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Abstract

Road safety programs use statistical models to predict the occurrence of accidents and casualties

and to identify the in�uencing factors that a�ect their occurrence. They are also used to identify

the causes of an accident and the hazardous locations where more accidents happen (the hot spots

or black spots). Causal factors could depend on human behaviour, road geometries, tra�c volumes,

weather, or the interactions among these. For decision makers, it is very important to understand

road patterns and behaviours to apply road safety improvements and road maintenance activities

e�ciently. Statistical modelling of road safety is conducted by taking the data of past accidents and

the attributes of many sites and using them to produce the best prediction models. The objective is

to discover the relationship between a function of the dependent variable (e.g., expected number of

accidents at a certain point), E(Yi) = λi, in relation to number of covariates, Xi1, Xi2, Xi3, ....Xik

that are assumed to have an e�ect on the dependent variable Yi. It is a standard practice in

road safety research to model accident counts Yi as Poisson distributed random variables that

Yi ∼ Pois(λi) corresponds to a random distribution of the accidents over time and space. Accident

data have often been shown to exhibit overdispersion, which make it essential to use alternatives

of Poisson to model such data. In this research, we apply the Poisson regression model and its

alternatives in addition to the binary and ordered probit logistic regression model.

Key words: Accidents injuries, Poisson regression, Over/Underdispersion, Quasipoisson models,

Negative binomial models, Hurdle models, Zero-in�ated models
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Chapter 1

Introduction

Tra�c accidents in Oman have gradually developed to be a serious issue that is insisting for more

focus. The huge social and economic losses caused by these accidents are a real burden to the wel-

fare of citizens as well as to the overall development of Oman. According to Al-Lamki (2010),'Oman

was ranked 5th in the list of countries with the highest road accident rates in the world according

to the statistics of World Health Organization as quoted by Oman Tribune on 24th Feb, 2010'.

Accordingly, the government in Oman has been setting many tra�c policies and interventions to

control the situation. It also has recently launched the road-safety research program under the

responsibility of the research council in Oman to encourage and support research in the area. Road

tra�c accidents(RTA) are, in fact, a global problem that has caught the attention of many coun-

tries. According to Al-Maniri(2013), RTA was ranked as the eleventh leading cause of deaths and

the ninth leading cause of disability around the globe in 2002. He wrote that every year, approxi-

mately 1.2 million people die because of RTA with a global mortality rate of 19 per 100,000 people.

Most developed countries have already established research and interventions that are e�ective in

reducing the dimensions of the problem; however, in the low- and middle-income countries, the

research and interventions to the problem are still in the baseline (Lawrence et al., 1992; Elvik,

1995; Wayatt et al., 1996; DiGuiseppi et al., 1997; VÃ¤gverket, 2006). On March 10, 2010, the

United Nations held a general assembly that adopted a text proclaiming the Decade of Action for
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Road Safety (2011-2020) to reduce tra�c-related deaths and injuries. The assembly was scheduled

to discuss a new resolution on road safety. The key components of the initiative for the decade are

to include governmental technical assistance, road tra�c education, road safety curriculum devel-

opment, helmets for kids, safe routes to school, research and evaluation, and setting up non-pro�t

helmet assembly plants that employ the physically disabled. According to Al-Lamki (2010), the

Moscow Declaration showed concern that more than 90 percent of RTA occur in low- and middle-

income countries. The annual cost of these deaths and injuries run to over 65 billion US dollars.

The declaration stated that by the year 2020, without appropriate action, road tra�c deaths will

become one of the leading causes of death in low- and middle-income countries. Most of the devel-

oped countries with declining death rates have been using Haddon's Matrix that was developed by

William Haddon in 1970. Haddon's Matrix analyses injury by looking at certain factors which, when

simpli�ed, are 'Host or Road User Factors, Vector or Vehicle Factors, Physical or Road Factors,

and Socio-economic Environmental Factors' in the horizontal axis of the matrix and 'Pre-Event

(Crash), during the Event and Post-event' in the vertical axis (Haddon, 1980).

The countries of the Gulf Cooperation Council (GCC) in particular su�er a real growing problem

of RTA with a true dearth of research in the road safety �eld. In the GCC countries, the growth of

economy, development of infrastructure, and motorisation over the last four decades have resulted

in a massive increase in automobile usage and ownership and consequently in an increase in the

RTA. In Oman, road accidents have indeed become a major concern for families and communities

(Al-Qareeni, 2008). Unfortunately, Oman has the highest fatality rate (23.7/100,000 pop.), and

despite this fact, very little has been done to establish the baseline facts of the problem. According

to Islam and Al-Hadhrami(2012), no comprehensive work has been undertaken on level trends and

determinants of RTA and its causality in Oman because of the scarcity of data in the past. Accord-

ing to Al-Lamki(2010), the fatality rate in Oman has now reached 30 per 100,000 people, 127 per

100,000 vehicles, and 111 per 100,000 licensed drivers, compared with 14, 17, and 21, respectively,

in the United States. She said that road safety education in Oman is needed for adults as well as

prelicence age groups, and this should be made a priority in conjunction with speed management.
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She stated that there is a need to work harder at changing drivers' behaviours and attitudes to-

wards the risks associated with high speed. In their study, Al-Ismaily and Probert (1998), stated

that there are on average 230 vehicles per 1,000 people in Oman, higher than many middle-income

countries. Motorisation level showed increasing trend levels in Oman, and between 2000 and 2009,

it increased by 26 percent. Road construction programmes have increased in parallel with other

development programmes in Oman. For example, in the 1960s, Oman had only 10 kilometres of

paved roads, which increased to more than 25,000 in 2009 according to the statistics of the MoNE,

2010.

In Oman, the most common cause of road deaths is excessive speeding, which caused 57 percent

of all deaths in 2007. Overtaking comes next, followed by drivers' carelessness, improper acts by

drivers, and vehicle condition. Thus, four out of the top �ve causes of death in Oman are road

user errors, and they constituted 89 percent of the causes of road deaths in 2007. This does not

include other road user related factors, such as tiredness and alcohol, which constitute a total of

only 2 percent of the causes of road deaths in Oman (Al-Lamki, 2010; Al-Maniri,2012). Between

2000 and 2009, the population of Oman increased by 21.6 percent, with a mean annual increase by

approximately 2.0 percent. On the other hand, the automobile �eet in the country increased by

52.4 percent, with a mean annual increase by 4.3 percent between 2000 and 2009. Reporting of RTA

related data by royal oman police (ROP) is thought to be of high coverage because of the enforce-

ment of a law that car insurance companies, garages,and repair establishments could not accept a

vehicle involved in an accident for insurance claim and repair if a police report is not produced.

Similar tra�c laws exist in other Arabian Gulf countries (El-Sadig et al., 2002; Ziyad and Akhtar,

2011). They suggested that Oman is currently in an era where it needs to establish di�erent public

transportation alternatives as the only modes available now are only the public-shared taxis and

buses. Oman envisions a 200-kilometre railway track for trains containing goods between the in-

dustrial cities of Sohar and Barka. The unavailability of public transport causes inconvenience, and

excessive dependence on private cars leads to heavy tra�c, a large number of accidents, and high

individual expenditure on transport. Belwal, R. and Belwal, S.(2010) stated that the Sultanate
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of Oman is marked by the second highest death toll from tra�c accidents in the world coming

after Libya, which is reported as the worse performing nation in this respect. In October 2011,

Oman experienced 670 tra�c accidents in which 110 persons were killed and 903 seriously injured.

Given the size of the population, these numbers signal very high casualty rates. (OECD countries

with populations that are three times as large may experience similar numbers in any given period.)

This research is aimed to analyse the accident related factors that in�uence the occurrence of

human casualties in Omani road. We want to study these factors in order to be able to identify

the magnitude and the direction of the e�ect of each factor on road accidents injuries. We have

the number of injuries per accident as our dependent variable which is a discrete count variable.

We start analyses with the assumption that the number of injuries per accidents follows a Poisson

distribution given that they occur among large number of trails and include many zeros in the

process. We also want to identify the causes of an accident and the hazardous locations where more

accidents happen (the hot spots or black spots). Causal factors of an accident could depend on

human behaviour, road geometries, tra�c volumes, weather, or the interactions among these. For

decision makers, it is very important to understand road patterns and behaviours to apply road

safety improvements and road maintenance activities e�ciently. Statistical modelling of road safety

is conducted by taking the data of past accidents and the attributes of many sites and using them to

produce the best prediction models. The objective is to discover the relationship between a function

of the dependent variable (e.g., expected number of accidents at a certain point), E(Yi) = λi, in

relation to number of covariates, Xi1, Xi2, Xi3, ....Xik that are assumed to have an e�ect on the

dependent variable Yi. It is a standard practice in road safety research to model accident counts Yi

as Poisson distributed random variables that Yi ∼ Pois(λi) corresponds to a random distribution of

the accidents over time and space. Accident data have often been shown to exhibit overdispersion,

which make it essential to use alternatives of Poisson to model such data. In this research, we

apply the Poisson regression model and its alternatives in addition to the binary and ordered probit

logistic regression model.
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1.1 Source of RTA Data in Oman

The main sources of tra�c accident data in Oman is the Department of Statistics at the Royal

Oman Police (ROP). Information about the crash, persons, and vehicles are recorded in three

separate databases, including variables such as time, location, day, date, number of deaths, number

of injuries, cause of the accident, and other variables. Data collected include a summary narrative

of the accident, a detailed scaled scene diagram, and information on accident events. Recently, with

the cooperation of the research council, the work is progressing to compile the three databases to

attain a full view of information on accidents easily, accurately, and comprehensively. The aim is

to develop a common and e�cient platform on which researchers and regional and international

educational institutes can obtain information about the tra�c situation in Oman. However, this

process may cause some lack in the data and issues with reliability until it is completely �nalised

and a report of limitations is available. Some variables, such as using seatbelts and mobiles, also

seem to be not correctly recorded. That's mostly because there is no clear mechanism on how

these should be collected. Other sources of accident data are patient records in the Ministry of

Health and information about roads and road geometry from the Ministry of Transportation. For

this research, we have obtained permission to use data of accidents from the Statistics Department

at ROP with support from the research council in Oman. We also received published booklets of

tabulated data for accidents in di�erent years.
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Chapter 2

Descriptive Statistics of the Data

The statistics in Table 1 of RTA for the years 2002-2012 that were published by ROP during the

GCC tra�c week 2013 showed that there is a gradual increase with �uctuations in the number of

accidents through the period, whereas the toll of accident injuries and deaths have rapidly increased.

Figure 1 shows the trend of deaths in RTA during the period more clearly. This came along with a

rapid increase in the number of speeding o�ences through the period according to the same source.

The statistics published indicate that males constitute 85 percent of the deaths and 73 percent of

the injuries. These statistics also revealed that around 80 percent of deaths and injuries are drivers

and passengers, whereas pedestrians make 22 percent of deaths and only 6 percent of injuries.

The statistics showed that overspeeding is the main reason for fatal accidents. The next cause is

negligence and then overtaking. This means that 90 percent of RTA in Oman are caused by wrong

driver behaviours in the road. The highest portion of RTA casualties was in the category of young

people as 47 percent of the fatalities are in the age category 26-50 and 32 percent in the age category

16-25. For injuries, statistics showed that 46 percent are in the age category 26-50 and 37 percent

in the age category 16-25. This indicates that more than 80 percent of RTA casualties were in the

category of young people. The same source showed a comparison between the tra�c in the years

2010-2011 and 2011-2012 in terms of number of total accidents, deaths, and injuries. It is found that

there was an increase in the latter year of 2, 15, and 3 percent respectively. The numbers are really
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high if we compare them with countries that have bigger populations and heavier tra�c volumes,

such as the UK. The reported road casualties in Great Britain as released in November, 2012 by

the Department of Transport showed that in the tra�c year ending June 2012, 1,790 people were

killed in reported road accidents, a 6 percent drop from the tra�c year ending June 2011 (1,901).

Overall, for the year ending June 2012, there were 148,100 reported injury accidents and 199,740

reported casualties of any severity (slight injuries, serious injuries and fatalities), falls of 3 percent

and 4 percent respectively from the year ending June 2011. In comparison, motor vehicle tra�c

levels have risen by 0.1 percent in the year ending June 2012. The ratio of Oman's population

(3,314,001 by 2012) to the UK's population (63,887,988 by 2012) is 5.2 percent while the ratio of

the RTA in Oman to that of the UK in the same year is 63.81 percent.

Year Total Deaths Injuries

2002 9107 580 7907
2003 10197 578 6735
2004 9460 637 6636
2005 9247 689 6658
2006 9869 681 7548
2007 8816 798 8531
2008 7982 951 10558
2009 7253 953 9783
2010 7571 820 10066
2011 7719 1056 11437
2012 8209 1139 11618

Average 8675.455 807.45 8861.55
St.Dev 941.19 185.18 1821.22

Table 2.1: Deaths, injuries and total of

accidents from 2002 to 2012

Figure 2.1: Deaths in Road Accidents from 2002 to

2012

Statistics in Table 2 show a sharp increase in the number of o�ences, and according to the

source, most of these are speeding o�ences. Driving tests doubled during the period with an average

of 340,523 and a standard deviation of 80,846. The total licences also doubled with an average of

753,245 and a standard deviation of 172,338. In the same way, the number of new vehicles increased

with an average of 108,045 and a standard deviation of 48,863. Vehicle inspections also increased
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during the period with an average of 29,944 and a standard deviation of 14,379.

Table 2.2: Statistics of driving tests, driving licences, new vehicles, vehicle
inspections and o�ences during the period 2002-2012

Year Driv.Tests Licences New Vehicle Vehic.Insp O�ence

2002 229363 541752 39376 38752 266792
2003 233401 567953 42561 38451 409081
2004 250400 578808 57130 36923 452267
2005 269188 620025 73421 41704 476221
2006 322808 667917 104891 52089 1433862
2007 336723 718697 136516 43229 1589895
2008 393796 777741 177441 21343 2067173
2009 408721 840002 127001 13971 2070347
2010 410824 909978 120662 13446 2205623
2011 436480 989279 137968 14556 2529634
2012 454052 1073538 171532 14927 3239953

Average 340523.27 753244.55 108045.36 29944.64 1521895.27

St. Dev 80846.97 172338.04 46588.72 13709.47 958048.37

2.1 The Population

Research studies are initiated by setting questions on issues that are of great relevance to speci�c

groups of individuals known as research population. A research population is the collection of indi-

viduals or elements that is relevant to the main focus of a scienti�c query. To get information about

this population accurately, we need to study information of every element. However, commonly the

large sizes of populations, make it di�cult for researchers to test every individual in the population

because it is too expensive and time consuming. This is the reason why researchers rely on sampling

techniques. A research population is also known as a well de�ned collection of individuals or objects

known to have similar characteristics. All individuals or objects within a certain population usually

have a common, binding characteristic or trait. The target population of this study includes

all the accidents that happen in Oman's roads with or without casualties. The individual element

of the population is an accident on Oman's roads. However, as some accidents were not reported

for di�erent reasons,the accessible population is used, which is every accident that happens in

Oman's roads that is reported in su�cient details to ROP.
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2.2 Types of Variables

In a research study, the measurable attributes of interest that varies for the elements in the popula-

tion are called variables. Mostly, the variables can be described as discrete or continuous. Discrete

variables can assume only certain values: �xed and countable. Continuous variables, on the other

hand, can take an in�nite number of values. Examples of discrete variables include number of

patients, students, accidents, citizens, sex, income level, and treatment group. Common examples

of continuous variables include age, height, weight, grades, blood pressure, and time. Discrete vari-

ables are divided into two categories: nominal(unordered) and ordinal(ordered). Nominal variables

take values, such as yes/no, female/male, or treatment A/B/C, where the order of the categories is

not important. A nominal variable that takes only two possible values is called binary. Ordinal vari-

ables take naturally ordered values, such as Statistics course (I, II, III) or education level (less than

high school, high school, college, graduate school). Ordering among the categories is meaningful,

but spacing between categories may be arbitrary. The variables at focus in this study are time, road

type, description of the road where the accident happened, gender, age, nationality of the driver,

the licence type, the type and the cause of accident, vehicle type, the number of involved vehicles,

and the number of involved persons. The majority of these variables are categorical variables that

simply indicate the existence of a certain condition, such as the road type at the accident location.

Table 3 summarises the variables of the study with basic descriptive statistics.
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Table 2.3: Descriptive statistics of the variables

abbrev variable namme n observ. median mad min max skew kurtosis

injuryc injury count 24191 1 1.48 0 6 1.55 2.29
injdgre injury severity level 24187 5 0.00 1 5 -1.31 1.04
dead no death count 24187 0 0.00 0 8 5.40 46.00
year year of accident 24192 2010 1.48 2009 2012 0.20 -1.04
time1 time of accident in hour 24192 14 7.41 1 24 -0.32 -0.71
day day of accident 24192 4 2.97 1 7 -0.03 -1.26
month month of accidet 24187 6 4.45 1 12 0.16 -1.22
roadtyp road type 24192 1 0.00 1 3 0.72 -0.71
acctyp accident type 24192 2 1.48 1 5 0.40 -1.33
loctndsc accident location description 24128 1 0.00 1 4 1.88 1.93
age age of driver 24043 28 8.90 10 96 1.30 1.86
cause cause of accident 24160 1 0.00 1 8 2.20 4.78
gender gender of driver 24186 1 0.00 1 2 2.57 4.62
nationlty nationality of driver 24192 1 0.00 1 2 1.74 1.03
climcond weather condition 24192 1 0.00 1 2 6.60 41.54
licens license availability 24192 1 0.00 1 2 4.47 18.02
vehctyp vehicle type 24192 1 0.00 1 6 1.47 0.91
hrmdtl harm detail 24192 2 1.48 1 5 0.86 0.68
prsns persons count 24192 2 1.48 1 49 5.28 66.96
vhcls vehicle counts 24192 1 0.00 1 37 6.83 267.69

This research is aimed to analyse human road casualties in Oman by observing the number of

injuries in an accident, the injury degree, and the number of deaths. Before proceeding to further

analysis, we perform descriptive statistics of the variables included in the study. Table 4 shows the

distribution of RTA by the number of injury cases, and it can be seen that 26.737 percent of RTA

resulted in no injury, whereas 73.263 percent included at least one injury case. Figure 2 illustrate

more the distribution of the accidents by number of injuries per accident.

Table 2.4: Distribution of RTA during 2009-2012 by cases of injury

Injury Cases/per accident Frequency Cum.Freq. Percentage Cum.Percent.

0 6468 6468 26.737 26.737
1 10365 16833 42.847 69.584
2 3573 20406 14.770 84.354
3 1633 22039 6.750 91.104
4 930 22969 3.844 94.949

5 or more 1223 24192 5.051 100.000

In the data set, the persons' degree of injury in RTA is classi�ed into �ve categories: fatal injury,

severe injury, moderate injury, slight injury,and no injury. Table 5 shows that in 49.50 percent of

the accidents, an injury occurred. Of these, 25.25 percent are accidents with slight injuries. The
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fatal and severe accidents represent 8.40 percent of the total accidents, and 14.839 percent are

accidents with moderate injury.

Table 2.5: Distribution of RTA during 2009-2012 by injury degree

Degree of Injury/per accident Frequency Cum.Freq. Percentage Cum.Percent.

Fatal 1091 1091 4.511 4.511
Severe 940 2031 3.886 8.401
Moderate 3589 5620 14.839 23.236
Slight 6109 11729 25.257 48.493
No Harm 12458 24187 51.507 100.000

Figure 3 shows the distribution of RTA by the number of death cases per accident. As can be

seen in the data, 89.713 percent of the RTA did not involve death cases while 8.744 percent included

one death case. Only 1.542 percent of the accidents included two or more cases. Table 6 illustrate

the levels of the variables in the research and the frequency of the accident per level.

Figure 2.2: Distribution of RTA during 2009-2012
by number of injury cases

Figure 2.3: Distribution of RTA during
2009â��2012 by deaths cases
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Table 2.6: De�nition of the Response/Exploratory Variables in the Study

Number Variable Variable De�nition Levels' Code/Value

1 age Age of Driver's at fault Years

2 time1 Time of Accidents Hours

3 day Day of Accidents 1=Sat→7=Fri

4 month Month of the Accident 1=Jan→12=Dec

5 gender Gender of Driver 1= Male 21641
2= Female 2545

6 nationality Nationality 1=Omani 20036
2= Non-Omani 4156

7 licens license status 1=Licensed 23139
2=Unlicensed 1053

8 roadtyp Type of Road 1=Main 14571
2=Sub 9164
3=Unpaved 457

9 location Location Description 1=Straight 19062
2=Roundabout 1291
3=Intersection 1603
4=Others 2172

10 cimcond Climate Condition 1=Normal 23672
2=Ubnormal 520

11 acctyp Type of Accident 1=Vehicle Collision 10483
2=Run-Over (person or animal) 3167
3=Over-Turn 3897
4=Fixed Object Collision 5575
5=Motorcycle/Bicycle 1070

12 cause Cause of Accident 1=Over-speeding 12398
2=carelessness 7458
3=Safe Distance 1425
4=Overtaking 1133
5=Fatigue/alcohol 638
6=Climate Condition 217
7=Vehicle 671
8=Road 220

13 vehtyp Vehicle Type 1=Saloon 15308
2=Pick up 2648
3=Four wheel 2750
4=Bi/Motorcycle 738
5=Heavy 2018
6=Other 730

14 hrmdtl Vehicle Harm Detail 1=Severe 7194
2=Moderate 10924
3=Slight 4469
4=No harm 1194
5=Not Speci�ed 411
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Chapter 3

Generalized Linear Models (GLMs)

In road safety programs, statistical modelling is conducted by taking the data of past accidents

and the attributes of many sites and using them to produce the best of prediction models. The

objective is to discover the relationship between a function of the dependent variable (e.g., expected

number of accidents at a certain point, i), E(Yi) = λi, in relation to the number of covariates,

Xi1, Xi2, Xi3, ....Xik, that are assumed to have an e�ect on the dependent variable Yi. It is a

standard practice in road safety research to model accident counts or accident casualties, Yi as

Poisson distributed random variables that Yi ∼ Pois(λi) corresponds to a random distribution of

the accidents over time and space. When modelling count data, (e.g. the number of occurrences of

an event in a �xed period and when the outcome variable is a count with a low arithmetic mean

(typically <10), standard ordinary least squares regression may produce biased results. Accident

data have often been shown to exhibit overdispersion, which make it more appropriate to use

alternatives of Poisson to model such data. Poisson and its alternative models belong to the

general linear model(GLM) that describes a linear model that has the stochastic component with

a non-normal distribution of errors.
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3.1 General Linear Models(OLS)

The GLM is a linear model that relates the response y to several predictors and can be written in

the form

yi = xiβ + εi, where εi ∼ N(0, σ2) (3.1)

where i = 1, 2, ....n; Yi is a dependent variable, Xi is a vector of k independent variables, vector

β is a vector that represents linear parameter estimates to be computed, and the vector εi are

zero-mean stochastic errors. Generally, the component of the normal linear regression model (OLS)

can be distinguished in two parts:

1. Stochastic or random component The Yi are usually assumed to have independent normal

distributions with E(Yi) = µi, with constant variance σ2, or Yi ∼ N(µi, σ
2
i )iid.

2. Deterministic or systematic component This speci�es the explanatory variable or the

independent variables for the model: β0 + β1x1 + β2x2 + .... + βkxk The covariates xi are

combined linearly with the coe�cients to form the linear predictorηi = Xiβ.

We view the two probability distributions that are most commonly used to model the stochastic

component of linear models. The normal or Gaussian distribution is most familiar because it is used

with GLMs. The binomial distribution describes the stochastic component for logistic regression

models with two outcomes.

The Normal Distribution

The normal distribution has two parameters, namely, the mean (µ) and the variance (σ2), with a

probability density function (PDF) as we can see in Figure 4 and Figure 5.

f(y;µ, σ) =
1

σ
√

2π
exp

{
−(y − µ)2

2σ2

}
−∞ < y <∞ (3.2)
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Figure 3.1: Normal distribution with di�erent
means (mu)

Figure 3.2: Normal distribution with di�erent val-
ues for variance (sigma2).

The Binomial Distribution

The binomial distribution is based on a Bernoulli trial, which is a random experiment in which

there are only two possible outcomes: success (S) and failure (F ). We conduct the Bernoulli trial

and let

yi =

 1 if the ith outcome is S

0 if the ith outcome is F

If the probability of 'success' is π, then the probability of 'failure' must be (1 − π) and the

probability mass function (PMF) is

f(yi;π) = πyi(1− π)(1−yi) where y = 0, 1 i = 1, 2, ..., n. (3.3)

The binomial distribution has two parameters which are

1. the sample size(n), which is the number of sampling units per experimental unit,

2. the probability of the success outcome of the response event (π),
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and the probability mass function PMF is

f(yi;π) =

(
n

yi

)
πyi(1− π)(n−yi) where y = 0, 1, .... i = 1, 2, ..., n. (3.4)

As we can see in Figure 6, the sample size must be a positive integer and the probability can

only have a value between zero and one. The two values of the parameters are not constrained

by each other's value. The response variable can be the proportion or the number (out of the n

sampling units) of successes for a given experimental unit. It could also be a binary response of an

experiment with two outcomes, such as yes/no or success/failure that is usually coded with 0/1.

The response variable, the number of successes, has a mean (nπ) and a variance [nπ(1− π)].

Figure 3.3: The binomial distribution for various values of π and n

The normal distribution is continuous and symmetric with no restrictions on the possible values

of the response variable. On the other hand, the binomial distribution is discrete and asymmetric

except when π = 0.5, and the response variable is limited to the integer values between zero and

the sample size inclusive. The sample size is an explicit parameter of the binomial distribution.

Binomial data are often approximated by a normal distribution when both success and failure mean
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counts, nπ and n(1− π), are greater than �ve. The binomial distribution is reasonably symmetric

and multivalued when this is the case.

3.2 Generalized Linear Models (GLM)

The traditional linear model, yi = xiβ+ εi, which we have just introduced above, is not suitable for

modelling the data that is not following normal distribution. Furthermore, the discrete response

variables, either count or categorical, can't assume normality by their nature and consequently gen-

eralised linear models(GLMs) were developed to model the event count models based on Poisson,

binomial and beta-binomial distributions (King, 1989), and Winkelmann and Zimmermann(1994).

The generalised linear model extends OLS such that g(·) is a link function that maps the rela-

tion between the non-normal stochastic component y with the systematic part of linear predictors

ηi = xiβ where yi ∼ EF (λi, φ). EF(λi, φ) is an exponential family distribution and φ is a known

or unknown scale parameter.

Assume that y1, y2, ..., yn are n independent observations of a random variable Yi. In the GLM,

we assume that Yi has a normal distribution with mean µi and variance σ2, and we assume that

the expected value µi is a linear function of k predictors that take values xi = (xi1, xi2, ..., xik) for

the ith case, so that

µi = xiβ (3.5)

where β is a vector of unknown parameters. We will generalise this in two steps, dealing with

the stochastic and systematic components of the model.

The Exponential Family

If the observations are assumed to be coming from a distribution of the exponential family, their

probability density function can be written in the form
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f(yi) = exp

{
yiθi − b(θi)

ai(θ)
+ c(yi, φ)

}
(3.6)

where θ is the natural parameter of location,φ is the dispersion parameter, and c(y;φ) are

unknown functions. The natural parameter θ relates to the mean, and the scale parameter φ

relates to the variance of the exponential family distribution members. One of its properties is that

if y follows a distribution from the exponential family, we can write var(y) = V (µi), where V is a

known variance function of µi = E(yi) and φ is a scale parameter. Here,θi and φ are location and

scale parameters, and ai(φ), b(θi), and c(yi, θ) are known functions. In the models considered here,

the function ai(φ) has the form ai(φ) = φ/wi, where wi is a known prior weight, usually one. If Yi

has a distribution in the exponential family then it has mean and variance

E(Yi) = µi = b
′
(θi)

var(Yi) = σ2
i = b

′′
(θi)

(3.7)

where b
′
(θi) and b

′′
(θi) are the �rst and second derivatives of b(θi). The exponential family

includes as special cases the normal, binomial, Poisson, exponential, gamma, and inverse Gaussian

distributions.

The Link Function

The second element of the generalisation introduces a one − to − one continuous di�erentiable

transformation function g(µi) that is called the link function. The link function plays a role in

GLMs such that it maps the relation between the non-normal response y and the linear predictor

η = βX, such that

ηi = g(µi) = xiβ (3.8)

Here we assume that the transformed mean follows a linear model where the quantity ηi is called

the linear predictor, and since the link function is one− to− one, we can invert it to obtain
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µi = g−1 = (xiβ) (3.9)

Here, we do not transform the response yi but rather its expected value µi. The standard linear

model(LM) we have described earlier is a generalised linear model with normal errors and identity

link. When the link function makes the linear predictor ηi the same as the canonical parameter θi,

we say that we have a canonical link. The identity is the canonical link for the normal distribution.

We will see that the 'logit' is the canonical link for the binomial distribution and the 'log' is the

canonical link for the Poisson distribution as mentioned in Table 7.

Table 3.1: Examples of common link functions based on the error distribution

Error distribution Default link Used for

Normal(Gaussian) Identity normally distributed error
Binomial Logit proportions or binary (0,1) data
Poisson Log counts (many zeros, various integers)

Maximum Likelihood Estimation

Likelihood is the basic concept when using the maximum likelihood method of �tting and testing

models. For discrete data, it is derived from the probability function of the assumed distribution,

such as the binomial distribution, that predicts the probability of obtaining speci�c data values

given known values of the parameters. The generalised linear models can all be �tted to data

using the same algorithm, a form of iteratively reweighed least squares. Given a trial estimate of

the parameters, we calculate the estimated linear predictor η̂i = xiβ̂ and use that to obtain the

�tted values µ̂i = g−1(η̂i). Using these quantities, we calculate the working dependent variable, the

derivative of the link function evaluated at the trial estimate

zi = η̂i + (yi − µ̂i)
dηi
dµi

, (3.10)

which is the derivative of the link function evaluated at the trial estimate. Next, we calculate

the iterative weights
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wi = π/b
′′
(θi)

[
dηi
dµi

2]
, (3.11)

where b
′′
(θi) is the second derivative of b(θi) evaluated at the trial estimate, and we have assumed

that ai(θ) has the usual form φ/wi. This weight is inversely proportional to the variance of the

working dependent variable zi given the current estimates of the parameters, with proportionality

factor φ. We obtain an improved estimate of φ regressing the working dependent variable zi on the

predictors xi using the weights wi, that is, we calculate the weighted least-squares estimate

β̂ = (X
′
WX)−1X

′
Wz, (3.12)

where X is the model design matrix,Wis a diagonal matrix of weights with entries wi, and z is

a response vector with entries zi. The procedure is repeated until successive estimates change by

less than a speci�ed small amount (see McCullagh and Nelder, 1989).

Newton-Raphson Method

A linear equation can be estimated numerically and the most popular method for doing this is the

Newton-Raphson method.

β(1) = β(0) + [−l
′′
(β(0))]−1.l

′
(β(0)) (3.13)

Let µ be a column vector of length N with elements µi = niπi. Note that each element of µ can

also be written as µi = E(yi), the expected value of yi. Using matrix multiplication, we can show

that

l′(β) = X
′
(y − µ) (3.14)

is a column vector of length K + 1 whose elements are
∂l(β)

∂βk
, as derived in Equation 7. Now,

Equation 9 becomes
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l′′(β) = −X
′
WX (3.15)

is a K + 1×K + 1 square matrix with elements
∂2l(β)

∂(β)∂(β)
. Now,Equation 8 can be written as

β(1) = β(0) + [X
′
WX]−1.X

′
(y − µ) (3.16)

Tests of Hypotheses

In GLMs, testing the hypothesis of the model's goodness of �t is performed through measuring the

Wald tests, likelihood ratio tests, and the deviance statistic.

Waldtests follow immediately from the fact that the information matrix for generalised linear

models is given by

i(β) = φ−1X
′
WX (3.17)

which is used to calculate standard errors of the estimates, con�dence intervals, test statistics,

and other statistics of the model that can be derived using the usual likelihood theory. The large

sample distribution of the maximum likelihood estimator β̂ is a multivariate normal with mean β

and variance-covariance matrix (X
′
WX)−1φ

β̂ ∼ Np(β, (X
′
WX)−1φ) (3.18)

and use a z-test to test the signi�cance of a coe�cient. Speci�cally, we test

H0 : βj = 0 versus H1 : βj 6= 0 (3.19)

using the test statistic

zi =
β̂j√

φ(X′ŴX)−1jj
(3.20)

which is asymptotically N ∼ (0, 1) under H0

21



Standard Errors The estimates β̂ have the usual properties of maximum likelihood estimators.

In particular, β̂ is asymptotically

N(β, i−1) (3.21)

where

i(β) = φ−1X
′
WX (3.22)

Standard errors for the βj may therefore be calculated as the square roots of the diagonal

elements of

ˆcov(β̂) = φ(X
′
ŴX)−1 (3.23)

in which (X
′
ŴX)−1 is a by-product of the �nal IWLS iteration. If φ is unknown, an estimate

is required.

Likelihood Ratio Tests and The Deviance We will show how the likelihood ratio criterion

for comparing any two nested models, say ω1 ⊂ ω2, can be constructed in terms of a statistic called

the deviance and an unknown scale parameter φ. Consider �rst comparing a model of interest ω

with a saturated model Ω that provides a separate parameter for each observation. Let µ̂i denote the

�tted values under ω and let θ̂i denote the corresponding estimates of the canonical parameters.

Similarly, let µ̄O = yi and θ̃i denote the corresponding estimates under ω. The likelihood ratio

criterion to compare these two models in the exponential family has the form

2logλ = 2

n∑
i=1

yi(θ̃i − θ̂i)
ai(φ)

(3.24)

Assume as usual that ai(φ) = φ/wi for known prior weights wi. Then we can write the likelihood-

ratio criterion as follows:

D(y, µ̂) = 2
∑

pi[yi(θ̃i − θ̂i) + b(θ̃i)] (3.25)
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The numerator of this expression does not depend on unknown parameters and is called the

deviance. The likelihood ratio criterion 2logL is the deviance divided by the scale parameter φ, and

is called the scaled deviance. Recall that for the normal distribution we had θi = µi, b(θi) =
1

2
θ2i ,

and ai(φ) = σ2, so the prior weights are wi. Thus, the deviance is, the residual sum of squares.

D(y, µ̂) = 2
∑

(yi − µ̂i)−
1

2
y2i +

1

2
µ̂2
i (3.26)

= 2
∑{

1

2
y2i − yiµ̂2

i +
1

2
µ̂i

2

}
(3.27)

= 2
∑

(yi − µ̂i)2 (3.28)

Let us now return to the comparison of two nested models ω1, with k1 parameters, and ω2, with

k2 parameters, such that ω1 ∈ ω2 and k2 > k1. The log of the ratio of maximised likelihoods under

the two models can be written as a di�erence of deviances, since the maximised log-likelihood under

the saturated model cancels out. Thus, we have

− 2logλ =
D(w1)−D(w2)

φ
(3.29)

The scale parameter φ is either known or estimated using the larger model ω2.

Large sample theory tells us that the asymptotic distribution of this criterion under the usual

regularity conditions is χν2 with ν = k2 − k1 degrees of freedom. In the linear model with normal

errors, we estimate the unknown scale parameter φ using the residual sum of squares of the larger

model, so the criterion becomes

− 2logλ =
RSS(ω1)−RSS(ω2)

RSS(ω2)/(n− k2)
(3.30)

In large samples, the approximate distribution of this criterion is χνi with ν = k2 − k1 degrees

of freedom. Under normality, however, we have an exact result: dividing the criterion by k2 − k1
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we obtain an F with k2 − k1 and n − k2 degrees of freedom. Note that as n −→ ∞ the degrees

of freedom in the denominator approach one and the function converges to (k2 − k1)χ2, so the

asymptotic and exact criteria become equivalent.
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Chapter 4

Poisson Regression Analysis for

Injury Data

In the literature of road safety modelling, the process of an accident's occurrence is assumed to

follow Bernoulli distribution with unequal probability of independent events. The process is also

known as Poisson trials which de�ne the number of n trials in which the probability of success πi

varies from trial to trial. According to this approach, a vehicle that enters the road will either have

an accident or will not, such that an accident represents a 'success', while a no-accident represents

a 'failure'. According to Feller(1968), count data that arise from Poisson trials do not follow a

standard distribution. However, the mean and variance of these trials share similar characteristics

to the binomial distribution when the number of trials n and the expected value E(y) are �xed. In

most cases, these assumptions do not hold for accident data since n is not known with certainty but

is an estimated value and varies for each site and the probability of an accident occurrence πi also

varies from one vehicle to another. The probability density function of the Bernoulli distribution is

f(yi;π) = πyi(1− π)(1−yi) where y = 0, 1 i = 1, 2, ..., n (4.1)

where 1 represents an accident occurrence and 0 represents a no-accident occurrence. The
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process results in what are called Bernoulli trials, and when summing these trials of Bernoulli

processes,it gives the binomial distribution B(n, π) whereπis the average probability of accident

occurrence, n is the number of vehicles that enter the road at a speci�c point of time, area, or

segment of the road, and y is the number of accidents at that point.

f(yi;π) =

(
n

yi

)
πyi(1− π)(n−yi) where y = 0, 1, .... i = 1, 2, ..., n (4.2)

According to The Law of Rare Events, the total number of events follows, approximately,

Poisson distribution if an event occurs in any given trial is small. More formally, let Yn,π denote

the total number of successes in a large number n of independent Bernoulli trials, with the success

probability π of each trial being very small

limn→∞

[(
n

y

)(
λ/n

y

)(
1− λ

n

)n−y]
=
λye−λ

y!
, (4.3)

Given the large number of vehicles that pass through a road segment, an accident represents an

event that has a low probability to happen. Therefore, the Binomial distribution can be approxi-

mated by Poisson distribution where the mean of this distribution is λ = np (Olkin et al., 1980).

Therefore, Poisson probability distribution is considered the standard discrete distribution used for

modelling accidents occurrence data.

f(Y = yi;λ) =
e−λλyi

yi!
where y = 0, 1, 2, ... i = 1, 2, ..., n (4.4)

4.1 Literature Review

Road accident data encounters many examples of count variables like the number of accidents at

a certain point or time, number of casualties, number of deaths, number of injuries, number of

vehicles, and number of people involved in an accident and others. Therefore, Poisson distribution

has been used as a standard discrete distribution for modelling count data in road safety modelling.

It was derived by Poisson(1837) as a limiting case of the binomial distribution. An old classical ap-
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plication of the model was to model the number of soldiers in a Prussian army who died from being

kicked by mules. Two other early applications of the Poisson regression were discussed by Cochrance

(1940) and Jorgenson (1961). Nevertheless, real data have often been shown to exhibit overdisper-

sion, which violates the equal mean-variance restriction of Poisson model. Poisson-gamma/negative

binomial(NB) models are usually preferred over Poisson regression models in road safety modelling.

The negative binomial distribution is a standard generalisation of the Poisson regression that was

derived by Greenwood and Yule(1920)and by Eggenberger and Polya (1923). However, in some

cases, real life data shows characteristics of underdispersion where negative binomial models by

structure are not suppose to handle. Models like the Restricted Generalised Poisson by Consul and

Famoye (1992) and the COM-Poisson distribution that was reintroduced by Sellers and Shemuli

(2010) have been used by statisticians to model count data that are characterised by either over- or

underdispersion. Another limitation of the Poisson model is that it has an assumption that there

is the possibility of a zero counts even if there are no such records in the data. Zero-in�ated or

zero-altered probability models were applied to capture the apparent 'excess' zeroes that are com-

monly arise in crash data. Johnson and Kotz (1968) de�ned a modi�ed Poisson distribution known

as Poisson with added zeroes that explicitly accounted for excess zeroes in the data. The 'gener-

alised linear models', of which Poisson regression is a special case, were �rst introduced by Nelder

and Wedderburn (1972) and detailed in McCullagh and Nelder (1983, 1989). The book by Hardin

and Hilbe (2012) is a latest good textbook to be referred to for GLMs and extensions. Barbour

(1992) and Kingman (1993) provide clear and direct introductions to thePoisson process. Another

good introductory textbook of thePoisson process and renewal theory is that written by Taylor

and Karlin (1998), while Feller (1971) presents a more advanced treatment of the model. Another

comprehensive reference on Poisson and related distributions with analyses is Haight (1967).

According to a review paper of statistical techniques that was conducted by Lord and Mannering

(2010), the range of statistical models commonly applied for road accident data included binomial,

Poisson, Poisson-gamma (or negative binomial), zero-in�ated Poisson and negative binomial mod-

els(ZIP and ZINB), multinomial probability models, and many other statistical analysis tools. Jones
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and Jorgensen (2002) introduced the potential of a recently developed form of regression models,

known as multilevel models, for quantifying the various in�uences on casualty outcomes. The ben-

e�ts of using multilevel models to analyse accident data are discussed along with the limitations of

traditional regression modelling approaches. Lord et al.(2005, 2007) provided defensible guidance

on how to appropriate model crash data, clarifying a collective reluctance to adopt zero-in�ated(ZI)

models for modelling highway safety data. We �rst examine the motor vehicle crash process using

theoretical principles and a basic understanding of the crash process. It is shown that the funda-

mental crash process follows a Bernoulli trial with unequal probability of independent events, also

known as Poisson trials. It then presents two critical and relevant issues: the maximising statistical

�t fallacy and logic problems with the ZI model in highway safety modelling. Famoye et al.(2004)

used the generalised Poisson regression(GPR) model for identifying the relationship between the

number of accidents and some covariates. They found that based on the test for the dispersion

parameter and the goodness-of-�t measure for the accident data, the GPR model performs as good

as or better than the other regression models.

The problem of overdispersion is central to all GLMs for discrete responses. Overdispersion

in discrete-response models occurs when the variance of the response is greater than the nominal

variance. It is generally caused by positive correlation between responses or by an excess variation

between response probabilities or counts. The problem with overdispersion is that it may cause

underestimation of standard errors of the estimated coe�cient vector. A variable may appear to

be a signi�cant predictor when it is not. We can recognise possible overdispersion by observing

that the value of the Pearson χ2 or deviance divided by the degrees of freedom (n − p) is larger

than one. The quotient of either is called the dispersion. Small amounts of overdispersion are

usually of little concern; however, if the dispersion statistic is greater than 2.0, then an adjustment

to the standard errors may be required. There is a distinct di�erence between true overdispersion

and apparent overdispersion. Outward indicators, such as a large dispersion statistic, may be

only a sign of apparent overdispersion. Apparent overdispersion may arise for di�erent reasons:

the model omits important explanatory predictors, the data contain outliers, the model fails to
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include enough interaction terms, and a predictor needs to be transformed (to the log or some

other scale). The data may be overdispersed if the value of the estimated dispersion after �tting

is greater than expected or under-dispersed if the value less than expected. For overdispersion, the

simplest remedy is to assume a multiplicative factor in the usual implied variance. As such, the

resulting covariance matrix will be in�ated, and the estimated dispersion parameter may result from

model misspeci�cation rather than overdispersion, indicating that the model should be assessed for

appropriateness by the researcher.

4.2 Application and illustration (Injuries Data)

We select a sample of 5,000 accidents from the dataset to avoid the exaggeration of positive signif-

icance. We then �t the Poisson model using the glm() function and store it in the object(allP) and

use the Anova() function from the car package to test for the overall signi�cance of the included

variables. As in Table 8, the analysis of deviance shows that mostly all the variables are signi�cant

except for the year, driver's licence status, climate condition, and number of vehicles. We used the

step() function with the option 'both', forward and backward selection to obtain the best model.

It excluded the nonsigni�cant variables and provided a model that con�rms the result given by the

Anova() function. We then used the anova() function in R to test the overall signi�cance of the

e�ect of the removed variables by comparing the deviance of the full model with the deviance of

the model chosen by the step() function. The test con�rms again that the excluded variables are

not statistically signi�cant. The null of the test is that the coe�cients of the removed variables

are equal to zero. According to the p-value from the test, 0.535 > 0.05, we cannot reject the null

hypothesis, and the result is that the model selected by the step() function is correct. We also used

the step() function to check a model with interaction. We want to test the hypothesis that the full

model adds explanatory value over the reduced model. That hypothesis is H0 : β = 0.
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Table 4.1: Analysis of Deviance Table

The Model Resid. DfResid. Dev Df Deviance Pr(>Chi)
1 Full model 9929 6058.2
2 Best Model 9906 6036.5 23 21.76 0.535

Exposure and O�set

In LM and GLM modelling, an 'o�set' is �a quantitative variable whose regression coe�cient is

known to be 1�(McCullough and Nelder, 1983). In a Poisson regression, the o�set is most often

used to include exposure time, the Poisson model being for log rate. We model the number of

injuries yi as Poisson(µi), where

µi = exposurei = λi,

so that λi is the mean injuries rate per accident. Because of the varying exposures(number of

persons), we should believe that λi, not µi, is related to the covariates. Under a log link, we have

logµi = µi = oi + xiβ

where oi = logexposurei, oi is called an o�set. An o�set is a covariate in the linear predictor

whose coe�cient is not estimated but assumed to be equal to one. O�sets are very common in Pois-

son regression because exposure often varies from one observation to the next. For example, suppose

yi is the number of injuries in an accident i; it would be sensible to use the log-population(persons)

as an o�set to adjust for the e�ect of varying number of persons in an accident. An o�set is a

term to be added to a linear predictor, such as in a generalised linear model, with known coe�cient

1 rather than an estimated coe�cient. The way this works is that the mean value parameter is

nλ. The link function we are using is 'log' (the default for the Poisson family), which makes the

linear predictor the same as the canonical parameter, η. Thus we see that log(exposurei) is just a

known constant additive term in the linear predictor. The way R handles such a term in the linear

predictor that does not contain an unknown parameter to �t is as an 'o�set'. Since the variable n

in the math formula is the variable prsns in R, the 'o�set' is log(prsns). Thus, the model being �t
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is that the linear predictor value of the ith case is

ηi = log(ni) +

k∑
i=1

Xj = dijβj

where the βj are the regression coe�cients and dij the value of the jth dummy variable for the

ith case.

It is recommended to use robust standard errors for the parameter estimates to control the mild

violation of the distribution assumption that the variance equals the mean.(For further details, see

Cameron and Trivedi, 2009.) We use R package 'sandwich' below to obtain the robust standard

errors and calculated the p-values accordingly. Together with the z-scores (Wald test) and p-values,

we have also calculated the 95% con�dence interval using the parameter estimates and their ro-

bust standard errors. Deviance residuals are approximately normally distributed if the model is

speci�ed correctly. In our example, it shows a little bit of skewness since the median is not quite zero.

The typical Poisson regression model expresses the log outcome rate as a linear function of a

set of predictors. The β coe�cients are interpreted as increasing or decreasing the log odds ratio of

an event, and exp β (the odds multiplier) are used as the odds ratio for a unit increase or decrease

in the explanatory variable.

Log(injuries) = β0 + β1X1 + ....+ βkXk

by exponentiating we get the model's equation

injuries = eβ0 + eβ1X1 + ....+ eβkXk

The information on deviance is also provided. We can use the residual deviance to perform

a goodness-of-�t test for the overall model. The residual deviance is the di�erence between the

deviance of the current model and the maximum deviance of the ideal model where the predicted

values are identical to the observed. Therefore, if the residual di�erence is small enough, the
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goodness of �t test will not be signi�cant, indicating that the model �ts the data. In our model, the

residual di�erence is signi�cant evidenced with p − value < 0.001. The model doesn't seem to �t

the data well because the goodness-of-�t, chi-squared test is not statistically signi�cant. We need

to determine if there are omitted predictor variables, if our linearity assumption holds, and/or if

there is an issue of overdispersion. Figure 7 shows that the model is reasonably �tting the data but

is not satisfactory.

Figure 4.1: Poisson model diagnostic statistics

Over/Underdispersion Test

The standard Poisson GLM models the (conditional) mean E[y] = µ with the assumption that it

is equal to the variance V AR[y] = µ. However, in real-life data, this assumption rarely holds and

therefore, overdispersion test is used to test this assumption of equidispersion against the alternative

that the variance is of the form
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V AR[y] = µ+ α× (µ)

According to this test, if α > 0 that is a proof of overdisersion and when α < 0 then an

underdispersion case is present. The coe�cient alpha can be estimated by using OLS regression

and tested with the corresponding t(orz) statistic which is asymptotically standard normal under

the null hypothesis. The trafo function is speci�ed in two forms:(µ) = µ2 corresponds to a negative

binomial (NB) model with quadratic variance function (NB2), while (µ) = µ corresponds to a NB

model with linear variance function (called NB1 by Cameron and Trivedi, 2005) or quasi-Poisson

model with dispersion parameter

V AR[y] = (1 + α)× µ = dispersion× µ

The simple principle behind this is that in a Poisson model, the mean, E(Y ) = µ, and the

variance, V ar(y) = µ, are equal. The test simply tests this assumption as a null hypothesis against

an alternative where V ar(y) = µ + c × f(µ) where the constant c < 0 means underdispersion and

c > 0 means overdispersion. The resulting test is equivalent to testing H0 : c = 0 vs. H1 : c0

and the test statistic used is a t statistic which is asymptotically standard normal under the null.

Here, we clearly see that there is evidence of underdispersion since c is estimated to be -0.482, an

evidence against the assumption of equidispersion (i.e.,c = 0). Using trafo = 1 will actually do

a test of H0 : c× = 1vs. H1 : c ∗ 1 with c∗ = c + 1, which of course has the same result as the

other test apart from the test statistic being shifted by one. The reason for this, though, is that the

latter corresponds to the common parametrisation in a quasi-Poisson model. Both tests indicate

that there is a problem with overdispersion presence as can be seen in Table 9.

Model Coe�cient Interpretation

In Table 10, we look to the model selected after removing and testing some of the basic regression

aspects that are mentioned above like the interactions and dispersion.
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Table 4.2: Overdispersion test

Ha:true dispersion is greater than 1 sample estimates:
dispersion = 0.523
z = -46.6912, p-value = 1

Ha: true alpha is greater than 0 sample estimates:
alpha = -0.477
z = -46.6912, p-value = 1

log(µ̂i) = −57.037 + 0.028Xrunover − 0.265Xoverturn + ..........

Since the estimate of β > 0, the increase in years result in an increase in the expected number

of injuries resulted from accidents as exp(0.028) = 1.028. More speci�cally, for a one-unit increase

in years, the number of injuries will increase by a multiple of 0.028.

The coe�cient of the indicator variables like accident type are explained in a di�erent way. The

indicator variable acctypRun-over compares between acctyp = 'Run-over' and the reference group

acctyp = 'two-vehc collision'. The coe�cient of run-over type accidents is -0.265. Exponentiating

the value gives exp(−0.265) = 0.767, and this means that the expected log count for a run-over

accident is ≈ 0.767. Hence, the relative risk of having an injury case in a run-over accident is less

by 23.3% than if the accident type is a collision with another vehicle. Similarly, the coe�cient of

turn-over type accidents is 0.190, and exponentiating the value gives exp(0.190) = 1.209. This is

the log count of the relative risk of having an injury case in a run-over accident, which is less by

20.9% than if the accident type is a collision with another vehicle. The coe�cient of collision with

�xed object type accidents is , and exponentiating the value gives exp(−0.074) = 0.929. This is the

log count of the relative risk of having an injury case in a �xed object accident, which is less by

7.1% than if the accident type is a collision with another vehicle. The coe�cient of collision with

�xed object type accidents is , and exponentiating the value gives exp(−0.085) = 0.919. This is the

log count of the relative risk of having an injury case in a �xed object accident, which is less by

8.1% than if the accident type is a collision with another vehicle. The indicator variable Location

discription, abbreviated loctnRoundabout, compares between loctn = 'Roundabout' and the refer-
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ence group loctn = 'Straight Road'. The coe�cient of collision with �xed object type accidents is ,

and exponentiating the value gives exp(−0.079) = 0.924. This is the log count of the relative risk of

having an injury case in a roundabout accident, which is less by 7.6% than if the accident type is a

straight road. The coe�cient of triangle accidents type is 0.077, and exponentiating the value gives

exp(0.077) = 1.080. This is the log count of the relative risk of having an injury case in a triangle

accident, which is more by 8.0% than if the accident type is a straight road. The coe�cient of other

location type of accidents is -0.013, and exponentiating the value gives exp(−0.013) = 0.987. This

is the log count of the relative risk of having an injury case in an other locations accident, which is

less by 1.3% than if the accident location is a straight road.

The indicator variable cause of accident abbreviated cause, compares between cause = 'Careless-

ness' and the reference group cause = 'High-speed'. The coe�cient of carelessness accidents type

is 0.032 and exponentiating the value gives exp(0.032) = 1.033. This is the log count of the relative

risk of having an injury case in a safe distance accident, which is higher by 3.3% than if the cause of

the accident is high-speed. The coe�cient of safe distant accidents is -0.049, and exponentiating the

value gives exp(−0.049) = 0.952. This is the log count of the relative risk of having an injury case in

a safedistant accident, which is less by 4.8% than if the accident type is a high-speed accident. The

coe�cient of overtaking accidents is 0.070 and exponentiating the value gives exp(0.070) = 1.072.

This is the log count of the relative risk of having an injury case in a overtaking accident, which is

more by 7.2% than if the accident type is a high-speed accident. The coe�cient of fatigue/alcohol

accidents is -0.597, and exponentiating the value gives exp(−0.597) = 0.550. This is the log count

of the relative risk of having an injury case in a fatigue/alcohol accident, which is less by 45%

than if the accident type is a high-speed accident. The coe�cient of other accidents is -0.037, and

exponentiating the value gives exp(−0.037) = 0.963. This is the log count of the relative risk of

having an injury case in an other accident, which is less by 3.7% than if the accident type is a

high-speed accident.

The coe�cient of gender family accidents is 0.088, and exponentiating the value gives exp(0.088) =
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1.092. This is the log count of the relative risk of having an injury case in a female accident, which

is more by 9.2% than if the accident type is a male accident. The coe�cient of non-Omani driver

accidents is -0.059, and exponentiating the value gives exp(−0.059) = 1.092. This is the log count

of the relative risk of having an injury case in a 0.943 accident, which is more by 5.7% than if the

accident involves an Omani driver.

The indicator variable vehicle type, abbreviated vehctyp, compares between vehctyp= 'Four-

weel' and the reference group vehicle = 'Saloon'. The coe�cient of vehicle type is 0.032, and

exponentiating the value gives exp(−0.044) = 0.957. This is the log count of the relative risk of

having an injury case in a four-wheel accident, which is more by 4.3% than if the accident vehi-

cle is a small saloon. The coe�cient of vehicle type is 0.038, and exponentiating the value gives

exp(0.038) = 1.039. This is the log count of the relative risk of having an injury case in a bicycle

or motorcycle accident, which is more by 3.9% than if the accident vehicle is small saloon. The

coe�cient of vehicle type is -0.034 and exponentiating the value gives exp(−0.34) = 0.967. This is

the log count of the relative risk of having an injury case in a heavy vehicle accident, which is more

by 3.3% than if the accident vehicle is a small saloon. The coe�cient of vehicle type is -0.254 and

exponentiating the value gives exp(−0.254) = 0.775. This is the log count of the relative risk of

having an injury case in a four-wheel accident, which is less by 22.5% than if the accident vehicle

is small saloon.

The indicator variable vehicle harm level, abbreviated hrmdtl, compares between hrmdtl= 'mod-

erate' and the reference group vehicle = 'sever. The coe�cient of vehicle type is -0.011, and expo-

nentiating the value gives exp(−0.011) = 0.890. This is the log count of the relative risk of having

an injury case in an accident where the harm to the vehicle is moderate, which is less by 11% than

if the accident vehicle has severe harm. The coe�cient of vehicle type is -0.263, and exponentiating

the value gives exp(−0.263) = 0.769. This is the log count of the relative risk of having an injury

case in an accident where the harm to the vehicle is slight, which is less by 23.1% than if the

accident vehicle has severe harm. The coe�cient of vehicle type is -0.379, and exponentiating the

value gives exp(−0.379) = 0.685. This is the log count of the relative risk of having an injury case
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in an accident where there is no harm to the vehicle, which is less by 31.5% than if the accident

vehicle has severe harm. The accidents appear to result in less injuries if the accidents involve more

vehicles. The coe�cient of number of vehicles, abbreviated vhcls, is -0.097, and exponentiating the

value gives exp(−0.097) = 0.907. This means that the log count of the relative risk of having an

injury case in an accident decreases by a factor of 0.093.
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Table 4.3: Poisson Regression results using rubust S.Error

Estimate Odds Ratio Robust SE Pr(>|z|) 95% LL 95% OR LL 95% UL 95% OR UL

(Intercept) −57.037 0 12.472 0.00000 −81.482 0 −32.591 0
year 0.028 1.029 0.006 0.00001 0.016 1.016 0.040 1.041

acctypRun-Over −0.265 0.767 0.034 0 −0.333 0.717 −0.198 0.820
acctypOver-Turn 0.190 1.209 0.030 0 0.132 1.141 0.248 1.281

acctypFixed Object Collision −0.074 0.929 0.030 0.014 −0.133 0.875 −0.015 0.985
acctypMotorcycle/Bicycle −0.085 0.919 0.035 0.015 −0.154 0.858 −0.016 0.984

loctndscRoundabout −0.079 0.924 0.030 0.008 −0.138 0.871 −0.020 0.980
loctndscTriangle 0.077 1.080 0.022 0.0004 0.034 1.035 0.120 1.128
loctndscOther −0.013 0.987 0.022 0.544 −0.056 0.945 0.030 1.030

causecarelessness 0.032 1.033 0.018 0.072 −0.003 0.997 0.068 1.070
causesafedist. −0.049 0.952 0.038 0.195 −0.124 0.884 0.025 1.026
causeovertaking 0.070 1.072 0.027 0.009 0.017 1.017 0.122 1.130

causefatigue/alcohol −0.597 0.550 0.088 0 −0.770 0.463 −0.424 0.654
causeother −0.037 0.963 0.030 0.212 −0.096 0.908 0.021 1.022
genderfemle 0.088 1.092 0.017 0.00000 0.055 1.056 0.121 1.129

nationalitynon-omani −0.059 0.943 0.016 0.0003 −0.091 0.913 −0.027 0.974
vehctypFour Wheel −0.044 0.957 0.019 0.021 −0.082 0.922 −0.007 0.993

vehctypBi/Motorcycle 0.038 1.039 0.040 0.347 −0.041 0.960 0.117 1.124
vehctypHeavy −0.034 0.967 0.024 0.150 −0.080 0.923 0.012 1.012
vehctypOther −0.254 0.775 0.074 0.001 −0.399 0.671 −0.110 0.896

hrmdtlModerate −0.116 0.890 0.015 0 −0.145 0.865 −0.087 0.917
hrmdtlSlight −0.263 0.769 0.022 0 −0.307 0.736 −0.220 0.803

hrmdtlNo harm −0.379 0.685 0.036 0 −0.450 0.638 −0.307 0.735
vhcls −0.097 0.907 0.018 0.00000 −0.133 0.876 −0.062 0.940
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4.3 Poisson's Alternative Models (Injury data)

Real-life count datasets are mostly characterized by overdispersed and excess of zeros. Based on the

result above the standard poison is not providing a best �t of the data. We therefore, employ other

count models with di�erent distributional assumptions which are generalizations and extensions

to Poisson. In addition to applying Poisson, we here, in brief introduce quassipoisson, negative

binomial, Poisson logit hurdle, and negative binomial logit hurdle model and zero-in�ated Poisson

and negative binomial. We �t all these models to our dataset and compare their performance

in providing a best �t and best explaining the e�ects of di�erent factors of an accident in the

occurrence of injuries. While these GLMs all have the same mean function, the zero-augmentation

also employs the same mean function for the count part.

Quasi-Poisson Model

Quasi-poisson model works by using the same mean regression function and the variance function

of the Poisson GLM. It di�ers from Poisson in that it accounts for overdispersion through leaving

the dispersion parameter φ unrestricted rather than assuming φ equals to 1 and estimate it from

the data. This method gives the same coe�cient estimates as the standard Poisson model but

inference is adjusted for overipersion. In other words, the Quasi-poisson estimating function is the

same as of the Poisson model and do not correspond to models with speci�ed likelihoods. In R,

glm function is also used to �t Quasipoisson regression models by setting family=quasipoisson.

Negative Binomial Model

Negative binomial is developed to model the overdispersed data with the assumption that unex-

plained variability is present is present among observations that have the same predicted value.

This unexplained variability between observations result in larger variance than assumed by Pois-

son. The conditional mean of the NB given the predictors should be equal to that given by standard

Poisson model while the conditional variance will be larger in the negative binomial model. The

function of the variance for the negative binomial is given by µ+α×µ2 rather than µ as in Poisson
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regression. The α parameter is a measure of overdispersion, and when it is equals zero there is no

overdispersion, and the negative binomial reduces to standard Poisson. If the value of α is greater

than zero is an indication of overdispersion where larger values indicate more overdispersion. The

interpretation of regression coe�cients for the negative binomial model is identical to that for the

standard Poisson model. The parametrization of its probability density function is

P (Yi = yi|X〉) =
θθµyii iΓ(θ + yi)

Γ(yi + 1)Γ(θ)(µi + θ)θ+yi
(4.5)

with mean µ, shape parameter θ and Gamma is the gamma function. This parametrization is

of NB1 type and thus is another special case of the GLMs framework. It also has φ = 1 but with

variance V (µ) = µ+
µ

θ
.

Zero-In�ated Models

Zero-in�ated count models were derived to model the excess of zeros and to deal with overdipsersion

(Mullahy 1986; Lambert 1992). They are based on the assumption that the data are a mixture

produced by two separate data generating processes: one generates counts with either Poisson or

negative binomial distribution and the other generates only zeros with binomial distribution. Each

observation is generated in a two possible data generation process; the result of a Bernoulli trial

determines which process is used. For observation i, process 1 is chosen with probability πi and

process 2 with probability 1−πi. Process 1 generates only zero counts, whereas process 2 f(z(yi, xi),

generates counts from either a Poisson or a negative binomial model.

yi ∼

 0 with probability πi

f(yi|Xi) with probability 1-πi
(4.6)

The probability of Yi = yi|X is

P (Yi|yi|x, z) =

 π(γ
′
zi) + 1− π(γ

′
zi)fzero(0, x) if yi = 0

1− π(γ
′
zi)fcount(yi, x) if yi > 0

(4.7)
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The probability π depends on the characteristics of observation i and πi is a function of z′γ,

where z′ is the zero-in�ated vector of covariates and gamma is the zero-in�ated vector of coe�cients

in the model. The scalar product z
′

i to the probability πi are related through the link function, that

is speci�ed as either the logistic function (the logit function) or the standard normal cumulative

distribution function (the probit function). The zero-in�ated Poisson model (ZIP) has a mean and

variance as

E(yi|Xi, Zi) = µi(1− πi)

V (yi|Xi, Zi) = µi(1− πi)(1 + µ(πi)
(4.8)

and the zero-in�ated negative binomial (ZINB) mean and variance are

E(yi|Xi, Zi) = µi(1− πi)

V (yi|Xi, Zi) = µi(1− πi)(1 + µ(πi + α))
(4.9)

Hurdle Models

Hurdle models, originally developed by Mullahy(1986) is a class of models that is extension to

Poisson which is derived to capture both overdispered and excess of zeros. They are mixture

models with two component; one part is a truncated count component for positive counts that is

usually Poisson or negative binomial. The binomial model with a censored count distribution.

P (Yi|yi|x, z) =

 π(γ
′
zi) + 1− π(γ

′
zi)fzero(0, x) if yi = 0

1− π(γ
′
zi)fcount(yi, x) if yi > 0

(4.10)

Maximum likelihood is used to estimate the hurdle model parameters which provides an advan-

tage of allowing speci�cation of the likelihood of the count and relationship of the model is given

by

log(µi) = xiβ + log(1− fzero(0, z, γ))− log(1− fcount(0, xi, β)) (4.11)

If regressors xi = zi are used in the same count model in both components such that fcount =
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f−zero then a set of the null hypothesis β = γ then tests whether hurdle is needed or not. Writing

the model formula as y = x1 + x2 describes the count regression relationship of yi and xi and

also indicates that the same set of regressors is used for the zero hurdle component di�erent set of

regressor, for example, y ∼ x1+x2z1+z2+z3. This is read as that the count data model y ∼ x1+x2

is conditional on (-) the zero hurdle model y ∼ z1 + z2 + z3

4.3.1 Result's Comparison (Injury Data)

Zero-augmented models, hurdle and zero-in�ated, are both built to deal with overdispersion and

excess zeros. Especially, these two characteristics occur commonly in counts in real life datasets

better than their classical counterparts. Using cross-sectional data of the accident injures in Oman,

we compare the performance of these models to obtain a best estimate of the in�uencing factors that

a�ect injuries occurrence in an accident. We �tted and illustrated standard Poisson regression model

to get a �rst view of the relationship between the dependent variable (i.e. injuries in an accident)

an the accident related factors. We obtained the coe�cient estimates along with associated partial

Wald tests. All coe�cient estimates are highly signi�cant with acctyp, cause, gender having larger

Wald statistic values compared to other covariates. If overdispersion is present in the dataset,

the Wald tests might be inaccurate as a result of misspeci�cation of the likelihood. Therefore, we

calculate the sandwich standard error and are more reasonable. we want to compare this result of

Poisson with more powerful models which deals with overdipsersion and excess zeros problems to

see which model is producing better �t for our data. The result in Table 11 support the �ndings

from Poisson model about the factor signi�cance.

Table 4.4: Regression analysis of injuries using di�erent Poisson's alternative
models

Dependent variable:

injuryc

Poisson negative glm: quasipoisson hurdle hurdle

binomial link = log Poisson negative binomial

(1) (2) (3) (4) (5)

year 0.011∗∗ 0.011∗∗ 0.012∗∗

(0.006) (0.005) (0.006)
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time1 0.00004∗∗∗ 0.00004∗∗∗ 0.00004∗∗∗

(0.00001) (0.00001) (0.00001)

daySun −0.004 −0.004 −0.004 −0.0004 0.003

(0.020) (0.020) (0.021) (0.034) (0.029)

dayMon −0.023 −0.023 −0.023 −0.039 −0.036

(0.020) (0.021) (0.021) (0.035) (0.029)

dayTue −0.008 −0.008 −0.008 −0.023 −0.020

(0.020) (0.020) (0.021) (0.035) (0.029)

dayWed 0.029 00.029 0.029 0.032 0.028

(0.020) (0.020) (0.020) (0.034) (0.028)

dayThu 0.109∗∗∗ 0.109∗∗∗ 0.109∗∗∗ 0.141∗∗∗ 0.1356∗ ∗ ∗
(0.109) (0.019) (0.019) (0.032) (0.027)

dayFri 0.108∗∗∗ 0.108∗∗∗ 0.108∗∗∗ 0.148∗∗∗ 0.138∗ ∗ ∗
(0.109) (0.020) (0.020) (0.033) (0.028)

monthFeb 0.004 0.004 0.005 0.001 −0.004

(0.023) (0.024) (0.024) (0.041) (0.034)

monthMar −0.026 −0.026 −0.025 −0.025 −0.024

(0.022) (0.023) (0.023) (0.039) (0.032)

monthApr 0.037 0.037 0.038 0.050 0.046

(0.024) (0.024) (0.025) (0.041) (0.034)

monthMay 0.020 0.020 0.021 0.046 0.040

(0.025) (0.025) (0.025) (0.046) (0.040)

monthJun −0.028 −0.028 −0.028 −.033 −0.027

(0.025) (0.026) (0.026) (0.044) (0.036)

monthJul 0.005 0.005 0.005 0.002 0.003

(0.024) (0.025) (0.025) (0.042) (0.035)

monthAug −0.020 −0.020 −0.020 .011 0.008

(0.025) (0.025) (0.026) (0.043) (0.035)

monthSep 0.020 0.020 0.020 0.032 0.027

(0.025) (0.025) (0.026) (0.043) (0.036)

monthOct −0.013 −0.013 −0.012 −0.024 −0.025

(0.026) (0.026) (0.026) (0.044) (0.037)

monthNov −0.013 −0.013 −0.012 −0.024 −0.025

(0.026) (0.026) (0.027) (0.045) (0.037)

monthDec −0.013 −0.013 −0.011 −0.016 −0.021

(0.025) (0.025) (0.026) (0.043) (0.035)

roadSub −0.089∗∗∗ −0.089∗∗∗ −0.088∗∗∗ −0.155∗∗∗ −0.142∗∗∗

(0.012) (0.012) (0.012) (0.021) (0.017)

roadPaved −0.119∗∗∗ −0.119∗∗∗ −0.119∗∗∗ −0.232∗∗∗ −0.209∗∗∗

(0.044) (0.044) (0.045) (0.075) (0.063)

acctypRu-Over −0.492∗∗∗ −0.492∗∗∗ ∗0.493∗∗∗ −0.974∗∗∗ −0.930∗∗∗

(0.027) (0.027) (0.027) (0.062) (0.056)

acctypOver-Turn 0.067∗∗∗ 0.067∗∗∗ 0.068∗∗∗ 0.108∗∗∗ 0.145∗∗∗

(0.019) (0.019) (0.019) (0.037) (0.030)

acctypFixed Object Collision −0.013 −0.013 −0.012 0.035 0.022

(0.021) (0.022) (0.022) (0.040) (0.032)
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acctypMotorcycle/Bicycle −0.430∗∗∗ −0.430∗∗∗ −0.429∗∗∗ −1.018∗∗∗ −0.974∗∗∗

(0.045) (0.045) (0.045) (0.092) (0.085)

loctndscRoundabout −0.180∗∗∗ −0.180∗∗∗ −0.180∗∗∗ −0.236∗∗∗ −0.221∗∗∗

(0.030) (0.030) (0.030) (0.052) (0.045)

loctndscTangle 0.202∗∗∗ 0.202∗∗∗ 0.202∗∗∗ 0.220∗∗∗ 0.201∗∗∗

(0.017) (0.017) (0.017) (0.029) (0.023)

loctndscOther 0.028 0.028 0.028 0.032 0.029

(0.017) (0.018) (0.018) (0.030) (0.025)

age 0.002∗∗∗ 0.002∗∗∗ 0.002∗∗∗ 0.002∗∗∗ 0.002∗∗∗

(0.0005) (0.0005) (0.0005) (0.001) (0.001)

causecarelessness 0.024∗ 0.024 0.024 0.036 0.040∗

(0.014) (0.015) (0.015) (0.025) (0.021)

causesafedist. −0.049∗∗ −0.049∗∗ −0.049∗∗ −0.089∗∗ −0.074∗∗

(0.022) (0.022) (0.022) (0.038) (0.032)

causefatigue/alcohol −0.446∗∗∗ −0.446∗∗∗ −0.447∗∗∗ −0.187∗∗ −0.185∗∗

(0.052) (0.053) (0.053) (0.090) (0.076)

causeother 0.053∗∗ −0.053∗∗ 0.053∗∗ 0.069 0.072∗∗

(0.025) (0.026) (0.026) (0.043) (0.035)

genderfemale 0.107∗∗∗ 0.107∗∗∗ 0.107∗∗∗ 0.117∗∗∗ 0.115∗∗∗

(0.016) (0.016) (0.017) (0.027) (0.023)

nationalitynon-omani −0.091∗∗∗ −0.091∗∗∗ −0.092∗∗∗ −0.084∗∗∗ −0.073∗∗∗

(0.016) (0.016) (0.016) (0.027) (0.023)

vehctypFour Wheel 0.055∗∗∗ 0.055∗∗∗ 0.054∗∗∗ 0.096∗∗∗ 0.090∗∗∗

(0.016) (0.016) (0.016) (0.028) (0.023)

vehctypBi/Motorcycle −0.116∗∗ −0.116∗∗ −0.114∗∗ −0.214∗ −0.226∗

(0.056) (0.057) (0.057) (0.110) (0.100)

vehctypHeavy −0.058∗∗∗ −0.058∗∗ −0.057∗∗ −0.061 −0.072∗∗

(0.022) (0.023) (0.023) (0.038) (0.032)

vehctypOther 0.398∗∗∗ 0.398∗∗∗ 0.397∗∗∗ 0.489∗∗∗ 0.457∗∗∗

(0.023) (0.023) (0.024) (0.044) (0.035)

hrmdtlModerate −0.219∗∗∗ −0.219∗∗∗ −0.220∗∗∗ −0.254∗∗∗ −0.237∗∗∗

(0.012) (0.012) (0.012) (0.020) (0.016)

hrmdtlSlight −0.527∗∗∗ −0.527∗∗∗ −0.527∗∗∗ −0.813∗∗∗ −0.763∗∗∗

(0.019) (0.019) (0.019) (0.035) (0.030)

hrmdtlNo harm −0.699∗∗∗ −0.699∗∗∗ −0.697∗∗∗ −1.517∗∗∗ −1.451∗∗∗

(0.038) (0.039) (0.039) (0.0.097) (0.093)

vhcls 0.111∗∗∗ 0.094∗∗∗

(0.017) (0.012)

Constant −22.027∗ −22, 027∗ −22.368∗ 0.437∗∗∗ 0.556∗∗∗

(11.245) (11.393) (11.569) (0.065) (0.051)

Observations 24,080 24,080 24,080 16,162 16,162

Log Likelihood -28,228,660 −28, 218, 550 −24, 152, 510 −24, 303, 490

θ 44,134∗∗∗(9.754)
Akaike Inf. Crit. 56,545,320 56,525,100

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Chapter 5

Conclusion

Many studies have documented the application of crash-severity models to explore the relationship

between accident severity and its contributing factors, such as driver characteristics, vehicle char-

acteristics, roadway conditions, and weather factors. Lord et al.(2010) conducted a study about

quantifying the sample size requirements for crash-severity models. They found that similar to

many count data models, small datasets could signi�cantly in�uence the model performance. Using

the data of 24,192 tra�c accidents that involve all types of accidents in di�erent areas in Oman,

we used Poisson regression and alternative count models to explore the relationship between in-

juries that resulted from accidents and their contributing factors. We found that given the high

variation on the data, the results from �tting di�erent random samples drawn from the full dataset

agree with prior expectations in that small sample sizes signi�cantly a�ect the development of

crash-severity models. As they concluded, we �nd that further research is essential to generalise

sample size requirements for developing the di�erent models applied for crash data, which may

be partly dependent upon the characteristics of the data. For example, in our analysis, we found

that the selected datasets could be overdispersed, and it could be underdispersed according to the

overdispersion test explained in the context. The results produced by the di�erent models show a

reasonable statistical �t. Here, we applied regression models that are basic in analysing count data

and have been used widely in road safety research. We present thoroughly the analysis of the data
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using standard Poisson regression and interpreted the model's results and its goodness of �t. We

also �tted quasi-Poisson, negative binomial, ZIP, and ZINB regression models for comparison. This

Poisson family of regression models provides improved and easy-to-implement analyses of count

data. The objective of the study is to provide a demonstration of a model that can be used to

assess the most important factors contributing to the severity of tra�c accidents in Oman. Based

on tra�c police accident data, 18 explanatory variables were used in the model development pro-

cess. Using the measure of deviance and the Wald statistic, the variables of interest were subjected

to statistical testing. All the variables appear to be signi�cant in the model when using the full

dataset or large samples. However, as we reduce the sample size, we �nd that the most signi�cant

factors are accident type, location of the accident, accident cause, gender, vehicle harm details, and

number of vehicles. The rest of the variables' signi�cance changed when di�erent samples were

drawn.

Regardless of which factors are more signi�cant, the results of this study provided valuable in-

formation on how the collision types, road speci�cations, time, weather, and driver characteristics

are related to the occurrence of injuries in accidents. The most important variables in predicting

the occurrence of injuries in an accident are accident type and cause of accident. More advanced

analysis tools could be more e�cient to con�rm these �ndings. The �nding of the study might

lead to a greater focus on road accident sites, such as intersections and roundabouts, which should

help decision makers in the government to focus their safety improvements more cost-e�ectively.

However, not only the relative danger as expressed by the odds ratio, but also the absolute density

of accidents with regard to location should be taken into account to develop cost-e�ective strategies.

The odds presented in this study can be used to help establish priorities for programs to reduce

serious accidents. It is important to note that the odds described in this study were computed

with no consideration for tra�c exposure or the data that are not available or di�cult to obtain

in Oman. However, the �ndings of this study can be a guidance for future studies. Some research

limitations arise in this study since police report data were analysed. Even though there are a

lot of independent variables available in the database, the database contains missing values and
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unreliable data, and some important variables cannot be further investigated, such as information

about road geometry, speed of motorcycles, helmet, and alcohol use, as well as mobile use as causes

of an accident. In future studies, more explanatory variables that might be available from other

sources in Oman should be considered.

Looking at each factor separately, we �nd that the cause of accidents in Oman is the high speed.

The government has updated the rules of the limits in speed and the �nes for breaking them. They

have also set many �xed radars in the main cities' highways. However, in the long-distance lines,

they still use the temporary hidden radars which are still not su�cient to reduce the high speeding

and monitor the behaviour of the drivers on long distances lanes. The other major causes are also

related to wrong conduct of drivers or passengers, and these could be tackled by focusing on educat-

ing drivers on the risks of not following road rules. Increasing the police patrols around the country

is an important way to keep the public aware of road conduct. The road, vehicle, and weather

do not appear to be signi�cant causes of the accidents in Oman; however, more investigation for

the interactions with other factors could reveal further information about the contribution of these

factors in accident severity. It can be summed up that in Oman, road accidents are mainly related

to human factors. Again, these should be tacked with all possible preventions,such as educating

the public, increasing police patrols, and improving the �nes and punishment system.

Our result says that the highest frequency of accidents occurs in straight roads, triangles (in-

tersections), and roundabouts. The road type does not appear to be a major cause of accident, but

it must be related to human conduct, especially in a road with two opposite directions, in triangles

(intersections), and in roundabouts. For injuries, they occur more in accidents that happen in the

triangles (intersections) than in straight roads, while roundabout accidents result in less injuries

cause by accidents in straight roads. Male accidents constitute more than 90 percent of the total

accidents. We can justify this by the fact that males go out more than females and tend to take

more risks in the road. The percentage indicates that male drivers are more likely to have RTA.

The percentage of expatriate people in Oman is 44.2 percent which indicates that Omani driver
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is more likely to be involved in a road accident. The age that the driver is more likely to have

an accident is in the range of 20â��30. More speci�cally, the mean average of a driver who gets

involved in an accident in Oman is thirty. Since all drivers should be licenced, the 4.3 percent of

the nonlicenced accident drivers should be given attention.

Our study shows that there is an increasing trend of RTA in Oman over the years that goes

along with increasing trend in licences and vehicles. The distribution of accident by hour of the day

is parallel to the volume of tra�c in the relative time. The distribution of the accidents is not equal

throughout the days of the week, but the percentages are close. Most of the accidents happen with

small passenger vehicles and involves one vehicle. More than 50 percent of the accidents involve

a single vehicle. The population of heavy vehicles may indicate that heavy vehicles a�ect the oc-

currence of RTA. Separating the accidents by number of involved vehicles and analysing separately

gives di�erent results of signi�cant factors contributing to the occurrence of injuries.

Accident type, description of location, cause of accident, gender of the driver, and the vehicle

harm degree are the most signi�cant variables to injury occurrence. The other variables should be

investigated more in interaction with other variables to con�rm their e�ect in accident severity. In

accident type, we found that the run-over and collision with �xed objects are almost half risky in

a�ecting the injury severity than two-vehicle collision with �xed objects, but overturn accidents and

motorcycle accidents result in more severe injuries. compared to the two-vehicle collision, overturn

accidents are 2.301 and bicycle and motorcycle accidents are 3.356. However� in the model it

appears that only �xed objects and bicycles and motorcycles are the signi�cant, but not all the

segments of the road are signi�cant in explaining the occurrence of severe accidents. We classi�ed

the segments of the road according to the frequency of accidents on these segment to straight road,

triangles(intersections), roundabouts, and the rest of the accident locations compiled in one group

as others. We found that triangles (intersections) are 2.64 more risky in causing sever accidents

than straight roads, while the roundabouts are 0.612 less risky than having an accident in straight

road. For the cause of accident, we know from our descriptive statistics and literature review that
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high speed is the major cause of accidents in Oman. In our model, we �nd only the alcohol and

sugar in the blood is signi�cant in explaining the occurrence of injury case. Having an accident

with the cause that the driver was having alcohol or high sugar level in his blood seems to be less

sever than an accident that is caused by the high speed, as it is making 0.217 of the risk that

high-speed accident make in causing human casualties. The risk that high-speed accident make in

causing human casualties. The rest of the causes are not signi�cant in our model, but we can see

from their coe�cient that overtaking is 1.824 of the high speed accident risk. The safe distance

is 1.353, and the other causes are 1.508. Though the statistics showed that a male driver is more

likely to have an accident than a female driver, the model showed that an accident caused by a

female driver results in sever injuries by 2.44 compared to an accident caused by a male driver. The

harm in the vehicle is naturally signi�cant in explaining the severity of the accidents, and the less

harm to the vehicle there is, the less sever injuries are caused.
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Appendix A

Logistic Regression Analysis of

Injury Data

Many studies were focused at identifying the most probable factors that a�ect accident

severity and estimating the statistically signi�cant e�ects of these factors. Some factors,

such as accident location, type, and time; collision type; and age and nationality of

the driver at fault, his licence status, and vehicle type, are analysed to see if they

have an impact on higher potential for serious injury or death. Such analysis is useful

for decision makers to evaluate the e�ect of the factor on accident occurrence and

severity and set policies and interventions accordingly. It examines how one or more

independent variables in�uence the dependent variable by examining the relationship

between these variables and the log odds of the dichotomous outcome by calculating

changes in the log odds of the response as opposed to the response variable itself. The

odds ratio is the ratio of two odds that is used to measure the relationship between two

variables such that π is the probability of the outcome 'success' of the event and (1−π)

is the probability of the opposite outcome of the event 'failure'. In logistic regression,

the log odds ratio provides a simple description of the probabilistic relationship of the
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variables and the outcome. Logistic regression is categorised into two: binomial/binary

and multinomial. Binary logistic regression is used when the response variable is

dichotomous and the explanatory variables are continuous or categorical variables.

In this chapter, we apply logistic regression to estimate the probability of the occurrence

of an injury case in an accident having the dependent variable in binary (dichotomous)

form. We start the analysis of the injury data as a binary dependent variable to examine

the relationship between the occurrence of injury cases in an accident and some factors

related to driver, vehicle, or road characteristics. The dependent variable here, the

occurrence of injury cases in an accident, is classi�ed as 1 if one or more injury cases

are recorded and 0 if no injury case is recorded, and the independent variables are

mostly categorical and few are continuous. Fitting the binary model to the injury data

showed that the accident type, accident location, cause of accident, gender, nationality,

vehicle type, and harm vehicle level are signi�cant factors in explaining the occurrence

of the injury case. Mathematically, the principle that underlies the logistic regression is

calculating the logit transformation of the dependent variable Y at some value of X-the

natural logarithm of an odds ratio. For example, in 2 × 2 contingency table, considering

an instance in which the distribution of the dichotomous outcome variable occurrence

of an injury case (yes/no) and the predictor variable the gender of the driver. If we want

to assess the probability of having injury given the driver is male relative to having a

female driver, we calculate π/(1− π), the ratio of the two probabilities. If the value is

1:1, then the probability of having injury is equal between the two cases. If the value

is more than 1, then the male driver has more probability of having a severe accident

than females, and if the value is less than 1, then the female driver has more probability

of having a severe accident than males.
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A.1 Theoretical Concepts of Binary Logistic Regres-

sion(LR)

Binary logistic regression is a method for �tting a regression curve, y = f(x), when y

consists of proportions or probabilities, or binary coded data (0,1; failure,success). It

works by �tting models to data using an S-shaped function called logistic function.

yi =

 1if the ith accident involved at least one injury case

0if no injury recorded

Logistic regression is linear regression that uses the logit transform of y, where y is

the proportion (or probability) of success Pr(Y = 1|X = x) at each value of X.

Traditional least squares regression(OLS) is not suitable as neither the normality nor

the homoscedasticity1 assumption will be met. It is used to analyse the e�ect of potential

risk factors that signi�cantly in�uence the probability of the outcome of the event y = 1,

here, occurrence of injury case in an accident.

A.1.1 Odds ratios

Logistic regression model estimates the odds ratios (OR) at (1−α) percent con�dence

intervals (CI) as a determinant of which variables should be included (commonly α =

0.05). Where the odds ratios means the ratio between the success and failure cases.

oddsi =
πi

1− πi

If the probability of the success is one half, the odds are one-to-one (1:1). If the prob-

ability is one third, the odds are one-to-two (1:2).

1Heteroscedasticity (the violation of homoscedasticity) is present when the size of the error term di�ers across
values of an independent variable. The impact of violating the assumption of homoscedasticity is a matter of degree,
increasing as heteroscedasticity increases.
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A.1.2 Logit transformation

In logistic regression, the probabilities πi depend on a vector of observed covariates xi.

We cannot let πi be a linear function of the covariate directly, ηi,

ηi = xiβ

where β is a vector of regression coe�cients as in the linear probability model. How-

ever, logistic regression �ts b0 and b1, the regression coe�cients (which were 0 and 1,

respectively, for the graph above). Note that the curve is not linear; however, the point

of the logit transform is to make it linear.

logit(πi) = log

(
πi

1− πi

)
=

N∑
i=1

xiβ i = 1, 2, ..., N

We discuss the stochastic structure y of the data in terms of the Bernoulli and Binomial

distributions, and the systematic structure Xβ in terms of the logit transformation or

what is called the generalised linear model with Binomial response and link logit. Figure

8 shows the a logistic curve with logit link.

Figure A.1: The logistic curve :π = exp(logit)/[1 + exp(logit)]
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So the logistic function is

E(yi) = πi = exp(logit)/[1 + exp(logit)]

where πi is the probability of success given some predictors or it is the expected value

for the response variable y = 1 given some predictors xi for some ith observation.

E(yi|xi) = πi =
exiβ

1 + exiβ
=

1

1 + e−xiβ

A.1.3 Assumptions of Logistic Regression

Logistic regression assumes linear relationship between the logit of independent vari-

ables and the dependent variable but the relationship between the dependent and in-

dependent variables doesn't have to be linear. The sample size should be large as the

reliability of the estimation declines when there are only few cases. In logistic regression,

independent variables are not linear functions of each other. Normal distribution is not

necessary or assumed for the dependent variable. Homoscedasticity is not necessary for

each level of the independent variables. Normally distributed description of errors are

not assumed. The independent variables need not be interval level.

A.1.4 Linear Probability Model

In the linear probability model, the expected value of the dependent variable, Yi, is

de�ned as a linear function of some independent variables, Xi, such that:

E[yi] = xiβ

For a binary independent variable, the expected value of Yi is de�ned as

E[y] = 1× Pr(y = 1) + 0× Pr(y = 0) = Pr(y = 1)
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Pr(y = 1|xi) = xiβ = πi

The coe�cient of this model illustrates how a one-unit change in X a�ects the

probability of the success outcome, Pr(y = 1). However, there are many reasons that

make the linear probability model not suitable for modelling binary data, among these,

the main two reasons are:

[28] The unbounded predicted values: xiβ can take on values greater than one and less

than zero.

[28] The conditional heteroskedasticty: The variance of residuals is related to the value

of x. Speci�cally,

var(y = 1) = E[y = 1](1− E[y = 1]) = xiβ(1− xiβ)

This indicates that the variance of Yi depends on the values ofXi and β and is, therefore,

heteroskedastic by construction.

A.1.5 Logit Model

If the dependent variable is binary (dichotomous) and follows a Binomial distribution,

Y ∼ Bin(ni, πi), the outcome values are: Pr(Y = 1|X = x) = E[Y |X = x] = πi is

the probability of success and Pr(Y = 0|X = x) = 1 − πi is the probability of failure.

Taking the logit transformation, we get a linear function of the predictors that de�nes

the systematic part of the model.

log

(
πi

1− πi

)
=

N∑
i=1

xiβ i = 1, 2, ..., N

where xi is a vector of covariates and β is a vector of regression coe�cients. The

likelihood of the Binomial distribution f(y|β) is
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L(β|y) =

N∏
i=1

(
ni
yi

)
πyii (1− πi)(ni−yi)

We can verify by direct calculation that the expected value and variance of yi are

E(yi) = µi = niπi,

var(yi) = σ2
i = niπi(1− πi)

It can be noticed that the mean and variance depend on the underlying probability πi.

The factor that a�ects the probability of the response will a�ect the mean and also

the variance of the observation. There is no πi in the factorial terms so they are just

constants and ignored. Note that since ax−y = ax/ay, when we rearrange the equation,

it becomes

N∏
i=1

(
πi

1− πi

)yi
(1− πi)(ni)

Taking the exponent of both sides of this equation gives the odds of the ith unit

(
πi

1− πi

)yi
= exiβ

Solving for πi we get

πi =
exiβ

1 + exiβ

The cumulative standard logistic is

Pr(yi = 1|xi) =
exiβ

1 + exiβ
=

1

1 + e−xiβ
= Λ(xiβ)

and the following log-likelihood function
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lnL =

N∑
i=1

{yiln[Λ(xiβ)] + (1− yi)ln[1− Λ(xiβ]}

=

N∑
i=1

{
yiln

[
1

1 + e−xiβ

]
+ (1− yi)ln

[
1− 1

1 + e−xiβ

]}
Thus, di�erentiating with respect to each βk gives

∂l(β)

∂β
=

N∑
i=1

yixi − ni.
1

1 + exiβ
.
∂

∂β

(
1 + exiβ

)

=

N∑
i=1

yixi − ni.
1

1 + exiβ
.exiβ .

∂

∂

N∑
i=1

xiβ

=

N∑
i=1

yixi − ni.
1

1 + exiβ
.exiβ .

N∑
i=1

xi

=

N∑
i=1

yixi − niπixi

The estimates of β can be found by setting each of the K + 1 equations equal to zero

and solving for each βk. The solution of each equation, if it exists, is a critical point-

either a maximum or minimum. The critical point will be a maximum if the matrix of

second partial derivatives is negative de�nite-meaning that every element of the matrix

is less than zero. This matrix also forms the variance-covariance matrix of the parameter

estimates. It is formed by di�erentiating each element of β, denoted by β. The general

form of the second partial derivatives is the Hessian matrix

H =
∂2lnL
∂β∂β′

= −
n∑
i=1

Λ(xiβ)[1− Λ(xiβ)]xix
′

i

The matrix of the second partial derivatives is
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∂2l(β)

∂β∂β′
=

∂

∂β′

N∑
i=1

yixi − niπixi

=
∂

∂β′

N∑
i=1

niπixi

= −
N∑
i=1

nixi
∂

∂β′

(
exiβ

1 + exiβ

)

A.1.6 Probit Model

The cumulative standard normal is

Pr(yi = 1|xi) =

∫ xiβ

−∞

1√
2πσ2

e−
(yi−xiβ)

2

2σ2 dx = Φ(xiβ)

where xiβ is just a linear function of some sort. The integral doesn't have a closed form

solution, which is why we normally abbreviate it as Φ(xiβ). Substituting this in for g(.)

gives the following likelihood function

L =

N∏
i=1

[Φ((xiβ)]yi [1− Φ(xiβ)]1−yi

and the following log-likelihood function

lnL =

N∑
i=1

{yiln[Φ(xiβ)] + (1− yi)ln[1− Φ((xiβ)]}

Because of the symmetry of the normal density, we can express 1−Φ((xiβ) as Φ(−xiβ).

This means that we can express the log-likelihood function as

lnL =

N∑
i=1

yiln[Φ(xiβ)] + (1− yi)ln[Φ(−xiβ)]

The log-likelihood function is non-linear, so there is no closed form solution for β.

However, numerical maximisation is easy since the log-likelihood is globally concave.
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A.2 Application and illustration (Injury Data)

For this study, we classify the accidents according to the occurrence of an injury case in

the accident. We code an accident with no injury as 0 and an accident with one or more

injury as 1. The de�nition of the variables is obtained from a coding system supplied

with the data set. The majority of these variables are categorical variables that simply

indicate the existence of a certain condition, such as the road type at the accident

location. The analyses here are aimed to identify the factors that might have an e�ect

on the accident severity. Thus, we summarise from the data 16 variables detailed in

Table 6 earlier in Poisson analysis. Table 12 and Figure 9 in this chapter show again

the distribution of RTA by number of injury cases and we can see that 26.737 percent

of accident result in no injury while 73.263 percent included one injury case or more.

Figure A.2: Distribution of RTA during 2009-2012 by injury cases
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Table A.1: Distribution of RTA during 2009-2012 by number of cases of injury

Injury Cases Frequency Cum.Freq. Percentage Cum.Percent.

0 6468 16833 26.737 26.737
1 10365 10365 42.847 69.584
2 3573 20406 14.770 84.354
3 1633 22039 6.750 91.104
4 930 22969 3.844 94.949

5 or more 1223 24192 5.051 100.000
injury case Binary Dependent Variable injury Number (0,1)
Min.0 1st Qu. Median Mean 3rd Qu. Max.
0.00 0.00 1.00 0.73 1.00 1.00

Recall that logistic regression model is useful to investigate the relationship between the

binary outcome variable and the predictor variables. It models the logit-transformed

probability as a linear relationship with the predictor variables. Let the occurrence of

an injury case y be the binary outcome variable indicating no/yes as 0/1 and π(xi) be

the probability of y to be yes = 1, π(xi) = Prob(yi = 1). Let x1, .., xk be the set of

predictor variables, then the logistic regression of y on x1, ..., xk estimates parameter

values for β0, β1, ..., βk via maximum likelihood method of the following equation.

logit[π(xi)] = log
π(xi)

1− π(xi)
= α+ βxi

In terms of probabilities, the equation above is translated into

P (y = 1|xi) = π(xi) =
eβxi

1 + eβxi

Modelling di�erent samples of 5,000 accidents that are taken from the injury data with

binary logit model gave almost the same result about the signi�cant factors for road

injury. Stepwise selection was followed to check the best model, which is a combination

of the forward and backward methods. Given the big number of covariates tested, we

started with including all the variables with no interactions and removing the non

signi�cant variables. After every step, we checked to see if a variable that has been

dropped should be added back into the model. The model is tested by checking the

deviance and the Wald (W ) statistic to eliminate the variables that were not signi�cant.
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We used the step function in R with no interaction to select the best model and the

anova function to test the overall signi�cance of each variable. It gives information

on how much deviance the variable adds to the model. From the W values, it appears

that the variables acctyp, loctndsc, cause, gender, nationality, vehctyp and hrmdtl

have signi�cant e�ect. In the other hand, for the variables day, month, age, licens,

roadtyp and climcond, the results indicate that they are not adding useful information

to the variability in the response variable and should be removed. We work to test the

hypothesis with the null hypothesis

H0 : βj = 0

The GLM function in R calculates the Wald-test (z) based on the large sample distri-

bution of the maximum likelihood estimate, which is approximately normal with mean

β and variance-covariance matrix ˆvar(β̂) to calculate the βs. We test the signi�cance

of a single coe�cient by calculating the ratio of the estimate to its standard error.

z =
β̂i√
ˆvar(βj)

We regress z on the covariates calculating the weighted least squares estimate

β̂ = (X ′WX)−1X
′
Wz

where W is the diagonal matrix of weights with entries

wii = µ̂i(ni − µ̂i)/ni

The resulting estimate is consistent and its large-sample variance is given by the

variance-covariance matrix

var(β̂) = (X
′
WX)−1

66



Interpretation of Coe�cients

In OLS, β equals the change in Y with one unit change in X, but in logistic

regression, this interpretation is not suitable since the linear predictor xβ is not

directly estimating Pr(Y ). Instead, we have to translate the relation of the response

and the linear predictor, xβ, using the exponent function. When we do that, we

have a type of 'coe�cient' that is interpreted di�erently. This coe�cient is called

the odds ratio. The odds ratio is equal to exp(β), or sometimes written as eβ .

Here, π(x) is the overall probability of having an injury case (inj = 1) given

x. The indicator variables have a slightly di�erent interpretation. For example,

having a run-over accident, versus a two-vehicle collision accident changes the log

odds of injury by 0.480. Having an overturn accident versus a two-vehicle collision

changes the log odds of injury by 1.145. Having a �xed object collision versus a

two-vehicle collision changes the log odds of injury by -0.270. Having a motorcycle

or bicycle accident versus a two-vehicle collision changes the log odds of injury by 0.566.

For the e�ect of accident location, having an accident at a roundabout versus an

accident in a straight road changes the log odds of injury by -0.163 not signi�cant

at the 10% level. Having an accident in a triangle versus an accident in a straight

road changes the log odds of injury by 0.457 signi�cant at the 5% level. Having an

accident in any other location is not signi�cant. The cause of the accident appeared

to be signi�cant in explaining the variation of injury severity. The model shows that

an accident caused by carelessness versus an accident caused by high-speed changes

the log odds of injury by 0.308. An accident caused by not leaving safe distance

versus an accident caused by high-speed changes the log odds of injury by 0.256. An

accident caused by overtaking versus an accident caused by high-speed changes the

log odds of injury by 0.542. An accident caused by fatigue or alcohol e�ect versus an

accident caused by high-speed changes the log odds of injury by -1.185. Other causes
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of accidents, such as road, vehicle, and climate condition, versus an accident caused by

high-speed change the log odds of injury by -0.097. For the driver characteristics,

we �nd that having an accident with a female driver versus an accident with a male

driver changes the log odds of injury by 0.646. The age and nationality of the driver

appears to be not signi�cant here. The harm level of the vehicle is highly signi�cant.

Having an accident with moderate harm versus an accident with severe vehicle harm

changes the log odds of injury by -0.752. Having an accident with slight harm versus

an accident with server vehicle harm changes the log odds of injury by -0.841. Having

an accident with no harm versus an accident with server vehicle harm changes the log

odds of injury by -1.100.

We calculated the con�dence intervals for the coe�cient estimates. Note that for logistic

models, con�dence intervals are based on the pro�led log-likelihood function; however,

we can also get CIs based on just the standard errors by using the default method. The

Wald (z) test can be used to calculate a con�dence interval for βj . We can state with

100(1− α)% con�dence that the true parameter lies in the interval with boundaries

β̂ ± z1−α/2
√

ˆvar(β̂) (A.1)

where z1−α/2 is the normal critical value for a two-sided test of size α. Con�dence

intervals for e�ect in the logit scale can be translated into con�dence interval for odds

ratios by exponentiating the boundaries. The coe�cients are the logs of the odds ratios

of the probabilities of injury, so we exponentiate and interpret them as odds ratios.

We do the same with con�dence intervals of the coe�cient and get the odds ratios

by exponentiating them and putting them all in one table. Now it should be easier

to interpret the coe�cients in relation to the probability of the injury. If the OR is

exactly one, the two levels of the variable have equal e�ect on explaining the variation

on the response variable. If the OR is less than one, the level has less e�ect in the
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variation of the response variable, and if OR is more than one, the level has more

e�ect on the response variable. Now we can say that for a one-unit increase in the

run-over accidents, the odds of having an injury case (versus not having injury case)

increases by a factor of 0.669. This means that a run-over accident is 33.1% less likely

to cause an injury case compared with a two-vehicle collision. We interpret the rest of

the coe�cients in the same way.

We tested for an overall e�ect of the accident type using the wald.test function of the

aod package. The wald-test function refers to the coe�cients by their order in the

model. In the wald-test function, b provides the coe�cients, and Sigma provides the

variance-covariance matrix of the error terms, and terms in the function tells R which

terms in the model are to be tested. In this case, terms 2, 3, 4, and 5, are the four

terms for the levels of the accident type. The chi-squared test statistic of 43.7, with

four degrees of freedom that is associated with a p-value less than 0.001, indicates that

we reject the null that H0 : βj = 0, and we can claim that the overall e�ect of accident

type is statistically highly signi�cant. The location description has a chi-squared test

statistic of 9.1, with three degrees of freedom that is associated with a p-value of 0.028,

indicating that the overall e�ect of the location description is statistically signi�cant.

The cause of the accident has a chi-squared test statistic of 13.9, with �ve degrees of

freedom that is associated with a p-value of 0.19, indicating that the overall e�ect of

the cause is statistically signi�cant. The gender of the driver has a chi-squared test

statistic of 9.0, with one degree of freedom that is associated with a p-value of 0.0027,

indicating that the overall e�ect of the gender of the driver has a signi�cant e�ect on

the occurrence of an injury case. The harm in the vehicle has chi-squared test statistic

of 15.6, with three degrees of freedom that is associated with a p-value of 0.0014,

indicating that the overall e�ect of the harm in the vehicle is statistically signi�cant.

We test additional hypotheses about the di�erences in the coe�cients for the di�erent
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levels of the variables. Below we test that the coe�cient for run-over accidents is equal

to the coe�cient for overturn accidents H0 : βrun−over = βover−turn. The �rst line

of the code below creates a vector l that de�nes the test we want to perform. We

want to test the di�erence of the terms for run-over and overturn accidents (i.e., the

second and third terms in the model). To contrast these two terms, we multiply one

of them by 1 and the other by -1. The other terms in the model are not involved in

the test, so they are multiplied by 0. The second line of code below uses L=l to tell

R that we wish to base the test on the vector l instead of using the Terms option.

The chi-squared test statistic of 11.6, with one degree of freedom is associated with a

p-value of 0.00065, indicating that the di�erence between the coe�cient for run-over

accidents and the coe�cient for overturn accidents is not zero and is statistically

signi�cant. We run the test for the rest of the coe�cients, and we get the same result

that the di�erences between the coe�cients of levels of variables are not zero and there

are signi�cant di�erences between them. Table 13 gives the results of running a binary

logistic regression on the data to see if we get results that supports our �ndings in the

previous chapters when applying Poisson and alternatives.
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Table A.2: Binary logistic regression results using robust S.Error

Estimate Odds Ratio Robust SE Pr(>|z|) LL OR LL UL OR UL
(Intercept) 0.146 1.157 0.312 0.640 −0.465 0.628 0.756 2.130
year2010 0.092 1.097 0.086 0.283 −0.076 0.927 0.261 1.298
year2011 0.423 1.526 0.090 0.00000 0.246 1.279 0.600 1.822
year2012 0.677 1.967 0.144 0.00000 0.395 1.484 0.959 2.608

acctypRun-Over 0.480 1.615 0.189 0.011 0.109 1.115 0.850 2.340
acctypOver-Turn 1.145 3.144 0.198 0 0.757 2.131 1.534 4.638

acctypFixed Object Collision −0.270 0.763 0.176 0.124 −0.614 0.541 0.074 1.077
acctypMotorcycle/Bicycle 0.566 1.761 0.248 0.023 0.079 1.083 1.052 2.864

loctndscRoundabout −0.163 0.850 0.144 0.259 −0.446 0.640 0.120 1.128
loctndscTriangle 0.457 1.580 0.172 0.008 0.119 1.127 0.795 2.215
loctndscOther 0.028 1.029 0.125 0.823 −0.218 0.804 0.274 1.315

causecarelessness 0.308 1.360 0.097 0.002 0.118 1.125 0.498 1.645
causesafedist. 0.256 1.291 0.171 0.136 −0.080 0.923 0.591 1.807
causeovertaking 0.542 1.719 0.207 0.009 0.136 1.145 0.948 2.581

causefatigue/alcohol −1.185 0.306 0.218 0.00000 −1.613 0.199 −0.758 0.468
causeother −0.097 0.907 0.161 0.545 −0.413 0.662 0.218 1.243
genderfemle 0.646 1.907 0.134 0.00000 0.384 1.468 0.908 2.479

nationalitynon-omani −0.362 0.696 0.090 0.0001 −0.539 0.583 −0.185 0.831
vehctypFour Wheel −0.219 0.803 0.103 0.033 −0.422 0.656 −0.017 0.983

vehctypBi/Motorcycle 0.986 2.681 0.317 0.002 0.364 1.439 1.608 4.994
vehctypHeavy −0.083 0.920 0.126 0.511 −0.331 0.718 0.165 1.179
vehctypOther 0.234 1.263 0.216 0.280 −0.190 0.827 0.658 1.930

hrmdtlModerate −0.752 0.472 0.091 0 −0.930 0.394 −0.573 0.564
hrmdtlSlight −0.841 0.431 0.121 0 −1.079 0.340 −0.604 0.547

hrmdtlNo harm −1.100 0.333 0.175 0 −1.443 0.236 −0.756 0.470
vhcls 0.695 2.004 0.145 0.00000 0.412 1.510 0.978 2.660

Observations 4,976
LogLikelihood -2,538.693

AkaikeInf.Crit. 5,129.387

Note:
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Deviance. The residual sum of squares (here it's the deviance ratios) and the coe�cient

estimates are the same as the ones given by the linear models lm function. For our

model, the deviance is 5,077.387. In ordinary least squares OLS regression, the primary

measure of model goodness-of-�t is R2, which is an indicator of the percentage of

variance in the dependent variable explained by the model. With logistic regression,

instead of R2, the statistic for the overall goodness-of-�t of the model, we have deviance

instead. We use chi-square as a measure of our model �t similarly. It is the �t of the

observed values (Y) to the expected values (Ŷ ). The larger the ('deviance') the di�erence

of the observed values from the expected values, the poorer the �t of the model. So,

we want a small deviance if possible. As we include more variables to the model, the

deviance should get smaller, indicating an improvement in the �t. The deviance is a

measure of discrepancy between observed and �tted values and it is given by

D = 2
∑{

yilog(
yi
ˆµ− i

) + (ni − yi)log(
ni − yi
ni − µ̂i

)

}
(A.2)

where yi is the observed and µ̂i is the �tted value for the i− th observation.

We can test the goodness of �t of the model by looking to the ratios given below the

coe�cients, including the null deviance (4739.102) and deviance residuals and the AIC.

We also can use the anova analysis to measure the model's goodness-of-�t by testing the

signi�cance of the overall model. We test the hypothesis that the model with predictors

�ts signi�cantly better than the null model- a model with only the intercept. The test

statistic is the di�erence between the residual deviance for the model with predictors and

the null model. The test statistic has chi-squared distribution with degrees of freedom

equal to the di�erences in degrees of freedom between the current and the null model

(the number of predictor variables in the model). We calculated below the di�erence in

deviance for the two models,

\begin{verbatim}

B1$deviance
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[1] 5077.387

> glm(injuryb~1)$deviance

[1] 4739.102

> (glm(injuryb~1)$deviance-B1$deviance)/

glm(injuryb~1)$deviance

[1] -0.07138158

> ## change in deviance

> with(B1, null.deviance - deviance)

[1] 626.1778

> ## change in degrees of freedom

> with(B1, df.null - df.residual)

[1] 25

> ## chi square test p-value

> with(B1, pchisq(null.deviance - deviance,

df.null - df.residual, lower.tail = FALSE))

[1] 4.04921e-116

> logLik(B1)

'log Lik.' -2538.693 (df=26)

The degrees of freedom for the di�erence between the two models is equal to the number

of predictor variables in the models, and can be obtained using:

In OLS regression, we �nd the best �tting line by minimising the squared residuals. In

logistic regression, a di�erent approach is used-that is Maximum Likelihood (ML). ML

is a way of �nding the smallest possible deviance between the observed and predicted

values using calculus precisely. ML tries di�erent iterations in which it tries di�erent
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solutions until it gets the smallest possible deviance or best �t and provides a �nal

value for the deviance. The deviance statistic is called â��2LL, and it can be thought

of as a chi-square value. The likelihood ratio test, G, is a chi-square di�erence test using

the 'null' or intercept-only model. Instead of using the deviance (â��2LL) to judge the

overall �t of a model, however, another statistic is usually used to compare the �t of the

model with and without the predictor(s). The di�erence between these two deviance

values is often referred to as G for goodness of �t.

G = χ2 = D(null)−D(with/predictors)

or, using the using Cohen et al. notation,

G = χ2 = Dnull −Dk = −2LLnull − (−2LLk)

Where Dnull is the deviance for the intercept-only model and Dk is the deviance for

the model containing k number of predictors. Another equivalent formula is

G = χ2 = −2ln

(
Lnull
Lk

)
The chi-square of -516.38 with 17 degrees of freedom and the corresponding p-value of

less than 0.0001 tells us that our model �ts signi�cantly better than the null model. This

is sometimes called a likelihood ratio test (the deviance residual is -2 log likelihood).

We plot the basic residual versus the predictors and versus the linear predictor which

are Pearson residuals versus each of the predictors. Instead of plotting residuals against

�tted values, however, the residual Plots function plots residuals against the estimated

linear predictor. Each panel in the graph by default includes a smooth �t rather than

a quadratic �t. In the binary regression, the plots of Pearson residuals or deviance

residuals are strongly patterned, particularly the plot against the linear predictor, where

the residuals can take on only two values, depending on whether the response is equal to
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zero or one. Gender can take on two values, and so the residuals can take on four values

for each value of the other factors. Even in this extreme case, however, a well-�tting

model should have the conditional mean function in any residual plot be constant as

we move across the plot. The �tted smooth helps us learn about the conditional mean

function, and neither of the smooths shown is especially curved. The residuals for the

variables are shown as a boxplot because all of these are factors. Unfortunately, it's

not easy to interpret the boxplots because of the discreteness in the distribution of the

residuals. Figures 10-15 shows residual plots of the injury data with di�erent factors.

Figure A.3: Residuals plot (accident type) Figure A.4: Residuals plot of the injury
data(location description)
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Figure A.5: Residuals plot (accident cause) Figure A.6: Residuals plot (driver's gender)

Figure A.7: Residuals plot of the injury
data(vehicle type)

Figure A.8: Residuals plot (vehicle harm)
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We calculate Cook's distance for GLMs approximately using

D =
e2PSi
k + 1

× hi
1− hi

Figure A.9: Cook's distances and hat-values

In Figure 16 we have tow diagnostics to check for outliers; the Cook's distances and the

hat-values. Generally, deleting one of the observations should not change the model's
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estimates, however, sometimes deleting an observation changes the coe�cient value

of some variables. we can see the values that are returned by the Cook's distance

calculation. Exact values of df βij and df βsij could be found directly from the �nal

iteration of the IRWLS procedure. Figure 9 shows index plots of Cook's distances and

hat-values, There is no indication of outliers.
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Appendix B

Ordered Probit Model

In road safety management, the regulations and policies of road maintenance are ad-

justed based on the knowledge of the factors that in�uence the accident frequency and

severity. Several research studies have been conducted over the years to identify these

factors and to explain their in�uence on road tra�c accidents. These factors commonly

categorised into: driver attributes, vehicle attributes, road characteristics, and accident

characteristics. The objectives of this research is to investigate the factors associated

with injury severity level of the accidents in Oman. For this purpose, the ordered pro-

bit model is applied to a real dataset, which comprises 24,192 records related to all

types of road accidents that took place all over Oman, between January, 2009 and

April, 2012. Researches have applied a variety of statistical techniques including or-

dered logit model, generalised ordered logit model, and multivariate ordered-response

probit model. However, the ordinal probit model was found to be better in recognising

the increasing severity and the categorical nature of the ordinal independent variable.

Furthermore, The model attracts researchers for being parsimonious in the number of

parameters which makes it easy for interpretation than the other mentioned models.
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B.1 Literature Review

Various number of studies have documented the application of the logistic regression

to analyse the injury severity levels of tra�c accident. Such multinomial dependent

variables are ordinal by nature and other discrete choice models such as logit model

mostly fail to account for the ordinal nature of such response variables. In particular,

the ordered probit model have shown a robustness to handle such data in an e�cient

and parsimonious way. Xiea, Y., et, al (2012) analysed the injury severities of

single-vehicle crashes on rural roads using a latent class logit model. The model has the

advantage of not restricting the coe�cients of each explanatory variable in di�erent

severity levels which helps to identify the e�ect of the explanatory variable on di�erent

severity levels. Weissa, H., Kaplanb, S., Pratob, C. (2014) developed a mixed logit

model to account for heterogeneity and heteroscedasticity in the propensity to injury

severity outcomes and for correlation between serious and fatal injuries. The model

provided a better �t than a binary and a generalized ordered logit. They applied their

analysis using a dataset of single-vehicle and two-vehicle crashes in New Zeeland which

included at least one 15-24 year-old driver between 2002 and 2011. Their result showed

that (1) seatbelt non-use, inexperience and alcohol use were the deadliest behavioural

factors in single-vehicle crashes, while (2) fatigue, reckless driving and seatbelt non-use

were the deadliest factors in two-vehicle crashes.

Another application of ordered model on injury severity was conducted by Garridoa,

R., et. Al (2014). They used the model to examine the contributing factors to the injury

severity of the occupants of the involved vehicles in road accidents in Coimbra. His

�ndings suggest that (1) light-vehicles travelling at (2) two-way roads, and on (3)dry

road surfaces result in more severe injuries than those who travel in (1) heavy-vehicles,

at (2) one-way roads, and on (3) wet road surfaces. They also found that the (1)

driver's seat seems to be safer than other positions in the involved vehicle, (2) urban
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areas seem to experience less serious accidents than rural areas, and (3) women are

more likely to face serious or fatal injuries than men. Obeng, K., Rokonuzzaman,

R., (2013) applied ordered logit model for pedestrian injury severity from crashes at

signalized intersections in a medium-size city. His �ndings is that (1) vehicle type,

gender, land-use, speed limit, tra�c volume, the presence of side-walks and visual

obstruction signi�cantly explain pedestrian injury severity in vehicle pedestrian crashes

at signalized intersections. He also found that (2) females are remarkably involved

in these crashes, (2) side-walks increase the probability of a pedestrian sustaining a

serious injury while (3) passenger cars, sport utility vehicles and pick-ups are associated

with less severe pedestrian injuries.

Abdel-Aty, M., (2003) has also conducted a study in the same context in which he

applied ordered probit model. He analysed the driver injury severity in accidents

at roadway sections, signalized intersections, and toll plazas in Central Florida.

The three models showed that injury severity level was signi�cantly a�ected by (1)

driver's age, gender, seat-belt use, point of impact, speed, and vehicle type. While

some variables like the driver's violation was signi�cant only in the case of signalized

intersections and alcohol, lighting conditions, and the existence of a horizontal curve

were signi�cant in the roadway sections only. Similarly, Chimba, D., et. Al, (2012)

applied multinomial Logit model to analyse the in�uencing roadway features, tra�c

characteristics and environmental conditions on bicycle crash injury severities. The

model has advantage for its �exibility in quantifying the e�ect of the independent

variables for each injury severity categories. He found that severity of bicycle crashes

increases with increase in vehicles per lane, number of lanes, bicyclist alcohol or drug

use, routes with 35-45 mph posted speed limits, riding along curved or sloped road

sections, when bicyclists approach or cross a signalized intersection, and at driveways.

Also, the (1) routes with a high percentage of trucks, (2) roadway sections with

curb and gutter,(3) cloudy or foggy weather and (4) obstructed vision were found to
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have high probability of severe injury. Segments with wider lanes, wide median and

wide shoulders were found to have low likelihood of severe bicycle injury severities.

Limited lighting locations was found to be associated with incapacitating injury and

fatal crashes, indicating that insu�cient visibility can potentially lead to severe crashes.

Kockelman, K., Kweon, Y., (2002) used ordered probit model to examine the dif-

ferent probability of injury levels when applying the model to (1) all crash types,

(2) two-vehicle crashes, (3) and single-vehicle crashes. The results suggest that (4)

pick-ups and sport vehicles are less safe than passenger cars under single-vehicle crash

conditions. In two-vehicle crashes, however, (5) these vehicle types are associated

with less severe injuries for their drivers and more severe injuries for occupants of

their collision partners. Other �ndings is that (4) males and younger drivers in newer

vehicles at lower speeds sustain less severe injuries. Khan, G., Bill, A., Noyce, D.,

(2015) studied the feasibility of using GUIDE Classi�cation Tree method to analyse

the severity of CMCs to discover if any additional information could be revealed.

Additionally, the e�ects of variable types (continuous or discrete), misclassi�cation

costs, and tree pruning characteristics on models results were also explored. showing

that the GUIDE Classi�cation Trees revealed new variables (median width and tra�c

volume) that a�ect CMC severity and provided useful insight on the data. The

results of this research suggest that the use of Classi�cation Tree analysis should

at least be considered in conjunction with regression-based crash models to better

understand factors a�ecting crashes. Classi�cation Tree models were able to reveal

additional information about the dependent variable and o�er advantages with respect

to multicollinearity and variable redundancy issues.

Mamdoohi, A., et. al (2014) used a binary model to estimate the severity of accidents

in Tehran urban which can be used in road safety planning. Human characteristics

and collision attributes were employed to act as surrogates for point of impact. Results
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indicate that wearing seat belt decreases the probability of accidents resulting in injury.

Furthermore, road misconduct, as a human reason of an accident, results in the most

severe accidents compared to other human reasons. In the other hand, as a consequence

of accidents caused by other non-human reasons, property damage only was found to

be the most probable outcome. Finally, drivers involved in front to front collision types

were most prone to injury. Other factors in decreasing order are: front to rear, front

to side, other types of collision, rear to side, and side to side. A review study that was

conducted by Mujalli, R., and Ona, J. (2011) investigated 19 modelling techniques used

in injury severity analysis of tra�c accidents that involved a 4-wheeled vehicle. They

compared between the models performance based on seven criteria which are modelling

method, number of observations, number of covariates, area type, features, injury level

and model �t. Their conclusion was that it is not possible to recommend a method

as the best one. Each modelling technique has its own limitations and characteristics,

awareness of which will help analysts to decide the best method to be used in each

particular modelling advantages and disadvantages. However, their general conclusions

is that in most cases the results of model' �ts are found to be satisfactory, though not

excellent; in the case of data mining models, accuracy improves with balanced datasets;

and no correlation was found between the number of accident records and the number

of analysed variables.

B.2 Methodology: Ordered Probit Model

In here, the dependent variable, injury-severity of an accident has �ve discrete ordinal

levels: fatal injury, severe injury, moderate injury, slight injury and no injury. The or-

dered probit model recognizes the ordinal (increasing severity) and categorical nature

of such independent variable and is also much easier to interpret than the counterparts

models because of its structure which provides a parsimonious number of parame-

ters. The model is usually built around the notion of the latent underlying injury risk
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propensity occurring from a road accident that determines the observed ordinal injury

severity level. Suppose the injury-severity level is a count variable yi that takes values

0, 1, 2, ...,m. De�ne the m+ 1 indicator variable

dij =

 1 if yi = j;

0 if yi 6= j.

Also de�ne the corresponding probabilities Pr[dij = 1] = Pij , j = 0, ...,m, where

pij may depend on regressors and parameters. Then the density function for the ith

observation can be written

f(yi) = f(di0, di1, ...., dim) =

m∏
j=0

Pijdij (B.1)

and the log-likelihood function is

lnL =

n∑
i=1

m∑
j=0

dij lnPij (B.2)

Now, the ordered probit model latent(unobserved) random variable is

y∗i = βX
′

i + εi (B.3)

where y∗ is an unobserved latent and continuous variable measuring the injury severity

resulted from accident i. β denotes a row vector of parameters to be estimated; Xi is

a column vector of observed explanatory variables; εi is a random error term which is

assumed to follow a standard normal distribution, ε ∼ N [0, 1]. The observed discrete

data variable yi is generated from the unobserved y∗i in the following way yi = j if

αj < y∗i ≤ αj+1, (B.4)

where j = 0, ...,m and α0 = −∞ and αm+1 =∞ it follows that
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Pij = Pr[αj < y∗i ≤ αj+1]

= Pr[αj − βX
′

i < εi ≤ αj+1 − βX
′

i

= Φ[(αj+1 − βX
′

i)− Φ(αj − βX
′

i)]

where Φ(.) is the standard normal cdf, j = 0, 1, 2, ....,m and αm+1 = ∞, The log-

likelihood function with probabilities is

lnL =

n∑
i=1

m∑
j=0

dij ln[Φ(αj+1 −X
′

iβ)− Φ(αj −X
′

iβ)] (B.5)

The observed and discrete injury-severity variable, Yi, is given as

yi =



0, if −∞ ≤ y∗i ≤ µ1 (no injury)

1, if µ1 < y∗i ≤ µ2 (slight)

2, if µ2 < y∗i ≤ µ3 (moderate)

3, if µ3 < y∗i ≤ µ4 (sever)

4, if µ4 < y∗i ≤ ∞ (fatal).

Estimation of β and α1, ....., αm by maximum likelihood is straightforward. Identi�ca-

tion requires a normalization, such as 0, for one of α1, ..., αm or for the intercept term in

β. So for given Xi the predicted probabilities of the �ve injury severity levels sustained

in accident i can be illustrated as
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Pi(0) = Pr(Yi = 0) = Pr(y∗i ≤ µ1) = Pr(βXi + εi ≤ µ1)

= Pr(εi ≤ µ1 − βXi) = Φ(µ1 − βXi),

Pi(1) = Pr(Yi = 1) = Pr(y∗i ≤ µ) = Pr(βXi + εi ≤ µ1)

= Pr(εi ≤ µ1 − βXi) = Φ(µ2 − βXi)− Φ(µ1 − βXi),

Pi(2) = Pr(Yi = 2) = Pr(y∗i ≤ µ) = Pr(βXi + εi ≤ µ1)

= Pr(εi ≤ µ1 − βXi) = Φ(µ3 − βXi)− Φ(µ2 − βXi),

Pi(3) = Pr(Yi = 3) = Pr(y∗i ≤ µ) = Pr(βXi + εi ≤ µ1)

= Pr(εi ≤ µ1 − βXi) = Φ(µ4 − βXi)− Φ(µ3 − βXi),

Pi(4) = Pr(Yi = 4) = Pr(y∗i ≤ µ) = Pr(βXi + εi ≤ µ1)

= Pr(εi ≤ µ1 − βXi) = 1− Φ(µ4 − βXi),

Interpretation of parameters: Positive signs suggest greater injury severity as an in-

crease in the value of corresponding variables while negative signs indicate the opposite

results. The in�uence of certain variable on the probabilities of injury severity cannot

be adequately interpreted through directly viewing only the estimated parameter, since

a negative parameter may in fact lead to an increase in probability. It is therefore more

helpful to examine the marginal e�ect of each variable on the probabilities of di�erent

accident injury severity levels. Figure 17 shows the cumulative-normal regression curve

where in the right side shows metric predictor variable mapped to metric underlying

variable, as in simple linear regression and the left side shows a mapping from metric
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underlying to observed ordinal variable.

]Right side shows metric predictor variable mapped to metric underlying variable, as in simple
linear regression. Left side shows mapping from metric underlying to observed ordinal variable.

Copyright(c) by John Kruschke and Elsevier.

Figure B.1: Cumulative-normal regression
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B.3 Data

The dataset used in the study was extracted from police records of crashes reported

between 2009 to 2012 and involved all intersection accidents in Oman. Table 14 gives

further descriptive statistics and more details about the research variables. The crash

injury severity in �ve categories: fatal, sever, Moderate, slight and no injury. A dataset

involving information about 24,192 accidents was analysed in which the fatal accidents

were (4.5 %), the sever accident were (3.9%), the moderate accidents were (14.8%),

the slight injury accident represented (25.3%) and the accidents with no injury were

(51.5%). Figure 18 shows the distribution of accidents by driver characteristics and

Figure 19 shows the accident distribution by vehicle characteristics.
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Figure B.2: Distrib. of accidents by driver characteristics
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Figure B.3: Distrib. of accidents by vehicle characteristics
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Table B.1: Description of research variables

Variable Description Mean SD

Dependent variable(injLvl) 5 crash severity categories
Fatal 1 if severity level is fatal 0 otherwise 0.045 0.912
Severe 1 if severity level is sever 0 otherwise 0.039 0.924
Moderate 1 if severity level is moderate 0 otherwise 0.148 0.726
Slight 1 if severity level is slight 0 otherwise 0.253 0.558
No Harm 1 if severity level is no Harm 0 otherwise 0.515 0.236
Accident attributes
Time time of accident 1371.322 608.031
Type of Accident
VclColsion 1 if accident type is vehicle collision 0 otherwise 0.434 0.566
Runover (person or animal) 1 if accident type is run-over 0 otherwise 0.131 0.869
Overturn 1 if accident type is over-turn 0 otherwise 0.161 0.839
FxdObjctCol 1 if accident type is �xed object collision 0 otherwise 0.230 0.770
Mot/Bicycle 1 if accident type is vehicle collision 0 otherwise 0.044 0.956
Cause
High speed 1 if accident cause is high speed 0 otherwise 0.513 0.487
Wrong Conduct 1 if accident cause is wrong conduct 0 otherwise 0.235 0.766
Carelessness 1 if accident cause is carelessness 0 otherwise 0.074 0.926
Fatigue 1 if accident cause is fatigue 0 otherwise 0.026 0.974
Overtaking 1 if accident cause is overtaking 0 otherwise 0.047 0.954
Climcond 1 if accident cause is climate condition 0 otherwise 0.009 0.992
safedist. 1 if accident cause is safe distance 0 otherwise 0.059 0.941
Vehicle 1 if accident cause is vehicle 0 otherwise 0.0277 0.972
Road 1 if accident cause is road 0 otherwise 0.009 0.991
Driver Characteristics
Gender
Male 1 if driver's gender was male 0 otherwise 0.895 0.011
Female 1 if driver's gender was male 0 otherwise 0.105 0.801
Nationality
Omani 1 if driver's nationality was Omani 0 otherwise 0.828 0.029
Non-Omani 1 if driver's nationality was Non-Omani 0 otherwise 0.172 0.686
License Status
Licensed 1 if driver's nationality was licensed 0 otherwise 0.956 0.044
Unlicensed 1 if driver's nationality was unlicensed 0 otherwise 0.044 0.956
Age
age age of the driver 30.884 10.6262
Vehicle Characteristics
Vehicle type
Saloon 1 if the vehicle type is saloon 0 otherwise 0.633 0.135
Pick up 1 if the vehicle type is pick up 0 otherwise 0.114 0.786
Four wheel 1 if the vehicle type is four wheel 0 otherwise 0.109 0.793
Truck 1 if the vehicle type is truck 0 otherwise 0.027 0.946
Bus 1 if the vehicle type is bus 0 otherwise 0.083 0.840
Bi/Motorcycle 1 if the vehicle type is bi/motorcycle 0 otherwise 0.031 0.940
Others 1 if the vehicle type is others 0 otherwise 0.003 0.994
Vehicle involved count
Vehicle Number of involved vehicle 1.545 0.715
Road Characteristics
Road Type
Main 1 if the road type is main 0 otherwise 0.602 0.158
Sub 1 if the road type is sub 0 otherwise 0.379 0.386
Unpaved 1 if the road type is unpaved 0 otherwise 0.0189 0.963
Accident Location
Straight 1 if the accident location is straight 0 otherwise 0.790 0.044
Side 1 if the accident location is side 0 otherwise 0.033 0.935
Intersection 1 if the accident location is intersection 0 otherwise 0.066 0.872
Roundabout 1 if the accident location is roundabout 0 otherwise 0.053 0.896
Signal 1 if the accident location is signal 0 otherwise 0.020 0.960
Others 1 if the accident location is other 0 otherwise 0.036 0.929
Weather Condition
Normal 1 if the weather condition is normal 0 otherwise 0.978 0.021
Abnormal 1 if the weather condition is abnormal 0 otherwise 0.022 0.979
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B.4 Injury-severity analysis using ordered probit

model

This section presents an analysis of the injury-severity level of the accidents in Oman

using ordered probit model. We apply the probit model to a dataset that consist of

all accidents that happened around Oman during the period January, 2009 to April,

2012. We �t the ordered logistic regression model with the link �probit� using the polr

command from the MASS package in R language to estimate an ordered proportional

odds logistic regression. The regression output includes the coe�cient of the covariates,

standard errors, and t-test. It also includes the estimate of the intercepts µm where

the latent variable y∗ is cut to make the �ve groups that we observe in the data, which

are sometimes called cut points. The latent variable is continuous measure of injury

severity faced by driver in a crash i. The coe�cients are bit confusing in interpretation

because they are scaled in terms of logs. These coe�cients of order probit model are

interpreted similar as in the binary logistic regressions using odds ratios and are called

proportional odds ratios. To get the OR of the estimates and con�dence intervals, we

exponentiate the coe�cient values. In the output , we also get the residual deviance,

2Loglikelihood of the model as well as the AIC for the model comparison. We get

con�dence intervals for the parameter estimates by pro�ling the likelihood function or

by using the β ± percentile× SE(β), where SE is the standard error, t-testis the ratio

of the coe�cient to its standard error. If the 95% CI does not cross 0, the parameter

estimate is statistically signi�cant.

An important assumptions of the ordinal probit regression is the parallel regression

assumption which indicates that the relationship between each pair of outcome groups

is the same. In other words, the coe�cients that describe the relationship between, the

lowest level versus all higher levels of the response variable are the same as those that

describe the relationship between the next lowest level and all higher severity levels,
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etc. Because the relationship between all pairs of groups is assumed to be the same,

there is only one group of coe�cients. Thus, in order to assess the appropriateness

of the �tted model, we need to evaluate whether the proportional odds assumption

holds with the null hypothesis that the sets of coe�cients are the same. In Figure 4,

the values displayed are (linear) predictions produced by our probit model when we

regress the dependent variable(injLvl) on our independent variables one each time.

The parallel slopes assumption is examined through running binary logistic regressions

with varying cutpoints on the dependent variable to check the equality of coe�cients

across cutpoints.

Our dependent variable has 5 levels, labelled 1, 2, 3, 4, 5. We graph the probability

that y is greater than or equal to a given value for each level of y. We use the predicted

logits to test the proportional odds assumption using one predictor (x) variable at a

time, where the outcome groups (severity levels) are de�ned by either injLvl >= 2

and injLvl >= 3. If the di�erence between predicted logits for varying levels of a

predictor, say gender, are the same whether the outcome is de�ned by injLvl >= 2

or injLvl >=3, then we can be con�dent that the proportional odds assumption

holds. For example if the di�erence between logits for gender = 0 (female) and

gender = 1 (male) is the same when the outcome is injLvl >= 2 as the di�erence

when the outcome is injLvl >= 3, then the proportional odds assumption likely holds.

We calculate the log odds of being greater than or equal to each value of the target

variable. For gender, we would say that for a one unit increase in gender, i.e., going

from 0 (male) to 1 (female), the odds of �fatal� accident versus �Sever� or other severity

levels combined are -0.208 greater, given that all of the other variables in the model

are held constant. Likewise, the odds "fatal" or other severity level versus �no harm�

accident is -0.208 times greater, given that all of the other variables in the model are

held constant. For age (and other continuous variables), the interpretation is that when

a driver age moves 1 unit, the odds of moving from �no harm� accident to �slight� or
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other severity levels (or from the lower and middle categories to the high category) are

multiplied by 0.005.

Table B.2: units of ordered logits (ordered log odds)

+--------+---------------------------+-----+----+--------+---------+----------+-----------+

| | |N |Y>=1|Y>=2 |Y>=3 |Y>=4 |Y>=5 |

+--------+---------------------------+-----+----+--------+---------+----------+-----------+

|timhour |[ 100,1100) | 7011|Inf |2.928193|2.2524747| 1.0742278| 0.00142633|

| |[1100,1500) | 5706|Inf |3.325690|2.5824436| 1.3604262| 0.06030569|

| |[1500,2000) | 6366|Inf |3.075227|2.4798124| 1.2433959| 0.10124883|

| |[2000,2400] | 4991|Inf |2.921685|2.2661069| 1.1263209| 0.08219411|

+--------+---------------------------+-----+----+--------+---------+----------+-----------+

|acctyp |Vehicle Collision |10440|Inf |2.864684|2.2132918| 1.0111112|-0.14931896|

| |Run-Over | 3144|Inf |3.436617|2.6732990| 1.3779659| 0.27396545|

| |Over-Turn | 3877|Inf |3.178591|2.4748899| 1.2974237| 0.12862688|

| |Fixed Object | 5549|Inf |3.270898|2.6244753| 1.4398663| 0.31285322|

| |Motor/Bicycle | 1064|Inf |2.638051|2.0532757| 1.0103197|-0.10536052|

+--------+---------------------------+-----+----+--------+---------+----------+-----------+

|cause |Overspeed |12352|Inf |2.869629|2.2073403| 1.0281696|-0.09527927|

| |Wrong conduct | 5646|Inf |3.724515|2.9719983| 1.4787378| 0.21119598|

| |Carelessness | 1792|Inf |4.007333|3.2027464| 1.9979375| 1.05445500|

| |Fatigue | 634|Inf |3.074675|2.6458370| 1.6991667| 0.76015789|

| |Overtaking | 1131|Inf |2.041220|1.3984964| 0.4812252|-0.55302198|

| |Climcond | 216|Inf |3.396424|2.5257286| 1.2527630|-0.22314355|

| |safedist. | 1416|Inf |4.606598|3.2870841| 1.6664482| 0.26998978|

| |Vehicle | 668|Inf |2.262094|1.7847908| 0.7590053|-0.61115221|

| |Road | 219|Inf |2.297573|1.8024548| 0.8625653|-0.57219457|

+--------+---------------------------+-----+----+--------+---------+----------+-----------+

|roadtyp |Main |14496|Inf |2.750020|2.1312305| 0.9886528|-0.18179039|

| |Sub | 9126|Inf |3.911688|2.9971138| 1.5914006| 0.45106306|

| |Unpaved | 452|Inf |2.332144|1.9358345| 0.9950716|-0.02655023|

+--------+---------------------------+-----+----+--------+---------+----------+-----------+

|climate |Normal |23556|Inf |3.070989|2.4029073| 1.2037337| 0.06726937|

| |Abnormal | 518|Inf |2.328338|1.7760817| 0.8053592|-0.34309478|

+--------+---------------------------+-----+----+--------+---------+----------+-----------+

|gender |Male |21544|Inf |2.978372|2.3170174| 1.1735480| 0.10816326|

| |Female | 2530|Inf |3.967075|3.2329431| 1.3813610|-0.36772478|

+--------+---------------------------+-----+----+--------+---------+----------+-----------+

|national|Omani |19940|Inf |3.109229|2.4329807| 1.2120529| 0.04353747|

| |Non-omani | 4134|Inf |2.795435|2.1796100| 1.1109062| 0.13081030|

+--------+---------------------------+-----+----+--------+---------+----------+-----------+

|age |[ 1,25) | 7270|Inf |2.990258|2.3242620| 1.1480096|-0.07376107|

| |[25,29) | 5340|Inf |3.288868|2.5136561| 1.2085227| 0.03296179|

| |[29,37) | 5884|Inf |3.123501|2.3853536| 1.1781550| 0.05916069|

| |[37,96] | 5580|Inf |2.860875|2.3518661| 1.2600357| 0.25586713|

+--------+---------------------------+-----+----+--------+---------+----------+-----------+

|licns |Licensed |23025|Inf |3.178054|2.5122274| 1.2964294| 0.12062379|

| |Unlicensed | 1049|Inf |1.650023|0.9056382|-0.4961083|-1.55439876|

+--------+---------------------------+-----+----+--------+---------+----------+-----------+

|vhcls |1 |12880|Inf |2.984378|2.3233429| 1.1400365| 0.03571808|

| |2 | 9669|Inf |3.148195|2.4657907| 1.2477834| 0.07180662|

| |[3,37] | 1525|Inf |3.004720|2.4334707| 1.3298733| 0.16694403|

+--------+---------------------------+-----+----+--------+---------+----------+-----------+

|Overall | |24074|Inf |3.048621|2.3855428| 1.1942960| 0.05850301|

+--------+---------------------------+-----+----+--------+---------+----------+-----------+

94



Figure B.4: Test of the proportional odds assumption

In the output in Table 15 the estimates are given in units of ordered logits (ordered

log odds). The coe�cients with positive signs indicate increase in injury severity

level as they increase while negative signs indicate decrease in injury severity level

as they increase. For continuous variables like age of driver, time in hours and count

of vehicles, the severity level will increase as the value of the variable increase and

decrease as the variable value increase in case the coe�cient sign is negative. In
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the other hand, for indicative variables like gender, we would say that the severity

increases if we have female (1) accident compared to having male (0) accident in

case of positive sign coe�cient and decrease if the coe�cient is negative. Simi-

larly, we for a factor with more than two levels like cause of accident we would

say that if the cause is high speed equal 1 and 0 otherwise, the severity would in-

crease in case of positive sign coe�cient and decrease in case of negative sign coe�cient.

So our results showed that for the type of accident factor, only if the accident type is

motor/bicycle the logits of the injury severity decreases by -0.217 as we go from fatal

to sever or any of the severity levels having all the covariates held constant. For the

other accident types, the severity of the accident increase when moving between the

levels of severity. For the cause of accident if the accident cause is fatigue, overtaking

and vehicle the severity of accident decrease given the rest of the covariates are held

constant. The other causes increase the severity of the accident. For the road type

factor, the severity of the accident increase in the sub roads and unpaved than the main

roads. for the weather condition the severity of the accident appears to be decreasing

in the abnormal weather conditions. for the gender of the driver, the severity of the

accident decrease if the driver is female. The models showed that severity increase if

the driver nationality is not Omani. For the age of the driver the severity increase

with increase in the age. For the license status, the severity of the accident decrease if

the driver is unlicensed. The models showed that the severity of the accident decrease

if the vehicle type is not heavy. The models showed that the increase in number of

vehicles involved reduces the severity of the accidents.
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Table B.3: Ordered probit model: in�uencing factors on injury severity levels

Variable Estimate Std. Error t-value 95%CI p-value

acctypRun-Over 0.264 0.024 11.002 (0.217, 0.312) < 0.0001
acctypOver-Turn 0.174 0.022 7.919 (0.131, 0.217) < 0.0001
acctypFixed Object Collision 0.271 0.020 13.357 (0.231, 0.311) < 0.0001
acctypMotorcycle/Bicycle 0.069 0.036 1.905 (−0.004, 0.139) 0.057
causeWrong conduct 0.192 0.021 9.200 (0.151, 0.233) < 0.0001
causeCarelessness 0.654 0.034 19.448 (0.588, 0.719) < 0.0001
causeFatigue 0.407 0.050 8.103 (0.308, 0.505) < 0.0001
causeOvertaking -0.343 0.035 -9.681 (−0.412, −0.273) < 0.0001
causeClimcond 0.313 0.094 3.331 (0.129, 0.497) 0.001
causesafedist. 0.353 0.035 10.110 (0.285, 0.422) < 0.0001
causeVehicle -0.191 0.043 -4.403 (−0.278, −0.108) < 0.0001
causeRoad -0.163 0.075 -2.176 (−0.311, −0.018) 0.030
roadtypSub 0.398 0.016 24.736 (0.366, 0.429) < 0.0001
roadtypUnpaved 0.100 0.055 1.805 (−0.010, 0.207) 0.071
locationSide -0.354 0.040 -8.939 (−0.432, −0.277) < 0.0001
locationIntersection -0.050 0.030 -1.669 (−0.108, 0.009) 0.095
locationRoundabout 0.354 0.035 10.190 (0.284, 0.421) < 0.0001
locationSignal 0.298 0.054 5.475 (0.190, 0.403) < 0.0001
locationOthers 0.125 0.041 3.084 (0.045, 0.204) 0.002
climateAbnormal -0.266 0.061 -4.381 (−0.385, −0.147) < 0.0001
genderFemale -0.208 0.024 -8.746 (−0.254, −0.160) < 0.0001
age 0.002 0.001 2.401 (0.00003, 0.003) 0.016
licnsUnlicensed -1.138 0.035 -32.697 (−1.215, −1.076) < 0.0001
heavyVclOther -0.157 0.028 -5.636 (−0.206, −0.095) < 0.0001
vhcls -0.038 0.012 -3.050 (−0.062, −0.013) 0.002

No Harm |Slight -1.666 0.042 -39.994 < 0.0001
Slight |Moderate -1.320 0.041 -32.449 < 0.0001
Moderate |Severe -0.617 0.040 -15.459 < 0.0001
Severe |Fatal 0.135 0.040 3.397 0.001

Observations: 24,074
Res.Dev.: 56582.05
AIC: 56640.05

B.5 Modelling injuries by number of vehicles involved

In Table 17, we present analysis of the injury data by the count of vehicles involved. We

sort the data to three sets; accidents with single-vehicle, accidents with two-vehicles

and accidents with multiple-vehicles. We Compare the results of these groups by the

result when modelling the full dataset of all accidents. The severity of the accident

appears to be in�uenced by factors di�erently for each group of data. The results

shows that most of the factors are signi�cant in explaining the severity level of the
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accident injuries though there are cases where some variables coe�cient equals 0 such

as the coe�cient of the age in the two- and multiple-vehicle accidents. Having a large

dataset, most of the variables appears signi�cant when modelling injuries using the

full dataset of the 24,192 accidents. However, looking to the t-value of each covariates

enable us to see the size of the e�ect. The �rst and second groups still have large

sample sizes that is enough to get reasonable estimate of the factors coe�cients. Yet,

the third group estimates could be a�ected by the sample size since that is less than

2000 observations, though it is still acceptable size for such analysis especially that

sorting the data should reduce the variability that was present in the full data set.

Comparing the results of the three groups of accidents, the time of the accident

appears to be not signi�cant in explaining the severity of the accident though it appears

that injury-severity increases as the time goes on through the day but the coe�cient

was almost 0 and was eliminated by the step function. The type of accident is highly

signi�cant in single-vehicle accident more than in the two-vehicle while in multiple-

vehicle accidents, the accident type have 0 coe�cients and hence does not seem to give

information about the injury-severity in the multiple-vehicle accidents. The cause of

accident appears to be highly signi�cant in the single- and two-vehicle accidents. For

the road type factor, is highly signi�cant in explaining the severity of single- and

two-vehicle accidents. The severity of the accident seems to decrease in the abnormal

weather conditions. For the gender of the driver, in both models the severity of the

accident decreases if the driver is female. The models showed that severity increase if the

driver nationality is not Omani. For the age of the driver, the severity increases with

the increase in the age. For the license status, the severity of the accident decreases if

the driver is unlicensed. The models showed that the severity of the accident decreases

if the vehicle type is not heavy. All the models showed that the increase in number

of vehicles involved reduces the severity of the accidents.
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B.6 Conclusion

In this study, the ordered probit model was used to investigate the in�uence of di�erent

accident attributes on the injury severity faced by road users. This research models

tra�c injury severity in Oman which is a developing country using a four year accident

dataset from the Royal Oman Police records, it identi�es factors related to the envi-

ronment, roadway, driver and accident characteristics that contributed to the injury

severity level. We �nd the the �ndings of applying Poisson and it's alternatives and the

binary logistic are more consistent with many of the ones published in of the former

studies than the result here using the probit model of the accident severity levels. This

could be a result of mistake in data preparation for running the model. However, this

research in general should provide important transport safety inferences regarding the

accidents in developing countries. Especially, that little research is focused on this par-

ticular problem in GCC. It also provides a foundation to compare and contrast the role

of di�erent factors. We applied the ordered probit model using di�erent subsets selected

from the full dataset to investigate the accuracy of using the model and compared the

results looking to di�erent dimensions of the problem. Apparently the model �ts the

data reasonably well but the marginal e�ects can be misleading, mainly when the ex-

planatory variable is a categorical variable. Comparing the performance of the model

using the full dataset with modelling a smaller sampled datasets, we found that the

model still provided results that were reasonably consistent in most cases. Though it

must be as large sample datasets usually contain enough information to �t an ordered

probit model. Although there is already extensive and successful applications of more

advanced techniques in the literature such as Bayesian models in many �elds, the sim-

ple ordered model found to be e�cient and parsimonious and still attracts researches

to apply for injury severity data analysis.
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Table B.4: Ordered Probit Model: di�erent samples from the model

Dependent variable:

injLvl

(full dataset) (sample1) (sample2) (sample3) (sample4) (sample5)

acctypRun-Over 0.264∗∗∗ 0.152∗ 0.188∗∗ 0.219∗∗ 0.375∗∗∗ 0.307∗∗∗
(0.024) (0.084) (0.083) (0.087) (0.086) (0.083)

acctypOver-Turn 0.174∗∗∗ 0.215∗∗∗ 0.174∗∗ 0.273∗∗∗ 0.164∗∗ 0.235∗∗∗
(0.022) (0.075) (0.076) (0.077) (0.077) (0.077)

acctypFixed Object Collision 0.271∗∗∗ 0.200∗∗∗ 0.190∗∗∗ 0.336∗∗∗ 0.301∗∗∗ 0.288∗∗∗
(0.020) (0.069) (0.070) (0.072) (0.070) (0.070)

acctypMotorcycle/Bicycle 0.069∗ 0.095 0.108 0.263∗∗ 0.283∗∗ −0.043
(0.036) (0.139) (0.121) (0.125) (0.133) (0.128)

causeWrong conduct 0.192∗∗∗ 0.231∗∗∗ 0.281∗∗∗ 0.288∗∗∗ 0.157∗∗ 0.230∗∗∗
(0.021) (0.071) (0.066) (0.075) (0.073) (0.072)

causeCarelessness 0.654∗∗∗ 0.610∗∗∗ 0.683∗∗∗ 0.698∗∗∗ 0.487∗∗∗ 0.658∗∗∗
(0.034) (0.116) (0.111) (0.120) (0.104) (0.117)

causeFatigue 0.407∗∗∗ 0.502∗∗∗ 0.582∗∗∗ 0.723∗∗∗ 0.771∗∗∗ 0.468∗∗
(0.050) (0.177) (0.181) (0.177) (0.185) (0.188)

causeOvertaking −0.343∗∗∗ −0.416∗∗∗ −0.061 −0.311∗∗ −0.169 −0.236∗
(0.035) (0.120) (0.127) (0.127) (0.133) (0.130)

causeClimcond 0.313∗∗∗ −0.196 0.783∗∗ 0.278 −0.317 0.209
(0.094) (0.293) (0.355) (0.338) (0.318) (0.236)

causesafedist. 0.353∗∗∗ 0.463∗∗∗ 0.407∗∗∗ 0.442∗∗∗ 0.366∗∗∗ 0.415∗∗∗
(0.035) (0.121) (0.116) (0.119) (0.130) (0.131)

causeVehicle −0.191∗∗∗ −0.253∗ −0.166 −0.288∗∗ 0.088 −0.083
(0.043) (0.141) (0.157) (0.132) (0.147) (0.144)

causeRoad −0.163∗∗ −0.179 −0.116 0.072 0.189 −0.314
(0.075) (0.248) (0.302) (0.247) (0.356) (0.248)

roadtypSub 0.398∗∗∗ 0.371∗∗∗ 0.459∗∗∗ 0.362∗∗∗ 0.359∗∗∗ 0.422∗∗∗
(0.016) (0.055) (0.056) (0.057) (0.056) (0.056)

roadtypUnpaved 0.100∗ 0.075 0.294 −0.063 0.327∗ 0.214
(0.055) (0.183) (0.210) (0.166) (0.196) (0.204)

locationSide −0.354∗∗∗ −0.262∗∗ −0.520∗∗∗ −0.404∗∗∗ −0.273∗∗
(0.040) (0.131) (0.142) (0.146) (0.135)

locationIntersection −0.050∗ −0.086 −0.275∗∗∗ 0.005 −0.048
(0.030) (0.100) (0.103) (0.107) (0.105)

locationRoundabout 0.354∗∗∗ 0.358∗∗∗ 0.263∗∗ 0.428∗∗∗ 0.425∗∗∗
(0.035) (0.122) (0.118) (0.115) (0.126)

locationSignal 0.298∗∗∗ 0.480∗∗ 0.217 0.350∗ 0.484∗∗
(0.054) (0.225) (0.176) (0.197) (0.196)

locationOthers 0.125∗∗∗ 0.084 0.010 0.083 0.181
(0.041) (0.147) (0.129) (0.135) (0.158)

climateAbnormal −0.266∗∗∗ −0.442∗∗ −0.408∗
(0.061) (0.208) (0.223)

genderFemale −0.208∗∗∗ −0.276∗∗∗ −0.250∗∗∗ −0.160∗ −0.243∗∗∗ −0.164∗∗
(0.024) (0.082) (0.081) (0.082) (0.081) (0.083)

age 0.002∗∗ 0.005∗
(0.001) (0.002)

nationalNon-omani 0.113
(0.072)

licnsUnlicensed −1.138∗∗∗ −0.940∗∗∗ −1.160∗∗∗ −1.022∗∗∗ −1.170∗∗∗ −1.184∗∗∗
(0.035) (0.130) (0.118) (0.137) (0.111) (0.111)

heavyVclOther −0.157∗∗∗ −0.272∗∗∗ −0.146 −0.263∗∗∗ −0.199∗∗
(0.028) (0.102) (0.094) (0.091) (0.100)

vhcls −0.038∗∗∗ −0.130∗∗∗ −0.079∗ −0.069 −0.067
(0.012) (0.044) (0.047) (0.049) (0.045)

Observations 24,074 2,000 2,000 2,000 2,000 2,000

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table B.5: Ordered Probit Model: Injury-severity-level of accidents by number of vehicle involved

Dependent variable:

injLvl

(all data) (single-vehicle) (two-vehicle) (multiple vehicle)

timhour 0.0001∗∗∗ 0.00005∗∗∗ 0.0001∗∗∗
(0.00001) (0.00002) (0.00002)

acctypRun-Over (person or animal) 0.256∗∗∗ 0.439∗∗∗ 0.002
(0.024) (0.035) (0.034)

acctypOver-Turn 0.165∗∗∗ 0.249∗∗∗ −0.014
(0.022) (0.030) (0.034)

acctypFixed Object Collision 0.256∗∗∗ 0.670∗∗∗ −0.102∗∗∗
(0.020) (0.032) (0.029)

acctypMotorcycle/Bicycle 0.068∗ 0.095∗∗ 0.014
(0.036) (0.042) (0.016)

causeWrong conduct 0.165∗∗∗ 0.179∗∗∗ 0.148∗∗∗ 0.287∗∗∗
(0.019) (0.044) (0.026) (0.078)

causeCarelessness 0.643∗∗∗ 1.034∗∗∗ 0.225∗∗∗ 0.457∗∗∗
(0.033) (0.048) (0.049) (0.170)

causeFatigue 0.413∗∗∗ 0.510∗∗∗ 0.315∗∗∗ 0.128
(0.005) (0.009) (0.013) (0.211)

causeOvertaking −0.374∗∗∗ 0.162∗∗∗ −0.425∗∗∗ −0.457∗∗∗
(0.033) (0.001) (0.040) (0.106)

causeClimcond 0.296∗∗∗ 0.219∗∗∗ 0.548∗∗∗ −0.053
(0.002) (0.007) (0.004) (0.277)

causesafedist. 0.315∗∗∗ 0.422∗∗∗ 0.129∗∗∗ 0.535∗∗∗
(0.032) (0.001) (0.040) (0.095)

causeVehicle −0.193∗∗∗ −0.142∗∗∗ −0.229∗∗∗ 0.075
(0.018) (0.046) (0.003) (0.247)

causeRoad −0.166∗∗∗ −0.065∗∗∗ −0.450∗∗∗ 0.445
(0.002) (0.005) (0.001) (0.468)

climateAbnormal −0.267∗∗∗ −0.215∗∗∗ −0.394∗∗∗
(0.003) (0.011) (0.007)

roadtypSub 0.398∗∗∗ 0.427∗∗∗ 0.349∗∗∗ 0.401∗∗∗
(0.016) (0.022) (0.025) (0.067)

roadtypUnpaved 0.105∗∗∗ 0.068∗∗∗ 0.054∗∗∗ 0.368
(0.003) (0.017) (0.001) (0.553)

locationSide −0.355∗∗∗ −0.505∗∗∗ −0.117∗∗ −0.247
(0.036) (0.052) (0.057) (0.167)

locationIntersection −0.053∗ 0.011 −0.067∗ −0.091
(0.029) (0.052) (0.038) (0.101)

locationRoundabout 0.355∗∗∗ 0.302∗∗∗ 0.435∗∗∗ 0.480∗∗∗
(0.034) (0.045) (0.055) (0.159)

locationSignal 0.290∗∗∗ 0.338∗∗∗ 0.279∗∗∗ 0.215
(0.004) (0.002) (0.019) (0.144)

locationOthers 0.123∗∗∗ 0.237∗∗∗ 0.027 −0.066
(0.037) (0.016) (0.057) (0.139)

age 0.002∗∗∗ 0.003∗∗∗
(0.001) (0.001)

genderFemale −0.208∗∗∗ −0.223∗∗∗ −0.201∗∗∗ −0.148
(0.024) (0.035) (0.035) (0.091)

nationalNon-omani 0.064∗∗ 0.213∗∗∗
(0.032) (0.082)

licnsUnlicensed −1.148∗∗∗ −0.862∗∗∗ −1.351∗∗∗ −0.953∗∗∗
(0.034) (0.023) (0.047) (0.200)

heavyVclOther −0.157∗∗∗ −0.264∗∗∗
(0.022) (0.034)

Observations 24,074 12,880 9,669 1,525

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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