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The absolute threshold for a tone depends on its duration; longer tones have lower thresholds. This

effect has traditionally been explained in terms of “temporal integration” involving the summation

of energy or perceptual information over time. An alternative probabilistic explanation of the pro-

cess is formulated in terms of simple equations that predict not only the time=duration dependence

but also the shape of the psychometric function at absolute threshold. It also predicts a tight rela-

tionship between these two functions. Measurements made using listeners with either normal or

impaired hearing show that the probabilistic equations adequately fit observed threshold-duration

functions and psychometric functions. The mathematical formulation implies that absolute thresh-

old can be construed as a two-valued function: (a) gain and (b) sensory threshold, and both parame-

ters can be estimated from threshold-duration data. Sensorineural hearing impairment is sometimes

associated with a smaller threshold=duration effect and sometimes with steeper psychometric func-

tions. The equations explain why these two effects are expected to be linked. The probabilistic

approach has the potential to discriminate between hearing deficits involving gain reduction and

those resulting from a raised sensory threshold. VC 2011 Acoustical Society of America.
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I. INTRODUCTION

The quietest sound that a person can reliably hear is often

called his or her “absolute threshold.” In fact, both words,

“absolute” and “threshold,” require qualification. The quantity

is not absolute because it changes over time and depends

upon the stimulus characteristics, particularly on the stimulus

duration; longer sounds have lower thresholds. The term

threshold is likewise misleading because it indicates a discrete

dividing line between levels at which the sound can and can-

not be heard. In reality, threshold normally describes the mid-

point of a range of levels where the probability of detection

varies between zero and one. The threshold for a tone is there-

fore both probabilistic and duration dependent. To add further

complication, the nature of the dependencies is different

across individuals and these differences are most evident in

listeners with a hearing impairment. In this report, we explore

the potential of a simple probabilistic explanation of these

psychophysical effects to understand the phenomena.

The dependence of threshold on duration is traditionally

explained in terms of an integrator that accumulates stimulus

energy over time until some criterion value is reached.

Shorter stimuli will therefore require more intense stimula-

tion to reach the criterion. For example, Garner and Miller

(1947) suggested that the detection system operates as a per-

fect energy integrator; when the integrated energy reaches a

certain level, the stimulus becomes audible. Plomp and Bou-

man (1959) have characterized this relationship as

I¼ I1=(1� exp(�d=s)), where I is the intensity at threshold

for a particular tone, I1 is the intensity at threshold for a

very long tone, d is the duration of the tone, and s is the time

constant of integration. Essentially, this suggests that the

detection system is like a low-pass electrical filter that sums

energy using a “leaky integrator.” When the contents of the

integrator reach a certain value, detection occurs.

The first parameter, I1, implies a minimum level of sen-

sitivity which cannot be improved by increasing the duration

of the stimulus. Licklider (1951) characterized this as the

“diverted input hypothesis,” and Green et al. (1957)

described the parameter saying that “a certain portion of the

stimulus intensity is not an effective stimulus for the ear.”

This is an interesting concept that appears to introduce a

threshold inside an explanation of threshold. To avoid confu-

sion, we shall use the term “sensory threshold” to refer to

this minimum stimulus level while the term threshold will

refer generally to the observed stimulus level required to

guarantee a certain probability of detection.

The second parameter, the time constant of integration

s, has been the subject of many quantitative investigations

but has proved to be difficult to pin down. A systematic anal-

ysis of 50 human and animal studies by Gerken et al. (1990)

found that estimates of s varied considerably between 46

and 588 ms depending on tone frequency, stimulus type

(e.g., tones and noise), and any hearing impairment.

Green et al. (1957) described their own data using a

“power law” which identifies the threshold as I¼Cd�m,

where I is the intensity at threshold measured relative to the

sensory threshold and d is duration as before, while m and C
are free parameters determined from the data. The power

law is defended on the grounds that it is a good fit to the data

in the sense that threshold expressed in decibels is a straight-
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line function of time when duration is expressed on a loga-

rithmic scale. However, Green et al. acknowledged as a mat-

ter of regret that the function was a good fit only if the

exponent, m, was allowed to vary with duration. They con-

cluded that “a rational theory is badly needed to explain why

these or similar relationships exist.”

The probabilistic nature of responding near threshold is

most commonly explained with reference to a hypothetical in-

ternal source of unceasing Gaussian noise that masks the in-

ternal representation of low-level tones. This noise adds

variability to detection decisions near threshold and justifies

the practice of using signal detection theory (Green et al.,
1957) to account for threshold data. Signal detection theory

claims that the hearer specifies a best criterion level, C, of the

internal activity and uses it to distinguish between “signal pre-

sent” and “signal absent.” The criterion, C, is another interpre-

tation of the “sensory threshold” (I1) described above. Signal

detection theory was originally developed to provide a basis

for identifying signals that occurred against a background of

physical noise. It is extended by Green et al. to include signals

presented in quiet by assuming an internal (possibly physio-

logical) noise. Altogether, this is a tripartite theory consisting

of (1) continuously present internal noise, (2) an integrator,

and (3) a decision procedure. It constitutes, for many, the ca-

nonical theory of absolute threshold.

The most successful model of this type (Viemeister and

Wakefield, 1991) incorporates all of these features but

decomposes the decision process into a series of successive

short “looks” where each look generates an estimate of the

likelihood that a tone is present. Successive estimates are

aggregated across the duration of the stimulus to form the

basis of a final decision. This accumulation of estimates is a

different kind of integrator based on the accumulation of in-
formation but an integrator nonetheless. The “multiple

looks” approach has the advantage of being able to function

across stimulus presentations or across a range of sources of

information; for example, across frequency channels

(Hoglund and Feth, 2009). With “intelligent looking,” this

approach can also be made to ignore irrelevant information

such as interspersed masking noises and silences.

From many points of view, these theories give a useful

account of the nature of absolute threshold but there are

doubts. First among these is the question of the physical na-

ture of the integrator. Also, if there is a physical leaky inte-

grator, why is it so difficult to identify its time constant of

integration? If the power function is a good fit, why does the

exponent need to change with signal duration? A different

question concerns the nature of the unceasing internal noise

that restricts our ability to detect low-intensity sounds. Its

nature is rarely explicitly discussed beyond informal specu-

lation that this is the amplitude of the noise associated with

auditory nerve (AN) spontaneous activity.

Integrator theories have in common the idea that a detec-

tion event derives from a summary of the recent sensory his-

tory of the system, i.e., a memory. There is, however, an

alternative type of theory based on probability accumulation

over time that requires no memory. Probability theories have

been considered and rejected from time to time by auditory

theorists (e.g., Garner and Miller, 1947, and Zwislocki, 1960).

However, Watson (1979), a visual scientist, proposed a simple

probabilistic account of the threshold=duration relationship

that might prove more acceptable and his formulation will be

used as the basis of the work to be reported below. He pro-

posed that a quantal signal detection event could occur at any

point in time during the stimulus and the probability of at least

one detection event could be found by summing instantaneous

probabilities across time using the general formula, P¼ 1
– P(1 – pt), where P is the probability of detecting the stimu-

lus as a result of at least one detection event occurring during

the stimulus and 1� pt is the probability of not detecting the

stimulus at time t. The symbol P represents the AND function

in probability so that P(1 – pt) represents the probability of

not detecting the stimulus at any time during the stimulus. His

approach has some useful features. For example, no integrator

or memory is required; the system simply waits for an event

that might or might not occur at any time. Also, the probabil-

ity of detection will be greater for longer stimuli.

The lack of a physical integrator is an attractive feature

when efforts are made to identify the physiological substrate

responsible for these processes. For example, the dependence

of threshold on duration can be observed at a very low level

in the auditory nervous system. Clock et al. (1998) have dem-

onstrated the dependence of threshold on duration at the level

of the AN. At an earlier date, similar observations were made

in single-units in the cochlear nucleus (Clock et al., 1993). At

the level of the AN or the cochlear nucleus, there is no physio-

logical process capable of acting as a temporal integrator with

an appropriately long time constant of integration summarized

by Gerken et al. (1990). Heil and Neubauer (2003) identified

this as a central paradox in our conceptualization of sensory

threshold. However, they and Krishna (2002) both showed

that a solution might be found (at least at the level of the audi-

tory periphery) in terms of probabilities and they used AN

first-spike latencies to illustrate the point.

Heil and Neubauer (2001) showed that AN first-spike

latencies could be predicted by the integral of the stimulus

pressure envelope prior to the first driven spike following

stimulus onset. Thus, the system was behaving “as if” it

were integrating pressure even though no physical integrator

could be identified. When the level of the stimulating tone is

low, the probability of a driven spike will also be low and

the delay to the first spike will be greater. If the stimulus is

too short, it may come to an end before a spike has occurred.

They argue that the likelihood of observing a driven spike

before the end of the signal can be equalized across stimuli

with different levels only by adjusting the duration of the

stimulus. Conversely, if the durations of the stimuli are dif-

ferent, the likelihood of obtaining a driven spike can be

equalized only by changing the level. In other words, a

threshold=duration (T=D) function is purely a consequence

of delays to the first driven spike in AN fibers.

In their view, the parallels between these delays and

psychophysical T=D functions were strong enough to justify

an explanation of the psychophysical T=D effect in terms of

first-spike latencies. They point to two parallels. The first is

simply the demonstration that apparent temporal integration

is taking place at the lowest level of the auditory system and

the obvious inference that it must be involved in stimulus
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detection. The second parallel consists of redefining thresh-

old as the pressure integral of the stimulus at the point when

the first spike occurs and showing that this increases as a

power function of signal duration in a manner remarkably

similar to the T=D effect observed in psychophysical meas-

urements. Their subsequent mathematical analysis of the

first-spike latency data demonstrated that latencies could be

understood in terms of low-probability events at the inner

hair cell (IHC)=AN synapse (Neubauer and Heil, 2008).

At this point, we need to make a distinction between (a)

their specific suggestion that the T=D function can be

explained in terms of first-spike latency and (b) their general
suggestion that probabilistic processes at work in the nervous

system could form the basis of a (memory-less) explanation

of thresholds. For example, they make the specific sugges-

tion that the slope, m, of the power function relating duration

and the pressure integral at threshold must be close to 0.667

and link this to the number of Ca2þ-binding steps to the

ca2þ-sensor mediating release (Heil and Neubauer, 2003).

Both general and specific hypotheses could be true but we

restrict ourselves below to the more general account and for-

malize a purely psychophysical approach based on a stream

of probabilistic events without reference to the underlying

physiology. This will allow us to move forward with a psy-

chophysical account while leaving some unresolved physio-

logical problems for separate study.

One of these problems concerns the question of how the

nervous system separates driven AN spikes from the contin-

uous stream of spontaneous activity. Neubauer and Heil

(2008) are aware of the problem and agree that this might be

resolved later in the system using coincidence detection

mechanisms such as those used in a computer modeling

study (Meddis, 2006). If this point is conceded, it must also

be accepted that the mathematics of coincidence detection

might take precedence over the mathematics of first-spike la-

tency. Another problem concerns their use of probabilistic

explanations to describe their physiological data but use of

the traditional power function to describe their psychophysi-

cal results. They justify the latter practice purely in terms of

how well the function fits the data. This is the same justifica-

tion used by Green et al. (1957) and leaves unanswered their

request for a more rational basis. Below, we will suggest that

the power function can be replaced by a different function

with a clearer rationale.

Neubauer and Heil (2004) also considered threshold

changes in hearing impairment. Garner and Miller (1947)

had previously sought to explain threshold partly in terms of

a sensory threshold specified in terms of a minimum signal

intensity, I1. Neubauer and Heil proposed a similar idea but

expressed in terms of a sound pressure level (SPL), Pineff,

below which acoustic signals are ineffective. In their view,

hearing impairment could involve either a reduction in the

system gain or an increase in the sensory threshold or

changes to both. They analysed and modeled T=D functions

following acoustic trauma using data supplied by Solecki

and Gerken (1990) and found changes in both. Below, we

will continue to make their basic distinction between gain

and sensory threshold, although our measure of sensory

threshold will be different.

The issue is of practical importance because the mea-

surement of absolute thresholds is central in the diagnosis of

hearing loss and the prescription of prostheses. High thresh-

olds are a symptom of pathology but we are often unable to

say what that pathology is; the same high threshold could

imply different underlying causes. A possible basis for dif-

ferentiation lies in “brief-tone audiometry” where multiple

threshold measurements are made at different tone durations

(Elliott, 1963; Sanders and Honig, 1967; Richards and Dunn,

1974; Wright, 1978).

Individuals with normal hearing typically show a sub-

stantial reduction in thresholds for longer tones compared to

short tones (e.g., Hughes, 1946; Plomp and Bouman, 1959;

Sheeley and Bilger, 1964; Olsen and Carhart, 1966; Hall and

Fernandes, 1983; Florentine et al., 1988). For example, the

threshold for a 10-ms tone may be 10 dB higher than for a

250-ms tone. In the case of hearing loss, thresholds will be

raised for tones of all durations but the rise in threshold for

longer tones is greater than for short tones (Wright, 1968,

Watson and Gengel, 1969; Gengel and Watson, 1971; Hall

and Fernandes, 1983; Florentine et al., 1988; Gerken et al.,
1990). Gerken et al. (1990) found estimated T=D slopes to

be as low as 3 dB=decade for some hearing-impaired listen-

ers but also found some slopes as high as 10 dB=decade.

Attempts to use brief-tone audiometry to distinguish

between different types of hearing impairment have a long

history but the procedure has never become a standard clin-

ical practice. For example, reduced T=D effects were found

specifically in listeners with presbycusis, noise-induced

hearing loss, cochlear hearing loss, and Meniere’s disease,

while listeners with a conductive hearing loss or an eighth

nerve lesion appear to yield normal threshold-duration

effects (Harris et al., 1958; Pedersen and Elberling, 1973;

Young and Kanofsky, 1973; Olsen et al., 1974; Pedersen

and Salomon, 1977; Chung and Smith, 1980; Chung,

1982). Unfortunately, the variability of the threshold=dura-

tion effect among both normal and impaired listeners and

the overlap found between the two groups created consider-

able uncertainty concerning the clinical value of brief-tone

audiometry. This may explain why it has not been adopted

in clinical settings.

In what follows, the probability accumulation equation

proposed by Watson (1979) will be used as the starting point

to develop a small system of equations to represent a general

formulation of a probability accumulation account of thresh-

old. The final product however is different from Watson’s

approach but offers a number of advantages. First, it can be

used very simply to generate a T=D function that fits the

data at least as well as a simple power function but with the

advantage of a more rational basis. Second, the same equa-

tion can be used to generate the psychometric function with-

out reference to the unceasing noise required by signal

detection theory. Third, this approach allows us to base our

predictions on the simple principle of stochasticity without

needing to commit to a particular physiological basis. A

strong prediction from the model is that the psychometric

function can be inferred directly from the T=D function and

vice versa. This idea will be tested using measurements

made using listeners with both NH and IH.
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It will be argued that there is merit in routinely decom-

posing threshold measurements into two sub-components,

“gain” and sensory threshold, particularly when assessing

hearing impairment because the same threshold as measured

by pure-tone audiometry may conceal differences along

these two dimensions. Our approach will be neutral with

respect to the underlying physiology but the discussion will

consider similarities and differences with recent theorising

in this area.

II. STATISTICAL MODEL

The hypothesis is based on the simple concept that

acoustic stimulation gives rise to a single stream of stochasti-

cally distributed internal detection events and that the rate of

occurrence of these events is proportional to the tone peak

pressure. They are defined as “detection events” because the

occurrence of a single event is enough to give rise unambig-

uously to detection.

At low signal levels, these events occur at a low rate

and, given their stochastic nature, it is possible for a short

tone to begin and end without any event occurring. If this

happens, the presence of the tone will not be detected. How-

ever, a longer tone at the same level offers a more extended

opportunity for at least one detection event to occur. If the

levels of a long and a short tone are adjusted to equate the

probability of at least one detection event occurring during

the tone, the longer tone will necessarily be set at a lower

level. In this way, lower thresholds for longer duration can

be understood without reference to a temporal integrator. In

the following equations, the detection events are equally

likely to occur at any time during the stimulus. This is simi-

lar to the claim of Heil et al. (2008) that their model predicts

that “the stimulus generates a constant probability of exceed-

ing the AN fiber’s detection threshold when the stimulus am-

plitude is stationary.”

This probabilistic approach can be formalized simply.

The main equation determining the rate of events, r, is

r¼GP, where P is the peak pressure of a pure tone (lPa)

and G is a free parameter representing the gain of the system

(events=s=lPa). Where stimuli are ramped, P is defined as

the mean of successive peak pressures, i.e., the mean of the

envelope of the stimulus.

However, there is an internal absolute limit to the sys-

tem’s sensitivity. We incorporate this idea into the rate equa-

tion by adding a second parameter, A,

r ¼ GP� A for GP > A;

r ¼ 0 for GP <¼ A;
(1)

where A is a rate of events below which the system does not

ever respond and might be called the “discounted rate” in

recognition of Licklider’s (1951) diverted input hypothesis.

A. Psychometric functions

From basic probability theory, we can specify the proba-

bility, W, that at least one detection event will occur between

the beginning and the end of the tone

W ¼ 1� exp �drð Þ; (2)

where d is the duration of the tone (in seconds). This is a ver-

sion of Watson’s (1979) equation described in the Introduc-

tion. Substituting for r [see Eq. (1)] gives

W ¼ 1� expð�d GP� Að ÞÞ: (3)

Equation (3) is the psychometric function, i.e., the probabil-

ity that a tone will be detected as a function of tone level.

Figure 1 illustrates Eq. (3) using four different tone

durations (32, 64, 128, and 256 ms). Fixed values for param-

eters G and A (0.04 and 2) are chosen for the purpose of

illustration to give thresholds in the region of 10 dB SPL.

The functions are shown twice in Fig. 1. The left panel uses

micropascals as the x-axis so that the relationship with Eq.

(3) is transparent. However, the right panel uses the more

traditional decibel scale where the resemblance to the tradi-

tional representations of the psychometric function is more

evident.

B. Threshold=duration functions

We define threshold as the mean peak pressure when

W¼ 0.5 and this is indicated by a horizontal line in the mid-

dle of the two panels in Fig. 1. The intersection of each func-

tion with this line represents the threshold for that particular

duration. Clearly, longer durations are predicted to require

lower pressures at threshold.

Thresholds can be found directly by substituting

W¼ 0.5 in Eq. (3). After noting that ln(0.5)¼�0.69 and

rearranging, we obtain the expression

Pthr ¼ 0:69=d þ Að Þ=G; (4)

where Pthr is the peak pressure-at-threshold (in lPa). This

is the function that predicts lower thresholds for longer

durations. Figure 2 shows the predicted thresholds taken

from Fig. 1 for each of the four durations. The continuous

lines in Fig. 2 are the predicted thresholds computed using

Eq. (4).

The result is presented twice; first using linear scales for

pressure and time (left panel) and, second, on a log=log scale

(dB SPL= log duration) in the right panel. The dashed line in

FIG. 1. Psychometric functions for four different tone durations. Equation

(3) is used to generate the functions with G¼ 0.04 events=s=lPa and A¼ 2

events=s. The duration, d, is specified in the legend. Left: the function is

shown using micropascals for the abscissa. Right: same as left panel but the

abscissa is given in decibels (dB SPL). Individual markers (unfilled dia-

monds) represent thresholds (50% detection) at different tone durations.
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the right panel indicates a simple power function (see Intro-

duction and, e.g., Zwislocki, 1960; Florentine et al., 1988).

The probability-summation function and the power function

are close except at long durations. Florentine et al. (1988)

noted that shallower slopes at longer durations have been

observed in some (but not all) psychophysical experiments

and reports differ in terms of the duration at which the two

functions diverge.

C. Changing parameters

The effects on the T=D function of changing parameters

G and A are illustrated in Fig. 3 (left column). Reductions in

the gain parameter, G, [while A is held constant, Fig. 3(A)]

produce parallel upward shifts in the T=D function. On the

other hand, changes to the A parameter [while G is held con-

stant, Fig. 3(B)] affect both the overall threshold and the size

of the threshold difference between short and long tones.

Figure 3 (right column) shows the effect of parameter

changes on the psychometric functions generated using Eq.

(3). When A is fixed, a reduction in the G parameter results

in a right shift of the psychometric function but the slope

remains unchanged [Fig. 3(C)]. However, when the value of

A is increased (while holding G constant), the psychometric

function becomes steeper [Fig. 3(D)]. These observations

lead to the important prediction that individuals who show

only a small threshold difference in the T=D function should

also have steeper psychometric functions.

The validity of the equations proposed above will be

evaluated using human data from normal-hearing (NH) and

hearing-impaired listeners. Section III evaluates Eq. (4)

using normal and impaired threshold=duration data. The

experiment demonstrates that the equations outlined above

are a good fit to the T=D data for both normal and impaired

hearing. Section IV assesses Eq. (3) and the prediction of

steeper psychometric functions in impaired listeners and also

explores the relationship between the T=D measurements

and psychometric slopes. By collecting both T=D and psy-

chometric function data from the same subjects it becomes

possible to correlate the two measures and test the theory.

When fitting the equations to the data, a least-squares,

best-fit method will be used minimizing the error of predic-

tion of thresholds expressed as decibels SPL. Alternatively,

when only two thresholds are measured for a long and a

short tone, the following Eqs. (5) and (6) can be used to esti-

mate A and G directly. These formulas are derived from Eq.

(4) by using two different and well-spaced durations d1 and

d2 (in seconds) with their respective thresholds (P1 and P2;

the mean peak pressure in lPa). An example of the use of

this procedure is given in the discussion but may be of use

generally in clinical situations.

A ¼ 0:69 P1=d2 � P2=d1ð Þ= P2 � P1ð Þ; (5)

G ¼ 0:69=d2 þ Að Þ=P2: (6)

III. EVALUATION: THRESHOLD=DURATION
FUNCTIONS

This section evaluates the equations with respect to the

T=D functions in two groups of listeners (NH and hearing-

impaired).

A. Method

1. Procedure

Absolute thresholds for a pure tone as a function of du-

ration were measured in NH and hearing-impaired listeners.

FIG. 2. Left panel: the unfilled diamonds are predicted thresholds for four

tone durations taken from Fig. 1. The continuous line is based on Eq. (4)

using parameters G¼ 0.04 and A¼ 2 and represents the predicted thresh-

olds. Data points are plotted as peak pressure, lPa, versus tone duration

(ms). Right panel: same as left panel except that thresholds are plotted as

decibels (dB SPL) versus log (duration). The dashed line is a power function

shown for comparison.

FIG. 3. Left column: predicted thresholds as a function of duration using

Eq. (4). (A) The effect of changes to the G (gain) parameter while fixing

A¼ 5. (B) The effect of changing the A (sensory threshold) parameter while

fixing G¼ 0.04. Right column: psychometric functions for 0.1 s tones using

Eq. (3). (C) Parameter G is varied while A is held constant at 5. (D) Parame-

ter A is varied between 0 and 50 while G is held constant at 0.04.
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A single-interval, adaptive, up-down procedure was used

throughout as described and evaluated by Lecluyse and

Meddis (2009). Data were collected from eight NH and eight

hearing-impaired listeners.

Data collection was divided into three identical blocks

(replications). Each block consisted of 24 runs measuring

pure-tone thresholds for four frequencies and six durations.

The four test frequencies were presented in a random order

within the block. Within a frequency sub-block, six-thresh-

old measurements were made, one for each duration and

these were also presented in random order. The data points

to be presented are the mean of three measurements, one

from each block.

At the beginning of each run, the level of the tone was

set so that the participant could clearly hear it. This was a

tone intensity of 40 dB SPL for normal listeners and, typi-

cally, 70 dB SPL for impaired listeners. If the participant

indicated that a tone had been heard, the level was reduced

on the next trial, otherwise it was increased. The initial step

size was 10 dB but this was reduced to 2 dB after the first re-

versal. Each run consisted of 10 trials. The trial count starts

from the presentation before the first reversal. Catch trials

and initial trials are not included in the trial count.

Test tones were preceded by a cue tone consisting of a

tone identical to the test tone but 10 dB more intense than

the test tone. The participant’s task was to count the number

of tones heard and depress one of two buttons. If the “2” but-

ton was pressed, it was inferred that the test tone had been

heard otherwise depression of the “1” (or “0”) button was

taken to mean that the test tone was not heard.

Twenty percent of trials were catch trials when only the

cue tone was presented. If a “yes” response was given during

a catch trial, the run was aborted, the participant informed,

and the run was restarted. Participants were told that fre-

quent catch trials would be presented and were encouraged

not to make the mistake of reporting a stimulus when none

was presented. Aborted runs were rare (< 5%).

A threshold estimate was based on all ten trials in the

run (not including catch trials and initial trials). The thresh-

old (dB SPL) was determined at the end of each run by fit-

ting a logistic function to the data using the equation

p Lð Þ ¼ 1

1þ e�kðL�hÞ ; (7)

where p(L) is the proportion of yes-responses, L is the level

of the stimulus (dB SPL), k is a slope parameter, and h (dB

SPL) is the threshold to be estimated, i.e., the level of the

stimulus at which the proportion of yes-responses is 0.5. Pa-

rameters k (slope) and h (threshold) were obtained by mini-

mizing the least-squares error.

2. Stimulus

Thresholds as a function of duration were measured for

tones at 250, 1000, 4000, and 8000 Hz. Tone durations were

16, 32, 64, 128, 256, and 512 ms (including 4-ms raised-co-

sine ramps). The cue tone preceded the test tone by 500 ms.

The cue=test tone pair was initiated under computer control

0.5 s after the listener’s previous response. When a catch

trial occurred, only the cue tone was presented at the level

appropriate for the following non-catch trial.

3. Listeners

Participants were eight NH listeners between the age of

20 and 35 yr and eight impaired-hearing (IH) listeners between

the age of 40 and 67 yr. The IH listeners were volunteers with

moderate to severe sensorineural hearing loss. All had a high

frequency loss except for IH3 who had a cookie-bite (mid-fre-

quency) loss around 1 kHz. This group was self-selected on

the basis of their willingness to visit the laboratory regularly to

help in developing a range of testing procedures. All listeners

had been fitted with hearing aids at some time in the past. All

were very experienced subjects by the time the data were col-

lected for this study. None of the IH group showed any con-

duction losses as measured by bone conduction tests.

The NH listeners were also volunteers who either worked

in the hearing laboratory or were student members of the Psy-

chology department. None had a medical history of hearing

problems. The majority were experienced listeners.

The left ear was tested in all cases where possible. The

right ear was tested for four impaired listeners because their

left ear had either normal or very high thresholds. All listen-

ers received adequate training prior to the data collection.

Thresholds for all participants are given in Fig. 4 for all four

frequencies using 500-ms tones.

4. Apparatus

Listeners were seated in a sound-proof booth, and stim-

uli were presented through circumaural headphones (Senn-

heiser HD600, Sennheiser electronic GmbH & Co KG.,

Wedemark, Germany) linked directly to a computer sound

card (Audiophile 2496, 24-bit, 96 000-Hz sampling rate).

Responses (1 or 2 or, occasionally, 0) were made using a

button box. A monitor in front of the participant showed a

display of the button box. While the stimulus was being pre-

sented, the symbols representing the buttons disappeared

from the display. Immediately after stimulus presentation,

the buttons reappeared on the screen to signal that a response

was required. No feedback was given except immediately af-

ter being caught out on a catch trial.

5. Analysis

Two functions were fitted to the data separately for each

individual at each frequency.

(1) Probability-summation. The T=D data were fitted with

the probability-summation function given in Eq. (4) using

a least-squares best-fit procedure minimizing the error of

prediction of thresholds expressed as decibels SPL.

(2) Power function. A power function is a straight line on a

dB=log(d) plot and is a traditional way of representing

this type of data (see, e.g., Garner, 1947; Zwislocki,

1960; Florentine et al., 1988; Gerken et al., 1990; and

Neubauer and Heil, 2008).

Lthr ¼ alog dð Þ þ b; (8)
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where Lthr is the threshold expressed as decibels SPL, d is

the duration of the tone, and a and b are the free parameters.

This function was fitted using a least-squares best-fit proce-

dure minimizing the error of prediction of thresholds

expressed as decibels SPL. The function was evaluated twice

with and without a level correction for the 4-ms stimulus

ramp.

B. Results

Figure 5 shows the T=D data for eight NH and eight IH

listeners. No T=D function could be obtained for the 8000

Hz condition for three IH listeners (IH1, IH4, and IH6). As

expected, almost all of the IH listeners show functions which

are shallower than those of the NH listeners. The mean

threshold difference between a 16-ms tone and a 512-ms

tone is 9.8 dB (standard deviation, SD¼ 2.8 dB) in normal

listeners and 4.3 dB (SD¼ 2.5 dB) for the impaired listeners.

The continuous black lines in Fig. 5 show the best-fit

functions using Eq. (4) for all listeners at the four test fre-

quencies. The function provides a useful fit to the data in

almost all cases yielding an average root mean square (rms)

error of 0.86 dB for NH listeners and 0.71 dB for IH

listeners.

The traditional power function fit represented by Eq. (8)

also produced fits with average rms errors of 1.14 and 0.93

dB for the NH and IH groups, respectively. When the power

function is fitted using thresholds that are corrected to take

the tone ramps into account (i.e., using mean peak pressure),

the fit is improved to rms errors of 0.91 and 0.71 dB, respec-

tively. This agrees with the finding of Gerken et al. (1990)

that the power function fit is improved when the ramps are

taken into account. We can conclude that the probabilistic

formulation gives an equally good numerical account of the

data as the traditional power function.

Average (median) estimated parameters for A and G for

each frequency for both types of listeners are shown in Fig.

6 (NH—continuous line, IH—dashed line). Estimates for all

IH listeners were only possible up to 4 kHz. Not surpris-

ingly, the G parameter, reflecting system gain, is reduced in

the IH group. The IH group also shows higher estimates of

A, particularly at high frequencies, reflecting an increase in

the sensory threshold.

Estimates of parameters A and G are explored further in

Fig. 7 using data from the NH group. The insets show the

shared variances between the variables plotted. Except

where specified all correlations were computed using loga-

rithmic functions. In the top row, both A and G parameters

are plotted against threshold difference (between 16 and 512

ms-thresholds). The A parameter has, by far, the stronger

association with threshold difference. In the second row,

both A and G parameters are plotted against absolute thresh-

old for a 128-ms tone. As expected there is a strong associa-

tion between the G parameter and threshold while A is not

correlated with threshold. In the bottom row of Fig. 7, G is

plotted against A for the NH group only. The linear correla-

tion between A and G estimates is low (R2¼ 0.02) suggest-

ing that the two parameters are largely independent.

The analysis in the figure is restricted to this NH group

because a spurious correlation might be expected across the

complete group of listeners if both parameters are affected

by the impairment. The analysis was, however, repeated for

the impaired group (not illustrated) where a similar pattern

was found. Within this group, the linear correlation between

the A and G estimates was also low (R2¼ 0.02). Estimates of

A were more closely related to threshold difference
(R2¼ 0.61) than the absolute threshold (R2¼ 0.20). By con-

trast, estimates of G were more closely related to absolute
threshold (R2¼ 0.87) than threshold difference (R2¼ 0.20).

From this, we may infer that the A and G parameters are

largely independent that the A parameter reflects the thresh-

old difference between long and short durations tones and

that the G parameter is related to the average threshold. If

this is the case, we might expect a shallow T=D function to

indicate a raised sensory floor.

The two-threshold estimates described in Eqs. (5) and

(6) were evaluated across all listeners and all frequencies

using only thresholds at 16 and 512 ms. The formulas could

not be used for eight T=D functions where the threshold dif-

ference for short and long durations was zero or negative.

FIG. 4. Absolute thresholds for eight NH (top panel) and eight IH (bottom

panel) participants.
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The remaining 53 estimates were found to be well correlated

with the six-threshold estimates discussed above (R2¼ 0.84

and 0.81 for the G and A estimates, respectively).

IV. EVALUATION: PSYCHOMETRIC FUNCTIONS

The probability-summation equations offer a probabilis-

tic explanation of the psychometric function for absolute

threshold using Eq. (3). In particular, the probability-summa-

tion hypothesis predicts that the slope of the psychometric

function will be steeper for some types of hearing impair-

ment where the sensory threshold (parameter A) is raised. In

Sec. III, it was shown that listeners with sensorineural hear-

ing loss had, as a group, higher average sensory thresholds

and the prediction follows that they should also have steeper

psychometric functions. Psychometric functions for NH and

IH listeners were obtained in a second experiment to evalu-

ate this hypothesis.

A. Method

1. Participants

Six of the eight IH participants who took part in experi-

ment 1 took part again (IH1-IH6) and two more volunteers

with sensorineural hearing loss (IH9 and IH10) were added

to the participant pool. Two of the eight NH participants

took part again (NH1, NH2) and six more participants with

normal hearing (NH9-NH14) were added.

2. Procedure and Stimuli

The procedure for collecting psychometric functions

was essentially the same as that described for experiment 1

except that all observations were made using 100-ms, 1-kHz

pure tones. The same cued, single-interval, adaptive, one

up=one down procedure was used throughout. One differ-

ence was that each run consisted of 30 trials rather than the

ten trials used in the previous experiment. The other differ-

ence was that each participant was tested for 20 runs. This

yielded a total of 600 responses in addition to catch trials.

FIG. 5. Threshold=duration func-

tions for NH listeners (top panel) and

IH listeners (bottom panel). Data

points represent thresholds (in dB

SPL) at six durations (16–512 ms in

octave steps, abscissa) at four differ-

ent frequencies (Hz–250, black trian-

gles; 1000, white diamonds; 4000,

black squares; and 8000, white

circles). The continuous lines repre-

sent best-fit functions using Eq. (4).

The ordinates always span 60 dB to

facilitate visual comparisons of the

size of the threshold difference. The

exception is IH8 (bottom right) where

the range of thresholds (across tone

frequency) required a greater ordinate

range.

FIG. 6. Average estimates (median) for parameters G and A [see Eq. (4)] at

different tone frequencies for NH (continuous line) and IH groups (dashed

line). Estimates for IH listeners were only possible up to 4 kHz.
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The data collection was divided into separate runs to allow

rest intervals to be introduced. Typically this was a 2-min

break after each third run. All runs were completed in the

same session. All cue and test tones had 4-ms raised-cosine

ramps as before.

Threshold=duration data were also collected from the

new participants. The procedures used were the same as in

experiment 1.

3. Statistical analysis

For each participant, all 600 test observations were

classified as either yes or “no” in a binary array, W, and

associated with the corresponding tone pressure level

expressed either as lPa, P, or as decibels SPL, L.

A logistic function [Eq. (7)] was fitted to the data to

give a conventional measure of the slope, k, of the function

at threshold. The hypothesis to be tested was that the slope

will be steeper (i.e., k will be greater) for the IH group. In

particular, it was expected that the slope would be most

strongly associated with the increase in sensory threshold as

revealed by the T=D data. The equation was fitted using a

least-squares best-fit procedure (minimising the error in pre-

dicting the probability of detection) using both corrected and

uncorrected data. Data correction was achieved by subtract-

ing the mean level for a run from each observation level in

the run and subsequently adding back the overall threshold

estimate for all of the listener’s observations. Data correction

was necessary to reduce the influence of variance associated

with between-run threshold changes. Heil et al. (2006)

showed that parallel shifts in the psychometric function do

occur across repeated measurements and simple correction

with respect to the mean value results in less variable func-

tions. Threshold drift when uncorrected has the effect of

reducing the slope and it was hoped to minimize this effect.

Best-fit psychometric functions for the probability-sum-

mation equation [Eq. (3)] to the corrected data are shown as

dashed lines in Fig. 8 for each listener. The fit was obtained

by minimizing the differences between the predicted and

observed thresholds in decibels SPL. The rms error for the

fits of the two functions (logistic and probability-summation)

were almost exactly the same to two decimal places.

For the purposes of illustration only, the proportion of

yes-responses was obtained for each level (1-dB bins) and

presented in Fig. 8 as circles so that the height of a circle

represents the proportion of yes-responses while the size of

the circle represents the relative number of observations. It is

in the nature of adaptive procedures that most observations

are concentrated at levels close to threshold and the circles

are larger in that region.

B. Results

The parameter k of the best-fit logistic function (contin-

uous lines in Fig. 8) was used to estimate the psychometric

slope. When no correction was made for between-run thresh-

old shifts, the fit of the logistic function was poor for a num-

ber of individuals. However, after correction, the fits were

considerably better.

The IH group has steeper slopes on average (M¼ 1.14;

standard error, SE¼ 0.08) than the NH group (M¼ 0.87,

SE¼ 0.05) using corrected-level data (t(14)¼ 2.7, p< 0.01,

one-tailed). The difference between the groups was less clear

when uncorrected means are used; the mean of the IH group

was 0.67 (SE¼ 0.08) and that of the NH group was 0.47

(SE¼ 0.06) (t(14)¼ 1.9, p¼ 0.04, one-tailed). The slope

estimates are lower for the uncorrected data because the

threshold variation between runs adds to the variability and

hence increases the width of the psychometric function. The

uncorrected data yield slope values that are consistent with

those published previously (Watson et al., 1972; Green,

1993; Lecluyse and Meddis, 2009), i.e., in the region of 0.5.

FIG. 7. Parameter estimates A and G for NH participants plotted against

T=D data characteristics irrespective of test frequency. Top row: estimates

of A (left) and G (right) plotted against threshold difference. Middle row:

estimates of A (left) and G (right) plotted against threshold. The threshold

used is for the 128-ms duration. Bottom row: estimates of A and G plotted

against each other. The correlations in the top two rows are computed using

logarithmic functions; y¼ aþ b log(x). In the bottom row, a linear relation-

ship was assumed. Inset values are shared variances.
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It should be noted that previous studies are likely to have

been affected by threshold shifts during data collection even

if this was not reported or corrected.

As expected, the slopes of psychometric functions of the

IH group were, on average, steeper than those of the NH

group. However, some overlap was present between the

groups, and caution is indicated in the interpretation of the

results. A similar result was reported by Arehart et al.
(1990). The data do not justify a blanket conclusion that

impairment is always associated with abnormally steep psy-

chometric functions. Instead, we should consider the more

detailed prediction of the probability-summation hypothesis

that steeper functions are associated with listeners who show

specific symptoms of an increase in the sensory threshold.

A correlation analysis was performed to investigate the

relationship between the psychometric slope, k, and proba-

bility-summation parameters A and G obtained using the

T=D data for 1-kHz tones only. The relationship between the

estimated psychometric slopes and the parameters A and G
derived from the T=D data is complicated by the fact that the

A and G parameters are correlated with each other when nor-

mal and impaired data are pooled. This is because impair-

ment is associated with changes in both parameters for some

impaired listeners. The Pearson product moment correlation

coefficient, r, was found to be �0.44 between A and G when

computed across all subjects. This value was used to com-

pute partial correlation coefficients. The partial correlation

between A and the slope, k, (after partialling out G) was 0.65

while the partial correlation between G and k (after partial-

ling out A) was only �0.27. This result is consistent with the

prediction based on the probability-summation equations

[see Figs. 3(C) and (D)]. It implies that the steepness of the

psychometric function is related to the height of the sensory

threshold rather than the gain of the system.

V. DISCUSSION

The project has four principal findings: (1) the proba-

bility accumulation equations [Eqs. (3) and (4)] proved to

be a good fit to both the T=D and psychometric function

data for NH and hearing-impaired listeners; (2) the predic-

tion of a numerical link between the T=D and psychometric

functions was also supported by the data; (3) the key pa-

rameters, gain (G) and sensory threshold (A) are likely to

be independent; and (4) simplified equations [Eqs. (5) and

(6)] permitting rapid estimation in a clinical context based

on only two-threshold estimates were useful estimates of

parameters A and G.

Before discussing the findings in detail, it is necessary

to outline the similarities and differences with the consider-

able body of theoretical and empirical work already pub-

lished in this area by Heil and Neubauer (2001, 2003), Heil

et al. (2008), and Neubauer and Heil (2004, 2008). The simi-

larities are most obvious in our basic assumptions that (1)

psychophysical thresholds can be understood in terms of

low-probability detection events and (2) these can be mathe-

matically described by the accumulation of probabilities

rather than the accumulation and dissipation of energy or in-

formation in some kind of integrator or memory.

Heil and Neubauer (2003) argue that these principles

can be observed in action as early as the IHC=AN synapse

and, as a consequence, this must be the source of the psycho-

physical T=D function. It could equally well be argued, how-

ever, that the same process is operating throughout the

nervous system whenever the timing of a critical event is

uncertain. If this is the case, later events in the signal proc-

essing sequence could prove to be more relevant. This was

illustrated in a computer model of the auditory periphery

that has been shown to reproduce both their first-spike la-

tency data and appropriate psychophysical thresholds (Med-

dis, 2006) based on coincidence detection at a later stage.

For this reason, we submit that it is premature to identify the

probability accumulation process with a single physiological

location. Nevertheless, it is useful to preserve the general

probability accumulation principle for psychophysics as a

process with the power to explain “temporal integration”

without reference to a physical integrator. In the presentation

of the equations, care has been taken to avoid any identifica-

tion with specific physiological processes. This allows impor-

tant issues to be pursued in the psychophysics independently

FIG. 8. Psychometric functions for NH (top panel) and IH (bottom panel)

participants using corrected data. The height of unfilled circles indicates the

proportion of yes-responses (y-axis) at a given tone level (x-axis). The sizes

of the circles indicate the relative number of observations obtained at that

level. Least-squares best-fit probability-summation functions obtained using

Eq. (3) are shown as dashed lines. Least-squares, best-fit logistic functions

using Eq. (7) are shown as continuous lines. The slope, k, of the logistic

function at threshold is specified as an inset in each figure. The abscissa

(tone level, dB SPL) is arranged so that the estimated threshold for each

data set defines the mid-point of the abscissa; e.g., IH9’s threshold is 73.5

dB SPL. The width of each figure is always 10-dB to facilitate visual com-

parison of slopes.
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of the physiology. Two such purely psychophysical topics

are discussed above: (1) the relationship between T=D and

psychometric functions and (2) changes in the shape of the

T=D function that accompany hearing impairment.

A further difference in our approach can be found also

at the detailed level of the derivation of the equations. Heil

and Neubauer have concentrated on the time delay (related

to the stimulus pressure integral) between the stimulus onset

and the first physiological event signifying detection. Our

equations are a solution to the simpler mathematical problem

of specifying the likelihood of observing at least one detec-

tion event (that could occur at any time) before the end of

the stimulus. The resulting equation for the T=D function

requires only two parameters and is quite distinct from the

traditional power function. The physiological approach, in

contrast, produces a system of equations with a larger num-

ber of intrinsic parameters. Neubauer and Heil (2004) use

the power function (k.d�m, Green et al., 1957) as their main

tool for describing psychophysical thresholds. At first sight,

this is a model that requires only two parameters gain, k, and

slope, m. They even argue that the slope parameter, m, is

fixed around a value of 0.667 by the physiology of the IHC

calcium dynamics and thus the number of free parameters is

reduced. However, their power function contains additional

parameters because stimulus duration, d, in the formulation

of Green et al. (1957) is replaced by a new concept, the

“effective duration;” i.e., the total time when the stimulus

pressure is above some minimum value. This more sophisti-

cated definition of duration produces the required improve-

ment of fit to the data at longer tone durations. However, the

effective duration depends on an additional parameter, relat-

ing to “effective pressure.”

Another difference can be seen in the choice of a param-

eter to determine the sensory threshold. Neubauer and Heil

(2004) specify a “minimum effective pressure,” Pineff, while

we propose a “minimum event rate,” A. Our choice of

this parameter is deliberate and intended to allow parameters

G, and A to be independent. If we use the minimum

effective pressure concept, Eq. (1) becomes G(P�Pineff) or

GP�GPineff and both terms are modified by gain. Our pref-

erence for parameter A, the discounted event rate, was based

on the desirability of decomposing threshold into potentially

independent dimensions. The lack of a correlation between

A and G in our data analysis suggests that this approach was

successful.

While it is clearly necessary to explain the key differen-

ces between our formulations and those of Heil and Neuba-

uer, it would miss the point of our general argument to

emphasize them unduly. Our main concern is to exploit the

opportunity afforded by their work to change the consensus

of the last 50 yr that thresholds must be understood in terms

of a physical temporal integrator. The concept of absolute

threshold is basic to hearing science and introducing the al-

ternative notion of probability accumulation to auditory sci-

ence is potentially a major development, and this is the

central message of our report.

Some caveats need to be entered concerning the basic

rate equation [Eq. (1)]. This assumes that the probability of

an event increases linearly with pressure and that the pres-

sure is constant throughout the stimulus. For more general

applications, Watson’s (1979) basic equation, P¼ 1

�P(1� pt), should be used. It allows the probability of a

detection event to be specified for each instant in time de-

pendent on some rule relating stimulus level to the probabil-

ity of an event. This more general formulation may be

necessary to take into account special factors such as the

possibility of a non-linear response to stimulus level, a vari-

able pressure envelope, the increased spread of excitation

along the basilar membrane as the pressure-at-threshold rises

between the longest and shortest tone durations and issues

associated with threshold microstructure (e.g., Cohen, 1982).

For example, Neubauer and Heil (2008) and Heil et al.
(2008) propose a non-linear (third power) relationship

between probability of events and the low-pass filtered stim-

ulus amplitude but otherwise the ideas are very similar.

The assumption of a linear response near threshold has

already been considered by Plack et al. (2004) and Plack and

Skeels (2007) who estimated the cochlear input=output

response function in listeners with both normal and impaired

hearing. In both cases, they found that a linear response was

to be expected in the region immediately above threshold.

Plack and Skeels (2007) have also shown that the differences

in the T=D function between normal and impaired listeners

cannot be attributed to differences in stimulus compression.

However, linearity may only apply in a narrow region of lev-

els above threshold. At higher levels, compression must be

taken into account. This is a particular problem for very

short signals where the tone level required to exceed thresh-

old may lie in the compressed region. To avoid this problem

in our experiments, the tone durations in experiment I were

never shorter than 16 ms and the range of thresholds was

never greater than 20 dB. Green et al. (1957) observed that

the power function needed adjustment for very short stimuli.

This problem has traditionally been explained in terms of

spectral splatter that increases as signals are shortened. How-

ever, recent research on the threshold for stimulus compres-

sion (e.g., Plack et al., 2004) suggests that the high signal

levels required to detect very short stimuli may lie inside the

compression region leading to higher thresholds than pre-

dicted by an assumption of a linear response.

Plack and Skeels (2007) have also discussed the compli-

cations caused by threshold micro-structure, i.e., differences

in sensitivity to tones that are close in frequency caused by

possible resonances in the cochlea acting as a sort of comb

filter. This will interact with tone duration in that the effect

of spectral splatter associated with very short tone durations

will differ according to whether the tone frequency lies near

a valley or a peak of this filtering function. When the tone

duration is reduced, the energy associated with the spectral

splatter will increase and spread into these adjacent regions

resulting in a rise or a fall in threshold, respectively. When

splatter is likely to be an important component, it will be

necessary to model this function explicitly before using Wat-

son’s equation. Hearing-impaired listeners are known to

show much reduced microstructure (Mauermann et al.,
2004) and this might have some bearing on the size of the

effect when comparing threshold=duration functions of NH

and IH listeners.
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It could be argued that the tripartite theory (noise, crite-

rion, and integrator) is to be preferred because it also deals

with thresholds for tones in noise. An effective rebuttal of

this argument will need to be based on a probabilistic

account that can also give an account of simultaneous mask-

ing. We are not yet able to give such an account. However, it

is possible that Viemeister and Wakefield’s (1991) theory

can be amended to meet this requirement. Currently, it inte-

grates information over the duration of the stimulus and uses

the summed information to make a final decision about the

presence or absence of a tone. If the theory were remodeled

so that each separate “look” produced an immediate binary

(yes=no) decision, the theory would reduce to one where the

final decision was a yes if at least one of the individual looks

produced a positive response. This would remove the need

for an integrator and the theory would be reduced to a proba-

bilistic formulation able to account for many phenomena

observed in simultaneous masking without invoking an

integrator.

Dai and Wright (1995) challenged the signal detec-

tion=temporal integration approach with a demonstration

that the number of correct detections for masked tones near

threshold depended on the listener’s expectation of the dura-

tion of the tone. If their results could be replicated for tones

in quiet, they would also challenge our approach. Their work

highlights a general need to link up sensory theories with

psychological theories concerning how attention is directed

and sustained to take account of some and ignore other infor-

mation. For example a “continuous look” model should

respond to a short tone stimulus no matter when it occurs

and whatever its expected duration. The matter calls for fur-

ther investigation.

These detailed considerations will typically not apply in

a clinical situation where steady fixed-duration tones are

used and the differences between individuals are substantial.

It is in this context that the idea of “threshold decom-

position” may have most potential. Pure-tone audiometry

forms the bed-rock of clinical assessment even though there

is a general awareness that similar audiograms may conceal

basic differences in the underlying pathology in patients

with sensorineural hearing disorders. Decomposition of a

patient’s thresholds into two orthogonal components offers a

potential basis for distinguishing groups of patients either as

an indicator of pathology or as a predictor of treatment out-

comes. It should certainly act as a caution against studying

groups of undifferentiated cases of “impaired hearing.”

Equations (5) and (6) offer a quick method of assessment

that need not extend the patient testing time unduly.

The probability accumulation theory predicts that the

steepness of the psychometric function must be related to the

A parameter rather than gain; the higher the value of A, the

steeper the psychometric function. This was indeed found to

be the case across the NH and IH participants in the study.

Carlyon et al. (1990) and Arehart et al. (1990) have already

demonstrated some steeper psychometric function slopes

associated with hearing impairment, and it is well known

that impairment is often associated with changes in the T=D

function. The novelty in our results is the confirmation that

the reduction in the T=D effect is better predicted by changes

in the sensory floor parameter than changes in the gain pa-

rameter or any overall threshold measurement. Plack and

Skeels (2007) have already indicated that the model of Neu-

bauer and Heil (2004) can be interpreted as implying steeper

functions in hearing-impaired listeners when the sensory

threshold is raised. Our results support this contention on the

basis of differences between individuals rather than simply

between normal and impaired listeners.

Jerger (1955) found that the temporary threshold shift

induced by 2-min exposure to 110 dB SPL wideband noise

raised thresholds more for long tones than short tones. This

pattern is a symptom of raised sensory threshold rather than

loss of gain [see Fig. 3(B)]. The mean threshold for a 5 and

500-ms, 4-kHz pure tones was reported to be 28 and 15 dB

SPL, respectively, before exposure. Thirty seconds after ex-

posure, the thresholds were 34 and 27 dB SPL. If we esti-

mate A and G using Eqs. (5) and (6), we find that G changes

only marginally from 0.08 to 0.05 while A increases three-

fold from 10.7 to 32.4 event=s. This suggests that a noise-

induced temporary threshold shift can be decomposed to

expose a shift in the sensory floor but little change in the gain.

During recovery, the A parameter gradually returns to its pre-

exposure value. In contrast, Neubauer and Heil (2004) com-

pared thresholds in cats before and after noise trauma consist-

ing of exposure for 48 h to a 2-kHz tone at 110 dB SPL. The

average thresholds before exposure were �4 and �19 dB

SPL for a 8-ms and a 275-ms tone, respectively, and 22 and

14 dB SPL after exposure. When our equations are applied to

their data, we find a substantial reduction in G (from 2.9 to

0.2) and a large rise in A (from 7.7 to 26.3). This agrees with

their conclusion that both gain and sensory floor are affected

by sustained exposure to very loud sound. The difference

between the two studies suggests that gain is not affected dur-

ing temporary threshold shift but that permanent threshold

shift associated with severe noise trauma is more complex.

While this is an empirical issue, it highlights the conceptual

issue that it is more profitable to think of threshold as a two-

valued function and it is necessary, when describing a shift, to

specify which of the two components of threshold are affected

by a particular procedure.

Neubauer and Heil (2004) identify a rise in the sensory

threshold with a rise in the ineffective pressure (Pineff) while

our approach would characterize the change as a rise in the

discounted rate, A. Pressure is an obvious metric, while dis-

counted rate may seem to be more mysterious. However, it

can be illustrated as an abstract principle in terms of coinci-

dence detection. Here, a device discounts input pulses from

a number of sources unless they arrive at approximately the

same time. To achieve its goal of identifying only coinciden-

tal inputs, some rejection criterion needs to be set. This

rejection level would correspond to the A parameter or sen-

sory threshold concept. The auditory nervous system may be

characterized by many layers of coincidence detection, and

the A parameter in our model probably refers to an aggregate

feature of the system’s global operation. Whether the dis-

counted rate is influenced by gating mechanisms in the

IHC=AN synapse, feedback inhibition or long-term plasticity

is a matter for physiology while the threshold characteristics

of the resulting overall system is a matter for psychophysics.
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However, it now appears to be the case that it is not essential

to resort to physical integrators or unceasing internal noise

to explain the data in either physiology or psychophysics.
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