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Why do some leaders protect their citizens from natural disasters while others do not? 

This paper argues that leaders in large coalition systems provide more protection 

against natural disasters than leaders in small coalition systems. Yet autocrats also 

provide large-scale disaster protection if members of their winning coalition are 

exposed to natural hazards. The paper tests these propositions by examining cross-

country variation in the number of sea level stations as a lower bound for protection 

against ocean-originated disasters. Empirical evidence indicates that leaders in large 

coalition systems deploy more sea level stations than their counterparts in small 

coalition systems. The evidence also shows that if the national capital is close to the 

coast, thus exposing members of the ruling coalition to ocean-originated hazards, 

leaders across political systems install more sea level stations.  

  

																																																								
1 Alejandro Quiroz Flores (aquiro@essex.ac.uk) is Lecturer at the University of Essex, Wivenhoe Park, 
Colchester, CO4 3SQ. Many thanks to Bruce Bueno de Mesquita, Alastair Smith, Thomas Plümper, 
several anonymous reviewers, the editor at Political Science Research and Methods, and participants at 
the ISA 2014 Annual Meeting, for helpful comments. 



	 2	

Introduction 

When Hurricane Sandy struck the US eastern seaboard in October 2012, a network of 

sea level stations transmitted in real-time measurements of the storm surge to 

scientists and authorities. Unfortunately, the storm damaged several stations and, as 

reported by The New York Times (Gillis 2014), a scientist confirmed that a “station 

got washed off the face of the earth,” thus interrupting the flow of measurements 

when they were needed most. These stations and their tide gauges are crucial because 

they measure the strength of storms where they are most deadly and destructive—on 

the coast. The US has 227 sea level stations and has further invested in hurricane-

hardened tide gauges along its coast. While Mexico has 27 stations Malaysia has only 

seven. Other countries such as Cambodia have not even deployed a single sea level 

station. What explains this variation in protection against ocean-originated hazards? 

Clearly, factors such as previous natural disasters, the length of a coastline, coastal 

population, exposure to tectonic plates, importance of commercial navigation, and 

engagement in international cooperation, as well as wealth, might determine cross-

national variance in the number of sea level stations. This paper shows that even when 

these variables are taken into consideration, political institutions play a very 

important, yet nuanced role in the protection of individuals against ocean-originated 

disasters.  

It is well known that democratic governments provide more protection to their 

citizens than non-democratic regimes (e.g. Kahn 2005; World Bank 2010). In line 

with this research, and using the number of sea level stations as a lower bound for 

protection against ocean-originated hazards, the paper shows that leaders in large 
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coalition systems provide more protection than leaders in small coalition systems. 

Yet, the article also argues that autocrats provide large-scale protection against natural 

hazards if members of their winning coalition are located in a vulnerable area. The 

empirical evidence presented by this paper indicates that if the national capital is close 

to the coast —thus exposing members of the ruling coalition to ocean-originated 

hazards— autocrats also deploy sea level stations. 

Sea level stations are the first and most essential line of defense against ocean-

originated hazards. They are located strategically along coasts and rely on tide gauges 

to measure changes to sea levels, including those caused by tsunamis, coastal floods, 

and hurricanes. As mentioned before, these stations measure the strength of these 

disasters on the coast, which is where they kill the largest number of people and cause 

the greatest amount of material losses. As sea levels rise and large sectors of the 

population continue to settle in coastal areas, these simple, relatively inexpensive, and 

reliable stations are the main instrument to protect individuals and businesses from 

ocean-originated disasters. In this light, the article argues that a cross-national 

analysis of sea level stations is also an exploration of the provision of disaster 

protection. 

The paper is organized as follows. The paper first presents the logic of disaster 

protection as explained by leaders’ incentives to stay in office. The article then 

discusses how the location of political supporters might force leaders across political 

systems to provide large-scale protection against natural hazards. The third section 

discusses the function of sea level stations in saving lives. The fourth section of the 

paper presents the data used for estimation as well as empirical results from count 
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models of the number of sea level stations. The paper closes with a discussion on 

future work. 

The Logic of Protection against Natural Disasters  

A large body of research on the political economy of natural hazards has found that 

countries with democratic institutions, low-income inequality, and good governance 

practices, experience fewer disaster-related casualties (e.g. Sen 1983, 1991; Kahn 

2005; Toya and Skidmore 2007; Cavallo and Noy 2009; World Bank 2010). Indeed, 

countries can mitigate the effects of natural hazards by enforcing building codes 

(Anbarci, Escaleras, and Register 2005), providing adequate infrastructure (Stromberg 

2007), reducing the effect of corruption on construction (Escaleras, Anbarci and 

Register 2007; Keefer, Neumayer, and Plümper 2011), and providing public goods 

associated with disaster prevention and relief (Quiroz Flores and Smith 2013).  

Democratic politicians provide adequate disaster relief because they can derive long-

lasting electoral credit from their performance during emergencies (Bechtel and 

Hainmueller 2011) and improve their chances of re-election (e.g. Garrett and Sobel 

2003; Sylves and Buzas 2007; Reeves 2011; Chen 2013). Conversely, democrats are 

punished for poor responses to disasters (Achen and Bartels 2004; Malhotra and Kuo 

2009; Healy and Malhotra 2009, 2010; Gasper and Reeves 2011). In autocratic 

countries, however, deadly natural disasters can wipe out the political opposition and 

consequently reduce protest and internal challenges (Brass 1986; Keller 1992; Albala-

Bertrand 1993; Quiroz Flores and Smith 2013). In other words, depending of where 

disasters strike and whom they kill, they can delay or hasten leaders’ deposition from 

office.  
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In this context, Quiroz Flores and Smith (2013) use Selectorate Theory (Bueno de 

Mesquita, Smith, Siverson, and Morrow 2003; Smith 2008; Bueno de Mesquita and 

Smith 2009) to theoretically and empirically explore the effects of natural disasters on 

leader survival. In their account, leaders maximize their tenure in office by providing 

a mix of public and private goods that depends on political institutions, particularly 

the winning coalition (W) and the selectorate (S). According to Quiroz Flores and 

Smith (2013): “The winning coalition is the set of essential supporters that the leader 

relies on to maintain power. The selectorate is the set of people from which a leader 

forms her winning coalition. The sizes of winning coalitions and selectorates vary 

greatly and shape political incentives.”  

In systems with large winning coalitions such as the United States, leaders maximize 

their tenure in office by providing a larger mix of public goods. In the context of 

disaster prevention, a public good can take the shape of an early warning system to 

alert the population of incoming tsunamis. In Hawaii, for instance, a destructive 

tsunami will activate the State Emergency Alert System. Part of the system consists of 

sirens scattered across the islands that produce a loud and steady three-minute siren 

tone prompting citizens to move to higher ground. Escaleras and Register (2008) find 

that tsunami warning systems significantly reduce the number of casualties and 

suggest that if such mechanism had existed in the Indian Ocean in 2004, it would 

have saved close to 14,000 lives. 

In systems with small winning coalitions, such as Burma, leaders maximize their 

tenure in office by providing a larger mix of private goods to a small number of 

supporters. In this political context, instead of spending large amounts of resources in 
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disaster prevention that could benefit large sections of the population, leaders in small 

coalition systems can compensate their political supporters for any losses caused by 

natural disasters (Brass 1986; Albala-Bertrand 1993; Pelling 1999; Mustafa 2003). In 

fact, autocrats might benefit politically from the occurrence of deadly natural disasters 

because, as suggested by Quiroz Flores and Smith (2013), “Dead people cannot 

revolt.”  

In line with this logic, Quiroz Flores and Smith (2013) find that disaster-related 

casualties in large coalition systems increase the likelihood of leader replacement 

while they reduce it in small coalition systems. Hence, in order to minimize the 

likelihood of deposition, democrats have strong incentives to provide protection 

against disasters, which leads to the following prediction. Hypothesis 1: All else 

equal, leaders in large coalition systems provide more protection against natural 

disasters than their counterparts in small coalition systems.  

The Location of the Winning Coalition 

As argued above, democrats have incentives to provide disaster protection in the form 

of public goods. In contrast, autocrats provide protection in the form of private goods 

(Quiroz Flores and Smith 2013). For example, in the late 1990s, the Burmese Junta 

began the process of moving the capital of the country from Rangoon to Naypyidaw, 

an area sheltered by mountains and away from vulnerable regions in the south such as 

the Irrawaddy Delta, which was widely affected by Cyclone Nargis in 2008. The 

cyclone killed more than 138,000 individuals, but not the Junta leaders and their 

families who were well protected in the new capital.  
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Evidently, not all leaders can afford to relocate a capital city and yet they must 

provide protection to members of their winning coalition. This paper thus argues that 

autocrats, just like democrats, provide large-scale disaster protection if vulnerable 

members of the winning coalition cannot be separated from the general public. 

In this densely inhabited planet it is difficult to find many countries where members 

of the winning coalition and the general population live in completely separate areas. 

Indeed, some ruling elites live in exclusive neighborhoods, although this may depend 

on income inequality or the particulars of an authoritarian regime (Geddes, Wright, 

and Frantz 2014). Unfortunately, exclusive neighborhoods, slums, and city centers are 

equally vulnerable to disasters that are large in a planetary scale. For instance, the 

Global Historical Tsunami Database of the National Geophysical Data Center (2014) 

has records of dozens of tsunamis with a horizontal inundation of more than four 

kilometers and up to eight kilometers.  

It could also be argued that members of the winning coalition are not concentrated in 

a single city. Indeed, some members of the ruling elite live in a capital city, such as 

Brasilia, while others live in major commercial cities, such as Sao Paulo or Mumbai. 

In fact, some cities such as Belize City, New York, or Istanbul, are economically 

more important that the official capital. Yet political power is generally more 

concentrated in country’s capital than in other cities. This is often the case in highly 

centralized countries such as Mexico City and France, and in some particular types of 

authoritarian regimes such as those rules by military forces (Geddes, Wright, and 

Frantz 2014). This logic leads to the following prediction. Hypothesis 2: All else 
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equal, leaders across all political systems will provide protection against natural 

disasters if the country’s capital is in a vulnerable area. 

For this hypothesis to work, the location of a capital needs to be exogenous to the 

occurrence of disasters.2 As mentioned before, the location of some capitals has been 

carefully chosen. However, the location of the majority of these new capital cities —

Belmopan, Brasilia, or even Ankara— was related to internal control and protection 

from foreign invasions and not necessarily to the occurrence of natural hazards. The 

endogenous location of a capital city due to disaster propensity is more an exception 

than a rule. In Latin America, for instance, capital cities are located in the ancient 

centers of indigenous civilization, such as Mexico City.3 The same logic applies to 

many capital cities in former colonies in Africa or South East Asia. Furthermore, the 

location of several cities throughout Europe and Asia has been determined by the 

politics of Empire or the importance of trade and not by potential natural hazards 

(McGranahan, Balk, and Anderson 2007). Altogether, it is safe to assume that the 

location of national capitals is exogenous to the occurrence of natural disasters. 

The Measurement of Protection: Ocean-originated Disasters and other 

Determinants of the Number of Sea Level Stations 

Up to this point, the paper has been vague in the use of the term “disaster protection.” 

The type of disaster protection implemented by countries depends on the origin and 

frequency of natural hazards. Recent literature has placed an emphasis on disaster 

frequency because countries with high disaster propensity experience fewer disaster-

																																																								
2 I thank an anonymous reviewer for stressing this point. 
3 The location of Mexico City is related to an ancient Mexica legend that is not that different from the 
Biblical story of Canaan. 
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related casualties and milder negative economic effects (Keefer, Neumayer, and 

Plümper 2011; Neumayer, Plümper, and Barthel 2014). Yet a discussion on the origin 

of disasters has been slightly neglected by the political science literature.  

This paper focuses on natural hazards that originate in oceans and seas —such as 

tropical and extra-tropical storms, coastal floods, and tsunamis, among others— for 

two main reasons. First, they are quite frequent; storms account for 17 per cent of all 

worldwide natural disasters between 1900 and 2008.4 Tsunamis are not as frequent as 

storms but they can be very deadly, as demonstrated by the 2004 Indian Ocean 

tsunami that killed more than 230,000 people. Second, because as sea levels rise and 

large sectors of the population continue to settle in coastal areas, countries have 

become increasingly vulnerable to ocean-originated hazards. 

In the context of ocean-originated hazards, the goal of current technology for disaster 

prevention is to determine in real-time whether and to what extent sea level, both on 

the open ocean and along shores, has been altered beyond its normal systematic 

changes. Observed sea levels are a function of a mean sea level, tides, and 

disturbances (UNESCO 1985). These disturbances come in two types. The first type 

is made of meteorological residuals often caused by tropical and extra-tropical storms. 

The second type of disturbances consists of very extreme alterations to the sea level, 

such as those produced by a tsunami.  

Storms kill very few people in the open ocean and ships barely notice tsunamis away 

from the coast. Indeed, storms and tsunamis are deadly and destructive mostly on the 

shore and it is precisely for this reason that the large majority of sea level stations are 

																																																								
4 http://www.emdat.be 
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located on the coast.5 The stations are often evenly distributed along countries’ shores 

for several reasons. First, the stations need to be located close to populated areas if 

they are to meet their coastal protection goals. For example, 163.8 million Americans 

were living in coastal watershed counties in 2010 (NOAA 2013); this is fifty two per 

cent of the total US population. 

Second, stations need to be positioned in different places because the bathymetry near 

continental shelves and the topography of coasts are not the same along countries’ 

long shorelines. Third, a large number of independent stations reduces the probability 

of not having access to real-time measurements of changes to the sea level. Fourth, 

multiple stations can produce better forecasts necessary for evacuation purposes. For 

instance, if an earthquake triggers a tsunami off the southern coast of Chile and begins 

to propagate on the Pacific Ocean, sea level stations along the Chilean coastline will 

provide information about the magnitude of the wave. This information, if relayed 

appropriately, can be used for evacuation purposes along the northern coast of Chile.  

Moreover, sea level stations also play a role in areas that are country-specific. For 

example, the sea level station at the UK’s Newlyn Tidal Observatory, in the southwest 

of the UK, provides the national reference from which all heights above mean sea 

level are based on.6  

																																																								
5 The vulnerability of coasts is determined by innumerable factors including the proximity of tectonic 
plates, sea temperature, the coast’s bathymetry and topography, its level above or below sea, and the 
presence of barriers, among many other factors. For this reason, some countries use a combination of 
technologies to protect their populations. For instance, Japan uses ocean-bottom sensors, seismometers 
(Dumiak 2011; Monastersky 2012), and sea walls along 40 percent of its coast to protect the country 
from ocean-originated disasters. The Netherlands relies in its massive and complex Delta Works while 
London relies on the Thames Barrier. In other words, there is no one-size-fits-all policy of disaster 
protection. This paper argues that the number of sea-level stations is a uniform, cross-nationally 
comparable, if not perfect, measure of protection against ocean-originated hazards.  
6 The UK has two stations in Newlyn and a total of 68 stations, including stations in Gibraltar, 
Liverpool, or Diego Garcia, among others. Countries have collected sea level measurements for 
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The factors mentioned above, including country-specific coastal populations, local 

bathymetry and topography, the need for national references and standards, as well as 

reliability and independence, suggest that countries have strong incentives to invest 

on their own network of stations. Indeed, coastal-hazards can be so specific that free 

riding on the networks of others can have deadly consequences.  

This does not prevent countries from exchanging information in particular 

circumstances. For instance, as a tsunami propagates from Chile, sea level stations in 

Mexico (ten hours after the earthquake) and New Zealand (twelve hours after the 

earthquake) will record changes to the sea level and contribute to the forecasting of 

the wave that will eventually hit Hawaii fifteen hours after an earthquake. Since 2001, 

Hawaii has experienced tsunami evacuations in 2010, 2011, and 2012. The tsunamis 

originated in Chile, Japan, and Canada respectively. Sea level stations along the 

coasts of countries in the Pacific Ocean, as well as open ocean buoys, played a crucial 

role in the decision to evacuate Hawaii in these occasions.  

This type of propagation is illustrated in figure 1 for the Chilean earthquake of May 

22, 1960. This was the most powerful earthquake ever recorded by instruments and it 

generated a tsunami that reached Hawaii and Japan.  

 

 

 

																																																																																																																																																															
hundreds of years—measurements for sea levels in Amsterdam, Stockholm, Kronstadt, and Liverpool 
are available since the early 1700s. These measurements are described in 
http://www.psmsl.org/data/longrecords/. 
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Figure 1: Propagation in Hours of Chilean Tsunami of May 22, 19607 

 

In this context, countries have incentives to exchange sea-level information, 

particularly in oceans where countries are subject to the same disaster, such as the 

Pacific or the Indian Oceans. For instance, 147 countries exchange sea level 

measurements under the auspices of the Intergovernmental Oceanographic 

Commission. Yet the technology of a tide gauge is so basic and so well known that 

																																																								
7 The map of the propagation is publicly available at 
http://www.ngdc.noaa.gov/hazard/icons/1960_0522.jpg.  
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countries do not really need international assistance to deploy them even when they 

may benefit several countries.  

Stations are also crucial for countries with dynamic ocean economies with assets 

closely connected to commercial navigation. The US ocean economy in 2010 was 

valued at US $117 billion dollars per year (NOAA 2010). Ten percent of this amount 

is lost to natural disasters (Regnier 2008). In this context, independent measurements 

of the sea level are crucial for any port, but particularly for strategic ports such as 

Singapore, Hong Kong, Rotterdam, New York, or Hamburg. In addition, the 

measurement of the sea level is crucial for our general understanding of the oceans 

and the earth, including rising sea levels. 

In short, sea level stations not only protect coastal population but also contribute to 

navigation and research. They are reliable, resilient, easy to maintain, and relatively 

inexpensive to deploy, and often provide country-specific services. Hence, an 

analysis of the number of sea level stations provides a lower bound for protection 

against sea-originated disasters across the planet. If countries do not have tide 

gauges, they are not likely to have more advanced forecasting and protection 

technology. 

3. Data and Estimation 

According to hypothesis 1, leaders in large coalition systems should deploy more sea 

level stations than their counterparts in small coalition systems. Hypothesis 2 states 

that leaders across all political systems should deploy more stations if the country’s 
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capital is close to the coast. This section empirically tests these hypotheses using a 

new database of the number of sea level stations. 

The unit of analysis is the country in February of 2014. The dependent variable is 

called (Stations) and it has a mean of 6.19 and a variance of 496.42. In February 

2014, 88 countries had at least one sea level station while 55 countries did not posses 

a single one of them. Landlocked countries were dropped from the analysis. The 

country with the largest number of sea level stations is the United States with 227 

stations; France follows with 83, Chile with 76 stations, and the UK with 68 stations. 

Twenty eight different countries, including Bangladesh and the Ukraine, have only 

one station. The sample contains 143 observations. 

Figure 2 presents a histogram of the variable Stations. In February of 2014, there were 

914 known stations across the world but due to the limited availability of some of the 

variables, the dataset used for estimation has 886 stations. The list and number of 

stations was obtained from the Sea Level Station Monitoring Facility (SLSMF).8 The 

SLSMF monitors world sea level stations under the Global Sea Level Observing 

System Core Network and Regional Tsunami Warning Systems. These programs are 

coordinated by UNESCO’s Intergovernmental Oceanographic Commission.  

 

 

 

																																																								
8 The data are publicly available at http://www.ioc-sealevelmonitoring.org/index.php. Data used in this 
paper was accessed in February 8, 2014. 
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Figure 2: Number of Sea Level Stations by Country (02/14) 

 

The paper argues that leaders in large coalition systems provide more protection 

against disasters than their counterparts on small coalition systems. The estimate of 

the winning coalition (W) is a composite index of institutional variables that reflects 

the openness of a political system. Specifically, Bueno de Mesquita, Smith, Siverson, 

and Morrow (2003) operationalize W as a composite index of POLITY IV data on 

competitiveness of executive recruitment, openness of executive recruitment, and 

competitiveness of participation regime. The composition of the winning coalition 

also includes regime type as defined by Banks’s Cross National Time Series Data 

Archive. Systems with small winning coalitions resemble autocracies while systems 

with large winning coalitions are more similar to democracies. The size of the 

winning coalition has a minimum normalized value of 0 and a maximum of 1. The 
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paper updated the value of W as described above using POLITY IV data from 2012 

and Banks's Cross National Data for 2011.9 

Hypothesis 2 focuses on the exposure of the winning coalition to ocean-originated 

hazards. As mentioned above, the paper argues that members of the winning coalition 

are more vulnerable to ocean-originated disasters if a country’s capital is near the sea. 

In other to measure proximity to the coast, the paper used the CIA’s latitude and 

longitude for all 194 capitals in the world and calculated the distance from those 

coordinates to the nearest shore using Google Maps.10 The distance in kilometers 

from each capital (Capital Distance) is presented in Appendix 1 and a histogram of 

this variable is presented in Figure 3. The median distance to the shore is 8.095 

kilometers (Bandar Seri Begawan in Brunei is 8.49 kilometers away from the shore) 

while the minimum and maximum distances are .01862 (Port of Spain in Trinidad and 

Tobago) and 1146.76 (Islamabad in Pakistan) kilometers respectively. All 194 files 

with the distance calculated with Google Maps are available at the author’s website.11 

 

 

 

 

																																																								
9 The formula for W is not simple and describing it here would occupy significant space. The paper 
therefore refers the reader to Bueno de Mesquita, Smith, Siverson, and Morrow (2003) for details on 
the operationalization of the size of the winning coalition. 
10 https://www.cia.gov/library/publications/the-world-factbook/fields/2057.html 
11 Not all 194 countries are included in the empirical analyses because some of them are landlocked 
and a few others are missing information. 
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Figure 3: Distance from National Capitals to the Nearest Shore 

 

Estimation results use the natural logarithm plus one of Capital Distance as a first 

measure of shore proximity; this variable is labeled (ln(Capital Distance)). This 

functional form is quite useful because it measures orders of magnitude, thus 

minimizing potential measurement error.  

As mentioned before, sea-originated disasters are most destructive in coastal areas. 

These areas include the seashore but also zones that are relatively close to it. For 

instance, Hurricane Sandy affected large portions of Manhattan while the 7.5 meters 

wall of water produced by the storm surge of Typhoon Haiyan in the Philippines in 

November 2013 virtually washed away the city of Tacloban.12 Some tsunamis have 

horizontal inundations that reach eight kilometers. In other words, some cities located 

																																																								
12 http://www.nasa.gov/content/goddard/haiyan-northwestern-pacific-ocean/#.VIh3yove2M4 
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a few kilometers away from the shore might not be safe from ocean-originated 

hazards.  

Large coastal cities illustrate the complexity in measuring exposure—although a city 

center might be far away from the shore, the city itself may reach the coast. For 

instance, the CIA’s coordinates for Tunis, the capital of Tunisia, locate it 9.78 

kilometers away from the shore but the city is evidently a coastal city. Lisbon, the 

capital of Portugal, has coordinates that are 12.52 kilometers away from the shore. 

Yet an earthquake and subsequent tsunami destroyed the city in 1755. To account for 

this, the paper relies in a dummy variable called (Sea Capital) that is equal to one if 

the variable Capital Distance is less or equal than its median of 8.095 kilometers. 

Robustness tests estimate models with other functional forms of distance to the shore. 

The empirical analysis also controls for previous disasters. Countries are better 

prepared for disasters when they have high disaster propensity (Keefer, Neumayer, 

and Plümper 2011; Neumayer, Plümper, and Barthel 2014). In order to account for 

previous occurrences of sea-originated disasters, model specification includes the 

natural logarithm plus one of the cumulative number of storms by country from 1900 

to 2008; this variable is labeled (ln(Number Storms)). The number of storms is 

provided by the Emergency Events Database EM-DAT at the Centre for Research on 

the Epidemiology of Disasters (CRED).13 This database contains information about 

the occurrence and characteristics of more than 16,000 disasters in the world since 

1900. It is well known that the EM-DAT database is susceptible to reporting biases 

																																																								
13 The database is available online at http:// www.emdat.be/ 
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(Guha-Sapir, Hargitt, and Hoyois 2004) and yet it provides one of the best publicly 

available databases on natural disasters. 

As an additional measure of exposure to ocean-originated hazards, the paper includes 

the natural logarithm plus one of the length of a country’s coastline in kilometers 

(ln(Length Coast)). This variable was obtained from the CIA’s World Factbook.14 The 

paper also explores the percentage of a country’s population in low elevation coastal 

zones (LECZ Population Pc). This variable was obtained from the Urban-Rural 

Population Estimates, v1 (2000) from NASA’s Socioeconomic Data and Application 

Center’s collection on Low Elevation Coastal Zones. Unfortunately, data are only 

available for the year 2000. At the time of writing, this is best source of global 

population data in low elevation coastal zones.15 

The paper also controls for countries’ vulnerability to tsunamis. Tsunamis can be 

caused by earthquakes, volcanoes, and landslides, among other factors. Earthquakes 

and volcanoes are more common in the Pacific Ocean because it contains multiple 

tectonic plates: Chile is mostly affected by the Nazca Plate, Mexico by the Cocos 

Plate, the west of the continental US and Canada is affected by the Juan de Fuca and 

the Pacific Plates, Japan is vulnerable to the Pacific and the Philippine Plates, and 

Indonesia is vulnerable to the Pacific and the Australian Plates. All countries in the 

Pacific Ocean have experienced short and long distance tsunamis. Therefore, the 

paper includes a dummy variable (Pacific) that is equal to one if the country has a 

coast on the Pacific Ocean and equal to zero otherwise. This variable is also equal to 
																																																								
14 This information is available at https://www.cia.gov/library/publications/the-world-
factbook/fields/2060.html. 
15 The data is publicly available at http://sedac.ciesin.columbia.edu/data/set/lecz-urban-rural-
population-estimates-v1. For details on how elevation is measured, the paper refers the reader to 
NASA’s Socioeconomic Data and Application Center. 
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one if the country is close to the point where the Pacific, Philippine, Australian, and 

Eurasian Plates converge. Indonesia is a country in this location. The list of the 

countries in the Pacific Ocean is presented in Appendix 2. 

Since multiple countries may experience the same natural hazards, sea level stations 

may play a role in reducing regional vulnerability. It is therefore possible that 

engagement in international cooperation and participation in international 

organizations might contribute to the development and deployment of sea level 

stations. To account for participation in international organizations related to the 

observation of sea levels, the paper created a dummy variable called (IOC 

Membership) that is equal to one if a country is a member of UNESCO’s 

Intergovernmental Oceanographic Commission in March of 2014.  

Likewise, it is possible that bilateral links might contribute to the deployment and 

maintenance of stations. In order to account for this, the paper controls for the number 

of diplomatic representatives in each country; this variable is labeled (Diplomatic 

Representation). For instance, there are 179 diplomatic representatives at the level of 

charge d’affaires, minister, ambassador, and other high-ranking positions in the US. 

This is the largest number of representation in a single country. The smallest number 

is in Nauru, where there are only 11 diplomats of the aforementioned ranks. Of 

course, the number of diplomatic representatives in a country is not a perfect measure 

of foreign assistance, but it gives a sense of how important a country is and how much 

technical assistance it may receive. The most recent measurement of this variable is 

for 2005 and it was obtained from the Diplomatic Exchange Database (Bayer 2006) at 

the Correlates of War Project. 
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It was argued before that sea level stations are also important for navigation, both 

commercial and recreational. Countries with economies that rely on commercial 

navigation therefore need to deploy more stations. As a measure of the importance of 

commercial navigation, and particularly global shipping, the paper uses a country’s 

liner shipping connectivity index (Shipping). This index, provided by the 2010 World 

Bank’s World Development Indicators, captures a country’s connection to global 

shipping networks through a measure of a country’s “number of ships, their container-

carrying capacity, maximum vessel size, number of services, and number of 

companies that deploy container ships in a country's ports. For each component a 

country’s value is divided by the maximum value of each component in 2004, the five 

components are averaged for each country, and the average is divided by the 

maximum average for 2004 and multiplied by 100. The index generates a value of 

100 for the country with the highest average index in 2004.”16 In the database used for 

estimation in this paper, the country with the maximum index value is China with an 

index of 132.47 while Qatar has the lowest value with an index of 2.1. 17 Summary 

statistics for all variables are presented in Appendix 3.  

 

 

																																																								
16 http://data.worldbank.org/indicator/IS.SHP.GCNW.XQ 

17 The paper originally controlled for countries’ wealth as measured by the natural logarithm of per 
capita gross domestic product in constant dollars (ln(GDPpc)), total population size as measured by the 
natural logarithm of population (ln(Population)), and the presence of foreign investment as measured 
by foreign direct investment as percentage of GDP (FDI). These variables were obtained from the 
World Bank’s World Development Indicators for 2010. Unfortunately, using these variables drastically 
reduces the number of observations. However, likelihood ratio tests not presented in the paper but 
available in the accompanying do-file, clearly demonstrate that these variables are jointly and 
individually not statistically significant. The only exception is Shipping, which is kept in the 
specification. The robustness test section below presents a version of Model 3 that controls for 
ln(GDPpc), ln(Population), and FDI. Substantive results remain unchanged.  
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Estimation Results 

The main estimation results are presented in Table 1. Models 1 to 3 are negative 

binomial count models where the dependent variable is the number of sea level 

stations by country. Model 1 is a baseline model that maximizes the number of 

observations by only controlling for ln(Capital Distance), ln(Number Storms), 

ln(Length Coast), LECZ Population Pc, Pacific, IOC Membership, and Diplomatic 

Representation.18 Model 2 adds the winning coalition W and the variable Shipping. 

Model 3 replaces the variable ln(Capital Distance) with the dummy variable Sea 

Capital, which is equal to one if the variable Capital Distance is less or equal than its 

median of 8.095 kilometers.  

Model 4 estimates a zero inflated negative binomial count model where the count 

equation is given as in Model 3 and where the inflation equation is determined by the 

size of the winning coalition, the natural logarithm of the number of people killed by 

storms plus one (ln(Storm Deaths)), and their interaction term. The mean number of 

deaths is 9555.5 with a variance of 3.39e09. This specification for the inflation 

equation is chosen because the effect of disaster-related casualties also depends on 

political systems (Quiroz Flores and Smith 2013). In this model, 70 countries have at 

least one sea level station while 46 do not have sea level stations. 

Table 1 presents full estimation results for models 1 to 4 with coefficients and 

standard errors in parentheses. 

  

																																																								
18 I thank an anonymous reviewer for this suggestion. 
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Table 1. Main Estimation Results. PLEASE SEE LaTEX File. 

             Model 1 Model 2 Model 3 Model 4 
W                                   1.663***        3.627***        3.575*** 
                             (0.53) (0.87) (0.88) 
ln(Capital Distance)   -0.109 -0.062                                 
             (0.07) (0.08)                                 
Sea Capital                                         2.256***        2.396*** 
                                             (0.82) (0.85) 
(W)(Sea Capital)                                       -2.897***       -3.023*** 
                                             (1.04) (1.06) 
ln(Number Storms)        0.364***        0.376***        0.371***        0.302**  
             (0.12) (0.12) (0.11) (0.13) 
ln(Length Coast)         0.379***        0.455***        0.448***        0.448*** 
             (0.11) (0.11) (0.11) (0.11) 
LECZ Population Pc -0.432       -3.222**        -2.380*         -2.323*   
             (0.69) (1.32) (1.25) (1.27) 
Pacific             0.546*   0.443 0.409 0.375 
             (0.29) (0.3) (0.29) (0.29) 
IOC Membership 0.72 0.686 0.695 0.719 
             (0.62) (0.88) (0.84) (0.87) 
Diplomatic Representation        0.012*** -0.003 -0.004 -0.003 
             (0.0) (0.01) (0.01) (0.01) 
Shipping                            0.024***        0.021**         0.019**  
                             (0.01) (0.01) (0.01) 
Intercept          -3.669***       -5.192***       -6.796***       -6.635*** 
             (0.84) (1.14) (1.22) (1.24) 
lnalpha    0.158 -0.123 -0.264 -0.336 
             (0.18) (0.21) (0.22) (0.23) 
Inflation Equation                                                                 
W                                                            -2.133 
                                                             (4.05) 
ln(Storm Deaths)                                                  -0.77 
                                                             (1.55) 
(W)ln(Storm Deaths)                                                 0.046 
                                                             (1.97) 
Intercept                                                    0.407 
                                                             (2.4) 
N            137 116 116 116 
LogLikelihood -279.487 -228.603 -225.11 -224.545 
DV: Number of Sea-Level Stations. Unit: Country. 
* p < 0.10, ** p < 0.05, *** p < 0.01 
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This section tests whether leaders in large coalition systems deploy more sea level 

stations than their counterparts in small coalition systems, and whether leaders across 

political systems deploy more stations if the country’s capital is near the coast.  

First, the positive and statistically significant coefficients for W in models 2 to 4 

indicate that countries will large winning coalitions have more sea level stations than 

countries with small winning coalitions. Substantively, results from Model 2 indicate 

that when the size of the winning coalition increases from zero to one, and all other 

covariates are set at their means, the number of stations jumps from .52 stations (with 

a standard error of .21 and 95 per cent confidence interval of [.10, .94]) to 2.75 

stations (with a standard error of .55 and 95 per cent confidence interval of [1.67, 

3.83]). According to Model 3, when the size of the winning coalition increases from 

zero to one, and all other covariates are set at their means, the number of stations 

jumps from .13 stations (with a standard error of .08 and 95 per cent confidence 

interval of [-.03, .29]) to 4.94 stations (with a standard error of 1.38 and 95 per cent 

confidence interval of [2.24, 7.65]). According to model 4, when the size of the 

winning coalition increases from zero to one, and all other covariates are set at their 

means, the number of stations jumps from .13 stations (with a standard error of .09 

and 95 per cent confidence interval of [-.04, .32]) to 5.29 stations (with a standard 

error of 1.53 and 95 per cent confidence interval of [2.28, 8.31]). These quantities of 

interest confirm that countries with large winning coalitions have more sea-level 

stations. 
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In order to test whether leaders across political systems deploy more stations if the 

country’s capital is near the coast, the paper focuses on the test of the restriction (Sea 

Capital)+(W)(Sea Capital).19 According to Model 3, the point estimate for this 

restriction is -.64 with a standard error of .40. To facilitate a substantive interpretation 

of the restriction and its interaction term (Brambor, Clark, and Golder 2006), figure 4 

presents point estimates of the restriction and their 95 per cent confidence interval for 

different values of W according to Model 3.20 

Figure 4: Point estimate of the linear restriction (Sea Capital)+(W)(Sea Capital) 

 

Figure 4 indicates that for large values of W —specifically W=1 and W=.75— the 

linear restriction is not significant; this means that the location of the capital in 
																																																								
19 A likelihood ratio test of the restricted model that omits the interaction term (W)(Sea Capital), 
indicates that the interaction term should be kept in the specification. The test is included in the 
accompanying do-file. I thank an anonymous reviewer for suggesting this test. 
20 I thank an anonymous reviewer for highlighting the need for a better interpretation of the restriction.  
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democratic countries does not determine the number of sea-level stations. This is 

precisely what the theory suggested—the logic of survival in large coalition systems 

compels politicians to provide large-scale protection regardless of the location of the 

capital city. However, as the size of the winning coalition decreases and political 

institutions become less democratic, the restriction becomes statistically significant 

and positive. In fact, the point estimate of the linear restriction when W=0 is the same 

as the point estimate of Sea Capital. The same conclusion can be derived from Model 

4, where the estimate of (Sea Capital)+(W)(Sea Capital) is -.62 with standard error if 

.41, which is indistinguishable from zero.  

Altogether, these results indicate that exposure of the capital city to ocean-originated 

hazards increases the number of stations in autocratic systems. Democratic 

politicians, according to the logic of political survival, provide protection to the entire 

country, including the capital city regardless of its location.  

This notwithstanding, the quantities of interest for the restriction (Sea 

Capital)+(W)(Sea Capital) are not as highly significant as the quantities produced by 

changes in the size of the winning coalition discussed above.21 Substantively, Model 3 

predicts that a country with an inland capital and W=0, and all other covariates set at 

their means, will have .11 stations (with standard error of .07 and 95 per cent 

confidence interval of [-.03, .25]). As predicted by the theory, this point estimate is 

not statistically significant—autocrats do not provide protection if members of the 

winning coalition are not exposed to hazards. However, if this same country moved 

the capital to the coast, the number of stations would increase to 1.05 stations (with 

																																																								
21 I thank an anonymous reviewer for stressing this point. 
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standard error of .49 and 95 per cent confidence interval of [.07, 2.03]). This quantity 

is statistically significant and positive, which was also predicted by the theory—

autocrats provide protection to coalition members if they are exposed to disasters. Yet 

the paper expresses some reservation about these results because the confidence 

intervals for these two quantities of interest slightly overlap. At the 90 per cent 

confidence level, the overlapping is minimal.22 The same trend is repeated in Model 

4. 

In sum, political institutions, and particularly the size of the winning coalition, have 

the strongest effect on the number of sea-level stations—a change from very small to 

very large coalitions is associated with a range of two to five additional stations. This 

is a result that holds for a number of robustness tests presented in the next section. 

Evidence on the effect of coastal capitals on the number of stations, although 

significant in point estimates, is more mixed in terms of quantities of interest. 

Robustness Tests 

To test the robustness of these results, the paper estimated eight additional models, 

which are presented in Appendix 4. Model 3r —an unrestricted version of Model 3—

includes the variables ln(GDPpc), ln(Population), and FDI in the specification. Model 

5 estimates the effect of the quadratic polynomial of a capital’s distance to the shore 

in order to avoid defining a coastal capital according to an arbitrary threshold. Model 

6 replaces the variable ln(Number Storms) with (ln(Storm Deaths)), which is the 

natural logarithm plus one of the cumulative number of people killed by storms by 

																																																								
22 The small number of observations is probably causing the problem with levels of significance. 
Unfortunately, increasing the number of observations for a cross-section of countries is beyond the 
scope of this article. 
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country from 1900 to 2008. This variable was also obtained from the Emergency 

Events Database EM-DAT at the Centre for Research on the Epidemiology of 

Disasters (CRED). The mean number of deaths is 9555.5 and it has a variance of 

3.39e09.  

In order to obtain a better balance in covariates, models 7 to 11 drop influential 

observations.23 Model 7 eliminates the four countries with the largest number of 

stations—the US with 227 stations, France with 83, Chile with 76, and the UK with 

68 observations. Model 8 eliminates observations with countries with a tradition of 

ocean research—the US, France, and the UK. The countries eliminated from models 7 

and 8 are also wealthy, democratic countries. Model 9 drops the observations for the 

US and Russia, as a history of political, military, and scientific competition may have 

determined the number of stations. Model 10 eliminates observations for very wealthy 

countries—these are countries with a natural logarithm of GDP per capita above the 

90th percentile. Model 11 eliminates observations for countries with W=1, the 

maximum value for the size of the winning coalition.  

The models in appendix 4 present similar characteristics to the models in table 1. 

First, all models present a positive and statistically significant estimate for the size of 

the winning coalition. Second, the estimate for Sea Capital is positive and significant, 

which is equivalent to the case where W=0 in (Sea Capital)+(W)(Sea Capital).24 This 

suggests that autocratic countries with costal capitals also provide protection against 

disasters. 

																																																								
23 I thank several anonymous reviewers for this suggestion. 

24 In models 3r, 7, and 10, the variable Sea Capital is significant at the 90 per cent only.	
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The point estimates of the restriction (Sea Capital)+(W)(Sea Capital) are -.71, -.29, -

.66, -.68, -.47, and -.28 for models 6, 7, 8, 9, 10, and 11 respectively. These point 

estimates have standard errors of .41, .40, .40, .42, .48, and .36 respectively. Clearly, 

these linear restrictions are not statistically significant, with the exception of model 6 

where the restriction is significant at the 90 per cent confidence level. This suggests 

that the location of the capital does not determine the number of stations in countries 

with large W systems. 

Model 5 confirms that autocratic countries with costal capitals also deploy sea level 

stations. This model relies on a quadratic polynomial of a capital’s distance to the 

shore and its interaction with the size of the winning coalition. The point estimate of 

the quadratic polynomial of distance is -.017 with a standard error of .008, which is 

statistically significant. Hence, when W=0, as the distance between the capital and the 

coast increases, autocratic governments deploy fewer stations. This is consistent with 

theoretical expectations stated in hypothesis 2. Likewise, the point estimate of the 

quadratic polynomial of distance and its interaction with W is .005 with a standard 

error of .003, which is not significant. This suggests distance from the shore to the 

capital in democratic countries does not determine the number of sea level stations.  

In terms of substantive results, the size of the winning coalition has the strongest and 

most consistent effect on the predicted number of sea level stations—changes from 

very small to very large coalitions is always associated with additional stations. The 

quantities of interest for the effect of Sea Capital, again, present the same trend—the 

point estimates have the sign and significance predicted by theory, but their 

differences are not as significant due to overlapping confidence intervals, particularly 
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in model 10 where very wealthy countries were dropped from the analysis. In spite of 

this, empirical results still provide strong and clear evidence in favor of the positive 

effect of democratic political institutions on protection against ocean-originated 

hazards. 

Conclusion 

Recent research on natural disasters has concentrated on the political effects of these 

natural hazards (Brass 1986; Keller 1992; Albala-Bertrand 1993;Garrett and Sobel 

2003; Achen and Bartels 2004; Sylves and Buzas 2007; Malhotra and Kuo 2009; 

Healy and Malhotra 2009, 2010; Bechtel and Hainmueller 2011; Gasper and Reeves 

2011; Keefer, Neumayer, and Plümper 2011; Reeves 2011; Chen 2013; Quiroz Flores 

and Smith 2013; Neumayer, Plümper, and Barthel 2014). Most of this work has 

highlighted the qualities of democratic institutions, but little emphasis has been placed 

on the protection provided by autocratic leaders. This paper takes a first step in this 

direction. 

Using sea level stations as lower bound for protection against ocean-originated 

disasters, the paper consistently shows that leaders in large coalition systems deploy 

more sea level stations than their counterparts in small coalition systems. The paper 

further contributes to our understanding of the relationship between politics and 

disasters by arguing that autocrats also provide protection when their key political 

supporters are located in a vulnerable area of their country. Empirical evidence 

suggest that if the national capital is near the coast, thus exposing members of the 

ruling coalition to ocean-originated hazards, leaders across political systems install 
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more sea level stations. Nonetheless, this conclusion should be taken with some 

caution, as some quantities of interest vary in significance.  

Future research should address this and other shortcomings in the paper, such as 

alternative measures of disaster protection, particularly since countries may 

experience different types of disasters. At the time, sea level stations continue to be 

the most important instrument to understand the effects of ocean-originated hazards 

where they are most lethal and destructive—on the shore. However, as disasters 

become more complex, new methods to protect the population are currently being 

deployed. Up to this point, this paper has shown that political institutions continue to 

determine protection against ocean-originated hazards, at least as defined by the 

number of sea level stations. 
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Appendix 1. Distance from National Capitals to the Nearest Shore 

Distance from National Capitals to the Nearest 
Shore 

Country Distance (km) 
Afghanistan 1096.48 
Albania 26.41 
Algeria 1.33 
Andorra 125.55 
Angola 0.34 
Antigua & Barbuda 0.057 
Argentina 18.81 
Armenia 280.17 
Australia 117.64 
Austria 360.22 
Azerbaijan 1.45 
Bahamas 0.527 
Bahrain 0.043 
Bangladesh 0.69 
Barbados 0.476 
Belarus 418.26 
Belgium 59.93 
Belize 49.51 
Benin 14.21 
Bhutan 422.27 
Bolivia 326.97 
Bosnia and Herzegovina 126.7 
Botswana 725.05 
Brazil 960.35 
Brunei 8.49 
Bulgaria 243.67 
Burkina Faso 793.6 
Burundi 1105.55 
Cambodia 152.55 
Cameroon 194.88 
Canada 478.09 
Cape Verde 0.84992 
Central African Republic 975.36 
Chad 1110.48 
Chile 88.35 
China 164.33 
Colombia 360.11 
Comoros 1.49 
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Congo 370.85 
Costa Rica 58.69 
Croatia 126.07 
Cuba 2.96 
Cyprus 17.21 
Czech Republic 401.35 
Democratic Republic of the 
Congo 370.96 
Denmark 3.08 
Djibouti 0.62158 
Dominica 1.03 
Dominican Republic 0.81859 
East Timor 3.76 
Ecuador 156.29 
Egypt 165.52 
El Salvador 28.26 
Equatorial Guinea 0.8031 
Eritrea 59.44 
Estonia 2.01 
Ethiopia 498.9 
Federated States of Micronesia 3.1 
Fiji 0.76886 
Finland 1.14 
France 138.33 
Gabon 0.40276 
Gambia 0.41013 
Georgia 254.57 
Germany 157.08 
Ghana 2.01 
Greece 7.49 
Grenada 0.02653 
Guatemala 83.79 
Guinea 0.73217 
Guinea-Bissau 0.09718 
Guyana 2.44 
Haiti 2 
Honduras 86.53 
Hungary 437.13 
Iceland 0.3938 
India 872.88 
Indonesia 4.8 
Iran 93.32 
Iraq 578.65 
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Ireland 1.89 
Israel 53.36 
Italy 24.71 
Ivory Coast 198.91 
Jamaica 3.35 
Japan 12.52 
Jordan 110 
Kazakhstan 1439.95 
Kenya 415.37 
Kiribati 0.56326 
Kosovo 167.75 
Kuwait 0.54724 
Kyrgyzstan 1797.24 
Laos 344.85 
Latvia 11.02 
Lebanon 1.69 
Lesotho 332.22 
Liberia 0.08623 
Libya 0.63361 
Liechtenstein 297.62 
Lithuania 259.29 
Luxembourg 268.51 
Macedonia 154.75 
Madagascar 160.66 
Malawi 574.24 
Malaysia 39.57 
Maldives 0.40967 
Mali 706.86 
Malta 0.34893 
Marshall Islands 0.23959 
Mauritania 6.14 
Mauritius 0.42767 
Mexico 241.83 
Moldova 162.67 
Monaco 0.48017 
Mongolia 1386.28 
Montenegro 36.48 
Morocco 2.8 
Mozambique 2.61 
Myanmar 7.7 
Namibia 265.18 
Nauru NA 
Nepal 725.31 
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Netherlands 25.61 
New Zealand 1.82 
Nicaragua 46.99 
Niger 822.27 
Nigeria 457.74 
North Korea 41.09 
Norway 87.42 
Oman 0.34648 
Pakistan 1146.76 
Palau 0.5951 
Panama 0.17693 
Papua New Guinea 3.35 
Paraguay 920.46 
Peru 6.38 
Philippines 2.13 
Poland 238.98 
Portugal 12.52 
Qatar 0.72569 
Romania 200.68 
Russia 618.45 
Rwanda 1082.66 
Samoa 1.14 
San Marino 19.13 
Sao Tome and Principe 0.7314 
Saudi Arabia 365.05 
Senegal 0.1 
Seychelles 0.79753 
Sierra Leone 0.69532 
Singapore 1.28 
Slovakia 382.68 
Slovenia 74.74 
Solomon Islands 0.39722 
Somalia 4 
South Africa 435.35 
South Korea 33.46 
South Sudan 1345.65 
Spain 322.78 
Sri Lanka 1.39 
St. Kitts and Nevis 0.68822 
St. Lucia 1.09 
St. Vincent and the Grenadines 0.76221 
Sudan 602.63 
Suriname 6.37 
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Swaziland 145.51 
Sweden 40.36 
Switzerland 327.6 
Syria 81.48 
Taiwan 17.36 
Tajikistan 1286.05 
Tanzania 0.27553 
Thailand 27.85 
Togo 0.11407 
Tonga 0.2574 
Trinidad and Tobago 0.01862 
Tunisia 9.78 
Turkey 177.44 
Turkmenistan 395.28 
Tuvalu 1.56 
Uganda 930.48 
Ukraine 444.07 
United Arab Emirates 2.37 
United Kingdom 60.05 
United States of America 170.56 
Uruguay 5.08 
Uzbekistan 1322.64 
Vanuatu 0.57769 
Venezuela 13.22 
Vietnam 95.73 
Yemen 147.59 
Zambia 880.36 
Zimbabwe 487.73 
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Appendix 2. Countries in the Pacific Ocean 

Countries in the Pacific Ocean 
COW Code Country 

2 United States of America 
20 Canada 
70 Mexico 
90 Guatemala 
91 Honduras 
92 El Salvador 
93 Nicaragua 
94 Costa Rica 
95 Panama 
100 Colombia 
130 Ecuador 
135 Peru 
155 Chile 
365 Russia 
710 China 
713 Taiwan 
731 North Korea 
732 South Korea 
740 Japan 
800 Thailand 
811 Cambodia 
816 Vietnam 
820 Malaysia 
830 Singapore 
835 Brunei 
840 Philippines 
850 Indonesia 
900 Australia 
910 Papua New Guinea 
920 New Zealand 
935 Vanuatu 
940 Solomon Islands 
946 Kiribati 
947 Tuvalu 
950 Fiji 
955 Tonga 
970 Nauru 
983 Marshall Islands 
986 Palau 
987 Micronesia 
990 Samoa 
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Appendix 3. Summary Statistics.  

Variable Mean Standard 
Deviation 

N 

Stations 6.196 22.281 143 
W 0.684 0.27 122 
Capital Distance 99.886 189.523 142 
LECZ Population Pc 0.166 0.203 142 
Number Storms 19.543 53.828 140 
Length Coast 4996.082 18352.691 141 
Pacific 0.273 0.447 143 
IOC Membership 0.909 0.288 143 
Diplomatic 
Representation 

47.42 39.508 143 

Shipping 21.113 23.021 133 
ln(GDPpc) 8.02 1.416 115 
ln(Population) 15.751 2.099 135 
FDI 4.81 6.285 113 
Storm Deaths 9555.5 58257.851 140 
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Appendix 4. Robustness Tests.  

 
                      

Model 3r    
          
Model 5    

          
Model 6    

          
Model 7    

          
Model 8    

          
Model 9    

         
Model 10    

         
Model 11  

W            4.087*** 1.071* 3.988*** 2.564*** 3.389*** 3.712*** 4.454*** 3.508** 

             (0.99) (0.59) (0.88) (0.86) (0.85) (0.9)  (0.95) (1.38) 

Capital Distance   -0.017**       

              (0.01)       

Capital Distance2  0.000*       

              (0.0)       

(W)(Capital 
Distance) 

 0.023**       

              (0.01)       

(W)(Capital 
Distance2) 

 -0.00*       

              (0.0)       

Sea Capital  1.787*  2.192*** 1.487* 1.996** 2.261*** 1.777* 2.327** 

             (1.0)   (0.83) (0.8) (0.82) (0.84) (0.98) (1.02) 

(W)(Sea Capital)  -2.153*  -2.903*** -1.783* -2.658*** -2.948*** -2.247* -3.488** 

             (1.22)  (1.05) (1.03)  (1.03) (1.06) (1.27) (1.53) 

ln(Number 
Storms)  

0.327*** 0.367***  0.316*** 0.328*** 0.379*** 0.304** 0.271** 

             (0.11) (0.12)  (0.11) (0.12) (0.12) (0.12) (0.11) 

ln(Length Coast)  0.389*** 0.462*** 0.467*** 0.463*** 0.473*** 0.449*** 0.384*** 0.565*** 

             (0.11) (0.10)  (0.11)  (0.10) (0.11) (0.11) (0.12) (0.13) 

LECZ Population 
Pc 

-1.988 -2.562** -2.056* -2.036* -2.146* -2.306* -0.447 -0.767 

             (1.27) (1.29) (1.24) (1.15) (1.22) (1.27) (1.49) (1.28) 

Pacific      0.594** 0.363 0.391 0.272 0.455 0.355 0.592* 0.418 

             (0.28) (0.29) (0.29) (0.28) (0.29) (0.31) (0.33) (0.32) 

IOC Membership 0.773 0.731 0.67 0.711 0.74 0.687 0.74 0.301 

             (0.87) (0.85) (0.85) (0.83) (0.84) (0.85) (0.84) (0.83) 

Diplomatic 
Representation 

0.003 -0.004 -0.003 -0.006 -0.008 -0.007 0.003 -0.006 

             (0.01) (0.01) (0.01) (0.01) (0.01)  (0.01) (0.01) (0.01) 

ln(GDPpc)    -0.026        

              (0.15)        

ln(Population) 0.02        

              (0.16)        

FDI          0.009        

              (0.03)        

Shipping     0.011 0.021** 0.020** 0.021*** 0.019** 0.023*** 0.01 0.017* 

              (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)  (0.01) (0.01) 

ln(Deaths)     0.134***      

               (0.05)      

Intercept    -7.202** -4.910*** -7.105*** -6.039*** -6.581*** -6.806*** -7.291*** -6.980*** 

             (3.47) (1.11) (1.21) (1.16) (1.2)  (1.23) (1.31) (1.51) 
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lnalpha    -0.470** -0.251 -0.25 -0.411* -0.273 -0.22 -0.444* -0.581* 

             (0.23) (0.22) (0.22) (0.25) (0.23) (0.22) (0.25) (0.34) 

N            102 116 116 112 113 114 94 88 

LogLikelihood -203.037 -226.547 -226.141 -197.84 -206.512 -214.525 -176.768 -131.448 

DV: Number of Sea-Level Stations. Unit: Country. 

* p < 0.10, ** p < 0.05, *** p < 0.01 
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