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Abstract 

 

This article explores the widely-reported finding that the subjective duration of a stimulus is 

positively related to its magnitude. In Experiments 1 and 2 we show that, for both auditory 

and visual stimuli, the effect of stimulus magnitude on the perception of duration depends 

upon the background: Against a high intensity background, weak stimuli are judged to last 

longer. In Experiment 3 we show that the effect of intensity becomes more pronounced at 

longer durations, consistent with the idea that increasing stimulus intensity speeds up the 

pacemaker component of an internal clock, and that it is the difference of a stimulus from the 

background, rather than its absolute magnitude, which influences the rate of the pacemaker. 

These results urge a modification to the oft-repeated claim that more intense stimuli seem to 

last longer, and provide an important constraint on any model of human timing. 

 

 

KEYWORDS:  Time perception; temporal judgments; stimulus intensity; internal clock;  

  scalar expectancy theory. 
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Stimulus intensity and the perception of duration 

 

 Every stimulus has a duration, and the accurate perception of time is essential to 

successful negotiation of the environment (e.g., Belin et al., 2002). Despite the critical role of 

time perception, it has long been known that various non-temporal aspects of the stimulus 

influence its apparent duration (e.g., Brown, 1995; Grondin, 1998; Rammsayer & Lima, 

1991; Tse, Intriligator, Rivest, & Cavanagh, 2004; see Eagleman & Pariyadath, 2009, for a 

review). One particularly robust finding is that perceived duration depends upon the stimulus 

magnitude. For example, Goldstone, Lhamon, and Sechzer (1978) played participants a 

standard tone for one second followed by a comparison tone of variable duration, and asked 

them to indicate whether the latter tone was longer or shorter than the former. On some trials 

the standard was low intensity (64 dB) and the comparison stimulus was high intensity (76 

dB); on other trials, the order of intensities was reversed. Goldstone et al. found that 

participants were more likely to perceive the comparison stimulus as longer than the standard 

when it was louder than when it was quieter, a pattern which has been replicated in many 

other studies (Berglund, Berglund, Ekman, & Frankenhaeuser, 1969; Zelkind, 1973).  

 Similar results have also been found with luminance (Goldstone & Goldfarb, 1964; 

Goldstone et al., 1978; Xuan, Zhang, He, & Chen, 2007), electrical stimulation (Ekman, 

Frankenhaeuser, Levander, & Mellis, 1966), vibrotactile stimulation (Ekman, 

Frankenhaeuser, Berglund, & Waszak, 1969), sizes of squares (Thomas & Cantor, 1975; 

1976; Xuan et al., 2007) and number of dots (Dormal, Seron, & Pesenti, 2006; Xuan et al., 

2007). Such effects would be trivial if they were limited to very brief stimulations (c. 50 ms) 

for which there is integration of duration and intensity (Fraisse, 1978). However, stimulus 

magnitude is positively related to perceived duration for intervals of several hundred 

milliseconds or more, leading to the widely-repeated view that “the more intense a 

stimulation, the longer the duration perceived” (Fraisse, 1978, p. 220) or, more colloquially, 

that “larger stimuli are judged to last longer” (Xuan et al., 2007, p.1; for other statements of 

this conclusion, see Allan, 1979; 1998; Fraisse, 1984; Goldstone et al., 1978; Wearden, 

Edwards, Fakhri, & Percival, 1998).  

  Over the years many different models of time perception have been developed (see 

Grondin, 2001, for a review), often emphasizing quite different tasks and timescales (Allan, 

1979; Grondin, 2001; Fraisse, 1984). The effects of stimulus intensity on time perception 

have implications for any model of time perception, and have been central to the 

development of some accounts. For example, some theorists have posited a common 
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representational system for temporal and non-temporal magnitudes (e.g., Walsh, 2003; Xuan 

et al., 2007), presumably implying an intrinsic association between large or intense stimuli 

and long durations. More recently, Eagleman and Pariyadath (2009) have suggested that 

subjective duration depends on the efficiency of neural coding, with more intense stimuli 

seeming to last longer because they evoke a larger neural response. In the current article we 

shall be particularly concerned with one highly successful account of temporal perception and 

judgment: scalar expectancy theory (SET) (Gibbon, Church, & Meck, 1984). SET is an 

internal clock model (Creelman, 1962; Treisman, 1963) developed to account for animal 

learning and successfully applied to human timing behaviour (Allan, 1992; 1998; Wearden, 

2003). Central to SET is the assumption of a pacemaker which emits pulses at some high, 

stochastic rate. The pacemaker is attached to an accumulator by a switch. When stimulus 

timing begins, the switch closes and pulses flow into the accumulator; at stimulus offset, the 

switch opens and the flow of pulses stops. The number of pulses stored in the accumulator 

provides the basis for judgments of stimulus duration. Within the framework of SET, 

stimulus intensity may influence time perception by changing the rate of the pacemaker 

(Zelkind, 1973), the latency to open and close the switch, or the variance of the switch 

latencies (Wearden et al., 1998).  

 Although the effect of stimulus intensity on time perception is well-documented in 

different modalities, and despite the existence of detailed and successful models of timing, 

the underlying basis for the effect of stimulus magnitude on perceived duration is unclear. 

The current paper addresses this shortcoming by asking two related questions. Firstly, what is 

it about more intense stimuli that causes them to have longer apparent duration? In particular, 

is it the absolute magnitude of the stimulus or its difference from the background context that 

drives the effect? And secondly, how does stimulus intensity exert its effects? That is, which 

aspects of the timing process are influenced by stimulus magnitude? Experiments 1 and 2 

address the former question; Experiment 3 addresses the latter. 

 

Experiment 1 

 

 Despite the large body of evidence demonstrating that high intensity stimuli are 

judged to last longer than low intensity stimuli, there are two reasons to doubt whether this is 

always the case.  

 The first reason comes from the general argument that perception is relational (e.g., 

Lockhead, 1992). Judgments are influenced by context, and depend upon the immediate 
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background against which stimuli are presented (e.g., Laming, 1997, pp. 83-86), the item 

presented on the immediately preceding trial (e.g., Matthews & Stewart, 2009a, 2009b; Ward, 

1979) and the distribution of other stimuli presented in the experiment (e.g., Lockhead & 

Hinson, 1986; Matthews & Stewart, 2008; Parducci, 1965). Many researchers have taken 

these kinds of results to imply that it is the differences between stimuli (or between stimulus 

and background) and not absolute magnitudes which determine our sensory judgments and 

identification of stimuli (e.g., Laming, 1997; Stewart & Matthews, 2009; Stewart, Brown, & 

Chater, 2005).  

 The second, more specific reason comes from studies of time perception which have 

demonstrated the importance of stimulus differences. For example, Xuan et al. (2007) asked 

people to compare two durations defined by the gaps in a sequence of digits. The perceived 

duration of a gap was longer when the jump between the flanking digits was larger, indicating 

that the perception of an interval depends upon the difference between the markers. Similarly, 

when a stimulus is an “oddball” in an experiment (that is, when it differs from the 

background established by the other stimuli in the experiment), its apparent duration 

increases (Tse, Intriligator, Rivest, & Cavanagh, 2004; Ulrich, Nitschke, & Rammsayer, 

2006). 

 There is therefore good reason to think that the relative magnitude rather than the 

absolute intensity of a stimulus will be the primary determinant of its apparent duration. In 

the long list of experiments cited above, wherein increasing stimulus magnitude increased 

apparent duration, the high-intensity stimuli were also the ones which were most different 

from the background context. That is, absolute stimulus magnitude was confounded with the 

difference between the stimulus and the background. Our first two experiments ask whether 

the effect of absolute stimulus magnitude on the perception of duration persists when low 

intensity stimuli are most different from the background.  

 Experiment 1 employed a design used in previous studies of time perception (e.g., 

Goldstone et al., 1978) and used visual stimuli. On each trial the participant was shown two 

squares, one after the other, and judged whether the duration of the second, comparison 

stimulus was longer or shorter than that of the first, standard stimulus. On half of the trials the 

standard stimulus was a light grey square and the comparison stimulus was a dark grey 

square; on the other half of trials the order was reversed. Participants completed the task in 

two conditions, one in which the stimuli were shown against a white background and another 

in which the stimuli were shown against a black background. If absolute intensity determines 

subjective duration then the bright square should seem longer irrespective of the background; 
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if it is the difference from the background that matters, the bright square should seem longer 

against a dark background but shorter against a white background. 

Method 

Participants. Participants were members of the University of Warwick participant 

panel. In order to check that participants understood and were motivated to complete the task, 

we replaced any participants whose performance was not significantly above chance 

(assessed with a two-tailed binomial test). Across Experiments 1 and 2, a total of 13 

participants were replaced. (Their inclusion made no difference to the pattern of significant 

results from either experiment.) Twenty four above-chance participants completed this 

experiment. Each was paid £6. 

Stimuli. The stimuli were grey squares measuring 150 x 150 pixels (approximately 

4.9° visual angle) displayed in the centre of a 19” CRT screen (1024 x 768 pixels) viewed 

from c. 60 cm. The dim square was dark grey (c. 1.8 cd/m
2
); the bright square was light grey 

(c. 98 cd/m
2
). On each trial, the two squares were shown in succession for different durations. 

The first stimulus acted as a standard against which the second, comparison stimulus was to 

be judged. Two different standard durations were used: 600 ms and 800 ms. For each 

standard there were four different comparison durations: for the 600-ms standard these were 

450, 560, 640 and 750 ms; for the 800-ms standard they were 650, 760, 840 and 950 ms. 

Design and procedure. Participants completed two sessions, one with a black 

background (c. 0.5 cd/m
2
) and the other with a white background (c. 128 cd/m

2
). Each 

session consisted of 16 practice trials followed by three blocks of 80 test trials. The sequence 

of events on each trial is illustrated in Figure 1, and was as follows: 1000-ms blank interval 

(during which nothing was shown on the screen), 500-ms fixation cross in the centre of the 

screen, 500-ms blank interval, the standard stimulus, a variable blank interval of 450-650 ms, 

and finally the comparison stimulus. The screen then went blank and participants indicated 

their judgment by pressing one key if the comparison duration was shorter than the standard 

and another if it was longer. The background (black or white) was constant throughout a 

session and was visible before, during, and after stimulus presentation (see Figure 1). In each 

block, each standard duration-comparison duration combination was presented equally often. 

On half of the trials the standard stimulus was the bright square and the comparison stimulus 

was the dim square; on the other half the order was reversed. Trial order was randomized. 
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The order in which participants completed the sessions and the assignment of responses to 

response keys were counterbalanced. Stimulus presentation was controlled by DMDX 

(Forster & Forster, 2003) in this and Experiment 3; Experiment 2 used custom-written 

software. 

Results 

 

The dependent measure was the proportion of trials on which the participant judged 

the duration of the comparison stimulus to be longer than the standard. The results are shown 

in Figure 2.  

As can be seen in the figure, the effects of stimulus luminance on perceived duration 

were opposite for the black and white background conditions. This impression is supported 

by a within-subjects ANOVA which indicated a significant four-way interaction between 

background (black, white), standard duration (600 ms, 800 ms), difference between 

comparison and standard durations (-150 ms, -40 ms, +40 ms, +150 ms) and luminance of 

comparison stimulus (dim, bright), F(2.3, 53.7) = 6.71, p = .002, 2

p  = .23 (here and at 

certain points below we applied a Huynh-Feldt correction because of violations of sphericity; 

in all analyses,   was set to .05). We therefore considered separately the results for each of 

the two standard durations with each of the two backgrounds. That is, we performed separate 

within-subject ANOVAs for each of the four panels in Figure 2. [In this experiment and the 

next, we also estimated the constant error by maximum likelihood fitting of a logistic 

psychometric function to the data from each participant in each condition (Mattes & Ulrich, 

1998). Examination of the constant errors revealed the same pattern as that indicated by the 

ANOVAs reported below.] 

For the black background condition with a 600-ms standard there was a main effect of 

comparison duration, F(2.6, 58.8) = 88.37, p < .001, 2

p  = .79. As one would expect, 

increasing the comparison duration increased the probability that it would be judged longer 

than the standard. The effect of stimulus luminance missed significance, F(1,23) = 2.98, p = 

.098, 2

p  = .12, and there was no interaction, F(3,69) = 2.26, p = .089, 2

p  = .09. For the 800-

ms standard there was again a main effect of comparison duration, F(2.0, 45.3) = 58.07, p < 

.001, 2

p  = .72. Here, there was also a main effect of stimulus luminance, F(1,23) = 7.45, p = 

.012, 2

p  = .25, with a higher proportion of “longer” responses when the comparison stimulus 
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was brighter than the standard. There was no interaction between comparison duration and 

luminance, F(3,69) = 1.10, p = .354, 2

p  = .05. 

For the white background condition with the 600-ms standard there was a main effect 

of comparison duration, F(2.4, 54.8) = 121.77, p < .001, 2

p  = .84. More importantly, there 

was a main effect of stimulus luminance, F(1,23) = 14.71, p= .001, 2

p  = .39; the proportion 

of “longer” responses increased when the comparison stimulus was darker than the standard. 

There was also a significant interaction between comparison duration and luminance, F(3,69) 

= 4.19, p = .009, 2

p  = .15. Inspection of Figure 2 suggests that the effect of stimulus 

luminance increased as the comparison duration lengthened. For the 800-ms standard, there 

was again a significant effect of comparison duration, F(2.0, 45.3) = 66.28, p < .001, 2

p  = 

.74, and a main effect of luminance, F(1,23) = 16.25, p = .001, 2

p  = .41. As for the 600-ms 

standard, dim stimuli were judged to last longer than bright ones. There was also a significant 

interaction between comparison duration and luminance, F(3,69) = 2.80, p = .046, 2

p  = .11. 

 

Discussion 

 

These results show that the effect of stimulus luminance on judgments of duration 

depends upon the context. Against a black background, a bright stimulus is judged to last 

longer than a dim one. This is the result which has been reported in numerous previous 

studies of time perception (e.g., Goldstone et al., 1978). However, when the background is 

white, the effect is reversed; using the same stimuli, the darker stimulus is judged to last 

longer than the bright one.  

As an additional observation, we note that the comparison stimuli in the 600-ms 

standard conditions tended to be underestimated but that comparison stimuli in the 800-ms 

conditions tended to be overestimated. It seems likely that these results are instances of the 

time order error (TOE, Hellström, 1985). When a standard stimulus is followed by a 

comparison item, the latter is routinely found to be systematically overestimated (a negative 

TOE) or underestimated (a positive TOE). The magnitude and direction of the TOE depends 

upon a number of factors, including the interstimulus interval and the duration of the stimuli. 

Previous studies (see, e.g., Hellström & Rammsayer, 2004) have shown that when, as in the 

current experiments, standards of varying lengths are intermixed in an experimental session, 
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shorter standards elicit a positive TOE whilst longer standards elicit a negative TOE. The 

current results therefore match this body of research, and presumably result from the same 

perceptual mechanisms (see Hellström, 1985; 2003, for a discussion). 

Although the observed time order errors are interesting, they in no way compromise 

the primary conclusion of Experiment 1. The TOE effects comprise an overall tendency to 

over- or under-estimate the duration of the comparison stimulus. Irrespective of these 

tendencies, presenting the stimuli against a black background meant that the comparison 

stimulus was more likely to be judged longer than the standard when it was brighter, and 

more likely to be judged shorter when it was dimmer. Against a white background, the 

opposite was true. 

 

Experiment 2 

 

Experiment 2 replicated the visual effect in Experiment 1 with auditory stimuli. High 

intensity and low intensity sounds were presented which interrupted a background context of 

noise that was either loud or quiet. If perceived duration depends upon absolute magnitude 

then the loud stimulus ought to appear to last longer irrespective of the context; if it is the 

magnitude of the change in intensity that matters then loud sounds will seem to last longer 

when presented in a quiet context, but quiet sounds will seem longer when presented in a 

loud context. 

 

Method 

 

Participants. Twenty four above-chance participants took part. Each was paid £7.  

 

Stimuli. The stimuli were bursts of white noise, a quiet stimulus (c. 46 dBA) and a 

loud stimulus (c. 68 dBA). There was a single standard duration of 600 ms and four 

comparison durations of 450, 570, 630 and 750 ms. Stimuli were presented diotically over 

Sennheiser HD 265 headphones. 

 

Design and procedure. Participants were tested individually in a quiet testing cubicle. 

Each participant performed in two conditions, a quiet background condition and a loud 

background condition, completed in two sessions conducted back-to-back. Each session 

comprised 16 practice trials followed by four blocks of 48 test trials. Each trial began with a 
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1000-ms blank (silent) interval followed by the word “Ready” appearing on the screen for 

500 ms. White noise was then played for 1000 ms to establish context: In the quiet 

background condition this noise was at c. 42 dBA; in the loud background condition it was at 

c. 72 dBA. The standard stimulus was then presented for 600 ms, followed by a variable ISI 

of context noise for 700-800 ms after which the comparison stimulus was presented. Context 

noise then played until the participant made a response. Each of the four comparison 

durations were presented equally often. On half of the trials in each block the standard 

stimulus was loud and the comparison stimulus quiet, for the other half the order of 

loudnesses was reversed. Trial order was randomized within each block. Participants were 

told that they could take as long as they liked over each response, and to respond as quickly 

and accurately as possible once the comparison stimulus had ended. The order in which the 

two conditions were completed and the assignment of keys to responses were 

counterbalanced. As in Experiment 1, stimuli were well above threshold and we made sure 

that participants understood the task before they began. 

 

Results  

 

The results are shown in Figure 3. A within-subjects ANOVA revealed a significant 

three-way interaction between context (quiet background, loud background), comparison 

stimulus duration (450, 570, 630, 750 ms) and loudness of standard and comparison stimuli 

(quiet standard and loud comparison vs. loud standard and quiet comparison), F(3,69) = 

30.03, p < .001, 2

p =.57. We therefore conducted separate 2 x 2 within subject ANOVAs for 

the quiet background and loud background conditions. 

In the quiet background condition there was a significant main effect of comparison 

duration, F(1.8, 42.5) = 204.86, p< .001, 2

p  = .90. There was also a significant main effect 

of stimulus loudness, F(1,23) = 78.20, p < .001, 2

p  = .77, and a significant interaction, F(2.7, 

62.6) = 26.95, p < .001, 2

p  = .54. When the comparison stimulus was louder than the 

standard, the probability that it would be judged longer increased; this effect was greatest for 

the two most difficult discriminations. 

In the loud background condition there was again a main effect of comparison 

duration, F(1.3, 30.1) = 38.19, p < .001, 2

p  = .62, a main effect of stimulus loudness, F(1,23) 

= 4.72, p = .040, 2

p  = .17, and a significant interaction, F(2.6, 59.1) = 6.00, p = .002, 2

p  = 
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.21. In this condition the effect of stimulus loudness was the opposite of that in the quiet 

background condition. When the comparison stimulus was louder than the standard, it was 

more likely to be perceived as having shorter duration.  

As in Experiment 1, the effect of stimulus magnitude on perceived duration depends 

upon the experimental context. When the background intensity is low, loud stimuli are judged 

to last longer, as found in previous studies (e.g., Berglund et al., 1969). However, when the 

background intensity is high, quiet stimuli are perceived to have longer duration. Inspection 

of Figure 3 suggests that the effect of stimulus intensity may be somewhat weaker for the 

loud background condition. One plausible explanation for this is that the context was less 

well established in this condition: There was a silent interval of 1.5 s between trials, which is 

much more similar to the quiet background than the loud background. 

 

Discussion 

 

Many studies have found that increasing the non-temporal magnitude of a stimulus 

increases its apparent duration, (e.g., Berglund et al., 1969; Dormal et al., 2006; Ekman et al., 

1966; 1969; Goldstone & Goldfarb, 1964; Goldstone et al., 1978; Xuan et al., 2007; Zelkind, 

1973) leading to the empirical generalization that, across different sensory modalities, more 

intense or larger stimuli are judged to last longer than less intense or smaller ones (e.g., Allan, 

1979; 1998; Fraisse, 1978; 1984; Goldstone et al., 1978; Wearden et al., 1998). Experiments 

1 and 2 support this conclusion when the background intensity is low, but show that the 

reverse pattern obtains when the background intensity is high; against a high-intensity 

background, weak stimuli are judged to last longer. This is true for both visual and auditory 

stimuli. Our experiments therefore suggest that the empirical generalization that larger stimuli 

last longer should be modified: The perceived duration of a stimulus depends positively upon 

how different it is from the background.  

 In the remaining experiments, we investigate how intensity (or intensity difference) 

influences temporal perception. Within the framework of scalar expectancy theory, stimulus 

intensity may influence the switch component, the rate of the pacemaker, or both. Suppose a 

stimulus is presented for a certain duration t. At stimulus onset, the switch closes with latency 

cl , allowing the flow of pulses into the accumulator; at offset, the switch opens with latency 

ol . If the pacemaker produces pulses with rate r, the total number of pulses accumulated 

during stimulus presentation will be: 
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 oc lltrN   (1) 

 

Subjective differences in duration might result from a difference in relative switch latencies. 

If one type of stimulus causes the switch to close more quickly, or to open more slowly, then 

it will have longer subjective duration. (Note that it is the difference in switch 

opening/closing times that is crucial; if both latencies are increased by a constant amount, 

there will be no change in apparent duration.) Alternatively, differences in subjective duration 

might result from a change in the rate of the pacemaker, with a faster rate yielding longer 

subjective duration. Finally, changes in switch variability will increase or decrease the 

variability of judgments without affecting their average. 

 We can decompose the effects of switch latencies and pacemaker rate by examining 

how subjective duration varies with objective stimulus time. The expression giving the total 

number of accumulated pulses can written as two additive components,  co llrrt  . If two 

stimuli differ in their switch latencies then this will be manifested as a difference in the 

intercept of the function relating subjective duration to objective time. If two stimuli differ in 

the rate of the pacemaker then there will be differences in the slope of the line, with the 

difference between the stimuli becoming more pronounced at longer times. There may also 

be a difference in intercept, provided that the difference between switch opening/closing 

latencies is not zero. 

 This logic has been used to determine the basis for several factors that affect 

subjective duration. For example, Wearden et al. (1998) examined the long-established 

finding that tones are judged to last longer than lights of the same duration. Participants made 

verbal estimates the durations of tones and lights lasting 77-1183 ms. Wearden et al. found 

that when mean judgments were plotted against objective durations, the line for auditory 

stimuli was steeper than that for visual stimuli, indicating a higher pacemaker rate; there was 

no difference in intercept. Similarly, Wearden et al. found that playing a series of clicks prior 

to stimulus presentation produced an increase in slope, consistent with a speeding up of the 

internal pacemaker (Penton-Voak et al., 1996). Similar results have been found in an 

investigation of the difference between filled and empty intervals (Wearden et al., 2007).  

 Experiment 3 addresses two questions. Firstly, we ask which component(s) of the 

internal clock are affected by stimulus intensity. Previous studies have shown that stimulus 

modality, click trains, and whether the interval is filled or empty all seem to influence the rate 
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of the pacemaker (Wearden et al., 1998; 2006; 2007), and it has been suggested that stimulus 

intensity also influences pacemaker rate (Zelkind, 1973). However, it also seems plausible 

that switch latencies will be particularly affected by stimulus intensity; intensity effects may 

be solely due to differences in onset/offset detection time. Secondly, we ask whether it is 

absolute stimulus magnitude or difference from the background which influences the clock. 

Experiments 1 and 2 suggest that it is the difference of a stimulus from the background, 

rather than the absolute intensity, which affects subjective duration. One possibility is 

therefore that the rate of the pacemaker is higher for stimuli which are more different from 

the background. Alternatively, it may be that the pacemaker runs faster for large stimulus 

magnitudes even when they are presented against a high-intensity background, but that there 

is a difference in the relative switch opening/closing latencies which offsets this effect at the 

durations studied in Experiments 1 and 2. In Experiment 3, we clarified the effects of 

absolute and relative stimulus magnitude by employing a version of the verbal estimation 

task in which the background context was varied between participants. We choose to focus 

on visual stimuli because it is easier to manipulate the background context for this modality.  

 

Experiment 3 

   

Method 

 

Participants. Sixty four participants completed the experiment for a payment of £3. 

 

Stimuli. The stimuli were grey squares measuring 150 x 150 pixels displayed on a 19” 

CRT monitor with a 1280 x 1024 pixel resolution and an 85 Hz refresh rate, viewed from a 

distance of approximately 60 cm. The stimuli subtended a visual angle of approximately 3.9 

degrees. One square was dim (c. 1.2 cd/m
2
) and the other was bright (c. 104.8 cd/m

2
). Stimuli 

were either shown against a white background (c. 117.5 cd/m
2
) or against a black background 

(c. 0.1 cd/m
2
). Stimuli were presented for six different durations similar to those used by 

Wearden et al. (2007): 82, 353, 576, 765, 953, and 1176 ms. 

 

Design and procedure. Half of the participants were in the black background 

condition; half were in the white background condition. There were four blocks of 24 trials. 

Each block comprised two presentations of each stimulus at each duration, in random order. 

Participants were tested individually in quiet testing cubicles. On each trial, the participant 
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saw one of the squares and judged its duration, in milliseconds. They were told that all 

durations were in the range 50 to 1500 ms, but that this did not necessarily mean that the 

shortest duration was 50 ms and the longest 1500 ms. Participants typed their judgments on 

the computer keyboard and were able to clear their entry and re-type their judgment if they 

wished. They then pressed a key to register their response; after a pause of 1.0 - 2.2 s, the 

next stimulus was presented. Participants were instructed to attend to the screen at the point 

when they pressed the button to register their judgment, to ensure that they would not miss 

the next stimulus. After the participant entered his or her response there was a pause of 1.4 – 

2.0 s before the next item. Trials on which the participant failed to enter a response, or 

entered a response less than 50 ms or greater than 1500 ms, were assumed to indicate typing 

errors and were discarded (Wearden et al., 1998; 2007). Two participants (one from each 

condition) were discarded because fewer than 90% of trials produced valid data. (The 

proportion for the remaining 62 participants was 99%.) 

 

Results 

 

The mean judgments are shown in the top panels of Figure 4. An initial 2 x 6 x 6 

mixed ANOVA revealed a significant three-way interaction between background, stimulus 

brightness, and stimulus duration, F(4.2, 250.7) = 10.33, p < .001, 2

p =.15. We therefore 

conducted separate analyses for the black and white background conditions. 

 In the black background condition, judgments increased with stimulus duration, F(2.3, 

69.3) = 376.75, p < .001, 2

p  = .93. Bright stimuli were judged to last longer than dim ones, 

F(1,30) = 25.47, p < .001, 2

p  = .46, and this effect was more pronounced for longer 

durations, F(3.9, 116.4) = 7.69, p < .001, 2

p  = .20. 

 In the white background condition, judgments again increased with stimulus duration, 

F(2.0, 60.3) = 217.85, p < .001, 2

p  = .88, but dim stimuli were judged to last longer than 

bright ones, F(1,30) = 18.59, p < .001, 2

p  = .38, and this effect became more pronounced at 

longer durations, F(4.1, 122.7) = 4.44, p = .002, 2

p  = .13. 

 Following the example of previous studies (e.g., Wearden et al., 1998), we regressed 

judgment on stimulus duration for each participant, calculating separate intercept and slope 

coefficients for dim and bright stimuli. For the slope coefficients, there was a significant 
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interaction between background and stimulus, F(1,60) = 27.30, p < .001, 2

p  = .31, so we 

used paired-sample t tests to compare the slope coefficients for the bright and dim stimuli 

separately for each background. Against a black background the slope was greater for bright 

stimuli (M = 0.79, SD = 0.18) than for dim stimuli, (M = 0.70, SD = 0.19), t(30) = 4.26, p < 

.001, d = 0.77. Against a white background, the reverse was true: The slope for the dim 

condition (M = 0.75, SD = 0.24) was greater than that for the bright condition (M = 0.67, SD 

= 0.22), t(30) = 3.20, p = .003, d = 0.58. (Note that some caution is needed when applying the 

regression analysis to the white background condition because there is a rather abrupt jump in 

judgments at c. 800 ms.) 

 The intercepts did not differ between the four conditions (dim stimuli on black 

background, M = 79.33 ms, SD = 154.86 ms; bright stimuli on black background, M = 58.79, 

SD = 154.86; dim stimuli on white background, M = 129.80 ms, SD = 152.39; bright stimuli 

on white background, M = 136.96 ms, SD = 156.22 ms). A 2 x 2 mixed ANOVA revealed no 

effect of stimulus, F(1,60) < 0.65, p = .423, 2

p  = .01 , no effect of background, F(1,60) = 

2.98, p = .090, 2

p  = .05, and no interaction, F(1,60) = 2.97, p = .100, 2

p  = .04.  

 We also examined the absolute and relative variability of judgments. In pacemaker-

accumulator models, the variance in the number of counts accumulated is positively related to 

the objective duration and is expected to be higher when the pacemaker runs at a faster rate 

(see Rammsayer & Ulrich, 2001, for a general treatment), although in the case of verbal 

estimation tasks the effect on judgment variability is complicated by the need to convert raw 

counts into numerical estimates. (See Wearden et al., 2007, for a large body of data and a 

comprehensive discussion of judgment variability in the paradigm used here). The middle 

panels of Figure 4 show the standard deviations of the judgments. An initial ANOVA 

indicated a significant interaction between background condition and stimulus brightness, 

F(1,60) = 5.27, p = .025, 2

p  = .08, so we analyzed the results for the two conditions 

separately. In the black background condition, judgments became more variable at longer 

durations, F(4.0, 120.8) = 54.27, p < .001, 2

p  = .64. However, there was no effect of 

stimulus brightness, F(1,30) = 3.11, p = .088, 2

p  = .09, and no interaction between 

brightness and duration, F(4.2, 125.0) = 1.03, p = .399, 2

p  = .03. The same pattern was 

found in the white background condition [for effect of duration, F(3.3, 98.7) = 31.49, p < 

.001, 2

p  = .51; for brightness, F(1,30) = 2.21, p = .148, 2

p  = .07; for interaction, F(5,150) = 
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0.63, p = .675, 2

p  = .02]. Thus, in both background conditions, judgment standard deviations 

increase with increasing stimulus duration. Although the main ANOVA hints that brightness 

differentially affects the variability of judgments for black and white background conditions, 

individual analysis of these conditions reveals no significant effect of brightness in either. 

 Finally, we looked at the coefficients of variation (standard deviation divided by mean 

judgment). The results are shown at the bottom of Figure 4. Only stimulus duration had a 

significant effect, F(1.8, 110.7) = 15.09, p < .001, 2

p  = .20 (all other ps > .115). 

 

Discussion 

 

The results of Experiment 3 support the conclusion from Experiments 1 and 2 that it 

is stimulus differences, rather than absolute intensities, which influence subjective duration. 

More importantly, they suggest that this effect stems from changes in the rate of the 

pacemaker: Against a low intensity background, the pacemaker runs faster for bright stimuli; 

when the background has high intensity, the pacemaker runs faster for dim stimuli.  

In the supplementary materials for this paper, we report two additional verbal 

estimation experiments (conducted prior to Experiment 3) which also examine the influence 

of intensity on the internal clock. In the first of these, bright and dim lights were presented 

against a dark background; in the second, quiet and loud tones were presented in silence. The 

supplementary materials also report a re-analysis of data from Ekman et al. (1966) on the 

effects of intensity on the perceived duration of electrical stimulation. The results of these 

studies suggest that, across three sensory modalities, stimulus intensity influences the rate of 

the pacemaker: In every case, the effects of stimulus intensity become more pronounced as 

duration increased. However, the effects of intensity upon the intercept and coefficients of 

variation was more complex, and in some cases the results differed from Experiment 3; more 

work is required to clarify the effects of intensity on the switch component of the internal 

clock.  

  

General Discussion 

 

The current research has produced two core findings. Firstly, our results challenge the 

oft-repeated claim that stimulus magnitude is positively related to perceived duration (e.g., 

Allan, 1979; Fraisse, 1984; Goldstone et al., 1978; Xuan et al., 2007). It is the difference 
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between the stimulus and background, not its absolute magnitude, which is important. 

Secondly, these effects become more pronounced for longer durations, consistent with a 

change in the rate of the pacemaker component of an internal clock. 

 Our finding that the difference between stimulus and background influences the 

perception of duration adds to a growing body of work demonstrating the importance of 

stimulus differences to subjective time (Gomez and Robertson, 1979; Ono & Kawahara, 

2007; Tse et al., 2004; Ulrich et al., 2006; Xuan et al., 2007). Perhaps most relevant to the 

current paper is a study by Hirsh, Bilger, and Deatherage (1956). Hirsh et al. found that the 

background loudness could influence the reproduced duration of both tones and lights, but 

only when the context changed between presentation and reproduction stages. In contrast, the 

level of background illumination made no difference to the reproduced durations of either 

auditory or visual stimuli. The data of Hirsh et al. are somewhat noisy, and they used much 

longer durations than the current experiments (up to 16 s), so that counting strategies were 

possible. The current data provide a clear demonstration that the effect of intensity on the 

apparent duration of both visual and auditory stimuli is influenced by context; the results of 

Hirsh et al. (1956) provide an intriguing hint that these context effects may be at least 

partially cross-modal. 

 The fact that stimulus magnitude influences the perception of duration has been taken 

as support for the idea that there is a common system for representing temporal and non-

temporal magnitudes (e.g., Conson, Cinque, Barbarulo, & Trojano, 2008; Walsh, 2003; Xuan 

et al., 2007). Just as size, number and luminance interfere with judgments of duration, so 

these dimensions interfere with one another (e.g., Dormal & Pesenti, 2007; Hurewitz, 

Gelman, & Schnitzer, 2006; Pinel, Piazza, Le Bihan, & Dehaene, 2004) and there seems to be 

a spatial component to the representation of both quantity (Dehaene, Bossini, & Giraux, 

1993) and time (Vallesi, Binns, & Shallice, 2008). Our results suggest that, if there is a 

common system for temporal and non-temporal magnitudes, it cannot be based upon an 

intrinsic association of high magnitudes on one dimension with high magnitudes on another; 

there must be some flexibility in the representation system and sensitivity to the background 

against which stimuli occur. 

 In Experiment 3, the difference between stimulus and background influenced the 

slope of the line relating subjective duration and stimulus duration but had no effect on 

intercept. Within the framework of scalar expectancy theory, these results suggest that the 

more different a stimulus is from its background context, the higher the pulse rate of the 

internal pacemaker. Thus, our data support the assertion that stimulus “energy level” is an 
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important determinant of the speed of the pacemaker (Allan, 1998, p. 111), although they 

demonstrate that it is relative rather than absolute energy levels that matter. Our results do not 

preclude the possibility of an effect of intensity on switch latencies; they only show that 

intensity effects are not solely due to a change in the difference between switch opening and 

closing times.  

 The form of our results matches that from other investigations of slope and intercept 

effects in human timing. However, the effects are weaker than those reported in some other 

studies. In the black background condition of Experiment 3, the slope for bright stimuli was 

1.13 times that for dim stimuli; in the white background condition, dim:bright slope ratio was 

1.12. In contrast, Wearden et al. (2007, Experiment 2A) found a much bigger effect (a slope 

ratio of 1.55) when comparing filled and empty intervals. Our intensity manipulations are 

closer to the effects obtained when comparing tones and lights (e.g., Wearden et al., 1998, 

Experiment 2, found that tones produce a slope 1.23 times that for lights) or the increase in 

pacemaker rate that occurs when stimuli are preceded by a series of clicks (e.g., Wearden et 

al., 1998, Experiment 3, found that auditory stimuli preceded by clicks had a slope that 

was1.17 times that for stimuli without clicks). Although the effects of intensity on the 

pacemaker are relatively modest, data from Ekman et al. (1966) demonstrate that more 

extreme effects result from more extreme intensity differences.  

 We have primarily related our results to SET, as this provides a well-developed 

framework for human timing behaviour (Allan, 1992; 1998; Wearden, 2003). There are, of 

course, other interpretations for our results. As noted above, our data do not rule out a role for 

effects of onset/offset detection, and low-level effects such as retinal persistence (Long & 

Beaton, 1980; 1981) may be partially responsible for our results. While such effects may play 

some role, Fraisse (1984) has pointed out that they are limited to very brief stimuli (where 

Bloch‟s law holds – that is, where there is temporal summation), and are not applicable to 

auditory stimuli; the current experiments used durations of several hundred milliseconds and 

employed both visual and auditory modalities. Beyond the possibility of low-level effects, 

more general frameworks for interpreting human timing have emphasized the importance of 

attention (e.g., Brown, 1997; see Lejeune, 1998, for a discussion). For example, Zakay and 

Block (1998) have proposed that the flow of pulses into the accumulator depends on the 

amount of attention paid to the stimulus. We can readily imagine that stimuli which are more 

different from the background context demand more attention and, thus, a greater flow of 

counts per unit time. Similarly, Penney, Gibbon, and Meck (2000) have suggested that the 

switch between pacemaker and accumulator only remains open whilst attention is paid to a 
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stimulus; stimuli which are closer to the background may cause more “flickering” of the 

switch and, ergo, less accumulation of counts. Irrespective of the theoretical framework one 

adopts, our results provide important empirical constraints on any model of time perception. 
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Figure Legends 

 

Figure 1. Trial structure in Experiment 1. The figure illustrates the black background 

condition. In this example, the standard stimulus was bright grey and the comparison 

stimulus was dim; on half of the trials, these luminances were reversed. The trial structure 

was identical in the white background condition except that the background (including the 

blank screens) was white, and the fixation cross was black. (Note: Figure not drawn to scale.) 

 

Figure 2. Results of Experiment 1. The plots show the proportion of trials on which the 

comparison stimulus was judged longer than the standard stimulus. The solid lines show the 

results when the comparison stimulus was a dim grey square and the standard was a bright 

grey square; the dashed lines show the results when the comparison stimulus was a bright 

square and the standard stimulus was a dim square. Error bars show plus or minus one 

standard error of the mean. Note that, since ours was a within-subject design, these error bars 

provide no indication of the significance of differences between means (Masson & Loftus, 

2003; violations of sphericity meant it was not possible to use a pooled within-subject error 

term to calculate standard errors). This is true of the error bars shown on all plots in this 

paper. 

 

Figure 3. Results of Experiment 2. The plots show the proportion of trials on which the 

comparison stimulus was judged to last longer than the 600-ms standard. The solid line 

shows the results when the comparison stimulus was loud and the standard stimulus was 

quiet; the dashed line shows the results when the comparison stimulus was quiet and the 

standard stimulus was loud.  

 

 

Figure 4. Results of Experiment 3.
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