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Summary

This study explores the handling and analyzing of big data in the field of bioinformatics. The

focus has been on improving the analysis of public domain data for Affymetrix GeneChips

which are a widely used technology for measuring gene expression. Methods to determine

the bias in gene expression due to G-stacks associated with runs of guanine in probes have

been explored via the use of a grid and various types of cloud computing.

An attempt has been made to find the best way of storing and analyzing big data used

in bioinformatics. A grid and various types of cloud computing have been employed. The

experience gained in using a grid and different clouds has been reported. In the case of

Windows Azure, a public cloud has been employed in a new way to demonstrate the use of

the R statistical language for research in bioinformatics.

This work has studied the G-stack bias in a broad range of GeneChip data from public

repositories. A wide scale survey has been carried out to determine the extent of the G-

stack bias in four different chips across three different species. The study commenced

with the human GeneChip HG U133A. A second human GeneChip HG U133 Plus2 was

then examined, followed by a plant chip, Arabidopsis thaliana, and then a bacterium chip,

Pseudomonas aeruginosa. Comparisons have also been made between the use of widely

recognised algorithms RMA and PLIER for the normalization stage of extracting gene

expression from GeneChip data.
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Glossary

amino acids are biologically important organic compounds composed of amine (NH2) and

carboxylic (COOH) functional groups, together with a side-chain specific to each amino

acid. Their key elements are carbon, hydrogen, oxygen and nitrogen. About 500 amino

acids are known.

cytoplasm is a gel-like substance enclosed within a cell’s membrane. Most cellular

activities occur within the cytoplasm.

enzymes are highly selective catalysts which are responsible for the thousands of meta-

bolic processes that sustain life. Most enzymes are proteins, though some catalytic RNA

molecules have been identified.

G-stack is a sequence of four “G” (guanine) bases in a strand of nucleic acid such as

RNA or DNA.

gene product is the biochemical material, either RNA or protein, which results from

expression of a gene.

hybridization is the process of joining two complementary strands of nucleic acid

sequences, e.g. RNA or DNA.

microarray is a 2D array on a glass slide for testing biological material using hibridiza-

tion and laser scanning.

nucleic acids are large biological molecules which are essential for all known forms of

life. DNA and RNA are examples. They encode, transmit and express genetic information.
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nucleotides are the building blocks of nucleic acids like DNA and RNA. They are

composed of a nitrogenous base with a five-carbon sugar and at least one phosphate group.

polymers are large molecules which are composed of many repeated subunits. Polymers

range from familiar synthetic plastics like polystyrene to natural biopolymers like DNA and

proteins.

photolithography is a process that uses light to control the manufacture of multiple

layers of material.

polypeptides are long continuous chains of amino acids. In general they are smaller

than proteins so have fewer amino acids (approximately 50 or fewer according to Wiki).

probe affinity (a description used by Irizarry et al. [1]) is the attraction which causes

hybridization of strands of nucleic acid sequences. Abnormal probe affinity relates to

a probe sequence having an affinity to bind to a neighbouring probe rather than to the

desired RNA sequence. Affymetrix, to be strictly accurate, prefers to use the term “feature

responses” in place of “probe affinities” due to the many factors which interact to produce

measured intensity [2].

proteins consist of one or more polypeptides, arranged in a biologically functional way.

web role is a web application which is accessible via a http://... or https://... endpoint

(webpage or web address)

worker role is a background processing application (program)
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Chapter 1

Introduction

The study described in this thesis covers investigations made in the fields of bioinformatics

and computer science. It is necessary to understand some biological and chemical structures

in order to use bioinformatics and study the data that biologists generate so these structures

have been briefly described. Computers are invaluable to perform the desired analyses and

also to handle the large volumes of data that can be involved so there are chapters dedicated

to explaining the type of computation facilities used.

Much use has been made in recent years of microarray technology to perform research

into gene expression and the chemical processes behind cell development. Experiments are

also creating vast amounts of sequencing data in a variety of fields where DNA and RNA

are of interest. Microarray data has been examined here to establish methods of confirming

the bias that can be introduced to this data by the particular probes chosen in the Affymetrix

GeneChip® technology (see chapter 3). From the various types of bias that have been

detected (for example by Langdon et al. [3] and by Upton and Harrison [4]) the effect of

G-stacks (sequences of four or more “G”s) in the probes was chosen to be investigated in

more detail. A wide scale survey of all experiments that used a particular human GeneChip

has been carried out. This survey was repeated for another human GeneChip, and then for

GeneChips in two other species.

An attempt has been made to find a good way of handling and analyzing big data in the

1
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field of bioinformatics. The use of a grid and of cloud computing is explored to examine the

process of investigating large amounts of data from microarray experiments. This type of

data is often deposited and made available in public databases accessible across the internet.

The use of a local private cloud has been demonstrated and in the case of Windows Azure, a

public cloud has been employed in a new way to demonstrate the use of the R statistical

language for research in bioinformatics.

Ever increasing quantities of data are being generated each year. This data can be

analysed by other researchers from those who created it, in order, for example, to search for

patterns of gene expression that might not have been anticipated. This work paves the way

for fresh approaches in the handling and analysis of large volumes of biological data of any

type.

1.1 Organisation of thesis

Chapter 2 introduces the basic principles of molecular biology in terms of the cell, DNA

and RNA, genes and the genome, and bioinformatics and its tools. It concludes with an

explanation of the challenge presented by “Big Data” in the field of bioinformatics, and

with an overview of grid and cloud computing.

Chapter 3 explains the use of microarrays and the technology of Affymetrix GeneChips.

It explores how gene expression is evaluated from the results of microarray experiments

and how bias can be introduced by certain sequences such as G-stacks. This bias is the

focus of further analysis described in later chapters. The generation of “unique mappings”

is explored and analytic techniques of regression analysis and correlation matrices are

explained as a way to evaluate the bias due to G-stacks.

Chapter 4 explores grid computing as a solution to the problem of accessing computer

resources as a bioinformatician when fast processors and huge storage devices are not

available locally. Grid computing is examined through experiences of using the NGS grid
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which was the National Grid Service for the academic research community in the United

Kingdom.

Chapter 5 contrasts the experiences of using a local private cloud and two public clouds:

Amazon Web Services and Microsoft’s Windows Azure. This research project enjoyed early

access to both the Amazon and Azure cloud offerings, whose features and advantages have

improved and grown enormously over the period.

Chapter 6 explains the experience of using Windows Azure cloud services when

they were newly available, to begin to analyse a large quantity of microarray data. The

development of bespoke interfaces to run R scripts in the Windows-centric environment of

Azure is described. Data sets had to be uploaded from public repositories of microarray

experiments. Finally some timings of running R scripts in the cloud is compared with

timings on local computers.

Chapter 7 returns to the biological experiment data from microarrays to report on

the experience of using the Azure cloud to analyse all the publicly available data from

the human GeneChip HG U133A. There are issues to be discussed when uploading large

quantities of data from many experiments of different researchers. There was also the need

to develop a new method of submitting multiple jobs to analyse the data. This work allowed

the assessment of the extent of G-stack bias across a wide variety of experiments which

used the HG U133A chip.

Chapter 8 extends the wide scale analysis to another human GeneChip HG U133 Plus

and to two other species: the plant Arabidopsis thaliana and the bacterium Pseudomonas

aeruginosa. Scatter plots are used to compare the results in each species between using RMA

and PLIER, two different types of normalization routine. Expression data and correlation

data across probe sets are both used to compare the effects of G-stacks in the probes of the

microarray datasets of each species.

Chapter 9 summarises the conclusions of the thesis. It also suggests ways in which

future research might profitably be directed.
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1.2 Published papers

1. Musa, Ibrahim K., Owen, Anne M., Harrison, Andrew P. and Walker, Stuart D. (May

2014) Self-service infrastructure container for data intensive application. Journal of
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2. Shanahan, Hugh P., Owen, Anne M., Harrison, Andrew P. (Jan 2014) Bioinformatics
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http://dx.plos.org/10.1371/journal.pone.0102642

3. Shanahan, Hugh P., Owen, Anne M., Harrison, Andrew P. (July 2013) Integrating R
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1.3 My contribution

My contribution to the field of Bioinformatics through this thesis is the wide scale analysis of

publicly available transcriptomics data, the results of which are given in detail in chapters 7

and 8. In order to achieve these results all possible microarray data from four different
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GeneChips that was available in May 2012, was uploaded to a public cloud and analysed.

The types of analysis chosen were based on work by Shanahan and Memon which is

described in section 3.5. I modified their scripts to run on the Azure cloud.

Initially I was involved with my supervisor’s team of researchers in creating unique

mappings (see section 3.4.2) which identified probes that could be used as more reliable mea-

sures of target expression. Following this was the creation of heatmaps (see section 3.4.3.2)

which visualize the correlation coefficients between pairs of probes in a probe set. The

heatmaps showed that some probes were not correlated with other probes in their probe

sets, and yet probes containing runs of guanine typically showed correlation with each

other. The investigation of runs of guanine was showing them to be a cause of error or

bias in measuring gene expression. I do not believe that there had ever been a wide scale

survey done to find out the magnitude of this bias across all the available experimental data

deposited in public databases.

Computing grids had been in use for several years but computing clouds were in their

infancy, so with my background in computing science (M.Sc. Newcastle, 1973 as Anne

Yates), I embarked on the use of a grid and cloud computing to perform the analysis runs.

The experiences reported on using grid computing were with a script written by Farhat

Memon. My experience on the Amazon cloud came initially from helping Farhat to get

started with cloud computing. I was able to create some tailored machine images for her to

use for our group research. I also uploaded and maintained data files in Amazon S3 storage.

My personal contribution to the work on Musa’s local private cloud was firstly to supply

the same data and R scripts that I was using to analyse the effect of runs of guanines. Then

discussion of the bioinformatics issues as well as the cloud job queuing issues ensured that

Musa and I both gained the maximum benefit from the collaboration.

The wide scale analyses were run on the Windows Azure cloud. I modified scripts

written in R by Shanahan and Memon to run the analyses. I wrote the C# code necessary to

launch web roles on the cloud, as described in section 5.3.2. I wrote scripts to upload data
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files from public databases to the Azure cloud storage, ran these scripts to upload data from

around 3,000 experiments and ran the various R scripts on the cloud.



Chapter 2

Basic Principles of Molecular Biology,

Bioinformatics, Big data, Grids and

Clouds

2.1 Introduction

In this chapter an explanation is given of the current basic understanding of the building

blocks of life. Starting with the cell as an important functional unit of life, an explanation of

DNA (or DeoxyriboNucleic Acid) and some of the mechanisms used in the replication of

cells is presented. Section 2.4 will introduce the Central Dogma of Molecular Biology, RNA

(RiboNucleic Acid) and amino acids, before explaining what is referred to as a genome.

Gene expression is briefly introduced and then an explanation of exons and introns will lead

on to an introduction of the field of bioinformatics and some of its tools. The chapter will

conclude with a summary of the scale of the big data challenge which faces researchers in

bioinformatics today, and outline the basic features of grid computing and cloud computing

which have developed to meet the needs of such a challenge.

7
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2.2 The Cell

The number of living species on the earth today is thought to be 5± 3 million [5] of which

1.5 million are named. Each species is different, and the members of each one are capable

of reproducing themselves. Many living organisms are single cells. Others, such as human

beings, comprise many groups of cells which perform specialized functions, and are linked

by intricate systems of communication. Whether made of one cell or many million cells,

each organism is generated from a single cell originally. This single cell contains hereditary

information that defines the species. It also contains the machinery to construct a new cell

which is a complete copy of itself.

Figure 2.1: Structure of Prokaryote Cells. (Source: Shmoop Biology http://www.shmoop-
.com/biologycells/prokaryoticcells.html) [Accessed April 8, 2014]

Bacteria, who do not have a nucleus in their cells, are called prokaryote cells. Other

organisms like mammals, plants and fungi, whose cells are more complex and contain

nuclei, are called eukaryotes. Figure 2.1 shows some details of typical prokaryote cells.

The prokaryote cells of bacteria and archaea which are both microscopic organisms usually

shaped like rods or spheres, have only one compartment in the cell. It contains DNA, usually

in a single circular chromosome.
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Eukaryotic cells, by contrast, are found in many shapes and sizes. They are larger

than prokaryotic cells. DNA is stored in the nucleus of eukaryotic cells, in (usually)

multiple linear chromosomes with a more complicated gene structure than for prokaryotic

cells. Figure 2.2 shows a stylized diagram of typical eukaryotic cells for both plant and

animal examples. In both cases the DNA stored within the nucleus is there to give precise

information for the replication of cells and for the development of complete living organisms.

The work in this thesis concentrates mainly on eukaryotic cells though in Chapter 8 where

a wide scale comparison of the data on four different species is described, the bacterium

Pseudomonas aeruginosa is included as an example prokaryote.

Figure 2.2: Comparison of Eukaryotic Animal and Plant Cells (Source: The Pondering Gulch
http://www.theponderinggulch.com/2011/07/frontyard-senseback-yard-science-getting.html) [Ac-
cessed April 29, 2014]

2.3 DNA

The building blocks of DNA and RNA are shown in Figure 2.3, with details of the bonding

of the bases of DNA shown in Figure 2.4. DNA is a double-stranded molecule where each

strand consists of a sequence of nucleotides. Each nucleotide consists of three parts: a
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Figure 2.3: Similarities and Differences between DNA and RNA. (Source: Wikimedia Commons)
[Accessed April 29, 2014]

sugar (deoxyribose) part attached to a phosphate part, and a base of either adenine (A),

cytosine (C), guanine (G) or thymine (T), so that an example sequence might be GAATTC...

The pairing rule of DNA is that A pairs with T and C pairs with G. So in double-stranded

form the six base pairs in the example are:-

The nucleobases in Figure 2.3 are referred to as nitrogenous bases as they are rich in

nitrogen atoms. It can be seen in Figure 2.4 that they hold together across the two strands

with hydrogen bonds. The figure shows that adenine and thymine form two hydrogen bonds

between them which is represented as A = T or T = A. Guanine and cytosine form three

hydrogen bonds between them, written as G ≡ C or C ≡ G. These two base pairings

between A & T and between G & C are known as Watson-Crick base pairs and are crucial
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Figure 2.4: Chemical structure of DNA. Hydrogen bonds are shown by dotted lines. (Source:
Wikipedia http://en.wikipedia.org/wiki/DNA) [Accessed April 29, 2014]

for the DNA double helix structure formation, pictured in Figure 2.3.

In Figure 2.4 the groups of four oxygen (O) atoms with phosphate (P) in the centre are

phosphate groups and the pentagons with four carbon (C) atoms and an oxygen atom are

deoxyribose (sugar). The sugar part of each DNA molecule binds to the next phosphate

part with a covalent bond. This strong sugar-phosphate linkage has led to these two strand

parts of DNA being known as the ‘backbone’. It should be noted that the sugar-phosphate

backbone always gives a direction or polarity to the strand, and that the two ends of a single

strand are known as the “3′ end” and the “5′ end”. 3′ (3 prime) represents the carbon atom

in the sugar to which the next phosphate or 5′ (5 prime) end of the adjacent base attaches.

The information in DNA is read and/or copied through the direction from the 5′ end to the

3′ end in ways that will be described in the next section.
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Figure 2.5: The Central Dogma of Molecular Biology with Enzymes. (Source: Wiki-pedia)
[Accessed April 29, 2014]

2.4 Central Dogma of Molecular Biology

The central dogma of molecular biology is the principle that the flow of genetic informa-

tion in cells is from DNA to RNA to protein, see Figure 2.5. There are exceptions to this

principle in retroviruses for example, whose growth cycle includes a step of copying RNA

into DNA by a virus-coded polymerase. A polymerase is an enzyme which synthesizes

polymers of nucleic acids. Replication is the means by which cells multiply themselves

through dividing and creating fresh copies which match the original cell in every detail,

including the many millions of bases of the DNA strands in the nucleus. DNA polymerase

starts and controls the replication process.

Protein synthesis is the term given to the process of transcription and translation

whereby the information in the DNA in cells is used to make proteins as organisms require

them. Transcription is the method by which cells copy information from DNA into RNA.

In eukaryotes it takes place in the nucleus of each cell. Segments of one strand of the DNA

sequence form templates so that free nucleotides of RNA can join together in matched

pairings with the DNA nucleotides. It is RNA polymerase (RNAP) which initiates the

transcription process. The sequence of messenger RNA (mRNA) that is formed then peels

away from the DNA and moves out of the nucleus into the cytoplasm of the cell. In RNA
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the backbone is formed of a slightly different sugar from that of DNA. It is ribose instead of

deoxyribose, and one of the four bases is slightly different: uracil (U) instead of thymine

(T). The other three bases, A, C and G, are the same and all four bases pair with their

complementary counterparts in DNA. This means that the U of RNA pairs up with the A of

DNA, and that the A of RNA pairs up with the T of DNA.

Translation takes place on the ribosomes in the cytoplasm. It is a more complicated

process than transcription, but similar in that a template sequence of, in this case mRNA,

nucleotides is matched with triplet bases of transfer RNA (tRNA) which are available in the

cytoplasm to make protein.

The bases of RNA group together in sets of three, known as codons. Each codon forms,

or codes for, a particular amino acid, of which examples are AUA, coding for tyrosine, and

UUC, coding for lysine. There are 64, i.e. 43, possible codons that can be formed from the

four bases, A, U, C and G, but only 20 different amino acids as there are many cases where

several codons lead to the same amino acid. Translation causes each codon of the template

sequence of mRNA to add a particular amino acid to a growing peptide chain when it pairs

up with a codon of tRNA in the cytoplasm. For protein synthesis to be completed, the amino

acids have to be linked together as polypeptides and ultimately form proteins in a chain.

This completes the translation process. The ribosome is like a machine which works along

the mRNA template and stitches together the amino acids to form the proteins in their chain.

2.5 Genes and the Genome

A gene is a functional unit of the genome. For any organism, its genome is its entire

DNA. There can be minor variations in the base sequences of DNA between individuals

in a species, and these give rise to particular characteristics which may vary between the

individuals, for example the colour of eyes or hair in humans. There is much research

underway in the field of genomics, where characteristics and the genes which may give rise
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to them can be studied. There is also much being discovered in the areas of DNA which

do not code for or produce proteins, but still form RNA through transcription and have

other functions. The quantity of the regulatory and other noncoding DNA varies widely

between different classes of organisms. A gene can also be thought of as a sequence of DNA

that occurs in a certain location on a chromosome and determines or partially influences

(together with other genes) a particular characteristic of an organism. In all cells, it is

the case that there is regulation of protein synthesis. A cell is not producing all possible

proteins all the time. Individual genes are expressed, i.e. used to make proteins or other

gene products, in what could be termed the macromolecular machinery for life, as all life

forms use gene expression. The rate of transcription and translation of various genes is

adjusted independently by cells as needed.

2.6 Exons and Introns

The sequences that comprise the DNA of any organism do not all code for protein. In

eukaryotes the portions of DNA that code for protein are called exons, and intervening

portions of DNA that do not code for protein are called introns, see Figure 2.6.

Figure 2.6: Exons and Introns (Source: The National Human Genome Research Institute
http://www.genome.gov/Images/EdKit/bio2i large.gif) [Accessed November 6th, 2013]

In eukaryotic cells, during the process of translation in the nucleus, mRNA is formed

from the exonic sequences of DNA only. The introns, so-called because they inhabit the

intragenic (inside gene) regions, can be located in a wide range of genes, including those
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that generate proteins, ribosomal RNA (rRNA) and tRNA.

Figure 2.7: Alternative Splicing (Source: The National Human Genome Research Institute
http://www.genome.gov/Images/EdKit/bio2j large.gif) [Accessed June 23, 2014]

During gene expression there is a regulated process called alternative splicing by which

different proteins may be formed from the same sequence of DNA which makes up part

of the DNA of the gene. Figure 2.7 shows an example of alternative splicing where three

different proteins may result from the mRNA being transcribed in three different ways from

the five exons in the original DNA. This allows more variety in the synthesis of proteins

than might be expected.

Polyadenylation is the name given to the addition of multiple adenine (A) bases (called

a poly(A) tail) to the 3’ end of the RNA formed during transcription. In eukaryotes,

polyadenylation is part of the transcription process that forms mature mRNA for translation.

As the transcription of a gene finishes, polyadenylation begins. The set of proteins which

synthesize the poly(A) tail may add this tail at any one of several possible sites. Therefore

polyadenylation can produce more than one transcript for a single gene, which is called

alternative polyadenylation.
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2.7 The “Omics” revolution

“Omics” refers to fields of biological study such as genomics, proteomics and transcriptomics.

It has come to refer generally to the study of large, comprehensive biological datasets, though

it can infer the analysis of data from more than one of these fields in aggregate. This approach

was a conceptual change from biologists conducting experiments on a few tissue samples in

a wet lab, to systems biologists running computer models to explain the data results from

thousands of microarray or sequencing experiments stored in public databases. Systems

biology researchers are able to make use of many types of cellular components of a model

organism in this way. The regulation of gene expression, for example, has been studied

in many types of cancer cells, but such is the complexity of biological systems that more

data and more studies are required to confirm results and further the understanding of cell

processes. Needham et al. [6] have demonstrated that it is possible to bring multiple studies

together to identify some of the subtle changes in gene expression that are biologically

meaningful. In this way the so called curse of dimensionality, where output from all the

genes is measured but only in a small number of conditions, can be circumvented.

The “omics” sciences include measurements in genomics for DNA variants, in transcrip-

tomics for mRNA, in proteomics for proteins and in metabolomics for intermediate products

of metabolism. The technological breakthroughs that allow simultaneous examination of

thousands of genes, transcripts and proteins etc., bring many challenges to the understanding

of systems as a whole. Major expectations of understanding health issues with attendant

improvements in medicine and health have not always been realised. Discoveries have

pointed to a highly individualized profile of health and disease, where each case is different,

but this has proved difficult to translate into improved personalized healthcare. Sometimes

results have been difficult to reproduce in other laboratories, and thus the validity of research

results has been questioned.

There are a number of platforms available to study large amounts of biological data.

Two of the popular ones for example are Galaxy [7] and Taverna [8]. Galaxy employs a web
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portal to give users the opportunity to search remote resources such as genome annotation

databases, combine data from independent queries, and visualize the results [7]. Taverna

enables bioinformaticians to build workflows or pipelines of services which provide a range

of different analyses. These can include sequence analysis and genome annotation [8].

There is even a combined workflow system called Tavaxy [9] which offers new features

while integrating existing Taverna and Galaxy workflows in a single environment.

Even when some results have been obtained from the analysis of large amounts of

omics data, it can be important that they are confirmed by biologists’ repeated studies using

hypotheses and confirming them.

The work in this thesis concentrates on transcriptomic data in the form of microarray

datasets. This type of data has been widely used in the fields of biology and earth sciences.

Its generation and usage will be explained in the next chapter.

2.8 Bioinformatics and some of its tools

Bioinformatics is the research into and application of computational techniques to the data

produced by biological investigations. It encompasses a wide range of subject areas from

structural biology and genomics to gene expression studies, using statistical and computing

methods. Another way to describe bioinformatics is as a management information system

for molecular biology, a phrase used by Luscombe in a review paper on bioinformatics [10].

This work concentrates particularly on the informatics of microarrays which will be

introduced in more detail in the next chapter. The research used three particular tools which

are in common use in bioinformatics and they will be outlined: BLAST, R and Bioconductor.

As the study began, next generation sequencing was beginning to be more widely employed

for many types of genetic research, but there were drawbacks to choosing to analyse this type

of data. One was which technology from the different company offerings to choose. Another

was that errors could arise in the sequencing process both from the bioinformatic analysis
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and from experimental steps [11], and it was early days in the detection and correction of

such errors. It was decided to focus on microarray data because the technology had already

been tried and tested over about ten years, and some experience had been gained locally

into types of bias to which microarray data could be subject [12, 3].

2.8.1 BLAST

BLAST is a computer program for searching and comparing base sequences of DNA or RNA.

It is freely available to all, both via web interfaces and as an executable program which can

be downloaded for use on a local computer. One can use BLAST to search and compare a

query sequence with known sequences on many reference databases. In this way one can

compare the query sequence to find out if it matches or partly matches known genes.

BLAST gives results in various ways. There is a colour-coded score of the number of

bases which matched in each database searched, where the higher the score and the colour

closest to the colour red indicate the best matches. Matches are recorded by length and by

parameters of partial matches. These parameters can help to identify those matches which

will be most useful in the current research. One can choose to match sequences to human

genomic data, to human transcript data or both. One can also select to search by other

organisms.

Megablast is the algorithm which uses larger query nucleotide sequences of DNA to

match to reference genome databases. The megablast task is optimized for intraspecies

comparison as it uses a large word size, whereas blast is more suitable for interspecies

searches with comparisons which use a shorter word size. Megablast was used in the series

of procedures to discover the “unique mappings” described in section 3.4.2.

2.8.2 R

R is a computer programming language for accomplishing tasks in statistics, data analysis

and graphical display. It can handle data in a variety of forms, from integer and floating
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point to arrays and matrices. The R software is free and runs on all common operating

systems. It can be used as an interactive command line system, where the user types

one line of instructions at a time and waits for the resultant output, or it can be used by

submitting a program or pre-prepared sequence of commands which are all executed and

output received as directed. RStudio is an implementation of R which allows multiple

windows simultaneously showing for example an R script, a current interactive window,

output such as plots, help information about R commands, and history information relating

to previous R commands used. Thus RStudio is very useful for developing R scripts, for

running them on different data and for visualization of the data and computations being

studied. In this work R has been used extensively to analyse microarrays and to visualize

the collected results.

2.8.3 Bioconductor

Bioconductor is an open source and open development software project for the analysis of

genome data (for example sequence, microarray, annotation and other data types). Many

packages have been developed and shared from the Bioconductor website, by a large

number of different researchers. affy, affycomp, and affyPLM are examples of Bioconductor

packages available for use with Affymetrix microarray data. affy has been used in this work.

2.9 The Big Data challenge

In recent years the term big data has come to mean any data produced in such large quantities

that it poses a significant challenge to process it and extract meaningful conclusions for

action. Sometimes big data is spoken of as having a number of V properties, for example:-

• Volume: the vast quantity of new data being generated and stored each day.

• Velocity: the increasing speed at which data is generated and at which it can be

processed.
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• Variety: data can be structured or unstructured and can vary from text to geo-spatial

form, or from tweets to photos and videos.

• Variability: the meaning of some data can vary depending who collects it. Data can

also be variable depending on when it was collected in the same sense that language

can change the meaning of words over time.

• Veracity: data is only useful if it is accurate. Often data is found to be messy because

of errors and inconsistencies within it.

• Visualization: after data has been processed, it needs to be presented in a readable

and accessible way. New visualization packages are being developed every year.

• Value: data is only as valuable as the accurate insights and information that it provides.

Big data can be hugely valuable, but only with the analysis tools that unlock its

information.

The European Bioinformatics Institute (EBI) in Hinxton, UK, stores over 20 petabytes

(1 petabyte is 1015 bytes) of data and backups about genes, proteins and small molecules,

according to an article by Vivien Marx in the June 2013 edition of Nature [13]. The data

are used heavily by scientists around the world who are working in both academia and in

industry. The nucleotide sequence databases “have a doubling time of less than one year”

according to the EMBL-EBI annual report of 2012-2013 [14].

Breakthroughs are being made in many areas because of the large amount of research

data that is publicly available at data centres such as the EBI. In the area of computational

biology and bioinformatics there have been further major successes in the ENCODE project

(ENCyclopaedia Of DNA Elements) which was planned as a follow-up to the Human

Genome Project. One example is the production of a detailed map of human genome

function [15]. A major analysis of the gut metagenome was performed by the Structural and

Computational Biology Unit at EMBL Heidelberg, so that more than ten million mutations

in the bacterial strains in the gut of 207 individuals were identified [16]. Another group
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devised a method to store information in synthetic DNA, which might provide the technology

for long-term storage of infrequently accessed or archive data [17]. The BGI (formerly

the Beijing Genomics Institute) in Shenzen, China, is the world’s largest genetic research

centre. It generates at least a quarter of the world’s genomic data, having 178 machines [18]

(in January, 2014) to sequence the genomes of samples from people, plants, animals and

microbes.

With so much data being generated on the planet, there is much scope for computational

biologists to make discoveries using other people’s data. Much data sits “under-analysed in

databases all over the world” says Marcie McClure, a computational biologist at Montana

State University in Bozeman [13]. McClure and her team have discovered eleven new fish

retroviruses by analysing genomes computationally. Some of the approaches and tools of

bioinformatics will be outlined in the next section.

The challenge big data presents is how best to efficiently analyse it in the different fields

of research that it can benefit. Most researchers have historically tended to download data

to their local machines for analysis. But this method is “backward” according to Andreas

Sundquist, chief technology office of DNAnexus [13], because “the data are so much larger

than the tools, it makes no sense to be doing that.” The alternative is to use a grid or a

cloud for both data storage and for the analysis of the data. Hopefully the time and cost

of accessing large amounts of data for computation will be reduced when the data resides

’near’ the compute facility. The proximity of data to the CPUs of clouds will depend on

how the cloud provider has organized their data centres and their back-up resources. Cloud

prices for data storage, data access and computation tend to reflect a provider’s methodology

or business model. More about grid computing and cloud computing will be discussed in

chapters 4 and 5. A brief introduction to the concepts of grid and cloud computing will be

given in section 2.10.
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2.10 The computational challenge: grid computing

In 2009, near the beginning of this doctoral research programme, cloud computing was in its

infancy. There were some networks available to assist researchers who did not have access

to enough computing power in their own institution for their requirements. These loosely

connected computer networks known as grids had been available for a few years and were

being found helpful for sharing computing resources across academic communities. The

development of software on grids for accessing computing resources across the internet was

ongoing, and there were several different methods in use for authorising access to remote

computers and maintaining security.

Clouds and Grids have been compared and contrasted in many academic studies in

recent years (for example: by Foster et al. [19] and by Kondo et al. [20]). Both can offer a

service to users who need more computing resources than they have to hand in their local

situation. This section will describe the features of grids.

2.10.1 Definition of a Grid

There are various different definitions of grids which have been proposed. One important

checklist for evaluating grids is given by Foster [21]. This says that a grid is a system that:-

1. coordinates resources which are not subject to centralized control

This allows resources which may be spread geographically and owned by different

parties to be shared within a grid arrangement. A user can link from their own desktop

to resources which are not necessarily owned or managed by their own enterprise.

The grid addresses the issues of security, payment, policy and membership that arise

in these settings.

2. uses standard, open, general-purpose protocols and interfaces

The fundamental issues of authentication and authorization are handled by a grid

using interfaces and multi-purpose protocols. It is important that these protocols
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and interfaces be standard and open for the wider development of grid access. A

grid must also address resource access and resource discovery to make its facilities

directly available to users. It is standards that allow grids to establish resource-sharing

arrangements dynamically with any interested party. They are also important to enable

general-purpose services and tools.

3. delivers non trivial qualities of service

A grid should allow its constituent resources to be used in a coordinated fashion to

deliver various qualities of service. These can relate to response time, throughput,

security and availability of services. The complex demands of users may need to be

met via the allocation of multiple resource types. Foster [21] believes that the utility

of the combined grid system should be significantly greater than that of the sum of its

constituent parts. Fault tolerance and stability are other issues to be addressed within

the qualities of service provided.

The Open Grid Forum (http://www.ogf.org/) was developed to enable progress on

standards for grids, and several years of experience and refinement produced the widely

used standard, the open source Globus Toolkit (http://toolkit.globus.org/toolkit/). Work

continues on standards for grid computing, both in IT companies and in academic research

groups.

2.10.2 Survey of Grids

2.10.2.1 Grid types

It is useful to describe grid systems in terms of the functionality which they provide, as

shown in Figure 2.8, a taxonomy proposed by Krauter et al. [22]. The computational Grid

category refers to systems which have higher aggregate computational capacity available for

single applications than the capacity of any constituent machine in the system. It is possible

to subdivide these systems further into distributed supercomputing and high throughput
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service Grid

Figure 2.8: A Grid systems taxonomy

systems. A distributed supercomputing grid has the capacity to execute the application in

parallel on several machines in order to reduce the completion time of a job. Typically, the

large scale simulation problems such as weather forecasting need this type of grid system.

The high throughput grid category is able to increase the completion rate of a stream of jobs.

The dataGrid category provides the specialized infrastructure to applications for storage

management and data access. There are dataGrid initiatives such as the European DataGrid

Project [23] and Globus [24] which work on developing large-scale data organization,

management, catalogue and access technologies.

The service Grid category is for systems which offer services not provided by any

single machine. An on-demand grid category is able to dynamically aggregate different

resources to provide new services, for example when a researcher wants to allocate more

machines to a simulation. A collaborative grid is able to connect users and applications

into collaborative workgroups. These grids enable real time interaction between humans and
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applications via a virtual workspace. A multimedia grid is able to supply an infrastructure

for real time multimedia applications. This requires a quality of service to be supported

across several different machines.

2.10.2.2 Grid architecture

A grid’s architecture is sometimes described in terms of “layers”, where each layer has

a specific function. The higher layers are those which interact with users, whereas lower

layers are those which manage the computers, data and networks.

• The lowest layer of grid architecture is known as the network which connects grid

resources.

• The resource layer lies above the network layer and consists of the actual grid

resources such as computers, storage systems, data catalogues, sensors and other

instruments that might be connected to the network.

• The middleware layer provides the software and hardware tools that enable the

various elements of the grid such as servers, storage and network components, to

participate in a grid. It is a vital control and management layer.

• The highest layer of the structure is the application layer, which includes portals

and development toolkits to support applications and development as well as the

applications themselves. Users interact with this layer, which can also provide

information about the usage of elements of the grid, speed of service and other

tracking data.

2.10.2.3 Grid resource and scheduling organization

The methods of organising resources and of scheduling jobs are discussed in detail by

Krauter et al. [22]. Resources can be managed either by a schema based approach or by an

object model. In a schema based approach, the data that makes up the resource is described
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by a description language together with some integrity constraints. In an object model,

the operations on the resources are defined as integral to the resource model. The object

model can be predetermined and fixed as part of the definition of the Resource Management

System (RMS). Both the schema and the object model approach can be extensible so that

new schema types or new definitions can be added.

The scheduler organization can be centralized, hierarchical or decentralized. In the

centralized organization, there is only one scheduling controller which takes responsibility

for the decision making system-wide. An organization like this has several advantages

which include easy management, simple deployment and the ability to co-allocate resources.

Some disadvantages include the lack of scalability, lack of fault-tolerance and the diffi-

culty in accommodating multiple policies. The other two organizations, hierarchical and

decentralized, have more suitable properties for a grid RMS scheduler organization. In a

hierarchical organization the controllers are designated to manage defined sets of resources

which addresses the issues of scalability and fault-tolerance. The decentralized organization

is able to address issues such as fault-tolerance, scalability and multi-policy scheduling, but

introduces some problems of its own such as management, usage tracking and co-allocation.

Protocols are required to manage the scheduling on large network sizes, and the overhead of

operation of these protocols is a determining factor for the scalability of the overall system.

The rescheduling characteristic of a RMS determines when the current schedule is

re-examined and jobs reordered. Job executions can be reordered in order to maximize

resource utilization, job throughput or other metrics depending on the scheduling policy.

The interval between rescheduling can be either periodic or event-driven depending on

which approach delivers the quality of service required.

2.10.2.4 Secure access

Secure access to shared resources is one of the most challenging areas of grid development.

In order to gain secure access, grid developers and users need to be able to manage three
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important things:-

1. Access policy: What is shared? Who is allowed to share? When can sharing occur?

2. Authentication: How does one identify a user or resource?

3. Authorization: How does one determine whether a certain operation is consistent with

the rules?

Grids need to save and track all this information, which may change from day to day.

Therefore grids need to be flexible and have a reliable accounting mechanism. It may be

that pricing policies will be decided by using this information.

These accounting challenges are not new, but in the context of shared resources they

present a complex picture. The issue of security is linked to trust. One may trust the other

users, but can one trust that one’s data and applications are securely protected on their shared

machines? New security solutions are constantly being developed, including sophisticated

data encrytion techniques, but it is a never-ending race to stay ahead of malicious hackers.

2.11 The computational challenge: Cloud computing

There is no single widely accepted definition of Cloud computing. However the National

Institute of Standards and Technology in the USA has defined it like this: “Cloud computing

is a model for enabling ubiquitous, convenient, on-demand network access to a shared pool

of configurable computing resources (e.g., networks, servers, storage, applications, and

services) that can be rapidly provisioned and released with minimal management effort or

service provider interaction.” [25]

Cloud computing is a way of delivering computing resources to an end user without that

user, or their organisation, having to invest large capital resources into their own hardware

and software. The term, Computing as a Service, or CaaS, serves to describe the general

overall service that cloud computing provides. It is typically accessed over a network such
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as the internet, with the computer processors and storage at a location which may be distant

from the users.

While grid computing can be used to harness the power of multiple computers in many

locations to all work on the same compute-intensive job, cloud computing tends to be the

solution for small and medium sized enterprises to scale up and scale down their application

requirements as needs vary. Clouds can be built on a grid system, but not vice versa.

Data Centres have been providing computer processing resources to their clients for

many years, with the advantages of storage backups, security and the cooling of machine

rooms being handled by the Data Centre rather than by the client. Larger companies have

run their own Information Technology (IT) departments to supply computing facilities

around their various company premises. However, during the rapid expansion of micro

computers in the 1980s, most companies began distributing their computing facilities around

departments and offices so that all users had computer processors rather than just a terminal

connected to a central main-frame computer.

2.11.1 Types of clouds

It is possible now to see at least four types of computer cloud in use: public, private,

community and hybrid.

• A public cloud is one which offers computing services as a commercial business to

the general public or to an industry group.

• A private cloud is one which exists for its own user base within an organisation. It

may be managed by the organization or by a third party, and it may reside on or off

the premises.

• A community cloud is one whose infrastructure is shared by several organizations. It

supports a specific community which has shared concerns such as policy, mission,
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security requirements or compliance considerations. It may be managed by its

community organizations or a third party, and may exist on or off premises [26].

• A hybrid cloud is a combination of two or more or the above types of cloud that

remain unique entities but are bound together by standards that enable data and

application portability. An example of a hybrid cloud is an organisation which runs

its IT services as a private cloud, and at times of high activity can automatically buy

services from a public cloud to meet service demands of users, rather than build up

longer queues or extensive response times.

In recent years the cloud computing concept has gained ground with several large

companies offering worldwide public cloud services which provide advanced Data Centre

type computing facilities to their clients. In this chapter some characteristics of clouds will

be explained and two public cloud computing offerings will be introduced: Amazon Web

Services and Microsoft’s Windows Azure. A local private cloud will be described that was

built by Ibrahim Musa, a PhD student in the Computing Science and Electronic Engineering

(CSEE) department of the University of Essex, with whom a collaboration was arranged.

This collaboration enabled some cloud research using the human microarray data that will

be analysed again in other chapters.

2.11.2 Characteristics of cloud computing

Cloud computing typically exhibits some of these, mostly beneficial, characteristics:-

• Flexibility

One can choose the operating system and language that makes the most sense for any

application. There is also a choice of services to use for computing and for storage,

allowing the flexibility to concentrate on innovation, not infrastructure.

• Cost reductions
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Applications can be deployed quickly and easily, so if workload has peaks at certain

times of the day, one can cover these peaks yet deploy fewer machine instances and

save costs at other times.

• Reliability

Reliability is important to all customers, so cloud providers try to build in redundancy

to ensure that their infrastructure is always available for customer needs. For example,

the Amazon EC2 Service Level Agreement commitment is 99.95% availability for

each Amazon EC2 Region, according to their website http://aws.amazon.com/-ec2/

on 17th March, 2014.

• Scalability

This feature of cloud computing is attractive to customers whose computing needs

fluctuate through each 24 hour period. Applications can be quickly deployed, scaled

up or scaled down as demand dictates. One may need one virtual server or thousands

at any time, and this fluctuation in demand can be handled.

• Performance

Different performance levels can be gained depending on the type of application

being run, and the size of machine (instance) being deployed. An instance can vary

from ‘Small’, with the following features, for example (examples are taken from

the Microsoft Windows Azure website http://msdn.microsoft.com/en-us/library/win-

dows-azure/dn197896.aspx on August 15th, 2013):-

– 1.7 GB memory

– 1 Compute Unit (1 virtual core with 1 compute unit)

– 160 GB instance storage

– 32-bit or 64-bit platform

– I/O Performance: Moderate
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to ‘Extra Large’, with these features:-

– 15 GB memory

– 8 Compute Units (4 virtual cores with 2 compute units each)

– 1,690 GB instance storage

– 64-bit platform

– I/O Performance: High

There are other variations on these standard instances such as Micro instances

which are useful for lower throughput applications, and High Memory instances

for high throughput applications, such as database and memory caching. High-CPU

instances have more CPU resources than memory (RAM) and tend to be well suited

for number crunching programs. Cluster compute instances provide high CPU

resources together with increased network performance and are suited to HPC (High

Performance Compute) applications. It is vital to choose carefully the type and

number of instances to deploy, and to monitor their use, in order to achieve good

performance.

• Easier maintenance

Cloud computing reduces the need for significant hardware maintenance on the user’s

site. There can also be savings on software maintenance, depending on the level of

service being used on the cloud (see sections 2.11.3.1 to 2.11.3.3).

• Device independence

Cloud computing resources can be accessed from any type of computer on the internet.

Provided that the computer has a web browser and an internet connection, it does not

matter if it is a traditional desktop or laptop PC, a netbook, tablet, smartphone, e-book

reader or any other sort of cloud access device.
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• Location independence

The device independency means that a user can access the same cloud resources from

their home, work or travel locations, knowing that they will always have access to the

latest versions of their files.

• Security of data

A cloud provider is paid for reliability as mentioned above, so the headaches of data

security are mostly removed from the user. This can mean that one does not have to

plan to make backups of vital business data, or consider backup storage in more than

one location in case of fire. These can be addressed in the level of service contract

that is agreed with a cloud service provider.

• Security of access

Data is often confidential to an organisation, whether for business reasons or for

personal privacy reasons. Some organisations have been slow to move to cloud

solutions for their data because of a lack of trust in the cloud provider to be able to

guarantee secure storage and secure data transfers. This problem is continually under

debate across the internet, with spammers and hackers sometimes grabbing headlines

in the news.

• Service loss or interruption

There can be slow downs or interruptions to service on the internet, or even a loss

of service such as happened to some customers of the Amazon cloud in April 2011

(http://money.cnn.com/2011/04/29/technology/amazon apology/). Hopefully these

events will be rare, but they are a factor to be considered when deciding to use cloud

solutions.
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2.11.3 Organisation of cloud services

There are many ways that cloud computing can be organised and each has its benefits and

drawbacks to the users and to the cloud providers. Three commonly offered service models

are described here: Infrastructure as a Service (IAAS), Platform as a Service (PAAS) and

Software as a Service (SaaS). Figure 2.9 shows these three types of service in columns,

with the additional column on the left called “Packaged Software” which represents the

situation where the user manages all software themselves without the benefit of any cloud

services. The green shading in each column of Figure 2.9 represents the layers of cloud

computing which are supplied and organised by the user, or customer. The brown shading

in each column represents the layers which are supplied and managed by the cloud provider.

Figure 2.9: Simplified explanations for the three main layers of cloud computing (http:-
//venturebeat.com/2011/11/14/cloud-iaas-paas-saas/) [Accessed September 17th, 2014]



2.11. The computational challenge: Cloud computing 34

2.11.3.1 Infrastructure as a service (IAAS)

IAAS (Infrastructure as a service), as the name suggests, provides the computing infrastruc-

ture for performing tasks. This means that physical or (quite often) virtual machines are

provided alongside network and other resources like virtual-machine disk image library,

block and file-based storage, firewalls, load balancers, IP addresses, and networking. Exam-

ples of IAAS services are: Amazon EC2, Windows Azure, and Rackspace. With this type of

service, customers typically have to provide their own web interface, operating system and

application programs, but they gain the Cloud advantages of scalability so that variations in

demand for their applications are automatically handled and they only pay for the resources

used.

With IAAS a customer can outsource their hardware needs to a cloud provider who

maintains an off-site server, storage and networking hardware. The customer is freed from

providing machine rooms for servers, air conditioning and security for these machines. They

can run their applications on the cloud hardware and access it at any time over the internet.

2.11.3.2 Platform as a service (PAAS)

PAAS (Platform as a service) provides computing platforms which typically include the

operating system, the programming language execution environment, a database and a web

server etc. Examples of PAAS are: AWS Elastic Beanstalk, Microsoft Azure, Heroku,

AppFog and Google App Engine.

The cloud provider can offer assistance with web application development but the main

offerings are a wide variety of solutions for developing and deploying applications over the

Internet, such as virtualized servers and operating systems. This saves money on hardware

and makes collaboration easier for a scattered workforce. With this level of service the

customer just manages their applications and their data as shown in Figure 2.9.
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2.11.3.3 Software as a service (SAAS)

Software-as-a-Service is a category of cloud computing which enables users to consume

software on a pay-per-use model, while the vendor maintains the software and the hardware.

Salesforce is an example from the business community. Consumers don’t have to concern

themselves with either the hardware or the software which is providing the application over

the internet to their desk or mobile computer. There are hundreds of thousands of business

and personal applications already available at this service level. Personal examples of SAAS

are: Netflix, MOG mobile music app, Google Apps, and Dropbox.

2.11.4 Choice of cloud services

For this research, the Amazon cloud services were available in an early form, so their use

was investigated after a grid computing trial on the NGS (National Grid Service for the

U.K. academic research community) which is described in chapter 4. Later the Azure cloud

from Microsoft became available, and a collaborative project under the Venus-C initiative

between Dr Andrew Harrison and Dr Hugh Shanahan (of Royal Holloway College, London

University) enabled the storage of large quantities of data on the Azure cloud for a limited

two year period. The project was able to use substantial computing resources on Azure

which enabled a wide scale survey of microarray data. This would not have been possible at

the time on local computing resources.

Although the type of operating system did not have a particular bearing on the choice of

grids or clouds used, it is noted that the NGS grid offered a range of machines running either

Linux systems or Windows systems. The Amazon cloud also offered machine instances of

either Linux or Windows. The Azure cloud was only offering Windows services at the time

it was used. The local private cloud used Linux systems.

The next chapter describes the nature and use of the microarray data chosen for research.

Some more detail of grid computing is given in chapter 4. Chapters 5 and 6 focus on clouds.



Chapter 3

Microarray Informatics

3.1 Background to the analysis of microarrays

A search of PubMed using “microarray data” in abstracts shows over 23 thousand papers

and articles (precisely 23,319 for a search performed on 23 April, 2014). Searching for

“microarray” alone shows over 60,000 articles. As well as providing information about gene

expression in different conditions, microarray data has proven enormously useful in terms

of functional annotation (the classifying and characterizing of functions of a DNA sequence,

for example in terms of protein coding) and gaining a deeper understanding of processes

including the cell cycle.

Using these data sets to infer a network of interactions between gene products, has

been one of the major challenges of systems biology. In the field of Evolutionary Systems

Biology, comparisons of conserved expression patterns across different species are providing

important insights. The unraveling of genotype-phenotype relations in the field of genetics,

for example, has been undertaken by Volkers et al. in analysing large publicly available

gene expression datasets to understand aging in C. elegans [27].

In the field of medical research, Atul Butte and his team at Stanford University identified

a new gene implicated in type 2 diabetes, by looking at correlations across gene expression

experiments in the public domain [28]. The authors of each of the original studies had

36
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missed this gene.

Such studies employ transcriptomic data from a wide number of experiments (in contrast

to most transcriptomic studies where the emphasis is on one relevant experiment). On

the basis of coexpression (the simultaneous expression of two or more genes) over many

experiments, relationships are inferred between genes, and particularly between gene

products.

Importantly, in the above work, the variable quality of the datasets used has not been

examined. It is implicitly assumed that all of the data used gives an accurate (or at least

reasonable estimate) of the expression levels of the genes considered. An improvement in

the underlying quality of the data will have a positive down-stream effect on all the work

carried out in this area, and hence is a complement to the main research carried out in

Systems Biology.

3.2 Microarray technology

Microarray technology enables the simultaneous analysis of thousands of genes in a single

reaction quickly and efficiently. It was originally a cottage industry in which microarrays

or “chips” were made in individual laboratories by researchers who then used them and

analyzed the results, according to Gautier et al. [29]. Microarrays were then developed

commercially by a number of companies, of which Affymetrix is one well established

example. Indeed Affymetrix has a registered trademark for the name GeneChip® for its

microarrays. Figure 3.1 shows a photograph of an Affymetrix GeneChip® at approximately

its actual size.

A typical microarray experiment involves the hybridization of a mRNA molecule to the

DNA template from which it originated. Up to millions of probes consisting of short DNA

sequences are typically fixed on a slide prior to hybridization and the results are then used

to calculate estimates of gene expression. Microarrays can be fabricated in a number of
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Figure 3.1: An Affymetrix GeneChip®(Source: https://www.flickr.com/photos/jseita/-3764113525)
[Accessed February 20, 2015]

ways, including printing with fine-pointed pins on to glass slides, photolithography using

pre-made masks (as practised by Affymetrix), photolithography using dynamic micromirror

devices, ink-jet printing or electrochemistry on microelectrode arrays.

In spotted microarrays, the probes are oligonucleotides, cDNA or small fragments that

correspond to sections of mRNAs. The probes are synthesized before being “spotted” on

to glass. Researchers can produce “in-house” printed microarrays from their own labs. In

this case the arrays may be easily customized for each experiment. However in practice

these spotted microarrays were shown by Bammler et al. not to provide the same level of

sensitivity compared to commercial oligonucleotide arrays [30].

Microarrays are often referred to as GeneChips “because they are built on technologies

adapted from the semiconductor industry - photolithography and solid-phase chemistry”

says Jeff Augen [31, p. 195]. Each small quartz wafer array contains densely packed

oligonucleotide probes whose sequences are chosen to match specific genes. The Affymetrix

GeneChip is very popular among the microarray technologies available.

The analysis of GeneChips is a multi-faceted challenge, requiring insights from ge-

nomics, biophysics and statistics. In order to obtain a summarized estimate of each gene, one
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has to apply a complicated pipeline of steps that are not necessarily optimised for associative

studies. This means that the biological experiments giving rise to the GeneChips are all in-

dependent, and researchers have not all necessarily made the same assumptions or followed

the same procedures in preparation or processing of the GeneChips (see section 3.2.2 for an

explanation of typical preparation steps for an experiment).

Researchers can purchase high quality microarray chips, together with some equipment

and proprietary software to perform analysis upon the microarray data. It is important to

consider the analytic procedure performed by the software, so that one does not make false

assumptions about the statistical results of the analysis, a point underlined by Gautier et al.

who were involved in developing analysis software such as affy mentioned in section 2.8.3

for Affymetrix GeneChip data [29].

Figure 3.2: The small quartz wafer microarray contains thousands of 25-mer probes
in each tiny square of its array (Courtesy of Affymetrix, Inc., Santa Clara, CA, USA
http://media.affymetrix.com/media/corporate/media/imagelibrary/high-res/singlefeature.zip) [Ac-
cessed April 9, 2014]

The work described in this thesis used Affymetrix GeneChips whose nature and pro-
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cessing are shown in Figures 3.2 to 3.4. Each microarray is a small square quartz wafer

divided into millions of locations. Each location contains millions of DNA strands which

Affymetrix has chosen to be a sequence of 25 nucleotide bases. The GeneChips are prepared

with the probes being laid down one nucleotide base at a time, using masks supplied for

that type of GeneChip by Affymetrix. Figure 3.2 shows an enlargement of the probes on a

prepared GeneChip.

Tissue samples of interest to the researcher are produced and labelled with appropriate

dyes. Then fragments of RNA are extracted from the tissue samples and hybridized to the

microarray in a solution which is incubated for 12 to 24 hours at between 45°Cand 65°C,

see Figure 3.3 which shows some probes as RNA fragments are attaching themselves during

hybridization. The array is then washed to remove any of the sample which is not hybridized

to the probes (known as features).

Figure 3.3: Affymetrix GeneChip Hybridization: fragments of RNA stick to the
probes (Courtesy of Affymetrix, Inc., Santa Clara, CA, USA http://media.affymetrix.-
com/media/corporate/media/imagelibrary/highres/hybridizationoftag-gedprobes.zip) [Accessed
April 9, 2014]
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The final step of the GeneChip processing is to produce an image of the surface of the

hybridized array. The array is placed in a scanner which uses a laser light to excite the dye at

each pixel (probe) of the array. The amount of fluorescence (see pink tops on some features

in Figures 3.3 and 3.4) or light intensity of each probe is detected by a photo-multiplier tube

in the scanner and recorded. Software supplied by Affymetrix (such as MAS5, described in

section 3.3.2) is used to process the raw data from the image scanner and store the intensity

values and other relevant data into standard files called CEL files (described in section 3.2.6,

with more detail in Appendix A).

Figure 3.4: Hybridized DNA fragments glow when a laser light is shined
on to a microarray, which contains many millions of fragments (Courtesy of
Affymetrix, Inc., Santa Clara, CA, USA http://media.affymetrix.com/media/corporate/-
media/imagelibrary/highres/taggedanduntagged.zip) [Accessed April 9th, 2014]
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3.2.1 Elimination of noise in microarrays

The presence of noise can be a problem in large scale microarray studies, and can originate

from several different sources. There can be some background fluorescence due to various

reasons such as some optical noise from the scanner [32], or some deposits left after washing

the chip. Noise due to non-specific binding of mRNA fragments to probes which are not

targeting them is a typical source highlighted by Wu et al. [33], which was alleviated through

the use of probes on the chip designed to counteract this problem. Each such probe, called

a Perfect Match (PM) probe, was paired with another probe, called a Mis-Match (MM)

probe. MM probes were identical to PM probes except for the middle (13th) nucleotide in

the sequence, which was changed for its complement (A for T, or C for G, for example).

The value for the true signal was suggested by Affymetrix to be obtained by subtracting

the signal for the MM probe from the signal for the PM probe. The value of PM and MM

probes was subsequently proved to be less useful than originally planned. Li and Wong [34]

showed that PM-MM difference values were highly variable and indeed that the variation

due to probe effects can be larger that the variation due to arrays. In addition to noise, there

are other reasons why some reported intensity values might be misleading on GeneChips.

Upton et al. [32] showed for example, that:-

• scanners could lose focus if not frequently maintained and cause errors in intensity

readings

• intensity values could be affected by neighbouring probes having high intensities

• some probe sequences can show abnormal binding affinities (and hybridize to neigh-

bouring probes rather than the desired RNA sequences)

• some probes can cross-hybridize with the primer-spacer appended to transcripts.
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3.2.2 Planning and conducting an experiment using microarrays

The following considerations are important in planning and conducting an experiment with

Affymetrix microarrays:-

1. The experiment must be designed with an end point in mind. What biological

conditions are to be tested? Are these conditions continuous or discrete? How many

replicates will be necessary (because as the number of conditions increases, the

number of experiments required will increase)?

2. The sources of experimental variability should be considered and minimised in

accordance with planning the hypotheses to be tested. Technical variability must

also be minimized, for example, sample quality control, training of personnel, and

calibration of equipment.

3. The biological variability must be considered, e.g. gender, diet, cell cycle patterns

and time of day, so that biological replicates are “true” replicates.

4. Having designed the experiment, tissue samples are produced and the Affymetrix

GeneChips are prepared and used in accordance with the description above.

5. Data analysis is performed to calculate gene expression, the up-regulation or down-

regulation of particular genes and to what extent the hypothesis planned in the

experimental design has been supported.

3.2.3 Public repositories of microarray data

Many researchers store the results from their microarray data in public databases. The

following are key repositories of Affymetrix microarray data, though they also hold data

from other formats and other commercial microarrays. The National Center for Biotech-

nology Information (NCBI) in Bethesda, Maryland, U.S.A., hosts the Gene Expression

Omnibus (GEO) respository [35] which contains microarray data for many GeneChips. This
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data is publicly available over the internet. Much of it is also available from the European

Bioinformatics Institute (EBI) at Hinxton, Cambridge, U.K. ArrayExpress [36] is the name

of the database at the EBI which stores data on functional genomics experiments, including

a copy of the Gene Series Experiment (GSE) data from GEO. Each experiment or dataset

comprises some metadata about the experiment, the summarized results and usually a set of

raw measurements which are stored in CEL files, explained in section 3.2.6.

3.2.4 Design of Chip types

Affymetrix has designed its microarrays so that they are known by their chip type. Each

chip type is uniquely designed for a particular species genome and a particular purpose. The

chip type and its content in terms of the probes, the probe sequences, the probe locations

and the probe sets do not change during the lifetime of the array and array type. Examples

of chip types are HG U133A and HG U133 Plus2 for two different human arrays.

It is important to consider how Affymetrix choose their probe sequences when designing

a new GeneChip. The probe sequences are chosen so that the sequences for all probes

within a probe set target different parts of the same gene. The suggestion is that many

probes targeting a single gene results in many measures whose combination will give a

better estimate of true gene expression than any single measure. Early chips were improved

upon by the design of later arrays as experiments proved that some probes or probe sets

generated misleading data. This issue will be amplified with examples in section 3.3.

3.2.5 CDF files

Chip Definition Files (CDFs) describe the layout for Affymetrix GeneChip arrays. All

probe set names within an array are unique. There are two versions of CDFs, one in ASCII

text format and one in binary format. The information held in CDF files includes the name

of the array, the ChipType, the number of rows and columns on the array, the number and

type of Quality Control (QC) units and further Chip Reference material. More detailed
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information about the contents of CDFs is given in Appendix B. Modified CDFs are used in

this work to calculate the effect of removing certain probes from the data being analyzed,

for example in section 3.6.2.

3.2.6 CEL files

Biologists or life scientists generally perform a series of experiments to compare tissues

from different conditions, typically including a control. The results of each microarray

experiment are stored in a CEL file, which contains the data from a captured image of the

scanned GeneChip array and includes the raw intensities for probes. See section 3.2.3 for

the public availability of CEL files from microarray experiments.

In essence, the CEL file consists of headers, intensity values, masks, and outliers. The

headers give information about the number of rows and columns in the array, any offsets

applicable and brief details about the experiment. This includes the type of GeneChip, a

short form of the experiment description and the date and time of processing. The mean

and standard deviation of the intensity values are given for each row/column position of the

array, together with the number of pixels that were used to define that intensity value. Any

masks and outliers are detailed at the end of the file. CEL files can be in character ASCII

format, or in binary format, depending on which version of software is used to process

the experiment results. The size of character CEL files can range between 11MBytes and

13MBytes. The size of binary CEL files is approximately 4MBytes. The detailed format of

both ASCII and binary forms of CEL files are given in Appendix A.

3.3 Calculating expression measures

GeneChips measure expression by means of groups of 25mer probes. Establishing how

to calculate an expression measure from these probe sets has an impact on which genes

are shown to be differentially expressed between two conditions. One must also consider
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the impact of post-transcriptional processing of RNA, particularly alternative splicing and

alternative polyadenylation (see section 2.6) because Stalteri and Harrison [37] showed that

probe sets representing the same gene did not necessarily give similar expression data.

In addition, due to biophysical issues such as probe-probe interactions and optical

effects in the image capture and processing, one sees that some probes are not effective at

measuring gene expression. The causes of outliers in large surveys of GeneChip data have

been identified in some cases by Upton et al. [32]. It has also been established by Shanahan

et al. [38], in the commonly used GeneChip HG U133A for H. sapiens, that a clear bias

exists in correlations between gene transcripts because of probe-probe interactions. The

work in this thesis concentrates on exploring this bias further.

The calculation of gene expression has multiple steps because each gene has to be

represented on an array by multiple probes, arranged in a probe set. Affymetrix designed

their GeneChips to use probe sets and provided standard methods of microarray processing,

including the Affymetrix MicroArray Suite (MAS). The steps involved in processing the

raw data from microarrays to determine gene expression will now be described.

3.3.1 Microarray preprocessing

The procedural steps required to obtain a single composite expression value for each gene or

probe set of a microarray is known as microarray preprocessing. There are commonly three

steps involved: (a) background correction, (b) normalization and (c) summarization. These

steps have been described and various methods compared in the literature, for example by

Irizarry et al. [39] who produced the RMA pipeline (see section 3.3.3) and by Giorgi et

al. [40] who benchmarked the three most used preprocessing procedures: MAS5, RMA

and GCRMA, in the context of inter-array correlation analysis. These pipelines will be

described and an additional one used in this work which was introduced by Affymetrix,

called PLIER (Probe Logarithmic Intensity ERror estimate).
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3.3.1.1 Background correction

The first step that is generally used to correct the intensity values of the microarray for each

probe is background correction. The types of noise that might occur have been explored in

section 3.2.1. In order to avoid these problems different preprocessing pipelines use different

background correction algorithms while some pipelines even ignore this step altogether,

such as FARMS (Factor Analysis for Robust Microarray Summarization) [41].

3.3.1.2 Normalization

Normalization is the process of adjusting the values of a number of sets of figures so that

they can be compared on the same scale. In the context of microarrays, normalization can be

described as the attempt to compensate for systematic technical differences between chips,

so that the interesting biological differences between samples can be seen more clearly. Any

differences in the treatment of two samples, especially in labelling and in hybridization,

can bias the relative measures on any two chips. For their 133 series chips, Affymetrix

introduced a new approach using a set of 100 “housekeeping genes” [42]. In processing, the

chips are re-scaled so that the average values of these housekeeping genes are equal across

all chips. This has proved better than using a single housekeeping gene, and is likely to be

adequate for the majority of chips in practice.

Quantile normalization is a technique developed to make two or more distributions

identical in statistical properties (mean and standard deviation), so that their values can be

compared to each other. In the processing of microarrays Bolstad et al. [43] described the

use of quantile normalization in making a valid comparison across all microarrays in the

same experiment. The goal of the method is to ensure that the overall distribution of the

corrected intensities is the same over all the microarrays in the experiment. The quantile

normalization algorithm [43] consists of the following steps:-

1. Given n arrays of length p, form matrix X of dimension p 5 n where each array is a

column
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2. Sort each column of X to give Xsort

3. Take the means across rows of Xsort and assign this mean to each element in the row

to get X ′
sort

4. Get Xnormalized by rearranging each column of X ′
sort to have the same ordering as

original X.

The algorithm is applied simultaneously over all the data on each array.

3.3.1.3 Summarization

The third part of microarray preprocessing called summarization is the final part of the

pipeline to produce expression data from the GeneChips. It is necessary to summarize the

probeset data because in Affymetrix microarrays, multiple probes for the same transcript

are condensed into a single representative signal. Commonly used approaches for the

summarization are Tukey’s Biweight (used by MAS5) and Median Polish (used by RMA).

Tukey’s Biweight is a weighted average of the particular log2 probe intensities, which down-

weights probes which are more distant from the median of the probeset [44]. This approach

should be more tolerant of outlier probes or spots than an average which is unweighted.

Median Polish is used by RMA to estimate the model parameters for each probeset across

all chips, having fitted a linear additive model of signal + probe-affinity + error terms.

In this work the two pipelines RMA and PLIER which produce the summarized expres-

sion values for particular genes are used. These pipelines will be discussed in the next three

sections along with MAS5 which is the standard processing suite provided by Affymetrix.

3.3.2 MAS5

The Affymetrix MicroArray Suite (MAS) is a suite of programs used to calculate and store

the raw data from microarray experiments in CEL files (see section 3.2.6 on page 45). MAS4

was the standard until January 2002 [45]. It calculated a weighted average of the probe-pair
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differences (PM-MM) for each probe pair representing a gene. MAS5 was developed to

improve on MAS4 [46] in two important ways. Firstly the intensities are calculated on a

logarithmic scale before the average is taken; this equalises the contribution of different

probes. Secondly an estimate of background based on MM replaces the MM itself in the

difference PM-MM. This estimate is itself a weighted average of log probe pair differences.

The Affymetrix paper “Statistical Algorithm Description Document” [44] gives further

details. Giorgi et al. [40] point out that “MAS5 uses a single-array summarization technique

(a robust Tukey-biweight average of the probe values) which treats each sample separately”

unlike RMA and its sequel GCRMA (see next section) which can both introduce an artificial

inter-array correlation.

3.3.3 RMA and GCRMA

It has been mentioned that the signal strength for MM probes can frequently be larger

than that of the PM probes, which implies that the MM probe is detecting the true signal

as well as background signal. This can result in unrealistic negative expression values,

Kothapalli et al. [47]. The Robust Multi-Array Averaging (RMA) method of microarray

normalization has been developed to background correct, normalize and summarize the

probe level information without the use of the data obtained in the MM probes [1]. It is one

of the most commonly used normalization pipelines. The background correction is effected

by correcting the measured intensity of each probe in a given array by modelling all the data

for the array as the product of two distributions (Gaussian and Exponential) that represent

the noise and signal, respectively. The component representing noise is then subtracted from

the measured intensity. The quantile normalization procedure (section 3.3.1.2) is carried out

to ensure that the intensity values can be compared across all microarrays in the experiment.

A final estimate of the summarized value from all the probes in each probe set is calculated

by modelling the corrected and normalized intensities with a linear model. This model

includes a noise component and a probe effect component in addition to the summarized
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value for each probe set in a particular array. Tukey’s median polish is used to estimate

these parameters (the median polish is an exploratory data analysis procedure proposed by

the statistician John Tukey [48]).

GCRMA (Guanine Cytosine Robust Multi-Array Averaging), is an improved form of

RMA that uses the sequence-specific affinities of the probes to obtain more accurate gene

expression values. It adjusts for background intensities in Affymetrix array data which

include optical noise and non-specific binding. The background adjusted probe intensities

are then converted to expression measures using the same normalization and summarization

methods as RMA. The sequence information is summarized in a more complex way than

the simple GC content. Instead, the base types (A, T, G or C) at each position (1 - 25) along

the probe determine the affinity of each probe. The MM (mismatch) data is not lost; the

user has a choice in version 2 of GCRMA to use either MM probes, a user-defined list of

negative control probes or the package internal non-specific binding data.

3.3.4 PLIER

Affymetrix developed an algorithm called PLIER [2] to improve the gene expression value

(a summary value for a probe set) for the GeneChip microarray platform compared with the

MAS suite. The improvement in signal value is achieved by accounting for experimentally

observed patterns for feature behaviour and by handling error appropriately at low and high

abundance. It will be shown later in this work that PLIER can also improve the gene signal

compared with that calculated by the RMA algorithm. PLIER is designed to produce an

improved signal by accounting for experimentally observed patterns in feature behaviour

and also by handling error at appropriately low and high signal values.

The PLIER algorithm introduces a probe affinity parameter, which represents the strength

of a signal which is produced at a specific concentration for a particular probe. The probe

affinities are calculated using all the data for an experiment across its arrays. The error

model used assumes that error is proportional to the recorded intensity values, rather than to
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background-subtracted intensity.

3.4 Data validation

It is important to have confidence in the methods used to calculate gene expression from

the raw data of microarrays. Some of the commonly used methods of calculating a single

measure of gene expression for a probe set e.g. MAS5, RMA, GCRMA and PLIER, have

been described. Some of the work which has been done to validate the data produced for

gene expression from microarrays will now be explored. Spike-in controls introduced by

Affymetrix will be examined. Then methods developed in Dr Andrew Harrison’s group

at the University of Essex to improve the results of processing microarrray data: unique

mappings and correlation heatmaps, will be explained.

3.4.1 Spike-in and Affycomp

Spike-in controls or spikes are external reference RNAs which can be used to improve the

quality of microarray data. The use of spikes allows several parameters of the platform

quality to be evaluated, for example, the sensitivity and specificity of the microarray experi-

ments, the accuracy and reproducibility of the measurements and the assessment of technical

variability which may have been introduced by the labeling procedure, hybridization and

image scanning [49]. Spike-in HG U95 experiment and HG U133 experiment CEL files

were provided for comparison analysis on a website called Affycomp and over 50 different

sets of results were gathered for different probe summary methods. These comparisons are

now cited here in two ways: the first is an investigation of the PLIER algorithm by Therneau

and Ballman and the second is a comparison of methods used on HG U133A data.

The PLIER algorithm was investigated by Therneau and Ballman [50] who conclude

that it improves the gene expression value compared with the MAS5 algorithm and captures

the key characteristics of the ideal error function. The diagram that demonstrated their
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Figure 3.5: Rankings of selected methods on 14 outcomes, from the Affycomp website

findings is reproduced here as Figure 3.5. It shows the ranks for 14 measures of accuracy

(concentrations) for the normalization and analysis contributions, of MAS5, two early

methods: RMA and dChip, two more recent methods: chip calibration and GCRMA, and

PLIER. Using the U133 data it shows consistently good rankings for GCRMA and Chipcal

4. It shows very good rankings for PLIER for five of the 14 outcomes in the U133 data.

However the remaining nine are poor. The results for RMA are more widely spread across

the rankings, but show no very good rankings and no very poor rankings. It can be concluded

that although PLIER could be a better method to employ in some experiments, it must

be used with caution because of its poor performance in other cases. The major finding

of Therneau and Ballman [50] was that the model used by PLIER for its error correction

algorithm possesses many of the key characteristics of the ideal error function for fitting

individual probe calibration curves. This was despite PLIER using the counter-intuitive

assumption that the error of the mismatch probe was the reciprocal of the error of the perfect

match probe. More evidence of the workings of PLIER will be discussed among the results

and findings of this project.
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Figure 3.6: Comparison of Bias in four selected probe summary methods at different concentrations
for U133 data
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Figure 3.6 shows a comparison of probe summary methods using data from the Affycomp

website. Local slopes are calculated which represent the expected observed log fold-change

for probesets with true fold-change of 2 but they are presented as a function of the total

nominal probeset concentration in the samples being compared. In theory the local slopes

should be 1 so the bias (difference between the observed local slope and 1) is shown.

The figure shows major differences between the methods at low concentrations, but

a convergence at higher concentrations with the exception of GCRMA, which achieves a

different average bias across concentrations.

3.4.2 Generation of Unique Mappings

3.4.2.1 Introduction

It has been found that probe sequences can partially align to one or more locations in the

genome other than the intended one. This is known as cross-hybridization [51]. Another

effect called multiple targeting, is where probes can align exactly to more than one place

in the genome. In order to minimise these effects, the generation of “unique mappings”

has been developed for the Human genome by Dr Olivia Sanchez-Graillet et al. [51], and

extended to other species such as Mouse, Arabidopsis and Rice. The unique mappings

are the first stage in a pipeline to analyse CEL files (see section 3.2.6 on page 45 for

more explanation), which includes the production of heatmaps using regression analysis.

Although many probes may be discarded when filtering for unique mappings, the remaining

probes can be used as more reliable measures of target expression. The next few subsections

give an overview of the process.

3.4.2.2 Obtaining sequence file and probe data

Sequences of exons and transcripts are downloaded from the Ensembl database at EBI,

Cambridge, via Biomart and stored in local servers as text files. BioMart is an OpenSource,

query-oriented data management system. It can be used with any type of data and is
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particularly suited for providing ‘data mining’ type searches of complex descriptive data.

The sequences of probes are obtained from the Affymetrix website and stored in FASTA

file format.

3.4.2.3 Megablast alignments

Megablast is a derivative of the sophisticated software package called BLAST, which is a

Basic Local Alignment Search Tool [52], introduced in section 2.8.1. It is used for finding

statistically significant similarities between sequences by evaluating alignments. Blastn

compares nucleotide sequences to one another (hence the ‘n’). Megablast is similar to blastn

but optimised to find near identities very quickly. It is much faster than the standard blastn.

The probe sequences from Affymetrix are aligned to the exon and transcript sequences by

using the megablast tool and the sequence files previously obtained. The files containing

the mappings have to be filtered using gawk, to save processing time later.

3.4.2.4 Configuration files

The programs for generating unique mappings have been developed to allow for different

versions of biological databases, different species, different file locations in the servers,

different program versions and various types of arrays. These parameters are used as input

data to the programs, specified by information in two files: a configuration file and an array

file.

3.4.2.5 Auxiliary data

In order to obtain the unique mappings, it is necessary to generate initial data in tables in

the database. The information required is:-

• Exons information

• Transcript information
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• Mappings of probes to exons

• Mappings of probes to transcripts, which align with values >= 20, where values are

the alignment length 5 the id percentage.

• Synonymous exons (exons in the same chromosomic region but with different identi-

fiers)

• Probes which map to exon-junctions

Synonymous exons and exon-junctions are stored in the corresponding tables in the data-

base as well as in text files.

3.4.2.6 Unique mappings identified

Once all the required data has been processed and stored in the database, the unique

mappings are identified and the information is saved both in text files and in the database. A

more detailed description of producing the unique mappings is given in Appendix C.

3.4.3 Correlation matrices

It is possible that within one probe set, subsets of probes could be measuring different exons,

as shown by Stalteri and Harrison [37], and thus different transcripts because of biological

signals such as alternative splicing (section 2.6). If all such probes were included in a

study to see if probes were correlated with each other then the results could be misleading.

Therefore the unique mappings of groups of probes, described in section 3.4.2, which map

uniquely to the same exon were employed so that the correlation coefficients between pairs

of these particular probes will not be affected by alternative splicing.

3.4.3.1 Correlation coefficients between pairs of probes

The data used here was 6685 HG U33A CEL files which were downloaded from the NCBI

GEO repository. After normalizing each CEL file the values of the correlation coefficients
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Figure 3.7: Scatter diagram comparing probe pm6 from probe set 31846 at with probe pm1 from
probe set 219297 at (Source: Upton et al. [12])

between pairs of probes from within the same exon were examined to search for anomalies.

The probe set 31846 at which is one of two sets designed to match the gene RHOD provides

an example. This probe set contains 16 PM probes all drawn from the same exon. The value

of the correlation coefficient between all pairs of these PM probes is strongly positive with

the exception of probe pm6 (the sixth probe of the probe set), which has near zero values

for its correlation coefficients with all the other probes. To test the hypothesis that probe

pm6 is related to other probes from different exons, the value of its correlation coefficient

with every other probe in the array was determined. It can be seen in the example scatter
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plot in Figure 3.7 that the probe pm6 from probe set 31846 at is correlated with probe

pm1 from probe set 219297 at because of the grouping of the plotted points in an upwards

sloping direction. (The probe set 219297 at was designed to measure activity of the WDR44

gene.) The correlation coefficient in this case, r = 0.78. The reason for the correlation

needed to be found, and Upton et al. [12] concluded it was because of both probes having

runs of guanine. The two probes in this case both had sequences of guanines; probe pm6

from probe set 31846 at has five ‘G’s’ at position 16 of the probe sequence (base sequence

TCCTGGACTGAGAAAGGGGGTTCCT), and probe pm1 from probe set 219297 at has

six ‘G’s’ at position 1 of the probe sequence (GGGGGGATAGTCTTGTTTCTAGCTT).

3.4.3.2 Heatmaps

Figure 3.8: Correlation matrix showing the correlation coefficients between every pair of the 16
perfect match probes that form the 31846 at probe set (Source: Upton et al. [12])

Figure 3.8 shows a heatmap created by using only the 16 PM probes from probe set

31846 at, which as mentioned in the last section map uniquely to the same exon. The
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heatmap is a visual display of the correlation coefficients between pairs of these probes. The

values have been calculated, multiplied by 10 and rounded. This number is shown and the

shade in each cell represents a value between 1 and 10 for positive correlations denoted by

colours in the red to yellow and white spectrum. Negative correlations are shown by shades

of blue becoming darker with higher negative numbers. The values on the main diagonal

are all 10, since the correlation coefficient is 1 for a value compared with itself. Probe 6 is

evidently behaving in a different way with its blue colour, showing that it is not correlated

with the other probes as would be expected. Upton et al. [12] looked at other heatmaps and

found that such ‘misbehaving’ probes were not unusual. The base sequences were looked at

and the observation made that a frequent feature was a sequence of four or more guanines.

It had already been noted by Wu et al. [53] that probes containing runs of guanine were

typically poorly correlated with others in their probeset. Upton et al. [12] showed that such

outlier probes are well correlated with each other.

This work concentrates on the effects that runs of guanine bases have on the gene

expression data obtained from microarrays. The chemistry of runs of guanine bases and

how they can affect structures within DNA strands or loops will be explained.

3.5 G-quadruplexes, G-stack and C-stack probes

Han and Hurley [54] have described how four guanines (G’s) from various places in a

DNA sequence can form a planar structure, termed a G-tetrad or a G-quartet, through

Hoogsteen hydrogen bonding (see the schematic Figure 3.9(a)). They describe diagram (b)

in the same figure as a tetramolecular parallel G-quadruplex, which is formed from four

DNA strands each with a single G-rich repeat. G-quadruplexes can also be formed by a

DNA strand or strands which loop in ways shown by diagrams (c) and (d). Each quadruplex

is made up of G-tetrads which are indicated by the planar squares in (b), (c), and (d).

Burge et.al. have described a variety of G-quadruplexes formed from both telomeric
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Figure 3.9: Schematic of a G-tetrad and G-quadruplexes. (a) Four guanine (G) residues can form
a planar structure, termed a G-tetrad, through Hoogsteen hydrogen bonding. (b) A tetramolecular
parallel G-quadruplex can be formed from four DNA strands each with a single G-rich repeat.
(c) DNA sequences that contain two or more G-rich repeats can form GG hairpins, which in turn
dimerize to form several types of stable bimolecular quadruplexes, termed intermolecular antiparallel
G-quadruplexes. (d) DNA sequences with either four G-rich repeats or long G tracts can fold upon
themselves to form an antiparallel intramolecular quadruplex, termed an intramolecular foldover
G-quadruplex. (Source: Han and Hurley [54])

and non-telomeric DNA sequences [55]. Their survey included potential quadruplexes

that can be formed from G-rich sequences which are present within a wide range of genes

and in non-coding regions of many genomes. These structures are of particular interest

as possible targets for therapeutic intervention. It is noted that quadruplex sequences

occur in the promoter regions of several cancer genes, Burge et.al. [55]. With a great deal

being discovered and much still unknown about guanine rich sequences, it was decided to

concentrate on surveying the extent and potential effects of such sequences in the microarray

data available in public repositories.

Langdon et al. [56] have discussed the molecular processes occurring on the surfaces

of GeneChips due to the high surface density of probes. Interactions between next-door

probes affect their rate and strength of hybridization to targets. Targets may partially bind
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to more than one probe, and competing targets may hybridize to the same probe. These

partial hybrids can result in some probes not reaching thermodynamic equilibrium during

hybridization. Some probes may fold, or some targets may fold up or cross-hybridize

to other targets. Having surveyed many experiments searching for systematic effects

such as these, Langdon et al. discovered a family of thousands of probes which show

correlated expression across thousands of GeneChip experments. These probes contain runs

of guanines, suggesting that G-quadruplexes are able to form on GeneChips which results

in bias when averaging signals from multiple probes.

A G-stack probe is defined for this work as being a probe with one or more sequences

of exactly four G’s, i.e. GGGG, a run of four guanine bases. In similar fashion, a C-stack

probe is defined as being a probe with one or more sequences of exactly four C’s, i.e. CCCC,

a run of four cytosine bases. These definitions will be used in describing the analyses. The

C-stacks will be used as a control in some of the analyses of G-stacks, in a similar way to

that in which Shanahan et al. [38] used C-stacks as a control when analysing the effect of

G-stacks.

3.6 Three types of analysis used in this work

The analysis of the effect of G-stacks in microarray probes is the focus of this research.

Three types of analysis on microarray data are used. They are described in this section and

can be briefly called:-

1. Average correlation of expression levels over all CEL files of an experiment us-

ing a sample of 1000 G-stack probes

This analysis uses an estimate for the size of bias that G-stacks introduce across

experiments, as introduced by Shanahan et al. [38]. As a control, the same analysis is

done using C-stacks, which have been shown not to introduce a bias in microarray

experiments.
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2. Summarized expression data

This analysis calculates the median difference of expression data between microarray

data with G-stacks left in and microarray data with G-stack probes removed.

3. Analysis where the correlation between pairs of probe sets is greater than 0.4

This analysis compares every probe set to every other probe set and takes the results

where the correlation is greater than 0.4 to see the most significant results.

These analyses all use the RMA normalization method in the first instance. Later studies

will compare the results of using the PLIER normalization method with the results of using

the RMA normalization method.

In the following explanations of the analyses the GeneChip used for the examples is

HG U133A, a human chip which has gained widespread acceptance among researchers.

3.6.1 Average correlation of expression levels

It has been established by Upton et al. [12] that the G-stack bias is variable across individual

experiments. A proxy is therefore used to estimate the size of the bias for other experiments.

Computation for the proxy is as follows: a sample of 1000 G-stack probes are randomly

selected from probe sets with only one G-stack probe in them. This set of probes is referred

to as Gr. For each of the 176 HG U133A experiments deposited at GEO (the same selection

that has been used in the referenced analyses Upton et al. [12] and Memon et al. [57]), the

following was computed

n
[α]
i = log(e

[α]
i )−R[α], iεGr,

where [α] represents an individual CEL file, e[α]i is the expression level for the i-th probe of

CEL file [α] and R[α] is the average of the log of the expression levels over all non-control

probes (i.e. the probes which are biologically relevant) for that CEL file. The correlation of

n
[α]
i over all CEL files is computed and the average correlation ρij for all i 6= j is calculated.
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Figure 3.10: Bar chart of the average correlation between G-stack probes (in blue) and C-stack
probes (in red) for 176 HG U133A GeneChip experiments deposited at GEO.

Figure 3.11: Bar chart of the average correlation between G-stack and C-stack probes for 176
HG U133A GeneChip experiments deposited at GEO. Reproduced from the paper by Shanahan et
al. [38]
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A control was needed, so similarly defined average correlations for each of the same

experiments were computed using 1000 randomly selected probes with runs of four cytosines.

The bar chart of the resulting 176 average correlations for both G-stacks and C-stacks is

shown in Figure 3.10. It can be seen that the average correlation for the C-stacks is much

closer to zero. The chart is seen to be similar to Figure 6 in the paper by Shanahan et al. [38]

which is reproduced here as Figure 3.11. The differences are explained by a different

random set of 1000 G-stack and C-stack probes being selected.

3.6.2 Summarized expression data

The Affymetrix GeneChip HG U133A was the first microarray to be used by Upton et

al. [12] to investigate the effect of G-stacks on normalized data. The GeneChip HG U133A

contains a total of 22,283 annotated probe sets. Table 3.1 shows how many probes sets have

various numbers of G-stack probes in them. This information is relevant to the analysis of

the effect that G-stack probes have on expression level data for an experiment. It is noted

that more than one-third of the probe sets contain at least one G-stack probe, and that 10%

of the probe sets contain two or more G-stack probes.

No. of G-stack probes in a probe set 0 1 2 3 ≥4
No. of affected probe sets 13,985 5188 2124 667 319

Table 3.1: The numbers of probe sets in HG U133A that have particular numbers of G-stack probes

The dark columns in Figure 3.12 show the median difference of expression data between

microarray data with G-stacks left in and microarray data with G-stacks removed. The light

coloured columns show the same calculations for C-stacks. To obtain these calculations, all

the probe sets from the HG U133A GeneChip were analysed and classified in the following

way:-

• g < n > is the list of probe sets with < n > G-stack probes in them, so that for
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Figure 3.12: HG U133A expression estimates showing median differences when C-stacks and
G-stacks are removed respectively
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example, g3 is the list of probe sets with 3 G-stack probes in them.

The expression data from all the CEL files of each GSE was summarized in Figure 3.12

by using the following process:-

• expression data was normalised with the Bioconductor package called affy using the

RMA method

• using a modified CDF (see section 3.2.5), the data was normalised again with G stack

probes from groups g2 to g6 removed

• for each probe set in lists g2 to g6, the difference in the normalised expression data

between having G-stack probes left in and having G-stack probes removed, was

calculated

• the various quantiles between this difference and the expression levels of the original

data with G-stack probes left in were calculated

• all the above steps were repeated using C-stacks in place of G-stacks

• the median differences for both G-stacks and for C-stacks removed were plotted as a

bar chart showing the frequency of the median values for all the GSEs (Figure 3.12)

If there were no bias in the data due to the G-stacks, then Figure 3.12 would show the

median difference values for the G-stack data more evenly distributed around zero. However,

it can be seen that most of the median difference values are less than zero, which confirms

the anticipated bias effect. For the C-stacks, the median difference values are grouped much

closer to zero, showing that C-stacks do not exhibit a bias.

3.6.3 Analysis of GT correlations

It is expected that data from probes within the same probe set would be correlated with each

other because they should be regulated by the activity of the same gene. However, this work
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is testing the extent to which G-stack probe sets are correlated with other G-stack probe sets.

It was decided to compare the extent to which C-stack probe sets are correlated to other

C-stack probe sets, as they were shown by Shanahan et al. [38] to be a good control.
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Figure 3.13: HG U133A GT correlation data for median differences of C-stacks and G-stacks
present and removed respectively

In this analysis every probe set is compared to every other probe set, and the results taken

where the correlation is greater than 0.4 to see the significance. From here onwards where

correlations have been taken as greater than 0.4 they will be referred to as GT correlations.

Figure 3.13 shows that the control figures for the correlations of the C-stack probes are

all grouped near zero, whereas the figures for the G-stack correlations are all negative and

spread much more widely. These results confirm that C-stack probes are not correlated

with C-stack probes from other probe sets. However, G-stack probes are showing some

correlation with other G-stack probes from different probe sets.

Correlation data was also looked at to determine if correlations of less than 0.4 between
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G-stack probe sets were significant. These will be referred to henceforth as LT correlations.

Figure 3.14 shows the extent of LT correlation (i.e. the median differences where the

correlation is less than 0.4). The C-stacks are heavily grouped around zero again which

shows that this measure is not significant for C-stacks. The G-stack LT correlation data

are more spread out, showing that there is some significance in this measure for G-stacks,

especially as compared with the control C-stacks.
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Figure 3.14: HG U133A LT correlation data for median differences of C-stacks and G-stacks
present and removed removed respectively

3.7 Conclusion

This chapter has explained the technology and use of microarray data. The preprocessing

techniques, normalization and summarization methods of processing CEL file data have

briefly been explored, with their relevance to the measurement of gene expression. The

generation of unique mappings to improve the quality of probe selection has been explained.
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This led on to the creation of correlation matrices and the visualization of these in heatmaps,

which highlighted certain probes which were more highly correlated with each other than

with their designed RNA sequences. Then G-quadruplexes and G-stacks have been defined

with their significance in interpreting microarray experiment data. Finally some analysis

methods have been outlined which will be used later in this work.

Attention is now turned to the computing resources which can be used to carry out wide

scale analysis of microarray data. Grids and clouds have been introduced. The next chapter

will focus on experience gained in using a grid.



Chapter 4

Grid Computing: The National Grid

Service (NGS)

This chapter will describe a few examples of grids which have been used by the academic

community and then concentrate on the National Grid Service (NGS) and some experience

gained by using it. The NGS was the first service tried by this project for some bioinformatics

computation outside the University of Essex. It offered a free computing resource to

academic researchers in the U.K. The name of the NGS was changed to NES (National

E-infrastructure Service) when the NGS and the separately funded GOSC (Grid Operations

Support Centre) merged. In this chapter, the name NGS will be used, although it refers

equally to the NES which may have been the correct name in later years.

4.1 A few examples of Grids

The GLOBUS Project [24] with its associated software, the Globus Toolkit [58], has

been key in developing fundamental techniques which are needed to build computational

grids. The challenge is to enable software applications to integrate instruments, displays

and computational resources that belong to diverse organisations in widespread locations.

The project has included investigations of security, communication protocols and data

70
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management mechanisms as well as resource management. The NGS services were based

on the Globus Toolkit offerings for job submission.

Condor [59] is a high throughput computing environment that can manage a large

collection of diversely owned machines and networks. It is well known for harnessing idle

computers with its cycle stealing technology, but it can also be configured to share resources.

Its environment has a layered architecture and can support both sequential and parallel

applications. Its middleware is open-source grid software which allows users to submit jobs

in a reliable fashion to remote grids and batch systems such as GLOBUS, and Unicore.

Unicore (UNiform Interface to COmputing REsources) is a ready-to-run grid system

of middleware that aims to make distributed computing and data resources available in a

seamless and secure way. It implements several open standards to allow different networks

to communicate with each other, and integrates strong security and workflow capabilities.

Its website provides more details of its objectives: http://www.unicore.eu/unicore/.

4.2 Experience of using the NGS in 2009

4.2.1 Characteristics and Facilities of NGS

The U.K. National Grid Service had 25 member institutions in 2009. Eleven were partners

and 18 were affiliates. There were over 900 registered users of whom over 250 were active,

according to figures given at the IF09 Innovation Forum held in London in October 2009.

There were over 20 projects actively using databases and over 2000 active user certificates.

The NGS e-infrastructure was connected via the JANET network to HEIs (Higher

Education Institutes), GridPP (a particle physics Grid), and JISC (www.jisc.ac.uk) among

other networks including at least one European Grid, the EGI (European Grid Initiative).

The NGS offered:-

• Complete services
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• Data services

• Access services

• Central support services

It also offered a Hermes data client for drag and drop file movements, and for large data set

requirements.

The NGS promoted open standards as vital for Grid development. It enabled various

levels of resource exchanging, depending on the type of organisational membership which

HEIs and others required. NGS also encouraged a Campus Champion to be appointed at

each member institution who would know the resources available with NGS and propagate

information. A website and magazine-style emails gave information about how to join and

use the NGS, as well as details of projects which were successfully using the Grid service.

The NGS project had been seeded with four large computers spread among founding

member institutions, and other computer resources were offered by members. HECToR, the

High Performance Computing project at Edinburgh university was available to researchers

through the NGS. The NGS services were free to academic research users in 2009, though

partner institutions were working out what it cost them to offer services, and plans to charge

for services in the future were being discussed.

4.2.2 Goal of the NGS

The goal of the NGS was to deliver a production quality national e-infrastructure in support

of academic research across all Higher Education Institutes (HEIs) in the UK. This enabled

coherent electronic access for UK-based researchers to a variety of computational resources

and facilities, independent of the researcher location.
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4.2.3 How to run jobs on the NGS

The initial task for users is to analyse their computing requirements and decide if their need

is for high performance or for high throughput. High performance jobs require cutting edge

supercomputing solutions such as that offered by HECToR at Edinburgh University. High

throughput jobs typically need to run large numbers of small programs, and need careful

management of their input and output data.

The NGS had at least three ways of submitting jobs to give users a degree of flexibility

in the way they interacted with the grid:-

• Command line entry via Secure Shell (SSH) or a variant of SSH. This needs the client

to have installed some software such as SSH which may be complex for some users.

It can be flexible and efficient when working. It also needs the GSI (Grid Security

Infrastructure) software installed so that security of access can be managed.

• via the API which is an Application Programming Interface that uses a batch job

submission approach

• Portal template, for example, Application Repository or via WMS (Workload Man-

agement System). A portal gives the user entry via a web page into which they type

their username and password. When the user has been checked for authorization, the

portal then gives the user access to a list of application groups, examples and tutorials.

There are sample job templates which can be modified. One can browse files and

transfer them. After a job has been executed, the output can be retrieved.

4.2.4 Software available on the NGS

Some bioinformatics software was already installed and available to use. BLAST was

available for nucleotide sequence searches, and Matlab for simulations or algorithms.

Taverna had graphical tools available for WMS (www.taverna.org.uk). The Portable Batch

System (PBS) was available for job scheduling.
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At the NGS Innovation Form in October, 2009, it was made clear that the NGS was not

currently administered systems-wise fully as a Grid. Its documentation was not complete, it

had uneven loads and could run out of quota on a node (a machine within the grid), and its

nodes were not always in synchronization with each other. It was apparent that one could

use nodes on the grid that had the software installed that one needed, but that the service

levels would be unpredictable and patchy.

There was little future funding predicted for the NGS. Some confidence was being placed

in the future European Grid Infrastructure, an Enabling Grid for E-Science (EGEE - III

project), which is discussed further in section 4.2.6. Each national Grid service in European

countries was collaborating to further the project, together with Research Communities.

Amsterdam had been chosen as the central location for the EGI, with 25 core staff and

around 25 staff cooperating from their NGIs. It was planned that the project would not write

software but install it from others’ projects using standards and open source from the Open

Grid Infrastructure (OGI). User support and services would be provided via a federated

Helpdesk. Virtual Research Communities such as the Particle Physics community were

in the forefront of recommending the research infrastructures which would be sustainable

beyond a single funded project. The EGEE would sponsor training events, an applications

registry (to find one’s required applications on the EGI) and a Respect program to identify

software which works well with the Grid. Two annual conferences were envisaged: a

European Grid conference and a conference for Users of European E-infrastructure.

4.2.5 Benefits of the NGS to the researcher

There were reasons for academic institutions to belong to the NGS as a member, or at least

to be affiliated. Systems administration support was available, user training materials could

be shared and the grid was able to supply top-up computing resources for the institution.

The benefits of the NGS to individual researchers included the following:-

• free access to computing resources outside one’s institution
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• standard accounting framework for authorization and certification

• standard interfaces to enable submission and running of jobs

• community practitioners were being identified to share excellence

• data management standards were propagated

• data services such as Oracle and MySQL were available

• Workflow Management System available to aid users in submitting jobs and browsing

their status

• Portal system to provide web page access to job submission and monitoring

• specialist services such as access to HECToR in Edinburgh, and large scale visualiza-

tion at Rutherford Appleton Laboratory

• access to an international gateway for wider Grid participation

4.2.6 Wider Horizons

The NGS provided core services and support activities to facilitate collaborative access

to computing and data resources in support of UK researchers. Integrated with partner

infrastructures in Europe (through the project called Enabling Grids for E-scienceE (EGEE)

and the European Grid Infrastructure (EGI)), the USA, and elsewhere in the world, the

NGS ensured that UK researchers can effectively and efficiently exploit facilities and

collaborations across the world.

E-Infrastructure provision has been identified by the national ministers in the EU

Competitiveness Council as crucial to the future leadership position of EU economies in

a global market place. Over the past several years the NGS has established a leadership

position in e-infrastructure provision for the UK internationally.
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4.2.7 Institutions which hosted Computer Resources

Partner sites involved with the NGS were:-

• Cardiff University

• University of Edinburgh

• University of Glascow

• Lancaster University

• University of Manchester

• University of Oxford

• Queen’s University Belfast

• University of Leeds

• Rutherford Appleton Laboratory

• University of Westminster

Other sites were ‘affiliated’ to the NGS and provided resources to the NGS, but with

more conditions. Members of the GridPP collaboration also offered resources.

4.2.8 Using R and Bioconductor on the NGS

There were only six institutions, or nodes of the grid, which offered R as a working software

platform. None of these had Bioconductor modules installed. Upon enquiry, it was found

that users can install extra R modules for themselves in their own disk file area, or request

that extra modules be installed via the Helpdesk. For the latter option to be successful, it

would need to be demonstrated that more than two or three users required to use the extra

modules.
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It transpired that R was not used by many researchers on the NGS. The most used

program was compiled MATLAB. The biggest CPU time user was NAMD, a parallel

molecular dynamics program which is used for high performance simulation of large

biomolecular systems [60].

4.3 Reflection on the experience of using NGS

It is valuable to have the opportunity of using free external computing services available

directly from one’s own desk and local PC. The inital joining of the NGS to allow credentials

to be recognised and accepted took little more than one week. The process of loading up

additional R modules, writing appropriate Job Description Language to launch batch jobs,

and debugging initial submissions meant that getting an R script to be successfully executed

in batch mode with its data files took one month.

4.3.1 Joining the NGS as a new user

Fortunately the University of Essex, although neither a partner nor an affiliate site, had a

staff member who was authorised to sign up new users to the NGS. The first requirement

was to obtain a digital certificate from the UK Certification Authority and load this into a

PC browser. The online application form to apply for an NGS account was then usable. The

form required details of the scientific research planned and the reason for wanting to use the

NGS. All applications were then subjected to a light-weight peer review process that could

take one to two weeks. In the case of this study the review took only one week. The final

part of the process was to visit the Registration Authority (the designated Essex university

staff member) with photographic id and the NGS documentation to obtain a signature of

approval.
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4.3.2 First use of the NGS

The User Certificate which had been obtained from the Certification Authority was stored

on the local drive with a 20-digit password. The first problem was that this did not work on

the next stage. Apparently one needs a password of seven characters or less for it to work in

the next stage of software. The certificate had to be exported from the local browser and

re-imported with a shorter password.

4.3.3 Private keys and Public keys

A digital certificate contains a public key which is used to encrypt a message that can only

be decrypted with a private key maintained by a user. The user’s private key is kept in a

browser’s key store, protected with a passphrase or password. This system worked well for

setting up a digital certificate with the Certificate Authority. The only snag at this stage was

that the local computer was not keeping accurate time to within ten seconds of Greenwich

Mean Time, which was a requirement for Grid use. Once the computer clock was corrected,

the certificate system worked smoothly.

4.3.4 Executing jobs on the NGS

Test jobs were devised for trying the R system on the grid. The Rutherford Appleton

laboratory Linux system node was chosen to try initially: ngs.rl.ac.uk. The first program

was a simple R script to install and load a new R module called affy from Bioconductor, and

return a list of the user R library modules available. It was necessary to set an environment

variable to define the new R user library to the system. An early problem was not having

‘write’ access to the user R library.

Dr Hugh Shanahan from Royal Holloway College, London University, and Dr Farhat

Memon who studied for her PhD at the University of Essex, contributed their R script for

analyzing G-stacks from CEL files (an early form of the analysis described in section 3.6.1).
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This script was used to verify the correct working of the system and took variable lengths of

time, depending on how many CEL files were available in the experiment being analyzed.

The R script was tried using an experiment with 352 CEL files which took 36 hours 2

minutes to run on a local machine.

Initially, the data in the form of CEL files had to be copied across to the remote machine,

as did the R script. Here began a frustrating series of experiments to get the R script to run

successfully. The common problem was “User proxy expired”! After seeking help from

NGS Helpdesk staff, it transpired that the user certification only allows for a job to run for

twelve hours, and then it is automatically cancelled and any files pertaining to it are deleted

to tidy up!

The R script job was changed to analyze an experiment that had fewer CEL files, in this

case 12 CEL files. When running this R script on local machines, it had taken between five

and seven hours to run, depending on the machine. On the first NGS grid machine, the job

had not finished in twelve hours. Information was sought concerning the running of jobs that

take more than twelve hours. Instructions were received which concerned using a “renewal

proxy”. Having followed instructions carefully, an error message was received:- “Error.

MyProxyServer: wrong type caught for attribute”. More advice was received and an

error:- “-save no longer supported”. Apparently “- -save” should be used in Arguments.

The following two attempts ended unsuccessfully after three days with Status: Aborted,

Reason: Job proxy is expired. The next attempt aborted a week after being submitted with

the logged reason: “File not available. Cannot read JobWrapper output, both from

Condor and from Maradona.”

Although long jobs were a challenge to the NGS Grid system, more smaller jobs were

submitted with some success. This was followed with trials on other nodes of the grid which

meant repeating the setup procedures to make programs and data available to each system.

Table 4.1 shows the times taken for an R script to process the same six CEL files on four
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Machine Time taken CPU and Memory
NGS RA node 3 hr 20 min
Obelix 1 hr 14 min Xeon 5140 2.33GHz 16Gb RAM
Asterix 1 hr 24 min Xeon 5140 2.33GHz 16Gb RAM
bsstream3 1 hr 7 min Xeon 5160 3.0GHz 8Gb RAM
s6320 0 hr 57 min Xeon 5450 3.0GHz 32Gb RAM

Table 4.1: Table of varying execution times for the same job with 6 CEL files, which were run on
the NGS Rutherton Appleford laboratory node and on four local machines

different local machines and on the one Rutherford Appleton laboratory node. The job run

on a NGS grid node took over twice as long to run as it did on each of the local machines.

Jobs were planned to run on other NGS nodes, but it proved difficult to get help when facing

different problems on these other nodes, especially when a key systems administrator on the

Helpdesk went on holiday.

The challenge of running the same R script with larger numbers of CEL files, like 300+

for example, was never overcome on the grid. These jobs proved to take too long for the

user proxy limit of one week, which was an NGS standard. It is understandable that a job

elapsed time limit be imposed so that all users get a fair share of the resources. However,

eventually the conclusion was reached that the grid was not the best place to run jobs of the

data intensive kind that are required in this study’s bioinformatics research.

There could have been benefit in using parallel programming techniques for the analyses

and thereby running larger numbers of shorter jobs, but since the majority of experiments

did not have extremely large numbers of CEL files, it was not thought worthwhile to spend

time on re-programming the R scripts.

4.4 The Future of NGS and NES

The NGS did not receive funding beyond 2010, but a national Grid service serving universi-

ties and research bodies has continued even though names have changed. It is recognised

that computing needs vary as research progresses, and the flexibility of sharing resources
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via a Grid has a part to play in ongoing research.

The GridPP continues to offer important computing resources to particle physicists,

and the UK universities of Birmingham, Brunel, Durham, Imperial College, Liverpool,

Manchester, Oxford, Queen Mary London, and Royal Holloway College are all involved in

this collaboration. The Large Hadron Collider project at CERN is a user of GridPP, which

contributes the equivalent of 40,000 PCs to the LHC’s computing requirements for data

analysis.

4.5 Conclusions on the use of NGS

It was found that for this research the NGS was not a suitable provider of computational

resources. The main benefits of the NGS to a researcher have been listed in section 4.2.5.

The main disadvantages of using the NGS grid were:-

• the lack of documentation about the systems and how to use them

• the fact that the NGS was not administered systems-wise fully as a grid

• its loads were uneven

• a user could run out of quota on a node

• the nodes were not always in synchronisation with each other

• service levels were unpredictable and patchy

• it was often difficult to get help from systems administration

The NGS was not a good provider of data storage services. It is not easy or speedy to

make data available between nodes of a grid when a user has to do this for themselves. The

systems administrators of the individual nodes had not been able to implement synchroniza-

tion of data files for users. Therefore it was not considered viable to consider putting large
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quantities of microarray data on the NGS for analysis. So the next chapter moves on to the

consideration of and experience gained from specific computing clouds.



Chapter 5

Cloud Computing

The concepts of cloud computing have been introduced in chapter 2. In this chapter three

examples of clouds are considered. First, an example of a public cloud is examined by

considering the features of Amazon Web Services with its Amazon Elastic Compute Cloud

and related storage and queuing services. It is an example of IAAS (see section 2.11.3.1). An

example of the use of a local private cloud is described, with the results of a collaboration to

investigate different queuing models within a self-service infrastructure container proposed

for cloud implementation by Ibrahim Musa [61]. The third cloud computing example is of

Windows Azure, which was a new cloud offering by Microsoft at the time that this research

project was using it. Azure offered Web page access for cloud services before Amazon, and

now offers hybrid cloud storage solutions to seamlessly extend a customer’s own storage

capacity for primary storage, backup, archive and disaster recovery.

5.1 Amazon Web Services (AWS)

Following the collapse of the dot-com bubble in the mid 2000s, Amazon reorganised its data

centres on a utility computing basis and opened Amazon Web Services in 2006. Utility

computing meant that Amazon was offering a pay-on-use service, similar to the model used

by utility companies to supply water or electricity. Customers of AWS were able to avoid

83
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the up-front costs of capital expenditure on powerful computers and air-conditioned rooms

and buy computing facilities as a variable or operating cost on an as-required basis. The

customer pays only for the resources actually used.

5.1.1 Types of Applications

AWS supplies the solutions to many types of computing needs, for example:-

• Application Hosting

Companies can run their payroll, stock control, invoicing and many other types of

application.

• Backup and Storage

It is possible to store information and service backup solutions for vital data.

• Web Hosting

Any dynamic web hosting needs can be satisfied with the scalable infrastructure

platform.

• Databases

A variety of types of database can be hosted, with the advantages of the security and

scalability that the solution of cloud storage offers.

5.1.2 Amazon Elastic Compute Cloud (EC2)

The Amazon Elastic Compute Cloud is the web service which offers resizable computing

capacity. One can configure the computer required (with its operating system) as a machine

image, launch it as an ‘instance’, and control it as a machine from one’s home desktop. It is

possible either to select a pre-configured machine image and launch it quite quickly, or to

create a new Amazon Machine Image (AMI) containing one’s own applications, libraries,
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and data. Figure 5.1 shows the flow of actions for a user to find or create and launch an

AMI to use for running an application.

Figure 5.1: Flow within Amazon Elastic Compute Cloud (Source: Amazon documentation from
http://aws.amazon.com/)

The initial experience of this research was in creating a machine image (AMI) which

contained libraries for the scientific programming language R, and several packages built in

R from the Bioconductor website. The resulting machine image was larger than it needed to

be for the R script runs, and thus cost more to store on a permanent basis. It was quite slow

to load and run, so a leaner system was created with only the essential requirements for R

and Bioconductor. This achieved faster results and was cheaper to store and run.

Figure 5.2 shows the range of facilities and control mechanisms available to a user’s

application or indeed machine instance through Amazon’s EC2 cloud service. The Elastic

Block Store was used to access the public datasets of Ensembl Annotated Human Genome

Data [62] and some of the NCBI datasets (details for access can be found at this website:

http://aws.amazon.com/public-data-sets/). Amazon S3 (Amazon Simple Storage Services)

was used for user data and for storing tailored machine instances. The Multiple Regions

control was used to ensure that the machine instances were started in the same geographical

region as where the Ensembl datasets were stored.

A description is given in our paper “Identifying the impact of G-Quadruplexes on

Affymetrix 3’ arrays using Cloud Computing” [57], of the use of Amazon Web Services

to analyze public datasets. In this case it was shown that G-stacks adversely affect the
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Figure 5.2: Some of the Amazon EC2 services available to an application or a machine instance
(Source: http://jayunit100.blogspot.co.uk/2013/02/making-your-ec2-instances-application.html) [Ac-
cessed Sept. 30th, 2014]

reliable measurement of gene expression. The method used to demonstrate this finding was

to use cloud computing to analyse 352 randomly chosen CEL files from 179 microarray

experiments which used the human chip HG U133A. The probes which had only a single

G-stack of exactly four guanine bases and were mapping uniquely to an exon were filtered

out to be used (for an explanation of unique mappings see section 3.4.2). A method of

visualizing the correlation between pairs of these probes was devised. A contour plot

was drawn to show the variation of the average correlation coefficient for pairs of probes

containing G-stacks at different positions along the probe.

In Appendix A of a similar paper which concentrated on Affymetrix Exon arrays [63],
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presented at the Conference of Integrative Bioinformatics 2009, the details are given of

getting an application up and running on the Amazon cloud.

5.1.3 Experience of using Amazon web services

The details of setting up an Amazon account with a credit card, establishing security and

authorization with public and private key pairs and so on is not discussed here as it has

changed somewhat from the early days of AWS in 2008. The experience gained by this

project in using Amazon Web Services and public datasets stored in Amazon Elastic Block

Store was good, as long as running instances were closed down when experiments and

analyses had finished. Otherwise the cost of using the services would continue to be

charged without warning. In a similar way, the use of Elastic Block Storage for the project’s

programs, parameter data and results had to be well managed to minimize storage costs.

5.2 A Local Private Cloud

A collaboration with Ibrahim Musa came about when Dr Musa was looking for some

real world biological data to use to test his private cloud which was the basis for his PhD

study. He needed to find some data and analysis programs which would provide a range of

challenges for his proposed self-service infrastructure container. This project was of interest

because it was not merely a private cloud on which to test the R scripts which analyse

microarrays, but it was also researching a new way of offering cloud services to scientists. It

was agreed to share some of the microarray data and some R scripts to analyze the data. Dr

Musa ran the analysis jobs, getting the same results, and using the differing amounts of data

for each job to test out some job allocation algorithms within the private cloud structure.
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Figure 5.3: Framework and interaction of components in the proposed virtual infrastructure container
http://www.journalofcloudcomputing.com/content/3/1/5 [Accessed September 29th, 2014]

5.2.1 Description of the private cloud

Cloud Computing encompasses the service model where extremely large network and IT

resources are virtualized and offered over the internet to increasing numbers of users. The

users themselves do not have to understand the complex layers of machines and software

which comprise the cloud, but are able to use the services at the application or machine

level, depending on their needs. Dr Musa’s PhD research was to create a virtual organization

of resources in a holistic manner and with a single logical view which he termed a virtual

service cell (vCell). Users would request one or more organised virtual machines rather than

specifying detailed isolated resources. The network to connect the virtual machines, the
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storage to support task execution requirements and the logic to manage all the components

with minimum human intervention, would be provided with the machines. In this manner,

user resources and management logic would be contained within the logical composition

which simplifies the task of management and ensures high user service automation.

Figure 5.3 shows the implementation of Musa’s virtual service cell. One can see the

Physical Fabric Layer at the bottom, with the computers, network and switch components

and storage servers, and the vCell Delivery Layer at the top which is where the scientist

will interact with the cloud. The Core Management Services (CMS) are shown at the right

hand side, interacting with the Service Layer and the Virtualization and Control layer in the

middle. The actual computers that Musa used were ten four-year-old PCs with switching

equipment and three storage servers. The details of the implementation of the private cloud

can be found in Appendix D.

5.2.2 Significance of Musa’s private cloud

Dr Musa’s research was able to conceptualize and test an optimal framework for building

a virtual container as a service (vCAAS). This model contributed a framework and the

optimization techniques for next-generation cloud computing. The isolation of components

within a vCell ensured that network and IT components operated with a vCell boundary

which isolated external traffic and enhanced performance. This allowed service management

to be attached to each vCell and to components within each vCell. The vCells within a

vCAAS were each equipped with a privileged VM acting as the vCell manager (CM). The

CM controlled communication between vCells and communication with external com-

ponents outside the container (vCAAS). The per vCell management in vCAAS reduced

complexities and simplified the technical and operational tasks of managing cloud infras-

tructure. In the vCAAS, a subset of network management functions was projected into a

privileged virtual machine so that management tasks, such as utilization monitoring, usage

accounting, failure recovery, adaptive control and scheduling tasks were managed on a per
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vCell basis rather than on the whole datacentre infrastructure.

vCells were able to be replicated to simplify the initiation of new vCells for a new

vCAAS container. In future development of this work it is envisaged that an automated

vCell that encapsulates various service technologies would be used. This would enable a

cloud administrator to provision a new tenant and configure the required services across

the network in minutes. The vCell approach enables the efficient and automated scaling

of hundreds of tenants and thousands of virtual machines with just a few steps and less

complexity. The vCAAS approach ensures efficient delivery of applications, allowing any

combination of network and IT resources to support the needs of the users’ applications.

5.2.3 Experiments on the private cloud

The full description of the private cloud, its hardware, the infrastructure and middleware

employed, the experimental setup details and full results and discussion are all given in the

published paper: “Self-service Infrastructure Container for Data Intensive Application” [61].

A description of the experiments and figures of the results are given in Appendix D. Here

the experiments and the key results are summarized.

The microarray data consisted of GSE experiments with differing numbers of CEL files

and therefore differing amounts of data. Each experiment comprised one analysis job. The

cloud was set up so that the vCAAS container was able to run a varying number of vCells,

and in each vCell the analysis for one GSE experiment was run at a time. Three common

job queue scheduling algorithms were used:-

• the Shortest Job First algorithm on K Queues (SJF-KQ)

• the Largest Job First algorithm on K Queues (LJF-KQ)

• the First Come First Served algorithm on K Queues (FCFS-KQ)

Initially the jobs were allocated randomly to the queues for each type of queueing

algorithm. Then the quantity of data to be accessed for each job was assessed and used in



5.3. Windows Azure Cloud 91

the provisioning management. Jobs were classified into groups according to the amount of

data that each job required to download from storage. The VMs were given the appropriate

bandwidth according to the amount of data required for that queue of jobs. Jobs which had

more data to analyze took longer, and an estimated finish time was calculated and used to

allocate jobs to one of three queues (K = 3). When the data for a job had been downloaded

the VM’s bandwidth was released to be used by another VM. This variation on the algorithms

was called “with Lookup”. Figure D.2 in Appendix D shows the improvement gained in

thrashing values by the Lookup routines for all three job queue scheduling algorithms.

Using three queues Figure D.3 compares the versions of SJF task allocation algorithms

which are called SJF-3Q and SJF-3Q-L (with Lookup) with FCFS-3Q-L to determine the

elapsed time differences for each analysis job. The worst performing jobs (slowest) were

those in the SJF without Lookup queues. These did not have the benefit of being scheduled

according to the amount of data to download and thus suffered from the competition for

bandwidth which produces thrashing. The First Come First Served with Lookup jobs

outperformed those in the Shortest Job First with Lookup queues.

The concept of vCAAS was successfully implemented and this enabled experiments

with algorithms for job allocation to be performed. Because the amounts of data varied for

the GSE experiments, differences in data access times were exploited. The VM bandwidth

for the data transfer was released after the data had been downloaded so that jobs could be

classified into groups. This enabled the result that the holistic view of resources improved

the performance of algorithms for resource provisioning and job allocation.

5.3 Windows Azure Cloud

Windows Azure is a cloud platform developed by Microsoft for running applications which

can use computing and storage resources as needed. Initially the company had a need

for an internal system which their own development teams could use, to manage multiple
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machines, storage and networks in a disciplined, efficient manner. It was soon realised

that this could provide a marketable platform for other companies to use and it eventually

became Windows Azure. Microsoft data centres in Europe, North America and Asia have

been set up to offer services across the internet through the Azure Cloud. It has all been

developed since 2005.

Windows Azure varies from the Amazon Web Services in being originally a totally

Windows based platform. Linux platforms were talked about, but not fully implemented

until later. Services are routinely provided through Web pages, and developed using html

web page language and Microsoft’s .NET Framework interface libraries and services. Visual

Studio is the integrated development environment provided for .NET software. The C# and

Visual Basic languages are among those which can be used to develop applications in Visual

Studio for use on the Windows Azure cloud.

The design and implementation of a Web Role to execute an R script application, and

the use of Microsoft’s Generic Worker are covered in chapter 6. This current chapter will

introduce some basic features and design objectives of Azure. Figure 5.4 shows a simple

view of the key elements of Azure that interact with a user’s application.

5.3.1 The Windows Azure Programming Model

Windows Azure has been designed differently from the standard Windows Server type of

operating system to improve life for applications in three distinct areas: administration,

availability and scalability. The next sections examine how Azure works and how its

advantages are achieved.

5.3.1.1 The Fabric Controller

Windows Azure runs in data centres containing many computers, and every Azure applica-

tion runs on multiple machines simultaneously. The fabric controller is the Azure software

which automates the control of all the computers in the data centres. It monitors the state
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Figure 5.4: Elements of Azure (http://solutions.devx.com/ms/developer-cloud/migra-
ting/introducing-the-azure-services-platform-46874.html) [Accessed October 14th, 2014]

of every node (or computer) and sets up what is needed according to a service model. It

finds the right hardware and applies the right network settings. It monitors applications and

hardware so that, in the event of a crash, an application can be restarted on either the same

node or on a different node. The fabric controller also takes care of patching the operating

systems that run on the nodes, doing so in a way which allows the services to continue

running. It can automate the updating of various service software, including applications, in

a way that allows services to continue running while updates take place.

5.3.1.2 Storage Services

Azure Storage provides services which are comparable to the file systems of an operating

system. The environment of multiple systems in a cloud requires different storage solutions

to deliver the advantages mentioned above of administration, availability and scalability.

Azure uses Blobs, Queues and Tables as shown in Figure 5.5. It also supports a database
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called SQL Azure which uses the same query language and interfaces as standard SQL

databases.

Figure 5.5: The three types of storage that Azure provides (http://sijinjoseph.com/2008-
/11/14/windows-azure-distilled/) [Accessed October 14th, 2014]

• Blobs (Binary Large OBjects) are data files stored in containers which are rather

like folders. Each blob and container has a unique URL, and the REST API (REpre-

sentational State Transfer Application Programming Interface, developed in parallel

with HTTP 1.1) can be used to create, delete, update and access blobs. Containers

only have one level of data files in them and one cannot store containers within

containers. Containers are used to set permissions and the policy for access control.

If a container is set as publicly accessible, then any blobs in that container can be

accessed by anyone over the public Internet, using the usual http:// protocol.

• Queues provide for storage and delivery of messages to an application. The queues

themselves must be resilient so that no messages are lost. Azure guarantees that any

number of messages can be queued, that none will be lost and that a receiver will
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always be able to dequeue them. In providing cloud services, queues are used to

help decouple various components of the total sytem like backend servers, frontend

servers and storage servers so that if a component fails, the failure does not cause the

whole system to crash. The lengths of various queues are used to scale resources, for

example, adding worker nodes when queues build up beyond a pre-arranged length

and standing down worker nodes when the queues are small.

• Table storage enables massive amounts of structured data to be stored cheaply and

efficiently. Like relational databases, the data in tables is stored in the form of entities,

each with a set of properties. Developers of applications have control over how this

data is partitioned physically. The table storage is not queried with SQL, but with an

ADO.NET Data Services REST interface which is not quite as flexible as SQL. Table

storage is optimized for cheap and highly scalable storage.

• SQL Azure is the way that Azure has chosen to achieve full database flexibility in

the cloud. The databases are stored in Microsoft’s data centres, and accessed using

normal SQL tools and code. The price of SQL database storage per GB in Azure

is several times that of the Table storage because of, for example, the overheads in

making detailed fields and relationships within the data easily available.

All types of data in Azure storage is stored with multiple copies which are managed by

Azure itself, so the user does not need to plan their own backup services. Several processes

are in place to ensure that data is not lost.

5.3.2 Application code: web roles and worker roles

A Web role is largely intended for logic that interacts with the outside world via HTTP.

The code can be written in Java, C#, VS Basic or other languages, and can interact with IIS

(Internet Information Services), ASP.NET, WCF (Windows Communication Foundation),

PHP and so on.
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A Worker role is provided for code that interacts with the outside world in various

ways, not limited to HTTP. For example, a worker role might contain application code that

converts videos into a standard format or calculates the risk of an investment portfolio or

performs some kind of data analysis. It would typically be triggered by an entry in a table,

or a message in a queue.

A typical application might use a web role to accept HTTP requests from users, then

hand off the detailed work required to one or more worker roles. It would pass the work

on by putting a message into a job queue designed to start the applicable worker role.

Parameters could be passed in the message. The primary reason for this breakdown into two

roles is that dividing tasks in this way can make an application easier to scale. A developer

needs to create a service definition file that names and describes the application’s roles.

This file also specifies other information used by Azure to build the correct environment

for running the application. The service configuration file also needs to be created. It

specifies the number of role instances to deploy for each role in the service, the values of

any configuration settings, and the thumbprints for any certificates associated with a role.

5.4 Summary of Clouds, their features and relevance to

bioinformatics research

Three examples of cloud computing solutions have been described in this chapter. They

are all relevant and useful for research in bioinformatics and have each been tried by this

research project. They can each satisfy the requirement to run R scripts and store large

amounts of data for easy retrieval and analysis.

The public cloud Amazon Web Services had a head start by being early in the field

to offer utility computing on a wide scale. It also proved useful by hosting a significant

quantity of biological research data with the public datasets of Ensembl Annotated Human

Genome Data [62] and some of the NCBI datasets. These were used to research the effects
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of G-stacks and G-quadruplexes on the measurement of gene expression. This work was

published in our paper “Identifying the impact of G-Quadruplexes on Affymetrix 3′ Arrays

using Cloud Computing” with lead author Dr Farhat Memon [57].

The private cloud developed by Dr Musa at the University of Essex has shown how small

cloud computing solutions can benefit bioinformatics research. As a computer scientist, Dr

Musa was interested in furthering research into next generation cloud computing solutions.

He used the data and R scripts supplied by this research project to demonstrate how R scripts

can be run to process different sized datasets, with the objective of improving queueing

times and minimizing the total time taken to run many jobs. The concept of vCAAS was

demonstrated as providing a holistic view of resources which could improve the performance

of algorithms for resource provisioning and job allocation.

The public cloud Windows Azure was introduced later on the scene of utility computing

offerings and is still much smaller in business terms than AWS. Microsoft say that they had

developed a cloud for their own internal work, and then decided to offer it commercially.

From the outset it was different from Amazon in being Windows-centric for application

development and friendly to Web developers because of its .NET Framework, Visual Studio

and Windows programming language offerings such as Visual Basic, C# and Visual C++.

On the other hand, Azure can suffer because of Microsoft’s occasional non-standard quirks

such as experienced by web developers trying to interface with Internet Explorer.

Windows Azure was used for the bulk of the research analysis for this work, and many

early problems had to be overcome as Azure was in its infancy and undergoing changes at

the time. Much persistance was required and the next chapter will explain the details of the

data uploads and job submission procedures which were utilized to perform the first wide

scale analysis of G-stacks.

The advantage of clouds being able to spread computation across many VMs concur-

rently was not exploited in this research study. The type of bioinformatics research analysis

jobs chosen were mostly not long-running. Timings for certain jobs are shown in the next
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chapter (see Figure 6.7 where the longest jobs took about five minutes). It was therefore not

appropriate to employ parallel programming techniques within the programming routines

used in this study.



Chapter 6

The Azure Cloud

Windows Azure is a cloud service that has been introduced briefly in section 5.3. Here

the cloud services of Azure will be discussed in more detail, together with experiences

gained through using Azure to analyze GeneChip data. The application was developed from

work done by Shanahan et. al. [38] to analyze the effect of G-stacks in the probes of the

Human HG U133A Affymetrix GeneChip. They showed that G-stacks exhibited a level of

hybridization that is unrelated to the expression levels of the mRNA that the probe sets are

intended to measure. Further details of this analysis are given in section 3.6.1. A similar

analysis was performed in this work on the Azure cloud, with follow up work to estimate

similar effects in other GeneChips and other species.

This chapter will concentrate on the experience of using the Azure cloud: developing

the R scripts for the application, developing a wrapper called GWydiR for submitting jobs

to Azure, and loading the public microarray datasets into Azure storage. Future chapters

will explain the results that were found from analyzing the effect of G-stacks in the chip

probes.

99
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6.1 Azure Services

Azure is the name given to PaaS cloud platform services from Microsoft. Online Services

is the name given to SaaS cloud platform services from Microsoft. A service hosted in

Windows Azure consists of one or more web roles and/or worker roles. A web role is an

ASP.NET web application (more recently called AzureAppFabric) which is accessible via

an HTTP or HTTPS endpoint (webpage) and is commonly the front end for an application.

Worker roles are the background processing applications which typically access data and

perform the required computation.

Azure services may use one or both types of role, and can run multiple instances of each

type. Role instances can be added or removed based on demand and they allow applications

to quickly and economically scale up or down when the need arises. The fabric controller

is aware of every Windows Azure application and performs the scaling, load balancing

memory management and reliability functions required across the cloud services.

Azure storage services, described in section 5.3.1.2, consist of blobs, tables and queues.

SQLAzure provides database services via a version of the SQL Server.

6.2 Initial Azure applications

The early implementation of any Azure application required the installation of the following

software:-

• MS Visual Studio 2010

• Windows Azure Tools

• Windows Azure SDK (Software Development Kit)

• Windows Server IIS

• Windows Azure Platform Management Tool
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• Windows Azure Platform Training Kit

With the first four of these software tools as a minimum, an application can be generated

and developed to run in the cloud via a webpage. The last two software items were required

to make the Azure demonstrations work.

Figure 6.1: Simple flow representation of Windows Azure (http://sijinjoseph.com/2008-
/11/14/windows-azure-distilled/) [Accessed October 14th, 2014]

The first application developed for Azure was a simple “Hello World” application which

launched a webpage with a message. This was relatively straightforward to achieve after

registering with Windows Azure. The second application was a short R script using a web

role, which took a little longer to get working. The third application was an R script with

data sent from the local PC. Figure 6.1 shows both the Management Portal and the REST

APIs as ways to launch and control applications in the Azure cloud. These first applications

were all developed via APIs (application program interfaces). The Management Portal was

not available when the work was first done.

It was possible to run a cloud application in a ‘Compute Emulator’ while testing it. This

emulator launched a browser to show a running instance of the application locally. With
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this approach the debugger in MS Visual Studio could be used to step through the code and

check the data and the processing at all stages. Figure 6.2 shows a screenshot of an early

webpage used to launch an R script job. A hosted service was created and deployed from

the Azure Management Portal. This took several minutes to get to the “Ready” stage. Then

the application was tested from any device which could serve an internet webpage. It was

important that the correct Storage Account was referenced in the C# programs in Visual

Studio. Each Storage Account had to be managed with the correct Connection Strings.

It was possible to create as many different service configurations as required and keep

them for different uses, such as local debugging, using different storage areas, cloud testing

and so on. There was also the issue of adding a certificate to a role when running it in

the cloud. A certificate in this context is a small file which holds previleged information

called a key and carries a password for authentication c.f. the keys and authority needed to

access services on the NGS grid, as in subsections 4.3.2 and 4.3.3. The properties of the

web role had to be set appropriately with any development storage areas required having

their addresses set correctly.

An application was developed using R to allow the user to specify a file to be uploaded

to the cloud where the R script was run with data files supplied to it and results returned.

The finished jobs were shown on the webpage below the submission section, see Figure 6.2.

This application was developed and expanded to allow several datasets to be processed by

the same R script analysis program with corresponding results obtained. The data file names

were passed as a list in an Excel data file.

6.3 Generic Worker within Azure

The Generic Worker (GW) is a special type of web role that has been developed by Microsoft

within the framework of the Venus-C project (see Appendix E for details) to provide a

standard web role for launching, running and managing applications and their files.
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Figure 6.3: Functionality of the Generic Worker (GW) (Source: Early Venus-C documentation)

The GW libraries can be accessed from http://resources.venus-c.eu. GW was clearly

applicable to the requirement for running analysis jobs repeatedly on different sets of

microarray data. The numbers on Figure 6.3 refer to the following actions taken by the

Generic Worker instances:-

1. Looking for submitted jobs

2. Fetching job details

3. Download application and requred files

4. Run application

5. Write back result files

Figure 6.4 shows in more detail the architecture of how the Generic Worker was designed

to interact with the client user, the storage devices, the accounting routines, job queues and

status table within the Azure cloud. The GW libraries can be used within a C# program

to submit and efficiently manage jobs submitted to a set of worker roles, as illustrated in

Figure 6.5. In this framework the software can run in two modes. In the first mode an

application is uploaded to Azure storage together with a description of the application (in
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particular the expected list of parameters that will be used in the application). In the second

mode the application is transferred from Azure storage and launched with a specific set of

parameters. The GW provides efficient job management and allows a means of scaling a

task. Activation or termination of instances of worker roles can be called via the application

code or from within a Windows power shell script. Additional software can be uploaded

and installed if required at the start of each run.

6.4 Development of GWydiR for job submission

GWydiR was the name given to the wrapper written in R to streamline the process of

submitting R jobs to the Generic Worker in Azure. GWydiR asks for a series of parameters

and file names which it passes in appropriate ways to Azure for starting web roles in virtual

machines. The parameters included:-

• doUpload y/n To specify whether the application data needed to be uploaded afresh

or not

• dataKeyFile <path/filename> Key file for the data container storage

• RFileName <path/filename> The R script that will be run

• userZipFileName <path/filename> A zip file of all the extra files needed to be

installed in the working directory to run the R script

• csvFileName <path/filename> A csv file of all the datasets to be analyzed

• outputRoot rgw Root for the log files

• appKeyFile <path/filename> Key file of the application’s container storage

• myApplicationName rgwtest The application name

• serviceURL URL for webpage to inspect progress
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Figure 6.5: The use of GWydiR with Azure

Figure 6.5 shows the Generic Worker receiving information from a researcher to set up

VMs which run web roles (in this case) to run R scripts and process data from Azure storage

blobs. The source code for GWydiR can be downloaded from:-

http://gene.cs.rhul.ac.uk/RAzure/GWydiR.zip. Full details on setting up an Azure account,

running GWydiR and a sample R script on Azure is given in the Supplementary Information

section of the paper “Bioinformatics on the cloud computing platform Azure” [64]. The

paper gives a full discussion of cloud computing solutions for bioinformatics and how Azure

fits in to cloud offerings.

Once the GW and GWydiR software had been set up and tested, it was a straightforward

matter to scale up the number of VMs to run the analysis jobs. Each experiment was

submitted as a separate job. Earlier in the use of Azure, lists of experiments had been

submitted for analysis runs. It was found that the list approach was less easy to control and

scale because sometimes an experiment within the list would fail, for example through a

shortage of disk space. By starting each experiment as a new job with fresh disk space this

problem was minimised.
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6.5 Using Azure storage

The first thing to mention is that Azure Storage is distributed widely, both geographically

around several areas in the world, and over many machines. The user has the choice over

where in the world their data is stored, and it makes sense to choose a geographic location

close to where the processing of the data will take place.

The four key data services offered by Windows Azure: blobs, queues, tables and a

database have all been described in section 5.3.1.2.

The storage is managed with various distributed software techniques to make sure that it

remains available and reliable if any failures should occur in machine or network hardware

elements. The user is told that “all data is replicated multiple times” [65] page 130, and that

recovery from hardware failure or data corruption in any of the replicas, “happens under the

covers”.

6.5.1 Preparing and accessing Windows Azure storage

Initially a Storage Account has to be applied for and created. The price for storing 100GB

of data for one month in March 2013 was $US 9.50 for Blob storage, and $US 175.83 for

SQL database storage. Each storage account needs a unique name, an optional description

and some other information. One also has to choose a geographical location, such as North

Europe, or Eastern USA. It is possible to store data and application program code in Affinity

Groups, to keep them near to each other geographically.

6.6 Security and Accounting

Microsoft was keen that Venus-C projects should test and use all the security and accounting

features which were provided with Windows Azure. However, unfortunately there was not

time in the life of the project to incorporate these additional features into GWydiR and the

applications, so the minimum of security was used and none of the Azure accounting.
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6.7 Loading data into Azure storage

The expression data from the Human chipset HG U133A was chosen as the first array data

to be uploaded to Azure storage as it was a chip which achieved wide use and popularity as

a reliable GeneChip for human tissue samples. It was used by Shanahan et al. in their paper

on the bias of G-quadruplex formation [38].

In this initial work on Azure, 576 GSE experiments deposited before May 2012, consist-

ing of between 2 and 200 CEL files were downloaded from ArrayExpress using packages

provided for use with the R statistical programming language. R scripts were used to read

a list of GSEs from a data file and download all CEL files for each GSE. The GSEs were

then uploaded to Azure storage using a Web role program written in C# and ASP.NET, as

described earlier in this chapter.

6.7.1 Issues found during uploading

The following issues had to be addressed during the time of uploading GSE data files from

the EBI public database ArrayExpress to Azure Mass Storage blobs:-

1. GSEs with only 1 CEL file

GSEs with only 1 CEL file were not uploaded as they do not contain enough data to

determine significance in the analyses.

2. GSEs with no CEL data

It was found sometimes that even when experiments were reported to have raw data

in the form of CEL files available on GEO, the raw data files were not available on

ArrayExpress. This condition did not stop the list of GSE experiments from uploading,

but resulted in empty blob containers being created which subsequently had to be

removed individually by hand.

3. It appears that a CEL file is corrupted
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Occasionally the affybatch package from Bioconductor gives a message for example,

like It appears that the file GSM318883.CEL is corrupted. A CEL file like this was

deleted from its GSE as it was not known how to correct the corruption. When this

message occurred, it happened consistently for that particular GSE and CEL file.

4. A CEL file may be truncated

Sometimes a CEL file had to be deleted because of a message for example, like

Warning: found an incomplete line where not expected in GSM267392.CEL. The CEL

file may be truncated. Successfully read to cel intensity 1343267 of 1354896 expected.

This happened consistently for a given GSE and CEL file.

5. Phenodata or FeatureData may be missing

Processing was stopped by messages for example, like Error in download.file(samples,

sdrffile, mode = ”wb”, quiet = TRUE, cacheOK = FALSE) : cannot open URL ‘http://

www.ebi.ac.uk/microarray-as/ae/files/E-GEOD-8859/E-GEOD-8859.sdrf.txt’ does

not exist or is empty. The object will not have featureData or phenoData. FeatureData

and PhenoData included for each CEL file the metadata relevant to that biological

sample. It might describe a type of tumour, a symptom, a drug treatment applied or

several factors relevant to the sample. This data would be important for analysing fold

change information. In some cases the file names varied slightly from the standard,

which meant that automatic downloads did not find them.

6. The request to ArrayExpress hung up

Occasionally it was found that there were CEL files there, which were downloaded,

but could not be uploaded because the script hung up before normal completion. The

reason was not easy to determine, so, as this only happened a few times, these were

dealt with individually.
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6.8 Running analyses on the Azure cloud

6.8.1 Validation of the service

Given the new architecture employed, it was necessary to test routines and methods by

repeating an analysis performed by Shanahan et al. in their paper on the biases in expression

data caused by G-quadruplex formation [38]. For this it was important to use only the 176

GSEs from the HG U133A GeneChip which were available to them when they performed

their analyses.

The initial test chosen was the estimation of the extent of bias of G-stack probes

(see section 3.5) among other HG U133A data. Figure 6 in the paper by Shanahan et

al. [38], shows a chart of the average correlation between G-stack and C-stack probes for

176 HG U133A GeneChip data sets deposited at GEO. These average correlations were

recalculated to validate the use of R scripts and GEO data on the Azure Cloud, as results

could be compared with those originally obtained. The chart obtained by this work on Azure

is shown in Figure 3.10 in chapter 3 where the method was described. The charts are similar

which gives confidence of reproducibility and validates the R scripts being used.

6.8.2 Timing of jobs using Azure and using local machines

The one-time uploading of data into Azure mass storage has been discussed. Attention

is now turned to considering the use of cloud computing compared to the use of a local

machine for analysis computations. It is important to understand how the run times on

Azure compare with a locally run calculation. Date and time stamps were inserted into the

R scripts to be able to compare the elapsed time taken to process the microarray datasets

on cloud and local computers. It was recognised that there might be significant time taken

to load the datasets from Azure mass storage to the R working storage in the VM where

they could be used in computations, so the data and time stamps were written to a log at the

beginning and end of loading each set of CEL files. This load time is generally negligible
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Figure 6.6: Time taken to load microarray data from Azure mass storage to R working storage. Plot
shows the time in seconds taken to load each of 576 datasets from Azure blob storage to local VM
disk space, in terms of the number of CEL files in each GSE experiment.

in the local setting. Similar date and time stamp output was also written to the log at the

beginning and end of performing the main normalization and G-stack comparison analyses.

Each of these elements will be considered.

6.8.2.1 Load time

Figure 6.6 shows the timings for loading data files from Azure blob storage to R working

storage. All 576 available HG U133A experiments are included. The elapsed time for

loading an experiment comprising two CEL files (about 23 MBytes for text CEL files) was

typically about two seconds, and for an experiment comprising 200 CEL files (about 2.25
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GBytes for text CEL files) was around 45 seconds. The reasons for varying sized CEL files

have already been outlined in section 3.2.6.

The outlier experiments in Figure 6.6 depend on whether the CEL files were stored in

binary format (shorter load times than the trend) or character format (longer load times than

the trend). The largest outlier, having a load time of about 80 seconds, had a combination of

binary and text CEL files.
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Figure 6.7: Time taken to analyze data with R script using Azure. Plot shows the time in seconds
taken to analyze each of 576 datasets, in terms of the number of CEL files in each GSE experiment.

6.8.2.2 Run time on Azure

Figure 6.7 shows the timings of the 576 analysis runs (i.e. how long the R scripts ran on

an individual VM once the data had been loaded). The outliers below the trend of the dots
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are experiments with binary format CEL files, which are a little quicker to process than the

character format ones.
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Figure 6.8: Comparison of analysis times between cloud and two local machines. Plot shows the
time in seconds taken to analyze each of six particular experiments, in terms of the number of CEL
files in each GSE experiment. The particular experiments were chosen because they had 4, 8, 16, 32,
64 and 128 CEL files, to give a range of experiment data amounts. The machine labelled Local1 had
a CPU clock speed of 2.13 GHz, and the machine labelled Local2 had a CPU clock speed of 2.24
GHz. The 70% CPU cap was added to the Local2 machine to crudely estimate the slower 1.60 GHz
stated clock speed of the Azure VM.

6.8.2.3 Comparison of elapsed times for analysis routine between Azure cloud and

two local machines

A representative set of six experiments was chosen to repeat the analyses which had been

done on the Azure cloud, on local computers. The experiments had a range of numbers of
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CEL files to ensure that they were representative of different lengths of jobs. Figure 6.8

shows the results and the details of the clock speeds of the different local computers. The

Azure cloud VMs all had a stated clock speed of 1.60 GHz. It is difficult to reproduce

exactly the configuration of an Azure VM and therefore a variety of different local computers

were used for comparison purposes. Local1 is a standard Windows 7 machine with a 2.13

GHz processor. Local2 has a 2.24 GHz processor that runs Windows as a virtual machine.

As Local2 is run as a virtual machine it is also run with a 70% execution cap to crudely

reproduce the nominal Azure VM processor clock speed.

The results in Figure 6.8 show that in all cases the Azure VMs run more slowly than the

local machines, taking roughly a factor of two times as long as the middle local case.

6.9 Summary of experience of using the Azure cloud

For a researcher accustomed to using Linux systems, the structure and classes employed

in developing Windows-centric applications for Azure was a steep learning curve. It was

helpful to have the demonstration applications for creating a first Web role and Worker role.

Visual Studio was very helpful in developing a simple working application using the C#

language. Microsoft gave some assistance in providing the interface required to upload and

run the first R script. In essence the required R package with its libraries had to be zipped

up into one file and uploaded to Azure storage. This zip file was called and unzipped from

within the C# Web role. If the required level of R changed, or if addional R libraries or CDF

files were required, then this step of uploading a new zip file had to be performed.

The majority of bioinformaticians who use cloud computing have made use of Amazon’s

EC2. This fact is stated by Shanahan et al. [64] who attribute it to the provision of a stable

software stack with an associated large community of users who can provide support and

solutions specific to a researcher’s domain. Nonetheless, it is clear that Amazon has viable

competitors in the marketplace of cloud-based solutions, and that other offerings should be
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considered. The Azure cloud offers the PaaS infrastructure which allows users to develop

tailored interfaces for specific executables that run in a batch mode. Despite the learning

curve for researchers who do not have a background in developing C# code, the tailored

interfaces can be created with a little effort requiring approximately 400 lines of code, much

of which can be gathered from templates. The initial configuration to run R scripts was

complex but the access to Azure services in general has been streamlined and simplified in

recent months by Azure developers.

The pricing of Azure is comparable with other clouds though this is highly dynamic. It

is a competitive marketplace and volumes are important to the big players like Amazon. It

has been shown that results generated locally are reproduced by equivalent Azure runs. It is

suggested that Azure is slower for run times by a factor of 2 or more than local machines,

though care must be taken as it was not possible to make a like-for-like comparison using

precisely the same CPU type, memory and exact version of the Windows operating system.

A big factor in the choice of cloud computing service is whether a particular cloud

already hosts the public databases that a researcher wishes to analyze. It is not really viable

for an individual research project to upload vast amounts of data to a public cloud in order

to carry out wide scale analyses, because of the time the uploading takes and because the

cost of storing the data is charged by the GByte per month. It is noted that Amazon already

provides a number of relevant datsets free of charge to users of their cloud services, such

as the data from the modMine project which gives flexible access to the modENCODE

data [66].



Chapter 7

The Analysis of Human GeneChip Data

7.1 Introduction

This chapter explains the use of the three analysis methods described in section 3.6 on

more of the available human HG U133A microarray data to determine the extent of G-stack

bias in the experiments. This chapter also examines the effects of other variables in the

experiments. The Azure cloud was used to store the datasets and to process R scripts for the

analysis work.

In section 3.6.1 it has been shown how an analysis of the average correlation of expres-

sion levels over all CEL files using a sample of 1000 G-stack probes can be used to estimate

the bias introduced by G-stack probes into microarray experiment data. The example used

was from the GeneChip HG U133A of H. sapiens. The average correlation of expression

levels of C-stack probes was used as a control, and Figure 3.10 shows a bar chart using data

from 176 experiments. The average correlation for the C-stack probes is much closer to

zero than for the G-stack probes. These results are similar to those obtained by Shanahan

et al [38], so that the method and code in the data analysis R scripts have been validated.

This chapter describes more detailed results confirming the bias that G-stacks introduce into

microarray data.

117
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7.2 Method

ArrayExpress
Database

Raw data CEL files

Normalised data

Affected probe set

Summary results

Azure Mass Storage

Windows Azure

VM to load CEL files

VM to analyze CEL files

Figure 7.1: Flow of Data Analysis jobs

Figure 7.1 shows the basic flow of data and programs used in all the analyses performed

on the Azure cloud. The ArrayExpress [36] Database was accessed over the internet using

an R script to upload all possible HG U133A CEL file datasets to Azure blob storage. These

are labelled ‘Raw data CEL files’ in the Figure. The normalization and bias identification

analysis scripts were run with parameters entered from a local PC, and results were stored

in Azure blob storage prior to being downloaded for scrutiny.

The previous chapter has described in detail how jobs were submitted to the Azure cloud,

both before and after the tool GWydiR was developed. The validation of the service using

the R script to calculate the average correlation of expression values was also described.

Three types of analysis used by this work to examine the bias that G-stacks can bring

to microarray data have been described in section 3.6. Examples were also given in that
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chapter of the use of human HG U133A GeneChip data with those analysis methods. Those

results will not be repeated here but they will be summarized.

7.3 Results of analyzing human GeneChip data

In studies performed by Shanahan et al. on G-stacks in human HG U133A microarray

data [38], it was shown that about 15% of the 176 experiments tested are susceptible to

significant G-stack bias. Now with microarray datasets potentially available for over 600

HG U133A experiments, the Azure cloud facilities of storage space and processing time

gave opportunity to perform a large scale analysis to check the effects of G-stacks more

widely. In practice, the number of experiments with usable data was 573. The reasons

for the number of experiments with usable data being reduced from over 600 to 573 are

the many issues which prevented datasets being downloaded successfully, explanations for

which are given in subsection 6.7.1.

7.3.1 Results using the average correlation of expression levels method

The first analysis described was the average correlation of expression levels over all CEL

files of an experiment using a sample of 1000 G-stack probes. The results of calculating this

average correlation for G-stack probes and then for C-stack probes, as a control, gave rise to

Figure 3.10. This clearly showed that the average correlation for the C-stacks was closer to

zero than for the G-stacks. The average correlation for the G-stacks ranged from 0.00 to

0.76, with 34 of the 176 experiments analyzed (i.e. 19%) showing an equal or larger average

correlation for the G-stacks than 0.41. This value was described by Shanahan et al. [38] as

being one where an experiment still exhibits a noticeable bias, whereas experiments with a

smaller value for their average correlation of G-stack probes do not exhibit a noticeable bias.

Figure 7.2 shows the GSE experiments with the highest actual values of the average G-stack

probe correlations, sorted in order of largest values first. The figure shows the number of
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GSE No of CEL 
files

Average G-stack 
probe correlation

GSE1869 25 0.76
GSE6596 26 0.70
GSE1323 6 0.59
GSE3307 121 0.59
GSE5389 21 0.58
GSE3771 6 0.56
GSE1922 48 0.55
GSE4824 79 0.55
GSE5392 82 0.54
GSE3243 6 0.53
GSE5370 9 0.53
GSE5450 6 0.51
GSE5457 8 0.51
GSE4133 6 0.50
GSE1935 24 0.48
GSE6365 90 0.48
GSE2395 20 0.48
GSE1295 24 0.48
GSE5967 21 0.47
GSE6401 102 0.46
GSE3737 8 0.46
GSE5388 61 0.46
GSE3167 60 0.46
GSE1786 24 0.45
GSE6344 20 0.45
GSE2248 6 0.44
GSE873 5 0.44
GSE6914 20 0.43
GSE2044 13 0.43
GSE1518 8 0.43
GSE4636 18 0.43
GSE1729 43 0.42
GSE5258 346 0.41
GSE2603 121 0.41
GSE994 75 0.40
GSE3794 6 0.40
GSE1133 158 0.40
GSE2742 27 0.39
GSE3419 16 0.38
GSE3846 108 0.38
GSE6011 37 0.38
GSE2487 10 0.38
GSE4045 37 0.38
GSE3780 30 0.37
GSE1650 30 0.37
GSE3585 12 0.37
GSE1317 3 0.36
GSE4885 12 0.36
GSE3524 20 0.35
GSE6184 33 0.34
GSE6015 15 0.34
GSE2018 34 0.34
GSE6613 105 0.34
GSE4646 23 0.34
GSE1297 31 0.34
GSE5418 71 0.33

Figure 7.2: The average correlation of expression levels for G-stack probes over all CEL files of the
designated experiments, and the number of CEL files in each case, ordered by highest correlation
first
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CEL files used in each experiment which varies quite widely from 3 to 346. This raised the

question as to whether the number of CEL files in an experiment has any significant impact

on the expression levels detected. This question will be addressed in section 7.4.

7.3.2 Results using the summarised expression data

The second analysis described was the summarized expression data. Figure 3.12 shows

the expression data for 573 experiments using HG U133A GeneChip data showing median

differences when C-stacks and G-stacks are removed respectively. This gives a clear

visualization of the difference between the effects of removing C-stack probes which remain

heavily concentrated around the origin, and the effect of removing G-stack probes which

indicate that those probes were exhibiting a bias.

7.3.3 Results using the correlation with each other of probe sets con-

taining G-stacks

The third analysis described was to test the extent to which probe sets containing G-stacks

are correlated with each other. Normally it is expected that data from probes within the

same probe set would be correlated with each other because they should be regulated by the

activity of the same gene. Figure 3.13 shows the results of this analysis where the evidence

is clear that probe sets containing G-stack probes are correlated with each other. The graph

also shows that probe sets containing C-stack probes are not correlated with each other.

The second and third analyses just summarized were both carried out using RMA

normalization. In section 7.5 the effect of using PLIER instead of RMA for the normalization

step will be investigated.
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7.4 Significance of the number of CEL files in an experi-

ment

The number of CEL files of raw data from an individual experiment can vary from one

to several thousand. A question was asked about whether the number of CEL files in an

individual experiment affected the results of the analyses in this work. It was decided to test

whether results varied depending on the number of CEL files in experiments. To this end,

the results from the correlation analysis were grouped into ranges according to the number

of CEL files, with the resultant histograms plotted in Figure 7.3.

The six charts in Figure 7.3 each show a different range of numbers of CEL files: 6

to 10, 11 to 20, 21 to 30, 31 to 50, 51 to 100 and 101 to 200. The ranges were chosen to

give a number of GSEs in each range, and the numbers are shown in the chart titles. It

can be seen that for most of the CEL file ranges the largest frequency of their GSE GT

correlation median differences lie between -0.10 and -0.05. The 51 to 100 CEL file range

shows its largest frequency to be less than -0.10, as does the 11 to 20 range. However, visual

inspection of the six histograms which comprise Figure 7.3 does not show any strong results

for GT correlations, so that the number of CEL files in an experiment is not believed to be

significant.

To confirm this hypothesis more rigorously the basic descriptive statistics of the GT

correlation data are presented for each of the six ranges of numbers of CEL files used

in Figure 7.3. Table 7.1 shows the mean, median, standard deviation and the maximum

and minimum figures for the median differences of GT correlation data that are plotted in

Figure 7.3.

It can be seen from Table 7.1 that the mean and the median for each range of CEL files

is between -0.09 and -0.12 which is a narrow range of values. The standard deviation of all

groups is 0.04 or 0.05 which is again similar to each other. The range of CEL files from 21

to 30 had a lower maximum at -0.05 than other groups, and the range of CEL files from



7.4. Significance of the number of CEL files in an experiment 123

121 HGU133A GSEs with 6 to 10 CEL files
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124 HGU133A GSEs with 11 to 20 CEL files
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69 HGU133A GSEs with 21 to 30 CEL files

Median difference of GT correlation data

N
um

be
r 

of
 G

S
E

s

−0.30 −0.25 −0.20 −0.15 −0.10 −0.05 0.00

0
2

4
6

8
12

66 HGU133A GSEs with 31 to 50 CEL files
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68 HGU133A GSEs with 51 to 100 CEL files
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51 HGU133A GSEs with 101 to 200 CEL files
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Figure 7.3: Plots of the median differences in GT correlation data (more than 0.4) over 573
HG U133A GSEs, in ranges depending on the number of CEL files in each GSE

No. CEL files Mean Median Std Dev Maximum Minimum
6-10 -0.10 -0.09 0.04 -0.03 -0.24
11-20 -0.11 -0.10 0.05 -0.02 -0.24
21-30 -0.12 -0.12 0.05 -0.05 -0.23
31-50 -0.09 -0.09 0.04 -0.03 -0.17
51-100 -0.11 -0.12 0.04 -0.03 -0.21
101-200 -0.12 -0.11 0.05 -0.02 -0.23

Table 7.1: The basic descriptive statistics of the GT correlation data for each range of CEL files
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31 to 50 had a higher minimum at -0.17 than other groups. With these basic descriptive

statistics showing that each range of CEL file numbers has results of the same order, the

hypothesis is confirmed that the number of CEL files in an experiment is not significant.

7.5 Significance of using the PLIER method of normaliza-

tion

The analyses described so far have used the RMA method of normalization. In this section

the PLIER method is compared and contrasted with the use of RMA. The PLIER method

takes longer to compute than the RMA method. In comparing GT correlation data for

RMA and for PLIER it is seen that PLIER appears to go a long way to correcting the bias

introduced by G-stacks, see subsection 7.5.2.

7.5.1 Extra time taken for PLIER vs RMA

The third type of analysis (section 7.3.3) was used in comparing the length of time that

PLIER jobs took compared with RMA jobs. Figure 7.4 shows the processing time for

particular experiments plotted against the number of CEL files in each experiment. The

dashed line pertains to experiments processed using the RMA method of normalization,

and the solid line shows the same experiments processed using the PLIER normalization

method. The time taken for the RMA experiments varied from about one minute when

processing two or four CEL files to 17 minutes when processing 128 CEL files. The time

taken for the PLIER experiments varied from about one minute when processing two or

four CEL files to an average of two hours and 25 minutes when processing 128 CEL files.

In particular the groups of experiments having 2, 4, 8, 16, 32, 64 and 128 CEL files

were chosen for a graph to see the relationship between the number of CEL files and the

processing time. The solid and dashed lines are shown between the means of each group

of points. It can be clearly seen that the relationship is approximately linear for the RMA
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Figure 7.4: Plots showing the length of processing time for RMA compared to PLIER normalization
routines, on experiments with 2, 4, 8, 16, 32, 64, and 128 (approx.) CEL files. The mean of the
timing of each group of experiments is shown by a triangle (RMA) and by a square (PLIER).



7.5. Significance of using the PLIER method of normalization 126

normalization method, but for PLIER it is seen that as the number of CEL files doubles, the

processing time increases more than twofold. The reason is due to the PLIER algorithm

having to process the CEL file data more than once.

Where cost is an issue for processing large amounts of data on a cloud, one must take

into account the normalization method used.

7.5.2 Analysis of G-stack data using PLIER compared to using RMA

It was found that the use of the PLIER normalization method tended to concentrate the

results of analyses within smaller bounds, whereas the RMA method gave results that were

more spread. This is discussed in depth in section 7.6.

It has been shown by Qu et al. [67] that compared to RMA summarization, PLIER

summarization can lead to over-estimation of gene-level expression changes, relative to

exon-level expression changes in two-group comparisons. This work was done by using the

published human tissue panel dataset (containing 11 different human tissues) based on the

Affymetrix Human Exon 1.0 ST array. The conclusion of Qu et al. is that PLIER and RMA

behave differently in the detection of alternative splicing events. The observed tendency of

PLIER to “detect relatively skipped exons on up-regulated genes and relatively included

exons on down-regulated genes” was due to technical bias in their opinion. Gaidatzis et

al. [68] also argue that systematic bias persists due to sequence features of the probes

in Affymetrix exon arrays, meaning that detection of alternative splicing events needs

correction for which they offer software.

The analysis in this work was not done on an Affymetrix human exon array, but on the

human HG U133A array. Considering the marked difference in the spread of the bars in

Figure 7.5 using PLIER as compared with using RMA, the question arose: how exactly do

they compare?

Figure 7.6 is drawn from the same data as Figure 7.5 but by plotting the median

differences in correlation values using RMA against those using PLIER. It was expected that
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Figure 7.5: Median differences in correlation values (greater than 0.4) between where G-stacks
were kept in and removed, using RMA and PLIER for all 576 experiments
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Figure 7.6: Comparison of median differences in correlation values (greater than 0.4) between
where G-stacks were kept in and removed, using RMA and PLIER for all 576 experiments. The line
of equality is shown.
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they would be correlated as they are two different methods of achieving the normalization

of the same expression data, yet the correlation between them is only 0.664. The RMA

median shift is generally larger than that for PLIER. This is consistent with the contention

that PLIER achieves improvement over RMA for ameliorating the bias caused by G-stacks.

7.6 Further analysis of HG U133A expression data

Microarrays such as HG U133A are concerned with probes which are organised into probe

sets to reveal the expression of particular genes. Here we will compare the expression

data of G-stacks and C-stacks in the HG U133A microarray when RMA and when PLIER

normalization methods are used. Then we will consider probe sets to see whether probe sets

are more correlated with each other in the case of G-stacks or in the case of C-stacks.

7.6.1 Expression data of HG U133A for G-stacks and C-stacks using

RMA and PLIER

The darker columns of the top graph in Figure 7.7 show a chart of the medians of the

difference in expression data between having two or more G-stack probes left in and having

G-stack probes removed, where the RMA normalization method (see subsection 3.3.3 on

page 49) was used. If there were no bias in the data due to the G-stacks, then this chart

would show the median difference values equally distributed around zero. However, it can

be seen that more of the median values for the G-stacks are less than zero than are greater

than zero, which confirms the anticipated bias effect. The C-stack columns in a lighter shade

act as a control as C-stacks do not show a similar bias, according to Shanahan et al. [38].

The lower graph of Figure 7.7 shows the results from the same analysis of both G-stacks

and C-stacks, but using the PLIER normalization method (see subsection 3.3.4 on page 50).

Shanahan et al. [38] found that PLIER was able to “ameliorate the bias due to G-stacks” and

that the commonly employed normalizations (MAS5, RMA and gcRMA) were susceptible
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Figure 7.7: Expression estimates for HG U133A GeneChip



7.6. Further analysis of HG U133A expression data 131

to significant G-stack bias. Memon et al. [69] showed that G-stack probes on other types of

GeneChip for various mammals exhibited high correlations with each other, and thus it is

likely that they would exhibit a bias in normalized data too. This work confirms this view,

and demonstrates how PLIER can improve the bias from G-stacks in gene expression data.

A similar effect of using PLIER normalization will be seen when analyzing the ex-

pression data from the human HG U133 Plus2 GeneChip in section 8.3.1. Although

ameliorating the bias due to G-stacks in probes, the PLIER method can perhaps overcom-

pensate for G-stacks as shown by the black bars on the lower chart of Figure 7.7 being

moved to the positive side of the origin.

7.6.2 HG U133A probe set to probe set correlation data
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Figure 7.8: Correlation differences for HG U133A GeneChip

The left-hand graph in Figure 7.8 shows a bar chart of the median differences in probe

set to probe set correlation data between having two or more G-stack probes left in and

having G-stack probes removed, where the RMA normalization method was used. The

shorthand GT is used to denote that correlations greater than 0.4 were used here (see a fuller
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explanation in section 3.6.3). The G-stack probe sets were more highly correlated with each

other than were the C-stack probe sets. This can be seen by the spread of the darker bars

of the chart being seen further from the origin than the lighter bars. The fact that they are

negative is only because of the way the difference was calculated. The difference between

leaving the G-stacks in and taking them out could have had its subtraction done the other

way round (i.e. the difference between taking out the G-stacks and leaving them in).

The right-hand graph in Figure 7.8 shows the equivalent analysis calculations using the

PLIER normalization routine instead of RMA. There are still a small number of experiments

(about 10%) affected by a small amount of G-stack bias, as shown by the small spread of

some G-stack median differences from the origin. However, for the majority of experiments,

the use of PLIER appears to correct the G-stack bias demonstrated with the use of RMA.



Chapter 8

Wide scale Survey

8.1 Introduction

The previous chapter has described how the Windows Azure cloud was used to perform an

investigation of all the available Affymetrix GeneChip HG U133A datasets to establish how

widespread is the bias in the datasets due to G-stacks. The next stage in the Venus-C project

was to extend this wide scale survey to another GeneChip HG U133 Plus2 of H. sapiens

and to GeneChips of other species: Arabidopsis thaliana and Pseudomonas aeruginosa.

It has already been explained that the results of the G-stack survey of 176 experiments

using the human GeneChip HG U133A bore out the results found by Shanahan et al [38].

The first experiments using Windows Azure were to check that the R scripts obtained similar

results again, which they did. These results were shown at a Poster Presentation at the

ISMB/ECCB Annual International Conference in July 2013 in Berlin (see Appendix F).

At the end of the previous chapter the analysis of G-stack data was described using the

PLIER normalization pipeline and contrasted with the use of RMA normalization. The

example of GT correlation data was used. The use of both RMA and PLIER is shown

in this chapter on a wide scale survey of microarray data across the range of GeneChips

mentioned above. The data for expression levels and for GT correlations will be explored.

First the scatter plots of the expression data of G-stacks compared with that of C-stacks will

133
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be considered.

8.2 Analysis of expression levels across species using scat-

ter plots

The data on expression levels for the GeneChip HG U133A has already been discussed

and the effect of G-stacks has been shown and contrasted with the effect of C-stacks. Here

in Figure 8.1 the median shift in G-stack expression data has been plotted against the

median shift in C-stack expression data, using a scatter plot. The left hand plot was obtained

using RMA and the right hand plot used PLIER. The spread of points in the PLIER plot

is confined much closer to the origin of the graph than in the RMA plot. This effect is

discussed in greater detail in section 7.6 and it appears in these scatter plots that PLIER

largely overcomes the bias effect of G-stacks seen in the RMA graphs.
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Figure 8.1: Scatter Plot of Expression Data for 576 datasets of HG U133A GeneChip

In the RMA plot it can be seen that the points are spread more vertically than horizontally

because the G-stack expression data varies more from the origin than the C-stack data. The
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G-stack expression data is skewed towards the negative, because of the bias shown in the

median difference between retaining and removing probes with two or more G-stacks.

In the case of the second human GeneChip that was analyzed: HG U133 Plus2, the

scatter plot of expression data in Figure 8.2 shows a wider spread of points, particularly in

the RMA plot. Out of more than 2000 experiments that were available for this GeneChip,

data from 1999 experiments were successfully uploaded to the cloud and analyzed.

●

●
●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●
●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●
●

●
●

●

●

●●

●

●

●

●
●
●●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●●

●

●

●
●●

●

●

●

●
●

●

●

●
●

●●●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●●

●●
●

●
●

●

●

●

●

●

●●
●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●●
●

●

●

●

●

●
●
●

●

●

●

●●

●
●

●

●
●
●

●

●

●

●
●●●●

●●

●●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●
●

●
●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

● ●●

●
●
●

●

●
●

●●
●●●
●

●

●

●
●

●●
●

●

●

●

●●

●
●

●

●●

●

●

●

●●
●

●●

●
●
●

●

●

●

●
●

●

●

●

●●

●

●●

●●

●

●

●
●

●

●

●●●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●●●
●
●

●
●
●

●

●
●

●

●

●

●

●
●

●
●

●

●●●●

●●●

● ●
●

●

●

●

●●

●

●

●

●●●

●

●

●
●●●

●

●

●
●

●
●

●

●●

●
●

●

●

●

●

●
●

●
●

●
●

●

●
●

●●

●

●

●

●
●●

●
●●

●

●

●

●
●

●
●

●

●
●

●

●

●

●
●

●

● ●

●

●

●

●
●

●●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●●●

●

●

●
●●

●

●
●

●
●
●

●

● ●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●●

●
● ● ●

●

●

●

●

●

●●

●

●

●●
●

●

●
●

●
●
●

●●

●

●

●

●

●
●

●
●
●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●

●
●

●
●

●

● ●●●●

●

●

●

●

●
●●

●

●

●

●

●

●●

●

●●

●
●

●

●

●

●

●

●●
●

●●

●

●
●

●●
●

●

●
●
●●

●
●

●

●

●

●

●
●
●

●

●
●
●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●
●

●

● ●●●
●
●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●
●
●

●

●
●

●●●

●

●
●

●
●
●

●

●
●
●

●

●●

●

●

●
●

●
●●

●●

●
●

●

●

●

●●●●
●

●

●
●

●

●
●

●

●●
●

●

●
●

●

●

●

●

●

●

●● ●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●
●

●

● ●●
●

●

●
●

●

●
●

●
●

●

●

●

●

●
●●

●●

●
●

● ●

●

●

●

●
●●
●
●

●
●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●
●●

●

●

●

●
●

●

●

●
●

●

●

●

● ●
●●

●
●●

●
●

●●

●
●

●●●●
●
●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●
●
●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●
●

●●

●●●
●●

●

●

●

●●

●

●

●

●

●
● ●

●●

●

●
●

●

●

●●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●
●

●●●

●

●

●●

●

●

●
●

●
●

●
●
●●

●●
●

●●
●
●

●
●
●

●●
●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●
●

● ●

●

●

●

●

●
●

●

●

●

●
●●

●
●

●●

●
●

●●●●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●
●

●
●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●●●

●●
●●

●

●

●

●
●

●
●

●

●

●
●

●
●●
●

●

●

●

●

●

●
●●

●

●●

●

●
●

●

●

●

●
●
●

●

●

●●●

●

●●●●
●

●

●

●●
●●●●

●

●
● ●

●
●●
●●

●

●

●

●

●

●

●
●

●

●

●●
●

●●●
●

●

●

●

●

●

●

●
●

●

●
●
●●

●

●
●

●

●

●
●

●

●

●
●
●

●

●

●

●
●

● ●

●●
●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●●●
●●
●●

●
●

●

●

●
●

●●

●

●

●

●
●

●

●
●

●
●

●

●

●

●●

●

●
●

●

●

●

●●

●

●
●

●

●
●●

●

●●●

●

●
●

●
●●●

●

●

●

●
●
●●

●

●
●●
●

●

●

●●
●

●
●

●

●

●

●●

●
●

●

●

●●

●
●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●
●

●●

●
●
●

●
●

●●●

●●
●

●
●

●

●●

●

●

●●●

●
●
●●

●
●

●●●

●●

●
●

● ●

●●●●

●

●●

●

●

●

●

●

●

●
●
●

●●

●

●
●

●

●
●
●

●
●
●

●
●

●
●

●
●
●

●
●

●
●

●
●

●●

●
●

●

●

●

●●● ●

●
●

●●

●

●
●

●
●●●

●

●

●

●●
●●●
●

●

●

●
●

● ●●
●

●
●

●●

●
●

●

●

●
●

●●

●●
●

●

●
●

●

●●
●

●

●

●● ●

●

●
●

●

●

●

●

● ●
●

●
●

●

●

●

●
●
●
●

●

●

●

●

●
●

●●●

●

●
●●

●

●

●

●●

●●
●●

●
●
●

●
●●

●●●
●●●●
●

●

●

●
●
●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●●

●
●
●

●

● ●
●

● ●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●
●

●
●

●
●
●
●

●

●

●
●

●

●●

●
●

●

●●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●
●

●

●
●

●

●
●

●
●●

●

●
●

●

●●

●

●●

●

●

●

●●●

●
●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●●●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●

●

●

●

●

●●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●●

●
●

●

●

●

●

−0.4 −0.2 0.0 0.2 0.4

−
0.

8
−

0.
4

0.
0

0.
2

0.
4

0.
6

HG_U133_Plus2 using RMA

Median shift in C−stack expression data
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Figure 8.2: Scatter Plots of Expression Data for 1999 datasets of the HG U133 Plus2 GeneChip

With over three times as many datasets available for this GeneChip as for HG U133A,

it may not be surprising that a few more outliers show up in this case. It is apparent that

each of the species that have been investigated in this study show a few outliers.

The RMA scatter plot for HG U133 Plus2 in Figure 8.2 shows a few pronounced

outliers which is not a feature of the HG U133A plot at this scale. Table 8.1 shows the

information known about these outliers. The first three experiments in the table are the three

in the top right hand corner of the RMA scatter plot, and they all have high values for both

G-stacks and C-stacks. The two outliers which are lowest in the RMA plot of Figure 8.2

have unusually low values for the median shift of G-stacks, and GSE22331 has an unusually
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Experiment Median
shift
for G-
stacks

Median
shift
for C-
stacks

No.
of
CEL
files

Experiment
Type

Experiment Subject

GSE26626 R 0.56 0.20 4 Expression profil-
ing by array

mRNAs associated
with human Pumilio2
protein (PUM2)

GSE19238 R 0.53 0.48 2 Expression profil-
ing by array

Expression data for 2
obese subjects from
the SibPair cohort with
a deletion on 16p11.2

GSE16051R 0.18 0.30 4 Expression profil-
ing by array

Effect of ectotopic ex-
pression of K13 on
global gene expression
in HUVEC

GSE4064 R -0.65 0.12 4 Expression profil-
ing by array

Gene expression of
growing antler in
Cervus elaphus (deer)

GSE22132 R -0.82 -0.23 2 Expression profil-
ing by array

Expression data
from purified human
platelets

GSE22331 R -0.40 -0.12 2 Expression profil-
ing by array

Expression data
from ejaculated
spermatozoa of nor-
mozoospermic and
asthenozoospermic
men

GSE19445 P 0.21 0.06 9 Transcription pro-
filing by array

Androgen-induced
TOP2B-mediated
double-strand breaks
and prostate cancer
gene rearrangements

GSE22132 P -0.07 0.00 2 Expression profil-
ing by array

Expression data
from purified human
platelets

GSE13494 P -0.09 0.01 4 Transcription pro-
filing by array

Expression data
from human saliva
exosomes

Table 8.1: Details of the outliers in the scatter plots of HG U133 Plus2. Outliers are listed from the
top as labelled clockwise in the plots of Figure 8.2. The capital letters ‘R’ and ‘P’ after the GSE
experiment number stand for RMA and PLIER respectively. GSE22132 is an outlier in both the
RMA and PLIER plots.
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low value for the median shift of C-stacks, but is normal for its G-stacks. Table 8.1 shows

a range of tissue types used in the experiments and shows no common features across the

experiments except that the number of CEL files in the experiment is either two or four for

the RMA outliers and for all but one of the PLIER outliers. It is unlikely that this number of

CEL files has any link with the fact that these six experiments are outliers, because there

are over a hundred other experiments with two or four CEL files which are not outliers.

However, it may be that those particular tissue samples combined with the small number

of CEL files were significant in creating outliers. The experiment GSE22132 shows as an

outlier in both the RMA and the PLIER plots. It has the lowest value for the median shift in

G-stack expression data in the RMA case, and the second to lowest value in the PLIER case.

It seems that PLIER normalization could not ameliorate the value into the main range of

values for this particular experiment.

The difference between using PLIER and RMA to calculate the gene expression values

is again shown clearly in the analysis of HG U133 Plus2 expression data in Figure 8.2. The

use of PLIER shows a very marked concentration of the values into a small area. This bears

out the contention of Therneau and Ballman [50] that PLIER improves the gene expression

estimate that was mentioned in section 3.4.1.

The next two figures (Figure 8.3 and Figure 8.4) are comparisons of RMA and PLIER in

the scatter plots of expression data for a plant species (Arabidopsis) and a bacteria species

(Pseudomonas). These plots can be compared with those for the two human GeneChips

already discussed. The Arabidopsis data was analyzed from 625 microarray experiments

and the plots are shown in Figure 8.3. They show in the right hand graph that the PLIER

normalization causes the median shift in G-stacks to be greater, and in a positive direction

compared to the median shifts in C-stacks. The RMA normalization shown in the left hand

graph has a broadly similar grouping to the human chips, with some outliers.

The outliers have been investigated and the results are shown in Table 8.2. Again there

is apparently no similarity to be spotted in the type of tissue being analyzed. There is no
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Figure 8.3: Scatter Plot of Expression Data for 625 datasets of Arabidopsis GeneChip
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Figure 8.4: Scatter Plot of Expression Data for 79 datasets of Pseudomonas GeneChip
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Experiment Median
shift
for G-
stacks

Median
shift
for C-
stacks

No.
of
CEL
files

Experiment
Type

Experiment Subject

GSE6168 R 0.14 0.12 2 Transcription
profiling by
array

Comparison of the tran-
script profile of the
auxin resistant axr4 mu-
tant and wild-type Col0

GSE7334 R -0.24 0.06 4 Transcription
profiling by
array

Transcription profiling
of Arabidopsis response
to aluminum stress

GSE24389 R -0.32 0.01 7 Analysis of
Aloe vera
transcriptome

Aloe vera transcriptome
was analysed by hybri-
dising samples of root
and leaf tissue to Ara-
bidopsis ATH1 array

GSE6203 R -0.39 0.01 13 Transcription
profiling by
array

Transcription profiling
of shoot tissue from 12
different accessions

GSE10039 R -0.47 0.00 8 Transcription
profiling by
array

Shoots from plants
grown with low Molyb-
denum (Mo)

GSE22947 R -0.27 0.00 24 Expression data
from in-vitro in-
duced Interfasci-
cular Cambium

In-vitro induced estab-
lishment and activity of
the interfascicular cam-
bium in stems under
auxin treatments

GSE37818 R -0.2 -0.12 4 Expression data
in WT and erf6
mutant

Expression data in WT
and erf6 mutant under
high-light treatment

GSE14053 R -0.04 -0.28 2 Expression data
from trichomes
and pavement
cells

Comparison of cell sap
from trichomes and
pavement cells

GSE10039 P 0.00 0.00 8 Transcription
profiling by
array

Shoots from plants
grown with low Molyb-
denum (Mo)

Table 8.2: Details of the outliers in the scatter plots of Arabidopsis. Outliers are listed from the
top as labelled clockwise in the plots of Figure 8.3. The capital letters ‘R’ and ‘P’ after the GSE
experiment number stand for RMA and PLIER respectively. GSE10039 is an outlier in both the
RMA and PLIER plots.
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pattern in the number of CEL files in the outlier experiments, and only four of the nine

experiments had two or four CEL files in this case. There is one experiment, GSE10039,

which is an outlier in both the RMA and the PLIER plots. Again it is the experiment which

has the lowest value for the median shift in G-stack expression data in the RMA plot and

the lowest value in the PLIER plot.

The Pseudomonas data was analyzed from 79 microarray experiments and the plots are

shown in Figure 8.4. Again the scatter plots show similar features to those for the other

species. The points in the PLIER plot are more focussed and close to each other, and those

in the RMA plot are more spread out with some outliers. The outliers were investigated and

again it was noted that one experiment, GSE27674, showed very low values for the median

shift in G-stack expression data on both the RMA and the PLIER plots.

8.3 Comparison of HG U133A and HG U133 Plus2 mi-

croarray data
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Figure 8.5: Expression Data for HG U133 Plus2 GeneChip
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8.3.1 HG U133 Plus2 expression data

The first consideration with the data from the second human GeneChip HG U133 Plus2

was to compare the expression data results from using RMA and the PLIER normalization

methods. In Figure 8.5 it is seen that the effect of PLIER has been to overcompensate for

G-stacks so that the median difference between keeping and removing probe sets with two

or more G-stacks has moved mainly to the 0.2 bin which is large compared with using RMA.

This effect was also seen in Figure 7.7 for the HG U133A GeneChip.
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Figure 8.6: Comparing G-stacks in HG U133A and HG U133 Plus2 GeneChips

The effect of G-stacks are compared for two human GeneChips in Figure 8.6, using

the median difference of expression data. The chart bins used are the same as in previous

graphs, but instead of numbers of GSEs the y-axis shows the density frequency of the two

distributions. This effectively allows the comparison of the two GeneChips despite them

having different numbers of experiment data available.

The HG U133 Plus2 GeneChip was designed later than the HG U133A chip and more
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account was taken of the sequences like G-stacks which could bias the biological data. These

were avoided where possible in the chip design. The results in Figure 8.6 show that the

HG U133 Plus2 GeneChip expression data are less biased than the HG U133A GeneChip

data because the lighter bars on the Figure are grouped nearer to the origin than the dark

bars. If the vertical axis figures were multiplied by ten, they would show percentages of the

experiments represented in each bar.

8.3.2 HG U133 Plus2 Probe Set to Probe Set Correlation Data
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Figure 8.7: Comparison of GT correlation data for HG U133 Plus2 GeneChip using RMA and
using PLIER

Figure 8.7 shows two graphs side by side, one using RMA and the other using PLIER

for the normalization step. The graphs show the frequency of the median difference of

GT correlation data where every probe set is compared to every other probe set for the

cases where probes containing two or more G-stacks have been removed or retained. The

same situation for C-stacks is shown in the graphs as a control. It can be seen that the use

of PLIER largely corrects the inherent bias in the data due to the G-stacks, whereas the
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C-stacks do not show bias, and are represented similarly whether using RMA or PLIER.

8.4 Comparison of Arabidopsis and Human microarray

data
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Figure 8.8: Expression data for Arabidopsis GeneChip

8.4.1 Arabidopsis expression data

The first consideration with the Arabidopsis microarrays was to compare the expression

data using both RMA and PLIER. Figure 8.8 shows on the left using RMA that the G-stacks

are spread more than the C-stacks which provide the control. This means that G-stacks in

Arabidopsis are likely to be causing a slight bias in expression data. In the PLIER case

on the right, where the black bars are all on the positive side of the origin, it appears that

PLIER is overcompensating for possible G-stacks and introducing a bias itself.

It has been reported by Memon [70] that the Arabidopsis microarray data is less affected
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by the bias due to G-stacks than both of the human microarray data chips examined here.

This is confirmed by Figure 8.9 which plots the density frequency instead of the number of

GSEs because the three chips had widely varying numbers of experiments to look at. The

figure shows that the median difference of expression data (for two or more G-stack probes

removed versus being left in) for Arabidopsis is more closely grouped around the origin

which confirms Memon’s report.
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Figure 8.9: Comparing G-stacks in Arabidopsis GeneChip with those in HGU 133A and
HGU 133 Plus2 GeneChips for expression data

No. of G-stack probes in a probe set 0 1 2 ≥3
No. of affected probe sets 18,128 3,749 776 157

Table 8.3: The numbers of probe sets in Arabidopsis that have particular numbers of G-stack probes

It is noted that the percentage of probe sets containing probes with two or more G-stacks



8.5. Comparison of Pseudomonas with Arabidopsis and Human microarray data 145

in the Arabidopsis GeneChip is 4%. The actual number of probes with 0, 1, 2, or 3 or more

G-stacks is shown in Table 8.3. From Table 3.1 it is seen that the percentage of probe sets

containing probes with two or more G-stacks in the HG U133A GeneChip is 14%. The

similar percentage for affected probe sets in the HG U133 Plus2 GeneChip is 11%. The

greater percentage of probe sets containing probes with two or more G-stacks in the human

GeneChips compared to Arabidopsis is an explanation for Memon’s report and also explains

the findings of this wide scale study that G-stacks are causing less bias in experiments that

use Arabidopsis GeneChips than in those which use human GeneChips.

8.5 Comparison of Pseudomonas with Arabidopsis and

Human microarray data

8.5.1 Pseudomonas expression data

Pseudomonas expression data is considered first by comparing graphs whose data has been

processed with the RMA and PLIER normalization routines respectively. Figure 8.10 shows

on the left, that using RMA the median differences between omitting probes with 2 or more

G-stacks and leaving them in, are spread around the origin though not as tightly grouped at

the origin as the control data for C-stacks. In the case of using PLIER on the right, the data

for G-stacks shows that PLIER may have over-compensated for the presence of G-stacks

because the median differences are strongly positive compared to the C-stack control.

The Pseudomonas expression data was then compared to that of the other two species:

two human chips and Arabidopsis. It can be seen in Figure 8.11 that the Pseudomonas data

in the right hand white columns of all the grouped bars is tending to the positive side of the

origin, more than any of the other species. This shows that the G-stack bias seen by using

RMA on microarray data from the human GeneChips is not evident in using Pseudomonas

chips.
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Figure 8.10: Expression data for Pseudomonas GeneChip
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Figure 8.11: Comparing G-stacks in Pseudomonas and Arabidopsis GeneChips with those in
HGU 133A and HGU 133 Plus2 GeneChips
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8.5.2 Pseudomonas GT correlation data

It is noted that the work of Memon in her PhD study [70] demonstrated that PLIER showed a

smaller bias than other normalization routines, particularly in correlations. From Figure 8.10

which shows expression data, it has been noted that PLIER tends to over compensate for

the G-stack bias. In Figure 8.12 the median differences of GT correlation data are shown

for RMA and for PLIER normalizations. In the right hand graph, PLIER shows no bias for

G-stacks in this case, whereas in the left hand graph, the G-stack spread shows some bias

compared the the control of C-stacks.
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Figure 8.12: Comparing median difference in GT correlation data using RMA and using PLIER

In the previous section the comparison of expression data across four species has already

been made and conclusions drawn. Here the comparison is made of GT correlation data

across four species. In Figure 8.13 the side-by-side barplots are shown for both RMA

and PLIER of the GT correlation data. The RMA case shows that the G-stack bias is

most pronounced in the two human chips. The Arabidopsis chip shows some bias as the

histograms are still predominantly negative, and the Pseudomonas chip has mild evidence

of negative bias.
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Using PLIER Figure 8.13 shows no G-stack bias for Pseudomonas, very little for

Arabidopsis and small amounts for the two human chips.

8.6 Summary of wide scale analysis results

The use of scatter plots in section 8.2 showed clearly that in all four types of GeneChip

surveyed the use of the PLIER normalization pipeline concentrated gene expression data in

tighter bounds. In doing so, the PLIER algorithm compensated for G-stacks to a greater

extent than did the RMA algorithm.

There were outliers found in the results when using RMA which were difficult to explain.

Having looked at the metadata available for each outlier experiment, there was no apparent

reason for the outliers in the subject or type of the experiments. Indeed if wet lab conditions

or procedures played a part in producing these outliers, they were not apparent when the

same data were processed by the PLIER algorithm.

The comparison of the two types of human GeneChips in section 8.3 showed that

expression data from both chips showed differences when processed using the PLIER

normalization pipeline rather than using the RMA normalization pipeline. For both chips

PLIER had overcompensated for G-stacks though C-stacks were as expected as a control.

When comparing the processing of G-stacks directly, Figure 8.6 showed that the

GeneChip HG U133 Plus2 expression data is slightly less biased than that from HG U133A

(both were processed using RMA). The HG U133 Plus2 chip is a later design with fewer

G-stacks in its probes, so this result is to be expected. The GT correlation data is also less

biased by G-stacks when processed with PLIER, as seen in Figure 8.7.

The comparison of Arabidopsis and Human GeneChip expression data showed that

Arabidopsis data suffer less from G-stack bias than either set of the human chip data. A

survey of the number of probe sets of the Arabidopsis chip which contain G-stacks was

shown to be fewer than those in the two human chips. This is commensurate with the results
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discovered.

Pseudomonas and Arabidopsis chip expression data both suffered from over compensa-

tion when using the PLIER normalization pipeline. However they both showed less bias in

their expression data when compared to the human chip data, using RMA, (Figure 8.11).

This is probably because of the fewer G-stack probes chosen for both the Pseudomonas and

Arabidopsis microarrays.

Finally, the GT correlation data comparison of all four chips shows that PLIER eliminates

G-stack bias more effectively than RMA for all the chips. This is apparent in Figures 8.12

and 8.13. Figure 8.13 also shows again that Arabidopsis and Pseudomonas have less inherent

G-stack bias than the human chips.



Chapter 9

Conclusions

This chapter summarises the conclusions that can be drawn from the two aspects of this

research study: the bioinformatics research into microarray data and the use of different

cloud computing platforms. The research which gives rise to this thesis has taken place

over nearly six years. During this time the climate for academic research has changed in

remarkable ways. The increase in use and familiarity with next generation sequencing

has continued apace, and yet the comparison of the use of microarrays and the use of new

sequencing techniques has not always proven that the new sequencing techniques are an

improvement upon microarrays for accuracy of expression data. Willenbrock et al. [71], for

example, have found “that microarray expression measures actually correlate better with

sample RNA content than expression measures obtained from sequencing data”. They also

report that microarrays perform with similar results to next-generation sequencing when it

comes to reproducibility and relative ratio quantification.

It is important to know when making general statements like that from Willenbrock et

al.’s abstract above, which platform has been used for the sequencing and what type of

samples were analysed. Here it is sufficient to say that researchers must strive to ensure

that their results are reproducible and as unbiased as possible with regard to the technology

employed.

The development and public availability of cloud platforms has transformed the research
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environment over the past six years. More clouds are available, with a wide variety of

offerings in the area of utility computing. Pricing is now keenly competitive, with the

possibility, for example, to choose cheaper options for computer runs if the time of day or

immediacy of the experimental runs are not important.

9.1 Summary of cloud computing experiences

Grid computing and cloud computing were introduced in chapter 2. Experience of using a

grid and of using clouds has been detailed in chapters 4 to 6.

9.1.1 Grid computing

It was found that grid computing was not easy to access in the case of the NGS. Each node

had its own software with varying system implementation levels and procedures. There

were restrictions on the length of jobs that could be run and therefore on the size of datasets

that could be processed. It was not easy to transfer data files or software between nodes, so

that jobs could not be easily transferred between nodes to take advantage of those nodes

which were more lightly loaded. It was felt that the sharing of machines between a network

of academic research centres was a good objective in principle, but difficult to implement in

practice with limited systems administrator resources to facilitate the sharing.

9.1.2 Using Amazon EC2

This project used Amazon Web Services, including EC2 and Elastic Block Storage, from

early days in the Amazon cloud offerings. The experience was good in that entry to use

Amazon’s computing services was gained very smoothly as soon as registration with a

credit card had been successful. It was necessary to negotiate the security procedures and

establish authorization to access storage areas and machine images. New machine images

were created with the required Linux systems software, R and a few Bioconductor packages.
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Programs in R were run to analyse some of the public datasets of the Ensembl Anotated

Human Genome Data stored in Amazon Block Store. This work which identified the impact

of G-quadruplexes on Affymetrix 3′ arrays was published by Memon et al. [57].

The main conclusions from the Amazon experiences were that tight control must be

exercised on the use of computing and storage resources. All machine instances which were

launched were charged at a certain rate for complete hours, whether actually running any

programs or not. A virtual machine running for 61 minutes would cost the price charged

for two whole hours. This practice has since changed so that usage is now charged by the

minute, and cloud computing pricing has become quite competitive as more companies have

entered the field.

Storage facilities were quoted at a price per GigaByte per month. It was important not to

waste money by storing unnecessary files on the cloud. Set against this were the advantages

of cloud computing in being able to start up as many virtual machines as required for an

analysis, and not have the overhead of buying physical machines, storing them, cooling

them and maintaining them. The advantages of utility computing in only paying for what

one uses are legion, and since the early days of Amazon the cloud computing market has

expanded its offerings in many directions.

9.1.3 Use of a private cloud

The collaboration of this research project with another for which a private cloud was built

has enabled insights into cloud computing research which would not have been possible as a

user of public cloud services. The development of a virtual container as a service (vCAAS)

has contributed a framework for optimising services in future cloud computing offerings. In

this case the comparison of various queueing models was enabled in the situation where the

same analysis programs were used on datasets which varied substantially in size.

Results were obtained which showed the advantage of taking into account the sizes of

the datasets required for each job, and allocating jobs to particular queues which had the
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appropriate bandwidth for downloading data from storage. Three different job scheduling

algorithms were compared and the improvements in thrashing values determined by using

the variant “with Lookup” were shown. In summary it was shown that the concept of vCAAS

and its holistic view of resources was able to improve the performance of algorithms for

resource provisioning and job allocation.

9.1.4 Using Windows Azure

Windows Azure was used for this project when Azure was at an early stage of usage by the

Venus-C pilots. Windows programming and Web page interfaces were the only means of

using Azure at that time. The experienced gained of web application development through

.NET services using C# was invaluable. Web roles and worker roles were being developed

by Microsoft alongside the Venus-C pilot developments.

The initial stage of developing a web page interface to run an R script was challenging.

Then an R script was used to read microarray datasets from a public repository and upload

them to Azure mass storage. Many challenges of data inconsistencies were overcome to

arrange thousands of CEL files in their experiment folders ready for analysis.

Finally the analysis of the datasets was carried out, with results being returned initially

to Azure storage, and then being downloaded to a local computer. During this phase the

Generic Worker was used to streamline the submission of jobs to the Azure cloud, so that

each job was run on a new VM. This method was superior to that in which a list of the

datasets to be processed was submitted to each VM. In that case it often happened that a

dataset would cause a job to fail because of data inconsistency problems or insufficient

storage in the VM.

Windows Azure was a good cloud to use for Windows based work and for implementing

a web based application. Its web roles and worker roles have been developed for this type

of application. Although this research work did not test Azure’s security and accounting

features, it is understood that a variety of such services are offered.
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9.2 Summary of microarray research

This work has shown that publicly available microarray data can be usefully reanalysed on

a wide scale to determine the extent of possible bias due to technical reasons. The effect

of having G-stacks in probes has been examined in four different GeneChips which were

designed for three different species: human, a plant (Arabidopsis thaliana) and a bacterium

(Pseudomonas aeruginosa).

The work of Shanahan et al. [38] has been confirmed in showing the significant bias

due to G-stacks in the human GeneChip HG U133A using a limited number of experiments.

This work has broadened the results of Shanahan et al. with a wide scale survey of all

available experiments of this GeneChip. It has been shown that probe sets containing

G-stack probes are correlated with each other, whereas C-stack probes (acting as a control)

are not correlated with each other (section 7.3.3).

The question of whether the number of CEL files in an experiment influenced either

the expression data produced, or the GT correlation data, was investigated. It was found

that the number of CEL files in an experiment did not affect the expression data or the GT

correlation data results. However, small numbers of CEL files, i.e. one or two, should be

avoided for statistical reasons.

The RMA and PLIER methods of normalization were compared because there are

mentions in the literature of one or other method being superior. It was found that the

PLIER method took longer to run and that the two methods did not give the same results

either for summarized expression data or for GT correlation values. It was demonstrated

that for HG U133A data the PLIER method achieves improvement over the RMA method

for ameliorating the bias caused by G-stacks in GT correlations (section 7.5.2). It was also

shown that for this chip the gene expression data was more biased when using RMA than

when using PLIER for normalization. Using a scatter plot, it was shown that when median

shifts in expression data (between omitting and retaining G-stack and C-stacks) from all

576 available datasets were plotted the RMA method had a greater spread of the points than
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the PLIER method. This tendency was apparent through similar scatter plots for each of the

other species too.

The next GeneChip to be investigated with a wide scale survey was the human chip

HG U133 Plus2. The scatter plot for 1999 datasets of median shifts in expression data for

this chip showed that outliers could be a significant feature. The specific outlier experiments

were tracked down and reasons sought for their results. These experiments used a range of

tissue types and the only common feature was the use of a small number of samples and

therefore CEL files, typically only two or four. The experiment that had the greatest median

shift in expression data for G-stacks using RMA was also an outlier when using PLIER, so

this data produced consistent results with the two normalization methods.

The scatter plots for arabidopsis and for pseudomonas showed less spread and fewer

noticeable outliers, though these outliers were again followed up. One experiment was again

an outlier with both RMA and PLIER methods.

The microarray data from the two human GeneChips were compared with each other

using the density frequency instead of the number of experiments. The comparison of

expression data showed that the HG U133 Plus2 chip was slightly less biased than the

HG U133A chip due to G-stacks and it was thought that this is probably due to it being a

newer GeneChip design and having fewer G-stack probes. The percentage of probe sets

containing probes with two or more G-stacks is 14% for the HG U133A chip and 11% for

the HG U133 Plus2 chip.

The GeneChip for arabidopsis was designed later than both the human GeneChips

considered in this work, and has fewer probe sets containing probes with 2 or more G-stacks.

The percentage of such probe sets is 4%. When all available data for arabidopsis microarrays

was analysed, it was found that the bias in expression data due to G-stacks using RMA

was smaller than for both of the two human GeneChips. When using PLIER, it was found

that an apparent overcompensation for G-stacks was evident, producing a bias in the other

direction. The GT correlation data, however, was slightly biased by the G-stacks compared
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with C-stacks using RMA, and even less biased by the G-stacks using PLIER.

Finally, the comparison of all available pseudomonas microarray data with that of the

other three chips shows that using RMA, the gene expression data for pseudomonas has

negligible bias. Using PLIER the gene expression data for pseudomonas is biased (like data

for arabidopsis) in the opposite direction from that expected for G-stacks. This appears to

be an over compensation by PLIER for G-stacks. The GT correlation data for pseudomonas

is completely unbiased using PLIER, and very slightly biased using RMA.

9.3 Discussion

Cloud computing has become increasingly acknowledged as an important resource for

bioinformatics research over the period of this work. The experience gained on the NGS, on

Amazon EC2, on a private cloud and on Windows Azure serves to demonstrate part of the

wide variety of offerings which are now available to help in the analysis of big data in the

field of bioinformatics. In particular, in the area of surveying public microarray data, it has

been shown that useful results can be obtained by storing a large amount of microarray data

on a cloud and processing it with tools such as R and Bioconductor modules.

Significant results have been obtained from the wide scale survey of microarray datasets

from four different species: two human, one plant and one bacterium. It was found that

G-stacks cause a bias in 19% of datasets of one human GeneChip. The second and newer

human GeneChip was found to have slightly less bias due to G-stacks when considering the

gene expression data. The plant GeneChip arabidopsis thaliana was even less affected by

G-stacks in its probes, and the bacterium GeneChip pseudomonas aeruginosa was affected

the least. It was found that the normalization routine, PLIER, was in many cases better than

RMA in ameliorating the effect of G-stacks, but that for processing expression data in the

cases of arabidopsis and pseudomonas, PLIER overcompensated for the G-stack effect.



9.4. Future Work 158

9.4 Future Work

As far as cloud computing is concerned, a useful development in this field would be

for public databases to be sited in the same locations as cloud computing facilities. For

example, if the EMBL-EBI at Hinxton offered not only a plethora of data from life science

experiments, but also the cloud computing services to analyse the data, then many more

wide scale surveys could be conducted. These could analyse high-throughput sequence

data as well as microarray data, without the time-consuming and expensive necessity of

downloading vast quantities of data to local machines.

In the area of microarrays it would be worthwhile to perform further analysis on the

effect of other particular motifs encountered in sequences in microarrays as well as G-stacks,

for example ‘TTTTT’, ‘CCGCC’ or ‘CCTCC’, as these were highlighted by Upton [4]

as showing higher than expected cross-correlations. Another development could be the

attempted correction of bias in microarrays due to certain sequences in probes.

There could be scope in the field of high-throughput sequencing for the checking and

correcting of bias due to technical reasons. It is important for biologists to analyse several

samples of their tissues so that consistent results can be verified. Further understanding of

the strengths and weaknesses of the technology could benefit future research.
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Appendix A

CEL File Format

A.1 Version 3 Format

Version 3 format is also known as the ASCII version according to Affymetrix [72], and is

generated by the MAS software. The format of the CEL file is an ASCII text file similar to

the Windows INI format. The file is divided up into sections. The start of each section is

defined by a line containing a section name enclosed in square braces. The section names

are: “CEL”, “HEADER”, “INTENSITY”, “MASKS”, “OUTLIERS” and “MODIFIED”.

The data in each section is of the format TAG=VALUE.

The “CEL” section contains the version number of the file. The TAGS are:

TAG Description
Version The version number. Always set to 3.
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The “HEADER” section contains miscellaneous header information. The TAGS are:

TAG Description
Cols The number of columns in the array (of cells).
Rows The number of rows in the array (of cells).
TotalX Same as Cols.
TotalY Same as Rows.
OffsetX Not used, always 0.
OffsetY Not used, always 0.
GridCornerUL XY coordinates of the upper left grid corner in pixel coordi-

nates.
GridCornerUR XY coordinates of the upper right grid corner in pixel coor-

dinates.
GridCornerLR XY coordinates of the lower right grid corner in pixel coor-

dinates.
GridCornerLL XY coordinates of the lower left grid corner in pixel coordi-

nates.
Axis-invertX Not used, always 0.
AxisInvertY Not used, always 0.
swapXY Not used, always 0.
DatHeader The header from the DAT file.
Algorithm The algorithm name used to create the CEL file.
AlgorithmParameters The parameters used by the algorithm. The for-

mat is TAG:VALUE pairs separated by semi-colons or
TAG=VALUE pairs separated by spaces.

The “INTENSITY” section contains intensity information. The TAGS are:

TAG Description
NumberCells The total number of cells in the array (Rows*Cols)
CellHeader The header for the remainder of the data in this section. The

header is always set to: “X Y MEAN STDV NPIXELS”
NA The remaining lines in this section contain the intensity,

standard deviation value and the number of pixels used to
compute the intensity value for each cell in the array. The
order is defined by the header.
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The “MASKS” section specifies which cells have been masked by the user. The TAGS

are:

TAG Description
NumberCells The number of masked cells.
CellHeader The header for the remainder of the data in this section. The

header is always set to: “X Y”.
NA The remaining lines in this section contain the XY coordi-

nates of those cells masked by the user.

The “OUTLIERS” section specifies which cells were called outliers by the software.

The TAGS are:

TAG Description
NumberCells The number of outlier cells.
CellHeader The header for the remainder of the data in this section. The

header is always set to: “X Y”.
NA The remaining lines in this section contain the XY coordi-

nates of those cells called outliers by the software.

The “MODIFIED” section specifies which cells were modified by the user. This feature

was dropped in MAS 4 thus the number of cells in this section should always be 0. The

TAGS are:

TAG Description
NumberCells The number of outlier cells.
CellHeader The header for the remainder of the data in this section. The

header is always set to: “X Y ORIGMEAN”.
NA The remaining lines in this section contain the XY coor-

dinates and the original intensity value (calculated by the
software) of those cells modified by the user.

A.2 Version 4 Format

Version 4 format of the CEL file is a binary file where values are stored in little-endian

format. Big-endian and little-endian are terms which describe the order in which a sequence
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of bytes are stored in computer memory. Little-endian is an order which first stores the

“little end” (the least significant value in the sequence).

The file contents are defined by:

Table A.1: File Contents for Version 4 Format CEL files

Item Description Type

1 Magic number. Always set to 64. integer

2 Version number. Always set to 4. integer

3 Number of columns. integer

4 Number of rows. integer

5 Number of cells (rows*cols). integer

6 Header length integer

7 Header as defined in the HEADER section of

the version 3 CEL files. The string contains

TAG=VALUE separated by a space where the TAG

names are defined in the version 3 HEADER sec-

tion.

char [length defined above]

8 Algorithm name length. integer

9 The algorithm name used to create the CEL file. char [length defined above]

10 Algorithm parameters length. integer

11 The parameters used by the algorithm. The format

is TAG:VALUE pairs separated by semi-colons or

TAG=VALUE pairs separated by spaces.

char [length defined above]

12 Cell margin used for computing the cell’s intensity

value.

integer

13 Number of outlier cells. DWORD

Continued on next page
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Table A.1 – continued from previous page

Item Description Type

14 Number of masked cells. DWORD

15 Number of sub-grids. integer

16 Cell entries - this consists of an intensity value,

standard deviation value and pixel count for each

cell in the array. The values are stored by row then

column starting with the X=0, Y=0 cell. As an

example, the first five entries are for cells defined

by XY coordinates: (0,0), (1,0), (2,0), (3,0), (4,0).¡

/p¿

(float, float, short)

17 Masked entries - this consists of the XY coordinates

of those cells masked by the user.

(short, short)

18 Outlier entries - this consists of the XY coordinates

of those cells called outliers by the software.

(short, short)

Continued on next page
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Table A.1 – continued from previous page

Item Description Type

19 Sub-grid entries - This is the sub-grid definition.

There are as many sub-grids in the file as defined

by the number of sub-grids above. Each sub-grid is

defined as: - row number (integer) - column number

(integer) - upper left x coordinate in pixels (float)

- upper left y coordinate in pixels (float) - upper

right x coordinate in pixels (float) - upper right x

coordinate in pixels (float) - lower left x coordinate

in pixels (float) - lower left y coordinate in pixels

(float) - lower right x coordinate in pixels (float)

- lower right x coordinate in pixels (float) - left

cell position (integer) - top cell position (integer) -

right cell position (integer) - bottom cell position

(integer)

(integer, integer, float, float,

float, float, float, float, float,

float, integer , integer , in-

teger , integer )

Types used are defined as: integer (32-bit signed integer), DWORD (32-bit unsigned

integer), float (32-bit floating-point number), short (16-bit signed integer).



Appendix B

Chip Definition Files

B.1 Tables describing each section of CDF files

The “CDF” section contains the version number of the file. The TAGS are:

TAG Description
Version The version number. Should always be set to “GC1.0”,

“GC2.0”, “GC3.0”, “GC4.0”, “GC5.0”, or “GC6.0”. This
document describes GC3.0, GC4.0, GC5.0, and GC6.0 ver-
sion CDF files.

GUID The unique identifier of the CDF. (Only available in version
6)

md5 The integrity md5 of the CDF. (Only available in version 6)
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The “Chip” section contains the following TAGS:

TAG Description
Name The name of the array. This item is not used by the software.
ChipType The probe array type. Multiple entries may exist. (Only

available in version 6)
Rows The number of rows of cells on the array.
Cols The number of columns of cells on the array.
NumberOfUnits The number of units in the array not including QC units.

For CustomSeq arrays, there are 2 units: Unit1 contains the
probes interrogating a sense target and Unit2 contains the
probes interrogating an anti-sense target. For all other array
types, there exists one unit per probe set.

MaxUnit Each unit is given a unique number. This value is the maxi-
mum of the unit numbers of all the units in the array (not
including QC units).

NumQCUnits The number of QC units. QC units are defined in version 2
and above. CustomSeq arrays do not contain any QC units.

ChipReference Used for CustomSeq, HIV and P53 arrays only. This is the
reference sequence displayed by the Affymetrix software.
The sequence may contain spaces. This value is defined for
version 2 and above.

The next set of sections where the name begins with “QC” define the QC units or probe

sets in the array. There are NumQCUnits (from the Chip section) QC sections.

Each section name is a combination of “QC” and an index ranging from 1 to NumQCUnits-

1 and will be listed sequentially. QC units are defined for version 2 and above.
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Each section contains the following TAGS:

TAG Description
Type Defines the type of QC probe set. The defined types are: 0 -

Unknown 1 - Checkerboard Negative 2 - Checkerboard Posi-
tive 3 - Hybridization Negative 4 - Hybridization Positive 5 -
Text Features Negative 6 - Text Features Positive 7 - Central
Negative 8 - Central Positive 9 - Gene Expression Negative
10 - Gene Expression Positive 11 - Cycle Fidelity Negative
12 - Cycle Fidelity Positive 13 - Central Cross Negative 14
- Central Cross Positive 15 Cross Hyb Negative 16 Cross
Hyb Positive

NumberCells The number of cells in the probe set.
CellHeader Defines the data contained in the subsequent lines, separated

by tabs. For all QC probe set types: X - The X coordinate
of the cell. Y - The Y coordinate of the cell. PROBE - The
probe sequence of the cell. Typically set to “N”. PLEN -
The number of bases in the probe sequence. ATOM - An
index used to group multiple cells. INDEX - An index used
to look up the corresponding cell data in the CEL file.
The final data items are dependent on the type of the QC
probe set: MATCH - A boolean flag indicating a perfect
match probe. For types: 7 - Central Negative, 8 - Central
Positive, 9 - Gene Expression Negative, 10 - Gene Expres-
sion Positive BG - A boolean flag indicating a background
(blank) cell. For types: 9 - Gene Expression Negative, 10 -
Gene Expression Positive CYCLES - This item is always
a list of 0’s separated by a tab. There are as many 0’s as
number of bases in the probe sequence (PLEN). For types:
11 - Cycle Fidelity Negative, 12 - Cycle Fidelity Positive

Celli This contains the information about a cell that belongs to
the probe set. The value of i in the tag ranges from 1 to the
number of cells in the probe set and will be listed sequen-
tially. The values in each line depend on the CellHeader.
The values are separated by tabs.

The next set of sections where the name begins with “Unit” define the probes that are

a member of the unit (probe set). Each unit is divided into subsections termed “Blocks”

which are referred to as “groups” in the Files SDK documentation.

Each section name is a combination of “Unit” and an index. There is no meaning to the

index value. Immediately following the “Unit” section there will be the “Block” sections
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for that unit before the next unit is defined.

Each “Unit” section contains the following TAGS:

TAG Description
Name The name of the unit. The probe set name for Genotyp-

ing, Copy Number, Polymorphic Marker and Multichannel
Marker units or “NONE” for all other unit types.

Direction Defines if the probes are interrogating a sense target or
anti-sense target (1 - sense, 2 - anti-sense, 3 - both).

NumAtoms The number of atoms in the entire probe set. This TAG
name contain two values after the equal sign. The first
is the number of atoms and the second (if found) is the
number of cells in each atom. An atom is a probe quartet for
CustomSeq units and a probe pair for all other unit types.

NumCells The number of cells in the entire probe set. Probe pairs
contain 2 cells and probe quartets contain 4 cells.

UnitNumber An arbitrary index value for the probe set.
UnitType Defines the type of unit (0 - Unknown, 1 - CustomSeq, 2

- Genotyping, 3 - Expression, 7 - Tag/GenFlex, 8 - Copy
Number, 9 - Genotyping Control, 10 - Expression Control,
11 - Polymorphic Marker, 12 - Multichannel Marker). An
array may contain units of varying types.

NumberBlocks The number of blocks or groups in the probe set.
MutationType Used for Genotyping units only in defining the type of

polymorphism (0 - substitution, 1 - insertion, 2 - deletion).
This value is available in version 2 and above.

After the “Unit” section follows the “Unit-Block” sections. There are as many “Unit-

Block” sections as defined by NumberBlocks. A block will list the probes as its members.

The TAGS are:

Table B.1: File Contents for CDF files

Tag Description

Name The name of the block. For Genotyping units this is the allele. For

Polymorphic Marker and Multichannel Marker units this is “None”.

For all other unit types this is the name of the probe set.

Continued on next page
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Table B.1 – continued from previous page

Tag Description

BlockNumber An index to the block.

Wobble The wobble situation for Polymorphic Marker and Multichannel

Marker units in the block. Only available in version 4, 5, and 6.

Allele The allele code for Polymorphic Marker and Multichannel Marker

units in the block. Only available in version 4, 5, and 6.

Channel The channel code for multichannel microarray platform. Only avail-

able in version 5 and 6.

RepType The probe replication type (0 - unknown, 1 - different probe sequences,

2 - some probe sequences are identical, 3 - all probe sequences are

identical) for probe set groups used under multichannel microarray

platform. Only available in version 5 and 6.

NumAtoms The number of atoms in the block.

NumCells The number of cells in the block.

StartPosition The position of the first atom.

StopPosition The position of the last atom.

Direction Used for Genotyping, Polymorphic Marker and Multichannel Marker

units only in defining whether the probes are interrogating a sense

target or anti-sense target (0 - no direction, 1 - sense, 2 - anti-sense).

This value is available in version 3 and above.

Continued on next page
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Table B.1 – continued from previous page

Tag Description

CellHeader Defines the data contained in the subsequent lines, separated by tabs.

The values are: X- The X coordinate of the cell. Y - The Y coordinate

of the cell. PROBE- The probe sequence of the cell. Typically set

to “N”. FEAT - Unused string. QUAL - The probe set name plus the

allele for Genotyping units. The probe set name for all other unit

types. EXPOS - Ranges from 0 to the NumAtoms - 1 for Expression

units. For all other unit types, provides relative positional information

for the probe. PLEN - The length of probe sequence. Only available

in version 4, 5, and 6. POS - An index to the base position within the

probe where the mismatch occurs. CBASE - Not used. PBASE - The

probe base at the substitution position. TBASE - The base of the target

where the probe interrogates at the substitution position. ATOM - An

index used to group probe pairs or quartets. For Expression, identical

to EXPOS. INDEX - An index used to look up the corresponding cell

data in the CEL file. GROUP - The physical grouping of probe on the

array. Only available in version 4, 5, and 6.

The following are only available in version 2 and above: CODONIND

- Always set to -1 CODON -Always set to -1 REGIONTYPE - Always

set to 99 REGION - Always set to a blank character

Celli This contains the information about a cell that belongs to the block.

The value of i in the tag ranges from 1 to the number of cells in the

block. The values in each line depend on the CellHeader. The values

are separated by tabs.
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XDA Format

The format of this CDF file is a binary file created for faster access and smaller file size.

The values in the file are stored in little-endian format.

The file contents are defined by:

Table B.2: File Contents for XDA Format CDF files

Item Description Type

1 Magic number. Always set to 67. integer

2 Version number. Should set to 1, 2, 3, or 4. integer

3 The length of the GUID, an unique identifier of the

CDF. (Only available in version 4)

unsigned integer

4 GUID, the unique identifier of the CDF. (Only avail-

able in version 4)

char [length defined

above]

5 The integrity md5 of the CDF. (Only available in ver-

sion 4)

char[32]

6 The number of probe array types. (Only available in

version 4)

unsigned char

7 The length of probe array type. (Only available in

version 4)

unsigned integer

8 The probe array type. (Only available in version 4) char [length defined

above]

9 The length and value of probe array type as described

in Item 7 and 8 respectively if there is more than one

entry. (Only available in version 4)

(unsigned integer + char

[length defined]) * (# of

probe array types - 1)

10 The number of columns of cells on the array. unsigned short

11 The number of rows of cells on the array. unsigned short

Continued on next page
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Table B.2 – continued from previous page

Item Description Type

12 The number of units in the array not including QC

units. The term unit is an internal term which means

probe set.

integer

13 The number of QC units. integer

14 The length of the CustomSeq reference sequence. integer

15 The CustomSeq reference sequence. char [length defined

above]

16 The probe set name. The UNIT name for CustomSeq,

Genotyping, Polymorphic Marker, and Multichannel

Marker. The BLOCK name for Expression.

char[64] * (# of units)

17 File position for the start of each QC unit information

block.

integer * (# of QC units)

18 File position for the start of each unit information

block.

integer * (# of units)

19 QC information, repeated for each QC unit: Type -

unsigned short Number of probes - integer

Probe information, repeated for each probe in the QC

unit: X coordinate - unsigned short Y coordinate -

unsigned short Probe length - unsigned char Perfect

match flag - unsigned char Background probe flag -

unsigned char

see description

Continued on next page
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Table B.2 – continued from previous page

Item Description Type

20 Unit information, repeated for each unit: UnitType -

unsigned short (1 - Expression, 2 - Genotyping, 3 -

CustomSeq, 4 - Tag, 5 - Copy Number, 6 - Genotyp-

ing Control, 7 - Expression Control, 8 - Polymorphic

Marker, 9 - Multichannel Marker) Direction - unsigned

char Number of atoms - integer Number of blocks - in-

teger (always 1 for Expression units) Number of cells

- integer Unit number (probe set number) - integer

Number of cells per atom - unsigned char

Block information, repeated for each block in the unit:

Number of atoms - integer Number of cells - integer

Number of cells per atom - unsigned char. Direction

- unsigned char. The position of the first atom - inte-

ger <unused integer value> - integer The block name

- char[64]. Wobble situation - unsigned short (only

available in version 2, 3, and 4). Allele code - un-

signed short (only available in version 2, 3, and 4).

Channel - unsigned char (only available in version 3

and 4). RepType - unsigned char (0 - unknown, 1 - dif-

ferent probe sequences, 2 - some probe sequences are

identical, 3 - all probe sequences are identical) (Only

available in version 3 and 4).

see description

Continued on next page
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Table B.2 – continued from previous page

Item Description Type

20 cont. Cell information, repeated for each cell in the block:

Atom number - integer X coordinate - unsigned short Y

coordinate - unsigned short Index position (relative to

sequence for CustomSeq, Genotyping, Copy Number,

Polymorphic Marker, and Multichannel Marker units,

for Expression units this value is the atom number) -

integer Base of probe at substitution position - char

Base of target at interrogation position - char Length

of probe sequence - unsigned short (only available

in version 2, 3, and 4) Physical grouping of probe -

unsigned short (only available in version 2, 3, and 4)

see description



Appendix C

Unique Mappings

This appendix give the detailed description of how unique mappings are obtained.

C.1 Required Software

Linux OS

mysql

perl

megablast

gawk

The programs that process the data and obtain the unique mappings are mainly written in

perl and use mysql databases. A separate database exists for every species that is processed.

For example, for Human data from Ensembl version 57, the database Human Ensembl57

must exist. The program ‘gawk’ is used for some simple data selection with defined bounds,

to reduce the amount of data being handled by the perl programs. This technique reduces

the overall time taken to produce the unique mappings for any particular species.
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C.2 Obtaining the Data

The first step is to obtain the data needed for the process of generating unique mappings.

The data comprises:-

1. exon sequences

2. transcript sequences

3. probe sequences

The process of downloading each of these sequences will be described now.

1. Sequences of the Ensembl exons

The FASTA files are obtained by using Biomart at http://www.biomart.org/biomart/-

martview/ or http://www.ensembl.org/biomart/martview/ or for the plant species

at http://plants.ensembl.org/biomart/martview/.

We are currently using Ensembl Release 57. There are two files downloaded for the

exons:-

• Ensembl57Exons.txt contains Ensemble Exon IDs and Exon Nucleotide se-

quences. This file is used by megablast to get the slignments of probes to

exons.

• Ensembl57ExonsF.txt contains Exon IDs, Start Position, End Position, Gene ID,

Transcript IDs, Chromosome, Strand and Exon Nucleotide sequences. This file

is used by the perl programs in Section C.5.

• Ensembl57SplicesTrans.txt contains Ensembl Transcript IDs and cDNA Nu-

cleotide sequences. This file is used by megablast to get the alignments of

probes to transcripts.

• Ensembl57SplicedTransF.txt contains Gene ID, Chromosome, Transcript ID,

Start Position, End Position, Strand, Exon IDs, Exon Rank in Transcript and
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cDNA Nucleotide sequences. This file is used by the perl programs in Sec-

tion C.5.

It is also possible to install the perl package called Biomart-perl, and write a perl

program to download the data. However, when this was tried there were problems

with the connection to Biomart which led to incomplete data being received. It was

found preferable to use the Biomart webpage facility to obtain the data. Once the

fields had been selected, and ’Results’ chosen, the option ’Compressed web file (notify

by email)’ was used with the insertion of an email address to receive notification

when the data was ready to download.

2. Probe sequences: the FASTA files are obtained from the Affymetrix web page

http://www.affymetrix.com/products services/index.affx. For exon arrays it is

also necessary to download the .tab file. For example,

HuEx 1 0 st v2.probe.tab.

C.3 Megablast Alignments

Megablast is used to align the probe sequences to the Ensembl exon and transcript sequences.

Details of the use of this program can be found at:- http://blast.ncbi.nlm.nih.gov/Blast.cgi.

The version of megablast used for the current mappings is 2.2.17. The commands to

generate the mappings are:-

• formatdb -i SequencesFastaFile -p F -o T

• megablast -W 10 -r 4 -q -5 -G 12 -E 8 -F F -s 20 -p 80 -d SequencesFastaFile -i

ProbeSequenceFastaFile -D3 -o Mappings OutputFile

formatdb has to be run before the megablast command. This prepares the given file to

be processed by megablast. It generates files with indexes to make the megablast processing

faster.
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The purpose of using the parameters shown for the megablast command is to obtain

mappings in which in the worst case only 10 of the 25 bases of a probe align to an exon or a

transcript.

C.3.1 Megablast parameters

The megablast parameters used above are described in detail here:-

• -W 10 Word size. Default 28.

• -r 4 Match score. This sets the score of a nucleotide match. See -q and scoring

scheme appendix B in manual.

• -q -5 Sets the penalty for a nucleotide mismatch. The choice of integer for -q and -r

are very important because they determine your target frequencies.

• -G 12 Initial penalty for opening a gap of length 0. Penalties for extending the gap

are controlled by parameter -E.

• -E 8 Setting -E and -G turns on affine gapping, so that there is a greater penalty for

opening a gap than for extending the gap.

• -F F False. True filters a given sequence string. This had to be switched off to stop

megablast from filtering out the low-complexity sequences which are quite repetitive.

• -s 20 The minimum hit score to report. All alignments scoring less than this value are

not reported.

• -p 80 Percent identity cutoff. Alignments less than 80% are not reported.

• -d The database or file to be compared.

• -i The query file of probe sequences.
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C.4 Configuration Files

There are two configuration files which hold data to direct and specify details to the perl

programs. For each species, the following files must be available:-

• specieConfig.txt - This file contains information used by the perl programs. For

example:-

db=Ensembl

release=57

specie=Mouse

prog version=v7

prog status=p (p means production, d means development)

source dir=/home/owena

output dir=/cluster

db type=Ensembl

C.5 Auxiliary Data

For each new species and array, or new version of a species to be processed, it is necessary

to populate the corresponding tables. The tables used are:-

• EXONS contains exon information, exon id, initial position, end position, gene id,

transcript list, chromosome, strand

• TRANSCRIPTS contains spliced transcript information: transcript id, initial position,

end position, gene id, chromosome, strand, exon list, exon order

• EXON SEQ contains exon sequences: exon id, sequence
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• EXON SYNONYMS contains sysonymous exons: exon id, exon essex id, chromo-

some, strand, gene id. One exon essex id can have two or more exon ids.

• PROBES contains probes information: probe id, senseness, interrogation position,

sequence, order number (position of the probe in the probeset). The control probes

in 3′ arrays are not considered. In exon arrays the information is: probe id, probeset,

x position, y position, chromosome, initial position, end position, strand, probe se-

quence, category.

It should be noted that the name of the sequence files of robes for each array had to contain

“ ” instead of “-” in order to be read by the perl programs, and accepted by sql in the database.

For example MoEx-1 0-st-v1.probe.tab had to be modified to MoEx 1 0 st v1 probe.tab.

The database where the tables are to be located had to be created manually before

running the perl programs. Certain directories must also exist before running the programs

which will use them.

The following perl programs were used:-

• populate initial tables to create the required tables in the mysql database

• exonsTransInf to read the exons and transcripts information, populate those tables

and create .csv files of the same data

• getCSVProbes to read the probes information, populate the probes table and create a

.csv file

• getProbesExonArrays to read the probes information for exon arrays, populate the

probes table and create a .csv file

• exon synonyms from chrom to work out and obtain synonymous exons, populate

the synonymous exon table and .csv file.
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C.6 Obtain Probes uniquely mapping to exon-junctions

It was desirable to take out those probes which map to exon-junctions. To do this, there

were four stages necessary to produce a table of such probes which map uniquely to

exon-junctions.

C.6.1 Initial Filtering

The mappings files were filtered before being processed by the perl programs because they

could be huge files. The filtering saved much time and resources. Both the exons and the

spliced transcripts files were filtered using gawk, to restrict the alignment length to that with

values greater than or equal to 20 bases, and with a minimum of 80% identity. These are

example gawk filtering commands...

gawk ‘$3 >= 80 && $4 >= 20 {print $0}’ MoEx 1 0 st v1Exons.txt >

MoEx 1 0 st v1Exons-filtered1.txt

gawk ‘$3 >= 80 && $4 >= 20 {print $0}’ MoEx 1 0 st v1SplicedTrans.txt >

MoEx 1 0 st v1SplicedTrans-filtered1.txt

C.6.2 Creation of Exon mappings table

Using the filtered exons file, a perl program called create exon map tables processed the

records to populate a new table of Exon mappings. It also produced a .csv file of the same

data.

C.6.3 Creation of Spliced Transcript mappings table

Using the filtered spliced transcript file, a perl program called create trans map tables

processed the records in a similar way to populate a new table of Spliced Transcript

mappings, and created a .csv file.
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C.6.4 Identifying probes which map to exon-junctions

The perl program called getExonJunct was used to identify the probes which map to exon

junctions. First the program found the exons of a given transcript, and then read their initial

position and length from the EXON table. If exons were in the junction, then their details

were written to a new table and to a .csv file.

C.7 Unique Mappings

Having prepared all the required tables and files as described, it was now possible to execute

the program to generate unique mappings to exons. The perl program called uniqueExons-

v7 was used to generate the files that contain the unique mappings in two formats: the

ones used by the pipeline to generate heatmaps, and .csv files to populate the database. In

particular the following files were created:-

• list ExonProbeUnique.txt a list of probes uniquely mapping to exons

• listAntisense.txt a list of probes uniquely mapping to exons in the antisense direction

(i.e. start position > end position). These probes are a subset of list ExonProbe

Unique.txt.

• listSense.txt a list of probes uniquely mapping to exons in the sense direction (i.e. end

position > start position). These probes are a subset of list ExonProbeUnique.txt.

• listCombinedSense.txt

The form of the data in these files is as shown by the following example:-

ENSE00000330966: 535192445-1524-2090:678-654 266715443-2192-1041:1601-1577

where the fields are:-

exon-id: probeId-x-y:startPos-endPos probeId-x-y:startPos-endPos
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Finally, a perl program called populateTables was run to use the .csv file to create

tables of unique mappings in the database.



Appendix D

Private Cloud Details

Much of the detail here is taken from the published paper by Musa et al. [61].

D.1 Infrastructure Setup

A small room was dedicated to the private cloud facility within the School of Computer

Science and Electronic Engineering at the University of Essex. The following are the

hardware components which were connected and deployed to create the private cloud:-

1. Ten homogeneous 64 bit Dell OptiPlex systems with 4GB RAM, core 2 Duo processor

running at 3.33GHz, and 300GB hard disk storage capacity. Each computer had four

virtual cores per processor. The internal prototype experiment cloud is therefore

created on the 40 cores of total processing capacity and 80GB of total RAM. XEN

Cloud Platform (XCP) was deployed on all the ten servers for hosting virtual machines.

Deploying XCP enabled the combination of all the machines into one large pool of

memory and processing capacity.

2. One 64 bit Dell OptiPlex system with 8GB RAM and core 2 Duo processor running

at 3.33GHz was set aside for the Network File System (NFS ) server (NFSS). The

computer had a total usable storage capacity of 20TB comprising the internal hard

185



D.1. Infrastructure Setup 186

disk and the external storage array directly attached to the server.

3. One 64 bit Dell OptiPlex system with 8GB RAM, core 2 Duo processor running at

3.33GHz and four cores, and a hard disk storage capacity of 300GB set aside for the

management server (MS) which also serves as the Middleware server.

4. One 64 bit Dell OptiPlex system with 8GB RAM, core 2 Duo processor running at

3.33GHz was set aside for storing results of gene expression in a MySQL database

server (DBS). The DBS has a capacity of 300GB Hard disk and four virtual cores per

processor.
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Figure D.1: Architecture of resource interactions in the private cloud

Figure D.1 shows how the private cloud was configured to provide a test bed for the

microarray data analysis application. The following features should be noted:-
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• Inexpensive second hand machines with network switches were deployed.

• Physical hosts were connected in a three-layered hierarchical network topology

(Figure D.1) comprising aggregation, edge and access layers.

• Basic VM modules were created and packaged in a privileged virtual machine.

• The privileged VM (blue VMs in Figure D.1) is created and configured with func-

tionalities for resource provisioning and dynamic job allocation. This packaged pVM

was created in the requested container.

• Each virtual service cell is equipped with basic service functionalities suitable for the

microarray data analysis.

• Experiment data stored in various storage media were made available via a standard

network file system.

• The functionalities available in the vCell estimated finish time based on previous time

series statistics of finished job and dynamically adjusted the operations of various

components.

• Provisioning and job allocation algorithms were tested using the value K=3 for the

job queues.

D.1.1 vCell Implementation

The code to realize the virtual infrastructure container was divided into five sets of modules.

Each module was created to perform an interdependent task. The modules were for vCell

creation, vCell request creation, storage access, gene expression identification, and the result

writer. The functions of provisioning, allocation and report writing are projected into the

pVM. The provisioning is invoked by the pVM which starts the operation of the provisioner.

The vCell resources (VM, VIF) creation modules reside in pVM enabled with a subset of

the service layer. Resource provisioning, task classification and allocation, resource release
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and update, and inference learning are all performed by this module. The provisioning

process starts with an estimation of the required initial VMs. The initial VMs’ capacity

for the vCell is computed from the implementation of the Capacity equation [61]. The

capacity is then used as input to XEN API libraries to create the required VMs. The

Provisioner classifies the submitted GSE data into groups using an implementation of

dynamic K-Means strategy shown in the paper [61]. After the classification, the function

getSuitableHost() is called to invoke the host service wrapper class (HostServiceWrapper).

The HostServiceWrapper replies with the set of available physical hosts and their available

capacities. pVM then chooses the most suitable as guided by the SLA parameters in vCell’s

submitted request.

After the selection of a suitable host, the required Xen Api (XEN) VM class is invoked

to create all the required initial VMs. The VIF class instance is then invoked to create a

network of links and virtual interfaces. One virtual interface is created for each network

definition in the VXDL request file. Using the initial task inference from the dynamic

Markov chain model, an initial virtual interface is selected as the default for communication.

The allocated bandwidth to a VM is constantly updated by the pVM to reflect the various

phases of job execution at the VM. This process ensures that available bandwidths in the

vCell are properly budgeted.

Each created VM is started via the implementation of a call to the VM.start method. The

VMs are configured with a standard socket to listen, on a specific port, for any incoming job

submitted by pVM. The class RScript starts the R script, if it is not running, and sets the

current working directory of the R workspace to the directory where the data to be analysed

is saved. At the end of computation the results are written back to the VM class which

subsequently writes the final result to the MySQL database server.

We implement virtual file service (VFS) functionalities in combination with allocation

and control to provide an effective and flexible storage server. Our approach attempts to

minimize the IO overhead overtime caused by VM sprawl. Each VM is enabled with a
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microarray data analysis algorithm and accesses the required files in a “just in time policy.

This approach allows ease in relocation of jobs since only the required data is copied and

the relocation to any idle resource is easily achieved.

The pVM periodically checks all running instances and decides, based on the status

information (failed, running, idle, halt) obtained, whether to reassign the job. The function-

alities provided include: initiate termination of a VM, report reclaim resources to resident

vCell manager, and initiate creation of new virtual resource. This way, the job status can

be determined and, where necessary, relocation of the job to a new instance initiated. The

set-up determines job status by computing completion time as a function of GSE folder size,

available memory in allocated VM, and data transfer delay. After the expected finished time,

the VM is marked inaccessible and the job running in the VM marked as failed. If status is

failed, the module notifies the provisioning module which then destroys the inaccessible

VM, assigns the destroyed VMs resources to create a new VM, and finally reassigns the

failed job to the newly created VM.

D.2 Algorithms for job allocation

The algorithms for job allocation considered in this work will now be presented. The use of

container based resource provisioning enables the sharing of statistics between the vCell

manager and other resources in the vCell. The virtual machines are allocated bandwidth

to satisfy the current job requirement (computed from time series). At the end of the data

access time, the bandwidth allocated is reconfigured to allow other VMs to utilize the

container’s overall capacity.

D.2.1 SJF-KQ

The Shortest Job First algorithm on K Queues (SJF-KQ) is a variation of Shortest Job First

(SJF). In this approach, jobs are ordered in decreasing order of size and submitted to the
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suitable category, K, of VMs created during the provisioning stage. This algorithm executes

the submitted jobs based on the resource queues implemented in the provisioning phase.

D.2.2 SJF-KQ-L

The Shortest Job First algorithm on K Queues with Lookup (SJF-KQ-L) is a variation

of SJF-KQ. However, the expected finish time F of each job is utilized to vary the data

access period of the jobs. If the data access time of the job i is Ti, then the input/output

overhead at storage server contributed by i at each point in Fi - Ti is zero. This variation on

data access is exploited to reduce the overheads associated with data access by the virtual

machines during jobs execution. The algorithm carefully schedules the job execution of

VMs to ensure that the number of concurrent VMs accessing the NFS server is reduced.

This way, the makespan is consequently reduced.

D.2.3 FCFS-KQ-L

The First Come First Served algorithm on K Queues with Lookup (FCFS-KQ-L) is a

variation of SJF-KQ-L that is based on the widely used First Come First Served (FCFS)

discipline instead of the SJF.

D.3 Results

The work investigates the impact of adopting cohesive operational behaviours among the

VMs to exploit the differences in data access times and implement effective resource

provisioning and job scheduling. Each virtual machine requests bandwidth of a certain size

to satisfy the job submitted. After the duration of data access (the reading of data files for

analysis program use), the virtual machine’s bandwidth is reduced to the basic bandwidth.

This is achieved by inserting a new action table entry in the software-defined enabled virtual

switch. The residual bandwidth from the reconfiguration is made available for other VMs.
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Figure D.2: Result comparing the thrashing rate between the proposed algorithms using common
provisioning algorithms

The first experiment investigates the performance of the proposed provisioning algo-

rithms. The algorithm that utilizes the predicted finished time lookup during provisioning is

compared using three well-known [73] on-demand algorithms for virtual machines provi-

sioning. Figure D.2 shows that the proposed algorithms reduced the thrashing rate which in

turn reduces the frequency of creation and destruction of virtual machines. A high thrashing

rate increases the workload on a provisioner and the instability of the data analysis process

as resources are created and released. Since cloud services are normally charged per hour,

the creation and release of virtual machines incur additional overhead costs. Hence, a small
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value for the thrashing rate is required to maintain a stable and, consequently, cost effective

job execution. We use First Come First Serve (FCFS), Largest Job First (LJF), and Shortest

Job First (SJF) to demonstrate (Figure D.2) that predicting the finish time and taking the

prediction into consideration during the classification of jobs into groups during resource

provisioning phase reduces the thrashing rate.

In all the experiments, we set the value of K=3 for the algorithms presented above. For

example example, LJF-KQL becomes LJF-3QL. The result in Figure D.2 shows that the

algorithms (‘Thrash overhead 3QL’) implemented with a lookup outperformed those without

lookup (‘Thrash overhead 3Q’). In the experiment, a maximum of ten virtual machines

and one privilege VM instances are instantiated per vCell. The budget size for the chosen

experiment is set to $100. The experiment involved the analysis of 30GB of microarray

data. The values on the y-axis in figure D.2 show the number of times a VM is released and

a new one created to accommodate a new analysis job.

In Figure D.2, all three algorithms that enhanced common provisioning disciplines

(FCFS, SJF, and LJF) with a group classification and finished time lookup outperformed

those without such enhancement. This is possible as each VM in the vCell operates alongside

members of the vCell as a complementary component. Note that achieving such enhanced

provisioning is made possible due to the small size of the vCell. Implementing the same

finished time lookup and the grouping of jobs to complement each other at the whole

datacentre level will amount to large computation savings.

We continue with a comparison between our modified versions of SJF task allocation

algorithms as SJF-3Q and SJF-3Q-L respectively. Figure D.3 shows the result obtained

from analyzing up to 30GB of microarray data. We first defined the makespan as the time

difference between the start and finish of the data analysis and included time to read the

required data, perform computation to identify gene expression, and write the output result

to the DBS. In the figure, SJF-3Q-L outperformed the other two algorithms with shorter

makespan at various job sizes. We attribute this higher performance to the ability of the
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vCell manager to assign jobs based on expected finished times.

We then investigate the impact of using our proposed holistic view of cloud resources

on the cost of data analysis. As demonstrated in Figure D.4, the cost of analysing the data is

lower for algorithms utilizing the finish times of jobs on virtual machines. We attribute the

performance strength of SJF-3Q-L to two features:

• the small size of VM thrashing reduces the cost of resource usage since VMs are only

created gradually as resources are released by the large number of small VMs.

• by carefully utilizing the jobs’ statistics from the report interface module, we can allo-

cate jobs in a way that reduces concurrent data access and improves the performance.

In summary, the combined results in Figures D.2, D.3, and D.4 highlight the fact that the

holistic view of resources improved the performance of well-known algorithms for resource

provisioning and job allocation. Quantitatively, the cost of performing analysis is reduced

by 30% at 15GB of data analysis. The makespan also reduces by more than half an hour at

15GB of data analysis.

D.4 Conclusion

There is a general perception [74, 75] that the next wave of cloud services are to be dominated

by PAAS value added services. The virtual container described in this work is a step toward

this advancement. In our case, the value added service is created by the bioinformatician

and packaged as a virtual machine. The scientist performing the experiment requests this

virtual machine and other required resources as a self-service and dynamic container. Our

work demonstrates the strength of this next generation cloud framework in performing

cost effective analysis of microarray data on commodity hardware. Flexibility, dynamic

configuration, and elasticity were enabled by creating a self-service infrastructure container

which allows the scientist performing the experiment to submit an abstract description of

requirements. Furthermore, the cloud framework proposed in this work allows VMs to
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Figure D.3: Result comparing the job makespan between the proposed job allocation algorithm and
other algorithms

operate in concert with each other and with the enabling logic. The dynamic feature of the

model reduces the need to understand technical cloud computing concepts.

The virtual container presented in this work is enabled with Markov Chain learning

and prediction that allows the container to manage itself using previous observations from

job execution traces. We use the automation capability to estimate initial VMs’ capacity

without the intervention of a user.

This article demonstrates the concept in a prototype experimental cloud built on com-

modity hardware. The cloud environment is created using XEN Cloud Platform (XCP).

The proposed privileged virtual machine is equipped with necessary XAPI compliant java

modules.

A significant difference between the strategy described in this work and existing clouds

is the holistic view of the resource. Also in the proposed framework, use of an observed

pattern of data analysis is applied to automate the whole data analysis process. Using

the variation in instant virtual machine bandwidth requirements, our proposed algorithms
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Figure D.4: Cost comparison among various job allocation algorithms

improved the performance and led to considerable reduction in cost at a performance that

guarantees the same experience as commercial cloud services. Although this work focused

on a data intensive cloud application, the same logic can easily be extended to other cloud

applications. In the future, our work aims to implement the same container model for

parallel and distributed cloud applications.



Appendix E

Venus-C Project

Venus-C is a project funded under the European Commission’s 7th Framework Programme.

It consists of a joint co-operation between computing service providers such as Microsoft

and scientific user communities to develop, test and deploy a large Cloud Computing

infrastructure for science researchers and SMEs (Small and Medium size Enterprises) in

Europe. Venus-C began with seven Partner User Scenarios, or partner affiliations, from

academic, research or small commercial organisations. They developed applications on the

Windows Azure Cloud in the areas of bioinformatics, systems biology, drug discovery, civil

engineering, civil protection and emergencies, and marine biodiversity data. An early view

of the Venus-C website can be seen in Figure E.1.

A collaboration between Dr Andrew Harrison of the University of Essex and Dr Hugh

Shanahan of Royal Holloway College resulted in the acceptance of their Open Call proposal

to be one of the 2nd tranch of projects, called Venus-C pilot projects. Their pilot project,

called cTQm (cloud Tool for Quality control of microarray data), was to develop a cloud

based tool for testing the quality of microarray data, initially from H. Sapiens. The work

done for this project forms the basis for this chapter and for the following chapter on Wide

scale analysis.

During the one year project of the Venus-C pilots, processing and storage facilities on

the Windows Azure Cloud was free to the pilot projects, together with technical support
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Figure E.1: The Venus-C website home page from June, 2012, showing where Biology and
Bioinformatics were the subject areas of some of the 15 pilot projects as well as some of the original
7 partner scenarios

from Microsoft and the Venus-C team. During the following year, which ended on May

31st, 2013, the use of certain facilities of the Windows Azure Cloud were available without

charge to the pilot projects, but without technical support.

It was envisaged that the following tasks could usefully be carried out to further the

research into improving the quality of microarray data:

1. Scripts already developed in R, using related Bioconductor libraries, for analyzing

the effect of G-stacks on normalized microarray data, would be ported to the Azure

cloud.

2. The Azure cloud would be used to repeat the analysis of G-stack bias on normalized

data in individual experiments over some HG U133A datasets, performed by Shana-
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han et al [38]. Then the analysis would be extended to all available experimental

data from this human GeneChip. Then several other microarray designs, e.g. another

human genechip HG U133 Plus2 and Arabidopsis thaliana, would be investigated.

3. The Azure cloud would be used to examine the size of bias that G-stacks have on

correlations between transcripts over multiple experiments (which is a key variable in

Systems Biology studies).

4. Some easy to use front end software could then be developed for wet lab Biologists

to make use of these tools.



Appendix F

Poster

There follows the poster called G-stack bias in publicly deposited Affymetrix HG U133A

Microarray data which was presented at the 21st Annual International Conference on

Intelligent Systems for Molecular Biology (ISMB) in July 2013, in Berlin, Germany. This

conference was held in conjunction with the 12th European Conference on Computational

Biology (ECCB).
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Introduction 
 It has been shown (Shanahan 2011)1 that normalized Affymetrix 

expression data are biased by G-quadruplex formation.  In that paper 

a limited subset of all the publicly deposited HG-U133A GeneChip 

microarray data was investigated.  This work has undertaken a wide 

scale survey of all Affymetrix HG-U133A microarray data available on 

ArrayExpress at July 2012.  Two types of analysis have been used to 

show the overall extent of the bias. 

 The computing analyses have been carried out in R on the Windows 

Azure Cloud.  This demonstrates the vitally important part that cloud 

computing can play in bioinformatics research.  The bringing together of large 

datasets and scalable computing power enables wide scale surveys such as 

this one to be done.   

 Microarrays are concerned with probes which are organised into probe 

sets to reveal the expression of particular genes.  A probe which has four or 

more contiguous ‘G’ (guanine) bases in its sequence is defined as a G-stack.  

Similarly a C-stack probe has a sequence containing four or more contiguous 

‘C’ (cytosine) bases. 

 Conclusions 
•The G-stack bias in Affymetrix microarray data is widespread in 

experiments deposited in public databases.  It has been shown to 

be significant in at least 15% of HG-U133A experiments available 

in public databases in July 2012. 

•The Azure Cloud is a useful tool for Bioinformaticians who prefer 

Windows to Linux, considering its scalability for repeating 

statistical analyses over large amounts of data.  The use of R 

scripts and Bioconductor modules has been demonstrated on 

Azure’s Platform as a Service (PaaS) cloud. 

European Commission’s 7th Framework Programme 

Microsoft and Venus-C project Organisers 
 

1 Shanahan H.P., Memon F.N., Upton G.J.G. and Harrison A.P. (2011) ‘Normalized 

Affymetrix expression data are biased by G-quadruplex formation’ Nucleic Acids 

Research, 2011, 1-9 
2 Upton G.J.G., Langdon W., and Harrison A.P. (2008) ‘G-spots cause incorrect 

expression measurement in Affymetrix microarrays’ BMC Genomics, 2008, 9, 613 

Histogram of the medians of the difference in 

probe set to probe set correlation data between 

having 2 or more G-stack probes left in and 

having G-stack probes removed. If there were 

no bias in the data due to the G-stacks, then 

this Figure would show the median values 

equally distributed around zero.  However, it 

can be seen that most of the median values are 

less than zero, which confirms the anticipated 

bias effect.  The C-stack acts as a control as C-

stacks do not show a similar bias. 

Large survey of Affymetrix HG-U133A data 

Azure Cloud Computing used with R 

Evidence of widespread G-stack bias proven 

As many as 15% experiments affected by bias 

Software for bias detection in development 

The Windows Azure Cloud was used, 

because the large amount of data involved 

could be stored in Azure Blob Storage, 

close to the processing facility.  The first 

task was to upload hundreds of Affymetrix 

GeneChip experiment results from the 

publicly available ArrayExpress database 

to Azure storage.  This was done via a 

webpage serviced by a WebRole task in 

Azure.  R was used for the main script with 

service calls in C# to create folders and 

files as required.  Problems of 

inconsistency in the data were overcome 

individually. 

References 

 

Methods 
Nearly 600 Affymetrix GeneChip datasets 

from the HG-U133A array were used.  

Programming was carried out with R 

scripts and Bioconductor modules such as 

affy.  Chip Definition Files (CDFs) were 

modified to eliminate certain probes or 

probe sets as required to test the effect of 

eliminating G-stacks or C-stacks. 

It has been established that the G-

stack bias is variable across individual 

experiments (Upton 2008)2.  Notice 

that the average correlation for the C-

stack probes is much closer to zero 

than for G-stack probes.  More than 

15% of experiments have average G-

stack correlations > 0.4.  This confirms 

a bias in many data sets which is not 

due to the biology of the experiment, 

but due to runs of guanine. 

G-stack in a probe sequence 
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