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An influential theory of the function of early processing
in the visual cortex is that it forms an efficient coding of
ecologically valid stimuli. In particular, correlations and
differences between visual signals from the two eyes are
believed to be of great importance in solving both depth
from disparity and binocular fusion. Techniques such as
independent-component analysis have been developed
to learn efficient codings from natural images; these
codings have been found to resemble receptive fields of
simple cells in V1. However, the extent to which this
approach provides an explanation of the functionality of
the visual cortex is still an open question. We compared
binocular independent components with physiological
measurements and found a broad range of similarities
along with a number of key differences. In common with
physiological measurements, we found components with
a broad range of both phase- and position-disparity
tuning. However, we also found a larger population of
binocularly anticorrelated components than have been
found physiologically. We found components focused
narrowly on detecting disparities proportional to half-
integer multiples of wavelength rather than the range of
disparities found physiologically. We present the results
as a detailed analysis of phase and position disparities in
Gabor-like components generated by independent-
component analysis trained on binocular natural images
and compare these results to physiology. We find strong
similarities between components learned from natural
images, indicating that ecologically valid stimuli are
important in understanding cortical function, but with
significant differences that suggest that our current
models are incomplete.

Introduction

A perception of depth is necessary for humans and
other animals to understand, interact with, and

navigate around our environment. One of our principal
sources of depth information is binocular vision, in
which the small differences between the images formed
in our two eyes are used to infer the three-dimensional
structure of the environment. Although the responses
of some neurons in the lateral geniculate nucleus are
affected by the images presented to both eyes (Tong,
Guido, Tumosa, Spear, & Heidenreich, 1992), it is
widely held that the first stages of disparity processing
occur in the primary visual cortex (V1; Cumming &
DeAngelis, 2001; Parker, 2007; Roe, Parker, Born, &
DeAngelis, 2007). Here, cells are found that are tuned
to binocular disparity. The disparity sensitivity of these
neurons is well characterized by the binocular energy
model (Fleet, Wagner, & Heeger, 1996; Ohzawa,
DeAngelis, & Freeman, 1997; Prince, Pointon, Cum-
ming, & Parker, 2002; Read & Cumming, 2003). Under
this model, the responses of linear Gabor filters are
summed between the two eyes, then squared to produce
an energy response. Disparity tuning is introduced by
summing across filters with different shapes and/or
locations of receptive fields for the two eyes.

Physiological studies of the visual cortex have found
widespread evidence of cells that respond to binocular
stimuli (for detailed reviews, see Howard, 2002;
Howard & Rogers, 2002; Neri, 2005; Parker, 2007; Roe
et al., 2007). Hubel and Wiesel (1962) studied V1 in cats
and found cells that had Gabor-like receptive fields in
both eyes. Similar cells have been found in macaque
monkeys (Poggio & Fischer, 1977; Prince, Cumming, &
Parker, 2002; Prince, Pointon, et al., 2002), sheep
(Clarke, Donaldson, & Whitteridge, 1976), and the
visual Wulst of the barn owl (Pettigrew & Konishi,
1976). Numerous studies have characterized these cells
in increasing detail, in terms of both the responses of
individual cells and their distributions.
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Differences in the location and/or phase of the
receptive fields of simple cells between the two eyes are
common, and are generally thought to form the basis
for disparity estimation. Position-disparity-tuned cells
have receptive fields of the same shape, but with a shift
in location, in the two eyes. Evidence for position-
disparity-tuned cells has, for example, been found in V1
of the cat (Anzai, Ohzawa, & Freeman, 1999; Nikara,
Bishop, & Pettigrew, 1968; Pettigrew, 1972). Con-
versely, phase-disparity-tuned cells have receptive fields
with an identical location, but a difference in their
shape, between the two eyes. Specifically, the wave
function of the Gabor-like receptive field is shifted in
phase in one eye compared to the other. Such cells have
also been found in V1 of the cat by Ohzawa and
colleagues (DeAngelis, Ohzawa, & Freeman, 1991,
1995; Ohzawa et al., 1990). Subsequently, researchers
have found evidence that disparity-tuned V1 cells in
both cats and macaques exhibit a mixture of phase- and
position-disparity sensitivity (Anzai et al., 1999; Prince,
Cumming, & Parker, 2002; Prince, Pointon, et al., 2002;
Tsao, Conway, & Livingstone, 2003). It is generally
believed that the outputs of these simple cells feed into
V1 complex cells according to some variant on the
energy model (Fleet et al., 1996; Ohzawa et al., 1997;
Prince, Pointon, et al., 2002; Read & Cumming, 2003).
Together, these cells are assumed to form the basis for
the estimation of differences in the locations of
corresponding features across the two eyes, and thus
the perception of depth from binocular disparity.

Since binocular cells in area V1 are tuned for
orientation and spatial frequency, it is also possible
that their tuning for these properties might differ
between the two eyes. Indeed, differences in the
preferred orientation between eyes have been found for
neurons in the macaque cortex and areas 17 and 21a of
the cat (Blakemore, Fiorentini, & Maffei, 1972; Bridge
& Cumming, 2001; Nelson, Kato, & Bishop, 1977;
Wieniawa-Narkiewicz, Wimborne, Michalski, & Hen-
ry, 1992). These interocular differences in the orienta-
tion tuning of receptive fields are potentially valuable in
the encoding of surface orientation. Orientation dis-
parities, defined as differences in the orientation of
corresponding features in the two eyes’ images, are
created when surfaces are slanted away from fronto-
parallel. These orientation disparities could therefore
be used to determine the orientation of surfaces
(Greenwald & Knill, 2009). Although Bridge and
colleagues (Bridge & Cumming, 2001; Bridge, Cum-
ming, & Parker, 2001) have argued that the type of
response to orientation found in binocular V1 cells is
not well suited to the analysis of orientation disparities,
psychophysical evidence suggests that they could
contribute directly to the perception of depth (Heydt,
Adorjani, Hänny, & Baumgartner, 1978; Ninio, 1985).
Differences in the size of the corresponding features in

the two eyes’ images could play a similar role (Tyler &
Sutter, 1979).

While electrophysiological studies have demonstrat-
ed a wide variety of disparity tuning in cortical
neurons, they do not directly provide any understand-
ing of why disparity is encoded in this way. Significant
understanding of the nature of the computations
performed by the visual system can be gained from the
analysis of typical natural images. The vast majority of
natural-image inputs to the visual system are redun-
dant; a recent estimate by Field and Chandler (2012)
put this redundancy at 64% in local regions of
monocular natural images. This redundancy includes
both noise in the imaging system and dependencies
within the data. In particular, natural images exhibit
significant spatial redundancy; the intensities of neigh-
boring sample locations are not independently distrib-
uted. Analysis of these relationships is an important
factor in understanding local image structure and how
it can be efficiently encoded.

Barlow (1961) proposed that neurons perform an
energy-efficient coding of the visual input by removing
this redundancy from the signal. Numerous techniques
have been applied to samples from natural images to
examine ways in which information can be represented
efficiently. For example, Olshausen and Field (1996)
created a sparse linear decomposition of image patches
by applying a Cauchy prior to favor coefficients
(responses) with low values. This resulted in a set of
‘‘edge-like’’ basis functions that were spatially localized,
oriented, and bandpass. These Gabor-like functions
show many similarities in their overall structure to the
receptive-field structure of V1 neurons. Similar results
have been found by minimizing mutual information
between filter outputs (Bell & Sejnowski, 1997) and
maximizing the kurtosis of the population response
(Hyvärinen, Hurri, & Hoyer, 2009). A detailed analysis
of the similarities of these learned filters with monoc-
ular V1 simple-cell responses was carried out by van
Hateren and van der Schaaf (1998). Again, clear
similarities were noted between the distributions of
frequency tuning, orientation, and receptive-field size
and measurements of these properties in V1 simple cells
in the macaque. These results have been taken as
evidence that the visual cortex achieves an efficient
coding of visual input using components that are
independent, exhibit a sparse response to inputs, and
capture non-Gaussian spatial relations in the data.
Ringach (2002) compared the receptive-field sizes of
components from independent-component analysis
(ICA) and components generated using sparse coding
(Olshausen, 2002) to those measured in cats and
monkeys. He found that, in general, both sparse and
ICA components had larger, more narrowly tuned
features than those observed in physiological measures.
Although the image statistics did not successfully
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describe the receptive field of simple cells in V1,
Ringach did not conclude that the basic principles were
flawed as a way of understanding the function of
cortical cells.

Methods for the efficient or optimal encoding of
information have also been proposed in order to
understand the responses of binocular neurons. A
range of approaches to this problem have been taken,
in each case with a different optimization goal in mind.
Li and Atick (1994a) proposed that the brain encodes
information in a way that reduces the redundancy
present in natural binocular images. Clearly, the images
formed in our left and right eyes are very similar; this
similarity is a significant source of redundancy in the
visual information that we receive. Li and Atick’s
(1994a) proposal is that binocular information is
encoded in a way that decorrelates the two eyes’ images
by creating two channels, one that additively combines
the left and right eyes’ views and one that subtracts
them. This two-channel structure is supported by
psychophysical evidence (D. Chen & Li, 1998; May,
Zhaoping, & Hibbard, 2012). Li and Atick combined
binocular decorrelation with whitening of the image as
a way of encoding binocular information. The resulting
binocular filters exhibited disparity tuning that showed
a number of similarities to that found in cortical cells.

Burge and Geisler (2014) derived binocular filters
that were optimized for estimating disparity in natural
images. This was achieved using the accuracy maximi-
zation analysis proposed by Geisler, Najemnik, and Ing
(2009). Optimal binocular filters were learned for
planar samples, with known disparities, created from
natural images. Again, the binocular receptive fields of
the learned filters were similar in shape to those found
in the visual cortex.

ICA has also been applied to binocular images. Here
the aim is to maximize the independence of the learned
components, and this is attempted through maximiza-
tion of the kurtosis of responses. A sparse coding of
binocular-image patches was created by Hoyer and
Hyvärinen (2000) using ICA. This analysis was
performed on patches taken from locations around a
simulated convergence point in the left and right views.
As a result, it focused on features that were close to
alignment.

The components that were learned closely resembled
Gabor functions for each eye’s view, with a similar
orientation and frequency for each eye. They were thus
very similar in form to the receptive fields of binocular
neurons in V1 (Anzai et al., 1999). A disparity-tuning
function for each component was calculated. Following
Poggio and Fischer (1977), these were then classified as
tuned-excitatory, tuned-inhibitory, near, or far cells.
Tuned-excitatory cells are those that show a clear
response peak at zero disparity. Conversely, tuned-
inhibitory cells show a clear trough in their response at

zero disparity. Near and far cells show a peak in
response for near and far disparities, respectively.
Hoyer and Hyvärinen (2000) found that the majority of
their cells were tuned-excitatory, near, or far cells, with
a phase disparity close to zero. This feature of the
disparity tuning is again remarkably similar to that
found in cortical cells. For example, Prince, Cumming,
and Parker (2002) showed that the distribution of
phase-disparity tuning for V1 cells showed a very clear
peak at 0, with a falloff in the number of cells tuned to
larger phase differences. Okajima (2004) performed a
similar study using difference-of-Gaussian filtered
Gaussian noise and natural images using synthetic
horizontal displacement. They generated Gabor-like
components by minimizing mutual information. Like
Hoyer and Hyvärinen, they found components with
similar frequency and orientation. Their analysis
identified components exhibiting phase disparity, posi-
tion disparity, and both.

Taken as a whole, these results show that ICA
applied to natural binocular images generates compo-
nents with a number of close similarities to binocular
neurons. These results suggest that the responses of
binocular neurons to natural images will in turn be
sparse and independent. The purpose of the current
study is to extend this approach, in order to provide the
first detailed qualitative comparison between the
components learned by ICA and the responses of
binocular neurons.

Our fundamental approach was similar to that of
Hoyer and Hyvärinen (2000), in that we performed
ICA on patches cut from corresponding locations in
the left and right images of binocular pairs. We adapted
and expanded on their approach in a number of
important ways.

Firstly, Hoyer and Hyvärinen assessed the disparity
tuning of their learned components but did not attempt
to quantitatively model their receptive fields. While the
components analyzed were described as Gabor-like,
they were not fitted with Gabor or other functions. In
that study, disparity was quantified by measuring the
responses of the component to stimuli that consisted of
the components themselves, presented with a range of
positional disparities. The shapes and relative locations
of the components for each eye’s input were not
assessed. We modeled the components as Gabor filters,
in order to allow us to make direct comparisons with
physiological data.

The second difference is that this then allows for a
more fine-grained assessment of the components’
disparity tuning. In particular, modeling binocular
receptive fields allows us to directly assess the position-
and phase-disparity tuning of each component. This
goes beyond the categorization of tuning functions into
tuned-excitatory, tuned-inhibitory, near, and far cells.
It should be noted that, in the alert rhesus monkey,
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tuned-excitatory cells are also found that show clear
tuning to either a crossed or an uncrossed disparity
(Poggio, 1991; Poggio & Fischer, 1977; Poggio,
Gonzalez, & Krause, 1988; Poggio, Motter, Squatrito,
& Trotter, 1985; Poggio & Talbot, 1981), and that cells
are better viewed as forming a continuum of tuning
characteristics rather than falling into these discrete
categories (DeAngelis et al., 1991; Freeman & Ohzawa,
1990; LeVay & Voigt, 1988; Ohzawa et al., 1996). Our
analysis allows a detailed assessment of the relationship
between the tunings to positional and phase disparities,
as has been performed for physiological data (Prince,
Cumming, & Parker, 2002; Prince, Pointon, et al.,
2002).

The third difference is that, as well as assessing
tuning for horizontal disparity, we can also assess the
tuning for vertical disparity and for disparities in
orientation and spatial frequency.

Finally, our study also differed in the way that we
sampled from binocular images. Hoyer and Hyvärinen
took their samples from an area around simulated
fixation points, which were chosen to make the samples
from the two eyes relatively similar. This is an important
consideration with binocular images, as their statistical
properties are spatially nonstationary (Hibbard, 2007,
2008; Liu, Bovik and Cormack, 2008). Since we tend to
fixate the same point with each eye, the disparity in the
center of the image is expected to be close to zero. As we
move away from this point, the range of expected
disparities will increase. The dependence of disparity
range on eccentricity is reflected in the tuning of the
visual system to disparity, as measured in physiological
(DeAngelis & Uka, 2003; Durand, Zhu, Celebrini, &
Trotter, 2002; Prince, Pointon, et al., 2002) and
psychophysical (Hampton & Kertesz, 1983; Qin, Taka-
matsu, & Nakashima, 2006) studies. The consequence
for ICA is that, if we sample from the same image
location in each eye, the similarity between the two
samples will decrease as we move from the center of the
image to more peripheral locations. This will mean that
the left and right halves of the components will be
expected to be more similar for central locations than for
other locations. In the current study we broadened the
sample range to 208 (square) using binocular images
taken with calibrated cameras (Hibbard, 2008). Our
samples are thus more representative of binocular
images in general, rather than the special case of samples
relatively close to fixation.

The overall aims of the current study were to
perform a detailed analysis of the results of ICA
applied to natural binocular images, to provide a
comparison between the components learned by ICA
and the responses of binocular neurons, and to
determine the extent to which this approach can
provide an explanation of the function of binocular
simple cells in the visual cortex.

Methods

Following the methods of Hoyer and Hyvärinen
(2000), we processed the images in four stages. Patch
pairs were cut from an image set and normalized,
followed by a whitening stage and finally the compu-
tation of the independent components. In the next
section we describe this method and its reasoning. This
method is also similar to that used on synthetic patches
(Okajima, 2004).

The data set

The methods for capturing and processing the
binocular images are described by Hibbard (2008).1

These methods will have significant effects on the
statistics of binocular images. For example, the
convergence of the cameras determines how the
disparity statistics will vary as a function of the image
location. The details of the image-capture process are
therefore repeated here. Images were captured using
two Nikon Coolpix 4500 digital cameras, harnessed in
a purpose-built mount that allowed the intercamera
separation, and the orientation of each camera about a
vertical axis, to be manipulated. This is a simplification
of the situation for human binocular vision, in which
there are potentially three degrees of freedom for each
eye (rotations about horizontal and vertical axes, as
well as the line of sight). The analyses presented here
focus on situations in which vergence is approximately
symmetrical and elevation is close to zero. In this case,
the expected cyclovergence, which is not possible in the
camera setup used, is negligible (e.g., Porrill, Ivins, &
Frisby, 1999). In all cases, an intercamera separation of
65 mm (representative of the typical human interocular
separation) was used. The cameras were oriented so
that the same point in the scene projected to the center
of each camera’s image, so as to mimic the typical
human fixation strategy.

Two classes of scene were investigated. In the first,
images were collections of natural objects (fruit,
vegetables, stones, shells, plants) arranged in ‘‘still-life’’
collections. These were displayed in a Verivide light
cabinet, with D65 illumination, and were viewed from a
distance of less than 1 m in all cases. The second
collection was of outdoor scenes, taken in the quad of
St Mary’s College in St Andrews (to include trees,
flowers, lawns) or on the beach (to include the beach,
rocks). Since the cameras were fixated on a target
object in each image pair, and a range of distances was
sampled, the images contain a range of convergence
distances, from approximately 50 cm to 10s of meters.

Images were captured at a resolution of 160031200
pixels. They were then calibrated to take account of
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the characteristics of the cameras. Firstly, images were
calibrated using a camera calibration toolkit that is
available online (http://www.vision.caltech.edu/
bouguetj/calib_doc). This allowed us to correct for
lens distortions, calculate the effective focal lengths of
the cameras, and transform the images into a
‘‘pinhole-camera’’ model. That is, the spatial location
of each pixel in the image is described in terms of the
visual direction through the center of the lens that will
project onto that pixel. The final resolution of the
images was 1 pixel/arcmin of visual angle. The images
were also calibrated to take account of the color
characteristics of the cameras, by capturing color
patches from a Macbeth ColorChecker DC chart, and
using these to map RGB camera values to CIELAB
values (Hong, Luo, & Rhodes, 2001). Subsequent
analyses were performed on the luminance informa-
tion only.

The images were resized using a bicubic interpola-
tion function, as implemented by MATLAB’s imresize
command, such that each pixel corresponded to 4
arcmin of visual angle; the effects of this rescaling were
subsequently assessed in detail, as discussed later. From
the left images, a set of 100,000 image patches at 25 3
25 pixels was cut from random locations. Another set
of image patches was cut from identical locations in the
corresponding right images. That is, the samples from
the left and right eyes came from the same position in
the image, with the same pixel coordinates, rather than
from locations necessarily corresponding to the same
physical structure in the scene. The input samples to the
ICA were created by concatenating the samples from
the two images. Hoyer and Hyvärinen (2000) sampled
from a 300 3 300 pixel region around a simulated
vergence point, arguing that this matched the con-
verged and focused configuration of typical viewing. As
the statistics of binocular disparity (Hibbard, 2007,
2008; Liu et al., 2008) and the disparity tuning of
cortical neurons (DeAngelis & Uka, 2003; Durand et
al., 2002; Prince, Pointon, et al., 2002) vary with the
position in the image relative to the fixation point, it is
important to also consider points away from fixation.
Therefore, we sampled uniformly from the whole
image. As a control condition, to test the extent to
which the binocular properties of the components were
determined by the binocular redundancy in the images,
ICA was also performed on samples drawn separately,
from unrelated positions, in the two images.

Normalization and gain

Rather than transmit absolute intensities across the
optic nerves, retinal ganglion cells encode and transmit
local changes in intensity (Laughlin, 1981; Srinivasan,
Laughlin, & Dubs, 1982). We modeled this by

subtracting from each patch its mean intensity (Hy-
värinen, 1999; Okajima, 2004; Olshausen & Field,
1996).

We call the ith combined, vectorized image patch
xi ¼ fxl;i;xr;ig, where xl,i denotes the ith left patch and
xr,i the ith right patch. The luminance-centered left
image patch is

x̄l;i ¼ xl;i �,xl;i .; ð1Þ
where ,x. denotes the mean of x. The same method
was applied to the right image patches.

By centering the patch we removed the effects of
local illumination on a scale roughly the size of the
patch. In order to normalize the contrast and remove
illumination differences between the two views, we
normalized both left and right patches separately, by
dividing each vector by its norm ðjj � jjÞ:

x̂l;i ¼
x̄l;i
jjx̄l;ijj

; x̂r;i ¼
x̄r;i
jjx̄r;ijj

: ð2Þ

This represents a linear approximation of the
logarithmic functions believed to occur in early vision
as measured by Tong et al. (1992) and developed from
psychophysical experimentation by Ding and Sperling
(2006). Ding and Sperling’s model normalizes input in a
nonlinear fashion using ratios of the left/right intensity
at particular phases and frequencies. As we are
interested in the phase and frequency distributions of
binocular images in the current study, we have
preferred whole-patch normalization in order to avoid
altering those distributions at this stage. Equation 2 has
the effect of making each patch vector into a unit
vector, thus equalizing patch contrast across both views
and between patch locations. Using this equation,
contrast ratios are constrained to be 1, whereas Ding
and Sperling’s method allows for all possibilities from
one-eye dominance to a unitary left/right ratio. This
approximation allows us to study the special case of
equal left/right intensity. Adding an extra dimension
such as intensity ratio would have increased both the
complexity of the analysis and the number of compo-
nents needed to generate accurate distributions.

Most models of binocular neurons assume a linear
summation of inputs followed by a nonlinear post-
processing step (DeAngelis et al., 1995; Fleet et al.,
1996; Hibbard, 2008; Hyvärinen, 1999; Okajima, 2004),
consistent with physiological measurements (Anzai et
al., 1999; Prince, Cumming, & Parker, 2002; Prince,
Pointon, et al., 2002). The left and right components of
the patch were then simply concatenated to form the
binocular sample:

xi ¼ x̂l;i; x̂r;i
� �

: ð3Þ
The assumptions of the FastICA algorithm (Hy-

värinen, 1999) require each sample to be of unit length,
so we further normalized the concatenated vectors. As
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these vectors were already of unit length, this amounted
to a division by

ffiffiffi
2
p

, making no further adjustments to
the relative strengths of the left or right signals.

Whitening

Whitening with principal-component analysis (PCA)
is an important preprocessing stage in ICA. It removes
linear correlations from the data, and in the case of
natural-image statistics acts as a low-pass filter
(Hyvärinen, 1999). The patch itself acts as a windowing
function and a high-pass filter; combined with whiten-
ing this acts as a band-pass filter. The normal power
spectrum of an image follows a 1/f a curve (where f is
the frequency and a is a constant, normally a ’ 2);
whitening acts to flatten this curve, normalizing the
responses at each frequency. As the signal strength is
modulated by 1

jf aj and noise strength is uniform in the

frequency domain (assuming Gaussian white noise),
noise dominates the signal at high frequencies (Atick &
Redlich, 1992). We performed a low-pass filtering to
remove the higher noise-dominated frequencies, by
truncating the PCA model. A similar role in noise
reduction at high frequencies has been proposed for the
retina (Atick & Redlich, 1992). We found that 200
eigenvectors generated by PCA on the image patches
explained a mean of 86.7% of the variance in the image
patches. ICA is performed in the R200 space generated
by the eigenvectors. Components were converted back
to the image space by applying the inverse of the
whitening matrix.

Independent component analysis

ICA attempts to find a linear decomposition of the
data such that each component is maximally indepen-
dent. We used the FastICA method of Hyvärinen
(1999), as it is rapid and generally converges. The
algorithm uses gradient descent in an attempt to find
the components with the minimum mutual informa-
tion, using kurtosis as a measure of independence. It
should be noted that a general limitation of this
approach is that it is not guaranteed to minimize
dependencies. This will only be achieved if the samples
are a linear superposition in independent, heavy-tailed
sources. We used a hyperbolic tangent as the derivative
of the nonlinearity and initialized the weights from a
random Gaussian distribution. The number of com-
ponents generated by the algorithm is restricted by the
number of eigenvectors generated by the whitening
stage. We used 200 eigenvectors from the whitening
stage; the same number of independent components
were then generated by the FastICA algorithm. The
components were converted from the PCA-generated

eigenvector space back into image space by applying
the inverse of the whitening matrix. In total, 100,000
binocular image patches were used to train the ICA
model, cut from uniformly random locations from 139
left/right image pairs. In order to calculate accurate
distributions of the components, we repeated the
component generation 200 times using different patch
sets (from the same images) each time, thus producing
40,000 components from which reasonably accurate
histogram distributions could be calculated.

The meaning of the ICA components

It should be noted that ICA suffers from some
limitations. Firstly, as PCA is frequency-bandwidth
limited, the resulting components are also frequency-
bandwidth limited. This limits the range of frequencies
that can be observed and results in components that are
more narrowly tuned in frequency than might other-
wise be observed (Ringach, Sapiro, & Shapley, 1997).
As a consequence of the oriented edge-like structure of
the components, we also expect them to be narrowly
tuned in orientation. While the frequency content of the
components will be restricted, there is no reason to
believe that the phase will be substantially altered, as
PCA is not limited in phase. Secondly, unlike in PCA,
the components are not ordered. Thirdly, there is no
test for statistical significance. Fourthly, the algorithm
assumes both noiseless input and no output noise.
Finally, the algorithm is not particularly robust to
initial starting conditions (Hyvärinen, 2011).

A consequence of these issues is that it is not trivial
to determine the explanatory power of a given
component in the same way that we can for a PCA
component. Given the sparse nature of the algorithm, it
is conceivable that a component will explain only a
small amount of data peculiar to a particular sample
set, rather than being a useful descriptor of the general
population. This is especially true if noise is present in
the input (Hyvärinen, Sarela, & Vigário, 1999). An
indirect method to determine the explanatory power is
to generate numerous ICA models and check for
recurring similar components (Himberg, Hyvärinen, &
Esposito, 2004). As our analysis looks at overall trends
in the calculated components rather than at individual
components in detail, we did not attempt to validate
individual components. Instead we calculated 200
separate ICA models using different image patches,
with 200 components in each model, thus generating
40,000 components in total. Highly similar and thus
significant components will form clusters in this
analysis. Nonsignificant components will appear as
outliers. Not all the potential independent components
will be found, since ICA is restricted to an arbitrary
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number of components by the PCA preprocessing
stage—in our case, 200.

The distributions of components can be argued to
show the relative abundance of a particular indepen-
dent feature in the binocular-image data. High-
prevalence components will form clusters, and can thus
be thought of as more prevalent in the data than low-
prevalence components. It should be noted that, while
repetition of the ICA computation will allow the
significance of highly abundant components to be
qualitatively determined, it will not readily lead to the
discovery of less abundant components, as the highly
abundant components will simply be recalculated in
each iteration. It should also be noted that the
components generated by recalculation are not inde-
pendent or orthogonal, as the independence constraint
is only applied between components generated by a
single FastICA computation. However, general trends
in the data should be captured.

Fitting Gabor functions

To fit Gabor functions to each of the components,
we followed the methods of Okajima (2004), Prince,
Cumming, and Parker (2002), and Prince, Pointon, et
al. (2002). We fitted Gabor functions separately to each
of the left and right view parts of each component by
minimizing the L2-norm between the function and the
component. The 2-D Gabor function is defined as

gðx; y; h; f;/; rw; rh;wÞ ¼ wðx; y; rw; rh;wÞcðx; y; f;/; hÞ

¼ exp � x
02

2r2
w

� y
02

2r2
h

� �
cosð2p�xf

þ/ ), ð4Þ

x
0
¼ xcosw� ysinw

y
0
¼ xsinwþ ycosw

�x ¼ xcosh� ysinh:

The Gabor function consists of two components: a
wave-generating function c(x, y, f, /, h) and the
windowing function w(x, y, rw, rh, w) that constrains it
in window space. The wave-generating function de-
scribes a cosine pattern with frequency f and phase /,
this pattern is rotated about the origin by an angle h.
The windowing function constrains the image-space
span of the wave-generating function to a Gaussian
window of width rw and height rh; this window is
rotated independently of the wave function by w.
Previous authors have fixed h ¼ w, such that the
windowing function rotates with the wave-generating
function (Prince, Cumming, & Parker, 2002). However,
we have removed this constraint to allow the Gabor
fitting function to describe a greater range and variety

of Gabor-like components. All the Gabor functions are
centered at 0 and generated over a two dimensional
image x ¼ ½�n=2 : n=2� and y ¼ ½�n=2 : n=2�, where n is
the size of the component patch.

In order to match the Gabor function to our
component patches, we must add horizontal and
vertical displacement terms h and v. Our equation
becomes

Gðx; y; h; v; h; f;/; rw; rh;w; sÞ
¼ gðx� h; y� v; h; f;/; rw; rh;wÞs; ð5Þ

where s is a scaling parameter that models the
amplitude of the Gabor function. The parameters of
the model were fitted to the data using the Nelder–
Mead simplex method (Nelder & Mead, 1965) initial-
ized with a genetic algorithm, using MATLAB’s
implementation.

Gabor symmetry

As a result of numerous symmetries linking the
parameters of the 2-D Gabor function (Equation 4),
they are only independent within a particular range.

Rotating the wave function of the Gabor (h) by p
radians is equivalent to reflecting the phase / about 0—
i.e., G(. . .;h,.,/,.,.,.)¼G(. . .;h� p,.,� /,.,.,.). The other
parameters have been omitted here for clarity.

Interaction of phase and position shifts

Changes in the spatial location of stimuli can be
encoded by Gabor functions by two methods, a phase
shift and a position shift. The phase shift is encoded by
varying the phase parameter /, the position shift by
varying v and h in the direction parallel to the wave-
generating function. Phase shifts can be converted to
position shifts, and vice versa, by

jvcosh� hsinhj ¼ /
2pf

ð6Þ

in the range �p , / , p. The notation j:j indicates the
magnitude of the vector, and the cos and sin terms
rotate the shifts into the orientation of the wave-
generating function. Equation 6 is derived from the
well-known Fourier shift theory. While Equation 6
maps phase and position in the wave-generating
function c, phase- and position-shifted Gabor functions
differ in terms of the windowing function w. For
example, an even-phase Gabor phase-shifted by p/2
radians will become odd, but an even-phase Gabor
function shifted in position by an amount equivalent to
p/2 radians (by Equation 6) will still be even phase.
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Results

Figure 1 shows the results of applying the FastICA
algorithm to 100,000 binocular image patches taken
from 139 image pairs. In each batch, 200 components
are generated; all 200 are shown. Across the 200 runs,
the PCA whitening process explained on average 86.7%
of variance in the image patches. Each patch shows the
concatenated left/right parts of the components. Pairs
of Gabor-like components are clearly visible, exhibiting
a wide range of orientations, frequencies, and locations.

Accuracy of fitting

The process of generating the ICA components
contains many elements that depend on random
processes. The patches are sampled from uniformly
distributed random locations, and the ICA algorithm
iterates from a normally distributed random initial
state. The accuracy of the fitting of the Gabor functions
can be assessed in terms of both their trueness (lack of
bias) and their precision. As the distributions we are
interested in are not a priori known, we cannot directly
assess their trueness; we can, however, estimate their
precision using a bootstrapping technique. This will
illustrate the range of distributions produced by this
method and allow us to estimate confidence intervals
for the distributions. Unlike the overall process, the
trueness of the Gabor-fitting subprocess can be
evaluated by comparison with synthetic image patches
showing Gabor functions with known ground-truth
values. If these are sufficiently accurate, we can have
some confidence in the accuracy of the values of Gabor
functions fitted to components generated by the ICA.
We will first describe the process of assessing the
trueness of the Gabor-fitting function, then the boot-

strapping we used to generate confidence intervals for
the overall process.

In order to assess the trueness, we generated 400
Gabor functions by sampling their parameters from a
uniform distribution. The range of the distributions
was determined either by the constraints and symme-
tries of the Gabor function (window and wave-
generation function orientation), the patch sizes and
resolution (horizontal and vertical position, intensity
scaling, and frequency maxima), or the range of
parameters produced by fitting Gabor components on
the ICA components (window size and frequency
minima). The Gabor functions generated by this
method were rendered in 400 image patches that were
25 3 25 pixels and supplied as input to the fitting
process described earlier in the same manner as a set of
ICA components. The parameters of the fitted com-
ponents were compared to the parameters of the Gabor
functions that generated the image patch. Results of
this comparison can be seen in Table 1. The distribu-
tions of the errors are highly nonnormal, with most of
the parameter errors close to zero (see the column
labeled ‘‘Median absolute deviation’’ [MAD]). How-
ever, a minority exhibit large outliers that drive larger
mean squared errors. In most cases, both the MAD and
the mean squared errors are less than the unit of
measurement (e.g., pixels). The only exception is the
window sizes, which have a mean squared error of 6.4
and 6.25 pixels. Even here, half of all errors are below
0.20 and 0.23 pixels. For the measures we are
principally interested in—i.e., phase, frequency, orien-
tation, and position—the error values are extremely
low and less than the sampling rate of the image (i.e.,
less than one pixel), although the much larger values
for mean squared error indicate the presence of large
outliers. We conclude that the fitting method produces
a generally accurate reflection of the true value of the
underlying Gabor functions.

Figure 1. Example of components generated by ICA. Two hundred components generated by a single batch are displayed. The left half

of each component corresponds to the left view, the right half to the right view. The Gabor-like components are clearly visible in most

components.
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log-Gabor functions

Although most studies of V1 (Prince, Cumming, &
Parker, 2002) have fitted Gabor functions to response
data, it has been suggested that log-Gabor functions
are a more accurate fit to observed data (Field, 1987).
In the context of binocular stereopsis, it has also been
shown than an energy model based on log-Gabor
functions can be developed, and would lead to more
accurate estimation of binocular disparity (Faria,
Batista, & Araújo, 2013). Unlike the standard Gabor
function, log-Gabor functions are defined in Fourier
frequency space rather than the image space. log-Gabor
functions were defined in the polar Fourier domain as

LGðf; hjh0; hr; f0; frÞ

¼ exp �ðh� h0Þ2

2h2
r

 !
exp

� ln f
f0

� �2

2 ln fr
f0

� �2

0
B@

1
CA: ð7Þ

where f is the radius (frequency) and h is the angle of
the polar coordinates. The symbols f0 and fr are,
respectively, the principal frequency and the bandwidth
of the frequency component (Fischer et al. 2007); h0 is
the principal orientation; and hr is the orientation
bandwidth. log-Gabor functions have some significant
advantages over standard Gabor functions. The
responses of Gabor functions depend on the mean
luminance of the stimulus, whereas the responses of
log-Gabor functions do not. log-Gabor functions also
have a long tail in frequency space, which more closely
matches observations in primates (Hawken & Parker,
1987). However, for this study log-Gabor functions
have two significant disadvantages. Firstly, most
studies which have carried out physiological measure-
ments have fitted Gabor functions to the data, making
log-Gabor functions less directly comparable to these
data and to the standard binocular energy model.
Secondly, log-Gabor functions do not possess a
windowing function with a clearly defined center as a

standard Gabor function does, rendering the analysis
of position disparity more complex.

Parameters for Equation 7 were determined for ICA
components by fitting a log-Gabor function in a similar
manner to fitting a Gabor component. First, the ICA
component was converted to Fourier space; then the
mean squared error between the absolute value of the
ICA component in Fourier space and the log-Gabor
function was minimized using MATLAB’s fminsearch
function, initialized by a genetic algorithm (as de-
scribed earlier in Fitting Gabor functions). We did not
evaluate the accuracy of the log-Gabor fitting in as
much detail as the Gabor fitting, but we found the
algorithm to be extremely consistent. We fitted 400 test
Gabor functions (see Fitting Gabor functions) 10 times
with log-Gabor functions using fminsearch and the
genetic algorithm with random initialization. The
MAD of the deviations divided by the median of the
deviations of the fitting error was used to determine the
consistency of the fit. A high value would indicate an
inconsistent algorithm. The values were divided by the
median of the fitting error to prevent large fitting errors
dominating the statistic. Over the 400 test Gabor
functions, the mean of the MAD was 0.005. This
indicates that the fitting algorithm is consistent and we
can be confident that the error values it produces when
fitted to ICA components are reliable.

In order to compare the accuracy of Gabor functions
to log-Gabor functions as a description of the learned
components of the ICA model, we first fitted both
Gabor functions and log-Gabor functions to 8,000
components generated by the ICA model (4,000 left
and 4,000 right view components). The accuracy of the
fit was determined by measuring the mean squared
difference between the fitted Gabor (or log-Gabor)
function and the original component. As log-Gabor
components are only defined in Fourier space, the ICA
components and Gabor components were transformed
to Fourier space and the mean squared difference
calculated on the absolute values of the Fourier

Parameter Unit Range Median absolute deviation Mean squared error

Horizontal Gabor center h Pixels [0, 25*] 0.0014 0.1052

Vertical Gabor centre m Pixels [0, 25*] 0.0013 0.1512

Window width rw Pixels [4, 12.5]† 0.2014 6.4004

Window height rh Pixels [4, 12.5]† 0.2271 6.2531

Window orientation w Radians [0, p] ,0.0001 0.2658

Wave-generating function frequency f Cycles per pixel [0.1†, 0.5‡] ,0.0001 0.0006

Wave-generating function phase / Radians [�p, p] 0.0012 0.1083

Wave-generating function orientation h Radians [0, p] ,0.0001 0.2658

Scaling factor s Intensity [0.1, 1.0]† ,0.0001 0.2221

Table 1. Estimates of the accuracy of fitting of Gabor functions. Each parameter of the randomly generated Gabor function is sampled
from a uniform distribution of the ranges shown. Unless marked, the ranges chosen are constraints of the Gabor functions. Notes:
*The size of the image patch is 25 pixels. †At least 95% of fitted Gabors generated from the ICA model are between these values. ‡The
Nyquist limit is 0.5 c/pixel; wavelengths shorter than this cannot be detected.
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components. This provided a measure of the accuracy
of fit of the envelope only; phase is lost in this
comparison. For 8,000 components (chosen randomly
from the full set to reduce computation times), 7,897
were successfully fitted with both Gabor and log-Gabor
functions.

The fitting error between the learned components
and the Gabor functions and the fitting errors between
the learned components and the log-Gabor functions
were highly correlated (Spearman’s q was 0.99986).
Differences between the two measures were standard-
ized by dividing by the mean of both log-Gabor and
Gabor errors, and thus differences are specified in
terms of overall fitting error. The median difference
between the Gabor and log-Gabor error measurements
was 0.003. This is less than the estimated level of
consistency in the fitting (0.005, see previously). Of the
fitted components, 43.7% exhibited standardized dif-
ferences in error of less than the estimated level of
consistency. For 37.3% of fitted components, the
Gabor function was slightly more accurate than the
log-Gabor function (median standardized error ¼
0.015), and for 19.0% the log-Gabor functions were
slightly more accurate than the Gabor functions
(median standardized error¼ 0.054). We concluded
that log-Gabor functions were equally capable of
describing the ICA components as were Gabor
functions; however, they are unable to describe the
position of the receptive field—which is important in
our analysis—without an additional fitting stage in the
spatial domain.

Bootstrapping

The accuracy of the fitting is only one source of error
in the process. The computation of the ICA compo-
nents depends on both the locations of the patches
chosen (uniform random distribution across the image)
and the initial starting point of the FastICA algorithm
(random normal distribution with mean 0; Hyvärinen,
1999).

We used a simple bootstrapping method to generate
new sample sets from the fitted Gabor functions. To
generate a bootstrapped sample set, whole Gabor
functions were sampled uniformly at random from the
40,000 fitted Gabor functions with replacement. In this
fashion, 200 sample sets of 40,000 Gabor functions
were generated. In order to calculate a distribution
from the data—e.g., the distribution of phase dispar-
ities—a separate histogram was calculated for each of
the bootstrapped sample sets. Identical bins were used
for each histogram. We computed 95% confidence
intervals (CIs) separately for each bin by sorting the
data and taking the values of the 2.5 and 97.5
percentiles, respectively. These CIs can be seen as the

vertical bars on the histograms. For singular values,
bootstrapped CIs are calculated in a similar manner:
The statistical value is calculated separately for each of
the bootstrapped sample sets and 2.5% and 97.5% CIs
calculated from the 2.5 and 97.5 percentiles. Results of
the bootstrapping analysis will be shown where
appropriate for each of the distributions analyzed;
generally this is restricted to histograms rather than
scatter plots, as the CI of individual points cannot be
computed by this method.

Properties of the ICA components

A detailed analysis was carried out on the param-
eters of the fitted Gabor functions on each of the 40,000
ICA components.

Degree of binocularity

Although the samples are left/right normalized to
account for local illumination differences, there is no
guarantee that the components generated from the ICA
algorithm will contain binocular features. Monocular
features—i.e., components with weak or nonexistent
signals from one or the other view—will be generated
when features in one view occur independently from
features in the other view. A measure analogous to
ocular dominance can be calculated from the ratio of
intensity (s in Equation 5) between left and right
component pairs. The larger of the two values was
chosen as the denominator. The resulting ratio is
directionless, with a ratio of 1 being a binocular
component equally weighted in each eye and a ratio of
0 being a fully monocular component with no input
from the contralateral eye.

From Figure 2A and B we can see that a bimodal
distribution of luminance ratios emerges. The larger of
the two groups peaks at 1 and indicates a set of
binocularly tuned components. Of the components,
75% have a binocular ratio greater than 0.5. This is a
conservative estimate, as 72% of components have a
binocular ratio greater than 0.8. The smaller group that
we designate monocular contains 25% of the compo-
nents. Members of the monocular group have ratios
less than 0.5. Again, this is a conservative estimate, as
24% have binocular ratios less than 0.2. A clear
majority of components produced by the ICA show
binocular tuned features, with little difference in
intensity between left and right components. To test
whether the binocularity evident in the majority of
components truly reflects the interocular redundancies
in the test images, luminance ratios were also computed
for 4,000 ICA components trained on unrelated
samples, drawn independently from the left and right
images. Figure 2C and D shows the luminance ratios
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for components trained on randomized patch pairs.
Most components (98%) have a luminance ratio less
than 0.125; the proportion of components with a ratio
of at least 0.5 was not measurable with any estimate of
accuracy (2 out of 4,000). The presence of binocular
components in randomized patch pairs was negligible,
so we are able to conclude that binocular components
are generated by a relationship between the interocular
signals.

Orientation and frequency analysis of individual
components

Figure 3 shows the basic results of fitting Gabor
functions to the generated components. A 2-D histo-
gram of the locations of the centers of the Gabor

functions fitted to both left and right eyes can be seen in
Figure 3A. The area of the heat map corresponds to the
dimensions (in arc minutes) of the image patches, and
the cells are colored according to the count of Gabor
functions with centers in each cell. A clear boundary
effect can be seen in the figure, with a large proportion
of cells having a position at or close to 0 on either the x-
or y-axis; this is an effect of the constraints on the
fitting function. Away from the boundary area the full
range of available possible positions is represented,
with negligible clustering.

The distribution of window sizes can be seen in
Figure 3B as a 2-D histogram (heat map) of window
width rw against window height rh in terms of cycles in
the wave-generating function. As the windows are
rotated by w, the values of rw and rh do not conform to
the x- and y-axes; the rotation is also independent of

Figure 2. Ratio of intensities between left and right pairs of components. (A) A bootstrapped histogram of intensity ratios from 39,998

component pairs; 95% CIs are shown as black error bars. (B) The cumulative distribution of these ratios. The median of the cumulative

distribution for each histogram bin is shown as a black line; the range covered by the 95% CIs is shown in red. The distribution is

bimodal, with the bulk of intensities ranged towards left/right equality of intensity (i.e., 1). From (B) we can see that 75% of

component pairs have ratios greater than 0.5. By way of contrast, (C) and (D) show the intensity ratios of ICA components trained on

randomized patch pairs. (C) The distribution of random patch ratios as a histogram; 98% of the components have a ratio less than

0.125 (D).
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the rotation h of the wave-generating function. The
windows are biased towards oval shapes—few show
circular shapes (shown on the graph as the dashed
black line)—but these ovals are not generally particu-
larly elongated. Measuring the window size in terms of

cycles also provides a useful indication of the band-
width of frequency and orientation tuning (Ringach,
2002); a low value for the window size results in a
broadband frequency-tuned component and a high
value results in a narrowband frequency-tuned com-

Figure 3. Results of fitting Gabor functions to the components generated from successive ICA of image patches. (A) A (log 10) heat

map of locations of the Gabor functions, as measured from the center point of the windowing function. The boundary effect can be

seen as a prevalence of high cell counts (red) along the x ¼ 0 and y ¼ 0 lines. (B) The distribution of two radii of the windowing

function. There is a general tendency towards slightly elliptical functions. (C) A bootstrapped rose histogram of the wave-generating

function’s orientation. The values on the radius axis are histogram counts in thousands. A significant bias towards p/2 and 0 radians

can be seen. (D) A bootstrapped rose histogram of the phases of the fitted Gabor functions. The values on the radius axis are

histogram counts in thousands The plot shows a generally even distribution of phases. (E) The bootstrapped histogram of frequencies

of both left and right Gabor functions combined. The frequencies are 1/wavelength in arc minutes. The frequencies of the filters are

highly clustered, most likely a result of the windowing effect of constraining the data to the size of the image patches. This issue is

addressed in detail in the Scale subsection.
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ponent. Similar logic obtains for orientation tuning.
The results show a strong tendency towards narrow-
band tuning, with values for the standard deviation of
window size generally greater than 1 in one of the
principal directions (either rw or rh) and generally
around 0.5 in the other. As noted by Ringach (2002),
this is a substantial deviation from physiology, as most
cells observed in the V1 area of the macaque visual
cortex have window sizes of less than 1 and are
therefore much more broadly tuned in frequency and
orientation than the components learned using ICA.
The median frequency bandwidth of the components
was 0.675 octaves (95% CI [0.673, 0.677]). The median
frequency bandwidth for cells in the visual cortex of the
macaque is higher than this, around 1.4 octaves
(DeValois, Albrecht, & Thorell, 1982). It is worth
noting, however, than as the image patches were
preprocessed using PCA—which is also a bandwidth-
limiting process—the narrowband tuning of the learned
components is likely to be a result of band-pass filtering
in the preprocessing stage.

A bootstrapped rose histogram of the wave-genera-
tion function orientations h is shown in Figure 3C. The
black lines show the median of the distributions, with
the 95% CIs shown as red bars. The orientations cover
the range of possible values (08 to 1808), with a strong
bias towards 908 and 08 (1808 is equivalent to 08).
Although the distribution of edges in natural images is
biased towards 08 and 908 (Hansen & Essock, 2004), it
has been observed that ICA tends to produce results in
which the orientation and frequency are aligned with
the sampling grid (van der Schaaf & van Hateren,
1996). Consequently, we are not able to determine the
extent to which these results are due to the prevalence
of horizontal and vertical features in the binocular
natural images or due to biases in the ICA algorithm.

The distribution of the phases / of the fitted Gabor
functions is shown in Figure 3D. Again, the medians of
the distributions are shown as black lines and the 95%
CIs in red. The distributions show a generally uniform
distribution of phases.

The distribution of frequencies, in cycles per arc
minute, is plotted as a histogram in Figure 3E. The
error bars show the 95% CIs. The range of frequencies
is constrained by the minimum wavelength detectable
from the sampling lattice to be less than the Nyquist
limit (0.5 c/pixel, 0.125 c/arcmin) and greater than or
equal to 0 c/pixel (Shannon, 1949). A strong peak can
be seen at 0.085 c/arcmin (5.1 c/8). The distribution of
frequencies is strongly influenced by the range of
frequencies in the training image sets and the imple-
mentation of the ICA algorithm (van Hateren & van
der Schaaf, 1998). Although the Nyquist limit is 0.125
c/arcmin, this requires that the wave-generating func-
tion be perfectly aligned with the sampling lattice, and
thus the limit is lower in practice. The size of the
windowing function is also a factor, as there are more
ways to pack smaller Gabor functions into the space of
the sample image while maintaining the independence
of the samples.

Disparity analysis

Frequency- and orientation-disparity analysis

Figure 4A shows a scatter plot of left-view orienta-
tion against right-view orientation. The difference in
orientation is shown in Figure 4B and C. There is a
clear peak around 0, showing that most interocular
differences in receptive-field orientation are small.
Components are present across the whole range of
orientation differences but clustered around 0. The left
and right orientations are extremely highly correlated:
Pearson’s r2 ¼ 0.99, 95% CI [0.993, 0.993], p , 0.001,

Figure 4. Comparisons of frequency and orientation between left/right pairs of Gabor functions fitted to ICA components. (A) The

relationship between the orientations of the left and right parts of the components. (B) A bootstrapped rose histogram of the

absolute angle differences between left and right fitted Gabors. (C) A scaled-up subset of the angle differences between 6p/16. The
main black line shows the median bootstrapped distribution, with the error bars showing the 95% CIs. Most fits produce Gabor

functions with similar orientations.
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95% CI [,0.001, ,0.001]. The spread (median of
absolute deviation) of orientation disparities is 0.0196
radians, 95% CI [0.02025, 0.02024]; the standard
deviation is 0.086 radians, 95% CI [0.08122, 0.09395].

Figure 5 shows the relationship between left and
right frequencies for the fitted functions. Again there is
a clear linear correlation between left/right frequencies
Pearson’s r2 ¼ 0.98, 95% CI [0.982, 0.984], p � 0.001,
95% CI [,0.001, ,0.001]. As before, a minority of
components do not fit the linear profile and thus appear
as outliers in the plot. The vast majority of components
are tuned to the same frequency in each view (see
Figure 5B).

Phase-disparity analysis

Given twin left/right Gabor responses, two forms of
disparity can be calculated: phase disparity and
position disparity. A position disparity is a shift in the
location of an otherwise identical receptive field
between the two views. In contrast, a phase disparity is
a change in the shape of the filter, in the form of a shift
in the Gabor phase component. This shift is orthogonal
to the direction of the component’s orientation by
definition. Using the phase information from the
Gabor functions fitted to the ICA components, we
calculated the phase difference as the shortest distance
around a circle from the two angular phase positions.
The distributions of the observed phase differences can
be seen in Figure 6, as a polar histogram in Figure 6A
and a standard bar histogram constrained to the range
[0, p] in Figure 6B. The plots show a strongly bimodal
distribution of phase disparity, with peaks at 0 and p
radians and troughs at p/2. The distribution is also

asymmetric with a bias toward p phase components,
indicating a bias in the ICA results towards antiphase
components.

Position-disparity analysis

The Gabor functions consist of two parts, a sinusoid
and a windowing function. For each ICA component,
the center of the windowing function is found for the
left and right parts of the component separately. The
displacement disparity between left and right Gabor
functions is measured as the distance between the
centers of the windowing functions. This can be
measured in the horizontal and vertical directions or in
the directions parallel and orthogonal to the orienta-
tion of the filter. We consider both.

Simple vertical and horizontal disparities can be
calculated by subtracting the left-view position coor-
dinates from the right-view position coordinates
(hr � hl; and vr � vl). Figure 7 shows the marginal
distributions of the horizontal and vertical disparities,
respectively. For horizontal disparities, negative values
indicate components tuned to detect near disparities,
and positive values indicate components tuned to detect
far disparities. For vertical disparities, positive values
indicate that the receptive field is shifted upward in the
right eye compared to the left eye, and negative values
indicate the reverse. As the distributions had very long
tails, the plots only show data between the 1.25 and
98.75 percentiles. The distributions were calculated
using 100-bin histograms and CIs calculated using 200
bootstraps.

The distributions of both horizontal and vertical
disparities are highly peaked and roughly symmetric

Figure 5. Distribution of tuning frequencies of binocular Gabor pairs. (A) The distribution of pairs as a scatter plot. A clear linear

relationship is visible between left and right frequencies. (B) The bootstrapped histogram of left/right frequency ratios. For

consistency, ratios greater than 1 have been inverted to ensure a smallest/largest ratio. Most components have a frequency

difference close to 0. The main black line shows the median bootstrapped distribution, with the error bars showing the 95% CIs.
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Figure 6. Distribution of absolute phase disparity in the components. In a polar histogram of the angular distance between left and

right phases (A), the black boxes show the median of the bootstrapped distribution for each angular cell and the red boxes show the

95% CI for each cell. (B) The bootstrapped histogram plot of the same results with 95% CI shown as black bars. A bimodal distribution

can be clearly seen in the two plots, with the difference between peak and trough that is clearly larger than the estimated error in the

distribution. The distribution of binocular phase differences are clearly asymmetric (about p/2), with a significant difference between

the 0 and p phase components.

Figure 7. (A, D) Marginal distributions of the horizontal and vertical disparities between left and right view fitted Gabor functions,

computed as bootstrapped histograms with 100 bins. The distributions are limited to 98.25% double-sided quintiles. The distributions

are clearly peaked at 0, broadly symmetric, and highly kurtotic. (B, E) The displacements as a function of the frequencies of the fitted

functions. (C, F) The cumulative distributions of the horizontal and vertical displacements, respectively. The median of the computed

distributions is shown as a black line, and the 95% CIs are shown in red. The proportions of the distributions with disparities of less

than 0.25, 0.5, and 1 cycle are marked, along with the CIs of proportions, shown as red lines on the vertical axis.
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about 0, indicating an even mix of near- and far-tuned
features, and appear to obey a double-sided power law.
As can be seen in Figure 7A and D, the majority of
displacements are less than 1 pixel. These small
displacements are likely to represent true disparities
rather than chance fluctuations, since the medians of
the absolute position-disparity distributions—0.39
pixels, 95% CI [0.390, 0.402], for horizontal disparity
and 0.20 pixels, 95% CI [0.198, 0.194], for vertical
disparity—are much greater than the MAD estimated
when the accuracy of the fitting was analyzed (0.0028
and 0.0026, respectively). The 95% CIs show the range
of the bootstrapped distributions. As the cameras,
mimicking our eyes, are separated horizontally, we
would expect a wider range of displacements on the
horizontal axis compared to the vertical axis. The
standard deviation of the horizontal displacements was
0.94 pixels, 95% CI [0.924, 0.948], and for the vertical
displacements was 0.42 pixels, 95% CI [0.413, 0.422].
These nonoverlapping values match expectations that
the distribution of horizontal disparities is broader than
that of vertical disparities. Both horizontal and vertical
position-disparity distributions had similar excess
kurtosis. The bootstrapped kurtosis is 3.52, 95% CI
[3.384, 3.731], for the horizontal distribution and 3.70,
95% CI [3.536, 3.891], for the vertical distribution. An
excess kurtosis of 3 indicates that the distribution of
both horizontal and vertical position disparity follows a
double-sided Laplacian. The first and last half percen-
tiles of each distribution were rejected as outliers in this
analysis.

Figure 7A and D shows the distributions of position
disparity in pixels. These are replotted in Figure 7B and
E to show disparities as a ratio of the wavelengths of

the individual components. The corresponding cumu-
lative distributions are plotted in Figure 7C and F.
From these, we can see that 89.1%, 95% CI [88.64%,
89.42%], of horizontal and 99.1%, 95% CI [98.90%,
99.17%], of vertical position disparities are less than
half a cycle.

The joint distributions of horizontal and vertical
disparities are plotted in Figure 8. Horizontal and
vertical disparities are uncorrelated—Pearson’s r¼
0.028, p , 0.001, n ¼ 37,028—and the mutual
information is low (0.0846, calculated using a 2-D
histogram with 1,098 bins using base 2), indicating that
the distributions are independent.

An alternative way to describe the distribution of
two-dimensional disparities is in terms of the magni-
tudes of disparity in directions parallel and orthogonal
to the orientation tuning of the filters. Analyzing
disparity in this way is of interest since previous work
has assessed the extent to which the direction of
disparity to which neurons are tuned is related to their
orientation tuning (Cumming, 2002; Gonzalez, Justo,
Bermudez, & Perez, 2003; Read & Cumming, 2004b).
The distributions of disparities are plotted in this way
in Figure 9. As before, we cut the long-tailed
distributions at the 98.25 percentile and generated
confidence intervals using 200 bootstraps. Again, the
distributions are clustered about 0, with an exponen-
tially decreasing proportion of components as disparity
increases. As can be seen in Figure 9B, the vast
majority of components—98.0%, 95% CI [97.75%,
98.57%], in the orthogonal direction and 90.0%, 95%
CI [89.38%, 90.01%], in the parallel direction—have
disparities of less than half of the wavelength. The
excess kurtosis is 3.04, 95% CI [2.915, 3.156], for

Figure 8. The joint distributions of the horizontal and vertical position disparities as a ratio of wavelength. (A) A scatter plot of all the

computed locations (27,661 in total). (B) A 2-D heat map of the distribution with each cell color-coded to show the log of the cell

count.
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components in the direction orthogonal to the orien-
tation tuning and 1.52, 95% CI [1.434, 1.576], in the
parallel direction.

Next, we directly compared the direction of posi-
tional disparity with the orientation tuning of the
components. The direction was calculated as the
inverse tangent (atan2) of the vector between left and
right Gabor centers. This angle thus determines the
direction of positional displacement in an image-based
(horizontal/vertical) rather than component-based
(parallel/orthogonal) coordinate system. Figure 10A
shows a rose plot of the bootstrapped distribution of
disparity directions independent of the components’
orientation. The distribution is clearly biased towards
horizontal (Hodges–Ajne test p , 0.001; Berens, 2009).
Figure 10B shows a heat map of orientation of position
disparity against orientation of the components. From
the heat map, no clear association is visible between
position-disparity orientation and orientation of the

filters; no correlation was found (using directional
statistics) between position-disparity orientation and
orientation of the filters, p¼ 0.0863, c¼�0.0111
(Jammalamadaka & Sengupta, 2001, as implemented
by Berens, 2009).

The relationship between position- and phase-disparity
tuning

Figure 11 shows a scatter plot of phase disparity
against position disparity. As the position disparities
are long-tailed, the plot shows only disparities of less
than 1 wavelength. This captures 97.7% of the
components. The figure shows that the components
span the full range of joint position and phase
disparities. In the figure we can see the bimodal
structure of the phase distribution as clusters around 0
and 6p.

Figure 9. Distributions of position disparities as a ratio of wavelength. (A, C) Bootstrapped histograms of position disparities oriented

(A) orthogonal to and (C) parallel to the Gabor orientation. (B, D) The bootstrapped cumulative distributions for (A) and (C),

respectively. All distances are ratios of the component wavelength. Positive disparities indicate components tuned to detect far-type

disparities, negative disparities indicate components tuned to detect near-type disparities.
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Phase and position disparity are related by the
Fourier shift theory; thus, given a phase disparity, a
similar position disparity can be calculated according
to Equation 6. Part of the interaction between phase
and frequency can be calculated by

dc ¼ ð�xr � �xlÞ �
ð/r � /lÞ

2pf
ð8Þ

Where �xr and �xl are the right and left component
positions of the Gabor windows projected onto the
wave-generation function’s direction (see Equation 4);
/r and /l are the phase of the left and right component
Gabor functions; and dc is effectively the difference in
the underlying wave-generation function of both
components. When measured in terms of wavelength
(dc f ), an integer value (0, 1, etc.) indicates that the
peaks and troughs of the wave-generating function of
the left and right components align, such that the peaks
and troughs fall in exactly the same locations in the
receptive fields. A dc f of half-integer values indicates
that the wave-generating function is anticorrelated,
with the peaks in one eye aligning with the troughs in
the other and vice versa. Note that in both cases the
windowing function is free to move, so the components
can have a different configuration of sidebands as the
windowing function covers/uncovers different parts of
the wave-generating function.

A plot of the distribution dc for the fitted Gabor
functions can be seen in Figure 12. Values of dc are
shown in terms of the both pixels and the wavelength of
the individual fitted Gabor functions, and are strongly
clustered around half-integer multiples of the wave-

length. This fits well with the strongly correlated and
anticorrelated phase results just mentioned, as corre-
lated components would be separated by integer
multiples of the wavelength and anticorrelated results
would be separated by wavelengths of an integer plus
0.5. By calculating the proportion of components
contained within each half-wavelength band, we found
that a substantial proportion of components—35.6%,
95% CI [34.86%, 36.16%]—are tuned to zero disparity.
A larger proportion are tuned to anticorrelated
components: 46.65%, 95% CI [45.38%, 47.59%] are in
the combined 60.5-wavelength categories.

The discrete nature of the combined disparity cannot
be entirely explained by clustering of the position-
disparity components around 0 (see Figure 9), as the
combined disparities are peaked at more locations than
0 and the position-disparity function is much broader
than the combined disparity clusters. Nor can it be
explained entirely by clustering of phase disparity,
although the 0- and p-radian phase disparities could
account for the 0 and 1/2 combined disparity peaks—
but again the distribution is too narrow. Instead, the
effect is produced by the interaction of phase and
disparity.

Scale

As shown in Figure 3E, the ICA components capture
only a narrow range of frequencies. To widen the range
of frequencies captured in their analysis, van Hateren
and van der Schaaf (1998) varied the size of the patches

Figure 10. Distribution of direction of disparity. (A) A rose plot of the distribution of disparities between left and right fitted

components. The black lines show the median counts in each bin, the red bars show the range of the 95% CIs of the bootstrapped

distributions. An angle of 0 radians indicates a vertically oriented Gabor function, with positive angles indicating counterclockwise

rotation. Similarly, a displacement angle of 0 radians indicates a vertically oriented displacement. A clear and consistent bias towards

horizontal rather than vertical position disparities is also visible, with the distributions showing a smooth transition in between the

horizontal and vertical directions. (B) A log 10 heat map showing the joint distribution of the orientation h of the components against

the direction of position disparity.
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Figure 11. Phase displacement in radians against position disparity as a fraction of wavelength. The lines that appear suggest a link

between phase and position disparity. The central cluster shows correlated binocular components; the left and right clusters show

anticorrelated components.

Figure 12. Distribution of combined disparity (disparity remaining when phase and position disparity are accounted for—dc from Equation

7) for valid ICA components, calculated using 100 uniformly spaced bins; 95% CIs are shown as black error bars. The top plot shows the

combined disparity measured in pixels, the bottom chart shows the combined disparity in terms of the wavelength of the individual filters.
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sampled. Capturing the coarsest scales here would
require image patches too large to feasibly compute
using ICA. Thus, rather than vary the size of the image
patches, we kept it constant at 25 3 25 pixels and
rescaled the images. We chose 10 scales, each an octave
apart, such that one pixel in the patches covered an
area from 10 3 10 arcmin at the coarsest scale to 1 3 1
arcmin at the finest. Components were computed using
ICA, and Gabor functions were fitted using the method
already described. Distributions were calculated using
200-bin histograms with CIs calculated by bootstrap-
ping using 2.5 and 97.5 percentiles to mark the 95%
CIs.

The exact distribution of frequencies depends on
both the ICA process and the frequency content of the
images. To disambiguate the two we calculated the
distributions of ICA components relative to two
frames: the sampling grid—i.e., relative to pixels in the
image patches—and the visual field of the images,
measured in arc minutes. If the distributions are
constrained by the sampling grid, they will be identical
across scales when calculated in the sample-grid frame
but differ in the visual-field frame (arc minutes). By
contrast, if the sample grid has no effect on the ICA
components’ distributions, they will be identical across
scales in the visual-field frame (arc minutes) but differ
in the sample-grid frame. It should be noted that the
effect we are discussing is a windowing effect—i.e., the
components must exist within the image set in order to
be detected. The sampling grid simply constrains our
view of the data set.

Degree of binocularity across scales

As discussed earlier, not all components will contain
binocularly tuned features. The proportion of monoc-
ularly tuned components will reflect the degree of
independence between the left and right views. As the
size of features detected is likely to vary across scale
while the actual disparities remain constant, it is likely
that the proportion of binocular components will
change also. In particular, we would expect to find fine-
scale features exhibiting a greater degree of indepen-
dence between views as the disparities become greater
than the wavelength.

We assessed the degree of binocularity using the
same ratio of intensity as before. Figure 13B shows the
proportion of monocular components generated for
each of the 10 scales. Here a monocular component is
defined as having a ratio of less than 1/19—i.e., more
than 95% of the energy in the component is in the
dominant eye. Coarse scales, those of 6 arcmin/pixel or
more, show almost no monocular components, while
the vast majority of components at the fine scale are
monocular. While the distribution of actual disparities
in the images is not known, it seems likely that the
tendency toward monocular components at the finest
scales is due to the disparities in the scene being larger
than the features detected. Thus, coarse-scale feature
detectors are better tuned to detect the disparities
found in the image set.

As we are primarily interested in binocular disparity,
we excluded monocular components from further
analysis. Due to the small number of binocular
components available from the finest two scales, we

Figure 13. The effect of image scale of the proportion of monocular features. Images at the coarsest scale, 100/pixel, show the

smallest proportion of monocular tuned components, and images at the finest scale show a high proportion of monocular tuned

components. (A) The bootstrapped histograms of the intensity ratios at each scale. The median of the bootstrapped distribution is

shown as a thick line, the 95% CIs are shown as thin lines. Fine scales show strong peaks at ratios close to 0 (monocular) and coarse

scales show a bias towards a ratio of 1 (binocular). (B) The proportion of monocular components at each scale (in arc minutes per

pixel). The blue bars show the median proportion of monocular components, the 95% CIs are shown by the black error bars.
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restricted further analysis to scales coarser than 3
arcmin/pixel.

Frequencies across scales

Figure 14 shows the distribution of frequencies for
components learned across a range of scales. The
distributions are plotted in two modes. In the first, the
frequencies are measured in cycles per pixel; this shows
the effects of the sampling grids and patch size on the
frequencies. If the detected frequencies of the compo-
nents depend principally on the size of the patch, we
would expect the frequency envelopes to be identical or
similar at all image scales. The second mode shows the
frequencies rescaled to cycles per arc minute of visual
angle and allows comparison with actual image
features. For all but the finest scale, the distributions,
measured in cycles per pixel, are almost identical
(Figure 14A). The largest deviation is found in the 3-
arcmin scale. Figure 14B shows the frequency distri-
butions rescaled to show their true wavelengths in
cycles per arc minute. The frequencies of the compo-
nents cover a broad range from 0.02 to 0.16 c/arcmin
(1.2–9.6 c/8). The full distribution is shown as a red line.
The distributions are highly bandwidth limited due to
patch and sampling-grid size. The number of compo-
nents generated at each scale is fixed and only affected
by the proportion of monocular components. It is clear
that the resulting overall distributions of frequency
tuning owe more to the ICA sampling method than to
the distribution of frequencies in the image.

Position disparities across scales

The original image set contains a wide but unknown
range of disparities that may not be adequately
captured at the scale chosen in the detailed analysis
presented earlier. Widening the scale will capture a
wider range of disparities; however, as with frequency,
the question of whether the distributions are affected
by the ICA method remains. Again, we can test this by
comparing the disparity distributions across scale and
comparing them relative to the ICA sampling grid and
to the original image dimensions. Figure 15 shows the
distributions of position disparity across scales, both
relative to the sampling grid (pixels) and relative to the
visual field (arc minutes). The distributions are shown
both in absolute terms (Figure 15A and B) and in
horizontal (C and D) and vertical directions (E and F).
Measured relative to the sampling grid, the position-
disparity distributions show a trend towards more
kurtotic (peaked) distributions at coarse scales com-
pared to fine scales. The trend is most marked in the
horizontal and vertical directions (Figure 15C and E).
When measured in terms of the actual visual angle, this
trend is reversed, with fine scales showing a more
kurtotic distribution than coarse scales (Figure 15B and
F), except in the horizontal direction, where no effect is
visible. If the distributions are heavily biased by the
ICA algorithm or sampling grid, we would expect
highly similar distributions across scales.

The large variance in the distributions of position
disparity in both the horizontal and vertical directions,
when plotted in pixel units, suggests that the sampling
grid alone is not driving the distribution. Similarly, if

Figure 14. Results of ICA analysis at varying scales. The scales are measured in arc minutes per pixel. All plots show bootstrapped

histograms with the median shown as a thick line and the 95% CIs shown as thin lines. The edges of two of the histogram bins are

shown as dashed and dotted lines. (A) The distribution of frequencies in cycles per pixel for each of the 10 scales. The Nyquist limit is

shown as a dot-dashed line. Most of the coarse-scaled frequencies show highly similar distributions, with some bias towards higher

frequencies at the finest scales. (B) The same distributions as cycles per arc minute. At coarser scales, the tuning shifts to lower

frequencies.
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driven purely by the sampling grid, the range of position

disparities, measured in arc minutes, would double when

the sampling rate halved. While the range of position

disparities in arc minutes is wider at coarse scales, the

width does not double with a halving of the scale.

Phase disparities across scales

The distributions of phase disparity across scales can
be seen in Figure 16. The distributions are highly
similar across scales. This indicates that the results hold
over a range of frequencies between ;2 and ;10 c/8.

Figure 15. Comparison of disparity distributions across scales. Scales between 3 and 10 arcmin/pixel are shown as bootstrapped

distributions of varying shades. As before, the thick lines denote the median of the distribution, thin lines the 95% CIs, and dotted and

dashed lines the edges of histogram bins. (A, B) The distribution of absolute position disparities across the scales measured in pixels

(A) and arc minutes (B). Fine scales show a strong bias towards small disparities, while coarse scales show a wider coverage. (C, D) The

horizontal position disparities in pixels (C) and arc minutes (D). (E, F) The vertical position disparities in pixels (E) and arc minutes (F).

As with the absolute displacements (A, B), fine scales shows a bias towards small disparities while coarse scales show a wider

distribution; however, in the horizontal case it is weaker. Unlike the frequency distributions, which are strongly tied to the size of the

patches, the position disparities vary across scales.
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Relating the results to physiological findings

The ICA algorithm seeks to produce components
that are maximally independent. In order to determine
whether the resulting components provide an accurate
model of binocular neurons, we directly compared the
ICA components with physiological measurements. We
describe the similarities in qualitative terms, paying
close attention to similarities in the types of distribu-
tions and, where applicable, the ranges they cover.

Whitening

It has been hypothesized that whitening of image
information is performed by center–surround cells in
the retina (Atick & Redlich, 1992; Srinivasan et al.,
1982). By analyzing the spatial tuning characteristics of
P-cells in the retina (using data published by Croner &
Kaplan, 1995), Graham, Chandler, and Field (2006)
found that the sensitivity of P-cells is well matched to
the power spectra of natural scenes. However, due to
correlations that remained among neighboring P-cells,
they came to the weaker conclusion that the P-cells
performed an approximate response-spectrum flatten-
ing. In our work we used PCA, as it is a prerequisite of
ICA; however, the spectral flattening performed in the
retina provides some ecological validation for the PCA-
based whitening step.

However, it should also be noted that the PCA
components generated in our analysis do not resemble
the center–surround responses found in retinal P-cells.
The center–surround responses of these cells are limited
to half-cycle representations, while the PCA compo-
nents have multiple cycles, the number of which
depends on the wavelength. This results in eigenvectors

(components used in the whitening) with a significantly
larger receptive field than retinal ganglion cells. This
may have implications for the receptive-field size of
ICA components that will be discussed later.

Orientation- and spatial-frequency-disparity tuning

Gabor functions tuned to cover the full range of
orientations were found in both left and right view
parts of the components (see Figure 3C). However,
actual orientations were closely clustered on 0, p/2, and
p, corresponding to the sampling grid. ICA has a
tendency to produce components aligned with the
sampling grid, as these have a lower energy state than
unaligned states (van der Schaaf & van Hateren, 1996).
It is known that a particular tendency for horizontal
and vertical orientations exists in photographic images
(Hansen & Essock, 2004). While this may well to some
extent reflect an anisotropic distribution of orientations
in nature, it is also likely to result from the alignment of
structures with the cardinal directions when composing
photographs (van Hateren & van der Schaaf, 1998). It
is not possible to attribute the anisotropy in our results
to any corresponding anisotropy in the natural
environment, since it is likely to be driven to a large
degree by the sampling grid in our photographs (van
Hateren & van der Schaaf, 1998). The orientations of
the left and right Gabor functions of the binocular-
component pairs were highly correlated (r2¼ 0.99, p �
0.001). This is similar to results from physiology;
Bridge & Cumming (2001) reported an almost identical
correlation of r2 ¼ 0.985 and a spread (standard
deviation) of orientation disparities of 9.228. We
observed a spread (standard deviation) of 3.558, around
half that of their result but of a similar order of
magnitude. Due to the small angles involved, mea-
surement noise could account for the discrepancy. This
result supports the idea that a matching process, where
features in one eye are matched with similarly oriented
features in the other, is an efficient mechanism to code
binocular scenes and therefore an effective strategy to
compute binocular disparity.

The modal frequency of the components in the main
analysis was ;4.8 c/8 and ranged between ;0 and;7 c/8.
This places the components within the range of frequency
tuning of binocular simple cells in the macaque visual
cortex (Prince, Pointon, et al., 2002). This indicates that
the range of frequencies selected by the band-pass
filtering in the whitening stage is appropriate for
comparison to physiology. The frequency distribution is
skewed towards higher frequencies (;4.8 c/8); this
resembles the results from physiology (see Prince,
Pointon, et al., 2002, figure 4e).

Ringach (2002) noted a difference between receptive-
field sizes computed for ICA components and those
measured physiologically in both cats and monkeys,

Figure 16. Bootstrapped distributions of phase differences

across scales. The phase distributions follow the same bimodal

pattern across the selected scales.
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specifically a substantially greater proportion of
broadband-tuned cells compared to the tunings of ICA
components. We found a similar effect in our data (see
Figure 3); in fact, many of our ICA components are
even more narrowly tuned than Ringach’s. This
indicates that a substantial number of V1 simple cells
have a much smaller receptive field than measured here.
A bias toward narrowband frequency-tuned compo-
nents is a result of band-pass filtering in the PCA
preprocessing stage. As discussed by Ringach et al.
(1997), band-pass filtering will remove high-frequency
information from the samples and subsequently from
learned components; this can introduce ripple-like
structures, which results in the components being
biased towards narrow frequency bandwidth. As
measurements of phase, frequency, and orientation are
more reliable for narrowband components than
broadband components, we can be confident of the
accuracy of our results.

Phase disparity

The phase-disparity tuning of our components
nonuniformly spans the range of possible angular
values, suggesting that the full range of phase disparity
could be used to detect disparities in the visual scene.
However, phase disparities of p/2 are much less
prevalent than disparities around 0 and p, implying
that these disparities have less explanatory power.

The distribution of phase disparities was strongly
bimodal (see Figure 6), with peaks at 0 and p radians.
The peak at 0 radians indicates the detection of
correlated signals in each view. As the phase disparity is
partially independent of the position disparity, these
correlated signals may be shifted in each view. The
components around p radians are anticorrelated
between the left and right eyes. Their presence is
consistent with Li and Atick’s (1994a) decorrelated-
channels theory of binocular vision. The plus (corre-
lated) and minus (anticorrelated) channels that decor-
relate single-pixel sample inputs in their research are
found in the interactions between multiple pixels in the
ICA models as phase differences. As noted by Bell and
Sejnowski (1997) and Ringach (2002), edge-like com-
ponents produce sparse coding in the monocular case,
locally decorrelating the images. The appearance of
anticorrelated binocular sparse components is the
logical extension of this to binocular image patches.
The bias towards anticorrelated binocular components
has been observed before in Fourier analysis by Li and
Atick (1994a), and similar anticorrelated filters were
also produced in Burge and Geisler’s (2014) analysis of
optimal filters for disparity estimation. Burge and
Geisler noted that a particular anticorrelated compo-
nent could signal the presence of a stimulus at a
particular disparity by not responding. This is related to

the idea that such cells play an inhibitory role, vetoing
possible disparities when they do respond strongly
(Read & Cumming, 2007). Recently, an additional role
for these anticorrelated cells in distinguishing object
boundaries from texture edges has been suggested by
Goutcher, Hunter, and Hibbard (2013).

Only half of this bimodal distribution has been
found in physiological studies. Phase disparities in
binocular cells of the macaque (Prince, Cumming, &
Parker, 2002), cat (Anzai et al., 1999), and barn owl
(Nieder & Wagner, 2000), as collated by Prince,
Cumming, and Parker (2002), showed a clear bias
towards phase disparities of 0 radians, but with few
anticorrelated neurons. Although such ‘‘tuned inhibi-
tory’’ neurons do exist (Poggio et al., 1985; Poggio &
Fischer, 1977), they are not nearly as prevalent as
would be predicted from the current analysis. We and
previous authors have assumed that the visual cortex
forms an efficient coding of the visual scene, but
without any reference to the utility of the coding. In
other words, neurons could code for stimuli that exist
in the visual input but are not used in subsequent
processing. This would be extremely energy inefficient.
It is reasonable to assume that a pruning process could
occur that selects for useful parts of the visual signal,
although at present no biological process for such
pruning is known. Analyses that are targeted at
identifying the filters that are optimized for specific
tasks, such as disparity estimation (Burge & Geisler,
2014) or scene parsing (Goutcher et al., 2013), can
provide an additional level of understanding of the
encoding of natural images.

Position disparity

Distributions of position-disparity tuning were
highly peaked around 0. Components tuned to a
disparity of less than half a wavelength dominate the
distribution, with a clear majority tuned to a disparity
of less than quarter of a wavelength. This result is
qualitatively similar to neurophysiological measure-
ments in V1 of macaques. Both Anzai et al. (1999) and
Prince and colleagues (Prince, Cumming, & Parker,
2002; Prince, Pointon, et al., 2002) found that position
disparities were mainly constrained to half the wave-
length of the filter and clustered around 0. Finding this
result in ICA components indicates that the relatively
small position disparities found in animal studies form
an efficient coding of binocular visual inputs, in line
with geometrical considerations (Hibbard, 2007; Read
& Cumming, 2004a). The distribution of tuning for
vertical disparity was more strongly peaked at 0 than
that for horizontal disparity, again in line with
geometrical predictions (Hibbard, 2007; Read &
Cumming, 2004b) and physiological findings (Cum-
ming, 2002).
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We do not have information about the range of
disparities present in the images. It is, however, likely to
be greater than the range of disparity tuning found in
our components (between 2 [the Nyquist limit] and 8
arcmin; see Figure 15), since training patches were cut
from both the verged and unverged regions of the
image. We can conclude that although disparities
greater than the wavelength of the filter are most likely
present in the scenes, filters tuned to these disparities do
not form an efficient coding. An explanation of this
apparent discrepancy can be found in the fact that
filters do not exclusively respond to object boundaries,
but also encode object texture. Unlike object boundary
edges, textures are frequently repetitive, and thus a
disparity detector tuned to a particular frequency could
make many good matches other than the correct
disparity. As the ICA algorithm will find the most
prevalent features regardless of actual disparity, the
matches with the shortest distance between edges will
dominate. While this results in an efficient encoding,
this ambiguity needs to be resolved for the actual
estimation of disparity. This highlights the important
distinction between the initial encoding of binocular
images in V1 (the stage that we seek to model here) and
the subsequent estimation of disparity in higher cortical
areas. It should also be noted that components tuned to
larger disparities are present in ICA applied at coarser
scales, consistent with the idea that larger disparities
are detected by neurons with larger receptive fields
(Allenmark & Read, 2011).

Orientation tuning and the direction of disparity

Cumming (2002) found no correlation between the
orientation tuning of neurons and the direction of
disparity to which they were most sensitive. The oval-
shaped distribution of displacements shown in Figure
8A is similar to results found in monkeys (Cumming,
2002), where a similar bias towards detection of
horizontal disparities was found. Like Cumming, we
found no association between the direction of position
disparity and the orientation of the components. It
should be noted, however, that the strong effect of grid
alignment found in the data might have masked any
such association.

The relationship between phase- and position-disparity
tuning

Physiological studies have found evidence of mix-
tures of phase- and position-disparity tuning. These
tunings span a large proportion of the range of possible
phase- and position-disparity combinations and were
found to be uncorrelated. Similar to our results, neural
tuning has been shown to cluster around 0 in both
position and phase disparities (Anzai et al., 1999;

Prince, Cumming, & Parker, 2002; Prince, Pointon, et
al., 2002).

We found a strong linear relationship between phase
disparity and position disparity that implies joint use of
phase- and position-disparity-tuned components in
scene disparity calculations. This relationship can be
explained by the similarities between Gabor functions
shifted in phase and shifted in position (the basis of the
Fourier shift theory). This result is intriguing. Rather
than spanning the space of all possible phase and
position disparities, the components are clustered at
particular combinations that have particular combined
disparity, specifically multiples of half the wavelength.
This result has not been observed in image statistics by
other authors (Burge & Geisler, 2014). Similarly, it has
not been observed in physiological studies. Cumming
and DeAngelis (2001) and Anzai et al. (1999) found a
wide spread of phase and position disparities. Prince et
al. did not convert their measurements into equivalent
units and cannot be directly compared (Prince et al.,
2002a). The phase and position distributions reported
by these authors are marginal distributions combining
results across a wide range of frequency tunings from
broadband to narrowband. Our results are constrained
in frequency tuning and are generally more narrow-
band tuned than physiological measurements. It is
possible that the broader range of phase and position
disparities measured in primates is a consequence of
broad frequency-tuning functions, with narrowband-
tuned cells exhibiting a similar distribution to one
observed here.

Possible algorithms have been suggested to use these
two measures of disparity. For example, Y. Chen and
Qian (2004) used phase disparity to estimate local shifts
and position disparity to confirm the results. In
contrast, Read and Cumming (2007) used position
disparity to calculate local shifts, and phase disparity to
detect false positives. Read and Cumming claimed
more accurate results for their method compared to Y.
Chen and Qian. These algorithms assume that phase
and position disparity are not correlated.

Scale

The range of disparities found across image scales
(Figure 16) indicates a multiscale approach to the
detection of disparity (Allenmark & Read, 2011). At
each scale, the distribution of components spans a
similar range of frequencies. A similar distribution was
proposed mathematically by Li and Atick (1994b) to
perform two functions on binocular images: noise
reduction, especially at higher frequencies, and whit-
ening of the input signals. The range of disparities
detected by components at the different scales shares
some features with Li and Atick’s model. At each scale,
the band-pass operation avoids signals close to the
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Shannon–Nyquist limit, where high-frequency noise
dominates the signal (Shannon, 1949). The range of
frequencies detected also depends on the scale, with
coarse scales detecting a wider range of frequencies and
disparities than higher frequencies.

Discussion

We used ICA to produce a sparse linear coding of
binocular image patches. This produced Gabor-like
features which we analyzed in terms of phase and
position disparity.

As have other authors, we found a range of phase-
and position-disparity-coding components (Anzai et
al., 1999; Okajima, 2004). Our analysis has produced
many more, and more detailed, measurements than
previous studies. As a result, we observed new
relationships in the data. We found a linear relationship
between phase and position disparity that produced
components with highly clustered overall disparity
profiles. This is different from the physiological
measurements of Anzai et al. (1999) and Prince,
Cumming, and Parker (2002), which show no correla-
tion between phase- and position-disparity tunings. In
terms of signal processing, our results show a clear link
between narrowband phase and position disparities in
each view.

Physiological measurements have found many fewer
anticorrelated tuned neurons in V1 than predicted by
our results (Prince, Cumming, & Parker, 2002).
However, one important distinction is that such
physiological measurements have been taken from cells
with receptive fields in the center of the visual field,
whereas the analysis presented here considers samples
drawn from the whole image. While beyond the scope
of the present article, it is possible that this discrepancy
reflects the difference in spatial sampling.

Overall, there are a number of ways in which our
ICA results produce components with properties that
are similar to binocular cortical neurons. Our compo-
nents are well fitted by Gabor functions with similar
orientation and spatial-frequency tuning in each eye
(Bridge & Cumming, 2001). These components showed
position- and phase-disparity tuning, with most com-
ponents having a combination of both (Prince, Cum-
ming, & Parker, 2002). The distributions of horizontal
and vertical position disparity were both strongly
peaked around 0, with a greater spread for horizontal
than for vertical disparity (Cumming, 2002; Hibbard,
2007; Read & Cumming, 2004b). There was also a local
peak in the distribution of phase disparities around 0
(Prince, Cumming, & Parker, 2002).

There were however also a number of ways in which
our results differed from physiological findings. Most

notably, the largest peak in the distribution of phase
disparities was found at p. Also, when the preferred
disparity of each component was calculated, by taking
account of both its position and phase tuning, peaks in
the distribution at half-wavelength intervals were
evident. These unexpected results represent aspects of
the components learned that do not directly reflect
attributes of cortical neurons (Ringach, 2002).

The ICA algorithm detected features based on their
prevalence in the supplied image set. Matches between
these components and the images do not necessarily
mean that the actual disparities of objects in the image
match that of the component. It is likely that a
proportion of these matches will be false—i.e., the
matched disparities are not the same as the actual,
physical disparities. The algorithm has a strong bias
towards narrowband features with large receptive
fields, while the visual cortices of cats and monkeys
have a larger proportion of broadband features with
relatively smaller receptive fields (Ringach, 2002). In
our analysis the components had a median frequency
bandwidth of ;0.5 octaves; this differs from the
median of 1.4 octaves reported by DeValois et al.
(1982). Thus we have been comparing narrowband-
tuned ICA components to the marginal statistics of
features measured from V1 simple cells of a wide range
of narrow- to broadband tunings. The similarities we
found have not been restricted to narrowband features
in V1, suggesting that these features are not dependent
on the bandwidth of the Gabor function. However, the
differences that we have observed may be due in part to
the size of the receptive fields and only hold for
narrowband signals.

Taken on their own, the components calculated via
ICA cannot calculate disparity. ICA is simply an
efficient coding method, and simple correlations
between the scene and components will produce many
false matches. Algorithms based on the standard energy
model combine the outputs of two or more compo-
nents, with a nonlinear term, as the initial stage of
disparity detection. The original model of Fleet et al.
(1996) combined pairs of components with 0 position
and p/2 phase shift while also pooling information
across orientation, scale, and spatial position. Numer-
ous possible combinations of components have been
suggested, including multiscale phase-based models (Y.
Chen & Qian, 2004), a gated model where phase
maxima close to 0 are combined with position extrema
(Read & Cumming, 2007), combining positive- and
negative-energy model units (Haefner & Cumming,
2005), and filters based on learning the appropriate
combinations from natural-image data (Burge &
Geisler, 2014). Whatever combination of binocularly
encoded information is required for the estimation of
disparity, this is likely to occur in visual areas beyond
V1.
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Our results, in line with previous studies, reveal
some clear similarities between the components
learned and the receptive fields of cortical neurons,
but also a number of differences. This highlights the
limitations of trying to explain these receptive-field
properties as the result of the encoding principles
employed. One important limitation is that the result
might reflect properties of the learning methods
employed, such as image sampling and preprocessing,
that do not reflect the relevant encoding principles,
such as independence (Bell & Sejnowski, 1997; Ring-
ach, 2002; van Hateren & van der Schaaf, 1998).
Another important consideration is that the properties
of cortical neurons are likely to be determined not by
considerations of how to encode information so as to
generate a full representation of the image (Ringach,
2002) but by how this information will subsequently
be used, for example in the estimation of disparity
(Burge & Geisler, 2014).

Another important limitation of our approach, in
line with many other approaches to understanding
efficient coding, is that it does not explicitly consider
noise in either the input signal or neural responses
(Simoncelli & Olshausen, 2001). The levels of both
forms of noise are important factors in determining an
efficient encoding (for a detailed discussion, see
Zhaoping, 2014). Consideration of noise has contrib-
uted to our understanding of the efficient coding of
information in the retina (Atick & Redlich, 1990, 1992)
and in binocular vision (Li & Atick, 1994a), for
example. The approach to learning independent com-
ponents does, however, have some advantages from a
consideration of the signal-to-noise ratio. Firstly, as
discussed in the methods section, the PCA whitening
stage—in which later, higher frequency components are
truncated—bears some similarity to the explanation of
retinal encoding proposed by Atick and Redlich (1992),
in which noise is shown to dominate the signal at high
frequencies (due to the 1/f 2 power spectrum typical of
natural images) and truncation of the signal to lower
frequencies increases the signal-to-noise ratio. Second-
ly, Field (1987, 1994) has argued that in the context of
uncorrelated signal noise, sparse coding may increase
the signal-to-noise ratio, as neurons will respond
selectively to a subset of the signal space while uniform
white noise is distributed across the entire space of
possible signals. However, as Hyvärinen et al. (1999)
have pointed out, an ICA model trained on noisy input
data will produce components tuned selectively to
respond to a single (or nearly single) sample. In our
work we have used bootstrapping in an attempt to
assess the impact such outliers have on the distributions
of components learned from ICA.

A final consideration is that, while the methods we
used to calculate components have the aim of
producing a sparse encoding, alternative metrics exist.

Einhäuser, Kayser, König, and Körding (2002) used a
method that attempted to maximize temporal stability,
arguing that this was necessary for learning the features
of complex cells but not for learning simple-cell
responses. It should be noted that although not
explicitly referred to by Einhäuser et al., this learning
method was sparse in that only a subset of inputs was
used for learning in any given iteration. The idea of
temporal stability was also explored by Hurri and
Hyvärinen (2003) using a different method that was
nonsparse. Other statistical models exist that have
demonstrable efficacy in describing natural images, in
many cases outperforming ICA in terms of image data
explained (log likelihood; Zoran & Weiss, 2012). The
class of models known as mixture models has received a
significant amount of attention; variations on these
models have been shown to outperform ICA. Both
Gaussian scale models (Lyu & Simoncelli, 2007) and
Gaussian mixture models (Xu & Jordan, 1996) have
been found to be better descriptors of natural-image
patches in terms of their likelihood. Mixtures of
elliptically contoured distributions have been shown
psychophysically to produce more natural-looking
image patches (Gerhard, Wichmann, & Bethge, 2013).
However, unlike factor models such as ICA, mixture
models do not produce sets of individual components
with which to compare to physiology; instead, they
produce linearly additive mixtures of distributions with
no direct physiological analogue.

Keywords: binocular vision, binocular disparity, nat-
ural-image statistics, independent-component analysis
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