SEMIGROUPS WITH OPERATION-COMPATIBLE GREEN'S QUASIORDERS

ZSÓFIA JUHÁSZ, ALEXEI VERNITSKI

ABSTRACT. We call a semigroup on which the Green's quasiorder $\leq_{\mathcal{J}} (\leq_{\mathcal{L}}, \leq_{\mathcal{R}})$ is operation-compatible, a $\leq_{\mathcal{J}}$ -compatible ($\leq_{\mathcal{L}}$ -compatible, $\leq_{\mathcal{L}}$ -compatible) semigroup. We study the classes of $\leq_{\mathcal{J}}$ -compatible, $\leq_{\mathcal{L}}$ -compatible and $\leq_{\mathcal{R}}$ -compatible semigroups, using the smallest operation-compatible quasiorders containing Green's quasiorders as a tool. We prove a number of results, including the following. The class of $\leq_{\mathcal{L}}$ -compatible ($\leq_{\mathcal{R}}$ -compatible) semigroups is closed under taking homomorphic images. A regular periodic semigroup is $\leq_{\mathcal{J}}$ -compatible if and only if it is a semilattice of simple semigroups. Every negatively orderable semigroup can be embedded into a negatively orderable $\leq_{\mathcal{J}}$ -compatible semigroup.

1. Introduction

Green's relations \mathcal{L} , \mathcal{R} and \mathcal{J} are one of the most important tools in studying the structure of semigroups. They can also be viewed from a less common angle: as being defined via quasiorders (or preorders), which we shall refer to as *Green's quasiorders* and denote by $\leq_{\mathcal{L}}, \leq_{\mathcal{R}}$ and $\leq_{\mathcal{I}}$, respectively. Studying the properties of these quasiorders is of interest, because of the importance of Green's relations and due to the fact that in a certain sense these associated quasiorders contain 'more information' about a semigroup than Green's relations: given only a Green's quasiorder on a semigroup we can reconstruct the corresponding Green's relation, whereas the converse is not true. We shall call a semigroup $S <_{\mathcal{L}}$ -compatible, $<_{\mathcal{R}}$ -compatible and $<_{\mathcal{I}}$ compatible, respectively, if $\leq_{\mathcal{L}}$, $\leq_{\mathcal{R}}$ and $\leq_{\mathcal{I}}$ is operation-compatible on S. The aim of this paper is to explore some properties of the classes of $\leq_{\mathcal{L}}$ -compatible, $\leq_{\mathcal{R}}$ -compatible and $\leq_{\mathcal{J}}$ -compatible semigroups. These classes are natural to consider; operation-compatible quasiorders have the convenient property that the equivalences induced by them are congruences, hence yield factor semigroups. We shall denote the smallest operation-compatible quasiorders containing $\leq_{\mathcal{L}}, \leq_{\mathcal{R}}$ and $\leq_{\mathcal{J}}$ by $\leq_{\stackrel{\circ}{\mathcal{I}}}$,

 $\leq_{\mathcal{R}}$ and $\leq_{\mathcal{J}}$, respectively. In [9] it was shown that there is a close connection between $\leq_{\mathcal{J}}$ and the filters of a semigroup, and thus $\leq_{\mathcal{J}}$ can be used to determine the lattice of filters and the largest semilattice image of a semigroup.

2. Definitions and observations

2.1. **Main concepts.** A quasiorder (or preorder) on a set is a reflexive and transitive relation. If S is a semigroup, by S^1 one denotes S if it has an identity element or, otherwise, S with an added identity element. We shall call *Green's quasiorders* the relations defined on every semigroup as follows:

Definition 2.1. For any elements s, t of a semigroup S let

- $s \leq_{\mathcal{L}} t$ if and only if s = xt for some $x \in S^1$,
- $s \leq_{\mathcal{R}} t$ if and only if s = ty for some $y \in S^1$,
- $s \leq_{\mathcal{I}} t$ if and only if s = xty for some $x, y \in S^1$.

It is easy to show that the relations $\leq_{\mathcal{L}}, \leq_{\mathcal{R}}$ and $\leq_{\mathcal{J}}$ are quasiorders and that $\mathcal{L} = \leq_{\mathcal{L}} \cap \leq_{\mathcal{L}}^{-1}$, $\mathcal{R} = \leq_{\mathcal{R}} \cap \leq_{\mathcal{R}}^{-1}$ and $\mathcal{J} = \leq_{\mathcal{J}} \cap \leq_{\mathcal{J}}^{-1}$.

A quasiorder \leq on a semigroup S is left (right) operation-compatible if for all $a, b, c \in S$, $a \leq b$ implies $ca \leq cb$ ($ac \leq bc$). A quasiorder is operation-compatible if it is both left and right operation-compatible. Clearly, $\leq_{\mathcal{L}} (\leq_{\mathcal{R}})$ is right (left) operation-compatible on every semigroup. However, Green's quasiorders are not operation-compatible in general. As operation-compatible quasiorders on any semigroup form a complete lattice, for any quasiorder on a semigroup there exists a smallest operation-compatible quasiorder containing it.

Definition 2.2. We call a semigroup $\leq_{\mathcal{J}}$ -compatible ($\leq_{\mathcal{L}}$ -compatible, $\leq_{\mathcal{R}}$ -compatible) if $\leq_{\mathcal{J}}$ ($\leq_{\mathcal{L}}$, $\leq_{\mathcal{R}}$) is operation-compatible on S.

Definition 2.3. Denote by $\leq_{\mathring{\mathcal{J}}} (\leq_{\mathring{\mathcal{L}}}, \leq_{\mathring{\mathcal{R}}})$ the smallest operation-compatible quasiorder containing $\leq_{\mathcal{J}} (\leq_{\mathcal{L}}, \leq_{\mathcal{R}})$.

Relations $\leq_{\mathring{\mathcal{J}}}$, $\leq_{\mathring{\mathcal{L}}}$ and $\leq_{\mathring{\mathcal{R}}}$ will be a useful instrument for us in this paper because, obviously, a semigroup is $\leq_{\mathcal{J}}$ -compatible ($\leq_{\mathcal{L}}$ -compatible, $\leq_{\mathcal{R}}$ -compatible) if and only if $\leq_{\mathcal{J}} = \leq_{\mathring{\mathcal{L}}}$ ($\leq_{\mathcal{L}} = \leq_{\mathring{\mathcal{L}}}$, $\leq_{\mathcal{R}} = \leq_{\mathring{\mathcal{L}}}$).

In [10] a description of $\leq_{\mathring{\mathcal{J}}}$, $\leq_{\mathring{\mathcal{J}}}$ and $\leq_{\mathring{\mathcal{R}}}$ was given. In Lemma 2.1 below we give another description, which will be convenient later. In this lemma, for any relation θ , $\bar{\theta}$ denotes the transitive closure of θ .

Let S be a semigroup. Define the relation $\prec_{\hat{\sigma}}$ as follows: for any $s,t \in S$ let $s \prec_{\mathring{\mathcal{T}}} t$ if and only if $s = t_1 s_1 t_2$ and $t = t_1 t_2$ for some $t_1, t_2, s_1 \in S^1$. Define the relation $\prec_{\mathring{\mathcal{L}}} (\prec_{\mathring{\mathcal{R}}})$ as follows: for any $s, t \in S$ let $s \prec_{\stackrel{\circ}{\mathcal{L}}} t$ $(s \prec_{\stackrel{\circ}{\mathcal{R}}} t)$ if and only if $t_2 \in S$, $t_1, s_1 \in S^1$ $(t_1 \in S, t_2, s_1 \in S^1)$.

Lemma 2.1. In every semigroup

- $(1) \leq_{\stackrel{\circ}{\mathcal{J}}} = \overline{\prec_{\stackrel{\circ}{\mathcal{J}}}}$ $(2) \leq_{\stackrel{\circ}{\mathcal{L}}} = \overline{\prec_{\stackrel{\circ}{\mathcal{L}}}}$ $(3) \leq_{\stackrel{\circ}{\mathcal{R}}} = \overline{\prec_{\stackrel{\circ}{\mathcal{R}}}}.$

Proof. We only prove Statement 1, since Statements 2 and 3 can be verified similarly.

If $a \leq_{\mathcal{J}} b$ then a = sbt for some $s, t \in S^1$; since $a = sbt \prec_{\stackrel{\circ}{\mathcal{T}}} sb \prec_{\stackrel{\circ}{\mathcal{T}}} b$, we have $a \prec_{\mathring{\mathcal{J}}} b$. Therefore, $\leq_{\mathcal{J}} \subseteq \prec_{\mathring{\mathcal{J}}}$. It is obvious that if $a \prec_{\mathring{\mathcal{J}}} b$ then for any $s,t\in S^1$, $sat\prec_{\mathring{\mathcal{J}}}sbt$. Hence, if $a\overrightarrow{\prec_{\mathring{\mathcal{J}}}}b$ then for any $s,t\in S^1$ $sat \overrightarrow{\prec_{\mathring{\mathcal{J}}}} sbt$. Therefore, $\overrightarrow{\prec_{\mathring{\mathcal{J}}}}$ is operation-compatible. Obviously, $\overrightarrow{\prec_{\mathring{\mathcal{J}}}}$ is transitive. Therefore, $\leq_{\stackrel{\circ}{\mathcal{T}}} \subseteq \overline{\prec_{\stackrel{\circ}{\mathcal{T}}}}$.

It is obvious that $\prec_{\mathring{\mathcal{I}}}$ is contained in the operation-compatible closure of $\leq_{\mathcal{J}}$. Hence, $\overrightarrow{\prec_{\mathring{\mathcal{I}}}}$ is contained in the transitive operation-compatible closure of $\leq_{\mathcal{J}}$, which is exactly $\leq_{\mathring{\tau}}$. Therefore, $\leq_{\mathring{\tau}} \supseteq \overline{\prec_{\mathring{\tau}}}$.

2.2. Examples of classes of $\leq_{\mathcal{I}}$ -compatible semigroups.

Proposition 2.1. Every group and every commutative semigroup is $\leq_{\mathcal{J}}$ -compatible, $\leq_{\mathcal{L}}$ -compatible and $\leq_{\mathcal{R}}$ -compatible.

Proof. The result follows from the fact that in a group or in a commutative semigroup $\prec_{\stackrel{\circ}{\mathcal{I}}} \subseteq \leq_{\mathcal{I}}, \prec_{\stackrel{\circ}{\mathcal{L}}} \subseteq \leq_{\mathcal{L}} \text{ and } \prec_{\stackrel{\circ}{\mathcal{R}}} \subseteq \leq_{\mathcal{R}} \text{ and from Lemma}$ 2.1.

As we shall see in Sections 4 and 5, every band is $\leq_{\mathcal{J}}$ -compatible, but not necessarily $\leq_{\mathcal{L}}$ -compatible and $\leq_{\mathcal{R}}$ -compatible.

2.3. Monoids. As the following statements demonstrate, results concerning $\leq_{\frac{\circ}{\tau}}$ are not affected by a semigroup being a monoid; however, results concerning $\leq_{\mathring{\mathcal{L}}}$ and $\leq_{\mathring{\mathcal{R}}}$ are affected by this fact.

Proposition 2.2. Consider a semigroup S and a monoid $M = S \cup 1$ with the neutral element 1, where $1 \notin S$. Then the relation $\leq_{\mathring{\mathcal{J}}}$ on S is equal to the restriction of $\leq_{\mathring{\mathcal{J}}}$ on S.

Proof. This follows from the description of $\leq_{\frac{\circ}{7}}$ in Lemma 2.1.

Proposition 2.3. In every monoid $\leq_{\mathring{\mathcal{J}}} = \leq_{\mathring{\mathcal{L}}} = \leq_{\mathring{\mathcal{L}}}$.

Proof. From the definition it follows that in any monoid M we have $\prec_{\mathring{\mathcal{T}}} = \prec_{\mathring{\mathcal{L}}} = \prec_{\mathring{\mathcal{L}}}$. Therefore, by Lemma 2.1, $\leq_{\mathring{\mathcal{T}}} = \leq_{\mathring{\mathcal{L}}} = \leq_{\mathring{\mathcal{L}}}$.

3. Congruences

3.1. Induced equivalence relations. For any element s in a semi-group S and any congruence θ on S, s^{θ} shall denote the image of s under the natural homomorphism $S \to S/\theta$.

Lemma 3.1. Let S be a semigroup and let $s, t \in S$ be such that $s \leq_{\mathring{\mathcal{J}}} t$ $(s \leq_{\mathring{\mathcal{L}}} t, s \leq_{\mathring{\mathcal{L}}} t)$. Then for any congruence θ on S, $s^{\theta} \leq_{\mathring{\mathcal{L}}} t^{\theta}$ $(s^{\theta} \leq_{\mathring{\mathcal{L}}} t^{\theta}, s^{\theta} \leq_{\mathring{\mathcal{L}}} t^{\theta})$ in S/θ .

Proof. If $s \leq_{\mathring{\mathcal{J}}} t$ then by Lemma 2.1 there exist $s = s_0, s_1, \ldots, s_n = t \in S$ such that $s_i \prec_{\mathring{\mathcal{J}}} s_{i+1}$ for every $0 \leq i \leq n-1$. Fix an arbitrary $0 \leq i \leq n-1$. Then $s_i = abc$ and $s_{i+1} = ac$ for some $a, b, c \in S^1$. Hence $s_i^{\theta} = a^{\theta}b^{\theta}c^{\theta}$ and $s_{i+1}^{\theta} = a^{\theta}c^{\theta}$ (where for $1_S \in S^1$ we have $1_S^{\theta} = 1_T \in T^1$), and so $s_i^{\theta} \prec_{\mathring{\mathcal{J}}} s_{i+1}^{\theta}$. Therefore by Lemma 2.1 $s^{\theta} \leq_{\mathring{\mathcal{J}}} t^{\theta}$. (The proof is similar for $\leq_{\mathring{\mathcal{L}}}$ and $\leq_{\mathring{\mathcal{L}}}$.)

Definition 3.1. Denote by $\mathring{\mathcal{J}}$, $\mathring{\mathcal{L}}$ and $\mathring{\mathcal{R}}$ the equivalences $\leq_{\mathring{\mathcal{J}}} \cap \leq_{\mathring{\mathcal{J}}}^{-1}$, $\leq_{\mathring{\mathcal{L}}} \cap \leq_{\mathring{\mathcal{L}}}^{-1}$ and $\leq_{\mathring{\mathcal{R}}} \cap \leq_{\mathring{\mathcal{L}}}^{-1}$, respectively.

For any operation-compatible quasiorder \leq , $\leq \cap \leq^{-1}$ is a congruence (see [13] for instance), hence $\mathring{\mathcal{J}}$, $\mathring{\mathcal{L}}$ and $\mathring{\mathcal{R}}$ are congruences.

Definition 3.2. Let us say that a semigroup is $\mathring{\mathcal{J}}$ -trivial ($\mathring{\mathcal{L}}$ -trivial, $\mathring{\mathcal{R}}$ -trivial) if $\mathring{\mathcal{J}}$ ($\mathring{\mathcal{L}}$, $\mathring{\mathcal{R}}$) is the identity relation on S.

We call a quasiorder on a semigroup S a negative quasiorder if $st \leq s$ and $st \leq t$ for every s, t in S; S is called negatively orderable if there exists an operation-compatible negative partial order on S.

Proposition 3.1. A semigroup is $\mathring{\mathcal{J}}$ -trivial if and only if it is negatively orderable.

Proof. If a semigroup S is $\mathring{\mathcal{J}}$ -trivial then, obviously, $\leq_{\mathcal{J}}$ is an operation-compatible negative partial order on S. If there is an operation-compatible negative partial order \leq on S then $\prec_{\mathring{\mathcal{J}}} \subseteq \leq$, by the definition of $\prec_{\mathring{\mathcal{J}}}$, hence, $\leq_{\mathring{\mathcal{J}}} \subseteq \leq$, therefore, $\leq_{\mathring{\mathcal{J}}}$ is an order and, hence, $\mathring{\mathcal{J}}$ is the identity relation.

According to the usual convention, let us call a congruence θ on a semigroup S a $\mathring{\mathcal{J}}$ -trivial congruence ($\mathring{\mathcal{L}}$ -trivial congruence, $\mathring{\mathcal{R}}$ -trivial congruence) if S/θ is a $\mathring{\mathcal{J}}$ -trivial semigroup ($\mathring{\mathcal{L}}$ -trivial semigroup).

Proposition 3.2. In any semigroup S, the congruence $\mathring{\mathcal{J}}$ ($\mathring{\mathcal{L}}$, $\mathring{\mathcal{R}}$) is the smallest $\mathring{\mathcal{J}}$ -trivial ($\mathring{\mathcal{L}}$ -trivial, $\mathring{\mathcal{R}}$ -trivial) congruence.

Proof. Let S be a semigroup. First we prove that $\mathring{\mathcal{J}}$ is contained in every $\mathring{\mathcal{J}}$ -trivial congruence on S. Let θ be a $\mathring{\mathcal{J}}$ -trivial congruence on S and let $s,t\in S$ be such that $s\ \mathring{\mathcal{J}}\ t$. Then we have $s\le_{\mathring{\mathcal{J}}} t$ and $t\le_{\mathring{\mathcal{J}}} s$. By Lemma 3.1 in the factor semigroup S/θ we have $s^\theta\le_{\mathring{\mathcal{J}}} t^\theta$ and $t^\theta\le_{\mathring{\mathcal{J}}} s^\theta$. Then $t^\theta\ \mathring{\mathcal{J}}\ s^\theta$ and since θ is a $\mathring{\mathcal{J}}$ -trivial congruence, we have $t^\theta=s^\theta$. Therefore $\mathring{\mathcal{J}}\subseteq \theta$.

We show that $\mathring{\mathcal{J}}$ is a $\mathring{\mathcal{J}}$ -trivial congruence on S. Suppose that $s^{\mathring{\mathcal{J}}} \leq_{\mathring{\mathcal{J}}} t^{\mathring{\mathcal{J}}}$ and $t^{\mathring{\mathcal{J}}} \leq_{\mathring{\mathcal{J}}} s^{\mathring{\mathcal{J}}}$ for some s and t in S. Then – by Lemma 2.1 – there exists a sequence $s = s_0, \ldots, s_n = t$ in S such that $s_i^{\mathring{\mathcal{J}}} \prec_{\mathring{\mathcal{J}}} s_{i+1}^{\mathring{\mathcal{J}}}$ for every $0 \leq i \leq n-1$. By definition of $\prec_{\mathring{\mathcal{J}}}$ for every $0 \leq i \leq n-1$ there exist $a_i, b_i, c_i \in S^1$ such that $s_i^{\mathring{\mathcal{J}}} = a_i^{\mathring{\mathcal{J}}} b_i^{\mathring{\mathcal{J}}} c_i^{\mathring{\mathcal{J}}}$ and $s_{i+1}^{\mathring{\mathcal{J}}} = a_i^{\mathring{\mathcal{J}}} c_i^{\mathring{\mathcal{J}}}$ (where for $1_S \in S^1$, $1_S^{\mathring{\mathcal{J}}}$ is defined as $1_S^{\mathring{\mathcal{J}}} = 1_{S/\mathring{\mathcal{J}}} \in (S/\mathring{\mathcal{J}})^1$). Then $s_i^{\mathring{\mathcal{J}}} = a_i^{\mathring{\mathcal{J}}} b_i^{\mathring{\mathcal{J}}} c_i^{\mathring{\mathcal{J}}} = (a_i b_i c_i)^{\mathring{\mathcal{J}}}$, hence $s_i \mathring{\mathcal{J}} a_i b_i c_i \leq_{\mathring{\mathcal{J}}} a_i c_i \mathring{\mathcal{J}} s_{i+1}$, thus $s_i \leq_{\mathring{\mathcal{J}}} s_{i+1}$ for every $0 \leq i \leq n-1$. By transitivity $s \leq_{\mathring{\mathcal{J}}} t$ follows. Similarly we can show that $t \leq_{\mathring{\mathcal{J}}} s$, thus $s \mathring{\mathcal{J}} t$ and so $s^{\mathring{\mathcal{J}}} = t^{\mathring{\mathcal{J}}}$ holds. Therefore $S/\mathring{\mathcal{J}}$ is a $\mathring{\mathcal{J}}$ -trivial semigroup and $\mathring{\mathcal{J}}$ is a $\mathring{\mathcal{J}}$ -trivial congruence.

The statement regarding the congruences $\mathring{\mathcal{L}}$ and $\mathring{\mathcal{R}}$ can be proved similarly. \Box

As a comment to the previous result, we would like to emphasize that we do not say that every congruence containing $\mathring{\mathcal{J}}$ is $\mathring{\mathcal{J}}$ -trivial. For instance, a free semigroup obviously has non- $\mathring{\mathcal{J}}$ -trivial factor semigroups, and it is $\mathring{\mathcal{J}}$ -trivial. Indeed, let A be an alphabet. Then – by Lemma 2.1 – it is easy to show that for any u,v in the free semigroup A^+ we have $u \leq_{\mathring{\mathcal{J}}} v$ if and only if v is a subword of u. Hence $u \leq_{\mathring{\mathcal{J}}} v$ and $v \leq_{\mathring{\mathcal{J}}} u$ imply u = v, and so A^+ is $\mathring{\mathcal{J}}$ -trivial.

One might think incorrectly that if in a semigroup $\mathcal{J} = \mathring{\mathcal{J}}$ ($\mathcal{L} = \mathring{\mathcal{L}}$, $\mathcal{R} = \mathring{\mathcal{R}}$) then it is a $\leq_{\mathcal{J}}$ -compatible ($\leq_{\mathcal{L}}$ -compatible, $\leq_{\mathcal{R}}$ -compatible) semigroup. However, this is wrong even in semigroups which are $\mathring{\mathcal{J}}$ -trivial; now we present an example of a $\mathring{\mathcal{J}}$ -trivial semigroup which is not $\leq_{\mathcal{J}}$ -compatible.

Example 3.1. For any positive integer n, the semigroup OE_n of all order-preserving decreasing mappings on an n-element set is well known to be negatively orderable (we cannot find this observation in the literature formulated explicitly, although it is implicit in, for instance, [6]). Hence, OE_n is $\mathring{\mathcal{J}}$ -trivial. Consider the mappings $\alpha, \beta \in OE_4$ defined as follows. Let $\alpha: 4 \mapsto 3, 3 \mapsto 2, 2 \mapsto 1$ and $\beta: 4 \mapsto 3, 3 \mapsto 3, 2 \mapsto 1$ (and $1 \mapsto 1$, as in every element of OE_n). Then $\alpha \not\leq_{\mathcal{J}} \beta$, since $rank(\alpha) \not\leq rank(\beta)$ (where the rank of a mapping is the size of its image). Let us demonstrate that $\alpha \leq_{\mathring{\mathcal{J}}} \beta$ ($\alpha \leq_{\mathring{\mathcal{J}}} \beta, \alpha \leq_{\mathring{\mathcal{R}}} \beta$). Indeed, let $\alpha_1: 4 \mapsto 4, 3 \mapsto 2, 2 \mapsto 2, \beta_1: 4 \mapsto 4, 3 \mapsto 3, 2 \mapsto 1$ and $\beta_2: 4 \mapsto 3, 3 \mapsto 3, 2 \mapsto 2$. It is easy to see that $\beta = \beta_1\beta_2$ and $\alpha = \beta_1\alpha_1\beta_2$, hence by Lemma 2.1 $\alpha \leq_{\mathring{\mathcal{J}}} \beta$ ($\alpha \leq_{\mathring{\mathcal{J}}} \beta, \alpha \leq_{\mathring{\mathcal{L}}} \beta$).

As to an example of a completely different kind, any free semigroup with at least two generators is also a $\mathring{\mathcal{J}}$ -trivial semigroup with $\leq_{\mathring{\mathcal{J}}} \neq \leq_{\mathcal{J}}$.

3.2. Homomorphic images of $\leq_{\mathcal{L}}$ -compatible, $\leq_{\mathcal{R}}$ -compatible and $\leq_{\mathcal{J}}$ -compatible semigroups. The class of $\leq_{\mathcal{J}}$ -compatible semigroups is not closed with respect to subsemigroups (for example, a counterexample can be produced on the basis of Corollary 6.1 below). However, the following is true:

Theorem 3.1. The class of $\leq_{\mathcal{J}}$ -compatible ($\leq_{\mathcal{L}}$ -compatible, $\leq_{\mathcal{R}}$ -compatible) semigroups is closed under taking homomorphic images.

Proof. Let S be a $\leq_{\mathcal{J}}$ -compatible semigroup and let T be a homomorphic image of S under a homomorphism $\alpha: S \to T$. Let $s, t \in S$ be such that $\alpha(s) \leq_{\mathring{\mathcal{J}}} \alpha(t)$ in T. Then – by Lemma 2.1 – there is a sequence $s = s_0, s_1, \ldots, s_n = t \in S$ such that for every $0 \leq i \leq n-1$, $\alpha(s_i) = \alpha(a_i)\alpha(b_i)\alpha(c_i)$ and $\alpha(s_{i+1}) = \alpha(a_i)\alpha(c_i)$ for some $a_i, b_i, c_i \in S^1$ (where for $1_S \in S^1$, $\alpha(1_S)$ is defined as $\alpha(1_S) = 1_T \in T^1$). Let us fix an index $0 \leq i \leq n-1$. Then $a_ib_ic_i \leq_{\mathring{\mathcal{J}}} a_ic_i$ in S and as $\leq_{\mathring{\mathcal{J}}} = \leq_{\mathcal{J}}$ in S, there exist $u_i, v_i \in S^1$ such that $a_ib_ic_i = u_ia_ic_iv_i$. Then $\alpha(s_i) = \alpha(a_ib_ic_i) = \alpha(u_ia_ic_iv_i) = \alpha(u_i)\alpha(a_ic_i)\alpha(v_i) \leq_{\mathcal{J}} \alpha(a_ic_i) = \alpha(s_{i+1})$. Hence, $\alpha(s_i) \leq_{\mathcal{J}} \alpha(s_{i+1})$ and by transitivity, $\alpha(s) \leq_{\mathcal{J}} \alpha(t)$. For $\leq_{\mathcal{L}}$ and $\leq_{\mathcal{R}}$ the statement can be proved similarly.

4. Regular periodic $\leq_{\mathcal{J}}$ -compatible ($\leq_{\mathcal{L}}$ -compatible, $\leq_{\mathcal{R}}$ -compatible) semigroups

In this section we shall provide a description of regular periodic $\leq_{\mathcal{J}}$ -compatible, $\leq_{\mathcal{L}}$ -compatible and $\leq_{\mathcal{R}}$ -compatible semigroups.

By \mathcal{J}^{\sharp} one denotes the smallest congruence containing \mathcal{J} . It is well known that in regular semigroups the congruence \mathcal{J}^{\sharp} plays a special role: it is the smallest semilattice congruence; see, for instance, Proposition 3.2.3 in [5].

Lemma 4.1. In a regular semigroup, $\mathcal{J}^{\sharp} = \mathring{\mathcal{J}}$.

Proof. From Proposition 3.2 and from $\mathcal{J} \subseteq \mathring{\mathcal{J}}$ it follows that $\mathcal{J}^{\sharp} \subseteq \mathring{\mathcal{J}}$. Let us prove that $\mathring{\mathcal{J}} \subseteq \mathcal{J}^{\sharp}$. Indeed, by Proposition 3.2, $\mathring{\mathcal{J}}$ is the smallest $\mathring{\mathcal{J}}$ -trivial congruence. At the same time, \mathcal{J}^{\sharp} is the smallest semilattice congruence. Since every semilattice is $\mathring{\mathcal{J}}$ -trivial, \mathcal{J}^{\sharp} is a $\mathring{\mathcal{J}}$ -trivial congruence, hence by Proposition 3.2 $\mathring{\mathcal{J}} \subseteq \mathcal{J}^{\sharp}$.

Example 4.1. As the following example shows, in a regular semigroup $\mathcal{R}^{\sharp} \neq \mathring{\mathcal{R}}$ in general. Consider the variety $\mathbf{M}\mathbf{K_1}$ of semigroups defined by the identities $x = x^2$ and xy = xyx within the variety of all semigroups (the notation was first introduced in [11]). Let B denote the band which is free in $\mathbf{M}\mathbf{K_1}$ with generators $A = \{a_1, \ldots, a_n\}$ for some $n \geq 3$. Since B is a band, it is a regular semigroup. It is easy to see that \mathcal{R} is the identity relation on B, hence $\mathcal{R}^{\sharp} = \mathcal{R}$ is also the identity. We

show that $\mathring{\mathcal{R}}$ is not the identity on B. For a_1, a_2, a_3 in B we have $a_1a_2a_3 \geq_{\mathring{\mathcal{R}}} a_1a_3a_2a_3 = a_1a_3a_2$ and $a_1a_3a_2 \geq_{\mathring{\mathcal{R}}} a_1a_2a_3a_2 = a_1a_2a_3$, hence $a_1a_2a_3 \mathring{\mathcal{R}} a_1a_3a_2$. It is easy to see – and it also follows from Lemma 5.1 which will be proved in Subsection 5.2 – that $a_1a_2a_3 \neq a_1a_3a_2$ in B. Therefore $\mathring{\mathcal{R}}$ is not the identity relation on B and thus $\mathcal{R}^{\sharp} \neq \mathring{\mathcal{R}}$. Similarly we can show that in a regular semigroup $\mathcal{L}^{\sharp} \neq \mathring{\mathcal{L}}$ in general.

Lemma 4.2. If S is a $\leq_{\mathcal{J}}$ -compatible band of simple semigroups then S is a $\leq_{\mathcal{J}}$ -compatible semigroup.

The following statement is a classical result, see, for instance, Theorem 1.3.10 in [7] or Theorem 4.1.3 in [8]:

Theorem 4.1. (Clifford's Theorem) Every completely regular semigroup is a semilattice of completely simple semigroups.

Corollary 4.3. Every completely regular semigroup is $a \leq_{\mathcal{J}}$ -compatible semigroup.

Since every band is completely regular, by Corollary 4.3:

Corollary 4.4. Every band is $a \leq_{\mathcal{J}}$ -compatible semigroup.

Theorem 4.2. For a regular periodic semigroup S the following are equivalent:

- (1) S is $a \leq_{\mathcal{J}}$ -compatible semigroup
- (2) S is a band of simple semigroups
- (3) S is a semilattice of simple semigroups.

Proof. $1 \Rightarrow 2$ Let S be a regular periodic $\leq_{\mathcal{J}}$ -compatible semigroup. Then $\mathcal{J} = \mathring{\mathcal{J}}$ in S, hence by Proposition 3.2, \mathcal{J} is a $\mathring{\mathcal{J}}$ -trivial congruence on S. Therefore $B = S/\mathcal{J}$ is a $\mathring{\mathcal{J}}$ -trivial semigroup. Since S is regular, every \mathcal{J} -class of S contains an idempotent. It follows that each \mathcal{J} -congruence class of S is a semigroup, hence B is a band. We show that every \mathcal{J} -congruence class is a simple semigroup. For any element $s \in S$ let J_s^S, L_s^S, R_s^S denote the \mathcal{J}, \mathcal{L} and \mathcal{R} -class, respectively of s in S. Let T be an arbitrary \mathcal{J} -class of S. We show that $\mathcal{L}^T = \mathcal{L}^S|_T$ and $\mathcal{R}^T = \mathcal{R}^S|_T$. Let $s, t \in T$ be such that $s \mathcal{L}^S$ t. Let $e \in L_s^S$ be an idempotent (as S is regular, such an idempotent exists, see Proposition 2.3.2 in [8]) and let $s' \in J_s^S$ be an inverse of s such that s's = e. (Such an inverse exists, see [8]). Then e is a right identity in L_s^S (see Proposition 2.3.3 in [8]), therefore t = te = tss's and thus $t \leq_{\mathcal{L}}^T s$. Similarly we can show $s \leq_{\mathcal{L}}^T t$, hence $s\mathcal{L}^T t$ follows. Therefore $\mathcal{L}^T = \mathcal{L}^S|_T$ and $\mathcal{R}^T = \mathcal{R}^S|_T$ can be verified similarly. Since S, T are periodic, we have $\mathcal{J}^T = \mathcal{L}^T \circ \mathcal{R}^T = \mathcal{L}^S|_T \circ \mathcal{R}^S|_T = \mathcal{J}^S|_T = T \times T$ and thus T is a simple semigroup.

 $2 \Rightarrow 1$ It follows from Lemma 4.2 and Corollary 4.4.

 $3 \Rightarrow 2$ This implication is trivial.

 $1 \Rightarrow 3$ Let S be a regular periodic $\leq_{\mathcal{J}}$ -compatible semigroup. Then by Proposition 3.2 and Lemma 4.1, $\mathcal{J} = \mathring{\mathcal{J}} = \mathcal{J}^{\sharp}$ is a semilattice congruence on S. Above we proved that each \mathcal{J} -class in a regular periodic semigroup is a simple semigroup, thus S is a semilattice of simple semigroups. \square

Definition 4.1. A band is called a *left (right) normal band* if it satisfies the identity xyz = xzy (xyz = yxz).

Lemma 4.5. In any left normal band $\leq_{\mathring{\mathcal{R}}} = \leq_{\mathcal{R}} \subseteq \leq_{\mathcal{L}}$; in any right normal band $\leq_{\mathring{\mathcal{J}}} = \leq_{\mathcal{L}} \subseteq \leq_{\mathcal{R}}$.

Proof. Let B be a left normal band. The containment $\leq_{\mathcal{R}} \subseteq \leq_{\overset{\circ}{\mathcal{R}}}$ trivially holds. To verify $\leq_{\overset{\circ}{\mathcal{R}}} \subseteq \leq_{\mathcal{R}}$ it is sufficient to show that $\leq_{\mathcal{R}}$ is operation-compatible. Clearly, $\leq_{\mathcal{R}}$ is left operation-compatible. We show that $\leq_{\mathcal{R}}$ is also right operation-compatible. Let $s,t\in B$ be such that $s\leq_{\mathcal{R}} t$, namely, s=tr for some $r\in B$. Then for any $u\in B$, $su=tru=tur\leq_{\mathcal{R}} tu$, thus $\leq_{\mathcal{R}}$ is right operation-compatible, and hence $\leq_{\overset{\circ}{\mathcal{R}}}=\leq_{\mathcal{R}}$.

As to the second part of the statement, let $s, t \in B$ be such that $s \leq_{\mathcal{R}} t$, namely, s = tr for some $r \in B$. Then $s = tr = ttr = trt \leq_{\mathcal{L}} t$ and thus, $\leq_{\mathcal{R}} \subseteq \leq_{\mathcal{L}}$.

The dual statement can be proved similarly.

Lemma 4.6. Every left normal band is $\mathring{\mathcal{R}}$ -trivial, and every right normal band is $\mathring{\mathcal{L}}$ -trivial.

Proof. Let B be a left normal band. Let $e, f \in B$ be such that $e \leq_{\mathring{\mathcal{R}}} f$ and $f \leq_{\mathring{\mathcal{R}}} e$. By Lemma 4.5 it implies $e \leq_{\mathcal{R}} f$ and $f \leq_{\mathcal{R}} e$, hence there exist $x, y \in B$ such that e = fx, f = ey. Then $f = ey = fxy = eyxy = ey^2x = eyx = fx = e$ holds.

The dual statement can be proved similarly.

Lemma 4.7. Let S be a band. The following conditions are equivalent:

- (1) S is $\mathring{\mathcal{L}}$ -trivial ($\mathring{\mathcal{R}}$ -trivial);
- (2) S is $\mathring{\mathcal{L}}$ -trivial ($\mathring{\mathcal{R}}$ -trivial) and $\leq_{\mathcal{L}}$ -compatible($\leq_{\mathcal{R}}$ -compatibl9);

(3) S is a right (left) normal band.

Proof. $3 \Rightarrow 2$ By Lemma 4.6 every right (left) normal band is $\mathring{\mathcal{L}}$ -trivial ($\mathring{\mathcal{R}}$ -trivial). By Lemma 4.5 every right (left) normal band is an $\leq_{\mathcal{L}}$ -compatible semigroup ($\leq_{\mathcal{R}}$ -compatible semigroup).

 $2 \Rightarrow 1$ Obvious.

 $1 \Rightarrow 3$ Indeed, in a band we have $xyz \leq_{\mathring{\mathcal{R}}} xzyzy = xzy$. In the same way, $xzy \leq_{\mathring{\mathcal{R}}} xyz$. If the band is $\mathring{\mathcal{R}}$ -trivial then xyz = xzy, hence, the band is left normal. The result for right normal bands can be proved in the same way.

Theorem 4.3. A regular periodic semigroup is an $\leq_{\mathcal{L}}$ -compatible semigroup ($\leq_{\mathcal{R}}$ -compatible semigroup) if and only if it is a right normal band (left normal band) of \mathcal{L} -simple (\mathcal{R} -simple) semigroups.

Proof. Let S be a regular periodic semigroup which is a right normal band of \mathcal{L} -simple semigroups; thus, there is a congruence θ on S such that θ is a right normal band congruence and every θ -class is \mathcal{L} -simple. We show that $\leq_{\mathcal{L}} = \leq_{\mathring{\mathcal{J}}}$ in S. Clearly, $\leq_{\mathcal{L}} \subseteq \leq_{\mathring{\mathcal{J}}}$. Let $s, t \in S$ be such that $s \leq_{\mathring{\mathcal{J}}} t$. Let $B = S/\theta$. For any $s \in S$ let s^{θ} denote the image of s under the natural homomorphism $S \to S/\theta$. By Lemma 3.1 $s^{\theta} \leq_{\mathring{\mathcal{J}}} t^{\theta}$ follows. By Lemma 4.7 B is $\leq_{\mathcal{L}}$ -compatible semigroup, hence $s^{\theta} \leq_{\mathring{\mathcal{J}}} t^{\theta}$ implies $s^{\theta} \leq_{\mathcal{L}} t^{\theta}$ and therefore $s^{\theta} = x^{\theta}t^{\theta}$ for some $x \in S^{1}$ (where $1^{\theta} = 1_{B} \in B^{1}$). Then $s^{\theta} = x^{\theta}t^{\theta} = (xt)^{\theta}$, hence $s^{\theta} \in \mathcal{L}$ to thus $s^{\theta} \in \mathcal{L}$ and hence $s^{\theta} \in \mathcal{L}$ to $s^{\theta} \in \mathcal{L}$ to $s^{\theta} \in \mathcal{L}$ to $s^{\theta} \in \mathcal{L}$ and hence $s^{\theta} \in \mathcal{L}$ and hence $s^{\theta} \in \mathcal{L}$ to $s^{\theta} \in \mathcal{L}$ to $s^{\theta} \in \mathcal{L}$ thus $s^{\theta} \in \mathcal{L}$ and hence $s^{\theta} \in \mathcal{L}$ and hence $s^{\theta} \in \mathcal{L}$ to $s^{\theta} \in \mathcal{L}$ to $s^{\theta} \in \mathcal{L}$ to $s^{\theta} \in \mathcal{L}$ thus $s^{\theta} \in \mathcal{L}$ and hence $s^{\theta} \in \mathcal{L}$ to $s^{\theta} \in \mathcal{L}$ the $s^{\theta} \in \mathcal{L}$ to s^{θ}

For the other direction, let S be a regular periodic $\leq_{\mathcal{L}}$ -compatible semigroup. Then clearly, $\mathcal{L} = \mathring{\mathcal{L}}$ on S and hence by Proposition 3.2, \mathcal{L} is the smallest $\mathring{\mathcal{L}}$ -trivial congruence on S. In a regular semigroup every \mathcal{L} -class of S contains an idempotent (see [8]), hence $B = S/\mathcal{L} = S/\mathring{\mathcal{L}}$ is a band. By Proposition 3.2 B is $\mathring{\mathcal{L}}$ -trivial, therefore – by Lemma 4.7 – B is a right normal band. Let L be an arbitrary \mathcal{L} -class of S. Since \mathcal{L} is a band congruence on S, L is a subsemigroup of S. Let $s, t \in L$ be arbitrary elements and m be a positive integer such that $s^{\omega} = s^{m}$. Then $s^{\omega} \in L$ is a right identity in L (see [8]), hence $ts^{m} = ts^{\omega} = t$ and thus $t \leq_{\mathcal{L}}^{L} s$ in L. Similarly, $s \leq_{\mathcal{L}}^{L} t$. Therefore, L is an \mathcal{L} -simple semigroup. \square

5. Counterexamples

Every completely regular semigroup is $\leq_{\mathcal{J}}$ -compatible; an example below shows that not every inverse semigroup is $\leq_{\mathcal{J}}$ -compatible.

Every band is $\leq_{\mathcal{J}}$ -compatible; an example below shows that not every band is $\leq_{\mathcal{L}}$ -compatible ($\leq_{\mathcal{R}}$ -compatible).

- 5.1. An inverse semigroup which is not $\leq_{\mathcal{J}}$ -compatible. We shall demonstrate through an example that not every inverse semigroup is a $\leq_{\mathcal{J}}$ -compatible semigroup. Consider the set $X = \{a, b, c\}$ and define the partial transformations α, β, γ on X as follows: $\alpha = \{(a,b),(b,c)\}, \beta = \{(b,c),(c,a)\}, \gamma = \{(c,a),(a,b)\}$. The inverses (in the relation sense) α^{-1} , β^{-1} and γ^{-1} of these partial transformations are also partial transformations on X. Let S denote the semigroup of partial transformations generated by $\{\alpha,\beta,\gamma,\alpha^{-1},\beta^{-1},\gamma^{-1}\}$. It is known that this semigroup is an inverse semigroup. Then $\alpha\gamma = \{(b,a)\}$ and $\alpha\beta\gamma = \{(a,a),(b,b)\}$. Since $|Im(\alpha\beta\gamma)| = 2 > 1 = |Im(\alpha\gamma)|$, we have $\alpha\beta\gamma \nleq_{\mathcal{J}} \alpha\gamma$, but clearly $\alpha\beta\gamma \leq_{\mathring{\tau}} \alpha\gamma$. Therefore $\leq_{\mathring{\tau}} \neq \leq_{\mathcal{J}}$ in S.
- 5.2. A band which is not $\leq_{\mathcal{R}}$ -compatible. As we have seen in Corollary 4.4 every band is a $\leq_{\mathcal{J}}$ -compatible semigroup. Here we shall show through two examples that the analogous statements involving $\leq_{\mathcal{L}}$ -compatible and $\leq_{\mathcal{R}}$ -compatible semigroups, respectively, do not hold.

Like in Example 4.1, consider the variety $\mathbf{M}\mathbf{K_1}$ of bands defined by the identities $x = x^2$ and xy = xyx within the variety of all semigroups. Let B denote the band which is free in $\mathbf{M}\mathbf{K_1}$ with generators A =

 $\{a_1,\ldots,a_n\}$ for some $n\geq 3$. Obviously, $B\cong A^+/\theta$ where θ is the smallest $\mathbf{MK_1}$ -congruence on A^+ .

For any word $w \in A^+$ the *content of* w, denoted by c(w), is the set of all letters of w; let f(w) denote the first letter of w and let i(w) denote the subword of w obtained by keeping only the first occurrence of each letter of w and deleting all other letters of w. Let \overline{w} denote the image of w under the natural homomorphism $A^+ \to A^+/\theta$.

The following two facts can be found in literature [12, 3, 4] and are not difficult to prove.

Lemma 5.1. Let $v, w \in A^+$ be arbitrary words. Then

- (1) we have $w \theta i(w)$;
- (2) we have $v \theta w$ if and only if i(v) = i(w);
- (3) if $v \theta w$ then c(v) = c(w) and f(v) = f(w).

Lemma 5.2. Let $a, b \in B$ and $i(a) = x_1 x_2 \dots x_p$, $i(b) = y_1 y_2 \dots y_q$. We have $a \leq_{\mathcal{R}} b$ if and only if $q \leq p$ and $x_i = y_i$ for every $1 \leq i \leq q$.

Theorem 5.1. Let $a, b \in B$. We have $a \leq_{\overset{\circ}{\mathcal{R}}} b$ if and only if $c(b) \subseteq c(a)$ and f(a) = f(b).

Proof. (\Rightarrow) Suppose $a \leq_{\stackrel{\circ}{\mathcal{R}}} b$. Then by Lemma 2.1 for some positive integer m there exist elements $a = a_0, a_1, \ldots, a_m = b \in B$ such that $a_i \prec_{\stackrel{\circ}{\mathcal{R}}} a_{i+1}$ for every $0 \leq i \leq m-1$. Let us fix an arbitrary index $0 \leq i \leq m-1$. By definition there exist $d \in B$ and $e, f \in B^1$ such that $a_i = def$ and $a_{i+1} = df$. Let $w_{a_i}, w_{a_{i+1}}, w_d \in A^+$ and $w_e, w_f \in A^*$ be such that $a_i = \overline{w_{a_i}}, a_{i+1} = \overline{w_{a_{i+1}}}, d = \overline{w_d}, e = \overline{w_e}$ and $f = \overline{w_f}$ (where for the empty word $\lambda \in A^*$, $\overline{\lambda}$ is defined as $\overline{\lambda} = 1 \in B^1$). Then clearly $a_i = \overline{w_d} \ \overline{w_e} \ \overline{w_f} = \overline{w_d w_e w_f}$ and $a_{i+1} = \overline{w_d w_f}$. Therefore $c(a_{i+1}) = c(w_d w_f) \subseteq c(w_d w_e w_f) = c(a_i)$ and $f(a_{i+1}) = f(w_d w_f) = f(w_d w_e w_f) = f(a_i)$, hence $c(b) \subseteq c(a)$ and c(a) = c(b) follows.

 $(\Leftarrow) \text{ Suppose } c(b) \subseteq c(a) \text{ and } f(a) = f(b) \text{ and let } a = \overline{x_1 x_2 \dots x_p}, \\ b = \overline{y_1 y_2 \dots y_q} \text{ for some } x_1 x_2 \dots x_p, y_1 y_2 \dots y_q \in A^+. \text{ Then by definition } \{y_1, y_2, \dots, y_q\} = c(b) \subseteq c(a) = \{x_1, x_2, \dots, x_p\} \text{ and } x_1 = f(a) = f(b) = y_1. \text{ Also } i(y_1 x_1 x_2 \dots x_p y_2 \dots y_q) = i(x_1 x_1 x_2 \dots x_p y_2 \dots y_q) = i(x_1 x_2 \dots x_p). \text{ Therefore by Lemma } 5.1 \text{ we have } a = \overline{x_1 x_2 \dots x_p} = \overline{y_1 x_1 x_2 \dots x_p y_2 \dots y_q} = \overline{y_1} \overline{x_1 x_2 \dots x_p} \overline{y_2 \dots y_q} \leq_{\mathring{\mathcal{R}}} \overline{y_1} \overline{y_2 \dots y_q} = \overline{y_1 y_2 \dots y_q} = b, \text{ hence } a \leq_{\mathring{\mathcal{L}}} b.$

Corollary 5.3. Let $a, b \in B$ and $i(a) = x_1 x_2 ... x_p$, $i(b) = y_1 y_2 ... y_q$. We have $a \leq_{\mathcal{R}} b$ if and only if $\{y_1, y_2, ..., y_q\} \subseteq \{x_1, x_2, ..., x_p\}$ and $x_1 = y_1$.

Proof. The statement follows from Lemma 5.1 and Theorem 5.1.

Example 5.1. Let $n \geq 3$ be an integer. Then the free semigroup in $\mathbf{MK_1}$ over an n-element set is not an $\leq_{\mathcal{R}}$ -compatible semigroup. This follows from the fact that the conditions describing $\leq_{\mathcal{R}}$ in Corollary 5.3 and $\leq_{\mathcal{R}}$ in Lemma 5.2 are clearly not equivalent.

The dual variety $\mathbf{MK_2}$ of bands is defined by the identities $x = x^2$ and yx = xyx within the variety of all semigroups. Similarly to the above proof we can show that for any integer $n \geq 3$ the semigroup which is free in $\mathbf{MK_2}$ over an n-element set is not an $\leq_{\mathcal{L}}$ -compatible semigroup.

6. Embedding into a $\leq_{\mathcal{J}}$ -compatible semigroup

Every semigroup can be embedded into a simple semigroup as was proved by R. H. Bruck (see [1] or [2]). Since every simple semigroup is clearly a $\leq_{\mathcal{T}}$ -compatible semigroup, we have the following statement:

Corollary 6.1. Every semigroup can be embedded into a $\leq_{\mathcal{J}}$ -compatible semigroup.

In the rest of this section we shall show that if a semigroup S is $\mathring{\mathcal{J}}$ -trivial then S can be embedded into a $\leq_{\mathcal{J}}$ -compatible semigroup which is also $\mathring{\mathcal{J}}$ -trivial.

Let S be an arbitrary semigroup. For each triple $(a,b,c) \in S^3$ let us introduce new elements \overrightarrow{abc} and \overrightarrow{abc} (not contained by S), and let $A = \{\overrightarrow{abc}, \overrightarrow{abc} \mid a, b, c \in S\}$. Consider the free semigroup $(S \cup A)^+$. For any word $w \in S^+$ let \overline{w} denote the element of S represented by w. Let \approx denote the congruence on $(S \cup A)^+$ generated by the set of all relations of the form $st = \overline{st}$ where $s, t \in S$.

Let \sim denote the congruence on $(S \cup A)^+$ generated by the set of relations of the form $\overrightarrow{abc} \ ac \ abc = abc$ where $a, b, c \in S$. Let θ denote the smallest congruence on $(S \cup A)^+$ containing \approx and \sim , and let $\overrightarrow{S} = (S \cup A)^+/\theta$. For any $w \in (S \cup A)^+$ let $\theta(w)$ denote the image of w under the natural homomorphism $(S \cup A)^+ \to (S \cup A)^+/\theta = \overrightarrow{S}$.

By a \approx -step we shall understand replacing, in a word $w \in (S \cup A)^+$, a two-letter factorword of the form st by a one-letter factorword st or vice versa, a factorword of the form st by st, for some $s, t \in S$. By a \sim -step we shall understand replacing, in a word $w \in (S \cup A)^+$, a

factorword of the form $\overrightarrow{abc} \ ac \ abc$ by abc or vice versa, a factorword of the form abc by $\overrightarrow{abc} \ ac \ abc$, for some $a,b,c \in S$. By an inserting step we shall understand inserting a letter from $S \cup A$ somewhere between two letters of a word $w \in (S \cup A)^+$, or before the first or after the last letter of w.

The following statement is straightforward, as it follows immediately from the definition of θ :

Lemma 6.2. For any words $v, w \in (S \cup A)^+$, $\theta(v) = \theta(w)$ holds if and only if there is a finite sequence $v = v_0, v_1, \ldots, v_n = w \in (S \cup A)^+$ such that for every $0 \le i \le n-1$, v_{i+1} can be obtained by applying one \approx -step or one \sim -step to v_i .

Lemma 6.3. If $\theta(v) \leq_{\mathring{\mathcal{J}}} \theta(w)$ for some $v, w \in (S \cup A)^+$ then there exists a sequence $w = w_0, w_1, \ldots, w_n = v \in (S \cup A)^+$ such that for every $0 \leq i \leq n-1$ w_{i+1} can be obtained from w_i by one \approx -step or one \sim -step or one inserting step.

Proof. Since $\leq_{\mathring{\mathcal{J}}}$ is the transitive closure of $\leq'_{\mathring{\mathcal{J}}}$, hence, it is sufficient to prove the statement for words $v, w \in (S \cup A)^+$ such that $\theta(v) \leq'_{\mathring{\mathcal{J}}} \theta(w)$. Let $v, w \in (S \cup A)^+$ be such that $\theta(v) \leq'_{\mathring{\mathcal{J}}} \theta(w)$. Then by definition there exist $w_1, w_2, u \in (S \cup A)^*$ such that $\theta(w) = \theta(w_1)\theta(w_2)$ and $\theta(v) = \theta(w_1)\theta(u)\theta(w_2)$ (where for the empty word λ we put $\theta(\lambda) = 1 \in S^{-1}$). Then $\theta(w) = \theta(w_1w_2)$ and $\theta(v) = \theta(w_1uw_2)$. By Lemma 6.2, w_1w_2 can be obtained from w_1w_2 by \approx - and \sim -steps and similarly, v can be obtained from w_1w_2 by inserting steps, hence the statement follows. \square

Starting from now, when we speak about factorwords or subwords of a word w, we shall normally mean factorwords or subwords whose position within w is fixed. This should not lead to confusion.

Now we are going to extend the \overline{w} notation to certain 'good words' over $(S \cup A)^+$. Let us call a word $w \in (S \cup A)^+$ a bracketed word if the first and last letters of w are \overline{abc} and \overline{abc} , respectively, for some $a, b, c \in S$. For a bracketed word $w \in (S \cup A)^+$ with first letter \overline{abc} let \overline{w} be defined as $\overline{w} = \overline{abc}$. Let us call a sequence $w_1, w_2, \ldots, w_k \in (S \cup A)^+$ of words a good sequence if for every $1 \le i \le k$ either $w_i \in S^+$ or w_i is a bracketed word. For a good sequence $w_1, w_2, \ldots, w_k \in (S \cup A)^+$ define $\pi(w_1, w_2, \ldots, w_k)$ as $\pi(w_1, w_2, \ldots, w_k) = \prod_{i=1}^k \overline{w_i}$.

Let $w \in (S \cup A)^+$ be an arbitrary word. Let us call a good sequence w_1, w_2, \ldots, w_k a good factor-sequence of w, if w can be written in the form $w = u_0 w_1 u_1 w_2 \ldots w_k u_k$, for some $u_i \in (S \cup A)^*$, $0 \le i \le k$. For any word $w \in (S \cup A)^+$, define the trace Tr(w) of w as the set Tr(w) consisting of elements $\pi(w_1, \ldots, w_k)$ for all good factor-sequences w_1, \ldots, w_k of w. Let us call a good factor-sequence w_1, \ldots, w_k of w S-merged if it contains all letters from S occurring in w and such that any two words w_1, \ldots, w_k from S^+ do not neighbor one another within w; in other words, if $w = u_0 w_1 u_1 w_2 u_2 \ldots w_k u_k$ for some $u_i \in (S \cup A)^*$, $0 \le i \le k$, then we have $u_i \in A^*$ for each u_i , and if $w_j, w_{j+1} \in S^+$ then u_j is not empty.

The following statement is easy to prove:

Lemma 6.4. Let $w \in (S \cup A)^+$. For any good factor-sequence w_1, w_2, \ldots, w_k of w there is an S-merged good factor-sequence y_1, \ldots, y_m of w such that for every $1 \le i \le k$ there is a $1 \le j \le m$ such that w_i is a factorword of y_j and $\pi(y_1, \ldots, y_m) \le_{\tilde{\mathcal{T}}} \pi(w_1, \ldots, w_k)$.

Proof. Let $s_1s_2...s_l$ be the subword of w which we obtain by deleting the factorwords $w_1, w_2, ..., w_k$ from w and also deleting all letters of w from A. If $s_1s_2...s_l$ is not the empty word then for every $1 \le i \le l$ we have $s_i \in S$, hence s_i is a (one-letter) good factorword of w. Consider the factor-sequence $v_1, v_2, ..., v_{k+l}$ of w which consists of all the factors $w_i, 1 \le i \le k$ and $s_j, 1 \le j \le l$. Then $v_1, v_2, ..., v_{k+l}$ is a good factor-sequence which contains all letters of w from S. If $s_1s_2...s_l$ is the empty word then let l = 0 and let $v_1, v_2, ..., v_k$ be identical to $w_1, w_2, ..., w_k$. In both cases – as $w_1, ..., w_k$ is a subsequence of $v_1, v_2, ..., v_{k+l}$ – we have $\pi(v_1, v_2, ..., v_{k+l}) = \prod_{i=1}^{k+l} \overline{v_i} \le_{\mathcal{J}} \prod_{i=1}^k \overline{w_i} = \pi(w_1, w_2, ..., w_k)$.

If v_1, \ldots, v_{k+l} is S-merged then the proof is complete. Otherwise there exists an index $1 \leq i \leq k+l-1$ such that $v_i, v_{i+1} \in S^+$ and v_i and v_{i+1} are neighboring factorwords in w. Let $v_i' = v_i v_{i+1} \in S^+$ be the word obtained by the concatenation of the words v_i and v_{i+1} . Then $v_1, \ldots, v_{i-1}, v_i', v_{i+2}, v_{i+3}, \ldots, v_{k+l}$ is a good factor-sequence of w. Since $\overline{v_i'} = \overline{v_i v_{i+1}}$, we have $\pi(v_1, \ldots, v_{i-1}, v_i', v_{i+2}, v_{i+3}, \ldots, v_{k+l}) = \pi(v_1, v_2, \ldots, v_{k+l})$. By the repeated use of such concatenations of factorwords eventually we shall obtain an S-merged good factor-sequence y_1, y_2, \ldots, y_m of w such that $\pi(y_1, y_2, \ldots, y_m) = \pi(v_1, \ldots, v_{k+l}) \leq_{\frac{\circ}{l}} \pi(w_1, \ldots, w_k)$. (The

process will terminate after finitely many steps, since by each concatenation we decrease the number of factorwords in our good factor-sequence by one.) It is easy to see that for every $1 \le i \le n$, w_i is a factorword of y_i for some $1 \le j \le m$.

Lemma 6.5. If $v, w \in (S \cup A)^+$ are such that $\theta(v) \leq_{\mathring{\mathcal{J}}} \theta(w)$ then for any $r \in Tr(w)$ there exists $r' \in Tr(v)$ such that $r' \leq_{\mathring{\mathcal{J}}} r$.

Proof. By Lemma 6.3, it is sufficient to prove the statement for the cases when v can be obtained from w by one \approx -, one \sim - or one inserting step. Let $r \in Tr(w)$ be arbitrary and let w_1, \ldots, w_k be a good factor-sequence of w such that $r = \pi(w_1, \ldots, w_k)$. By Lemma 6.4 it is sufficient to prove the statement for the case when w_1, \ldots, w_k is S-merged.

Case 1: v can be obtained from w by one \approx -step. Let $s, t \in S$ be such that by changing the factorword st in w to st or changing the factorword st to st, we can obtain v. Let s and s denote the factorword which is changed before and after the change, respectively. Then s is a factorword of s for some s is s (as s is s is s is s-merged). Let s denote the factorword obtained from s is s changing the factorword s of s is s in s in s denote the factorword s in s

Case 2: v can be obtained from w by one \sim -step. Let z and z' denote the factorwords of w and v, respectively, such that z is changed to z' in the \sim -step. If $z = \overrightarrow{abcacabc}$ for some $a, b, c \in S$ then from the definition of a \sim -step it follows that we have one of two situations: (1) z is a factorword of some w_i where w_i is a bracketed word; or (2) $z = \overrightarrow{abcw_iabc}$ where $w_i = ac$, for some $1 \le i \le k$.

In case (1), z is a factorword of w_i for some $1 \leq i \leq k$ where w_i is a bracketed word. Let w_i' denote the factorword obtained from w_i by changing z to z'. If the first letters of z and w_i are identical then $\overline{z'} = \overline{w_i}$ and since $w_1, \ldots, w_{i-1}, z', w_{i+1}, \ldots, w_k$ is a good factor-sequence of v, the statement follows. If the first letters of z and w_i are different then $\overline{w_i'} = \overline{w_i}$ and as $w_1, \ldots, w_{i-1}, w_i', w_{i+1}, \ldots, w_k$ is a good factor-sequence of v, the statement follows. In case (2), when $z = \overline{abcw_iabc}$ then $\overline{z'} = \overline{abc} \leq_{\mathring{\mathcal{J}}} \overline{ac} = \overline{w_i}$, hence $\pi(w_1, \ldots, w_{i-1}, z', w_{i+1}, \ldots, w_k) \leq_{\mathring{\mathcal{J}}} \pi(w_1, \ldots, w_{i-1}, w_i, w_{i+1}, \ldots, w_k)$ and since $w_1, \ldots, w_{i-1}, z', w_{i+1}, \ldots, w_k$ is a good factor-sequence of v, the statement follows.

Now consider the opposite direction. If z = abc for some $a, b, c \in S$ then z is a factorword of w_i for some $1 \le i \le k$. If $w_i \in S^+$ then $w_i = y_1 abc y_2$ for some $y_1, y_2 \in S^*$ and $w_1, \ldots, w_{i-1}, y_1, \overrightarrow{abcacabc}, y_2, w_{i+1}, \ldots, w_k$ is a good factor-sequence of v and as $\overline{w_i} = \overline{y_1} \ \overrightarrow{abc} \ \overline{y_2} = \overline{y_1 abc} \ \overrightarrow{abc} \ \overrightarrow{y_2}$ thus

$$\pi(w_1,\ldots,w_k) = \pi(w_1,\ldots,w_{i-1},y_1,\overrightarrow{abcacabc},y_2,w_{i+1},\ldots,w_k),$$

hence the statement follows. If w_i is a bracketed word then let w_i' be the word obtained from w_i by changing z to z'. Then clearly $\overline{w_i'} = \overline{w_i}$, thus $\pi(w_1, \ldots, w_k) = \pi(w_1, \ldots, w_{i-1}, w_i', w_{i+1}, \ldots w_k)$ and since $w_1, \ldots, w_{i-1}, w_i', w_{i+1}, \ldots, w_k$ is a good factor-sequence of v, the statement follows.

Case 3: v can be obtained from w by one inserting step. Let $x \in S \cup A$ denote the letter inserted into w in the inserting step. For any factorword w_i of w let us say that x splits w_i if x is inserted into w between two consecutive letters of w_i . If z does not split w_i for any $1 \le i \le k$ then w_1, \ldots, w_k is a good factor-sequence of v. If x splits w_i for some $1 \le i \le k$ then let $y_1, y_2 \in S^+$ be such that $w_i = y_1 y_2$ and x is inserted between y_1 and y_2 in the inserting step. If $w_i \in S^+$ then $w_1, \ldots, w_{i-1}, y_1, y_2, w_{i+1}, \ldots, w_k$ is a good factor-sequence of v and $\pi(w_1, \ldots, w_{i-1}, y_1, y_2, w_{i+1}, \ldots, w_k) = \pi(w_1, \ldots, w_k)$. If w_i is a bracketed word then let $w_i' = y_1 x y_2$. Then $w_1, \ldots, w_{i-1}, w_i', w_{i+1}, \ldots, w_k$ is a good factor-sequence of v, and as $\overline{w_i'} = \overline{w_i}$, therefore $\pi(w_1, \ldots, w_{i-1}, w_i', w_{i+1}, \ldots, w_k) = \pi(w_1, \ldots, w_k)$. Hence, in both cases the statement follows.

The following statement is easy to prove:

Lemma 6.6. If $w \in S^+$ then for every $t \in Tr(w)$, $\overline{w} \leq_{\mathring{\mathcal{J}}} t$.

Lemma 6.7. Let S be $\mathring{\mathcal{J}}$ -trivial. Then if $v, w \in S^+$ are such that $\theta(v) \mathring{\mathcal{J}} \theta(w)$ then $\overline{v} = \overline{w}$.

Proof. Since $w_1 = w$ is a good factor-sequence of w and $\theta(v) \leq_{\mathring{\mathcal{J}}} \theta(w)$, by Lemma 6.5 there exists $r \in Tr(v)$ such that $r \leq_{\mathring{\mathcal{J}}} \overline{w}$. By Lemma 6.6 $\overline{v} \leq_{\mathring{\mathcal{J}}} r$, hence $\overline{v} \leq_{\mathring{\mathcal{J}}} \overline{w}$. Similarly, $\overline{w} \leq_{\mathring{\mathcal{J}}} \overline{v}$ holds and by $\mathring{\mathcal{J}}$ -triviality of $S, \overline{v} = \overline{w}$ follows.

Let $\widehat{S} = \overleftarrow{S}/\mathring{\mathcal{J}}$ and let τ denote the natural homomorphism $(S \cup A)^+ \to \overleftarrow{S}/\mathring{\mathcal{J}} = \widehat{S}$.

Lemma 6.8. S can be embedded into the semigroup \widehat{S} and \widehat{S} is a $\mathring{\mathcal{J}}$ -trivial semigroup.

Proof. Define the map $\alpha: S \to \widehat{S}$ in the following way: for any $s \in S$ let $\alpha(s) = \tau(w)$ where $w \in (S \cup A)^+$ is such that $s = \overline{w}$. Then τ is clearly well-defined and a homomorphism. By Lemma 6.7, τ is injective, hence is an embedding of S into \widehat{S} . By Proposition 3.2 \widehat{S} is a $\mathring{\mathcal{J}}$ -trivial semigroup.

Consider the infinite sequence $S=T_0,T_1,\ldots$ of semigroups such that $T_{i+1}=\widehat{T}_i$ for every $i\geq 0$ and define the semigroup T as the projective limit of $S=T_0,T_1,\ldots$ that is: let the set of elements of T be equal to $\bigcup_{i=0}^{\infty}T_i$; if $s,t\in T$ then let k be the smallest index such that $s,t\in T_k$ and define the product of s and t in T as the product of s and t in T_k .

Lemma 6.9. If S is a $\mathring{\mathcal{J}}$ -trivial semigroup and T is defined as above then:

- (1) S can be embedded into T
- (2) T is $\mathring{\mathcal{J}}$ -trivial
- (3) T is a $\leq_{\mathcal{J}}$ -compatible semigroup.

Proof. 1. This is obvious from the definition of T.

- 2. Suppose $s, t \in T$ and $s \stackrel{\circ}{\mathcal{J}} t$. Then, thanks to our description of $\stackrel{\circ}{\mathcal{J}}$ in Lemma 2.1, we also have $s \stackrel{\circ}{\mathcal{J}} t$ within one of the semigroups T_i . The semigroup T_i is $\stackrel{\circ}{\mathcal{J}}$ -trivial by Proposition 3.2; therefore, s = t. Hence, T is $\stackrel{\circ}{\mathcal{J}}$ -trivial.
- 3. We only need to prove that for any $s,t\in T$ if $s\leq_{\mathring{\mathcal{J}}}t$ then $s\leq_{\mathcal{J}}t$. Indeed, suppose that $s\leq_{\mathring{\mathcal{J}}}t$. By Lemma 2.1, it is sufficient to consider the case $s\leq'_{\mathring{\mathcal{J}}}t$. By the definition of $\leq'_{\mathring{\mathcal{J}}}$, there exist elements $s_1,t_1,t_2\in T^1$ such that $s=t_1s_1t_2,\ t=t_1t_2$. Assume that $s_1,t_1,t_2\in T$; if some of these elements are equal to 1, the proof can be easily modified accordingly. Consider a semigroup T_i containing all these elements $s_1,t_1,t_2\in T$. In the semigroup T_i we have $t_1s_1t_2t_1t_1s_1t_2=t_1s_1t_2t_1t_2t_1s_1t_2=t_1s_1t_2=s$ and thus $s\leq_{\mathcal{J}}t$ in T_i . Clearly this inequality is preserved when we factorise by $\mathring{\mathcal{J}}$ to produce T_{i+1} . Since T_{i+1} is a subsemigroup of T, we have $s\leq_{\mathcal{J}}t$ in T.

From the results of this section, the theorem below follows.

Theorem 6.1. Every $\mathring{\mathcal{J}}$ -trivial semigroup can be embedded into a $\mathring{\mathcal{J}}$ -trivial $\leq_{\mathcal{J}}$ -compatible semigroup.

In the beginning of this section we have recalled that every semigroup can be embedded into a simple (that is, \mathcal{J} -simple) semigroup. However, it is easy to show that not every semigroup can be embedded into an \mathcal{L} -simple (or \mathcal{R} -simple) semigroup. There is a certain analogy between this and what happens with $\mathring{\mathcal{J}}$ -trivial semigroups (as described in Theorem 6.1) versus $\mathring{\mathcal{L}}$ -trivial (or $\mathring{\mathcal{R}}$ -trivial) semigroups, see the example below.

Lemma 6.10. Let S be a semigroup and let $s, t, a, b \in S$. If $s \leq_{\mathcal{L}} t$ and ta = tb then sa = sb.

Proof. Since $s \leq_{\mathcal{L}} t$, one has s = ct for some $c \in S^1$ and thus sa = cta = ctb = sb.

Example 6.1. We give an example of an $\mathring{\mathcal{L}}$ -trivial semigroup which cannot be embedded into any $\leq_{\mathcal{L}}$ -compatible semigroup (not only into an $\mathring{\mathcal{L}}$ -trivial $\leq_{\mathcal{L}}$ -compatible semigroup). As we stated in Example 3.1 OE_4 is an $\mathring{\mathcal{L}}$ -trivial semigroup. Consider the following mappings in OE_4 . Let $\alpha_1: 4\mapsto 4, 3\mapsto 3, 2\mapsto 1$ (and $1\mapsto 1$, as in every element of OE_n). Let $\alpha_2: 4\mapsto 4, 3\mapsto 2, 2\mapsto 2$. Let $\alpha_3: 4\mapsto 3, 3\mapsto 3, 2\mapsto 2$. Let $\alpha=\alpha_1\alpha_3$ and let $\beta=\alpha_1\alpha_2\alpha_3$. By definition, $\beta\leq_{\mathring{\mathcal{J}}}\alpha$. It is easy to see that $\alpha\alpha_1=\alpha\alpha_3$. However, $\beta\alpha_1\neq\beta\alpha_3$. Therefore, by Lemma 6.10, in no semigroup containing OE_4 as a subsemigroup, we can have $\beta\leq_{\mathcal{L}}\alpha$.

References

- [1] Richard Hubert Bruck. A survey of binary systems. (Ergebnisse der Mathematik und ihrer Grenzgebiete. Neue Folge. Heft 20.) Berlin-Göttingen-Heidelberg: Springer-Verlag. VII, 185 p., 1958.
- [2] A.H. Clifford and G.B. Preston. *The algebraic theory of semigroups. Vol. 2.* Providence, R.I.: American Mathematical Society 1967. XVI, 350 p., 1967.
- [3] J. A. Gerhard. The lattice of equational classes of idempotent semigroups. Journal of Algebra, 15:195–224, 1970.
- [4] J. A. Gerhard and M. Petrich. Varieties of bands revisited. Proc. London Math. Soc., 58:323–350, 1989.
- [5] P.A. Grillet. Semigroups. An introduction to the structure theory. Pure and Applied Mathematics, Marcel Dekker. 193. New York, NY: Marcel Dekker, Inc. ix, 398 p., 1995.

- [6] K. Henckell and J.-É. Pin. Ordered monoids and J-trivial monoids. Algorithmic Problems in Groups and Semigroups (Proc. Conf. Lincoln, 1998), pp. 121-137. Trends in Mathematics, Birkhäuser, Boston, 2000.
- [7] P. M. Higgins. *Techniques of semigroup theory*. Oxford Science Publications. Oxford etc.: Oxford University Press. x, 258 p., 1992.
- [8] John M. Howie. Fundamentals of semigroup theory. Oxford: Clarendon Press, 1995.
- [9] Z. Juhász and A. Vernitski. Filters in (quasiordered) semigroups and lattices of filters. *Communications in Algebra*.
- [10] Z. Juhász and A. Vernitski. Using filters to describe congruences and band congruences of semigroups. Semigroup Forum volume=.
- [11] J.-É. Pin. Semigroupe de parties et relations de Green. Canadian Journal of Mathematics, 36:327–343, 1984.
- [12] J.-É. Pin, H. Straubing, and D. Thérien. Small varieties of finite semigroups and extensions. J. Austral. Math. Soc, 37:269–281, 1984.
- [13] Takayuki Tamura. Semilattice congruences viewed from quasi-orders. *Proc. Am. Math. Soc.*, 41:75–79, 1973.