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Abstract

We propose a model of posted prices in networks. The model

maps traditional concepts of market power, competition and double

marginalization into networks, allowing for the study of pricing in

complex structures of intermediation, such as supply chains, trans-

portation and communication networks and financial brokerage.

We provide a complete characterization of equilibrium prices.

Our experiments complement our theoretical work and point to node

criticality as an organizing principle for understanding pricing, effi-

ciency and the division of surplus in networked markets.

JEL Classification: C70, C71, C91, C92, D40.

Keywords: Intermediation, competition, market power, double

marginalization.

1 Introduction

Supply, service and trading chains are a defining feature of the modern

economy. They are prominent in agriculture, in transport and communica-

tion networks, in international trade, in markets for bribes and in finance.

Goods and services pass through individuals or firms located along these

chains. The routing of economic activity, the earnings of individuals and the

efficiency of the system depend on the prices set by these different interme-

diaries. The aim of this paper is to understand how the network structure

of chains shapes market power and thereby determines prices and efficiency.
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To fix ideas, consider pricing in a transport network. A tourist wants

to travel on the Eurostar from London to Paris to see the Louvre. The

first leg of the journey is from Home to St. Pancras Station, using one of a

number of different services, such as taxi companies, bus services and the

Underground. Once at St. Pancras Station, the only service provider to

Paris Nord Station is Eurostar. Upon arriving at Paris Nord, there are a

number of alternatives (bus, Metro and taxi) to get to the Louvre. The

network consists of alternative paths, each comprised of local transport

alternatives in London and in Paris and a common node (the Eurostar

Company). Each of the service providers sets a price, and the traveler picks

the cheapest ‘path’. Section 2 of this paper develops a number of other

applications for which pricing in networks is important.

These examples motivate the following model. There is a source node,

S, and a destination node, D. A path between the two is a sequence of

interconnected nodes, each occupied by an intermediary. The source node,

the destination node and all the paths between them, together, define a

network. The passage of goods from source to destination generates value.

Intermediaries simultaneously post a price to get a share of this value; the

prices determine a total cost for every path between S and D. We assume

that the good moves along a least-cost path and an intermediary earns

payoffs only if she is located on it. Posted prices are the norm in transport

and communication networks. We characterize the Nash equilibria of the

pricing game.
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A node is said to be critical if it lies on all paths between S and D.

Our main finding is that criticality of nodes defines market power and,

consequently, pricing, earnings and the efficiency of economic activity in

networked markets. We now elaborate on the scope of this finding and

locate it in the context of the literature.

In the benchmark model, intermediaries know the value. We prove ex-

istence and provide a complete characterization of Nash equilibrium (The-

orem 1). For a given network, there typically exist multiple equilibria:

a) they range from efficient to inefficient (where trade breaks down com-

pletely) and b) in every efficient equilibrium, all the surplus goes either to

S and D or all of it goes to the intermediaries. The presence of critical

traders is sufficient but not necessary for intermediation rents; non-critical

intermediaries may extract rents because intermediaries on competing paths

mis-coordinate and price themselves out of contention. In the presence of

critical traders, there exist equilibria in which the entire surplus accrues to

these traders, but there also exist equilibria in which it is captured by the

non-critical intermediaries. Standard equilibrium refinements do not help us

in this situation: either they are too demanding and we face non-existence

problems, or they are insufficiently restrictive.

To gain a deeper understanding of the relation between networks and

market power, we take the model to the laboratory. Our experiments high-

light the ability of human subjects to coordinate on efficient outcomes.

They show that critical traders set high prices and extract most of the sur-
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plus. Thus, our theoretical work and experiments, taken together, establish

that the presence of critical intermediaries is both necessary and sufficient

for large surplus extraction by intermediaries and that most of the surplus

does accrue to critical traders.

In markets with multiple vertically related firms, double marginalization

is a major concern for policy and regulation; see, e.g., Lerner (1934), Tirole

(1993) and Spulber (1999).1 In our benchmark model, the number of inter-

mediaries per se has no impact on the efficiency of trade because the value

is perfectly known to all intermediaries. We extend our benchmark model

to a setting in which value is uncertain. We prove existence and provide a

complete characterization of equilibrium in this model (Theorem 2). As in

the benchmark model, there typically exist multiple equilibria. However,

the new model also exhibits important differences. Intermediaries who set

positive prices and lie on a least-cost path all set the same price; this price

and the efficiency of trade are falling in the number of intermediaries. The

multiplicity of equilibrium motivates an experimental investigation. Our

experiments highlight the impact of the length of trading chains, especially

the number of critical intermediaries, on prices and the efficiency of trade.

Our model offers a generalization of the classical models of price com-

1Double marginalization figured prominently in the Microsoft antitrust case in the

United States: it was used as an argument against splitting Microsoft into two firms,

one specializing in operating systems and the other specializing in software development

(Economides (2001)).
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petition (a la Bertrand) and the Nash demand game (Nash, 1950) to a

setting with multiple price-setting agents, in which coordination, competi-

tion and double marginalization are important. In the theoretical literature,

there has been considerable recent interest in the study of intermediation

in networks. There are, broadly, three protocols for “price” formation:

auctions (Kotowski and Leister (2012)), bargaining (Condorelli, Galeotti

and Renou (2013), Gofman (2011), Manea (2013), Siedlarek (2012), Be-

dayo, Mauleon and Vannetelbosch (2016)) and posted prices (Acemoglu

and Ozdagler (2007a, 2007b), Blume et al. (2007) and Gale and Kariv

(2009)). As we study a model with posted prices, our paper falls in the

third strand of work.2 There are three main differences between our paper

and the papers cited above: 1) the generality of our network framework

(which encompasses all networks and allows for incomplete information);

2) our complete characterization of equilibrium; and 3) our methodological

combination of theory and experiments. To the best of our knowledge, the

result on the role of node criticality in shaping pricing and division of sur-

2For an early paper on the relation between price and quantity competition, see

Sonnenschein (1968). For models of networks in which traders choose quantities, see

Babus and Kondor (2013), Malamud and Rostek (2013) and Nava (2010). Our paper

also broadly relates to Ostrovsky (2008), which extends the study of pairwise stability

developed in the matching literature to more general environments of trade, such as

supply chains. However, our focus on how the structure of supply chains affects market

power is very different from the questions studied in Ostrovsky (2008).

6



plus is novel.3 Building upon the results in the current paper, Condorelli

and Galeotti (2016), show that node criticality is also useful for the analysis

of market power in networks, under different trading protocols (including

auctions and bilateral bargaining).

We contribute to the economic study of networks. The research on

networks has been concerned with the formation, structure and functioning

of social and economic networks; for book-length surveys, see Goyal (2007),

Jackson (2008), Vega-Redondo (2007) and Bramoullé, Galeotti and Rogers

(2016). The problem of ‘key players’ has traditionally been studied in terms

of maximal independent sets, Bonacich centrality, eigenvector and degree

centrality; see, for example, Ballester, Calvó-Armengol and Zenou (2006),

Bramoullé and Kranton (2007), DeMarzo, Vayanos and Zwiebel (2003),

Elliot and Golub (2013), Galeotti et al. (2010) and Golub and Jackson

3Acemoglu and Ozdaglar (2007a, 2007b) consider parallel paths between the source

and destination pair. This rules out the existence of “critical” traders. Blume et al.

(2007) consider a setting with only a single layer of intermediation; this rules out co-

ordination problems and the interaction between coordination and the market power of

intermediaries. Finally, Gale and Kariv (2009) study multiple layers of intermediaries

and full connectivity across adjacent layers; this rules out “critical” traders.

We should also mention the literature on vertical relation in industrial organization the-

ory; here the focus has been on rich contractual models but within simple two layer

networks between a single upstream firm and several downstream retails (see e.g., Segal

and Whinston (2003), Nocke and Rey (2014)). By contrast, we allow for a fairly general

class of networks but restrict attention to a very simple contractual form: posted prices.
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(2010). The contribution of our paper is to show that criticality of nodes,

which is very different from “classical” measures of centrality, offers an

appropriate measure of market power.

Our paper also contributes to the large body of experimental work on

bargaining and trading in markets. Our finding on efficiency in the bench-

mark model echoes a recurring theme in economics, first pointed out in the

pioneering work of Smith (1962), and more recently highlighted in the work

of Gale and Kariv (2009). The special case of one critical intermediary

can be interpreted as a dictator game; our results on full extraction of sur-

plus stand in contrast to the general message from the research on dictator

games; see Engel (2011). The case of two critical intermediaries may be

viewed as a symmetric Nash demand game. Our experiments reveal a high

frequency of trade and equal division of surplus; these results are consistent

with those in the existing literature, such as Roth and Murnighan (1982),

Roth (1995), and Fischer et al. (2006). Charness, Corominas-Bosch and

Frechette (2007) study efficiency and surplus division with bargaining in

two-sided networked markets. To the best of our knowledge, our paper is

the first experimental study of chains of intermediation in networks.4 The

4There is a large sociological literature on exchange. We share with this literature

the motivation of how power may emerge in networks, but we are also interested in

questions of efficiency, and our formulation in terms of posted prices and our results are

quite different. We refer the reader to Easley and Keinberg (2010) for a survey of this

work.
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treatments involving a combination of critical and non-critical intermedi-

aries are novel relative to the literature. These treatments provide us a

first glimpse into the interaction between market power and competition in

supply chains and related environments.

The rest of the paper is organized as follows. In Section 2 we describe

the model and discuss how a number of important questions in applications

can be studied within our framework. Section 3 analyzes the benchmark

model where value is common knowledge, while Section 4 takes up the

model with unknown value. Section 5 concludes. All proofs are presented

in the Appendix. Supplementary material is presented in online Appendix

A; sample instructions of experiments can be found in online Appendix B.

2 The Model

There is a source node, S, and a destination node, D. A path q between

S and D, is a sequence of distinct nodes {i1, ..., il} such that gSi1 = gi1i2 =

... = gilD = 1. The set of paths is denoted by Q. Every node i is called an

intermediary ; let N = {1, 2, 3..., n}, n ≥ 1, denote the set of intermediaries.

The nodes N ∪ {S,D} and the paths Q define a network, g.

Every intermediary i simultaneously posts a price pi ≥ 0. Let p =

{p1, p2, ..., pn} denote the price profile. The network g and the price profile

p define a cost for every path q between S and D:
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c(q, p) =
∑
i∈q

pi. (1)

Payoffs arise out of active intermediation: an intermediary i obtains pi

only if he lies on a feasible least cost path. A least-cost path q′ is one such

that c(q′, p) = minq∈Q c(q, p). Define c(p) = minq∈Q c(q, p). A path q is

feasible if c(q, p) ≤ v, where v is the value of economic ‘good’ generated by

the path. All paths generate the same value v. If there are multiple least-

cost paths, one of them is chosen randomly to be the active path. Given g,

p and v, we denote by Qv = {q ∈ Q : c(q, p) = c(p), c(p) ≤ v} the set of

feasible least-cost paths, and intermediary i’s payoff is:

πi(p, v) =

 0 if i 6∈ q, ∀ q ∈ Qv

ηvi
|Qv |pi if i ∈ q, q ∈ Qv,

(2)

where ηvi is the number of paths in Qv that contain intermediary i. Implicit

in this formulation is the assumption that intermediaries have zero costs.5

We consider the case in which intermediaries know the value of v when

they choose their price. In this scenario, we normalize v to be equal to 1,

and, therefore, intermediary i’s profit is Πi(p) = πi(p, 1). We also examine

5It is possible to extend our analysis to cover heterogenous costs of intermediation.

Heterogenous costs will mean that generically there exists a unique path with mini-

mum total ‘cost’ of intermediaries. This path will play a role in the characterization of

equilibrium.
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the situation in which intermediaries face demand uncertainty when they set

their intermediation price. This formulation allows us to study the trade-off

between higher prices and lower volume of trade. In this case, we assume

that it is common knowledge that v has a distribution F (·) on the interval

[0, 1], with a continuously differentiable density f(·). Given network g and

price profile p, the expected payoff to intermediary i is:

Πi(p) = Ev[πi(p, v)].

We study (pure strategy) Nash equilibrium of the posted price game. A

price profile p∗ is a Nash equilibrium if for all i ∈ N , Πi(p
∗) ≥ Πi(pi, p

∗
−i) for

all pi ≥ 0. An equilibrium is efficient (resp. inefficient) if trade occurs (resp.

does not occur) regardless of the realization of v. When v = 1 is known,

an equilibrium p∗ is efficient if c(p∗) ≤ 1 (resp. c(p∗) > 1); otherwise, the

equilibrium p∗ is inefficient. Under demand uncertainty, an equilibrium p∗

is efficient (resp. inefficient) if, and only if, c(p∗) = 0 (resp. c(p∗) > 1);

when c(p∗) ∈ (0, 1), we say that the equilibrium p∗ is partially efficient.

In principle, nodes that lie on many paths have more opportunities to

act as an intermediary. The betweenness centrality of a node i ∈ N is the

fraction of paths on which intermediary i lies.6 Let ηi = |{q ∈ Q|i ∈ q}|

and define betweenness centrality of intermediary i as BCi = ηi/|Q|, where

6We consider all paths and not just the shortest paths; in this, we follow Borgatti

and Everett (2006).
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BCi ∈ [0, 1]. Intermediary i is said to be critical if BCi = 1. Let BC = {i ∈

N : BCi = 1} be the set of critical intermediaries. Observe that criticality

is a property of the network per se, and is independent of the price profile.

For simplicity, we suppress the dependence of BC on g.

The model offers a general framework to study the relation between

networks and the pricing behavior of traders. We now discuss a number of

applications to illustrate the scope of the model.

2.1 Applications

1. Transportation and communication Networks: The example we

sketched in the introduction falls under the large umbrella of transportation

and communication networks (which include airlines, shipping, Internet and

cable TV). Traditionally, these sectors have been heavily regulated or under

public-sector control. The large-scale privatization in the UK (during the

1980s) was a precursor to a global trend. Now, it is common for a con-

sumer to make a choice among alternative bundles of services provided by

a number of distinct service providers. A key policy concern is the nature

of market power in these networks.7

2. Supply chains: Consider a Sony Vaio Laptop. It usually has an

Intel processor, a hard drive from Seagate Technology, Hitachi, Fujitsu or

Toshiba, RAM from Infineon or Elpida, a wireless chipset from Atheros

7Firms in communication and transportation networks use a rich set of price strate-

gies; discrimination with regard to source and destination is common.
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or Intel, an optical drive from Hitachi or Matsushita, and a graphic card

from Intel, NVIDIA or AMD. The speakers may be from HP or Sony. The

different intermediate input suppliers set prices, and Sony picks the best

combination of inputs and prices.

Anderson and Wincoop (2004) show that trade intermediation costs

amount to a significant tax on international transactions. Hummels, Jun

and Yi (2001) show that production supply chains increasingly traverse

the world and decisively shape the pattern and volume of trade. Antras

and Costinot (2011) is a recent attempt to understand international trade

with intermediaries, whereas Antras and Chor (2013) study the optimal

organization of a supply chain. The empirical significance of supply chains

motivates a systematic study of strategic pricing in general networks.

3. Corruption: The bribing of public officials for access to goods and

services and for the granting of licenses and permits is a prominent feature

of economic life in many countries. Shleifer and Vishney (1993) and Ades

and Di Tella (1999) argue that the level of bribes should be viewed as a

function of officials’ ‘market power.’ In some contexts, there is a single line

of officials (or committees) that must approve a decision, while in others,

there may exist multiple competing chains of decision makers (as on highway

tolls; Olken and Barron (2009)). These examples motivate an inquiry into

the ways that the network of decision making shapes the power of officials

in the market for bribes.

4. Intermediation in agriculture: Consider coffee. At the start, there
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is a farmer in a developing country who typically works on a small farm.

The farmer chooses from among a few intermediaries who process his cof-

fee cherries to obtain beans. These intermediaries then sell the beans to

one of the small number of exporting trading firms. The exporters sell to

dealers/brokers, who, in turn, sell to roasters (such as Nestle). The roasters

then sell to large supermarkets and local stores. Finally, consumers buy the

coffee from a retailer.

Such long chains of intermediation are common across the agricultural

sector (see, for example, Fafchamps and Minten (1999)). Historically, the

market power of intermediaries has been a major concern and has led to

large-scale state intervention in this sector. However, by the 1990s, it was

felt that state agencies discouraged innovation and the entry of new in-

termediaries, leading to a very inefficient system (see Bayley (2002) and

Meerman (1997)). Recent decades have witnessed a large-scale liberaliza-

tion of the intermediation sector. The effects of liberalization have, however,

been mixed; for a discussion, see Traub and Jayne (2008). This research

motivates a theoretical study of the determinants of pricing and division of

surplus in intermediation networks.

5. Financial Intermediation: Consider the market for municipal bonds

in the United States, which is the largest capital market for state and mu-

nicipal issuers. It has market capitalization of over $4 trillion, with daily

trading volumes of around $ 10-20 billion. Li and Schürhoff (2014) show

that trading of these bonds is organized as a decentralized over-the-counter
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(OTC) broker-dealer market. The network of traders has a core-periphery

structure, with roughly 20-30 dealer firms at the core and several hundred

peripheral dealer firms (around 700 firms trade in municipal bonds in any

given month). Bonds move from the municipality through an average of six

inter-dealer trades. There is systematic price dispersion across dealers, with

dealers in the core maintaining systematically larger margins. These em-

pirical patterns motivate a theoretical study of how traders choose partners

and how the ensuing network shapes pricing margins and profitability.

In Examples 1, 2 and 3, a consumer or a firm will choose the path: it is

reasonable to suppose that the cheapest path will be picked. In Examples

4 and 5, on the other hand, the agent who owns an object will sell it to

the highest bidder downstream and has no interest in the cost of the entire

path.

The latter two examples motivate the following Bid-Ask price variant

of our model. Following Gale and Kariv (2009), suppose that every inter-

mediary i ∈ N simultaneously sets a bid and ask (bi, ai). The source S

accepts the highest bid, and the destination D buys as long as the lowest

ask price is not greater than v. The object passes from intermediary i to a

connected intermediary j with the highest bid bj, subject to the condition

that bj ≥ ai. We study this alternative model of pricing in online Appendix

A. The analysis there establishes that every equilibrium outcome in our

model is also an equilibrium outcome of the Bid-Ask model; the converse

is not true in general. However, for some important classes of networks –
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that include trees and multi-partite networks – the equilibrium outcomes

in the two models are equivalent. So, for these networks, our equilibrium

characterization result in the benchmark model, Theorem 1, also holds for

the Bid-Ask model.

3 Complete information: Networks, market

power and efficiency

We prove existence and provide a complete characterization of Nash

equilibrium for the case in which v is known. For any given network, there

typically exist multiple equilibria with widely varying pricing, efficiency and

division of surplus. We take the model to the laboratory. The experiments

highlight two points: 1) the ability of human subjects to coordinate on effi-

cient outcomes; and 2) the role of node criticality as an important network

property for understanding market power.

We say that trader i is essential under p if he belongs to every feasible

least-cost path. Given price profile p, for path q, let c−j(q, p) =
∑

i∈q,i6=j pi,

be the total cost of all intermediaries other than j.8

8It is worth noting the distinction between essential and critical nodes. Criticality

is a property of the network per se, while essentiality is defined by the network and the

price profile together. So, a node may be essential even if there are no critical nodes in

the network: this point is taken up in the discussion on multiple equilibria below.
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Theorem 1

A. Existence: In every network, there exists an efficient equilibrium.

B. Characterization: An equilibrium p∗ is inefficient (c(p∗) > 1); or

intermediaries extract all the surplus (c(p∗) = 1); or they earn nothing

(c(p∗) = 0). Moreover,

1. p∗ is an equilibrium in which intermediaries earn nothing if, and

only if, no trader is essential.

2. p∗ is an equilibrium in which intermediaries earn all the surplus

if, and only if, (i) if trader i belongs to the least-cost path, and he

sets a positive price then trader i is an essential trader; and (ii)

if trader i belongs only to non-least-cost paths, and he belongs to

path q then c−i(q, p
∗) ≥ 1.

3. p∗ is an inefficient equilibrium if, and only if, if trader i belongs

to path q then c−i(q, p
∗) ≥ 1.

The argument for the existence of an efficient equilibrium is constructive.

First, consider a network with no critical traders. The 0 price profile is a

Nash equilibrium, as no intermediary can earn positive profits by deviating

and setting a positive price. If an intermediary sets a positive price, S and

D will circumvent him, as there exists a zero cost path without him. Next,

consider a network with critical traders. It may be checked that a price
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profile in which critical traders set positive prices that add up to 1 and all

non-critical traders set 0 price is an equilibrium.

The characterization yields a number of insights. The first observation

is that in every efficient equilibrium, intermediation costs take on extreme

values. The intuition is as follows: if the feasible least-cost path is unique,

then intermediaries in that path exercise market power; thus, if intermedi-

ation costs are below the value of exchange, an intermediary in that path

could slightly increase his intermediation price while guaranteeing that ex-

change takes place through him. In contrast, when there are multiple fea-

sible least-cost paths, there is price competition among intermediaries on

different paths. In that case, whenever intermediation costs are larger than

zero, an intermediary demanding a positive price gains by undercutting his

price. Price competition drives intermediation costs down to zero.

The second observation is on how critical traders have market power.

Observe that a critical trader is essential. Hence, the presence of critical

traders is sufficient to ensure that intermediaries extract all surplus in every

efficient equilibrium.

Criticality dictates that all surplus must accrue to intermediaries, but

the theory is permissive about how it is distributed among them. To see this

point, consider the Ring with Hubs and Spokes network presented in Figure

1, and suppose that S and D are located on (a1, d1). Then, there exists an

equilibrium in which all surplus accrues to the critical intermediaries, e.g.,

A and D charge 1/2 and all other intermediaries charge 0. However, there
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is also an equilibrium in which the entire surplus is earned by non-critical

intermediaries, e.g., A and D charge 0, B and C charge 1/2, and F and E

charge 1.

The final observation is about the multiplicity of equilibria. Consider

the ring network with six traders presented in Figure 1, and suppose that

S is located at A and D is located at D. The three equilibria described

by Theorem 1 are possible in this network: all intermediaries set price

0; all of them set price 1; and intermediaries B and C set price 1, while

intermediaries E and F set price 1/2 each. In the last case, note that E

and F are essential but not critical. Thus, criticality is not necessary for

surplus extraction by intermediaries.

This multiplicity motivates an exploration of equilibrium refinements.

We consider a number of possible refinements, including strictness, strong

Nash equilibrium, elimination of weakly dominated strategies, and coali-

tion proof equilibrium. We find that, in some cases, these refinements are

too strong; for example, there does not exist a strict or strong Nash equi-

librium in some networks. In other cases, the refinement is not effective;

for example, a wide range of outcomes (including those with coordination

failure) may be sustained under elimination of weakly dominated strate-

gies and coalition proof. We discuss these refinements in greater detail in

online Appendix A. Given the limited usefulness of standard equilibrium

refinements, we turn to an experimental investigation of posted prices in
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networks.9

3.1 Posted prices in the Laboratory

3.1.1 Experimental Design

We have chosen networks that allow us to examine the roles of coor-

dination, competition and market power. These networks are depicted in

Figure 1.

The ring networks with four, six and ten traders allow us to focus on

coordination and competition.10 For every choice of S and D, there are

always two competing paths of intermediaries. In Ring 4, for any non-

adjacent pair, there are two paths with a single intermediary each. Ring

6 and Ring 10 allow for situations with a higher (and possibly unequal)

number of intermediaries on either path.

The Ring with Hubs and Spokes network allows for a study of the impact

of market power: for instance, if S is located at a1 and D is located at a2,

9Goyal and Vega-Redondo (2007) consider a cooperative solution concept the kernel

in their work. They show that non-critical traders would earn 0, and critical traders

would split the surplus equally in allocations in the kernel. Our analysis above reveals

that this solution is a Nash equilibrium of the pricing game but that there exist a variety

of other equilibria.

10We have also run experiments on a ring network with eight traders. The results are

in line with those presented in this section, but to simplify exposition, we do not present

them.

20



A 

B 

C 

D 

A B 

C 

D E 

F 

A B C D 

E 

F G H I 

J 

A B 

C 

D E 

F 

a1 
a2 b1 

b2 

c1 

c2 

d1 
d2 e1 

e2 

f1 

f2 

          RING 4      RING 6 

       RING 10 RING with HUBS & SPOKES 

Figure 1: Networks in the benchmark design

intermediary A is a pure monopoly, while if D is b1, then the intermediaries

A and B play a symmetric Nash demand game. This network also creates

the space for both market power and competition to come into play. For

instance, if S is located at a1 and D is located at e1, then there are two

competing paths: a shorter path (through A, F , and E) and a longer path

(through A, B, C, D, and E). Traders A and E are the only critical

intermediaries.

To put these experimental variations into perspective, we summarize

the equilibrium analysis for the selected networks. In Ring 4, there is a

unique equilibrium that corresponds to the Bertrand outcome. In every
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other network, whenever there are at least two intermediaries on every

path, there exist both efficient and inefficient equilibria. This observation

motivates our first question:

Question 1: How does the efficiency of trade vary with ring size and the

presence of critical traders?

If trading does take place, Theorem 1 predicts an extremal division of

trade surplus: either intermediaries earn 0 surplus or they extract all trade

surplus. In Ring 4, the intermediation cost is 0 in the unique equilibrium;

but in all other Rings, both extremal outcomes are possible in equilib-

rium. In the Ring with Hubs and Spokes, whenever exchange involves crit-

ical traders, equilibrium dictates full surplus extraction by intermediaries.

These considerations motivate the second question:

Question 2: Is the division of surplus extremal? How does it vary with the

presence of critical traders?

Finally, we turn to the situation in the Ring with Hubs and Spokes where

all three forces of interest – coordination, competing paths and critical

traders – are present. Theorem 1 tells us that all surplus must accrue to

intermediaries, but it is silent on how the surplus is distributed among them.

This observation motivates our third question:

Question 3: What is the division of surplus between critical and non-

critical intermediaries?
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Session
Treatment 1 2 Total

Ring 4 16 / 240 16 / 240 32 / 480
Ring 6 18 / 180 24 / 240 42 / 420
Ring 10 20 / 120 20 / 120 40 / 240
Ring w. hubs/spokes 18 / 180 24 / 240 42 /420

Table 1: Treatments in Benchmark Model

3.1.2 Experimental procedures

We ran the experiments at the Experimental Laboratory of the Centre

for Economic Learning and Social Evolution (ELSE) at University College

London (UCL) between June and December 2012. The subjects in the ex-

periment were recruited from the ELSE pool of human subjects consisting

of UCL students, across all disciplines. Each subject participated in only

one of the experimental sessions. After subjects read the instructions, an

experimental administrator read the instructions aloud. Each experimen-

tal session lasted around two hours. The experiment was computerized

and conducted using the experimental software z-Tree, developed by Fis-

chbacher (2007). Each session used one network treatment, and we ran

two sessions for each treatment. Each session consisted of 60 independent

rounds. Table 1 provides an overview of the experimental design. In each

cell, we report number of subjects/number of group observations.

We employed random matching with random assignment of network po-

sitions across rounds. In each round of a treatment, subjects were assigned

with equal probability to one of the possible positions of a network. In

Ring n, all nodes were possible positions. In Ring with Hubs and Spokes,

each spoke node was a computer-generated agent, and the remaining nodes
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were all feasible positions for the human subjects. Groups with one subject

per intermediary position were then randomly formed. The position of a

subject and the groups formed in each round depended solely on chance

and was independent of the subject’s position and the groups formed in

previous rounds, respectively.

We deliberately chose the protocol of random matching with random as-

signment. This procedure anonymized the identity of the subjects through-

out a session and, thus, helped avoid “repeated games” effects that arise if

the same fixed group of subjects play a game repeatedly. The advantage

of using subjects repeatedly under this protocol was that it allowed us to

collect a large amount of data from a given number of subjects, while they

had an opportunity to learn how to play a game. Other protocols, in which

subjects never again meet someone who they have played before require

large subject pools or provide fewer observations with less opportunity for

subjects’ learning. It is worth emphasizing that, as we only varied the

network structure, any experimental difference in subjects’ behavior across

treatments will be evidence of network effects because we kept the random

matching and assignment protocol constant across all treatments.11

For each group, a pair of two non-adjacent nodes was randomly selected

11As we shall see, our findings are in line with existing experimental literature that

shows that the random matching protocol is an effective way to minimize the repeated

games effects (Duffy and Ochs (2009)). We discuss possible repeated games effects after

we report the first finding in the next section.
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as S and D. Each pair of two non-adjacent nodes was equally likely to be

selected. All of the subjects in each group were informed of the position of

S and D in the network. All traders were informed that the surplus/value

of exchange was 100 tokens. Then, all human subjects in an intermediary

role were asked to submit an intermediation price: a real number (up to

two decimal places) between 0 and 100. The computer calculated the inter-

mediation costs across different paths. Exchange took place if the least-cost

among all paths was less than or equal to 100. If there were multiple feasible

least-cost paths then one of them was chosen at random.

At the end of the round, subjects observed all posted prices in their

group, the trading outcome, and the earnings of all the subjects. We as-

sumed that each of S and D was allocated one half of the net surplus– i.e.,

one half of 100 minus the intermediation costs. Then, the subjects moved

to the next round.

In each round, earnings were calculated in terms of tokens. For each

subject, the earnings in the experiment were the sum of his or her earnings

over 60 rounds. At the end of the experiment, subjects were informed of

their earnings in tokens. The tokens were exchanged for British pounds,

with 60 tokens equaling £1. Subjects received their earnings plus £5 show-

up fee privately, at the end of the experiment.
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All ( ≥ 2) 2 3 4 5

1.00 1.00 -- -- --

(480) (480)

1.00 1.00 1.00 -- --

(420) (289) (131)

1.00 1.00 1.00 1.00 1.00

(240) (49) (87) (69) (35)

0.95 1.00 0.94 0.90 0.90

(420) (126) (155) (109) (30)

Ring 10

Ring with Hubs

and Spokes

Note. The number of group observations is reported in parentheses.

Network
minimum distance of buyer-sell pair

Ring 4

Ring 6

Table 2: Frequency of Trading

3.1.3 Findings

We start by examining the efficiency of trade in networks. Table 2

reports the relative frequency of trade across different treatments.

Trade occurs with probability 1 in ring networks, regardless of their size

and of the distance between S and D. In Ring with Hubs and Spokes,

the frequency of trade is around 0.95. So, market power does not have

any significant effect on efficiency of trading. Overall, despite the need

for coordination among intermediaries along the same path, the presence of

competition between paths and the presence of market power of some inter-

mediaries, traders across all treatments are very successful in coordinating

on prices that ensure exchange.

Finding 1: The level of efficiency is remarkably high in all networks. Trad-

ing in Rings with four, six, and ten intermediaries occurs with probability

1. In the Ring with Hubs and Spokes, trading occurs with probability around
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0.95.

In Rings, we distinguish trading situations with respect to distances of

the two competing paths between S and D, denoted by (d (q) , d (q′)). In

Ring with Hubs and Spokes, we distinguish trading situations with respect

to (i) the number of critical intermediaries (#Cr), (ii) the number of inter-

mediation paths (#Paths), and (iii) the distance of each path (d (q) , d (q′)).

Figure 2 presents the average intermediation costs, conditional on trading,

based on the last 20 rounds, with a 95 percent confidence interval across

different trading situations.

In Table 3 of online Appendix A, we report the movement across rounds

in average intermediation costs across distinct trading situations in Rings

and Ring with Hubs and Spokes. When there are no critical traders (resp.

there are only critical traders), there is a clear downward trend (resp. up-

ward trend) in intermediation costs across rounds. The trends across rounds

reflect subjects’ learning to play the games. We interpret them as suggest-

ing that subjects learned to compete between distinct paths when there are

no critical traders, while they learned to coordinate on how to divide surplus

with only critical traders. In treatments with both critical and non-critical

traders, intermediation costs are stable over time.

We now comment on an issue that is potentially more subtle and that

can arise in our setting.12 In our experiments, subjects know that there

12We are grateful to a referee for drawing our attention to this issue.
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is random assignment to locations across rounds. So, for instance, they

know that each of them will have a chance to occupy critical nodes. This

may lead them to be not overly concerned about the surplus accruing to

critical nodes in any specific round. Thus, the relationship between network

location and surplus could potentially be due to this repeated game effect.

A simple way to investigate this point is to examine the players’ behavior

and the division of surplus in the last round of the game. If this argument

were valid, then the allocation of surplus would be very different in the

last round, as non-critical players, for instance, might insist on a fair share

of the surplus. But Table 4 in online Appendix A shows us that there is

essentially no difference in behavior of prices in the later rounds versus the

last round. Thus, we conclude that this type of ‘repeated game’ effect is

not an issue in our experiment.

In Ring 4, intermediation costs are around five percent of the surplus. In

the other rings, intermediation costs vary between ten and twenty percent of

the surplus. The overall conclusion is that intermediation costs in all ring

networks are modest and, between the two efficient equilibria, are much

closer to the one with zero intermediation cost, especially in the smaller

rings.

In the Ring with Hubs and Spokes, when S and D are served by a sole

critical intermediary, the situation is analogous to the dictator game, widely

studied in the experimental literature (for a survey, see Engel (2011)). We

find a surplus extraction of 99 percent, which is much higher than that
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Figure 2: Costs of intermediation

reported in the experimental literature. This suggests that traders located

at critical nodes in a network interpret their location as a form of ‘earned

endowment,’ in the sense of Cherry, Frykblom and Shogren (2002). This

may give rise to a sense of entitlement that is distinct from the standard

dictator game.13

When S and D are connecting via one single path with two intermedi-

aries, the game played by the two intermediaries is analogous to a symmetric

Nash demand game. We find that intermediaries extract, in total, around

13We also note that in our design, in some situations, both S and D are computer-

generated agents, while in others, one of them is a human subject. We find no behavioral

difference across these cases. This leads us to believe that the human subject vs. com-

puter issue does not play a major role in explaining the behavior of the subjects in our

experiment.

29



96 percent of the surplus and that they share it roughly equally.14 These

findings are consistent with those in the experimental literature of Nash

bargaining (e.g., Roth and Murnighan (1982) and Fischer et al. (2006)).

Finally, when there are two competing paths and critical traders, the

intermediation cost ranges between 62 percent and 83 percent. In the case

without critical intermediaries, this cost falls sharply to around 28 percent,

which is comparable to the low-cost outcome found in Rings. We summarize

this discussion in our second finding.

Finding 2: The presence of critical traders is both necessary and sufficient

for large surplus extraction by intermediaries. In Rings with four, six, and

ten traders, intermediation costs are small (ranging from 5 percent to 20

percent). In the Ring with Hubs and Spokes, with critical traders, interme-

diation costs are large (ranging from 60 percent to over 95 percent).

We now turn to the issue of how surplus is divided between critical and

non-critical intermediaries. Table 3 presents the average fraction of inter-

mediation costs charged by critical traders, conditional on exchange (here,

data are grouped into the blocks of 20 rounds, due to small samples). The

number within parentheses is the number of group observations. Looking

at the last 20 rounds, we observe that 67 percent to 80 percent of interme-

diation costs go to critical trader(s). In all the cases, regardless of whether

an exchange takes place along the shorter or longer path, the number of

14See Table 3 in online Appendix A.
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1 ~ 20 21 ~ 41 41 ~ 60

0.56 0.68 0.72

(20) (26) (25)

0.48 0.56 0.67

(16) (13) (10)

0.73 0.77 0.80

(16) (19) (24)

0.65 0.67 0.74

(8) (8) (11)

Notes. The number in a cell is the average fraction of costs charged by critical traders. The

number of observations is reported in parentheses. #Cr denotes the number of critical

intermediaries, #Paths denotes the number of paths connecting buyer and seller, d(q) denotes

the length of path q beween buyer and seller.

Network (#Cr,#Paths, d(q),d(q'))
Rounds

Ring with

Hubs and

Spokes

(1, 2, 3, 5)

(1, 2, 4, 4)

(2, 2, 4, 6)

(2, 2, 5, 5)

Table 3: Surplus division among intermediaries

non-critical traders is at least as large as the number of critical traders. To

summarize:

Finding 3: In the Ring with Hubs and Spokes, critical intermediaries set

higher prices and earn a much higher share of surplus than non-critical

intermediaries.

We have established that network structure – reflected in the criticality

of nodes – has powerful effects on intermediation costs and the division of

surplus. To gain a deeper understanding of the mechanisms of competition

and market power, we now examine the pricing behavior of traders directly.

We focus on the last 20 rounds and Figure 3 depicts average prices.15

In the Ring with six and ten traders, there is tight competition between

paths. Intermediaries on a longer path choose, on average, prices somewhere

15In Online Appendix A, Table 4 reports average prices charged across rounds by

intermediaries in Rings and Ring with Hubs and Spokes, respectively.
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Ring 4 (2, 2) 3.99 --

(2, 4) 4.45 0.65

(3, 3) 4.01 --

(2, 8) 15.20 0.64

(3, 7) 5.30 0.68

(4, 6) 6.82 0.68

(5, 5) 5.01 --

Freq. on a shorter path|cost1 - cost2|

Ring 6

Ring 10

Notes. We report the sample median of absolute differences of two
competing paths, using the sample of last 20 rounds. The number in the last
column is the frequency of trading on a shorter path.

Network (d(q), d(q'))

Table 4: Short versus long paths
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between five and ten, independently of the distances of the two paths across

all ring networks. Responding strategically to this, intermediaries on a

shorter path choose higher prices, which were proportionate to the difference

in distance between the two paths. As a result, even when the two paths

are very asymmetric, they have very similar intermediation costs and trade

occurs frequently – roughly one third of the time –along the longer path!

Table 4 provides data on these patterns.

In the Ring with Hubs and Spokes, the pricing of critical and non-critical

intermediaries is very different. Critical intermediaries post much higher

prices than non-critical intermediaries. The non-critical intermediaries post

prices that are similar to intermediaries in Rings. For instance, when there

is one critical intermediary and the two competing paths are of distance

three and five, the critical intermediary charges, on average, a price close

to 50; the only non-critical intermediary lying in the shorter path charges

a price close to 24; and the three non-critical intermediaries in the longer

path post a price around eight. Similar behavior is observed in the other

cases. This demonstrates the strong impact of network criticality on pricing

behavior and the division of surplus.

To further check the sharp differences in pricing behavior among differ-

ent types of intermediaries presented in Figure 3, Table 5 presents the re-

sults of regressions of prices on dummies for critical and non-critical traders

on a shorter path. Data are from the last 20 rounds, and we control for

individual heterogeneity by including individual subject dummies. Robust
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standard errors, clustered by individual subject, are reported in parenthe-

ses. In Ring networks, traders on a shorter path choose significantly higher

prices than those on a longer path. In the Ring with Hubs and Spokes,

critical intermediaries choose significantly higher prices than non-critical

intermediaries. The price difference between non-critical intermediaries on

short and long path is statistically significant.

Finally, while intermediation costs do take on extreme values, they de-

part significantly from the theoretical predictions. The observed departures

from equilibrium pricing and surplus extraction are consistent with a model

of noisy best response with risk aversion; a formal analysis is presented in

online Appendix A.
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4 Uncertain demand: competition and mar-

ket power

In our benchmark model, the number of intermediaries per se has no

impact on the efficiency of trade because the value of surplus is perfectly

known to all intermediaries. We now extend the benchmark model to allow

for uncertain demand. We prove existence and provide a complete charac-

terization of equilibrium in this model. As in the benchmark model, there

typically exist multiple equilibria, with very different pricing, efficiency and

division of surplus. However, the analysis also reveals important differences

with the benchmark model: active intermediaries are predicted to all set the

same price, and the number of active intermediaries has powerful effects on

pricing and the efficiency of trade. Our experiments highlight the interplay

between these theoretical predictions and the role of node criticality.

The next result proves existence and provides a complete characteriza-

tion of equilibrium, for all networks. Let e(g, p) be the number of essential

traders– i.e., the number of traders who lie on all paths q ∈ Q1. Define

h(x) = f(x)/[1− F (x)] to be the hazard rate.

Theorem 2 Assume that the hazard rate is increasing.

A. Existence: In every network, there exists an efficient or a partially

efficient equilibrium.

B. Characterization:
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1. An efficient equilibrium exists if, and only if, there are no critical

traders.

2. p∗ is a partially efficient equilibrium if, and only if, (a) there

exists some essential trader– i.e., e(g, p∗) ≥ 1; every essential

trader charges a price

p̂∗ =
1

h(e(g, p∗)p̂∗)
; (3)

and every non-essential trader in the least-cost path sets a price

equal to 0; and (b) if trader i belongs only to non-least-cost paths

and he belongs to path q, then c−i(q, p
∗) ≥ 1.

3. p∗ is an inefficient equilibrium if, and only if, if trader i belongs

to path q then c−i(q, p
∗) ≥ 1.

Theorem 2 brings out two important implications of pricing in networks

under uncertain demand.16 The first is that a lack of criticality is necessary

and sufficient for the existence of an efficient equilibrium. So, whenever

there are critical intermediaries, the equilibrium will involve some ineffi-

ciency (in the sense of lost trading opportunities). This is novel relative

to Theorem 1. The second observation relates to equilibrium pricing by

16All parts of the result, except for part [2], continue to hold if we relax the increasing

hazard rate assumption. In part [2], we exploit the increasing hazard rate assumption

for the sufficiency part of the proof only.
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essential traders: they set a unique common price that solves condition (3).

As c(p∗) ∈ (0, 1), intermediaries always share surplus with S/D.17

We now show how pricing, efficiency and division of surplus, vary with

the number of essential traders.

Proposition 1 Assume that the hazard rate is increasing. Suppose that p∗

and p′ are two partially efficient equilibria, with e(g, p∗) > e(g′, p′) essential

traders, respectively. Then:

1. The price for essential traders under p∗ is strictly lower than the price

under p′.

2. The intermediation cost under p∗ is strictly higher than under p′– i.e.,

c(p∗) > c(p′). Hence, p∗ is less efficient than p′.

3. The sum of intermediaries’ payoffs and the sum of S/D’s payoffs are

both lower under p∗ than under p′.

This proposition brings out another novel implication of pricing under

uncertain demand: recall that, in the benchmark model, there is no sys-

tematic relation between the number of essential traders and intermediation

17Observe that in case b.2 of Theorem 2, the cost of a least cost path must be interior.

It then follows, using arguments along the lines of Theorem 1, that there cannot be

multiple least cost paths. Otherwise, a trader on any one of these paths would have a

strict incentive to slightly lower her price and discontinuously raise (expected) demand

and thereby strictly raise profits.
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costs (cf. Theorem 1). In contrast, under demand uncertainty, the more

essential traders there are, the lower is the price that each charges, but the

higher is the cost of intermediation. Hence, a greater number of essential

traders leads to greater inefficiency. This follows from a classical problem

of double-marginalization. Each of the essential traders faces a downward-

slopping demand curve and has the incentive to mark up the intermediation

price above its marginal cost. An increase in the number of essential traders

reduces the mark-up charged by each intermediary, but the total interme-

diation cost must rise, because intermediaries do not fully internalize the

benefit of lowering the mark-up.

4.1 Experimental design and procedures

We study the effects of uncertain demand on pricing, the division of

surplus and efficiency of trade. In particular, we test the new theoretical

predictions on equal pricing and on partially efficient equilibrium. With

this in mind, in addition to rings of size four, six and ten and the Ring

with Hubs and Spokes, we also consider Line networks with six and eight

traders.18 Figure 4 presents these networks.

Recall that in ring networks, there always exists an efficient equilibrium,

but in rings with six and ten traders, there are also inefficient and partially

efficient equilibria. In Lines and in Ring with Hubs and Spokes (with crit-

18In the Line network with six and eight traders, the pair S and D are always the two

end nodes and computer-generated agents.
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Figure 4: Networks in the uncertain demand case

ical intermediaries), an efficient equilibrium does not exist, but a partially

efficient equilibrium does. The frequency of trade declines with the num-

ber of critical traders in this equilibrium. These observations motivate the

following question.

Question 1A: In the presence of uncertain demand, how does the effi-

ciency of trade vary with ring size and the presence of critical traders?

Our theoretical analysis reveals that in equilibrium, all essential traders

–critical and non-critical – must set the same price and that this price

declines in the number of essential traders. This motivates our second
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Session
Treatment 1 2 3 4 Total

Ring 4 16 / 240 24 / 360 40 / 600
Ring 6 18 / 180 18 / 180 36 / 360
Ring 10 30 / 180 30 / 180 60 / 360
Ring w. Hubs/Spokes 18 / 180 18 / 180 24 / 240 30 / 300 90 / 900
Line 6 16 / 240 20 / 300 36 / 540
Line 8 18 / 180 18 / 180 36 / 360

Table 6: Treatments with uncertain demand

question:

Question 2A: In the presence of uncertain demand, how does pricing vary

with network location and the number of critical traders?

4.1.1 Procedures

The experiment was run at the Experimental Laboratory of the Uni-

versity of Essex (ESSEXLab; http://www.essex.ac.uk/essexlab/) in May

and October 2013. The subjects in the experiment were recruited from the

ESSEXLab pool consisting of undergraduate and Master’s students across

all disciplines at the University of Essex. The experimental procedures fol-

lowed the one we described in Section 2.3. We note that in the experiment,

the value of exchange v is randomly drawn to be an integer between 1 and

100 at the beginning of each round. Table 6 summarizes the experimental

design and treatments. In each cell, we report number of subjects / number

of group observations in a session.

4.1.2 Findings

We start with an examination of efficiency of trade. Table 7 presents

data on the frequency of trade across the different networks. We split the
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data of Ring with Hubs and Spokes with respect to the number of paths.

The cases in which there is only one path between S and D correspond

to line networks with one or two critical intermediaries. In Table 7 and

subsequent tables, we refer to these cases as Line 3 and Line 4, respectively.

We refer to all other cases as belonging to Ring with Hubs and Spokes.

Our first observation is that, for fixed a network architecture, the dis-

tance between S and D has an impact on efficiency. In the Ring network

with ten traders, the frequency of trade declines from 0.73 to 0.57 as we

move from distance 2 to distance 5. In the Ring with Hubs and Spokes, the

frequency falls from 0.60 to 0.45 as we move from distance 3 to distance 5.

In line networks, the frequency of trade falls from 0.65 to 0.25 as we move

from distance 2 to distance 6. Our second observation is on the effects of

critical intermediaries. For a fixed distance, the frequency of trade in a ring

network and in a line network differ considerably. The frequency of trade

in Ring with Hubs and Spokes lies somewhere between that in rings and

that in lines, for each fixed distance.

To draw out more clearly the effects of distance and the number of

critical traders on efficiency, we compare efficiency between ring networks

and line networks in Figure 5.19 We calculate the frequency of trade in ring

networks after pooling all the observations in rings with four, six and ten

traders, where the length of the shortest path between S and D is the same

19In online Appendix A, we report average intermediation costs (see table 6) and

average prices for network location (see table 5) over time and across treatments.
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Network #Paths All ( ≥ 2) 2 3 4 5 6 7

0.89 0.89 -- -- -- -- --

(600) (600)

0.73 0.74 0.69 -- -- -- --

(360) (234) (126)

0.64 0.73 0.62 0.60 0.57 -- --

(360) (108) (114) (91) (47)

0.51 -- 0.60 0.47 0.45 -- --

(504) (158) (270) (76)

0.65 0.65 -- -- -- -- --

(227) (227)

0.53 -- 0.53 -- -- -- --

(169) (169)

0.36 -- -- -- 0.36 -- --

(540) (540)

0.25 -- -- -- -- -- 0.25

(360) (360)
Line 8 1

Notes. The number of group observations is reported in parentheses. #Paths denotes the number of paths connecting

buyer and seller. The samples of Line 3 and 4 are from sessions with Ring with Hubs and Spokes.

Ring with Hubs

and Spokes

Line 3

Line 4

1

Ring 10 2

2

1

Line 6 1

minimum distance between buyer and seller

Ring 4 2

Ring 6 2

Table 7: Frequency of trade

(circles on the dotted line in Figure 5). The frequency of trade declines with

distance. We also present the frequency of trade in line networks (squares

on the solid line in Figure 5). We note that the frequency of trade is lower

at every distance level and that the gradient remains significant all the way

through. To summarize:

Finding 1A: In the presence of uncertain demand, networks have large

effects on efficiency. The frequency of trade falls with distance and falls

even more sharply with the number of critical traders.

We now turn to the pricing behavior of traders by focusing on the last 20

rounds of the experiment. We first present average prices of different types

of intermediaries in the Ring networks and the Ring with Hubs and Spokes

in Figure 6. In addition, we report in Table 8 the regression results of

prices on dummies for critical and non-critical intermediaries, respectively,
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Figure 5: Efficiency and distance

on a shorter path. We control for individual heterogeneity by including

dummies for individual subjects. As in our benchmark experiment, there

is clear evidence that subjects responded strategically to the distances of

the two paths. Intermediaries on a shorter path chose higher prices that

appeared proportionate to the difference in distance between the two paths.

In all the networks, this difference in prices chosen by those on a shorter

path and on a longer path is statistically significant. As a consequence,

trade often occurs along the longer path.

Our next finding pertains to pricing by critical versus non-critical traders

in the Ring with Hubs and Spokes. We find that critical intermediaries

choose prices that are similar to those of non-critical traders on a shorter
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Figure 6: Pricing behavior in Rings and Ring with Hubs and Spokes

path or to all non-critical traders when the two paths are of equal distance.

In all trading cases except for the case of (#Cr, d (q) , d (q′)) = (2, 4, 6),

we cannot reject the null hypothesis either that prices chosen by critical

and non-critical intermediaries on a shorter path are equal or that critical

intermediaries choose the same price as non-critical intermediaries when

the two paths are of equal distance. These findings are in line with the

predictions of the theory.

Next, we examine the pricing behavior in Line networks. Theorem 2

(in a partially efficient equilibrium) predicts the declining patterns of prices

with distance: 50 in Line 3; 33.3 in Line 4; 20 in Line 6; and 14.3 in Line 8.

Figure 7 presents the sample average of prices with 95 percent confidence
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Ring 6

Dependent variable: price (2, 4) (2, 8) (3, 7) (4, 6) (3,5) (4,4) (4,6) (5,5)

(1) Non-critical & on a shorter path 13.436 19.086 9.017 6.977 10.492 4.511
(2.722)*** (3.725)*** (1.865)*** (2.186)*** (1.896)*** (2.678)

(2) Critical 11.318 2.840 8.598 -1.278
(1.987)*** (2.520) (1.520)*** (3.089)

Constant 28.552 7.750 10.357 1.907 6.647 7.449 7.536 9.000
(0.961)*** (0.000)*** (0.678)*** (1.700) (0.966)*** (0.360)*** (0.594)*** (0.000)***

H 0 : (1) = (2) or H 0 : (2) = 0 0.641 0.269 0.117 0.682
(p -value)

R-squared 0.338 0.387 0.349 0.312 0.326 0.345 0.223 0.376
Number of obs. 312 280 312 200 280 145 378 144

Notes: Each regression contains dummies for individual subjects. Robust standard errors, clustered by individual subject, are reported in parentheses. *, **, and
*** represent 10%, 5%, and 1% significance level.

Ring 10 Ring with Hubs and Spokes
#Cr = 1 #Cr = 2

Table 8: Regressions of pricing on network position

interval across Line networks, along with the theoretically predicted price.

As theory predicts, average prices fall with distance between S and D: 34

in Line 2; 24 in Line 3; 17 in Line 6; 13 in Line 8. However, average

prices quantitatively depart from the predictions in a manner that subjects

underprice relative to the equilibrium. The gap between empirical prices

and equilibrium prices shrinks with distance. We shall return to these

departures in the next section.

We finally turn to the empirical investigation of the theoretical predic-

tion that critical traders across different positions set a common price. We

focus on Line 6 and Line 8 networks for this analysis. Table 9 reports the

regression results of prices on dummies for network positions, using the last

20 rounds of the data. The average prices in position A of Line 6 and Line

6 networks are, respectively, about 20 and 13. The coefficients of position

dummies are not significantly far from zero, and we cannot reject the null

hypothesis of the equivalence of prices between any two positions in each

Line network at an usual significance level.

We summarize the pricing behavior in networks with demand uncer-
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Line 6 Line 8
Dependent variable: price (d(q) = 5) (d(q) = 7)

Constant 19.579 12.753
(0.348)*** (0.456)***

Position B 0.029 -1.030
(0.606) (0.714)

Position C -0.383 -0.588
(0.588) (0.874)

Position D 0.362 -0.006
(0.624) (0.682)

Position E -0.205
(0.709)

Position F -0.764
(0.806)

R-squared 0.200 0.190

Number of obs. 720 720

Notes: Each regression contains dummies for individual subjects. Robust standard
errors, clustered by individual subject, are reported in parentheses. *, **, and ***
represent 10%, 5%, and 1% significance level.

Table 9: Regressions of pricing in line network
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tainty as follows.

Finding 2A: ( i) Subjects responded strategically to the distances of two

paths. Critical traders and non-critical traders on a shorter path set similar

prices, while non-critical traders on a longer path set much lower prices.

( ii) Average prices in Line networks decline with distance, as theory pre-

dicts. However, average prices are lower than equilibrium prices; the gap

between them shrinks with distance.

5 Concluding remarks

We propose a general model of posted prices in networks. Our theoreti-

cal analysis provides a complete characterization of posted price equilibrium

for arbitrary structures of intermediation. This is a first step towards un-

derstanding the functioning of intermediated networks. Our experiments

complement our theoretical work and point to node criticality as an or-

ganizing principle for understanding pricing, efficiency and the division of

surplus in networked markets.

Our model extends naturally to the case of an arbitrary number of

source-destination pairs. The key assumption is that traders know the loca-

tion of the source-destination in the network, and can discriminate based on

this location. In some applications, traders set prices that apply uniformly

to all intermediated trades, independently of the location of the origin and

destination. An example of uniform prices are road tolls: two drivers who
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use a bridge across a river will pay the same amount, regardless of where

they started or where they end up. This motivates the study of pricing in a

model in which the network origin and destination of trades are unknown.

In a companion paper, Choi, Galeotti and Goyal (2014), we study this

setting. We suppose that all traders simultaneously post prices: the price

that a trader sets applies to all potential trades that go through him. Once

prices are set, an S/D pair is picked at random from the set of all traders.

As before, a feasible least-cost path is selected. Given a profile of prices, a

trader faces the following trade-off. A higher price raises the payoff if trade

does take place, but it rules out long-distance trade between farther-away

S/D pairs. The theory and experiments suggest that location uncertainty

leads to breakdown of long distance trade and creates large losses in effi-

ciency.

We have assumed that all intermediaries have zero costs and that this

is common knowledge. It would be natural to examine the case in which

intermediaries have private information about their marginal costs. At a

general level, residual uncertainty about marginal costs of upstream and

downstream intermediaries leads to a trade-off similar to the one introduced

by demand uncertainty or by uncertainty of the location of source and

destination. That is, when an intermediary sets the price, he faces the

trade-off between charging a high price and obtaining a high profit, but with

low probability, or charging a low price, which leads to a low profit, but with

high probability. In an early paper, Spulber (1995) studies a setting with
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one intermediary per path; in a recent paper, Minarsch and Leister (2015)

provide partial characterization of pricing equilibrium for special classes of

networks. The analysis of pricing with asymmetric information in general

networks remains an open problem.
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Appendix

Proof of Theorem 1:

Existence: If C = ∅, set p∗i = 0 for all i ∈ N . Note that no intermediary

can earn positive profits by deviating and setting a positive price, because,

since there are no critical traders, there is always an alternative zero cost

path. If C 6= ∅, then consider a price profile p∗ such that p∗i = 0 if i /∈ C,

and for j ∈ C set p∗j so that
∑

j∈C p
∗
j = 1. It is easily checked that no critical

or non-critical intermediary has a profitable deviation from this profile.

Characterization: We first show that c∗(p∗) ∈ (0, 1) cannot be sustained

in equilibrium. We consider two cases.

Case 1: Suppose |Q∗| = 1; in this case a trader i on q ∈ Q∗ can raise his

price slightly and strictly increase payoffs.

Case 2: Suppose |Q∗| > 1; consider a path q ∈ Q∗ and fix a trader i ∈ q

with pi > 0. Note that such a trader always exists, given that c(p∗) > 0.

We have two possibilities:

2a: If intermediary i is essential, he can raise his price slightly and he will

remain essential as all other prices remain as before and the sum of prices

being less than 1. So there is a strictly profitable deviation.

2b: If i is not essential, given that |Q∗| > 1, the probability that i is used

in exchange is at most 1/2. If trader i lowers his price slightly, he ensures

that he is on the unique feasible least cost path. Thus the deviation strictly

increases payoff.
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Now we take up each of the remaining three possibilities with regard to

intermediation costs and characterize the conditions for which they can be

sustained in equilibrium.

1. Assume c(p∗) = 0. We first establish sufficiency. In equilibrium every

trader makes payoff 0. Consider an increase in price by some intermediary

i. As no intermediary is essential under p, there exists an alternative path

between b and s at cost 0, and this path excludes trader i. So there is no

profitable deviation, and p∗ is an equilibrium.

We now establish necessity. Suppose there is a trader i who is essential

under p∗. As c(p∗) = 0, essential trader i can raise his price slightly, still

ensure that exchange takes place through him, and thereby he strictly raises

his payoffs. So p∗ is not an equilibrium.

2. Assume c(p∗) = 1. We first establish sufficiency. Consider intermediary

j ∈ q, with q ∈ Q∗. If p∗j > 0 then intermediary j is essential and so trade

occurs with probability 1 via j and he earns p∗j . If j raises his price then

total costs of intermediation exceed 1 and no trade takes place, yielding a

zero payoff to j. If j lowers his price, trade does occur with probability 1

via him, so he only succeeds in lowering his payoff below p∗j . Next consider

trader k ∈ q with q ∈ Q∗ such that pk = 0. It is easily verified that k cannot

increase his payoff by raising his price. Finally, consider l /∈ q, ∀ q ∈ Q∗.

This trader earns 0 in p∗. A deviation to a lower positive price leaves the

trade probability via l at 0, as c−l(q
′∗) ≥ 1 for all q′ such that l ∈ q′. We

have shown that p∗ is an equilibrium.
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We now establish necessity. Suppose j ∈ q, with q ∈ Q∗, p∗j > 0 and j is not

essential. So the probability that exchange occurs via trader j is at most

1/2. Trader j can lower his price slightly and this will push the probability

of trade via himself to 1, and thereby he strictly raises his payoff. Next

consider k /∈ q for all q ∈ Q∗ and suppose c−k(q
′∗) < 1 for some q′ such that

k ∈ q′. Under p∗, the payoff to k is 0. But since c(p∗) = 1, there is a price

pk = 1− c−k(q′∗)− ε such that, for small ε > 0, the probability of trade via

k is 1 and pk > 0. This is therefore a profitable deviation.

3. Assume c(p∗) > 1. We first establish sufficiency. All traders earn 0 under

profile p∗. It can be checked that no deviation to another price can generate

positive payoffs given that c−j(q, p
∗) ≥ 1, for all j and for all q ∈ Q. A

deviation to price 0 yields payoff 0. This proves sufficiency.

We now establish necessity. Suppose that c(p∗) > 1 and that there is some

j ∈ q such that c−j(q, p
∗) < 1. Then there is a price pj = 1 − c−j(p∗) − ε,

for some ε > 0 such that trade takes place via trader j with probability 1

and pj > 0. This constitutes a profitable deviation.

�

Proof of Theorem 2:

Existence: If there are no critical traders in g, then existence of efficient

equilibrium follows the arguments developed in Theorem 1. If there are

critical traders then set pi = 0 for every non-critical intermediary i, and for

every critical intermediary set p∗ = 1/h(ηp∗), where η is the number of crit-
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ical players. The constructed profile satisfies part 2. Therefore there always

exists a partially efficient equilibrium in the presence of critical traders.

Characterization: The proof of Part 1 and Part 3 uses the arguments

developed in the proof of Part 1 and Part 3 of Theorem 1, and are therefore

omitted. We now prove Part 2.

First consider necessity. Suppose p∗ is equilibrium and c(p∗) ∈ (0, 1).

Take an arbitrary least cost path q ∈ Q1. Observe that every player i who

is not essential and who belongs to path q must set price 0. For otherwise,

a positive price by player i, pi > 0, is dominated by a slightly lower price

p′i < pi, that ensures the path q becomes the unique lowest cost path. This

observation and the hypothesis that c(p∗) > 0, implies that there must exist

essential players, i.e., e(g, p∗) ≥ 1, and that c(p∗) =
∑

i∈E(g,p∗) p
∗
i .

Second, the optimal price of an essential player i ∈ E(g, p∗) solves

p∗i = arg max pi[1− F (pi + c∗−i(p
∗)]. (A.1)

It is easy to see that p∗i ∈
(
0, 1− c∗−i(p∗)

)
; the first order condition then

says that for all i ∈ E(g, p),

p∗i =
1− F (c(p∗))

f(c(p∗))
.

But this implies that ∀i, j ∈ E(g, p∗), p∗i = p∗j and p∗i ∈
(

0, 1
e(g,p∗)

)
. So
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equilibrium price is given by

p∗i =
1− F (e(g, p∗)p∗)

f(e(g, p∗)p∗)
.

The existence of such a p∗ ∈
(

0, 1
e(g,p∗)

)
follows from the assumption that

f(·) and F (·) are both continuous functions and that f(0) > 0. Finally

consider an intermediary i who does not belong to any path in Q1 and

suppose that c−i(q
′∗) < e(g, p∗)p∗ for some path q′ such that i ∈ q′. Then

player i can charge a price p = e(g, p∗)p∗−c−i(q′∗)−ε > 0 and now whenever

trade occurs it will occur via path q′; hence, this is a strictly profitable

deviation for intermediary i. The proof that these conditions are sufficient

is straightforward, given that the hazard rate is increasing.

�

Proof of Proposition 1: From Theorem 2 we know that in a partially

efficient equilibrium every essential player sets price, p∗i , such that:

p∗i =
1

h(e(g, p∗)p∗i )
(A.2)

where e(g, p∗) ≥ 1. The assumption of increasing hazard rate implies that

there exists a unique p∗ which solves p∗ = 1/h(e(g, p∗)p∗i ). We now prove

the three parts in the proposition.
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Part 1. Implicitly differentiating (A.2) and simplifying yields:

dp∗

de(g, p∗)
= − h

′
(e(g, p∗)p∗i )

h2(e(g, p∗)p∗i ) + h′(e(g, p∗)p∗i )
< 0, (A.3)

where the inequality follows from the assumption of increasing hazard rate.

Part 2. Next, note that in a partially efficient equilibrium intermediation

costs are e(g, p∗)p∗i and therefore the probability that trade does not occur

is F (e(g, p∗)p∗i ). Again, implicit differentiation yields

dF (e(g, p∗)p∗i )

de(g, p∗)
= f(e(g, p∗)p∗i )

[
p∗i + e(g, p∗)

dp∗i
de(g, p∗)

]
= f(e(g, p∗)p∗i )p

∗
i

[
1− h

′
(e(g, p∗)p∗i )

h2(e(g, p∗)p∗i ) + h′(e(g, p∗)p∗i )

]
> 0

where the the second equality follows by substituting the expression for

dp∗

de(g,p∗)
from above, and the inequality follows from the assumption of in-

creasing hazard rate.

Part 3. The expected payoff of an essential intermediary is p∗[1−F (e(g, p∗)p∗)];

since inessential intermediaries obtain a payoff of zero, the join profits of

intermediaries are

∑
i∈N

Πi(p
∗) = e(g, p∗)p∗[1− F (e(g, p∗)p∗)], (A.4)
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and

d
∑

Πi(p
∗)

de(g, p∗)p∗
= [1− F (e(g, p∗)p∗)]− e(g, p∗)p∗f(e(g, p∗)p∗)

= [1− F (e(g, p∗)p∗)](1− e(g, p∗)) ≤ 1, (A.5)

where the second equality follows using equilibrium condition p∗ = 1/h(e(g, p∗)p∗),

and the inequality follows because in a partially efficient equilibrium e(g, p∗) ≥

1. Finally, the joint profit of S and D is

ΠS(p∗) + ΠD(p∗) = [1− F (e(g, p∗)p∗i )] [E[v|v ≥ e(g, p∗)p∗i ]− e(g, p∗)p∗i ]

=

∫ 1

e(g,p∗)p∗i

xf(x)dx− e(g, p∗)p∗[1− F (e(g, p∗)p∗i )]

(A.6)

and therefore

d[ΠS(p∗) + ΠD(p∗)]

de(g, p∗)p∗
= −[1− F (e(g, p∗)p∗i )] < 0. (A.7)

�
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