

Using Codecharts for formally modelling and
automating detection of patterns with application to

Security Patterns

By

Abdullah A. H. Alzahrani

A thesis submitted for the degree of PhD in Computer Science

School of Computer Science and Electronic Engineering

University of Essex

February 2016

Acknowledgements

My sincerest thanks go to Dr. Martin Colley for his invaluable support,

generosity and benevolence. Through his supervision and guidance, I was able to

concentrate on my PhD project, refine my work and critically evaluate my work and

relevant works in the field.

I am also grateful to Ummul Qura University for sponsoring me and enabling

me to pursue my postgraduate study at PhD level. In particular, I am deeply indebted

to the Computer Science College at Al-Qunfudah.

My heartfelt gratitude and appreciation go to my mother (Moteebah) and my

father (Abdurrahman) for their continuous support and help. I would also like to

thank my brothers and sisters for motivating me to continue my study in a UK

university.

I wholeheartedly thank my wife for always being by my side and for being

there for me. Throughout my years of PhD study, she was a model of patience,

perseverance and compassion. I should also apologise to the two jewels of my home,

my two daughters Kinda and Sophia, for not being there to share with them some of

their joyful moments.

Last but not least, I cannot forget my study-abroad companions, with whom I

used to share my happiness and sorrow and to whom I often offloaded my concerns

and worries.

P a g e | i

Abstract

Software design patterns are solutions for recurring design problems. Many

have introduced their catalogues in order to describe those patterns using templates

which consist of informal statements as well as UML diagrams. Security patterns are

design patterns for specific security problems domains, therefore, they are described in

the same manner. However, the current catalogues describing security patterns contain

a level of ambiguity and imprecision. These issues might result in incorrect

implementations, which will be vital and at high cost security flaw, especially after

delivery. In addition, software maintainability will be difficult thereafter, especially for

systems with poor documentation. Therefore, it is important to overcome these issues

by patterns formalisation in order to allow sharing the same understanding of the

patterns to be implemented.

The current patterns formalisation approaches aim to translate UML diagrams

using different formal methods. However, these diagrams are incomplete or suffer from

levels of ambiguity and imprecision. Furthermore, the employed diagrams notations

cannot depict the abstraction shown in the patterns descriptions. In addition, the current

formalisation approaches cannot formalise some security properties shown the

diagrams, such as system boundary.

Furthermore, detecting patterns in a source-code improves the overall software

maintenance, especially when obsolete or lost system documentation is often the case

of large and legacy systems. Current patterns detection approaches rely on translating

the diagrams of the patterns. Consequently, the issue of detecting patterns with

abstraction is not possible using such approaches. In addition, these approaches lack

generality, abstraction detection, and efficiency.

ii | P a g e

This research suggests the use of Codecharts for security patterns formalisation

as well as studying relationships among patterns. Besides, it investigates relationships

among patterns. Furthermore, it proposes a pattern detection approach which

outperforms the current pattern detection approaches in terms of generality, and

abstraction detection. The approach competes in performance with the current efficient

pattern detection approaches.

P a g e | iii

Table of Contents
1 Introduction ... 1

1.1 Overview ... 1

1.2 Motivation ... 2

1.3 Definitions of problems ... 8

1.4 Goals / Objectives .. 9

1.5 Research contributions .. 10

1.6 Outline of the thesis .. 12

2 Background .. 14

2.1 Object-Orientation .. 14

2.2 Software maintenance ... 15

2.3 Design Patterns ... 17

2.4 Security Patterns ... 18

2.5 First order predicate logic (FOPL) ... 24

2.6 Codecharts (LePUS3) and Class-Z ... 24

2.6.1 LePUS3... 24

2.6.2 LePUS3 formalism .. 26

2.6.3 Class-Z ... 29

2.7 Two-Tier Programming Toolkit (TTP Toolkit) .. 30

2.8 Conformance checking .. 35

3 Literature review .. 37

3.1 Patterns formalisation ... 37

3.1.1 Formalization using OCL ... 39

3.1.2 Formalisation using DL ... 43

3.1.3 Formalization using Z language .. 47

3.1.4 A Comparison of Formalisation Methods ... 50

3.2 Pattern detection .. 53

3.2.1 SPQR .. 54

3.2.2 Ptidej ... 54

3.2.3 DeMIMA .. 56

3.2.4 Other detection approaches .. 60

4 Security Patterns Formalisation .. 68

4.1 Why security patterns as Codecharts ... 69

4.1.1 Modelling abstraction .. 71

4.1.2 Formality and tool support ... 74

4.1.3 Modelling Security properties .. 76

iv | P a g e

4.2 Our Formalisation methodology .. 77

4.3 Formalised security patterns.. 82

4.3.1 Single Access Point pattern in Codecharts .. 83

4.3.2 Intercepting Validator pattern in Codecharts ... 87

4.3.3 Formality in the Codecharts of patterns ... 89

4.4 Summary ... 91

5 Variations in Security patterns and relations among patterns 92

5.1 Variations in Security patterns ... 93

5.2 Relations among security patterns and other design patterns 100

5.3 Summary ... 109

6 Case Studies: Formalisation and manual conformance checking of security
patterns ... 110

6.1 Manual conformance checking of security patterns ... 111

6.2 Open source software for the Case studies .. 112

6.3 Case studies results ... 114

6.3.1 Intercepting Validator in Apache Struts .. 114

6.3.2 Secure Logger in Java Logging API .. 116

6.3.3 Single Access Point pattern in JAAS .. 120

6.4 Discussion.. 122

6.5 Summary ... 124

7 Pattern Detection .. 125

7.1 Terminology .. 126

7.2 Notational conventions.. 127

7.3 Brute force pattern detection algorithm and complexity.................................... 129

7.4 Controlling search space in proposed pattern detection algorithm 131

7.5 Proposed efficient pattern detection algorithm and complexity 136

7.6 Supplementary algorithms for our pattern detection algorithm 138

7.6.1 BinaryRelationJoin ... 138

7.6.2 UnaryRelationJoin .. 139

7.6.3 Grouping Algorithm ... 140

7.7 Comparison analysis .. 141

7.8 A dry-run example to compare the Brute force pattern detection algorithm with
the proposed efficient algorithm ... 145

7.9 Correctness of proposed efficient pattern detection algorithm 148

7.9.1 Assumptions .. 149

7.9.2 Clarifications .. 149

P a g e | v

7.9.3 Theorem .. 150

7.9.4 Proof of correctness ... 150

7.10 Implementation ... 152

7.11 Summary ... 160

8 Case studies: Pattern Detection .. 161

8.1 Case studies scenario ... 161

8.2 Source codes used in the case studies .. 163

8.3 Detection of security patterns case studies .. 167

8.3.1 Single Access Point pattern in JAAS. ... 167

8.3.2 Intercepting Validator in Apache Struts .. 177

8.4 Detection of design patterns case studies .. 179

8.4.1 Composite pattern in Java.AWT ... 180

8.5 Summary ... 185

9 Results and Evaluation ... 187

9.1 Evaluation criteria.. 187

9.2 Feature analysis comparison .. 192

9.3 Evaluation performance .. 199

9.4 Summary ... 205

10 Conclusion ... 206

10.1 LIMITATION ... 208

10.2 FUTURE WORK .. 210

References .. 213

Appendices ... 223

APPENDIX A: More Security patterns in Codecharts .. 223

APPENDIX B: More Manual Conformance Checking Case Studies.................................. 232

Check Point pattern in JAAS... 232

Secure Architecture pattern .. 233

APPENDIX C: More Automatic Pattern Detection Case Studies 235

Check Point pattern in JAAS. .. 235

Single Access Point & Check Point in JAAS. .. 237

Full View with Error pattern in LEXI ... 240

Class Adapter pattern Case Studies ... 242

Strategy pattern Case Studies .. 257

Factory Method Case Studies .. 266

vi | P a g e

List of Figures

Figure 1: Lack of precision example: UML class diagram modelling Check Point
pattern ... 3
Figure 2: Ambiguity in relations example: UML class diagram modelling Protection
Reverse Proxy pattern ... 4
Figure 3: Security patterns precise descriptions motivation.. 5
Figure 4: Security patterns detection motivation .. 6
Figure 5: LePUS3 vocabulary [38] .. 25
Figure 6: LePUS3 formalism ... 28
Figure 7: Class-Z schema for Factory Method pattern Codechart............................. 30
Figure 8: TTP Toolkit in action [13] .. 31
Figure 9: Editing an assignment [13] ... 33
Figure 10: The result of verification [13] ... 33
Figure 11: Example of specifying associations between two classes using OCL from
[73] ... 41
Figure 12: An example of formalising one attribute and one operation of a class in DL
[55] ... 44
Figure 13: An example of formalising one generalisation relation between two classes
in Z [60] .. 48
Figure 14: Composite design motif in Ptidej [3] .. 55
Figure 15: Ptidej output [7], [48], [102] ... 55
Figure 16: An example of EDP [98] .. 59
Figure 17: SPQR output [98] ... 59
Figure 18: UML class diagram: Intercepting Validator Pattern [26] 72
Figure 19: UML class diagram for modelling a different Validator in the Intercepting
Validator pattern ... 73
Figure 20: Codechart modelling a different Validator in the Intercepting Validator
Pattern... 73
Figure 21: Auto-generated LePUS3 and Class-Z schema ... 75
Figure 22: UML class diagram: Single Access Point [106] 76
Figure 23:UML class diagram: Single Access Point Pattern [106] 84
Figure 24: Codecharts: Single Access Point pattern (SAP) 85
Figure 25: UML class diagram: Intercepting Validator Pattern [26] 88
Figure 26: Codecharts: Intercepting Validator pattern.. 89
Figure 27: LePUS3 and Class-Z schema of SAP ... 90
Figure 28: LePUS3 and Class-Z schema of Intercepting Validator 90
Figure 29: Check Point (with hierarchy) structure [9] .. 96
Figure 30: Codechart: Check Point pattern with hierarchy 97
Figure 31: Codecharts: Check Point pattern (CP) .. 97
Figure 32: LePUS3 and Class-Z schema of Check Point Codechart shown in Figure
31 .. 99
Figure 33: LePUS3 and Class-Z schema of Check Point Codechart shown in Figure
30 .. 100

P a g e | vii

Figure 34: Codechart: Strategy pattern [38] ... 103
Figure 35: Codecharts: Single Access Point & Check Point patterns...................... 107
Figure 36: LePUS3 and Class-Z schema of Single Access Point & Check Point
patterns ... 108
Figure 37: Codechart: An instance of Intercepting Validator Pattern in Apache Struts
 ... 115
Figure 38: Manually-defined higher-dimension entities (hierarchy) (Intercepting
Validator - Apache Struts) ... 115
Figure 39: Manually created assignment of Intercepting Validator Pattern in Apache
Struts .. 116
Figure 40: Verification Result of Intercepting Validator Pattern instance in Apache
Struts .. 116
Figure 41: Codecharts: Secure Logger pattern ... 117
Figure 42: Codechart: An instance of Secure Logger Pattern in Java Logging API 118
Figure 43: Manually created assignment of Secure Logger Pattern in Java Logging
API ... 119
Figure 44: Verification Result of Secure Logger Pattern instance in Java Logging API
 ... 119
Figure 45: Codechart: An instance of SAP in JAAS .. 121
Figure 46: Manually created assignment of SAP in JAAS 121
Figure 47: Verification Result of SAP instance in JAAS 122
Figure 48: Codecharts: Complexity dry-run example arbitrary pattern 146
Figure 49: Codechart for algorithm correctness example 150
Figure 50: Flowchart for our pattern detection ... 153
Figure 51: Screenshot showing the detection integration in TTP Toolkit 155
Figure 52: Screenshot showing the detection entity definition in the TTP Toolkit .. 156
Figure 53: Screenshot showing the detection entity in the TTP Toolkit 156
Figure 54: Screenshot showing the selection of the input pattern for detection 157
Figure 55: Screenshot showing the results of detection .. 158
Figure 56: Screenshot showing the detection results in the TTP Toolkit 159
Figure 57: Results of detecting SAP in JAAS .. 168
Figure 58: Results of detecting SAP in JAAS shown in the TTP Toolkit sidebar ... 168
Figure 59: Codechart: An instance of SAP detected in JAAS 169
Figure 60: Assignments of SAP detected in JAAS ... 170
Figure 61: correct instance in manual pattern detection process 172
Figure 62: False instance in manual pattern detection process................................ 173
Figure 63: TTP Toolkit reasoning on the false instance – manual detection 174
Figure 64: TTP Toolkit reasoning on the false instance – automatic detection 176
Figure 65: An Example of false instance – automatic detection 176
Figure 66: Results of detecting the Intercepting Validator in Apache Struts 177
Figure 67: Codechart: An instance of the Intercepting Validator detected in Apache
Struts .. 177
Figure 68: an assignment of the Intercepting Validator detected in Apache Struts.. 178

viii | P a g e

Figure 69: Auto-defined higher-dimension entities (Hierarchy) (Intercepting
Validator - Apache Struts) ... 178
Figure 70: Codechart: Composite pattern [38] ... 181
Figure 71: Results of detecting the Composite pattern in Java.AWT 181
Figure 72: Codechart: An instance of the Composite pattern detected in Java.AWT
 ... 182
Figure 73: An auto-generated assignment of the Composite pattern detected in
Java.AWT ... 182
Figure 74: Auto-defined higher-dimension entities (Methods) (Composite pattern -
Java.AWT) .. 183
Figure 75: Auto-defined higher-dimension entities (Classes) (Composite pattern -
Java.AWT) .. 184
Figure 76: Average Precision of pattern detection systems 196
Figure 77: Instances numbers of JHotdraw case studies compared with the Similarity
Scoring system .. 197
Figure 78: Instances numbers of JRefactory case studies compared with the Similarity
Scoring system .. 197
Figure 79: Instances numbers of Java.AWT case studies compared with the DP-Miner
system ... 198
Figure 80: Adapter pattern case study performance ... 201
Figure 81: Factory Method pattern case study performance 201
Figure 82: Strategy pattern case study performance ... 202
Figure 83: Adapter pattern case study performance compared with PTIDEJ 203
Figure 84: Java.AWT case study performance compared with DP-Miner 204
Figure 85: UML class diagram: Check Point Pattern [27] 223
Figure 86: UML class diagram: Secure Logger Pattern [26] 224
Figure 87: LePUS3 and Class-Z schema of Secure Logger Pattern 224
Figure 88: Codecharts: Role pattern .. 225
Figure 89: Codecharts: Secure Architecture ... 226
Figure 90: Codecharts: Role and Session ... 227
Figure 91: Codecharts: Authentication Enforcer Pattern .. 228
Figure 92: Codecharts: Account Lockout Pattern ... 228
Figure 93: Codecharts: Authenticated Session Pattern ... 229
Figure 94: Codecharts: Client Data Storage pattern ... 229
Figure 95: Codecharts: Network Address blacklist pattern 230
Figure 96: Codecharts: Password Authentication pattern 230
Figure 97: Codecharts: Password Propagation pattern .. 231
Figure 98: Codecharts: Full View with Error pattern ... 231
Figure 99: UML class diagram: Full View With Error Pattern [9].......................... 232
Figure 100: LePUS3 and Class-Z schema of Full View with Error Pattern 232
Figure 101: Codechart: An instance of Check Point in JAAS 233
Figure 102: Manually created assignment of Check Point in JAAS 233
Figure 103: Verification Result of Check Point instance in JAAS 233
Figure 104: Codechart: An instance of Secure Architecture Pattern in JAAS 234

P a g e | ix

Figure 105: Manually created assignment of Secure Architecture Pattern in JAAS 235
Figure 106: Verification Result of Secure Architecture Pattern instance in JAAS .. 235
Figure 107: Results of detecting Check Point in JAAS .. 236
Figure 108: Codechart: An instance of Check Point detected in JAAS 236
Figure 109: an assignment of Check Point detected in in JAAS 236
Figure 110: Results of detecting Single Access Point & Check Point in JAAS 237
Figure 111: Codechart: An instance of Single Access Point & Check Point detected in
JAAS .. 238
Figure 112: an assignment of Single Access Point & Check Point detected in JAAS
 ... 238
Figure 113: Results of detecting Full View with Error pattern in LEXI.................. 240
Figure 114: Codechart: An instance of Full View with Error pattern detected in LEXI
 ... 240
Figure 115: Assignments of Full View with Error pattern detected in LEXI 241
Figure 116: Auto-defined higher-dimension entities (Methods) (Full View with Error
pattern Validator - LEXI) .. 241
Figure 117: Codechart: Class Adapter pattern [38] .. 242
Figure 118: Results of detecting Class Adapter in JRefactory 242
Figure 119: Codechart: An instance of Class Adapter pattern detected in JRefactory
 ... 243
Figure 120: an assignment of Class Adapter detected in JRefactory 243
Figure 121: Auto-defined higher-dimension entities (Methods) (Class Adapter -
JRefactory).. 244
Figure 122: Results of detecting Class Adapter in GanttProject 244
Figure 123: Codechart: An instance of Class Adapter pattern detected in GanttProject
 ... 245
Figure 124: Assignments of Class Adapter detected in GanttProject 246
Figure 125: Auto-defined higher-dimension entities (Methods) (Class Adapter -
GanttProject) ... 246
Figure 126: Results of detecting Class Adapter in JSettlers.................................... 247
Figure 127: Codechart: An instance of Class Adapter pattern detected in JSettlers 248
Figure 128: An assignment of Class Adapter detected in JSettlers 248
Figure 129: Auto-defined higher-dimension entities (Methods) (Class Adapter -
JSettlers) ... 249
Figure 130: Results of detecting Class Adapter in RISK 2.0 250
Figure 131: Codechart: An instance of Class Adapter pattern detected in RISK 2.0 250
Figure 132: An assignment of Class Adapter detected in RISK 2.0 250
Figure 133: Auto-defined higher-dimension entities (Methods) (Class Adapter - RISK
2.0) ... 251
Figure 134: Results of detecting Class Adapter in JHotdraw 252
Figure 135: Codechart: An instance of Adapter pattern detected in JHotdraw 253
Figure 136: assignments of Class Adapter detected in JHotdraw 253
Figure 137: Auto-defined higher-dimension entities (Methods) (Adapter - JHotdraw)
 ... 254

x | P a g e

Figure 138: Results of detecting Class Adapter pattern in Java.AWT 255
Figure 139: Codechart: An instance of Class Adapter pattern detected in Java.AWT
 ... 256
Figure 140: An assignment of Class Adapter pattern detected in Java.AWT 256
Figure 141: Auto-defined higher-dimension entities (Methods) (Class Adapter pattern
- Java.AWT) ... 256
Figure 142: Codechart: Strategy pattern (without Client class variable) 258
Figure 143: Results of detecting Strategy in JRefactory ... 258
Figure 144: Results of detecting Strategy (without Client class variable) in JRefactory
 ... 258
Figure 145: Codechart: An instance of Strategy pattern (without Client class variable)
detected in JRefactory ... 259
Figure 146: assignments of Strategy (without Client class variable) detected in
JRefactory ... 259
Figure 147: Auto-defined higher-dimension entities (Hierarchies) (Strategy -without
Client class variable - JRefactory) ... 260
Figure 148: Auto-defined higher-dimension entities (Methods) (Strategy -without
Client class variable - JRefactory) ... 261
Figure 149: Results of detecting Strategy in JHotdraw .. 262
Figure 150: Results of detecting Strategy (without Client class variable) in JHotdraw
 ... 262
Figure 151: Codechart: An instance of Strategy pattern (without Client class variable)
detected in JHotdraw ... 262
Figure 152: an assignment of Strategy (without Client class variable) detected in
JHotdraw... 262
Figure 153: Auto-defined higher-dimension entities (Hierarchies) (Strategy -without
Client class variable - JHotdraw) ... 263
Figure 154: Auto-defined higher-dimension entities (Methods) (Strategy -without
Client class variable - JHotdraw) ... 263
Figure 155: Codechart: Strategy pattern [38] ... 264
Figure 156: Results of detecting Strategy in Java.AWT ... 264
Figure 157: Codechart: An instance of Strategy pattern detected in Java.AWT 264
Figure 158: An assignment of Strategy detected in Java.AWT............................... 265
Figure 159: Auto-defined higher-dimension entities (Hierarchies) (Strategy -
Java.AWT) .. 265
Figure 160: Auto-defined higher-dimension entities (Methods) (Strategy - Java.AWT)
 ... 265
Figure 161: Codechart: Factory Method pattern [38] ... 266
Figure 162: Results of detecting Factory Method in JHotdraw 266
Figure 163: Codechart: An instance of Factory Method pattern detected in JHotdraw
 ... 266
Figure 164: Assignments of Factory Method detected in JHotdraw 267
Figure 165: Auto-defined higher-dimension entities (Hierarchies) (Factory Method -
JHotdraw) ... 267

P a g e | xi

Figure 166: Results of detecting Factory Method in JRefactory 268
Figure 167: Codechart: An instance of Factory Method pattern detected in JRefactory
 ... 269
Figure 168: an assignment of Factory Method detected in JRefactory 269
Figure 169: Auto-defined higher-dimension entities (Hierarchies) (Factory Method -
JRefactory).. 270

xii | P a g e

List of Tables

Table 1: Example of specifying an arbitrary class using OCL 40
Table 2: Comparison of the Formalisation approaches using different methods 51
Table 3: Our methodology for formalising security patterns from descriptions of
pattern structure .. 78
Table 4: Single Access Point pattern [106] (abbreviated) ... 83
Table 5: Explanation of tokens in Figure 24 .. 86
Table 6: Security Patterns Design Conformance Checking results 123
Table 7: Time spent on case studies... 123
Table 8: Brute force pattern detection algorithm .. 130
Table 9: Proposed efficient pattern detection algorithm – Main 136
Table 10: Supplementary algorithms - BinaryRelationJoin 138
Table 11: Supplementary algorithms - UnaryRelationJoin 139
Table 12: Supplementary algorithms - Grouping Algorithm 140
Table 13: Brute force and our algorithm comparison analysis 142
Table 14: TTP-Toolkit source code key parameters for Dry-run example 145
Table 15: Brute force and our algorithm dry-run example comparison analysis 146
Table 16: Summary of information of source codes used for case studies 164
Table 17: Details of Signatures sets candidates for Composite instance 184
Table 18: Design Patterns Detection results ... 186
Table 19: Security Patterns Detection results ... 186
Table 20: Features Analysis results ... 192

P a g e | xiii

List of Acronyms

SAP Single Access Point pattern

CP Check Point pattern

TTP Toolkit Two-Tier Programming Toolkit

JAAS Java Authentication and Authorization
Service

LePUS3 LanguagE for Patterns Uniform
Specification

xiv | P a g e

List of Publications

Alzahrani, Abdullah AH, Amnon H. Eden, and Majd Zohri Yafi. "Conformance checking

of Single Access Point pattern in JAAS using Codecharts." Information Technology

and Computer Applications Congress (WCITCA), 2015 World Congress on. IEEE,

2015.

Alzahrani, A.A.H., A.H. Eden, and M.Z. Yafi. 2014. ‘Structural Analysis of the Check

Point Pattern’. In 2014 IEEE 8th International Symposium on Service Oriented

System Engineering (SOSE), 404–8. doi:10.1109/SOSE.2014.56.

Alzahrani, Abdullah A. H., Majd Zohri Yafi, and Fawaz K. Alarfaj. 2014. ‘Some

Considerations on UML Class Diagram Formalization Approaches’. International

Journal of Computer, Information, Systems and Control Engineering 8 (5): 47 –

50.

Alzahrani, Abdullah A. H., and Amnon Eden. 2013. ‘UML versus LePUS3 for Modelling

Structure of Security Patterns’. In, 260–69. Kyiv, UA: Cybernetics Faculty of Taras

Shevchenko National University of Kyiv.

P a g e | 1

1 Introduction

1.1 Overview

In software engineering, design patterns are solutions for recurring design

problems. They have been introduced and developed to convey expertise of specialists

in a convenient and clear way. One type of these patterns is security patterns which

have been first introduced by Yoder and Barcalow [1], [2] in 1997. However, security

patterns have not been considered sufficiently and there is a lack of research in this

direction, especially in terms of formalisation, reasoning, and detection of security

patterns.

It is important for security patterns to be implemented correctly in order to be

maintained and evolved. One way to achieve this is to detect them from the source

code. Many researchers [3]–[8] have introduced their approaches to detect instances of

design patterns from the source code. However, these pattern detection systems cannot

detect security patterns from source codes.

The inability of pattern detection systems to detect security patterns from source

codes might be attributed to the way patterns are represented in these systems. This

throws light on a number of issues in the current systems, such as formalisation of

patterns and generality in pattern detection approaches. These issues were a motivation

for the research of this thesis.

Therefore, this research focuses on using Codecharts for modelling security

patterns as Codecharts offer a visual and formal modelling method, unlike the current

2 | P a g e

method (UML diagrams) of modelling security patterns. Furthermore, it aims to

develop a new approach to detect patterns modelled in Codecharts from a source code.

One of the goals of the patterns detection direction of this research is to develop a

general patterns detection that, unlike others, allows for the detection of any design

patterns as well as user-defined patterns. This is to overcome the issue of restricting the

pattern detection to fixed pre-defined and hard-coded design patterns.

1.2 Motivation

While studying security patterns, many unsolved problems have been noticed.

These problems start with the descriptions of the security patterns. An example is the

ambiguity encountered in the descriptions. Ambiguity is one of the main reasons

behind the lack of formal descriptions of the patterns. With the existence of this

ambiguity, the solutions cannot be applied efficiently. So, even when solutions are

implemented, the different understanding of solutions (caused by ambiguity in patterns

descriptions) among people who are involved in the development, can lead to

inefficiencies in maintaining, verifying, and documenting a software system.

Furthermore, there is a chance of incorrect implementation of these solutions.

It is important to distinguish between the terms: informality, lack of precision,

and ambiguity; which are used to describe the issues that exist in current security

patterns catalogues. First, informality means that the current modelling notations used

in the catalogues are not built on formal foundation. Specifically, UML diagrams are

the modelling notations which are used in modelling these patterns in the catalogues.

It is known that many have introduced their formal representations of these notations,

however, there is not one agreed-on formal representation of these notations. In

P a g e | 3

addition, the authors of the current catalogues do not provide a formal representation

with the patterns descriptions.

Second, lack of precision means that the English statements and the modelling

notations, which are used in the catalogues to describe the patterns, are unclear and

needs further explanations. Many instances of this issue can be noticed in the

catalogues, one example is the words “May”, “Could”, “Usually” etc., are always

encountered in the security patterns descriptions. Another example is shown in Figure

1 which illustrates the modelling of Check Point pattern in [9]. When looking at the

relation between Client and ProtecedSystem, it can be seen that the relation is an

“interacts with”, however, this does not imply any clear view on the type of interaction

and who starts the interaction. Moreover, many other questions would be asked, for

instance, is there any return values? Is there parameters allowed to be passed directly?

Figure 1: Lack of precision example: UML class diagram modelling Check Point pattern

Finally, ambiguity can be noticed in many of the existing security patterns

descriptions. This issue and the above mentioned issues stand as an obstacle when

4 | P a g e

detecting patterns or carrying out any rigorous reasoning on them. Ambiguous

statements, in the pattern descriptions, misleads the pattern user as they carry more than

one meaning. For example, Figure 2 illustrates the modelling of Protection Reverse

Proxy pattern in [9] page 459. By looking at the diagram, two relations named

“getPage” are modelled between Firewall and ReverseProxy classes. First, the

relations flow can be from either class and can be understood differently by readers.

Second, from the name of the relation, it can be realised that the relation is a call

method, however, no operations but attributes are shown in the classes’ modelling. So,

it might be a relation of holding an instance of one another class.

Figure 2: Ambiguity in relations example: UML class diagram modelling Protection Reverse
Proxy pattern

Although security design patterns are a good approach to handling security

design problems, false implementation of the security patterns may result in a security

hole which might be used by an attacker [10]. With no formal and precise

representation of security patterns, false implementation problems emerge. For

example, Figure 3 illustrates the common case which can occur when no formal and

precise representation for a security pattern is given. Therefore, formal representations

of security design patterns are practically important.

P a g e | 5

Figure 3: Security patterns precise descriptions motivation

Inconsistency between design and implementation is also a common issue that

many organisations encounter. The reason behind this issue lies in absent, obsolete,

poor and/or lost software documentation. The issue of inconsistencies between design

and implementation cannot be solved if detecting the patterns in the source code is not

possible. Therefore, it is highly beneficial to have an approach which allows for

detecting and locating the pattern within the source code by using high level analysis

that saves both effort and time [10].

Figure 4 demonstrates the common situation when maintaining a system. For

example, when a software architect has left an organisation which needs to maintain

his or her software; they may think that he had implemented pattern x; however, the

architect may not have left any proper documentation and this would lead to the need

for dedicating people who can go through the source code in order to first understand

it and then to locate the target pattern.

6 | P a g e

Another situation is the evolution of a legacy system which has been growing

over the years and has never been documented properly. In this situation, developers,

software architects and software designers need to know where the instances of x

pattern are located. This is to ensure that the evolution is logical, systematic and effort

saving.

Figure 4: Security patterns detection motivation

So, if there is a formal representation for pattern x and a tool which

automatically indicates the places of x in the source code of the software, this will allow

the development people to efficiently maintain the software. In addition, it will save

the time and efforts spent on the maintenance and evolution of the software. Moreover,

detection design pattern instances will help maintain the documentation of the software

as well as give the developers a chance to generate (in case software documentation

has become obsolete) an up-to-date architectural documentation of the software as the

major patterns can then be located.

P a g e | 7

Many reasons motivate searching and finding patterns instances in source codes

of legacy software systems. One reason is to allow managers and different groups

involved in the software development to check that the design has been implemented

as agreed. Another reason is regarding the maintenance of the code as finding patterns

in the source code helps in better understanding of the code and save efforts. In

addition, in a case of obsolete or lost documentations, finding patterns in source code

is a significant help in understanding unfamiliar code and re-generate software

documentation. However, as this research focus on security patterns, detection is

obstructed with the existence of the above mentioned issues (informality, lack of

precision, and ambiguity) in security patterns catalogues. So, finding a way to

overcome these issues and model the patterns formally, precisely, and unambiguously

is highly important prior the detection of patterns.

In conclusion, the need for formal representation of security design patterns is

highly important. By having such formal representation available, many will benefit,

in particular software security architects, software designers, programmers and

maintainers who will be confident that they share the same understanding of the

patterns which are to be under consideration. Moreover, formal descriptions of security

patterns will allow for developing algorithms to automate the process of detection.

8 | P a g e

1.3 Definitions of problems

 Pattern formalisation

The problem of security design patterns formalisation can be described, in

general, as representing patterns in a formal manner that depicts the level of abstraction

(which appears in patterns descriptions in their original catalogues) and security

properties such as system boundary.

 Patterns variants and relationships

The problem of security design patterns variants can be described, in general,

as studying and reasoning of the patterns which are claimed to be related or described

in catalogues differently.

 Pattern detection

The problem of pattern (design or security design) detection can be described ,

in general, as looking for instances of static structure of security and/or design patterns,

though with a level of abstraction which appears in patterns descriptions in their

original catalogues.

From the aforementioned problems, it can be concluded that the problems are

of choosing and using Codecharts to represent fully decidable patterns description

statements in order to reason out the variants of a pattern described in catalogues

differently and the relationships which are claimed to exist among patterns. In addition,

it is the problem of looking for instances of Codecharts (specification in LePUS3) with

variables in a source code.

This is challenging because there need to be theoretical and empirical

investigations on pattern catalogues, particularly security patterns catalogues which

P a g e | 9

suffer from ambiguity and imprecision. In addition, these investigations have not been

carried out by any researchers. Furthermore, the Brute force solution of detection of

patterns with a level of abstraction is exponential in complexity.

1.4 Goals / Objectives

Research goals

1. To use Codecharts and formalise security patterns, to investigate the relations

among patterns, and to highlight the patterns variations according to different

patterns descriptions;

2. To use the TTP Toolkit in order to check the conformance of intended

implementations of patterns modelled in Codecharts in existing source codes;

3. To design and implement an efficient algorithm detecting instances of patterns

specified in Codecharts.

Objectives

1. To compare the UML class diagrams for security and design patterns with

corresponding ones in Codecharts and analyse differences conceptually;

2. To design an “efficient” pattern detection algorithm which detects static

structure of patterns modelled in Codecharts from a source code within a

reasonable amount of time;

3. To analyse the algorithm complexity and compare it with similar detection

algorithms and brute force algorithm;

4. To extend the TTP toolkit to deliver an implementation of the detection

algorithm that is practical in the following terms: “Find all of the instances of

pattern y specified in Codecharts in program z within s seconds”;

10 | P a g e

5. To investigate the accuracy and efficiency of the detection algorithm and

identify the tool and possible improvements;

6. To carry out a number of case studies on open source software to evaluate

composition of security and/or design patterns;

7. To study the relations between security and/or design patterns modelled in

Codecharts;

8. To use Codecharts to highlight the variations in different patterns descriptions.

1.5 Research contributions

At present, many concerns have been raised in the field of security patterns.

One instance is the ambiguity in the descriptions of security patterns. This issue has

been addressed by many researchers. The researchers in [11] claim that due to the lack

of formal descriptions of design motifs, their approach cannot be fully automated. In

addition, The researchers in [12] state that having well-described and well-defined

security patterns descriptions would improve application security when the

programmers rely on these descriptions.

Another concern is the fully automatic detection of security and design patterns.

This problem emerges in a common maintenance case when having obsolete, lost

or/and poor documentation. Many have introduced their approaches to detect patterns

from a source code. However, only a small number of these approaches count as

successful. The major defect of these approaches is that they are not being fully

automated due to many reasons such as the problem with informal specifications of the

patterns to be detected.

Therefore, this research takes advantage of the formality and other properties

of Codecharts to contribute to representing the structure of security patterns formally

P a g e | 11

and building a formal reference for security patterns using Codecharts. As a result,

building a reference would be the first attempt to formally model some of well-known

security patterns.

In addition to the formal reference, this research contributes to developing an

algorithm for detecting the patterns in the source code in a reasonable amount of time.

This will solve the problem of automatically assuring the conformance of the design.

As mentioned earlier in this report, the detection would help in the maintenance process

as it can automate the process of finding the patterns in the source code in the case of

obsolete, lost or/and poor documentation. Moreover, it would be an essential method

for enhancing applications security when it is used to detect security patterns in

particular, as it will allow for checking the consistency of the design to be implemented.

Furthermore, this research aims to investigate the correctness, complexity and

performance of the algorithm. A comparison of the algorithm with the existing ones in

the field will be conducted. This will be considered as a key part of the research

theoretical contribution.

Indeed, it is highly important to implement the pattern detection algorithm. The

implementation of the algorithm will show the tangible benefits for the algorithm.

Therefore, the research aims to produce a tool which implements the algorithm. The

tool is intended to be integrated with the TTP toolkit [13]. This will represent the

empirical contribution of the research.

The following list is to summarise the contributions of this research:

1. The research will theoretically investigate the use of Codecharts for

formally modelling some of the well-known security patterns.

2. The research will employ this formal modelling for studying the

security patterns variations when inconsistency occurs in descriptions

12 | P a g e

of patterns in different catalogues. In addition, it will employ the

modelling for reasoning out a number of relationships which are

claimed among patterns.

3. The research will develop an efficient pattern detection algorithm which

aims to find the instances of given patterns that are modelled in

Codecharts with a level of abstraction.

4. The research will conduct a set of empirical case studies on detection

and conformance checking of a number of security and design patterns

in open source codes.

1.6 Outline of the thesis

This thesis has been structured as follows. After introducing the research goals

and motivations in Chapter 1, Chapter 2 focus on giving a broad background on the

topics which relate to this research directions. Next, Chapter 3 demonstrates the

conducted literature review on earlier studies on pattern formalization and on pattern

detection. Next, Chapter 4 discusses the reasons of using Codecharts for security

patterns modelling and describes the method used to model security patterns from their

original catalogues. Chapter 5 motivates the idea of identifying security patterns

variants using Codecharts and studying the relations among security patterns and with

design patterns.

Chapter 6 shows and discusses a number of case studies on the manual finding

and conformance checking of a number of security pattern. Chapter 7 explains the

proposed patterns detection approach of this research. In addition, it shows a theoretical

comparison of the proposed solution with the brute force solution of the problem of

P a g e | 13

pattern detection using Codecharts. Next, Chapter 8 demonstrates a number of case

studies on pattern detection approach and compares with the manual results shown in

Chapter 6. Finally, Chapter 9 evaluates the pattern detection approach which has been

proposed in this research with comparison with other pattern detection systems.

14 | P a g e

2 Background

2.1 Object-Orientation

Object orientation is a software design methodology which relies on

representing a software system in the concept of object; which is an entity that

encapsulates a set of data and related operations on them [14], [15]. A Class is regarded

as a template for objects creation [16]. This design paradigm has been evolved radically

especially after the introduction of UML (Unified Modelling Language), which is a

now a widely used and accepted software design modelling language [17].

The object-oriented programming paradigm has been built on this design

methodology and has been regarded as one of the most popular programing paradigms,

such as logical, functional and imperative paradigms. A number of existing programing

languages support object-oriented programing, for instance, Smalltalk, Java, C#, C++,

and others. The object-oriented paradigm considers the generality and reusability of the

design and code. In addition, many features can be gained when using the object-

oriented programing paradigm. The main features are: inheritance, abstraction,

dynamic binding and polymorphism [14].

Highlighting object-orientation is important in this research, which will be

tackling the design patterns that are described using this paradigm. Furthermore, the

design description language (Codecharts) chosen for patterns modelling in this research

is an object-oriented description language. Moreover, it is important to state here that

the GoF [18], which is the most popular design patterns catalogue, employs this

paradigm in order to template the well-known design patterns. This catalogue has

P a g e | 15

offered the current widely used design pattern template, which has also been used in

security design patterns catalogues considered in this research.

In particular, this research aims to model some of the OO aspects shown in

security patterns descriptions such as inheritance, abstract, and dynamic binding. For

example, using Codecharts notations (Figure 5), Hierarchy and the binary relation

(arrow between two class notations) labelled with Inherit are used to model inheritance

aspect that might occur in descriptions. Another notation, which is used to model a

class as an Abstract, is the unary relation (the tringle superimposed on a class). In

addition, the aspect of dynamic binding is modelled with Hierarchy notation and

Signature notation superimposed on it. The Hierarchy means that there is an abstract

class which has a number of subclasses with inheritance relation with it, Signature of

a method with same name in the abstract class and all subclasses. Later in this thesis,

the modelling of these aspects will be shown in modelling of security patterns as well

as the detection of these modelling.

2.2 Software maintenance

Software maintenance is regarded as the activities that are carried out on a

software system after its release in order to fix problems, improve features, and/or help

with adaption to the environment. These activities are usually done by a team that is

different than the development team and aim to make changes in the system as required

[19], [20].

The main two problems in software maintenance are high costs and

considerable efforts. These issues are linked to the difficulties which maintainers face

when trying to understand the software source code. Maintainers’ difficulties in

16 | P a g e

understanding will increase the effort, which will consequently increase the time and

the costs spent [20]. In addition, understanding the software source code will improve

the software comprehension. It is estimated that 50% of the maintenance effort is taken

for software comprehension [21].

Codecharts is a visual, precise, and concise language, which has a few

notations. When using such a language for documenting security design patterns or

any design pattern, these features in the language will help ease the cognitive processes

needed for software understanding [22], [23]. Therefore, this research will improve

the overall software maintenance by improving the software maintainers’

understanding.

Furthermore, searching and locating design patterns and arbitrary user-defined

design patterns will improve software comprehension and software re-documentation

[6], [23], which in turn will improve the overall software maintenance. This research

aims to detect patterns instances within the source code. In addition, as using

Codecharts, the research aims to take advantage of the visuality of Codecharts in order

to show the existing instances of the searched-for patterns in the source code. As

previously mentioned, this will improve the software comprehension [22], [23].

P a g e | 17

2.3 Design Patterns

A pattern is defined according to Longman dictionary as “a shape used as a

guide for making something” [24]. In software engineering, patterns known to be

design patterns describe solutions that have been developed over time to solve a

recurring problem in a specific context [18]. In general, a pattern is a description of a

justified solution for design problems offered in a specialised template. In this research,

whenever the word ‘pattern’ occurs, it refers to one of design/security patterns.

Gamma et al. [18] have introduced the most popular design patterns catalogue.

In their catalogue, they have described a number of well-known patterns in a template

which consists of: Pattern Name, Intent, Also Known As, Motivation, Applicability,

Structure, Participants, Collaborations, Consequences, Implementation, Sample Code,

Known Uses, and Related Patterns. The authors regard the pattern solution as

encapsulation of Structure, Participants, and Collaborations. Due to the ease and

usefulness of the design patterns template offered by Gamma et al., many design

patterns authors have employed this template when introducing new design patterns

[9], [25]–[27], [1].

In this research, it is an aim to formally model the solution part of the patterns

descriptions. In particular, the focus is on formalising the fully decidable statements in

the solution of a pattern while taking security design patterns as an application in this

research. So, whenever the phrases ‘formalising a pattern’, ‘formally modelling a

pattern’, and/or ‘pattern formalisation’ are used, they refer to the use of Codecharts for

conveying a fully decidable statement in the solution section of a security design pattern

to a visual and formal Codecharts specification.

18 | P a g e

2.4 Security Patterns

Security patterns are solutions to solve recurring security problems in specific

domains [9], [26]. They are aimed to combine the experience and knowledge of both

security experts and software engineers to build a reusable way to solve a specific

security problem. There are a growing number of catalogues [1], [9], [26]–[29] which

describe security patterns. However, it has been noticed that they contain some

ambiguity in their descriptions of the patterns [30].

Security patterns are claimed to be related to the well-known design patterns

[18], [9]. In the description of a security pattern, there is usually a subsection which

discusses the pattern relation with one or more of well-known design patterns and/or

other security patterns. However, validation of such relationships has not been

sufficiently covered.

A number of researchers have established their own approaches to organising

and classifying security patterns [31]–[34]. These efforts were to overcome the

difficulties faced by practitioners when intending to choose the appropriate pattern to

apply. They were also to allow us to see the similarity and problem domain among

these patterns.

Security patterns are analysed in many sources to have both structural and

behavioural specifications. They have been described using UML notations and

diagrams. This has a number of drawbacks such as the difficulty or impossibility of

automating the verification process. From this emerges the need for using a formal

design description language in order to describe the security patterns for further

investigation.

Security patterns are described using a template [9]. This template consists of a

number of sections as follows: Context, Problem, Solution, Consequences and See

P a g e | 19

Also. The Context section describes the situations of the problem occurrence. The

Problem section describes the security problem itself. The proposed solution of the

problem will be detailed in the section Solution. The solution, depending on the

problem, might be at more than one level. A discussion of the advantages and the

disadvantages of the solution is in the Consequences section. Finally, the See Also

section will refer to other patterns when necessary. This is because introducing a

solution might introduce new problems which need to be handled by other patterns.

These are the main characteristics of security patterns. However, there are other

characteristics but they are not specific for security patterns in comparison with the

aforementioned ones.

Security patterns acquired due attention by researchers. Currently, the number

of security patterns as well as the research on these patterns is increasing. As a result,

many catalogues, papers and technical reports have been published to cover different

aspects of them. It is difficult to list all of these resources. However, some of the most

prominent works will be highlighted and discussed.

20 | P a g e

Yoder and Barcalow catalogue

J. Yoder and J. Barcalow [1] have made a cornerstone catalogue for security

patterns. The authors discuss seven security patterns and then attempt to provide a

suggestion of a framework which represents them in a correlation. The paper introduces

and follows a template for describing a pattern which has been later used as a common

pattern description template by other security patterns catalogues. However, ambiguity

in the descriptions is obvious. For instance, Check Point has been described

ambiguously. Moreover, late checking is to be handled by a secondary interface;

however, the questions of “How” and “What” emerge.

Kienzle et al. catalogue

Kienzle et al. [28] try to create a security pattern repository with more than 26

patterns. Mainly, they describe the patterns in favour of internet applications. They also

provide an excessive amount of information to suit the security needs in internet

applications. However, the repository suffers from ambiguity. For example, in the

Network Address Blacklist pattern description, it is stated that “client” is an element of

the pattern. This is far too imprecise as the client is usually used for registered and

known actors to the system. Another example is how the Blacklist controls and

configures the Blocking Mechanism. Is this by instantiating new Blocking Mechanism

and attaching the network address to it? Or is it by calling a method in the Blocking

Mechanism which re-configures it?

P a g e | 21

Wassermann and Cheng catalogue

Wassermann and Cheng [27] aim to describe Security Patterns in a way that

improves comprehensibility. The catalogue highlights a revision to most of the well-

known security patterns. When investigating modelling a Checkpoint Pattern using

Codechart, this this catalogue played a major role as it had the clearest description of a

Checkpoint Pattern. Some other catalogues use this paper in order to reference their

description of some security patterns.

Schumacher el al. catalogue

The most dominant book that concentrates on security patterns is written by

Schumacher et al. [9]. The interesting point in this book is that it describes security

patterns in a way that reflects securing a military base. In addition, it engages the related

pattern in the description of a pattern at hand. However, despite the aforementioned

advantages, the book’s descriptions and UML diagrams of the patterns suffer from

ambiguity. This ambiguity will be highlighted further in the results and discussion

section.

Alur et al. catalogue

Alur et al. [26] have introduced their security patterns catalogue. In this

catalogue, the authors have presented more than 20 security patterns. The catalogue

shows the best practices of security patterns. In addition, it describes the patterns which

aim to secure applications and web services developed in J2EE. The catalogue follows

the common template of pattern deception, which uses informal statements and UML

22 | P a g e

diagrams. Although the catalogue does not formally describe the patterns, it presents

the patterns with less ambiguity with comparison to other catalogues.

In order to compare the above discussed catalogues, it is a good idea to start

with the elements of the template used for patterns descriptions. The aforementioned

catalogues have a section, in the template, which lists all other names of a pattern,

except the Alur et al. and Kienzle et al. catalogues. In addition, the catalogues, but

Wassermann et al. catalogue, explain the problem which a pattern is designed to tackle.

However, Wassermann et al and Yoder et al. catalogues are the only catalogues which

motivate a pattern in the description. This might be due to that Wassermann et al

catalogue improves on Yoder et al. one. In addition, all the catalogues provide a section

named “Related Patterns” which refer to some relations exist between a pattern and

other patterns. However, they differ in explaining the relations as some catalogues are

just listing the related patterns such as Kienzle et al. catalogue.

Further differences among catalogues are the use of visual notations as Yoder

et al. and Kienzle et al. catalogues are using symbolic notations (computer, actor, boxes

etc..) beside the textual description in the “Solution” of a pattern description, whereas,

the other catalogues uses UML class and sequence diagrams. Among Wassermann et

al., Alur et al., and Schumacher el al. catalogues which use UML diagrams, Alur et al.

catalogue has the most clearer and comprehensive UML diagrams. Furthermore, Alur

et al. catalogue is the only catalogue that provide a sample code in a pattern description.

Some researchers tend to investigate the classifications of security patterns.

Others aim to improve the templates used to describe them. For example, Alvi et al

[31] have proposed a classification scheme which depends on the security flaws to

P a g e | 23

organise the security patterns. Another paper [32] proposes a new representation called

“Pattern Graph” to enhance the descriptions of security patterns in terms of precision.

Hafiz et al. [33] attempt to investigate the current security patterns classification

and organisation approaches to reach a technique that overcomes the drawbacks in the

current approaches. The authors propose a classification scheme which uses a hierarchy

so that the patterns are displayed as nodes in this hierarchy. This is based on 14 security

patterns to be in the hierarchy. As a result, the pattern users can navigate through and

choose what fits most.

In conclusion, security problems can be at an expensive cost if not considered

during the software development process. Therefore, many have proposed software

security as a major part of the software development lifecycle [35]. Security patterns

play a key role in software security by offering security expertise in an organised

template.

Currently, security patterns are holding many researchers’ interests in terms of

evolution, classification, modelling, formalisation, verification and detection.

However, this field of research is not covered sufficiently. It is important to mention

here that, in the case of formalisation, verification and detection, security patterns

solutions are referred to as security patterns.

24 | P a g e

2.5 First order predicate logic (FOPL)

In order to express declarative statements, which propositional logic could not

help with, First Order Logic (FOL) was introduced which is a richer logical language.

In FOL, variables and quantifiers are features which make FOL richer than

propositional logic. So, a formula in FOL is a set of terms (variables, constants, and

functions with finite arguments) and predicates with finite arguments [36], [37].

This topic is highlighted in this research background as some FOL formulas

might be shown in some parts of this research. This is due to the fact that Codecharts

is a visual and formal specification in LePUS3 [38], [39] which in turn has been defined

using first order logic predicate calculus. Therefore, whenever a Codechart is shown in

this research, it is understandable that the Codechart is a set of first order predicates

and can be automatically translated, using TTP Toolkit [13], from visual representation

to LePUS3 (first order logic predicates) and Class-Z.

2.6 Codecharts (LePUS3) and Class-Z

2.6.1 LePUS3

Codecharts are the statement of static design encoded in OOP languages. The

language of Codecharts is LePUS3, which is an object-oriented design description

language. LePUS3 is built on top of the strength of other specification and modelling

languages. Mainly, LePUS3 came to address the following concerns [39]:

1) Rigour;

2) Scalability;

3) Minimality;

4) Program Visualization; and

P a g e | 25

5) Automated Verifiability.

LePUS3 offers solutions for the aforementioned concerns. For example,

LePUS3 specification (Codecharts) is graphical. This addresses one of the concerns,

namely Program Visualization. In addition, LePUS3 uses first order predicates calculus

to formalise each element in the specification. This makes it a formal (rigour) graphical

language. Having such formal specifications, the design conformance verification

process can be automated in a more accurate and confident way. This addresses the

concern of Automated Verifiability [38].

Figure 5: LePUS3 vocabulary [38]

However, this does not mean that this comes at the expense of minimality and

elegance, which are LePUS3 concerns. Figure 5 shows a summary of LePUS3 visual

vocabulary. In addition, LePUS3 provides means of variables in order to represent

design motifs. This offers an opportunity to specify the static structure without

constraints of naming. Furthermore, LePUS3 introduces an abstraction mechanism

which is highly beneficial when modelling large scale software (scalability).

26 | P a g e

Abstraction mechanism relies on the notion of dimension, hierarchy and transitive

relations [38]. Moreover, LePUS3 has a tool support which is called Two Tier

Programming toolkit (TTP toolkit) [13]. In addition, with comparison to UML,

Codecharts could outperform UML in formalising security design pattern as will be

seen later in this thesis in Chapter 4.

2.6.2 LePUS3 formalism

LePUS3 is a formal object-oriented specification language. It relies on a subset

of first order logic. LePUS3 is a visual and symbolic language. Its diagrams consist of

terms and constraints on those terms [38], [40]. The terms and constraints are

summarised and illustrated in a hierarchy form in Figure 4.

1. Terms (ݐ)

a. Variables (ݒ)

i. d-dimensional class ࣪ௗ 	ℂॷ८ॺॺ

ii. d-dimensional signature ࣪ௗ 	ॺॴॳℕ८ॻॼℝॱ

iii. d-dimensional hierarchy ࣪ௗ 	ℍॴॱℝ८ℝℂℍঀ

b. Constants (c)

i. d-dimensional class ࣪ௗ 	ℂॷ८ॺॺ

ii. d-dimensional signature ࣪ௗ 	ॺॴॳℕ८ॻॼℝॱ

iii. d-dimensional hierarchy ࣪ௗ 	ℍॴॱℝ८ℝℂℍঀ

2. Constraints (݂)

a. Relations ℝ

i. BinaryRelation 1ݐ)݊݋݅ݐ݈ܴܽ݁ݕݎܽ݊݅ܤ, (2ݐ

1. Inherit ݊ܫℎ݁ݐ݅ݎ	1ݐ), (2ݐ

2. Create 1ݐ)݁ݐܽ݁ݎܥ, (2ݐ

P a g e | 27

3. Produce ܲ1ݐ)݁ܿݑ݀݋ݎ, (2ݐ

4. Return ܴ݁1ݐ)݊ݎݑݐ, (2ݐ

5. Call 1ݐ)݈݈ܽܥ, (2ݐ

6. Forward 1ݐ)݀ݎܽݓݎ݋ܨ, (2ݐ

7. Member 1ݐ)ݎܾ݁݉݁ܯ, (2ݐ

8. Aggregate ݁ݐܽ݃݁ݎ݃݃ܣ	1ݐ), (2ݐ

9. SignatureOf ݂ܱܵ݅݃݊ܽ݁ݎݑݐ		1ݐ), (2ݐ

ii. UnaryRelation ܷ݊ܽ(ݐ)݊݋݅ݐ݈ܴܽ݁ݕݎ

1. Abstract ݐܿܽݎݐݏܾܣ	(ݐ)

2. Method ݐ݁ܯℎ݀݋	(ݐ)

3. Class ݏݏ݈ܽܥ	(ݐ)

4. Signature ܵ݅݃݊ܽ݁ݎݑݐ	(ݐ)

b. Predicates ℙ

i. Isomorphic ݊݋݅ݐ݈ܴܽ݁ݕݎܽ݊݅ܤ)ܥܫܪܴܱܲܯܱܵܫ, ,1ݐ (2ݐ

ii. Total ܱܶܶܮܣ	݊݋݅ݐ݈ܴܽ݁ݕݎܽ݊݅ܤ), ,1ݐ (2ݐ

iii. All 	ܮܮܣ	݊݋݅ݐ݈ܴܽ݁ݕݎܷܽ݊), (ݐ

c. Operators

i. Superimposition (⊗)

ݏ ⊗ ,ݏ〉			݂݅					ܿ ܿ〉 	∈ SignatureOf and 〈ܿ, 〈ݏ 	∈ Member

28 | P a g e

Figure 6: LePUS3 formalism

P a g e | 29

2.6.3 Class-Z

Class-Z is a specification language derived from Z specification language.

However, unlike the Z language, which is more expressive and not limited to specific

domains or purposes, it is limited to terms declarations and formulas corresponding to

LePUS3 vocabulary. Class-Z is an equivalent specification language to LePUS3,

however, it is used with LePUS3 as a helpful approach to resemble the formulas of

LePUS3 in their traditional way. It is important to emphasise her that the formal

foundation of LePUS3 is First Order Predicate Logic and all the specifications in

LePUS3 (any Codecharts) are predicates in this logic, and because of the

aforementioned reason, Class-Z has been used with the LePUS3, so that LePUS3

improves on the benefits of visual notation. , the two specifications (Class-Z and

LePUS3) has been used together for attracting traditional audiences.

In Class-Z, specifications are in a schema form which is divided into a

declarations section and a formulas section. The declarations section shows constant

and variables terms, whereas the formulas section shows constraints or formulas in

LePUS3 [38], [41]. Automatic converting of Codecharts (specifications in LePUS3) to

Class-Z schema is one of the TTP Toolkit [13] features. An example of LePUS3 and

Class-Z schema is shown in Figure 7.

30 | P a g e

Figure 7: Class-Z schema for Factory Method pattern Codechart

2.7 Two-Tier Programming Toolkit (TTP Toolkit)

The GUI prototype tool provides a number of round-trip software engineering

actions. These actions start with a reverse-engineering object-oriented source code to

Codecharts diagrams, which are formal specifications in LePUS3. In addition, the TTP

Toolkit offers verifying design conformance of a code against Codecharts diagrams.

Furthermore, it allows visualising the reverse-engineered source code, showing the

software in different abstraction levels. Moreover, it has the functional feature of

navigating through the software visualisation from the highest level of abstraction to a

detailed and concrete view of the software. Figure 8 displays the TTP toolkit in action

[13].

P a g e | 31

Figure 8: TTP Toolkit in action [13]

Figure 8 displays the TTP Toolkit in action. The main interface of the TTP

Toolkit is divided into 4 sections namely Menus and Quick Buttons, Projects,

Workspace, and Information section. The Menus and Quick Buttons section

encapsulates all the functionalities which TTP Toolkit offers. Starting with the File

menu, it allows to create, open, and/or save ‘ttp’ projects which are the files that store

the model of analysed source code, Codecharts, assignments and verifications objects,

and schemas. The Model menu allows a user to select any java source and analyse it to

have its model. Creating new specification (Codecharts), Schema, and/or assignment,

can be carried out through the Specify menu which also provide a set of already

specified design patterns that are modelled in [38]. It is obvious that Verify menu

provides means of creating new verification objects that TTP Toolkit verifier can work

32 | P a g e

on. The Navigate menu offers a sophisticated function of viewing the model of the

source code in different level of abstraction based on the Codecharts notations. Finally,

the Quick Buttons are actually a way of fast access to the functionalities offers in the

menus.

The Project section offers a tree viewing of the opened ‘ttp’ projects and the

items created in them. So, opening a specification (Codecharts) in order to modify

and/or delete can be done through this section. Whereas, the Workspace section (in the

middle) allows the user to drag and drop the Codecharts notations and create the

relations among them. As seen in Figure 8 the workspace is showing the modelling of

Composite Pattern. Finally, the Information section (bottom of the window) shows the

results of verifications, notifications and logging information of the projects saving,

exporting, importing code analysing, etc.

The current version of the TTP toolkit provides a means of automated design

conformance verification. This is carried out using a means of assignment (shown in

Figure 9) which associates each variable in generic specifications with a constant

(representing specific elements of concrete programs) of the same type and dimension.

The verification algorithm has been automated in the TTP toolkit in a component called

Verifier, which proves (or refutes) conformance of a code to your design, which is a

LePUS3 specification or, in another word, a Codechart. The result of the verification

is displayed using GUI as appears in Figure 10 [13]. TTP Toolkit is available for free

at ttp.essex.ac.uk.

P a g e | 33

Figure 9: Editing an assignment [13]

Figure 10: The result of verification [13]

34 | P a g e

However, the TTP Toolkit has a number of limitations which can be overcome

with further investigation of it and of LePUS3. For instance, the TTP Toolkit does not

offer features for runtime-verification. The reason behind this is that it supports

LePUS3 languages that only accommodate specifying decidable design statements,

which are only statically checked by TTP Toolkit verifier. Another limitation is that

the current version of the TTP Toolkit only supports analysing a Java source code.

However, because the TTP Toolkit was developed for any object-oriented programing

language, this limitation can also be overcome by further development of the tool.

Finally, pattern detection (searching) is provided in the TTP Toolkit. However, this

research aims to study the detection problem and develops an algorithm to solve it. The

implementation of the algorithm will be integrated into the new version of the TTP

Toolkit.

In this research, the TTP Toolkit is employed in order to accomplish a number

of tasks. Firstly, it is used for specifying and visualising the formalised security design

patterns, which are the application of this research. In addition, the verifications of the

formalised security patterns against the claimed-to-implement source code is carried

out with the TTP Toolkit verifier. Moreover, as this research targets studying and

developing an algorithm for pattern detection, the algorithm will be integrated in the

TTP Toolkit and will be used for verification of the existing instances of patterns.

P a g e | 35

2.8 Conformance checking

It is important to distinguish between software validation and software

verification. Software validation is the process of checking that the software is doing

the expected functionality, whereas software verification is the process of proving that

the software is correct [42].

In this research, the use of verification in the pattern detection is to check that

a source code has a correct architectural and structural implementation of a pattern. It

is important to mention here that this research does not aim to check whether the found

pattern implementation in the source code is functioning are required or as what the

pattern should do (validation). So, when an instance of a pattern is found in the

detection, the verification process shows whether the instance is a correct

implementation against a source code. Therefore, distinguishing between verification

and validation is necessary in this research.

Software consists of static and dynamic aspects. Software verification needs

formal representations for those aspects of the software. These formal representations

are produced using one of the known formal languages, such as propositional logic,

First Order Logic, Hoare logic, etc. [36]. In order to prove the correctness of the static

aspects of a software, the process is as follows: the aspects are formalised using one of

the formal methods to have a set of specifications; then, the source code of the software

is reverse-engineered using an appropriate tool for the chosen formal method to have a

software model; finally, the model is checked against the specifications for satisfaction

[43]. This process is usually referred to as model checking, design conformance

checking, static check/analysis, or design verification [36], [38]. This process can be

automated due to the fact that specifications for static aspects are decidable. A number

36 | P a g e

of tools offer such automated design conformance checking such as TTP Toolkits [13],

SPIN [44], KRATOS [45], Bandera [46], [47], Ptidej [48], etc.

On the other hand, proving the correctness of the dynamic aspects of a software

relies on Runtime Verification, which is the process of checking the execution trace of

a software against a set of specifications [49]. Checking the execution trace can be

either online (which is done immediately whenever an event occurs) or offline (which

is done after a certain amount of time or after software termination) [50]. Many have

introduced their runtime verification approaches, for instance, LAVA [51], RV4WS

[50], E-Chaser [49], etc.

This research aims to overcome the ambiguity in the security design patterns

catalogues by formalisation through using Codecharts. So, it is important to check the

conformance of the patterns against the software source code, in which a pattern is

claimed to be implemented. Therefore, the term ‘pattern verification’ refers to the

checking of the decidable specification (shown as Codecharts) of the solution of a

pattern using the TTP Toolkit verifier [13], which is the available tool support for

Codecharts.

Furthermore, this research aims to design and implement an algorithm for

patterns detection from the source code. As a result, it is vital to reason out the detected

instances of patterns. Therefore, verification of the instances is used with the proposed

pattern detection. Again, the TTP Toolkit verifier [13] will be used to check the

satisfaction of the detected instances of patterns against the pattern specifications

shown in Codecharts.

P a g e | 37

3 Literature review

Note: some parts of this chapter were published in:

Alzahrani, Abdullah A. H., Majd Zohri Yafi, and Fawaz K. Alarfaj. 2014.

‘Some Considerations on UML Class Diagram Formalization Approaches’.

International Journal of Computer, Information, Systems and Control Engineering 8

(5): 47 – 50.

3.1 Patterns formalisation

Formalisation could be defined as any process of conveying ambiguous

statements or notions into precise ones [52]. This is usually achieved using a variety of

mathematical and logical methods (i.e. first order logic FOL, higher order logic HOL,

and temporal logic). In the context of pattern formalisation, it is the process of formally

representing the pattern structure and behaviour.

In software engineering, particularly in design and security patterns, natural

language statements and graphical notation (such as UML) are used for patterns

specification purposes. However, this could lead to incompleteness and lack of

precision. Therefore, formalisation could help with overcoming such issues.

Furthermore, formalisation is an essential requirement for rigorous and automated

analysis [41], [53].

UML accommodates a number of diagrams, for instance, Class, Sequence, and

other diagrams which are used to represent structural and behavioural aspects of

38 | P a g e

patterns and systems. UML suffers from informal representation [54], which means

that it has no formal foundation. This has led to ambiguity and incompleteness in its

diagrams. Consequently, rigorous analysis cannot be carried out when such issues exist.

This includes consistency verification, traceability, and formal reasoning [55], [56].

Therefore, many researchers have introduced their approaches [55], [57]–[64] to

formalise those diagrams. In fact, the formalisation of design and security patterns often

involves the formalisation of the UML diagrams shown in the patterns descriptions.

In order to overcome the ambiguity in the UML diagrams shown in patterns or

any system documentations, researchers have introduced many methodologies to

present UML in a formal shape. These methodologies fall into two categories [56]: a)

transforming UML to formal models [65]–[67], and b) providing abstract syntax and

formal semantics for UML diagrams [68]–[70]. However, there has to be a trade-off

between these categories as each category emphasizes certain aspects of UML

formalisation. Many formal languages have been proposed in formalising UML such

as Object Constraints Language (OCL), Z, Description Logic (DL), B, PVS, etc. Each

of these languages has a number of properties which might not appear in others. As a

result, UML formalisation has been studied and carried out differently according to the

researchers’ reasons for choosing the formalisation approach. As a result, choosing an

approach to formalise those diagrams is a difficult / challenging task [56]. The

following casts light on some of the UML formalisation approaches which are based

on different formal languages. The focus will be on the formalisation approaches of the

UML structure diagrams (Class diagram).

P a g e | 39

3.1.1 Formalization using OCL

OCL is regarded as a formal language used with UML in order to specify

constraints and conditions on an UML model. It plays an important role in improving

precision of the specification of UML [71], [72]. Many researches [57], [63] have used

OCL to express UML syntax and semantics.

In order to explain how OCL specify UML class diagrams, it is important to

unpack some of the keywords and operators that are commonly used in OCL

specifications. First, there is a number of reserved words that have a meaning in OCL.

For example, context is the most frequent and essential word in OCL. It is used in order

to specify the context Classifier (a class in a UML diagram) of the specification

expression. Another reserved words is def which specify that anything, appears after,

is either a class attribute definition or a class operation definition. Using def allows

specifying the attribute name, type, and the initial value. In addition, in the case of

defining an operation, it allows specifying operation name, set of parameters and their

types, and the returning value type.

Table 1 shows an example of specifying an arbitrary class using OCL. The class

name is “Student” which has three attributes namely “tuitionFees”, “fullName”, and

“title” and typed Integer, String, and String respectively. All the attributes were

initialised with values as can be seen. In addition, the class “Student” has one operation

(method) named “hasTitle” and the operation takes one parameter of type String and

returns value of type Boolean.

40 | P a g e

Table 1: Example of specifying an arbitrary class using OCL

Context Student
def: tuitionFees : Integer = 3000
def: fullName : String = ‘Sophie’
def: title : String = “Miss”
def: hasTitle(t : String) : Boolean = self.title->exists(title = t)

Importantly, the constraints in OCL are specified in similar manner, as the

context needs to be specified, but with a use if inv keyword that abbreviates the word

invariant which actually means a constraint in OCL. inv keyword specifies on classes

and types and could be followed by a name of the invariant (constraint), however, it

must be followed by a colon (:) to indicates the start of the constraint. Figure 11

illustrates a number of examples of invariants on two classes named “Researcher” and

“Paper”.

Specifying associations among patterns is done with invariants and navigation

operators which allow accessing, checking, and other operations to the class of

association using the operators such as (->) specify a call relation to another operation

or method call, (implies), and (.) access attribute and navigate to. Furthermore, the

followings are some other keywords, OCL operations, and operators such as “implies”,

“and”, “or”, “let”, “exist()”, “select()”, “forAll()”, “=”, “.”,“:”, “<>”, etc. Finally, there

are many keywords, OCL operations, and operators in OCL that cannot be discussed

here but it is beneficial to check them in [71].

P a g e | 41

Figure 11: Example of specifying associations between two classes using OCL from [73]

Gogolla et al. (2002) suggested an approach which [63] guides the system

designers to transform UML class diagrams with constraints and relations into another

UML class diagram, employing only binary associations and OCL constraints. It

basically reforms the UML class diagrams to be more precise and encloses them with

sets of OCL constraints. The approach stands as a de-facto in formalising UML class

diagrams with OCL. Many researchers have used this approach in their work for

checking design consistency [74]–[79].

Although, this approach improves the precision with the UML class diagrams,

it raises the issue of losing semantic information when translating complex associations

to binary ones [63, p. 93]. Furthermore, it does not support formalisation of abstraction

(as there is no means of showing the class hierarchies, set of classes, and/or set of

42 | P a g e

methods), which exists in patterns descriptions. In addition, formalising the security

boundaries in the diagrams is lost when using this approach as this feature is not

supported by the guide offered by this approach.

Another instance of using OCL to formalise the UML class diagram is

demonstrated in [57] by Chavez et al. (2012). The authors address the problem of

consistency between the design presented in UML and the implementation. In

particular, the authors focus on formalising the composition relationship, which is often

shown in the UML class diagram. The authors highlight the issue of formalising UML

composition relationships in terms of lifetime and interoperability, and they suggest

using OCL to formalise composition in the UML class diagram.

However, the approach concentrates on the formalisation of only one UML

class diagram relationship, which is a composition relationship. Without considering

other UML class diagram relationships (dependency, aggregation ...), it is obvious that

this approach cannot be comparable with other OCL formalisation approaches.

Moreover, it does not have tool support to automate the generation of the OCL of a

given class diagram as well as the verification of the consistency of a given class

diagram and a given implementation.

By means of formality, OCL was founded to overcome ambiguity in UML

diagrams. However, OCL itself suffers from a level of ambiguity. As a result, it does

not help with formal reasoning and formal proofs [55], [80], [81]. Furthermore, it is

difficult to be checked and detected, so it raises issues in the development and the

maintenance process of the software system. Moreover, OCL does not seem to be

sufficient when stating complex constraints [55].

P a g e | 43

On the other hand, Codecharts allows formalising the structure of patterns or

systems precisely, visually, and concisely with the feature of a small number of

vocabulary. Furthermore, Codecharts supports formalisation of abstraction as it offers

tokens for this, such as a hierarchy symbol, a set of method signatures symbol, and a

set of classes symbol. The current version of OCL, however, does not support

abstraction. Moreover, loss of information occurs when dealing with complex

constraints.

In addition, Codecharts has tool support for specifying design conformance,

translating it to LePUS3, and verifying it. On the other hand, OCL, to the best of my

knowledge, does not have competing tool support. None of the tools, which apply

formalising UML class diagrams using OCL, is available for investigation; whereas

Codecharts tool support is publicly available at [ttp.essex.ac.uk].

3.1.2 Formalisation using DL

Description Logic (DL) is one of many formal languages for knowledge

representation. It is built on a mathematical foundation and supports formal reasoning.

A number of description logic languages exist, such as AL and ALEN [82]. Many

researchers [55], [58], [61], [62], [64] have tried to formalise UML in DL.

Kadir et al. (2010) [55] have proposed an approach to formalise a UML class

diagram using DL. They have assessed their approach to UML formalisation as not

satisfactory. This is due to two reasons: (1) many properties, such as dependency, are

not defined, and (2) the formalisation is done manually and there is no tool to automate

it. Figure 12 shows the formalisation of one attribute and one operation of one class in

a class diagram [55]. It can be seen that formalisation is textual and will be long in case

of formalising all operations and attributes of all classes in any medium-size class

44 | P a g e

diagram. It is obvious that employing such an approach in the process of the

formalisation of a large-scale software can lead to an unreadable formal specification,

which can consequently be error prone. Moreover, it would need a solid mathematical

foundation to be understood and verified.

Figure 12: An example of formalising one attribute and one operation of a class in DL [55]

In order to explain the formalization example in Figure 12, it is beneficial to

translate it in English. So, the first line of formalization means that there is a class

named “AccountItem” which includes (⊑ quantifier) an operation (∀P) named

“GetOrderId” with a return value of type (.) “String” and (⊓) the operation visibility is

publicly visible and has one restriction (≥). In the same way an attribute is formalized

but without the use of operation identifier (∀P).

Zhihong et al. (2003) [61] considered the formalisation of a UML class diagram

in DL but from a different perspective. They considered the formalisation process itself.

They first provided a summary of the comparison between DL languages used in

formalising UML. Then, they addressed some concerns when choosing a DL language

for formalisation. They suggested some solutions to the problems which occur in

P a g e | 45

formalising a UML class diagram. They concluded that formalising UML in DL is a

difficult task.

Another approach to formalising UML diagrams with DL was suggested in [62]

by Calì et al. (2002). The authors have chosen the DLR description logic language in

order to formalise the UML class diagram in terms of classes, associations, and

constraints. They have shown how to map the constructs of a class diagram to the

corresponding formalism in DL. However, they did not consider those aspects which

relate to the source code (public, protected and qualifiers for methods and attributes)

when formalising the class diagrams. Moreover, the approach does not support the

formalisation of some advanced constraints, in particular the constraints on attributes

names and operations parameters [60]. The approach was experimented in FACT [83].

Although, the work is promising, many properties need to be considered to mature this

formal framework (such as modelling and reasoning out objects and links), as the

authors concluded.

Some researchers chose to study the use of DL for formalisation from a different

perspective. For instance, Berardi et al. (2001) [64] carried out an experimental

investigation of the use of the most dominant DL-based reasoning systems to reason

out UML class diagrams. The authors illustrate their approach of formalising the UML

class diagram in the DLR description logic language. The approach they used in

formalisation is similar to the work of Calì et al. (2002) in [62]; however, the difference

is only that the work in [62] pays more attention to formalising the constraints shown

in UML class diagrams. Berardi et al. [64] reported detailed results about the most

popular DL-based reasoning systems, namely FACT [83] and RACER [84]. Briefly,

the result of the experiment showed that the tested DL-based reasoning systems suffer

from critical efficiency issues when dealing with knowledge bases.

46 | P a g e

DL is a formal approach which can be used to formalise UML class and other

diagrams. Its main features are soundness and completeness, which are essential in

rigorous reasoning. In addition, DL has a number of languages which vary in their

features. However, DL cannot formally represent all UML properties, such as

dependency relation [55], [58], [60]. In addition, when formalising a UML class

diagram in DL, the choice of the DL language needs to be considered carefully [61].

Furthermore, as DL’s languages are similar, transferring between DL languages

can happen easily, which makes it difficult to say which DL language is used if an

explicit statement does not exist. In addition, the process of formalisation using DL is

a challenging task as it is still done manually and needs solid mathematical foundations

and skills in DL.

 On the other hand, Codecharts is a formal language, as it is built on First Order

logic, which makes it superior and more expressive, since DL and DLR are regarded

to be subsets of First Order logic [85]. In addition, Codecharts is visual, which makes

formalisation easier in produce and understanding. Furthermore, Codecharts supports

formalising abstraction and offers a number of vocabularies for abstraction; whereas

the current approaches of formalisation using DL do not offer this support [55].

Supporting abstraction helps with the formalisation of large scale system models.

Finally, Codecharts has a tool support for specifying design performance, verifying it

automatically, and translating it automatically to LePUS3 formulas. Whereas the

formalisation in DL is done manually and the current tools dealing with DL

formalisation suffer from issues such as efficiency.

P a g e | 47

3.1.3 Formalization using Z language

Z is a specification language strongly typed in mathematics [59]. Since its

introduction, it has been an interest for formalisation advocates. This resulted in

introducing Object- Z, which is an extension of Z. Object-Z was developed to improve

Z in many aspects, mainly in structuring and object-oriented representations. This is to

enhance effectiveness in specifying large and medium scale software systems.

However, it is claimed that a specification in Z is also a specification in Object-Z [86].

It seems a true claim as Z’s syntax and semantics are parts of Object-Z, however, the

latter improves in inheritance, polymorphism, and encapsulation. UML formalisation

using Z and Object-Z has been of interest to many researchers.

Sengupta et al. (2008) [59], for instance, have proposed a methodology to

formalise different kinds of UML diagrams in Z language and represent the result

visually using an Entity-Relationship (ER) diagram. The authors have clarified their

methodology of formalising a UML class, a Use-Case, and Sequence diagrams.

However, the proposed approach has a number of drawbacks. First, the ER diagram

can be large when representing an industry-scale system. Second, the process of the

transformation of Z specification into an ER diagram is not clear. This would introduce

more ambiguity than UML diagrams do. Finally, the proposed approach has not been

implemented in a tool which automates formalisation into Z, ER representation, and

consistency verification.

Another work has been carried out by Mostafa et al. (2007) [60] to formalise

UML diagrams in Z language. The authors introduce a manual which provides formal

semantics for a Use-Case diagram, a Class diagram, and a State Machine diagram in Z

specification language. They have, in addition, implemented a tool to support their

48 | P a g e

approach. The tool is claimed to be able to check diagrams and automatically generate

the appropriate Z specification if there is no violation of constraints. Additionally, the

tool could generate a source code for class diagrams in C#, visual basic and JavaScript.

Although the approach offers a straightforward formalisation guide for skilled

people in Z, it does not consider formalising abstraction in UML class diagrams.

Furthermore, the authors have shown no evidence of the implemented tool. They only

mention, in the conclusion section, that a tool was implemented and list what it does.

Figure 13: An example of formalising one generalisation relation between two classes in Z [60]

Figure 13 demonstrates an example of a generalization relation in Z as shown

in Mostafa et al. work [60]. Clearly, from the figure, a number of shortcomings of the

approach are noticed such as asymmetry. In addition, this approach has the limitation

when dealing with a large-scale software. The reason behind this is the overwhelming

specification generated, which makes carrying out any formal reasoning a difficult

process.

P a g e | 49

In conclusion, Z specification is a formal method which can help in formal

reasoning and formal proofs. However, Z notations are not graphical and need a solid

mathematical background to be formed and understood [59]. In addition, Z lacks some

notations such as Interface. It also lacks clarity when the specification is for large scale

software systems [86]. Furthermore, a glance at the state-of-the-art approaches reveals

that there is no tool to support automating the formalisation of UML diagrams in Z and

the detection of Z specification from a source code.

On the other hand, Codecharts is a formal graphical language. It supports

formalising abstraction shown in design models. Furthermore, the TTP Toolkit [13]

provides considerable tool support for Codecharts. The tool offers a number of actions

that can automate verification of consistency, translating to LePUS3 formulas, and

visualisation.

50 | P a g e

3.1.4 A Comparison of Formalisation Methods

After reviewing many approaches to formalisation of UML class diagrams

using different methods, the following compares between the three aforementioned

methods used in the approaches reviewed. Table 2 describes the main findings of the

comparison. The following criteria have been used in the comparison as these criteria

are either regarded as formalisation concerns or as consequences of the formalisation

processes.

1. Full Formality: it highlights the approaches which have formality

issues.

2. Information loss: it highlights the possibility of losing some

information during the process of transferring the UML class diagram

into a formal specification. Basically, the information loss occurs when

an approach is not able to formalise some information in the class

diagrams such as dependency relation or complex constraints.

3. Abstraction support: it shows to what extent an approach is responsive

to large-scale software representation. In addition, it displays the ability

of the approach to formalise abstraction shown in a class diagram.

4. Complex constraints support: it refers to whether an approach is used

in formalising complex constraints.

5. Automation tool support: it illustrates the availability of any tool which

automates the formalisation processes.

6. Math background: it describes the need for a solid mathematical

background during the formalisation process or thereafter for

understanding and checking the formalisation outputs.

P a g e | 51

7. Graphical: it refers to the outputs of the formalisation; i.e. whether the

outputs are graphical or textual.

8. Behaviors formalisations: they show whether the approaches in the

formalisation method is able to formalise behavior models.

Table 2: Comparison of the Formalisation approaches using different methods

Formalization method

Feature

Z DL OCL Codecharts

Fully Formal √ √ × √

Overcome Information loss × × × √

Modelling Abstraction support × × × √

Complex constraints support √ √ × √

Automation tool support √ × × √

Naive Math background × × √ √

Graphical × × × √

Behaviours formalizations √ √ × ×

Formalisation approaches vary in order to fulfil the different needs. This makes

each approach unique in the way it deals with formalisation of design models. The

difference does not make one approach outperform the others; however, it shows the

main purpose behind the introduction of such an approach. Table 2 demonstrates the

outcome results from comparing a number of UML class diagram formalisation

approaches in OCL, DL, and Z.

It can be seen from Table 2 that the approaches of formalization reviewed differ

in their abilities to meet all the criteria. This might be due to the chosen formalisation

52 | P a g e

methods (OCL, DL, or Z) or due to the concerns which were the motivations for the

introduction of the formalisation approach. However, Codecharts shows an ability to

meet all the criteria, except for the last one, which is modelling the behaviors. This

limitation in Codecharts is due to the fact that Codecharts is only able to model fully

decidable statements, which is often not the case with behavior modelling.

However, Codecharts is graphical, which means that it does not require special

math skills to be understood. This leads to satisfying the criterion of no Math

background is needed. It is formal, which means each graphical vocabulary has a

formal meaning in First Order Logic. This leads to satisfying the criterion of

Information loss as no transferring is required. In addition, Codecharts has a tool

support which is shown in the TTP Toolkit [13]. Furthermore, it supports formalizing

abstraction, which is shown in design models, by offering a number of vocabulary

items for this purpose. Finally, Codecharts is a visual specification in LePUS3, which

is formulas built on First Order Logic. As a result, one of the important features of

First Order Logic is expressiveness, which allows supporting formalisation of

complex constraints.

P a g e | 53

3.2 Pattern detection

Design pattern detection is defined as the activity of finding design motifs in a

source code of subject system. In this context, the activity is limited to find the

occurrences or instances of the “Solution” proposed in the patterns descriptions. Often,

the detection activity includes a number of sub processes such as pattern solution

formalisation, source code reverse-engineering, occurrences searching, and

occurrences reasoning/explanation [11], [87], [88], [3], [4], [89], [8], [90]–[92].

Pattern Detection is to look for instances of a given or selected pattern in a given

source code. The search is divided into two classes, which are static search and dynamic

search. The former search is required to perform the latter search. However, not all the

existing pattern detection approaches combine the two searches. The static search is

the richer and the core search as it allows finding the structure and the locations of the

instances within the source code. Whereas the dynamic search allows further checks

on the instances found by explaining the execution trace of the source code or by

plugging some chunks on codes in the original source code in order to log on the source

code components activity during the execution time [11].

The Pattern Detection problem has been the focus for many researchers [6],

[87], [88], [3], [4], [89], [8], [93]–[97], [5], [7], [98], who have introduced their

approaches in order to solve it. In the next section, a number of state-of-art pattern

detection systems and approaches will be reviewed. The review will be focused on the

definitions of the pattern detection approaches, formalisation methods, search means,

and analysis of the main findings and issues.

54 | P a g e

3.2.1 SPQR

One of the early and expressive pattern detection systems is SPQR (System for

Pattern Query and Recognition).. SPQR tackles POML (Pattern/Object Mark-up

Language) schema as inputs and outputs. It uses Otter automated theorem prover to

find the instances of pattern from the source code. SPQR aims to ease the

documentation and understanding of systems from the source code [99].

The SPQR has been experimented to detect instances, from a source code, of a

number of design patterns described in [18]. The experiment was conducted on a small

scale source code. Furthermore, a possibility of performance issue in the case of a large-

scale source code is present [8], [93], [99]. Moreover, the SPQR system is not available

for testing and many researchers find that the system approach cannot be rebuilt easily

[90].

SPQR depends on the extracted structural relations to detect patterns instances.

This might result in high false positive or negative ratios [100]. Moreover, SPQR has

the limitation of being specific to the C++ source code. In addition, SPQR uses ρ-

calculus, which does not support data flow [101].

3.2.2 Ptidej

Another example is Ptidej (Pattern Trace Identification, Detection, and

Enhancement in Java). Ptidej is a system for analysing and maintaining object-oriented

software systems. It is comprised of a number of sub-components as follows: a) SAD,

which is a tool for detecting and correcting architecture defects; b) EPI, which is a

design patterns occurrence identification tool; c) DRAM, which is a tool for visualising

static and behaviour properties of a software system with matrices; d) Aspects, which

P a g e | 55

models and computes matrices. As EPIis the design patterns identification tool in

Ptidej, it is a relevant tool to this research and will be used when referring to Ptidej.

EPI is designed to find occurrences of design patterns using a bio-informatics string

matching algorithm. EPI is claimed to find exact as well as approximate pattern

occurrences [7].

Figure 14: Composite design motif in Ptidej [3]

Figure 15: Ptidej output [7], [48], [102]

56 | P a g e

Ptidej is a large project which aims to cover many aspects such as Quality

models, Program comprehension, Test-case generation, Design smells, Linguistic

smells, Evolution patterns, and Features and requirements [48]. The next will

concentrate on Ptidej efforts on the topics relevant to design patterns detection and

identification which is the interest of this research.

Ptidej relies on an improved version of a design pattern detection system called

DeMIMA [4]. Figure 14 shows the use of Constraint Programming in Ptidej in order

to represent Composite pattern as input. In addition, Figure 15 depicts the Ptidej outputs

of the pattern detection of Composite shown in Figure 14.

3.2.3 DeMIMA

From the source code, DeMIMA [4] aims to find microarchitectures (which are

generally class diagrams) that are similar to design motifs. Constraint Programming

and tree search methodologies are employed in order to find the patterns matches.

DeMIMA is a semi-automatic pattern detection system. Its pattern detection algorithm

tries to recognise the pattern constraints in the program model. However, it misses

composition relationships. As a result, this reduces the number of exact instance of the

pattern. Therefore, the algorithm does not provide all instances.

Furthermore, an early experiment has been carried out to check the approach

performance, microarchitectures validation, and accuracy. The main findings show that

DeMIMA still suffers from efficiency issues as it takes an average of 50 minutes to

find all the microarchitectures of one design pattern. Furthermore, the accuracy is not

at the desired level [4], [96].

P a g e | 57

An evolution of DeMIMA is presented in [3]. The improvement was towards

efficiency and accuracy. The authors adopted numerical signatures in order to enhance

the previous work on design pattern identification. In the improvement, Constraint

programming is still the methodology applied. However, the performance is still an

issue when dealing with a large-scale software. For instance, the authors conducted an

experiment on JUnit, which has 236 classes and 1,995 methods, to identify the

occurrences of Adapter, Abstract factory and Composite patterns. The results show that

the identification of the Adapter and Composite patterns is still inefficient, whereas the

identification of Abstract factory has significantly improved and all instances of this

pattern were found quicker with comparison to other aforementioned patterns.

Furthermore, the computation of the numerical signatures introduces more overhead

for the identification process. Moreover, the accuracy was not improved significantly

as the author concentrated on the recall more than the precision [96].

In conclusion, a number of well-known pattern detection/identification systems

have been reviewed. Those systems use different approaches for patterns representation

as well as different patterns finding algorithms. Each system has its strengths and

drawbacks. Form what has been done and what is missing, this research aims to fill the

research gap.

Form the above review, it can be seen clearly that the area of pattern detection

still suffers from the problem of inefficiency. The aforementioned state-of-art pattern

detection systems can be evidence for such a claim. Furthermore, as SPQR is limited

to the C++ source code and Ptidej is limited to the Java source code, the need for a

more general pattern detection system emerges. This means a system which can detect

design patterns in any platforms of source codes (e.g. Java, C++, C#, Python,…..).

58 | P a g e

Additionally, improving system understanding, maintainability, and evolution

are the main goals for pattern detection systems, and in order to achieve those goals, a

fully automated pattern detection system is required. The state-of-art pattern detection

systems are semi-automated as they need human interaction at some point in the

detection process [7], [99].

Furthermore, the state-of-art pattern detection systems are limited to specific

patterns to be detected. Usually, these patterns are hard coded and known in advance.

For instance, SPQR uses a component called OTTER, which finds instances of patterns

from a fixed and hard coded collection called Elemental Design Patterns (EDPs). An

example is shown in Figure 16. The OTTER finds instances using inference, based on

certain hard coded rules, and then provides proofs which will be analysed by the

proof2pattern component to make the final outputs in the form of ObjectXML as shown

in Figure 17 [98].

As a result, SPQR takes a source code as an input and uses a fixed set of hard

coded patterns to find only a first instance of the chosen pattern. This finally generates

the result in a form of ObjectXML. It can be concluded form this that SPQR does not

find all the instances and is not a general pattern detection system as it relies on a fixed

hard coded pattern to be looked for. On the other hand, this research aims to produce a

general pattern detection system which is able to find all instances on any given pattern

in any given implementation. Moreover, it aims to visualise the output to improve the

readability and understanding of the result.

P a g e | 59

Figure 16: An example of EDP [98]

Figure 17: SPQR output [98]

Although many studies have been carried out to improve the Ptidej and

DeMIMA pattern detection systems, limitations and issues are still present. For

example, Ptidej and DeMIMA offer a fixed set of design patterns which can be looked

for in any reverse-engineered source code. The design patterns are described in the

form of a Constraint Satisfaction Problem (CSP). As a result, Ptidej and DeMIMA

have a fixed and hard coded specialised constraints library to describe the design

patterns [3].

So, again, these pattern detection systems are restricted to a hard coded design

patterns. Furthermore, the outputs of Ptidej detection systems are not all the exact

instances of a chosen pattern. In fact, the result of the detection process includes a

considerable number of similar patterns. Finally, the result is shown in textual format.

Clearly, this is unlike the general pattern detection system which this research aims to

accomplish.

60 | P a g e

The final point is that the current pattern detection systems represent patterns

either in a new or in a special language to transform the patterns from their UML

diagrams. In the case of using a new language, this has the shortcoming of being textual

and not graphical. Also, this requires the user of such a system to study this language.

This leads to making such systems as not easy-to-use systems. In the case of UML

transformation, a considerable chance of lost information is present [61]. As a result,

this research aims to overcome the issues discussed above in pattern detection systems

by proposing a system which is efficient, easy-to-use, and fully automated.

Furthermore, it should rely on a formal, graphical, and easy-to-understand pattern

description language.

3.2.4 Other detection approaches

3.2.4.1 Tsantalis et al. approach

Tsantalis et al. (2006) [8] have proposed a new pattern detection approach

which uses similarity scoring between graph vertices in order to find the pattern

instances. In this approach each pattern’s relation (generalisation, association, …..) are

shown as a matrix of size n×n where n is the number of classes in the pattern. The

same applies to the program representation. As a result, the pattern as well as the source

code are represented as adjacency Matrices. So, if we have a pattern P that has 3 classes

A, B, and C, and the class A and C are in generalisation relation which means that C

inherit from A, the adjust matric for this relation as follows:

 A B C
A
B
C

൥
0 0 0
0 0 0
1 0 0

൩

P a g e | 61

A pattern and the software system are divided into subsystems matrices. A subsystem

is a set of components or pattern participants that form a hierarchy structure.

Next, a specialised algorithm is used to calculate similarity scoring between vertices of

all matrices for the pattern with the corresponding ones for the source code in order to

find the pattern instances.

The authors have tested their approach on three large scale software systems,

namely JHotDraw, JRefactory, and JUnit. The patterns used in their experiment are:

Adapter/Command State/Strategy, Composite, Decorator, Visitor, Observer, and

Prototype. The approach provides a very efficient way for pattern detection.

Furthermore, unlike other pattern detection approaches and systems, the amount of

memory needed for the pattern detection is at the minimum.

Although the approach offers a very efficient methodology for design patterns

detection, it is limited to a fixed, predefined, and hard coded set of patterns to be

detected. In addition, as the approach relies on similarity scoring where the score

between matrices bounds in the range of 0 and 1, it cannot find all exact instances.

Rather, it indicates the instances with higher similarity scores. Moreover, the

construction of subsystems might introduce invalid or unnecessary candidates,

especially when a subsystem is linked to two or more hierarchy roots. Furthermore,

the approach does not provide or use any reasoning methods on the detected instances.

In addition, as the authors claim that the approach has been implemented, it was not

possible to find a tool which implements the approach in order to tests the approach

with other patterns and software source codes.

On the other hand, in this research aims to offer a methodology for a general

pattern detection. So, the user can detect any design or user-defined patterns. Moreover,

62 | P a g e

specifying the pattern (Codecharts) is rather easier as it is visual but formal. In addition,

the algorithm proposed in this research is designed to find all exact instances of a given

pattern in a given source code. This will be integrated with the TTP Toolkit (a tool

support for Codecharts) which will be used as well for reasoning and verifying the

pattern instances detected by our algorithm. As this research aims to integrate the

pattern detection approach in the TTP Toolkit, it will be available for testing and further

investigations on the TTP Toolkit at ttp.essex.ac.uk.

3.2.4.2 Dong et al. approach (DP-Miner)

Dong et al. (2007) [5] have introduced their approach for pattern detection

named Design Pattern Miner (DP-Miner). The approach is divided into three phases:

structural analysis, behavioural analysis, and semantic analysis. The approach uses a

manner of matrices, weight, and type in order to represent a pattern. In addition, it uses

the same manner for representing the reverse-engineered software system source code.

With such representation, the authors propose an algorithm to calculate the similarity

and find the pattern instances statically for further behavioural analysis.

The DP-Miner pattern detection system was developed on this approach. In

addition, the authors conducted a case study in order to test and evaluate the approach

and the DP-miner tool support. The case study was to find a number design pattern

(namely: Adapter, Composite, Strategy, and Bridge patterns) in a large scale open

source code, which was Java.awt package in JDK 1_4. The detected instances are

shown in the textual form as a table and in the visual form as a class diagram.

Although DP-Miner seems to be an efficient, user-friendly, and complete

pattern detection system, it has a number of limitations and issues. First of all, it is,

like other pattern detection systems, only limited to a fixed, pre-defined, and hard coded

P a g e | 63

set of design patterns to be detected. Currently, it is limited to only 4 design patterns,

namely Adapter, Composite, Strategy, and Bridge patterns. On the other hand, as

mentioned before, this research aims to offer a general pattern detection approach for

detecting design, security, and user-defined patterns; whereas this could overflow in

the DP-Miner as the optimisation of it relies on the attributes number, which might be

large for a general pattern detection system.

In addition, DP-Miner has no reasoning in the detected pattern instances.

Moreover, the correct instances are manually checked in the source code by an expert

human interaction. This makes it a semi-automatic pattern detection. However, this

research pattern detection approach, as mentioned before, will be integrated in the TTP

Toolkit and will be using the TTP Toolkit verifier to check the instances and reasoning

in them.

Finally, DP-Miner employs in the search algorithm the semantics which are

shown in source code design documentation, inline codes comments, methods and

classes naming. It is obvious that if a correct, clear, and up-to-date documentation of

the source code is available, then there is no need for pattern detection. In addition,

inline code comments are often more misleading for humans than pattern detection.

Therefore, relying on these might be misleading and might cause the elimination of

some correct instances. This dependency on the semantics introduces the possibility

that DP-miner might miss or drop some correct instances. Therefore, it cannot be said

that DP-Miner finds all the pattern instances, unlike the pattern detection approach in

this research which aims to find all instances.

64 | P a g e

3.2.4.3 Uchiyama et al. approach

A new approach was introduced by Uchiyama et al. (2014) [94] in order to

detect design patterns from an object-oriented source code. The approach aims to solve

the problem of detecting patterns with same class structure. In addition, it aims to solve

the problem of finding a pattern when pattern applications are different. Furthermore,

the approach is limited to the Java source code.

In order to solve the above mentioned problems, the approach employs machine

learning and source code matrices. The approach is developed to solve the problem of

pattern detection automatically. However, human interaction is essential in the role

judgment phase as well as some other steps.

In this approach, the pattern is described using the GQM method (Goal

Question Metric). However, this method has a problem in effectiveness and ease-of-

use [103]. Moreover, describing a pattern using such a method requires patterns’

specialists and experience. Additionally, beside the fact that the output is textual

descriptions, the problem of lack of Questions might occur. This leads to unsatisfactory

results in the approach phases as well as a loss of patterns information. In this research,

using Codecharts offers a visual and formal method to describe the decidable

descriptions of a pattern. Furthermore, the tool support TTP Toolkit [13] offers user

friendly interface to describe a pattern.

The patterns to be detected in Uchiyama et al. [94] approach are only 5 hard-

coded and fixed sets of patterns, in contrast, this research overcomes this limitation as

it offers an approach to detect any well-known design patterns modelled using

Codecharts. Moreover, this research facilitate detecting any user defined patterns.

P a g e | 65

Therefore, pattern detection in this research can be regarded as a general pattern

detection approach.

The detection process in current pattern detection approaches relies on relations

among components in patterns and on relations among source code components. In the

approach proposed by [94], they only consider a limited set of relations which are only

4 relations, namely inheritance, interface, implementation, and aggregation. Unlike this

research which aims to consider more relations by using Codecharts in order to employ

them to gain more accurate and specified results. This research considers the following

relations: Call, Return, Forward, Produce, Create, Member, and others beside the

relations mentioned in the compared-with approach.

Finally, in this research, a specialised algorithm has been developed to detect

patterns instances from the Java source code or any object-oriented source code that

can be model-extracted using TTP Toolkit. The algorithm finds all instances and locate

them in the source code in a fully automated process, whereas the [94] approach relies

on manual human judgement to decide the most likely to be a class playing a role in a

pattern. Moreover, it does not find all instances of a pattern compared with the pattern

detection in this research; in fact, it ranks classes from a source code according to its

relevance to the role of each participant in a pattern.

3.2.4.4 Mirakhorli et al. approach

Mirakhorli et al. (2012) [104] have introduced their approach for detecting

tactics. The authors distinguish clearly between a tactic and a design pattern as they

refer to the former to be a group of classes and their association, and the latter to be a

group of roles and interactions. The approach aims to solve the problem of automating

66 | P a g e

the construction of traceability links for architectural tactics. The solution proposed in

this approach relies on machine learning, information retrieval, and structural analysis.

As mentioned, Mirakhorli et al [104] approach defines a tactic in terms of roles

and interactions. However, the authors divide the roles into two categories: primary

roles and additional roles. In their approach, they consider only the primary roles to be

detected, where there are usually two roles in each tactic considered in their work.

The tactics in Mirakhorli et al [104] approach are described using tTIMs (Tactic

Traceability Information Models) in order to describe the design decisions [105]. tTIMs

provides infrastructure to visualise software architecture decisions using UML-like

diagrams. Although the tTIMs is a great method to help in understanding the software

architecture, tTIMs is not formally defined. In this research, design obligations are

described using a formal and visual method, which is Codecharts. Formality is essential

when rigorous reasoning about the results is needed. Consequently, in this research you

use the TTP Toolkit automatic verifier [13] in order to verify the output of the pattern

detection approach of this research, whereas in Mirakhorli et al approach, the

verification process is done all manually and with the need of experts to carry it out.

After describing the design decisions, the approach of Mirakhorli et al needs a

human interaction in order to link the architectural elements to proxies in the source

code. This interaction needs to be with the developer or the analyst. The mapping is

important in order to have traceability information inherited in tTIMs; however, the

mapping is done manually, which makes this approach a semi-automatic approach.

 This research aims to find all instances of a given design pattern in a given

source code. This makes the pattern detection, of this research, surpasses Mirakhorli et

al approach which uses Information retrieval to detect instances of design decisions

P a g e | 67

and Information retrieval depends on terminology, so some instances might be missed.

Furthermore, the authors [104] highlight the risks of the correctness of the training and

test sets as well as the time efficiency. Finally, in this research, in order to detect all

instances from a given source code, the detection relies on design decisions showed as

a visual and formal input (Codecharts). However, beside tTIMs of the architectural

decisions, Mirakhorli et al approach requires a source code and its documentations in

advance in order to pre-analyse the result and enhance the results when needed.

68 | P a g e

4 Security Patterns Formalisation

Note: some parts of this chapter were published in:

Alzahrani, Abdullah A. H., and Amnon Eden. 2013. ‘UML versus LePUS3 for

Modelling Structure of Security Patterns’. In, 260–69. Kyiv, UA: Cybernetics Faculty

of Taras Shevchenko National University of Kyiv.

Design patterns formalisation is the process of having the pattern in a formal

and precise representation for further investigations. In this chapter, the formalization

investigation on security design patterns using Codecharts will be elaborated and

discussed. This includes highlighting the issues in the current security patterns

catalogues and descriptions. Furthermore, an analysis of reasons, which make

Codecharts might outperform other formal and informal representations of the structure

of security design patterns, will be shown.

In addition, this chapter demonstrates the methodology followed in this

research in order to formalise structures of security patterns from the original

descriptions. This includes showing the linkage of the descriptions statement with the

LePUS3 formulas and Codecharts notations. Finally, the outcomes of using this

research methodology of formalising a number of security patterns from different

security patterns catalogues will be shown.

P a g e | 69

4.1 Why security patterns as Codecharts

During the process of software development, many people are involved, such

as software architects, security engineers, designers, implementers, maintainers and

others. Each of those might not have enough knowledge about the others' views on

points which they all share and work on. For example, the implementer and/or designer

might understand that the security engineer needs to secure the communication with

the client by using a password authentication pattern. However, the implementer and/or

designer might have insufficient knowledge or have a different understanding about

the password authentication pattern. This might introduce unnecessary confusion,

which costs time an effort. Therefore, it is essential to clearly deliver the knowledge of

the security engineer to the implementer and/or designer.

This would promote many aspects in all the software development stages. In

the case of security, it will enhance the overall security of the system as it assures that

all people in the development process share the same understanding about the specific

security matter. In addition, it will allow the validation and/or verification team to

check the implementation against clear points. It will also improve the process of

maintaining the software as it will be easier to locate the aspects that the security

engineer delivered to the designer, implementer, verification team and finally the

maintainer [106].

In order to convey expertise, the patterns were introduced. Security design

patterns are solutions to solve reoccurring security problems in a specific domain [9],

[26]. In principle, security patterns are design patterns but they are for a specific

domain, namely the security domain. Security patterns have gained a growing amount

70 | P a g e

of interest. As a result, many researchers have introduced much research to describe,

classify, detect, and verify security patterns.

In the case of security patterns descriptions, many have introduced patterns in

many templates in order to improve the current descriptions of security patterns [1],

[9], [26], [28], [29], [106]. The templates are similar to some extent. They usually

combine the use of an informal description (expressed in the English language) with

the use of UML class diagrams and sequence diagrams to demonstrate the structure and

the behaviour, respectively, of a pattern. However, the descriptions of security patterns

still suffer from a number of issues which can be noticed when putting them into

practice. These issues are lack of precision, ambiguity and inconsistency between

different descriptions of the same pattern.

Lack of precision and ambiguity are shown in all well-known security patterns

catalogues in many forms. One example is the use of a natural human language to

describe the pattern. It is obvious that the human language can be interpreted differently

form one person to another. This makes it difficult to assure the identical understanding

of the pattern by all the people involved.

In order to allow for understanding, implementing, verifying and/or detecting

instances of security patterns, it is important to model them in a graphical, formal and

elegant design description language. UML is a graphical modelling language. This

makes it more useful and comprehensive when describing any design pattern. In other

words, it is better than using a mathematical or textual representation for a pattern

solution. However, UML diagrams are not formal, and therefore they cannot be used

for rigorous reasoning for the patterns.

P a g e | 71

This research proposes the use of Codecharts for modelling the patterns, in

particular security patterns. By modelling security patterns using Codecharts, the

architectural and structural aspects of the patterns solution are to be modelled. A

number of reasons are behind our choice of using Codecharts. These reasons are as

follows:

1. Modelling abstraction;

2. Formality and tool support; and

3. Modelling Security properties.

4.1.1 Modelling abstraction

Abstraction is an important property in the modelling language. It is tangibly

beneficial especially when modelling a large-scale software as well as when taking

place in patterns. Codecharts has a number of elements (vocabulary) which

demonstrate abstraction when modelling a pattern. For the context of modelling

security patterns, the following elements are the interests and the focus (vocabulary):

a) 1 -Dim Hierarchy; b) 1-Dim Signature; c) 1-Dim Class. While studying security

patterns catalogues and descriptions, it was noticed that some patterns are described in

an abstract way.

An example of abstraction is that in the description of the Intercepting Validator

Pattern in the statement of “Intercepting Validator retrieves the appropriate validators

according to the configuration for the target” [26]. This is clearly indicating the use of

dynamic binding, especially as it is also stated, in the description, that “Intercepting

Validator invokes a series of validators” and “Each Validator validates and scrubs the

72 | P a g e

request data, if necessary". In the UML class diagram modelling this statement has

gone far too abstract as shown in Figure 18. It can be seen that in order to model this

statement in Figure 18, Intercepting Validator has a dependency relation with Validator

labelled by “creates”. This might lead to the misunderstanding that there is only one

class called “Validator” and it encapsulates all the validation process.

Figure 18: UML class diagram: Intercepting Validator Pattern [26]

If considering modelling them in a better way using UML, the above discussed

statements in Intercepting Validator Pattern description could be modelled as shown in

Figure 19. However, this would also not help with capturing the abstraction of the

statement in the pattern's description. It is clear that 2 more class symbols (besides the

existing one) are introduced to illustrate the idea of different validators. On the other

hand, in Codecharts, it is possible to model the same statement using only one symbol

which is a 1-Dim Hierarchy symbol as shown in Figure 20.

P a g e | 73

Figure 19: UML class diagram for modelling a different Validator in the Intercepting Validator
pattern

Figure 20: Codechart modelling a different Validator in the Intercepting Validator Pattern

In conclusion, if the UML class diagram does not reflect the patterns structure

description, which is informal statements, this will introduce an issue of precision. The

UML class diagram is a good way to represent the structure of a pattern. However, it

does not help with modelling abstract structure effectively, whereas Codecharts can

model the abstract structure in a more elegant and effective manner, as the latter

provides few symbols which can be used to represent abstract aspects of the pattern's

structure.

74 | P a g e

4.1.2 Formality and tool support

Formality is important when rigorous reasoning is needed. For example, in

order to verify that a pattern is implemented in a source code, it is necessary to have

the pattern formally represented. Security patterns are described using informal human

language statements and UML diagrams. However, UML is an informal modelling

language [56]. This means that is not based on formal semantics. Therefore, it cannot

be used to represent the design or security design patterns formally.

Formal representation of the pattern allows many things to be carried out on it.

For example, it allows searching for the instance of the pattern in the source code. It

also allows for verifying source code conformance to the pattern as mentioned earlier.

However, many researchers [55], [57], [59]–[62], [64], [80] have introduced their

approaches to add formality to the UML diagrams. Several formal languages have been

proposed to formalise the UML semantics. The most dominant languages are OCL,

Description Logic (DL) languages and Z. However, these languages differ in their

capability of representing UML properties.

For the context of formally representing the structure of the security pattern

form a UML class diagram, using these languages introduces a risk of losing

information as the languages might not be able to capture some UML properties, for

instance, UML dependency in DLs languages [55] and interface notation in Z [86].

Another issue with using these languages is the problem of tools supporting

automatic translation of the UML class diagram to the desired formal language. In the

case of DL languages, the most well-known tools are FACT [83] and RACER [84].

However, these tools are suffering from a considerable efficiency issue as well as they

do not support all UML properties [64]. In the case of using Z language, many have

P a g e | 75

introduced their approaches to translate the UML class diagram to Z. However, these

approaches have not been combined with tools to automate the translation process, or

the tools are not available to be tried and tested.

On the other hand, Codecharts diagrams depend on (are based on) a formal

language, which is First Order Predicate Logic (FOPL). Each element shown on the

Codecharts diagram (Codechart) has a formal and semantic meaning. So, this shortcuts

the process of detecting instances of the pattern structure as there will be no need for

finding a suitable translation language and a tool for automating the translation process.

Moreover, Codecharts has a tool support, the TTP Toolkit [13], which offers

functionality such as automatic translation of the Codecharts diagram from graphical

representation into LePUS3 and Class-Z formal schema, model extraction of java-

based source code, and verification of Codecharts diagrams against source code. In

order to show this tool in action, the formal representation of Figure 20 has been auto-

generated and the result obtained from the tool is illustrated in Figure 21.

Figure 21: Auto-generated LePUS3 and Class-Z schema

76 | P a g e

4.1.3 Modelling Security properties

The most important and key feature that Codecharts can offer for modelling

patterns, especially security patterns, is the ability to model and identify the secured

components in the patterns and/or the system. These secured components are usually

identified as components within the system boundary. It can be seen in Figure 22 that

the secured components are gathered and surrounded by the -rectangle which is

labelled “System”.

Figure 22: UML class diagram: Single Access Point [106]

Codecharts can be used to identify the secured components and formally model

the system boundary which other languages cannot. Codecharts has an interesting

symbol, called exclusivity symbol, which indicates either LEFT exclusive or RIGHT

exclusive predicate [38]. This symbol serves information hiding or neglecting when

P a g e | 77

modelling a pattern. For example, in the description of Single Access Point Pattern

(SAP) in [106], it is expressed that the internal components can communicate with each

other and/or with the single access point; however, external entities cannot

communicate with the internal components except via a single access point participant

in Figure 22. This has not been represented effectively in the UML diagram. In

addition, it might not be possible to translate into any formal language as the UML

class diagram has no notation expressing such a constraint. This issue can be solved

when using Codecharts to model the pattern as shown in Figure 24.

4.2 Our Formalisation methodology

In this research, an approach have developed in order to be used when

formalising any security patterns. This approach was developed after thorough analysis

of a number of well-known security patterns catalogues [1], [9], [26], [28], [106]. The

main outcome of this analysis was this approach, which aims to link the informal

statements in the patterns description with the formal Codecharts notations.

The approach uses a pattern description which should be following the security

patterns description template used currently in the existing catalogues [1], [9]. The

approach is meant to take the “Solution” section of the pattern description and to

analyse it. Then, it takes the clear and precise statements and converts them to

Codecharts notations.

78 | P a g e

The precise statements are identified by the clear key words shown in the Table

3. These key words are the guidelines for our approach in the process of formalising

the statements in the descriptions of patterns into Codecharts notations. Consequently,

the notations form a single Codecharts.

Table 3: Our methodology for formalising security patterns from descriptions of pattern
structure

Informal Statements LePUS3 formula Codechart notation
(visual notations)

:

- Participant:
 ……:ݔ -
- … consists of …

classes…

 (ݔ)ݏݏ݈ܽܥ

or

 (ܺ,ݏݏ݈ܽܥ)ܮܮܣ

 implements a ݔ -
method to …

 provides an ݔ -
interface …

 defines a ݔ -
method..

 provides a set ݔ -
of actions

 (ݕ)݁ݎݑݐܽ݊݃݅ܵ

or

 (ܻ,݁ݎݑݐܽ݊݃݅ܵ)ܮܮܣ

 implements a ݔ -
method to …

 provides an ݔ -
interface …

 defines a ݔ -
method..

 provides a ݔ..… -
set of actions

-

ݔ ⊗ ݕ

Or

ݔ ⊗ ܻ

Or

ܺ ⊗ ݕ

P a g e | 79

Or

ܺ⊗ ܻ

 ݕ uses ݔ -
 defines an ݔ -

instance of ݕ
 keep/hold a ݔ -

reference of ݕ
-

 (ݕ,ݔ)ݎܾ݁݉݁ܯ

Or

 (ܻ,ݔ,ݎܾ݁݉݁ܯ)	ܮܣܱܶܶ

Or

 (ܻ,ܺ,ݎܾ݁݉݁ܯ)	ܮܣܱܶܶ

Or

,ܺ,ݎܾ݁݉݁ܯ)	ܮܣܱܶܶ (ݕ

 s’ݕ invokes ݔ -
method

 triggers ݔ -
actions…

 submits the ݔ -
request

-

,ݔ)݈݈ܽܥ (ݕ

Or

,݈݈ܽܥ)	ܮܣܱܶܶ (ܻ,ݔ

Or

 (ܻ,ܺ,݈݈ܽܥ)	ܮܣܱܶܶ

Or

 (ݕ,ܺ,݈݈ܽܥ)	ܮܣܱܶܶ

80 | P a g e

 returns a ݔ -
generic failed
login message.

 provides ݔ -
information
about its users…

 grants ݔ -
messages access

 (ݕ,ݔ)݊ݎݑݐܴ݁

Or

,݊ݎݑݐܴ݁)	ܮܣܱܶܶ (ܻ,ݔ

Or

 (ݕ,ܺ,݊ݎݑݐܴ݁)	ܮܣܱܶܶ

Or

 (ܻ,ܺ,݊ݎݑݐܴ݁)	ܮܣܱܶܶ

 defines an ݔ -
instance of ݕ

 ݕ creates a ݔ -
instance

-

 (ݕ,ݔ)݁ݐܽ݁ݎܥ

Or

 (ܻ,ݔ,݁ݐܽ݁ݎܥ)	ܮܣܱܶܶ

Or

,ܺ,݁ݐܽ݁ݎܥ)	ܮܣܱܶܶ (ݕ

Or

 (ܻ,ܺ,݁ݐܽ݁ݎܥ)	ܮܣܱܶܶ

 the ݕ passes the ݔ -
request…..

 forwards data ݔ -
to…

 (ݕ,ݔ)݀ݎܽݓݎ݋ܨ

Or

 (ܻ,ݔ,݀ݎܽݓݎ݋ܨ)	ܮܣܱܶܶ

Or

,ܺ,݀ݎܽݓݎ݋ܨ)	ܮܣܱܶܶ (ݕ

Or

 (ܻ,ܺ,݀ݎܽݓݎ݋ܨ)	ܮܣܱܶܶ

 provides a ݔ -
means for
separating
responsibility
through
inheritance

,ݔ)ݐ݅ݎℎ݁݊ܫ (ݕ

Or

 (ݕ,ܺ,ݐ݅ݎℎ݁݊ܫ)	ܮܣܱܶܶ

P a g e | 81

 ݕ inherits from ݔ -
 can be nested ݔ -

so that more
senior roles
inherit the
privileges of
junior roles.

- Define or re-use
an interface to be
used by your
CHECKPOINT
…… Implement
required concrete
CHECKPOINT
…… at least one
concrete
CHECKPOINT
implementation
is needed

Or

 (ܺ,ݏݏ݈ܽܥ)ܮܮܣ

 prevents ݔ -
external entities
from
communicating
directly with ݕ in
the system

- communication
between ݔ and
the ݕ may not be
overheard by
external entities.

 defines one ݔ -
single interface
for all
communication
with system
external entities

-

,ݎܾ݁݉݁ܯ)ܧܸܫܷܵܮܥܺܧܶܨܧܮ ,ݔ

Or

,ݔ,݈݈ܽܥ)ܧܸܫܷܵܮܥܺܧܶܨܧܮ (ݕ

Or

,݁ݐܽ݁ݎܥ)ܧܸܫܷܵܮܥܺܧܶܨܧܮ ݕ,ݔ

 contains a set ݔ -
of privileges

-

 	(ݕ,ݔ)݁ݐܽ݃݁ݎ݃݃ܣ

Or

,݁ݐܽ݃݁ݎ݃݃ܣ)	ܮܣܱܶܶ (ܻ,ݔ

Or

 (ܻ,ܺ,݁ݐܽ݃݁ݎ݃݃ܣ)	ܮܣܱܶܶ

Or

,ܺ,݁ݐܽ݃݁ݎ݃݃ܣ)	ܮܣܱܶܶ (ݕ

82 | P a g e

As it can be seen in Table 3, the key words are taken from the patterns

description statements, which are commonly used. The second and the third columns

of the above table show the formal interpretations of the statements having the key

words in the form of LePU3 formulas and their graphical notations in Codecharts.

Finally, in order to formalise the security patterns, the above approach has been

adopted in this research. The following section shows and discusses a number of

formalised security patterns. The diagrams in the following section are the outcomes

of the approach, shown in this section, and the pattern descriptions that this research

investigated.

4.3 Formalised security patterns

Using our methodology shown in the previous section, a number of security

design patterns from different security patterns catalogues have been formalised using

Codecharts. This section shows and discusses the formalised patterns as Codecharts,

which are the outcomes of using our methodology to analyse the patterns descriptions

and formulise the structure and architecture of the investigated patterns. The number

of the formalised patterns using Codecharts is more than 16 patterns from 5 different

catalogues [9], [26], [28], [106], [107].

In this section, some of the patterns which have been formalised using

Codecharts are selected in order to discuss the features and the benefits of using

Codecharts to formally model security patterns. Namely, Single Access Point pattern

(Figure 24) and Intercepting Validator pattern (Figure 26) are selected to be shown and

discussed. More formally modelled security patterns can be found in APPENDIX A.

P a g e | 83

4.3.1 Single Access Point pattern in Codecharts

Single Access Point (SAP) is one of the well-known security design patterns. It

is implemented in many secured systems. Wassermann et al. [106] has described SAP

using the common design patterns description catalogue. Table 4 abbreviated the

pattern description from its original catalogue. In addition, Figure 23 illustrates the

UML class diagram which has been used in the original catalogue to demonstrate the

patterns structure and architecture.

Table 4: Single Access Point pattern [106] (abbreviated)

Intent Single Access Point pattern limits all communications form outside
to one single interface in order to control and monitor.

Structure The Single Access Point represents the systems’ only connection to
the outside. All incoming communication requests are passed to the
Single Access Point instance. From there, they will be directed to the
intended recipient, if all security relevant requirements are met. ……
The class Single Access Point (SAP) is the only one that interacts
with external entities.

Participants External Entities: they are components located outside the systems
boundary. They contact the SAP in order to communicate with
internal entities. Internal Entities: they are all components located
inside the systems boundary. Single Access Point: it provides an
interface that allows external parties to communicate with system
internal components, gathers information about the occurring access
requests, their origin and authorisation information, triggers actions
or forwards data to parties inside the system.

84 | P a g e

Figure 23:UML class diagram: Single Access Point Pattern [106]

As it can be seen from the diagram in Figure 23, not all the statements of the

pattern structure and architecture are depicted in the diagram. For instance, the

statement “The class Single Access Point (SAP) is the only one that interacts with

external entities” demonstrates a security property which can be captured using

Codecharts by means of exclusive operator (Exclamation symbol) as can be seen in

Figure 24.

Exclusive operator (Exclamation symbol) appears in Figure 24 on the Call

relation symbol between the elements named Access and secureAction. It represents

an important feature which can be used to present “Access Control” in security patterns.

P a g e | 85

Figure 24: Codecharts: Single Access Point pattern (SAP)

Table 5 gives a brief description on the elements shown in Figure 24. This will

clarify more on how Codecharts outperform UML the class diagram in depicting

patterns architecture. Furthermore, abstraction in the description of the patterns

structure is detailed in a misleading manner. For example, the “Internal Entities” are

illustrated in Figure 23 by three named classes and operations in classes (CustomerDB,

CustomerRecord, and ProductDB). This will be additionally solved when using

Codecharts by means of class variables and signature variables as can be seen in Figure

24.

86 | P a g e

Table 5: Explanation of tokens in Figure 24

Class variables (Client, SAP,
accessLog, InternalComponent,
RecipientUnknownOrRecipient
Unavailable)

Represent classes and interfaces.

Binary relations (Call) Represent relation between components.

Signatures variables (Access,
SecureAction, logAccess,
AvailabilityChecker,
showMessage, createEntity)

represent signatures of methods in classes

A signature over a class
(superimposition)

is called a superimposition which represents a method.
An example of such superimposition is Access
superimposed on SAP which is a superimposition
representing a method whose signature is Access and is
in class SAP.

! symbol shown on the Call relation between Access
(superimposed on SAP) and SecureAction
(superimposed on InternalComponent) represent Left
Exclusive operator which means if and only if
SecureAction (superimposed on InternalComponent) is
in Call relation and SecureAction (superimposed on
InternalComponent) is the callee then the caller must be
Access (superimposed on SAP).

P a g e | 87

4.3.2 Intercepting Validator pattern in Codecharts

Intercepting Validator is also a well-known security design pattern. It has been

introduced to solve the problems of requests that contain invalid or harmful data. One

example of Intercepting validator application is the validator of SQL injections. So, the

main aim of this pattern is to check the data before processing it in order to make sure

that no attack codes are included in the requests.

 Alur et al. [26] have described Intercepting validator pattern in their

catalogue. Although the authors of this catalogue aimed to be as clear as possible with

reserving the abstraction level of patterns, some ambiguity can be noticed in the

catalogue. In addition, ambiguity can be noticed in the UML diagrams, which are used

to describe patterns aspects.

A UML class diagram is used to present the pattern structure and architecture.

This diagram is shown in Figure 25. However, with a glance at Figure 25, it can be

seen clearly that the diagram suffers from ambiguity. For instance, it can be seen that

the SecureBaseAction class has a relation labelled “validates parameters” with the

InterceptingValidator class. This relation can be interpreted differently by

implementer. In addition, the diagrams only show classes (boxes) with nothing inside.

Therefore, these are an ambiguous way to present the pattern.

88 | P a g e

Figure 25: UML class diagram: Intercepting Validator Pattern [26]

Furthermore, it is important to ask whether the diagram reflects the description

itself. The following quote is from the same pattern description which is used Figure

25 to present the pattern structure. However, the level of object-oriented abstraction

shown in the statements of the quote could not be presented. This is having an

“abstract” Validator class to represent all types of validators. Even if this was shown,

it would be shown using at least three tokens (validators), as can be seen in Figure 19.

 “InterceptingValidator retrieves the appropriate validators according to the

configuration for the target. InterceptingValidator invokes a series of validators as

configured. Each Validator validates and scrubs the request data, if necessary.” [26]

The aforementioned issues can be solved when using Codecharts. Therefore,

the Intercepting Validator pattern description [26] has been analysed and the formal

modelling of this pattern is introduced and demonstrated in Figure 26. Unlike Figure

25, each element shown in Figure 26 does have only one meaning and a formal

representation. This improves the precision; however, it does not impact the level of

abstraction shown in the pattern description.

P a g e | 89

Figure 26: Codecharts: Intercepting Validator pattern

As can be seen from Figure 26, the issues of modelling the abstraction in the

pattern description formally, precisely, and concisely can be solved using the Hierarchy

variable, which represents any set of classes that has a superclass. The other notations

in Figure 26 are similar to the ones that have been explained earlier when Figure 24

was discussed. However, for more details and explanations on the notations of

Codecharts, these [38], [108] would provide a useful manual and references on

Codecharts and LePUS3.

4.3.3 Formality in the Codecharts of patterns

Although Single Access Point and Intercepting Validator patterns shown in

Figure 24 and Figure 26 are visually presented in Codecharts, this does not mean that

these two types of modelling are not formal modelling. Figure 27 illustrates the

formality behind the visual modelling of SAP pattern shown in Figure 24. In addition,

Figure 28 demonstrates the formalisation of the visual modelling of Intercepting

Validator pattern shown in Figure 26.

90 | P a g e

Figure 27: LePUS3 and Class-Z schema of SAP

Figure 28: LePUS3 and Class-Z schema of Intercepting Validator

It is important to mention here that these formal schemas are not the outputs of

Codecharts transformation. In fact, these are the formal face of the shown Codecharts.

Furthermore, in order to auto-generate these schemas from the Codecharts, an

advantage was taken of the TTP Toolkit [13], which is the tool support of Codecharts.

P a g e | 91

4.4 Summary

In this chapter, issues in the current security patterns catalogues have been

discussed. These are informality, lack of precision, and ambiguity. Furthermore,

critical analysis has been shown in order to highlight and explain the reasons which

might make Codecharts outperform other formal and informal representations of the

structure of security design patterns.

Furthermore, in this chapter, the methodology of formalising structures of

security patterns from the original descriptions has been demonstrated. This includes

showing the linkage of the descriptions statement with the LePUS3 formulas and

Codecharts notations. Finally, the outcomes of using our methodology for formalising

a number of security design patterns from different security patterns catalogues have

been shown.

The number of security design patterns formalised using Codecharts are more

than 16 patterns. Single Access Point and Intercepting Validator have been shown and

discussed in this chapter. However, more formally modelled security patterns can be

found in APPENDIX A. The Codecharts of those patterns will be used as inputs for

further investigation of the security patterns. The investigation will be carried out on

analysing the relations among patterns, patterns variations, conformance checking, and

pattern detection.

92 | P a g e

5 Variations in Security patterns and relations
among patterns

Note: some parts of this chapter were published in:

Alzahrani, A.A.H., A.H. Eden, and M.Z. Yafi. 2014. ‘Structural Analysis of the

Check Point Pattern’. In 2014 IEEE 8th International Symposium on Service Oriented

System Engineering (SOSE), 404–8. doi:10.1109/SOSE.2014.56.

Many issues exist in the current security pattern catalogues. For example, some

of the current catalogues [9], [27], [109] describe the same patterns such as Single

Access Point, Check Point, Full View With Error, and others; however, are the

descriptions of the same patterns consistent? What are the consequences of not being

consistent?

Another issue, which exists in the current security catalogues, is the claims of

relations among security patterns and with design patterns. These claims are often

shown in a designated section, which is the patterns description template called

“Related Pattern”. Indeed, it is useful to know what other patterns are related to the

pattern at hand when studying a pattern. However, having these “strong” claims of

relations without validating and investigating them might result in incorrect

implementation of the patterns.

Therefore, this chapter discusses the issues of the inconsistency of descriptions

of the same patterns in security pattern catalogues. In addition, the problem, of the non-

validated claims of relations among security patterns and with design patterns, will be

P a g e | 93

highlighted and discussed. Our investigation of the above mentioned issues is

conducted using Codecharts and a number of security patterns.

5.1 Variations in Security patterns

Security patterns are to be implemented at the end. Therefore, they have been

described and shown in catalogues to allow any interested person to understand them

and apply them in systems which need to overcome a security issue that patterns are

authored for. A number of security patterns catalogues are describing the same

patterns. For instance, Single Access Point is described in [9], [27], [109]. However,

are the descriptions consistent?

Security patterns catalogues describe patterns differently. For example, one

catalogue emphasises more in the description of Single Access Point on the structure

[27]. Another emphasises more in the description of the pattern on the concrete

application and dynamic behaviour [9]. Others emphasise more on showing the pattern

as a part of a framework which combines a set of security patterns [109].

Although each catalogue describes the pattern in a common template, the

catalogues fail to be consistent in describing the same pattern. Inconsistency raises

many issues such the issue of sharing the same understanding among the people

involved in the system development life cycle. In order to ensure the correct

implementation of a pattern, it is important that implementers, designers, security

architects, verification and validation teams, and maintainers share the same

understanding of the pattern.

Furthermore, precision is important in reasoning out the security pattern. Here,

the term ‘reasoning’ means the verification of the implementation of the pattern in the

94 | P a g e

source code. Moreover, when automating this verification process, the need for

precision emerges again. Therefore, the current issue of inconsistency in describing the

same patterns needs to be tackled.

In order to tackle the above mentioned issues, the patterns need to be formalised

with one of the formalisation languages. When aiming to formalise a pattern from one

of the catalogues, it is important to know what to formalise. Obviously, security

patterns catalogues share a similar description template [9], [26]–[28], [107], [109].

This template has two important sections which are the problem (pattern motivation)

and the solution (pattern structure and behaviours).

Formalisation of a security pattern focuses on the solution section for pattern

description. This section gathers statements and often the UML diagram describing the

patterns. The information in this section is used to understand and implement the

pattern. Therefore, formalising the information in this section reflects formalising the

pattern.

In this research direction, Codecharts have been chosen for formalising the

patterns. The choice of Codechart has been discussed and explained in former chapter

in the section entitled Security Patterns Formalisation. However, it is important to

mention here that the formalisation will be carried out on the static structure described

in the solution section of the pattern description. A number of reasons are behind this.

First, Codecharts are limited to formalise static structure. Second, formalising the

structure of the pattern provides the base for behaviour formalisation. Third, the

information about structure is richer than the information about behaviour as the former

gathers much core information such as inheritance, dependency, production, etc.

P a g e | 95

Back to security patterns catalogues, it can be easily noticed that there are

differences in the descriptions of the same pattern. Having Check Point Pattern as a

case study, the pattern is described in [9] and [27] differently. Using Codecharts to

formalise and analyse the pattern, it can be proven formally and visually that the pattern

is not consistent in the two catalogues. This has led us to the term “pattern variant”. A

pattern variant can be regarded as a different version of a pattern which has been

standardised in a number of security patterns catalogues.

Bayley et al. [110] have addressed this issue of specifying patterns variants in

their work of formalising design patterns using FOL and GEBNF. The authors have

introduced an approach in order to improve on their previous work [111] of formalising

structure of patterns. This approach was to improve on the accuracy on patters

specifications as well as to tackle ambiguity in informal descriptions of patterns.

Furthermore, it is used to reports on patterns variations.

Bayley et al. introduced a use of a set of keywords to allow specifying a pattern

and its variants. They keywords are: “Optional”, “Alternatives”, “Depends on”, and “In

case of”. Each of which has a definition in their approach. Despite the fact that this

approach offers a clearer way of specifying a pattern with all variants in ONE

formalization, the specification of a pattern with variants is still textual. Moreover,

without a good background in logic notations, these specifications cannot be unpacked.

On the other hand, the research in this thesis aims to specify variants of security patterns

using a visual, however, formal specification language (Codecharts). Visual notation

allows easier understanding of patterns and the differences among variants.

Furthermore, as these visual notations (Codecharts) are based on a formal foundation

of FOL predicates, variants can be formally presented, analysed, and evolved.

In addition, in the case of carrying rigorous reasoning (such as pattern

detection), Bayley et al. formalization of any pattern needs to be unpack and variants

96 | P a g e

needs to be separated as reasoning would be conducted for each variant. Therefore, as

the aim in this thesis is to use the formalization of patterns in order to detect patterns

in the source code, the formalization in this thesis shows pattern variants separately.

As a case study aimed to show the pattern variants, the Check Point Pattern,

which is described in [9], has been studied in order to show the main difference in the

structure of the pattern with the description in [27], Figure 29 and the following

statement are taken from the description of the pattern.

“This CHECK POINT interface corresponds to the abstract strategy in

STRATEGY [GoF95]. The interface will provide hooks for I&A, authorization,

handling unsuccessful attempts.” [9].

Figure 29: Check Point (with hierarchy) structure [9]

The description has been analysed and formalised using Codecharts. The results

of the analysis and the formalisation of the pattern are shown in Figure 30. When

Looking at the Codecharts shown in Figure 30 (which formalises the pattern described

P a g e | 97

in [9]) and the Codecharts shown in Figure 31 (which formalises the pattern described

in [27]), the difference can be clearly and visually seen between the pattern’s variants.

Check Point pattern has another variant which is with a hierarchy of “Concrete Check

Point” as described in [9].

Figure 30: Codechart: Check Point pattern with hierarchy

Figure 31: Codecharts: Check Point pattern (CP)

The Check Point patterns in the two catalogue in [9] and [27] are the same in general,

however, they differ in a number of aspects when modelling them formally using

Codecharts on the two descriptions. Starting with the similarity between them, first, the

Check Point patterns in the two catalogues describe a participant called “CheckPoint”

which implements a method for checking the received requests to authenticate and/or

98 | P a g e

authorize the sender of the request. In addition, “CheckPoint” employs a “Policy” to

carry out the authentication and authorization. Furthermore, they describe a

“CounterMeasure” action that is triggered based on the results of the checking.

Moving to the differences between the Check Point patterns in the two catalogues, first,

Schumacher et al. [9] Check Point variant in (Figure 30) demonstrates the

encapsulation of “Policy” in the “CheckPoinHrc” participant as it does not regard it as

a separate class, whereas, Wassermann et al. [27] pattern (Figure 31) separates it from

the “CheckPoint” participant (with the class variable called “Policy”). Second,

Schumacher et al. [9] Check Point variant in (Figure 30) defines an interface (Hierarchy

notation) for “CheckPoinHrc” participant to allow implementing any number of

“CheckPoint” each with a special policy entity, whereas, Wassermann et al. [27]

pattern (Figure 31) does not allow such generality. It is important to mention that the

“Call+” in Wassermann et al. [27] pattern (Figure 31) is a mean of generality in the

pattern as the “+” denotes that the relations can be either direct or indirect, whereas,

the “Call” and Schumacher et al. [9] Check Point variant in (Figure 30) restrict the

relations to be only direct “Call” relations.

The method named “CheckRequest”, which is responsible for checking the

incoming request of access in Figure 30, does not directly trigger the countermeasure

action; instead, it delegates this to another method in the concrete object of

“CheckPointHrc” named “TriggerAction”. Whereas, the Check Point pattern in Figure

31 includes the responsibility of triggering the countermeasure actions in the method

of checking which is named “Check” in the class “CheckPoint”.

In the Check Point variants shown in Figure 30 and Figure 31, the

countermeasure are modelled as a class despite the naming used as these as just

P a g e | 99

variables names base on the Codecharts notations (white box is a viable

class). However, the difference between variants in the countermeasure is that the

variant in Figure 30 specify two different points that variant in Figure 31 does not do.

The first point is that “CounterMeasure” class has a set of methods (“Trigger”) that

each method in this set represents an action which can be called by “TriggerAction”,

whereas, the pattern variant shown in Figure 31 specify that the

countermeasure (“Action”) class has only one method (“Trigger”) which represents

the action to be triggered The second point is that “TriggerAction” can call any method

in the set of methods “Trigger” which are defined in the class “CounterMeasure”.

Moreover, from the formal specifications shown in Figure 32 and Figure 33,

which translate the two Codecharts (Figure 30 and Figure 31) into LePUS3 and Class-

Z formulas and specifications, the differences can be formally proven and shown.

Consequently, it can be proven that the catalogues are not consistent and the two

descriptions [9], [27] of the same pattern (Check Point pattern) are offering two variants

of the pattern.

Figure 32: LePUS3 and Class-Z schema of Check Point Codechart shown in Figure 31

100 | P a g e

Figure 33: LePUS3 and Class-Z schema of Check Point Codechart shown in Figure 30

With the above, it can be shown that using Codecharts can help depict the

variants of the same pattern. This would assure that the same understanding of the

pattern would be shared among the people involved in the development life cycle of

any system in whose source code security patterns will be implemented, verified,

maintained, and/or documented in its source code. Codecharts can be used as a formal

input for an automating tool to reason out the patterns in a source code. One instance

of this automated reasoning is the detection of the patterns from the source code.

5.2 Relations among security patterns and other design patterns

Relations among security patterns and with design patterns are often described

in security patterns catalogues. In the catalogues [9], [26]–[28], [107], [109], the

common pattern description template refers to the relation of the pattern at hand with

other patterns in the designated subsection called “Related Patterns”. It is important to

validate and explain these claimed relations among patterns in order to select and

implement the patterns [2], [33], [112]–[114].

P a g e | 101

Many researchers [2], [33], [112]–[114] have proposed their approaches to find

these relations either manually or automatically by investigating and studying the

similarity among security and design patterns descriptions. However, validations of the

actual relations are not covered sufficiently. Furthermore, the work done up-to-date is

introducing more claims about relations among patterns.

Most of the studies [2], [33], [112]–[114] on relations among patterns are to

check the similarity of patterns to one another. The similarity is calculated and claimed

based on the comparison between the patterns descriptions sections such as Problem,

Context, Forces, and/or Related Patterns sections.

Bayley et al. [115] have introduced their approach for formalising the relation

of composition between design patterns. In order to do so, the authors have employs

GEBNF in order to specify patterns separately, then introduced a set of operators to

formalise the different kinds of compositions. The operators, which the authors have

defined, are: Restriction operator, Superposition operator, Extension operator, Flatten

operator, Generalisation operator, Lift operator. As a case study to demonstrate the

approach, the authors have formalise the composition relation between Builder and

Composite patterns as described in [18].

Similarly, this thesis aims to investigate the relations among patterns, however,

there are a number of differences between Bayley et al. approach and this thesis

approach. First, Bayley et al. approach aims to formalise the composition relations

among patterns, whereas, this thesis aims to formalise and investigate all claims for

relations generalisation, concrete cases, implementation, and composition relations.

Current case studies of Bayley et al. approach are considering the relations among the

design patterns only and in particular design patterns of [18] book, whereas, this thesis

102 | P a g e

case studies focus on security patterns and their relations with design patterns ([18]

book) and other security patterns from different sources.

Although Bayley et al. approach formalizations of composition are formal, they

are still textual. On the other hand, this thesis employs the use of visual formalisation

(Codecharts) in order to formalise the patterns separately, then formalise the

composition relations visually and formally by the means of formal schemas as can

be seen in Figure 35 and Figure 36.

In addition, in this thesis, validating the results of formalisation of the case

studies is considered and done by the detection approach and reasoning on found

instances of composition formalisation by use of TTP Toolkit verifier, whereas, this is

not considered in Bayley et al. approach.

The used method to study and validate the claims of relations among patterns

can be summarised as follows: first, claims of relations among patterns are gathered

from patterns catalogues; second, patterns are formalised using Codecharts or imported

if already formalised patterns in Codecharts. After having the claims gathered and the

patterns formalised in Codecharts, a visual comparison between patterns is made.

Finally, a formal comparison is carried out using Codecharts and LePUS3 and Class-Z

schemas as has been shown in the previous section when comparing Figure 32 and

Figure 33.

An example of claims of relations is the relation between Check Point security

pattern and the Strategy design pattern. The below gathered claims show that the Check

Point pattern has a strong relation with the strategy pattern [9], [109]. However, using

Codecharts, the claims of relations among patterns have investigated in order to

validate them.

P a g e | 103

 “This CHECK POINT interface corresponds to the abstract strategy in

STRATEGY [GoF95]. The interface will provide hooks for I&A,

authorization, handling unsuccessful attempts.” [9, p. 291]

 “CHECK POINT uses STRATEGY [GoF95] for gaining flexibility in

application security”. [9, p. 296]

 “Key feature of Check Point is that the security policy can be changed in a

single place. In this way, the Check Point algorithm is a Strategy [GHJV

95].” [109, p. 8]

 “The Check Point algorithm uses a Strategy for application security.”[109, p.
10]

So, now claims of relations among patterns have been gathered and the Check

Point pattern formalised in Codecharts according the pattern description in the sources

of the claims. The Check Point variant is shown in Figure 30. Regarding the strategy

design pattern, the already formalised pattern using Codechart from [38] as shown in

Figure 34 can be imported.

Figure 34: Codechart: Strategy pattern [38]

From the two formalised patterns in Codecharts, it can be seen clearly that

Check Point does not include a complete implementation of the Strategy pattern. Figure

30 and Figure 34 show that the patterns in fact differ substantially. In particular, the

104 | P a g e

Strategy pattern as described in [18] includes at least three constraints that are missing

from the Check Point pattern, highlighted in red in Figure 34:

• The context class has a member (attribute or field) of type AbstractStrategy,

whereas the SingleAccessPoint is not expected to have a member of type

AbstractCheckPoint.

• The set of dynamically-bound algorithm methods defined in the Strategies

hierarchy call methods in the interface of context, whereas the set of dynamically-

bound Check methods defined in the CheckPointHrc hierarchy are not expected to

call methods in the SingleAccessPoint class

• The dynamically-bound algorithm methods defined in the Strategies hierarchy

take the context as a formal argument whereas the set of dynamically-bound Check

methods defined in the CheckPointHrc hierarchy are not expected to take

SingleAccessPoint as a formal argument.

It is beneficial to explain the meaning of the greying out notation (Interface)

shown in Figure 34. By looking at Codecharts vocabulary illustrated in Figure 5, it can

be seen that this notation is a 1-dim signature variable which denotes a set of methods,

defined in the Context Class, that can be called by the dynamically-bound algorithm

methods, defined in the Strategies Hierarchy. The Call relation between these two

variables (Interface on Context and Algorithms on Strategies) is derived from the

following statements in [18] in participants section of Strategy pattern description.

 “Context: may define an interface that lets Strategy access its data”

[18] Page 351

 “Context must define a more elaborate interface to its data which

couples Strategy and Context more closely” [18] Page 354

P a g e | 105

It can be concluded that the Check Point security pattern variants in [9], [109]

share the idea of having a set of “Checking” strategies; however, the Strategy pattern

[18] imposes more constraints than the Check Point variant in [9], [109]. This leads us

to the conclusion that, on the claims shown above, the Check Point pattern does not

make a full use of the Strategy pattern. Furthermore, attaching the Check the Point

pattern to the Strategy pattern might mislead to incorrect implementation of the Check

Point pattern when following the descriptions that claim the use of the Strategy pattern

in the Check Point pattern.

An example of claims of composition relations among security patterns is the

relation between the Single Access Point pattern and the Check Point pattern. A number

of security patterns catalogues [9], [27], [109] claim the relation between these two

patterns. The next quotes from those catalogues show the claims of the relation between

the Single Access Point pattern and the Check Point pattern.

 “CHECK POINT (287) defines the interface to be supported by concrete

implementations to provide the I&A service to the SINGLE ACCESS

POINT (279)”. [9, p. 289]

 “SINGLE ACCESS POINT (279) usually calls CHECK POINT (287),

providing a client’s identification and the authentication information they

provided.” [9, p. 291]

 “The Check Point Security Pattern enforces the current security policy, by

monitoring the traffic passing the Single Access Point.” [27, p. 26]

 “Single Access Point is predestined to be combined with a Check Point.”

[27, p. 28]

106 | P a g e

 “The implementation of Check Point combines several patterns. Single

Access Point is used to ensure that security checks are performed correctly

and that no initial security checks are skipped.” [109, p. 8]

In order to test and validate the above claims, the patterns were formalised using

Codecharts as shown in Figure 24, Figure 31, and Figure 30. The descriptions used to

formalise the patterns are the same descriptions [9], [27], [109] where the claims of the

relation are taken from. It can be seen that the aim is to validate the claims for relations

of two Check Point pattern variants (Figure 30 and Figure 31) with one Single Access

Point pattern variant (Figure 24). This is due to the fact that the Single Access Point

variant in [9] is not complete and could not be formalised as an essential part of the

pattern variant is described imprecisely using statements such as “Protect the boundary

of your system.”. Such statements combine two important aspects of the pattern. These

aspects are the protection and the system boundary. It is obvious that the statement is

ambiguous and imprecise especially when combined with other statements in the same

description.

Having the patterns formalised in Codecharts, it can be visually noticed that the

patterns have a particular participant in common called “Client”. The Check Point

variant shown in Figure 30 also has this participant; however, it has been named as

“SingleAccessPoint”, which is actually playing the same role of “Client” in others

which are shown in Figure 24, Figure 30, and Figure 31.

With the participant in common in the patterns at hand and with the above

claims of relations, it is possible to link the Check Point pattern and the Single Access

Point pattern using this participant “Client”. The results of the linkage are a new pattern

P a g e | 107

which compose the two patterns as shown in Figure 35. Although this diagram

demonstrates the visual linkage between the two patterns, formality is not absent as

Figure 36 shows the formal representation of the Codecharts shown in Figure 35.

Figure 35: Codecharts: Single Access Point & Check Point patterns

108 | P a g e

Figure 36: LePUS3 and Class-Z schema of Single Access Point & Check Point patterns

The Check Point pattern variant, shown in Figure 31, is selected to be linked

with the Single Access Point pattern. The main reason for this is that the selected

pattern variant separates the “Policy” participant from the “CheckPoint” participant.

This itemise more on the participants of the patterns when studying the composition of

patterns together. In addition, this pattern variant has been checked and verified to be

implemented in an open source code. The checking of this variant is shown in the

section entitled “Check Point pattern in JAAS” in this document. Moreover, the Single

Access Point pattern has been checked and verified to be implemented in the same open

source code. The checking of Single Access Point pattern is shown in the section

entitled “Single Access Point pattern in JAAS” also in this document.

Having modelling of Figure 35 of the composition of the two patterns, the

claim, which states that the two patterns are often composed together, has been put

under investigation. In order to complete the investigation, the followings have been

used: the Codecharts (Figure 35) of the two patterns, the source code that the patterns

are proven to be implemented in separately, and our pattern detection algorithm in order

P a g e | 109

to find the new pattern (Figure 35), which composed the two patterns together, and to

check whether the patterns are composed together.

The main findings of our investigation are strengthening the claims of the

relations between the Single Access Point pattern and the Check Point pattern. They

especially strengthen the claims which show that the patterns are often composed

together. This case study is shown in the section entitled “Single Access Point & Check

Point in JAAS”. In addition, from the results of the case study, the claims can be

evidently supported and it can be said that the Single Access Point pattern has a strong

relation with the Check Point pattern as whenever the Check Point is implemented, the

Single Access Point is also implemented with it.

5.3 Summary

In conclusion, this chapter has discussed the security pattern variations and the

inconsistency of the descriptions of the same pattern as the cause of the variations. This

has been illustrated with an example of Check Point security pattern variations in

different security patterns catalogues. In addition, this chapter has discussed the

relations among security patterns and with the design pattern. A number of examples

of such claims of relations have been shown such as relations between the Check Point

security pattern and the Strategy design pattern, and relations between the Single

Access Point and the Check Point patterns. Using Codecharts, some of those claims of

relations have investigated and validated.

110 | P a g e

6 Case Studies: Formalisation and manual
conformance checking of security patterns

Note: some parts of this chapter were published in:

1. Alzahrani, A.A.H., A.H. Eden, and M.Z. Yafi. 2014. ‘Structural Analysis of the

Check Point Pattern’. In 2014 IEEE 8th International Symposium on Service

Oriented System Engineering (SOSE), 404–8. doi:10.1109/SOSE.2014.56.

2. Alzahrani, Abdullah AH, Amnon H. Eden, and Majd Zohri Yafi. "Conformance

checking of Single Access Point pattern in JAAS using Codecharts."

Information Technology and Computer Applications Congress (WCITCA),

2015 World Congress on. IEEE, 2015..

This chapter describes a number of case studies which have been conducted to

check the design conformance (design verification) of a number of security patterns in

some open source java-based implementations. The case studies were manually

conducted to find and check conformance of instances of security patterns in source

codes that are claimed to implement the patterns. The reason behind these case studies

is to evaluate the possibility of automating (and the need for automating) patterns

instance finding (or pattern detection). In addition, the case studies are to test the use

of Codecharts for formal modelling and conformance verification of security patterns.

In this chapter, first, the manual conformance checking (verification) process is

explained. In addition, the open source codes, which are used in the case studies, are

briefly described. Second, a number of case studies are shown and explained. Finally,

P a g e | 111

the chapter is completed by a discussion of the results and the benefits offered by

manual conformance checking of security patterns.

6.1 Manual conformance checking of security patterns

Manual conformance checking of security patterns generally refers to a human

involvement to help with checking the conformance of patterns in a source code. This

includes two phases. The first phase includes a manual analysis of the source code and

the documentation if available. The process in this phase requires a human to study a

source code (which has been claimed to implement a security pattern) line by line in

order to understand the code and its components.

The second phase is manually finding code components which have relations

that resemble the pattern’s participants and relations. This phase includes a number of

sub processes. First, after using the TTP Toolkit to extract the model of the studied

source code, human interaction is needed to decide on the linkage between the source

code components and the pattern participants. Second, a manual creation of

assignments (mapping) between the pattern’s participants and the code components

will be the next. Figure 46 shows an example of these assignments which are manually

created. Finally, sending the assignments to TTP Toolkit verifier manually is required

in order to verify the design conformance of the pattern in the source code.

The TTP Toolkit [38]; [13] is used for model extraction of the source codes. In

addition, it is used to verify the design conformance using the manually created

assignments from the Codecharts of the pattern to the source code. Moreover, it has

been used to visualise the model of the source code and the instances of patterns.

112 | P a g e

The TTP Toolkit is used for round-trip software engineering for OO programs.

This system is developed by a software engineering team at the School of Computer

Science and Electronic Engineering at the University of Essex. It supports software

modelling, automated design verification (conformance checking) and design recovery.

After having the security pattern formalised using Codecharts as shown in the

chapter entitled “Security Patterns Formalisation”, claims stating that some well-

known systems’ implementations apply/implement these patterns have been traced.

Some claims were found and the source code of implementations, mentioned in the

claims, were searched for. Next, the TTP Toolkit has been used to extract the models

for these source codes.

6.2 Open source software for the Case studies

In the following, the main open source implementation which is used in this

section’s case studies is briefly described and discussed. Three main open source codes

are used in the case studies. These open source codes are JAAS, Log4J, and Java

Apache Struts. These implementations are written in Java programming language. This

allowed the case studies to be conducted as the current version on the TTP Toolkit only

supports model extraction of the Java-based source code. However, the TTP Toolkit

was designed to be extendable for any object-oriented programing language.

P a g e | 113

 JAAS

Java Authentication and Authorisation Service (JAAS) is the Java

implementation of the Pluggable Authentication Module (PAM) framework originally

developed for Sun's Solaris operating system. It is a standard for providing application-

level security. In addition, it has been integrated as a package into Java SDK 1.4v.

JAAS provides a useful pluggable framework which can be configured to offer

authentication and authorisation services [26], [116], [117].

 Log4J

Log4j is a widely known and used Java-based logging utility written and used

in Java programing languages. It was first introduced in 1996 and is freely available at

http://logging.apache.org/log4j/2.x/. Log4J provides an API logging facility. In

addition, it allows store logging output in a permanent place. This allows further studies

of the log afterward. Log4j is designed to be reliable, simple, and easy to understand

and use [118], [119].

 Java Apache Struts

Java Apache Struts is an MVC (Model-View-Controller) framework developed

using Java programming language. In addition, it is a free and open-source framework

and a part of the Apache Software Foundation project. Apache Struts allows

programmers to develop contemporary web application. It provides support for the uses

of REST, AJAX and JSON. The source code of Apache Struts is freely available for

downloading at https://struts.apache.org/ [120], [121].

114 | P a g e

6.3 Case studies results

The following are some examples of the case studies on manual conformance

checking of security patterns in some source codes which are claimed to implement the

patterns. Java-based source codes were the focus in the case studies as the current

version of the TTP Toolkit allows only the extraction of the model of Java-based source

codes.

6.3.1 Intercepting Validator in Apache Struts

Alur et al. [26] have claimed that the Intercepting Validator pattern has been

implemented in Apache Struts. As shown in the chapter entitled “Security Patterns

Formalisation”, the pattern has been formally modelled using Codecharts and Figure

26 illustrates the Codecharts of the pattern. With the claim of implementation and the

Codecharts of the pattern, a case study of manual conformance checking of the pattern

in Apache Struts was conducted and an instance was found.

Figure 37 visualises the manually found instance of the Intercepting Validator

pattern. As it can be seen, the instance contains a 1-dim hierarchy constant called

“validators” which was manually created. It consists of three classed in Apache Struts,

namely ActionValidatorManager, DefualtActionValidatorManager, and

AnnotationActionValidatorManager. Figure 38 illustrates the classes that construct the

hierarchy of “validators” which has ActionValidatorManager as the superclass for the

other classes.

P a g e | 115

Figure 37: Codechart: An instance of Intercepting Validator Pattern in Apache Struts

Looking at the instance in Figure 37, the 1-dim hierarchy constant called

“validators” practically demonstrates the benefits of using Codecharts to model the

abstraction in patterns as “validators” can have any number of subclasses of the

superclass ActionValidatorManager. In addition, it can be noticed that the class

ValidationInterceptor is playing the role of two participants in the pattern, namely

SecureActionBase and InterceptingValidator. This ability allows finding the instances

of a pattern when some roles of the pattern’s participants are encapsulated in one

component in the source code.

Figure 38: Manually-defined higher-dimension entities (hierarchy) (Intercepting Validator -
Apache Struts)

In order to verify the design conformance of the instance (Figure 37) found in

Apache Struts of the Intercepting Validator pattern, an assignment from the pattern to

the source code components was manually created in the TTP Toolkit. Figure 39 shows

this assignment (mapping). Then the TTP Toolkit verifier was used to verify the

instance and the assignment. Figure 40 illustrates the results from the TTP Toolkit

116 | P a g e

verifier. As can be seen in Figure 40, both the instance (Figure 37) and the assignment

(Figure 39) have passed the design verification according to the TTP Toolkit verifier.

Figure 39: Manually created assignment of Intercepting Validator Pattern in Apache Struts

Figure 40: Verification Result of Intercepting Validator Pattern instance in Apache Struts

6.3.2 Secure Logger in Java Logging API

 Alur et al. [26], in their catalogue, claimed that the Secure Logger is

implemented in Java Logging API (Log4J). In addition, in this research, the same

catalogue was used to formally model the structure of the pattern. However, the Secure

Logger case study is a special case among all case studies. It was more appropriate to

articulate the result as “Partially-Passed”. In the source code, the pattern was partially

implemented. This was due to the absence of the participant (Figure 41) called “Secure

Logger” and superimposition on it called “Log”.

P a g e | 117

Figure 41: Codecharts: Secure Logger pattern

Apart from the absence of “Secure Logger”, all the participants,

superimpositions, and relations were implemented and could be found in the source

code as shown in Figure 42. Regarding the “Create” relation shown in the pattern

(Figure 41) from “getHandler” to “Handler”, the “Produce” relation in the instance

(Figure 42) is reflecting the same meaning as any “Produce” relation between two

components in the source code (getHandler and Handler[]) has to be, first, in the

“Create” relation [108]. Therefore, this relation is satisfied in the instance found in the

pattern.

118 | P a g e

Figure 42: Codechart: An instance of Secure Logger Pattern in Java Logging API

When the manual analysis of the Java Logging API (Log4J) was completed and

an incomplete instance of the pattern was found, an assignment (mapping) from the

pattern to the source code components was manually created using the TTP Toolkit as

shown in Figure 43. This was for design conformance verification of the detected

instance. The TTP Toolkit verifier, then, was used to check the detected instance

conformance to parts of the pattern. These parts were missing the participants “Client”,

“Secure Logger”, superimpositions of “Request” over “Client”, superimpositions of

“Log” over “Secure Logger”, and the relation among them as shown in Figure 41.

P a g e | 119

Figure 43: Manually created assignment of Secure Logger Pattern in Java Logging API

The results of verifying the assignment, Figure 43, from the pattern to the source

code components was “Passed” as can be seen in Figure 44. However, as explained

earlier, the assignment was to map some participants of the pattern to components in

the source code. Therefore, the pattern is not implemented completely in Log4J. So, it

is concluded that the pattern is “Partially-implemented” in Log4J.

Figure 44: Verification Result of Secure Logger Pattern instance in Java Logging API

120 | P a g e

6.3.3 Single Access Point pattern in JAAS

This case study shows an investigation of an implementation of a Single Access

Point (SAP) in JAAS. The case study is to search for an instance of an implementation

of the pattern in the source code of JAAS. Many researchers [9], [26], [106] claimed

that SAP is implemented in Login services which JAAS is one of and/or is used in.

With the claim, the source code of JAAS [116], and the SAP pattern Codecharts (Figure

24), a manual search for an instance of SAP in JAAS was carried out.

 The main feature in SAP Codecharts is the modelling of the secured

component. This is done using the Exclusive Operator (Exclamation symbol) on the

relations with secured component or participants. This has been discussed in the section

entitled “Single Access Point pattern in Codecharts” in “Security Patterns

Formalisation” chapter. This feature allows controlling the access and allow only one

component of the code to access the secured component.

Figure 45 shows the detected instance of SAP in JAAS. It can be noticed that

the role of secureAction (which is a component whose access should be controlled) is

played by “Subject()” in the class “Subject”. This means that there is no method in any

class of JAAS calling “Subject()” in the class “Subject” except “login()” in the class

“LoginContext”.

P a g e | 121

Figure 45: Codechart: An instance of SAP in JAAS

In order to verify the detected instance (which uses Exclusive Operator) of SAP

in JAAS, the TTP Toolkit was used to manually create assignment (mapping) from the

SAP Pattern to the source code components. Figure 46 illustrates this assignment, while

Figure 47 shows the verification results of the TTP Toolkit verifier of the instance and

the assignment shown in Figure 45 and Figure 46, respectively.

Figure 46: Manually created assignment of SAP in JAAS

122 | P a g e

Figure 47: Verification Result of SAP instance in JAAS

The verification results of the TTP Toolkit verifier shown in Figure 47

demonstrate that the instance found in JAAS passed the design conformance check

against the SAP specifications in the Codecharts shown in Figure 24. This includes a

check and assurance of that, in JAAS source code, only “login()” in the class

“LoginContext” is calling “Subject()” in the class “Subject”.

6.4 Discussion

It can be seen from Figure 37, Figure 42, and Figure 45 that instances of the

investigated patterns are found. Moreover, these instances are verified using the TTP

Toolkit verifier as illustrated in Figure 40, Figure 44, and Figure 47. The verifications

for the patterns were carried out using the Assignments (mappings) from a pattern to

the source code components. These assignments are illustrated in Figure 39, Figure 43,

and Figure 46.

In this chapter, a number of case studies on manual design conformance

checking of security patterns were shown. However, for more case studies, APPENDIX

B shows more results. In order to summarise the above case studies and other case

studies (APPENDIX B), Table 6 indicates the main findings and results of the case

studies. It is obvious from the table that for each pattern an instance is found in the

searched source code. Furthermore, these instances were verified and they passed the

design conformance verification.

P a g e | 123

Table 6: Security Patterns Design Conformance Checking results

Open source

Pattern

JAAS Apache Struts Java Logging
(API) – Log4J

SAP Passed - -
Check Point Passed - -

Secure Architecture Passed - -

Secure Logger - - Partially-
Passed

Intercepting Validator - Passed -

As the case studies were manually conducted to find instances of the patterns

from the source code, the time spent was important to calculate. Therefore, Table 7

illustrates the time spent on each case study. The time is shown in hours and explains

time is spent on reading the source code line by line and the documentations of the

source code when available, as well as exploring the extracted model of the source

code. It is obvious that 115 hours makes around 5 days. This shows the extensive effort

to find an instance of each security pattern under consideration in a source code.

Consequently, a motivation to automate this process is generated.

Table 7: Time spent on case studies

Open source

Pattern

JAAS Apache Struts Java Logging
(API) – Log4J

SAP 20 hours - -
Check Point 12 hours - -

Secure Architecture 48 hours - -
Secure Logger - - 16 hours

Intercepting Validator - 19 hours -

Total time 115 hours

With the large amount of time taken to conduct the case studies, one instance is

found in each pattern case study. Although the results are sought after, they lack in

124 | P a g e

comprehension. This is due to the obvious investigation question which could be asked.

The question is “Is this instance the only instance of a pattern in the given source

code?”. The case studies do not answer this question. Moreover, in order to answer this

question, more time is needed for studying the source code.

However, the manual design conformance of security patterns offers a number

of benefits, one of which is the ability of finding incomplete implementation of

patterns. This is demonstrated in the case study of Secure Logger. Another benefit is

recognising the component (in the source code) that plays the roles of more than one

participant of a pattern. This is shown in the case studies of the Intercepting Validator

pattern and Secure Logger.

6.5 Summary

In conclusion, these case studies consume a considerable amount of time as they

need a full manual analysis of the source code. Furthermore, they do not show all the

instances of a pattern in a source code. These two issues (time and number of instances)

are the motivation behind this research’s second direction, which is pattern detection.

Furthermore, the case studies practically showed the needs of automatic approach for

finding instances of a given pattern in a given source code as well as for automatically

generating the mappings from the patterns’ participants to the source code components.

In addition, as using the TTP Toolkit was manual, the need of automatic use emerges.

This last thing is to complete the circle of automatic pattern finding. So, the second

direction of this research is to automatically search for a given pattern in a given source

code, automatically generate the mappings (Assignments) from the pattern to instances,

and automatically verify the instances design conformance using the TTP Toolkit.

P a g e | 125

7 Pattern Detection

This chapter will discuss the pattern detection theoretical side. The section will

begin with a clear problem definition statement. Next, all the terminologies and

notational conventions which will be used will be clarified. After this, the brute force

solution for the pattern detection problem will be shown in the respective section.

In addition, this chapter will show our pattern detection solution and discuss the

notion of minimising the search space in the source code. Our solution will be shown

as an algorithm. Moreover, the theoretical comparison analysis between the pattern

detection solutions will be made and explained.

Furthermore, in this chapter, the proof of our pattern detection algorithm will

be shown and explained. Finally, the implementation of our pattern detection algorithm

will elaborated. This includes illustrating the integration of it in the TTP Toolkit.

126 | P a g e

7.1 Terminology

1. Specification	Ψ (open specification) is on a par with a set of open formulas ݂ in

the predicate calculus [38, p. 183].

2. Design model [38, p. 230] LePUS3 Definition VII. is a triple ै = {ॼ∗,ℝ, I}

where

 ॼ∗ ≜	ॼ଴⨄	ॼଵ	⨄… .⨄	ॼୢ is the universe of ै where each ॼ୩ is a finite

set of entities of dimension k and d is some small natural number (usually

no greater than 3)

 ℝ is a set of relations (Definition II) including the unary relations Class,

Method, Signature, and Abstract and the binary relations Inherit,

Member, Produce, Call, Return, Forward, and SignatureOf.

 I is an interpretation function which maps some constant terms

(Definition VI) to entities in ॼ∗.

3. An assignment ݃ from Ψ into a ै is a function ݃ mapping each free variable in

Ψ to a constant in Iୢ୭୫ୟ୧୬ [38, p. 232] LePUS3 Definition XIV.

4. Iୢ୭୫ୟ୧୬ is a domain of interpretation function [38, p. 230] LePUS3 Definition

VII.

P a g e | 127

7.2 Notational conventions

1. Φ[x/v] stands for the consistent replacement of free variable v in Φ with x

 is the dimension of x	(ݔ)݉݅݀ .2

3. ݁ଵ, ݁ଶ, …	entities

,ଶݒ,ଵݒ .4 … variables

5. Vஏ 	 ∶= ,ଶݒ,ଵݒ}	 … , ௜ୀଵ…௞{௜ݒ}|{௞ݒ is free variables in some ݂ ∈ Ψ

6. We say ै satisfies Ψ, written ै ⊨ Ψ, iff there exists some mapping g such that

ै	 ⊨୥ Ψ

7. ݂ ∶≝

⎩
⎪
⎨

⎪
⎧

(݊݅ܽ݉݋ܦ)݊݋݅ݐ݈ܴܽ݁ݕݎܷܽ݊
	(ܴ݁݃݊ܽ,݊݅ܽ݉݋ܦ)݊݋݅ݐ݈ܴܽ݁ݕݎܽ݊݅ܤ
(݊݅ܽ݉݋ܦ,݊݋݅ݐ݈ܴܽ݁ݕݎܷܽ݊)ܮܮܣ

(ܴ݁݃݊ܽ,݊݅ܽ݉݋ܦ,݊݋݅ݐ݈ܴܽ݁ݕݎܽ݊݅ܤ)ܮܣܱܶܶ
(ܴ݁݃݊ܽ,݊݅ܽ݉݋ܦ,݊݋݅ݐ݈ܴܽ݁ݕݎܽ݊݅ܤ)ܥܫܪܴܱܲܯܱܵܫ

8. 〈݈ଵ:ݔଵ, . . ݈௞:ݔ௞〉 stands for a labelled tuple.

9. Given ݎ = :ଵߙ〉 ,ଵݔ . ܿ	݀݊ܽ	〈௡ݔ:௡ߙ. = ,ଵݕ:ଵߚ〉 . ℎ݁݊ݐ	〈௠ݕ:௠ߚ.

o ݎ ⋅ ܿ ∶= ,ଵݔ:ଵߙ〉 . :௡ߙ. ,ଵݕ:ଵߚ,௡ݔ . 〈௠ݕ:௠ߚ.

and

o ߙ.ݎ௜ ∶= :௜ߙ〉 1	݁ݎℎ݁ݓ	〈௜ݔ ≤ ݅ ≥

and

o ݎ[ߙ௜] ∶= ௜ݔ

and

o ݎ = ܿ	iff ݊ = ௜ߙ}	݀݊ܽ	݉ = ௜ݔ}	݀݊ܽ	{௜ߚ = ݅	ݎ݋݂	{௜ݕ = 1 …݊

o ܮ௥ ∶= ௜ୀ଴→௡{௜ߙ}

10. Given ܻ ∶= ௒ܮ		ℎ݁݊ݐ		{ݎ} = ௥ܮ 	

11. ݃: Vஏ → (௜ݒ)݃	ݐℎܽݐ	ℎܿݑݏ	|௜ୀଵ…|୚ಇ{[௜ݒ]ܿ} ∶= [௜ݒ]ܿ

12. Vஏ଴ ∶= ݒ}	 ∈ Vஏ| dim(ݒ) = 0}

128 | P a g e

13. Vஏଵ 	 ∶= ݒ}	 ∈ Vஏ| dim(ݒ) = 1}

Notes:

 Definition 9 is to describe the handling of the labelled tuples in different

processes such as joining labelled tuples by checking the values which has the

same labels, retrieving the value in a tuple with its label.

 Definition 10 shows that if {ݎ} is a set labelled tuples and has been copied into

ܻ then ܮ௒ (which is the set of the labels) will be the same of the ܮ௥ .

 Definition 11 is showing the mean of assignment ݃ that is used to replace each

variable ݒ in the specification Ψ with a found entity ܿ from the model of the

source code.

 Definition 12 and 13 describe the sets that will contain the free variables shown

in the according to their dimensions as the variables of dim-1 are the notations

of set of classes, signatures, and hierarchies, whereas, the variables of dim-0 are

the notations of classes and signatures.

P a g e | 129

7.3 Brute force pattern detection algorithm and complexity

In this section, Table 8 shows the brute force solution for the problem of

pattern detection, which has been defined in the introduction section of this document.

Next, the inputs and the expected outputs of pattern detection are described and

elaborated. In addition, Table 8 illustrates the complexity study of this algorithm.

 Input: Ψ, ै
 Output: a set of assignments {݃} mapping variables from Ψ to constants in

ै such that ै	 ⊨୥ Ψ

 इ = |ॼ଴| + |࣪(ॼ଴)|, is the number of 0-dim and 1-dim entities in ै	where

|࣪(ॼ଴)| is the number of all possible 1-dim entities

 ݊ = |Vஏ|, 	,Ψ	݊݅	(ݒ)	ݏ݈ܾ݁ܽ݅ݎܽݒ	݁݁ݎ݂	݂݋	ݎܾ݁݉ݑ݊	ℎ݁ݐ	ݏ݅	݊

 ݎ݈݁݅ݎܽ݁	݂݀݁݊݅݁݀	ܾ݊݁݁	ݏℎܽ	Vஏ	݁ݎℎ݁ݓ

130 | P a g e

Table 8: Brute force pattern detection algorithm

ܥ.1 ∶= {} 1

2. Foreach ݁ ∈ ॼ଴ ∪ ࣪(ॼ଴) इ

3. ॼୢ୧୫(ୣ) ∶= ॼୢ୧୫(ୣ) ∪ {e} इ

4. I ∶= I ∪ {⟨cୣ,e⟩}	 इ

ܥ .5 ∶= ܥ ∪ {cୣ} इ

6. Hcaerof

ݐ݈ݑݏ݁ݎ .7 ∶= {} 1

8. Foreach 	⃗ݔ ∈ ୚ಇ| इ௡|ܥ

9. i ∶= 	0 इ௡

10. Foreach ݒ ∈ Vஏ ݊ ∙इ௡

11. ݃ ∶= ݃ ∪ ,ݒ)} ݔ⃗ ↓ ݅)} // down arrow denote indexing ݊ ∙इ௡

12. i ∶= 	i + 1 ݊ ∙इ௡

13. Hcaerof

14. If ै	 ⊨୥ Ψ1 then ݐ݈ݑݏ݁ݎ ∶= ݐ݈ݑݏ݁ݎ ∪ {݃} इ௡

15. Hcaerof

16. Return 1 ݐ݈ݑݏ݁ݎ

Complexity: ܱ൫ܶ(݊,इ)൯ = ݊ ∗इ௡

1 The complexity of this step constitutes a separate topic of research

P a g e | 131

7.4 Controlling search space in proposed pattern detection algorithm

Pattern detection is a process which consists of having a pattern formalised in

any language and a model of a source code. Then, the process is to map the components

from the source code to the pattern’s components (participants). Finally, the mapping

needs to be checked where the successful cases form the pattern’s instances and the

failure cases are reasoned. This is done by passing all mappings to a verifier. In this

research the detection inputs are a pattern formally modelled in Codecharts and a model

extracted from a java source code using the TTP Toolkit [13], [38]. In addition, in order

to check the mappings, the verifier used is also a TTP Toolkit verifier.

Detecting a pattern in a source code requires looking at the model of a source

code to find all components and relations among them, which satisfy the given pattern

formalisation and constraints. The brute force algorithm (Table 8) is one solution which

simply makes all mappings combinations of components from the model of the source

code to the pattern’s components (participants). Then, it passes mappings to the verifier

for checking and returns the successfully passed mappings.

Here is an explanation of how the proposed pattern detection algorithm (Table

9) controls the search space and attempt to look at the minimum information in order

to detect a pattern’s instances. However, it is important to recap some of the

mathematical notations which will be used in the following explanations. The next are

the notations and their descriptions:

 ै is the model of the source code

 ॼ଴ ∈ ै is a set of all classes and methods (entities) of the

source code

132 | P a g e

 ܴ ∈ ℝ is a set of tuples each denotes two entities

(classes and/or methods) in specific relation (e.g Inherit)

 ℝ ∈ ै is a set of all sets of relations between classes and

methods in the source code.

 Ψ ≝ {݂} where Ψ is the pattern formalised in LePUS3 and

f is a formula.

When a pattern specification has more participants (variables) and a model of a

source code consists of large number of entities, it is obvious that the brute force

algorithm (Table 8) will generate all mappings combinations from the variables in the

specification to entities in the model of the source code. This will be a significant

number of mappings to be checked by the verifier of the TTP Toolkit, especially, in the

case of a specification that has variables of dim-1 (set of methods, set of classes, or/and

hierarchies). In such a case, the brute force algorithm will generate the power set of the

set of entities in the model of the source code. Next, all the generated subsets will play

the role of the candidates in the combinations of each dim-1 variable in the

specification.

Therefore, the brute force algorithm solution is not practical. So, the need for a

cleverer solution emerges. In our proposed algorithm (Table 9), the aim is to control

the search space by means of considering the patterns relations (formulas) and looking

only at the related components of the source code.

In order to do so, the proposed algorithm considers only ℝ in the model. This

allows it to have only the related entities in the mappings. Therefore, the algorithm

reduces the number of mappings by eliminating the entities which are not related to

pattern’s constraints (steps 6, 12). Moreover, ℝ is the actual set which the TTP toolkit

P a g e | 133

verifier considers in the process of checking the mappings. So, the mappings from the

proposed algorithm are closer to the correct instances.

Furthermore, the algorithm reduces more numbers of mappings by only

considering the corresponding ܴ ∈ ℝ . As described in the algorithm correctness

section, when saying R corresponds to f, this means that if ݂ ∶= then (ଶݒ,ଵݒ)ݐ݅ݎℎ݁݊ܫ

the corresponding R is Inherit∈ ℝ. So, the algorithm retrieves a subset of ℝ. As a

result, more entities are omitted and the only relevant entities are looked at in detecting

the algorithm (steps 3, 5, 6, 11, 12 - (Table 9)).

In order to minimise the search space more and look at the only related entities,

the algorithm connects the retrieved subset of ℝ. Connecting the subset of ℝ allows the

algorithm to limit the number of entities only to the entities with high potential for the

pattern’s participants. In order to connect the subset of ℝ, the algorithm labels the tuples

in each subset of ℝ with the names of variables in the corresponding formula f (steps

6, 12 - (Table 9)). After connecting the subsets, the algorithm uses the labels to check

the connection by the names of the entities and the labels in the joinAlgorithms

(BinaryRelationJoin steps 5,9,13 Table 10 —UnaryRelationJoin steps 4 Table 11),

where the algorithms do the final eliminations of irrelevant entities and produce the

mappings which are to be sent to the TTP Toolkit verifier.

As connecting the subset of ℝ is one of the ways the algorithm uses in

minimising the search space, the checking of connections can go through the problem

of Cartesian product in the case of checking two labelled sets of the considered subset

of ℝ in the joinAlgorithms (Table 10 and Table 11). Therefore, the algorithm is

designed to avoid such a problem by checking whether the two sets intersect in the

labels of tuples. In the case of not having common labels in the two sets, the algorithm

134 | P a g e

delays the checking for the coming new set and retrieves a new set. In the case of having

common labels, the algorithm carries out the checking by passing the two sets to the

joinAlgorithms (Table 10 and Table 11) and removing the checked sets coming from

the waiting set denoted by (ߪ, steps 4 Table 9). This will allow the algorithm to avoid

going through the Cartesian product issue.

Regarding the patterns with participants as higher-dimensional (dim-1) variable

such as set of signatures and/or set of classes, the brute force algorithm (Table 8)

generates all possible dim-1 entities which can be used to replace the pattern’s

participants of higher-dimension. This is done by means of a power set of ॼ૙ denoted

byच(ॼ૙). Then, it uses them to make the mappings. If a set ॼ૙ is known to a subset

the number of combinations it has can be exponential. Moreover, this would increase

the search space dramatically, especially in the large scale source code. Therefore, a

solution is required to avoid such an issue in the brute force algorithm (Table 8).

The proposed algorithm (Table 9) aims to avoid such an issue by providing only

the ultimate candidate for the dim-1 variables (pattern’s participant). So, the algorithm

tries to find only the set of entities which satisfies the corresponding pattern’s

participant in combination with other entities satisfying the pattern’s other participants.

The following explains the ultimate candidate:

Let’s say ݁ is an ultimate candidate for ݒ	 in a mapping ݃ then:

݁ ∶= {ܿ|	ܿ ∈ 	ॼ଴}	 and ݁ ∈ 	ॼଵ and ै ⊨௚(௘/௩) 	Ψ					 ⇒ ݔ∀				 ∈

࣪(݁):	ै ⊨௚(௫/௩) 	Ψ

Finding the ultimate candidate for a higher-dimensional variable will limit the

search space and allow for minimising the uncompleted pattern instance by omitting

P a g e | 135

the mappings which can be considered as subsets of other mappings and produce only

the complete mappings. GroupingAlgorithm (Table 12) is responsible of checking

whether a mapping is subsets of another mapping and it combines the mappings to have

in them only the ultimate candidates for the pattern’s higher-dimensional participants

(variables). GroupingAlgorithm (Table 12) uses the dim-0 pattern’s participant in

order to check the mappings obtained from joinAlgorithms (Table 10 and Table 11)

and to cluster them depending on the pattern’s participant of dim-0. Then, it produces

only mappings with ultimate candidates for the pattern’s higher-dimensional

participants (variables).

In conclusion, the proposed pattern detection algorithm (Table 9) controls the

search space in the model of a source code by considering the ℝ instead of ॼ଴. Then,

it considers the corresponding ܴ ∈ ℝ, which represents only the relevant subset of	ℝ .

By doing so, it eliminates the entities in the source code that are irrelevant to be

candidates for a given pattern’s participants. Next, it connects the considered subset of

ℝ by means of labelling the tuples in the subsets of ℝ with the variables names

(pattern’s participants’ names) of the corresponding formula for each R in the

considered subset. After connecting the sets, the algorithm starts to omit entities by

checking the names of entities and, in every connected set, using the labels. The

algorithm, in addition, avoids going through a Cartesian product, when checking the

entities names by labels, by delaying checking the coming set R when there is no

common label with the previously checked R (s). Finally, the algorithm uses the idea

of the ultimate higher-dimensional candidate for the higher dimensional pattern’s

participants. This allows the algorithm to avoid having the solution of the power set,

which increases the search space dramatically. In addition, it omits the mappings which

can be regarded as subsets of other mappings.

136 | P a g e

7.5 Proposed efficient pattern detection algorithm and complexity

 Input: Ψ, ै
 Output: a set of assignments {݃} mapping variables from Ψ to constants in

ै such that ै ⊨୥ Ψ

 ݏ = 	 |Ψ|

 ݉ = ܴ|(|ܴ|)ݔܽ݉ ∈ ℝ

 ݇ = |Vஏଵ |

Table 9: Proposed efficient pattern detection algorithm – Main

1. ߚ ∶= {} 1

2. ߪ ∶= {݂|݂ ∈ Ψ}

While 	ߪ ≠ ∅

3. foreach ݂ ∈ ݏ ߪ

4.

5. if

݂ = ቐ
(ܴ݁݃݊ܽ,݊݅ܽ݉݋ܦ,݊݋݅ݐ݈ܴܽ݁ݕݎܽ݊݅ܤ)ܥܫܪܴܱܲܯܱܵܫ

(ܴ݁݃݊ܽ,݊݅ܽ݉݋ܦ,݊݋݅ݐ݈ܴܽ݁ݕݎܽ݊݅ܤ)ܮܣܱܶܶ
(ܴ݁݃݊ܽ,݊݅ܽ݉݋ܦ)݊݋݅ݐ݈ܴܽ݁ݕݎܽ݊݅ܤ

then
 ݏ

ߨ .6 ≝ :݊݅ܽ݉݋ܦ〉} :ܴ݁݃݊ܽ,ݔ 〈ݕ,ݔ〉	|	〈ݕ ∈
BinaryRelation}

 ݏ

7. if (ܮగ ∩ (ߚܮ ≠ ∅ then

ߚ .8
 (ܴ݁݃݊ܽ,݊݅ܽ݉݋ܦ,ߨ,ߚ)݊݅݋ܬ݊݋݅ݐ݈ܴܽ݁ݕݎܽ݊݅ܤ=∶

ߪ .9 ∶= ߪ − {݂}

10. Endif

11. else if ݂ = ൜ (݊݅ܽ݉݋ܦ)݊݋݅ݐ݈ܴܽ݁ݕݎܷܽ݊
 then (݊݅ܽ݉݋ܦ,݊݋݅ݐ݈ܴܽ݁ݕݎܷܽ݊)ܮܮܣ

ߨ .12 ≝ :݊݅ܽ݉݋ܦ〉} 〈ݔ〉	|	〈ݔ ∈ UnaryRelation}

P a g e | 137

Complexity: ܱ൫ܶ(݇,݉, ൯(ݏ = ݇ ∗ ݉ଶ ∗ ݏ

13. if (ܮగ ∩ (ߚܮ ≠ ∅ then ݏ
∗ ݉ଶ

ߚ .14
 ݏ (݊݅ܽ݉݋ܦ,ߨ,ߚ)݊݅݋ܬ݊݋݅ݐ݈ܴܽ݁ݕݎܷܽ݊=∶

ߪ .15 ∶= ߪ − ݏ {݂}

16. Endif ݏ
∗ ݉ଶ

17. Endif

18. if ߚ = {} then

ߚ .19 ߨ =∶

ߪ .20 ∶= ߪ − {݂}

21. Endif

22.

23. Hcaerof

24. End while

ߚ .25 ∶= ,ߚ)ℎ݉ݐ݅ݎ݋݈݃ܣ݃݊݅݌ݑ݋ݎܩ VΨ
0 , VΨ

1) ݇
∗ ݉ଶ

ݐ݈ݑݏ݁ݎ .26 ∶= {}

27. foreach ܿ ∈ ଶ݉ ߚ

28. ݃: Vஏ → (௜ݒ)݃	ݐℎܽݐ	ℎܿݑݏ	|௜ୀଵ…|୚ಇ{[௜ݒ]ܿ} ∶= [௜ݒ]ܿ

29. if ै	 ⊨୥ Ψ

ݐ݈ݑݏ݁ݎ .30 ∶= ݐ݈ݑݏ݁ݎ ∪ {݃}

31. Endif

32. Hcaerof

33. return ݐ݈ݑݏ݁ݎ

138 | P a g e

7.6 Supplementary algorithms for our pattern detection algorithm

7.6.1 BinaryRelationJoin
 Input:	ߨ ,ߚ sets of labelled tuples ,݊݅ܽ݉݋ܦ,ܴܽ݊݃݁: variables
 Output: a set of labelled tuples

Table 10: Supplementary algorithms - BinaryRelationJoin

 (ܴ݁݃݊ܽ,݊݅ܽ݉݋ܦ,ߨ,ߚ)݊݅݋ܬ݊݋݅ݐ݈ܴܽ݁ݕݎܽ݊݅ܤ

ݐ݈ݑݏ݁ݎ .1 ∶= {}

2. foreach ܿ ∈ ߚ

3. foreach ݎ ∈ ߨ

4. if ݊݅ܽ݉݋ܦ ∈ ௖ܮ ∧ 	ܴܽ݊݃݁ ∈ are labels in c ܴ݁݃݊ܽ,݊݅ܽ݉݋ܦ ௖ then ifܮ

5. if ܿ.݊݅ܽ݉݋ܦ = 	݊݅ܽ݉݋ܦ.ݎ ∧
	ܿ.ܴܽ݊݃݁ = ܴ݁݃݊ܽ.ݎ

If the common attributes in ݎ and ܿ
are equal in values, then
concatenate tuples and return one
tuple with no duplicated attributes 6. ݐ݈ݑݏ݁ݎ ∶= ݐ݈ݑݏ݁ݎ ∪

{ܿ}

7. endif

8. else if ݊݅ܽ݉݋ܦ ∈ ௖ܮ then if ݊݅ܽ݉݋ܦ is a label in c

9. if ܿ.݊݅ܽ݉݋ܦ = ܿ and ݎ If the common attributes in ݊݅ܽ݉݋ܦ.ݎ
are equal in values, then
concatenate tuples and return one
tuple with no duplicated attributes

10. ݐ݈ݑݏ݁ݎ ∶= ݐ݈ݑݏ݁ݎ ∪
ܴ݁݃݊ܽ.ݎ} ∙ ܿ}

11. endif

12. else if ܴܽ݊݃݁ ∈ ܴܽ݊݃݁ is a label in c	 ௖ then ifܮ

13. if ܿ.ܴܽ݊݃݁ = ܿ and ݎ If the common attributes in ܴ݁݃݊ܽ.ݎ
are equal in values, then
concatenate tuples and return one
tuple with no duplicated attributes

14. ݐ݈ݑݏ݁ݎ ∶= ݐ݈ݑݏ݁ݎ ∪
݊݅ܽ݉݋ܦ.ݎ} ∙ ܿ}

15. Endif

16. endif

17. Hcaerof

18. Hcaerof

19. return ݐ݈ݑݏ݁ݎ

P a g e | 139

7.6.2 UnaryRelationJoin
 Input:	ߨ ,ߚ sets of labelled tuples ,݊݅ܽ݉݋ܦ is a variable
 Output: a set of labelled tuples

Table 11: Supplementary algorithms - UnaryRelationJoin

 (݊݅ܽ݉݋ܦ,ߨ,ߚ)݊݅݋ܬ݊݋݅ݐ݈ܴܽ݁ݕݎܷܽ݊

ݐ݈ݑݏ݁ݎ .1 ∶= {}

2. foreach ܿ ∈ ߚ

3. foreach ݎ ∈ ߨ

4. if ܿ.݊݅ܽ݉݋ܦ = If the common ݊݅ܽ݉݋ܦ.ݎ
attributes in ݎ and ܿ
are equal in values,
then concatenate
tuples and return one
tuple with no
duplicated attributes

ݐ݈ݑݏ݁ݎ .5 ∶= ݐ݈ݑݏ݁ݎ ∪ {ܿ}

6. endif

7. Hcaerof

8. Hcaerof

9. return ݐ݈ݑݏ݁ݎ

140 | P a g e

7.6.3 Grouping Algorithm
 Input:	ߚ, Vஏ଴ , Vஏଵ
 Output: a set of labelled tuples

Table 12: Supplementary algorithms - Grouping Algorithm

,ߚ)ℎ݉ݐ݅ݎ݋݈݃ܣ݃݊݅݌ݑ݋ݎܩ Vஏ଴ , Vஏଵ)

ݏ݈݁݌ݑݐ݀݁݌ݑ݋ݎ݃ .1 ∶= is HashMap ݏ݈݁݌ݑݐ݀݁݌ݑ݋ݎ݃ {}

2. if Vஏଵ = {}

3. return ߚ

4. Endif

5. foreach ܿ ∈ ߚ

ݕ݁݇ .6 ∶= ݒ|ݒ.ܿ} ∈ Vஏ଴ }

ݏ݈݁݌ݑݐ݀݁݌ݑ݋ݎ݃ .7 ∶= ݏ݈݁݌ݑݐ݀݁݌ݑ݋ݎ݃ ∪ ,ݕ݁݇〉} ܿ〉}

8. Hcaerof

9. foreach ܿ ∈ ߚ

10. ݕ݁݇ ∶= ݒ|ݒ.ܿ} ∈ Vஏ଴ }

11. ݔ = ݔ return a tuple in (ݕ݁݇)ݏ݈݁݌ݑݐ݀݁݌ݑ݋ݎ݃	

12. foreach ݒ ∈ ܸଵ

13. if [ݒ]ݔ ≠ not to duplicate [ݒ]ܿ

14. [ݒ]ݔ ∶= [ݒ]ݔ ∪ {[ݒ]ܿ}

15. Endif

16. Hcaerof

17. ݏ݈݁݌ݑݐ݀݁݌ݑ݋ݎ݃ ∶= ݏ݈݁݌ݑݐ݀݁݌ݑ݋ݎ݃ ∪ {〈ݔ,ݕ݁݇〉}

18. hcaerof

19. 	ݐ݈ݑݏ݁ݎ ∶= {}

20. foreach ݔ ∈ to get the labelled tuples only ݏ݈݁݌ݑݐ݀݁݌ݑ݋ݎ݃
to be passed as the result

21. ݐ݈ݑݏ݁ݎ ∶= ݐ݈ݑݏ݁ݎ ∪ 	{݁ݑ݈ܸܽݐ݁݃.ݔ}

22. Hcaerof

23. return ݐ݈ݑݏ݁ݎ

P a g e | 141

7.7 Comparison analysis

In this section, a theoretical comparison between our pattern detection

algorithm (Table 9) and the brute force algorithm (Table 8) will be made. The analysis

will start with articulating the important parameters in the comparison analysis. Table

13 shows the analysis and highlights key factors which are used in the analysis.

Parameters:

 इ = |ॼ଴| + |࣪(ॼ଴)|, is the number of 0-dim and 1-dim entities in ै	where

|࣪(ॼ଴)| is the number of all possible 1-dim entities

 ݊ = |Vஏ|, 	,Ψ	݊݅	(ݒ)	ݏ݈ܾ݁ܽ݅ݎܽݒ	݁݁ݎ݂	݂݋	ݎܾ݁݉ݑ݊	ℎ݁ݐ	ݏ݅

 ݎ݈݁݅ݎܽ݁	݂݀݁݊݅݁݀	ܾ݊݁݁	ݏℎܽ	Vஏ	݁ݎℎ݁ݓ

 ݏ = 	 |Ψ|

 ݉ = ܴ|(|ܴ|)ݔܽ݉ ∈ ℝ

 ݇ = |Vஏଵ |

142 | P a g e

Table 13: Brute force and our algorithm comparison analysis

Algorithm Brute force pattern detection
algorithm

Efficient pattern detection
algorithm

Complexity ݊ ∗इ௡ ݇ ∗ ݉ଶ ∗ ݏ

Explanation

⇒ |Vஏ| ∗ (|ॼ଴| + |࣪(ॼ଴)|)|୚ಇ|

⇒ |Vஏ| ∗ (|ॼ଴| + 2|ॼబ|)|୚ಇ|

⇒ 2|ॼబ|	∗|୚ಇ|

 Most likely ߙ =
,|Vஏ|)ݔܽ݉ |Vஏଵ |, |Ψ|) <
12

 Because: there is no
pattern up-to-date which
has more than 12
components

 Therefore: with ignoring
the constant values,
algorithm complexity is

⇒ 2|ॼబ|

⇒ |Vஏଵ | ∗ ଶ(|ܴ|)ݔܽ݉ ∗ |Ψ|

⇒ ଶ(|ܴ|)ݔܽ݉

ܴ ∈ ℝ

worst case |Vஏଵ | ∗ |Ψ| ∗ |ॼ଴|ସ

 as if every entity in ॼ଴ is
having the ܴ relation

with every entity in ॼ଴

 Most likely ߙ =
,|Vஏ|)ݔܽ݉ |Vஏଵ |, |Ψ|) <
12

 Because: there is no
pattern up-to-date which
has more than 12
components

 Therefore: with ignoring
the constant values, the
worst case complexity of
the proposed algorithm is

⇒ |ॼ଴|ସ

P a g e | 143

P complexity class is a category of algorithms which solve problems in

polynomial time. The time complexity function for this class is ܱ(݌(݊)) and it can be

bounded. On the other hand, exponential time algorithms are known as the “inefficient”

algorithms where the time complexity function for such algorithms cannot be bounded.

Any computational problem is regarded as well-solved if there is a polynomial solution

for it [122].

NP is an acronym for Non-deterministic Polynomial time. NP denotes a

category of algorithms which solve problems in non-deterministic polynomial time. NP

includes P and NP-Complete classes. Consequently, NP-Complete class is a subset of

NP class and is regarded as the hardest problems in NP. There are a number of examples

of NP-Complete class problems, for instance, satisfiability and Hamiltonian path

problems [122]. Another related class of complexity is known as NP-Hard class. This

class categorises the problems which are as hard as the hardest problems in NP with a

possibility that these problems are not in NP [122], [123].

Table 13 shows the results of studying the complexity of both brute-forces

pattern detection algorithm (Table 8) and efficient proposed pattern detection

algorithm, the brute-force algorithm complexity is O(2|ॼబ|) and the efficient proposed

algorithm (Table 9) complexity in its worst case is ܱ(|ॼ଴|ସ). When saying ݊ =

|ॼ଴|where ॼ∗ ≜ 	ॼ଴⨄	ॼଵ	⨄… .⨄	ॼୢ	such	that	d < 3, and ै = {ॼ∗,ℝ, I} [38], and ै

is one of the inputs of both algorithms, the complexity of the brute force algorithm can

be shown as ܱ(2௡) and the complexity of our proposed efficient algorithm can be

shown as ܱ(݊ସ).

144 | P a g e

It is important to discuss the possibility when the brute force algorithm can

outperform our proposed algorithm. As the complexity of the brute-force algorithm is

ܱ(2௡), clearly, it can outperform our proposed algorithm when ݊ < 16. However, ݊

represents the number of classes and methods in the source code as ݊ = |ॼ଴| and |ॼ଴|

is the number of entities of 0-dim in the model ै of the source code. This means that

the brute-force algorithm can outperform our proposed algorithm ONLY when the

source code contains less than 16 classes and methods. In addition, when dividing this

number as each class in the source code has at least one method, the source code would

contain 8 classes with 8 methods for each class. It is obvious that a source code with

this number of components can only be regarded as a small or a demo source code.

Medium and large scale source codes are often industrial software and are

developed using patterns. These kinds of source codes are hard to understand and are

manually checked, unlike source codes with 16 classes and methods. Our proposed

algorithm outperforms the brute-force algorithm in the detection of pattern in medium

and large scale source codes where pattern detection is a need. Furthermore, from the

complexity of our proposed algorithm, it can be seen that it terminates when detecting

patterns in medium and large scale source codes, whereas the brute-force algorithm

does not.

It is evident that the proposed algorithm (Table 9) is a polynomial algorithm

and can be regarded as an efficient solution for the problem of pattern detection in the

comparison with the brute-force algorithm (Table 8) which can be classified as NP-

Complete algorithm and a far exponential algorithm when it is used in pattern detection

in medium or large scale source codes.

Having the above argument, it can be concluded that the proposed algorithm

outperforms the brute force algorithm and offers an efficient polynomial solution for

P a g e | 145

the problem of pattern detection when the inputs are a model (representing the

program) and a formal visual specification such as Codecharts (representing the pattern

which is to be found in the program).

7.8 A dry-run example to compare the Brute force pattern detection algorithm
with the proposed efficient algorithm

In this section, a performance comparison between the Brute force pattern

detection algorithm (Table 8) and the proposed efficient algorithm (Table 9) will be

made and discussed. An arbitrary pattern has been chosen in order to be found in an

arbitrary implementation. The pattern is shown in Figure 48. Regarding the

implementation, it is a large scale source code which is the source code of the TTP-

Toolkit. The model of the source code has extracted the information needed for the

purpose of the comparison was. Table 14 shows details needed in the dry-run

comparison example:

Table 14: TTP-Toolkit source code key parameters for Dry-run example

|ॼ଴| 2234 number of classes and methods entities

 the size of the largest relation set in the ℝ 1988 (|ܴ|)ݔܽ݉
which is Member

146 | P a g e

Figure 48: Codecharts: Complexity dry-run example arbitrary pattern

Table 15 shows the dry-run comparison which illustrates how the proposed

algorithm significantly outperforms the brute force algorithm (Table 8). Now, it has

been proven that the proposed algorithm (Table 9) tackles the problem in a reasonable

amount of time. Moreover, as the example of a large scale implementation, the

proposed algorithm shows efficiency in such situations.

Table 15: Brute force and our algorithm dry-run example comparison analysis

 Brute force pattern detection
algorithm

Proposed efficient pattern detection
algorithm

Complexity 2|ॼబ| Average case: ݉ܽݔ(|ܴ|)ଶ

Worst case: |ॼ଴|ସ

Result 2ଶଶଷସ

=Infinity

Average case: 1988ଶ =15808576

Worst case: 2234ସ =
24907645451536

Note: the results are shown in a time unit
which costs a computer processor

P a g e | 147

Now, it is beneficial to explain how the brute force algorithm (Table 8) and the

proposed algorithm (Table 9) work to find the instances of the arbitrary pattern shown

in Figure 48. As it can be seen in Figure 48, the pattern has 3 classes namely (ClassA,

ClassB, and ClassC). In addition, it has one method named (mthA) and a set of classes

named (ClassesX). In order to find all instances of the pattern, brute force algorithm

will, first, generate all the subsets (power sets) of the entities in the source code which

are in a set of ॼ଴. Having all the subsets of the 0-dim entities in the model of source

code means that the brute force algorithm now have all candidates of the element

named (ClassesX) in the pattern in Figure 48. As the rest of elements in the patterns

are 0-dim elements, their candidates are in ॼ଴ . Next, the brute force algorithm will

generate all possible combinations of the entities in the source code and the 1-dim

entities that were generated early to be candidates for ClassesX. The combinations will

form instances of the pattern. Next, it will create assignments from the pattern to each

generated combination. Finally, it will use the TTP Toolkit verifier to check each

assignments and save a correct ones.

On the other hand, the proposed algorithm (Table 9) aims to reduce the search

space by the means of considering the relations instead of considering the entities. In

addition, it expand the 1-dim elements in the patterns and tread them as 0-dim in order

to find the correct entities that can be grouped to form a candidate. So, the algorithm

will start by retrieving the sets of tuples of relations that are shown in Figure 48 namely

Create, Member, Call, and Return. Next, it will label the tuples according to the names

of elements in the pattern.

For example, let say that the Return relation set on the model looks like Return

={<java.String.toString(),java.String>,…..,}. The proposed algorithm will retrieve and

copy this set as it is one of the relations shown in the pattern, then, the algorithm will

148 | P a g e

label all the tuples in this set according to the elements that have this relation in the

pattern. In case of the pattern in Figure 48 the results of this process would look like

this Return ={<mthA:java.String.toString(),ClassB:java.String>,…..,}.

After having all the sets of relations copied and labelled, the proposed algorithm

(Table 9), will find the instances of the patterns by checking the values according to

the labels. By doing so, list of instances will be found and, then, the algorithm will

cluster the list according to the entities of labels (mthA, ClassA, ClassB, ClassC). Next,

the algorithm will group the entities that has the label ClassesX In order to create the

1-dim entities that can be assigned to ClassesX. Grouping will the ultimate set of

entities that can be assigned to the 1-dim element (ClassesX) in the pattern. By doing

so, the proposed algorithm (Table 9) will improve on the brute force algorithm (Table

8) by avoiding to generate all the subsets of ॼ଴ to find the sets of entities that can be

assigned to ClassesX to form a correct instance of the pattern. Finally, the proposed

algorithm (Table 9) will generate all assignments for the found instances that have been

checked in the relations sets and use the TTP Toolkit to verify them.

7.9 Correctness of proposed efficient pattern detection algorithm

In this section, a study on the correctness of our proposed pattern detection

algorithm (Table 9) will be carried about and explained. The method used to prove the

correctness of the algorithm is the contradiction method. First, the assumptions of the

proof will be articulated. Next, some clarifications regarding the algorithm and the

proof will be given. Finally, the theorem will be stated and the proof will be shown.

P a g e | 149

7.9.1 Assumptions

1. ρ is a look-for design or security pattern.

2. ݂ ∶≝

⎩
⎪
⎨

⎪
⎧

(݊݅ܽ݉݋ܦ)݊݋݅ݐ݈ܴܽ݁ݕݎܷܽ݊
	(ܴ݁݃݊ܽ,݊݅ܽ݉݋ܦ)݊݋݅ݐ݈ܴܽ݁ݕݎܽ݊݅ܤ
(݊݅ܽ݉݋ܦ,݊݋݅ݐ݈ܴܽ݁ݕݎܷܽ݊)ܮܮܣ

(ܴ݁݃݊ܽ,݊݅ܽ݉݋ܦ,݊݋݅ݐ݈ܴܽ݁ݕݎܽ݊݅ܤ)ܮܣܱܶܶ
(ܴ݁݃݊ܽ,݊݅ܽ݉݋ܦ,݊݋݅ݐ݈ܴܽ݁ݕݎܽ݊݅ܤ)ܥܫܪܴܱܲܯܱܵܫ

3. Ψ ∶≝ {݂}

4. Ψ	 represents ρ

5. Vஏ 	 ∶= ,ଶݒ,ଵݒ}	 … , ௜ୀଵ…௞{௜ݒ}|{௞ݒ is free variables in some ݂ ∈ Ψ

6. g୶ is a mapping function denote as g୶: Vஏ → ݔ

7. x	 ∶= {cଵ … . . c୬}୬ୀଵ→|୚ಇ| where c୧ ∈ ॼ଴

8. S represents the set of all instance of ρ found by the algorithm

	ै is a missed instance of ρ iff ݔ .9 ⊨୥౮ Ψ and x ∉ S

7.9.2 Clarifications

From the above assumptions, the meaning of 	⊨௚ೣ Ψ needs to be clarified. It

means that ∀݂ ∈ Ψ , the elements in x , are in a tuple in R ∈ ℝ , where R

corresponds to ݂ and these elements correspond to the same variables in all f. When

saying R corresponds to ݂, this means that if ݂ ∶= then the , (ଶݒ,ଵݒ)ݐ݅ݎℎ݁݊ܫ

corresponding R	is Inherit ∈ ℝ	

In order to clarify this more, let’s assume that ݂ ∶= ݂ and (ଶݒ,ଵݒ)ݐ݅ݎℎ݁݊ܫ ∈

Ψ. Then ∃cଵ, cଶ ∈ x and ∃〈cଵ, cଶ〉 ∈ Inherit where Inherit ∈ ℝ	and cଵ, cଶ replace the

same vଵ, vଶ in all ݂ ∈ Ψ. For example, lets say Ψ ∶= ,ଶݒ)ݐ݅ݎℎ݁݊ܫ	 (ଵݒ ∧

,ଶݒ)ݎܾ݁݉݁ܯ (ଷݒ ∧ .Ψ is depicts in the Codechart in Figure 49 .(ଷݒ,ସݒ)݁ݐܽ݃݁ݎ݃݃ܣ	

150 | P a g e

Figure 49: Codechart for algorithm correctness example

Lets assume that ݔ ∶= {cଵ, cଶ, cଷ, cସ} and x is an instance of the pattern

represented by Ψ. Then x elements need to be in tuples in each time R corresponds to

an f ∈ Ψ as follows:

 〈cଶ, cଵ〉 ∈ Inherit

〈cଶ, cଷ〉 ∈ Member

〈cସ, cଷ〉 ∈ Aggregate

And {cଵ, cଶ, cଷ, cସ} ∈ ॼ଴

7.9.3 Theorem

For any Ψ our algorithm finds all the instances that satisfy Ψ

7.9.4 Proof of correctness

Assume ݔ is an instance of Ψ and ݔ ∉ S. This means that the tuples having the

elements of ݔ and belonging to {R} ∈ ℝ (where {R} corresponds to all ݂ ∈ Ψ) are not

P a g e | 151

checked by our algorithm. Thus ݔ is a missed instance of Ψ. Two cases can be identified

in order to allow this instance to be missed by our algorithm.

Case 1: a tuple in one of the corresponding R-having elements of x has not been

listed for the algorithm to be checked. From the algorithm (Table 9), it can be seen

clearly that steps (6, 12) in the main algorithm assure that all tuples in the corresponding

R are copied to π and sent to the appropriate JoinAlgorithm (Table 10or Table 11) for

checking. Therefore this case cannot occur.

Case 2: a tuple in one of the corresponding R has not been checked. Checking

in the JoinAlgorithms (Table 10and Table 11) is to make sure that an element in x is

corresponding to the same variable in all f ∈ Ψ. Again, this case cannot happen as steps

(3, 5, 9, and 13) in BinaryRelationJoin (Table 10) and steps (3 and 4) in

UnaryRelationJoin (Table 11) are to retrieve each tuple in π and check it with the

already checked and stored tuples. Furthermore, our algorithm (Table 9) assures that if

there are no already checked tuples, all the tuples of the corresponding R (which are

listed in π) are returned as already checked tuples. This is made in steps (18, 19, and

20). So, it is not possible to skip any tuple in the checking process.

Finally, form Cases 1 & 2, it can be concluded that the assumption of having x

as an instance of Ψ and x ∉ S is not a valid assumption and it can be proven the

correctness of our algorithm (Table 9).

152 | P a g e

7.10 Implementation

In this section, a discussion and demonstration of the implementation of our

pattern detection algorithm (Table 9) will take place. First, an explanation of the main

processes of our pattern detection algorithm will be shown. In addition, the explanation

will highlight the integration of the implementation of our approach into the TTP

Toolkit. Furthermore, the forms of the inputs and the outputs, which are designed and

implemented to interact with the user, will be illustrated. Finally, some of the

limitations in the implementation, which are caused by various reasons, will be

highlighted.

First, the implementation of the system was developed in the Java programming

language. This is due to the fact that the TTP Toolkit was developed using the same

language. Therefore, in order to integrate out implementation of our pattern detection

approach into the TTP Toolkit, the source code of the TTP Toolkit had to be studied in

order to develop the pattern detection implementation in such a way that allows it to

integrate into the TTP Toolkit is a part of it.

It is important to illustrate the main processes in the implementation of our

pattern detection approach. The implementation relies on the inputs of the user, which

are mainly a reversed-engineered program and a pattern in the form of Codecharts.

Next, the pattern detection starts and returns a set of potential instances of the patterns.

However, these instances need to be verified. In order to verify their design

conformance against the given source code, the pattern detection implementation

generates an “assignment” which is a form of input that the TTP Toolkit understands

and can process.

P a g e | 153

 After the verification of an instance is completed, the result of the verification,

then, is tested. If the result is “Passed”, this means that the instance is correct. Next, the

implementation will save the “assignment” and will visualise the instance. However,

in case that the result is “Failed”, the instance is dismissed. This process will be

repeated for all the potential instances. Figure 50 shows the processes explained above.

Figure 50: Flowchart for our pattern detection

154 | P a g e

The main functionality which our implementation has added to the TTP Toolkit

is the pattern detection. However, in order to accomplish this main functionality, a

number of sub-functions are added as well. These sub-functions are as follows: create

new detection entity, and detect (run a detection entity).

One of the objectives of the implementation of our pattern approach is to

integrate it into the TTP Toolkit. In order to achieve this objective, the same

conventions (which have been followed in the development of the TTP Toolkit) were

adhered to in order to fully integrate our pattern detection implementation into the TTP

Toolkit. Therefore, creating a detection entity is a sub-function added for full

integration, as the idea of creating entities of process (such as creating chart entity,

assignment entity, and verification entity) was in the TTP Toolkit. Figure 51 illustrates

the integration of the implementation of our pattern detection approach into the TTP

Toolkit Graphical User Interface (GUI). It can be seen clearly from the figure that an

item called “detect” has been added into the main menu bar. This item can be expanded

to show the main two sub-functions. Furthermore, an item called “detection" has been

added in the left hand bar. This item can also be expanded to show the created detection

entities, where a user can rename and/or delete a detection entity.

P a g e | 155

Figure 51: Screenshot showing the detection integration in TTP Toolkit

Creating a new detection entity allows a user to detect a pattern. In order to

create an entity, first, a user needs to click on the “new detection” in the main menu bar

under the “detect” menu’s item. In addition, a user can carry out the same process

taking advantage of the drop-down list when mouse-left-clicking on the “detection”

item on the left hand bar and going to “New resource”>”Detection”. Either way will

open an input window for the user to allow him/her to enter the name for the detection

entity. Figure 52 and Figure 53 demonstrate the above mentioned procedures and the

outputs of them.

156 | P a g e

Figure 52: Screenshot showing the detection entity definition in the TTP Toolkit

Figure 53: Screenshot showing the detection entity in the TTP Toolkit

P a g e | 157

After creating the detection entity, what is left is using the second sub-function,

which is “detect”. A user of the TTP Toolkit needs to specify the source code of the

program that is needed in order to search for pattern instances. Afterwards, the user

needs to create a new chart to draw the Codecharts of the pattern into it. Finally, in

order to detect the pattern, the user needs to go to the main menu bar of the TTP Toolkit

and click on “detect” under the menu of “detect”. This will open a window asking

him/her to choose the pattern to be found in the given source code as shown in Figure

54.

Figure 54: Screenshot showing the selection of the input pattern for detection

Our pattern detection will start searching for the selected pattern into the source

code. This will include the processes described in Figure 49. Immediately after the

pattern detection is completed, the main results of the pattern detection process will be

summarised and shown to the user as can be seen in Figure 55. The summary shown

includes the name of the source code given and the number of detected instances.

158 | P a g e

Furthermore, the time spent in the entire pattern detection process is shown as well in

the summary.

Figure 55: Screenshot showing the results of detection

Finally, as it has been mentioned earlier in this section, the pattern detection

visualises the detected instances. Furthermore, it provides the reasoning for these

instances of the available pattern. The reasoning, which is already verified, can be

checked by the user at any time. The reasoning is the mappings between the variables

in the pattern Codecharts and in the source code components.

The user can, after the detection process is completed, view the visualised

pattern instances as well as the mapping (Assignments). Figure 56 shows the left hand

bar of the TTP Toolkit GUI where the pattern detection saves the detection results. It

can be seen clearly from the figure that the instances of the pattern which have been

named according to the following form “DetectedInstanceNO_#_Of_#”. This is to

distinguish them from other existing Codecharts as well as to allow for indicating their

number and pattern.

 In addition, Figure 56 shows the mappings which have been used to verify the

instances and reason them out. The mappings can be seen in the left hand bar of the

TTP Toolkit under the Assignment hierarchy. It can be noticed that the assignment used

in the detection is named according to the following form “DetectionAssignment_ #”.

The number indicates the number of the potential instance of the pattern.

P a g e | 159

Figure 56: Screenshot showing the detection results in the TTP Toolkit

160 | P a g e

7.11 Summary

In conclusion, in this chapter, the pattern detection problem was considered.

This includes clearly articulating the problem definition. Furthermore, the brute force

(Table 8) solution was formalised and shown. Besides, our pattern detection solution

was discussed and formalised. This includes a description of the way which our

solution uses in order to control and minimise the search space in in the source code.

Furthermore, a comparison analysis between the two solutions was carried out

and demonstrated. This was alongside with a dry-run example in order to compare the

two solutions. Moreover, a proof of the correctness of our pattern detection algorithm

was discussed and explained. Finally, the implementation of our pattern detection

algorithm was illustrated and explained. This included the illustration of the integration

of our algorithm implementation into the TTP Toolkit.

P a g e | 161

8 Case studies: Pattern Detection

This chapter describes the empirical work of this research in the direction of

pattern detection. First, the way in which the case studies are conducted will be

described. Second, the open sources used in the case studies will be briefly described.

The open sources denote the source codes which have been considered in order to

detect the patterns in them.

The rest is divided into two subsections. The first subsection will discuss some

case studies carried out in order to detect a number of security patterns formally

modelled in Codecharts. The second subsection will discuss Composite pattern case

studies in order to show the use of our pattern detection approach to detect design

patterns. Finally, a summary of the results and findings of all the case studies will

conclude this chapter with tables compiling the results together to be used later in the

evaluation chapter of this research.

8.1 Case studies scenario

In this research, case studies are the evaluation methodology. Therefore, it is

essential to explain how they are carried out and to clarify all the stages of each case

study. The following are the stages which each case study goes through. However, it is

important to state here that all the case studies of security patterns rely on the formally

modelled security patterns using Codecharts shown in the chapter entitled “Security

Patterns Formalisation” and APPENDIX A. With regards to the design patterns case

162 | P a g e

studies, the formalised design patterns in the book of Eden et al. [38] were used in

design patterns detection case studies.

The first stage, after formally modelling a pattern, is the stage of searching for

a claim of pattern implementation in a source code. This stage is basically related to a

formalised pattern and source code, which are claimed to be implementing this pattern.

The claim is important for the validity of the detected pattern’s instances in the source

code. Furthermore, it leads to a source code for the case studies. However, some the

claims found are for patterns to be implemented in proprietary or commercial source

codes [9], [27], which are non-open sources.

The next stage is to find the source code and to extract its model using the TTP

Toolkit. Here, the source code needs to be a Java-based code. This is due to the fact

that, although the TTP Toolkit is software engineering tools of object-orientation, the

current version is only supporting Java-based source codes. After finding the source

code which is claimed to implement the looked-for pattern, the TTP Toolkit is used for

extracting the model of the source code.

Having the source code model and the Codecharts of the pattern, the next stage

is for detecting the instances of the pattern in the extracted model of the source code.

This stage comprises using our pattern detection algorithm, auto-generating of the

mappings (Assignments) from the patterns components to source code components,

auto-using of the TTP Toolkit verifier, and auto-visualising of the correct instances of

the pattern.

Finally, showing the results is the last stage. This stage includes showing a

summary of the case study. The important information in the summary is the name of

the source code used, the number of detected correct instances of the pattern, and the

P a g e | 163

time spent in the detection stage. To sum up, a case study comprises looking for a claim

of pattern implementation in a source code, searching for the source code and extracting

its model using the TTP Toolkit, detecting the instances of the pattern in the source

code, and showing the results.

The pattern detection case studies have been divided into two sets. The first set

is gathering the pattern detection case studies on security patterns. The second set is

gathering the pattern detection case studies on design pattern. The difference between

these two sets of case studies is that the first set relies on the formally modelled security

patterns which this research has produced, as shown in the chapter entitled “Security

Patterns Formalisation” or in APPENDIX A. The second set of the case studies relies

on the already formalised design patterns, which are shown in the book of Eden et al.

[38].

8.2 Source codes used in the case studies

The following is a short description of the open source codes which have been

considered in the case studies in order to detect patterns in. The models of these source

codes have been extracted by the TTP Toolkit [13], [38]. Table 16 shows a statistical

summary of the model of each open source, including the numbers of classes and

methods as well as the numbers of relations among components (classes and method).

164 | P a g e

Table 16: Summary of information of source codes used for case studies

Implementation

no
. c

la
ss

es

no
. m

et
ho

ds

no
.

Si
gn

at
ur

eO
f

re
la

tio
n

no
.

C
al

l
re

la
tio

n

no
.

Fo
rw

ar
d

re
la

tio
n

no
.

C
re

at
e

re
la

tio
n

no
.

R
et

ur
n

re
la

tio
n

no
.

 P
ro

du
ce

re

la
tio

n

no
.

M
em

be
r

re
la

tio
n

no
. A

gg
re

ga
te

re

la
tio

n

no
.

A
bs

tra
ct

re

la
tio

n

no
.

in
he

rit

re
la

tio
n

JHotdraw 632 3372 3372 5218 306 1081 198 373 3744 5 423 300

JRefactory 1408 10390 10390 18918 340 4967 459 2136 11542 46 576 773

GanttProject 1040 6941 6941 5811 169 1485 441 318 8374 155 1106 526

Junit 528 1885 1885 661 18 206 12 74 2028 5 46 48

Log4J 338 2298 2298 3162 53 608 153 147 2699 14 107 135

Lexi 138 771 771 852 1 223 39 60 917 3 34 18

JSettlers 179 1725 1725 3983 2 586 195 178 2002 37 10 81

JRISK 137 1287 1287 2697 30 547 80 186 1483 2 44 43

 JRefactory

JRefactory is a refactoring tool for Java programing languages. It was

developed by Chris Seguin during the period from 1999 to 2002 using Java. Then, the

tool was taken over by Mike Atkinson. It is available to download at this link

http://jrefactory.sourceforge.net/. JRefactory takes a Java code and generates UML

class diagrams. Furthermore, JRefactory allows moving classes between packages,

renames fields and other actions, then it makes changes to the given source code

accordingly. In addition, it includes a code checker and code metrics. JRefactory

supports a number of Integrated Development Environments (IDEs) such as Netbeans,

and jEdit [124].

P a g e | 165

 JHotdraw

JHotdraw is a Java framework which aids graphics with drawing and editing. It

was mainly developed to exercise design patterns implementation. It is a Graphical

User Interface editor. In addition, JHotdraw has been documented at an early stage with

regards to design patterns use. Moreover, JHotdraw was designed to be reused and

extended. Therefore it can be customised when its structures are understood [125],

[126].

JHotdraw is an open source implementation. It is available to download at this

link http://www.jhotdraw.org/. Many design pattern detection systems researchers have

used JHotdraw to conduce their detection and pattern identification case studies [3],

[4], [7], [101]

 GanttProject

GanttProject is an open source implementation. It has been developed using

Java programing language and it is available at http://www.ganttproject.biz.

GanttProject is software for project management and scheduling. It provides many

features which help the project administrator in the management. GanttProject is

widely used in open source community in order to conduct empirical work as it is

considered to be industrial and well-designed implementation [127], [128].

166 | P a g e

 JUnit

JUnit a framework written in/for Java programing language and it is an instance

of xUnit architecture for unit testing. It is freely available at http://junit.org/. JUnit

provides a facility for test-driven development. It allows for automated testing by

providing annotations to methods to be tested as well as many features like assertions,

test runners, and others. In addition, it helps with developing more robust software in

java [129], [130].

 Lexi

Lexi is a free open source word processor. It was developed using Java

programming languages. Lexi was introduced by Brill Pappin and Matthew Schmidt in

1999. It has basic features of a word processer. Lexi is freely available at

http://lexi.sourceforge.net/. Some design and security patterns are claimed to be

implemented in Lexi [3], [9]. Therefore, this open source is used in the case studies of

this research.

 JSettlers

JSettlers is a java-based game. The game is based on Catan board game [3],

[131]. This game’s source code has been used in the compared-with pattern detection

systems. Therefore, this implementation have been used in order to carry out our case

studies on pattern detection. The source code is freely available at

http://sourceforge.net/projects/jsettlers/.

P a g e | 167

 JRISK

JRISK is a strategy game that provides support for multi-layers players [3]. The

game is originally based on the classical board game. The game has been implemented

in Java programing language. A number of versions have been advanced. The source

codes and all versions are freely available at

http://sourceforge.net/projects/javarisk/files/. In this research, RISK v2.0 has been used

in the case studies of pattern detection.

8.3 Detection of security patterns case studies

Using this research pattern detection approach, which has been described in the chapter

entitled “Pattern Detection”, a number of case studies on security patterns detection in

source codes have been conducted. This section reports on some of those case studies.

Further case studies can be found in APPENDIX C.

8.3.1 Single Access Point pattern in JAAS.

In the chapter “Case Studies: Formalisation and manual conformance checking

of security patterns”, a case study on a manual Single Access Point (SAP) pattern

conformance checking in JAAS was carried out. The result was finding an instance in

JAAS which conform to SAP. However, a number of disadvantages were experienced.

One example was the uncertainty of the results that all instances were found. Another

disadvantage was the considerable amount of time to manually find an instance and

168 | P a g e

create assignment (mapping from source code components to participants of pattern)

in order to verify the detected instance.

Using the pattern detection approach of this research, it was possible to

overcome these disadvantages. The SAP pattern, shown in Figure 24, has been detected

in JAAS and the results can be seen in Figure 57 and Figure 58. It is clear that the

automated detection found 2 instances of SAP in JAAS. The detection process includes

finding the instances, generating assignments, using the TTP Toolkit verifier to verify

the instances by the generated assignments, and visualising the instances.

Figure 57: Results of detecting SAP in JAAS

Figure 58: Results of detecting SAP in JAAS shown in the TTP Toolkit sidebar

P a g e | 169

The 2 detected instances of the SAP pattern has been automatically visualised

as can be shown in Figure 59.Figure 60 illustrates the auto-generated assignments of

the detected instances to the pattern participants. A number of points need to be

clarified here in these instances. The first point is that “LoginContext$4” and

“LoginContext$5” are the static objects which the class “LoginContext” Instantiate of

itself when “LoginContext” is initialised. Therefore, the TTP Toolkit treats

“LoginContext$4” and “LoginContext$5” as independent classes when extracting the

model of the JAAS source code.

Figure 59: Codechart: An instance of SAP detected in JAAS

Another point is that the “LoginContext$4” and “LoginContext$5” can play

both roles of “RecipientUnknownOrRecipientUnavailable” and “accessLog”. This is

due to the fact that they are configured by a separate text file attached to JAAS. This

configuration file is written according to the need. So, the detected instances are

similar.

170 | P a g e

Figure 60: Assignments of SAP detected in JAAS

With a comparison between this case study and the same case study of SAP in

JAAS carried out with a manual method and shown in the chapter “Case Studies:

Formalisation and manual conformance checking of security patterns” (Chapter 6), a

number of points can be highlighted. First of all, the pattern detection approach shows

another instance of SAP in JAAS, whereas the manual method showed only one

instance of the pattern. Another point is the efficiency in the time of finding, generating

assignment, using the TTP Toolkit verifier, and visualising the instances. In the manual

SAP checking conformance case study of SAP in JAAS, the time spent was 20 hours;

P a g e | 171

whereas using the pattern detection approach took only 12 seconds for finding,

generating assignments (mappings), verifying by using the TTP Toolkit verifier, and

visualising the instances as shown in Figure 57.

Pattern detection aims to find correct instances of a design/security patterns,

however, false instances of patterns can occur during the process of pattern detection.

So, it is important to articulate what false instances mean. In the context of this

research, false instances are the ones that do not conform to the pattern design

specification which are drawn in Codecharts.

During manual pattern detection, the source code is manually studied and when

a combination of classes and methods are assumed to form an instance of the pattern,

an assignment object is manually created and TTP Toolkit verifier is used in order to

check whether the instance conforms to the pattern design specification. For example,

Figure 61 illustrates an assignment, which has been manually created, and the results

of the TTP Toolkit verification on this assignment. As can be seen in the verification

results just at the bottom of the figure, the instance is a correct instance and labelled

with “PASSED” from the TTP Toolkit verifier.

172 | P a g e

Figure 61: correct instance in manual pattern detection process

False instances are checked in the same way in the manual pattern detection.

For example, let’s take the instance in the previous figure and assume that ALL

methods in “Subject” class (which represents the InternalComponent in the pattern) are

secured. Having this assumption we might have a false instance as a result. So, for the

purpose of illustration, “secureAction” has been assigned to another method named

“isReadOnly()” which exists in Subject”. Figure 62 shows that this new combination

of components form the source code does not conform to the pattern specification

(Codecharts).

P a g e | 173

Figure 62: False instance in manual pattern detection process

As can be seen at the bottom of Figure 62, the verification results is “FAILED”,

therefore, the instance forms a false instance of the pattern. Moreover, as TTP Toolkit

verifier is employed in this research, it provides some reasoning on the false instances.

Figure 63 shows the reasoning of regarding the new instance as false instance.

174 | P a g e

Figure 63: TTP Toolkit reasoning on the false instance – manual detection

In the case of automatic pattern detection, false instances are, firstly, detected

while our approach algorithm is checking the source code components that are in

relations which the pattern specifies. During the checking, most of the false instances

are detected and omitted. Next, our approach employs the same means of the manual

pattern detection that has been previously explained. The means are the use of

assignments and TTP Toolkit verifier. However, it is important to mention here that

our approach will automatically generate assignments for the found instances of the

pattern and automatically check those assignments using TTP Toolkit verifier.

In the common case of automatic pattern detection, the false instances are

detected during the process of relation checking of the source code components,

however, some false instances might occur. In particular, false instances when

Exclusive operator is used in the specification might occur. So, using the means of

assignments and TTP Toolkit verifier will allow detecting false instances and omitting

P a g e | 175

them prior the final detection results is shown. Figure 64 shows the TTP Toolkit verifier

reasoning on regarding the instance 24 as false instance, whereas, Figure 65 illustrates

the auto-generated assignment named “DetectionAssignment_24” which has been

created automatically by our approach algorithm and sent to the verifier. As it can be

seen from the figures, the instance is regarded as a false instance because of the

violation of the exclusive operator. Because of the use of TTP Toolkit, our approach

has been able to find that the “updateRoleMap(String, Role, List)” is not the ONLY

method that calls “getRoleValue()” method, there is another method named

“sendRoleUpdateNotification(String, Role, List)” which also calls “getRoleValue()”

method. According to the specification (Codecharts) of Single Access Point pattern, in

Chapter 4 of this thesis, this means that this instance is not conforming to the pattern

(in particular specification of exclusive operator) as the “getRoleValue()” method

(which represents the secureAction in the pattern) should be called by ONLY one

method in the class that represents the SAP in the patterns Codecharts.

176 | P a g e

Figure 64: TTP Toolkit reasoning on the false instance – automatic detection

Figure 65: An Example of false instance – automatic detection

P a g e | 177

8.3.2 Intercepting Validator in Apache Struts

A case study using the pattern detection approach of this research has been

carried out to detect the instances of the Intercepting Validator pattern in Apache Struts.

The pattern has been discussed and formally modelled in former chapters and shown

in Figure 26. This case study demonstrates the pattern detection of a security pattern

when 1-dim vocabulary of Codecharts is used in modelling. In the former chapters, the

need for 1-dim vocabulary for depicting the abstraction shown in the patterns

descriptions has been discussed. In the Intercepting Validator pattern, the 1-dim

vocabulary is the hierarchy class variable.

Figure 66 illustrated the outcomes of our pattern detection approach. It is shown

that the approach found 2 instances of the Intercepting Validator pattern in the Apache

Struts source code. Figure 67 demonstrates one instance which has been automatically

checked for conformance and automatically visualised using the approach.

Figure 66: Results of detecting the Intercepting Validator in Apache Struts

Figure 67: Codechart: An instance of the Intercepting Validator detected in Apache Struts

178 | P a g e

In order to use the TTP Toolkit to check and verify the conformance of the

detected instances, our approach automatically generated 2 assignments (mappings)

from the Intercepting Validator pattern to the components of the source code, as can be

seen in Figure 68. Two points have to be clarified here. The first point is that the

component “Hrc_3” is the candidate auto-created by our pattern detection approach to

represent the set of classes that play the role of “Validators” participant in the pattern.

Figure 69 illustrates the elements of “Hrc_3” and shows the other candidates which

have been created by the approach for the other instances which have not passed the

conformance checking.

Figure 68: an assignment of the Intercepting Validator detected in Apache Struts

Figure 69: Auto-defined higher-dimension entities (Hierarchy) (Intercepting Validator - Apache
Struts)

P a g e | 179

The second point is the similarity between the two detected instances. It can be

seen from Figure 68 that the only difference between the instances is the source code

components which play the role of the signature variable named “validate”, which is in

turn superimposed on the 1-dim hierarchy variable named “Validators”. This is due to

the implementation of the pattern in Apache Struts as the method named

“doBeforeInvocation(ActionInvocation)” in the class named “ValidationInterceptor”

relies on a parameter named “declarative” to determine what validation method

(“validate(object, String)” or “validate (object, String, String)”) to call. This parameter

should be passed to the “validate” method and the determination process should run

there, especially as the “declarative” parameter is of the type Boolean. It is possible to

see that the pattern is not implemented correctly in the code; however, this makes the

code have two different instances found by our pattern detection approach, which

helped to notice deviation in the implementation of the pattern.

In order to invite comparison, the same case study, using the manual method

(Chapter 6), took 19 hours, while it took only 1 second with the use of our pattern

detection approach . Furthermore, our pattern detection approach found another

instance of the pattern, whereas in the manual method, not all instances were found. In

addition, all the stages of the manual method of checking conformance have been

automated in our pattern detection approach. Moreover, as this pattern has a 1-dim

vocabulary variable, it is necessary to create the candidates of this variable. Our

approach automatically generates these candidates as shown in Figure 69.

8.4 Detection of design patterns case studies

180 | P a g e

In order to test our pattern detection approach with other patterns than security

pattern and to allow for evaluate it with other similar pattern detection systems that

detect design patterns, a number of case studies were conducted to detect a number of

well-known design patterns in some open source codes. This section reports on a case

study of the detection of the Composite pattern in Java.AWT. However, further case

studies can be found in APPENDIX C.

8.4.1 Composite pattern in Java.AWT

Eden et al. [38] have formally modelled the Composite design pattern. Figure

70 shows that pattern according to Eden et al. It can be seen in the figure that a number

of different relations are modelled among different types of vocabulary variables of

Codecharts. Some of these variables are 1-dim vocabulary and denote abstractions

shown in the description of the pattern such as “ComponentOps”, “CompositeOps”,

and “Leaves”

P a g e | 181

Figure 70: Codechart: Composite pattern [38]

As discussed and explained earlier in the former chapters, our pattern detection

approach is introduced to detect any pattern modelled in Codecharts, even when 1-dim

vocabulary is used. So, this case study is shown here to allow for expressing the

generality of the approach. Figure 71 demonstrates the outcome of the detection

process, which took only 2 seconds for detecting the solo instance of the composite

pattern. Figure 72 shows the auto-visualisation of the detected instance.

Figure 71: Results of detecting the Composite pattern in Java.AWT

182 | P a g e

Figure 72: Codechart: An instance of the Composite pattern detected in Java.AWT

The approach has used the TTP Toolkit to verify the instance by the auto-

generated assignment shown in Figure 73. As can be seen in the figure, “Classes”,

“Signatures_1”, and “Signatures_2” are assigned to the 1-dim variables in the

Composite pattern (Figure 70). These are auto-created entities which represent sets of

source code components that play the roles of the corresponding participants in the

pattern.

Figure 73: An auto-generated assignment of the Composite pattern detected in Java.AWT

P a g e | 183

Figure 74 illustrates the auto-created 1-dim signature constants (“Signatures_1”

and “Signatures_2”) in the TTP Toolkit interface, while Table 17 itemises the actual

methods in the source code for each constant. In addition, Figure 75 demonstrates the

auto-created 1-dim class constant (“Classes”) in the TTP Toolkit interface.

The auto-created constants are to be assigned to the corresponding variables of

the pattern. Each constant abstracts many actual methods in the source code of AWT

and plays the role of corresponding variables of the pattern. With this, it can be seen

that our pattern detection approach is able to detect any pattern modelled in Codecharts,

not only security patterns. In addition, it is able to detect the patterns which are

modelled using 1-dim vocabulary that depicts abstraction of the pattern design.

Furthermore, it automatically carries all the stages of pattern detection and auto-creates

or auto-defines 1-dim constants which are to be assigned to 1-dim variables.

Figure 74: Auto-defined higher-dimension entities (Methods) (Composite pattern - Java.AWT)

184 | P a g e

Table 17: Details of Signatures sets candidates for Composite instance

Signatures Set Details

Signatures_1 invalidate(), addNotify(), getMaximumSize(), lightweightPrint(java.awt.Graphics),
paramString(), isFocusCycleRoot(java.awt.Container), nextFocusHelper(),
checkGD(java.lang.String),
addPropertyChangeListener(java.lang.String,java.beans.PropertyChangeListener),
applyComponentOrientation(java.awt.ComponentOrientation), preferredSize(),
addPropertyChangeListener(java.beans.PropertyChangeListener), print(java.awt.Graphics),
eventEnabled(java.awt.AWTEvent), removeNotify(),
dispatchEventImpl(java.awt.AWTEvent), lightweightPaint(java.awt.Graphics),
list(java.io.PrintWriter,int), transferFocusBackward(), list(java.io.PrintStream,int),
minimumSize(), getAlignmentY(), setFont(java.awt.Font),
processEvent(java.awt.AWTEvent), getListeners(java.lang.Class), getAlignmentX(),
deliverEvent(java.awt.Event)

Signatures_2 createChildHierarchyEvents(int,long,boolean),
printHeavyweightComponents(java.awt.Graphics), proxyEnableEvents(long),
lightweightPrint(java.awt.Graphics), isFocusCycleRoot(java.awt.Container),
getListenersCount(int,boolean),
addPropertyChangeListener(java.lang.String,java.beans.PropertyChangeListener),
getPreferredSize(), print(java.awt.Graphics), containsFocus(), removeAll(),
getContainerListeners(), add(java.awt.Component,java.lang.Object,int),
lightweightPaint(java.awt.Graphics), setFocusCycleRoot(boolean),
writeObject(java.io.ObjectOutputStream), transferFocusBackward(),
clearCurrentFocusCycleRootOnHide(), checkAdding(java.awt.Component,int),
remove(java.awt.Component), getAccessibleAt(java.awt.Point),
findComponentAt(int,int,boolean), paint(java.awt.Graphics), update(java.awt.Graphics),
createHierarchyEvents(int,java.awt.Component,java.awt.Container,long,boolean),
add(java.awt.Component,java.lang.Object), getListeners(java.lang.Class), getAlignmentX(),
findComponentAt(int,int)

Figure 75: Auto-defined higher-dimension entities (Classes) (Composite pattern - Java.AWT)

P a g e | 185

8.5 Summary

In conclusion, the above case studies show the use of our pattern detection

algorithm to detect a number of security patterns and design patterns. The detected

instances of the patterns have been automatically verified by the TTP Toolkit verifier

in order to check their design conformance. In addition, the instances have been

automatically visualised using our pattern detection approach.

The verifications for the detected instances of patterns were carried out using

the assignments (mappings) from a pattern to source code components. The

assignments were automatically generated by our pattern detection approach.

In addition, as this research aims to detect abstraction shown in the patterns

formalisation in the Codecharts, a number of entities in the detected instances are

shown in an abstract manner using Codecharts notations of sets of signatures constant,

hierarchy constant, and/or classes constant. For more elaboration on these notations,

refer to Figure 5. Those entities are auto-defined using our pattern detection approach.

Table 18 and Table 19 summarise the results of all pattern detection case studies

on a number of design and security patterns in different open source codes using our

pattern detection approach. In addition, NI denotes the Number of Instances of a given

pattern in a source code, while T denotes the Time taken to detect, verify, and visualise

the detected instances. The time is shown in seconds. The dashes shown in the tables

mean that the detection of a pattern on the shown source code was not carried out or

did not find correct instances of the pattern. The reason behind the cases of not carrying

out the detection is that a claim of an implementation of the pattern in the source code

could not be found or the compared-with detection systems have not considered these

detection cases.

186 | P a g e

Table 18: Design Patterns Detection results

Open source

Pattern

JH
otdraw

JR
efactory

G
anttProje

ct

JSettlers

R
ISK

 2.0

Java.A
W

T

NI T NI T NI T NI T NI T NI T
Class

Adapter 9 120 2 206 8 61 1 11 8 17 1 4

Factory
Method 5 46 1 279 - - - - - - - -

Strategy 1 14 2 145 - - - - - - 1 19
Composite - - - - - - - - - - 1 2

Table 19: Security Patterns Detection results

Open source

Pattern

JA
A

S

A
pache

Struts

LEX
I

NI T NI T NI T
SAP 2 12 - - - -

Check Point 8 1 - - - -
SAP & Check Point 12 8 - - - -

Intercepting Validator - - 2 1 - -
Full View with Error - - - - 2 1

The results above show the outcomes of case studies of pattern detection of 4

design patterns as well as 5 security patterns. The design patterns are Class Adapter,

Factory Method, Strategy, and Composite pattern. The security patterns are Single

Access Point (SAP), Check Point, SAP & Check Point, Intercepting Validator, and Full

View with Error. These patterns were searched for in a number of open source Java-

based codes using our pattern detection approach. Finally, the information in the above

tables will be used in the evaluation of our pattern detection approach with the other

pattern detection systems. Therefore, in the evaluation chapter of this research, these

above tables might be referred to for clarity and linking.

P a g e | 187

9 Results and Evaluation

This chapter focuses on describing the evaluation of the research as well as

showing the main findings of the research. The evaluation is divided into two main

parts. The first part is to evaluate the research by means of feature analysis with

comparison to other state of art pattern detection systems. The second part is to evaluate

the system performance.

9.1 Evaluation criteria

Guéhéneuc et al [3] have defined a set of criteria which the current pattern

detection systems should meet. The criteria are: high precision, ease-of-use, ability to

detect incomplete instances, explanation, and performance efficiency. Fulfilling these

criteria is the evaluation method which is followed in order to evaluate this research.

However, some other common criteria, which have been sought after in the

introductions of other pattern detection systems, are considered as well, such as

reasoning, availability, ability to detect new patterns, dynamic checking, and full

automation. The following are short descriptions for each criterion.

188 | P a g e

 Good Precision

Precision can be defined as the percentage of the correct pattern’s instances

over all the returned instances. Most design pattern detection systems introduce new

approaches to actually improve the precision of the results, which their systems

generate in the process of detecting given patterns [4]. High precision is a sought-after

feature in any pattern detection system.

 Ease-of-use

It is obvious that pattern detection systems need to be easy to use by the

intended users. Usually, users are software engineers, architects, security architects,

verifiers, and maintainers. The ease of use is generally measured by the ability of the

system to interact easily with the user. In addition, it is measured by means of allowing

the users to be able to use the systems’ functionality by the minimum effort. Generally,

using the technique of “Click of button” is the best way to measure the system ease of

use.

 Incomplete instance

An incomplete instance of a pattern is an instance which represents the

occurrence of a subset of the pattern according to the user of detection system

preferences. This feature is required by maintainers when a pattern is not determined

or is thought to be implemented incompletely. The ability of the pattern detection

system to allow detecting incomplete instances of a pattern makes the system more

flexible and adaptable.

P a g e | 189

 Explanation

The pattern detection system should be able to explain the results, which are the

detected instances of a given pattern. This explanation includes describing the results,

whether they are complete or incomplete instances, as well as describing how the

instances are similar to the pattern. Often, visualisation of the detected instances are an

effective way of explaining the results.

 Performance

Although pattern detection systems are meant to find instances of a given

pattern in a given source code, it has been noticed that some well-known pattern

detection systems suffer from serious performance efficiency issues. Therefore,

performance efficiency has been a feature of the evaluation of pattern detection

systems.

 Reasoning

One of the most important features that any pattern detection system is

evaluated with is the ability to reason out the correct as well as the negative pattern’s

instance. Many pattern detection systems use different reasoners which might be

developed especially for that pattern detection system or might be reasoners already

available and developed by other parties. However, reasoning the results shows more

confidence in the detected instances and allows for theoretical argument of the results.

190 | P a g e

 Availability

Providing the pattern detection system for academic researchers allows for

evaluating the systems by others. This is by making the systems available publicly as

well as carrying out the systems evaluation tests on open source implementations, such

as JHotdraw [125]. Allowing replications of the evaluation tests on the introduced

system is a sign of confidence in and correctness of the introduced system.

 Ability to detect new patterns

 Design patterns are evolving, and new patterns are being introduced. It is

important for a pattern detection system to be able to detect any new pattern [132]. This

feature can be referred to as the “generality” of the pattern detection system. In order

to measure the generality of a pattern detection system, two features need to be

available in the system. The first feature is that the external inputs (which are the

pattern) are not hard-coded in the system but are rather external items which the

system can parse and then detect into a given source code. The second feature is the

language used to describe the pattern. It is obvious that the language needs to be formal

or semi-formal [132]. However, it, in addition, needs to be easy to understand and needs

no solid mathematical foundation.

P a g e | 191

 Dynamic checking

Checking the instances of patterns is carried out either statically or dynamically.

The dynamic check involves the execution of a source code and tracing the objects calls

and interactions. This check is often conducted after a static check and it is to find or

to verify the instances against patterns’ behavioural statements.

 Full automation

This criterion measures the ability of the pattern detection system to detect a

pattern’s instances with no intrusion of human interaction in the searching and

following steps until the results are shown. Many systems are regarded as semi-

automatic systems, especially those systems which use machine learning techniques.

The human interaction might be at minimum; however, it is needed from a person who

is experienced in the patterns and in the source code. An interaction of a person with

undesirable experience might lead the system to generate incorrect results. This

dependency on the human interaction might actually make the system useless when an

experienced person is not available. In order to measure whether the pattern detection

system is fully automated, the system needs to be able to have the pattern and the source

code as the inputs and the results should be generated fully independent from the human

interaction.

192 | P a g e

9.2 Feature analysis comparison

Using the aforementioned criteria, our approach has been evaluated with

comparison to a number of state-of-the-art pattern detection systems. Table 20

summarises the features analysis evaluation results. The information in the table was

retrieved from the direct use of the available compared-with systems, the original

publications of the compared-with systems, and other publications considering the

systems [3]–[5], [8], [132]–[134].

Table 20: Features Analysis results

Feature

System
G

ood precision

Incom
plete instance

A
vailability

ease-of-use

R
easoning

Explanation

G
enerality

D
ynam

ic checking

fully autom
ated

Our approach √ √ √ √ √ √ √ × √

DeMIMA × √ √ × √ √ × × ×

Similarity
Scoring

√ × × √ × × × × ×

DP-Miner √ × √ √ × √ × √ ×

PTIDEJ × √ √ √ √ √ × × ×

It can be seen from Table 20 that the competitive approach is the DP-Miner [5]

and Similarity Scoring approach [8]. DP-Miner has a feature of dynamic checking of

the instances of patterns after static check. Our pattern detection approach is not able

to carry out any dynamic check of the patterns instances as Codecharts is limited only

to model decidable statements.

P a g e | 193

However, our approach outperforms the DP-Miner and Similarity Scoring

approach by the feature of generality, which allows for detecting a user-specified

pattern. This makes our approach general for the detection of any design pattern which

is specified in Codecharts, whereas, the other compared-with approaches are limited to

a fixed pre-defined set of design patterns.

In addition, our approach has been developed to be full automated, so, no

human intervention is required during the detection process, whereas the DP-Miner,

Similarity Scoring, and others compared-with approaches required a human

intervention at some point in the detection process. This makes them semi-automated

pattern detection approaches.

In addition, our approach provides a mean of reasoning on the results of the

detection by the use of the TTP Toolkit verifier. This means that it shows that the

instances of a given pattern found in the source code are correct instances and have

been checked. Moreover, with the use of TTP Toolkit verifier, it was possible to reason

on the incorrect instances during the detection process and allow omitting incorrect

instances from the final results of the detection.

Similarity Scoring does not have the feature on explaining on the results

whether the instances found are complete or not, as it is only find complete instances.

In contrast, our pattern detection approach can find complete and incomplete instances

of a given pattern and explain on them visually. Incomplete instances can be detected

using our pattern detection approach as a user can modify and remove the unwanted

elements of a pattern Codecharts then detect the modified version. Moreover, the

feature of explanation of the results is provided by our approach as it visualises the

instances and the assignments (mappings) from source code components to a given

194 | P a g e

pattern. With regards to the detection of incomplete instances, DP-Miner does not have

the ability of detecting them.

Evaluation of the outputs and the results of our approach were conducted by

means of case studies. A case study consists of four phases. All the phases are

automatically carried out. The first phase (source code model extraction) is to have the

model of the given source code extracted using the TTP Toolkit. The second phase

(pattern presentation) is to have a selected pattern visually and formally modelled in

Codecharts using the TTP Toolkit. The third phase (pattern detection) is to detect and

verify the instances of a given pattern against their design conformance to the source

code using our approach and the TTP Toolkit verifier. The final phase (result reporting)

is to visualise all the pattern’s instances and the assignments (mappings) from source

code components to a given pattern.

In order to carry out the case studies, a number of open source codes have had

their models extracted using the TTP Toolkit. In addition, the security patterns, which

have been formally modelled in this research, have been used. Regarding the other

design patterns, the design patterns shown in [38] have been imported for the purposes

of the case studies.

In order to compare the results of our approach with the results of other pattern

detection approaches, the same case studies (which have been conducted by other

detection approaches) have been replicated. This means detecting same patterns in the

same open source codes. So, a number of case studies from the empirical work of this

research have been selected. The case studies are to detect four patterns, namely

Adapter, Factory Method, Strategy, and Composite patterns, in three different source

P a g e | 195

codes named JHotdraw, JRefactory and Java.AWT. The source codes are industrial

large scale source codes, i.e. they are regarded as good case studies inputs.

One of the main aims of our approach was to reach the highest precision in the

results of the detection. Figure 76 illustrates the precision comparison of our approach

with other pattern detection systems. Equation 1 illustrates the common way of

calculating the precision of the results of pattern detection systems, where TP denotes

the number of true positive instances and FP denotes the number of false positives

instances.

Equation 1: Pattern Detection Systems Precision

ܲ ∶=
ܶܲ

(ܶܲ + (ܲܨ

The precision ratio is affected by the number of false positives. If a detection

system detects a high number of instances, generally, most of them are false positives.

Pattern detection systems vary in the way of removing those false positives. Some

systems remove them manually; others remove them automatically. However, false

positives occur commonly in systems that rely on machine learning, graph matching,

and/or information retrieval algorithms.

196 | P a g e

Figure 76: Average Precision of pattern detection systems

With comparison to two state-of-the-art pattern detection systems with highest

precision, it can be seen in Figure 77, Figure 78, and Figure 79 that our approach

produces the lowest number of instances of the given patterns. This is due to two

reasons. The first reason is that the patterns are formally described with rich structural

information, as our approach uses Codecharts, unlike other systems which rely on UML

diagrams and/or information retrieval parameters such as names and comments of

source code components, which might be misleading in most cases. Furthermore,

Codecharts can capture the abstraction in the patterns with the use of 1-dim notations

as well as hierarchy notations. This allows our approach to minimise the number of

patterns by encapsulating many instances that differ in one of the pattern’s participants,

which is meant to be modelled as an abstract set. The second reason is that our

approach, as part of the detection process, relies on a verifier which takes the instances

and verifies them against the source code.

P a g e | 197

Figure 77: Instances numbers of JHotdraw case studies compared with the Similarity Scoring
system

Figure 78: Instances numbers of JRefactory case studies compared with the Similarity Scoring
system

198 | P a g e

Figure 79: Instances numbers of Java.AWT case studies compared with the DP-Miner system

The Similarity scoring approach [8] is currently the pattern detection approach

with the highest precision ratio. Having this in mind, it is, in addition, the approach

with the lowest number of instances for the given patterns in the given source codes. It

can be seen clearly from Figure 77 and Figure 78 that our approach reaches the closest

number of instances in the same case studies.

Moreover, our approach has a better lower number of instances in the case study

results shown in Figure 77 and Figure 78. This is due the detection of abstraction, which

the scoring similarity does not consider. The abstraction is in the strategy role of the

Strategy pattern. The similarity scoring represents it as three classes or perhaps more,

whereas, this research approach detect it using Codecharts notations which represent it

as one hierarchy.

The lower number of instances of patterns, illustrated in Figure 77, Figure 78,

and Figure 79, shows that our pattern detection approach does not return many false

positive instances, which improves the overall precision of the results. In addition, it

P a g e | 199

means that the instances of the patterns in the source code are found with the original

abstraction level of encapsulation and information hiding, which is described in the

patterns’ original catalogues. This is due to the use of 1-dim notations of Codecharts

(hierarchy, 1-dim signature variable, and 1-dim class variable), unlike the other

compared-with pattern detection systems which use UML diagram to model the

patterns.

9.3 Evaluation performance

Efficiency is one of the most important features which any pattern detection

system aims to acquire. Efficiency, here, refers to the overall performance of pattern

detection approaches. This section describes the efficiency of our approach in detecting

patterns in different source codes with comparison to other pattern detection systems.

In order to evaluate the performance of our approach, the time spent for each

case study has been automatically calculated. This was by the means of capturing the

time before the detection starts and capturing the time after the results of detection are

verified and visualised. The calculated time is presented for each case study as shown

in the previous chapter.

Next, the case studies, which are the same to the ones that other pattern

detection systems have conducted, have been replicated. This means selecting, from

this research empirical works, the case studies for the patterns and the source code

which other pattern detection systems have considered. So, the Adapter pattern case

studies, in two different source codes, namely JHotdraw (4004 components) and

JRefactory (11798 components), have been selected. In addition, The Factory Method

200 | P a g e

and Strategy pattern case studies, on the same aforementioned source codes, have been

selected. Those case studies have been conducted by two pattern detection systems,

whose results are available and published.

The performance has been measured with two parameters. The first parameter

is the time taken to carry out the case study. The second parameter is the source code

size. There are different ways to measure the source code size. Many measure it with

the number of code lines. Others rely on the number of classes and methods in the

source code. However, for object-oriented source codes, the number of classes and

methods is widely used in order to say how large a source code is. Therefore, and as

this research aims to detect patterns from object-oriented source codes, it has been

decided to consider the number of classes and methods as the measurement means for

the size of source codes. Therefore, when stating the number of source code

components, it refers to the number of methods and classes in this source code.

Figure 80, Figure 81, and Figure 82 show the performance of our approach in

comparison with the DeMIMA [4] and Similarity Scoring system [8]. To the best of

our knowledge, up-to-date, the Similarity Scoring system is the most efficient pattern

detection system [3]. It can be seen clearly from the figures that our approach

outperforms the DeMIMA system. Furthermore, our approach is competitive to the

Similarity Scoring approach, which is the current most efficient pattern detection

system.

P a g e | 201

Figure 80: Adapter pattern case study performance

Figure 81: Factory Method pattern case study performance

202 | P a g e

Figure 82: Strategy pattern case study performance

Comparing our approach with more pattern detection systems is a scientific way

to evaluate our approach effectively and correctly. Therefore, the comparison of the

performance of our approach with others was not limited to the DeMIMA and

Similarity Scoring systems. Furthermore, our approach performance was compared

with another pattern detection system called Ptidej.

So, from this research set of case studies, three case studies of detecting the

Adapter pattern have been selected which were conducted to detect Adapter pattern in

three different source codes, namely JSettlers (1904 components), GanttProject (7981

components), and RISK (1424components). Figure 83 shows the comparison between

our approach and Ptidej in terms of detecting the Adapter pattern in the same

aforementioned source codes. It can be seen in the figure that the x-axis represents the

source code size and the y-axis represents the time taken in seconds.

P a g e | 203

Figure 83: Adapter pattern case study performance compared with PTIDEJ

From Figure 83, it can be concluded that our approach significantly outperforms

the Ptidej system. This is due to the fact that our approach is not considering the source

codes components; it rather considers the relations among those components and only

the relations which are relevant to the formulas representing the pattern structure. The

source codes of the case studies are regarded as large-scale source codes. Therefore, it

can be concluded that our approach is suitable to be used to detect patterns in the large-

scale source codes.

Another performance comparison was made between our pattern detection

approach and the DP-Miner pattern detection system. Figure 84 illustrates the

performance of our pattern detection approach to detect three design patterns, namely

Adapter, Composite, and Strategy in Java.AWT source code (708 components), with

comparison to DP-Miner.

204 | P a g e

Figure 84: Java.AWT case study performance compared with DP-Miner

It can be seen from Figure 84 that our pattern detection approach considerably

outperforms the DP-Miner in the performance of the detection process of Adapter and

Composite patterns in Java.AWT. Although DP-Miner seems to perform better in the

detection process of the Strategy pattern, the difference is not significant in time.

P a g e | 205

9.4 Summary

In conclusion, this chapter has described the evaluation of our pattern detection

approach in comparison with other state-of-the-art pattern detection systems. First, our

approach was evaluated using features analysis methodology. Second, our approach

has been evaluated using the results of our approach case studies with comparison to

other pattern detection systems case studies results by comparing the number of false

positive instances. It can be concluded that our approach has been developed with

considerations of the desirable features in pattern detection systems and it is

competitive with the state-of-the-art pattern detection systems.

206 | P a g e

10 Conclusion

In conclusion, in this thesis, a new way of modelling security patterns was

investigated and employed. Codecharts was used to formally and visually model

security patterns. The investigation shows a number of benefits of using Codecharts.

These benefits can be summarised in the following three points: 1) modelling secure

relations among components; 2) modelling abstraction in patterns’ descriptions; and 3)

formality.

Additionally, using Codecharts for modelling security patterns highlights

patterns variations, which come from the inconsistency of the descriptions of the same

patterns in different security patterns catalogues. Using Codecharts allows for

recognising the inconsistency and reasoning out the variations of the patterns. This

would in turn enable the assurance of the same understanding among the people who

experience security patterns in their work.

In addition, using Codecharts allows for further studies of patterns. One of these

is the studying and reasoning of the relations among security patterns and with other

well-known design patterns. Validating these relations helps in the overall

understanding of the patterns as well as in the correct implementation of these patterns.

Despite the fact that security patterns formalisation has not been considered

sufficiently by researchers, many researchers have introduced their approaches for

design patterns formalisation. Based on the fact that security patterns are design

patterns but for specific domains, these approaches have been compared and contrasted

in terms of the formalisation direction adopted in each piece of research. The first

drawback of these approaches is that they involve the transformation of UML diagrams

P a g e | 207

to formal language. This introduces some types of information loss depending on the

chosen formal language; whereas using Codecharts to model the security patterns from

the patterns’ description does not involve any transformation. Moreover, using

Codecharts offers formal and visual outputs, unlike other approaches outputs which are

often textual.

Furthermore, this thesis demonstrates a new pattern detection approach which

aims to find, from the source code, instances of patterns that are represented as

Codecharts. The approach, unlike other pattern detection systems, is developed for

general patterns detection, which means that it can detect security, design, and/or user

defined patterns.

The pattern detection approach proposed in this thesis was evaluated against

the known features which have been outlined for pattern detection systems. In addition,

the approach has been compared with a number of well-known pattern detection

systems. Moreover, it has been implemented and integrated into the TTP Toolkit.

The approach was concluded to be competitive with peers’ pattern detection

systems in many features. Most importantly, the approach could compete in the feature

of precision of the results. In addition, performance efficiency is a current problem that

many pattern detection systems, which aim to find exact instances, suffer from.

However, from the case studies conducted using the approach to detect exact instances

of patterns in large scale source codes, the approach appears to be efficient in

processing time in comparison with the existing most efficient pattern detection

systems.

However, some disadvantages were experienced. First, Codecharts were able

to model only decidable statements of the patterns descriptions. This means that they

208 | P a g e

could not model some of the behavioural statements shown in patterns descriptions.

Second, limited support and recognition of Codecharts stood as an obstacle for the use

of Codecharts. Finally, the TTP Toolkit (the Codecharts tool support) had a lack of

maintenance and a number of code bugs were not fixed.

This rest of this chapter shows a number of limitations which are worth

mentioning here. The limitations focus on highlighting some obstacles and

disadvantages of using Codecharts in modelling and detecting security patterns. In

addition, the chapter suggests some directions for future work in order to take this

research further and overcome the faced limitations.

10.1 LIMITATION

This section highlights a number of limitations which have been recognised

along with the investigation in this research. These limitations might have attributed to

the chosen way of modelling security patterns. They might also suggest ideas to take

this research further in the future. However, these limitations have not been resolved in

this research.

One limitation is in the used modelling notations which are Codecharts

notations. Although Codecharts offer a competitive way for visually and formally

modelling security patterns, it is limited only to modelling structural patterns. This is

due to the LePUS3, which is the language of Codecharts. LePUS3 can only support

specifying fully decidable statements. This limitation affects the modelling of some

behavioural statements which exist in architectural security patterns. In addition,

modelling behavioural security patterns was not possible.

P a g e | 209

The pattern detection approach demonstrated in this research was limited to

static check of the detected instances of the looked-for patterns. Dynamic check was

not possible in order to complete the checking of the instances. This limitation is due

to the aforementioned limitation as Codecharts does not offer the modelling of

behavioural statements of patterns. Furthermore, the TTP Toolkit verifier, which has

been used to check the detected instances, is limited to static check of the source codes

against the instances.

In addition to these limitations, although the TTP Toolkit, which is the tool

support for Codecharts, is developed to deal with any given object-oriented source

code, the latest version of it is limited to Java-based source codes. This fact shows the

drop of support of the Codecharts and the TTP Toolkit. In addition, this limitation

restricted the empirical case studies to Java-based source codes.

As this research uses the TTP Toolkit in the detection to model the patterns and

to verify their instances, a number of code bugs in the TTP Toolkit were found during

the use of it. The code bugs are mainly related to Exclusive Operators (exclamation

mark), in particular the Right Exclusive Operator. The TTP Toolkit verifier

misunderstands it and considers it as the Left Exclusive Operator. So, it incorrectly

verifies a modelling that has such use of it. In addition, the TTP Toolkit cannot model

a Codecharts that has a 1-dim notation which has a relation from the notation or to the

notation with any Exclusive Operators (exclamation mark) on the relation.

 Finally, UML is widely used as a standard for any design modelling. Many

researchers have introduced and built their work on patterns using UML. This has made

its notations easy to be recognised and understood. However, although Codecharts

offers some features which UML cannot, such as formality, without a need for

210 | P a g e

transformation, Codecharts is not widely recognised. This might be due to the fact that

some people consider it as UML-like diagrams and others consider it as a new

language, although it has been more than 10 years since the introduction of its early

versions. Another reason for Codecharts not being widely recognised is the lack of

research on it. This includes extensions of it in order to model behavioural aspects. In

addition, it includes the development and/or maintenance of tool supports.

10.2 FUTURE WORK

This research has focused on examining the use of Codecharts to formally

model security patterns. It has also proposed a new novel approach for pattern detection

using Codecharts and the TTP Toolkit. However, a number of research directions can

be considered in order to improve the research results as well as to take this research

further.

First, modelling the behavioural statements in the security patterns descriptions

using Codecharts is the next demanding research direction. This direction of research

needs to focus of extending LePUS3, the language of Codecharts, in order to enable it

to accommodate modelling behavioural statements. However, the extension of LePUS3

might involve combining it with new behaviour notations from other modelling

languages. It is important to be aware of the properties which LePUS3 has been built

with.

 In this research, the pattern detection approach employs the TTP Toolkit

verifier to check and reason out the design conformance of the detected instances of a

given pattern. However, the TTP Toolkit verifier only conducts a static checking of the

P a g e | 211

given instances in the source code. Although static checking of the instances of patterns

is the corner stone for any pattern detection system, dynamic checking is essential to

determine whether the instances of the given pattern conform to the remaining

behavioural properties of the pattern.

Dynamic checking needs to follow and rely on the static check of the instances

of the given pattern. In addition, dynamic checking involves executing the source code

and extracting the trace of method calls and objects creations in order to check the

behaviours of the components which correspond to the given pattern’s participants. The

online and offline checking of the extracted trace should be available depending on the

behavioural properties which have been modelled as the patterns behaviours.

To allow dynamic check, first, the direction of the extension LePUS3, the

language of Codecharts, has to be carried out. Second, the TTP Toolkit verifier has to

integrate new source code execution and trace extraction mechanism or probably

import one of the existing ones. Finally, the pattern detection approach of this research

has to be able to search through extracted execution trace of the source code for

instances of the given pattern and link them to the detected instances after the static

checking. This allows having two separate searching mechanisms, one for architectural

and structural properties and another for behavioural properties, where the former relies

on static checking and the latter relies on dynamic checking.

 Future work may consider improving the presentation of the results of the

pattern detection approach proposed in this research. One of these is introducing the

ability to prepare a full printable report of the results of the pattern detection. Currently,

the results of the pattern detection are shown in the left-hand side bar of the GUI of the

TTP Toolkit. Although the results have been presented following the current

212 | P a g e

categorisation of the TTP Toolkit GUI, a full printable report would enhance the

readability of the results.

 The pattern detection approach provides three types of outputs, which are a

summary of the detection results (number of instances and time spent for the detection

process), visualisations of instances as Codecharts, and assignments from the pattern’s

participants to the source code components. The visualisations of instances refer to the

concrete entities in the source code. However, the relations among these entities are not

referred to in the source code. Therefore, in the future, referring to the places of the

relations in the source code by the line numbers would help with tracing the instances

in the source code.

Finally, the existing pattern detection systems, such as DP-Miner, employ the

visualisation of the instances of the looked-for pattern in order to ease the

understanding of the detection results. Often, UML diagrams are applied for the results

visualisations. In the pattern detection approach shown in this thesis, visualisations of

the results of the detection have been considered and implemented. Codecharts have

been used for the visualisation of the results. However, as has been discussed earlier,

Codecharts notations are not as popular as UML diagrams. Therefore, in the future,

beside the existing current feature of visualizing the outputs of the detection process,

as in Codecharts, adding a feature of converting the Codecharts to UML diagrams

would improve the readability of the outputs and enable the user to compare and

understand the Codecharts.

P a g e | 213

References
[1] J. Yoder and J. Barcalow, ‘Architectural patterns for enabling application

security’, Urbana, vol. 51, p. 61801, 1998.

[2] N. Yoshioka, H. Washizaki, and K. Maruyama, ‘A survey on security patterns’,
Prog. Inform., vol. 5, no. 5, pp. 35–47, 2008.

[3] Y.-G. Guéhéneuc, J.-Y. Guyomarc’h, and H. Sahraoui, ‘Improving design-
pattern identification: a new approach and an exploratory study’, Softw. Qual.
J., vol. 18, no. 1, pp. 145–174, 2010.

[4] Y.-G. Guéhéneuc and G. Antoniol, ‘DeMIMA: A Multilayered Approach for
Design Pattern Identification’, IEEE Trans. Softw. Eng., vol. 34, no. 5, pp. 667
–684, 2008.

[5] J. Dong, D. S. Lad, and Y. Zhao, ‘DP-Miner: Design Pattern Discovery Using
Matrix’, in Engineering of Computer-Based Systems, 2007. ECBS ’07. 14th
Annual IEEE International Conference and Workshops on the, 2007, pp. 371–
380.

[6] F. A. Fontana, A. Caracciolo, and M. Zanoni, ‘DPB: A Benchmark for Design
Pattern Detection Tools’, in 2012 16th European Conference on Software
Maintenance and Reengineering (CSMR), 2012, pp. 235–244.

[7] Y.-G. Guéhéneuc, J.-Y. Guyomarc’h, D.-L. Huynh, O. Kaczor, N. Moha, S.
Rached, and P. Team, ‘Ptidej: A Tool Suite’, 2005.

[8] N. Tsantalis, A. Chatzigeorgiou, G. Stephanides, and S. T. Halkidis, ‘Design
Pattern Detection Using Similarity Scoring’, IEEE Trans. Softw. Eng., vol. 32,
no. 11, pp. 896 –909, Nov. 2006.

[9] M. Schumacher, E. Fernandez-Buglioni, D. Hybertson, F. Buschmann, and P.
Sommerlad, Security patterns. Integrating security and systems engineering.
2006.

[10] J. Dong, T. Peng, and Y. Zhao, ‘Model Checking Security Pattern
Compositions’, in Seventh International Conference on Quality Software, 2007.
QSIC ’07, 2007, pp. 80 –89.

[11] J. K. Y. Ng, Y. G. Gu’eh’eneuc, and G. Antoniol, ‘Identification of behavioural
and creational design motifs through dynamic analysis’, J. Softw. Maint. Evol.
Res. Pract., vol. 22, no. 8, pp. 597–627, 2010.

[12] D. Serrano, A. Maa, and A.-D. Sotirious, ‘Towards Precise Security Patterns’,
in 19th International Workshop on Database and Expert Systems Application,
2008. DEXA ’08, 2008, pp. 287 –291.

[13] J. Nicholson and A. Eden, ‘TTP Toolkit - Home - Object-oriented design, visual
modelling, formal specification, automated verification, reverse engineering,
design mining, traceability, scalability’, May-2009. [Online]. Available:
http://ttp.essex.ac.uk/. [Accessed: 30-Dec-2013].

214 | P a g e

[14] M. Vujoševic-Janicic and D. Tošic, ‘The role of programming paradigms in the
first programming courses’, Teach. Math. XI, vol. 2, pp. 63–83, 2008.

[15] G. Booch, ‘Object-oriented development’, Softw. Eng. IEEE Trans. On, no. 2,
pp. 211–221, 1986.

[16] P. Wegner, ‘Concepts and paradigms of object-oriented programming’, ACM
SIGPLAN OOPS Messenger, vol. 1, no. 1, pp. 7–87, 1990.

[17] J. Martin and J. J. Odell, Object-oriented methods. Prentice hall PTR, 1994.

[18] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software. Pearson Education, 1995.

[19] B. Bruegge and A. H. Dutoit, Object-Oriented Software Engineering Using
UML, Patterns and Java. Prentice Hall, 2004.

[20] R. D. Banker, S. M. Datar, C. F. Kemerer, and D. Zweig, ‘Software complexity
and maintenance costs’, Commun. ACM, vol. 36, no. 11, pp. 81–94, 1993.

[21] W. Meng, J. Rilling, Y. Zhang, R. Witte, and P. Charland, ‘An ontological
software comprehension process model’, in 3rd International Workshop on
Metamodels, Schemas, Grammars, and Ontologies for Reverse Engineering
(ATEM 2006). October 1st, Genoa, Italy, 2006.

[22] M. Berón, P. Henriques, M. J. Pereira, and R. Uzal, ‘Program inspection to
interconnect behavioral and operational view for program comprehension’,
2007.

[23] M.-A. Storey, ‘Theories, methods and tools in program comprehension: Past,
present and future’, in Program Comprehension, 2005. IWPC 2005.
Proceedings. 13th International Workshop on, 2005, pp. 181–191.

[24] R. Quirk and D. Summers, Longman dictionary of contemporary English.
Longman, 1987.

[25] B. Blakeley, Introduction to Security Design Patterns. Open Group, 2004.

[26] D. Alur, J. Crupi, and D. Malks, Core J2EE Patterns: Best Practices and Design
Strategies, 2nd ed. Prentice Hall Professional, 2003.

[27] R. Wassermann and B. H. C. Cheng, ‘Security patterns’, in Michigan State
University, PLoP Conf, 2003.

[28] D. M. Kienzle, M. C. Elder, D. Tyree, and J. Edwards-Hewitt, ‘Security patterns
repository version 1.0’, Def. Adv. Res. Proj. Agency DARPA Contract F30602-
01-C-0164 Wash. DC, 2002.

[29] S. Konrad, B. H. C. Cheng, L. A. Campbell, and R. Wassermann, ‘Using security
patterns to model and analyze security requirements’, Requir. Eng. High Assur.
Syst. RHAS03, p. 11, 2003.

P a g e | 215

[30] M. Bunke and K. Sohr, ‘An Architecture-Centric Approach to Detecting
Security Patterns in Software’, in Engineering Secure Software and Systems, vol.
6542, Ú. Erlingsson, R. Wieringa, and N. Zannone, Eds. Springer Berlin /
Heidelberg, 2011, pp. 156–166.

[31] A. K. Alvi and M. Zulkernine, ‘A Natural Classification Scheme for Software
Security Patterns’, in Dependable, Autonomic and Secure Computing (DASC),
2011 IEEE Ninth International Conference on, 2011, pp. 113 –120.

[32] H. Washizaki, E. B. Fernandez, K. Maruyama, A. Kubo, and N. Yoshioka,
‘Improving the Classification of Security Patterns’, in Database and Expert
Systems Application, 2009. DEXA ’09. 20th International Workshop on, 2009,
pp. 165 –170.

[33] M. Hafiz, P. Adamczyk, and R. E. Johnson, ‘Organizing Security Patterns’,
Softw. IEEE, vol. 24, no. 4, pp. 52 –60, Aug. 2007.

[34] M. Weiss and H. Mouratidis, ‘Selecting Security Patterns that Fulfill Security
Requirements’, in International Requirements Engineering, 2008. RE ’08. 16th
IEEE, 2008, pp. 169 –172.

[35] G. McGraw, ‘Software security’, IEEE Secur. Priv., vol. 2, no. 2, pp. 80–83,
2004.

[36] M. Huth and M. Ryan, Logic in Computer Science: Modelling and Reasoning
About Systems, 2nd ed. Cambridge University Press, 2004.

[37] J. Barwise and J. Etchemendy, The Language of First-Order Logic, Including
the Macintosh Program Tarski’s World 4.0: Including the Macintosh
Programme, Tarski’s World 4.0, 3 edition. Stanford, Calif: The Center for the
Study of Language and Information Publications, 1993.

[38] A. H. Eden and J. Nicholson, Codecharts: Roadmaps and Blueprints for Object-
Oriented Programs. John Wiley & Sons, 2011.

[39] E. Gasparis, J. Nicholson, and A. Eden, ‘LePUS3: An Object-Oriented Design
Description Language’, in Diagrammatic Representation and Inference, vol.
5223, G. Stapleton, J. Howse, and J. Lee, Eds. Springer Berlin / Heidelberg,
2008, pp. 364–367.

[40] A. Eden, ‘A visual formalism for object-oriented architecture’, Proc. Integr.
Des. Process Technol. IDPT-2002, 2002.

[41] B. Potter, D. Till, and J. Sinclair, An introduction to formal specification and Z.
Prentice Hall PTR, 1996.

[42] P. Freeman, Software systems principles: a survey. Science Research Associates,
1975.

[43] V. D’silva, D. Kroening, and G. Weissenbacher, ‘A survey of automated
techniques for formal software verification’, Comput.-Aided Des. Integr.
Circuits Syst. IEEE Trans. On, vol. 27, no. 7, pp. 1165–1178, 2008.

216 | P a g e

[44] G. J. Holzmann, ‘The model checker SPIN’, Softw. Eng. IEEE Trans. On, vol.
23, no. 5, pp. 279–295, 1997.

[45] A. Cimatti, A. Griggio, A. Micheli, I. Narasamdya, and M. Roveri, ‘KRATOS–
A Software Model Checker for SystemC’, in Computer Aided Verification,
2011, pp. 310–316.

[46] M. B. Dwyer, J. Hatcliff, R. Joehanes, S. Laubach, C. S. Păsăreanu, H. Zheng,
and W. Visser, ‘Tool-supported program abstraction for finite-state verification’,
in Proceedings of the 23rd international conference on software engineering,
2001, pp. 177–187.

[47] J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C. S. Pasareanu, and H.
Zheng, ‘Bandera: Extracting finite-state models from Java source code’, in
Software Engineering, 2000. Proceedings of the 2000 International Conference
on, 2000, pp. 439–448.

[48] Ptidej Team, ‘Research — Ptidej Team’, 2013. [Online]. Available:
http://www.ptidej.net/research/. [Accessed: 28-Feb-2014].

[49] S. Malakuti, C. Bockisch, and M. Aksit, ‘Applying the Composition Filter
Model for Runtime Verification of Multiple-Language Software’, in 20th
International Symposium on Software Reliability Engineering, 2009. ISSRE ’09,
2009, pp. 31 –40.

[50] T.-D. Cao, T.-T. Phan-Quang, P. Felix, and R. Castanet, ‘Automated Runtime
Verification for Web Services’, in 2010 IEEE International Conference on Web
Services (ICWS), 2010, pp. 76 –82.

[51] J. Shao, F. Deng, H. Liu, Q. Wang, and H. Mei, ‘Lazy Runtime Verification for
Constraints on Interacting Objects’, in Software Engineering Conference
(APSEC), 2010 17th Asia Pacific, 2010, pp. 242 –251.

[52] J. B. Wordsworth, Software development with Z: a practical approach to formal
methods in software engineering. Addison-Wesley Longman Publishing Co.,
Inc., 1992.

[53] W. E. McUmber and B. H. Cheng, ‘A general framework for formalizing UML
with formal languages’, in Proceedings of the 23rd international conference on
Software engineering, 2001, pp. 433–442.

[54] B. Selic, ‘A systematic approach to domain-specific language design using
UML’, in Object and Component-Oriented Real-Time Distributed Computing,
2007. ISORC’07. 10th IEEE International Symposium on, 2007, pp. 2–9.

[55] W. Kadir, W. M. Nasir, and R. Mohamad, ‘Formalization of UML class diagram
using description logics’, 2010.

[56] W. Yan and Y. Du, ‘Research on reverse engineering from formal models to
UML models’, in Parallel Architectures, Algorithms and Programming (PAAP),
2010 Third International Symposium on, 2010, pp. 406–411.

P a g e | 217

[57] H. M. Chavez and W. Shen, ‘Formalization of UML Composition in OCL’, in
2012 IEEE/ACIS 11th International Conference on Computer and Information
Science (ICIS), 2012, pp. 675–680.

[58] B. Zhou, J. Lu, Z. Wang, Y. Zhang, and Z. Miao, ‘Formalizing fuzzy UML class
diagrams with fuzzy description logics’, in Intelligent Information Technology
Application, 2009. IITA 2009. Third International Symposium on, 2009, vol. 1,
pp. 171–174.

[59] S. Sengupta and S. Bhattacharya, ‘Formalization of UML diagrams and their
consistency verification: A Z notation based approach’, in Proceedings of the 1st
India software engineering conference, New York, NY, USA, 2008, pp. 151–
152.

[60] A. M. Mostafa, M. A. Ismail, H. El-Bolok, and E. M. Saad, ‘Toward a
Formalization of UML2.0 Metamodel using Z Specifications’, in Eighth ACIS
International Conference on Software Engineering, Artificial Intelligence,
Networking, and Parallel/Distributed Computing, 2007. SNPD 2007, 2007, vol.
1, pp. 694–701.

[61] Z. Zhihong and Z. Mingtian, ‘Some considerations in formalizing UML class
diagrams with description logics’, in Robotics, Intelligent Systems and Signal
Processing, 2003. Proceedings. 2003 IEEE International Conference on, 2003,
vol. 1, pp. 111–115.

[62] A. Calì, D. Calvanese, G. De Giacomo, and M. Lenzerini, ‘A formal framework
for reasoning on UML class diagrams’, in Foundations of Intelligent Systems,
Springer, 2002, pp. 503–513.

[63] M. Gogolla and M. Richters, ‘Expressing UML Class Diagrams Properties with
OCL’, in Object Modeling with the OCL, T. Clark and J. Warmer, Eds. Springer
Berlin Heidelberg, 2002, pp. 85–114.

[64] D. Berardi, D. Calvanese, and G. De Giacomo, ‘Reasoning on UML class
diagrams using description logic based systems’, in Proc. of the KI’2001
Workshop on Applications of Description Logics, 2001, vol. 44.

[65] Y. Ledru, ‘Using Jaza to Animate RoZ Specifications of UML Class Diagrams’,
in Software Engineering Workshop, 2006. SEW ’06. 30th Annual IEEE/NASA,
2006, pp. 253–262.

[66] M. Bittner and F. Kammuller, ‘Translating Fusion/UML to Object-Z’, in First
ACM and IEEE International Conference on Formal Methods and Models for
Co-Design, 2003. MEMOCODE ’03. Proceedings, 2003, pp. 49–50.

[67] E. Sekerinski and R. Zurob, ‘Translating statecharts to B’, in Integrated Formal
Methods, 2002, pp. 128–144.

[68] X. Li, Z. Liu, and H. Jifeng, ‘A formal semantics of UML sequence diagram’, in
Software Engineering Conference, 2004. Proceedings. 2004 Australian, 2004,
pp. 168–177.

218 | P a g e

[69] M. Y. Ng and M. Butler, ‘Towards formalizing UML state diagrams in CSP’, in
First International Conference on Software Engineering and Formal Methods,
2003.Proceedings, 2003, pp. 138–147.

[70] S.-K. Kim and C. David, ‘Formalizing the UML class diagram using Object-Z’,
in «UML»’99—The Unified Modeling Language, Springer, 1999, pp. 83–98.

[71] OMG, ‘OMG Object Constraint Language (OCL)’, Jan. 2012.

[72] I. S. Bajwa, B. Bordbar, and M. G. Lee, ‘OCL Constraints Generation from
Natural Language Specification’, in Enterprise Distributed Object Computing
Conference (EDOC), 2010 14th IEEE International, 2010, pp. 204–213.

[73] A. Shaikh, U. K. Wiil, and N. Memon, ‘Evaluation of tools and slicing
techniques for efficient verification of UML/OCL class diagrams’, Adv. Softw.
Eng., vol. 2011, p. 5, 2011.

[74] F. Hilken, P. Niemann, R. Wille, and M. Gogolla, ‘Towards a Base Model for
UML and OCL Verification⋆’, in 11th Workshop on Model Driven Engineering,
Verification and Validation MoDeVVa 2014, 2014, p. 59.

[75] J. Cabot, R. Clarisó, and D. Riera, ‘On the verification of UML/OCL class
diagrams using constraint programming’, J. Syst. Softw., vol. 93, pp. 1–23, 2014.

[76] G. Rull, C. Farré, A. Queralt, E. Teniente, and T. Urpí, ‘AuRUS: explaining the
validation of UML/OCL conceptual schemas’, Softw. Syst. Model., pp. 1–28,
2013.

[77] M. Balaban and A. Maraee, ‘Finite satisfiability of UML class diagrams with
constrained class hierarchy’, ACM Trans. Softw. Eng. Methodol. TOSEM, vol.
22, no. 3, p. 24, 2013.

[78] R. Wille, M. Soeken, and R. Drechsler, ‘Debugging of inconsistent UML/OCL
models’, in Proceedings of the Conference on Design, Automation and Test in
Europe, 2012, pp. 1078–1083.

[79] A. Queralt and E. Teniente, ‘Verification and validation of UML conceptual
schemas with OCL constraints’, ACM Trans. Softw. Eng. Methodol. TOSEM,
vol. 21, no. 2, p. 13, 2012.

[80] S. Flake and W. Mueller, ‘An OCL extension for real-time constraints’, in Object
Modeling with the OCL, Springer, 2002, pp. 150–171.

[81] A. Evans, R. France, K. Lano, and B. Rumpe, ‘Developing the UML as a formal
modelling notation’, in Proc. UML’98, LNCS, 1998, vol. 1618.

[82] F. Baader, The description logic handbook: theory, implementation, and
applications. Cambridge: Cambridge University Press, 2003.

[83] I. Horrocks, U. Sattler, and S. Tobies, ‘Practical reasoning for expressive
description logics’, in Logic for Programming and Automated Reasoning, 1999,
pp. 161–180.

P a g e | 219

[84] V. Haarslev and R. Müller, ‘RACER system description’, in Automated
Reasoning, Springer, 2001, pp. 701–705.

[85] B. N. Grosof, I. Horrocks, R. Volz, and S. Decker, ‘Description logic programs:
Combining logic programs with description logic’, in Proceedings of the 12th
international conference on World Wide Web, 2003, pp. 48–57.

[86] G. Smith, The Object-Z specification language, vol. 101. Citeseer, 2000.

[87] F. A. Fontana, M. Zanoni, and S. Maggioni, ‘Using Design Pattern Clues to
Improve the Precision of Design Pattern Detection Tools.’, J. Object Technol.,
vol. 10, no. 4, pp. 1–31, 2011.

[88] F. Arcelli Fontana and M. Zanoni, ‘A tool for design pattern detection and
software architecture reconstruction’, Inf. Sci., vol. 181, no. 7, pp. 1306–1324,
Apr. 2011.

[89] Y.-G. Guéhéneuc, ‘PMARt: Pattern-like micro architecture repository’, Proc.
1st Eur. Focus Group Pattern Repos., 2007.

[90] F. Arcelli, S. Masiero, and C. Raibulet, ‘Elemental Design Patterns Recognition
In Java’, in 13th IEEE International Workshop on Software Technology and
Engineering Practice, 2005, 2005, pp. 196–205.

[91] J. McC Smith and D. Stotts, ‘Elemental Design Patterns: A formal semantics for
composition of OO software architecture’, in Software Engineering Workshop,
2002. Proceedings. 27th Annual NASA Goddard/IEEE, 2002, pp. 183–190.

[92] Y.-G. Guéhéneuc and N. Jussien, ‘Using explanations for design-patterns
identification’, in IJCAI, 2001, vol. 1, pp. 57–64.

[93] M. VanHilst and E. B. Fernandez, ‘Reverse engineering to detect security
patterns in code’, in Proc. of 1st International Workshop on Software Patterns
and Quality. Information Processing Society of Japan (December 2007), 2007.

[94] S. Uchiyama, A. Kubo, H. Washizaki, and Y. Fukazawa, ‘Detecting Design
Patterns in Object-Oriented Program Source Code by using Metrics and Machine
Learning Special Issue-Software Design Pattern’, J. Softw. Eng. Appl. Sci. Res.
Publ., vol. 7, 2014.

[95] M. Gupta, A. Pande, and A. K. Tripathi, ‘Design patterns detection using SOP
expressions for graphs’, SIGSOFT Softw Eng Notes, vol. 36, no. 1, pp. 1–5, Jan.
2011.

[96] G. Rasool and P. Mader, ‘Flexible design pattern detection based on feature
types’, in Proceedings of the 2011 26th IEEE/ACM International Conference on
Automated Software Engineering, Washington, DC, USA, 2011, pp. 243–252.

[97] N. Pettersson, W. Lowe, and J. Nivre, ‘Evaluation of accuracy in design pattern
occurrence detection’, Softw. Eng. IEEE Trans. On, vol. 36, no. 4, pp. 575–590,
2010.

220 | P a g e

[98] J. M. Smith and D. Stotts, ‘SPQR: flexible automated design pattern extraction
from source code’, in 18th IEEE International Conference on Automated
Software Engineering, 2003. Proceedings, 2003, pp. 215–224.

[99] J. M. Smith, ‘SPQR: formal foundations and practical support for the automated
detection of design patterns from source code’, Citeseer, 2005.

[100] N. Shi and R. A. Olsson, ‘Reverse engineering of design patterns for high
performance computing’, in Proceedings of the 2005 Workshop on Patterns in
High Performance Computing, 2005.

[101] P. Wegrzynowicz and K. Stencel, ‘Relaxing queries to detect variants of design
patterns’, in Computer Science and Information Systems (FedCSIS), 2013
Federated Conference on, 2013, pp. 1571–1578.

[102] Y.-G. Guéhéneuc, ‘Ptidej: Promoting patterns with patterns’, in European
Conference on Object Oriented Programming, workshop on Building a System
with Patterns, Glasgow, Scotland, 2005.

[103] V. R. Basili, ‘Software modeling and measurement: the Goal/Question/Metric
paradigm’, 1992.

[104] M. Mirakhorli, Y. Shin, J. Cleland-Huang, and M. Cinar, ‘A tactic-centric
approach for automating traceability of quality concerns’, in Proceedings of the
2012 International Conference on Software Engineering, 2012, pp. 639–649.

[105] M. Mirakhorli and J. Cleland-Huang, ‘Using tactic traceability information
models to reduce the risk of architectural degradation during system
maintenance’, in 2011 27th IEEE International Conference on Software
Maintenance (ICSM), 2011, pp. 123–132.

[106] R. Wassermann and B. H. C. Cheng, ‘Security Patterns’, presented at the Pattern
Languages of Programs—PLoP 2003, Robert Allerton Park, MI, 2003.

[107] F. L. Brown, J. DiVietri, G. D. de Villegas, and E. B. Fernandez, ‘The
authenticator pattern’, Proc. Pattern Lang. Programs PloP’99, pp. 15–18, 1999.

[108] A. H. Eden, E. Gasparis, and J. Nicholson, ‘LePUS3 and Class-Z Reference
Manual’, University of Essex, Tech. Rep, 2007.

[109] J. Yoder and J. Barcalow, ‘Architectural Patterns for Enabling Application
Security’, in Pattern languages of program design 4, B. Foote, N. Harrison, and
H. Rohnert, Eds. Addison-Wesley, 2000.

[110] I. Bayley and H. Zhu, ‘Formal specification of the variants and behavioural
features of design patterns’, J. Syst. Softw., vol. 83, no. 2, pp. 209–221, Feb.
2010.

[111] I. Bayley and H. Zhu, ‘Formalising design patterns in predicate logic’, in
Software Engineering and Formal Methods, 2007. SEFM 2007. Fifth IEEE
International Conference on, 2007, pp. 25–36.

P a g e | 221

[112] A. Hachemi and M. Ahmed-Nacer, ‘Automatic Extraction of Relationships
Among Software Patterns’, in Innovations and Advances in Computing,
Informatics, Systems Sciences, Networking and Engineering, Springer, 2015, pp.
575–580.

[113] M. Hafiz, P. Adamczyk, and R. E. Johnson, ‘Towards an Organization of
Security Patterns’, Volume, vol. 24, pp. 52–60, 2007.

[114] A. Kubo, H. Washizaki, and Y. Fukazawa, ‘Extracting relations among security
patterns’, in Submitted to 1st International Workshop on Software Patterns and
Quality (SPAQu’07), 2007.

[115] I. Bayley and H. Zhu, ‘A formal language of pattern composition’, in
Proceedings of the 2nd international conference on pervasive patterns
(PATTERNS 2010), XPS (Xpert Publishing Services), Lisbon, Portugal, 2010,
pp. 1–6.

[116] Oracle Java Technology, ‘JAAS Reference Guide’, 2011. [Online]. Available:
http://docs.oracle.com/javase/6/docs/technotes/guides/security/jaas/JAASRefG
uide.html. [Accessed: 06-Jul-2012].

[117] Oracle Java Technology, ‘JAAS Authentication Tutorial’, 2011. [Online].
Available:
http://docs.oracle.com/javase/6/docs/technotes/guides/security/jaas/JAASRefG
uide.html#Sample. [Accessed: 16-Jul-2012].

[118] Log4J, ‘Overview - Apache Log4j 2’, 2014. [Online]. Available:
http://logging.apache.org/log4j/2.x/manual/index.html. [Accessed: 25-Sep-
2014].

[119] C. Gulcu, ‘Short introduction to log4j’, 2002.

[120] Apache Struts, ‘The Apache Software Foundation’. [Online]. Available:
http://www.apache.org/. [Accessed: 16-Mar-2015].

[121] C.-H. Chang, C.-W. Lu, W. C. Chu, N.-L. Hsueh, and C.-S. Koong, ‘A Case
Study of Pattern-based Software Framework to Improve the Quality of Software
Development’, in Proceedings of the 2009 ACM Symposium on Applied
Computing, New York, NY, USA, 2009, pp. 443–447.

[122] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman, 1979.

[123] D. S. Johnson, ‘A Brief History of NP-Completeness, 1954–2012’, Doc. Math.,
pp. 359–376, 2012.

[124] http://jrefactory.sourceforge.net/, ‘JRefactory’, May-2004. [Online]. Available:
http://jrefactory.sourceforge.net/. [Accessed: 25-Sep-2014].

[125] http://www.jhotdraw.org/, ‘JHotDraw Start Page’, JHotDraw Start Page, 11-
Aug-2007. [Online]. Available: http://www.jhotdraw.org/. [Accessed: 25-Sep-
2014].

222 | P a g e

[126] Wolfram Kaiser, ‘Become a programming Picasso with JHotDraw’, JavaWorld,
16-Feb-2001. [Online]. Available:
http://www.javaworld.com/article/2074997/swing-gui-programming/become-a-
programming-picasso-with-jhotdraw.html. [Accessed: 25-Sep-2014].

[127] R. Margea and C. Margea, ‘Open Source Approach to Project Management
Tools’, Inform. Econ., vol. 15, no. 1, pp. 196–206, 2011.

[128] http://www.ganttproject.biz/, ‘GanttProject: free desktop project management
app’, Sep-2014. [Online]. Available: http://www.ganttproject.biz/. [Accessed:
25-Sep-2014].

[129] http://junit.org/, ‘JUnit - About’, 25-Sep-2014. [Online]. Available:
http://junit.org/. [Accessed: 25-Sep-2014].

[130] Elliotte Rusty Harold, ‘An early look at JUnit 4’, 13-Sep-2005. [Online].
Available: http://www.ibm.com/developerworks/java/library/j-junit4/.
[Accessed: 25-Sep-2014].

[131] Chad McHenry and Robert Thomas, ‘JSettlers’, SourceForge, 15-Apr-2013.
[Online]. Available: http://sourceforge.net/projects/jsettlers/. [Accessed: 12-
Mar-2015].

[132] G. Rasool and D. Streitfdert, ‘A Survey on Design Pattern Recovery
Techniques.’, Int. J. Comput. Sci. Issues IJCSI, vol. 8, no. 6, 2011.

[133] G. Rasool, P. Maeder, and I. Philippow, ‘Evaluation of design pattern recovery
tools’, Procedia Comput. Sci., vol. 3, pp. 813–819, 2011.

[134] A. D. Lucia, V. Deufemia, C. Gravino, and M. Risi, ‘Design pattern recovery
through visual language parsing and source code analysis’, J. Syst. Softw., vol.
82, no. 7, pp. 1177–1193, Jul. 2009.

P a g e | 223

Appendices
APPENDIX A: More Security patterns in Codecharts

 Check Point Pattern

Pattern description catalogue:[106]

Figure 85: UML class diagram: Check Point Pattern [27]

224 | P a g e

 Secure Logger

Pattern description catalogue: [26]

Figure 86: UML class diagram: Secure Logger Pattern [26]

Figure 87: LePUS3 and Class-Z schema of Secure Logger Pattern

 Role pattern

Pattern description catalogue: [106]

P a g e | 225

Figure 88: Codecharts: Role pattern

226 | P a g e

 Secure Architecture

This pattern combines Single Access Point, Check Point, and Role.

Pattern description catalogue: [106]

Figure 89: Codecharts: Secure Architecture

P a g e | 227

 Role and Session

Pattern description catalogue: [106]

Figure 90: Codecharts: Role and Session

228 | P a g e

 Authentication Enforcer Pattern

Pattern description catalogue:[26]

Figure 91: Codecharts: Authentication Enforcer Pattern

 Account Lockout Pattern

Pattern description catalogue: [28]

Figure 92: Codecharts: Account Lockout Pattern

P a g e | 229

 Authenticated Session Pattern

Pattern description catalogue: [28]

Figure 93: Codecharts: Authenticated Session Pattern

 Client Data Storage Pattern

Pattern description catalogue: [28]

Figure 94: Codecharts: Client Data Storage pattern

230 | P a g e

 Network Address blacklist Pattern

Pattern description catalogue: [28]

Figure 95: Codecharts: Network Address blacklist pattern

 Password Authentication Pattern

Pattern description catalogue: [28]

Figure 96: Codecharts: Password Authentication pattern

P a g e | 231

 Password Propagation Pattern

Pattern description catalogue: [28]

Figure 97: Codecharts: Password Propagation pattern

 Full View with Error pattern

Pattern description catalogue: [9]

Figure 98: Codecharts: Full View with Error pattern

232 | P a g e

Figure 99: UML class diagram: Full View With Error Pattern [9]

Figure 100: LePUS3 and Class-Z schema of Full View with Error Pattern

APPENDIX B: More Manual Conformance Checking Case Studies

Check Point pattern in JAAS
Implementation: JAAS

Claim in: [9]

Formalized pattern: Figure 31

P a g e | 233

Figure 101: Codechart: An instance of Check Point in JAAS

Figure 102: Manually created assignment of Check Point in JAAS

Figure 103: Verification Result of Check Point instance in JAAS

Secure Architecture pattern

234 | P a g e

Implementation: JAAS

Claim in: [9]

Formalized pattern: Figure 89

Figure 104: Codechart: An instance of Secure Architecture Pattern in JAAS

P a g e | 235

Figure 105: Manually created assignment of Secure Architecture Pattern in JAAS

Figure 106: Verification Result of Secure Architecture Pattern instance in JAAS

APPENDIX C: More Automatic Pattern Detection Case Studies

Check Point pattern in JAAS.

Formalized Security Pattern Figure 31

236 | P a g e

Figure 107: Results of detecting Check Point in JAAS

Figure 108: Codechart: An instance of Check Point detected in JAAS

Figure 109: an assignment of Check Point detected in in JAAS

 Results Explanation
Client SampleAzn

CheckPoint LoginContext

P a g e | 237

CounterMeasure LoginContext$SecureCallbackHandler, AccessController,
LoginException, SecurityManager

Policy LoginException, LoginContext$SecureCallbackHandler,
AccessController, SecurityManager

Access main(java.lang.String[])

Action LoginContext$SecureCallbackHandler(java.security.AccessControl
Context,javax.security.auth.callback.CallbackHandler),
checkPermission(java.security.Permission),
LoginContext(java.lang.String,javax.security.auth.callback.Callbac
kHandler), LoginException(java.lang.String), getContext(),
doPrivileged(java.security.PrivilegedAction,java.security.AccessC
ontrolContext)

Check LoginContext(java.lang.String,javax.security.auth.callback.Callbac
kHandler)

Enforce LoginException(java.lang.String),checkPermission(java.security.P
ermission),
doPrivileged(java.security.PrivilegedAction,java.security.AccessC
ontrolContext), getContext(),
LoginContext$SecureCallbackHandler(java.security.AccessControl
Context,javax.security.auth.callback.CallbackHandler)

Single Access Point & Check Point in JAAS.

Formalized Security Pattern Figure 35

Figure 110: Results of detecting Single Access Point & Check Point in JAAS

238 | P a g e

Figure 111: Codechart: An instance of Single Access Point & Check Point detected in JAAS

Figure 112: an assignment of Single Access Point & Check Point detected in JAAS

Results Explanation

P a g e | 239

Client SampleAzn

CounterMeasure {AccessController, LoginContext$SecureCallbackHandler,
LoginException}

CheckPoint LoginContext

SAP LoginContext

Check LoginContext(java.lang.String,javax.security.auth.callback.Callbac
kHandler)

Access login()

InternalComponent Subject

makeRequest main(java.lang.String[])

secureAction Subject()

RecipientUnknownOr
RecipientUnavailable

{LoginContext$4, LoginContext$5}

accessLog {LoginContext$4, LoginContext$5}

Policy {LoginContext$SecureCallbackHandler, AccessController,
LoginException}

Availabilitychecker {invokePriv(java.lang.String),
invokeCreatorPriv(java.lang.String)}

Action {LoginContext$SecureCallbackHandler(java.security.AccessContr
olContext,javax.security.auth.callback.CallbackHandler),
getContext(), LoginException(java.lang.String) }

createEntity {LoginContext$5(javax.security.auth.login.LoginContext,java.lang
.String),
LoginContext$4(javax.security.auth.login.LoginContext,java.lang.
String)}

Enforce {LoginContext$SecureCallbackHandler(java.security.AccessContr
olContext,javax.security.auth.callback.CallbackHandler),
LoginException(java.lang.String), getContext()}

logAccess {invokePriv(java.lang.String),
invokeCreatorPriv(java.lang.String)}

showMessage {LoginContext$4(javax.security.auth.login.LoginContext,java.lang
.String),

240 | P a g e

LoginContext$5(javax.security.auth.login.LoginContext,java.lang.
String)}

Full View with Error pattern in LEXI

Formalized Security Pattern Figure 98

Claim of implementation in LEXI is in [9]

Figure 113: Results of detecting Full View with Error pattern in LEXI

Figure 114: Codechart: An instance of Full View with Error pattern detected in LEXI

P a g e | 241

Figure 115: Assignments of Full View with Error pattern detected in LEXI

Figure 116: Auto-defined higher-dimension entities (Methods) (Full View with Error pattern
Validator - LEXI)

242 | P a g e

Class Adapter pattern Case Studies

Class Adapter pattern in JRefactory

Figure 117: Codechart: Class Adapter pattern [38]

Figure 118: Results of detecting Class Adapter in JRefactory

 Results Explanation
The difference is only with the client class. The rest are the same:

adaptee LinedPanel

adapter UMLPackage

client {<Symbol:SaveMenuSelection,FullQualifier:

net.sourceforge.jrefactory.uml.SaveMenuSelection>,

<Symbol:org.acm.seguin.uml.SaveMenuSelection

FullQualifier:org.acm.seguin.uml.SaveMenuSelection>}

P a g e | 243

target Saveable

Operations Signatures_3

Requests Signatures_16

SpecificRequests Signatures_22

Figure 119: Codechart: An instance of Class Adapter pattern detected in JRefactory

Figure 120: an assignment of Class Adapter detected in JRefactory

244 | P a g e

Figure 121: Auto-defined higher-dimension entities (Methods) (Class Adapter - JRefactory)

Signatures Set details

Signatures_16={save()}

Signatures_22={getLineIterator()}

Class Adapter pattern in GanttProject

Figure 122: Results of detecting Class Adapter in GanttProject

P a g e | 245

 Results Explanation

adaptee {ConstraintImpl}

adapter {FinishFinishConstraintImpl,
FinishStartConstraintImpl,
StartStartConstraintImpl,
StartFinishConstraintImpl}

client {RecalculateTaskScheduleAlgorithm,
CriticalPathAlgorithmImpl$Processor}

target {TaskDependencyConstraint}

Operations {Signatures_26, Signatures_29}

Requests {Signatures_25, Signatures_28}

SpecificRequests {Signatures_24, Signatures_27}

Figure 123: Codechart: An instance of Class Adapter pattern detected in GanttProject

246 | P a g e

Figure 124: Assignments of Class Adapter detected in GanttProject

Figure 125: Auto-defined higher-dimension entities (Methods) (Class Adapter - GanttProject)

P a g e | 247

Signatures Set details

Signatures_24={shift(java.util.Date,int), getDependency(), clone()}

Signatures_25={getBackwardCollision(java.util.Date)}

Signatures_26={findLatestFinishTime(ganttproject.task.algorithm.CriticalPathAlg
orithmImpl$Node,ganttproject.task.algorithm.CriticalPathAlgorithmImpl$Node,ga
nttproject.task.dependency.TaskDependency)}

Signatures_27={addDelay(biz.ganttproject.core.time.GanttCalendar),
getDependency(), clone()}

Signatures_28={getCollision()}

Signatures_29={fulfilDependencies(),
fulfilConstraints(ganttproject.task.dependency.TaskDependency)}

Class Adapter pattern in JSettlers

Figure 126: Results of detecting Class Adapter in JSettlers

248 | P a g e

Figure 127: Codechart: An instance of Class Adapter pattern detected in JSettlers

Figure 128: An assignment of Class Adapter detected in JSettlers

P a g e | 249

Figure 129: Auto-defined higher-dimension entities (Methods) (Class Adapter - JSettlers)

Signatures Set details

Signatures={removeConnectionCleanup(soc.server.genericServer.Connection),
removeConnection(soc.server.genericServer.Connection), connectionCount(),
stopServer(), broadcast(java.lang.String)}

Signatures_1={processCommand(java.lang.String,soc.server.genericServer.Conne
ction)}

Signatures_2={run()}

250 | P a g e

Class Adapter pattern in RISK 2.0

Figure 130: Results of detecting Class Adapter in RISK 2.0

Figure 131: Codechart: An instance of Class Adapter pattern detected in RISK 2.0

Figure 132: An assignment of Class Adapter detected in RISK 2.0

P a g e | 251

Figure 133: Auto-defined higher-dimension entities (Methods) (Class Adapter - RISK 2.0)

Signatures Set details

Signatures_22={processRecruitment(de.javaRisk.v2.game.network.FieldUpdate),
processMovement(de.javaRisk.v2.game.ArmyCollection)}

Signatures_23={getGameField(),
processRecruitment(de.javaRisk.v2.game.network.FieldUpdate),
processMovement(de.javaRisk.v2.game.ArmyCollection), isInTurn()}

Signatures_24={processConquest(de.javaRisk.v2.game.network.FieldUpdate),
processDestruction(de.javaRisk.v2.game.ArmyCollection),
setGameField(de.javaRisk.v2.game.GameField),
processBuild(de.javaRisk.v2.game.network.FieldUpdate),
processPullDown(de.javaRisk.v2.game.network.FieldUpdate),
processRecruitment(de.javaRisk.v2.game.network.FieldUpdate),
processMovement(de.javaRisk.v2.game.ArmyCollection)}

252 | P a g e

Signatures_25={getGameField(),
processConquest(de.javaRisk.v2.game.network.FieldUpdate),
processDestruction(de.javaRisk.v2.game.ArmyCollection),
setGameField(de.javaRisk.v2.game.GameField),
processBuild(de.javaRisk.v2.game.network.FieldUpdate),
processPullDown(de.javaRisk.v2.game.network.FieldUpdate),
processRecruitment(de.javaRisk.v2.game.network.FieldUpdate),
processMovement(de.javaRisk.v2.game.ArmyCollection), getId(), isInTurn()}

Signatures_32={setGameField(de.javaRisk.v2.game.GameField)}

Signatures_43={displayGameField(de.javaRisk.v2.game.GameField,java.lang.Stri
ng)}

Signatures_44={drawGameField(de.javaRisk.v2.tools.DrawProperties)}

Signatures_45={getGameField(), getCallingComponent()}

Signatures_46={paintComponent(java.awt.Graphics)}

Signatures_47={setCenteredField(java.awt.Point),
setGameField(de.javaRisk.v2.game.GameField)}

Class Adapter pattern in JHotdraw

Figure 134: Results of detecting Class Adapter in JHotdraw

P a g e | 253

Figure 135: Codechart: An instance of Adapter pattern detected in JHotdraw

Figure 136: assignments of Class Adapter detected in JHotdraw

254 | P a g e

Figure 137: Auto-defined higher-dimension entities (Methods) (Adapter - JHotdraw)

Signatures Sets details

P a g e | 255

Signatures_29={getPolygon()}

Signatures_28={getClippingShape()}

Signatures_30={getShape()}

Signatures_31={displayBox()}

Signatures_35={figureRequestRemove(org.jhotdraw.framework.FigureChangeEv
ent), change()}

Signatures_37={figureRequestRemove(org.jhotdraw.framework.FigureChangeEv
ent), figureRequestUpdate(org.jhotdraw.framework.FigureChangeEvent)}

Signatures_52={add(org.jhotdraw.framework.Figure)}

Signatures_65={displayBox(), getPolygon(), getInternalPolygon()}

Signatures_66={displayBox(), getArc()}

Signatures_101={invokeStart(int,int,org.jhotdraw.framework.DrawingView)}

Signatures_136={run()}

Signatures_137={displayBox(), moveBy(int,int), figures()}

Signatures_138={animationStep()}

Signatures_149={includes(org.jhotdraw.framework.Figure), displayBox(),
invalidateRectangle(java.awt.Rectangle), listener()}

Signatures_167={containsFigure(org.jhotdraw.framework.Figure),
add(org.jhotdraw.framework.Figure),
_addToQuadTree(org.jhotdraw.framework.Figure),
figureRequestUpdate(org.jhotdraw.framework.FigureChangeEvent)}

Class Adapter pattern in Java.AWT

Figure 138: Results of detecting Class Adapter pattern in Java.AWT

256 | P a g e

Figure 139: Codechart: An instance of Class Adapter pattern detected in Java.AWT

Figure 140: An assignment of Class Adapter pattern detected in Java.AWT

Figure 141: Auto-defined higher-dimension entities (Methods) (Class Adapter pattern -
Java.AWT)

P a g e | 257

Signatures Set details

Signatures_18={isMaximumSizeSet(), setFont(java.awt.Font),
isMinimumSizeSet(),
firePropertyChange(java.lang.String,java.lang.Object,java.lang.Object),
isPreferredSizeSet(), getFont(), invalidate(), getTreeLock()}

Signatures_19={setFont(java.awt.Font), invalidate()}

Signatures_20={setFont(java.awt.Font)}

Strategy pattern Case Studies
It is important to report that case studies of the strategy pattern (shown in Eden

[38]) could not be detected as seen in Figure 143 and Figure 149. This is due to the

client participant shown in the pattern Codechart. However, as this participant should

be a user defined class, the participant in the Codechart could be removed. Figure 142

shows the pattern Codechart without the client participant. Having this new Codechart,

the pattern could be detected and the Figure 144 and Figure 150 shows the detection

results of strategy pattern in JRefactory and JHotdraw respectively.

258 | P a g e

Figure 142: Codechart: Strategy pattern (without Client class variable)

Strategy pattern in JRefactory

Figure 143: Results of detecting Strategy in JRefactory

Figure 144: Results of detecting Strategy (without Client class variable) in JRefactory

P a g e | 259

Figure 145: Codechart: An instance of Strategy pattern (without Client class variable) detected
in JRefactory

Figure 146: assignments of Strategy (without Client class variable) detected in JRefactory

260 | P a g e

Figure 147: Auto-defined higher-dimension entities (Hierarchies) (Strategy -without Client class
variable - JRefactory)

P a g e | 261

Figure 148: Auto-defined higher-dimension entities (Methods) (Strategy -without Client class
variable - JRefactory)

Signatures Set details

Signatures_136={isFinal(), isSynchronized(), isStrictFP(), isExplicit(), isNative(),
isPublic(), isVolatile(), isAbstract(), isTransient(), isPrivate(), isInterface(),
isProtected(), isStatic()}

Hierarchies details

Hrc_16={org.acm.seguin.summary.FieldAccessSummary,
org.acm.seguin.summary.TypeSummary, org.acm.seguin.summary.FileSummary,
org.acm.seguin.summary.MethodSummary, org.acm.seguin.summary.Summary,
org.acm.seguin.summary.PackageSummary,
org.acm.seguin.summary.ImportSummary,
org.acm.seguin.summary.TypeDeclSummary,
org.acm.seguin.summary.MessageSendSummary,
org.acm.seguin.summary.VariableSummary}

Strategy pattern in JHotdraw

262 | P a g e

Figure 149: Results of detecting Strategy in JHotdraw

Figure 150: Results of detecting Strategy (without Client class variable) in JHotdraw

Figure 151: Codechart: An instance of Strategy pattern (without Client class variable) detected
in JHotdraw

Figure 152: an assignment of Strategy (without Client class variable) detected in JHotdraw

P a g e | 263

Figure 153: Auto-defined higher-dimension entities (Hierarchies) (Strategy -without Client class
variable - JHotdraw)

Figure 154: Auto-defined higher-dimension entities (Methods) (Strategy -without Client class
variable - JHotdraw)

Signatures Set details

Signatures_8={isJDK12(), createCollectionsFactory(java.lang.String)}

Hierarchies details

264 | P a g e

Hrc_5={org.jhotdraw.util.CollectionsFactory,
org.jhotdraw.util.collections.jdk11.CollectionsFactoryJDK11,
org.jhotdraw.util.collections.jdk12.CollectionsFactoryJDK12}

Strategy pattern in Java.AWT

Figure 155: Codechart: Strategy pattern [38]

Figure 156: Results of detecting Strategy in Java.AWT

Figure 157: Codechart: An instance of Strategy pattern detected in Java.AWT

P a g e | 265

Figure 158: An assignment of Strategy detected in Java.AWT

Figure 159: Auto-defined higher-dimension entities (Hierarchies) (Strategy - Java.AWT)

Figure 160: Auto-defined higher-dimension entities (Methods) (Strategy - Java.AWT)

266 | P a g e

Factory Method Case Studies

Factory Method pattern in JHotdraw

Figure 161: Codechart: Factory Method pattern [38]

Figure 162: Results of detecting Factory Method in JHotdraw

Figure 163: Codechart: An instance of Factory Method pattern detected in JHotdraw

P a g e | 267

Figure 164: Assignments of Factory Method detected in JHotdraw

Figure 165: Auto-defined higher-dimension entities (Hierarchies) (Factory Method - JHotdraw)

268 | P a g e

Hierarchies details

Hrc_8={org.jhotdraw.samples.javadraw.JavaDrawApplet,
org.jhotdraw.samples.nothing.NothingApplet,
org.jhotdraw.samples.pert.PertApplet, org.jhotdraw.applet.DrawApplet}

Hrc_9={org.jhotdraw.samples.javadraw.BouncingDrawing,
org.jhotdraw.standard.StandardDrawing}

Hrc_53={org.jhotdraw.samples.javadraw.JavaDrawApp,
org.jhotdraw.contrib.MDI_DrawApplication}

Hrc_65={org.jhotdraw.contrib.SimpleLayouter,
org.jhotdraw.contrib.StandardLayouter}

Hrc_121={org.jhotdraw.figures.ConnectedTextTool$UndoActivity,
org.jhotdraw.figures.TextTool$UndoActivity}

Hrc_122={org.jhotdraw.standard.DeleteCommand$UndoActivity,
org.jhotdraw.figures.ConnectedTextTool$DeleteUndoActivity}

Hrc_123={org.jhotdraw.figures.ConnectedTextTool,
org.jhotdraw.figures.TextTool}

Factory Method pattern in JRefactory

Figure 166: Results of detecting Factory Method in JRefactory

P a g e | 269

Figure 167: Codechart: An instance of Factory Method pattern detected in JRefactory

Figure 168: an assignment of Factory Method detected in JRefactory

270 | P a g e

Figure 169: Auto-defined higher-dimension entities (Hierarchies) (Factory Method - JRefactory)

Hierarchies details

Hrc_289={org.acm.seguin.pretty.line.NumberedLineQueue,
org.acm.seguin.pretty.LineQueue}

Hrc_284={org.acm.seguin.pretty.PrintData,
org.acm.seguin.pretty.line.LineNumberingData}

