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Abstract  
 

ParkiŶsoŶ’s disease ;PDͿ has ďeeŶ reported to iŶǀolǀe postgaŶglioŶiĐ sǇŵpathetiĐ failure 

and a wide spectrum of autonomic dysfunctions including cadiovascular, sexual, bladder, 

gastrointestinal and sudo-motor abnormalities. While these symptoms may have a significant 

impact on daily activities, as well as quality of life, the evaluation of autonomic nervous system 

(ANS) dysfunctions relies on a large and expensive battery of autonomic tests only accessible in 

highly specialized laboratories. In this paper we aim to devise a comprehensive computational 

assessment of disease-related heartbeat dynamics based on instantaneous, time-varying 

estimates of spontaneous (resting state) cardiovascular oscillations in PD. To this end, we 

combine standard ANS-related heart rate variability (HRV) metrics with measures of 

instantaneous complexity (dominant Lyapunov exponent and entropy) and higher-order 

statistics (bispectra). Such measures are computed over 600-s recordings acquired at rest in 29 

healthy subjects and 30 PD patients. The only significant group-wise differences were found in 

the variability of the dominant Lyapunov exponent. Also, the best PD vs. healthy controls 

classification performance (balanced accuracy: 73.47%) was achieved only when retaining the 

time-varying, non-stationary structure of the dynamical features, whereas classification 

performance dropped significantly (balanced accuracy: 61.91%) when excluding 

variability-related features. Additionally, both linear and nonlinear model features correlated 

with both clinical and neuropsychological assessments of the considered patient population. 

Our results demonstrate the added value and potential of instantaneous measures of heartbeat 

dynamics and its variability in characterizing PD-related disabilities in motor and cognitive 

domains. 

 

 

 

 

 
 

  



 3 

1. Introduction 
 

ParkiŶsoŶ’s disease ;PDͿ is the seĐoŶd ŵost ĐoŵŵoŶ ŶeurodegeŶeratiǀe disorder after 

Alzheiŵer’s disease, aŶd is ĐlassiĐallǇ assoĐiated ǁith ŵotor sǇŵptoŵs iŶĐludiŶg treŵor, 

balance problems, limb rigidity, bradykinesia and gait abnormalities [12]. The causes and 

aetiology of PD are still largely unknown, and current literature is inconclusive when it comes to 

isolating reliable predictors of disease incidence and evolution. In this context, older age (  60 

years), iposmia, REM sleep behavior disorder, constipation, and depression are the major risk 

factors for PD that have been consistently found across studies [12] [43]. 

PD is frequently associated with symptoms of Autonomic Nervous System (ANS) 

dysfunction and/or failure [26], including cardiovascular, sexual, bladder, gastrointestinal, and 

sudo-motor abnormalities [2]. These clinical evidences are in agreement with the results of 

pathological studies demonstrating how the degenerative process in PD involves subcortical 

structures, brainstem and medullary autonomic centres as well as post-ganglionic sympathetic 

fibers [30]. Accordingly, Lewy bodies (the pathological hallmark of PD) have been found in a 

number of ANS regions such as the hypothalamus and the sympathetic/parasympathetic 

systems [44,45].  

While cardiovascular dysautonomia has traditionally been associated with the later 

stages of PD, it has recently become evident that it can occur at any disease stage, and that its 

onset can even precede the appearance of motor symptoms [2, 18, 50]. Previous studies have 

reported a variable prevalence of cardiovascular autonomic dysfunction in PD, ranging from 

23% to 80% as determined by studies which included cohorts of between 20 and 91 patients [3, 

29, 35]. Within these reports, conflicting evidence exists about the extent and characteristics of 

PD-related aberrations in cardiovascular control. As an example, two studies have described 

orthostatic hypotension and a decreased heart rate response to the Valsalva maneuver [1, 28], 

while other authors have found that pressure and heart rate response during these procedures 

remained normal [25, 33].  

It is well know that ANS outflow can be estimated non-invasively using Heart Rate 

Variability (HRV) analysis [42], and recently HRV measures have been employed to explore ANS 

alterations in PD by evaluating the modulatory effects of ANS dynamics on sinus node activity 
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[21]. According to the study by Haapaniemi et al. [16], when analyzing 24h ECG recordings all 

HRV spectral components were found to be significantly lower in PD patients when compared 

to controls [16]. In another study, which evaluated 10 consecutive minutes of resting ECG 

recordings, HRV High Frequency (HF) power (thought to mainly reflect parasympathetic activity) 

was significantly different between healthy controls and untreated (i.e., de novo) PD patients, 

whereas nonlinear HRV analysis based on entropy and geometrical measures did not show any 

statistical differences between the two groups [20]. However, other authors documented an 

increase in complexity of systolic arterial pressure in PD patients when compared to controls 

[32]. In addition, while the physiology underlying complexity-related measures of heartbeat 

dynamics is still unknown, it is well known that their quantification can provide meaningful 

information on psychophysiological as well as pathological states [8, 10, 14, 24, 39]. In this 

context, we have previously shown that measures of time-varying complexity provide enhanced 

discriminatory power when compared to standard complexity measures [36, 38], and that the 

stability and complexity of autonomic dynamics is altered in PD patients when compared to 

healthy controls as well as within different PD subgroups [4, 6].  

 

In this paper we aim to devise a comprehensive assessment of disease-related ANS 

alterations based on instantaneous, time-varying estimates of spontaneous (resting state) 

cardiovascular oscillations in PD. To this end, we employ our instantaneous inhomogeneous 

point-process framework [36-38], which augments standard ANS-related HRV metrics defined 

in the time and frequency domains [5] with measures of instantaneous complexity (dominant 

Lyapunov exponent and entropy) [36, 38] and higher-order statistics (bispectra) [37]. 

Additionally, in order to develop a processing chain in line with the clinical need of 

single-subject classification, we complement the study of group-wise statistical differences with 

the training and validation of an automatic classification algorithm which includes a feature 

selection procedure.  

The rest of this paper is organized as follows: in section 2 we provide details about the 

methods employed for data acquisitions, patient assessment, probabilistic modelling of the 

heartbeat, extraction of linear and nonlinear features and classification analysis. In section 3, 
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we illustrate the results of these procedures in the same order, and in section 4 we discuss the 

implication of our results for characterising cardiovascular dysautonomia in PD through 

non-invasive, instantaneous HRV modeling. 
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2 Materials and methods 
 

2.1 Experimental Setup 

 

Plethysmographic (PPG) signals were recorded with a sample frequency of 50 Hz from 29 

healthy controls (HC, 18 males, 11 females, age 60.63   4.93 years, median   MAD, where                             ) and 30 PD patients (23 males, 7 females, age 66.51   

4.06 years, median   MAD). Between the two groups, no significant difference was found in 

age (p=0.15, Mann-Whitney test, null-hypothesis of equal medians) and gender (p=0.46, Chi 

Square test, null-hypothesis of no gender effect). Subjects were placed horizontally in a supine 

position and remained at rest during the whole recording (600s). During the acquisition, all 

subjects were instructed not to talk and maintained relaxed spontaneous breathing. All 

participants gave written informed consent to participating in the study, which was approved 

by the local ethics committee. An overview of the experimental set-up and block scheme of the 

overall signal processing and classification chain is shown in Fig. 1. 

 

 

Figure 1: Overview of the experimental set-up and block scheme of the overall signal processing and classification 

chain. Starting from data acquisition, HRV series are extracted by using automatic peak detection algorithms 
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applied on artifact-free signals. The absence of both algorithmic errors (e.g., mis-detected peaks) or ectopic beats 

is ensured by the application of effective artifact removal methods as well as visual inspection. The nonlinear 

point-process model is fitted to the HRV series, and all features are estimated in an instantaneous fashion. 

Successively, for each subject, a feature set is defined and fed into support vector machine-based classification 

using leave-one our procedures. 
 

 
2.2 Patient Assessment 

 
Clinical assessment included history of disease’s related sǇŵptoŵs aŶd sigŶs, aŶd full 

neurological examination. All patients were screened for cardiovascular autonomic dysfunction 

which was considered as exclusion criterion. All patients had to satisfy the UK Brain Bank 

criteria for the diagnosis of PD [13] and were in stage 1, 1.5 2 or 2.5 according to the 

Hoehn&Yahr (HY) system. As supportive criterion, a 123IFP-CIT SPECT to confirm nigrostriatal 

degeneration was performed. With the aim of exploring how much information about clinical 

disability can be extracted from our HRV assesment framework, severity of parkinsonism was 

eǀaluated ďǇ the UŶified ParkiŶsoŶ’s Disease RatiŶg “Đale ;UPDRS) [31] and the HY staging 

system [17]. Possible abnormalities in the affective domain were investigated through the 

Geriatric Depression Scale (GDS). Patient population was comprised of 15 de novo PD patients 

(i.e. naive/drug free patients in the initial stage of the disease) and 15 patients with more 

advanced PD, which necessarily were on dopaminergic drugs (i.e. dopamine agonist and 

levodopa therapy, no other drugs were permitted). No patients of these 15 treated PD showed 

complications such as wearing-off, on-off and/or dyskinesia. Moreover, in order to avoid the 

possible interference of levodopa on cardiac function, we have assessed HRV measures in the 

morning before the first levodopa dose. Only one patient had a HY score >=2, whereas all other 

patients had 1 or 1.5. The overall disease duration was 1.6 years (standard deviation in 0.35 

years). 

Additionally, in order to explore putative associations between our HRV-related features 

and PD-related disabilities in the cognitive domain, we evaluated our patients through a pool of 

standardized neuropsychological tests that included at least two tests within each of the five 

cognitive domains [51]. Specifically, we examined: 1) attention and working memory domain 

(by Trail Making Test, TMT_B, and Stroop Test, Stroop_E, - both errors and time parameters), 2) 

executive functions (by Frontal Assessment Battery, FAB, Wechsler Adult Intelligence Scale 
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Analogy Subtest, Analogie_W, and Brixton Spatial Anticipation Test), 3) language (by Boston 

Naming Test, Boston_60, and Phonemic Fluency), 4) memory (by Memory Prose and Verbal 

Learning Pair Task), 5) visuospatial ability (by Wechsler Adult Intelligence Scale Drawing Cubes 

Subtest and Benton Judgment of Line Orientation, Benton_JLO). Global cognitive status was 

assessed with the Montreal Cognitive Assessment. 

 
2.3 Point-Process Model of the Heartbeat  

 

 By using the inhomogeneous point process model of heartbeat dynamics [5], we model 

the unevenly sampled RR interval series through probability density functions (pdf) 

characterizing and predicting the time until the next event occurs as a function of the past 

history. Within this framework, Laguerre expansions of the Wiener-Volterra linear and 

nonlinear autoregressive terms account for long-term nonlinear information [36-38]. As major 

advantages, instantaneous measures can be estimated without applying any interpolation 

techniques to the RR interval series, and are associated to effective goodness-of-fit measures. 

 
 

  
Figure 2: A graphical representation of point-process modeling of heartbeat dynamics. The horizontal axis 

represents the counting process along the number of heartbeats, whereas the vertical axis represents the duration 

of heartbeat intervals. Inverse-Gaussian (IG) distributions (green lines on the right) characterize the prediction of 

the future heartbeat event along the time. 
 

In general, a random point process is a stochastic process comprising the occurrence in 

time of discrete events, which in our case are represented by the heartbeats. As a 

consequence, it is possible to characterize the pdf of the next ventricular contraction through a 

parametric formulation of the past heartbeat events (see Fig. 2). Motivated by both 
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goodness-of-fit as well as by physiological reasons, an inverse Gaussian pdf was used to model 

the R-beat series [5]: 

 

                                                                                      (1) 

 
where: 

 
•        , the observation interval;  
•                       the times of the events;  
•              the     RR interval;  

•         
 the R-wave events, and         the index of the previous R-wave event before 

time   
•                  the sample path of the counting process of the RR interval series;  
•                                       
•                              ;  
•      the vector of the model time-varying parameters;  
•                the first-moment statistic (mean) of the distribution;  
•         the shape parameter of the inverse Gaussian distribution;  

 
Accounting for history dependence,              is thus able to predict the next 

heartbeat event. This function is parametrized in its first-order moment as a Nonlinear 

Autoregressive model with Laguerre expansions (NARL) of the Volterra terms: 

 
                                                    
                                       (2) 

where  

                                               (3) 

 
is the output of the Laguerre filters just before time  , and 

 

                                                       (4) 

 

is the    -order discrete time orthonormal Laguerre function and   is the discrete-time 

Laguerre parameter (     ) which determines the rate of exponential asymptotic decline. 

The coefficients   ,         with       , and           with             

correspond to the time-varying zero-, first-, second-order NARL coefficients, respectively, and 

performing the Laguerre expansion on the derivative R-R series improves stationarity within the 
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sliding time window   (in this work we have chosen      s) [15, 37]. The corresponding 

nonlinear autoregressive Volterra–Wiener long-term memory model with second-order 

nonlinearity becomes [27]:  

 
                            
                                          
                                                 
                           (5) 

 
As                is defined in continuous time, it is possible to obtain an 

instantaneous R–R mean estimate at arbitraty timescales without interpolating between the 

arrival times of two consecutive heartbeats. 

 
2.3.1 Parameter Estimation, Model Selection, Goodness-of-Fit 

 
Given a local observation interval         of duration  , we consider a subset      

of the R-wave events, where            and        and, at each time  , we find 

the unknown time-varying parameter vector      that maximizes the local log-likelihood [5]:  

 
                                       
                                                    (6) 

 
where           is an exponential weighting function for the local likelihood. The constant   (together with  ) governs the degree of influence of previous observations on the local 

likelihood and determines the trade-off between the accuracy of the estimation of the 

regression parameters (small  ) and the responsiveness to non-stationarities (large  ). In Eq. 

6, the first summation term accounts for the past, completely-observed, R-R intervals 

information, while the latter term accounts for the next, not yet observed, R-R interval (right 

censoring). We use a Newton-Raphson procedure to maximize the local log-likelihood in Eq. 6, 

and compute the local maximum-likelihood estimate of      [5]. Because there is significant 

overlap between adjacent local likelihood intervals, we initialize the Newton-Raphson 

procedure at   with the previous local maximum-likelihood estimate at time    , where   

defines the time interval shift to compute the next parameter update. We determine the 
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optimal order       based on the Akaike Information Criterion (AIC) and by prefitting the 

point process model goodness-of-fit to a subset of the data [5] and evaluating the 

Kolmogorov-Smirnov (KS) test and associated KS statistics [5]. At each iteration, the recursive, 

causal nature of the estimation allows to independently predict each new observation, given 

the previous history. The model and all its parameters are therefore also updated without 

priors at each iteration. In other words, each test point     is tested against one instance of a 

time-varying model trained with points       with    . 

Autocorrelation plots are also visually inspected to ensure that all points of the plot are 

within the 95% of the confidence interval, hence guaranteeing the independence of the 

model-transformed intervals [5]. In order to perform model order selection, we integrated the 

KS and autocorrelation analysis [5] by evaluating the AIC criterion using the whole recordings 

[5]. Specifically, model orders were chosen to minimize KS distance. When more than one order 

was associated to the same KS distance values, optimal model orders were chosed to minimize 

the AIC criterion. Once the order       is determined, the initial NARL coefficients are 

estimated by the method of least squares [40].  

 
2.3.2 Heartbeat Correction 

 
In order to provide reliable results, the HRV processing techniques require 

uninterrupted series of RR intervals. Nevertheless, peak detection errors and ectopic beats 

often determine abrupt changes in the R-R interval series that may result in substantial 

deviations of the model-derived HRV indices and potentially bias statistical outcomes from 

intra- and inter-subject comparisons. To eliminate such anomalies we preprocessed all 

heartbeat data with a previously developed real-time R-R interval error detection and 

correction algorithm [9] based on the point process statistics (local likelihood). Briefly, the 

algorithm determines whether the actual observation is in agreement with the resulting model 

or if, instead, the alternative hypothesis of an erroneous beat is more likely. 

 

2.4 Instantaneous Time, Frequency, and Higher-Order Spectral Analysis 

 

In order to provide quantitative tools related to standard measures defined in the time 
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and frequency domains, higher order spectral representations, and complexity, it is necessary 

to link the NARL model to the traditional input-output Wiener-Volterra model [37]. Just like for 

any linear autoregressive model one can define equivalent infinite-memory moving average 

model, a quadratic NARL model can be linked to an input-output Volterra model, driven by the 

same NARL noise term. Then, the time-domain characterization is based on the first and the 

second order moments of the underlying probability structure. Given the time-varying 

parameter set     , the instantaneous estimates of mean    , and R-R interval standard 

deviation     can be extracted at each moment in time [5]. 

Estimates in the frequency domain reveal the linear mechanisms governing heartbeat 

dynamics in the frequency domain. In particular, given the input-output Volterra kernels of the 

NARL model for the instantaneous R-R interval mean               , we can compute the 

time-varying parametric (linear) autospectrum        [37]. By integrating        in each 

frequency band, we can compute the power within the very low frequency (    = 0.01-0.05 

Hz), low frequency (   = 0.05-0.15 Hz), and high frequency (   = 0.15-0.5 Hz) ranges, along 

with their ratio (LF/HF). It has been well-recognized that the HF power is a reliable marker of 

parasympathetic activity [42]. Conversely, the LF power might be affected by both sympathetic 

and parasympathetic activities [42].  

The higher-order spectral representation allows for the estimation of statistics beyond 

the second order, and phase relations between frequency components which would otherwise 

be suppressed. A detailed description of the instantaneous bispectrum (          ) derivation 

from point-process nonlinear models can be found in [37]. This tool allows us to evaluate the 

instantaneous presence of nonlinearity in heartbeat series by calculating nonlinear 

sympatho-vagal interactions. Specifically, by integrating              in the appropriate 

frequency bands, it is possible to obtain:  
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2.5 Instantaneous Measures of Complexity 

 
2.5.1 Instantaneous Lyapunov Exponents 

 

By expanding the quadratic regression described in Eq. 2 to the cubic order, and using a 

Fast Orthogonal Search algorithm, it is possible to estimate the complete Lyapunov Exponents 

(LE) spectrum at each moment in time [36], which provided additional and novel information 

about the dynamics of complexity and its variability. In this study, we use the Instantaneous 

Dominant Lyapunov Exponent (IDLE,   ), which is the first exponent of the LE spectrum  : 
 

                        (10) 

 
where   is the sampling time step,   the data samples, and        is part of the QR 

decomposition of the Jacobian of the time series [36]. 

 
2.5.2 Instantaneous Entropy Measures 

 
In this study, the estimated instantaneous entropy measures refer to the 

inhomogeneous point-process approximate and sample entropy,    and   , respectively [38]. 

These measures have their foundation in the instantaneous phase space estimation, in which 

the distance between two points is calculated through Kolmogorov-Smirnov (KS) distance (i.e. 

the maximum value of the absolute difference between two cumulative distribution functions) 

between the two pdfs associated to these two points. The time-varying radius      is 

instantaneously expressed as               [38]. 

Of note, this instantaneous assessment of complexity opens the possibility of analyzing 

the proposed measures also in terms of variability of their evolution along time - an idea which 

we refer to as our complexity variability framework [38]. Moreover, we have shown that the 

dynamical estimates    and    are not substantially affected by the type of noise underlying 

the complex system, thus ensuring truly instantaneous tracking of the complexity of the 

underlying dynamical system [38]. 
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2.5.3 Feature vectors and statistical analysis 

 

All features were calculated instantaneously with a     ms temporal resolution. In 

order to build subject-specific feature vectors, for every subject and for evey feature  , we 

condensed the information about the time-varying dynamics of   through its median    and 

its respective absolute deviation     across time. As an exploratory/preliminary step, for each 

feature, we evaluated between-group differences in    and     for every feature using 

bivariate non parametric statistics (Mann-Whitney test) under the null hypothesis that the 

between-subject medians of the two groups are equal. Also, in order to investigate whether our 

instantaneous HRV estimates can provide additional within-disease information, we analysed 

univariate associations between these estimates and a battery of clinical/neuropsychological 

tests within out PD sample (Soearman Rank correlation, see section 2.2. for details). 

 

2.6 Single-subject classification and feature selection 

 

In order to investigate weather using heartbeat dynamics alone is able to aid in 

single-subject discrimination, we employed an automatic classification algorithm. Specifically, 

we chose the well-known SVM-based method of classification [34] due to its increasingly 

widespread use in biomedical literature. In this context, data gathered from each subject 

constitutes one multidimensional point in the feature space along with its label (healthy 

control/PD), and each feature constitutes a single dimension of this feature space. A 

multidimensional point was considered an outlier if z-scores associated to its dimensions were 

greater than 3. To assess the out-of-sample predictive accuracy of the system, we adopted a 

Leave-One-Out (LOO) procedure based on a Support Vector Machine (SVM)-based classifier 

[34]. Specifically, we employed a nu-SVM (      ) with a radial basis kernel function with      , where n=22 is equal to the number of features (see Table 1 for a complete list). 

Within the LOO scheme, the training set was normalized by subtracting the median value and 

dividing by the MAD over each dimension. These values were then used to normalize the 

example belonging to the test set. During the LOO procedure, this normalization step was 
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performed on each fold. Classification results are summarized as balanced recognition accuracy 

(i.e. average of sensitivity and specificity) [49]. Additionally, in order to explore the relative 

importance of all features in the classification problem, we employed a support vector machine 

recursive feature elimination (SVM-RFE) procedure in a wrapper approach (RFE was performed 

on the training set of each fold and we computed the median rank for each feature over all 

folds). We specifically chose a recently developed nonlinear SVM-RFE which employes a radial 

basis function kernel and includes a correlation bias reduction strategy into the feature 

elimination procedure [41]. All analyses were performed using         (MathWorks, Natick, 

Massachusetts, USA) v8.4 and an additional toolbox for pattern recognition (LIBSVM [7]). 

 

3 Results 
In this study, point-process analyses yielded optimal NARL orders of     and    . 

In 45 out of a total of 59 recordings, both KS plots and more than 98% of the autocorrelation 

samples fell within 95% confidence intervals. Of note, KS distances were as low as 

0.0391 0.0060. Instantaneous series from a representative PD patient and healthy control 

subject are shown in Fig. 3. Through our previously developed R-R interval error detection and 

correction algorithm [9], we corrected a total of 55 beats (0.0718%) over all records. 
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Figure 3: Instantaneous heartbeat estimates computed from a representative PD patient (left column) and a 

healthy control (right column), obtained through a point-process NARL model. From the top panel, the estimated 

mean       , the standard deviation       , the high frequency (  ), the sympatho-vagal balance (     ), the 

HH bispectral statistics, the inhomogeneous point-process approximate entropy   , and the instantaneous 

dominant Lyapunov exponent (IDLE) are depicted. 

 

 
3.1 Group differences in HRV features 

 
The results of group-wise univariate statistics in all features are shown in Table 1, and 

representative group-wise feature values for standard HRV features, higher order statistics 

(HOS) and complexity-related features are depicted in Fig. 4. 
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Table 1: Statistical analysis of group differences in all condensed features between PD and healthy controls. HOS= 

Higher Order Statistics. For a feature X, intervals are expressed as X=Median(X)±MAD(X). Bold indicates a 

statistically significant difference. 
 
No group-wise significant differences were found in higher order features except for       , i.e., one of the heartbeat complexity variability indices. Classical HRV indices were not 

significantly different between groups. 
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Figure 4: Box-plot plots of representative heartbeat features estimated through inhomogeneous point-process 

NARL modeling. Red asterisks are outliers. P-values are gathered from Mann-Whitney non-parametric tests. 

 
3.2 Association between HRV features and clinical/neuropsychological scores 

 

The results of exploring univariate associations between our feature vectors and 

clinical/motor, affective, and neuropsychological scores are shown in Tables 2, 3, and 4. In 

particular, Table 2 reports significant pairwise non-parametric Spearman correlation beween 

our HRV estimates and clinical/motor patient evaluations (UPDRSII/III), Table 3 reports 

significant pairwise non-parametric Spearman correlation beween our HRV estimates and 

affective state (GDS), and Table 4 reports the significant pairwise non-parametric Spearman 

correlation beween neuropsychological patient evaluations and HRV estimates. 

 

  
 

Table 2: Significant correlations (non-parametric Spearman Rank correlation ρ with       ) between HRV 

estimates and clinical/motor scores from UŶified ParkiŶsoŶ’s Disease RatiŶg “Đale ;UPDR“Ϳ. All other associations 

did not reach statistical significance. 
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Table 3: Significant correlations (non-parametric Spearman Rank correlation ρ with       ) between HRV 

estimates and affective scores from Geriatric Depression Scale (GDS). All other associations did not reach statistical 

significance. 
 

 

  
 

Table 4: Significant correlations (non-parametric Spearman Rank correlation ρ with       ) between HRV 

estimates and neuropsychological scores from Trail Making Test (TMT_B), Frontal Assessment Battery (FAB), 

Boston Naming Test (Boston_60), Benton Judgment of Line Orientation (Benton_JLO), Wechsler Adult Intelligence 

Scale Analogy Subtest (Analogie_W), Stroop Test (Stroop_E). All other did not reach statistical significance. 
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3.3 Single-subject classification and feature selection 

 
Classification results are reported in terms of balanced recognition accuracy (see 

paragraph 2.6 for definition) as well as by reporting the confusion matrix [22]. The generic 

element     of the confusion matrix indicates the percentage of instances belonging to class   
classified as belonging to class   - a ͞ŵore diagoŶal͟ ĐoŶfusioŶ ŵatriǆ therefore ĐorrespoŶds 

to a better classification. Table 5 shows the confusion matrix as well as the balanced accuracy in 

discerning patients with PD from healthy subjects when taking into account all 22 features. In 

this case, the balanced accuracy was 73.47%. 

 

 Healthy controls PD Patients 

Healthy controls 70.83 29.17 

PD Patients 24.00 76.00 

 Balanced Accuracy: 73.47; Specificity:70.83; Sensitivity: 76. 

 
Table 5: Confusion matrix of SVM classifier (PD vs. Healthy Controls) using all features. Values are expressed as 

percentages. 
 
Further, the complete list of features ordered by their median rank over every fold computed 

during the LOO procedure is reported in Table 6. 

Rank Feature 

1      

2     

3      

4      

5        

6     

7      

8       

9     

10      

11      
 

Rank Feature 

12      

13       

14     

15     

16     

17      

18        

19       

20      

21         

22     
 

 
Table 6: Features ordered by median rank across folds when performing feature selection through the SVM-RFE 



 21 

procedure.  

 

In addition to the above analyses, we repeated the classification analysis employing only 

features related to the central tendency (median) of all features, hence excluding measures of 

variability. Results of this classification are shown in Table 7. In this case, the balanced accuracy 

was 61.91%. 

 

 Healthy controls PD Patients 

Healthy controls 47.83 52.17 

PD Patients 24.00 76.00 

 Balanced Accuracy: 61.91; Specificity:47.83; Sensitivity: 76. 
 

Table 7: Confusion matrix of SVM classifier (PD vs. Healthy Controls) excluding features related to instantaneous 

variability. Values are expressed as percentages. 
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4. Discussion and Conclusion 
 

In this study we examined instantaneous linear, nonlinear, and complex cardiovascular 

dynamics in PD, investigating both differences with a healthy control group and within-disease 

relationships between our features and neuropsychological/clinical scores. We demonstrate 

that the information most useful to discriminate between PD patients from controls is derived 

from higher-order, instantaneus statistics of heartbeat dynamics as well as from their variability 

over time. Additionally, we show that both linear and nonlinear model features significantly 

correlate with clinical/motor, affective, and neuropsychological assesments of our patient 

population, pointing towards an added value of such measures in stratifying disease subtypes 

as well as disease-related disabilities in the motor as well as cognitive domain. To our 

knowledge, this is the first study which investigates and develops single-subject 

characterization and classification in PD based on heartbeat dynamics alone. Our patient 

population was comprised of 15 de novo PD patients and 15 patients with more advanced PD, 

which necessarily were on dopaminergic drugs. We feel that this balance is the best strategy in 

guaranteeing sufficient variability in disease-related motor and cognitive alterations while 

mitigating the risk of confounding classification results. 

 

We employed recently defined instantaneous estimates of heartbeat complex dynamics 

such as the dominant Lyapunov exponent and instantaneous approximate and sample entropy, 

as well as instantaneous nonlinear bispectral measures and linear estimates defined in the time 

and frequency domain. The modeling technique underlying these estimates is based on the 

theory of inhomogeneous point processes, whose pdf is parametrized through a nonlinear 

autoregressive model with Laguerre expansion of the Wiener-Volterra terms. These terms are 

expanded up to the cubic order, and ensure optimal and parsimonious estimation of the 

intrinsic dynamical and stochastic structure of heartbeat dynamics. Of note, measures of 

instantaneous complexity are not affected by the statistical properties of the physiological 

noise behind the observed dynamics [36,38], thus ensuring that when performing group 

comparisons like the one presented in this study, differences are associated with the actual 

underlying dynamics as opposed to possible alterations in the noise statistics (e.g., a transition 
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from 1/f noise to Gaussian noise). We employed these real-time estimates under the 

hypothesis that they would aid in improving the current knowledge of cardiovascular 

disfunction in PD as well as with the aim of building a simple (i.e., based only on cardiovascular 

variability) decision support framework able to discern a PD patients from healthy controls. 

In PD, autonomic system disturbances (a.k.a. dysautonomia) reflect neurodegenerative 

processes which are known to reach beyond the nigrostriatal dopaminergic system [44,45], and 

follow a largely independent pathological progression when compared to dopaminergic 

symptoms. As a consequence, dysautonomia can appear in all stages of PD. Additionally, it has 

been shown that the assessment of cardiovascular autonomic failure can aid in early 

recognition and treatment of PD [2, 18], and previous studies have demonstrated ANS-related 

differences among PD and parkinsonisms such as Multiple System Atrophy (MSA) and 

Progressive supranuclear palsy (PSP) [46,47]. 

 

Also, while dysautonomic symptoms may have a significant impact on daily activities as 

well as quality of life [11], the evaluation of ANS dysfunctions relies on a large battery of 

autonomic tests only accessible in highly specialized laboratories [46,47,48] and it is currently 

associated with a large amount of diagnostic and financial overhead. A better understanding, 

early recognition and treatment of ANS failure in PD may a) have a significant impact on daily 

activities and quality of life and b) aid in the differential diagnosis of Parkinsonisms, or even in 

the characterization of cognitive profile of PD patients – to this end, novel systems able to 

support the diagnosis of cardiovascular dysautonomia are highly desirable. 

To the best of our knowledge, prior studies have focused on group comparisons ,ofter 

reaching contradictory results [1, 3, 16, 20, 21, 25, 28, 29, 32, 33, 35]. It should be noted that, 

even if a significant statistical difference associated to a certain feature is consistently revealed 

across several studies, this is not sufficient to demonstrate its potential application to the 

clinical necessity of single-subject characterization. This motivated us to reach beyond 

conventional group comparisons and explore a classification algorithm which a) could discern 

between PD and healthy controls and b) has the intrinsic capability of being generalized to 

novel, unseen (to the algorithm) data. 
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As a preliminary, exploratory step, we performed a statistical analysis between PD and 

healthy controls (see Table 1) which confirmed our hypothesis that inter-subject variability 

would blur most group differences in cardiovascular dynamics except for higher order 

complexity measures derived from the time domain, such as       . This result is consistent 

with our previous findings describing how differences in autonomic complexity associated with 

pathological states are best detected by examining the variability of a time-varying complexity 

measure (as opposed to standard estimates of complexity), and that higher complexity 

variability is consistently associated with pathological states [36]. In this context, the results of 

this paper further corroborate the use of real-time estimates of heartbeat dynamics through 

point-process modeling to obtain additional information about ANS complexity and its 

modulations in disease. While considering the group comparisons in all features as separate, 

group differences in instantaneous complexity would not remain significant after correction for 

multiple comparisons, group trends associated to        and other instantaneous features 

provide meaningful insights on the patho-physiology of cardiovascular dynamics in PD. Given 

the subtle nature of the alterations under investigation and the highly nonlinear structure of 

our features, a larger study would be necessary to test a high number of simultaneous 

hypotheses about multiple HRV features. 

 

In order to explore the associations between our instantaneous HRV estimates, and 

within-disease mechanisms of motor as well as cognitive impairments, we performed a 

non-parametric correlation analysis between all features and clinical/neuropsychological scores 

(see Tables 2-4). Visuospatial ability as evaluated by the Benton Judgment of Line Orientation, 

was found to be negatively correlated with all spectral and bispectral measures as well as their 

variability, possibily indicating a relationship between increased parasympathetic activity and 

visuospatial skills in PD. The same measures (except for    , and     ) correlated negatively also 

with language ability as evaluated by the Boston naming test. Motor impairment, as evaluated 

by UPDRS II/III, correlated negatively with     and     , as well as      , possibly indicating an 

independent relationship of these features with motor as opposed to cognitive ability in PD 

Accordingly,     and      also correlated positively with GDS.        was positively correlated 
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with the Stroop (E) score, indicating an association between complexity variability and 

information processing. The results of the trail making test B were positively associated with 

both     and     , the former indicating a relationship between heartbeat complexity and 

disease-related attention deficit, in possible agreement with our previous findings of an 

increased instability of heartbeat dynamics in PD [4]. 

 

The automatic classification was performed using nu-SVM, and included a LOO 

procedure. Results showed a balanced accuracy of 73.47% when all features (central tendency 

and time-variability) were taken into account (see Table 5). This accuracy results from the 

combination of a specificity of 70.83%, and a sensitivity of 76%. Given that, to the best of our 

knowledge, our result is the first attempt to demonstrate that the discrimination of patients 

suffering from parkinsonisms by ANS characterization can be supported by analysis based on 

heartbeat dynamics alone, we consider this balanced classification accuracy as satisfactory. 

While the superior effectiveness of our instantaneous heartbeat linear and nonlinear estimates 

in discriminating physio-pathological states, also as compared with traditional not-in-real-time 

estimates such as LF and HF power estimated through FFT or autoregressive models, has 

already been demonstrated in our previous methodological papers [5, 36, 37], in this study we 

specifically investigated the added value of variability-related features in classifying and 

characterizing PD patients. To this end, we repeated the classification analysis (PD vs. heathy 

controls) including only features related to the central tendencies of all featues (see Table 7). In 

this case, the balanced accuracy of classification dropped to 61.91%, with a sensitivity of 76% 

and specificity of 47.83%. Furthermore, a rigorous SVM-RFE procedure revealed that the most 

informative features are derived from the instantaneous variability of our instantaneous 

estimates (see Table 6). Of note, the SVM-RFE implemented in this study uses a radial basis 

function kernel, and reduces bias due to highly correlated features [41]. 

In summary, we demonstrate that the use of instantaneous heartbeat dynamics model, 

yields linear, nonlinear, and complex statistics in a time-resolved manner, and allows to both 

significantly improve balanced classification accuracy when comparing PD to controls. Given 

that the proposed methodology only requires an ECG monitoring system which, nowadays, is 
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widely available thanks to the use of more portable devices (e.g., standard ECG holter), it would 

be possible to obtain this information without a full neurological examination. In the case of 

Parkinsonisms, this would allow for a more rapid and efficient initial patient characterization. 

Also, given that several of our novel higher order features significantly correlate with motor and 

cognitive scores, the proposed framework could conceivably be useful in providing additional 

information for elucidating within-disease mechanisms of ANS-related progression of disability 

and cognitive impairment. This would aid the longitudinal monitoring of disease progression 

(after appropriate validation through longitudinal HRV studies in PD) through incorporation of a 

routine monitoring of ANS function in periodical patient evaluation. Finally, concerning the 

therapeutic management of PD, after proper characterization of the effects of dopaminergic 

therapy on our instantaneous HRV measures, the latter could also provide an additional 

monitoring instrument for drug related side-effects associated with autonomic functioning. 

Future work will investigate a parameter optimization procedure for SVM classifiers, as 

well as will focus on a rigorous comparison with other automatic classification methods, to be 

benchmarked within a larger sample size. 
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