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Sequence analysis of call record data: exploring the role of

different cost settings

Summary. Sequence analysis is widely used in lifecourse research and more recently has

been applied by survey methodologists to summarise complex call record data. However,

summary variables derived in this way have proved ineffective for post-survey adjustments,

due to weak correlations with key survey variables. We reflect on the underlying optimal

matching algorithm, and test the sensitivity of the output to input parameters or “costs”, which

must be specified by the analyst. The results illustrate the complex relationship between

these costs and the output variables which summarise the call record data. Regardless of

the choice of costs, there was a low correlation between the summary variables and the

key survey variables, limiting the scope for bias reduction. The analysis is applied to call

records from The Irish Longitudinal Study of Ageing, a nationally representative, face-to-face

household survey.

Keywords: Sequence Analysis; Paradata; Call Record Data; Nonresponse Bias; Ad-

justment Weights

1. Introduction

Interviewer call records are now routinely collected as part of large-scale household surveys.

Potentially, these data present us with a rich source of information for respondents and

nonrespondents which can help address the problem of survey nonresponse. Sequence

analysis has been explored as a means of summarising these complex records (Kreuter and

Kohler, 2009; Pollien and Joye, 2011, 2014; Maslovskaya et al., 2014; Durrant et al., 2014).
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While applications of sequence analysis are growing in the social sciences (see Aisenbrey

and Fasang (2010) for a recent review), it remains unclear how this technique, typically

used to analyse long, episodic lifecourse trajectories, will perform when applied to call

record sequences, which are relatively short but with high variability in length. In this

article we provide theoretical and empirical insights on this issue.

Our interest in fully observed auxiliary variables is motivated by the need to correct for

differential response rates. Post-survey adjustments typically rely on one or more auxiliary

measures Z, which are available for each sampled unit and correlated with both the response

outcome and survey variables (Kalton and Flores-Cervantes, 2003; Little and Vartivarian,

2005; Bethlehem et al., 2011; Brick, 2013). The search for suitable Z variables has recently

turned to paradata, which refer to data generated as a by-product of the survey process

(Couper, 1998; Blom, 2009; Kreuter et al., 2010; Kreuter and Casas-Cordero, 2010; Olson,

2013; Conrad et al., 2013; Kreuter and Olson, 2013). These data are attractive because

they are available for all sampled units at little extra cost (Groves, 2006). Call record data

are a particularly rich subcategory of paradata which present a useful area for exploration.

In household surveys, these data are typically recorded by the interviewer at each visit,

and include the number, time and outcome of each attempt.

Post-survey weighting adjustments are typically based on the assumption that the sur-

vey variables are missing at random (MAR) with respect to the auxiliary variables used

to construct the weights (Little and Rubin, 2002). The motivation for including variables

derived from call record data is that the MAR assumption becomes more plausible if the

auxiliary variables include call record information. By doing this, we are assuming that the

pattern of calls made to a household is associated with the characteristics of this household

as measured by the survey variables.

More formally, let Yi be the survey variable of interest for sampling unit i, and Ri be

the binary response-outcome indicator for the same unit, where Ri = 1 if i was successfully

interviewed and 0 otherwise. We use ZF
i to denote the fixed auxiliary variables typically

used for nonresponse adjustment, such as frame data or interviewer observations. However,

we would not believe the MAR assumption to be plausible if these were the only Z variables
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available to us. Hence, we introduce Si as the set of available call record information about

the sequence of calls made to i. MAR now corresponds to the more plausible assumption

that

Pr(Ri = 1 | Yi, ZF
i , Si) = Pr(Ri = 1 | ZF

i , Si), (1)

that is, only the call record information and fixed auxiliary variables together can explain

the association between Yi and Ri. While we would not expect (1) to hold perfectly in

practice, we do expect the inclusion of Si to lead to substantial bias reduction.

The practical problem is how to include Si when calculating the weights. The set of raw

call record information is difficult to model because, generally, it comprises a diverse mix

of variables, with the number of variables needed to represent the call sequences varying

between units. As such, the aim is to create a fixed number of scalar variables ZS
i = ZS(Si)

to summarise the call record information for each unit, but which still satisfy MAR:

Pr(Ri = 1 | Yi, ZF
i , Si, Z

S
i ) = Pr(Ri = 1 | ZF

i , Z
S
i ). (2)

A commonly used choice for ZS
i is the total number of calls made to a household (Beau-

mont, 2005; Blom, 2009; Wagner et al., 2013). But the number of calls is a rather crude

summary of the recruitment process which may lose some of the information contained

in Si vital for nonresponse adjustment. It was against this background that Kreuter and

Kohler (2009) first suggested using sequence analysis to summarise call records in a man-

ner that minimises the loss of information. Examining sequences of household-level call

outcomes collected from 14 countries across three waves of the European Social Survey

(ESS), the authors created six continuous measures to summarise the complex patterns

of calls. The results showed that the extracted indicators were predictive of the response

outcome (Ri), but only weakly associated with key survey variables (Yi). This suggests a

limited scope for effective post-survey adjustment. However, Kreuter and Kohler (2009)

relied on the default input costs in their application when it has been previously shown

that the choice of input costs can strongly influence the output from sequence analysis

(Bison, 2009; Gauthier et al., 2009).
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In this paper, we explore whether different choices of input costs can improve the prop-

erties of sequence analysis-derived summary variables for weighting adjustments. Input

costs C for sequence analysis must be chosen subjectively by the analyst, but in general

there is little theoretical guidance as to how this should be done (Wu, 2000). In theory,

we would like to find C = C∗ such that the association between Yi and ZS
i = ZS

i (C∗) for

respondents and nonrespondents is the maximum among the ZS
i (C) satisfying equation

(2), but this is impossible mainly because the available data are incompletely observed.

In the absence of a robust method, we search across an array of plausible choices for C

to assess the sensitivity of the resulting summary variables. Finally, we return to the

central question for practice, namely, whether using sequence analysis-derived ZS
i makes

any difference to the weighted estimates of our survey variables. To do this, we take the

‘most promising’ of the summary variables from our sensitivity analysis and compare the

resulting weighted estimates to those obtained using simple summaries such as the number

of calls. Our choice is not optimal in any formal sense, but is promising in the spirit of

Little and Vartivarian (2005) and Kreuter et al. (2010) in having the highest correlation

with Yi among the respondents. The analysis is carried out on call record data from Wave

1 of The Irish Longitudinal Study on Ageing (TILDA) (Whelan and Savva, 2013).

2. Sequence Analysis

In this section, we review the basic principles of sequence analysis, with a particular focus

on the optimal matching metric. An important objective of this review is to draw attention

to features of the technique which are problematic for its application to call record data.

Sequence analysis comprises a set of tools for describing and summarising longitudinal or

sequential data. Useful descriptive outputs include calculation of transition rates, identi-

fication of common subsequences, and graphical representations of trajectories. Sequence

data may be summarised by a matrix, which defines the ‘distance’ between each pair of

uniquely observed sequences. This distance matrix can be further analysed using tradi-

tional data reduction techniques so that the rich sequential information can be represented
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by a manageable number of dimensions.

2.1. States and state-spaces

States are the individual elements of which sequences are composed. The set of possible

states, referred to as the state-space, is specified by the analyst and should be coded to

reflect the underlying process of interest. The states should be exhaustive and mutually

exclusive. Previous applications to call record data have focused on the outcome of each

interviewer’s visit, such that the ordered sequence of states for a household describes the

full recruitment trajectory from first call till last. Other codings are possible; for example,

if interviewers’ work patterns are the subject of interest, a state-space comprising call times

may be more appropriate than call outcomes.

Our choice of state-space is motivated by a key tenet of nonresponse research, namely,

noncontact and unwillingness are distinct causes of nonresponse bias (Groves and Couper,

1998). For example, Lynn and Clarke (2002) found that hard-to-contact households were

younger, healthier and more likely to be employed compared to easy-to-reach sample mem-

bers. Reluctant householders, on the other hand, had less savings and lower housing costs.

Thus we distinguish between calls that result in contact and those where no contact is

made. In the case of successful contacts, reluctant and willing outcomes are differentiated.

2.2. The distance metric

A distance metric is used to quantify the dissimilarity between two sequences. Numerous

metrics are available, and different metrics are sensitive to different properties of sequential

patterns. Robette and Bry (2012) and Halpin (2012) review several common distance

metrics. We focus on a metric based on a technique known as optimal matching (OM).

We choose OM because it is by far the most widely used metric, and has been used in all

previous applications to call record data.

The OM distance metric is defined in terms of the number of operations required to

match the states of one sequence to those of another. This matching process proceeds
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through a series of edits to the states of a sequence. There are two types of edits possible:

substitution where one element of a sequence is directly swapped for another; and insertion

and deletion, where missing elements are inserted or superfluous elements are deleted. Note

that as a deletion in one sequence corresponds to an insertion in the sequence to which it

is being matched, both operations are equivalent and referred to collectively as indels. A

cost, or penalty, is assigned to each substitution and indel, and the distance between any

two sequences is the sum of the costs of all the operations needed to match the pair.

Before calculating the distance between a pair of sequences their respective states must

be optimally aligned to return the minimal distance, that is, the ‘cheapest’ combination

of substitutions and indels to complete the transformation. This optimal alignment is not

necessarily obvious but can be obtained using dynamic programming methods (Needleman

and Wunsch, 1970). Of course, the cheapest alignment of two sequences will be dictated

by the costs assigned to the substitution and indel operations. These costs are the input

values under the researcher’s control mentioned in the Section 1, and their assignment

plays a fundamental role in the method.

2.3. Substitution and indel costs

Substitution and indel costs interact in complicated ways to determine the OM distance

between two sequences. Consequently, the best way to set these costs has been a contentious

issue for sequence analysis in the social sciences (Stovel et al., 1996; Levine, 2000; Wu, 2000;

Abbott and Tsay, 2000; Aisenbrey and Fasang, 2010). Ideally, some theory or insight about

the system under study should be used to make an informed judgement about which choice

of costs is most sensible. It is also possible to determine the costs empirically (Brzinsky-Fay

et al., 2006; Gabadinho et al., 2011; Gauthier et al., 2009).

Costs play different roles depending on the operation in question. Substitutions are

used to match elements which occur at the same point in a sequence, so the magnitude of

the cost should reflect the relative similarity of the elements to be swapped. Consider, for

example, an interviewer’s visit which leads to an interview. In terms of the householder’s
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underlying willingness to respond, an interview is more similar to an appointment than

to a refusal. Therefore, a low substitution cost should be applied to match interview and

appointment, and a high cost for matching interview with refusal. Costs can also be chosen

to allow for classification error, or where outcomes are difficult for the interviewer to code.

For example, it may be difficult to determine whether a noncontact should be interpreted

as a polite refusal; applying a low substitution cost between noncontact and refusal can

allow for this uncertainty by effectively making the states interchangeable in a contact

sequence.

Indel operations insert additional states or delete superfluous ones. This allows the

number and relative position of states within a sequence to change. The role of indels

is particularly important when matching sequences of different lengths, because indel op-

erations are necessary to make up for the difference. In the lifecourse literature, this is

not an issue because analyses are usually restricted to events occurring within a given age

range which leads to sequences of the same length (Macindoe and Abbott, 2004; Lesnard,

2010; Barban and Billari, 2012). However, the length of call record sequences can vary

considerably, and so the role of the indel operation becomes more important. For example,

choosing a high indel cost would impose a large distance between hard-to-reach households

with long sequences and easy-to-reach households with short sequences. Standardisation,

which rescales the distance between two sequences by dividing by the length of the longest

of the pair, is useful when dealing with sequences of different length (Abbott and Hrycak,

1990).

The ratio of the indel cost to the substitution cost is a key property of the optimal

matching metric (Bison, 2009; Lesnard, 2010). Setting the indel cost to less than half

the lowest substitution cost means that any two non-matching states can be aligned using

two indels rather than a substitution. This is because a deletion followed by an insertion

will always be ‘cheaper’ than a substitution. Below this critical ratio, the OM algorithm

will rely only on the indel operation and the coding of the states is effectively ignored,

leading Hollister (2009, p.13) to apply the term ‘pseudo-substitution’ to such matches.

When the indel cost is greater than half the highest substitution cost, indels will only be



8

used to account for differences in sequence length. As a thought experiment, suppose the

indel cost is set to 100 times the highest substitution cost. Under this scenario, the indel

costs incurred when matching sequence lengths would dwarf costs accrued when matching

states. The distance matrix would be dominated by variation in length and summarising

this matrix would return a single dimension equivalent to the sequence length.

Substitution costs for a state-space of size k are represented as a symmetric matrix of

order k×k, which contains the (k−1)k/2 costs for each possible substitution. Traditionally

only one indel cost is defined and often set relative to the substitution costs.

2.4. Summarising the distance matrix

Sequence analysis produces a m ×m zero-diagonal, symmetric matrix, which reflects the

relative distance between each of the m uniquely observed sequences in the dataset under

analysis. In isolation, the distance matrix is not particularly informative, and some fur-

ther multivariate technique is necessary to reduce the information contained in it into a

manageable number of variables. The two most commonly applied data-reduction meth-

ods are cluster analysis and multidimensional scaling (MDS) (Brzinsky-Fay et al., 2006;

Abbott and Tsay, 2000). The aim of cluster analysis is to assign units to a small num-

ber of homogeneous groups or clusters. MDS on the other hand produces scale summary

variables, allowing the units to be plotted in one or more dimensions to aid interpretation

(Bartholomew et al., 2008).

3. Data and Methods

3.1. Data

Before setting out how our investigation will proceed, we first describe the survey and call

record data we will be using. The call record data were gathered during the first wave

of The Irish Longitudinal Study on Ageing (TILDA). TILDA is a prospective study of

the residential population over the age of 50 living in the Republic of Ireland (Whelan

and Savva, 2013). As a large scale, interviewer-mediated, face-to-face household survey,
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its paradata are similar to the ESS and Understanding Society, whose call records have

previously been analysed using sequence analysis (Kreuter and Kohler, 2009; Pollien and

Joye, 2011, 2014; Maslovskaya et al., 2014; Durrant et al., 2014). Call record information

was recorded by interviewers on a pen-and-paper form. The call record dataset comprises

contact history information for over 24, 000 addresses, approached by interviewers between

October 2009 and February 2011. Ineligible sample addresses (non-residential or with no

occupant over the age of 50) were removed and the contact information was cleaned. This

involved removing duplicate entries and trimming contact attempts beyond the tenth call.

Contact attempts proceeded beyond the tenth call at 411 households and resulted in 1, 206

additional calls (2.8% of all calls) to valid addresses. Truncating this long tail at 10 calls

greatly speeded up the sequence algorithm without losing much information. The following

analysis is based on 41, 353 calls made to 10, 074 households. The number of visits to a

household ranged between one and ten and the modal number of visits was two.

At each visit, the interviewer recorded the exact time and date of the call, and indicated

one of 25 outcome categories specified on the contact form. Table 1 contains the distribution

of these call outcomes. As per the discussion in Section 2.1, the call outcomes were then

divided into five states, differentiating between contact and noncontact, and degrees of

amenability to cooperate among contacts. Any call failing to achieve face-to-face contact

with an occupant was labelled as a noncontact (40.2%). Individual- and household-level

refusals made up 12.5% of all calls made. Calls where face-to-face contact was established,

but neither a refusal nor appointment was recorded, were coded as neutral (20.3%). Positive

outcomes (13.0%) were calls where an appointment was made, or where partial interviewing

took place. Successful interviews, which include visits where one or multiple household

members were interviewed, comprised 14.1% of the total number of calls.

Using these codings, the data comprise 2, 315 unique recruitment sequences. Similar to

the patterns reported by Kreuter and Kohler (2009) and Pollien and Joye (2011, 2014),

the most common recruitment trajectories were short sequences leading to interview. Ap-

pointment at the first call followed by interview at the second was the single most frequent

pattern (16% of eligible sampled addresses).
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Table 1. Call outcome coding

Outcome Category n % State n %

No contact/still chasing 15, 642 37.8

Noncontact 16,621 40.2

Occupied no contact at address after 5 calls 342 0.8

Unable to access block / apartments 283 0.7

Occupier in but not answering after 5 calls 143 0.3

Property not found 114 0.3

Unsure if occupied, no contact 75 0.2

Property vacant 12 0.0

Non-residential property 4 0.0

Entry refused by warden 3 0.0

Property derelict/demolished 3 0.0

Household refusal 4, 959 12.0
Refusal 5,177 12.5

Individual refusal 218 0.5

Some contact but no appointment 6, 373 15.4

Neutral 8,377 20.3

Appointment broken 631 1.5

Too ill to participate 577 1.4

Other 361 0.9

Contact made but unable to assess eligibility 150 0.4

Away during fieldwork 90 0.2

No one aged 50+ in the household 70 0.2

Withdrawn by head office 47 0.1

Mother tongue require 45 0.1

Partial interview - refused to continue 33 0.1

Partial interview - to be completed 104 0.3

Positive 5,363 13.0One half of an eligible couple cooperated 229 0.6

Appointment made 5, 030 12.2

Successful interview 5, 815 14.1 Success 5,815 14.1

Total 41, 353 100
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3.2. Sensitivity analysis

As discussed in Section 2.3, the choice of costs applied to the sequence matching algorithm

has an impact on the output of the analysis. However there is little guidance about how

costs should be set, and previous applications to call record data have relied on the default

cost settings without considering how this decision may have influenced results. In the

absence of any theory with which to set the costs directly, we take the MAR assumption

(2) to hold throughout, and test the sensitivity of the summary variables ZS to different

choices of costs.

We examined 100 scenarios generated by the following cross-classification of 10 indel

costs and 10 substitution matrices. As this is a computationally intensive procedure, the

analysis was restricted to a random 20% subset of eligible sampled addresses, reducing

the data to 2, 053 households. Households were selected in such a way that the overall

proportion of cooperating households in the full sample was maintained in the subset for

analysis. The edit cost settings were systematically varied as follows:

Substitution Costs: For values of s from 0 to 1.8 in increments of 0.2, the substitution

cost matrix was defined as:

Nc Rf Nt Po Sc

Noncontact 0

Refusal 2 0

Neutral 2 2− s 0

Positive 2 2 2− s
2 0

Success 2 2 2− s
2 2− s 0

We refer to the value s as the substitution cost parameter. The purpose of varying this

parameter is to distinguish between close and disparate call outcomes, as outlined in Section

2.3. Setting s = 0 produces a constant substitution matrix, i.e. every possible substitution

is assigned the same value, and no distinction is made between call outcomes. When

s = 1.8, the substitution costs vary depending on the substantive relationships between
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the outcomes being matched. For example, as s increases, the cost of matching a Neutral

call to a Refusal call will diminish, reflecting that the former may be a polite version of the

latter. Two dependencies on s were defined. For the two pairs of states we consider most

similar (Neutral/Refusal and Positive/Success) the cost ranges between 2 and 0.2. For the

other variable substitutions, the cost ranges between 2 and 1.2. Note that the choice of 2

as the highest possible substitution cost is arbitrary, what is important is the magnitude

of the highest cost relevant to the other substitution and indel costs.

Indel Costs: Holding each of these substitution matrices constant, the indel cost was

increased from 0.2 to 2 in incremental steps of 0.2. As the indel cost increases relative to

the substitution cost, the distance between two sequences returned by the OM algorithm

will increasingly depend on the disparity between the sequence lengths.

Sequence analysis using the OM metric was applied to the call record data for each of

the 100 scenarios we consider. Each distance matrix is summarised using the two most

informative dimensions obtained using MDS. We then examine the correlation between the

summary measures and two characteristics of the call record sequences. Specifically, the

characteristics are the response indicator R and the number of calls, or sequence length,

L. Examining these correlations reveals how different cost settings affect the dimensions

being captured by the OM distance metric. Following this, correlations between the MDS

summary variables and 10 key survey variables were examined, to identify the cost settings

which maximise this key relationship.

3.3. Adjustment weighting

We are also wish to find out whether the ZS variables based on sequence analysis can

give different results to those obtained using more straightforward aggregates of the call

records. To answer this question, we compare unweighted survey estimates to the weighted

estimates obtained using two different sets of inverse probability weights. Both sets of

weights are derived from a multilevel logistic regression model of the household response

outcome incorporating a combination of time-invariant paradata and variables based on
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the call record data. The first weight included straightforward summaries of the call record

data, while the alternative weight incorporated sequence-based summaries. A multilevel

model was used to allow for potential inter-household dependencies in response behaviour

within areas, arising from the two-stage clustered sample (Hox, 1998). The multilevel

structure consisted of 10, 074 households nested within 634 neighbourhoods.

In more detail, the nonresponse weights were calculated as follows. To begin we define

the response indicator Rij = 1 if household i in neighbourhood j cooperated, and 0 other-

wise. The probability of response is defined as πij = Pr(Rij = 1). We model the log odds

of response using a multilevel logistic model

log

(
πij

1− πij

)
= α+ βFZ

F
ij + βSZ

S
ij + uj (3)

where α is the intercept, ZF
ij is a vector of fixed auxiliary variables with coefficients βF , ZS

ij is

a vector of call record variables with coefficients βS , and uj ∼ N(0, σ2u) are neighbourhood-

level random effects.

Here ZF
ij comprises interviewer observations on the location, type and condition of

the surrounding area. These household-level auxiliary variables are representative of the

paradata routinely collected by large-scale survey organisations and have been previously

linked to nonresponse outcomes (Groves and Couper, 1998). Two models were fitted, with

the following competing choices for ZS :

(a) Aggregates of the call record data

(i) The number of calls (four categories)

(ii) The proportion of calls achieving contact (four categories)

(b) Variables based on the sequence analysis distance matrix

(i) The first MDS dimension (quartiles)

(ii) The second MDS dimension (quartiles)

The effects of the ZS variables were parameterised using dummy variables to improve the

model fit: in the case of the MDS dimensions quartiles were employed; for the aggregated
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variables, sensible divisions which provided groups of reasonably equal size were chosen.

See Table 2 for more details.

The inverse probability weights are the reciprocal of the estimated response probabilities

obtained from fitting these models, using empirical Bayes estimates of uj . The weights

derived from each model were trimmed at 10 to avoid excessive values and limit variance

inflation. We compare unweighted point estimates and standard errors for ten TILDA

variables to estimates based on these weights. For the weighted estimators, we used an

approximate bootstrap method to account for both the sampling scheme and uncertainty

in estimation of the nonresponse weights. Further details of this method can be found in

Supplementary Information.

Data preparation and analysis was performed in Stata 12. Sequence analysis was carried

out using the “SQ-Ados” program (Brzinsky-Fay et al., 2006).

4. Results

4.1. Sensitivity analysis

In order to understand how the candidate ZS variables are influenced by different cost

choices, we examined the correlations between the extracted MDS dimensions and two

summary indicators of each call sequence: the sequence length L and the response outcome

R. Figure 1 summarises the results; each box represents a summary of 100 correlations,

one from each of the 100 combinations of costs. The range of these correlations indicates

the extent to which properties of the sequence-derived ZS variables can be influenced by

the cost settings.

The first box depicts the distribution of correlations observed between Dimension 1 and

L. The length of the box indicates the interquartile range (0.40 − 0.51), with the median

value (0.42) at the midline. The whiskers display the minimum (0.38) and maximum

(0.62) correlations observed. The spread of this distribution indicates that the relationship

between the first MDS dimension and sequence length varies with the indel and substitution

cost settings.
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Table 2. Summary of paradata and survey variables used in the analyses

Variable Type Description

Interviewer Observations (ZF Variables)

House Type Binary Detached home, incl. farm (1) other house type (0)

State of Dwelling Binary Physical state of the buildings in the area:

Very good, Good (1); Satisfactory, Bad, Very Bad (0)

Dublin Indicator Binary Household in Dublin (1) or outside (0)

Call Records (ZS Variables)

Number of Calls Ordinal 1, 2–3, 4–5, 6+

Proportion of Contacts Ordinal 0–.499, .5–.667, .668–.999, 1

MDS 1 Ordinal Quartiles of the first MDS dimension

MDS 2 Ordinal Quartiles of the second MDS dimension

Survey Outcomes (Y Variables)

Poor Physical Health Binary Self-reported physical health:

Fair, Poor (1); Excellent, Very Good, Good (0)

Degree Binary Highest level of education:

Tertiary (1); Primary or Secondary (0)

Sick/Disabled Binary Principle economic status:

Unable to work due to permanent sickness or disability (1); Other (0)

Home/Family Care Binary Principle economic status:

Looking after home or a family member (1); Other (0)

Single Binary Marital status: Single, never married (1); Other marital status (0)

Separated/Divorced Binary Marital status: Separated or divorced (1); Other marital status (0)

Chronic Pain Binary Self-report of chronic pain: In pain (1); No pain (0)

Polypharmacy Binary Use of multiple medications: 5+ Medications (1); 0 5 Medications (0)

Poor Mental Health Binary Self-reported mental health:

Fair, Poor (1); Excellent, Very Good, Good (0)

Loneliness Binary Frequency of loneliness:

Sometimes, Moderately, Always (1); Rarely or Never (0)
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Fig. 1. Correlations between MDS dimensions and survey summary variables (Sequence length

L and Response outcome R) across 100 cost scenarios. Correlations shown as absolute values.

There is a similarly large spread of correlations observed between Dimension 1 and

R, which range from 0.20 to 0.56 depending on the combination of costs employed. For

Dimension 2, correlations with L range from 0.02 to 0.28 while correlations with R range

from 0.73 to 0.84. Regardless of the cost settings employed, the first extracted dimension

tends to capture information about both the number of calls and response outcome, while

the second dimension is dominated by R.

Figure 2 contains a plot of the correlations between the different MDS dimensions and

the sequence characteristics across different indel and substitution settings. This reveals

the complicated interactions between costs which moderate the information captured by

the OM distance metric.

From the upper left-hand plot it can be seen that the correlation between Dimension 1
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Fig. 2. Correlations between MDS dimensions and sequence length (L) and response (R), by

indel cost and substitution cost parameter.

and L increases linearly once the indel cost exceeds the critical value of 1, i.e. half the largest

possible substitution cost. Allowing substitution costs to vary has a limited impact on this

relationship, regardless of the indel setting. As the first dimension becomes increasingly

aligned with the sequence length, the opposite effect is observed for the second dimension:

as the indel cost increases, the extent to which the second dimension captures information

about length diminishes. The effect of changing the substitution cost parameter s can be

seen in the lower plots. As s increases, thereby introducing variability in the substitution

costs, the correlation between the first dimension and R decreases. The second dimension

consistently displays a high correlation with R, which is maximised when the most variable

substitution costs are employed. Thus, by appropriately setting the input costs, the analyst

can to some extent control which features of the call sequence are being captured by the
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OM distance. However the variation described above is only with respect to properties of

the sequences themselves.

In order to understand which characteristics of the household are being reflected in its

call sequence, and how the cost settings influence this, we examine the correlation between

the extracted dimensions and key survey variables. We also compare these to the cor-

relations between survey variables and other paradata variables, to explore the potential

added value of sequence-based summaries over simpler paradata such as aggregates of call

records or time-invariant observations on the household. Table 3 summarises the corre-

lations between the available paradata measures and ten survey variables, for the subset

of respondents. For the MDS dimensions the minimum and maximum correlations ob-

served across the 100 cost scenarios are presented. It is clear that the MDS dimensions

are not highly correlated with the survey variables examined here. The difference between

the maximum and minimum absolute correlations observed is small, suggesting that the

sensitivity of this relationship to the cost settings is low. This means that there is little

potential to fine tune costs to maximise the correlations of interest. Neither MDS dimen-

sion out-performs the time-invariant or call-aggregated paradata variables. The observed

correlations between these paradata and survey variables are in the same range as those

presented by Kreuter and Kohler (2009) and Kreuter et al. (2010).

There are two clear outcomes from this analysis. First, cost settings do have an impact

on which aspects of the sequences inform the OM distance structure and the resulting

summary dimensions. In particular, the relative size of the indel cost moderates the extent

to which disparity in sequence length is influential. Second, regardless of the cost settings

employed, the dimensions summarising the information in the call record data do not

correlate with substantive survey variables. This approach has allowed us to quickly assess

200 candidate summaries of the call record data. That none of these produce a suitable

summary adjustment variable indicates that there is very much a limit to what the pattern

of call outcomes at a household can reveal about the characteristics of individual occupants.
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Table 3. Summary of correlations between paradata variables and survey variables.

Variable Dimension 1 Dimension 2 State Detached Dub # Calls % Con

min max min max

Poor physical health 0.02 0.03 0.00 0.02 0.12 0.06 0.03 0.01 0.01

Degree 0.00 0.03 0.06 0.08 0.08 0.08 0.10 0.04 0.03

Econ status: Disabled 0.02 0.04 0.05 0.07 0.08 0.07 0.06 0.01 0.00

Econ status: Homemaker 0.00 0.02 0.09 0.11 0.04 0.06 0.05 0.01 0.01

Mar status: Single 0.12 0.15 0.00 0.08 0.10 0.03 0.03 0.02 0.14

Mar status: Sep/Div 0.03 0.04 0.00 0.03 0.11 0.09 0.01 0.02 0.05

Chronic pain 0.03 0.05 0.02 0.05 0.03 0.11 0.05 0.02 0.05

Polypharmacy 0.05 0.06 0.02 0.04 0.07 0.05 0.01 0.02 0.03

Poor mental health 0.01 0.01 0.00 0.01 0.10 0.11 0.04 0.00 0.02

Loneliness 0.02 0.04 0.00 0.02 0.13 0.06 0.02 0.05 0.02

Note: Correlations presented as absolute values. State = State of household; Detached = Detached home; Dub

= Dublin indicator; # Calls = Number of calls to household; % Con = Proportion of calls to household where

face-to-face contact was established.
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4.2. Impact on weighted estimates

In this section, we explicitly examine whether supplementing post-survey adjustment weights

with ZS variables derived using sequence analysis can lead to different results. The sen-

sitivity analysis indicated that there was no combination of costs which led to a large

correlation between the summary variables and survey items. The maximum association,

to the extent there was one, was achieved when setting the indel and substitution cost pa-

rameters to 1 and 1.4 respectively. Therefore, we choose the summary variables based on

these costs. Rather than use a subsample here, sequence analysis was repeated on the full

dataset. Table 4 contains three sets of estimated proportions and standard errors for ten

TILDA survey variables. The estimates are unweighted and weighted using two different

schemes which differ according to the ZS variables used (as described in Section 3.3). The

first weight (weight 1) is based on simple aggregates of the call record data; the second

weight (weight 2) uses the sequence analysis summaries. In both cases the shift from the

unweighted estimate, measured in unweighted standard error units, is also presented.

When weight 1 is applied, notable point estimate shifts are observed for the marital sta-

tus dummies: the proportion of single households and the proportion of separated/divorced

households. Both of these estimates increase by approximately one percentage point, from

11.9% to 12.9% for the former and 8.8% to 9.8% for the latter. Based on complete enu-

meration from the contemporaneous Irish 2011 census, the true proportions of single and

separated/divorced households are 14.9% and 11.2% respectively for the population of

interest. So for both proportions, the unweighted estimates are downwardly biased and

weight 1 reduces this bias. When weight 2 is applied these estimates shift in the opposite

direction, although they are not substantively different from the unweighted estimates.

The estimated proportions for the remaining variables are reasonably stable, regardless

of the weight employed. The standard errors are inflated for the weighted estimates, as

would be expected (Little and Vartivarian, 2005). This is especially true for the weight

incorporating sequence analysis summaries of the call records (weight 2).
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Table 4. Point estimates and standard errors for ten survey variables

Unweighted Weighted (weight 1) Weighted (weight 2)

Variable Mean SE Mean SE SE Shift Mean SE SE Shift

Poor physical health 23.7 0.597 24.0 0.624 0.5 23.8 0.747 0.2

Degree 29.1 0.746 29.1 0.765 0.0 28.2 0.883 −1.2

Econ status: Disabled 4.8 0.318 5.2 0.344 1.3 5.2 0.435 1.3

Econ status: Homecare 15.7 0.582 15.4 0.567 −0.5 16.1 0.708 0.7

Mar status: Single 11.9 0.441 12.9 0.495 2.3 11.4 0.553 −1.1

Mar status: Sep/div 8.8 0.406 9.8 0.475 2.5 8.6 0.491 −0.5

Chronic pain 38.3 0.800 38.7 0.801 0.5 38.3 0.923 0.0

Polypharmacy 20.9 0.544 21.0 0.577 0.2 21.4 0.716 0.9

Poor mental health 10.6 0.433 10.9 0.453 0.7 10.4 0.548 −0.5

Loneliness 21.2 0.612 21.9 0.641 1.1 21.0 0.732 −0.3

Note: Weighted standard errors calculated using an asymptotic bootstrap (details in supplementary material). All standard

errors account for stratification and clustering of sampled units due to the complex sample design.

5. Discussion

Recently, the use of call records as a source of auxiliary variables for post-survey nonresponse-

adjustment weighting has received considerable attention. However, the question remains

open as to whether these records contain useful information for nonresponse adjustment

and, if so, how best to exploit this information. In this article, we considered the use of

sequence analysis for summarising call records in a way that preserves vital information

which might be lost using simple summaries like the total number of calls to a household.

Applying sequence analysis to any dataset requires a series of decisions to be made, which

are often subjective and lacking theoretical motivation (Wu, 2000). We have evaluated

some of the choices made when applying sequence analysis to call record data.

In the absence of a robust method for choosing costs, we proposed a sensitivity analysis

to assess the impact of costs on the resulting summary measures. The results showed that

varying the costs assigned to the OM edit operations does influence which aspects of the
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contact sequences are most important when calculating the similarity between recruitment

trajectories. Higher indel costs increase the dependency on disparity in the number of calls

made; substitution costs which distinguish between substantively different call outcomes

will increase the distance between cooperative and unwilling trajectories. Importantly,

variation in the number of calls will always dominate the sequence analysis output, regard-

less of the coding of the call. This result is relevant in other contexts where there is high

variability in sequence length. However, despite this sensitivity, the correlations between

the sequence summaries and the survey variables were consistently low regardless of the

costs we considered. This is why the weighted results were not substantially different from

those obtained using a simple summary because, to a large extent, nonresponse adjust-

ments are driven by the strength of association between the auxiliary and survey variables.

Including sequence analysis summary variables in the nonresponse model increased the

standard errors with little change to point estimates.

Our results broadly align with those of Kreuter and Kohler (2009) and Pollien and Joye

(2011, 2014) who all found that summary variables derived through sequence analysis of

call record data were predictive of response outcomes, but less so of survey variables. While

this previous work did not explore the role of costs, we could not find a choice of costs in

our application that markedly increased the association with any of the survey variables.

This indicates that the role of costs may not be crucial, but we cannot be certain because

we only considered one survey. Thus, we would advise others to assess the sensitivity of

their results to different choices of costs. If the results were sensitive to the choice, the

question would then be about which costs to choose. We proposed choosing the costs which

lead to the summary variables most highly correlated with the survey variables, but this

intuition presumes that (2) holds to an acceptable degree, which cannot be verified.

Of course, it remains entirely possible that call records are simply uninformative about

the characteristics of the survey units. However, it is difficult to give a definitive answer to

this questions because it will vary between surveys. The promise of call records is based on

the assumption that the call record information is indicative of household characteristics

being related to at-home patterns, such as age, employment status and family size. These
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associations were weak for the set of survey variables we examined, but may be different

in other survey contexts.

Two other explanations for the weakness of association should also be taken into ac-

count. The first is data quality. Call records may be prone to measurement error; for

example, it may be difficult for interviewers to distinguish between noncontact and hid-

den refusal (Nicoletti and Peracchi, 2005). Lack of motivation and issues with technology

may also decrease the quality of interviewer coding (West and Sinibaldi, 2013). Another

explanation is that the response outcome and call records are the outcomes of a joint data

collection process (Beaumont, 2005). Thus, the contact data are not a fixed property of a

household but rather they are subject to variation over theoretical replications of the same

survey protocol

The collection of complex call records presents an administrative burden, and these data

are only useful insofar as they can be used to improve surveys, be it in terms of cost reduc-

tion, bias reduction, fieldwork management or any other application. This investigation

suggests that, in terms of generating nonresponse adjustment variables, more straightfor-

ward paradata can adequately capture all the available information about a household. We

acknowledge that there are some limitations to this study. Measurement error properties

of interviewer records are only recently coming under scrutiny (Sinibaldi et al., 2013; West

and Sinibaldi, 2013), and errors in the recorded number of calls may bias results (Biemer

et al., 2013). Call dynamics which might be present in a general population survey may

be lost in this sample of over 50s. Hazard models such as those explored by Durrant et al.

(2011, 2013) may be more appropriate for call record data which do not have the long,

episodic patterns present in say, career or family trajectories.
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Conrad, F. G., J. S. Broome, J. R. Benḱı, F. Kreuter, R. M. Groves, D. Vannette, and

C. McClain (2013). Interviewer speech and the success of survey invitations. Journal of

the Royal Statistical Society: Series A (Statistics in Society) 176 (1), 191–210.

Couper, M. (1998). Measuring survey quality in a casic environment. In Proceedings of the

Section on Survey Research Methods of the American Statistical Association, pp. 41–49.

Durrant, G., J. D’Arragio, and F. Steele (2011). Using paradata to predict best times

of contact, conditioning on household and interviewer influences. Journal of the Royal

Statistical Society: Series A 174 (4), 1029 – 1049.

Durrant, G. B., J. D’Arrigo, and F. Steele (2013). Analysing interviewer call record data

by using a multilevel discrete time event history modelling approach. Journal of the

Royal Statistical Society: Series A (Statistics in Society) 176 (1), 251–269.

Durrant, G. B., O. Maslovskaya, , and P. W. Smith (2014). Sequence analysis as

a tool for investigating call record data. Working paper, University of Southamp-

ton. Available at http://eprints.soton.ac.uk/375810/1/paper_Durrant%20et%

20al_Sequ%20anal_vs%205.pdf [accessed 04/05/15].

Gabadinho, A., G. Ritschard, N. S. Mueller, and M. Studer. (2011). Analyzing and visu-

alizing state sequences in R with TraMineR. Journal of Statistical Software 40 (4), 1 –

37.

Gauthier, J.-A., E. Widmer, P. Bucher, and C. Notredame (2009). How much does it cost?:

Optimization of costs in sequence analysis of social science data. Sociological Methods

and Research 38 (1), 197 – 231.



26

Groves, R. M. (2006). Nonresponse rates and nonresponse bias in household surveys. Public

Opinion Quarterly 70 (5), 646–675.

Groves, R. M. and M. P. Couper (1998). Nonresponse in Household Surveys. New York:

John Wiley and Sons, Inc.

Halpin, B. (2012). Sequence analysis of life-course data: A comparison of distance measures.

Working paper WP2012-02, Department of Sociology, University of Limerick. Available

at http://www.ul.ie/sociology/pubs/wp2012-02.pdf.

Hollister, M. (2009). Is optimal matching suboptimal? Sociological Methods and Re-

search 38 (2), 235–264.

Hox, J. (1998). Multilevel modeling: When and why. In I. Balderjahn, R. Mathar,

and M. Schader (Eds.), Classification, data analysis, and data highways, pp. 147–154.

Springer.

Kalton, G. and I. Flores-Cervantes (2003). Weighting methods. Journal of Official Statis-

tics 19 (2), 81 – 97.

Kreuter, F. and C. Casas-Cordero (2010). Paradata. Working paper, German Council for

Social and Economic Data. Available at http://www.ratswd.de/download/RatSWD_WP_

2010/RatSWD_WP_136.pdf.

Kreuter, F. and U. Kohler (2009). Analyzing contact sequences in call record data. Potential

and limitations of sequence indicators for nonresponse adjustments in the European

Social Survey. Journal of Official Statistics 25 (2), 203–226.

Kreuter, F., K. Olsen, J. Wagner, T. Yan, T. E. Rice, C. Casas-Cordero, M. Lemay,

A. Peytchev, R. Groves, and T. Raghunathan (2010). Using proxy measures and other

correlates of survey outcomes to adjust for non-response: examples from multiple surveys.

Journal of the Royal Statistical Society: Series A 173 (2), 389–407.



Understanding Costs 27

Kreuter, F. and K. Olson (2013). Paradata for nonresponse error investigation. In

F. Kreuter (Ed.), Improving Surveys with Paradata: Analytic Uses of Process Infor-

mation. Wiley.

Lesnard, L. (2010). Setting cost in optimal matching to uncover contemporaneous socio-

temporal patterns. Sociological Methods and Research 38 (3), 389 – 419.

Levine, J. H. (2000). But what have you done for us lately?: Commentary on Abbott and

Tsay. Sociological Methods and Research 29 (1), 34 – 40.

Little, R. J. and D. B. Rubin (2002). Statistical Analysis with Missing Data. Hoboken,

New Jersey: Wiley.

Little, R. J. and S. Vartivarian (2005). Does weighting for nonresponse increase the variance

of survey means? Survey Methodology 31 (2), 161–168.

Lynn, P. and P. Clarke (2002). Separating refusal bias and non-contact bias: Evidence

from UK national surveys. Journal of the Royal Statistical Society: Series D (The

Statistician) 51 (3), 319–333.

Macindoe, H. and A. Abbott (2004). Sequence analysis and optimal matching techniques

for social science data. In M. Hardy and A. Bryman (Eds.), Handbook of Data Analysis.

London: Sage.

Maslovskaya, O., G. B. Durrant, and P. W. Smith (2014). Sequence analysis as a graphical

tool for investigating call record data. In Paradata Conference: From Survey Research

to Practice, London, GB, 26th Jun 2014.

Needleman, S. B. and C. D. Wunsch (1970). A general method applicable to the search

for similarities in the amino acid sequence of two proteins. Journal of molecular biol-

ogy 48 (3), 443 – 453.

Nicoletti, C. and F. Peracchi (2005). Survey response and survey characteristics: mi-

crolevel evidence from the European Community Household Panel. Journal of the Royal

Statistical Society: Series A (Statistics in Society) 168 (4), 763–781.



28

Olson, K. (2013). Paradata for nonresponse adjustment. The ANNALS of the American

Academy of Political and Social Science 645 (1), 142 – 170.

Pollien, A. and D. Joye (2011). A la poursuite du répondant? Essai de typologie des
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1. Introduction 

In Section 3.3 of the article, we describe an approximate bootstrap procedure for standard error 
estimation that accounts for the complex sampling design and imprecision in our estimates of 
the response propensities.  While this simple but general procedure may not estimate the 
standard errors particularly accurately, it does allow us to assess the relative precision of the 
different weighted estimators in our study. 

 

2. The Algorithm 

Recall that the response probability Pr�𝑅𝑅𝑖𝑖𝑗𝑗 = 1� = 𝜋𝜋𝑖𝑖𝑖𝑖  for household 𝑖𝑖 in neighbourhood 𝑗𝑗 was 
specified to follow the two-level logistic model 

𝜋𝜋𝑖𝑖𝑖𝑖 = logit−1�𝛼𝛼 + 𝛽𝛽𝐹𝐹𝑍𝑍𝑖𝑖𝑖𝑖𝐹𝐹 + 𝛽𝛽𝑆𝑆𝑍𝑍𝑖𝑖𝑖𝑖𝑆𝑆 + 𝑢𝑢𝑗𝑗�,      (A. 1) 

where logit−1(𝑎𝑎) = 𝑒𝑒𝑎𝑎 (1 + 𝑒𝑒𝑎𝑎)⁄  is the inverse logistic function, 𝑍𝑍𝑖𝑖𝑖𝑖𝐹𝐹  is the vector of fixed 
auxiliary variables, 𝑍𝑍𝑖𝑖𝑖𝑖𝑆𝑆  is the vector of sequence-based summaries, and 𝑢𝑢𝑗𝑗 is the normally 
distributed neighbourhood-level random effect.  Herein dropping the neighbourhood subscript 
to simplify notation, we denote by 𝜋𝜋�𝑖𝑖 the estimated response probability for household 𝑖𝑖. 

The approximate bootstrap can now be defined as follows: 

Bootstrap-Replicate Phase: 

Step 1: Independently generate response outcomes from 𝑅𝑅𝑖𝑖∗~Bernoulli(𝜋𝜋�𝑖𝑖) for each 
sample member (i.e. from each respondent and each nonrespondent in the actual data). 

Step 2: Denoting the bootstrap sample by ��𝑧𝑧𝑖𝑖𝐹𝐹 , 𝑧𝑧𝑖𝑖𝑆𝑆, 𝑟𝑟𝑖𝑖∗��, refit the response probability 
model (A.1) to the bootstrap sample  to obtain 𝜋𝜋𝑖𝑖∗ and weighted 𝜃𝜃∗ = ∑ 𝑤𝑤𝑖𝑖𝑦𝑦𝑖𝑖 𝑟𝑟𝑖𝑖 𝜋𝜋𝑖𝑖∗⁄𝑛𝑛

𝑖𝑖=1  
(where 𝑤𝑤𝑖𝑖 is the appropriate set of design weights). 

Step 3: Repeat Step 1 and Step 2 𝐵𝐵 times to obtain bootstrap replicates �𝜃𝜃∗(𝑏𝑏):𝑏𝑏 =
1, … ,𝐵𝐵�. 

Variance-Component Phase: 

Step 4: Create the survey ‘variable’ 𝑦𝑦𝑖𝑖𝑟𝑟𝑖𝑖 𝜋𝜋�𝑖𝑖⁄  (which always takes the value zero for sample 
nonrespondents) and obtain the design-consistent estimate of the total/mean of this 
survey variable using the appropriate set of design weights: denote the result by 𝑣𝑣1.  We 
did this using the svy commands in Stata. 



Step 5: Calculate the bootstrap variance of 𝜃𝜃∗(𝑏𝑏): denote the result by 𝑣𝑣2. 

Step 6: Combine the two estimates to obtain the estimated standard error √𝑣𝑣1 + 𝑣𝑣2. 

 

3. A Heuristic Justification of the Approximate Bootstrap Method 

Consider the following weighted estimate 

𝜃𝜃� = � 𝑤𝑤𝑖𝑖𝑦𝑦𝑖𝑖 𝑟𝑟𝑖𝑖 𝜋𝜋�𝑖𝑖⁄
𝑛𝑛

𝑖𝑖=1
,      (A. 2) 

where the survey variable is 𝑦𝑦𝑖𝑖𝑟𝑟𝑖𝑖 rather than 𝑦𝑦𝑖𝑖 , which takes the value 0 for nonrespondents and 
leads to a sample size of 𝑛𝑛 rather than the number of respondents ∑ 𝑟𝑟𝑖𝑖𝑛𝑛

𝑖𝑖=1 = 𝑟𝑟.  (For example, the 
weights for a simple random sampling design are 𝑤𝑤𝑖𝑖 = 1 𝑛𝑛⁄ .) 

Estimate (A.2) is a realisation from the estimator 

𝜃𝜃�𝑛𝑛,𝑁𝑁 = � 𝑤𝑤𝑘𝑘𝑦𝑦𝑘𝑘 𝑅𝑅𝑘𝑘𝑆𝑆𝑘𝑘 𝑝̂𝑝𝑘𝑘⁄
𝑁𝑁

𝑘𝑘=1
,      (A. 3) 

where we have changed the index from 𝑖𝑖 to 𝑘𝑘 to make clear we are summing over the entire 
population.  Without loss of generality, we can take the sample members to be indexed by 
𝑘𝑘 = 1, … ,𝑛𝑛 and those not in the sample by 𝑘𝑘 = 𝑛𝑛 + 1, … ,𝑁𝑁. 

Note that (A.3) has the form of an estimator of the population total, but we could have 
equivalently written it as a population-mean estimator of the form 

𝜃𝜃�𝑛𝑛,𝑁𝑁 =
∑ 𝑤𝑤𝑘𝑘∗𝑦𝑦𝑘𝑘 𝑅𝑅𝑘𝑘𝑆𝑆𝑘𝑘 𝜋𝜋�𝑘𝑘⁄𝑁𝑁
𝑘𝑘=1

∑ 𝑤𝑤𝑘𝑘∗𝑆𝑆𝑘𝑘𝑁𝑁
𝑘𝑘=1

. 

This differs from (A.3) in the design weights; the two sets of design weights are connected by 
the relationship 𝑤𝑤𝑘𝑘 = 𝑤𝑤𝑘𝑘∗ ∑ 𝑤𝑤𝑚𝑚∗ 𝑆𝑆𝑚𝑚𝑁𝑁

𝑚𝑚=1⁄  (for example, 𝑤𝑤𝑘𝑘∗ = 𝑁𝑁 𝑛𝑛⁄  for simple random sampling). 

When considering the properties of estimator (A.3), we treat all values of the auxiliary and 
survey variables as fixed constants.  Any random variation comes from the sampling indicator 
𝑆𝑆𝑘𝑘 and response outcome indicator 𝑅𝑅𝑘𝑘.  The former is determined by the sampling design; the 
latter is assumed to follow the model 

𝑅𝑅𝑘𝑘~Bernoulli(𝜋𝜋𝑘𝑘0),      (A. 4) 

conditional on being sampled.  Each sample member is taken to respond or nonrespond 
independently of the others, and 𝜋𝜋𝑘𝑘0 is the true response propensity. 

For large 𝑛𝑛, we can approximate (A.3) by 

𝜃𝜃�𝑛𝑛,𝑁𝑁 ≃� 𝑤𝑤𝑘𝑘𝑦𝑦𝑘𝑘 𝑅𝑅𝑘𝑘𝑆𝑆𝑘𝑘 𝜋𝜋𝑘𝑘0⁄
𝑁𝑁

𝑘𝑘=1
,      (A. 5) 

from which 𝜃𝜃�𝑛𝑛,𝑁𝑁 is easily shown to be approximately unbiased under the joint sampling design 
and response model (A.4), given the appropriate choice of design weights. 



Our variance estimator is based on the decomposition 

var�𝜃𝜃�𝑛𝑛,𝑁𝑁� = var𝑆𝑆1,…,𝑆𝑆𝑁𝑁�𝐸𝐸(𝜃𝜃�𝑛𝑛,𝑁𝑁|𝑆𝑆1, … , 𝑆𝑆𝑁𝑁)� + 𝐸𝐸𝑆𝑆1,…,𝑆𝑆𝑁𝑁�var(𝜃𝜃�𝑛𝑛,𝑁𝑁|𝑆𝑆1, … , 𝑆𝑆𝑁𝑁)�,      (A. 6) 

where the inner moments are with respect to the conditional distribution of 𝑅𝑅1, … ,𝑅𝑅𝑛𝑛 given 
𝑆𝑆1, … , 𝑆𝑆𝑁𝑁. 

In hypothetical situations where 𝑦𝑦𝑖𝑖  is known for each sample member, we would estimate both 
inner moments using a parametric bootstrap by taking draws from 

𝑅𝑅𝑖𝑖∗~Bernoulli(𝜋𝜋�𝑖𝑖), 

for 𝑖𝑖 = 1, … ,𝑛𝑛, to create a series of bootstrap samples.  Then for each bootstrap sample, we 
would estimate 𝜋𝜋𝑖𝑖∗, and obtain the bootstrap replicates  

𝜃𝜃∗∗ = � 𝑤𝑤𝑖𝑖𝑦𝑦𝑖𝑖 𝑟𝑟𝑖𝑖∗ 𝜋𝜋𝑖𝑖∗⁄
𝑛𝑛

𝑖𝑖=1
. 

However, we cannot calculate 𝜃𝜃∗∗ because 𝑦𝑦𝑖𝑖  is missing for nonrespondents in the observed 
sample; instead, we calculate 

𝜃𝜃∗ = � 𝑤𝑤𝑖𝑖𝑦𝑦𝑖𝑖 𝑟𝑟𝑖𝑖 𝜋𝜋𝑖𝑖∗⁄
𝑛𝑛

𝑖𝑖=1
,      (A. 7) 

which is why we refer to this as an ‘approximate’ bootstrap. 

For the first component on the right hand side of (A.6), we could estimate 𝐸𝐸(𝜃𝜃�𝑛𝑛,𝑁𝑁|𝑆𝑆1, … , 𝑆𝑆𝑁𝑁) 
using 

𝐸𝐸�∗�𝜃𝜃�𝑛𝑛,𝑁𝑁�𝑆𝑆1, … , 𝑆𝑆𝑁𝑁� = � 𝑤𝑤𝑖𝑖𝑦𝑦𝑖𝑖𝑟𝑟𝑖𝑖 1 𝜋𝜋𝚤𝚤∗⁄�������
𝑛𝑛

𝑖𝑖=1
,      (A. 8) 

where 1 𝜋𝜋𝚤𝚤∗⁄������� is the mean of the bootstrap replicates for household 𝑖𝑖.  For simplicity, however, we 
use 1/𝜋𝜋�𝑖𝑖 because it is the probability limit of 1 𝜋𝜋𝚤𝚤∗⁄�������  as 𝐵𝐵 increases.  In practice, we estimate (A.8) 
using an appropriate design-based variance estimator (of a total or mean, depending on which 
design weights we choose) with 𝑦𝑦𝑖𝑖 𝑟𝑟𝑖𝑖 𝜋𝜋�𝑖𝑖⁄  as the fixed ‘survey variable’ and remembering to treat 
the 0 values for nonrespondents as genuine data values. 

For the second component on the right hand side of (A.6), we estimate var(𝜃𝜃�𝑛𝑛,𝑁𝑁|𝑆𝑆1, … , 𝑆𝑆𝑁𝑁) by 

var� ∗�𝜃𝜃�𝑛𝑛,𝑁𝑁�𝑆𝑆1, … , 𝑆𝑆𝑁𝑁� =
1

𝐵𝐵 − 1
� �𝜃𝜃∗(𝑏𝑏) − 𝜃𝜃∗����2

𝐵𝐵

𝑏𝑏=1
,      (A. 9) 

where 𝜃𝜃∗��� is the mean of the bootstrap replicates.  This completes estimation of the second 
variance component if we further assume that var(𝜃𝜃�𝑛𝑛,𝑁𝑁|𝑆𝑆1, … , 𝑆𝑆𝑁𝑁) is equal for all samples. 


