

Accepted Manuscript

A Multi-cycled Sequential Memetic Computing Approach for
Constrained Optimisation

Jianyong Sun, Yongquan Zhang, Jonathan M. Garibaldi,
Abdallah Al-Shawabkeh

PII: S0020-0255(16)00005-0
DOI: 10.1016/j.ins.2016.01.003
Reference: INS 11944

To appear in: Information Sciences

Received date: 18 October 2014
Revised date: 30 October 2015
Accepted date: 2 January 2016

Please cite this article as: Jianyong Sun, Yongquan Zhang, Jonathan M. Garibaldi,
Abdallah Al-Shawabkeh, A Multi-cycled Sequential Memetic Computing Approach for Constrained
Optimisation, Information Sciences (2016), doi: 10.1016/j.ins.2016.01.003

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service
to our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and
all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.ins.2016.01.003
http://dx.doi.org/10.1016/j.ins.2016.01.003

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

A Multi-cycled Sequential Memetic Computing Approach
for Constrained Optimisation

Jianyong Suna,b,∗, Jonathan M. Garibaldic, Yongquan Zhangd, Abdallah
Al-Shawabkehe

aSchool of Computer and Software, Nanjing University of Information Science and Technology, China.
bSchool of Computer Science and Electrical Engineering, University of Essex, Colchester, CO4 3SQ, U.K.

cSchool of Computer Science, The University of Nottingham, Nottingham, NG8 1BB, U.K.
dDepartment of Applied Mathematics, China Jiliang University, Hangzhou 310018, ZheJiang, China.

eFaculty of Engineering and Science, University of Greenwich, Kent ME4 4TB, U.K.

Abstract

In this paper, we propose a multi-cycled sequential memetic computing structure for

constrained optimisation. The structure is composed of multiple evolutionary cycles.

At each cycle, an evolutionary algorithm is considered as an operator, and connects

with a local optimiser. This structure enables the learning of useful knowledge from

previous cycles and the transfer of the knowledge to facilitate search in latter cycles.

Specifically, we propose to apply an estimation of distribution algorithm (EDA) to

explore the search space until convergence at each cycle. A local optimiser, called

DONLP2, is then applied to improve the best solution found by the EDA. New cycle

starts after the local improvement if the computation budget has not been exceeded.

In the developed EDA, an adaptive fully-factorized multivariate probability model is

proposed. A learning mechanism, implemented as the guided mutation operator, is

adopted to learn useful knowledge from previous cycles.

The developed algorithm was experimentally studied on the benchmark problems

in the CEC 2006 and 2010 competition. Experimental studies have shown that the

developed probability model exhibits excellent exploration capability and the learning

mechanism can significantly improve the search efficiency under certain conditions.

The comparison against some well-known algorithms showed the superiority of the de-

∗Corresponding author
Email address: j.sun@greenwich.ac.uk (Jianyong Sun)

Preprint submitted to Information Sciences January 11, 2016

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

veloped algorithm in terms of the consumed fitness evaluations and the solution quality.

Keywords: multi-cycled sequential memetic computing approach, estimation of

distribution algorithm, constrained optimisation

1. Introduction

The goal of this paper is to develop a memetic algorithm for the constrained opti-

mization problem which is also referred to as nonlinear programming (NLP) [3]. The

NLP can be stated as follows:

min f(x),x ∈ F ∈ Rn

where f(x) is the objective function, andF is the set of feasible solutions that satisfies:

gi(x) ≤ 0, i = 1, · · · , q;
hj(x) = 0, j = q + 1, · · · ,m.

Often, a solution x is regarded as feasible, if

gi(x) ≤ 0 ∀i = 1, · · · , q
|hj(x)| − ε ≤ 0 ∀j = q + 1, · · · ,m.

where ε is small positive real number. The NLP can then be restated as (cf. 1):

min f(x),x ∈ F = {x : ĝi(x) ≤ 0, 1 ≤ i ≤ m} (1)

where ĝi = gi, 1 ≤ i ≤ q, ĝj = |hj | − ε, j = q + 1, · · · ,m. Many machine learning5

problems, such as image processing [69], ordinal regression [17, 18], robust cluster-

ing [56, 58], correlation analysis [59], and others, can be formulated as NLP.

One of the main concerns in developing evolutionary algorithms (EAs) for the NLP

is on how to select promising parent individuals for offspring reproduction. An effec-

tive selection method, or essentially individual ranking, should balance the feasibility10

and the objective values of the individuals. Note that an individual with small objective

function value might not even be feasible. Most of the selection strategies are based

on the superiority of feasible solutions over infeasible solutions [50]. However, Jiao et

2

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

al. [26] found that global optimal solutions are more likely to be found on the boundary

between the non-dominated and feasible sets.15

Various constraint-handling techniques have been developed for effective ranking.

The stochastic ranking (SR) method [52] ranks the individuals by balancing the objec-

tive function value and the penalty on constraint violations stochastically. An addition

of ranking method developed in [21] ranks various numerical properties of the popu-

lation such as the values of the objective functions, the constraint violations, and the20

number of constraint violations, respectively; and aggregates these rankings together

as the final ranking criterion. Some authors, e.g. [1][11], proposed to rank individuals

based on Pareto dominance relation in a multi-objective perspective. In [2], the au-

thors proposed to adapt the penalty parameters. In [48], the authors proposed to first

identify which constraints are effective and then use them to contribute to the fitness25

evaluation. In [60], the ε-constraint handling method was proposed in which an ε pa-

rameter is applied to control the relaxation of the constrains. A rough penalty method

based on the rough set theory was proposed in [33]. The ensembles of these constraint-

handling techniques were claimed to reduce the use of fitness evaluations and perform

better than algorithms with a single constraint-handling technique in [39]. In [49],30

the authors studied several existing constraint-handling strategies and proposed several

methodologies based on parent-centric and inverse parabolic probability distribution.

The authors in [19] found that existing constraint-handling methods are applied to as-

sist but not to guide the search process. They thus proposed the so-called constraint

consensus methods to assist infeasible individuals to move towards the feasible region.35

Interested readers are referred to [42][44] for reviews, and [10][41] for recent advances

on constraint-handling.

Another important issue in developing effective EAs for the NLP is on the offspring

generation scheme. It is expected that the scheme should be able to explore feasible

regions of the NLP in the early stages, and exploit for the global optimum later on. The40

search abilities of a range of EAs on the NLP (including genetic algorithms [22][64],

evolution strategies [27], evolutionary programming [4], differential evolution [14],

particle swarm optimisation [20, 13], and many others) have been extensively studied.

To the best of our knowledge, the application of EDAs is very limited. In [16], two

3

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

EDAs coupled with different constraint-handling methods were compared but only on45

two test problems. The continuous Gaussian model was used in [54] for constrained

optimisation.

Besides these research efforts, some researchers have made attempts to develop

memetic computing (MC) approaches, i.e. the hybridisation of local optimization and

EAs, for the NLP. The MC approach has been well acknowledged as a promising50

paradigm for dealing with various types of optimization problems [8]. In this paper,

we develop a multi-cycled sequential MC framework, where an EDA and a classical

constrained optimization algorithm is hybridised sequentially. Further, a simple learn-

ing scheme is proposed to learn useful information from previous cycles to improve

the search efficiency in latter cycles.55

In the rest of the paper, related work on MC is reviewed in Section 2. We then

present the multi-cycled sequential MC framework in Section 3. The developed algo-

rithm is presented in Section 4. The experimental results are summarised in Section 5.

Section 6 concludes the paper and discusses future work.

2. Related Work60

The development of the MC approaches has been proceeding in two main direc-

tions. On one hand, different meta-heuristics are combined to take advantages of their

respective strengths. For examples, in [30], a combination of fuzzy logic and evolution-

ary programming is proposed to handle constraints. In [9], evolutionary programming

is hybridized with GENOCOP [43] for the NLP. In [65] and [60], GAs are combined65

with simulated annealing and PSO, respectively, for the NLP. The integration of arti-

ficial bee colony and bees algorithm was presented in [62]. In [23], a novel variant

of invasive weed optimization was combined as a local refinement procedure within

differential evolution [23]. The combination of variability evolution [36] and CMA-

ES [37] was proposed in [38] for the NLP.70

On the other hand, classical numerical optimization approaches for the NLP have

been hybridized in EAs. One of the main advantages of classical approaches is that they

are usually very efficient in locating feasible local optimum, but the search efficiency

4

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

highly depends on the quality of the initial solution. Starting from a ‘bad’ solution, a

classical approach could either only find an infeasible solution, or need a high com-75

putational cost to reach a feasible local optimum. Thus, effective strategies to address

when and how to apply the classical approach should be the main considerations in

designing a MC approach.

In recent literature (see e.g. [8][46]), the authors considered the MC approaches as

a broader subject of memetic algorithms (MAs). They stated that a MA is composed by80

an evolutionary framework that integrates one or more local search components within

the generation cycle of the evolutionary framework; while a MC is simply a hybrid

algorithm without a specific structure. As summarised in [45][47], basic MAs can

be considered as local minimizer(s) acting on evolutionary population, in which local

optimiser(s) is applied to every single individual. From the view of computational cost,85

it is highly likely that such an indiscriminate strategy will result in a high computational

cost. An obvious reason is that some individuals with low fitness cannot survive from

the selection operation in the evolution procedure, which means that the improvement

efforts will be wasted. Obviously, more uses of local improvements imply more efforts

on exploitation. As a result, too much emphasises on exploitation could be placed on90

the existing EAs, at least in some cases. In other words, the balance of exploration and

exploitation may be shifted too much in favour of exploitation.

Some efforts have been made to address this shortcoming. One way is to apply the

local optimizers only on a proportion of promising individuals at each generation [47].

However, one can criticise that it is not fair to the other individuals when the selec-95

tion operation is performed. This is because a local search on a low-quality solution

does not necessarily lead to a low-quality local optima, especially in the constraint

optimization context [26].

Another way is to apply the local search only after the EA has converged. Under

this strategy, to obtain a good algorithm performance, the hope is that the best solution100

found by the EA is located in the attraction basin of a high-quality solution. Unfor-

tunately, this is not always the case. No scheme in this strategy is provided to escape

from the found optimum if it is not global.

In recent literature, a sequential memetic computing (SMC) approach has been

5

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

implemented [25, 57]. In such structure, components in the evolutionary framework105

and the local optimiser(s) are all considered as operators. The evolution procedure can

be considered as a connected structure of those operators. The structure simplifies the

MA structure, and has the potential to alleviate the aforementioned problems existed

in the MAs. In [25], a single solution evolves till convergence and a parametrised

local search improves the solution at different stages with different parameter settings.110

In [7], a meta-heuristic is first applied to find a promising solution and to compute

a separability index; two heuristic local optimisers are then selected according to the

index to improve the promising solution. In our work [57], an EDA is hybridized with

a classical local optimizer under a SMC structure. These papers have shown that a

simple SMC approach is highly potential to improve the search efficiency.115

3. The Multi-cycled Sequential Memetic Computing Structure

We observe that existing SMC approaches do not take an EA as a single opera-

tor. Rather, the EA operators and local optimizer(s) are connected sequentially within

an evolutionary framework. Obviously, an EA takes some inputs (e.g. fitness func-

tion, algorithmic parameters, etc.) and outputs some solutions, which is similar to120

what other operators (such as crossover and mutation operators in GA) do. In this

paper, we propose to use a complete EA as an operator; and connect it with local op-

timizer(s) sequentially. Further, we propose to employ the combination of EA and

local optimizer(s) multiple times until the computational budget has been reached. If

we consider the composition of EA and local optimiser as a cycle, we end up with a125

multi-cycled SMC structure.

Under the multi-cycled SMC structure, firstly, we do not apply local optimisers to

any individual during the EA search procedure. This avoids wasting computational

resources on unpromising individuals under the MA structure. Secondly, the multiple-

cycle structure can provide a mechanism to improve search efficiency. That is, we130

can gradually accumulate useful knowledge from previous cycles, and apply them in

later cycles to either escape from previously found local optima, or to accelerate the

exploitation. To the best of our knowledge, no MC-based algorithms have been pro-

6

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

posed to take the multi-cycled structure, which means no learning mechanisms have

ever been studied. Moreover, no efforts have been carried out to apply the multi-cycled135

SMC structure for the NLP.

The above multi-cycled SMC approach for optimisation problems can be sum-

marised in Alg. 1. In the algorithmic framework, Θ1 and Θ2 are the parameters of

the EA and the local optimiser, respectively, and c is the cycle index. At each cycle,

EvolutionaryAlgorithm(Θ1, history) takes the history information into account, and140

returns the best solution found (denoted as xc) in line 3. In the first cycle, no history

information is available, we thus set history = ∅ (line 1). LocalSearch(xc,Θ2) im-

proves xc to a local optimum x∗
c (which is called the cycle best solution) in line 4. The

global best solution x∗ is updated after the local improvement (line 5). Useful infor-

mation S is then learned from the current cycle by LearningFromHistory() (line 6).145

The cycle index and the history information are updated hereafter (line 7). A new cycle

starts if the computational budget has not been exceeded. The global best solution x∗

is returned on termination.

Algorithm 1 Multi-cycled Sequential Memetic Computing Framework
Require: parameters Θ1 and Θ2

Ensure: The best solution found x∗

1: Initialization. Set c = 0, history = ∅;
2: while computational budget has not been exceeded, do

3: xc = EvolutionaryAlgorithm(Θ1, history);

4: x∗
c := LocalSearch(xc,Θ2);

5: x∗ := min{x∗
j , 1 ≤ j ≤ c};

6: S := LearningFromHistory();

7: c := c+ 1; history := history
⋃
S.

8: end while

4. The Working Algorithm

In this section, we present a simple working algorithm according to the generic150

scheme proposed in the above section. An estimation of distribution algorithm (EDA)

7

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

is proposed as the EA operator. As well known, in an EDA, offspring are generated

by sampling from a probability model, which is constructed from selected promising

individuals, at each generation. The probability model is to represent the statistical

information extracted from the selected promising solutions. The way to construct the155

probability model differentiates the EDA instantiations. Readers are referred to [29]

for detailed descriptions of these EDAs.

4.1. Adaptive Probability Model & Multiple Sampling Strategy

In existing EDAs, the probability model for real variables is usually assumed to

be a Gaussian distribution [29], a Gaussian mixture [5], or a histogram [63][68]. In160

this paper, we propose to construct a full-factorised adaptive multivariate model. That

is, we assume p(x; t) =
∏n
i=1 p(xi; t) where x = (x1, · · · , xn)ᵀ. The construction

of p(x; t) is presented in Alg. 2, where a selected population containing a set of K

individuals Ps(t) is the input. First, the range of the i-th variable in Ps(t) is sought,

denoted as [`min
i , `max

i] (line 1); then the range is expanded with a small positive num-165

ber εi; different probabilities are assigned to the range interval [`min
i , `max

i] and the

expanded intervals ([`min
i − εi, `min

i] and [`max
i , `max

i + εi]) (line 3).

The developed EDA exhibits several new features in model construction and sam-

pling. First, a uniform distribution is assumed over the range interval [`min
i , `max

i]. This

is meant to preserve the diversity during the search. Second, the expansion intervals170

[`min
i − εi, `min

i] and [`max
i , `max

i + εi] are meant to address the premature convergence

problem. Finally, we propose to use a multiple sampling strategy to make the sampling

more effective, which is meant to address the sampling noise problem.

To the best of our knowledge, in almost all EDAs, the number of sampled offspring

from the probability model p(x; t) is usually less than, or equal to, the population size.175

However, it is well known that to accurately characterise p(x; t), a large sampling size

is needed [51]. Therefore, statistically speaking, a small sample size will result in

high sampling noise, which might falsely guide the evolutionary search. That is, the

search may be leaded to possibly non-promising areas. The problem will become much

serious when p(x; t) is complex. To address this problem, we propose to generate180

a number of offspring which is k(> 1) (we call it the sampling factor) times of the

8

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

population size.

Algorithm 2 Multivariate Adaptive Probability Model

Require: The selection population Ps(t) =
{
x1(t), · · · ,xK(t)

}

Ensure: The probability p(x; t).

1: for 1 ≤ i ≤ n do

2: Find `min
i (`max

i) = min(max){xki (t), 1 ≤ k ≤ K};
3: Assign a small probability to the intervals [`min

i −εi, `min
i] and [`max

i , `max
i +εi],

and a big probability to [`min
i , `max

i].

4: end for

4.2. The Learning from Previous Cycles

An important contribution of the proposed framework is that it enables the learning

from previous cycles to improve the search efficiency in latter cycles. This section185

presents a simple learning method.

The most important message we obtained from previous cycles is the location in-

formation of the global best x∗. This information should be incorporated in the new

cycle. One possible way to take advantage of the location information is to combine it

in the sampling procedure by using the guided mutation method [67]. Alg. 3 describes190

the guided mutation in detail, where dAe represents the rounding of A to the nearest

integers greater than or equal to A. Basically speaking, the guided mutation generates

an offspring by copying a part of x∗, and filling the other part by sampling from a

probability model.

The underlying rationale behind the guided mutation is closely related to the so-195

called proximity optimality principle (POP) [15], which has been explicitly or implic-

itly applied in almost all meta-heuristics. The POP states that good solutions have sim-

ilar structure. By using the guided mutation operator, some elements of the the global

best solution is statistically retained during the search. Under certain conditions, re-

taining these location information will improve the algorithmic search efficiency. We200

will discuss the condition in Section 4.5.

9

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Algorithm 3 Guided Mutation Operator
Require: a template solution x∗, a real number 0 ≤ α ≤ 1 and a probability model

p(x; t) =
∏
p(xj ; t).

Ensure: An offspring x = (x1, · · · , xn)ᵀ.

1: Set U = {1, 2, · · · , n} and N := dαne; Randomly select a set of indices V ⊂ U

with |V | = N ;

2: For an index i ∈ V , set xi := x∗i ; For an index j ∈ U \ V , sample a value y from

the probability model p(xj ; t), set xj := y;

3: Return x;

4.3. Selection and Replacement

The selection process has been widely studied in the constrained evolutionary opti-

misation literature, mostly based on constrain-handling techniques. Selection methods

based on penalty methods will bias the search, while those based on multi-objective205

approaches will not. However, as stated in [53], the unbiased search does not neces-

sarily improve the search efficiency. Since local optimisers usually work better on a

feasible solution than on an infeasible solution, we prefer to use a selection method

that favours feasible solutions. Here, the selection method, called the over-penalised

approach in [53], is adopted in this paper.210

In the over-penalised approach, the feasible individuals are ranked higher than the

infeasible individuals. The feasible solutions are sorted according to their objective

function values f . The infeasible individuals are ranked according to the penalty

function values ψ, which is defined as ψ(x) = f(x) +
∑
j g

+
j (x)β where g+j (x) =

max{0, gj(x)}, and β = 2.215

Regarding replacement, we again adopt the over-penalised selection approach to

form new population. At each generation, the best individuals are used to construct

the probability model and passed to the new population, while the rest of the new

population is replaced by the best offspring sampled from the constructed probability

model.220

10

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

4.4. The Local Optimiser

We adopt a classical optimisation method developed for the NLP, called DONLP2

(abbreviation for ‘DO NonLinear Programming’) [55] to improve the best solution

found by the EDA. DONLP2 is based on the sequential quadratic programming method

(SQP), in which fully regularised mixed constrained sub-problems are used to deal225

with non-regular constraints. It incorporates techniques including a slightly modified

Pantoja-Mayne update for the Hessian of the Lagrangian, a variable dual scaling and

an improved Armijo-type step size algorithm to improve the search efficiency of the

SQP.

The most important algorithmic parameters of the DONLP2, i.e. Θ2 in Alg. 1,230

include τ0 which gives a bound describing how much the unscaled penalty-term (the

L1-norm of the constraint violation) may deviate from zero and δ0 which is a binding

constraint. In our experimental simulations, we set τ0 = 1.0 and δ0 = 0.2 as suggested

in [55]. Moreover, we do not calculate the analytical form of the gradients and Hessian

of the Lagrangian, but using numerical differentiation. The used NFEs for computing235

the differentials are included in the calculation of the overall NFEs in the sequel reports.

4.5. Remarks on the Algorithmic Framework and the Working Algorithm

In this section, we discuss the pros and cons of the algorithmic framework, and the

condition that the working algorithm will be effective.

4.5.1. The Algorithmic Framework240

In the sequel, we assume that there are a limited number of feasible local optima1

x∗
i , 1 ≤ i ≤ M in terms of the fitness function λ(x) = f(x). They can be sorted in a

descending order, denoted as x∗
1,x

∗
2, · · · ,x∗

M where λ(x∗
1) ≥ λ(x∗

2) ≥ · · · ≥ λ(x∗
M).

In the sequel, we define

φ(x∗
i) =

{
x∗|∃j ∈ {1, 2, · · · , n} \ {i}, s.t. |x∗j − x∗ij | < ε

}
(2)

1Readers that are interested in the theoretical analysis on the collaboration between global search and

local search please refer to [34, 35], in which the concept of local search zones are defined and studied.

Here, we only consider local optima rather than the local search zones since local optimiser is considered as

a black-box in the SMC structure, and its application only result in local optima.

11

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

where ε is very small positive number. That is, φ(x∗
i) contains the optima that is close245

to the i-th optimal solution. Further, we introduce the condition

φ(x∗
i)
⋂
φ(x∗

j) 6= ∅ for j > i (3)

which indicates that the two optima x∗
i and x∗

j have common elements. This can be

seen as the mathematical formalisation of the POP. Note that the condition (3) also

implies that φ(x∗
i) 6= ∅ for all i, 1 ≤ i ≤M . This can be proved by using contradiction

as follows. Suppose for some i, φ(x∗
i) = ∅. Then for all j > i, φ(x∗

i)
⋂
φ(x∗

j) = ∅,250

which contradicts the condition.

Moreover, we can see that if such a condition holds, a solution path exists under

the proposed multi-cycled SMC structure. That is, starting from a local optimum x∗
i1

,

i1 ∈ {1, · · · ,M}, a better local optimum x∗
i2
, i2 > i1 can be found at further cycles

since φ(x∗
i1

)
⋂
φ(x∗

i2
) 6= ∅. Applying the evolutionary cycle K times, we will end up255

with a sequence of local optima x∗
i1
, · · · ,x∗

iK
, or a ‘solution path’, with

φ(x∗
ij)
⋂
φ(x∗

ik
) 6= ∅, ij < ik; and λ(xik) ≤ λ(xij).

Hence, we call Eq. 3 as the “solution path” condition.

The above discussion suggests that the multi-cycled SMC structure will be effective

on problem instances that satisfy the solution path condition. It also suggests that

if φ(x∗
i)
⋂
φ(x∗

j) = ∅, the effectiveness of the framework is thus doubtful on those260

problem instances since the information learned from history has no help for future

search.

4.5.2. The Working Algorithm

According to [66], an EDA with truncation selection converges if the truncation

threshold (i.e. the percentage of individuals being selected to the next generation) is265

less than 1. The over-penalised selection approach can be considered as a truncation

selection with adaptive threshold. The threshold will be always smaller than 1 since not

all individuals will be passed to the new generation. Therefore, we can conclude that

the proposed EDA converges to a solution xc(t) at the t-th cycle. Under the proposed

structure, xc(t) is improved by the DONLP2 to obtain x∗
c(t) at generation t. It has270

12

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Figure 1: The demonstration of the solution path using the problem instance g02 as an example.

been proved in [55] that the DONLP2 holds a local convergence property. Therefore,

x∗
c(t) is a local optimum.

According to previous discussion, if for some problem instances, the solution path

condition holds, we can see that the guided mutation operator will be very efficient in

finding a better optimum in the solution path since it can stochastically retain some275

location information of the present local optimum.

Fig. 1 shows the solutions (four local optima and the global optimum) found by

the developed algorithm on g02 in five cycles. The objective function values of the

local optima are shown in the legend. From Fig. 1, we can see that many variables

(including x1−2, x4−5, x7−8, x11−20) of the local optima take similar values to the280

global optimum. In latter cycles, the rest variables (x3,6,9,10) are gradually modified.

This example shows that the “solution path” condition holds for g02.

5. Experimental Results

In the developed algorithm, called the multi-cycled evolutionary (MCEA) algo-

rithm, the parameters (i.e. Θ1) of the EDA include the population size M , the selec-285

tion size K, the sampling factor k, the guided mutation parameter α, and the expan-

sion parameter ε. The expansion in each dimension of the search space is set to be

εi = bi−ai
M , 1 ≤ i ≤ n where ai and bi are the lower and upper bound, respectively.

This setting is to eliminate the effect of the variable scales in different coordinates.

13

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Regarding the criterion to decide when a new cycle starts, in our implementation, new290

cycle starts if the number of generations is more than 30; and in consecutive 5 genera-

tions2, there are no better solutions found.

In this section, firstly we analyse the effects of the proposed EDA components

to the algorithmic performance and the algorithm’s sensitivity to the parameters. We

then compare the developed algorithm with some well-known algorithms including the295

winners of the CEC 2006 and 2010 competitions. Readers are referred to [31] and [40]

for detailed problem definitions.

5.1. Comparison Metrics

The comparison metrics include the success rate (#succ run), the average number

of fitness evaluation consumed (NFE), and the average number of cycles (#cycle). Sup-300

pose that in total T runs, there are K successful runs. For each run i, the consumed

NFEs is Ni (if not successful, Ni is the maximum NFEs allowed) and the number of

cycles is Ci, then the success rate is defined as #succ run = K/T, the average NFEs

is computed as NFE =
∑T
i=1Ni/K, and the average number of cycles is defined as

#cycle =
∑T
i=1 Ci/T.305

5.2. Component Analysis

The two aspects that mostly affect the performance of the proposed algorithm are

the exploration capability of the probabilistic model, and the learning capability of the

guided mutation operator. The component analysis aims to investigate their respective

contributions. Moreover, we intend to study the effect of the constraint-handling tech-310

niques to the algorithmic performance. The CEC 2006 test problems are used for the

analysis. The experimental configurations are set as follows: the positive number to re-

lax the equality constraints is ε = 0.0001, the number of runs is 25 and the maximum

number of fitness evaluations (NFEs) is 500,000. At each run, the NFEs needed to find

a solution satisfying f(x)− f(x∗) < ε are recorded.315

2These values used here were chosen based on experiments we carried out for the test problems.

14

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

5.2.1. The Probability Model

The effect of the probability model can be carried out by adopting different prob-

ability models in the proposed EDA. In this study, we compare the histogram model

and the Gaussian model with the proposed adaptive model. The resultant algorithms

are called MCEH (with histogram model), and MCEG (with Gaussian model), respec-320

tively. Those probability models are all fully-factorised multivariate models. In the

histogram model, the bound of each variable is divided into 10 subintervals (as sug-

gested in [68]), and the histogram of the selected individuals is normalised to be the

probability distribution over these subintervals. The Gaussian model assumes that the

selected individuals at each variable follows a Gaussian distribution.325

The parameter settings of these algorithms are M = 2n, k = 1, and α = 0.3.

Table 1 summarises the comparison metrics obtained by the compared algorithms for

the test problems except g20 and g22 (since they do not have feasible solutions).

Table 1: Experimental results obtained by the MCEA, the MCEH and MCEG on the test problems except

g20 and g22.

function MCEA MCEH MCEG

succ run NFE #cycle #succ run NFE #cycle #succ run NFE #cycle

g01 1.00 5,774 4.16 1.00 8,606 8.20 1.00 7,232 7.12

g02 1.00 74,030 33.16 1.00 59,712 30.76 0.00 500,000 112.36

g03 1.00 1,326 1.00 1.00 3,346 2.36 1.00 3,346 2.36

g04 1.00 412 1.00 1.00 433 1.00 0.92 40,470 86.08

g05 1.00 417 1.00 1.00 398 1.00 1.00 381 1.00

g06 1.00 467 1.00 0.96 20,385 58.12 1.00 196 1.00

g07 1.00 2,207 1.00 1.00 1,432 1.00 1.00 1,368 1.00

g08 1.00 458 2.56 1.00 416 2.08 1.00 450 2.56

g09 1.00 1,030 2.08 1.00 416 1.00 1.00 1480 1.00

g10 1.00 13,359 1.00 1.00 37,859 1.48 1.00 33533 1.32

g11 1.00 174 1.00 1.00 155 1.00 1.00 174 1.00

g12 1.00 196 1.00 1.00 198 1.00 1.00 197 1.00

g13 1.00 1,065 1.88 1.00 506 1.00 1.00 1,501 3.00

g14 1.00 3,642 2.68 1.00 7,590 9.40 0.00 500,000 731.24

g15 1.00 292 1.00 1.00 303 1.08 1.00 277 1.00

g16 0.96 22,058 26.56 0.96 21,587 23.44 1.00 25,311 31.12

g17 0.80 257,115 73.24 0.76 266,865 63.04 0.92 353,855 35.76

g18 1.00 7,657 7.04 1.00 4,150 3.72 1.00 3,893 2.92

g19 1.00 4,078 1.00 1.00 2,617 1.00 1.00 2,846 1.00

g21 1.00 34,152 8.12 0.88 180,512 39.16 0.56 359,339 54.72

g23 1.00 4,321 1.36 1.00 3,403 1.00 1.00 2,388 1.60

g24 1.00 181 1.00 1.00 164 1.00 1.00 239 1.40

In Table 1, entries in bold typeset indicate the least NFEs consumed by the algo-

15

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Figure 2: Comparison of different probability model and selection methods in terms of NFEs on g02.

rithms. From Table 1, we see that in 8 out of 20 test problems, the MCEA consumed330

fewer NFEs than the MCEH; while in 10 out of 22 test problems, the MCEH requires

fewer NFEs than that of the MCEA. In 4 out of 22 test problems, the MCEG performs

better than the other two. Though it seems that the histogram model performs better

in general, it can be seen from Table 1 that the success rates obtained by the proposed

model on functions g06,17,21 are higher than those obtained by the histogram model.335

Moreover, if we focus on those functions (including g02,07−09,11,13,16,19,23,24) that the

histogram model has a better performance, it can be seen that except functions g02, g08

and g16, the average numbers of cycles used by the MCEH and the MCEA to reach the

global optima are all one, which means that it is fairly easy for the histogram and the

adaptive model to obtain high-quality initial solutions.340

Since the main difference between the compared algorithms is on the probabilistic

model used in the EDA, we may conclude that the proposed adaptive model can result

in better exploration capability than the others. Fig. 2 shows the boxplots of the NFEs

consumed by the MCEA, MCEH and MCEG, respectively, on g02.

5.2.2. The Contribution of the Constraint-handling345

We now study the effects of the over-penalised selection and the stochastic ranking

selection to the algorithm performance. To carry out the comparison, we build an

algorithm, called MCES, in which the stochastic ranking selection is used.

In the experiments, the same algorithmic parameters as above are used by the

MCEA. For the MCES, the stochastic ranking parameter is set to 0.45 as suggested350

in [52]. Table 2 lists the comparison metrics obtained by the two algorithms for the test

problems except g20 and g22. Entries in bold typeset are the least NFEs obtained by

16

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 2: The experimental results obtained by the MCEA and the MCES.

function MCEA MCES

run NFE #cycle # run NFE #cycle

g01 1.00 5,774 4.16 1.00 15,712 10.00

g02 1.00 74,030 33.16 0.64 336,461 114.24

g03 1.00 1,326 1.00 0.92 118,536 77.84

g04 1.00 412 1.00 1.00 458 1.00

g05 1.00 417 1.00 1.00 398 1.00

g06 1.00 467 1.00 0.92 40,264 108.68

g07 1.00 2,207 1.00 1.00 1,576 1.00

g08 1.00 458 2.56 1.00 584 2.80

g09 1.00 1,030 1.00 1.00 1,888 1.00

g10 1.00 13,359 1.00 1.00 20,939 1.20

g11 1.00 174 1.00 1.00 213 1.00

g12 1.00 196 1.00 1.00 196 1.00

g13 1.00 1,065 1.88 1.00 627 1.04

g14 1.00 3,642 2.68 1.00 51,218 38.36

g15 1.00 292 1.00 1.00 349 1.00

g16 0.96 22,058 26.56 0.96 24,184 23.32

g17 0.80 257,115 73.24 0.76 289,937 85.64

g18 1.00 7,657 7.04 1.00 2,145 1.72

g19 1.00 4,078 1.00 1.00 3,595 1.00

g21 1.00 34,152 8.12 1.00 110,405 29.96

g23 1.00 4,321 1.36 1.00 3,522 1.00

g24 1.00 181 1.00 1.00 422 2.44

the compared algorithms.

From Table 2, we can see that in 16 out of 22 test problems, the over-penalised

selection approach performs better than the stochastic ranking selection in terms of the355

NFEs consumed. In terms of the success rate, it can be seen that the over-penalised

approach can obtain higher rates than the stochastic ranking approach in all the test

problems, except for g16 where the success rates are both one. We thus may conclude

that the over-penalised constraint-handling technique is more effective than that of the

stochastic ranking under the proposed framework.360

Moreover, in comparison with the results obtained by the MCEH shown in Table 1,

one can see that the MCES performs even worse than that of the MECH on most of

the test problems. This shows that the exploration capability of the developed EDA

does not benefit from the application of the stochastic ranking. Particularly, we can

also observe this from the last column in Fig. 2. It shows that the NFEs consumed by365

the MCES are even more than that of the MCEH.

17

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

5.3. Sensitivities to the Algorithmic Parameters

The main parameters of the working algorithm include the population size N , the

sampling factor k and the guided mutation parameter α. In this section, we investigate

the effects of these parameters on the performance of the algorithm.370

5.3.1. The Sampling Factor

To test the effects of the sampling factor to the algorithmic performance, we run

the algorithm by setting different k ∈ {0.5, 1, 1.5, 2, 2.5, 3}. The rest parameters are

set as M = 2n, and α = 0.3. Table 3 shows the results obtained. In the table, entries

in bold typeset are the least NFEs consumed by the algorithm.375

In Table 3, we omit the success rates for k ≥ 2 since they are all one. On one

hand, from Table 3, we can see that the MCEA with k = 0.5 performs the best on most

(12 out of 22) of the test problems in terms of the consumed NFEs. However, as we

discussed early in Section 5.2.1, those problems are fairly easy. The good performance

of the MCEA with k = 0.5 might be due to the efficiency of the learning mechanism.380

On the other hand, if we focus on the functions g06,16,17 which are considered as hard,

we can see that the best performance is achieved by the MCEA with k = 2. This

indicates that a large sampling size can indeed improve the search efficiency.

Regarding the MCEA with large sampling size (i.e. k ≥ 2), it can be seen that in

19 out of 22 test problems, the MCEA with k = 2 requires the least NFEs than the385

MCEA with k = 2.5 and 3. This shows that a large sampling factor does not always

lead to a competitive performance in terms of computational cost. The sampling factor

should be carefully chosen to balance the search efficiency and the computational cost.

We further investigate the interaction between the population size M and the sam-

ple factor k, using g02 as an example. g02 is of high-dimensional (n = 20), non-390

linear in both the objective function and the constraints, and multi-modal. Fig. 3

summarises the obtained results. Fig. 3(a) shows the mean NFEs with varied M ∈
{20, 40, 60, 80, 100} and k ∈ {0.5, 1, 1.5, 2}, while (b) shows the mean number of cy-

cles. From Fig. 3(a), one can see that generally a small sampling size does not always

result in a reduced NFEs. Specifically, we can see that in case k = 1, the consumed395

NFEs is fewer than that in case k = 0.5 when the population size is less than 80. This

18

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 3: The experimental results obtained by the MCEA with different sampling factor k. Entries in bold

typeset are the least NFEs obtained by the algorithm.

function k = 0.5 k = 1 k = 1.5 k = 2 k = 2.5 k = 3

#succ rate NFE #succ rate NFE #succ rate NFE NFE NFE NFE

g01 1.00 8,005 1.00 5,774 1.00 6549 6,728 5,877 7,136

g02 1.00 73,131 1.00 74,030 1.00 68,968 38,931 55,270 69,043

g03 1.00 4,829 1.00 1,326 1.00 3,200 1,895 3,969 3,052

g04 1.00 294 1.00 412 1.00 591 691 950 1,034

g05 1.00 207 1.00 417 1.00 514 722 861 1,463

g06 0.88 60,175 1.00 467 1.00 526 366 345 536

g07 1.00 1,193 1.00 2,207 1.00 2,292 2,373 3,198 3,573

g08 1.00 405 1.00 458 1.00 1,407 444 656 1,116

g09 1.00 756 1.00 1,030 1.00 1,092 1,198 1,458 1,700

g10 1.00 13,619 1.00 13,359 1.00 4,331 5,570 32,087 12,716

g11 1.00 92 1.00 174 1.00 246 302 394 471

g12 1.00 109 1.00 196 1.00 325 396 487 573

g13 1.00 449 1.00 1,065 1.00 658 1,406 3,739 3,406

g14 1.00 4,227 1.00 3,642 1.00 3,542 3,155 11,242 6,818

g15 1.00 221 1.00 292 1.00 336 474 669 966

g16 0.92 41,822 0.96 22,058 0.96 21,738 1,550 3,000 44,211

g17 0.80 257,115 0.92 181,885 0.92 145,887 89,042 93,971 110,189

g18 1.00 3,416 1.00 7,657 1.00 4,264 4,338 2,189 6,158

g19 1.00 3,012 1.00 4,078 1.00 5,078 5,733 6,949 7,843

g21 1.00 44,588 1.00 34,152 1.00 48,749 48,944 17,307 52,991

g23 1.00 2,274 1.00 4,321 1.00 3,444 3,315 4,322 5,964

g24 1.00 97 1.00 181 1.00 404 297 689 500

observation justifies that more samples can reduce the sampling noise in case a small

population size is employed, as claimed in Section 4.1. From Fig. 3(b), it can be seen

that the number of cycles tends to decrease along with the increase of the population

size and the increase of the sampling factor.400

In summary, we may conclude that the multiple sampling strategy can indeed im-

prove the search efficiency. But a sampling factor should be carefully chosen to bal-

ance the search efficiency and the computational cost. Moreover, the multiple sam-

pling strategy is able to reduce the sampling noise in case a small population size is

employed.405

5.3.2. The Guided Mutation and the Population Size

In this section, we study the effect of the guided mutation by looking at the per-

formance of the MCEA with different α and population size M . The population size

M seriously affects the exploration capability of the proposed EDA, and α controls the

19

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

(a) The interactions of M and k in terms of NFEs. (b) The interactions of M and k in terms of #cy-

cles.

Figure 3: The study of the interactions of the algorithmic parameters M and k to the performance of the

MCEA. (a) shows the results in terms of the NFEs; (b) is the results in terms of the number of cycles.

contribution of the learned information to further search.410

We first test the performance of the MCEA by setting the population size M to

be j × n where j ∈ {1, 2, · · · , 6}. Table 4 lists the results obtained by the algorithm

where entries with bold typeset are the least NFEs consumed. The other parameters

are set as k = 1, and α = 0.3. From Table 4, we can see that the MCEA with M = 2n

achieved the best performance in terms of the NFEs on almost all test problems, except415

for g12−15 where it is not as successful as the MCEA with M = n. In general, we may

conclude that a population size M = 2n is a good choice for an optimal algorithmic

performance.

We further investigate how α andM interact to effect the algorithmic performance.

An increased population size will increase the NFEs used in a cycle, but it also means420

an improved search ability. On the other hand, a large α value will result in an ac-

celerated search speed, but also a quick loss of diversity, which will deteriorate the

exploration ability and the possibility of escaping from local optima. Therefore, the

optimal settings of M and α will be the settings that balance the search speed and

diversity.425

In our experiment, the study was carried out by varying α ∈ {0.1, · · · , 0.9} and

M ∈ {20, 40, 60, 80, 100}. Again, g02 is used as an example. Fig. 4 summarises the

obtained results. Since for all the α settings, the MCEA can successfully locate the

global optimum in all runs, we thus do not include the success rate results. Fig. 4(a)

20

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

(a) The interactions of M and α in terms of NFEs. (b) The mean NFEs and cycles against α.

Figure 4: The study of the interactions of the algorithmic parameters M and α to the performance of the

MCEA. (a) shows the results in terms of the NFEs; (b) is the results in terms of the number of cycles.

shows the average NFEs consumed by the MCEA with different α andM values. From430

this figure, we can see that the consumed NFEs tend to decrease along with the decrease

of the population size for any given α. This indicates for g02, the loss of diversity due

to small population size can be compensated by the learning scheme. Fig. 4(b) shows

that the consumed NFEs and the number of cycles increase along with the increase of

α. This indicates that a large α will limit the exploration ability of the MCEA due to435

the quick loss of diversity.

5.4. Summary on Component Study

In summary, we may conclude that (i) the adaptive model can improve the explo-

ration ability of the proposed EDA; (ii) the learning strategy can compensate for the

loss of diversity caused by employing a small population size; and (iii) the multiple440

sampling strategy can improve the search efficiency but need to seek balance with the

population size for the best algorithmic performance. Regarding the parameters of the

MCEA, it seems reasonable to choose α ∈ [0.1, 0.4], k = 1, and M = 2n according

to our empirical studies.

5.5. Comparison with EAs on the CEC’06 Benchmarks445

In this section, we present the comparison of the MCEA with the algorithms in the

CEC’06 competition. Since most of the compared algorithms were successful in all

21

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 4: The experimental results obtained by the MCEA with different population size M . Entries in bold

typeset are the least NFEs obtained.

function M = n M = 2n M = 3n M = 4n M = 5n M = 6n

NFE #cycle NFE #cycle NFE #cycle NFE #cycle NFE #cycle NFE #cycle

g01 5,774 4.16 3,745 2.64 7,513 3.76 4,715 1.16 5,205 1.00 8,368 1.40

g02 74,030 33.16 57,433 18.24 72,456 32.08 91,890 22.68 110,236 21.84 80,186 13.20

g03 1,326 1.00 2,567 1.00 4,106 2.36 2,871 1.00 3,778 1.64 2,709 1.00

g04 412 1.00 1,104 1.00 691 1.12 791 2.10 1,106 1.08 1,061 1.60

g05 417 1.00 353 1.00 604 1.00 766 1.00 718 1.00 1,036 1.00

g06 467 1.00 426 1.00 449 1.00 642 1.00 515 1.00 475 1.00

g07 2,207 1.00 2,162 1.00 2,343 1.00 3,101 1.00 3,182 1.00 5,161 1.00

g08 458 2.56 176 1.00 658 2.76 295 1.00 800 2.00 663 1.48

g09 1,030 1.00 841 1.00 915 1.00 1,281 1.00 1,503 1.00 1,631 1.00

g10 13,359 1.00 12,452 1.00 21,186 1.12 12,446 1.00 17,958 1.08 21,138 1.04

g11 174 1.00 153 1.00 244 1.00 291 1.00 370 1.00 453 1.00

g12 196 1.00 209 1.00 315 1.00 415 1.00 510 1.00 580 1.00

g13 1,065 1.88 1,566 1.00 915 1.00 1,875 2.04 3,786 3.72 8,269 6.52

g14 3,642 2.68 3,770 2.72 3,578 2.72 3,402 2.48 3,114 2.28 4,146 3.04

g15 292 1.00 328 1.04 393 1.00 527 1.00 705 1.00 673 1.00

g16 22,058 26.56 1,326 1.00 2,943 1.00 3,000 1.00 3,282 1.00 3,905 1.00

g17 257,115 73.24 160,063 42.56 188,138 69.80 187,185 46.56 175,857 41.20 199,214 39.64

g18 7,657 7.04 1,525 1.00 3,206 1.88 4,311 1.60 8,747 3.60 8,447 2.84

g19 4,078 1.00 3,878 1.00 5,276 1.00 6,662 1.00 8,116 1.00 10,178 1.00

g21 34,152 8.12 23,749 11.44 34,526 13.68 65,104 18.12 88,466 21.60 54,616 15.24

g23 4,321 1.36 3,402 1.08 3,441 1.00 4,032 1.20 4,763 1.16 4,975 1.00

g24 181 1.00 165 1.00 318 1.36 452 1.60 362 1.00 462 1.08

22

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 5: The NFEs consumed by the MCEA, ε−DE, and the other algorithms on the CEC’06 test problems.

function MCEA ε−DE Best (Alg.)

min mean max

g01 3,284 6,728 17,917 59,309 25,115 (SaDE)

g02 14,654 38,930 89,309 149,827 96,222 (MDE)

g03 1,773 1,895 1,917 89,407 24,861 (MPDE)

g04 512 691 891 26,216 15,281 (GDE)

g05 592 724 933 97,430 21,306 (MDE)

g06 270 366 444 7,381 5,202 (MDE)

g07 2,035 2,373 3,159 74,304 26,578 (DMS)

g08 331 444 896 1,139 918 (MDE)

g09 1,133 1,198 1,235 23,121 16,152 (MDE)

g10 5,071 5,570 5,805 105,234 25,520 (DMS)

g11 292 362 585 16,420 3000 (MDE)

g12 382 396 442 4,124 1,308 (MDE)

g13 788 1,406 2998 31,096 21,723 (MDE)

g14 2,601 3,155 3,987 113,439 25,220 (DMS)

g15 447 474 533 83,655 10,458 (MDE)

g16 1,635 1,550 2,270 19,122 8,730 (MDE)

g17 19,345 85,478 155,419 98,860 26,364 (MDE)

g18 1,948 4,338 7,924 59,153 28,261 (DMS)

g19 4,561 5,732 6,958 356,350 21,830 (DMS)

g21 14,513 48,944 92,988 135,142 38,217 (PCX)

g23 2,212 3,135 3,751 200,763 129,550 (SaDE)

g24 278 297 380 2,952 1,794 (jDE-2)

runs, we use the consumed NFEs as the criterion. The experimental results are sum-

marised in Table 5. The minimal, mean and maximum number NFEs in 25 runs for

the MCEA are shown in the ‘min’, ‘mean’ and ‘max’ columns, respectively. The col-450

umn ‘ε−DE’ shows the average NFEs used by ε−DE which is reproduced from [60].

The ‘Best(Alg.)’ column shows the least NFEs used by the algorithms appeared in

the CEC’06 competition. These algorithms are SaDE [24], MDE [42], MPDE [61],

GDE [28], PCX [12], DMS [32] and jDE-2 [6].

From Table 5, it can be seen that the MCEA consumed much fewer NFEs than455

all the other compared algorithm except for g17 where the average NFEs used by the

MCEA is more than that of the MDE. However, we may still conclude that on average,

the MCEA outperforms these compared EAs in terms of the consumed NFEs on these

test problems.

23

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

(a) C10 (b) C14

(c) C15 (d) C17

(e) C10 (f) C14

(g) C15 (h) C17

Figure 5: The convergence plots of the MCEA on C10, C14, C15 and C17. Plots (a)-(d) show the curves of

the 10-D test problems; plots (e)-(h) shows the curves of the 30-D test problems.

24

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

5.6. Comparison on the CEC’10 Benchmark460

In this section, we compared the MCEA with the winner of the CEC’10 compe-

tition, called ε-Constrained Differential Evolution (ε-DEg), on the CEC’10 test prob-

lems. The experimental configurations are the same as those used in CEC’06, except

that the maximum NFEs are 200,000 for 10D, and 600,000 for 30D.

Table 6 summarises the statistics (including min, max and median) obtained by the465

two algorithms. The Wilcoxon rank sum is applied to carry out the hypothesis test at

5% significance level. In the table, we use notations “+”, “-” and “∼” to denote that

the MCEA performs better, worse or similar to the ε-DEg in terms of solution quality.

From Table 6, it can be seen that for the 10D problems, the MCEA performs better

than the ε-DEg on 8 problems; while the ε-DEg performs better on 4 test problems. For470

the rest problems, they perform similarly. For the 30D problems, the MCEA performs

better than the ε-DEg on 12 test problems, and worse on 2 test problems. We may

conclude that the MCEA performs better than the ε-DEg on average. Fig. 5 shows the

convergence plots of the MCEA on C10, C14, C15 and C17, respectively.

Furthermore, we observed that the best solutions found by the MCEA are worse475

than those found by the ε-DEg on C09,14,15 at 10D, and C09,14 at 30D. However, the

worst solutions found by the MCEA are better than the ε-DEg on C09,14,15 at 10D.

This indicates that the performance of the MCEA is more stable than that of the ε-

DEg. However, the MCEA performs worse than the ε-DEg on C09 and C14 at 30D, but

better on C15.480

So far, the same parameters used for the CEC’06 test problems were applied on the

CEC’10 benchmarks. We suspect that the degeneration performance of the MCEA on

C09,14,15 is because that these parameters are not well configured. To justify, we run

the MCEA on C09,14,15 at 10D and 30D with different M and α values in search of

the optimal settings. We found that the optimal settings for C09 at 30D are M = n and485

α = 0.2; for C14 at 10D and 30D are M = n and α = 0.4, for C15 at 10D are M = n

and α = 0.1. The experimental results are summarised in Table 7. From Table 7,

we see that with appropriate parameters, the MCEA’s performances were significantly

improved as suggested by the hypothesis test. Unfortunately, we cannot find a com-

mon parameter setting that is able to achieve quality performance for all benchmark490

25

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 6: The comparison between the developed algorithm and ε-DEg on the CEC’10 test problems.

Prob. ε-DEg MCEA hypo.

min median max min median max test

D = 10

C01 -0.747310 -0.747310 -0.738039 -0.747310 -0.747310 -0.747310 +

C02 -2.277710 -2.263489 -2.209323 -2.248475 -2.210387 -2.174758 -

C03 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 ∼
C04 -0.000010 -0.000010 0.003319 -0.000010 -0.000010 -0.000010 +

C05 -483.610625 -483.610625 -483.610625 -483.610625 -483.610625 -483.610625 ∼
C06 -578.658607 -578.652619 -578.645017 -588.442757 -588.382059 -584.697207 +

C07 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 ∼
C08 0.000000 10.572854 10.941538 0.000000 0.000000 0.000000 +

C09 0.000000 0.000000 142.078336 0.000000 7.931077 29.736517 +

C10 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 ∼
C11 -0.001523 -0.001523 -0.001523 -0.001523 -0.001523 -0.001523 ∼
C12 -570.089884 -426.511353 -0.199246 -158.383888 -59.906748 -39.453016 -

C13 -68.429365 -68.429365 -49.678547 -68.429365 -65.578466 -63.500458 +

C14 0.000000 0.000000 10.844283 0.000000 0.000705 0.0658532 -

C15 0.000000 0.000000 4.497445 0.079061 3.971311 4.180293 -

C16 0.000000 0.083187 0.847118 0.000000 0.000001 0.000002 +

C17 0.000000 0.015067 0.603958 0.000000 0.000000 0.000001 +

C18 0.000000 0.000000 0.000000 0.000000 0.000000 0.000002 ∼
D = 30

C01 -0.821724 -0.820803 -0.819459 -0.821884 -0.821884 -0.818056 +

C02 -2.180058 -2.151956 -2.131994 -2.247491 -2.223187 -2.199613 +

C03 28.673466 28.673467 28.673767 0.000000 0.000000 0.000000 +

C04 0.003207 0.007317 0.029206 -0.000003 -0.000003 -0.000003 +

C05 -453.965250 -446.129938 -443.650912 -483.610624 -483.610620 -483.610542 +

C06 -528.706201 -527.747125 -527.149398 -590.183769 -572.525932 -492.219758 +

C07 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 ∼
C08 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 ∼
C09 0.000000 0.000000 85.465484 94.993156 261.731772 516.596882 -

C10 32.354417 33.129880 35.365672 0.000000 0.000000 0.000000 +

C11 -0.000337 -0.000288 -0.000238 -0.000392 -0.000392 -0.000392 +

C13 -66.724791 -65.453406 -64.275217 -68.429365 -68.429236 -65.577742 +

C14 0.000000 0.000000 0.000000 3.169514 22.578798 28.623660 -

C15 21.603509 21.603763 21.603913 0.010589 2.612249 21.603421 +

C16 0.000000 0.000000 0.000000 0.000000 0.000000 0.000003 ∼
C17 0.261621 3.331664 18.665782 0.000000 0.000000 0.000000 +

C18 0.805405 39.033089 825.543126 0.000000 0.000000 0.000071 +

26

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 7: Further results on test problems C09,14,15 at 10D and 30D. The first three columns list the re-

sults obtained by the common parameters, while the last three columns list the resuts with the optimized

parameters.
Prob. MCEA MCEA with optimized parameters hypo.

min median max min median max test

D = 10

C09 0.000000 7.931077 29.736517 0.000000 0.000000 4.408181 +

C14 0.000000 0.000705 0.065853 0.000000 0.000000 0.000036 +

C15 0.079061 3.971311 4.180293 0.000000 0.001066 0.073362 +

D = 30

C09 94.993156 261.731772 516.596882 0.000000 66.931544 85.609162 +

C14 3.169514 22.578798 28.623660 0.000000 0.000037 0.005925 +

problems.

6. Conclusion and Future Work

In this paper, we presented a constrained evolutionary algorithm by combining

an estimation of distribution algorithm (EDA) and a classical local optimizer under

a multi-cycled sequential memetic computing (SMC) structure. Such structure regards495

a complete EA as an operator, and connects it with a local optimiser sequentially. It

clearly decouples the EA and the local optimizer. It also enables the learning from pre-

vious cycles to improve the search efficiency of the latter evolutionary searches. In the

experiments, we studied the components of the developed EDA to investigate its ex-

ploration capability, and investigated the advantages of the proposed learning strategy.500

The developed algorithm was extensively compared against the winning algorithms in

the CEC 2006 and 2010 competition. The comparison results suggest that the proposed

algorithm outperforms the compared algorithms on these benchmarks.

From the experimental study, it can be seen that the most significant components

that influence the algorithmic performance under the proposed framework are the ex-505

ploration capability of the EA and the learning capability. The EA should not consider

much about the exploitation, but it should be designed to realise quick and broad ex-

ploration. The learning mechanism should be able to learn from history to facilitate

effective search.

In the developed working algorithm, a full-factorized probability distribution model510

was developed, where the variable interconnections are not considered. Since the vari-

27

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

able interactions have a significant effect on the difficulties of the optimisation problem,

it can be expected that a more sophisticated probabilistic model should result in a better

performance.

The guided mutation operator is used as the learning mechanism. Our analysis515

showed that the learning approach can be effective when the “solution path” condition

holds, which may not be effective for those that do not hold. In the future, an online

learning algorithm which can learn the salience of the variables will be conducted.

This could make the learning more intelligent, and the learned knowledge could be

more effective in guiding the evolutionary search to promising areas.520

Acknowledgment

JS was supported by the Natural Science Foundation of China (No. 61273313

and No. 11301494), and by the Key Science and Technology Project of Wuhan under

Grant No. 2014010202010108. JS and JMG were also supported by Centre for Plant

Integrative Biology (CPIB), BBSRC/EPSRC and BB/D019613/1. YZ was supported525

by the National Natural Science Foundation of China (No. 11301494).

The authors would like to thank Prof. W. Pedrycz, and the anonymous reviewers

for their constructive and helpful comments.

References

[1] Aguirre, A., Rionda, S., Coello, C., and Lizárraga, G. (2003). Use of Multiobjective530

Optimization Concepts to Handle Constraints in Genetic Algorithms, volume 2723

of Lecture Notes in Computer Science, pages 573–584. Springer.

[2] Ali, M. and Zhu, W. (2013). A penalty function-based differential evolution algo-

rithm for constrained global optimisation. Computational Optimization and Appli-

cations, 54:707–739.535

[3] Bertsekas, D. (1996). Constrained Optimization and Lagrange Multiplier Meth-

ods. Athena Scientific, Cambridge, MA.

28

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[4] Bonyadi, M., Li, X., and Michalewicz, Z. (2014). A hybrid particle swarm with

a time-adaptive topology for constrained optimization. Swarm and Evolutionary

Computation, 18:22–37.540

[5] Bosman, P. A. N. and Thierens, D. (2000). Expanding from discrete to continuous

estimation of distribution algorithms: The IDEA. In Schoenauer, M., Deb, K.,

Rudolph, G., Yao, X., Lutton, E., Merelo, J. J., and Schwefel, H.-P., editors, Parallel

Problem Solving from Nature – PPSN VI. Lecture Notes in Computer Science 1917,

pages 767–776.545

[6] Brest, J., Zumer, V., and Maućec, M. (2006). Self-adaptive differential evolution

algorithm in constrained real-parameter optimization. In Proceedings of the 2006

IEEE Congress on Evolutionary Computation, pages 215 – 222, Vancouver, BC,

Canada.

[7] Caraffini, F., Neri, F., and Picinali, L. (2014). An analysis on separability for550

memetic computing automatic design. Information Sciences, 265:1–22.

[8] Chen, X., Ong, Y.-S., Lim, M., and Tan, K. (2011). A multi-facet sur-

vey on memetic computation. IEEE Transactions on Evolutionary Computation,

15(5):591–607.

[9] Chung, C.-J. and Reynolds, R. (1996). A testbed for solving optimization prob-555

lems using culture algorithms. In Evolutionary Programming V: Proceedings of

the Fifth Annual Conference on Evolutionary Programming, pages 225–236, Cam-

bridge, Massachusetts. MIT Press.

[10] Datta, R. and Deb, K. (2015). Evolutionary Constrained Optimization. Springer.

[11] Deb, K. and Datta, R. (2010). A fast and accurate solution of constrained opti-560

mization problems using a hybrid bi-objective and penalty funcation approach. In

Proceedings of the 2010 IEEE Congress on Evolutionary Computation, pages 1–8,

Barcelona. IEEE.

[12] Deb, K., Sinha, A., and Aravind, S. (2006). A population-based, parent cen-

tric procedure for constrained real-parameter optimization. In Proceedings of the565

29

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

2006 IEEE Congress on Evolutionary Computation, pages 239–245, Vancouver,

BC, Canada.

[13] Dhadwal, M., Jung, S., and Kim, C. (2014). Advanced particle swarm assisted

genetic algorithm for constrained optimization problems. Comput Optim Appl,

58:781–806.570

[14] Dong, N. and Wang, Y. (2014). A memetic differential evolution algorithm based

on dynamic preference for constrained optimization problems. Journal of Applied

Mathematics. http://www.hindawi.com/journals/jam/2014/606019/.

[15] Glover, F. and Laguna, M. (1997). Tabu Search. Kluwer Academic Publisher,

Norwell, MA.575

[16] Grahl, J. and Rothlauf, F. (2004). PolyEDA: Combining estimation of distribution

algorithms and linear inequality constraints. In Proceedings of the Genetic and

Evolutionary Computation Conference, pages 1174–1185.

[17] Gu, B., Sheng, V., Tay, K., Romano, W., and Li, S. (2015a). Incremental support

vector learning for ordinal regression. IEEE Transactions on Neural Networks and580

Learning Systems, 26(7):1403–1416.

[18] Gu, B., Sheng, V., Wang, Z., Ho, D., Osman, S., and Li, S. (2015b). Incremental

learning for ν-support vector regression. Neural Networks, 67:140–150.

[19] Hamza, N., Sarker, R., Essam, D., Deb, K., and Elsayed, S. (2014). A constraint

consensus memetic algorithm for solving constrained optimization problems. Engi-585

neering Optimization, 46(11):1447–1464.

[20] He, X., Liu, C., Dong, H., Pan, J., and Yan, Q. (2014). Particle swarm

optimization-based augmented Lagrangian algorithm for constrained optimization

problems. Journal of Software Engineering, 8(3):169–183.

[21] Ho, P. and Shimizu, K. (2007). Evolutionary constrained optimization using590

an addition of ranking method and a percentage-based tolerance value adjustment

scheme. Information Sciences, 177:2985–3004.

30

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[22] Homaifar, A., Qi, C., and Lai, S. (1994). Constrained optimization via genetic

algorithms. Simulation, 62(4):242–253.

[23] Hu, Z., Cai, X., and Fan, Z. (2014). An improved memetic algorithm using ring595

neighbourhodd topology for constrained optimization. Soft Computing, 18:2023–

2041.

[24] Huang, V., Qin, A., and Suganthan, P. (2006). Self-adaptive differential evolu-

tion algorithm for constrained real-parameter optimization. In Proceedings of the

2006 IEEE Congress on Evolutionary Computation, pages 17–24, Vancouver, BC,600

Canada.

[25] Iacca, G., Neri, F., Mininno, E., Ong, Y.-S., and Lim, M. H. (2012). Ockham’s

razor in memetic computing: Three stage optimal memetic exploration. Information

Sciences, 188:17–43.

[26] Jiao, L., Li, L., Shang, R., Liu, F., and Stolkin, R. (2013a). A novel selection605

evolutionary strategy for constrained optimization. Information Sciences, 239:122–

141.

[27] Jiao, L., Li, L., Shang, R., Liu, F., and Stolkin, R. (2013b). A novel selection

evolutionary strategy for constrained optimization. Information Sciences, 239:122–

141.610

[28] Kukkonen, S. and Lampinen, J. (2006). Constrained real-parameter optimization

with generalized differential evolution. In Proceedings of the 2006 IEEE Congress

on Evolutionary Computation, pages 207–214, Vancouver, BC, Canada.

[29] Larrañaga, P. and Lozano, J. A. (2002). Estimation of Distribution Algorithms: A

New Tool for Evolutionary Computation. Kluwer Academic Publishers.615

[30] Le, T. V. (1995). A fuzzy evolutionary approach to constrained optimization prob-

lems. In Proceedings of the second IEEE Conference on Evolutionary Computation,

pages 274–278, Perth. IEEE.

31

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[31] Liang, J., Runarsson, T., Mezura-Montes, E., Clerc, M., Suganthan, P., Coello,

C., and Deb, K. (2006). Problem definitions and evaluation criteria for the CEC620

2006 special session on constrained real-parameter optimization. Technical report,

Nanyang Technological University, Sigapore.

[32] Liang, J. and Suganthan, P. (2006). Dynamic multi-swarm particle swarm op-

timizer with a novel constraint-handling mechanism. In Proceedings of the 2006

IEEE Congress on Evolutionary Computation, pages 124–129, Vancouver, BC,625

Canada.

[33] Lin, C.-H. (2013). A rough penalty genetic algorithm for constrained optimiza-

tion. Information Sciences, 241:119–137.

[34] Lin, J.-Y. and Chen, Y.-P. (2011). Analysis on the collaboration between global

search and local search in memetic computation. IEEE Transactions on Evolution-630

ary Computation, 15(5):608–623.

[35] Lin, J.-Y. and Chen, Y.-P. (2012). When and what kind of memetic algorithms

perform well. In Proceedings of the 2012 IEEE World Congress on Computational

Intelligence, pages 1–8. IEEE.

[36] Maesani, A., Fernando, P., and Floreano, D. (2014). Artificial evolution by via-635

bility rather than competition. PLoS ONE, 9(1):e86831.

[37] Maesani, A. and Floreano, D. (2014). Viability principles for constrained opti-

mization using a (1+1)-CMA-ES. In Parallel Problem Solving from Nature, volume

8672, pages 272–281.

[38] Maesani, A., Iacca, G., and Floreano, D. (2015). Memetic viability evolution640

for constrained optimization. IEEE Transactions on Evolutionary Computation,

PP(99). DOI 10.1109/TEVC.2015.2428292.

[39] Mallipeddi, R. and Suganthan, P. (2010a). Ensemble of constraint handling tech-

niques. IEEE Transactions on Evolutionary Computation, 14(4):561–579.

32

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[40] Mallipeddi, R. and Suganthan, P. (2010b). Problem definitions and evaluation645

criteria for the CEC 2010 competition on constrained real-parameter optimization.

Technical report, Nanyang Technological University, Singapore.

[41] Mezura-Montes, E., editor (2009). Constraint-Handling in Evolutionary Opti-

mization, volume 198 of Studies in Computational Intelligence Series. Springer.

[42] Mezura-Montes, E., Velázquez-Reyes, J., and Coello, C. C. (2006). Modified650

differential evolution for constrained optimization. In Proceedings of the 2006 IEEE

Congress on Evolutionary Computation, pages 25–32, Vancouver, BC, Canada.

[43] Michalewicz, Z. and Janikow, C. (1991). Handling constraints in genetic algo-

rithms. In Belew, R. and Booker, L., editors, Proceedings of the Fourth International

Conference on Genetic Algorithms, pages 151–157, San Mateo, California. Morgan655

Kaufmann Publishers.

[44] Michalewicz, Z. and Schoenauer, M. (1996). Evolutionary algorithms for con-

strained parameter optimization problems. Evolutionary Computation, 4(1):1–32.

[45] Neri, F. and Cotta, C. (2012). Memetic algorithms and memetic computing opti-

mization: A literature review. Swarm and Evolutionary Computation, 2:1–14.660

[46] Neri, F., Cotta, C., and Moscato, P., editors (2012). Handbook of Memetic Algo-

rithms. Studies in Computational Intelligence. Springer.

[47] Nguyen, Q. H., Ong, Y.-S., and Lim, M. H. (2009). A probabilistic memetic

framework. IEEE Transactions on Evolutionary Computation, 13(3):604–623.

[48] Oh, S., Ahn, C., and Jeon, M. (2012). Effective constraints based evolutionary al-665

gorithm for constrained optimization problems. International Journal of Innovative

Computing, Information and Control, 8(6):3997–4014.

[49] Padhye, N., Mittal, P., and Deb, K. (2015). Feasibility perserving constraint-

handling strategies for real parameter evolutionary optimization. Comput Optim

Appl. DOI 10.1007/s10589-015-9752-6.670

33

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[50] Powell, D. and Skolnick, M. (1993). Using genetic algorithms in engineering

design optimization with nonlinear constraints. In Proceedings of the Fifth Interna-

tional Conference on Genetic Algorithms, pages 424–431, San Mateo, CA. Morgan

Kaufmann.

[51] Richey, M. (2010). The evolution of Markov Chain Monte Carlo methods. The675

American Mathematical Monthly, 117(5):383–413.

[52] Runarsson, T. and Yao, X. (2002). Stochastic ranking for constrained evolutionary

optimization. IEEE Transactions on Evolutionary Computation, 4(3):284–294.

[53] Runarsson, T. and Yao, X. (2005). Search biases in constrained evolutionary

optimization. IEEE Transactions on Systems, Man and Cybernetics – Part C: Ap-680

plications and Reviews, 35(2):233–243.

[54] Simionescu, P., Beale, D., and Dozier, G. (2004). Constrained optimization prob-

lem solving using estimation of distribution algorithms. In 2004 Congress on Evo-

lutionary Computation, volume 1, pages 296–302.

[55] Spellucci, P. (1998). An SQP method for general nonlinear programs using only685

equality constrained subproblems. Mathematical Programming, 82:413–448.

[56] Sun, J., Garibaldi, J., and Kenobi, K. (2012). Robust Bayesian clustering for

datasets with repeated measures. IEEE/ACM Transactions on Computational Biol-

ogy and Bioinformatics, 9(5):1504–1514.

[57] Sun, J., Garibaldi, J., Krasnogor, N., and Zhang, Q. (2013). An intelligent multi-690

restart memetic algorithm for box constrained global optimization. Evolutionary

Computation Journal, 21(1):107–147.

[58] Sun, J. and Kaban, A. (2010). A fast algorithm for robust mixtures in the presence

of measurement errors. IEEE Transactions on Neural Networks, 21(8):1206–1220.

[59] Sun, J. and Keates, S. (2013). Canonical correlation analysis on data with cen-695

soring and error information. IEEE Transactions on Neural Networks and Learning

Systems, 24(12):1909 – 1919.

34

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[60] Takahama, T. and Sakai, S. (2006). Constrained optimization by the ε constrained

differential evolution with gradient-based mutation and feasible elites. In Proceed-

ings of the 2006 IEEE Congress on Evolutionary Computation, pages 308–315, Van-700

couver, BC, Canada.

[61] Tasgetiren, M. F. and Suganthan, P. (2006). A multi-populated differential evolu-

tion algorithm for solving constrained optimization problems. In Proceedings of the

2006 IEEE Congress on Evolutionary Computation, pages 33 – 40, Vancouver, BC,

Canada.705

[62] Tsai, H.-C. (2014). Integrating the artificial bee colony and bees algorithm to face

constrained optimization problems. Information Sciences, 258:80–93.

[63] Tsutsui, S., Pelikan, M., and Goldberg, D. (2001). Evolutionary algorithm us-

ing marginal histogram models in continuous domain. In Proceedings of the 2001

Genetic and Evolutionary Computation Conference Workshop, pages 230–233, San710

Francisco, CA.

[64] Umbarkar, A., Joshi, M., and Sheth, P. (2015). Dual population genetic algorithm

for solving constrained optimization problems. Intelligent Systems and Applica-

tions, 2:34–40.

[65] Wah, B. and Chen, Y. (2001). Hybrid constrained simulated annealing and ge-715

netic algorithms fornonlinear constrained optimization. In Proceedings of the 2001

Congress on Evolutionary Computation, volume 2, pages 925–932.

[66] Zhang, Q. and Mühlenbein, H. (2004). On the convergence of a class of estima-

tion of distribution algorithms. IEEE Transactions on Evolutionary Computation,

8(2):127–136.720

[67] Zhang, Q., Sun, J., and Tsang, E. (2005). Evolutionary algorithm with the guided

mutation for the maximum clique problem. IEEE Transactions on Evolutionary

Computation, 9(2):192–200.

[68] Zhang, Q., Sun, J., Tsang, E., and Ford, J. (2003). Hybrid estimation of distribu-

tion algorithm for global optimisation. Engineering Computations, 21(1):91–107.725

35

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[69] Zheng, Y., Jeon, B., Xu, D., Wu, Q., and Zhang, H. (2015). Image segmentation

by generalized hierarchical fuzzy c-means algorithms. Journal of Intelligent and

Fuzzy Systems, 28(2):961–973.

36

