Ñ r0, 8s satisfying

(i) νpHq “ 0 “ 1 ´ νpY q, (ii) (monotonicity) νpAq ď νpBq if A Ď B, (iii) (continuity)
for each A, limnÑ8 νpAnq “ νpAq whenever pAnq Ò A or pAnq Ó A. The result of
Wakker and Tversky (1993) (Theorem 6.3) implies that each element of RpY q is a
continuous functional U over FpY q, which represents preference ÁP FpY q, where
f` “ maxt0, fu, f´ “ ´ mint0, fu, and ν̄2pAq “ 1 ´ ν2pAcq for all A P ΣY and

Upfq “
ż

f` dν1 `
ż

f´ dν̄2

13 For example, variational preferences are represented by G satisfying Gpt, pq “ t ` cppq, where
c : ΔσpY q Ñ r0, 8s is a lower semicontinuous convex function, with minpPΔσpY q cppq “ 0. Suppose
RpY q is encoded by the set of all such G. Then R is image-regular and players preferences are of
the variational preferences class.

14 In what follows, pEprζi ¨ f sq0ďiďn “ 0 if n “ 0.
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B.2.2 Non-separation of beliefs and tastes

Suppose RpY q is encoded by the set of all continuous, additively separable, monotonic
functionals over FpY q, where for each U P RpY q, there exists μ P ΔσpY q and strictly
increasing continuous Vy : R Ñ R, y P Y, such that, for all f P FpY q

Upfq “
ż

Vypfpyqq dμ.

If pμ˚, pVẙ qyPY q represents the same preference as pμ, pVyqyPY q then (i) μpAq “ 0 ðñ
μ˚pAq “ 0 and (ii) Vẙ “ αpyq ` σβpyqVy where σ ą 0 is a constant, α : Y Ñ R is
measurable, and β is the Radon-Nikodym density of μ with respect to μ˚. Then U P
RpY q represents preferences Á over FpY q that are complete, transitive, continuous,
and satisfy the sure-thing principle as required in Wakker and Zank (1999) (Theorem
12), but do not separately represent beliefs and tastes in a unique way.15

However, RpY q is image-regular and is preference monotone determined (Lemma 5
below) and U P RpY q satisfy (2)–(4). Section 4 provides the existence of the universal
preference type space for such preferences.

Lemma 5. R satisfies monotone determination.

Proof. Let U, U˚ P RpY q and let pΣn
Y qně0 be a filtration of ΣY . Denote by FpY, Σn

Y q Ď
FpY q the set of Σn

Y -measurable acts and by Un “ pμn, pV n
y qyPY q, U˚n “ pμ˚n, pV ˚n

y qyPY q
the respective restrictions of U, V to FpY, Σn

Y q. Suppose

@n @f, g P FpY, Σn
Y q Upfq ě Upgq ðñ U˚pfq ě U˚pgq. (24)

That is, @n, Un, U˚n represent the same preference over FpY, Σn
Y q. Then, V ˚n

y “
αnpyq ` σnβnpyqV n

y where σn ą 0 is a constant, αn : Y Ñ R is measurable, and βn is
the Radon-Nikodym density of μn with respect to μ˚n. So, for any f, g P FpY, Σn

Y q

U˚npfq “
ż

Y

αn dμ˚ ` σnUnpfq.

Let f P FpY q (resp. g P FpY q) and pfnqně1 be a sequence converging pointwise to f ,
fn P FpY, Σn

Y q (resp. pgnqně1 be a sequence converging pointwise to g, gn P FpY, Σn
Y q).

15 The results of this paper would not apply to the additively separable representations in the more
recent work of Hill (2010) that need not satisfy monotonicity.

31



Then,

U˚pfq ´ U˚pgq ě 0
ðñ lim

nÑ8pU˚pfnq ´ U˚pgnqq ě 0

ðñ lim
nÑ8pU˚npfnq ´ U˚npgnqq ě 0

ðñ lim
nÑ8 σnpUnpfnq ´ Unpgnqq ě 0

ðñ lim
nÑ8 σnpUpfnq ´ Upgnqq ě 0

ðñ lim
nÑ8pUpfnq ´ Upgnqq ě 0,

since

@n σn “ U˚np1q ´ U˚np0q
Unp1q ´ Unp0q “ U˚p1q ´ U˚p0q

Up1q ´ Up0q ą 0.

This yields the desired result since limnÑ8pUpfnq ´ Upgnqq “ Upfq ´ Upgq.16

B.3 PREFERENCES OVER MENUS

U P RpY q can be used to characterize some instances of preferences over countable
menus of acts in FpY q that feature behavior such as self-control and temptation. For
instance, self-control preferences over menus (Gul and Pesendorfer (2001), Epstein
(2006)) are defined in terms of a commitment utility C and temptation utility T for
each act.

Suppose C and T are continuous linear functionals on FpY q and let RpY q be
encoded by ΔσpY qˆΔσpY q, the set of countably additive measures over pY, ΣY q. Then
every C is uniquely determined by some p P ΔσpY q and T by some q P ΔσpY q. Self-
control preferences over countable menus along the lines of Epstein (2006) (Theorem 1)
can be characterized via a commitment utility C : FpY q Ñ R and a temptation utility
T : FpY q Ñ R, which combine in the representation V : FNpY q Ñ R defined by

V pfq “ sup
n“1,2,...

tCpfnq ` T pfnqu ´ sup
n“1,2...

T pfnq (25)

16 The choice of acts 1 and 0 to evaluate σn is not special. Any constant acts a, b such that a ‰ b
will suffice. This reflects a restriction on how constant acts are compared under the preference
representation of Wakker and Zank (1999) (Theorem 12).
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Here L “ N ˆ N, where for every pf1, . . . , fn, . . . q P FNpY q,

Uppf1, . . . , fn, . . . qq “ ppCpf1q, . . . , Cpfnq, . . . q, pT pf1q, . . . , T pfnq, . . . qq

with the order � on R
NˆN defined by

ppcnq8
n“1, ptnq8

n“1q � ppc1
nq8

n“1, pt1
nq8

n“1q
ðñ sup

n“1,2,...
tcn ` tnu ´ sup

n“1,2,...
tn ě sup

n“1,2,...
tc1

n ` t1
nu ´ sup

n“1,2,...
t1
n

This order satisfies condition (1) since coordinate-projections in R
NˆN, sums of mea-

surable functions and suprema of measurable functions are themselves measurable
functions. In this case, Section 3 provides the existence of the universal type space in
the category of type spaces where each type is measurably associated with a standard
representation. On the other hand, for the Gul and Pesendorfer (2001) style representa-
tion, pC, T q need not be identified with probability measures, and may be represented
by a additively separable representation, along the lines of Wakker and Zank (1999)
(Theorem 12). In this case, the preference type space approach of Section 4 provides
the existence of the universal preference type space.
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