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Highlights

• We investigate the viability of Type-2 fuzzy systems in high frequency trad-
ing.

• We propose Type-2 models based on a generalisation of the popular ANFIS
model.

• Type-2 models score significant risk adjusted performance improvements over
Type-1.

• Benefits of Type-2 models increase with higher trading frequencies.
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Abstract

In this paper, we investigate the ability of higher order fuzzy systems to handle
increased uncertainty, mostly induced by the market microstructure noise inherent
in a high frequency trading (HFT) scenario. Whilst many former studies com-
paring type-1 and type-2 Fuzzy Logic Systems (FLSs) focus on error reduction or
market direction accuracy, our interest is predominantly risk-adjusted performance
and more in line with both trading practitioners and upcoming regulatory regimes.
We propose an innovative approach to design an interval type-2 model which is
based on a generalisation of the popular type-1 ANFIS model. The significance of
this work stems from the contributions as a result of introducing type-2 fuzzy sets
in intelligent trading algorithms, with the objective to improve the risk-adjusted
performance with minimal increase in the design and computational complexity.
Overall, the proposed ANFIS/T2 model scores significant performance improve-
ments when compared to both standard ANFIS and Buy-and-Hold methods. As a
further step, we identify a relationship between the increased trading performance
benefits of the proposed type-2 model and higher levels of microstructure noise.
The results resolve a desirable need for practitioners, researchers and regulators in
the design of expert and intelligent systems for better management of risk in the
field of HFT.
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1. Introduction

Most transactions in modern, highly computerised, financial markets are being
greatly controlled by specialised algorithms which incessantly sift through masses
of data and take split second trading decisions. According to a recent study by
Brogaard et al. (2014), between 2008 and 2010 high frequency trading (HFT) algo-
rithms accounted for 70% of dollar volume on the NASDAQ exchange. This tends
to defy the long standing Efficient Market Hypothesis (EMH) (Fama, 1965, 1970)
that states that current prices incorporate all relevant information with no possi-
bility of predictability or excess returns. A number of authors (e.g. Schulmeister,
2009; Zhang, 2010; Rechenthin and Street, 2013; Holmberg et al., 2013; Brogaard
et al., 2014) insist that the presence of efficient pricing becomes more questionable
when investigating short-lived (milli-seconds to few minutes) trades. However,
Kearns et al. (2010) validate the EMH in their study and argue that generating
profits from aggressive high-frequency trading (HFT) is next to impossible. These
debates keep this domain a very active area of research.

According to Johnson et al. (2013) this new machine dominated reality high-
lights the need for new theories in support for sub-second financial phenomena
during which the human traders loose the ability to react in real time. Due to the
non-stationary characteristics of financial time series (see Fama, 1965), applying
machine learning techniques to infer predictions is a challenging task and prone
to increased error variance. Complexity is heightened given the level of noise in
high frequency stock price movements. Incidents like the “flash crash” of 6 May
2010 stress the importance of risk management. As a result, in recent years HFT
and algorithmic trading have been the subject of increasing global regulatory at-
tention. As an example, in October 2011, the EU Commission proposed a new
version of the Markets in Financial Instruments Directive (MiFID2). MiFID2 will
apply from January 2017 and will introduce a new regulatory regime for firms
which engage in algorithmic or high-frequency trading on European venues or who
provide investment management services directly to clients in the EU. The new
regulations are intended to ensure that trading systems are adequately designed
and tested to mitigate the risks to which they are exposed.

This acts as a reminder for model or algorithm designers that both investors
and regulators are more concerned about risk-adjusted performance rather than
directional accuracies, error measures or just profitability. Unfortunately, surveys
show that the great majority of computational finance research disregards the
essential requirement that an investor always measures investment returns in line
with risk measures in order to compare relative trading performance (Tsai and
Wang, 2009; Krollner et al., 2010). A higher return trading strategy does not
necessarily outperform other strategies if the associated risk is also substantially
higher. This is the reason why in this paper we focus on risk-adjusted performance.
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Zadeh (1975) proposed that increased systems complexity calls for approaches
that are significantly different from the traditional methods which are highly effec-
tive when applied to mechanistic systems. Fuzzy sets and systems are attributed
as an excellent method to deal with situations where the element of uncertainty
and imprecision is high, typically prevalent in complex environments (see Wagner
and Hagras, 2010). A number of surveys (Tsang, 2009; Krollner et al., 2010; Sahin
et al., 2012) place Artificial Neural Networks (ANNs) amongst the most popular
learning techniques in AI-based financial applications and hybrid models. ANNs,
especially in conjunction with fuzzy logic, were found to provide better forecasts.

A frequently cited technique in non-stationary and chaotic time series predic-
tion, which combines ANN and type-1 (T1) fuzzy logic, is the Adaptive Neuro-
Fuzzy Inference System (ANFIS) by Jang (1993). Successful application and active
continuous research in improving ANFIS based techniques in trading applications
is demonstrated by numerous publications (Gradojevic, 2007; Boyacioglu and Avci,
2010; Chang et al., 2011; Tan et al., 2011; Kablan and Ng, 2011; Chen, 2013; Vella
and Ng, 2014b; Wei et al., 2014). Moreover Vella and Ng (2014b) showed the in-
creased stability of ANFIS in terms of risk-adjusted performance when compared
to ANN alone. Recently, type-2 (T2) fuzzy logic have gained significant academic
attention (see review in Melin and Castillo, 2014) and as of today it remains a
primary area of research in the fuzzy logic domain (Mendel et al., 2014). To our
best knowledge, the use of higher order fuzzy logic systems (FLSs) in a high fre-
quency trading environment has not been addressed in the literature before. Our
intention in this paper is to investigate the possible improvement that can be ob-
tained by generalising ANFIS to interval T2 (IT2) FLS. However, in line with Wu
and Mendel (2014), we argue that although T2 FLSs provide the researcher with
extensive freedom in design options, the increased computational and design com-
plexity can possibly hinder the wider applications of such systems. This challenge
was a key consideration that inspired our innovative and practical IT2 approach
that we present in this paper.

The investigation of possible improvements using T2 in HFT is appealing in
view of increased uncertainties which are inherent in high frequency data. Al-
beit the concepts of risk and uncertainty have often been used interchangeably,
economists have long distinguished between the two (e.g. Knight, 1921) and also
in recent literature (e.g. Nelson and Katzenstein, 2014; Heal and Millner, 2014).
Our view is that overall risk can be divided into measurable risk (e.g. flip of a
fair coin), and uncertainty, which we categorise as the risk of events to which it
is difficult to attach a probability distribution. Our aim is to further reduce the
trading uncertainty by utilising T2 FLSs. We have not identified any existing lit-
erature that investigates the level of noise (uncertainty), indirectly reflecting the
trading frequency, that would warrant the (feasible) use of T2 over T1 fuzzy logic
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methods for algorithmic trading purposes.
With respect to the above literature review and identified gaps, in this study

the objectives can be summarised as follows:

1. To identify practical methods of how the popular ANFIS model can be gen-
eralised to an interval T2 Takagi-Sugeno-Kang (IT2 TSK) fuzzy system. We
aim to address this with minimal increase in design and computational com-
plexity.

2. To investigate the ability of higher order fuzzy systems to handle increased
uncertainties inherent in a HFT scenario.

3. To identify if T2 FLSs provide a viable alternative for trading purposes in
view of improving risk-adjusted performance.

4. To explore when can T2 models offer a more viable approach than T1 alter-
natives. We analyse this from the perspective of different levels of trading
frequencies.

This paper aims to convey a number of contributions. As a first contribution
we propose an innovative, but at the same time a more accessible, way of how
to design a T2 FLS from an optimised T1 Neuro-Fuzzy FLS (ANFIS/T2). With
IT2 there are many, sometimes overwhelming (Wu and Mendel, 2014), design
choices to be made which includes the shape of membership functions, number of
membership functions, type of fuzzifier, kind of rules, type of i-norm, method to
compute the output, and methods for tuning the parameters. We address this from
a number of aspects. Firstly, we make use of a fuzzy clustering algorithm for rule
identification in order to reduce the number of rules and hence simplify the model.
We apply simple rules where antecedents are T2 fuzzy sets and consequents are
crisp numbers (A2-C0). Secondly, as our base structure for the T2 model we use
the popular ANFIS as a solid benchmark model as it is computationally fast and
also has been successfully applied in high frequency trading (Kablan and Ng, 2011;
Vella and Ng, 2014b). Thirdly, we reduce the training complexity by reducing the
number of tuning parameters, limiting this to varying sizes of the Footprint of
Uncertainty (FOU). Our parsimonious approach also reduces the possibility of
overfitting and spurious results (see Bailey et al., 2014). Finally, we apply an
efficient closed form type reduction method.

As a second contribution we shed more light on the theoretical market efficiency
debate in HFT. Schulmeister (2009) points towards possible market inefficiencies
and profitability of technical trading rules at higher frequencies, this being driven
by faster algorithmic trading. Recently, Rechenthin and Street (2013) claimed
that when price shocks break the bid-ask spread, which was identified to happen
anywhere in between 5 to 10 seconds, price movements can be predicted for up
to one minute. Beyond this point prediction probabilities remained significant for
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about the next 5 minutes, dying out completely beyond 30 minutes. In our case
we make use of HFT trade data from a set of stocks listed on the London Stock
Exchange and investigate a combination of technical rules on 2 minute returns
with holding periods ranging between 2 to 10 minutes. Contrary to findings in AI
surveys (Tsai and Wang, 2009; Krollner et al., 2010), we align ourselves with the
priorities of investors and regulators and focus on comparing the proposed models
using risk-adjusted performance (Choey and Weigend, 1997; Xufre Casqueiro and
Rodrigues, 2006; Vanstone and Finnie, 2010). We are not aware of any previous
studies which investigate the link between higher order fuzzy systems and risk-
adjusted performance.

Finally, as our third contribution we try to answer an important question which
explores, from a trading performance perspective, when it is viable to apply T2
models rather than T1. Although previous literature found that T2 models can
perform better under increasing uncertainties (Sepulveda et al., 2006; Aladi et al.,
2014), it is however not clear at which uncertainty level this would reflect in a rea-
sonable improvement in risk-adjusted trading performance. Birkin and Garibaldi
(2009) even showed that if the level of noise is too low, T2 models show no sig-
nificant improvement on T1. A number of authors (Gençay, 1996; Vanstone and
Finnie, 2009, 2010; Holmberg et al., 2013) suggest the use of a threshold on the
predicted signals below which a trading action is not taken into consideration. This
is done to reduce the effect of the underlying noise, however, at the cost of reduced
trades and hence possible return. We propose an innovative experiment approach
by extending this technique to analyse how T1 and T2 models cope at decreasing
(increasing) levels of return thresholds, which reflect in an increase (reduction) in
uncertainty but also in increased (reduced) return potential. This ability to handle
higher frequency noise is fundamental for HFT.

Our evaluation on out-of-sample data demonstrate that the proposed AN-
FIS/T2 model outperforms the standard ANFIS and Buy & Hold methods. Statis-
tically significant improvements in both risk adjusted performance and profitability
were registered in higher trading frequency scenarios but disappeared when trading
activity was lowered.

The structure of the paper is organised as follows. In Section 2, we introduce
the main model components and design method. This is followed by a description
of our experiment approach and model evaluation presented in Section 3. In Sec-
tion 4, we present our results and analyse model performance. Finally, in Section 5
we draw our conclusions in view of existing literature.

2. Method

Our experiment setup consists of five modules (see Figure 1). Section 2.1 ex-
plains our variable selection and data pre-processing. Sections 2.2 and 2.3 explain
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Figure 1: Experiment Setup

our Fuzzy Inference System (FIS) design and the learning approach using ANFIS
and ANFIS/T2. In Section 2.4 we explain our trading algorithm.

2.1. High Frequency Data and Technical Indicators

In this section we explore evidence presented by a number of authors who
claim that in HFT scenarios there exist short time windows where past prices can
convey information which can be used for predictive purposes. Our interest is not
to identify the determining factors of this claimed HFT phenomena, but to identify
candidate features that can be used by our trading models.

A profitable trading algorithm essentially requires constructing a model which
can determine if, under certain conditions and time horizons, prices will be trending
or mean-reverting (Pardo, 2011). When designing an HFT model, an important
challenge that a model designer is faced with is the claim that return autocor-
relations in HFT can have both genuine and spurious elements (Anderson, 2011;
Anderson et al., 2013). The latter is attributed to market microstructure noise
(McAleer and Medeiros, 2008), mainly resulting from non-synchronous trading ef-
fect and bid-ask bounce. In view of this, a core consideration in designing HFT
models is to manage the tension between moving to higher price frequencies, hop-
ing to benefit from possible price correlations, but at the same time be able to
manage the increasing noise levels which give rise to perceived price movements
and volatility (see Andersen and Bollerslev, 1997; Rechenthin and Street, 2013).

We investigate whether the average return for the next 2 minutes can be suc-
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cessfully estimated using 5 signals which can provide information on price trend,
reversion and movement strength from a time window of previous prices ranging
from 1 to 15 minutes. The set of signals that we select for this study is based
on findings by Zhang (2010); Brogaard et al. (2014) who identified that the main
determinants of current HFT activity are past returns, liquidity, and HFT activity.
The time-window selection is based on claims from Rechenthin and Street (2013),
who state that the stock price typically broke the price reversal pattern due to
bid-ask bounce after 5 to 10 seconds, and that traces of predictability existed up
to 30 minutes, beyond which markets became efficient.

Recent studies (Gradojevic and Gençay, 2013; Vella and Ng, 2014a; Naranjo
et al., 2015) show the effectiveness of combining moving average signals with fuzzy
logic to capture trend information. In this study we use 1 minute stock prices and
define the expected mean return, y, at time t, as

yt = log(m2
t+2)− log(pt) , (1)

where

mn
t =

1

n

n−1∑

j=0

pt−j , (2)

pt is the stock price at time t, and j = 0, 1, 2, ..., n− 1 is the “memory span”. For
our trend signals we apply three moving average rules

MAn1,n2
t = mn2

t −mn1
t (3)

with the lag structures (n1, n2) ∈ [(1, 2), (1, 5), (1, 10)] where n1 and n2 are ex-
pressed in 1 min time bars.

For our mean-reversion indicator we use the popular Relative Strength Index
(RSI) (Murphy, 1987). To calculate RSI we consider 1 min prices in the last 15
minutes. The indicator is intended to convey signals about stocks that are likely
overvalued or undervalued, which can possibly result in price trend reversals.

A number of authors (e.g. Choudhry et al., 2012; Gradojevic and Gençay, 2013;
Holmberg et al., 2013; Schulmeister, 2009; Vella and Ng, 2014a) claim a relation-
ship between breaks in market efficiency and different levels of intraday volatility.
For this reason, we consider a fifth indicator using a measure of volatility, which
provides an indication of movement strength but not the direction. The ARCH
and GARCH frameworks (Engle and Patton, 2001; Hansen and Lunde, 2005; Poon
and Granger, 2003, 2005), which address the problems resulting from heteroscedas-
ticity when applying the least squares model, became the standard econometric
tools to measure the volatility of returns. ARCH and GARCH models treat het-
eroskedasticity as a variance to be modelled. However, albeit their popularity,
these models are typically applied in the context of “low frequency” daily returns.
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In a high-frequency setting, the literature proposes an alternative approach. With
the increased availability of intraday data, Merton (1980) proposed the use of intra-
day daily data to estimate volatility using the sum of intraday squared returns. In
particular, Andersen and Bollerslev (1997) show that, under the diffusion assump-
tions, realised volatility (RV) computed from high-frequency intraday returns, is
effectively an error-free volatility measure. Contrary to traditional models in fi-
nance, where volatility is considered latent, the realised volatility approach has
a key advantage that volatility is considered as an observable variable (Andersen
et al., 2001), hence can be more readily applied for modelling purposes. RV, at
time t, can be calculated as

RVt =
n∑

j=0

(log(pt−j)− log(pt−j−1))
2 . (4)

To minimise the effect of microstructure noise, we implement a simple RV esti-
mator called Average RV (Christoffersen, 2011), and calculate the last 15 minutes
average RV at time t using 5 minute return intervals (as suggested by McAleer
and Medeiros, 2008) as

RV avg
t =

1

3

2∑

j=0

RVt−j . (5)

In summary, the identified k variables yield a linear regression model to describe
the relationship with yt as

yt = θ0 +
5∑

k=1

θksk,t−1 + εt (6)

with the error term εt ∼ N(0, ρ) and

sk,t =





MA1,2
t for k = 1

MA1,5
t for k = 2

MA1,10
t for k = 3

RSIt for k = 4
RV avg

t for k = 5

. (7)

2.2. Designing and Tuning TSK Type-1 Fuzzy Model

A first consideration is to select the type of FLS to employ. The literature
identifies two main types, namely Mamdani (Mamdani, 1974), where the rule
consequents are fuzzy sets on the output space, and TSK (Sugeno and Kang,
1988), where the rule consequents are crisp functions of the inputs. In our paper
we adopt the TSK approach due to their popularity in practice resulting from their
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simplicity and flexibility (Wu and Mendel, 2014). Moreover for TSK rules, output
calculation is less computationally intensive: the output is a weighted average of
the crisp rule consequents, where the weights are the firing levels of the rules.

In the following two sub-sections we describe our approach for (i) the initial
identification of a T1 TSK FIS model (Section 2.2.1) and (ii) model tuning (Section
2.2.2).

2.2.1. Initial FIS Structure Identification

We follow a model-free approach (Mendel et al., 2014) with the objective
to completely specify the FLS using training data. The process starts from a
given collection of q minute-by-minute input-output data training pairs, (x(1) :
y(1)), (x(2) : y(2)), ..., (x(q) : y(q)) where

x(1) = [s1,t−q, s2,t−q, ..., s5,t−q], y
(1)
t−q+1

x(2) = [s1,t−q+1, s2,t−q+1, ..., s5,t−q+1], y
(2)
t−q+2

...

x(q) = [s1,t−1, s2,t−1, ..., s5,t−1], y
(q)
t .

(8)

In Equation (8), for each data instance at a specific time t, x is a vector con-
sisting of {x1, x2, ..., x5} input elements which represent the {s1,t−1, s2,t−1, ..., s5,t−1}
technical indicator signals (Equation (7)), and y represents the mean return over
the next 2 minutes (Equation (1)).

The idea of fuzzy inference systems can be broken down into a divide-and-
conquer (Jang and Sun, 1995) approach. The first objective is to identify fuzzy
regions that partition the input space using the the antecedents of fuzzy rules. The
second objective is to map a local behaviour within a given region using the rule
consequents. The selection of the space partitioning scheme has two important
effects on the resulting model. The first effect is that the more granular the space
partitioning is, the higher the number of rules, hence improving model accuracy.
However, a resulting effect is the increased number of optimisation parameters and
hence computational complexity. Increased model complexity can also result in
overfitting. The designer has to balance accuracy and model complexity depending
on the structure of the underlying data and the specific context.

For this reason, we apply a clustering algorithm, namely Fuzzy c-means (FCM)
clustering, which is a popular approach to identify fuzzy partitions in data (Bezdek,
1981; Dutta Baruah and Angelov, 2010). By controlling the number of clusters,
this gives us the opportunity to identify the best model structure which balances
between model accuracy and complexity. This is possible because each cluster
center essentially exemplifies a characteristic behaviour of the system in a specific
region. Hence, each cluster center can be used as the basis of a membership
function for each input variable and are combined in a rule that describes the local
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system behaviour. Since our input variables have different basis, these variables
are standardised and rescaled to have a mean of zero and a standard deviation of
one before being fed into the algorithm. This provides equal influence weight of
each variable on the clustering algorithm.

Let z denote the fuzziness index. Furthermore, define α as the number of
clusters, duv = ‖xu − cv‖2 as the Euclidean distance between the u-th realisation
and the current v-th cluster center cv, and duo = ‖xu − co‖2 as the Euclidean
distance from the u-th realisation and the other cluster centres co. For each data
point xu, ∀u ∈ [1, q], and cluster cv, ∀v ∈ [1, α], the FCM algorithm iteratively
updates the membership grade µ of the u-th data point to the v-th cluster

µuv =

(
α∑

l=1

(
duv
duo

) 2
z−1

)−1
, (9)

and the center of the v-th cluster

cv =

∑q
u=1 µ

z
uvxu∑q

u=1 µ
z
uv

, (10)

such that the objective function

Jz =

q∑

u=1

α∑

v=1

µzuvduv (11)

is minimised. As suggested by Pal and Bezdek (1995), we test values between 1.5
and 2.5 for the fuzzy index z. For the number of clusters, α, we test values between
2 to 5 clusters. This range selection is based on identifying a well distributed set
of clusters representing the variable distribution, whilst at the same time avoiding
heavy influence of possible outliers. After examining cluster plots on different
stocks and time periods we select a fuzzy index value of 1.7. The number of
clusters is used as a model parameter which is included as part of the model
tuning process in combination with the ANFIS parameters (see next section).

In this paper we adopt Gaussian membership functions (MFs), where each
fuzzy set is represented by

Gaussian(x;x, σ) = e−(x−x)
2/2σ2

. (12)

An MF returns the degree of membership, in the range [0,1], of a specific point
in a particular variable region. We select this particular fuzzy set shape because,
unlike other MFs, it has only two parameters (the mean x and standard deviation
σ) and it always spreads out over the entire input domain (Wu and Mendel, 2014).
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Once the clustering process is complete, we follow two steps to create an initial
T1 TSK fuzzy model. In the first step, the identified α clusters are projected on
each input variable space. This results in α Gaussian MFs for each variable with
the mean represented by the cluster centres c. The standard deviation σ is obtained
by re-arranging Equation (12) and utilise cluster centres c and membership grades
µ. As a second step, a set of α rules are created in the form

IF (x1 is Ai,1) AND (x2 is Ai,2) AND ... AND (x5 is Ai,5)

THEN yi = bi +
5∑

k=1

wi,kxk (13)

where Ai,k’s are T1 Gaussian MFs, projected from the identified clusters, for the
i-th rule and the k-th input (i = 1, 2, ..., α; k = 1, 2, ..., 5). In the consequent, yi is
the rule output, defined as the mean return over the next 2 minutes (Equation 1),
consisting in a linear function of the input variables {x1, x2, ..., x5} with parameters
bi and wi,k. Following the identification of the initial FIS using FCM clustering,
the structure is fed into ANFIS for model tuning.

2.2.2. FIS Tuning With ANFIS

From literature we identify two major classes of optimisation algorithms for
FLSs: gradient-based algorithms and heuristic algorithms, in the latter case most
studies focusing on evolutionary computation (EC) algorithms (see discussion in
Wu and Mendel, 2014). ANFIS follows the former approach. It is due to the
popularity of ANFIS in the finance domain that we decide to use it as our optimi-
sation technique and hence as a benchmark model to explore possible risk-adjusted
performance improvements by extending the model to an IT2 TSK FLS.

ANFIS configures a TSK model in a network architecture, and albeit the math-
ematical underpinnings follow the traditional TSK models, the structure is formu-
lated to permit ANN learning techniques. Our ANFIS structure can be defined by
a number of connected layers as follows:

Layer 1 Since we have 5 inputs, this layer contains 5×α adaptive nodes, one node
for every membership function associated with each input. For instance, the
α nodes with connections from the first input x1 are in the form

O1,i = µAi,1(x1) for i = 1, 2, ..., α. (14)

where µAi,k is the membership degree for the i-th T1 MF and the k-th input
(i = 1, 2, ..., α; k = 1, 2, ..., 5). In our setup α represents both the number of
rules and also the number of MFs for each input variable. Different values
for α are tested as part of our model calibration process (see Table 1).
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Layer 2 This layer contains α fixed nodes. In each node, O2,i, where i = 1, ..., α,
the product t-norm (∗) is used to “AND” the membership grades which are
passed from the previous layer. The output is the firing strength, fi, of each
rule:

O2,i = fi = µAi,1(x1) ∗ µAi,2(x2) ∗ ... ∗ µAi,5(x5). (15)

Layer 3 In this layer, which consists of α fixed nodes, the normalised firing
strengths, f̂i, are calculated using

O3,i = f̂i =
fi∑
i fi

. (16)

Layer 4 The nodes in this layer are adaptive and act as a function

O4,i = f̂iyi = f̂i(bi +
5∑

k=1

wi,kxk) , (17)

where f̂i is the normalised firing strength from the previous layer and yi is the
rule consequent linear function for the i-th rule, i = 1, ..., α, with parameters
bi and wi,k.

Layer 5 This layer consists of a single node and combines the output from all the
nodes in the previous layer to calculate the overall output as

O5,i = rt =
∑

i

f̂iyi =

∑
i fiyi∑
i fi

. (18)

The ANFIS learning process consists of an iterative two-pass algorithm. In
a forward pass, the premise parameters (in Layer 1) defining the membership
functions are unmodified and the consequent parameters (in Layer 4) are computed
using least squares algorithm. On completion of the forward pass, the consequent
parameters are unmodified and a backward pass feeds the errors back into the
network using back-propagation to adjust the premise parameters (full detail is
provided in Jang, 1993). In our in-sample training and model selection process we
test and compare all 2× 4× 3 = 24 permutations of the parameter combinations
(Table 1). These parameters are tested in combination with an additional set of
parameters that are defined for our trading algorithm (see Section 2.4). In the
next section we propose how the standard ANFIS model can be extended to a T2
TSK model.
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Table 1: Parameters tested for ANFIS

Parameter Parameter Value Set

Training Data Size (days) {2, 3}
Number of Input Membership Functions and Rules (α) {2, 3, 4, 5}

Training epochs {10, 20, 40}

2.3. Generalizing ANFIS Model to T2 FLS

There is no mathematical proof that by changing a T1 FLS to T2 FLS, a T2
fuzzy logic controller (FLC) will automatically outperform a T1 FLC (Wu and
Mendel, 2014). When considering T2, an initial step for an algorithm designer is
to understand the underlying uncertainties and the sources thereof. In an HFT
environment, one can identify a number of sources of uncertainty:

• Constantly changing market activity and volatility conditions.

• Use of non precise terms: “rising steadily”, “high volatility”, “small loss”,
“high activity”.

• Microstructure noise in the observations.

• Inconsistencies effecting trade execution (for example execution time and
transaction costs).

By identifying the levels and sources of uncertainty the designer can formulate
an initial opinion, firstly on the fit for T2 FLS, rather than using T1 FLS, and
secondly on the numerous T2 design options to consider (see Wu and Mendel, 2014)
for a summary of design options). In our scenario, all the identified uncertainties
point towards T2 as a good contender.

Our primary interest is on identifying model improvements that can result
from better handling of the microstructure noise. This noise is attributed as one
of the key modelling challenges and sources of uncertainty in HFT (Anderson,
2011; Anderson et al., 2013; Rechenthin and Street, 2013). T1 fuzzy sets cannot
fully represent the uncertainty associated with the inputs since as a contradiction,
the membership function of a T1 fuzzy set has no uncertainty associated with it.
To address this criticism, Zadeh (1975) introduced T2 fuzzy sets which has been
a very active area of research (see Wu and Mendel, 2014). We consider Interval
T2 (IT2) fuzzy sets since they are much less computationally intensive and more
popular than the generalised T2 (Mendel et al., 2014; Wu and Mendel, 2014). This
projects our focus on investigating whether the introduction of T2 fuzzy sets in the
antecedents of fuzzy rules can improve the risk adjusted performance of trading
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algorithms, in what scenarios and to what extent. We consider a special IT2 TSK
FLS when its antecedents are T2 fuzzy sets but its consequents are crisp numbers
(referred to A2-C0 by Mendel et al., 2014). Although other IT2 models exist
(see Mendel et al., 2014), we select this model because it provides a good balance
between better management of uncertainty and increased model complexity.

2.3.1. IT2 FLS Design Approach

At this point we decide on an important design consideration for our experi-
ments. The decision is to select the method to adopt when it comes to tuning our
IT2 FLS. In this section we describe our rationale.

We consider two different approaches that are commonly adopted to design IT2
FLSs (Mendel et al., 2014; Wu and Mendel, 2014; Aladi et al., 2014): a partially
dependent approach and a totally independent approach. In the former approach
the designer starts with an optimised T1 FLS, which is then used as a basis for the
design of the IT2 FLSs. On the other hand, the totally independent approach is
used to design IT2 FLS from scratch, hence avoiding the use of on an intermediate
T1 FLS.

We adopt the partially dependent approach for a number of reasons. Firstly,
although previous literature found that T2 models can perform better under in-
creasing uncertainties (Sepulveda et al., 2006; Aladi et al., 2014), we do not seek
to achieve an optimal performance in the error reduction, instead the primary ob-
jective is to compare T1 FLS and IT2 FLS and to shed more light on the possible
gains in risk-adjusted performance. Secondly, in line with Wu and Mendel (2014),
the increased parameters and design options in IT2 FLS can be overwhelming and
possibly limit more widespread use. With the adopted approach, our objective
is to propose an incremental step from standard ANFIS, which as we highlighted
earlier is a popular and already established technique in finance, and to contribute
new improvements in this active area of research. Thirdly, our parsimonious ap-
proach also reduces the possibility of overfitting and spurious results (see Bailey
et al., 2014). Whilst these reasons present our rationale for selecting partially
dependent approach, in Section 3.4 (IT2 Design Considerations) we highlight the
strengths and weaknesses of this approach.

2.3.2. ANFIS/T2 Models

In this section we propose two methods, ANFIS/T2a and ANFIS/T2b, of how
the T1 FIS structure resulting from the ANFIS training can be extended to an
IT2 FLS (A2-C0) model. In line with the economic theories about the separation
of overall risk between risk and uncertainty (Knight, 1921; Nelson and Katzen-
stein, 2014; Heal and Millner, 2014), our intention is to seek trading performance
improvements that can result from the introduction of T2 fuzzy sets. This is ob-
tained by minimising the uncertainty caused by microstructure noise present in

15



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

high frequency data, hence reducing the overall risk.
The A2-C0 rules are defined as follows:

IF (x1 is Ãi,1) AND (x2 is Ãi,2) AND ... AND (x5 is Ãi,5)

THEN yi = bi +
5∑

k=1

wi,kxk (19)

where in the premise part of the rule, Ãi,k are IT2 Gaussian MFs projected from the
identified clusters for the i-th rule and the k-th input (i = 1, 2, ..., α; k = 1, 2, ..., 5).
In the rule consequent, yi is a linear function of the input variables {x1, x2, ..., x5}
with parameters bi and wi,k.

For our proposed ANFIS/T2a, the objective is to convert the T1 rules defined
in Equation (13) to A2-C0 rules defined in Equation (19). To do this, we start
from the ANFIS optimised T1 fuzzy sets. The next step is to introduce the foot-
print of uncertainty (FOU) for the MFs in the premise part of the rules whilst
keeping the consequent part fixed. The FOU represents the blurring effect of a
T1 membership function, µAi,k , and is completely described by two correspond-
ing bounding functions, a lower membership function (LMF), µ

Ai,k
, and an upper

membership function (UMF), µAi,k , both of which are T1 fuzzy sets. Unlike their
T1 counterparts, whose membership values are precise numbers in the range [0,
1], membership grades of a T2 fuzzy set are themselves T1 fuzzy sets. Therefore,
T2 fuzzy sets offer the ability to model higher levels of uncertainty (Mendel et al.,
2006; John and Coupland, 2007). Aladi et al. (2014) show how T2 fuzzy sets can
handle increased noise and claim a direct relationship between FOU size and levels
of noise. However, Benatar et al. (2012) warn that selecting too small an FOU
will result in no improvements over the T1, whilst if too large the T2 model will
perform worse. In our case, complexity is compounded since noise levels are not
fixed but time-varying due to time-varying market activity.

To define the size of the FOU, for ANFIS/T2a we adopt a parsimonious ap-
proach by introducing one additional parameter. This parameter, β ∈ [0, 1), deter-
mines the increase or decrease in the standard deviation, σi,k, of all the Gaussian
T1 MFs across all input variables (i = 1, 2, ..., α; k = 1, 2, ..., 5), whilst keeping
the mean, xi,k, fixed. Hence, for each T1 MF, the LMF and UMF are defined as
follows:

µ
Ai,k

= Gaussian(xk;xi,k, (1− β)σi,k) (20)

µAi,k = Gaussian(xk;xi,k, (1 + β)σi,k) (21)

where xi,k and σi,k are the parameters for the i-th T1 Gaussian MF and k-th input
tuned by ANFIS. When applied, this results in a new set of IT2 MFs (Figure 2).
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Figure 2: Conversion of T1 fuzzy set to IT2 with fixed mean and uncertain standard deviation.
Upper and lower MFs are defined using an additional parameter βk which represents the width
of the IT2 MF as a percentage increase or decrease on the base T1 MF standard deviation
respectively. In our first experiment we train the model to identify and assign the same β value
across all inputs k = 1, 2, ..., 5. In our second experiment each βk can be tuned to different values.

We transform the complete T1 to IT2 rule base in this manner. The final output
of the model is obtained as follows

YA2−C0 = [yl, yr] =

∫

f1∈[f1,f1]
...

∫

fα∈[fα,fα]
1/

∑
i fiyi∑
i fi

(22)

where the integral sign represents the fuzzy union operation and the slash opera-
tor (/) associates the elements of the rules output and firing strength with their
secondary membership grade, which in the case of IT2 is simplified to 1. The firing
strength for each rule i, where i = 1, 2, ..., α, is calculated as

f
i
(x) = µ

Ai,1
(x1) ∗ µAi,2(x2) ∗ ... ∗ µAi,5(x5) (23)

f i(x) = µAi,1(x1) ∗ µAi,2(x2) ∗ ... ∗ µAi,5(x5) (24)

where, like in the case of ANFIS (Equation (15)), ∗ represents the product t-norm.
For further details, the interested reader is directed to Mendel et al. (2014).
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Figure 3: An example showing the MFs for the input variable RSI index following ANFIS training
(top), and the corresponding ANFIS/T2 tuned MFs (bottom). Both ANFIS and ANFIS/T2
MFs are dynamically adapted on a daily basis, reflecting the price volatility in that period.
During training, the latter IT2 MFs optimal thickness is identified by initially adopting the same
Gaussian MFs parameters tuned by ANFIS and then increase (decrease) the standard deviation
by a factor ranging from 0% to 40%.

Following the ANFIS optimisation, as a second training pass we train our model
with values of β ranging from 0% to 40% in discrete steps of 5%. This range is
selected from our testing on in-sample data. It is to be noted that we intentionally
include 0% in our search space, which results in the reduction of the IT2 FLS back
to the corresponding T1 FLS. This allows the training algorithm to select between
T1 and IT2 FLS and to dynamically adapt the model FOU according to the level
of market uncertainty during the specific training period (see example in Figure
3). This also guarantees that during the training process the model achieves at
least the same level of performance of the T1 FLS.

For our second proposed method, ANFIS/T2b, we introduce more flexibility in
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the model by introducing 5 new parameters in the model, {β1,β2, ..., β5}, where
βk ∈ [0, 1). These parameters represent the increase or decrease in the FOU for all
T1 fuzzy sets defining the space of the individual 5 input variables. Hence, with
this approach the FOU can dynamically adapt to different levels of uncertainty
across the different input variables. So in the case of ANFIS/T2b, we convert
every rule i, where i = 1, 2, ..., α, by transforming the MFs of each input variable
to IT2 MFs using βk, where k = 1, 2, ..., 5. In this case the lower and upper MFs
are defined as:

µ
Ai,k

= Gaussian(xk;xi,k, (1− βk)σi,k) (25)

µAi,k = Gaussian(xk;xi,k, (1 + βk)σi,k) (26)

In our training algorithm we apply the same discrete range for possible βk values.
This approach results in a much larger search space of possible βk combinations,
hence rather than performing a parameter sweep we speed up the training process
by optimising the βk values using a mixed integer genetic algorithm. This does
not limit our approach to other possible optimisation methods. Following the rule
base conversion from T1 to A2-CO, the final step is to decide on how to compute
the output. This is described in the next section.

2.3.3. Computing the Output

The T2 fuzzy logic community has proposed a number of methods for comput-
ing the output (the interested reader is directed to Wu, 2013; Mendel et al., 2014,
for a review). At a high level, the methods can be divided into two groups. The
first group require an interim defuzzification process which reduces the output T2
fuzzy sets to T1 fuzzy sets. These are typically solved via iterative algorithms. The
second group skip this step completely by calculating the output directly. Siding
with less computational intensive methods, we chose the Nie-Tan (NT) method
(Nie and Tan, 2008), which falls under the latter group. The NT method computes
the output as follows:

y = r̂ =

∑α
i=1 yi(f i + f i)∑α
i=1(f i + f i)

. (27)

which effectively makes use of a vertical-slice representation of a T2 fuzzy set and
involves taking the mean of the lower and upper membership functions, creat-
ing a type-1 fuzzy set. When compared to other defuzzification methods, it was
demonstrated that the NT method provides a good balance between accuracy and
complexity (Wu, 2013; Greenfield and Chiclana, 2013).

2.4. Trading Algorithm

Our trading system takes decisions on a minute by minute basis. Every minute,
the prediction of the average return over the next two minutes is passed to the
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trading algorithm which in turn recommends a buy (Φ = long) or sell (Φ = short)
action depending on whether the signal is above or below a specific return threshold
parameter RT , or stand-by (Φ = 0) if not. In our experiments we explore four
levels of the RT parameter for each stock, {0.08%, 0.06%, 0.04%, 0.02%}, to
avoid small price movements mostly originating from microstructure effects. As
suggested by Vanstone and Finnie (2009), in our algorithm we also take account
of whether the signal is increasing in strength, or decreasing in strength from its
previous forecast. Hence before opening a position the algorithm confirms the
current signal by comparing with the forecast signal generated in the previous 1
min time bar.

For our simulation we allocate a starting capital of 250,000 GBP for each stock.
When our model indicates a buy (sell) signal, our trading algorithm opens a long
(short) position worth of 50, 000 GBP. When a trade is closed, the net proceeds is
added back to the capital balance, hence maximising the utilisation of the available
capital. In line with realistic commercial prices, in our experiments we apply a
transaction cost of 10 GBP per trade per direction.

We also use a second parameter, TD, which represents the duration of each
trade in minutes. This parameter defines the lifetime of a trade, after which the
trade is automatically closed. In our experiments we consider TD values between
2 min to 10 min. Following from evidence by Rechenthin and Street (2013), this
range is selected to reduce the possible perceived movements resulting from the
bid-ask bounce. The time window is however short enough to capture any instances
of market inefficiencies due to HFT. If a signal in the same direction is generated
prior to closure, TD is reset back to zero. This form of extended close proved to
be successful in previous studies (Brabazon and O’Neill, 2006). We close all open
positions at end of each daily trading session to avoid having positions overnight.
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Algorithm 1 Pseudo code of the trading algorithm, where RT is the predicted
return threshold and TD is the trade duration.

Φ← 0

if signal > RT and signal > prevsignal and balance-tradesize > 0
then

Φ← long

end if
if signal < −1 ∗ RT and signal < prevsignal and balance-tradesize >

0 then
Φ← short

end if
OPENTRADE(Φ)
for each open trade t do

tradeDuration(t)← tradeDuration(t)+1
if tradeDirection(t) == Φ then

tradeDuration(t)← 0

end if
if tradeDuration(t) >= TD then

CLOSETRADE(t)
end if

end for

The pseudo code presented in Algorithm 1 describes the structure of the trading
algorithm that we use in our experiments. Both RT and TD parameters are used
in conjunction with the standard ANFIS parameters referred to earlier (see Table
1), and are applied in the model selection process to identify the base T1 model
for each stock.

3. Experiment Approach

In the following sub-sections we describe the different aspects of our experiment
approach and also aim to present a critical analysis in view of our decisions.

3.1. Data

The data we use in this paper is high-frequency trade data for 15 stocks listed
at the London Stock Exchange (see Table 2) during a 250 day period between
28/06/2007 to 25/06/2008 (excluding weekends, holidays and after hour trading).
Data is sampled at 1 min intervals using the last trade price every 1 min. Since
the London Stock Exchange operates between 8:00 and 16:30 GMT, this produces
510 price points per day resulting in a time series of 127500 price points per stock
over the entire period. The sample skewness and kurtosis in Table 2 indicate that
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Table 2: Descriptive Statistics of 1 Minute Returns

Company Symbol Mean×10−6 Std. Dev. Skewness Kurtosis

Antofagasta ANTO 0.6509 0.0024 1.2194 330.6081
BHP Billiton BLT 2.1716 0.0020 −0.1043 214.8807
British Airways BAY −5.4056 0.0020 0.2329 150.9052
British Land Company BLND −5.0941 0.0017 0.0749 86.1668
Sky SKY −2.2680 0.0013 −0.1850 173.2209
Cable and Wireless CW −2.1766 0.0014 0.0824 311.7595
Aviva AV −2.9633 0.0016 0.2320 280.4653
Diageo DGE −1.0693 0.0013 0.2544 299.0263
HSBC Holdings HSBA −1.1900 0.0014 0.1183 4082.5000
Rio Tinto RIO 3.2828 0.0021 0.9144 361.6329
BP BP −0.2378 0.0012 −0.0179 119.9209
Lloyds Banking Group LLOY −4.0709 0.0016 0.0704 313.4039
Tesco TSCO −1.1754 0.0012 −1.1077 133.3191
HBOS HBOS −9.9067 0.0022 0.7628 174.7204
Xstrata XTA 2.0661 2.0661 −2.0788 298.5333

the return distributions are far from being normal. In the selection of our data
set size, we note the harsh criticism brought forward by Bailey et al. (2014) in
view of the number of publications which base their study on a small backtest
length given the number of model configurations tested. Bailey et al. (2014) prove
that this easily gives rise to possible overfitting with the chance of spurious results
(especially in in-sample tests). To mitigate this risk, in our case each model is
tested on a number of price points which would be equivalent to over 505 years of
daily data per stock.

Another important consideration when selecting stocks for back-testing pur-
poses is the importance of picking a mix of stocks which exhibit different trends.
As can be seen from the numerous machine learning and artificial intelligence stud-
ies surveyed in Krollner et al. (2010) and Tsai and Wang (2009), this is rarely con-
sidered. Pardo (2011) warns that including only stocks that follow similar trends
can lead to ungeneralised models which work in specific scenarios only, hence in-
troducing a bias in the experiment results. We noted this risk when picking the
stocks, and as shown in the descriptive statistics in Table 2 we include a mix of
stocks with both positive and negative mean returns (see also Figure 4) over the
selected training and test period. Our selection of stocks is also representative of a
number of industry sectors. Further testing on a wider stock selection, instruments
and markets is left as future work.
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Figure 4: Times series of stock prices (normalised, for better comparison) which shows the mix
of trends followed by the selected stocks over the in-sample and out-of-sample period.

3.2. Performance Measures

Surveys (Krollner et al., 2010; Tsai and Wang, 2009) show that the great ma-
jority of machine learning studies with application to trading applications focus
on the minimisation of error functions, directional accuracy or else profitability
(issues with these measures are discussed in Brabazon and O’Neill, 2006; Pardo,
2011; Vella and Ng, 2014b). The danger with error functions is that a small error
does not necessarily translate into profitability since it does not reflect the direc-
tion. On the other hand, directional accuracy measures are not enough to ensure
overall profitability since they do not incorporate the magnitude of the correct or
incorrect predictions. Moreover, a high directional accuracy might be completely
misguiding since few large losses can still cancel out a higher number, but smaller
in size, wins. Finally, focusing on just profitability does not incorporate the pos-
sible drawdowns that can be experienced during specific periods. This can be
disastrous for an investor. This also reflects the rules that are being proposed by
directives like MiFID2 that are intended to ensure that trading algorithms show
robustness with lower risk of unexpected huge losses. For this reason, we apply
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three key measures to assess our models: Shape ratio, percentage profit and profit
per trade.

The Sharpe ratio is one of the most popular reward-to-risk ratios and was
proposed by the seminal paper of Sharpe (1966) based on the mean-variance theory.
The ratio, which represents our risk-adjusted performance measure that we are
ultimately interested in, is defined as

Sharpe Ratio =
Ra −Rb

σ
, (28)

where Ra denotes the expected return, Rb the risk-free interest rate and σ the
volatility of the return. The Sharpe ratio measures the risk premium per unit
of risk in an investment. For a given level of percentage profit, investments with
higher Sharpe ratios are preferred due to equivalent returns at lower levels of risk.

The profit per trade measure provides an indication of the efficiency of under-
lying algorithm in terms of capital allocation. It also provides an indication of the
existing spread between the average return per trade and the underling transaction
costs. A higher spread would indicate the possibility of increasing the number of
trades with the chance to increase overall profitability.

The combination of these three measures provides a clear overall picture of
model performance both in terms of profitability and risk. However, we note
two limitations of Sharpe ratio. Firstly, Sharpe ratio does not separate between
variability in gains and losses, hence it attributes penalisation to both upside and
downside variability. This might not represent the interest of investors who would
rather welcome positive variability in gains. In this study however, we favour
model stability and hence our interest is more in identifying algorithmic trading
models that can offer steady returns. Secondly, Lo (2002) warns that Sharpe
ratio highly depends on the distribution of the underlying returns. In the case
of non-normal distributions which exhibit ‘fat tails’ this might lead to misleading
results. However investigations done by Eling (2008) and Prokop (2012) show that
Sharpe ratio measures lead to similar rankings of more sophisticated performance
ratios. In balance, we decide in favour of Sharpe ratio as our main risk-adjusted
performance measure due to its simplicity and thus easy application, and also due
to its widespread acceptance both in literature and in practice.

3.3. Model Training and Testing

In the first experiment (Section 4.1), we compare the performance of T1 models
trained using ANFIS and ANFIS/T2 models. The model selection process is based
on identifying the best model parameters (defined in Table 1 in conjunction with
trading algorithm parameters RT and DT ) that result in the highest Sharpe ratio
during the 150 day in-sample period. In the case of ANFIS/T2 models, parameter
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selection is extended to the identification of β parameters (as described in Section
2.3.2).

Common practice in time-series and machine learning literature is to divide
the time-series into training, testing and validation sets. However Kaastra and
Boyd (1996) and Pardo (2011) argue that in the case of trading scenarios, a more
rigorous approach is to adopt moving window (also known as walk-forward) testing
which consists in a series of overlapping training-testing-validation sets. Although
moving window approach requires more frequent model re-training, it tries to
simulate real-life trading and also permits quicker model adaptation to changing
market conditions.

We adopt a day-by-day moving window approach (see Figure 5), whereby at
dayd, where (d = 1, 2, ..., 150), the model is trained on 1 minute data points (Equa-
tion (7)) from dayd−r to dayd−1, and r represents the training data size in days.
The trained model is then used to predict minute by minute mean returns (Equa-
tion (1)) during dayd. This is repeated for the whole 150 day in-sample period,
for each parameter combination. The final selected model is then tested, using the
same day-by-day moving window approach, over the next 100 day out-of-sample
period. The size of the time series provides a sufficiently large historical dataset
which reduces the possibility of over fitting or produce spurious results during
back-testing (Bailey et al., 2014).

Apart from the T1 FLS model trained using ANFIS, we also consider two Buy-
and-Hold (B&H) strategies as additional benchmark models. In the first strategy
(B&H daily), for every trading day we buy at the daily opening price, hold it over
the course of the trading day and sell at the daily closing price. In the second
strategy (B&H 100 days) we buy at the beginning of the out-of-sample period,
hold for the duration of the 100 day period, and sell at the closing price of the
100th day. Comparisons against these zero-intelligence models help us to validate
the contribution that is attained by introducing AI controlled algorithmic trading.
For indicative purposes we also present a number of average statistics across the
whole portfolio of stocks.

3.4. IT2 Design Considerations

For our IT2 design approach we consider two different options that are com-
monly adopted to design IT2 FLSs: a partially dependent approach and a totally
independent approach. Albeit in Section 2.3.1 we present both options and the
reasons why we opted for a partially dependent approach, it is important for model
designers to understand the advantages and disadvantages of both options. In the
partial dependent approach, the primary advantage is that it makes it easier to
directly compare the T1 and IT2 FLS. A second advantage is that the training of
the IT2 FLS could be much faster since a number parameters would already be
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Figure 5: Adopted moving window approach. The first 150 days, each day consisting of 510
1 minute price points, is reserved for the in-sample training and model selection process. The
models are trained every day using 1 minute data points from the previous r days and then
tested on the next day’s prices. For out-of-sample testing, the same approach is applied and the
selected model is moved forward, day by day, for the next 100 days.

optimised by the T1 model. On the other hand, the advantage of the totally inde-
pendent approach is that it avoids the assumption that the optimised parameters
of the T1 model, for example the type and number of membership functions, are
the best parameters to be inherited by the IT2 FLS, hence possibly leading to a
sub-optimal IT2 FLS model. This is a conscious risk that we undertake in this
study, the primary reason being that our main objective is the comparison of T1
and IT2 models.

3.5. Assessing Performance Under Different Levels of Noise

An important decision that we take is to define the approach to use to simulate
different levels of noise. This will in turn enable us to compare T1 FLS with IT2
FLS under different degrees of uncertainty.

We propose an innovative approach which can allow us to adjust, in a controlled
fashion, the level of noise and hence be able to compare T1 and IT2 FLSs under
different degrees of uncertainty. A number of authors (e.g Sepulveda et al., 2006;
Aladi et al., 2014) take the approach of methodically generating and injecting syn-
thetic noise in the data. We decide to take a different approach by making use of
a stylised fact in financial time series that microstructure noise, in its nature, is
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more pronounced in higher frequency data (Medeiros et al., 2006). Typically this
effect is reduced by using a threshold which acts as a filter on the predicted sig-
nals, below which a trading action is not taken into consideration (Gençay, 1996;
Vanstone and Finnie, 2009, 2010; Holmberg et al., 2013). We extend the use of
this method by hypothesising that this approach is effectively controlling for un-
certainty (indirectly). An increased (reduced) signal strength effectively translates
into reduced (increased) uncertainty that the predicted move is due to microstruc-
ture noise with the reduced (increased) risk to result in unprofitable trades. Hence
we test the models under different levels of uncertainty by adjusting different levels
of return threshold. We argue that this proposed approach is more practical and
realistic for algorithmic trading scenarios rather than injecting synthetic noise.

Based on this decision, in the second experiment (Section 4.2) the objective is
to compare the trading performance of T1 FLS and IT2 FLS at different levels of
uncertainty by controlling the return threshold, RT . For this reason, after testing
the models on the in-sample period, using the same moving window approach
that is applied in the first experiment, the model selection process is based on
choosing the model which returned the highest Sharpe ratio at specific levels of
RT . Finally, we conduct statistical tests on the 100 day out-of-sample results to
determine whether there is enough evidence of IT2 superiority at different levels
of RT.

4. Results and Analysis

In Section 4.1, we conduct a performance comparison between the benchmark
models, namely B&H methods and standard ANFIS, and the proposed IT2 FLS
models during 100 out-of-sample trading days. In Section 4.2, we analyse models
performance across increasing levels of uncertainty.

4.1. Experiment 1: Comparison against benchmark models

Our approach is to first establish the performance obtained from benchmark
models and then identify improvements that can be attained by our proposed IT2
models. As our first set of benchmark models we consider two B&H methods. In
the first method, B&H (daily), we simulate a one round-trip trade, every day, for
the full 100 day out-of-sample period. This consists in performing a buy trade
at the opening of the exchange and selling the asset close of day. In the second
method, B&H (100 days), we simulate buying the stock at the beginning of the
out-of-sample period and then sell at the end of the 100 day period. The results
from Table 3 indicate that B&H (daily) obtains small to moderate positive period
returns (1% to 9%) only on 4 (BLT, HSBA, RIO and TSCO) out of the 15 stocks,
and major losses (>20% losses) on 4 other stocks (BLND, AV, BP and HBOS).
In general, the same negative results are obtained in the B&H (100 days) method,

27



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 3: Results obtained from the B&H methods in the 100 day out-of-sample period. B&H
(daily) performs 100 trades, each position covering one full trading day. B&H (100 days) performs
1 trade, covering the full 100 day period.

B&H (daily) B&H (100 days)
Company Symbol Profit% Profit%
Antofagasta ANTO −8.95% −8.76%
BHP Billiton BLT 8.99% 11.37%
British Airways BA −3.56% −40.52%
British Land Company BLND −23.43% −33.67%
Sky SKY −8.19% −16.34%
Cable and Wireless CW −19.76% −10.46%
Aviva AV −20.54% −20.33%
Diageo DGE −11.22% −11.23%
HSBC Holdings HSBA 5.78% 0.69%
Rio Tinto RIO 2.20% 3.67%
BP BP −22.83% 7.17%
Lloyds Banking Group LLOY −4.83% −30.21%
Tesco TSCO 1.08% −13.51%
HBOS HBOS −45.73% −94.18%
Xstrata XTA −2.67% −2.30%

with small to moderate positive period returns (1% to 11%) on 4 stocks (BLT,
HSBA, RIO, BP) and heavy losses (>20% losses) in a number of others (BA,
BLND, AV, LLOY and HBOS). The huge losses (>30% losses) obtained from the
B&H (100 days) on BA, BLND, LLOY and HBOS are partially expected due to
the substantially large negative mean returns identified in the descriptive statics
in Table 2, hence indicating a strong negative trend. We also note the results of
BP and TSCO which show opposing results for B&H (Daily) and B&H (100 days).
This result is possible due to the fact that whilst B&H (100 days) considers only
the first and last price of the testing period, B&H (Daily) is effected (positively
or negatively) by all the daily trends in the 100 day out-of-sample period. For
example, a strong negative trend in the last 20 days can be disastrous for B&H
(100 days), however B&H (daily) can still carry over some profits from the previous
80 days. This confirms our approach in adopting the two methods as our first set
of benchmark models.

For our second benchmark comparison we apply the standard ANFIS. From
Table 4 one immediately notices that contrary to the B&H methods, the algorithm
is profitable on all 15 stocks. The B&H methods performed better than standard
ANFIS only in one stock (BLT). Considering that the results are based on a 100
day out-of-sample period, the model shows moderate returns (5% to 10%) as in the
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case of BLT, AV, DGE, HSBA, RIO and XTA, and excellent returns on all other
stocks. These results validate the popularity of ANFIS in finance (Boyacioglu and
Avci, 2010; Chang et al., 2011; Tan et al., 2011; Kablan and Ng, 2011; Chen, 2013;
Vella and Ng, 2014b; Wei et al., 2014) and the active research in improving the
model and application techniques. This also validates our proposal to use ANFIS
as our main benchmark model and use it as a basis to seek further improvements.

Table 4: Standard ANFIS performance after 100 day out-of-sample period.

No. of Sharpe Profit/
Company Symbol Trades Ratio Profit% Trade (£)
Antofagasta ANTO 2036 0.3388 14.32% 18.90
BHP Billiton BLT 475 0.3224 8.65% 47.56
British Airways BA 6248 1.5420 86.40% 54.92
British Land Company BLND 921 0.4664 10.52% 30.12
Sky SKY 2606 0.5404 15.47% 16.05
Cable and Wireless CW 4709 1.2952 108.40% 103.87
Aviva AV 1074 0.4136 7.88% 19.09
Diageo DGE 1203 0.3807 7.47% 16.11
HSBC Holdings HSBA 1129 0.2912 7.08% 16.24
Rio Tinto RIO 535 0.2040 4.87% 23.31
BP BP 6978 0.9543 35.75% 15.39
Lloyds Banking Group LLOY 9621 0.7212 51.79% 17.63
Tesco TSCO 7928 1.5421 60.27% 26.08
HBOS HBOS 4708 0.4693 38.45% 24.90
Xstrata XTA 911 0.1222 5.88% 16.61

From further investigation of the standard ANFIS results (Table 4) we notice
that the number of trades performed over the 100 day out-of-sample period varies
substantially across the different stocks, ranging from an average of 5 trades a day
(BLT) up to 96 trades a day (LLOY). When we examine the number of trades in
relation to Profit%, we can identify that the highest Profit% was achieved by those
stocks with highest trading frequency (BA, CW, BP, LLOY, TSCO AND HBOS) in
spite of lower profit per trade. This is a typical outcome of HFT, whereby higher
overall profits are obtained from lower profits per trade but increased trading
frequency. More importantly, these higher returns are also obtained in conjunction
with higher risk adjusted performance (Sharpe ratio). Contrary to Kearns et al.
(2010) who claim the absence of profitability in HFT, our findings support the
claims of Schulmeister (2009) who identify pockets of profitability in shorter time
windows, in our case in the 2min to 10min range. Our results also validate the
theoretical claims of Zhang (2010); Rechenthin and Street (2013); Brogaard et al.
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Table 5: ANFIS/T2a performance comparison against Standard ANFIS after 100 day out-of-
sample period. The results depict variations from those produced by ANFIS in Table 4. The
number of trades, Sharpe ratio and profit per trade are presented as percentage differences.
Profit column shows the percentage point (p.p.) differences.

No. of Sharpe Profit Profit
Company Symbol Trades Ratio (p.p.) /Trade
Antofagasta ANTO −6.53% −0.89% −1.91 −8.19%
BHP Billiton BLT −5.68% +0.36% +0.01 +6.21%
British Airways BA −0.82% +0.41% −1.36 −1.53%
British Land Company BLND −1.52% +1.53% +0.0 +1.57%
Sky SKY −0.42% +0.39% +0.16 +1.52%
Cable and Wireless CW −1.19% +0.15% −1.18 −0.59%
Aviva AV −1.49% +8.82% +0.56 +9.01%
Diageo DGE −0.67% +1.88% +0.11 +2.26%
HSBC Holdings HSBA −1.86% −0.81% −0.09 +0.52%
Rio Tinto RIO −1.50% +14.63% +0.56 +13.41%
BP BP −0.92% −3.8% +1.72 +6.74%
Lloyds Banking Group LLOY −1.43% +17.79% +3.01 +9.12%
Tesco TSCO −0.63% +0.23% −0.08 +0.46%
HBOS HBOS −6.18% +4.69% +0.67 +8.85%
Xstrata XTA −0.99% +18.28% +1.0 +18.85%
Average −1.76% +2.36% +0.69 +3.15%

(2014) regarding the possible market efficiency breakdowns in the high frequency
range.

Our next challenge is to explore any additional performance gains that can
be obtained from our proposed IT2 TSK models, namely ANFIS/T2a and AN-
FIS/T2b. The two models are tested on the same 100 day out-of-sample period
used in the benchmark models. From our performance comparison of ANFIS/T2a
model against standard ANFIS, results in Table 5 show Sharpe ratio improvements
in 12 out of 15 stocks. A lower Sharpe ratio was obtained in only 3 stocks (ANTO,
HSBA, BP). In terms of profitability, it can be noted that 10 out of 15 stocks
show higher profitability. This was only marginally lower in the case of HSBA and
TSCO, with only 3 stocks (ANTO, BA and CW) showing reduction in profitability
by more than 1 percentage points (p.p.). These results provide a clear indication
of the superiority of our proposed ANFIS/T2a over standard ANFIS.

The improved performance of ANFIS/T2a is further assessed by investigating
the summary statistics in Table 5. We note that when considering the portfolio of
15 stocks, on average, Sharpe ratio increases by 2.36% and the average return per
stock increases by 0.69 p.p. Considering that portfolios of financial institutions
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typically hold thousands of equities and millions in investments, minor increases
in profitability can translate into significant monetary value. More importantly,
this increase in profitability is achieved in conjunction with higher Sharpe ratio
(lower risk). Another advantage of ANFIS/T2a is the fact that higher risk adjusted
performance and profitability is obtained with lower number of trades (1.76% less
trades). Holmberg et al. (2013) claim that increased risk-adjusted performance can
result from increased signal filtering (reduced trades) but at the cost of reduced
overall profitability. On the contrary, our results indicate that ANFIS/T2a shows
lower overall trading activity but more efficient capital allocation by instigating
more trades during preferable market states and increased noise filtering.

As a next step we compare the performance of ANFIS/T2b against standard
ANFIS. Results in Table 6 indicate that a lower Sharpe ratio was obtained in 5
stocks (BLT, CW, HSBA, BP, and HBOS), improvements showing in the remaining
10 stocks. In terms of profitability, ANFIS/T2b also obtained lower results in 5
stocks (ANTO, BLT, BA, CW and HSBA) and an increase in the remaining 10
stocks. The initial indications are that although in general ANFIS/T2b performed
better than standard ANFIS, the increased overall performance was less than that
obtained by ANFIS/T2a. This is also demonstrated from the summary statistics in
Table 6 which show a lower average improvement in terms of Sharpe ratio however
at a slightly improved average return per stock.

Our statistics show that at low to moderate intraday trading frequencies, which
was primarily driven by optimising models to maximise Sharpe ratios, both AN-
FIS/T2a and ANFIS/T2b performed better than ANFIS, with ANFIS/T2a show-
ing the best risk-adjusted performance at this level of trading frequency. This also
conveys an important message for model designers. Increased model complexity,
as in the case of ANFIS/T2b when compared to ANFIS/T2a, does not guarantee
a better risk-adjusted performance. Moreover it provides an indication that our
approach of adding incremental levels of model complexity resulted in identifying
the best balance between complexity and risk-adjusted performance.

We note that both ANFIS/T2a and ANFIS/T2b achieve substantial increase
in profit per trade when compared to standard ANFIS. In the case of ANFIS/T2a
the model performed better in 12 out of 15 stocks whilst in the case of ANFIS/T2b
improvements showed in 11 stocks. This is an indication that increasing the num-
ber of intraday trades can possibly result in an increase in the overall profitability.
However, this comes at a cost of increased uncertainty in trade profitability due
to more exposure to microstructure noise. This is investigated in our second ex-
periment, presented in the next section.

4.2. Experiment 2: Comparison of T1 and T2 models under different noise levels

In our second experiment we investigate the performance of standard ANFIS
and the proposed IT2 TSK models under increasing levels of uncertainty. As
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Table 6: ANFIS/T2b performance comparison against Standard ANFIS after 100 day out-of-
sample period. The results depict variations from those produced by ANFIS in Table 4. The
number of trades, Sharpe ratio and profit per trade are presented as percentage differences.
Profit column shows the percentage point (p.p.) differences.

No. of Sharpe Profit Profit
Company Symbol Trades Ratio (p.p.) /Trade
Antofagasta ANTO −5.55% +3.24% −1.22 −3.77%
BHP Billiton BLT −5.68% −0.41% −0.24 +2.9%
British Airways BA −0.03% +1.34% −0.08 −0.1%
British Land Company BLND −2.61% +4.41% +0.3 +5.72%
Sky SKY +0.27% +4.02% +0.53 +3.46%
Cable and Wireless CW −1.02% −0.69% −1.02 −0.51%
Aviva AV −0.93% +12.72% +0.71 +10.41%
Diageo DGE −0.83% +0.64% +0.07 +1.84%
HSBC Holdings HSBA −1.51% −9.57% −0.61 −7.45%
Rio Tinto RIO −0.19% +9.73% +0.37 +8.04%
BP BP −0.43% −1.96% +1.19 +4.42%
Lloyds Banking Group LLOY −1.08% +11.76% +1.79 +5.61%
Tesco TSCO −0.01% +2.72% +0.62 +1.38%
HBOS HBOS −6.54% −5.98% +0.7 +9.36%
Xstrata XTA −1.54% +20.04% +0.92 +18.02%
Average −1.37% +2.24% +0.87 +2.83%

described in Section 2.3.1, we propose an innovative method to control the level
of uncertainty using the signal threshold.

We test fixed thresholds starting from 0.08% down to 0.02% in steps of 0.02%.
From the standard ANFIS results (see Table 7) we can identify the increase in
the number of trades in line with decreasing thresholds. For example, in the case
of ANTO, the number of trades increase from an average of 20 trades per day at
a threshold of 0.08% up to 143 trades per day at a threshold of 0.02%. At the
higher thresholds (0.08% and 0.06%), standard ANFIS showed no negative return
at 0.08% threshold level and only 1 negative return (XTA) at the 0.04% threshold
level. In the case of the lower thresholds (0.04% and 0.02%) standard ANFIS
showed 2 negative returns at 0.04% level (XTA and RIO) and 4 at the 0.02% level
(XTA, RIO, BLT and BLND).

The results presented in Table 7 were used as the basis for comparing the
improvements attained from our IT2 models (presented in Figure 6 and Table
8). From Figure 6, we immediately note a steep drop in the average profit per
trade and average profitability at the 0.02% level. When investigating further,
we see that the ANFIS summary statistics in Table 8 show increasing average
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Table 7: ANFIS performance after 100 day out-of-sample across different levels of return thresh-
old (uncertainty).

Return threshold level
0.08% 0.06%

No. of Sharpe Profit No. of Sharpe Profit
Symbol Trades Ratio /Trade (£) Trades Ratio /Trade (£)
ANTO 2036 0.3388 18.90 3687 0.2644 11.03
BLT 475 0.3224 47.56 1016 0.2822 17.50
BA 6248 1.5420 54.92 7830 1.4161 49.34
BLND 921 0.4664 30.12 1956 0.2577 10.48
SKY 1197 0.6189 29.18 2606 0.5404 16.05
CW 4308 1.4777 104.04 4709 1.2952 103.87
AV 1074 0.4136 19.09 2429 0.4510 12.08
DGE 480 0.3605 35.52 1203 0.3807 16.11
HSBA 426 0.4560 37.44 1129 0.2912 16.24
RIO 535 0.2040 23.31 1071 0.1253 9.24
BP 1577 0.8068 33.85 3220 0.8132 20.43
LLOY 3140 0.5685 20.61 5849 0.6705 18.56
TSCO 3211 0.9950 30.97 5505 1.2153 30.90
HBOS 4708 0.4693 24.90 7322 0.4543 20.72
XTA 911 0.1222 16.61 1715 -0.0218 -1.55

Return threshold level
0.04% 0.02%

No. of Sharpe Profit No. of Sharpe Profit
Symbol Trades Ratio /Trade (£) Trades Ratio /Trade (£)
ANTO 6795 0.3356 13.21 14270 0.1378 3.39
BLT 2652 0.1725 5.15 2200 -0.1748 -13.62
BA 9738 1.3835 45.94 12520 1.1199 37.72
BLND 4462 0.2408 7.52 10466 -0.1042 -2.05
SKY 5481 0.6820 12.83 9385 0.4024 7.50
CW 5260 1.4373 97.96 6204 1.3938 85.68
AV 6104 0.2137 3.38 12930 0.0402 0.67
DGE 3348 0.2761 6.05 10495 0.1898 2.37
HSBA 3836 0.3572 6.91 10153 0.0430 0.53
RIO 2643 -0.0750 -2.78 7534 -0.3773 -8.48
BP 6978 0.9543 15.39 11295 0.7763 10.04
LLOY 9621 0.7212 17.63 13693 0.6223 13.12
TSCO 7928 1.5421 26.08 10865 1.2703 20.43
HBOS 11467 0.3684 15.50 16007 0.2740 9.61
XTA 3771 -0.1765 -6.81 2992 -0.2403 -20.21
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profitability per stock, from 25.43% at the 0.08% level, up to 33.42% at the 0.04%
level. This is attained at reducing average profit per trade however with an increase
in trading activity. However, it is important to note, that at the 0.04% level, the
return threshold is equivalent to our transaction costs, hence making it much more
difficult to obtain profitable trades beyond this level.

When observing the Sharpe ratio summary statistics, it shows a trend that as
the threshold moves from higher to lower levels, the model experiences decreasing
levels of Sharpe ratio (see Table 8 and Figure 6). This pattern is attributed to
increasing levels of risk (uncertainty) in line with decreasing thresholds. However,
in comparison to standard ANFIS, the proposed IT2 models shows increasing
improvements in Sharpe ratio, average profit per stock and average profit per trade.
In the case of Sharpe ratio, improvements range from an increase of 1.86% at the
0.08% threshold level, up to 11.33% at the 0.02% level. Improvements in average
profit per stock range from 0.05 p.p. at the 0.08% threshold level, up to 1.57 p.p.
at the 0.02% level. A similar trend is achieved by the ANFIS/T2b model (Figure
6). The increase in all three measures, especially the increase in profitability at
lower risk, indicates the superior performance of the proposed ANFIS/T2 models
when compared to standard ANFIS. The pattern indicates that this increase in
performance gets more pronounced at lower thresholds which experience higher
effects of microstructure noise (refer to Table 8).

As a final step in our experiment, we validate our results using statistical tests.
The tests are carried out on the average Sharpe ratio, average profit per stock and
average profit per trade obtained using a paired t-test on the 15 stocks. Table
8 shows that the difference in performance results at the return lower thresholds
(0.04% and 0.02%) are all significant. The tests strengthen our earlier claims of
improved performance of our proposed ANFIS/T2 models against standard ANFIS
at levels of higher uncertainty due to more exposure to microstructure noise. This
makes our proposed models more suitable contenders for HFT environments. At
the higher return thresholds (0.08% and 0.06%) both models experience some
insignificant measures due to lower improvements against the standard ANFIS
results. This indicates that at reduced uncertainty, the introduction of IT2 fuzzy
sets has less effect on trading performance. Another indication from our results is
that although ANFIS/T2b show significant increases in both average Sharpe ratio
and average profit per trade across all return thresholds, the highest improvements
on both standard ANFIS and ANFIS/T2a are demonstrated in the lowest threshold
(0.02%). This highlights the importance of identifying, incrementally, the right
balance between model complexity and the specific level of uncertainty.
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Figure 6: Trends on various measures after 100 days out-of-sample trading and at different
degrees of trading frequency (uncertainty).
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Table 8: Summary statistics for standard ANFIS and the corresponding variations in the AN-
FIS/T2 models. Results are obtained over a 100 day out-of-sample period across different levels
of return threshold (uncertainty). Bold figures for performance measures Average Sharpe Ratio,
Average Profit/Stock and Average Profit/Trade indicate a rejected paired-sample t-test. The
test applies the null hypothesis that the difference in results (ANFIS vs. ANFIS/T2) comes from
a normal distribution with mean equal to zero and unknown variance at 5% sig. level.

Return threshold level
Measure 0.08% 0.06% 0.04% 0.02%
Standard ANFIS
Total number of trades 31247 51247 90084 151009
Average Sharpe Ratio 0.6108 0.5624 0.5622 0.3582
Average Profit / Stock 25.43% 28.96% 33.42% 26.78%
Average Profit / Trade (£) 35.13 23.40 17.60 9.78

ANFIS/T2a Improvement
Total number of trades −2.55% −2.13% −1.62% −0.73%
Average Sharpe Ratio +1.86% +3.3 % +3.93% +11.33%
Average Profit / Stock (p.p.) +0.05 +0.57 +0.9 +1.57
Average Profit / Trade +3.32% +5.15% +3.78% +7.05%

ANFIS/T2b Improvement
Total number of trades −2.73% −1.63% −1.22% −0.42%
Average Sharpe Ratio +2.27% +3.45% +3.58% +14.69%
Average Profit / Stock (p.p) +0.05 +0.78 +0.91 +1.98
Average Profit / Trade +2.68% +4.53% +3.89% +7.71%

5. Conclusion

Albeit the Efficient Market Hypothesis still resonates with mainstream finance
literature, this work extends the thoughts of Johnson et al. (2013) and Brogaard
et al. (2014) who highlight the need for new theories in support for high fre-
quency financial phenomena during which the human traders loose the ability to
react in real time. Unlike the great majority of computational finance research
which focuses on model error reduction, directional accuracy or just profitability,
this work is motivated by infamous mishaps like the “flash crash” of 6 May 2010
and the subsequent more stringent regulatory regimes that are coming into force
(e.g. introduction of MiFiD2 from January 2017). In line with the latter, and
also investors’ preferences, our focus is on improving risk-adjusted performance of
algorithmic and high frequency trading.

In this paper we convey three contributions. Firstly we propose two innovative
and practical methods of how the ANFIS model, a popular AI technique with very
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active research applications in finance, can be improved by introducing T2 fuzzy
sets. The main benefit is to minimise the uncertainty caused by microstructure
noise, hence reducing the overall risk. Both of the proposed methods show sig-
nificant increase in both risk-adjusted trading performance and profitability when
compared to standard ANFIS and B&H methods. Secondly, we shed more light on
the theoretical market efficiency debate in HFT. Our results extend the findings
from a number of authors (Schulmeister, 2009; Holmberg et al., 2013; Rechenthin
and Street, 2013) who claim possible breaks in market efficiency at short time
frames. As a result of this, we manage to identify a positive link between higher
order fuzzy systems and risk-adjusted trading performance. Thirdly, although a
number of authors (e.g. Sepulveda et al., 2006; Aladi et al., 2014) demonstrate the
increased capability of IT2 models to handle increased uncertainty when compared
to T1, we provide deeper insight on the benefits of adopting IT2 models from the
perspective of different levels of trading risk (uncertainty) and trading frequency.
We conclude that the introduction of T2 fuzzy sets exhibit the highest benefits in
trading scenarios reflecting higher exposure to microstructure noise, making our
models ideal for HFT environments.

Our contributions also convey a number of management insights. We present
an approach of how existing algorithmic and HFT models can be improved by
increasing risk-adjusted performance but without compromising overall profitabil-
ity. Our approach shows a stepwise incremental approach by starting from the
popular ANFIS model, and show how by introducing IT2 components on the base
model (rather than a whole overhaul to existing investment) this can be enhanced
to meet these objectives. The results should be of utmost interest for decision
makers and also encourage further research and investment by firms which will be
impacted by new regulatory regimes, such as MiFID2, that will demand that the
employed trading systems meet numerous requirements, particularly around risk
controls.

In conclusion, this paper opens up a number of avenues for further research.
As a start, we propose future research paths that can followed from a fuzzy logic
perspective. In this paper we identify risk-adjusted improvements by introducing
T2 fuzzy sets and adaptive FOU sizes. This was purposely done to open a re-
search path whilst at the time keeping models simple, practical to use and easier
to compare by keeping additional parameters to a minimum. Our first research
proposition is that we do not exclude the possibility of further improvements by
exploring additional incremental steps in T2 configuration complexity such as dif-
ferent rule extraction methods, membership functions, more complex T2 rules or
defuzzification methods. Secondly, in line with additional model complexity, which
can mitigate wider adoption, interested researchers can seek to mitigate this risk
by investigating the performance of similar Mamdani models which tend to in-
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crease model interpretability. We also identify a number of research avenues from
a finance perspective. Our first research proposition is to investigate the effect of
alternative FOU tuning frequencies, which in this paper we limit to a daily basis. In
particular, any possible beneficial relationship between FOU tuning frequency and
the diurnal patterns of market intraday activity, a stylised face in finance, remains
an open question. Secondly, albeit our study identifies trading improvements by
using a set of stocks listed on the London stock exchange, further research can be
expanded to include wider portfolios and markets (including forex) which can ex-
perience higher trading activity, possibly resulting in higher microstructure noise.
This can help to identify wider scale gains in risk-adjusted performance. Thirdly,
in this paper we adopt the Sharpe ratio as our main risk-adjusted performance
measure due to its popularity in both finance literature and practice. In line with
Lo (2002), we suggest further research which investigates the underlying model
returns and Sharpe ratio statistics, especially in view of further stress testing of
the underlying trading models during specific extreme events.
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