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a b s t r a c t

In this paper we consider the problem of testing for the co-integration rank of a vector autoregressive
process in the case where a trend break may potentially be present in the data. It is known that un-
modelled trend breaks can result in tests which are incorrectly sized under the null hypothesis and
inconsistent under the alternative hypothesis. Extant procedures in this literature have attempted to solve
this inference problem but require the practitioner to either assume that the trend break date is known or
to assume that any trend break cannot occur under the co-integration rank null hypothesis being tested.
These procedures also assume the autoregressive lag length is known to the practitioner. All of these
assumptions would seem unreasonable in practice. Moreover in each of these strands of the literature
there is also a presumption in calculating the tests that a trend break is known to have happened. This
can lead to a substantial loss in finite sample power in the case where a trend break does not in fact
occur. Using information criteria basedmethods to select both the autoregressive lag order and to choose
between the trend break and no trend break models, using a consistent estimate of the break fraction
in the context of the former, we develop a number of procedures which deliver asymptotically correctly
sized and consistent tests of the co-integration rank regardless of whether a trend break is present in the
data or not. By selecting the no break model when no trend break is present, these procedures also avoid
the potentially large power losses associated with the extant procedures in such cases.

© 2016 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Macroeconomic series are typically characterised by piecewise
linear (or broken) trend functions; see, inter alia, Stock andWatson
(1996, 1999, 2005) and Perron and Zhu (2005). Such breaks in the
trend function might occur following a period of major economic
upheaval or a political regime change.

In the univariate setting this has spurred a large literature on
testing for an autoregressive unit root when a trend break may be
present in the data. The first proper theoretical treatment of this
problem was given by Perron (1989) who showed that unit root

✩ Weare grateful to theGuest Editor, Jörg Breitung, and three anonymous referees
for their helpful and constructive comments on earlier versions of this paper. Taylor
gratefully acknowledges financial support provided by the Economic and Social
Research Council of the United Kingdom under research grant ES/M01147X/1.
∗ Correspondence to: Essex Business School, University of Essex, Colchester, CO4

3SQ, UK.
E-mail address: robert.taylor@essex.ac.uk (A.M.R. Taylor).

http://dx.doi.org/10.1016/j.jeconom.2016.02.010
0304-4076/© 2016 The Authors. Published by Elsevier B.V. This is an open access artic
tests which fail to account for a trend break present in the data
have non-pivotal limiting null distributions and are inconsistent
under stable root alternatives. Assuming the putative break date
to be known, Perron (1989) proposed new unit root tests which
avoid these problems by modelling the trend break. However, if
a break does not occur this approach loses considerable finite
sample power through the inclusion of an unnecessary trend break
regressor. Subsequent approaches have focussed on the casewhere
the break date is unknown. Zivot and Andrews (1992) base a
test on the most negative of a sequence, taken across all possible
break dates, of the Perron (1989) statistics, while Perron (1997)
first estimates the trend break location and then uses the Perron
(1989) test for the estimated break date. The limiting distributions
of the Zivot and Andrews (1992) tests depend on the magnitude
of the trend break parameter which renders them infeasible in
practice. The Perron (1997) approach is also problematic in that
the break point estimator has a non-degenerate limit distribution
when no break is present, with the result that the associated unit
root test has a different large sample null distribution vis-à-vis
the case where a trend break is present. Size-controlled inference
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can then only be achieved by using so-called conservative critical
values corresponding to the casewhere nobreak is present,with an
associated loss of efficiency where a break is present. As a result,
Carrion-i-Silvestre et al. (2009), Harris et al. (2009) and Kim and
Perron (2009) advocate approaches based on the use of pre-tests
for the presence of a trend break.

In the vector time series setting, un-modelled trend breaks
cause similar problems for the co-integration rank tests of
Johansen (1995). For example, Inoue (1999) documents large
losses in finite sample power with the standard trace and
maximum eigenvalue tests of Johansen (1995) when an un-
modelled trend break is present in the data. As we will show in
the simulation results we report in this paper, an un-modelled
trend break also causes substantial over-sizing in the standard rank
tests, consistent with the findings for standard unit root tests in
Perron (1989). Surprisingly then, the literature on testing for co-
integration rank in the presence of breaks in the deterministic
trend function is relatively sparse compared to the univariate case.

In the context of co-integration rank tests of the type considered
in Johansen (1995), Johansen et al. (2000) develop likelihood ratio
tests, analogous to those considered in the univariate case in
Perron (1989), for the case where the break in the trend function
occurs at a known point. Like Perron (1989) they consider both
level break and trend break models, and extend to allow for
multiple breaks in the trend function. Saikkonen and Lütkepohl
(2000) for a level break (but no trend break) at a known date,
Lütkepohl et al. (2004) for a level break (no trend break) at
an unknown point, and Trenkler et al. (2007) for a trend break
at a known date, propose further co-integration rank tests, in
each case using the pseudo-GLS de-trending method outlined in
Saikkonen and Lütkepohl (2000). All of these procedures assume
that the autoregressive lag length is known to the practitioner.
The approaches taken in the last three of these papers also differ
from the approach taken in Johansen et al. (2000) according to
how the data generating process [DGP] under consideration is
constructed. While they adopt a components DGP, forming the
observed process as the sum of the deterministic variables and
an indeterministic vector autoregressive [VAR] process, Johansen
et al. (2000), follow Johansen (1995) and place the deterministic
variables directly into the VAR equation. Finally, Inoue (1999), who
also assumes a known autoregressive lag order, develops Zivot
and Andrews (1992) type co-integration rank tests by calculating
with-break implementations of the Johansen (1995) tests over all
possible break dates and basing a test on themost positive of these.

Relative to the developments seen in the univariate case,
significant drawbacks therefore still exist with the currently
available co-integration rank tests which allow for a break in
the deterministic trend. Firstly, the approach in Inoue (1999) is
infeasible in practice because, like Zivot and Andrews (1992), it
cannot allow a trend break to occur under the null. In practice
the co-integration rank of a system of variables is established
by the sequential procedure outlined in Johansen (1995). Here
one first tests the null hypothesis that the co-integration rank,
r say, is zero against the hypothesis that r = n, n being the
dimension of the system. If this null is accepted the procedure
stops. Otherwise one sequentially tests the null hypotheses that
r = 1, 2, . . . , against the alternative that r = n, until the null
cannot be rejected. If the true rank is r∗, the test for r = r∗ in this
procedure will not be size controlled even asymptotically when
a break is present. Second, the tests considered in Johansen et al.
(2000) and Trenkler et al. (2007) both assume that the trend break
date is known to the practitioner. Moreover, these tests essentially
assume that a trend break does indeed occur and, hence, would be
expected to unnecessarily sacrifice a considerable degree of finite
sample power when no break occurs. Indeed it should be noted
that Lütkepohl et al. (2004) need to impose that a break does occur
otherwise they run into the same problems outlined above for the
Perron (1997) procedure where no break is present. Finally, all of
these procedures take the autoregressive lag length as fixed and
known.

The aim of this paper is to address these drawbacks with
the existing tests in the literature. In order to focus attention
on what we believe to be the empirically most relevant case,
we follow Trenkler et al. (2007) and consider only the leading
example of the trend break case, but allowing for the possibility
of a simultaneous level break. We propose new testing procedures
which in spirit generalise the approach taken by Carrion-i-Silvestre
et al. (2009), Harris et al. (2009) and Kim and Perron (2009) to the
setting of testing for co-integration rank.We consider two possible
approaches depending onwhether the deterministic component is
included additively as in Trenkler et al. (2007) or directly into the
co-integrated vector autoregressive [VAR] equation as in Johansen
et al. (2000). In either case the first step in the procedure is based
on the use of a consistent estimator of the break date. In the context
of the component DGP of Trenkler et al. (2007), a multivariate
generalisation of the first difference trend break estimator used
in Harris et al. (2009) is proposed, along with a corresponding
estimator obtained from the levels of the data, while for the
Johansen et al. (2000) set-up a maximum likelihood estimator of
the break date is used. Based on these break date estimators, for
each of the two approaches an information-based method using a
Schwarz (1978)-type criterion is then employed to select between
the version of the model which includes a trend break (included at
the relevant estimated break date) and that which does not. Each
of the proposed procedures also employs a Schwarz-type criterion
to select the autoregressive lag length. Conventional trace-type co-
integration rank tests are then computed appropriate to themodel
selected by these Schwarz-type criteria.

For each of the proposed procedures we establish that: (i) the
estimator of the break fraction is consistent for the true break
fraction; (ii) the information-based methods based on this
estimator consistently select between thewith-break andwithout-
break variants of the model, and (iii) the resulting trace tests can
be validly compared to known break date critical values in trend
break case and to the without break critical values in the no break
case. A consequence of our results is that, at least in large samples,
the information-based methods we propose allow us to correctly
identify whether we need to allow for a trend break in the model
or not. This then implies that where a break is not present we
will not see the loss in efficiency that is incurred by including a
redundant trend break regressor in the model, and at the same
time where a trend break is present we will not see the potentially
large impact on the size and power properties of the rank tests
that result from omitting the trend break. We present Monte Carlo
simulation evidence which suggests that the procedure based on
the Johansen et al. (2000) set-up is preferred and generally works
verywell even for a relatively small sample size such that the finite
sample performance of this procedure is quite close to that seen
for the benchmark rank tests which would obtain with knowledge
of whether a trend break was present or not. The key findings of
our Monte Carlo simulation exercise are presented here, while a
more detailed set of results can be found in the accompanying
supplement, Harris et al. (2015).

The paper is organised as follows. Section 2 details our reference
co-integrated VAR model. Section 3 outlines our new procedures
for co-integration rank testing which allow for the possibility that
series under test display a trend break at an unknown point in
the sample. Section 4 analyses the large sample properties of
these methods. Results from our Monte Carlo simulation study are
reported in Section 5. Section 6 concludes. All proofs are contained
in the Appendix A. In the following

d
→ and

p
→ are used to denote

weak convergence and convergence in probability, respectively;
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1(·) denotes the usual indicator function; ⌊·⌋ denotes the integer
part of its argument; x := y and y =: x each indicate that x is
defined by y; x∨ y and x∧ y indicate the maximum andminimum,
respectively, of x and y; Ik denotes the k × k identity matrix. The
notation 0 is used generically in context to denote a j× kmatrix of
zeros. If a is of full column rank n < m, then a⊥ is an m × (m − n)
full column rank matrix satisfying a′

⊥
a = 0; for any square matrix,

A, |A| denotes its determinant, and tr(A) its trace.

2. The trend break co-integrated VAR model

Following Trenkler et al. (2007), we consider the n-dimensional
time series process yt := (y1t , . . . , ynt)′, t = 1, . . . , T , generated
according to the following DGP

yt = µ0,0d0,t (0)+ µ1,0d1,t (0)+ µ0,1d0,t (b)

+µ1,1d1,t (b)+ ut , (1)

for which we have defined the step (or level break) dummy
d0,t (b) := 1(t>b), and then for any k = 0,±1,±2, . . . , also
defined dk,t (b) := ∆−kd0,t (b), where ∆ := (1 − L) denotes the
usual first difference filter in the lag operator, L, such that Lkyt =

yt−k. Then, as special cases of this generic definition, we have that
d0,t (0) = 1 and d1,t (0) = t in (1) are the usual constant and linear
trend terms, while d1,t (b) = 0 ∨ (t − b) is a trend break dummy.
The parameter vectorsµi,j, i, j = 0, 1, in (1) are all n×1. Themodel
in (1) is therefore generated as the sum of a constant, linear trend,
level shift and change in the trend slope at time b, together with a
stochastic component ut which we specify below. As is standard,
for the purposes of the large sample results which follow, we
assume that the break date depends on the sample size such that
the break occurs at a fixed fraction of the sample size; that is, we
parameterise the breakpoint in terms of the break fraction λwhere
0 < λL ≤ λ ≤ λU < 1, by b = ⌊λT⌋. Notice therefore that b is
constrained to lie in the set B := [⌊TλL⌋, ⌊TλU⌋]. It can be seen that
a trend break exists in yt only if µ1,1 ≠ 0 in (1) (ie. where at least
one element of the vector µ1,1 is non-zero); unlike the previous
contributions to this literature outlined in Section 1, we will not
assume that µ1,1 ≠ 0. In this paper our focus is on trend breaks
and so while we allow for a simultaneous level break through
d0,t (b)wewill not explicitly consider the case where a level break
but no trend break occurs since tests appropriate for this setting
have already been developed in Saikkonen and Lütkepohl (2000),
Lütkepohl et al. (2004) and Johansen et al. (2000), inter alia; that is,
we will assume that µ0,1 = 0 when µ1,1 = 0 in what follows.
In contrast to Trenkler et al. (2007), we do not assume in what
follows that the break fraction λ is known. Where the distinction
is important we will distinguish between a generic possible break
fraction (break point) and the true break fraction (break point) by
using λ∗ (b∗) for the latter.

The model in (1) is completed by specifying the usual pth order
reduced rank VAR (or co-integrated VAR) indeterministic version
of the model of Johansen (1995) for ut ; that is,

∆ut = αβ ′ut−1 +

p−1
j=1

Γj∆ut−j + et , t = 1, . . . , T (2)

where ut := (u1t , . . . , unt)
′, et := (e1t , . . . , ent)′, and where the

initial values, u1−p, . . . , u0, are taken to be fixed in the statisti-
cal analysis. The co-integration parameters α and β are (n × r)-
dimensional, while the parameters {Γi}i=1,...,p−1 on the stationary
lagged dependent variables are each (n × n)-dimensional. The in-
novation process {et} in (2) is taken to satisfy the following rela-
tively weak globally stationary martingale difference assumption
taken from Cavaliere et al. (2010); see also Davidson (1994,
pp. 454–455) for further discussion:
Assumption 1. The innovations {et} form a martingale difference
sequencewith respect to the filtrationFt , whereFt−1 ⊆ Ft for t =

· · · ,−1, 0, 1, 2, . . . , satisfying: (i) the global homoskedasticity
condition: 1

T

T
t=1 E


ete′

t |Ft−1
 p
→Σ , where Σ is full-rank, and

(ii) E ∥et∥4
≤ K < ∞.

As is routine, we also impose the standard so-called ‘I(1, r)
conditions’ of Johansen (1995) on the parameters of (2) in order
to rule out, for example, explosive processes.

Assumption 2. The following conditions hold on the parameters
of (2): (i) The autoregressive lag order p satisfies 1 ≤ p < ∞;
(ii) |(In −

p−1
j=1 Γjz j)(1− z)− αβ ′z| = 0 implies |z| > 1 or z = 1,

and (iii) |α′

⊥
Γ β⊥| ≠ 0, where Γ := (In −

p−1
j=1 Γj).

Under Assumption 2, ut is integrated of order one (I(1)) with co-
integration rank r , and the co-integrating relations β ′ut − E


β ′ut


are stationary. Part (i) of Assumption 2 assumes that the lag length
parameter p is finite, but crucially does not assume that it is known
to the practitioner.

An alternative formulation of (1)–(2) is considered in Johansen
et al. (2000). Specifically, and as demonstrated in Trenkler et al.
(2007), multiplying (1) through by the lag polynomial (In −p−1

j=1 ΓjLj)∆ − αβ ′L and re-arranging yields the vector error
correction mechanism [VECM] form

∆yt = δ0,0d0,t (0)+ δ0,1d0,t (b)+

p−1
j=0

δ−1,jd−1,t (b + j)

+α

β ′yt−1 + δ′

1,0d1,t−1 (0)+ δ′

1,1d1,t−1 (b)


+

p−1
j=1

Γj∆yt−j + et (3)

where d−1,t (b) := 1(t=b+1) is an impulse dummy; cf. Eq. (5) of
Trenkler et al. (2007), where explicit formulae for the δi,j, i, j = 0, 1
and δ−1,j, j = 0, . . . , p − 1, coefficient vectors are provided. As
Trenkler et al. (2007) note, the VECM representation in (3) is a
re-parameterised form of Eq. (6) of Johansen et al. (2000) for the
special case thereof of a single break in trend. Notice that the VECM
form in (3) includes a (broken) linear trend but does so in such a
way that its coefficients are restricted to exclude the possibility of
a quadratic (broken) trend in yt .

Regardless of whether we work with the components form in
(1)–(2), as in Trenkler et al. (2007), or the VECM form in (3) as in
Johansen et al. (2000), our interest in this paper is focussed on the
problemof testing the usual null hypothesis that the co-integration
rank is (less than or equal to) r , denoted H (r), against H (n),
but crucially without assuming any prior knowledge of whether
µ1,1 = 0 or µ1,1 ≠ 0 in (1), and in the case where µ1,1 ≠ 0
without prior knowledge of the trend break location, λ. In the next
section we outline our proposed procedures for achieving this.
These procedures all employ a trend break fraction estimator in
a first step and then use standard information-based methods to
select between the model with trend break and the corresponding
model without.

3. Co-integration rank test procedures

As discussed in the previous section, we now explore general
approaches suggested by the structures of each of (1)–(3).

The procedures which we will develop in relation to the VECM
form in (3) are based on a Gaussian (quasi) likelihood approach,
in which the break date estimation, selection between the with-
break and without-break models, de-trending and co-integration
rank testing are all done within the usual reduced rank regression
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framework of Johansen (1995) and Johansen et al. (2000). In
contrast to Johansen et al. (2000) the (maximum) number of
potential trend breaks is restricted to be one, but the presence of
a trend break is not assumed and, where a trend break is present,
the break date is treated as unknown. The break date estimation
is obtained by using (quasi) maximum likelihood estimation [MLE]
on (3) underH(r). Given this breakpoint, an adaptation of the usual
Schwarz information criterion1 [SC] is then used to select between
themodel with a break and themodel with break excluded (i.e. (3)
with δ0,1 = 0, δ1,1 = 0), both estimated under H(r). The usual
trace test for H(r) is then performed on the selected model, using
critical values appropriate to the selected model. In what follows
we will refer to this procedure as SC-VECM.

For the components form in (1)–(2) a possible breakpoint
estimator to use is the least squares (minimum residual sum of
squares) estimator for the location of a level break in the first
differences of (1). From a likelihood perspective, this estimator
treats ut as a simple vector random walk (i.e. p = 1, r = 0)
regardless of the actual values of p and r . This estimator can
be viewed as a multivariate generalisation of the corresponding
trend break estimator used in Harris et al. (2009) which is based
on applying the univariate level break estimator proposed in Bai
(1994) to the first differences of the data. In that sense, the
multivariate trend break estimator we consider here is also a
special case of the multivariate (level break) estimator considered
in Qu and Perron (2007), but applied here to the first differences.
A natural SC step following this approach is to choose between the
with-break and without-break models in the simple random walk
model. As in the SC-VECM procedure, the usual trace test follows
this selection. This procedurewill be referred to as SC-DIFF inwhat
follows.

The final procedure we present, referred to as SC-VAR in
what follows, carries out the breakpoint estimation and SC
selection between the with-break and without-break models in
an unrestricted VAR, i.e. with r = n. This then permits a full
comparison of the reasonable models in which to carry out the
break specification; that is, SC-VECM is constructed under H (r),
SC-DIFF under H (0), and SC-VAR under H (n).

Before we lay out these procedures in detail, a short discussion
comparing these possible approaches would seem useful. There is
no obvious reason to predict, a priori, why one should prefer one of
these procedures over the other in practice and it is our intention to
take an ambivalent stance and outline each. We will then compare
their finite sample performance using Monte Carlo methods in
Section 5. And indeed these results suggest that no one of these
procedures dominates all of the others in all situations, although
our Monte Carlo results do suggest that the SC-VAR approach is
the least efficacious of the three. The motivation for the SC-VECM
and SC-VAR approaches is perhaps clearer andmore natural in that
they are based on the likelihood function throughout. The SC-DIFF
approach is more ad hoc in nature, with the break date estimation
and model selection procedure imposing r = 0, p = 1.

We now detail the SC-VECM approach in Section 3.1, followed
by the SC-DIFF and SC-VAR approaches in Sections 3.2 and 3.3
respectively. In each of these three procedures we outline below
the autoregressive lag length, p, will be chosen from the set of
candidate values p ∈ {1, . . . , p̄}, where p̄ denotes the maximum

1 Although our focus in this paper is on the use of SC-type information criterion,
analogous procedures based on any consistent information criterion, such as
the Hannan–Quinn [HQ] information criterion, would have the same asymptotic
properties as we report for the procedures in this paper. Unreported simulations
suggest that the SC-type procedures considered here display superior finite sample
performance to corresponding procedures based on HQ. As in the discussion in
Remark 2 below, theHQ-type procedures showed a tendency to retain a trend break
too often when it was not present.
lag length considered by the practitioner. As is standardwe assume
in what follows that p̄ is at least as large as the true autoregressive
lag order, denoted p∗.

3.1. The SC-VECM procedure

First define a generic reduced rank regression of the form

Z0 = Z1γα′
+ XpΨ

′
+ E

= (Y1 : X1)


β
δ1


α′

+

X0 : Z∆,p

 δ′

0
Γ ′


+ E

where δ1 :=

δ′

1,0 : δ′

1,1

′, δ0 :=

δ0,0 : δ0,1


,

Z0
(T−p)×n

:=

∆y′

p+1
...

∆y′

T

 , Y1 :=

 y′

p
...

y′

T−1

 ,
Z∆,p :=

 ∆y′

p . . . ∆y′

2
...

...
∆y′

T−1 . . . ∆y′

T−(p−1)

 , E :=

ε
′

p+1
...
ε′

T


(4)

and where X0 and X1 are each matrices of deterministic terms.
The idea is that X1 will contain the broken linear trend (if
included) and the linear trend, while X0 will contain the level shift
(if included) and the constant term. The maximised quasi log-
likelihood associated with (3), based on the additional assumption
that et is Gaussian, is then given by the usual expression,

ℓ̂T (r; X0, X1, p) = −
T
2
log

Z ′

0P̄X,pZ0
T


−

T
2

r
i=1

log

1 − νi


Z ′

0P̄XpZ0
−1

Z ′

0P̄XpZ1

Z ′

1P̄XpZ1
−1

Z ′

1P̄XpZ0


(5)

where νi (M) denotes the ith largest eigenvalues of the matrix M
and P̄X := I−X


X ′X

−1 X ′ is the OLS orthogonal projectionmatrix
on any X; see Chapter 6 of Johansen (1995) for a detailed discussion
of the general approach.

For any possible break fraction λ ∈ [λL, λU ], define the (T − p)
× 1 vectors ιλ :=


d0,t (⌊λT⌋)

T
t=p+1 and τλ :=


d1,t (⌊λT⌋)

T−1
t=p .

The VECM in (3) with no trend break then has X1 := τ0 and
X0 := ι0, while the VECM with a trend break has X1 := D1,λ =

(τ0 : τλ) and X0 := D0,λ = (ι0 : ιλ). The p impulse dummies
included in (3) are asymptotically negligible but can be included
in X0 by defining ςλ,p :=


d−1,t (⌊λT⌋) , d−1,t (⌊λT⌋ + 1) , . . . ,

d−1,t (⌊λT⌋ + p − 1)
T
t=p+1 and redefining D0,λ :=


ι0 : ιλ : ςλ,p


.

The SC-VECM procedure can then be described as follows.
SC-VECM Procedure:

Step 1. For each of p = 1, . . . , p̄, define the MLE of the breakpoint
under H(r), viz.,

b̂r,p := argmax
b∈B

ℓ̂T

r;D0,b/T ,D1,b/T , p


. (6)

The corresponding break fraction estimator is then defined
as λ̂r,p := b̂r,p/T .

Step 2. Define the SC for themodel including the trend break to be

SC1 (p; r, λ) := −2ℓ̂T

r;D0,λ,D1,λ, p


+

n + r + 2 + n2p


log T ,

with selected lag length p̂1,r := argminp∈{1,...,p̄} SC1
p; n, λ̂r,p


, where λ̂r,p is the estimate of λ∗ obtained in

Step 1. Notice therefore that p̂1,r is selected under H(n).
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Step 3. Define the SC for themodel excluding the trend break to be

SC0 (p; r) := −2ℓ̂T (r; ι0, τ0, p)+

n2p


log T ,

with selected lag length p̂0 := argminp∈{1,...,p̄} SC0 (p; n).
Again notice that p̂0 is selected under H(n).

Step 4. Choose themodelwith trend break by setting: p̂ = p̂1,r and
(X0, X1) = (D0,λ̂r,p̂

,D1,λ̂r,p̂
) if

SC-VECM : SC1


p̂1,r; r, λ̂r,p̂1,r


≤ SC0


p̂0; r


;

and setting p̂ = p̂0 and (X0, X1) = (ι0, τ0) otherwise.
Step 5. The trace test statistic ofH(r) againstH(n) is then given by

qT

X0, X1; p̂


:= 2


ℓ̂T

n; X0, X1, p̂


− ℓ̂T


r; X0, X1, p̂


. �

Remark 1. Observe that the SC in Step 4 of the SC-VECMprocedure
can be expressed in terms of the likelihood ratio decision rule
to include the trend break if 2(ℓ̂T (r;D0,λ̂r,p̂1,r

,D1,λ̂r,p̂1,r
, p̂1,r) −

ℓ̂T (r; ι0, τ0, p̂0)) ≥ (n + r + 2) log T . This is analogous for testing
for the presence of a trend break at the random fraction λ̂r,p̂1,r ,
and as such it is related to a sup-LR type statistic in the spirit of
Andrews (1993), butwhere the decision rule is based not on a fixed
critical value but on a Schwarz-type penalty. As such, Step 4 is then
essentially a pre-test for the presence of a break which, by design,
has size which shrinks to zero as the sample size diverges. The
same requirement is needed on the trend break pre-tests used in
the univariate testing analogue of the problem considered here in
Harris et al. (2009) and Carrion-i-Silvestre et al. (2009).

Remark 2. The part of the SC-type penalty which corresponds to
the trend break in the VECM is (n + r + 2) log T . There are n pa-
rameters in δ0,1, r parameters in δ1,1 and the unknown breakpoint
parameter is given a penalty of 2, the latter following from the the-
oretical results provided in Zhang and Siegmund (2007), Kurozumi
and Tuvaandorj (2011) and Kim (2012). Consistent with the theo-
retical arguments provided by these authors, we found the choice
of 2 for the breakpoint parameter in the penalty function gave bet-
ter finite sample results than a penalty of 1, in that the latter did not
appear to penalise the inclusion of the break sufficiently strongly,
such that the trend break was retained too often when no break
was in fact present, resulting in correspondingly lower power in
that case; see the accompanying supplement, Harris et al. (2015).

Remark 3. In the SC-VECM procedure the lag length is selected
for both the model including a break and the model excluding a
break. Although the breakpoint estimation and break selection is
done underH (r) in SC-VECM, it is necessary to select p, in both the
model including a break and the model excluding a break, under
H (n) (i.e. from the VAR in levels). It is well-known that failure to
do so leads to power losses for the trace test; see Lütkepohl (2005)
and Lütkepohl and Saikkonen (1999), inter alia. This will be done
for all of the procedures outlined in this paper.

Remark 4. When a trend break is present in the DGP, the lag
length estimator p̂0 may be inconsistent for the true lag length
because it is based on a misspecified deterministic specification.
Nevertheless, as shown in Theorem 1 below, the selection of the
trend break in step 4 is consistent, implying that the resulting lag
length estimator p̂ is consistent whether or not a trend break is
present in the DGP. An alternative approach would be to re-define
the SC-VECM decision rule in step 4 as SC1


p̂1,r; r, λ̂r,p̂1,r


≤

SC0

p̂1,r; r


, so that only the lag length estimator p̂1,r is used. The
asymptotic results in Theorem 1 would be unchanged by this,
but unreported simulations found that the SC-VECM procedure
proposed above results in co-integration tests with superior finite
sample properties. The same comments apply to the SC-DIFF and
SC-VAR procedures subsequently outlined in Sections 3.2 and 3.3
respectively.

Remark 5. If a sequence of tests of H (r) is carried out for r =

0, 1, . . ., the lag length in SC-VECM is re-selected for each test,
noting that λ̂r,p is recomputed for each value of r . Perron and Qu
(2007) find, in a different context, that the re-selection of p for
each r can produce improvements in finite sample properties. The
incorporation of their modified selection criterion would also be
possible in our context but is left for future research.

3.2. The SC-DIFF procedure

The SC-DIFF procedure is motivated by the components form of
the model (1). Taking first differences of (1) yields

∆yt = µ1,0d0,t (0)+ µ0,1d−1,t (b)+ µ1,1d0,t (b)+ vt ,

t = 2, . . . , T (7)

where vt := ∆ut . Observe that (7) coincides with the VECM form
in (3) if r = 0 and p = 1, in which case vt = et . More generally, vt
will be a stationary linear process disturbance. In matrix form (7)
can be written as

Z (1)0 =


ι
(1)
0 ς

(1)
λ,1 ι

(1)
λ

µ′

1,0

µ′

0,1

µ′

1,1

+ V

= D(1)λ µ
′
+ V (8)

where Z (1)0 :=

∆y′

t

T
t=2, ι

(1)
λ :=


d0,t (⌊λT⌋)

T
t=2, ς

(1)
λ,1 :=

d−1,t (⌊λT⌋)
T
t=2, and V :=


v′
t

T
t=2. The (1) superscript denotes

that these matrices contain observations for t = 2, . . . , T , consis-
tent with a model with p = 1, as opposed to the corresponding
SC-VECMmatrices that contain observations for t = p + 1, . . . , T .
The idea is that the breakpoint and then the presence or absence
of the break can then both be decided in the context of (8).

The SC-DIFF procedure can then be described as follows.
SC-DIFF Procedure:

Step 1. Use b̂0,1 defined in (6) and the resulting λ̂0,1 := b̂ 0,1/T ;
that is the breakpoint and break fraction estimates are
obtained setting r = 0 and p = 1.

Step 2. Choose the model with trend break by setting: (X0, X1) =

(D0,λ̂0,1
,D1,λ̂0,1

) if

SC-DIFF : SC1


1; 0, λ̂0,1


≤ SC0 (1; 0) ,

where SC1 (.; ., .) and SC0 (.; .) are as defined in Steps 2 and
3, respectively, of SC-VECM; and setting (X0, X1) = (ι0, τ0)
otherwise.

Step 3. If the break is selected in Step 2, set

p̂ = p̂1,0 := arg min
p∈{1,...,p̄}

SC1


p; n, λ̂0,1


.

If the break is not selected in Step 2, set

p̂ := arg min
p∈{1,...,p̄}

SC0 (p; n) .

Step 4. The trace test statistic ofH(r) againstH(n) is then given by

qT

X0, X1; p̂


:= 2


ℓ̂T

n; X0, X1, p̂


− ℓ̂T


r; X0, X1, p̂


. �
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Remark 6. Notice that the estimator b̂0,1 is the value of b that
minimises the generalised variance of the OLS residuals from (8);
that is, b̂0 = argminb∈B

Σ̂1 (b/T )
, where Σ̂1 (λ) := T−1(Z (1)′0

P̄D(1)λ
Z (1)0 ). This estimator can therefore be viewed as the multivari-

ate extension of the trend break estimator discussed in Harris et al.
(2009) which is based on applying the univariate level break esti-
mator proposed in Bai (1994) to the first differences of the data.

Remark 7. The SC-DIFF approach imposes r = 0 and p = 1 for
the breakpoint estimator andbreak selection steps. Althoughbased
on a misspecified model when either r > 0 or p > 1, we will
demonstrate in Section 4 that the SC-DIFF method is still able to
consistently discriminate between the trend break and no trend
break models in such cases.

Remark 8. Notice that, in contrast to the SC-VECM procedure of
Section 3.1, the SC-DIFF procedure uses only a single breakpoint
estimator, b̂0,1, across all r and p. As a result, the lag length selection
is the same for every r if a sequence of H (r), r = 0, 1, . . . ,
hypotheses are being tested in a sequential procedure.

3.3. The SC-VAR procedure

The SC-VAR procedure is as follows.
SC-VAR Procedure:
Step 1. Use the breakpoint estimator b̂n,p, and corresponding break

fraction estimator λ̂n,p := b̂n,p/T , obtained under H(n).
Step 2. Select the lag length in the model with break as

p̂1,n := arg min
p∈{1,...,p̄}

SC1


p; n, λ̂n,p


.

Step 3. Select the lag length in the model without break as

p̂0 := arg min
p∈{1,...,p̄}

SC0 (p; n) .

Step 4. Choose the model with trend break by setting: p̂ = p̂1,n
and (X0, X1) = (D0,λ̂n,p̂

,D1,λ̂n,p̂
) if

SC-VAR : SC1


p̂1,n; n, λ̂n,p̂1,n


≤ SC0


p̂0; n


;

and setting p̂ = p̂0 and (X0, X1) = (ι0, τ0) otherwise.
Step 5. The trace test statistic ofH(r) againstH(n) is then given by

qT

X0, X1; p̂


:= 2


ℓ̂T

n; X0, X1, p̂


− ℓ̂T


r; X0, X1, p̂


. �

Remark 9. The SC-VAR decision criterion used in Step 4 can, like
the SC-VECM criterion, also be expressed in terms of the VECM log-
likelihoods defined in (5) with r = n as

2

ℓ̂T


n;D0,λ̂n,p̂1,n

,D1,λ̂n,p̂1,n
, p̂1,n


− ℓ̂T


n; ι0, τ0, p̂0


≥ (n + r + 2) log T

and so again has a likelihood ratio pre-test interpretation;
cf. Remark 1. It can also be seen that the SC-VAR decision criterion
carries out the trend break versus no trend break selection step
under the alternative hypothesis, H(n).

Remark 10. Notice that, in common with the SC-DIFF procedure
but unlike the SC-VECM procedure, the selected lag length used
in the SC-VAR procedure is the same for every r . This results from
the fact that the breakpoint estimator in Step 1 is computed under
H(n).
Remark 11. Monte Carlo simulations reported in the accompany-
ing supplement, Harris et al. (2015), reveal that the breakpoint es-
timator b̂n,p used in Step 1 yields a procedurewith quite poor finite
sample properties. We found that substituting this with the break-
point estimator b̂0,1 from the SC-DIFF procedure led to consider-
able improvements in the finite sample properties of the SC-VAR
procedure relative to using b̂n,p. This change has no impact on the
large sample properties of the SC-VAR procedure.

4. Asymptotic analysis

In this section we establish the large sample behaviour of the
SC-VECM, SC-DIFF and SC-VAR procedures outlined in Section 3.
In particular we demonstrate that the break fraction estimators
λ̂r,p are consistent at rate Op(T−1) in the case where a trend
break occurs. We then demonstrate that the associated SC-VECM,
SC-DIFF and SC-VAR information-based selection criteria based
on these estimators all consistently discriminate between the
relevant with trend break and without trend break models. We
then establish the limiting null distributions of the resulting trace
test statistics from these procedures, highlighting where these
coincide with distributions which are known and tabulated in
the literature and tabulating selected asymptotic critical values
otherwise.

Before we present our main theorem, we need first to define
the following functional which will feature in the representations
given for the limiting distributions of the trace statistics which
obtain from the SC-VECM, SC-DIFF and SC-VAR procedures. To that
end, define

Qn−r (F ,W ) := tr

 1

0
dW (s) F (s)′ ds

 1

0
F (s) F (s)′ ds

−1

×

 1

0
F (s) dW (s)′


,

where W (·) is an (n − r)-dimensional standard Brownian motion
and F(·) is a generic process derived fromW (·), the details ofwhich
are given on a case-by-case basis in the following Theorem.

Theorem 1. Let {yt} be generated according to DGP (1)–(2) un-
der Assumptions 1 and 2. Let the true co-integrating rank be denoted
r∗. Then:

(a) If µ1,1 ≠ 0 in (1), so that a trend break occurs, then:
A1. The trend break fraction estimators λ̂r,p are consistent for the

true break fraction, λ∗, for any r and p ≤ p̄, and satisfy

λ̂r,p − λ∗
= Op


T−1 . (9)

A2. For any r ≤ r∗, each of the three SC criteria select the model
with a trend break with probability converging to one as
T → ∞; viz.,
SC-VECM : Pr


SC1


p̂1,r; r, λ̂r,p̂1,r


≤ SC0


p̂0; r


→ 1

SC-DIFF : Pr

SC1


1; 0, λ̂0,1


≤ SC0 (1; 0)


→ 1

SC-VAR : Pr

SC1


p̂1,n; n, λ̂n,p̂1,n


≤ SC0


p̂0; n


→ 1.

A3. For any r ≤ r∗, λ̂ satisfying (9) and p̂1 = p̂1,r , p̂1,0 or p̂1,n,
the trace tests constructed using the estimated breakpoint
and lag length are asymptotically equivalent to the trace
tests based on the true breakpoint and lag length; that is,
qT

D0,λ̂,D1,λ̂; p̂1


− qT


D0,λ∗ ,D1,λ∗; p∗

 p
→ 0.
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A4. The trace test statistics at the true breakpoint have the
asymptotic null distributions

qT

D0,λ∗ ,D1,λ∗; p∗

 d
→Qn−r0


F1,λ∗ ,W


(10)

where F1,λ∗ coincides with the process Fu defined in Equation
(3.3) of Johansen et al. (2000, p.223) setting their parameter
q equal to 2.

(b) If µ1,1 = 0 in (1), so that no break occurs, then:
B1. For any r ≤ r∗ each of the three SC criteria select the model

without trend break with probability converging to one as
T → ∞; viz.,
SC-VECM : Pr


SC1


p̂1,r; r, λ̂r,p̂1,r


> SC0


p̂0; r


→ 1

SC-DIFF : Pr

SC1


1; 0, λ̂0,1


> SC0 (1; 0)


→ 1

SC-VAR : Pr

SC1


p̂1,n; n, λ̂n,p̂1,n


> SC0


p̂0; n


→ 1.

B2. The asymptotic null distribution of the trace test statistics
without trend break are given by

qT

ι0, τ0; p̂0

 d
→Qn−r0 (F0,W ) (11)

where F0 is given in equation (11.11) of Johansen (1995).

Some remarks are in order.

Remark 12. The result in part A1 of Theorem 1 demonstrates that
the break fraction estimators λ̂r,p are consistent for the true break
fraction, λ∗ at rate Op(T−1). This rate holds regardless of the true
co-integrating rank, r∗. Moreover, it also holds regardless of the
true autoregressive lag length, p∗, since correct specification of the
lag length is not necessary for the consistent estimation of the
break fraction.

Remark 13. The rate of consistency established for the break
fraction estimator in part A1 is crucial to the results in A2 and
A3 which together show that where a trend break is present
the trace statistics based on these estimated trend break points
are asymptotically equivalent under the null hypothesis to the
corresponding trace tests based on the true (unknown) break point
for each of the SC-VECM, SC-DIFF and SC-VAR procedures. The
limiting null distribution of the trace statistic, qT


D0,λ∗ ,D1,λ∗; p∗


,

given in (10), coincides with the limiting distribution given in
Theorem 3.1 of Johansen et al. (2000); critical values from this
distribution can be obtained either from Table 1 below (calculated
by direct simulation methods using 10,000 replications) or can be
calculated from the response surface given in Table 4 of Johansen
et al. (2000, p. 229) setting their parameter q = 2.

Remark 14. Where no trend break is present, the results in B1
and B2 show that the SC-VECM, SC-DIFF and SC-VAR procedures
all correctly select the no break model for sufficiently large
samples. The resulting no break trace statistic qT (ι0, τ0; p∗) has
the usual restricted linear trend limiting distribution given in
equations (11.9) and (11.11) of Theorem 11.1 of Johansen (1995)
and tabulated in Table 15.4 of Johansen (1995).

Remark 15. The results given in A4 and B2 hold when the null
hypothesis H (r∗) that the co-integration rank is r∗ is true.
These results therefore imply that the trace tests from each
of the SC-VECM, SC-DIFF and SC-VAR procedures will all be
asymptotically correctly sized (when using the asymptotic critical
values discussed in each procedure) regardless of whether a trend
break occurs.

Remark 16. As in Johansen (1995) and Johansen et al. (2000),
under H(r), the r largest eigenvalues included in (5), generically
denoted ν̂1, . . . , ν̂r here, converge in probability to positive
numbers,2 while T ν̂r+1, . . . , T ν̂p are of Op(1). This holds both
for the no trend break case and for the trend break case when
evaluated at the true break fraction, λ∗. As a consequence it is
straightforward to show that the trace tests which result from the
SC-VECM, SC-DIFF and SC-VAR procedures will be consistent at
rate Op(T ) when the true co-integration rank is such that r∗ > r .
This result holds regardless of whether a trend break is present in
the data or not. This implies, therefore, that the usual sequential
approach to determining the co-integration rank3 outlined in
Johansen (1995) can still be employed using the trace tests which
obtain from either the SC-VECM, SC-DIFF or SC-VAR procedures. In
particular, these sequential approaches will lead to the selection
of the correct co-integrating rank with probability (1 − ξ) in large
samples, again regardless of whether a trend break occurs or not.

5. Finite sample simulations

5.1. Simulation design

In this section we report on a Monte Carlo simulation exercise
designed to assess the finite sample performance of the trace
co-integration tests of the SC-VECM and SC-DIFF procedures. We
adopt the following VAR(2) simulation DGP,

yt =

 y(1)t
(n−r)×1

y(0)t
r×1



=

 µ
(1)
0,1

(n−r)×1
µ
(1)
1,1

(n−r)×1

µ
(0)
0,1

r×1
µ
(0)
1,1

r×1

d0,t(b∗)
d1,t(b∗)


+


u(1)t

u(0)t


(12)

where
In −


a1,1In−r 0

0 a0,1Ir


L


In −


a2In−r 0

0 a2Ir


L


u(1)t

u(0)t


=


e(1)t

e(0)t


(13)

where the superscript (1) denotes the I (1) component under H(r)
and superscript (0) the I (0) component. Here |a0,1| < 1, |a2| < 1,
while a1,1 = 1 for H(r) and |a1,1| < 1 for H(n). The disturbances
are generatedby e(1)t ∼ i.i.d.N (0, In−r) and then, to allow for cross-
correlation, we specify

e(0)t = ρκe(1)t +


1 − ρ2εt , εt ∼ i.i.d.N (0, Ir)

where κ is an r × (n − r) matrix of ones. Here ρ controls the
degree of cross-correlation (where relevant) between the I (0)
and I (1) parts of the system. The deterministic specification we
adopt sets b∗

= ⌊λ∗T⌋, for the set of trend break fractions λ∗
=

0.25, 0.50, 0.75, and µ(j)i,1 = cι, i, j = 0, 1, where ι is a vector of
ones and c is a scalar constant controlling the break magnitude.
For simplicity, this specification imposes the same magnitudes for
level and trend breaks, and in the I (1) and I (0) directions, with all
breaks occurring at date b∗. The values c = 0.8, 0.4, 0.2 are used,
along with c = 0, representing the case when no breaks of any
kind occur.

2 Explicit expressions for these eigenvalues are not required here, but are
obtained in the proofs of part A2 of the theorem when a break is included, and can
be found from the proofs of Theorem 11.1 of Johansen (1995) when the break is not
included.
3 This procedure starts with r = 0 and sequentially raises r by one until for r = r̂

the trace test statistic does not exceed the ξ level critical value for the test.
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Table 1
Asymptotic 5% critical values for qT


D0,λ∗ ,D1,λ∗


.

λ∗ n − r
1 2 3 4 5 6 7 8

0.20 17.45 34.51 55.51 80.56 109.82 142.98 180.18 221.87
0.25 18.03 35.53 56.88 82.15 111.52 145.02 182.14 224.08
0.30 18.46 36.25 57.98 83.31 112.95 146.24 183.46 225.18
0.35 18.75 36.92 58.63 84.09 113.67 147.08 184.29 225.82
0.40 18.95 37.26 59.26 84.79 114.21 147.48 184.78 226.47
0.45 19.07 37.56 59.56 84.97 114.58 147.83 184.97 226.47
0.50 19.09 37.65 59.62 85.09 114.77 147.88 185.07 226.73
0.55 19.05 37.59 59.54 84.96 114.69 147.83 185.10 226.78
0.60 18.93 37.39 59.14 84.62 114.30 147.42 184.84 226.44
0.65 18.84 36.90 58.62 84.02 113.76 146.75 184.35 225.87
0.70 18.46 36.27 57.93 83.30 112.82 146.06 183.50 224.94
0.75 17.99 35.45 56.82 82.03 111.53 144.86 182.27 223.93
0.80 17.49 34.48 55.49 80.54 109.81 142.99 180.35 221.68
Table 2
Finite sample size and power; estimated lag length; n = 2, r = 0, p = 1.
λ∗ c SC-VECM SC-DIFF Break-VECM VECM

T = 100
a1,1: 1.00 0.90 0.80 0.70 1.00 0.90 0.80 0.70 1.00 0.90 0.80 0.70 1.00 0.90 0.80 0.70

0.25 0.8 0.079 0.159 0.502 0.894 0.066 0.151 0.495 0.891 0.065 0.139 0.484 0.887 0.676 0.796 0.951 0.996
0.50 0.8 0.073 0.122 0.410 0.839 0.063 0.112 0.397 0.832 0.072 0.122 0.410 0.839 0.795 0.875 0.968 0.997
0.75 0.8 0.071 0.136 0.481 0.891 0.064 0.133 0.476 0.889 0.076 0.144 0.488 0.896 0.459 0.417 0.654 0.892
0.25 0.4 0.093 0.193 0.506 0.868 0.090 0.195 0.509 0.870 0.080 0.136 0.401 0.759 0.176 0.205 0.517 0.874
0.50 0.4 0.066 0.089 0.274 0.634 0.064 0.092 0.276 0.637 0.075 0.121 0.362 0.739 0.173 0.102 0.275 0.634
0.75 0.4 0.046 0.045 0.148 0.443 0.046 0.046 0.148 0.444 0.075 0.124 0.395 0.764 0.074 0.039 0.133 0.427
0.25 0.2 0.059 0.151 0.537 0.920 0.059 0.151 0.540 0.923 0.079 0.137 0.397 0.774 0.073 0.152 0.541 0.925
0.50 0.2 0.056 0.074 0.242 0.628 0.055 0.074 0.243 0.631 0.080 0.135 0.377 0.764 0.068 0.073 0.242 0.629
0.75 0.2 0.044 0.071 0.275 0.693 0.045 0.071 0.276 0.696 0.080 0.127 0.377 0.747 0.049 0.070 0.275 0.695
0.00 0.0 0.049 0.165 0.708 0.987 0.050 0.165 0.711 0.989 0.083 0.148 0.463 0.877 0.051 0.165 0.713 0.991

SC-VECM SC-DIFF Break-VECM VECM
T = 200

a1,1: 1.00 0.94 0.88 0.82 1.00 0.94 0.88 0.82 1.00 0.94 0.88 0.82 1.00 0.94 0.88 0.82
0.25 0.8 0.049 0.169 0.671 0.977 0.048 0.167 0.669 0.976 0.048 0.169 0.671 0.977 0.974 1.000 1.000 1.000
0.50 0.8 0.050 0.136 0.571 0.951 0.047 0.133 0.568 0.950 0.050 0.136 0.571 0.951 0.997 1.000 1.000 1.000
0.75 0.8 0.055 0.165 0.658 0.976 0.052 0.161 0.656 0.976 0.056 0.165 0.658 0.976 0.922 0.993 1.000 1.000
0.25 0.4 0.114 0.343 0.784 0.977 0.110 0.343 0.784 0.977 0.056 0.164 0.596 0.920 0.367 0.457 0.839 0.988
0.50 0.4 0.066 0.168 0.580 0.918 0.063 0.165 0.577 0.914 0.055 0.132 0.523 0.892 0.420 0.396 0.754 0.967
0.75 0.4 0.049 0.101 0.388 0.791 0.048 0.101 0.389 0.790 0.056 0.154 0.593 0.927 0.172 0.104 0.346 0.768
0.25 0.2 0.076 0.186 0.617 0.952 0.076 0.186 0.617 0.952 0.060 0.148 0.490 0.840 0.099 0.187 0.618 0.953
0.50 0.2 0.052 0.070 0.289 0.732 0.052 0.070 0.289 0.733 0.057 0.132 0.465 0.835 0.083 0.069 0.288 0.732
0.75 0.2 0.040 0.051 0.238 0.679 0.040 0.051 0.238 0.679 0.062 0.132 0.472 0.818 0.051 0.050 0.236 0.679
0.00 0.0 0.046 0.235 0.875 0.999 0.046 0.235 0.876 0.999 0.061 0.167 0.617 0.969 0.047 0.235 0.877 0.999
The DGP in (12) corresponds directly to Eq. (1), while (13) is
a special case of the VECM for ut given in Eq. (2). With a1,1 = 1
the first n − r components of ut are I (1) and the remaining r
components are I (0), implying r co-integrating vectors of the form
β =


0r×(n−r) : Ir

′. The diagonal structure of (13) may appear
restrictive but in fact is quite general because the DGP is invariant
to taking orthogonal linear combinations of the columnsofα andβ .
Moreover the statistical methods we describe are invariant to full
rank linear combinations of the elements of yt , and hence ut , so that
the appearance of a restrictive structure of r pure I (0) variables
and n − r pure I (1) variables is in fact quite general.

Tables 2–5 give the empirical sizes and powers for the SC-
procedures, based on our VAR(2) DGP for the case where the
dimension of the system is n = 2 (additional results for the case
of n = 3 can be found in the accompanying supplement Harris
et al., 2015). We additionally include empirical sizes and powers
for the VECM trace testwhich always includes the trend breakwith
break fraction estimated underH (r) (i.e. using λ̂r,p̂1,r defined in SC-
VECM), which we denote Break-VECM. The trace test which never
includes a trend break (appropriate for c = 0) is also included and
is simply denoted as VECM. Since the SC-VECM procedure selects
between these two individual tests, they provide an informal
benchmark for the performance of the SC-procedures. None of the
tests assume a priori knowledge of p, but determine its value in
the manner of Section 3, assuming a maximum possible value of
p̄ = 4. The simulation results are based on 10,000 Monte Carlo
replications and we report results for the tests at the nominal
(asymptotic) 0.05 level, for sample sizes of T = 100 and 200.

The tables of results given here are selected to illustrate
the important features of the finite sample properties of the
procedures. Nevertheless space constraints mean that results of
the full experiment cannot be reported here, but they are made
available in the accompanying supplement, Harris et al. (2015).
Those results help to explain choices made in the reporting here.
For example Tables 2–5 do not include results for SC-VAR because
these tests were found to suffer from substantial size distortions
when compared to SC-VECM and SC-DIFF, but results for SC-VAR
are given inHarris et al. (2015). The supplement also provides finite
sample evidence for the choice of 2 as the penalty for the break
fraction parameter, rather than the usual 1.

5.2. Results for r = 0

Table 2 gives the results for the trace tests when testing the
null hypothesis that r = 0 in the case where p = 1. Recall that
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Table 3
Finite sample size and power; estimated lag length; n = 2, r = 0, p = 2, a2 = 0.5.
λ∗ c SC-VECM SC-DIFF Break-VECM VECM

T = 100
a1,1: 1.00 0.80 0.60 0.40 1.00 0.80 0.60 0.40 1.00 0.80 0.60 0.40 1.00 0.80 0.60 0.40

0.25 0.8 0.098 0.332 0.652 0.750 0.090 0.311 0.662 0.730 0.117 0.288 0.626 0.733 0.186 0.472 0.860 0.981
0.50 0.8 0.091 0.226 0.560 0.660 0.094 0.254 0.591 0.633 0.115 0.254 0.571 0.662 0.164 0.320 0.808 0.984
0.75 0.8 0.076 0.206 0.510 0.665 0.090 0.284 0.637 0.715 0.114 0.281 0.625 0.740 0.083 0.127 0.436 0.728
0.25 0.4 0.083 0.324 0.539 0.672 0.083 0.340 0.564 0.678 0.121 0.274 0.543 0.624 0.104 0.340 0.562 0.682
0.50 0.4 0.082 0.155 0.309 0.362 0.088 0.162 0.329 0.378 0.121 0.254 0.518 0.595 0.093 0.140 0.301 0.363
0.75 0.4 0.073 0.141 0.268 0.222 0.081 0.141 0.272 0.237 0.118 0.254 0.525 0.636 0.074 0.119 0.247 0.216
0.25 0.2 0.075 0.373 0.626 0.748 0.081 0.387 0.645 0.751 0.121 0.294 0.597 0.652 0.082 0.388 0.645 0.753
0.50 0.2 0.077 0.248 0.412 0.366 0.087 0.249 0.417 0.371 0.124 0.287 0.590 0.634 0.080 0.246 0.415 0.367
0.75 0.2 0.077 0.281 0.487 0.431 0.084 0.285 0.497 0.437 0.121 0.282 0.572 0.627 0.078 0.284 0.496 0.435
0.00 0.0 0.078 0.414 0.733 0.916 0.080 0.432 0.752 0.918 0.120 0.308 0.669 0.747 0.078 0.433 0.753 0.921

SC-VECM SC-DIFF Break-VECM VECM
T = 200

a1,1: 1.00 0.90 0.80 0.70 1.00 0.90 0.80 0.70 1.00 0.90 0.80 0.70 1.00 0.90 0.80 0.70
0.25 0.8 0.089 0.402 0.875 0.984 0.061 0.361 0.896 0.993 0.073 0.340 0.860 0.983 0.311 0.690 0.978 0.999
0.50 0.8 0.070 0.276 0.797 0.970 0.065 0.283 0.831 0.984 0.073 0.277 0.797 0.970 0.320 0.592 0.959 0.999
0.75 0.8 0.058 0.287 0.828 0.983 0.065 0.348 0.885 0.993 0.071 0.327 0.850 0.985 0.137 0.253 0.766 0.974
0.25 0.4 0.075 0.365 0.827 0.967 0.062 0.371 0.842 0.976 0.073 0.278 0.706 0.902 0.111 0.377 0.848 0.979
0.50 0.4 0.062 0.172 0.614 0.893 0.059 0.217 0.677 0.918 0.072 0.250 0.692 0.896 0.097 0.162 0.606 0.902
0.75 0.4 0.049 0.123 0.468 0.800 0.057 0.167 0.516 0.817 0.071 0.259 0.697 0.893 0.059 0.102 0.431 0.787
0.25 0.2 0.065 0.424 0.894 0.985 0.063 0.430 0.903 0.989 0.078 0.295 0.754 0.940 0.073 0.431 0.903 0.989
0.50 0.2 0.058 0.224 0.645 0.892 0.059 0.224 0.639 0.891 0.076 0.281 0.746 0.935 0.067 0.220 0.637 0.891
0.75 0.2 0.059 0.275 0.714 0.923 0.060 0.277 0.717 0.924 0.077 0.282 0.729 0.920 0.062 0.274 0.715 0.925
0.00 0.0 0.057 0.523 0.980 0.999 0.061 0.530 0.986 0.999 0.078 0.333 0.862 0.990 0.057 0.531 0.986 0.999
Table 4
Finite sample size and power; estimated lag length; n = 2, r = 1, p = 1, a0,1 = 0.0, ρ = 0.0.
λ∗ c SC-VECM SC-DIFF Break-VECM VECM

T = 100
a1,1: 1.00 0.85 0.70 0.65 1.00 0.85 0.70 0.65 1.00 0.85 0.70 0.65 1.00 0.85 0.70 0.65

0.25 0.8 0.051 0.212 0.746 0.881 0.083 0.300 0.743 0.846 0.051 0.212 0.746 0.881 0.386 0.749 0.945 0.955
0.50 0.8 0.062 0.182 0.689 0.844 0.064 0.173 0.637 0.775 0.062 0.182 0.689 0.844 0.396 0.710 0.891 0.898
0.75 0.8 0.060 0.204 0.731 0.867 0.057 0.194 0.635 0.739 0.060 0.204 0.731 0.868 0.198 0.259 0.351 0.361
0.25 0.4 0.052 0.201 0.716 0.844 0.096 0.211 0.367 0.402 0.052 0.203 0.729 0.868 0.141 0.214 0.364 0.399
0.50 0.4 0.061 0.177 0.666 0.814 0.038 0.048 0.090 0.101 0.061 0.178 0.672 0.827 0.079 0.042 0.068 0.073
0.75 0.4 0.060 0.194 0.699 0.832 0.011 0.007 0.020 0.024 0.060 0.195 0.711 0.854 0.019 0.003 0.006 0.008
0.25 0.2 0.050 0.186 0.659 0.801 0.058 0.215 0.606 0.710 0.053 0.199 0.694 0.837 0.066 0.216 0.606 0.711
0.50 0.2 0.061 0.170 0.626 0.756 0.020 0.018 0.021 0.022 0.063 0.174 0.655 0.806 0.026 0.017 0.015 0.014
0.75 0.2 0.052 0.180 0.648 0.766 0.026 0.065 0.152 0.186 0.057 0.191 0.695 0.836 0.028 0.064 0.148 0.182
0.00 0.0 0.046 0.311 0.925 0.979 0.047 0.313 0.929 0.983 0.073 0.199 0.699 0.843 0.048 0.314 0.931 0.985

SC-VECM SC-DIFF Break-VECM VECM
T = 200

a1,1: 1.00 0.94 0.88 0.82 1.00 0.94 0.88 0.82 1.00 0.94 0.88 0.82 1.00 0.94 0.88 0.82
0.25 0.8 0.050 0.140 0.493 0.886 0.046 0.133 0.471 0.857 0.050 0.140 0.493 0.886 0.302 0.641 0.945 0.997
0.50 0.8 0.060 0.124 0.437 0.847 0.060 0.122 0.425 0.817 0.060 0.124 0.437 0.847 0.350 0.647 0.943 0.995
0.75 0.8 0.049 0.132 0.471 0.876 0.052 0.136 0.470 0.863 0.049 0.132 0.471 0.876 0.278 0.567 0.914 0.991
0.25 0.4 0.048 0.141 0.493 0.886 0.166 0.463 0.805 0.924 0.048 0.141 0.493 0.886 0.261 0.499 0.837 0.938
0.50 0.4 0.055 0.121 0.430 0.839 0.124 0.327 0.636 0.811 0.055 0.121 0.430 0.839 0.258 0.451 0.746 0.860
0.75 0.4 0.047 0.133 0.465 0.870 0.053 0.108 0.220 0.296 0.047 0.133 0.465 0.870 0.090 0.112 0.208 0.271
0.25 0.2 0.048 0.142 0.482 0.881 0.069 0.112 0.239 0.314 0.048 0.142 0.482 0.881 0.080 0.113 0.239 0.313
0.50 0.2 0.055 0.123 0.426 0.830 0.021 0.007 0.014 0.023 0.055 0.123 0.427 0.830 0.031 0.006 0.012 0.018
0.75 0.2 0.050 0.133 0.463 0.867 0.005 0.001 0.002 0.003 0.050 0.133 0.463 0.867 0.007 0.000 0.000 0.000
0.00 0.0 0.049 0.200 0.720 0.984 0.049 0.200 0.720 0.985 0.063 0.130 0.446 0.850 0.049 0.200 0.721 0.985
the null (alternative) hypothesis is satisfied here when a1,1 = 1
(a1,1 < 1). The upper portion of Table 2 shows the results for
T = 100. Starting with the Break-VECM benchmark test, we see
that it has size that depends only modestly on λ∗ and c , although it
does appear slightly over-sized in general. It has power levels that
increase with decreasing a1,1, but which are also fairly insensitive
to λ∗ and c. Turning attention to the VECM benchmark test, we
observe it being correctly sized for c = 0 and it is pertinent
here that the VECM test is more powerful than the Break-VECM
test. However, when c > 0, outside of the case c = 0.2, over-
sizing becomes a very serious issue for the VECM test, to the extent
that we cannot consider the rejection frequencies for a1,1 < 1 as
representative of power in any meaningful sense. Examining SC-
VECMwhen c = 0, it is immediately clear that it behaves very like
the VECM test, both in terms of size and power. When c > 0.2 it
clearly avoids the serious upward size distortion problems suffered
by the VECM test, with size behaviour clearly rather more akin to
that of the Break-VECM test. For c = 0.8, its power levels are very
similar to those of the Break-VECM test. For c = 0.4, 0.2 its powers
are similar to the rejection frequencies seen for the VECM test. A
comparison of SC-VECM and SC-DIFF reveals very little difference
between them.

The lower portion of Table 2 shows results for T = 200; here
we employ larger values of a1,1 < 1 than for T = 100 in order
to avoid too many high power entries. Here, the Break-VECM test
is well size-controlled across all c; the modest over-sizing seen for
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Table 5
Finite sample size and power; estimated lag length; n = 2, r = 1, p = 1, a0,1 = 0.5, ρ = 0.0.
λ∗ c SC-VECM SC-DIFF Break-VECM VECM

T = 100
a1,1: 1.00 0.80 0.60 0.40 1.00 0.80 0.60 0.40 1.00 0.80 0.60 0.40 1.00 0.80 0.60 0.40

0.25 0.8 0.049 0.338 0.897 0.964 0.054 0.351 0.876 0.932 0.048 0.330 0.892 0.970 0.386 0.860 0.961 0.961
0.50 0.8 0.062 0.297 0.877 0.962 0.053 0.274 0.850 0.929 0.062 0.297 0.879 0.967 0.389 0.817 0.915 0.902
0.75 0.8 0.059 0.324 0.847 0.902 0.051 0.309 0.838 0.868 0.060 0.330 0.902 0.976 0.172 0.178 0.157 0.137
0.25 0.4 0.047 0.207 0.419 0.500 0.072 0.195 0.293 0.351 0.047 0.278 0.730 0.849 0.122 0.195 0.286 0.343
0.50 0.4 0.048 0.160 0.344 0.395 0.019 0.024 0.055 0.066 0.057 0.252 0.742 0.874 0.067 0.005 0.008 0.020
0.75 0.4 0.041 0.155 0.293 0.334 0.010 0.011 0.026 0.027 0.052 0.282 0.779 0.887 0.015 0.000 0.001 0.001
0.25 0.2 0.050 0.294 0.749 0.894 0.055 0.330 0.755 0.895 0.055 0.272 0.750 0.886 0.061 0.332 0.757 0.896
0.50 0.2 0.035 0.107 0.200 0.255 0.018 0.013 0.015 0.020 0.057 0.248 0.741 0.875 0.024 0.010 0.007 0.010
0.75 0.2 0.031 0.130 0.268 0.365 0.024 0.074 0.131 0.213 0.055 0.270 0.747 0.877 0.025 0.072 0.125 0.208
0.00 0.0 0.047 0.544 0.989 0.996 0.046 0.551 0.995 1.000 0.071 0.327 0.908 0.987 0.047 0.553 0.996 1.000

SC-VECM SC-DIFF Break-VECM VECM
T = 200

a1,1: 1.00 0.92 0.84 0.76 1.00 0.92 0.84 0.76 1.00 0.92 0.84 0.76 1.00 0.92 0.84 0.76
0.25 0.8 0.051 0.239 0.790 0.993 0.045 0.225 0.768 0.980 0.051 0.239 0.790 0.993 0.511 0.945 1.000 1.000
0.50 0.8 0.057 0.201 0.739 0.986 0.056 0.193 0.718 0.971 0.057 0.201 0.739 0.986 0.550 0.939 0.999 1.000
0.75 0.8 0.050 0.221 0.774 0.993 0.050 0.223 0.763 0.983 0.050 0.221 0.774 0.993 0.446 0.886 0.995 1.000
0.25 0.4 0.048 0.229 0.770 0.946 0.124 0.389 0.577 0.634 0.048 0.230 0.777 0.982 0.289 0.436 0.581 0.620
0.50 0.4 0.057 0.197 0.711 0.949 0.043 0.130 0.295 0.363 0.057 0.198 0.714 0.978 0.231 0.170 0.145 0.126
0.75 0.4 0.050 0.216 0.748 0.909 0.022 0.035 0.089 0.101 0.050 0.216 0.759 0.985 0.062 0.004 0.004 0.006
0.25 0.2 0.045 0.207 0.679 0.803 0.069 0.167 0.331 0.466 0.048 0.221 0.748 0.962 0.082 0.167 0.328 0.464
0.50 0.2 0.056 0.184 0.642 0.743 0.019 0.001 0.006 0.007 0.057 0.190 0.694 0.957 0.032 0.000 0.000 0.000
0.75 0.2 0.049 0.197 0.671 0.712 0.011 0.005 0.003 0.005 0.051 0.209 0.741 0.965 0.015 0.003 0.000 0.000
0.00 0.0 0.049 0.360 0.951 1.000 0.049 0.360 0.951 1.000 0.062 0.211 0.743 0.987 0.050 0.361 0.952 1.000
T = 100 is no longer evident. However, the problems of significant
over-sizing associated with the VECM test for c > 0 are even
more readily apparent. SC-VECM is generally well sized controlled
outside of λ∗

= 0.25 and c = 0.4, where it appears slightly over-
sized. It again inherits the power levels associated with the VECM
test when c = 0 and those for the Break-VECM test when c = 0.8.
For c = 0.2 its powers are once more similar to the rejection
frequencies seen for the VECM test. SC-VECM and SC-DIFF again
behave very similarly.

The behaviour of the SC-VECM tests depends both on that of
the underlying Break-VECM and VECM tests (given in Table 2) and
also the behaviour of the SC break selection criterion. In order
to explicitly show how the break selection is working, Table 6
presents the empirical frequencies for which the SC selects a
trend break, i.e. for which SC-VECM is set equal to Break-VECM.4
The leftmost panels show the results for r = 0 and p = 1
corresponding to the results in Table 2. For c ≠ 0 the correct
decision is to include the break so the SC step is working best when
the inclusions frequencies are close to one. Conversely,when c = 0
the correct decision is to omit the break, so inclusion frequencies
near zero are better. The r = 0, p = 1 panels of Table 6 reveal the
SC step in SC-VECMworking close to perfectly for the largest break
size (c = 0.8). Breaks of smaller magnitudes are more difficult to
detect in this DGP, so as expected the inclusion frequencies are
reduced as the break size is reduced through c = 0.4 and c = 0.2.
When c = 0 the inclusion frequencies are close to zero as would
be hoped. These findings hold generally for both T = 100 and
T = 200, with the frequencies generally improved for T = 200,
as expected.

The combination of the break inclusion frequencies in Table 6
with the size and power properties of the benchmark Break-
VECM and VECM tests can often be used to attribute variations
in the properties of the SC-VECM test. For example in Table 2
with λ∗

= 0.25 and c = 4 the SC-VECM test shows some
moderate and surprising increases in size for both T = 100

4 Break inclusion frequencies can be computed for SC-DIFF as well, but we focus
on SC-VECM here given its overall superior finite sample performance.
and T = 200, and these can be seen to be the product of the
interaction of the SC step with the size properties of the Break-
VECM and VECM tests. In the presence of the trend break of size
c = 4 at λ∗

= 0.25, the VECM tests that ignore this break are
predictably very over-sized (0.176 for T = 100 and 0.367 for
T = 200). The SC step for SC-VECM correctly includes a break
with frequency 0.266 (T = 100) and 0.469 (T = 200), implying
that 73.4% (T = 100) and 53.1% (T = 200) of the time the SC-
VECM procedure is using the incorrect and badly over-sized VECM
test, producing the moderate over-sizing observed in Table 2. The
explanation for why this over-sizing does not occur for λ∗

= 0.5
or λ∗

= 0.75 can be found in a similar way. For λ∗
= 0.5 the

over-sizing of the VECM test is very similar to λ∗
= 0.25, but

the SC criterion correctly includes the break more often (0.426 for
T = 100 and 0.706 for T = 200), as may be expected for what
is essentially a trend break pre-test, resulting in improved size
properties for the SC-VECM test. The explanation for λ∗

= 0.75 is
the reverse, since the VECM test is less over-sized in this case than
for λ∗

= 0.25 or 0.5, so that even though the SC step reverts to its
λ∗

= 0.25 performance, the size distortions induced by carrying
out the VECM test are reduced.

Throughout the tables it is possible to explain many variations
in finite sample properties by similarly examining the interactions
of the break selection and benchmark test properties. For example,
the power of the SC-VECM test for λ∗

= 0.25 and c = 0.2 appears
to be unexpectedly large relative to the powers for λ∗

= 0.5 or
0.75. This is due to the higher rejection frequencies for the VECM
test for λ∗

= 0.25 increasing the rejection frequencies for the
SC-VECM test as well, while this does not occur for λ∗

= 0.5 or
0.75. Similarly, the power of SC-VECM for λ∗

= 0.25 and c =

0.2 appears to be unexpectedly large relative to the same break
fraction with larger break sizes, especially for T = 100 when
the SC-VECM power can even be slightly lower for larger break
sizes. In this case it is due to variations in the SC break selection
frequencies—the high power for c = 0.2 is actually mostly due
to the SC step selecting the no break test which has higher power
for λ∗

= 0.25 at this point, while for c = 0.4 and 0.8 the
SC step is selecting the correct test that includes a break. This
is an unforeseen outcome in small samples that disappears as T
increases, as is evident in the T = 200 results.



D. Harris et al. / Journal of Econometrics 192 (2016) 451–467 461
Table 6
Break inclusion frequency for SC-VECM, n = 2.
λ∗ c r = 0, p = 1 r = 0, p = 2, a2 = .5 r = 1, p = 1, a0,1 = 0, ρ = 0 r = 1, p = 1, a0,1 = .5, ρ = 0

T = 100
a1,1: 1.00 0.90 0.80 0.70 1.00 0.80 0.60 0.40 1.00 0.85 0.70 0.65 1.00 0.80 0.60 0.40

0.25 0.8 0.897 0.942 0.943 0.922 0.557 0.548 0.648 0.716 1.000 1.000 1.000 0.999 0.990 0.971 0.889 0.862
0.50 0.8 0.980 0.993 0.993 0.992 0.710 0.791 0.895 0.881 1.000 1.000 1.000 1.000 0.999 0.998 0.989 0.983
0.75 0.8 0.926 0.961 0.965 0.962 0.635 0.666 0.747 0.765 1.000 1.000 1.000 1.000 0.998 0.990 0.940 0.923
0.25 0.4 0.266 0.090 0.058 0.049 0.346 0.172 0.125 0.060 0.999 0.998 0.982 0.967 0.832 0.589 0.310 0.323
0.50 0.4 0.426 0.220 0.144 0.116 0.410 0.250 0.190 0.106 1.000 0.999 0.994 0.987 0.950 0.761 0.454 0.438
0.75 0.4 0.297 0.128 0.076 0.063 0.368 0.198 0.142 0.066 1.000 0.999 0.988 0.977 0.929 0.686 0.369 0.365
0.25 0.2 0.095 0.020 0.017 0.019 0.300 0.120 0.084 0.032 0.960 0.956 0.903 0.870 0.414 0.312 0.191 0.217
0.50 0.2 0.130 0.027 0.022 0.023 0.316 0.136 0.087 0.030 0.994 0.993 0.968 0.946 0.771 0.548 0.267 0.278
0.75 0.2 0.102 0.023 0.019 0.019 0.305 0.125 0.085 0.027 0.982 0.980 0.944 0.919 0.635 0.457 0.241 0.255
0.00 0.0 0.055 0.014 0.014 0.015 0.287 0.108 0.080 0.035 0.035 0.018 0.020 0.022 0.051 0.034 0.045 0.044

r = 0, p = 1 r = 0, p = 2, a2 = .5 r = 1, p = 1, a0,1 = 0, ρ = 0 r = 1, p = 1, a0,1 = .5, ρ = 0
T = 200

a1,1: 1.00 0.94 0.88 0.82 1.00 0.90 0.80 0.70 1.00 0.94 0.88 0.82 1.00 0.92 0.84 0.76
0.25 0.8 0.998 1.000 1.000 1.000 0.673 0.737 0.867 0.949 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.50 0.8 1.000 1.000 1.000 1.000 0.845 0.946 0.982 0.991 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.75 0.8 0.999 1.000 1.000 1.000 0.731 0.814 0.921 0.971 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.25 0.4 0.469 0.282 0.194 0.153 0.274 0.117 0.127 0.152 1.000 1.000 1.000 1.000 1.000 0.999 0.985 0.908
0.50 0.4 0.706 0.689 0.621 0.554 0.369 0.211 0.248 0.314 1.000 1.000 1.000 1.000 1.000 1.000 0.997 0.967
0.75 0.4 0.502 0.351 0.261 0.202 0.292 0.138 0.150 0.184 1.000 1.000 1.000 1.000 1.000 0.999 0.988 0.921
0.25 0.2 0.087 0.011 0.009 0.010 0.179 0.056 0.054 0.055 1.000 1.000 1.000 1.000 0.988 0.973 0.892 0.695
0.50 0.2 0.142 0.023 0.014 0.014 0.206 0.067 0.067 0.073 1.000 1.000 1.000 1.000 0.998 0.992 0.942 0.773
0.75 0.2 0.096 0.014 0.009 0.008 0.186 0.059 0.059 0.061 1.000 1.000 1.000 1.000 0.995 0.984 0.922 0.730
0.00 0.0 0.027 0.005 0.004 0.005 0.156 0.046 0.043 0.043 0.010 0.005 0.004 0.004 0.013 0.006 0.005 0.006
The presence of stationary autocorrelation in time series can
make co-integration inference more difficult. Results for this
situation are shown in Table 3 in which r = 0 but now
p = 2 with a2 = 0.5. Since estimation of the additional
autoregressive components causes a significant reduction in power
levels throughout, we consider some smaller values of a1,1 < 1
than the ones used in Table 2. For T = 100, across-the-board over-
sizing is more of an issue for the Break-VECM test and also for
the VECM test when c = 0 than in Table 2. This is a reflection
of the well-known size issues that can arise for the trace test in
the presence of stationary autocorrelation (see Cheung and Lai,
1993; Johansen, 2002, among others) and also of the fact that it
is now possible to under-specify the value of p. Not surprisingly,
this also manifests itself in a slight general upward shift in the
sizes of SC-VECM, although SC-VECM has noticeably good size
properties relative to the Break-VECM and VECM tests on which
it is based. Otherwise, we see the relationships between the four
tests remainmuch as in Table 2. The secondpair of panels in Table 6
reveals that this situation, with r = 0 and stationary second order
autocorrelation present, is the most difficult in which to detect the
break accurately. Relative to a2 = 0 in the first panel, the correct
break inclusion rate when c ≠ 0 is lower and the incorrect break
inclusion rate when c = 0 is higher. Nevertheless, even in this
worst case, the SC-procedures provide co-integration tests with
generally (albeit not uniformly) superior performance compared
to the Break-VECM test that omits the break selection step.

5.3. Results for r = 1

Tables 4 and 5 give results for tests for r = 1. This case
differs from r = 0 in at least two important ways. Under the
null of r = 1 there is a mixture of I (0) and I (1) components
in the model, which introduces additional nuisance parameters—
the autocorrelation in the I (0) component captured by a0,1 in
our data generating process, and the correlation between the I (0)
and I (1) components captured by ρ. Also the presence of the
I (0) component can improve the properties of the break point
estimation and SC break selection steps because inference on a
trendbreakwill be easier in I (0)noise that it is in purely I (1)noise.
This will be demonstrated in the results that follow.
Table 4 looks at the case where r = 1, with p = 1, a0,1 = 0 and
ρ = 0. The size of SC-VECM appears well-controlled everywhere,
while its powers not only mirror those (superior) levels obtained
from the VECM test when c = 0, but also those of the Break-VECM
test for all c > 0 (not just c = 0.8). The correspondence is close
for T = 100, and almost one-to-one for T = 200. This behaviour
by SC-VECM is the clearest practical demonstration so far of how
our procedures are intended to perform. To help explain this, the
third panel of Table 6 provides the break selection frequencies for
the SC-VECM procedure in this case, showing the SC step makes
the correct selection in nearly every case for both T = 100 and
T = 200. Relative to the frequencies in the first panel of Table 6
(in which r = 0), this also illustrates the advantage of the I (0)
component in detecting the trend break.

The results for SC-DIFF in Table 4 exhibit under-sizing for c =

0.4 and 0.2, something which appears to be inherited from the
behaviour of the VECM test. In those cases where SC-DIFF is under-
sized, corresponding powers are extremely low (as are those of
the VECM test). This is the shortcoming of the SC-DIFF procedure—
while it is computational convenient and performs well for r = 0,
its imposition of r = 0 when this is not true has implications for
the finite sample properties, despite its asymptotic validity. In this
case the SC step of SC-DIFF omits a small tomoderately sized break
much too often, resulting in relatively poor properties. It is results
of this nature that lead to our eventual suggestion that SC-VECM is
the preferred procedure overall.

Table 5 gives results for r = 1, p = 1 and a0,1 = 0.5.
Relative to a0,1 = 0 in Table 4, the properties of the benchmark
Break-VECM and VECM tests are not dramatically affected by this
autocorrelation. There is some deterioration in the ability of the SC
step to detect a small break (see the fourth panel of Table 6), which
translates into some power losses for the SC-VECM test relative
to the Break-VECM test when the break size is small. The extent
of this power loss depends considerably on the break fraction λ∗.
When λ∗

= 0.25 the power of SC-VECM remains good, which can
be seen to be primarily due to the good properties of the VECM
test, even though it is not the correct test in this case. By contrast
the VECM test has very poor power properties for λ∗

= 0.5 or
0.75, which adversely influences the resulting power properties
of the SC-VECM test. These variations are especially marked for
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T = 100,with generallymuch better all round break selection, size
and power properties evident for T = 200. This all illustrates again
how the properties of the SC-tests are the result of the interaction
of the SC step with the properties of the underlying Break-VECM
and VECM tests.

Due to space constraints we omit results for the other nuisance
parameters a2 and ρ, but these are included in the supplement
Harris et al. (2015). Briefly, the finite sample effect of a2 ≠ 0 when
r = 1 is considerably less than it is when r = 0. The finite sample
effect of ρ ≠ 0 is also revealed to be relatively minor.

5.4. Summary

Drawing together all of our findings, what emerges is thatwhile
the SC-VECMand SC-DIFF tests behave similarly for r = 0, they can
behave very differently for r = 1.Here, SC-DIFF canbeprone to low
size and very low power when c > 0. In contrast, SC-VECM is well
size-controlled everywhere and frequently has the ability to secure
close to the better levels of power available from the VECM and
Break-VECM tests in the environments forwhich they are intended
to operate. On this basis we recommend the SC-VECM procedure
for practical use.

The ultimate properties of the SC-VECM procedures are subject
to some variations according to various features of the data
generating process. The presence of stationary autocorrelation
introduces some size distortions and power losses into all co-
integration tests (the Break-VECM and VECM tests here), and can
also make the SC selection of the break more difficult. The size
of the trend break generally affects the SC break selection in
predictable ways, with larger breaks easier to detect. Variations in
the break fraction λ∗, on the other hand, can produce unexpected
effects on SC-VECM through its differing effects on the SC step and
the benchmark Break-VECM and VECM tests—generally, as might
be expected, a break in themiddle of the sample is easiest for the SC
to detect, while the rejection frequencies of themisspecified VECM
test in particular can be considerably greater for earlier breaks than
later ones, and the interactions of these effects produce variations
in the performance of the SC-VECM procedure that may appear
unexpected but turn out to be somewhat explicable in these terms.

6. Conclusions

We have focussed on the problem of testing for the co-
integration rank in VAR processes of unknown lag order when
a break in the deterministic trend component may be present
at an unknown point in the sample. In order to simultaneously
avoid the size and power problems which can result, even in large
samples, from an un-modelled trend break and at the same time
guard against the loss of finite sample efficiency which results
from allowing for a trend break when no trend break is present,
we have outlined an approach based on the use of information
criteria. These criteria are used to select the autoregressive lag
length and to select between the trend break and no trend break
models, using a consistent estimate of the break fraction in the
former case. Two possible frameworkswere considered depending
on whether the deterministic component was included additively
in a components representation or directly into the VAR equation,
the latter referred to here as the SC-VECM procedure. In each case
these procedures were shown to deliver asymptotically correctly
sized and consistent tests of the co-integration rank regardless
of whether a trend break is present in the data or not. By
selecting the no breakmodel when no trend break is present, these
procedures were also shown to avoid the potentially large power
losses associated with tests which assume that a trend break is
known to have occurred, when in fact no break is present. Monte
Carlo simulation results were presented which suggest that the
procedures generally performedwell in practicewith the SC-VECM
procedure preferred overall.

We conclude with some suggestions for further research. First,
we have focussed attention here on the case where a maximum
of one break in the deterministic trend function can occur. In
practice it might be useful to allow for the possibility that multiple
trend breaks could exist. To do so, multiple break versions of the
trend break estimators considered in Section 3 would need to be
developed; the estimators considered in Qu and Perron (2007)
would seem to be a useful starting point for such an analysis.
Combining such estimators with generalisations of the SC criteria
in Section 3, designed to choose between no trend break, one trend
break, two trend breaks and so on, should then allow us to select
the correct number of breaks in the limit, as is done in this paper
for the no break against one break case. New tables of critical
values would be needed for each number of breaks considered.
Second, we have de-trended the data within the usual reduced
rank regression framework. We chose to do this so as to produce
a meaningful comparison across the procedures. It would also be
possible to use pseudo-GLS de-trending in the context of tests from
the components formulation (1)–(2) as in Saikkonen and Lütkepohl
(2000), Lütkepohl et al. (2004) and Trenkler et al. (2007) and this
might be expected to yield more powerful tests in both the trend
break and no trend break environments. Finally, we have focussed
here on ‘‘stochastic’’ rather than ‘‘deterministic’’ co-integration.
In the former the deterministic trend is left unrestricted under
co-integration, while for the latter the co-integrating vector also
eliminates deterministic non-stationarity in the data. The latter
case corresponds to imposing the restrictions that δ1,0 = 0
and δ1,1 = 0 in (3). An important and empirically relevant
example which is therefore ruled out by these restrictions is one
where the vector yt contains some trend stationary (potentially
around broken trends) time series. Versions of the co-integration
rank tests proposed here which impose these restrictions could
be used instead. This could potentially result in more powerful
tests where those restrictions do in fact hold on (3), but would
come at the expense of uncontrolled size where those restrictions
did not hold. Indeed, for these reasons (and others) Perron and
Campbell (1993, p. 778) argue that stochastic co-integration is
‘‘... a more relevant concept of cointegration.’’ Alternatively, one
could develop a sequential procedure to jointly select the form
of the deterministic component and the co-integrating rank, as is
proposed for the linear trend case in Johansen (1992).

Appendix

A.1. Preliminaries

For any X0, X1, the maximised log-likelihood and the trace co-
integration test statistic are functions of the eigenvalues of the
matrix

MT (X0, X1) :=


Z ′

0P̄X0:Z∆,pZ0
T

−1
Z ′

0P̄X0:Z∆,pZ1
T


Z ′

1P̄X0:Z∆,pZ1
T

−1

×
Z ′

1P̄X0:Z∆,pZ0
T

. (A.1)

Substitution of Z1 = (Y1 : X1) and working out the subsequent
partitioned inverse gives

MT (X0, X1)

=


Z ′

0P̄X0:Z∆,pZ0
T

−1
Z ′

0P̄X0:Z∆,pX1

T 2


X ′

1P̄X0:Z∆,pX1

T 3

−1
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×
X ′

1P̄X0:Z∆,pZ0
T 2

+
Z ′

0P̄X0:X1:Z∆,pY1

T

×


Y ′

1P̄X0:X1:Z∆,pY1

T

−1
Y ′

1P̄X0:X1:Z∆,pZ0
T

 . (A.2)

Consider a breakpoint estimator b̂ for which λ̂ = b̂/T and λ̂ −

λ∗
= Op


T−1


. The existence of such estimators is argued in

Theorem 1. We will demonstrate that the asymptotic behaviour
of appropriately standardised components ofMT


D0,λ̂,D1,λ̂


is the

same as ofMT

D0,λ∗ ,D1,λ∗


, hence showing that statistics based on

the likelihoods and likelihood ratios are asymptotically unaffected
by the replacement of the unknown λ∗ by an estimator λ̂. The
presence of the stationary lagged differences does not affect the
substance of the derivations or results, so for simplicity we set
p = 1 in what follows and consider

MT

D0,λ,D1,λ


=


Z ′

0P̄D0,λZ0
T

−1
Z ′

0P̄D0,λD1,λ

T 2


D′

1,λP̄D0,λD1,λ

T 3

−1

×
D1,λP̄D0,λZ0

T 2
+

Z ′

0P̄DλY1

T


Y ′

1P̄DλY1

T

−1
Y ′

1P̄DλZ0
T


,

where Dλ =

D0,λ : D1,λ


. It is not enough to simply show that

MT

D0,λ̂,D1,λ̂


−MT


D0,λ∗ ,D1,λ∗

 p
→ 0 since the trace test statistic

depends on eigenvalues that are Op

T−1


. Therefore appropriately

standardised components ofM

D0,λ∗ ,D1,λ∗


are considered, as set

out in the following Lemma.

Lemma A.1. For a break fraction estimator λ̂ such that λ̂ − λ∗
=

Op

T−1


1. T−1


Z ′

0P̄D0,λ̂
Z0 − Z ′

0P̄D0,λ∗ Z0


p
→ 0

2. T−2

Z ′

0P̄D0,λ̂
D1,λ̂ − Z ′

0P̄D0,λ∗D1,λ∗


p

→ 0

3. T−3

D1,λ̂P̄D0,λ̂

D1,λ̂ − D′

1,λ∗ P̄D0,λ∗D1,λ∗


p

→ 0

4. T−1

Z ′

0P̄Dλ̂Y1β − Z ′

0P̄Dλ∗ Y1β


p
→ 0, T−1(β ′Y ′

1P̄Dλ̂Y1β − β ′Y ′

1

P̄Dλ∗ Y1β)
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→ 0

5. T−1

Z ′
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1P̄Dλ∗ Y1β⊥)
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6. T−2

β ′

⊥
Y ′

1P̄Dλ̂Y1β⊥ − β ′

⊥
Y ′

1P̄Dλ∗ Y1β⊥


p
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Proof of Lemma A.1. The conclusions of the Lemma are to be
expected in view of similar results in, for example, Corollary 1 of
Qu and Perron (2007) for stationary multivariate regressions and
Proposition 4 of Kim and Perron (2009) for univariate unit root
regressions. Indicative details only are therefore provided of the
proof to demonstrate the steps involved when both I (1) and I (0)
components are involved.

In Part 1 of the Lemma, first suppose r∗
= 0 so that the DGP can

be represented

Z0 = D0,λ∗δ′

0 + E . (A.3)

It follows that P̄D0,λ∗ Z0 = P̄D0,λ∗ E , P̄D0,λ̂
Z0 = P̄D0,λ̂

D0,λ∗δ′

0 + P̄D0,λ̂
E ,

and T−1(Z ′

0P̄D0,λ∗ Z0) = T−1(E ′P̄D0,λ∗ E)
p

→ E

ete′

t


, so the statistic
is correctly standardised. Now

Z ′

0P̄D0,λ̂
Z0

T
=
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T
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T
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D0,λ∗ P̄D0,λ̂

E

T

+ δ0
D0,λ∗ P̄D0,λ̂

D0,λ∗

T
δ′

0

so that the difference between the statistics at the estimated and
true breakpoints consists of
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0P̄D0,λ̂
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−
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0P̄D0,λ∗ Z0
T

=
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0. (A.4)

each of which can in turn be represented

E ′
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(A.5)

E ′P̄D0,λ̂
D0,λ∗

T
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(A.6)

D′

0,λ∗ P̄D0,λ̂
D0,λ∗

T
=

D′

0,λ∗D0,λ∗

T

−
D′

0,λ∗D0,λ̂

T


D′

0,λ̂
D0,λ̂

T

−1 D′

0,λ̂
D0,λ∗

T
. (A.7)

Using D0,λ = (ι0 : ιλ) gives
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Combining these gives T−1

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by Lemma A.1 of Qu and Perron (2007). Substituting these zero
limits into (A.5)–(A.7) and then back into (A.4) shows part 1 under
r∗

= 0. If r∗ > 0 then we use Z1,λ∗γ = Y1β − D1,λ∗µ′

1β =

D0,λ∗


µ′

0β

+ U1β , to find the representation

Z0 = D0,λ∗


µ′

0β + δ′

0


+

U1βα

′
+ E


, (A.9)

which has the same form as (A.3) in the sense of containing the
intercept and level shift and an I (0) disturbance vector. The proof
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of T−1

Z ′

0P̄D0,λ̂
Z0 − Z ′

0P̄D0,λ∗ Z0


p
→ 0 therefore follows exactly the

same arguments as when r∗
= 0.

In Parts 2 and 3 of the lemma, those terms in M

D0,λ,D1,λ


involving Z ′

0P̄D0,λD1,λ and D′

1,λP̄D0,λD1,λ, follow by the same
arguments as Z ′

0P̄D0,λZ0 in Part 1.

We now consider the terms in M

D0,λ,D1,λ


involving the

(partially) I (1)matrix Y1, which has representation

Y1 = Dλ∗µ′
+ U1, (A.10)

where U1 := (ut−1)
T
t=2 and where P̄Dλ∗ Y1 = P̄Dλ∗U1 and P̄D
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The terms involving P̄D
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Dλ∗ were addressed in Part 1, so we focus
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I (1) element of U1β⊥, so the corresponding non-zero elements of
T−2


Dλ̂ − Dλ∗

′ U1β⊥ can be written
T−2

T
t=2


d0,t


b̂


− d0,t

b∗

wt−1

T−2
T

t=2


d1,t


b̂


− d1,t

b∗

wt−1

 ,
where b∗

:= ⌊λ∗T⌋. Clearly if the second term (involving a
broken linear trend) can be shown to disappear then the first
term will as well. Using d1,t


b̂


− d1,t (b∗) =


t − b̂


∨ 0


−

((t − b∗) ∨ 0) = (b∗
∧ t)−


b̂ ∧ t


gives

T−2
T

t=2


d1,t


b̂


− d1,t

b∗

wt

= T−2



b̂∨b∗


t=

b̂∧b∗


+1


b∗

∧ t

−


b̂ ∧ t


wt

+


b∗

− b̂

T−2

T
t=

b̂∨b∗


+1

wt

 .
ThenT−2


b̂∨b∗


t=

b̂∧b∗


+1


b∗

∧ t

−


b̂ ∧ t


wt


≤

b̂ − b∗

 T−2


b̂∨b∗


t=

b̂∧b∗


+1

|wt |
so it follows thatT−2
T

t=2


d1,t


b̂


− d1,t

b∗

wt

 ≤

b̂ − b∗

 T−2
T

t=

b̂∧b∗


+1

|wt |

≤

b̂ − b∗

 T−2
T

t=1

|wt | = Op

T−1/2 .

Parts 4 and 5 then follow using the same arguments.

A.2. Proof of Theorem 1

A.2.1. (a) Break is present in DGP
The consistency of lag order selection in VAR and VECMmodels

based on the SC is well known. See for example Proposition 8.1 of
Lütkepohl (2005) for a textbook presentation of the consistency
of the SC for the selection of p, a result that also justifies other
criteria such as the Hannan–Quinn criterion (although not the
Akaike criterion). The novelty in our results lies in the treatment
of the trend breaks rather than the lag length, so we abstract from
the selection of the lag length by assuming it known in these proofs,
with the understanding that Pr


p̂1,j = p∗


→ 1 for a lag length

p̂1,0, p̂1,r , p̂1,n selected by SC in any of our three procedures, with
true lag length p∗ that satisfies p∗

≤ p̄. In the models that include
a break when the break is present, the lag length in the following
is therefore treated as fixed.

A1. The break fraction estimator λ̂0,1 is a special case of the
multivariate regression break estimators of Qu and Perron (2007),
and their Lemma 1 would therefore imply λ̂0,1 − λ∗

= Op

T−1


.

However when r∗ > 0, the imposition of r = 0 in the
estimator imposes some over-differencing into at least some of the
series in yt , which would imply a violation of their Assumption
A4(c) for some directions e. Inspection of their proofs shows that
this condition is necessary for the derivation of the asymptotic
distribution of λ̂0,1, but not its rate of convergence, which will
continue to hold in the current case. This is the multivariate
extension of the argument put forward in Lemma 1(ii) of Harris
et al. (2009). The estimator λ̂r,p is equal to λ̂0,1 if p = 1 and r = 0.
For other values of p and r , λ̂r,p is based on the correctly specified
likelihoodunder the nullwhile λ̂0,1 is not, implying the consistency
and rate of convergence properties for λ̂r,p are noworse than those
of λ̂0,1. If the null is false, so that some co-integrating vectors are
omitted from the log-likelihood, some stationary autocorrelation
remains in the disturbances of the model, but Qu and Perron
demonstrate that this does not affect the rate of convergence
of the estimator, only its asymptotic distribution. Also λ̂r,p is
a multivariate version of λ̂AO2 in Kim and Perron (2009) which
converges at rate Op


T−1


.

A2. Consider SC-VECM. The strategy of the proof is to show
that the standardised log-likelihood for the model with break con-
verges in probability to a value greater than does the standard-
ised log-likelihood for the model without break. When a break is
present in the DGP the lag length p̂0 selected in the model exclud-
ing a break is not consistent. (While beyond the scope of this pa-
per, we conjecture that in this case Pr


p̂0 = p̄


→ 1.) In what

follows we argue that Pr (SC1 (p; r, λ∗) < SC0 (p; r)) → 1 for each
p = 1, . . . , p̄, so that the trend break can be selected consis-
tently by the SC without knowledge of the correct lag length, and
hence it follows that Pr


minp SC1 (p; r, λ∗) < minp SC0 (p; r)


=

Pr

SC1


p̂1,r; r, λ∗


< SC0


p̂0; r


→ 1. The trend break is there-

fore correctly selectedwith probability approaching one, while the
potentially misspecified lag length p̂0 is not used with probability
approaching one.
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The maximised standardised log-likelihood when the break is
included in the model is

max
δ0,δ1,α,β,Γ

T−1ℓT

β, δ1, α, δ0,Γ , r;D0,λ∗ ,D1,λ∗


= T−1ℓ̂T (r; (ι0 : ιλ∗) , (τ0 : τλ∗) , p) ,

but when the break is excluded we instead have the constrained
maximum

max
α,β,Γ

T−1ℓT

β, 0, α, 0,Γ , r;D0,λ∗ ,D1,λ∗


= T−1ℓ̂T (r; ι0, τ0, p) .

As a constrainedmaximisation, this obviously satisfies the relation

T−1ℓ̂T (r; ι0, τ0, p) ≤ T−1ℓ̂T (r; (ι0 : ιλ∗) , (τ0 : τλ∗) , p) . (A.11)

Wewill show that T−1ℓ̂T (r; ι0, τ0, p)
p

→ ℓ0 and T−1ℓ̂T (r; (ι0 : ιλ∗) ,

(τ0 : τλ∗) , p)
p

→ ℓ1 with ℓ0 ≠ ℓ1, and hence ℓ0 < ℓ1 for any λ∗ and
p. The SC decision rule can be expressed as

T−1ℓ̂T

r;

ι0 : ιλ̂r


,

τ0 : τλ̂r


, p


− T−1ℓ̂T (r; (ι0 : ιλ∗) , (τ0 : τλ∗) , p)

+ T−1ℓ̂T (r; (ι0 : ιλ∗) , (τ0 : τλ∗) , p)− T−1ℓ̂T (r; ι0, τ0, p)

>
1
2
(n + r + 2)

log T
T
.

Then, for any ε > 0, the results of Lemma A.1 imply that

Pr
T−1ℓ̂T


r;

ι0 : ιλ̂r,p


,

τ0 : τλ̂r,p


, p


− T−1ℓ̂T (r; (ι0 : ιλ∗) , (τ0 : τλ∗) , p)
 > ε


→ 0

while ℓ0 < ℓ1 implies that there exists someM > 0 such that

Pr

T−1ℓ̂T


r;

ι0 : ιλ̂r,p


,

τ0 : τλ̂r,p


, p


− T−1ℓ̂T (r; ι0, τ0, p) > M


→ 1.

Since T−1 log T < M for large enough T , we conclude that

Pr

T−1ℓ̂T


r;

ι0 : ιλ̂r,p


,

τ0 : τλ̂r,p


, p


− T−1ℓ̂T (r; ι0, τ0, p) >
1
2
(n + r + 2)

log T
T


→ 1,

which shows that Pr

SC1


p; r, λ̂r,p


≤ SC0 (p; r)


→ 1, as re-

quired for the consistency of SC-VECM as argued above. The cor-
responding result for SC-VAR follows similarly with r set to n.

We now outline how T−1ℓ̂T (r; ι0, τ0, p)
p

→ ℓ0 and T−1ℓ̂T

(r; (ι0 : ιλ∗) , (τ0 : τλ∗) , p)
p

→ ℓ1. The DGP can be written (exclud-
ing Z∆,p since nothing of substance changes in the following argu-
ments that rely only on the different orders of magnitude of I (1)
and I (0) components, not on whether a specific p produces white
noise disturbances)

Y1 = (ι0 : τ0 : ιλ∗ : τλ∗)


µ′

0,0

µ′

0,1

µ′

1,0

µ′

1,1

+ U1 (A.12)

implying in the co-integrating direction

Y1β = (ι0 : τ0 : ιλ∗ : τλ∗)


µ′

0,0β

µ′

0,1β

µ′

1,0β

µ′

1,1β

+ U1β
and that

Y1β − (τ0 : τλ∗)


µ′

0,1β

µ′

1,1β


= (ι0 : ιλ∗)


µ′

0,0β

µ′

1,0β


+ U1β

behaves like a stationary process with a level shift. Thus in the
VECM representation we find

Z0 =


Y1β − (τ0 : τλ∗)


µ′

0,1β

µ′

1,1β


α′

+ (ι0 : ιλ∗)


δ′

0,0

δ′

1,0


+ E

=


(ι0 : ιλ∗)


δ0,1
δ1,1


+ U1β


α′

+ (ι0 : ιλ∗)


δ′

0,0

δ′

1,0


+ E

= (ι0 : ιλ∗)


η′

0,0

η′

1,0


+ V (A.13)

where η′

0,0 = δ0,1α
′
+δ′

0,0, η
′

1,0 = δ1,1α
′
+δ′

1,0, and V = U1βα
′
+E

is mean zero and I (0) because of the co-integration. Thus Z0 is
represented in termsof a level, a level shift and an I (0)disturbance.

The maximised log-likelihood at r with break included is

ℓ̂T (r; (ι0 : ιλ∗) , (τ0 : τλ∗)) = −
T
2
log

Z ′

0P̄ι0:ιλ∗ Z0
T


−

T
2

r
i=1

log (1 − νi (MT ((ι0 : ιλ∗) , (τ0 : τλ∗))))

where

MT (X0, X1) =


Z ′

0P̄X0Z0
T

−1
Z ′

0P̄X0 (Y1 : X1)

T

×


(Y1 : X1)

′ P̄X0 (Y1 : X1)

T

−1
(Y1 : X1)

′ P̄X0Z0
T

=


Z ′

0P̄X0Z0
T

−1 
Z ′

0P̄X0X1

T 2


X ′

1P̄X0X1

T 3

−1
X ′

1P̄X0Z0
T 2

+
Z ′

0P̄X0:X1Y1

T


Y ′

1P̄X0:X1Y1

T

−1
Y ′

1P̄X0:X1Z0
T


.

The representation (A.13) implies the leading term in MT (X0, X1)
has limit
Z ′

0P̄X0Z0
T

=
Z ′

0P̄ι0:ιλ∗ Z0
T

=
V ′P̄ι0:ιλ∗V

T
p

→ E

vtv

′

t


:= Σ00,

since Vt is I (0). Also

X ′

1P̄X0Z0
T 2

=
(τ0 : τλ∗)′ P̄ι0:ιλ∗V

T 2
= Op


T−1/2 ,

since V is a zero-mean I (0) process, while standard polynomial
summation results imply

X ′

1P̄X0X1

T 3
=
(τ0 : τλ∗)′ P̄ι0:ιλ∗ (τ0 : τλ∗)

T 3
→ Q ,

where Q is a fixed full rank matrix, so that the first term
in the second factor in MT (X0, X1) disappears asymptotically:
(T−2Z ′

0P̄X0X1)

T−3X ′

1P̄X0X1
−1

(T−2X ′

1P̄X0Z0) = Op

T−1


. In the

second term we consider the partially I (1) process Y1 in its
stationary and non-stationary directions as usual:

Z ′

0P̄X0:X1Y1

T


Y ′

1P̄X0:X1Y1

T

−1
Y ′

1P̄X0:X1Z0
T

=
Z ′

0P̄X0:X1Y1

β : T−1/2β⊥


T

×


β : T−1/2β⊥

′ Y ′

1P̄X0:X1Y1

β : T−1/2β⊥


T

−1

×


β : T−1/2β⊥

′ Y ′

1P̄X0:X1Z0
T

.
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From (A.12) we have P̄X0:X1Y1 = P̄ι0:τ0:ιλ∗ :τλ∗
Y1 = P̄ι0:τ0:ιλ∗ :τλ∗

U1,
and hence that P̄X0:X1Y1β is a zero-mean I (0) process while
P̄X0:X1Y1β⊥ is a de-trended I (1) process. Standard I (1) / I (0) limit
theory therefore implies that

Z ′

0P̄X0:X1Y1β

T
,
β ′Y1P̄X0:X1Y1β

T
,
β ′

⊥
Y1P̄X0:X1Y1β⊥

T 2
= Op (1)

Z ′

0P̄X0:X1Y1β⊥

T 3/2
,
β ′Y1P̄X0:X1Y1β⊥

T 3/2
= Op


T−1/2

and hence that

Z ′

0P̄X0:X1Y1

T


Y ′

1P̄X0:X1Y1

T

−1
Y ′

1P̄X0:X1Z0
T

=
Z ′

0P̄X0:X1Y1β

T


β ′Y ′

1P̄X0:X1Y1β

T

−1
β ′Y ′

1P̄X0:X1Z0
T

+ op (1)

p
→Σ0βΣ

−1
ββΣβ0.

Taken together, these results imply that, for any r ≤ r0,

1
T
ℓ̂T (r; (ι0 : ιλ∗) , (τ0 : τλ∗))

p
→ −

1
2
log |Σ00|

−
1
2

r
i=1

log

1 − νi


Σ−1

00 Σ0βΣ
−1
ββΣβ0


=: ℓ1. (A.14)

Now consider the maximised log-likelihood with the break
excluded

ℓ̂T (r; ι0, τ0) = −
T
2
log

Z ′

0P̄ι0Z0
T


−

T
2

r
i=1

log (1 − νi (MT (ι0, τ0))) .

The limits in this case are different because the breaks are not
being regressed out. It is not necessary to derive the complicated
expression for this limiting log-likelihood, it is sufficient to
demonstrate that it differs from the case where the break is
included. To begin, (A.13) implies that

P̄ι0Z0 = P̄ι0 ιλ∗η′

1,0 + P̄ι0V , (A.15)

and, hence,

Z ′

0P̄ι0Z0
T

= η1,0
ι′λ∗ P̄ι0 ιλ∗

T
η′

1,0 + η1,0
ι′λ∗ P̄ι0V

T

+
V ′P̄ι0 ιλ∗

T
η′

1,0 +
V ′P̄ι0V

T
p

→ λ∗

1 − λ∗


η1,0η

′

1,0 +Σ00 =: Ω00.

Similarly, T−2(X ′

1P̄X0Z0) = T−2(τ ′

0P̄ι0 ιλ∗)η′

1,0 +op (1)
p

→Ω10, while
T−3(X ′

1P̄X0X1) = T−3(τ ′

0P̄ι0τ0) → Ω11. The exact forms of
Ω00,Ω10,Ω11 are not important, only that the both the orders and
limits of these terms is different here from the case with a break
included. In the expression inMT (X0, X1) involving Y1, we have the
residuals

P̄X0:X1Y1 = P̄ι0:τ0Y1 = P̄ι0:τ0 (ιλ∗ : τλ∗)


µ′

1,0
µ′

1,1


+ P̄ι0:τ0U1

= P̄ι0:τ0τλ∗µ′

1,1 + P̄ι0:τ0 ιλ∗µ′

1,0 + P̄ι0:τ0U1 (A.16)

which retain the broken trend τλ∗ . DefineAT := (T−1Aµ : T−1/2Aβ⊥

: Aβ) to be an n × n full rank matrix of mutually orthogonal
elements such that Aµ = µ1,1, and the columns of Aβ and Aβ⊥

are
spanned by the columns of β and β⊥ respectively. These latter two
matrices can be obtained as orthogonal bases for the vector spaces
spanned by the columns of P̄µ1,1β and P̄µ1,1β⊥. Then using (A.15)
and (A.16) we find

Z ′

0P̄ι0:τ0Y1Aµ
T 2

=


P̄ι0 ιλ∗η′

1,0 + P̄ι0V
′
P̄ι0:τ0τλ∗

T 2
µ′

1,1µ1,1 + op (1)

= η1,0
ι′λ∗ P̄ι0:τ0τλ∗

T 2
µ′

1,1µ1,1 + op (1)
p

→Ω0µ,

Z ′

0P̄ι0:τ0Y1Aβ⊥

T 3/2
=


P̄ι0 ιλ∗η′

1,0 + P̄ι0V
′
P̄ι0:τ0U1Aβ⊥

T 3/2
+ op (1)

d
→

 1

0
U1,λ∗ (s) ds,

Z ′

0P̄ι0:τ0Y1Aβ
T

=


P̄ι0 ιλ∗η′

1,0 + P̄ι0V
′
P̄ι0:τ0U1Aβ

T
+ op (1)

p
→Ω0β .

Also

A′
µY

′

1P̄ι0:τ0Y1Aµ
T 3

=

µ′

1,1µ1,1
2 τ ′

λ∗ P̄ι0:τ0τλ∗

T 3
+ op (1)

p
→Ωµµ

A′

β⊥
Y ′

1P̄ι0:τ0Y1Aµ
T 5/2

=
A′

β⊥
U1P̄ι0:τ0τλ∗

T 5/2
µ′

1,1µ1,1 + op (1)

d
→

 1

0
U2,λ∗ (s) ds

A′

βY
′

1P̄ι0:τ0Y1Aµ
T 2

=


P̄ι0:τ0 ιλ∗µ′

1,0Aβ + P̄ι0:τ0U1Aβ
′
P̄ι0:τ0τλ∗

T 2

+ op (1)
p

→Ωβµ

A′

β⊥
Y ′

1P̄ι0:τ0Y1Aβ⊥

T 2
=

A′

β⊥
U1P̄ι0:τ0U1Aβ⊥

T 2
+ op (1)

d
→

 1

0
U3 (s) ds

A′

β⊥
Y ′

1P̄ι0:τ0Y1Aβ
T 3/2

=
A′

β⊥
U1P̄ι0:τ0


P̄ι0:τ0 ιλ∗µ′

1,0Aβ + P̄ι0:τ0U1Aβ


T 3/2

+ op (1)
d

→

 1

0
U4 (s) ds

A′

βY
′

1P̄ι0:τ0Y1Aβ
T

=


P̄ι0:τ0 ιλ∗µ′

1,0Aβ + P̄ι0:τ0U1Aβ
′
P̄ι0:τ0


P̄ι0:τ0 ιλ∗µ′

1,0Aβ + P̄ι0:τ0U1Aβ


T
p

→Ωββ .

All of these limits together imply that

Z ′

0P̄ι0:τ0Y1

T


Y ′

1P̄ι0:τ0Y1

T

−1
Y ′

1P̄ι0:τ0Z0
T

=
Z ′

0P̄ι0:τ0Y1

T−1Aµ : T−1/2Aβ⊥

: Aβ


T

×


T−1Aµ : T−1/2Aβ⊥

: Aβ
′ Y ′

1P̄ι0:τ0Y1

T−1Aµ : T−1/2Aβ⊥

: Aβ


T

−1

×


T−1Aµ : T−1/2Aβ⊥

: Aβ
′ Y ′

1P̄ι0:τ0Z0
T

d
→


Ω0µ :

 1

0
U1,λ∗ (s) ds : Ω0β




Ωµµ

 1

0
U2,λ∗ (s)′ ds Ω ′

βµ 1

0
U2,λ∗ (s) ds

 1

0
U3 (s) ds

 1

0
U4 (s) ds

Ωβµ

 1

0
U4 (s)′ ds Ωββ



−1

×


Ω0µ :

 1

0
U1,λ∗ (s) ds : Ω0β

′

.
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Thus for r ≤ r0

1
T
ℓ̂T (r; ι0, τ0)

= −
1
2
log

Z ′

0P̄ι0Z0
T

− 1
2

r
i=1

log (1 − νi (MT (ι0, τ0)))

p
→ −

1
2
log |Ω00|

−
1
2

r
i=1

log

1 − νi


Ω−1

00 Ω0βΩ
−1
ββΩβ0


=: ℓ0, (A.17)

which is clearly a different limit from that given in (A.14).
The consistency for SC-DIFF is similar, but may involve some

over-differencing since it is implicitly setting r = 0 and p = 1 even
when these are not true. Some relevant results are therefore added
here. The SC-DIFF criterion to include the break can be expressed
as

log
Z ′

0P̄ι0Z0
T

− log

Z
′

0P̄ι0:ιλ̂Z0
T

 ≥ (n + 2)
log T
T
.

For general r and p we have, as an extension of (A.9), Z0 =

D0,λ∗


µ′

0β + δ′

0


+ V , where V := U1βα

′
+ Z∆,pΓ ′

+ E is I (0).
First observe that part 1 of Lemma A.1 applies here since all that is
required is that (A.8) holds, which is true even when V is autocor-
related in an I (0) manner. A standard law of large numbers then
implies that T−1(Z ′

0P̄ι0:ιλ∗ Z0) = T−1(V ′P̄ι0:ιλ∗V )
p

→ E

vtv

′
t


. Re-

gressing only on the constant gives P̄ι0Z0 = P̄ι0 ιλ∗ψ ′
+ P̄ι0V , where

ψ ′
:= µ′

0,1β+ δ′

0,1 ≠ 0 and, hence, T−1(Z ′

0P̄ι0Z0) = T−1(V ′P̄ι0V )+
T−1(ψ(ι′λ∗ P̄ι0 ιλ∗)ψ ′)+op (1) = E


vtv

′
t


+λ∗ (1 − λ∗) ψψ ′. By the

same logic as the SC-VECM, it therefore follows that

Pr


log

Z ′

0P̄ι0Z0
T

− log

Z ′

0P̄ι0:ιλ∗ Z0
T

 ≥ (n + 2)
log T
T


→ 1.

A3. The asymptotic equivalence of using estimated and
true break fractions follows immediately from the results of
Lemma A.1.

A4. The asymptotic null distribution of qT

D0,λ∗ ,D1,λ∗


is given

in Theorem 3.1 of Johansen et al. (2000), with the extension
from i.i.d. to martingale difference disturbances as specified
in Assumption 1 following from the results of Cavaliere et al.
(2010).

A.2.2. (b) Break is absent from DGP
When the break is absent from the DGP all of the lag length es-

timators are consistent, i.e. satisfy Pr

p̂ = p∗


→ 1. We therefore

treat the lag length as fixed here.
B1. The SC-VECM is based on the likelihood ratio process,

ℓ̂T (r; (ι0 : ιλ) , (τ0 : τλ) , p∗) − ℓ̂T (r; ι0, τ0, p∗) = Op (1), uni-
formly for λ in the compact set [λL, λU ] ⊂ [0, 1]. Since this is
the likelihood ratio version of a Chow test statistic with a fixed
value of r under null and alternative, standard asymptotic results
apply for any given λ to give, 2


ℓ̂T

r;

ι0 : ιλ


,

τ0 : τλ


, p∗


−

ℓ̂T

r; ι0, τ0, p∗

 d
→χ2

n+r . We can therefore conclude that

Pr(supλ 2

ℓ̂T (r; (ι0 : ιλ), (τ0 : τλ) , p∗) − ℓ̂T (r; ι0, τ0), p∗


>

1
2 (n + r + 2) log T ) → 0. The exact form of the asymptotic dis-
tribution of the process of these likelihood ratios over λ is not re-
quired for the consistency property of the SC.
B2. The distribution for qT (ι0, τ0) follows immediately from
Theorem 1 and Remark 3.2 of Cavaliere et al. (2010).

Appendix B. Supplementary data

Supplementary material related to this article can be found
online at http://dx.doi.org/10.1016/j.jeconom.2016.02.010.
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