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Abstract

A new approach to the implementation of Fredholm Integral Method (FIM) was

developed to evaluate microwave scattering by irregular hydrometeors in the melt-

ing layer where snowflakes aggregate. These contain air, ice and liquid water and

therefore complex to model. In this study, the particles were modelled discretizing

their volume, filling it with cubic or spherical cells according to their weighted

contents. The FIM presented represents a departure from earlier work where the

numerical integration is no longer based on expansion in a set of polynomials but

based on direct spatial integration. The strength of our approach is that the com-

putations are performed in the spatial frequency domain. As a result, the angular

scattering pattern is strongly connected to the Spatial Fourier Transform of the

scatterer; hence, for electrically small particles the angular spectrum is relatively

smooth and the number of pivots required for integration is relatively low. The

theoretical analysis of the first Born term is comparatively simple. Comparisons

show a good agreement between the first Born term using our approach and the

exact method by Holt. However, the theory of the second Born term is relatively

difficult. The approach taken by Hankel cannot be applied essentially because of

the power of p in the integrand being odd. An alternative approach which still

involves contour integration method uses quandrantal contour in combination with

a conditioning weighting function to control the magnitude of the integrand. The

numerical evaluation of the scattering functions are performed and compared. The

results suggested similar pattern in comparison with the Mie theory and other es-

tablished numerical algorithms for homogeneous spherical or ellipsoidal dielectric

scatterers. This technique has a good potential to be applied to irregular hydrom-

eteors since only the distribution of the dielectric constants need to be changed.
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CHAPTER 1

INTRODUCTION

The aim of this study is to evaluate scattering amplitude functions of dielectric

particles modelled as irregular scatterer consisting of different homogeneous inclu-

sions using the approach of Volume Integral Equation (VoIE) known as Fredholm

Integral Method (FIM) to characterise scattering properties of inhomogeneous hy-

drometeors. Characterisation of particles without making physical or direct con-

tact can be broadly described as remote sensing [1]. Thus this is in contrast to

in-situ observation . In weather radar parlance, the term generally refers to the use

of sensor technologies to detect and classify objects on Earth (both on the surface

and atmosphere) by means of propagated and scattered waves [2]. The concept is

actually not new, as every living creature practice the act unknowingly on daily

basis through a very important sensor called the eye, intended for detecting op-
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CHAPTER 1. INTRODUCTION

tical waves. This process is the oldest and perhaps the primary remote sensing

technique employed in many applications, such as Earth atmosphere observation.

A big part of the EM spectrum can be used for these purposes. In this thesis, the

scattering characteristics of precipitation such as melting irregular hydrometeors

in weather radars frequency range [3] are studied.

Recent studies have explored the possibility to use weather radar at high fre-

quency bands to obtain the properties of irregular hydrometeors. The region of

short microwave have been studied due to availability of large bandwidth at these

frequencies. Nevertheless, the challenge in using these bands to describe the scat-

tering properties of irregular hydrometeors is that strong interactions (absorption

and scattering) may occur between such waves and the atmospheric hydrometeors

(such as rain, snow, hail and ice crystals) [4] and [5].

In general, there are two approaches to the problem of scattering by small particles:

(1) wave theory and (2) radiative transport theory. In the wave theory method,

solutions are obtained directly by solving Macroscopic Maxwell Equations (MMEs)

for the fields, while the radiative transport technique is formulated on the basis of

energy equilibrium [6]. The relationship between the radiative transfer approach

and the wave theory method using MMEs has been explicitly given in [7]. The

application of the transport theory and related studies have also been explored in

great details in [8]. In this thesis, the wave theory method has been explored since

we are interested in studying the single scattering.

The wave theory method stems from the way electromagnetic waves propagate

in a medium by change in magnetic field will induce a change in the electric

field and vice-visa. These fields coexist and they are linked through Maxwell

equations. The interaction of the EM waves with the medium can be grouped

2



CHAPTER 1. INTRODUCTION

into two categories: (a) scattering and absorption of a wave from a medium and

(b) line-of-sight propagation of a wave through a medium. For each of these

two cases, waves are somehow distorted when travelling through the medium.

The degree of influence and the way they are affected often depends upon the

frequency and other factors [8, 9]. The mechanisms behind the fields interaction

with these media are diverse, however, can generally be attributed to the following:

diffraction, refraction, and reflection (diffused and specular).

The reflection mechanism is the most important in this study and it plays a sig-

nificant role in EM waves scattering by irregular bodies. Assuming a plane elec-

tromagnetic wave incident on a scatterer, the energy is reflected in two possible

ways:

• Specular reflection : The mirror-like reflection of wave from a surface, in

which radiation from a source is reflected into a single outgoing direction.

Specular reflection is described by the law of reflection, which states that

the direction of the incoming wave (the incident field), and the direction of

the outgoing wave (the reflected field) make the same angle with respect to

the surface normal, thus the angle of incidence equals the angle of reflection

(θi = θr). Moreover the incident, the normal to the surface, and the reflected

directions are coplanar [10].

• Diffuse reflection: EM waves is radiated from a surface such that an incident

wave is scattered in many angles rather than just one angle as in the case of

specular reflection.

The diffused reflection does not simply involve the surface only, the contribution

to the total reflected field basically involved the scattering centres beneath and

3



CHAPTER 1. INTRODUCTION

the surface of the particles. This description is very general, because the majority

of the naturally occurring bodies are made of microscopic irregular structures held

together which give rise to a diffuse process. In this thesis, we take into account this

factor and we study the microwave diffuse reflection also known as electromagnetic

scattering by particles in the microwave region.

1.1 Motivation

Most of the hydrometeors have more than two dielectric constants including air.

Effective medium theories for two-part dielectrics have been fully developed where

one of the dielectrics can be regarded as an inclusion in the other (host or back-

ground). There is yet no known unique effective medium mixing formula or Effec-

tive Medium Theory (EMTs) for three or more dielectric components. However,

naturally occurring scatterer (irregular hydrometeors) are characterised by more

than two dielectric components. It has been suggested that estimation of their

effective dielectric constant could be done by average the optical properties of the

composite materials (two-part effective medium mixing formula) and subsequently

evaluating the scattering characteristics. Nevertheless, this is not fully consistent

with the complex nature of the scatterer. Moreover, for weather radar, the melting

layer in which melting snowflakes aggregates contain air, ice and wet-water and

therefore it is difficult to model. In [11], an assumption to simplify the problem has

been made: melting hydrometeors are described to assume no change in geomet-

rical and electrical characteristics in the transition region (a region between the

dry ice crystal particles and raindrops). Nevertheless, this assumption has been

found to be unsatisfactory owing to the complex nature of these scatterers within

this layer and the problem has not been fully investigated either experimentally

4



CHAPTER 1. INTRODUCTION

or theoretically.

Few methods have been explored such as the Discrete Dipole Approximation

(DDA) by DeVoe [12] and the FIM by Holt et. al [13]. In the DDA, the particle

is replaced with interacting dipoles. With this approach the number of matrix

equations to be solved increases if the particle is electrically large and the problem

becomes computationally difficult. The FIM approach of Holt uses an integral

equation to calculate the scattering characteristic of the particle. However, as

also stated by the author the main limitation is that the evaluation of the sec-

ond Born matrix elements is limited for inhomogeneous scatterer. Consequently,

these techniques are inadequate to describe the scattering properties of irregular

hydrometeors.

In this work we consider a new perspective still based on the FIM but in contrast

with the approach of Holt. Instead of using an expansion in a set of polynomials

we apply a direct spatial integration. However, our approach retains the property

of having second order accuracy owing to the variational properties of the integral.

The scatterer is modelled within a finite regular lattice field of cubic or spherical

cells. The first and second Born terms are evaluated for a cell at the origin, while

the contributions for all other cells are evaluated efficiently using the Fourier Shift

Theorem.

We have named our numerical approach to the Fredholm Integral Method (FIM)

as the Discrete Method (DM) where we expressly evaluate scattering amplitude

functions of irregular hydrometeors by relatively avoiding any of the established

effective medium theories or empirical methods.

5



CHAPTER 1. INTRODUCTION

1.2 Thesis outline

The remainder of this chapter describes the layout of the thesis, which is organised

into a further five chapters.

Chapter 2 starts with Macroscopic Maxwell equations to describe electromagnetic

fields and wave equations in dielectric media. A brief description of micro-physics

of melting snowflakes within the Bright Band layer is presented. Then, a con-

cise survey of scattering particle characteristics at this layer is given. In addition,

numerical and empirical formulae for evaluating dielectric properties of complex

mixture constituents are presented with emphasis on the single relaxation method

known as Debye formula. Few effective medium theories are reviewed, with fo-

cus on widely used methods such as Maxwell-Garnett, Bruggeman and Coherent

Potential. Finally, a theoretical overview of electromagnetic waves scattering prob-

lems by small particles is briefly presented with emphasis on Mie Theory, T-Matrix

Method and Discrete Dipole Approximation, since they can be used to validate

the new implementation of the FIM approach.

Chapter 3 presents a concise analysis of volume integral equations with special

attention to Fredholm linear Integral Equation of the second kind used in previous

work for the solution of electromagnetic waves scattering by homogeneous dielectric

ellipsoids and spheroids. Our approach, the Discrete Method is introduced and

fully developed.

Chapter 4 presents the code level implementation of the Discrete Method. The

algorithm is developed using Fortran programming language and separated into

sub-programs or modules. Block diagram which summarizes the program structure

and logic flow are given. In addition, the algorithm is designed to give the user

6
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some flexibility to select different program mode such as variable angles, fixed angle

for forward and back scattered radiation. The validity, stability and accuracy of

core parts of the algorithm are validated.

Chapter 5 begins with the modelling of scattering particles using standard ellip-

soid equation inscribed in a discretized finite lattice field. Then the validity of

the proposed Discrete Method is verified by computing the scattering amplitude

functions of homogeneous dielectric spherical particle. The numerical results for

specific particle’s characteristic length are compared with Rayleigh and Mie theo-

ries. Further tests were made using the same scatterer including compliance with

the reciprocity and the scattered field obtained. The validity check was extended

to mixed phase hydrometeors such as ice aggregate or dry snowflakes.

Finally, in Chapter 6, the main contributions of the thesis are highlighted, certain

limitations of the work are identified, and areas for possible further study are

suggested.

7



CHAPTER 2

BACKGROUND STUDY AND

LITERATURE REVIEW

2.1 Introduction

The Maxwell macroscopic equations are used to describe the interaction of the

fields with different media and to define wave equations with particular inter-

est in irregular hydrometeors which can be modelled as inhomogeneous dielectric

medium. The physical processes that lead to the formation, growth and precipita-

tion of cloud inhomogeneous dielectric particles in the atmosphere with emphasis

on melting hydrometeors consisting of liquid water, ice and air in the melting

layer also known as the bright band is discussed. The melting layer is defined

8



CHAPTER 2. BACKGROUND STUDY AND LITERATURE REVIEW

as a transition region between the dry snow particles and raindrops. Modelling

of the irregular hydrometeors in this region is difficult due to the complexity of

the electric and geometrical properties. Thereafter, outline of study carried out

on melting irregular hydrometeors is presented. Furthermore, the refractive in-

dex of water based irregular hydrometeors in the bright band are highlighted.

A concise review of effective medium theories to evaluate or estimate the aver-

age optical constants of inhomogeneous materials are discussed with emphasis on

Maxwell-Garnett (MG) mixing formula [14] and Bruggeman or Polder-van-Santen

in remote sensing parlance [15].

A brief review of work done on electromagnetic scattering by small particles (sin-

gle or fixed aggregate) in relation to their electric and geometrical properties is

presented. The Mie theory or solution given in [16, 17] in the case of dielectric

spheroids and ellipsoids, T-matrix method developed by P.C. Waterman [18] for

solving problem of arbitrary scatterers, Discrete dipole approximation [12] also

known as couple dipole method involve replacing the scatterers with dipoles to

evaluate the scattering functions, and Fredholm integral equation method intro-

duced by Holt et.al [13] with specific application to the electromagnetic waves

scattering by dielectric ellipsoids and spheroids are highlighted and chosen as the

axiomatic basis for the reminder of this study.

Application of the scattering characteristics are required in many areas of sci-

ence and engineering, such as investigation and calculation of the scattering and

absorption of electromagnetic (EM) waves by small scattering bodies [19], small

chemical particles [20], biological blood cells [21] and in quantum theory [22]. The

idea of scattering by small-sized particle was developed by Lord Rayleigh in 1871

to describe why scattering of sunlight in the atmosphere causes the diffuse sky

9
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radiation, which is the reason for the blue colour of the sky [23, 24, 25]. However,

if the dielectric constant is high, the Rayleigh scattering theory can become inad-

equate even if the characteristic length (radius) of particles are significantly less

than the wavelength. The electrical properties of particles are generally defined

in terms of the conductivity σ, the permeability µ, and its dielectric constant or

permittivity ε. However, most of the naturally occurring particles such as dielec-

tric materials are non-magnetic and conductivity is zero, since our study is based

on these categories of particles which have inclusions of different dielectric proper-

ties; hence electromagnetic waves interaction is mainly characterised by only the

dielectric constant in this study. Detailed understanding of EM waves scattering

by scatterers similar to, or larger than the wavelength of EM radiation and other

computational techniques are treated in [8] and [26].

2.2 Electromagnetic fields and wave equations

Maxwell’s equations are a set of relations linking the values of a number of quan-

tities that describe electric E and magnetic H fields [27] and [28]. Therefore, the

foundation of our theoretical approach in this study are the Maxwell macroscopic

equations that describe the origin of fields propagating in space and time where

the physical properties of the material medium (characterized by ε and µ ) are

continuous. We use the Gaussian units given in [29] unless stated otherwise:

∇ ·D = 4πρ, (2.1)

∇× E = −1

c

∂B

∂t
, (2.2)

∇ ·B = 0, (2.3)

10



CHAPTER 2. BACKGROUND STUDY AND LITERATURE REVIEW

∇×H =
4π

c
J +

1

c

∂D

∂t
, (2.4)

where E is the electric field, D the electric displacement, H the magnetic field,

B the magnetic induction, t denotes time and c the speed of light in free space.

Likewise J and ρ denote the current density and charge of the medium respectively.

The varnishing of the magnetic induction may be interpreted as saying that there

exist no free magnetic poles. The expression of the various fields are assumed

to be dielectric medium for simplicity that the medium is homogeneous, linear,

isotropic, and non-dispersive, so that the permittivity is a simple constant. The

electric displacement D and magnetic field H are given in [30]

D = ε0E + 4πP, (2.5)

H =
B

µ
− 4πM, (2.6)

where P is the electric polarization (average electric dipole moment per unit vol-

ume), M the magnetization (average magnetic dipole moment per unit volume),

ε = ε0(1 + χe) dielectric constant of the medium, and µ the permeability of the

medium. In practice, the magnetic properties of the dielectric medium is so weak

that the permeability is assumed to be equal to that of the vacuum, thus µ ≈ 1.

To allow a unique determination of the field vectors from a given distribution of

current and charges, equations (2.1) - (2.6) are not sufficient in themselves, they

must be supplemented by constitutive relations describing the medium under the

influence of the fields. These relations are given in [30]

J = σE, (2.7)

B = µH, (2.8)
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P = ε0 χeE, (2.9)

where σ is the conductivity, µ the permeability, ε0 the free space permittivity,

and χe the electric susceptibility. The phenomenological coefficients σ, µ, and χe

depend on the material medium under consideration.

The wave equation for electric field

We restrict ourselves to derive the wave equations for the electric field vector E

in a volume with no charge density ρ = 0, and current density J = 0. In the case

of homogeneous wave equation for E, we take the curl of (2.2) and using (2.4) to

obtain

∇× (∇× E) = −1

c

∂

∂t
(∇×B) = −1

c

∂

∂t

(
n2 1

c

∂

∂t
E

)
, (2.10)

by assuming µ ≈ 1 and ε = n2. Using the following vector identity

∇× (∇×A) = ∇(∇ ·A)−∇2A. (2.11)

Furthermore, since ρ = 0, equation (2.1) becomes

∇ ·D = 0, (2.12)

we find that rearranging Equation (2.10) and applying the operator triple product

given in (2.11), equation (2.10) becomes

∇2E− n2 1

c2

∂2E

∂t2
= 0. (2.13)
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Now looking for a solution of the wave equation (2.13) in the form of a time

harmonic wave. We therefore make the following Fourier component Ansatz given

in [30]

E = E(r) exp (−iωt), (2.14)

and insert (2.14) into (2.13). This yields

∇2E(r)e−iωt − n2 1

c2

∂2

∂t2
E(r)e−iωt = 0,

= ∇2E− n2 1

c2
(−iω)2E(r)e−iωt,

= ∇2E + n2 ω
2

c2
E,

∇2E + k2
0n

2E = 0,

(2.15)

where k0 is the vacuum wavenumber and (2.15) is the homogeneous Helmholtz

wave equation for E.

Following the same order of derivation of the E wave equation, we can also express

the homogeneous H wave equation in the same form

∇2H + k2
0n

2H = 0. (2.16)

In the case of inhomogeneous material medium and using (2.14), the field equations

(2.2) and (2.4) then become

∇× E = ik0B = iµk0H,

µ−1∇× E = ik0H,

∇×H = −ik0n
2E.

(2.17)

13
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Taking the curl of the second equation (2.17) leads to

∇×
(
µ−1∇× E

)
= ik0∇×H,

= k2
0 n

2 E,

∇×
(
µ−1∇× E

)
− k2

0E = k2
0(n2 − 1)E.

(2.18)

Adding the left hand side of the vector identity given in (2.11) into both sides of

the third part of equation (2.18) yields

∇×∇× E +∇×
(
µ−1∇× E

)
− k2

0E = ∇×∇× E + k2
0(n2 − 1)E, (2.19)

we find that (2.19) can be rearranged and expressed as

∇×∇× E− k2
0E = ∇×∇× E−∇×

(
µ−1∇× E

)
+ k2

0(n2 − 1)E,

= k2
0(n2 − 1)E +∇×

[(
1− µ−1

)
∇× E

]
,

(2.20)

where n is the refractive index and the permeability µ may be tensors. In the case

where µ is not a tensor, then (2.20) can be rewritten as

∇×∇× E− k2
0E = k2

0(n2 − 1)E + µ−1 (∇µ)×∇× E. (2.21)

Besides, the presumption that µ is not a tensor, and making further assumption

that the material medium is non magnetic i.e. permeability µ = 1. Thus simplify

equation (2.20) and can be expressed

∇×∇× E− k2
0E = k2

0(n2 − 1)E, (2.22)

which is the inhomogeneous dielectric wave equation used in chapter 3 as the basis
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to formulate the theoretical analysis of the research problem.

The E and H fields must also satisfy the following boundary conditions, where n̂

is a unit vector normal to the boundary as summarized in Table 2.1 [10].

Table 2.1: Electromagnetic boundary conditions for linear dielectric medium.

Component Linear materials

Electric displacement
Perpendicular D2,⊥ −D1,⊥= ρf

Parallel D2, ‖ −D1, ‖= 0

Electric field
Perpendicular ε2E2,⊥ −ε1E1,⊥= ρf

Parallel E2, ‖= E1, ‖

H-field
Perpendicular µ1H1,⊥ −µ2H2,⊥= 0

Parallel H1, ‖ −H2, ‖= Jf

Magnetic field
Perpendicular B1,⊥ −B2,⊥= 0

Parallel 1
µ1
B1, ‖ − 1

µ2
B2, ‖= Jf

where ρf and Jf are any existing surface charge and current densities, where Jf = 0

for dielectric scattering particles.

2.3 Melting snowflakes formation in the cloud

The description of the physical processes that lead to the formation, growth and

precipitation of cloud particles in the atmosphere with emphasis on irregular hy-

drometeors such as melting snowflakes is presented in this section. The formation

of individual snow crystal is a complex process, where the crystal can have dif-

ferent length scales, shapes and sizes [31, 32]. An in-depth understanding of the
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growth process is given in [33, 34]. The crystal can consist of a single ice particles

or an aggregate of many ice particle inside the cold cloud. The ice crystal process

involves mainly the interaction of supercooled water droplets and tiny ice crystal

but also involves other interactions as discussed in the following [35]:

• Accretion: Growth of an ice particle when it captures supercooled liquid

droplets.

• Aggregation: Merging of multiple ice particles to form one main snowflake

(snowflakes sticking together). The surfaces of ice crystals become sticky at

temperatures above −50 C , and this process maximizes near 00 C.

• Deposition: Growth by water vapour depositing on the ice particle in a liquid

form and immediately freezing, or directly depositing as a solid. This is the

dominant method of snow growth process.

Tiny water droplets and ice crystals coexist in cold clouds at a fixed temperature

[31]. The coexistence is dynamic due to the fact that the saturation vapour pres-

sure over the droplets is slightly greater than that over the ice crystals. Thus,

the interaction between them causes the ice crystals to grow at the expense of the

droplets. This process is referred to as Bergeron process [35] and the crystals can

grow in clouds as long as there is sufficient vapour. The type and shape of ice

crystals formed by this process is primarily a function of the temperature and sec-

ondarily a function of the degree of saturation in the clouds. It is also interesting

to note that crystals can grow due to the interaction with other crystals but also

due to the contacts with supercooled water droplets to create dry snowflakes.

The ice crystals eventually grow to a size and mass that allow them to fall as a

result of coalescence and gravity. As the snowflakes fall, they pass through a level

16



CHAPTER 2. BACKGROUND STUDY AND LITERATURE REVIEW

where the temperature rises above freezing [35]. The snowflakes due to a change in

temperature, start to melt and initially develop a water coating. As the wet flakes

continue to fall and melt, a more complicated mixture is developed consisting of

water, ice and air with different electrical properties and the resulting complex

particle is known herein as melting snowflakes. The amount of the water content

in the irregular hydrometeors at this stage is about nine times more reflective than

dry ice in the region of microwave [34], so these melting snowflakes produce a much

higher radar reflectivity than dry snowflakes. All of these processes lead to the

formation of a narrow ring of high reflectivity at the melting layer. This layer is

also known as the Bright Band (BB) and is highlighted in § 2.4.

2.4 Melting layer model

The melting layer can be described as a transition region between the dry snow

particles and raindrops. It can also be observed in stratiform rain condition as

described in [36]. The radar reflectivity of this region is relatively high because of

the fast increase in dielectric constant of the melting particles compared to those

of snow or dry ice at the beginning of the melting process. As melting progresses,

the increase in the fall velocity of wet snowflakes reduces the concentration, and

decreases the particle size. This results in a rapid reduction in the reflectivity at

a lower part of the melting layer [37], [38]. Figure 2.1 shows the height versus the

reflectivity factor Ze highlighting the height of the reflectivity in the Bright Band

[39].
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B: Bright band thickness (m) 

𝑍𝑒 𝑠𝑛𝑜𝑤 : 𝑍𝑒 in snow 30m from the 
bright band top (dBZ) 

ℎ𝑡𝑜𝑝: Height of bright band top (m) 

ℎ𝑝𝑒𝑎𝑘 
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Figure 2.1: Schematic diagram illustrating various parameters extracted from the
vertical reflectivity profile.

Describing adequately the particle’s characteristics in this regime is quite difficult

due to change in geometrical and electrical properties [40]. As discussed in [38], the

complex nature of the melting process and lack of accurate experimental/measured

data on the effective dielectric constant of the melting flakes make computations

of the scattering properties of partly wet irregular hydrometeors relying mainly on

particle Bright Band models.

The melting layer models developed for remote sensing of irregular hydromete-

ors in this region proposed no collision coalescence and breakup processes during

the transition process [11]. These assumptions were employed in [41] and [42] to

describe a dry snowflake of the size Ds above the freezing level melting into a

raindrop of the size Dr below the Bright Band. A further assumption made in [11]
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and [43] was that the mass and density of the dry snow particle remain constant

during melting. However, this assumption are too strong and not consistent with

the physics of the formation of process. This means the vertical flux of the hy-

drometeors concentrations is preserved throughout the melting layer [37] and this

can be expressed as

ηs(Ds)Vs(Ds) = ηm(Dm)Vm(Dm) = ηr(Dr)Vr(Dr) = Constant, (2.23)

where ηs, ηm, and ηr are concentrations of the snowflakes above the freezing level,of

the melting hydrometeors in the bright band, and of the raindrops below BB

respectively, Vs, Vm, and Vr are their fall velocities, while Ds, Dm, and Dr are the

equal-volume spherical diameters of dry snowflakes, melting hydrometeors, and

raindrops respectively.

Another melting layer model focus directly on the shape of the hydrometeors

which is assumed to be spherical or spheroidal in [38], [40] and [11]. However,

this obviously depends on the axial ratio of the maximum horizontal dimension to

the height of the scatterer. The size of the raindrop radius ar is used to directly

evaluate the size of the dry snow particle radius as and is given in [11]

a3
s = a3

r

[
Q+ (1−Q)

ρr
ρs

]
, (2.24)

where Q =
Mr

M
is the mass fraction, Mr is the mass melted into water in the wet

snow particle, M the mass of the hydrometeors, ρr is the density of the melted

hydrometeors below the melting layer, and ρs is the density of dry snow particles

on the top of the melting layer.

Bright Band models are used to establish the scattering model which quantifies the
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reflectivity factor of hydrometeors as a function of their size, of the proportion of

melted snow, of the melting snow density, and of the radar wavelength. Given the

particle sizes, another key ingredient of the Bright Band model is the Particle Size

Distribution (PSD) based on the Marshall and Palmer (MP) also known as the

simpler MP exponential approximation [34] and [44]. The Marshall and Palmer

model has been implemented in [45] with the observation of Law and Parsons.

The Marshall-Palmer PSD model expresses the concentration of the particles as a

function of their diameter D as an exponential function [34]

η(D) = η0 exp(−ΛD), (2.25)

where Λ = 4.1R−0.21mm−1 is the size parameter, η0 = 8 × 103m−3mm−1 is the

concentration parameter, and R is the rain rate in mmh−1. The MP distribution

was later discovered not to be sufficient to describe most of the observed raindrop

spectra accurately [34]. Thus, the Gamma PSD was introduced. In particular

it offers practical advantages and was shown to be more appropriate to describe

raindrops than the MP. Since a factor taking into account the distribution shape

µ was introduced [44]

η(D) = η0D
µ exp(−ΛD), (2.26)

where η0 and Λ are concentration, and size parameters respectively. For µ = 0

in (2.26) becomes the simpler MP exponential approximation (2.25). Given the

particle size distribution η(D), the unattenuated radar reflectivity factor can be

calculated at any range within the melting layer as the integral of the backscat-

tering cross section σb(D,λ) weighted by the particle concentration η(D) [5], [11],

[38], [40]

Z =
λ4

π5 |Kw|2
∫ ∞

0

η(D)σb(D,λ)dD, (2.27)
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where λ is the radar wavelength. In order to be able to evaluate the radar reflectiv-

ity Z of the irregular hydrometeors, scattering models are needed to define σb and

mixing formulas are required to adequately model the effective dielectric constant

of particle with different constituting materials. Kw is the complex dielectric factor

and gives some indication of the particle during backscattering. It can be defined

as (n2 − 1)/(n2 + 2) or (ε− 1)/(ε+ 2), where n is the complex refractive index or

ε complex dielectric constant. It is discussed in [38] that |Kw|2 is taken to be 0.93

for water, and 0.197 for ice. The evaluation of σb depends upon the scattering

model of hydrometeors and the mixing formulas used in the determination of the

effective dielectric constant of the melting snow.

2.5 Refractive index of melting hydrometeors

Few models have been developed to describe particles which are mixture of ice,

water and air. In [46], Matthew Sadiku presented a systematic procedure for calcu-

lating refractive index of snow at microwave using Peter Debye formula introduced

in 1912 at different temperatures and frequencies. This model is based on single

relaxation time and is known as Debye dispersion formula.

In the theoretical treatment of the electrical properties of melting hydrometeors,

it is assumed that the component materials are large enough to be assigned with

their dielectric functions. The Debye single relaxation formula for the dielectric

constant is given in [47] and [48]

ε = ε∞ +
εst − ε∞
1− iωτ

, (2.28)
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or may be expressed in terms of its real and imaginary parts ε = ε′ + iε′′ where:

ε
′

= ε∞ +
εst − ε∞
1 + (ωτ)2

, (2.29)

and

ε
′′

=
(εst − ε∞)(ωτ)

1 + (ωτ)2
, (2.30)

where ω is the angular frequency, τ is the characteristic relaxation time, εst is the

static dielectric constant, ε∞ is the infinite frequency dielectric constant.

Given the dielectric constant, the refractive index can be computed as

n =
√
ε = nr + ini, (2.31)

where the real part ε
′

= n2
r − n2

i is called relative permittivity and it describes

how the electric field is stored. The imaginary part ε
′′

= 2nrini is the loss factor

or rate of energy dissipated. The real part of n is related to the phase shift (or

wave velocity), while the imaginary part is associated with wave attenuation. It

should be noted that if the material has conductivity σ in addition, the dielectric

constant of the particle becomes [49]

εr(r, ω) = ε(r, ω) + i
σ(r, ω)

ω
. (2.32)

The Debye model suffers in accuracy at intermediate temperatures and a more

detailed understanding of this procedure is given in [50].
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2.5.1 Refractive index of water

The Debye single model is commonly used for calculating the dielectric constant of

water but it is unsuitable for frequency above 10 GHz [46]. This indicates that the

single relaxation time is not valid at higher frequencies toward the millimetre and

optical regions of the electromagnetic spectrum. Subsequently the Debye single

relaxation time (2.28) was modified by Cole and Cole [51] by raising the iωτ term

to the power of (1 − α), where α is known as the spread parameter whose value

lies between 0 and 1. This is expressed as

ε = ε∞ +
εst − ε∞

1− iωτ (1−α)
. (2.33)

For α = 0 becomes (2.28) in Debye form. The spread parameter for water is

evaluated to be less than 0.03 [52], indicating that the Debye form for a single

relaxation time is satisfactory. Further modification of equation (2.28) resulted in

a frequency-independent conductivity model for the dielectric properties of ice and

water over a large frequency spectrum and temperature range [46], [53].

There are no generally acceptable empirical or theoretical model for the calcula-

tion of the refractive index of water and ice for a wide range of frequency and

temperature. D.H.O Bebbington used another model called Debye Double relax-

ation model employing observable data from P.S Ray to compute permittivity of

water [54]. After performing a numerical comparison the Debye Double Relaxation

Model behaves as the other models for lower frequencies. The real and imaginary

parts of the Debye Double Relaxation Model (DDRM) are expressed as

εr = ε2 +
ε0 − ε1

1 + f 2
n

+
ε1 − ε2

1 + f 2
s

, (2.34)
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and

εi = fn
ε0 − ε1

1 + f 2
n

+ fs
ε1 − ε2

1 + f 2
s

, (2.35)

where ε0, ε1 and ε2 are the coefficients for the static term, fn the normalise fre-

quency based on double term coefficient and fs the normalise frequency based on

single term coefficient. The range of validity of the model is 0 to 1000 GHz in

frequency and −100C to 300C temperature.

2.5.2 Refractive index of ice

The real part of refractive index of ice is known to be relatively constant at high

frequency (microwaves and above) and simulations show that the real part of

complex refractive index of ice, between 00C and 50C take a fairly constant value

≈ 1.78 independent of both frequency and temperature, and the imaginary part

(the loss factor) takes an extremely small value but varies slightly throughout the

centimetre and millimetre bands [46].

The result of empirical model of the complex refractive index of ice by P.S.Ray [4]

agreed with the work of [46], and the procedure for the construction of the model

is similar to that of water. The real part of the complex permittivity for pure ice

is evaluated in [55] to be 3.15. When this value is substituted into equation (2.31)

the same result is obtained [46].

2.5.3 Refractive index of air

It is customary to assume that the refractive index of air near Earth’s surface is

approximately n ≈ 1.0003 throughout the radio spectrum, obviously, this value for
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practical purposes is indistinguishable from those of free space or vacuum (n ≈ 1)

[56].

2.6 Effective medium theories

Given the dielectric constant of the constituent parts of the melting hydrometeors,

homogenization is one approach to achieve a simplified description of the behaviour

of a wet snowflakes. Effective medium theories (EMTs) achieve this purpose. Many

different mixing rules can be found in the literature [47] and [57] but Maxwell-

Garnett rule [14], Coherent Potential mixing rule [58] and the Bruggeman [15]

have been considered for this work because of their applications in weather radar.

A variety of EMTs have been developed for different internal structures of the

medium and for a variety of shapes, size distributions and physical properties of

the inhomogeneity.

The evaluation of the effective dielectric function of a complex mixture is a difficult

problem since a large number of interactions can occur within the component

materials [4]. Also the mixing techniques may vary considerably depending on the

external conditions to which the particles are exposed.

The interaction of electromagnetic waves with the particles model of mixed dielec-

tric material is a complex process. In order to model the interaction, the inhomo-

geneous materials of the mixture has to be taken into account. This increase the

complexity of the description of scattering process. In order to reduce this effect,

homogenization techniques can be employed to evaluate the effective or average

dielectric constant. The more general family of mixing rules is based on matrix

medium εe and inclusion or guest medium εi describing the effective medium εeff
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of the inhomogeneous material with a fraction volume of the inclusion f linked by

the following [47], [57], [59]

εeff − εe
εeff + 2εe + ν(εeff − εe)

= f
εi − εe

εi + 2εe + ν(εeff − εe)
, (2.36)

where ν is a dimensionless parameter. For different values of this dimensionless

parameter ν, various mixing formula are recovered. For ν = 3 into (2.36) becomes

separated-grain effective medium theory called Coherent Potential mixing formula.

2.6.1 Maxwell-Garnett theory

The Maxwell-Garnett (MG) mixing method also regarded as separated-grain topol-

ogy assumes a host or background homogeneous material where some parts are

replaced by inclusions or guest of different relative permittivity material. The

analytical relationship between the electrical and geometrical parameters of a bi-

phasic dielectric material with a collection of spherical inclusions is given in [47],

[60]

εeff = εe + 3fεe
εi − εe

εi + 2εe − f(εi − εe)
, (2.37)

where εeff is the mixture effective permittivity, εe is the relative permittivity of

the host material, εi is the relative permittivity of the spherical guest inclusions,

and f is the fractional volume of the inclusions. A parallel derivation to the MG

formula (2.37) for the magnetic permeability of mixed materials was proposed in

[61]. This approach treats hydrometeors (such as melting snowflakes) as either a

two-component (bi-phasic dielectric) or three-component (multi-phase dielectric)

mixture of ice, air, and water. The two component formulation is usually applied

to dry snow (mixture of air and ice) and sometimes to wet snow through the
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additional application of the formula for dry snow and water.

A typical approach of using the MG mixing rule for the three components mix is to

calculate the dielectric constant of the two components mix and then to consider

the resultant dielectric constant as inclusions in the matrix of the third compo-

nent or as the background with the third material as inclusions. This generally

admits 12 different solutions depending on how the three constituents are ordered

[38]. One physically reasonable way to tackle the problem is to calculate the dry

snow dielectric constant assuming solid ice inclusions in an air matrix and then to

calculate the dielectric constants of melting hydrometeors as dry snow inclusions

in a water matrix or water inclusion in the dry snow matrix.

Maxwell-Garnett in 1904 was one of the very early formulation of this method that

could be used for multi phased mixtures with different geometries of inclusions

(such as ellipsoid and rods) [62]. This method has the advantage of including

geometrical factors inside the formulation. However, it is not always easy to know

the material geometries [63]. This method can be suitable for wet particle since

the shape tends to be spherical [59]. The MG mixing formula has been used to

determine the effective dielectric properties of water based particle (such as melting

snowflake in terms of its constituent parts air, ice, and liquid water under certain

conditions) but its validity at higher frequencies has not been fully established.

Limitations

The MG method has these limitations as highlighted below:

• It is important to mentioned that interchanging guest and host materials

in (2.37) do not yield the same results. This asymmetry in the results is
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particularly drastic when the difference in the dielectric constants of the two

materials is large.

• Another shortcoming of the Maxwell-Garnett formula was found when at-

tempts were made to generalise it to several components.

• A resonance effect can be found in the scattering description where a com-

posite particle is homogenized using this method [64]. This causes oscillation

in the backscattering cross sections for particles comparable in dimension to

half a wavelength or larger.

We adopted the numerical results of refractive indices of ice = 1.782+3.344×10−3i

and water = 8.227 + 2.341i at frequency of 6.0 GHz and temperature of 00C as

stated in [46] to evaluate the average refractive index for three components mix-

ture such as melting snowflakes assuming homogeneous inclusions using effective

medium theories. In Table 2.2 we illustrate the problem of applying effective

medium methods such as Maxwell-Garnett for non-binary media. Using MG

formula for binary media, air inclusions in an ice matrix, (herein referenced as

MGia = 1.20947592 + 0.832705996 × 10−3i) and ice inclusions in an air matrix,

(herein referenced as MGai = 1.19839930 + 0.0717479539× 10−3i).

Table 2.2: Numerical examples of non-binary media such as melting snowflakes
with homogeneous inclusions (air, water, and ice)

Matrix Inclusions Binary EMTs Matrix Inclusions Non-binary EMTs

70% of ice 30% of air MGia 70% of MGia 30% of water MG(ia)w = 4.41026029 + 0.644639288i

70% of ice 30% of air MGia 30% of water 70% of MGia MGw(ia) = 5.60043131 + 1.43205165i

30% of air 70% of ice MGai 70% of MGia 30% of water MG(ai)w = 4.37820859 + 0.642554374i

30% of air 70% of ice MGai 30% of water 70% of MGia MGw(ai) = 5.59521969 + 1.43188028i

28



CHAPTER 2. BACKGROUND STUDY AND LITERATURE REVIEW

2.6.2 Bruggeman mixing theory

Another competing effective permittivity formulation is Bruggeman mixing theory

[15], which made a significant improvement to the Maxwell-Garnett mixing theory.

He introduced an approximation that treats the two composites in symmetrical

fashion regarded as aggregated-grain topology. The medium is treated as a set of

randomly distributed cells of different materials.

This method is better known as Polder-van-Santen [6] in remote sensing applica-

tions. It can be used for two phased mixtures by substituting ν = 2 into (2.36)

leads to

η1

(
εe − εeff
εe + 2εeff

)
+ η2

(
εi − εeff
εi + 2εeff

)
= 0, (2.38)

where η1 = 1− f is the volume fraction of dielectric constant εe, η2 = f represents

volume fraction of dielectric constant εi and εeff is the effective permittivity of the

medium. Mixing rules are symmetric relative to which component is called matrix

and which makes inclusion. A more rigorous derivation of this mixing theory and

some properties of Bruggeman mixing formula has been introduced by [57]. Unlike

the Maxwell-Garnett formula, the Bruggeman mixing theory can be generalised to

include any number of components.

2.7 Electromagnetic wave scattering

The concept of electromagnetic waves scattering by a material medium can be

described as placing a particle with a dielectric constant or refractive index different

from that of the surrounding medium. This would cause a change in the electric

and magnetic fields that would otherwise exist in an unbounded homogeneous
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space. Thus, the difference in the total field with the presence of the object and

the original field that would exist in the absence of the object can be thought of

as the scattered field space . In other words, the total field is equal to the vector

sum of the incident (original) field and the scattered field [19].

The Mie theory (solution) for the special case of spherical particles [16], [17],

[26], T- matrix method [18], [65], the Discrete dipole approximation [66, 67], and

other approaches with emphasis on single or aggregate scatterer are reviewed in

this section. An extensive literature of evaluating scattering problems by small

particles are given in [16], [19], [26]. The problem of multiple scattering of EM

waves by particles are treated in detail by [8, 9] and [68, 69, 70, 71], however, this

is not the focus of this study and as such not considered.

2.7.1 Mie theory

Mie solution or theory has been the most usual theoretical tool to handle electro-

magnetic waves scattering by a simple geometry of sphere through solving of the

Macroscopic Maxwell’s Equations. The theory was developed by Gustav Mie in

1908 in order to understand the colours that resulted from light scattering from

gold particles suspended in water. Sphere has been studied more extensively than

has the scattering by any other particle shape. This is partly because, it has been

the only three dimensional particle for which an analytical close form solution is

readily available [16], [17], [26], [72], [73].

Although it is exact, only with the emergence of numerical techniques it has be-

come more practical to extend the range of its applications [74]. Formulation of

the theory begins with an object possessing a discrete boundary and optical con-
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stants different from those of the surrounding medium, is incident by a linearly

polarized plane electromagnetic wave, a scattered field is generated and is usually

solved by separation of variable method described in some of the literature already

highlighted, but the notation given in [26] is followed for the derivation of the Mie

solution theory.

Solutions to the vector wave equations

The basic concepts of the wave theory directly from Macroscopic Maxwell’s Equa-

tions (2.1) - (2.4) (MMEs) are the basis applied to formulate the vector wave

equation in the Mie theory. Interestingly, the shape of the scatterer also bears an

important relationship to a particular coordinate system to use and which enables

the boundary conditions to be expressed in traceable form.

Figure 2.2: Geometry of the sphere of radius (r) illuminated by linearly polarized
plane electromagnetic wave propagating in the +z direction.
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For sphere, spherical coordinates r, θ, φ , as shown in Fig. 2.2 provide such a

natural coordinate system for the theoretical overview. The general solution of

the wave equation (2.15) is not straightforward but can be derived from a scalar

function or potential ψ which satisfies the following wave equation treated in Ap-

pendix (A.2). Thereto, one can construct an intermediate vector function given in

[26]

M = ∇× (cψ), (2.39)

where c is an arbitrary constant vector and ψ is any scalar function. Since the

divergence of the curl of any vector function vanishes ( i.e. ∇ · (∇ × v) for any

vector function v), we can say that

∇ ·M = 0,

and

∇× (A×B) = A(∇ ·B)−B(∇ ·A) + (∇ ·B)A− (∇ ·A)B, (2.40a)

∇(A ·B) = A× (∇×B) + B× (∇×A) + (B · ∇)A + (A · ∇)B. (2.40b)

Using the vector identities in (2.40) and if the operator ∇2 +k2 is applied to (2.39)

we obtain

∇2M + k2M = ∇× [c(∇2ψ + k2ψ)]. (2.41)

Therefore, M satisfies the vector wave equation if ψ is a solution of the scalar wave

equation. In [27], a second divergence free vector function is define which obeys

all of the above equations for M

N =
∇×M

k
, (2.42)
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or equivalently

∇×N = kM. (2.43)

Now, changing our arbitrary constant vector c to the radius vector r, we have

solutions to the vector wave equation in spherical polar coordinates. Final forms

of M and N as in [26] are given in Appendix (A.1). Seeking separable solutions,

we say ψ(r, θ, φ) = R(r)Θ(θ)Φ(φ), and obtain the well known separated equations

in spherical form [17]

d2Φ

dφ2
+m2Φ = 0, (2.44a)

1

sin θ

d

dθ

(
sin θ

dΘ

dθ

)
+

[
l(l + 1)− m2

sin2 θ

]
Θ = 0, (2.44b)

d

dr

(
r2 R

dr

)
+
[
k2r2 − l(l + 1)

]
R = 0. (2.44c)

Hence the complete solution of the scalar wave equation (2.44) is given as:

ψeml = cosmφPm
l (cos θ)zl(kr), (2.45a)

ψoml = sinmφPm
l (cos θ)zl(kr), (2.45b)

where e and o mean even and odd respectively, Pm
l is the associated Legendre

functions of first kind of degree l and order m and zl represents any of the four

spherical Bessel functions: jl, yl, h
(1)
l or h

(2)
l and l = 0, 1, 2, ..., and m runs over

integer values from −l to l. Every solution of the scalar function ψ, may be

expanded as an infinite series of the functions (2.45). The final vector solution can
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be obtained from (2.41) with c = r

Meml = ∇× (rψeml), Moml = ∇× (rψoml), (2.46a)

Neml =
∇×Meml

k
, Noml =

∇×Moml

k
. (2.46b)

It is possible to conclude that any solution of the wave equation (2.22) can be

written as an infinite series of the vector harmonics given by (2.46).

The incident wave in spherical harmonics

The incident field is considered to be a plane wave linearly polarized parallel to

the x axis and propagating in the +z direction as shown in Figure 2.2 and is given

in [27]

E eik0z = E0 e
ik0 r cos θêx, (2.47)

where E0 is the amplitude of the electric field, k0 is the wavenumber and êx is the

unit vector in the polarization direction

êx = sin θ cos φ êr + cos θ cos φ êθ − sin θ êφ. (2.48)

Given the incident field, it can be expanded as an infinite series into Vector Spher-

ical Waves Functions VSWF, one can write

Ei =
∞∑
m=0

∞∑
l=m

(BemlMeml +BomlMoml + AemlNeml + AomlNoml) , (2.49)

Beml, Boml, Aeml and Aoml being the expansion coefficients. Using the orthogonal-

ity of the vector harmonics and the finiteness of the incident field at the origin,
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the expansion leads to

Ei =
∞∑
l=0

(
BomlM

(1)
oml + AemlN

(1)
eml

)
. (2.50)

In view of sinφ and cos θ found in the expansion of equation (2.47) not shown,

only the terms with m = 1 survive. If there was no scattering object at the origin,

the wave would have to be finite, so we reject spherical Bessel functions of the 2nd

kind yl(ρ), since they have singularities and using only jl(ρ). We write the VSWF

as M
(1)
o1l and N

(1)
e1l , the (1) indicating that the radial components are zl(kr) = jl(kr).

After rigorous analysis and some manipulations, we obtain the final form of the

expansion coefficients given in [26]

Bo1l = E0
2l + 1

l(l + 1)
il, (2.51)

and

Ae1l = −il+1E0
2l + 1

l(l + 1)
, (2.52)

hence, substituting (2.52) and (2.51) into (2.50) gives x-polarised incident wave

expansion

Ei = E0

∞∑
l=0

il
2l + 1

l(l + 1)
(M

(1)
o1l − iN

(1)
e1l). (2.53)

The same approach is adopted for the incident magnetic field H and the corre-

sponding expansion is given as

Hi =
−k
ω µ

E0

∞∑
l=0

il
2l + 1

l(l + 1)
(M

(1)
e1l + iN

(1)
o1l). (2.54)
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The scattered field

In the same way that we expanded the incident field Ei, we can expand the scat-

tered and internal fields, Es and El . The form of the incident radiation and the

orthogonality of the VSWF determine the form given in [27].

The internal field also has a different value of wave vector, since the refractive

index is different from the surrounding medium. We use the size parameter x,

which can be defined as a clearer means of measuring the size regime in which we

are interested than an absolute measure of the particle. Hence, we can say that in

the scattering medium, the wave vector can be written as kl = k0(nl/n0) = nk0 so

that the effective size parameter becomes nx. When working with the magnetic

materials inclusive, the value of µ will also change.

The scattered field must be continuous at the origin so it allowed discontinuities.

The correct radial function for the scattered field is the spherical Hankel functions

of the first kind h
(1)
n . The VSWF for Rl = h

(1)
l are M

(3)
o1l and N

(3)
e1l. The scattered

field (Es; Hs) and the field inside the particle (El; Hl) can be obtained from the

incident field by enforcing the boundary conditions between the sphere and the

surrounding medium [27]

(Ei + Es − El)× êr = (Hi + Hs −Hl)× êr = 0, (2.55)

and

El = E0 i
l 2l + 1

l(l + 1)
,

we have

Es =
∞∑
l=1

El (ial N
(3)
e1l − blM

(3)
o1l), (2.56)
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and

Hs =
k

ωµ

∞∑
l=1

El (ibl N
(3)
o1l + ial M

(3)
e1l), (2.57)

where the superscript (3) refers to the radial dependence of the generating function,

which is given by the spherical Hankel function h
(1)
l . The coefficients, al and bl,

are the so-called Mie coefficients for the scattered field. Again, by applying the

boundary conditions at the surface of the sphere, we obtain four equations from

which the analytical expressions for the Mie coefficients are obtained. Only two of

these equations are presented and have been expressed in [26]

al =
µn2 jl(nx)[x jl(x)]′ − µ1 jl(x) [nxjl(nx)]′

µn2jl(nx)[xh1
l (x)]′ − µ1 h1

l (x)[nxjl(nx)]′
,

bl =
µ1 jl(nx)[x jl(x)]′ − µ jl(x) [nxjl(nx)]′

µ1 jl(nx)[xh1
l (x)]′ − µh1

l (x)[nx jl(nx)]′
.

(2.58)

The scattering coefficients (2.58) can be simplified somewhat by introducing the

Riccati-Bessel function

ψl(ρ) = ρjl(ρ), ξ (ρ) = ρh
(1)
l (ρ).

If we assumed that the permeability of both mediums is the same, then

al =
nψl(nx)ψ′l(x)− ψl(x)ψ′l(nx)

nψl(nx) ξ′l(x)− ξl(x)ψ′l(nx)
,

bl =
ψl(nx)ψ′l(x)− nψl(x)ψ′l(nx)

ψl(nx) ξ′l(x)− nξl(x)ψ′l(nx)
,

(2.59)

where n in equations (2.58) and (2.59) represents the refractive index of the ma-

terial medium. The addition of a prime to the Riccati-Bessel functions denotes
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differentiation with respect to their arguments.

Cross section, efficiency factors and amplitude matrix

The important physical quantities of the scatterer such as scattering cross sections

Csca, describes the power scattered by the product of a cross-sectional area and the

incident intensity, or power. The absorption cross-section Cabs, tells us how much

of the incident radiation is converted to heat energy. For non-absorbing particles,

the extinction cross section is equal to the scattering cross section. Efficiency or

normalized factors are closely related to the cross-sections. Thus, describes what

proportion of the incident beam on a particle is attributable to a certain process.

Most particles have an obvious geometrical cross-section G. A sphere of radius r

has for instance, G = πr2. The scattering and extinction cross sections are given

in [16] and [17]

Csca = (λ2/2π)
∞∑
l=1

(2l + 1)
{
|al|2 + |bl|2

}
, (2.60)

and

Cext = (λ2/2π)
∞∑
l=1

(2l + 1) {Re (al + bl)} , (2.61)

where (2.60) and (2.61) represent the scattering and extinction cross sections re-

spectively. The corresponding efficiency factors for scattering and extinction are

obtained by dividing with the geometrical cross section of the particle, and for the

case of sphere is πa2, given as

Qsca = (2/x2)
∞∑
l=1

(2l + 1)
{
|al|2 + |bl|2

}
, (2.62)
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and

Qext = (2/x2)
∞∑
l=1

(2l + 1) {Re (al + bl)} . (2.63)

The amplitude matrix relates the scattered electric field Es to the incident ampli-

tude of the electric field Ei, where the EM radiation is split into polarized parallel

and perpendicular to the scattering plane for the case of the linearly polarized

plane waves. The amplitude matrix S for spherical object is a diagonal matrix;

due to symmetry it takes the form

 Es
‖

Es
⊥

 =
eikr

r

 S2 0

0 S1


 Ei

‖

Ei
⊥

 , (2.64)

where

S1 =
∞∑
l=1

2l + 1

l(l + 1)
(al πl(cos θ) + bl τl(cos θ)), (2.65)

and

S2 =
∞∑
l=1

2l + 1

l(l + 1)
(al τl(cos θ) + bl πl(cos θ)), (2.66)

hence, τl and πl are called the angle-dependent function, because they introduce

this dependence in the Mie coefficients through the scattering angle θ, and are

defined as

τl =
dP 1

l

sin θ
, πl =

dP 1
l

dθ
. (2.67)

Note the somewhat odd choice of element numbering in (2.64) which is due to

convention in solving spherical case. This is a far field solution where it can be

assumed that the scattered field is transverse and the elements of S are complex.

The definition of this quantity do vary slightly between different authors and this

must be taken into due consideration. The derivation of Csca is obtained differently

39



CHAPTER 2. BACKGROUND STUDY AND LITERATURE REVIEW

in [16] in a way that it provides a rather interesting physical insight into the process.

2.7.2 T-Matrix method

The T-matrix method supported by freely available codes is now found every-

where and one of the most powerful technique according to available literature in

the weather radar and microwave propagation and scattering. The original theory

was developed by P.C. Waterman in 1965 [18], [75, 76] and is one of the popular

computational method used for solving electromagnetic waves scattering problems

by arbitrarily shaped particles. Another important feature of the T-matrix tech-

nique is that it reduces exactly to the Mie theory discussed in § 2.7.1 when the

scatterer is a solid or layered sphere composed of isotropic material.

The approach is described as null field method by [77] and [78] or Extended Bound-

ary Condition Method (EBCM) in [79]. The EBCM technique was also used by

[80, 81] for computing scattering properties of three-dimensional scattering prob-

lem using a system of magnetic and electric dipoles, with many more implementa-

tions for different scattering problems explained in [82, 83, 84]. The power of the

T-matrix method lies in relating the expansion of the scattered waves expansion

coefficients in matrix notation to the incident coefficients. Changing the incident

field angle, or the angle of the scattered radiation, does not require recalculation

of the T-matrix.

2.7.2.1 T-Matrix method formulation

The standard scheme for computing the T-matrix for simple single particle or

fixed aggregate is based on the extended boundary condition method, it begins

40



CHAPTER 2. BACKGROUND STUDY AND LITERATURE REVIEW

with spherical harmonic expansions of the incident and scattered fields in conjunc-

tion with boundary conditions at the surface of the scattering particle to obtain

a system of linear equations relating the unknown expansion coefficients of the

scattered field to the known coefficients incident field. Details of the development

can be found in [85] and other improvement to this approach is fully discussed

elsewhere [19] and [79]. Hence, only description of specific equations of interest

are given here.

The notation of [65] is followed in the brief mathematical analysis of the T-matrix

method in this review. The incident electric field expansion is given in [65]

Ei(k0r) = E0

∞∑
ν=1

Dν

[
aνM

1
ν (k0r) + bνN

1
ν (k0r)

]
, (2.68)

where M and N are vector spherical harmonic functions of the first kind are finite

at the origin (Bessel function), υ is the spherical harmonic triple index σ (even or

odd), m, n. The expansion coefficient a and b are assumed known for a specified

incident field (plane waves). The argument of the vector spherical wave functions

is k0r, where k0 = 2π/λ the wave number in the surrounding medium, λ is the

incident wavelength, and r is the position vector which defines a point in three-

dimensional space. The E0 is the amplitude of the incident electric field. The

normalization constant Dν is given in [86]

Dν =
εm (2n+ 1)(n−m)!

4n (2n+ 1)(n−m)!
, (2.69)

where εm is equal to 1 for m = 0 and equal to 2 for m > 0.
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The field inside the particle is written as [65]

Eint(mk0r) = E0

∞∑
µ=1

Dµ

[
cµM

1
µ (mk0r) + dµN

1
µ (mk0r)

]
, (2.70)

where cµ and dµ are the unknown internal field expansion coefficients, µ is the

spherical harmonic triple index σ′, m′, n′, and m is the refractive index of the

particle relative to that of the surrounding medium. The internal field expansion

coefficients solution are given in [79]

 Kνµ +mJνµ Lνµ +mIνµ

Iνµ +mLνµ Jνµ +mKνµ


 cµ

dµ

 =

 −iaν
−ibν

 , (2.71)

where I, J , K, and L are two-dimensional integrals which defined the scattering

object and are numerically evaluated over the surface of the particle. For instance

their integral are expressed in [86]

Iνµ =
k2

0

π

∫
s

in ·M3
ν(k0r

′)×M1
µ(mk0r

′) dS,

Jνµ =
k2

0

π

∫
s

in ·M3
ν(k0r

′)×N1
µ(mk0r

′) dS,

Kνµ =
k2

0

π

∫
s

in ·N3
ν(k0r

′)×M1
µ(mk0r

′) dS,

Lνµ =
k2

0

π

∫
s

in ·N3
ν(k0r

′)×N1
µ(mk0r

′) dS,

(2.72)

where in is the unit vector normal to the surface and r′ is the position vector from

an internal origin to the particle surface S.

Evaluation of scattered field coefficient. The field is expanded similar to that of
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the incident field [86], one can write

Es(k0r) = E0

∞∑
ν=1

Dν

[
fνM

3
ν (k0r) + gνN

3
ν (k0r)

]
, (2.73)

where fν and gν are the unknown expansion coefficients of the scattered field, and

the superscript 3 on M and N indicates that these functions are of the type suitable

for radiation or outgoing fields (Hankel function). The scattered field expansion

coefficients solution are expressed in [79]

 fν

gν

 = −i

 K ′νµ +mJ ′νµ L′νµ +mI ′νµ

I ′νµ +mL′νµ J ′νµ +mK ′νµ


 cµ

dµ

 , (2.74)

The parameters I ′, J ′, K ′, and L′ are the same two-dimensional integral as in (2.71)

expect that the Bessel function are replaced by Hankel function. The internal

field two-dimensional integral is written in matrix form [A] and the scattered field

surface integral as matrix [B], the scattered field expansion coefficients can be

obtained from the known incident field expansion coefficients given in [79]

 fν

gν

 = −
[
B

] [
A

]−1

 i(−iaν)

i(−ibν)

 . (2.75)

The quantities [B] [A]−1 is the [T ] or transition matrix which means that the

column vector of the expansion coefficients of the scattered field is obtained by

multiplying the T matrix and the column vector of the incident field expansion

coefficients.

The vector far-field scattering amplitude of the scattered field and other charac-
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teristics of the scatterer are defined in [86]

Es(kr) = F (θs, φs/θi, φi)
exp(ikr)

r
, kr −→∞, (2.76)

where F(θs, φs/θi, φi) is the vector far-field amplitude in the (θs, φs) direction due

to an incident field in a given (θi, φi) direction. The differential scattering cross

section is defined as

σD = lim
r−→∞

[
4πr2Ss(θs, φs)

Si(θi, φi)

]
, (2.77)

where Ss(θs, φs) = the scattered power density

Ss(θs, φs) =
|F(θs, φs/θi, φi)|2

2Z0r2
, Z0 =

√
µ0/ε0, (2.78)

and Si(θi, φi) = the incident power density

Si(θi, φi) =

∣∣Ei
∣∣2

2Z0

. (2.79)

The differential scattering cross section (dσ/dΩ) is a normalised measure of how

the intensity of scattered EM field varies with scattering angle or specifies the

electromagnetic power scattered into unit solid angle about a given direction per

unit incident intensity. And it depends on the polarization state of the incident

radiation as well as on the incidence and scattering directions. Assuming that the

incident electric field Ei has unit amplitude and substituting the expressions of

(2.78) and (2.79) into (2.77) leads to

dσ/dΩ(θs, φs/θi, φi) = 4π |F(θs, φs/θi, φi)|2 . (2.80)

All other properties such as extinction, scattering, absorption cross sections and
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efficiency factors can be obtained directly once the vector far-field scattering am-

plitude F is known.

2.7.3 Discrete Dipole Approximation

The Discrete Dipole Approximation (DDA) is another approach [87, 88, 89] of eval-

uating scattering and absorption of electromagnetic waves by particles of arbitrary

geometry and composition. The idea of the DDA according to [12], was introduced

in 1964 by DeVoe who applied it to study the optical properties of molecular ag-

gregates, however, his treatment was limited, due to non inclusion of retardation

effect. The concept was modified and improved further by the inclusion of the

retardation effect, which was proposed in 1973 by Purcell and Pennypacker and

used it to study interstellar dust grains as explained in [67].

Conceptually, one fundamental aspect of the DDA can be interpreted as replacing

the target of interest by a set of interacting dipoles; these dipoles interact with

each other and the incident field, so the DDA is also sometimes referred to as

couple dipole approximation [90]. The formulation give rise to a system of linear

equations, which is solved to obtain dipole polarizations. All the measured scat-

tering quantities can be obtained from these polarizations. However, the size of

the linear equation to be solved depends on the number of dipole points.

The complexity of the DDA increases for electrically large scattering particles

due to the number of polarizable points required to represent the target, in effect

increasing the number of linear equations required n3.
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2.7.3.1 General formulation of DDA

The general form of the integral equation governing the electric field inside the

dielectric scatterer is provided in [67], whose notation and outline is used in this

description. The exp(−iω t) harmonic time dependence of all fields is assumed

and suppressed throughout the formulation. A dielectric scatterer is considered

without magnetic properties ( i.e. permeability µ ≈ 1). The electric permittivity

is assumed isotropic to simplify the derivation given in [67]

E(r) = Einc(r) +

∫
V \V0

d3r′Ḡ(r, r′)χ(r′)E(r′) + M(V0, r)− L̄(∂V0, r)χ(r)E(r),

(2.81)

where Einc(r) and E(r) are the incident and total electric field at location r;

χ(r) = (ε(r − 1))/4π is the susceptibility of the medium at point r and ε(r) is

the relative permittivity. V is the volume of the particle, i.e., the volume that

contains all point where the susceptibility is not zero. V0 is a smaller volume such

that V0 ⊂ V , r ∈ V0 \ δV0. Ḡ(r, r′) is the free space dyadic Green’s function,

defined in Appendix B.1. M is the integral associated with the finiteness of the

exclusion volume V0, and expressed as

M(V0, r) =

∫
V0

d3r′
(
Ḡ(r, r’)χ(r′)E(r′)− Ḡs(r, r′)χ(r′)E(r)

)
, (2.82)

where Ḡ
s
(r, r′) is the static limit (k −→ 0) of Ḡ(r, r′) and L̄ is the so called

self-term dyadic given as

L̄(∂V0, r) = −
∮
∂V0

d2r′
n̂′R̂

R3
, (2.83)

hence, n̂′ is an external normal to the surface δV0 at point r′. L̄ is always a real

symmetric dyadic with trace equal to 4π. It is important to note that L̄ does not
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depend on the size of the volume V0, but only on its shape (and location of the

point r inside it). On the contrary, M does depend on the size of the volume,

moreover it approaches zero when the size of the volume decreases [67]. When

deriving equation (2.81) the singularity of the Green’s function has been treated

explicitly for dielectric medium, therefore it is preferable to the commonly used

formulation [29]

E(r) = Einc (r) +

∫
V

d3r′Ḡ(r, r′)χ(r′)E(r′). (2.84)

Discretization of equation (2.81) yields the following expression

E(r) = Einc (r) +
∑
j 6= i

∫
Vj

d3r′Ḡ(r, r′)χ(r′)E(r′) + M(Vi, r)− L̄(∂Vi, r)χ(r)E(r).

(2.85)

The set of equation (2.85) is exact. Further, one fixed point ri inside each Vi (its

centre) is chosen and r = ri is set. Based upon the analysis in [67], in many cases

the following assumption are expressed by

∫
Vj

d3r′Ḡ(r, r′)χ(r′)E(r′) = VjḠijχ(rj)E(rj), (2.86)

and

M(Vi, ri) = M̄iχ(ri)E(ri), (2.87)

which state that integrals in equation (2.85) linearly depend upon the values of χ

and E at point ri. Equation (2.85) leads to

Ei = Einc
i +

∑
j 6=i

ḠijVj χ(rj)E(rj) (M̄i − L̄i)χiEi, (2.88)
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where Ei = E(ri), Einc
i = Einc(ri), χi = χ(ri), L̄i = L̄(δVi, r). The values of E

and χ is consider constant inside each sub-volume and which automatically implies

that equations (2.86) and (2.87) yield

M̄
(0)
i =

∫
Vi

d3r′
(
Ḡ(ri, r

′)− Ḡs(ri, r
′)
)
, (2.89)

and

Ḡij
(0)

=
1

Vj

∫
Vi

d3r′ Ḡ(ri, r
′). (2.90)

Superscript (0) denotes approximate values of the dyadics. Further approximation

of (2.90), which is used in almost all formulations of the DDA is given [67]

Ḡij
(0)

= Ḡ(ri, r
′). (2.91)

This assumption is made implicitly by all formulations that start by replacing the

scatterer with a set of point dipoles. Equation (2.88) is assumed as the distinctive

feature of the DDA, i.e. a method is called the DDA if and only if its main equation

is equivalent to (2.88) with any of Vi, χi, M̄i, L̄i and Ḡij.

After the internal electric fields are determined, the scattered field and cross sec-

tions can be calculated. The scattered field is obtained by taking the limit r −→∞

of the integral in equation (2.81) yields

Esca(r) = F(n)
exp(ikr)

−ikr
, (2.92)

where n = r/r is the unit vector in the scattering direction, and F is the scattering
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amplitude function

F(n) = −ik3(I− n̂ n̂)
∑
i

∫
Vi

d3r′ exp (−ikr′ · n)χ(r′)E(r′). (2.93)

All other differential scattering properties, such as amplitude and Mueller scat-

tering matrices, and asymmetry parameter < cos θ > can be derived from F(n).

Considering an incident polarized plane wave given as

Einc(r) = e0 exp (ik · r), (2.94)

where k = ka, a is the incident direction vector, and |e0| = 1. The scattering

cross section Csca is given [67]

Csca =
1

k2

∮
dΩ |F(n)|2 . (2.95)

The absorption and extinction cross sections can be derived [91] directly from the

internal fields

Cabs = 4πk
∑
i

∫
Vi

d3r′Im (χ(r′)) |E(r′)|2 , (2.96)

Cext = 4πk
∑
i

∫
Vi

d3r′Im
(
χ(r′)E(r′) ·

[
Einc(r′)

]∗)
=

4π

k2
Re
(
F(n) · e0∗) , (2.97)

where ∗ denotes a complex conjugate. Conservation of energy necessitates that

Csca = Cext − Cabs.

2.7.4 Other techniques

Aside the above mentioned methods of solving EM radiation scattering by parti-

cles, other techniques have been developed to treat the problem of electromagnetic
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scattering and absorption by non-spherical and inhomogeneous dielectric particles.

Majority of these procedures still involved homogenization of the complex objects

by applying effective medium theories.

The last decades have experience different methods for volume and surface in-

tegral equations formulated for evaluating scattering properties and other desire

quantities of inhomogeneous dielectric particles ranging from high to low permit-

tivity contrast from the host background as treated in [62], and [92, 93], however,

their approach culminate in homogenization process using conventional effective

medium theories or piecewise homogeneous method (predefine distribution of con-

stituents).

Experimental approach of [94] employ an open resonator to measure scattering

properties of ice particles, artificially produced and located in a radar beam, but

knowing the exact dimensions and physical state of the remotely sensed particle

at melting layer remains a major challenge.

The null approach of solving inhomogeneous scattering problem explained in [77],

[95] using integral equations for piecewise homogeneous structures. This was ac-

complished by treating each homogeneous section separately in a manner permit-

ting a uniform set of dielectric constants over the entire region of interest. The

fields and equations generated from each homogeneous section were then coupled

by enforcing tangential field continuity at the transition boundaries of the dif-

ferent dielectric regions. An important aspect of this approach is the use of the

unbounded-space Greens function for the treatment of each homogeneous region.

Obviously, in a case of highly complex inhomogeneous dielectric region (i.e., a

region in which the permittivity is arbitrary functions of position) this approach

cannot be used because of lack of an appropriate Green’s function.
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A new approach is discussed in [36] to model ice aggregate and their melting process

denoted as modified version of Fabry and Szyrmer’s model 3 (FS3) to determine

their scattering characteristics using Generalized Multiparticle Method (GMM)

and T-Matrix Method involving a bulk representation at 3 and 35.6 GHz, how-

ever, their method do not produce the expected results at millimetre wavelength

compared with those obtained using GMM for melting snowflakes.

The point matching technique as described in [96] use an infinite expansion in

spherical vector waves of the incident and scattered fields with unknown coeffi-

cients. Truncation to a finite number of terms and application of boundary con-

ditions for the representative number of points on the surface of the particle yield

simultaneous linear equations for the determination of the unknown coefficients

which in turn give the scattering amplitude. An essentially similar method is also

used by [97], but with a least squares fitting process of the boundary conditions

to yield greater accuracy. Although easy to describe and to understand, the prac-

tical implementation and usefulness of this method is limited to nearly spherical

particles.

The finite-element method (FEM) as discussed in [19] is a differential equation

technique that computes the scattered time-harmonic electric by solving numeri-

cally the vector Helmholtz equation subject to the standard boundary conditions.

The scatterer is imbedded in a finite computational domain that is discretized into

cells called elements, with about 10 to 20 elements per wavelength. The electric

field values are specified at the nodes of these elements and are initially unknown.

Through the requirement of the boundary conditions, the differential equation is

converted into a matrix equation for the unknown node electric field values. This

equation is solved using, e.g., standard Gaussian elimination (GE) or one of the
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preconditioned iterative method such as the conjugate gradient method (CGM).

The computational complexity of the FEM with sparse GE is O(n7), whereas that

of the FEM with the CGM is only O(n4). The important advantages of the FEM

are that it can be applied to arbitrarily shaped and inhomogeneous particles, is

simple in concept and implementation, and avoid the singular-kernel problem typ-

ical of integral equation methods. However, FEM computations are spread over

the entire computational domain rather than the confined to the scatterer itself

as in the integral equation methods. This tends to make FEM calculations rather

time consuming and limits the maximum size parameter to values less that about

10. Other disadvantage of the FEM with CGM is that computations must be

repeated for each new direction of incidence.

Another significant approach of solving electromagnetic waves scattering problem

is the Fredholm Integral Method (FIM) [13], [98, 99, 100, 101, 102], formulated in

terms of volume integral equation which can be solved approximately by means

of a series of successive or iterative approximations known as the Born series

approximation. Applying Fourier transforms to the general solution expressed

in terms of Green’s function (i.e. by solving the point source equation) leaves the

volume integral with a non-singular kernel. In 1980 Holt [103] gave an in-depth

comparison of the FIM theory and the T-matrix methods. However, the Holt

approach could not effectively handle arbitrary shape and inhomogeneous particle

due to the limitation in evaluating the second Born approximation term. Our new

approach of the FIM implementation proposed in this study has a good potential

for evaluating inhomogeneous scatterers if numerical approach is applied and the

number of equations to be solved reduces to n2.
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2.8 Summary

In this chapter we presented an overview of the Maxwell macroscopic equations

as the basis for the wave theory approach in electromagnetic scattering by dielec-

tric particles. The processes lead to the formation, growth, and precipitation of

cloud particles in the atmosphere with emphasis on irregular hydrometeors such

as melting snowflakes were highlighted. Followed by the melting layer model use

in weather radar to describe the height of the Bright Band.

A short description of available models to evaluate the refractive index of irregular

hydrometeors such as melting snowflake consisting liquid water, ice and air are

given. A concise overview of effective mixing theories such as Maxwell-Garnett,

Bruggeman and Coherent Potential mixing rule were described using the general

family formula and appropriate references have been provided for application of

these rules and others not mentioned in this study to dielectric or conductor-

dielectric mixtures.

An overview of the Mie theory in terms of scattering problems has been given

with particular interest in spherical particles and suitable literature have also been

provided. We highlighted the theory and progress in T-Matrix Extended Boundary

Condition (P.C.Waterman) in terms of its applications in the weather radar and

microwave propagation and scattering, the T-Matrix approach supported by freely

available codes is now ubiquitous. Furthermore, we gave a short description of

another competing method, the Discrete Dipole Approximation, which replaces

the scattering bodies with point of dipoles. For electrically small scatterers that

are nevertheless compositionally fine grained, this approach is potentially more

efficient than the standard Holt FIE method.
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Finally, a short description of other techniques were presented with emphasis on

Fredholm integral method owing to its distinctive feature in this study. The FIM

is not new, rather the task of extending this approach with the main aim of evalu-

ating scattering properties of inhomogeneous scatterers consisting of homogeneous

inclusions. An in-depth theoretical overview of the FIM would be covered in chap-

ter 3 and form the theoretical framework of this study.
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CHAPTER 3

THEORY OF THE DISCRETE

METHOD

3.1 Theoretical overview

Physical laws often can be expressed as differential, integro-differential and integral

equations. In particular, scattering problems in differential or integro-differential

necessitate additional boundary conditions which complicates the problem to be

solved. This constraint does not arise when an integral equation method is used

to characterise the scattering problem. Most importantly, the boundary condition

of an integral equation is embedded in the formation of the problem [104]. This

is particularly appropriate for the theoretical analysis of scattering theory, where
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the interaction of electromagnetic waves with the particles may be presented in a

somewhat phenomenological form to evaluate the desired scattering functions. In

this chapter, we will highlight properties of an integral equation with special inter-

est in Fredholm Integral Equation (FIE) of the second kind [105]. The theoretical

expression for the scattering problem for both scalar and electromagnetic cases is

discussed briefly. Finally, the formulation of theoretical analysis of the problem

statement using FIE approach is introduced.

Fundamentally, an integral equation can be defined as an equation in which the

unknown function to be determined appears under the integral sign. A typical

form of an integral equation with the unknown function is given [105]

u(x) = f(x) + λ

∫ β(x)

α(x)

K(x, t)u(t) dt, (3.1)

where K(x, t) is called the kernel of the integral equation (3.1), α(x) and β(x) are

the limits of integration. It can be easily observed that the unknown function u(t)

appears under the integral sign. Both the kernel and the function f(x) are usually

known functions, and λ is a constant parameter.

There are four major types of integral equations used for solving the unknown

function; however, equation (3.3) would be mentioned because of its peculiarity

for the solution of inhomogeneous problems which is the focus of this work. The

standard form of Fredholm linear integral equation used in this analysis will be

treated in § 3.1.2 and it is generally expressed as

φ(x)u(x) = f(x) + λ

∫ b

a

K(x, t)u(t) dt, (3.2)

where the limits of integration a and b are constant, the unknown function appears
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linearly under the integral sign and φ(x) = 1, then (3.2) becomes

u(x) = f(x) + λ

∫ b

a

K(x, t)u(t) dt. (3.3)

This equation is defined as the non-homogeneous Fredholm linear Integral Equa-

tion (FIE) of the second kind. For φ(x) = 0 in equation (3.2) leads to the FIE of

the first kind expressed as

0 = f(x) + λ

∫ b

a

K(x, t)u(t) dt. (3.4)

Applying an integral equations method to solve physical problems offers many

advantages, few of which are listed below:

1. In a situation where the problem size becomes very large, the cruelty of scal-

ing law prevails, implying that differential equations become very complex

and usually require more unknown to be solved [106].

2. The unknown function can often be reduced from volume to surface integral

whereas if a differential equation is solved and the unknown permeates the

whole space of the object.

3. The Green’s function method is appropriate to the boundary condition at

hand and is a common approach in solving electromagnetic problems.

4. No boundary condition is required when applying integral equations to solve

physical problems.

5. An integral equation method is seen to be very advantageous for numerical

calculations.
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3.1.1 Integral equation approach to scalar waves scattering

The time-independent Schrödinger differential equation in [22] is used to describe

a scalar wave function ψ(r)

E ψ(r) =

[
− ~2

2m
∇2 + V (r)

]
ψ(r), (3.5)

which can be rewritten as

(∇2 + k2)ψ(r) = Q, (3.6)

where k =

√
2mE

~
is the wavenumber, and Q =

2m

~2
V (r)ψ(r) is the forcing

function. The general solutions of (3.6) can be expressed as the sum of the homo-

geneous ψh(r) and a particular ψp(r) solutions

ψ(r) = ψh(r) + ψp(r). (3.7)

The homogeneous part satisfies this equation

(∇2 + k2)ψh(r) = 0, (3.8)

and the solution correspond to an incident plane wave Aeik ·r. To determine the

scattered field that will occur with an object having differing refractive index

from the background medium, the particular solution has to be evaluated. The

Green’s function method can be used. Although the derivation of the Green’s

function method is given in Appendix B.1, and the general solution of (3.7) can

be expressed as

ψ(r) = Aeik ·r +
2m

~2

∫
G(r, r′)V (r′)ψ(r′)d3r′. (3.9)
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The particular solution ψp(r) of equation (3.7) using the Green’s function method

for the case of the outgoing wave (scattered wave) can be expressed as [107]

G(r, r′) =
eik|r−r′|

4π |r− r′|
. (3.10)

Substituting (3.10) into (3.9) gives

ψ(r) = Aeik ·r +
m

2π~2

∫
eik|r−r′|

|r− r′|
V (r′)ψ(r′)d3r′. (3.11)

Evidently, equation (3.11) takes the form of (3.1) and the solution of can be solved

successfully by means of a series of successive or iterative approximations, known

as the Born’s or Neumann’s series [108].

The zeroth order of the Born approximation is straightforward, ψ0(r) = φinc(r) =

Aeik ·r, where φinc(r) is the incident field. Accordingly, the first approximation

ψ1(r) of the solution of ψ(r) is expressed as

ψ1(r) = φinc(r) +
m

2π~2

∫
eik|r−r1|

|r− r1|
V (r1)ψ0(r1)d3r1 = (3.12a)

φinc(r) +
m

2π~2

∫
eik|r−r1|

|r− r1|
V (r1)φinc(r1)d3r1. (3.12b)

The second approximation ψ2(r) for the solution of ψ(r) can be obtained by re-

placing ψ0(r) in equation (3.12) by the previously obtained ψ1(r), which become
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ψ2(r) = φinc(r) +
m

2π~2

∫
eik|r−r2|

|r− r2|
V (r2)ψ1(r2)d3r2 = (3.13a)

φinc(r) +
m

2π~2

∫
eik|r−r2|

|r− r2|
V (r2)φinc(r2)d3r2+

m2

4π2~4

∫
eik|r−r2|

|r− r2|
V (r2) d3r2

∫
eik|r2−r1|

|r2 − r1|
V (r1)φinc(r1)d3r1. (3.13b)

Continuing in this way, we can obtain any desired order; the nth order approxima-

tion for the wave function is a series which can be obtained by analogy of inserting

lower-order terms into higher ones. The second approximation term is considered

to be adequate and well approximated in scattering theory to describe the desired

characteristics of the scatterer.

Now that we have used the Born approximation, exploring the far field or asymp-

totic limits of the wave function can be achieved. In scattering theory r >> r′,

where r is the observation point of the scattering particle and r′ is inferred to be

the characteristic dimension of the scatterer. We may approximate for all points

in the integral

k |r− r′| = k
√
r2 + r′2 − 2 r · r′ ' kr − kr̂ · r′, (3.14a)

eik|r−r
′| = eikr e−ik·r

′, (3.14b)

1

|r− r′|
=

1

r

1

|1− r · r′/r2|
' 1

r

(
1 +

r · r′

r2

)
' 1

r
. (3.15)

where k = kr̂. Note that substituting (3.14) and (3.15) into (3.11) gives

ψ(r) = Aeik·r +
m

2π~2

∫
eikr e−ik·r′

r
V (r′)ψ(r′)d3r′. (3.16)

It is possible from the previous two approximation (3.14), we may write the asymp-
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totic form of (3.11) as follows

ψ(r) ≈ exp (iki · r) +
exp (ikr)

r
f(θ, ϕ), r −→∞. (3.17)

And here the scattering amplitude function f(θ, ϕ) is given as

f(θ, ϕ) =
m

2π~2

∫
exp (−iks · r′)V (r′)ψ(r′)d3r′, (3.18)

where ks is the wave vector of scattered wave; the differential and total cross

section are given by

dσ

dΩ
= |f(θ, ϕ)|2 , (3.19a)

σt =

∫
|f(θ, ϕ)|2 dΩ. (3.19b)

All we have done is to rewrite the Schrödinger differential equation (3.5) into an

integral form (3.11), which is more suitable and well approximated for the scalar

scattering theory problems.

3.1.2 Integral equation approach to EM waves Scattering

The notation of [29] and [109] are followed for the brief description of electromag-

netic scattering problem by single particles. Considering a finite scatterer in the

form of a single body or fixed aggregate embedded in an infinite, homogeneous,

linear, isotropic, and non-absorbing medium. Mathematically, this is equivalent

to dividing all space into two mutually disjoint regions, the finite region repre-

sents the interior of the scattering object and the infinite region is described as

the exterior to the object.
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We shall here use the Green’s function method which is customary in quantum

scattering theory (scalar waves). Here it is adapted for the case of electromag-

netic wave. A typical representation of the scattering by the object begins with

Maxwell’s differential equations that are valid inside and outside of the volume con-

taining dielectric objects. The differential equation in (2.22) is expressed herein

as

∇× (∇× E)− k2
0 E = k2

0(n2 − 1)E. (3.20)

The general solution of the inhomogeneous linear differential equations (3.20) is (a)

a complimentary solution of the respective homogeneous equation with the right

hand side identically equal to zero and (b) particular solution of the inhomogeneous

equation. Thus, the homogeneous equation of part (a) is the Helmholtz vector wave

equation (2.15)

∇×∇× E− k2E = 0, (3.21)

and describes the field that will exist in the absence of the scattering object, (i.e.

the incident field). The physical appropriate particular solution of equation (3.20)

must satisfy the scattered field generated by the forcing function. The Green’s

function method is employed with the derivation given in Appendix B.1 which

shows that to evaluate the scattered field E in equation (3.20), the scattered field

is replaced by the free space dyadic Green’s function Ḡ(r, r′) while the right hand

side of the inhomogeneous equation is also replaced by a three dimensional Dirac

delta function δ(r, r′) or point source. This modification leads to a new differential

equation [107]

∇×∇× Ḡ(r, r′)− k2
0Ḡ(r, r′) = −Īδ(r, r′). (3.22)

The solution of the equation (3.22) consisting of the dyadic Green’s function and
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Dirac delta function is given in [110] and [111]

Ḡ(r, r′) = (Ī + k−2
0 ∇∇)G(r, r′), (3.23)

where G(r, r′) =
exp(ik |r− r′|)

4π |r− r′|
is the three dimensional free space Green’s func-

tion, Ī is the unit dyadic. It is worth noting that the dyadic component essentially

projects out longitudinal components in the far field, which automatically ensure

that the far field is transverse, so having only two components.

The general solution of (2.22) for the case of the electric field E(r) in integral form

after rigorous analysis is given in (2.20)

E(r) = Ei(r) +

∫
V

Ḡ(r, r′)
{
k2

0(n2 − 1)E(r′) +∇×
[
(1− µ−1)∇′ × E(r′)

]}
d3r′,

(3.24)

where γ(r) = k2
0(n2 − 1) is the polarizability and n the refractive index of the

scattering object. It is clear from equation (3.24) that the integral extends over

the volume of the scatterer. In the case of dielectric particles (i.e. non magnetic

particles µ = 1), the integral equation reduces to the form

E(r) = Ei(r) +

∫
V

Ḡ(r, r′)k2(n2 − 1)E(r′)d3r′. (3.25)

The incoming or incident plane wave Ei(r) can be defined in dyadic notation as:

Ei(r) = J̄i exp (ik · r), (3.26)

where J̄λ = Ī−k̂λk̂λ is the projection dyadic relative to the incident field direction,

k̂λ is a unit vector along kλ and the subscript λ could be referred as incident i or

scattered s . If we assume the refractive index of the scatterer n −→ 1 and µ ≈ 1,
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then equation (3.24) becomes

E(r) = Ei(r), (3.27)

which means the electric field is apparently equal to the incident field. The problem

of non-linear equations are more convenient to solve in differential equation form

as discussed in [106] and [112], however, this is not considered in this study.

3.2 Definition of the research problem

The theoretical definition of research problem is presented in this section especially

in relation to some assumptions that have to be included to satisfactorily char-

acterize electromagnetic waves scattering by homogeneous scatterer for studying

inhomogeneous (melting irregular hydrometeors) particles.

If one assumes that scattered wave from a sphere will behave as an outgoing

spherical wave, for large distance from the scattering particle, then it is possible

to express the electric field at some point in space r by [113]

E(r) = Ei(r) + Es(r),

E(r) ≈ exp (i ki · r) +
exp(ik0r)

r
F(ks, ki) +O

(
1

r2

)
.

(3.28)

The ki is the incident wave vector and ks is the scattered wave vector and F is

the scattering function which describes the scattering behaviour of the particle.

Different methods can be employed to obtain this function. One of these has

already been discussed in § 2.7.1 for the case of Mie theory.

However as discussed in § 2.3, the formation of irregular hydrometeors in the melt-
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ing layer are relatively complex and the techniques discussed briefly in § 2.7 are

not satisfactory. The FIM technique has been applied to the case of spheroids

and ellipsoids [98]. Nevertheless, melting snowflake can not really be modelled

as such geometric bodies since it is demonstrated that many scattering models,

including spherical and spheroidal models, do not adequately describe the aggre-

gate snowflakes that are observed [114]. As a result of this difficulty we proposed

a new approach to the FIM for evaluation microwave scattering by irregular hy-

drometeors with solid inclusions randomly distributed (such as melting snowflakes

consisting of different dielectric constants).

We assume a plane electromagnetic wave incident on a single or fixed aggregate

scatterer with simple harmonic time dependence at angular frequency ω. For sim-

plicity we suppressed the time factor exp(−iωt) in all field quantities. Considering

a homogeneous dielectric scatterer scenario and can be formulated using the dyadic

EM wave equation. Substituting (3.26) into (3.25) we obtain

E(r) = J̄i exp (iki · r) +

∫
Ḡ(r, r′)k2

0(n2 − 1)E(r′)d3r′, (3.29)

where r and r′ are position vectors respectively, with r′ within the volume of the

scatterer and r observation point in space. Ḡ is the dyadic Green’s function given

in Appendix B.1 and defined as

Ḡ(r, r′) =

[
Ī +
∇∇
k2

0

]
exp(ik0 |r− r′|)

4π |r− r′|
, (3.30)

using the asymptotic behaviour of Ḡ(r, r′) as r −→∞, it is possible to deduce the

total electric field E(r) in the far field

E(r) ≈ J̄i exp (iki · r) +
exp(ik0r)

r
F̄(ks, ki) +O

(
1

r2

)
, (3.31)
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which is of the same form as (3.28) and where the dyadic scattering amplitude

F̄(ks,ki) is definite as

F̄(ks, ki) = J̄s ·
∫
V

exp(−i ks · r)γ(r)E(r)d3r. (3.32)

Now can we see that the scattering function is dependent only on the electric field

within the volume of the scatterer. This formulation does not actually require

any knowledge of the field outside the scatterer since the integration in (3.32) is

only throughout the volume of the scatterer. Therefore, we are able to compute

the electric field inside the scattering particle, it is possible to obtain the dyadic

scattering amplitude function F̄.

The field equation (3.29) is an integral equation with a singular kernel which makes

it exceedingly demanding to evaluate. In what follows, a method is proposed to

deal with the singularity effect analytically, leaving an integral equation with a

non-singular kernel. Hence, pre-multiplying (3.29) by exp(−ik1 · r)γ(r), where

k1 is an arbitrary vector and integrating throughout the volume of the scattering

particle gives [113]

∫
exp(−ik1 · r)γ(r)E(r)d3r = (3.33)

J̄i

∫
exp {i(ki − k1) · r} γ(r)d3r +∫∫

d3r d3r′ exp(−ik1 · r)Ḡ(r, r′)γ(r′)E(r′),

with γ(r) = k2
0(n2 − 1) the polarizability.

Carrying out a Fourier transform on (3.29), which is square integrable inside the
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scatterer, it is possible to avoid the singularity and it is expressed in [101]

E(r) =

∫
C̄(k2) exp(ik2 · r) d3k2. (3.34)

It is noted that (3.34) does not give any representation of the field outside the scat-

terer, but it does coincide with true field inside the scatterer. Hence, substituting

(3.34) into (3.33) gives

∫
d3k2 K̄(k1, k2) C̄(k2)) = J̄i U(k1, ki), (3.35)

where

U(k1, ki) =

∫
γ(r) exp [−i(k1 − ki) · r] d3r, (3.36)

the first Born term and in effect the spatial Fourier transform of the polarizability

γ(r) of the scatterer. The K̄ term can be expressed as

K̄(k1, k2) = ĪU(k1, k2)−
∫

d3r

∫
d3r′ (3.37)

· exp(−i k1 · r)γ(r)Ḡ(r, r′)γ(r′) exp(i k2 · r′),

is the kernel of the FIM and this is known to be remarkably stable. It can be

expressed as

K̄(k1, k2) = ĪW (k1, k2)− Z̄(k1, k2), (3.38)

where K̄(k1,k2) is the non-singular kernel, Z̄(k1,k2) correspond to the second Born

series terms respectively. In the case of homogeneous scatterers, W (k1, k2) is a

simple pointwise multiplication of th first Born term U(k1,k2) with the dielectric
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constant given in [13]

W (k1, k2) =

∫
exp [−i(k1 − k2) · r] γ(r)ε(r)d3r, (3.39)

and

Z̄(k1, k2) =
1

8π3k2
0

lim
ε→0

∫
p2 d3p

p2 − k2
0 − iε

[
Ī− p̂p̂

]
U(k1,p)U(p,k2). (3.40)

Substituting (3.34) into (3.33) leads to expressing the dyadic scattering function

given in [98]

F̄(ks, ki) =
1

4π
J̄s ·

∫
d3k2 U(ks,k2) C̄(k2). (3.41)

Equations (3.37) and (3.41) are the exact solution of the coupled Fredholm in-

tegral equations which together are use to determine the scattering amplitudes.

They have the important property that K̄ is non-singular and (3.37) is solved by

evaluating the integral by numerical quadrature. This has the effect of reducing

the integral equation to matrix equations, which can easily be solved using any of

the established factorization methods. This reduction is equivalent to describing

the internal field in terms of a finite number of linear elements.

Evaluation of (3.36) which is known as the first Born term is straight forward.

However, the Z̄ term known as the second Born approximation term is more com-

plex to evaluate. Holt et.al [98],[101] calculates the Z̄ by expanding the first Born

terms appearing under the phase integral into a series and then performed contour

integration of the infinite radial phase integral as explained in [115] and [116].

This leads to the reduction of the integral into two angular integrations which are

evaluated numerically. Detailed description of the derivation and evaluation of the

Born terms are omitted for brevity and are expressly described in previous work
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of [98], [103] and [113].

We need to use a new approach in this study which is directly in contrast with the

FIM method description given by Holt et.al [98] and it would be treated in the

next section.

3.3 Adapting FIM theory to Discrete Method

The method already discussed in § 3.2 is based on scattering from homogeneous

bodies such as spheroids and ellipsoids is adapted to account for our new approach

that we called the Discrete Method (DM) since we propose to employ a direct spa-

tial integration rather than using the numerical integration of expansion in a set

of polynomial proposed by Holt et al [98]. In this way, the scattering problem

for the inhomogeneous particle can be formulated using equation (3.28) consider-

ing discretizing the inhomogeneous scattering particle into homogeneous dielectric

cells.

3.3.1 Theoretical analysis of the first Born’s term

We consider a finite homogeneous domain of three-dimensional regular lattice field

discretized into uniform cubes known as cells or grid points. In order to validate

the new proposed approach we consider solid shapes such as sphere with refractive

index different from that of the finite domain as a result of already existing exact

solution (Mie theory).

The evaluation of first Born term given in (3.36) using our proposed method is

simple and straight forward with the discretization of the lattice field. We express
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the U term as a summation over the cells according to their weighted contents

given as follows

U(kn,km) =
∑
j

Uj(kn,km), (3.42)

hence,

Uj(kn,km) = exp [−i(kn − km) · rj] γ(rj)

·
∫
r⊂Vj

exp (−i(kn − km) · rj) · (r− rj)d
3r =

exp [−i(kn − km) · rj] γ(rj) U0(kn,km) =

= exp(−i∆kn,m · rj) γ(rj) ∆v.

(3.43)

where Vj is the interior of the jth cell, U0(kn,km) well approximated to be the

elementary cell volume ∆v, γ(r) the polarizability/cells and rj is the centre of the

jth cell. Clearly, the integral is the Fourier transform of the weighted cell, and is a

spatially invariant function of kn− km. Note that the integral part of (3.43) after

some manipulation is well approximated by the elementary cell volume dv, and kn

and km are expressed as

kn = km = |kn| (sin θn cosφn, sin θn sinφn, cos θn),

|kn| = mk0,

(3.44)

where |kn| is the internal wave number, m the complex refractive index of the

scatterer, r is a position vector which indicates location of cells or grid points in

the regular lattice field (jth cell), kn and km are array of internal wave vectors, n

and m represent the dimensions of the internal wave vectors, ∆kn,m = kn − km

are the distances between the array of pivot vectors, exp(−i∆kn,m · r) is the phase

shift for each grid point in the 3-dimensional regular lattice field and U(kn,km) is

the algebraic sum of the evaluated cells within the scattering particle according to

their weighted contents.
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The distances between pair of array of internal vectors (kn − km) appear like a

mesh structure for a grid point as shown in Figure 3.1. This is the same for all

other grid points within the lattice field. This approach simplifies the evaluation

of the first Born term in (3.43) and ∆kn,m can be expressed in matrix form as:

∆kn,m =



k1,1 k1,2 · · · k1,m

k2,1 k2,2 · · · k2,m

...
...

. . .
...

kn,1 kn,2 · · · kn,m


. (3.45)

The matrix form of (3.45) is illustrated in Figure 3.1 showing the distance be-

tween the internal wave vectors for a grid point with lines in a two-dimensional

configuration.

𝑘1,3 

𝑘1,1 

𝑘1,4 

𝑘1,5 𝑘1,6 

𝑘1,7 

Figure 3.1: Geometry of a cross-sectional view of grid point in a mesh like structure
showing the distance between array of internal wave vectors for evaluating first
Born term with attention to ∆kn,m.

Note that the array of the internal waves vectors kn and km are identical, so
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that the leading diagonal elements in (3.45) become zero and the phase shift

exp(−i∆kn,m · r) = 1. The lower triangular matrix elements are conjugate of

the correspondent upper elements. Hence, the number Np of elements required

has been reduced to the upper triangular matrix elements and it is

Np =
n(n+ 1)

2
.

By virtue of the theory of the U-term described, it is noted that (3.42) is easy

to evaluate as a result of reusing numerical values for a grid point in other cells

and this is achieved due to the uniform discretization of the lattice field into grid

points (cubes).

The W (kn,km) function follows the same analytical procedure except for the ad-

dition of extra term, ε(r). In relation to the generic theoretical approach, it is

just a simple pointwise multiplication of the dielectric constant of the grid points

ε(r) within the scatterer as a function of position r by the first Born series term

in equation (3.42). Fortunately each of the cells or grid points are homogeneous.

Therefore, W (kn,km) function can be expressed as

W (kn,km) =
∑
rj

exp(−i∆kn,m · rj) γ(rj) ε(rj) ∆v, (3.46)

or, alternatively as

W (kn,km) =
∑
rj

Uj(kn,km)ε(rj). (3.47)
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3.3.2 Theoretical analysis of the second Born’s term

We use the same assumption of uniform discretization of the regular lattice field

for the evaluation of the second Born approximation. We begin the theoretical

analysis by adapting equation (3.40), expanding the U terms that appear under

the integral and expressing it as a summation over the cells.

Z(kn, km) =
1

8π3k2
0

∫
Ω

∫ ∞
0

p4 dΩ dp

p2 − k2
0 − iε

[Ī− p̂p̂]Uj (kn,p)Ui (p,km). (3.48)

For brevity, we expressed the U terms in the same way as equation (3.43)

Uj(kn,p) = γ(rj) exp (−i(kn − p) · rj)U0(kn,p), (3.49)

and

Ui(p,km) = γ(ri) exp (−i(p− km) · ri)U0(p,km). (3.50)

Substituting (3.49) and (3.50) into (3.48) and taking summation over rj and ri

leads to expressing the Z-term in a discretized version of the U terms

Z̄(kn, km) =
1

8π3k2
0

∑
j

∑
i

γ(rj)γ(ri)

∫
Ω

∫ ∞
0

e[−i(kn−p)·rj ]

· e[−i(p−km)·ri] U0(kn,p)U0(p,km)
p4 dΩ dp

p2 − k2
0 − iε

[Ī− p̂p̂].

(3.51)

The notation [Ī− p̂p̂] has the representation

Ī− p̂p̂ =


1− y2 cos2 φ −y2 cosφ sinφ −xy cosφ

−y2 cosφ sinφ 1− y2 sin2 φ −xy sinφ

−xy cosφ −xy sinφ y2

 , (3.52)
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we have used the following: cos θ = x, sin θ = y and

sin2 θ + cos2 θ = 1,

y2 + x2 = 1,

(3.53)

where

y2 = 1− x2. (3.54)

By separation of the radial exponential terms in the U-terms in equation (3.51)

and rearranging the terms, the Z̄ term is further simplified to the form expressed

as

Z(kn, km) =
1

8π3k2
0

∑
j

∑
i

γ(rj)γ(ri) exp (−ikn · rj) exp (ikm · ri)

·
∫

Ω

∫ ∞
0

· exp [i(p̂ · (rj − ri)p] U0(kn,p)U0(p,km)

· p4 dΩ dp

p2 − k2
0 − iε

[Ī− p̂p̂],

(3.55)

where kn, km are array of internal wave vectors respectively, p the array of pivot

vector, γ(rj) and γ(ri) are the polarizabilities given as k2
0(ε − 1) with respect to

distinct cells in the regular 3-dimensional lattice field.

The aim is to evaluate the integral over p by contour integration. The largest

contribution to this integral occurs close to the pole so that the U0 factors in

the term are well approximated. Now, we have to deal with the integral over p,

expressed as

∫
Ω

∫ ∞
0

U0(kn,p)U0(p,km) exp(iβp)
p4 dΩ dp

p2 − k2
0 − iε

, (3.56)

where β = p̂ · (ri − rj) is the relative phase of the cells measured in the direction
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of the pivot vector. The problem arises if we wish to directly evaluate the integral

(3.56) over p by means of contour integration. The behaviour of the integrand on

the imaginary axis needs to be considered carefully. For a cubic cell, U0 takes the

form of a three dimensional sinc function, and there are considerable difficulties in

obtaining a convergent integral analytically.

Now, we may consider a more radical approach in which it is argued that the

contribution of these terms should not depend critically on the shape of the cubic

cell, but is much more strongly dependent on its volume. Accordingly, we consider

instead, substituting U0 with Us, defined as the function for a sphere of equal

volume to the basic cubic cell. We need to do this approximation because of the

singularity in the domain of integration, but noticed that it is not possible to use

the cubic cell as discussed [117]. We only need to consider how this term behaves

at large imaginary p, hence we expressed the U0 factors as

U0 ≈ Us = 4πρ3
J 3

2
(pρ)

(pρ)
3
2

, (3.57)

where J (3/2, ρp) is the half order Bessel function, the relationship of the radial

part of (3.57) to the basic cubic cell characteristic length can be approximated as

abc ≈ 4πρ3

3
, if a = b = c, a3 ≈ 4πρ3

3
, (3.58)

where a, b, c are the dimensions of the cubic cell and the equivalent volume radius

ρ is expressed as

ρ = a

(
3

√
3

4π

)
. (3.59)

When the argument pρ in (3.57) is very small (i.e. zero of the Fourier transform

of the content of the sphere), the half order Bessel function tends to 1/3, so
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that the term is equal to the cell volume. In (3.57) we have neglected the offset

contribution of kn and km. It can be justified by considering an expansion in

infinite series of higher order cylinder functions. It may be assumed that pρ is

so small for fundamental cell that the higher terms may be neglected. Note that

substituting (3.57) into (3.56) introduces integrals of product of Bessel functions of

half order. It is not possible to apply a closed form analytical solution to evaluate

this integral as described in G.N.Watson [115, p. 429]. The problem of the Z-term

integral for paired spherical cells is that we need to evaluate the radial part of the

Z integral. This can be expressed as

Ik0 = lim
ε−→0+

1

ρ3

∫ ∞
0

J2
ν (pρ)

p3

p4 exp(iβp)

p2 − k2
0 − iε

dp, (3.60)

where v = 3
2

is the order of the Bessel function. The position of the main pole is

close to the real axis as shown in Figure 3.4 for the problem of interest. Care need

to be exercised with regards to the signs of the residues because of the direction

of traversing the contour. A further simplification is that if the cell sizes are small

enough with respect to the wavelength, the expansion of the Bessel functions

involving the separation vector in wavenumber space can be truncated to the first

term as the rest are negligible [115]. Let us consider the following integral

I1 = lim
ε−→0+

1

ρ3

∫ ∞
0

J2
ν (ρ k0 p

′)
p′ exp(iβk0p

′)

p′2 − 1− iε
dp′, (3.61)

where

p′ =
p

k0

. (3.62)
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Hence, comparing coefficients of (3.60) and (3.61), we can write Ik0 as

Ik0 =
1

k2
0

I1,

=
1

k2
0

1

ρ3

∫ ∞
0

J2
ν (ρ k0 p

′)
p′ exp(iβ k0 p

′)

p′2 − 1
dp′.

(3.63)

Then, substituting (3.63) into (3.55) leads to expressing the Z-term as

Z(kn, km) =
1

8π3k2
0

4π

Nm

16π2 ρ6

ρ3

∑
j

∑
i

γ(rj)γ(ri) exp (−ikn · rj) exp (ikm · ri)

· [Ī− p̂p̂]

∫ ∞
0

J2
ν (ρ k0 p

′)
p′ exp(iβk0p

′)

p′2 − 1
dp′.

(3.64)

Equation (3.64) is the normalised form of the integral required in evaluating the

contribution of the Z integral, which is the product of the Fourier transforms of

the scatterer content k2
0(ε− 1) and therefore, a double volume integral over pairs

of points. This can be re-expressed as the sum of a more elementary integral

involving pairs of identically sized cells. Knowing how to calculate this integral for

an arbitrarily separated pair of cells, the entire Z integral can be expressed as the

sum of all such pair-wise contributions.

The function (3.60) depends on two parameters, ρ k0 and β, where ρ is the radius of

the equivolume spherical cell. By definition there is a singularity close to the real

axis, which makes direct evaluation of the integral by numerical means somehow

problematic. Integrals of this type were considered early in the history of analysis

of Bessel functions, and particularly by Hankel integral method [115, p.429]. In

many cases, such integrals of products of Bessel functions have a closed form

solution involving Bessel functions and Hankel functions evaluated at the pole. In

our case, the pure exponential factor in the integrand can be expressed in terms

of Bessel functions of half-order. Unfortunately the approach taken by Hankel
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and others [115, 116] cannot be applied essentially because of the power of p in

the integrand being odd. In fact, it is not possible to use symmetry arguments

to extend the integral to the negative axis. An alternative approach which still

involves contour integration method would be to integrate along a quandrantal

contour which goes from zero to real infinity, then anticlockwise around a quarter

circle and then returning along the imaginary axis. The attractiveness of this

scheme would be that the integral along the imaginary axis has no poles and

decreases monotonically. However, investigations found that although there is a

dominant exponential factor, the residual factor is not close to polynomial form

because of the denominator terms in the integrand, and fast quadrature schemes

do not work well.

A more workable solution was found by using a weighting function to the radial

integral (3.60). This takes the form,

∫ ∞
0

J2
ν (k0 ρ p

′) w(p′)
p′ exp(iβk0p

′)

p′2 − 1
dp′. (3.65)

The conditioning weighting function w(p′) can be expressed as

w(p′) =
1

1 + exp(−(α p′)2)
, (3.66)

where p′ in (3.66) is complex, given as

p′ =
1

α

√
(2n− 1)π i, (3.67)

and
√
i = exp

(
iπ

4

)
. (3.68)
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Expanding the right hand side of (3.68) using Euler’s formula leads to

√
i =

1 + i√
2
, (3.69)

hence, p′ can be expressed as

p′ =
1

α

√
(2n− 1)π

(1 + i)√
2

n = 1, 2, 3, 4, · · · , N. (3.70)

Now the weighting function on the real axis, w(p′) ≈ 1
2

near the origin as shown

in Figure 3.2, but rapidly increases to 1. The function approximates the desired

integral (3.63) as α increases. Since the integral is small anyway near the origin,

the result is accurate even for modest values of α. The function w on the real axis,

where p′ = x takes this form

w(x) =
1

1 + exp (−α2 x2)
, (3.71)
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Figure 3.2: The weighting factor w as a function of <(p′) for α = 4.0
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on the imaginary axis, where p′ = iy, it takes this form

w(y) =
1

1 + exp (α2 y2)
, (3.72)

For small y, thus w ≈ 1
2

it decreases very rapidly as shown in Figure 3.3. Even

though the integral of the original integration (3.60) might increase exponentially

in one direction of the other, w increases it quickly. We are assured that on the

arc, the real axis tends to infinity and the integrand is vanishingly small.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.05

0.1
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0.3

0.35

0.4

0.45
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y

W
H


 i
y
L

Figure 3.3: The weighting factor w as a function of =(p′) for α = 4.0

This integral (3.60) is reduced relatively to the unweighted one by a slight amount,

because the integrand is very small near the origin. If necessary, the correction

can in anywise easily be corrected because the integrand has very simple behaviour

away from the pole. Correspondingly, along the positive imaginary axis the weight-

ing function very rapidly tends to zero, and apart from a similar very small con-

tribution near the origin, the weighted integral on the imaginary axis becomes

negligible. It can be verified that the integrand on the quarter circle diminishes
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sufficiently rapidly to be neglected towards infinity along the real axis as discussed.

As a result, therefore, the desired integral can be expressed accurately as a sum

of residues. There is only one problem with this prescription, which is that the

weighting function itself introduces new singularities, in fact an infinity of them

along the line x = y as shown in Figure 3.4, where the complex coordinate is

p′ = x + iy. However, experimental results show that the number of weighting

function poles, np′ ≥ 100 are sufficient to relatively perform the integration.

main pole

weighting 
function 
poles

Figure 3.4: Geometry of a semi circle split into two equal half with the top half
enclosing the poles at near real axis and the weighting function poles at x = y for
the evaluation of the second Born term.
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Although it is necessary to sum typically hundreds of residues to obtain conver-

gence, the regularity of the spacing of the poles makes the sum typically scalable

in relation to the cell size, and by considering the sum of the residues as a function

in its own right, it has been found that for a wide range of parameters ρ and β, the

residue sum can be approximated piecewise as a function of ρ and β. Figure 3.5

depict the conditioning weighting function poles without the normalised integral

Figure 3.5: The conditioning weighting function poles at x = y.

An exception to this finding, however, occurs when the phase separation param-

eter β is small. For this regime it appears that the summation of the residues

fails to converge, and the only viable alternative appears to directly model the

function. Numerical experimentation established that in this regime the function
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has excellent scaling properties with respect to cell size (when the cell is small) so

that a universal function of one parameter can effectively be established. Because

the function has a real symmetric peak, and an antisymmetric imaginary part that

also decays rapidly, the primary model for the function was a Gaussian for the real

part and the derivative of a Gaussian for the imaginary part. In practice this was

refined by fitting quartic functions to the argument of the exponential factors.

The conditioning weighting function suppresses the integrand a little at small

values, but to a very high accuracy kills the integrand on the imaginary axis,

suppressing the effect of the Bessel functions. The weighting function introduces

an infinite sequence of poles as shown in Figure 3.4 along the x = y line whose

residues have to be summed. But for larger β this turns out to be a well behaved

function that can also be interpolated. By breaking up the range appropriately,

good approximations that scale simply with the cell size parameter are obtained

using quartic polynomial segments. No attempt is made to force continuity in

value or derivatives between adjacent segments has been made. The graph of the

weighted integrand including poles at p = k0 and at x = y.
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Figure 3.6: The conditioning weighted integrand including poles at p = k0 and at
x = y

Looking at the graphs of both functions, one could suggest that the effect of in-

troducing the conditioning weighting function does not really affect the original

integral. Finally, the Z-term including the conditioning weighting function is sum-

marised as

Z(kn, km) =
1

2π2k2
0 Nm

12π∆v
∑
j

∑
i

γ(rj)γ(ri) exp (−ikn · rj) exp (ikm · ri)

· [Ī− p̂p̂]

∫ ∞
0

J2
ν (ρ k0 p

′)
p′ exp(iβk0p

′)

p′2 − 1
dp′,

(3.73)

where 16π2ρ3 =
4πρ3

3
×12π = 12π×∆v and the number of integral over p is given
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as Nm term.

In chapter 4, we would apply (3.73) according to the relationship between β and

ρk0 for the code level implementation of the Z-term for each cell pair.

3.3.3 Analysis of the non-singular Kernel and Amplitude

function

For the theory of non-singular kernel we multiply equation (3.46) by a unit dyadic,

thus leads to expressing the FIM kernel as subtracting the dyadic form of (3.46)

from (3.55), one can write the non-singular kernel as

K̄(kn,km) = ĪW (kn,km)− Z̄(kn,km). (3.74)

Now it is possible to evaluate the unknown solution vector in the form of dyadic

Fourier coefficient C̄m, we simplified (3.74) which reduces to a linear block matrix

equation with dyadic elements. This takes the form

∑
n,m

K̄(kn,km) (wmC̄m) = J̄i U(kn,ki),

∑
n,m

K̄(kn,km) Ȳm = J̄Un,

(3.75)

and

kn = kn(sin θn cosφn, sin θn sinφn, cos θn),

ki = k0(sin θi cosφi, sin θi sinφi, cos θi),

kn = mk0,

(3.76)

where kn is the internal array wave vectors, wm = 4π
Nm

is the formal numerical

integration weighting factor, Nm the number of integral over p, ki is the incident
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wave vector, m is the refractive index of scatterer, C̄m is the unknown solution

vector to be evaluated with elements in dyadic form and J̄i = [Ī − k̂ik̂i] is the

projection vector along the incident field direction with elements in dyadic form,

U(kn,ki) is also a first Born term with respect to array of internal wave vectors

and incident wave vector but with same theoretical approach and can be expressed

as

U(kn,ki) =
∑
j

Uj(kn,ki), (3.77)

where

Uj(kn,ki) = exp [−i(kn − ki) · rj] γ(rj) U0(kn,ki)),

= exp(−i∆kn,i · rj) γ(rj) ∆v,

(3.78)

and the U0 term in (3.78) is approximated to the elementary cell volume, hence the

theory of the distance between the array of internal wave vectors and the incident

wave vector (∆kn,i = kn − ki).

The block matrix form of equation (3.75) is given by



K̄1,1 K̄1,2 · · · K̄1,m

K̄2,1 K̄2,2 · · · K̄2,m

...
...

. . .
...

K̄n,1 K̄n,2 · · · K̄n,m





Ȳ1

Ȳ2

...

Ȳm


=



J̄U1

J̄U2

...

J̄Un


, (3.79)

and

∆kn,i =



k1 − ki

k2 − ki
...

kn − ki


, (3.80)

where Ȳm =
4π

Nm

× C̄m is the multiplication of the formal weighting factor and
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unknown Fourier coefficient vector, and J̄Un is the right hand side vector in the

form of dyadic.

After some mathematical manipulation, we write (3.41) as a summation over cells

and multiply by scattered direction projection vector in dyadic form

F̄(ks,ki) = J̄s
∑
m

Uj(ks,km)Ȳm, (3.81)

hence

km = km(sin θm cosφm, sin θm sinφm, cos θm),

ks = k0(sin θs cosφs, sin θs sinφs, cos θs),

km = mk0,

(3.82)

where km is the internal array wave vectors, ks is the scattered wave vector, m

is the refractive index of scatterer, Ȳm is the solution vector including formal

weighting factor in dyadic form, and J̄s = [Ī − k̂sk̂s] is the dyadic projection

vector in the scattered field direction.

Clearly, the theory of the first Born term U(ks,km) appearing under the sum-

mation in (3.81) is slightly different from (3.42) but followed the same procedure

given in (3.80) and is defined as

U(ks,km) =
∑
j

Uj(ks,km), (3.83)

where

Uj(ks,km) = exp [−i(ks − km) · rj] γ(rj) U0(ks,km)),

= exp(−i∆ks,m · rj) γ(rj) ∆v.

(3.84)

Note that the U0 term in (3.84) is also well approximated to the elementary cell

volume, and the distance between array of pair vectors (∆ks,m = ks − km) are
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based on scattered wave vector and array of internal wave vectors respectively and

can be expressed in column vector form as

∆ks,m =



ks − k1

ks − k2

...

ks − km


. (3.85)

Both equations (3.75) and (3.81) are coupled Fredholm integral equation which

together determine the scattering amplitude function which confirm the validity

of the our theoretical analysis, and are similar to the previous method described in

[98]. Other scattering properties can easily be obtained once the dyadic scattering

amplitude function is evaluated.

The scattering amplitude considering incident and scattered fields polarization are

defined by

f‖(0) = ê‖ · F̄(ks,ki) · êx,

f⊥(0) = ê⊥ · F̄(ks,ki) · êy,
(3.86)

and

f‖(π) = ê‖ · F̄(ks,ki) · êx,

f⊥(π) = ê⊥ · F̄(ks,ki) · êy.
(3.87)

The description of the electric polarization vectors given in (3.86) and (3.87) view

with x z as the horizontal plane or the laboratory bench top (scattering plane)

shown in Figure 3.7. The ê⊥ = êy, is always perpendicular to the scattering plane.

The parallel polarization vector êx in the scattered wave direction is ŷ× k̂s using

the geometry of Figure 3.7.
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𝑘𝑖 

𝑘𝑠 
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𝑒 ⊥  

𝑒 𝑦 

𝑒 𝑥 

Figure 3.7: Geometry of scattering particle defining the electric polarization com-
ponents

Therefore, the scattered wave vector is given as

k̂s = ẑ cos θ + x̂ sin θ, (3.88)

and

êx = (ŷ× ẑ) cos θ + (ŷ× x̂) sin θ,

= x̂ cos θ − ẑ sin θ.

(3.89)

So in the incident field direction, the electric polarization vectors are

ê‖ = (1, 0, 0),

ê⊥ = (0, 1, 0),

(3.90)
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and the electric polarization components of of the scattered field are given as

êx = (cos θs, 0,− sin θs),

êy = (0, 1, 0),

(3.91)

where θs is the scattering angle. The forward and back scattering amplitude func-

tions as given in (3.86) and (3.87) represent vertical and horizontal polarizations

respectively.

3.4 Summary

The basis and significance of integral equations has highlighted with special con-

sideration given to the Fredholm Integral Equation of the second kind which was

adapted for the overview and form the theoretical framework of this work.

We demonstrated the efficiency of a new theoretical approach known as the dis-

crete method of evaluating the first Born term by filling the modelled arbitrary

homogeneous scatterer with cubic or spherical cells according to their weighted

contents.

The discrete method discussed in § 3.3.1 for the evaluation of the first Born term

proved inconsistent in the theory of the Z function. In the course of the Z function

analysis, many techniques were employed such as Hankel Integrals method, one

involving the auxiliary function which involves sine, cosine and exponential inte-

grations, and the other consisting of partial expansion. However, these methods

were also deficient to handle the effect of the discontinuity in the domain of inte-

gration. In order to deal with this ill condition, we explored a completely different
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approach by expanding the U0 functions under the radial integral. This expansion

leads to simplifying the radial integral by applying a scaling factor k2
0. In order to

evaluate the modified radial integral in the calculation of the Z function, the ratio

of β and ρk0 were considered for the evaluation of the Z pair function. Thus, the

main approach explored here was the introduction of a weighting function which

only slightly affects the integral on the real line, but strongly attenuates the inte-

gral on the imaginary axis. However, the weighting function introduces poles on

the lines x = y in the complex plane. These are simple poles, but the real part

integrand itself has only one pole.

The theories of the non-singular kernel, and the dyadic scattering amplitude func-

tion discussed were straight forward. The code level implementation of our new

approach would be introduced and covered in chapter 4.
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CHAPTER 4

IMPLEMENTATION OF THE

DISCRETE METHOD ALGORITHM

4.1 Introduction

This chapter deals with the implementation of the code for the computation of

the angular dependent scattering of irregular dielectric particles using the new

FIM approach discussed in chapter 3. An initial development of the algorithm

focuses on scattering by spherical particle. Since exact solutions (Rayleigh and

Mie theory) are readily available, this implementation will serve the purpose of

validating the accuracy of the model. The block diagram that summarizes the

program structure and logic flow is depicted in Figure 4.1.
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Figure 4.1: Flow-chart of Fredholm Integral Equation Algorithm.
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4.1.1 Computational procedures of the FIM model

The computer program is written in FORTRAN 95 language with version 6.10

FTN95 Silverfrost compiler on a 64 bit machine considering double precision for the

numerical results. The procedures are separated into sub-programs and modules

for the evaluation of amplitude functions for variable scattering angles θs through

a volume integral known as Fredholm Integral Equation of the second kind.

The Discrete Method algorithm is designed to give the user a range of flexibility

to select different program modes for the evaluation of the scattering functions

such as varying and fixed angles. In the case of a fixed angle, forward and back

scattering are computed. It is important to note that the desired program mode

is selected at the beginning with the following key input parameters:

1. The number Npol of the polar and Naz of the azimuth angles required to

evaluate the array of unit vectors within one cell

2. The incident wave propagation direction defined by the values of these two

angles θi and φi

3. The number of grid points or cells along each lattice dimension

4. The refractive index of the scattering particle to be evaluated

5. The size parameter of the scatterer

6. The frequency in GHz

7. The shape of the scattering particle to be evaluated.

As discussed in § 3.2, a plane electromagnetic wave is incident on the scatterer,
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and its direction of propagation is defined using the polar θi and the azimuth φi

angles (where i stands for incident). For the case of sphere, change in direction of

the incident wave does not affect the scattering properties due to symmetry of the

sphere. However, for other shapes different incident directions result in scattering

characteristics that depends on the orientation and the position of the scatterer

relatively to the incident direction.

In this work, an array of Npol polar angles and an array Naz azimuth angles are

generated and used for retrieving Cartesian unit vectors using a spherical coor-

dinates system. The number unit vectors generated is Npol × Naz. These arrays

are used as internal wave vectors (kn and km) within each cell. The same type of

vectors are also used to generate the unit vector p outside the cells (array of pivot

vectors) in the Fourier domain.

The size parameter and the frequency are used to evaluate the physical size of the

scatterer (diameter). Since the algorithm has been developed for a general shape,

the physical size of the scattering particle is used to determine the principal axes of

the scatterer (a, b, c). In the case of sphere, once the scatterer diameter is known,

the actual dimensions of the finite domain is evaluated by multiplying the diameter

by a dimensionless margin. Instead, the physical dimension of the lattice filed for

other shapes such as spheroids, cylinder, circular plate, and rod, is calculated with

the principal axes with maximum dimension.

It is important to note that thorough error checks are carried out during parameters

input, and at different stages of program execution to ensure that the numerical

results are satisfactory.
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4.2 Born’s terms implementation

The code implementation of the first and second Born terms discussed in § 3.3,

and other related functions are presented in this section. Pseudo-code is used to

illustrate the implementation of the Born terms.

4.2.1 Evaluation of the first Born term

In order to implement the numerical computation of the U-term given in (3.43), we

expressed it as a summation over all the cells within the lattice field as described

in [118]. The algorithm is developed in such a way that it can be used to evaluate

all the cases in which the U-term is involved: U(kn,km), U(kn,ki) and U(ks,km).

The U-terms U(kn,ki) and U(ks,km) are used for the K matrix equation (3.77)

and dyadic scattering amplitude (3.84) respectively. The same algorithm is used

also to compute the W -term (3.46) if the condition flag is set as shown in the

algorithm 4.1.

The input parameters to calculate all the U-term functions are the following:

1. Origin of the scattering particle within 3-dimensional structure (the value is

zero for scatterer centred at the origin and non zero for offset origin)

2. Physical dimension of the scatterer (i.e. principal axes)

3. Actual size of the 3-dimensional lattice field

4. Wavenumber (k0)

5. Complex dielectric constant ε relative to grid points in the lattice field
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6. physical cubic cell dimensions within the lattice field

7. Array of internal wave vectors (kn and km)

8. External wave vectors (ki and ks)

9. Status flag to evaluate different U-terms

Algorithm 4.1 Numerical implementation of the U-term algorithm

1: procedure UMAT(U,W )
2: for l = 1 : xmax do . lattice field dimension along x
3: for n = 1 : ymax do . lattice field dimension along y
4: for m = 1 : zmax do . lattice field dimension along z
5: γ ← Γ(l, n,m) . array of evaluated polarizability/cell
6: if γ == 0 then Cycle . terminate loop and goto line 4
7: φ← exp(−i∆k · r) . phase shift/cell
8: if present(W ) then
9: DU ← φ ∗ γ(rj) ∗∆v
10: U ← U +DU
11: W ← W +DU ∗ ε(rj)
12: else
13: U ← U + φ ∗ γ(rj) ∗∆v
14: end if
15: end if
16: end for
17: end for
18: end for
19: end procedure

For brevity, only some of the input parameters are shown in this algorithm 4.1,

and the U and W are returned as output on exit for the case of kn and km, while

for all other cases, only the U term is returned.

It is necessary to point out that the scatterer is modelled using cells of shape of

standard ellipsoid (5.1) inscribed within the regular lattice with no touching edges.

All the volume of the scatterer is populated with the ellipsoids according to their

weighted contents. Their weighted contents is related to the value of polarizability
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per cell γ(rj). The polarizability is set to γ(rj) = k2
0(ε(rj) − 1) for r inside the

ellipsoid (5.1) otherwise, outside the ellipsoid, γ(rj) = 0 .

The coordinates of phase reference centre of the lattice field (midpoint) is evaluated

and the origin of the modelled particle is chosen to be at this point for convenient

purpose. However, offsetting the origin of a spherical particle can be used to

evaluate the scattering properties of slightly non-spherical particles as proposed

by [18] and [86]. For γ(rj) = 0, the calculation of the U-term is not performed

for the cell rj, while for γ(rj) 6= 0 the program proceed to evaluate the Fourier

transform of the polarizability for each cell times their elementary volume. Finally,

the U-term is summed for all the cells. The W-term given in (3.46) is evaluated

as the product of the U-term and the complex dielectric constant for each cell and

the W-term summed for all the cells in the lattice field. Comparison of our discrete

method with the approach proposed by Holt et.al (exact method ) is depicted in

the curves shown in Figures 4.2 - 4.5.

The initial validation and testing of this model was carried out by evaluating the

first Born term in (3.43), and compared with the exact method (3.36) proposed

by Holt et.al [98]. Numerical results with different number of pivots are shown in

Figures 4.2 - 4.5 and they suggest a good agreement. However, slight ripple effects

can be noticed in the curves. This is due to the process of filling the volume of

the modelled scatterer with an ellipsoid inscribed in the cubic cells, and we have

verified that this effect is amplified as the size parameter increases. Another reason

is numerical integration errors due to the discretization process.
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Figure 4.2: Comparison of First Born
term using Discrete and Exact methods
Number of iteration over angles θ = 3 and
φ = 4.
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Figure 4.3: Comparison of First Born
term using Discrete and Exact methods
Number of iteration over angles θ = 4 and
φ = 6.
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Figure 4.4: Comparison of First Born
term using Discrete and Exact methods
Number of iteration over angles θ = 5 and
φ = 6.
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Figure 4.5: Comparison of First Born
term using Discrete and Exact methods
Number of iteration over angles θ = 6 and
φ = 6.
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4.2.2 Implementation of the second Born term

The code level implementation of the Z-term equation (3.73) is presented. A well

thought out approach is considered in evaluating Z-term numerically. We adopted

the same procedure of discretization of the finite lattice field into cells or grid

points and then evaluate their equivalent spherical cell radius. This approach is

employed because we have verified that using the cubic cells as the domain of

integration generate singularities in the radial part of the Z-term. In particular,

this was due to the odd power of p as discussed in § 3.3.2. The input parameters to

this algorithm 4.2 are not shown for brevity in the pseudo-code, but listed below:

• Array of pivot vector p

• Array of the internal wave vectors kn and km

• Wavenumber k0

• cell or grid point dimension

• polarizability per cells in the lattice field according to their weighted contents

γ(ri,j)

An initial numerical evaluation of the Z-function has been performed for a pair

of electrically small spherical cells. In this case U-terms are well approximated

as Bessel functions of the half order 4π ρ3 J(3/2, ρp), where ρ is the spherical

equivalent radius as discussed in 3.3.2. When the cells are distinct, the integral

(3.55) to be evaluated includes an exponential factor exp(iβp) which becomes

exponentially large along the imaginary axis of the complex plane, such that a

closed-form analytical solution as in Hankel integrals discussed in G.N.Watson

[115, p.430] and [116] is not possible due to odd number of p in the integrand. It
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is noteworthy to highlight some of the steps taken in the numerical evaluation of

the Z-term (see algorithm 4.2)

1. Variables initialization and work space arrays allocation

2. Evaluation of unit vectors in pivot directions, and their projection matrices

3. Evaluation of the total weight of the Z-term involving the formal weighting

function allowing for 4π angle integral and the weighting factor from formal

integration

4. Evaluation of the physical coordinates of phase reference centre as a function

of the cell and lattice field dimensions

5. Evaluation of cubic or spherical cells position in the discretized lattice field

according to their weighted contents for γ(rj) and γ(ri)

6. A function to approximate the integral contribution for a pair of spherical

cells. The inputs of the function Zpair are the size parameter ρ k and β

which is the relative phase of the cells measured in the direction of the pivot

vector

7. Phase shifts evaluation with respect to internal wave vector kn and kmincluding

phase factor due to rj and ri

8. Steps 1 to 7 are used to compute the Z-term for a pair. The summation over

all cells give the desired Z-term
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Algorithm 4.2 Numerical implementation of the second Born term

1: procedure ZMAT(Z̄)
2: ka← ρ k0 . cell size parameter
3: for j = 1 : J do
4: γj ← Γ(jx, jy, jz) . polarizability per jth cells
5: if γj == 0 then Cycle . do not process empty cells
6:

7: for i = 1 : I do
8: γi ← Γ(ix, iy, iz) . polarizability per ith cells
9: if γi == 0 then Cycle . do not process empty cells
10:

11: φj ← exp(ikn · rj) . phase shift per jth cells
12: φi ← exp(−ikm · ri) . phase shift per ith cells
13: β ← p̂ · (rj − ri) . relative phase of cells in the dir. of p̂
14:

15: Zp← Zpair(β, ka) ∗ wf . Z-term for a pair of spher. cells
16: Zc← Zp ∗ γi ∗ γj ∗ φi ∗ φj
17: Z̄ = Z̄ +

∣∣Ī− p̂p̂
∣∣ ∗ Zc

18:

19: end if
20: end for
21: end if
22: end for
23: end procedure
24:

Require: β, ka . Input parameters
Ensure: Zp . Output parameter
25: procedure Zpair(β, ka)
26: Initialize Fitting Parameters (C)
27: Truncate the Zpair function

28: Evaluate x← β

ka
29: if x > 3.0 then
30: Zp ← (0.0 + 0.0i)
31: return
32: end if
33:

34: P ← 2.0π

3.0
∗ x, xs← x2, U ← C(6)

35:

36: for i = 5 : I : −1 do
37: U ← U ∗ xs+ C(i)
38: end for
39: Zp ← (U ∗ cos(p), U ∗ sin(p))
40: end procedure
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The Zpair function in algorithm 4.2 approximates the integral contribution for a

pair of cells of size parameter, x. The first input parameter β is the relative phase of

the cells measured in the direction of the pivot vector. This function suppresses the

integrand a little at small values, but to a very high accuracy kills the integrand

on the imaginary axis, suppressing the blow-up of the Bessel functions in the

upper half plane. Figures 4.6 to 4.8 summarise the contribution of the real, the

imaginary axes and the combination of both for the pairwise Z-term function

evaluation. Nevertheless, various diagnostic tests were tried in Mathematica to

obtain satisfactory results of the integral without ill condition. This approach

leads to truncating the implementation of Zpair function if the condition β/ka > 3

is satisfied and this give rise to relatively stable term in the domain of integration.
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Figure 4.6: The pairwise Z-term numerical integration in the real axis indicates
an even function
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Figure 4.7: The pairwise Z-term numerical integration in the imaginary axis indi-
cates an odd function
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Figure 4.8: The combination of x and y for the pairwise Z-term function

The weighting function discussed in (3.66) introduces an infinite sequence of poles

along θ = ±π/4 line whose residues have to be summed. But for larger β this

turns out to be a well behaved function that can also be interpolated. The function
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returns a complex value, Zp.

Note that the subscripts j and i represent position of cells in three dimensional

space (x, y , z) in the uniformly discretized lattice field and wf is the total weighting

factor for the Z-term function. Thus, empty cells are not processed, this approach

speeds up the computation by a factor depending on the number of integration

over p. The desired integral is the sum of the residues for the weighting function

plus the residue of the pole adjacent to the real axis. However, for very large β

values the residue sum turns out to be negligible.

The Z-term algorithm is numerically evaluated as a function of summations over

the product of projection matrices in pivot directions, polarizability of ith and jth

cells, phase shifts, total weighting factor and the contribution for a pair of spherical

cells as a function of the relative phase of the cells measured in the direction of

the pivot vector β and size parameter ρk0 ≈ ka = x.

4.3 Description of the non-singular matrix

In order to numerically evaluate (3.79) to obtain the unknown block solution vec-

tor Ȳm discussed in § 3.3.3, we attempt to factorize the coefficient square block

matrix equation (3.79) in dyadic form using block algorithm for LU decomposi-

tion described in [119]. However, this approach proved to be inconsistent owing

to considerable difficulties in obtaining numerical convergent and stability. Now,

we have introduced a more realistic approach in which the coefficient block matrix

and the right hand side block vector are expanded to a larger form before applying

any of the standard LU factorization methods.
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The main input parameters to this algorithm are the non-singular square matrix

A(n x n), and the right hand side vector B(n x 1) all in block form, while x(n x 1)

represents the unknown solution vector which is returned on exit from the routine.

The calculation of the B(n x 1) depends on the incident projection vector using

equation (3.52), and the U-term in (3.75) with respect to array of internal wave

vector kn and external wave vector ki is implemented by invoking algorithm 4.1.

Thus, this leads to the right hand side vector in (3.79) been expressed in dyadic

form.

Firstly, we need to expand coefficient matrix and right hand side vector from

dyadic to a complex forms, which becomes A(m x m) and B(m x 1), where m = 3n.

Factorization of this kind of complex system does not follow the usual way due

numerical error during implementation. Since, the matrix and right hand side are

now complex, we can express (3.75) as

(A+ iC)(x+ iy) = (b+ id), (4.1)

and taking the real and imaginary parts of equation (4.1)), we have

A · x− C · y = b,

C · x+ A · y = d,

(4.2)

which can be written as 2m × 2m set of real equations,

 A −C

C A


 x

y

 =

 b

d

 . (4.3)

We solved the system coefficient matrix (4.3) by the standard Crout’s LU decom-
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position with partial pivot algorithm described in [120] to decompose the matrix

equation to lower and upper triangular matrices form



a1,1 a1,2 · · · a1,m

a2,1 a2,2 · · · a2,m

...
...

. . .
...

am,1 am,2 · · · am,m


=



1

l2,1 1

...
...

. . .

lm,1 lm,2 · · · 1





u1,1 u1,2 · · · u1,m

u2,2 · · · u2,m

. . .
...

um,m


.

(4.4)

The elements of L and U are computed as follows



u1j = a1j (j = 1, 2, · · · , n)

li1 = ai1/u11 (i = 2, 3, · · · , n)

ukj = akj −
k−1∑
m=1

lkmumj (j = k, k + 1, · · · , n)

lik = (akj −
k−1∑
m=1

limumk)/ukk (i = k + 1, k + 2, · · · , n)

(k = 2, 3, · · · , n).

(4.5)

The L and U are created with the same dimension as the expanded coefficient

matrix. The leading diagonal elements of the lower triangular matrix are set to

1, then the pivot elements in the column are determined and swap rows to make

pivot elements to have greatest magnitude in each column. The aim is to avoid

unnecessary division by zero or small number that could lead to ill condition.

The unknown solution can be evaluated using forward/backward substitution ap-

proach. The advantage of this method is that the coefficient matrix is factorized
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only once and the evaluation of the unknown solution vector is achieved with

different right hand side vector without going through the same process. How-

ever, more computation time is spent due to the large number of matrix elements.

The evaluated solution vector is converted back to dyadic form as shown in the

algorithm 4.3.

Algorithm 4.3 Evaluation of the Unknown Fourier Coefficient

Require: A,B . Input
Ensure: Y . Output
1: procedure KMAT(Y (km))
2: Cmatrix← Kmatrix . Matrix expansion dyadic to complex
3: Amatrix← Cmatrix . Matrix expansion complex to real
4: LU ← decomposition(A) . factorization of A using Crout’s method
5: k̂i ← (sin θi cosφi, sin θi sinφi, cos θi) . incident direction unit vector
6: Ji ← [I− k̂ik̂i] . incident projection vector
7: U(kn, kı)← UMAT (kn, kı) . evaluation of U-term wrt kn and kı
8: for n = 1 : ncol do
9: for m = 1 : nrow do
10: B(m,n)← Jı ∗ U(kn, kı) . evaluation of rhs vector in dyadic form
11: end for
12: end for
13: for i = 1 : n do
14: X(:, i)← backsubst.(LU, INDX,B(:, i)) . solution vector
15: end for
16: CX ← X . conversion of solution vector in real form to complex
17: Y ← CX . conversion of solution vector in complex form to dyadic
18: end procedure

Validation of non-singular matrix algorithm

Each of the sub-program in this algorithm were tested and the numerical results

were within acceptable limit. The LU decomposition routine was tested by tak-

ing the restored product of lower and upper triangular matrix in comparison with

the original coefficient matrix. Excellent agreement was found, and multiplication

of solution vector with the original coefficient matrix also suggested good agree-
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ment compared with right hand side vector. The maximum residue error in the

forward/backward substitution was between 10−13 and 10−17 depending on the

number of pivot vectors.

4.4 Scattering amplitude function

This section deals with the numerical implementation of dyadic scattering ampli-

tude function using equation (3.83) with emphasis on evaluating the amplitude

functions for a variable angle. The flag condition FL makes the algorithm flexible

to be used for fixed scattering angle, such as forward θs = 0o, or backscattered

θs = 180o and considering size parameter and frequency as the independent vari-

ables (see algorithm 4.4).

The input parameters are given as: origin of the scatterer, principal axes of

the scattering particle, discretized lattice field dimension, refractive index of the

medium. The Fourier coefficient vector in dyadic form Ȳ known as the solution

vector obtained from algorithm 4.3, the physical cubic cell dimension and number

of points over θs and φs used in this algorithm have already been briefly described

in previous sections.

For the case of angular dependent scattering functions, we highlight some external

sub-programs used for the code level implementation of this algorithm 4.4:

1. Routine to evaluate outer product of unit vector for each scattered field

direction

2. Evaluation of unit dyadic function
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3. A sub-program to generate scattering angles θs and φs array using the num-

ber of points over polar and azimuth angles

4. Function to retrieving Cartesian unit vectors from the spherical coordinates

to evaluate array of internal wave vectors km

5. Routine to evaluate the first Born term U(ks,km)

The U-term function described in equation (3.83) is implemented by invoking

algorithm 4.1 with respect to array of internal wave km, and external wave vector

ks, or alternatively taking to be the scattered direction vector. The solution vector

in dyadic form Ȳ is obtained by the evaluation of algorithm 4.3. The projection

vector in dyadic form Js relative to the scattered direction is evaluated following

similar procedure as given in (3.52) except that the unit vector in this case is

replaced by k̂s.

Finally, the amplitude function is evaluated as a summation over the product of

the solution vector in dyadic form Ȳ and the U(ks, km), and thereafter applying

the scattered projection vector factor to the evaluated scattering amplitude for a

particular direction to obtain the required function also in dyadic form. For the

cases of the forward θs = 00 and back θs = 1800 differential cross sections as a

function of either size parameters or varying frequencies. The same code level

implementation procedure is followed for the numerical evaluation of the scattered

dyadic amplitude functions.
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Algorithm 4.4 Evaluation of the Dyadic Scattering Amplitude Function

1: procedure FMAT(F (ks,kin))
2: if (present(FL)) then
3: switch FL do
4: case 0 . Forward scattering Amplitude
5: for i = 1 : 1 do
6: θs ← (i− 1) ∗ π

180
. Forward scatteing angle θ = 0

7: k̂s ← (sin θs cosφs, sin θs sinφs, cos θs) . unit vector scatt.
8: Js ← I− k̂sk̂s . projection vector scattered direction
9: U(ks, km)← UMAT (ks, km)

10: for n = 1 : col do
11: for m = 1 : row do
12: Fsum← Fsum+ Ȳ (m,n) ∗ U(ks, km)
13: end for
14: end for
15: F (i)← Js ∗ Fsum . Applying projection vector factor
16: end for
17: case 1 . Back scattering Amplitude
18: for i = 181 : 181 do
19: θs ← (i− 1) ∗ π

180
. Backscattered angle θs = π

20: for n = 1 : col do
21: for m = 1 : row do
22: Fsum← Fsum+ Ȳ (m,n) ∗ U(ks, km)
23: end for
24: end for
25: F (i)← Js ∗ Fsum . Applying projection vector factor
26: end for
27: else . Variable angle scattering Amplitude
28: for i = 1 : Fsize do
29: θs ← (i− 1) ∗ π

180

30: k̂s ← (sin θs cosφs, sin θs sinφs, cos θs)
31: Js ← I− k̂sk̂s . projection vector scattered direction
32: U(ks, km)← UMAT (ks, km)
33: for n = 1 : col do
34: for m = 1 : row do
35: Fsum← Fsum+ Ȳ (m,n) ∗ U(ks, km)
36: end for
37: end for
38: F (i)← Js ∗ Fsum . Applying projection vector factor
39: end for
40: end if
41: end procedure
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4.5 Summary

The evaluation of the U-term for the Discrete Method has been compared with

previous work showing a good agreement for different pivots number and input pa-

rameters. We demonstrated a suitable method of implementing the Z-term which

involved the inclusion of a conditioning weighting function to avoid singularities

in the domain of integration as discussed in chapter 3.

Furthermore, stability and accuracy of core parts of the algorithm were validated

separately and the numerical results were satisfactory. The maximum residue error

in the lower/upper factorisation of coefficient matrix using Crout’s method and

forward/backward substitution are negligible.

The algorithm developed to implement the Discrete Method was discussed in this

chapter, and will be applied to evaluate scattering amplitude functions of different

modelled shapes in chapter 5.

112



CHAPTER 5

APPLICATION OF THE DISCRETE

METHOD TO INHOMOGENEOUS

DIELECTRIC SCATTERERS

5.1 Introduction

This chapter deals with the evaluation of angular scattering patterns of ellipsoids

and mixed phase hydrometeors modelled as dielectric scatterers containing homo-

geneous inclusions such as air, ice, and/or liquid water. We start by modelling

particles using standard volume equations and applying our approach for known

shapes to test the accuracy and stability of our numerical results comparing with
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other established methods such as the Mie theory. The modelled particles are

filled with cubic or spherical cells according to their weighted contents within the

discretized lattice field. Note that an incident plane wave linearly polarized propa-

gating in the +z direction is assumed. The input parameters such as size parameter

and refractive index are purposely chosen within Rayleigh and Mie regime, and the

C band frequency 5.8 GHz is selected to suit the operating frequency of European

weather radar. This gives rise to a ice crystal diameter of approximately 2.0 cm

with wavenumber k0 ≈ 1.

5.2 Scattering by Ellipsoids

Ellipsoids are of particular interest in the weather radar application since precipita-

tion tends to be represented with this shape. The ellipsoidal shapes are described

by the standard equation for the ellipsoid centred at the origin of a Cartesian

coordinate system as shown in Figure 5.1

Figure 5.1: Geometry of an ellipsoid with distinct principal axes a, b and c
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and expressed as

x2

a2
+
y2

b2
+
z2

c2
≤ 1. (5.1)

The points (a, 0, 0), (0, b, 0) and (0, 0, c) lie on the surface and the line segments

from the origin to these points are called the semi-principal axes of length x, y, z.

Equation (5.1) is used to model different shapes depending on a factor called axial

ratio defined as the ratio of the length (or magnitude) of those axes to each other.

For a = b = c, degenerate to the known case of a sphere. In the case of a = b < c

degenerate to prolate spheroid where the axial ratio can be defined as c/a > 1,

and for the case of oblate spheroid, where a = b > c thus leads to the axial ratio

to be less than one. The input parameters to this algorithm are described as:

1. Wavenumber (k0)

2. Principal axes of the modelled scatterer

3. Dielectric constant of scattering particle (ε)

4. Cubic cell dimension (cd)

5. Coordinates of phase reference centre of the discretized lattice field (rcen)
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Algorithm 5.1 Evaluation of the ellipsoid model

Require: k0, a, b, c, ε, cd, rcen . Input parameters
Ensure: γ(r) . Output:polarizability of cell array
1: procedure Ellipsoid(γ(r))
2: for i = 1 : xmax do
3: for j = 1 : ymax do
4: for k = 1 : zmax do
5:

6: rcs←
(
x2

a2
+
y2

b2
+
z2

c2

)
. ellipsoid formula evaluation

7:

8: if (rsc ≤ 1.0) then . condition to fill scatterer
9: γ(i, j, k)← k2

0(ε− 1) . cells within the scatterer
10: else
11: γ(i, j, k)← 0.0 . cells outside the scatterer
12: end if
13: end for
14: end for
15: end for
16: end procedure

In order to model a specific shape from the given equation (5.1) above, we need

to define the semi-principal axes of the desired scattering particle with the axial

ratio at the beginning of implementing algorithm 5.1. Interestingly, the algorithm

is designed to account for the centre of the lattice field. The idea behind this

approach is to ensure that the modelled particle is positioned so that the origin

of the reference system coincides with the coordinates of phase reference centre of

the finite three dimensional lattice field. Furthermore, we ensure that the scat-

tering particle is inscribed within the discretized lattice field dimension and does

not touch the bounds. The volume of the modelled particle is filled with γ(r) 6= 0

if the condition given in equation (5.1) is satisfied and elsewhere equals zero as

discussed in chapter 4. This is obviously expected because the refractive index

of the surrounding medium is approximately one. For the case of homogeneous

scatterers, an important simplification occurs due to uniform dielectric constant

in the scattering medium. This technique of modelling solid ellipsoidal particles
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can also be applied to inhomogeneous medium such as hybrid scatterers and melt-

ing snowflakes since only the distribution of the dielectric constants need to be

changed. We demonstrate how efficient and validate our method by applying it

to model a sphere with uniform dielectric constant within finite lattice field. Fig-

ure 5.2 describes the geometry of the modelled sphere according to their weighted

contents of the cubic cells within the finite domain.

Figure 5.2: Geometry of a modelled solid sphere within the discretized regular
lattice field
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5.2.1 Scattering by particles small compared with the wave-

length

In this section, we consider the scattering of electromagnetic wave by smaller

particle (Rayleigh regime). In the low frequency Rayleigh scattering limit where

the circumference is less than the wavelength or size parameter, x << 1. In

the high frequency optical limit, the normalized radar cross section is ≈ 1.The

Discrete Method is used to evaluate normalized radar scattering cross scattering,

differential and forward scattering cross sections. The stability of our approach is

checked in the Rayleigh regime for a sphere by comparison with the exact method

using readily available established numerical methods.
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Figure 5.3: Backward scattering cross section against size parameter n = 1.33,
and frequency = 5.8 GHz.
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In Figure 5.3, we demonstrate efficiency of the Discrete Method to calculate the

normalized backward scattering known as radar cross section in the weather radar

parlance as function of relative frequency or size parameter (calculated by Mie

theory). It is evident from the graph that the amplitude function increases with

increase in the size parameter to a certain point. Further increase in the size

parameter leads to the amplitude to become saturated and gradually decreases

with series of peaks and valleys and tends towards where the amplitude function

is approximately unity. This point is called the extinction paradox described as

twice its geometrical cross-sectional area of the scatterer and this applies only

to forward scatter only. In order to visualize this effect, we need to extend the

scatterer size parameter far into the Mie regime. The Discrete Method used for

this computation suggest similar pattern is followed.

Now, we evaluate the angular dependent scattering function using the Discrete

Method for a scatterer with size parameter many times smaller than the wave-

length. The size parameters for this computation are chosen to demonstrate the

scattering properties in the Rayleigh regime. The curves in Figure 5.4 with x = 0.1

show that the forward and backward ratio for both the calculation by the Mie the-

ory and the Discrete Method is virtually identical for the horizontal polarization

and fairly similar for vertical polarization. The forward and backward ratio is

approximately 1, and this is obviously expected.

We increase the size parameter from x = 0.1 to 0.5 in Figure 5.5 and keep other

input parameters constant. It is observed that the curves follow the similar pattern

as expected but the forward and backward scattering ratio has increased more than

one. This is due to the phase shift as the particle size tends towards the Mie regime.
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Figure 5.4: Comparison of Discrete Method and Rayleigh theory for the evaluation
of normalised differential scattering cross section for a non-absorbing dielectric
sphere using the Mie theory code with x = 0.1 and n = 1.33 + 0.0i
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Figure 5.5: Comparison of Discrete Method and Rayleigh theory for the evaluation
of normalised differential scattering cross section for a non-absorbing dielectric
sphere using the Mie theory code with x = 0.5 and n = 1.33 + 0.0i
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5.2.2 Scattering by spherical particles

Application of the Discrete Method as discussed in this work to evaluate angular

scattering functions of the spherical particle is considered first in the past. Spheres

have been studied more extensively than has the scattering by any other particle

shape. This is partly because, it is the only three dimensional particle for which

an analytical closed form solution is readily available and can be easily used to

validate new methods. The scattering plane is defined as xz plan contains the

vertical and horizontal polarizations is shown in Figure 3.7.

As an example of calculating scattering by sphere we choose a spherical particle

of size parameter x = 1.0 with an incident wave of 5.8 GHz. At this frequency,

we use a refractive index of 1.33 + 0.0i. The value of the given size parameter

corresponds to a scatterer equivalent diameter of about 2.0 cm which is approx-

imately the characteristic length (diameter) of a large ice aggregate. The initial

validation is carried out by comparison of the Mie theory and the Discrete Method

discussed in this thesis. The numerical results follow similar pattern and in good

agreement which is depicted in Figure 5.6. In all graphs the logarithms of the

scattering amplitude functions are plotted against the scattering angles which is

the independent variable θs unless stated otherwise. Perhaps the most significant

to note is that the scattering is highly peaked in the forward direction for both

cases of polarizations. As the scattering angle increases, the magnitude of the of

the vertical polarization decreases to minimum at scattering angle θs = 900 and

increases thereafter to maximum θs = 1800. In the case of the perpendicular po-

larization decreases gradually to a minimum value θs = 1800. The decrease in the

amplitude function magnitude is as a result of phase shift due to interaction of the

plane wave with the scattering medium.
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However, we notice that the Discrete Method deviates slightly from the Mie theory

as shown in Figure 5.6 for the case of the vertical polarization at scattering angle

θs = 900. The reason for this different has not be fully tracked down in the course

of this study but it is worth investigating further to account for this effect.
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Figure 5.6: Comparison of Mie theory and Discrete Method for the evaluation of
normalised differential scattering cross section for a non-absorbing dielectric sphere
x = 1.0 and n = 1.33 + 0.0i

In effect, we know that both polarizations must have the same magnitude at the

forward scattering function based on the symmetry. As the size parameter x in-

creases, it expected that a more complex interaction occur between the scatterer

and the plane wave and this account for the curves in both polarization modes to

change gradually with series of peaks and valleys over the scattering angle. Fur-

ther test are made including compliance with the law of reciprocity. Specifically,

scattering calculation are obtained for spherical particle where the numerical re-

sults of the scattered field return in one direction due to an incident plane wave
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from another is compared to the scattered field return in the origin incident field

direction +z. The angular dependent scattering functions obtained from the cases

was identical.

From Figure 5.7 it is evident that increasing the size parameter into to the Mie

regime using the Discrete Method is virtually identical in comparison with the

Mie theory for the curves of the horizontal polarization. But deviate significantly

where the dip occurs in the case of vertical polarization. The reason for this break

down as the size parameter tends toward 1.5 has not been properly identified and

needs to be investigated. This can be attributed either to the evaluation of the

scaling factor in the Z-term, the W-term and the non singular matrix K.
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Figure 5.7: Comparison of Mie theory and Discrete Method for the evaluation of
normalised differential scattering cross section for a non-absorbing dielectric sphere
x = 1.5 and n = 1.33 + 0.0i
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5.3 Scattering by mixed phase hydrometeors

After satisfactory results are obtained from size parameter x = 1, we extend the

application of the Discrete Method to evaluate the scattering amplitude functions

of hybrid irregular hydrometeors modelled as inhomogeneous dielectric particles.

In particular, the snowflake aggregate containing of air, ice and/or liquid water is

a good representation of such scatterer with mixed dielectric constant.

Firstly, we start by applying Maxwell Garnett two-part mixing formula (2.37)

discussed in chapter 2 to dry snowflake modelled as sphere which is a mixture of

ice and air. It is important to note that when using effective medium theories

to estimate average dielectric constant, considerations must be made as to which

component will be the inclusion or the matrix. Significant differences appear with

respect to the average dielectric if the two materials are simply interchanged. By

this same token, we decide to use a volume of 50% for both components. The ice

with refractive index n = 1.78+0.0i is chosen to be the host or background material

and the air with refractive index n = 1.0 + 0.0i as the inclusion or guest. The

average or effective dielectric constant is obtained to be approximately ε ≈ 1.839

which is n′ ≈ 1.356. The input parameters are size parameter x = 1, frequency

5.8 GHz.
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Figure 5.8: Comparison of Mie theory and Discrete Method for the evaluation of
normalised differential scattering cross section for a non-absorbing dielectric sphere
using Maxwell-Garnett formula for air inclusions in an ice matrix (ice-air mixture)
given x = 1.0 and n ≈ 1.356 + 0.0i

Using these parameters listed above, numerical examples are performed to evaluate

amplitude function with the Mie theory and the Discrete Method. Remarkably, the

curves of the normalized differential scattering cross section shown in Figure 5.8

are virtually identical and in good agreement. The forward and backward ratio for

both plots converged reasonably with slight error margin. The amplitude of the

forward scattering falls off gradually due to phase shift at the backward direction

for the case of the horizontal polarization. However, at the dip, the Discrete

Method departs slightly for the vertical polarization in comparison with the Mie

theory.

Furthermore, we now use the Discrete Method to evaluate the scattering amplitude

function from inhomogeneous particle such as dry snowflake consisting of ice and
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air, assuming both with volume fractions of 50%. The scatterer is modelled as

a sphere with their dielectric constant evenly distributed in a predefined manner.

The input parameters are kept the same as discussed using Maxwell Garnett above

for calculation of the differential scattering cross section. The curves in Figure 5.9

shows the relationship using the Discrete Method with Maxwell Garnett mixing

formula and without effective medium theory.
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Figure 5.9: Comparison of the Discrete Method for the evaluation of normalised
differential scattering cross section for a non-absorbing dielectric sphere with
Maxwell Garnett mixing rule and without applying MG EMTs x = 1.0 and
n ≈ 1.356 + 0.0i

Although the curves shown in Figure 5.9 follow similar pattern but significantly de-

viate as expected. The approach of using effective medium theory such as Maxwell

Garnett to estimate dielectric constant of the inhomogeneous medium is shown to

be insufficient and it is not a linear process as proposed in chapter 2. The reason

for this difference has been identified as how the calculations of the Z-term and

W-term scale in the homogeneous and inhomogeneous case. In order to verify this

126



CHAPTER 5. APPLICATION OF THE DISCRETE METHOD TO
INHOMOGENEOUS DIELECTRIC SCATTERERS

problem, we made the similar assumptions as stated above with volume fraction

of 50% mixture.

For ice, n ≈ 1.78 and the effective refractive index n′ ≈ 1.356. The permittivities

are then given as

εr ≈ 3.168 and ε′r ≈ 1.839. (5.2)

For W, with half of the cells filled, the relative density is 1
2

so we have a weighting

factor

εr × (εr − 1)

2
(5.3)

and

W ≈ 3.168× 2.168

2
= 3.43. (5.4)

For the effective medium, we have 100% fill, so

W ′ ≈ ε′r × (ε′r − 1) = 1.839× 0.839 = 1.54. (5.5)

Similarly we have for Z, the density of the pairs divide by four, hence the scaling

factor is expressed as

Z ≈ (εr − 1)2 × 1

4
=

(2.168)2

4
= 1.175, (5.6)

and for the effective medium, all cell pairs count, but with smaller polarizabilities

γ, so Z ′ scaling factor is given as

Z ′ ≈ 0.8392 = 0.70 (5.7)

The W ′, Z ′ and K ′ are relatively smaller for the effective medium theory approach

so the inversion of the equations will give rise to larger amplitudes for the Fourier
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Coefficients C. The scaling of the U-term is neutral because it is a factor on both

sides for the forward and substitution steps. Looking at the numerical examples in

the work, the Discrete Method has a very good potential to be extended to eval-

uate scattering characteristics of larger size parameters and other inhomogeneous

irregular hydrometeors. It is important to note that once the dyadic scattering am-

plitude functions is evaluated, other particle characteristics such as cross sections

and efficiency factors can easily be obtained.

5.4 Summary

We have demonstrated the efficiency of the Discrete Method to evaluate scatter-

ing amplitude function for homogeneous and inhomogeneous scatterers up to size

parameter x = 1. For the inhomogeneous particle such as the dry snowflake. It is

evident that our approach is more appropriate to describe the scattering proper-

ties compared to the Maxwell Garnett mixing formula. Comparison of the Discrete

Method and Mie theory for the forward and backward scattering cross section ratio

showed that good agreement is obtained from Rayleigh scattering regime to size

parameter x = 1 and break down as the size parameter (x) tends toward 1.5.

Numerical results were satisfactory for the evaluation of normalized radar cross

section with respect to the size parameter up to 3. Satisfactory result were also

achieved using our technique to evaluation the angular dependent scattering am-

plitude functions for size parameters within the Rayleigh and the Mie regimes.

Looking at the numerical examples in this work, the Discrete Method has a very

good potential to be extended to evaluate scattering characteristics of large size

parameters and other inhomogeneous irregular hydrometeors.
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CONCLUSIONS AND FURTHER

WORK

A discrete implementation of the Fredholm Integral method for scattering has been

presented which can take account of inhomogeneous dielectrics.

The code was implemented in FORTRAN 95 language with version 6.10 FTN95

Silverfrost compiler, which allowed the facility to define types and overloaded op-

erators to be explored, such that a module could be written encapsulating complex

dyadic and vector algorithm. This considerably simplified the resulting top level

code allowing the structure of the algorithm and its relation to the underlying

theoretical equations to be clearly visible.
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As in earlier implementation of the method for ellipsoidal and homogeneous scat-

terer, the most difficult aspect of the implementation is to evaluate the K and Z

routines for the pivots. Whereas the earlier implementation relied on truncated

expansion in spherical Bessel functions and Gegenbauer polynomials. This Dis-

crete Method, while simple in principle introduces its own particular difficulties.

In particular, the simple minded adoption of cubic or cuboid cells introduces new

singularities into the required contour integrals involving cell pairs, because of the

denominators in the sinc functions. This was overcome by considering spherical

cells of the same volume. It is argued that when the discretized cells are sufficiently

small, their shape have little effect on the results.

A particular benefit arising from this is that as the cells becomes even smaller

relative to the wavelength, the expansion of the Gegenbauer addition formula for

the pivot difference vector dependence reduces to a simple dominant term, making

the pair trivially just the positional phase dependence on kn or km. Consequently,

evaluation of the pairwise integrals takes place outside the inner loops for the

evaluation of the Z terms, reducing the evaluation time by a factor equal to the

number of pivots.

The results have been checked to be relatively stable with respect to both the

discretization scale and the number of pivots. Unfortunately, it is not yet possible

to established precisely the rate of convergence, as the binary choice of inclusion or

exclusion of the cells at the scatterer boundary results in the actual volume of the

model scattering particle fluctuates according to the number of grid cells adopted.

This problem could be addressed at the expense of greater code complexity by

attaching partial weighting factors to the boundary cells.

Results have shown that the implementation is reasonably successful from the
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Rayleigh regime into the Mie regime, up to size parameters of unity. For ice

scatterers, this includes a useful range at C-band which is the predominant band

for European Weather radars, and where unity size parameter ka corresponds

roughly to a 2.0 cm diameter scatterer. Qualitatively, the results show the typical

features that appear in Mie theory mainly. The increase in the forward/backscatter

ratio and the infill and migration of the parallel scattering amplitude dip from the

exact 900 null to angle closer to the backscatter directions.

The surprise was that the implementation appears to break down once the size

parameter reaches around 1.5. Considerable effort was devoted to checking the

code implementation. In particular, the consistency of the results where frequency

can vary while the size parameter is held constant confirms that the scaling factors

for the W or Z do not improve the behaviour at large size parameter.

Throughout the process of gathering results the performance of the matrix solu-

tion method using LU decomposition was checked, and has always resulted in a

maximum error close to machine precision. At present it is not known whether

there is a residual ‘bug’ in the code or whether there is simply a breakdown in

assumptions involved in the implementation. There is nothing straightforwardly

apparent in either possibility.

Clearly further work is required to try to resolve this problem. It is inherently

difficult to visualise the K matrix or find independent ways to verify its evaluation.

One possibility however to independently validate the calculation of K would be

to apply a ‘brute force’ numerical integration of the Z term over the dummy pivot

p-running from zero to infinity and around the pole at k0 for the entire U functions

rather than pair-wise cell contributions.
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Within the range of size parameter for which the implementation has been vali-

dated an interesting result has been obtained in which a potential problem arising

from the adoption of effective medium theory has been exposed. The first step to-

wards applying the code to an inhomogeneous target has been a hybrid approach.

This assumed that the internal wave field could be defined. However, the scatter-

ing amplitude is still evaluated by effectively integrating the induced polarization

in the scatter interior with respect to the scattered wave term. The two meth-

ods give rise to distinctively different results. If the effective medium theory is

valid, then there should indeed be an expansion of exponentials with wave vector

appropriate to that effective medium, so the hybrid method ought also be valid.

A further possibility is that it may be necessary to take account of the fine scale

fluctuating field that the effective would be expected to correlate closely with the

permittivity fluctuations and not match the phase variable of the wave scattered

wave. Nevertheless, it seems likely that further theoretical development may be

required to handle scattering from inhomogeneous targets.

Here also, DDA comparison would also in principle be useful, although for a equiv-

alent level of discretization it would be necessary to handle matrices of order

103 − 104 which at present has not proved feasible with resources that were avail-

able.
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APPENDIX A

DERIVATIONS

A.1 Expansion of Vector Spherical Wave Func-

tions

The VSWFs used in Mie theory with respect to spherical scattering particles are

adapted from [26, 27] and can be written in spherical coordinates as:
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Memn =
−m
sin θ

sinmφ Pm
n (cos θ)zn(ρ)êθ − cosmφ

dPm
n (cos θ)

dθ
zn(ρ)êφ, (A.1a)

Momn =
m

sin θ
cosmφ Pm

n (cos θ)zn(ρ)êθ − sinmφ
dPm

n (cos θ)

dθ
zn(ρ)êφ, (A.1b)

Nemn =
zn(ρ)

ρ
cosmφ n(n+ 1)Pm

n (cos θ)êr+ (A.1c)

cosmφ
dPm

n (cos θ)

dθ

1

ρ

d

dρ
[ρzn(ρ)] êθ−

m sinmφ
Pm
n (cos θ)

sin θ

1

ρ

d

dρ
[ρzn(ρ)] êφ,

Nomn =
zn(ρ)

ρ
sinmφ n(n+ 1)Pm

n (cos θ)êr+ (A.1d)

sinmφ
dPm

n (cos θ)

dθ

1

ρ

d

dρ
[ρzn(ρ)] êθ+

m cosmφ
Pm
n (cos θ)

sin θ

1

ρ

d

dρ
[ρzn(ρ)] êφ.

The associated Legendre functions are Pm
n (cosθ) and zn(ρ) are Bessel functions.

Primes denote differentials with respect to the argument of zn, ρ. Once we have

simplified to the spherical case, with plane parallel incident light and (m = 1), we

write equation (A.1) in terms of πn and τn

πn =
P 1
n(cos θ)

sin θ
, τn =

dP 1
n(cos θ)

dθ
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Me1n = − sinφ πnznêθ − cosφ τnznêφ,

(A.2a)

Mo1n = cosφ πnznêθ − sinφ τnznêφ,

(A.2b)

Ne1n = n(n+ 1) cosφ sin θ πn
zn
ρ

êr + cosφ τn
[ρzn]′

ρ
eθ − sinφ πn

[ρzn]′

ρ
eφ,

(A.2c)

No1n = n(n+ 1) sinφ sin θ πn
zn
ρ

êr + sinφ τn
[ρzn]′

ρ
eθ + cosφ πn

[ρzn]′

ρ
eφ.

(A.2d)

A.2 Spherical solution of the scalar wave equa-

tion

The derivation and general solution of scalar function ψ which satisfies the follow-

ing scalar wave equation in spherical coordinates is given as

∇2ψ + k2ψ = 0. (A.3)

Now we set the wave equation (A.3) in spherical polar coordinates

1

r2

∂

∂r

(
r2∂ψ

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+

1

r2 sin2 θ

∂2ψ

∂φ2
+ k2ψ = 0. (A.4)

We use the standard approach of separating the variables, i.e. we write

ψ(r, θ, φ) = R(r)Θ(θ)Φ(φ). (A.5)
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Upon substituting Eq. (A.5) into Eq. (A.4) and dividing the entire equation by

ψ(r, θ, φ), we obtain

1

r2

1

R

∂

∂r

(
r2∂R

∂r

)
+

1

r2 sin θ

1

Θ

∂

∂θ

(
sin θ

∂Θ

∂θ

)
+

1

r2 sin2 θ

1

Φ

∂2Φ

∂φ2
+ k2 = 0. (A.6)

If equation (A.6) is multiplied by r2 sin2 θ, then we have

[
sin2 θ

1

R

∂

∂r

(
r2∂R

∂r

)
+ sin θ

1

Θ

∂

∂θ

(
sin θ

∂Θ

∂θ

)
+ k2r2 sin2 θ

]
+

1

Φ

∂2Φ

∂φ2
= 0. (A.7)

Since the first three terms in this equation contain the variables r and θ only, the

only way (A.7) can be valid is if

1

Φ

d2Φ

dφ2
= constant = −m2. (A.8)

The solution is clearly

Φ(φ) = eimφ, (A.9)

with m an integer (in order that the solution is the same for φ and φ + 2π).

Substituting (A.8) into (A.7) and upon dividing by sin2 θ, we obtain

1

R

d

dr

(
r2dR

dr

)
+ k2r2 +

1

Θ sin θ

d

dθ

(
sin θ

dΘ

dθ

)
− m2

sin2 θ
= 0. (A.10)

The third and fourth terms in equation (A.10) are only a function of θ (whereas the

first two only depend on radial part r), and must therefore be a constant which,

for reasons that will be clear later, we write as n(n+ 1), i.e.

1

R

d

dr

(
r2dR

dr

)
+ k2r2 = constant = n(n+ 1), (A.11)
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1

Θ sin θ

d

dθ

(
sin θ

dΘ

dθ

)
− m2

sin2 θ
= constant = −n(n+ 1), (A.12)

where n is an integer. The selection of the constant here is also for mathematical

convenience. With the substitution of x = cos θ into (A.12), so that

d

dx

[(
1− x2

) dΘ

dx

]
+

[
n(n+ 1)− m2

1− x2

]
Θ = 0. (A.13)

The solution of Eq. (A.13) are the associated Legendre polynomials (spherical

harmonics of the first kind)

Θ = Pm
n (x) = Pm

n (cos θ).

We now focus on the radial equation (A.11), we set

x = kr, R =
Z√
x

(A.14)

where

Z = Zn+ 1
2
(x). (A.15)

Substituting this into Eq.(A.11) we find that Z satisfies

x2d
2Z

dx2
+ x

dZ

dx
+

[
x2 −

(
n+

1

2

)2
]
Z = 0, (A.16)

which is Bessel’s equation of order n+ 1
2
. The solution are Jn+1/2(x) and Yn+1/2(x)

which, together with the factor (x)1/2 means that the solutions for R are the

spherical Bessel and Neumann functions, jn(x) and yn(x) defined by

jn(x) =

√
π

2x
Jn+1/2(x), yn(x) =

√
π

2x
Yn+1/2(x). (A.17)
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The functions jn(x) are regular in every finite domain of the r-plane including the

origin, whereas the functions yn(x) have singularities at the origin r = 0 where

they become infinite. Hence, we may use jn(x) but not yn(x) to represent the wave

inside the sphere.

R(r) = cnjn(x) + dnyn(x), (A.18)

where cn and dn are arbitrary constants. Equation (A.18) represents the solution

of (A.11). The general solution of the scalar wave equation can then be expressed

as

ψ(r, θ, φ) =
∞∑
n=0

n∑
m=−n

Pm
n (cos θ) [cnjn(x) + dnyn(x)] (cosmφ+ i sinmφ), (A.19)

we note here that cn = 1 and dn = i,

jn(x) + iyn(x) =

√
π

2x
H

(1)
n+1/2(x) = h(1)

n (x), (A.20)

where H
(1)
n+1/2 is the half integral order Hankel function of the first kind. It has

the property of vanishing at infinity in the complex plane and is suitable for the

representation of the electromagnetic scattering problem. (i.e. scattered wave)
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DYADIC GREEN’S FUNCTION

B.1 Free-space dyadic Green’s function

The dyadic Green’s function used in equation (3.23) is related to the scalar Greens

function and given in [107]

Ḡ(r, r′) = (̄I + k−2∇∇)G(r, r′), (B.1)

where r, r′ ∈ <3, k is a positive real number, and the scalar Green’s function is

expressed as

G(r, r′) =
1

4π

eik|r−r
′|

|r− r′|
, (B.2)

(∇2 + k2)G(r− r′) = −δ(r− r′), (B.3)

155



APPENDIX B. DYADIC GREEN’S FUNCTION

where G(r− r′) and δ(r− r′) are given by their Fourier transforms as follows:

G(r− r′) =
1

(2π)3

∫
eiq·(r−r

′)G(q) d3q, (B.4)

δ(r− r′) =
1

(2π)3

∫
eiq·(r−r

′) d3q. (B.5)

A substitution of (B.4) and (B.5) into (B.3) leads to

(
q2 − k2

)
G(q) = 1 =⇒ G(q) =

1

q2 − k2 . (B.6)

The expression for G(r− r′) can be obtained by inserting (B.6) into (B.4)

G(r− r′) =
1

(2π)3

∫
eiq·(r−r

′)

q2 − k2
d3q, (B.7)

G(r− r′) =
1

(2π)3

∫ ∞
0

q2dq

q2 − k2

∫ π

0

eiq|r−r
′| cos θ sin θ dθ

∫ 2π

0

dφ. (B.8)

To integrate over angle θ in (B.8) we need to make the variable change x = cos θ

∫ π

0

eiq|r−r
′| cos θ sin θ dθ =

∫ 1

−1

eiq|r−r
′|x dx =

1

iq |r− r′|

(
eiq|r−r

′| − e−iq|r−r′|
)
.

(B.9)

Thus, (B.7) becomes

G(r− r′) =
1

4π2i |r− r′|

∫ ∞
0

q

k2 − q2

(
eiq|r−r

′| − e−iq|r−r′|
)

dq, (B.10)

or alternatively expressed as

G(r− r′) =
1

4π2i |r− r′|

∫ −∞
∞

qeiq|r−r
′|

q2 − k2
dq. (B.11)
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The integral in (B.11) can be evaluated by the method of residue by closing the

contour in the upper half of the q-plane,and this integral is equal to 2πi times the

residue of the integrand at the poles.

Since there are two poles, q = ±k, the integral has two possible values:

The value corresponding to the pole at q = k, which lies inside the contour of the

upper semi circle becomes

G+(r, r′) =
1

4π

eik|r−r
′|

|r− r′|
, (B.12)

and the value corresponding to the pole at q = −k is written as

G−(r, r′) =
1

4π

e−ik|r−r
′|

|r− r′|
. (B.13)

The Green’s function G+(r, r′) represents an outgoing spherical wave radiated from

r′ and the function G−(r, r′) corresponds to an incoming wave that converges onto

r′. Since the scattered waves are outgoing waves, only G+(r, r′) is considered for

the analysis.
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APPENDIX C

THEORETICAL ANALYSIS OF

Z-TERM USING HANKEL

INTEGRALS METHOD

In the course of this study, many theoretical techniques were explored to analyse

the second Born term described in chapter 3 using the Hankel integrals method

involving products of integrals Bessel functions discussed in [115, p. 429] and [116].

However, the methods highlighted in this appendix based on Hankel integrals are

inadequate to address the core issue of singularity in the domain of integration.

Following the same assumptions of discretizing the regular lattice field into grid

points or cells, and modelled the scattering particle by filling it with weighted

158



APPENDIX C. THEORETICAL ANALYSIS OF Z-TERM USING HANKEL
INTEGRALS METHOD

contents defined as k2
0(ε − 1). For p = k0, thus gives rise to singularity or dis-

continuity in the contour integral. As a result of the aforementioned reason, the

discrete method discussed in § 3.3.1 can not be used to evaluate the U-terms in

(3.40).

Unfortunately the approach taken by Hankel and others, cannot be applied essen-

tially because of the power of p in the integrand being odd. This means that it

is not possible to use symmetry arguments to extend the integral to the negative

axis. The idea is to present these inadequate methods of evaluating the Z-term

function and avoid using this kind of integral.

Figure C.1: Geometry of a semi circle split into two equal half with the top half
enclosing the pole for the evaluation of the second Born term.

It is worth noting that care need to be exercised with regards to the signs of

residues because of the direction of traversing the contours in Figure C.1.
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C.1 Hankel integrals combining auxiliary func-

tion method

We begin the theoretical analysis by adopting equation (3.40) and expanding the

U terms that appear under the integral and expressing it as a summation over cells

with other auxiliary functions.

For brevity, we write the U terms as

Uj(kn,p) = γ(rj) exp (−i(kn − p) · rj)U0(kn,p), (C.1)

and

Ui(p,km) = γ(ri) exp (−i(p− km) · ri)U0(p,km). (C.2)

Note that for a small size parameter, and where |kn| = |km| = mk0, the U0 is

well approximated by the elementary cell volume. The Z-term now needs to be

expressed in terms of the discretized version of U-term

Z̄(kn, km) =
1

8π3k2
0

∫
p2

p2 − k2
0

[Ī− p̂p̂]U(kn,p)U(p,km) d3p, (C.3)

then substituting (C.1) and (C.2) into (C.3) and taking summation over rj and ri

yields:

Z̄(kn, km) =
1

8π3k2
0

∑
j

∑
i

γ(rj)γ(ri)

∫
e[−i(kn−p)·rj ]e[−i(p−km)·ri]

· U0(kn,p)U0(p,km)
p2

p2 − k2
[Ī− p̂p̂] d3p.

(C.4)

By separation of the radial exponential terms in the U-terms in equation (C.4)
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and taking like terms, the Z̄ term is further simplified to the form expressed as

Z̄(kn, km) =
1

8π3k2
0

∑
j

∑
i

γ(rj)γ(ri) exp (−ikn · rj) exp (ikm · ri)

·
∫

exp [i(p̂ · (rj − ri)p] U0(kn,p)U0(p,km)

· p2

p2 − k2
[Ī− p̂p̂] d3p,

(C.5)

where kn, km are array of internal wave vectors respectively, γ(rj) and γ(ri) are

the polarizabilities given as k2
0(ε − 1) with respect to distinct cells in the regular

3-dimensional lattice field.

The aim is to evaluate the integral over p by contour integration. The largest

contribution to this integral occurs close to the pole so that the U0 factors in the

term are still well approximated by the elementary cell volume (∆v).

Before proceeding, there are some special cases that need to be dealt with consid-

ering the following conditions:

1. For identical pair of cells ( i.e. rj == ri ) or when unit vector (p̂) is orthog-

onal to the resultant vector of (rj − ri)

2. For distinct cells pair ( i.e. rj 6= ri)

Firstly, and simplest to deal with in the conditions highlighted, involves the ques-

tion of whether the cells labelled i, j involve a distinct or identical pair of cells.

Now it can be seen that, generally, when rj 6= ri the integral is oscillatory along

the real axis and may be exponentially small along the appropriate branch of the

imaginary axis, but when the integral involves the pairing of a cell with itself or

orthogonal to p̂, then exp [i(p̂ · (rj − ri)p] = 1 and (C.5) reduces to the following
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form

Z̄(kn, km) =
1

8π3k2
0

∑
j

∑
i

γ(rj)γ(ri) exp (−ikn · rj) exp (ikm · ri)

·
∫

U0(kn,p)U0(p,km)
p2

p2 − k2
[Ī− p̂p̂] d3p,

(C.6)

now we have to deal with

∫
Ω

∫ ∞
0

U0(kn,p)U0(p,km)
p2

p2 − k2
[Ī− p̂p̂] dp dΩ. (C.7)

In this case the same integral applies for every pairing of a cell with itself, and the

problem arises that if we wish to evaluate this by means of contour integration, the

behaviour of the integrand on the imaginary axis needs to be considered carefully.

For a cubic cell, U0 takes the form of a three dimensional sinc function, and there

are considerable difficulties in obtaining a convergent integral analytically.

Now we may consider a more radical approach in which it is argued that the

contribution of these terms should not depend critically on the shape of the cubic

cell, but is much more strongly dependent on its volume. Accordingly, we consider

instead, substituting for U0 with Us, defined as the function for a sphere of equal

volume to the basic cubic cell. We also only need to consider how this term behaves

at large imaginary p, hence we assign as

U0 ≈ Us = 4πρ3
J 3

2
(pρ)
√
pρ

, (C.8)

and the relationship of the radial part is expressed as

abc ≈ 4πρ3

3
, a = b = c, a3 ≈ 4πρ3

3
, (C.9)
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where a, b, c are the dimensions of the cubic cell and the equivalent volume radius

ρ is expressed as

ρ = a

(
3

√
3

4π

)
. (C.10)

When the argument in (C.8) is small, the half order Bessel function tends to 1/3, so

that the term is equal to the cell volume. Neglecting the offset contribution of kn

and km can be justified by considering an expansion in infinite series of higher order

cylinder functions, but it may be assumed that k0ρ is so small for fundamental

cell that the higher term may be neglected. Applying the first condition and note

that substituting (C.8) into (C.7), involves integrals of product of Bessel functions

of the form [115, p. 429] known as Hankel integrals and expressed as:

I =

∫ ∞
0

Jν(pρ) Jν(pρ)
√
pρ
√
pρ

p2

p2 − k2
dp,

=
1

ρ

∫ ∞
0

Jν(pρ) Jν(pρ)
p

p2 − k2
0

dp.

(C.11)

For brevity, we write

∫ ∞
0

Jν(pρ) Jν(pρ)
p

p2 − k2
0

dp =
1

2
πiJν(k0ρ)H(1)

ν (k0ρ), (C.12)

where ν = n + 1
2

and n = 1, with this reduction (C.12) is finite. Note that

substituting (C.12) into (C.6) leads to simplification of the Z term to the form

expressed as

Z̄(kn, km) =
4πχ2

8π3ρk2
0

∑
j

∑
i

γ(rj) γ(ri) exp (−ikn · rj)

· exp (ikm · ri)
iπ

2
Jν(ρk0)H(1)

ν (ρk0) [Ī− p̂p̂],

(C.13)

where [Ī− p̂p̂] is an array of projection vectors in dyadic form, p̂ is a unit vector
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and χ = 4πρ3.

This approach leads to Z-term been expressed as

Z̄(kn, km) =
i 8ρ6

k0

∑
j

∑
i

exp (−ikn · rj) exp (ikm · ri)

· γ(rj) γ(ri) j1(ρk0)h
(1)
1 (ρk0) [Ī− p̂p̂],

(C.14)

where

jn(ρk0) =

√
π

2ρk0

Jn+ 1
2
(ρk0), (C.15)

and

h(1)
n (ρk0) =

√
π

2ρk0

Hn+ 1
2
(ρk0). (C.16)

The notation [Ī− p̂p̂] has the representation

Ī− p̂p̂ =


1− y2 cos2 φ −y2 cosφ sinφ −xy cosφ

−y2 cosφ sinφ 1− y2 sin2 φ −xy sinφ

−xy cosφ −xy sinφ y2

 , (C.17)

where

sin2 θ + cos2 θ = 1,

y2 + x2 = 1,

(C.18)

and

y2 = 1− x2. (C.19)

For a distinct pair of cells, that is when [p̂ · (rj − ri)] ≶ 0 or rj 6= ri. The

angular integral over solid angle (Ω) using a numerically weighted summation

result to evaluation of the Z-term differently from identical pair of cells discussed

by applying two different approaches.

164



APPENDIX C. THEORETICAL ANALYSIS OF Z-TERM USING HANKEL
INTEGRALS METHOD

Now we consider when [p̂ · (r − r′)] > 0. In order to evaluate this condition, the

U0 factors in the terms are well approximated by the cubic cell volume ∆v = a3,

and the integral part of (C.5) is modified to a known function called the axillary

function which involves sine, cosine and exponential integrations, as defined in

[121, p. 227 - 237]

F (x) =

∫ ∞
0

sin(t)

t+ x
dt =

∫ ∞
0

e−xt

t2 + 1
dt,

F (x) = Ci(x) sin(x)−
[π

2
− Si(x)

]
cos(x).

(C.20)

After some manipulation, the infinite radial integral in (C.5) is transformed to the

form given by

I =

∫ ∞
0

exp (−βq)
q2 + k2

0

q2dq, (C.21)

where β = [p̂ · (r− r′)] and q = ip. Further manipulation and scaling of equation

(C.21) is carried out as follows

I =

∫ ∞
0

[
k2

0 + q2

k2
0 + q2

− k2
0

k2
0 + q2

]
exp (−βq)dq, (C.22)

and simplifying (C.22) into to the form given as

I =

∫ ∞
0

exp (−βq)
[
1− k2

0

k2
0 + q2

]
dq,

=

∫ ∞
0

exp (−βq)dq −
∫ ∞

0

k2
0 exp (−βq)
k2

0 + q2
dq,

(C.23)

where the first integral on the right hand side of equation (C.23) becomes

∫ ∞
0

exp (−βq)dq =
1

β
, (C.24)
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and the second integral is divided through by a factor of k0 which yields a similar

form of axillary function given in (C.20)

∫ ∞
0

k2
0 exp (−βq)
k2

0 + q2
dq = k0

∫ ∞
0

exp (−βαk0)

α2 + 1
dα, (C.25)

where α =
q

k0

. Combining analysis from both (C.24 ) and (C.25 ) gives

I =
1

β
− k0

∫ ∞
0

exp (−βαk0)

α2 + 1
dα,

=
1

β
[1− βk0F (βk0)] .

(C.26)

Hence, comparing coefficients of (C.20) and (C.26), it is possible to write F (βk0)

as

F (βk0) = Ci(βk) sin(βk0)−
[π

2
− Si(βk0)

]
cos(βk0). (C.27)

Substituting equation (C.26) into (C.5) leads to expressing the Z-term as

Z̄(kn, km) =
4π

8π3k2
0

∑
j

∑
i

exp (ikn · rj) exp (ikm · ri)

· γ(rj)γ(ri) ∆v2 1

β
[1− βk0F (βk0)] [Ī− p̂p̂].

(C.28)

To complete the theory of the Z-term for the distinct pair of cells, we need to

consider another case when β = [p̂ · (r − r′)] < 0. In this case, the purpose of

this approach is to evaluate the integral over p by contour integration as defined

in [122, p. 262 - 265]

∮
c

f(z)dz = 2πi
n∑
k=1

Res(f, zk). (C.29)
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where Res(f, zk) denotes the residue of f at the singularity zk. Hence, if f satisfies

condition at the pole, then taking the limit as the real axis tends to infinity, the

contour integral over the arc vanishes by Jordan’s Lemma method as discussed in

[122] and we get the value of the improper integral to be evaluated.

Now we need to carry out contour integration by expressing the integral part of

(C.5) as

I =

∫ ∞
0

exp [i(p̂ · (rj − ri)p] U0(kn,p)U0(p,km)
p2

p2 − k2
dp, (C.30)

but the U0 factors in this case also need to be well approximated by the cell volume

∆v. This approach reduces the evaluation of equation (C.30) and it is expressed

in another form

I = ∆v2

∫ ∞
0

exp [i(p̂ · (rj − ri)p]
p2

p2 − k2
0

dp,

= ∆v2

∫ ∞
0

exp [i(p̂ · (rj − ri)p]
p2

(p+ k0)(p− k0)
dp,

= lim
p→k0

dv2

∫ ∞
0

exp [i(p̂ · (rj − ri)p]
(p− k0) p2

(p+ k0)(p− k0)
dp,

= 2πi
k0

2
exp [i(p̂ · (rj − ri)k0] ∆v2,

= iπk0 ∆v2 exp [i(p̂ · (rj − ri)k0].

(C.31)

The Z-term in this case is now evaluated by substituting (C.31 ) into (3.55) which
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leads to the form

Z(kn, km) =
4π

8π3k2
0

∑
j

∑
i

exp (−ikn · rj) exp (ikm · ri)

· γ(rj)γ(ri) iπk
2
0 ∆v2 β [Ī− p̂p̂],

(C.32)

where β = exp [i(p̂ · (rj − ri)p].

C.2 Hankel integral combining partial expansion

method

A class of infinite integral approach given in [116] and [115] have been adapted to

express the U terms and avoid the constraints imposed at the domain of integra-

tions. Thus, we expand and express the U(kn,p) function in (3.48) as

U(kn,p) =

∫
γ(r) exp(ikn · r) exp(−ip · r) d3r. (C.33)

Note, we expand exp(−ip · r) as given in [115, p. 128]

exp(−ip · r) = exp(−ipr cos θ),

exp(−ipr cos θ) =

(
2π

pr

)1

2
∞∑
n=0

cn (−i)n Jn+ 1
2
(pr)Pn(cos θ), (C.34)

where Pn(cos θ) is the Legendre polynomials, Jn+ 1
2
(pr) is the half order Bessel

function, n is the order of Bessel term to be evaluated and so cn = n + 1
2
; thus
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leads to the expression

exp(−ipr cos θ) =

(
2π

pr

)1

2
∞∑
n=0

(n+
1

2
) (−i)n Jn+ 1

2
(pr)Pn(cos θ), (C.35)

of which a detailed proved of this expression is given in [115, p. 127 - 128]. Again,

the same analytical procedure is used to expand U(p,km) and the complete expan-

sion of the U terms thus, leads to Hankel’s integrals involving products of Bessel

functions.

Z̄(kn,km) =

∫ ∑
m,n

f(m, r, km, p) f(n, r′, p, kn)I(m,n, r, r′) J̄p d3r d3r′ d3p,

(C.36)

where

I(m,n, r, r′) =

∫
V

∑
m,n

p2 Jn+ 1
2
(pr′) Jm+ 1

2
(pr)

p2 − k2
0 − iε

d3r d3r′ d3p. (C.37)

The integral equation (C.37) resemble those expressed in [115, § 13.53] and we use

the expansion as investigated by Hankel’s by applying contour integration to the

integrand to obtain

I(m,n, r, r′) =


1

2
iπ k0 Jn(k0r

′)Hm(k0r) if r ≥ r′ > 0

1

2
iπ k0Hn(k0r

′)Jm(k0r) if r′ > r

(C.38)

For the problem of interest, the poles are close to the real axis which results in

the right hand side of equation (C.38) being expressed as the product of a Bessel

function of the first kind and a Hankel functions.

Taking into consideration the existence of the discontinuity in the domain of in-

tegration, the contour integral is carried out in a semicircle split into two half
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with the pole in one half. The Hankel functions in (C.38) are evaluated with one

goes up the imaginary axis (r ≥ r′) and the other down (r′ > r), based on the

conditions described in [116] these parts cancel out completely. Care need to be

exercised with regards to the signs of residues because of the direction of traversing

the contours.

The mathematical expression of f(m, r, km, p) and f(n, r′, p, kn) functions given in

(C.37) are similar and can be expressed as

f(m, r, km, p) =

∫ ∑
m=0

exp(−km · r)γ(r)Pm cos θ d3r, (C.39a)

f(n, r′, p, kn) =

∫ ∑
n=0

exp(kn · r′)γ(r′)Pn cos θ d3r′. (C.39b)

Combining the expansion through (C.37) to (C.39) again we solve the second Born

series term by evaluating integral by method of numerical quadrature and can be

expressed as

Z̄(kn,km) =
∑
m,n,p

f(m, r, km, p) f(n, r′, p, kn) I(m,n, r, r′) [I− p̂ p̂]. (C.40)
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