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China has achieved impressive increases in agricultural output in recent decades. Yet, past
approaches centred on a growing use of fertilizers, pesticides, fuel and water are not likely
to achieve the required 30–50% additional increases in food production by mid-century. We
show that efficiencies of production are falling and the costs of environmental harm are
increasing. Agricultural innovations that improve natural capital are urgently needed.
Conservation agriculture (CA) is now practised on .8 Mha in China and is offering
promising prospects of both enhanced yields and environmental services. Our meta-analysis
of 60 papers with 395 observations in China shows notable benefits from CA. Mean yield
increase was 4.5% or 263 kg ha21 for wheat, 8.3% or 424 kg ha21 for maize, and 1.65% or
250 kg ha21 for rice. In 34 datasets from 22 published papers (experimental duration: 2–17
years), 26 datasets (76.5%) show that CA increased yield and soil organic carbon (mean
SOC increase of .3 g.kg21 in 0–10 cm soil depth) when compared with traditional tillage.
Key priorities for the spread of more sustainable forms of agriculture in China are national
policy and financial support, better coordination across agencies, and better extension for
farmers.

Keywords: agricultural sustainability; China; conservation agriculture; sustainable
intensification

1. Food and consumption nexus

Despite great changes in agricultural systems worldwide and consequent increases in food pro-
duction in recent decades, the world faces unprecedented challenges during the twenty-first
century (FAO, 2016; Foresight, 2011; Lu, Chadwick, Norse, Powlson, & Shi, 2015). Three inter-
acting challenges are: continuing food insecurity for nearly 800 million people, increased demand
arising from changes in consumption patterns and growing total numbers of people and diminish-
ing stocks of natural capital (Godfray et al., 2010; Pretty, 2013). China exemplifies these interac-
tive challenges. Land and policy reforms combined with rapid adoption of modern agricultural
practices has increased both total and per capita food production at a rate greater than in the
world’s other key regions (Table 1). From 1990 to 2012 net agricultural production increased
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by two-and-a-half fold, per capita food production doubled; population increased, yet agricultural
production increased even faster.

Over the same period, consumption patterns have changed, putting pressure back on food
security. The proportion of the world population who are undernourished declined from 24%
to 10.6% between 1990 and 2014 (Africa from 28% to 20.5%; India from 24% to 15.2%)
(FAO, 2015). Meat consumption per capita (a proxy for the degree of ecological inefficiency
in the food system) increased by 26.3% worldwide, with the fastest growth in China and
Brazil (Table 2). Impacts on agricultural and non-agricultural land also extend globally across
transnational supply chains. Demand in China for animal feedstuffs, for example, places new
pressures on South American, particularly Brazilian agricultural and non-agricultural ecosystems
(Bharucha 2014 AQ2

¶
). Further, direct and indirect pressure on agricultural production will come from

climate change and depleted ecosystem services fundamental to agricultural success (Costanza
et al., 2014).

By 2050, world population is projected to grow to 9.7 billion, necessitating an increase in food
production by some 70% (FAO, 2015; Foresight, 2011; Godfray et al., 2010; Tilman, Balzer, Hill,
& Befort, 2011). China’s population is predicted to grow by 100 million to 1.46 billion. Given a
reduction target to reduce the number of undernourished people from 144 million to zero and the
future changes in diets and growing population, China will need to increase food supply from
domestic sources and/or from imports by 30–50% by 2040–2050 (NBS, 2013, 2014). A key
challenge centres on policy choices: will past agricultural practices that have brought food pro-
duction growth continue to succeed, or will new approaches centred on agricultural sustainability
be essential (Pretty & Bharucha, 2014; Royal Society, 2009; Zheng et al., 2014)?

2. Declining efficiencies and increasing environmental costs

Improvements in agricultural output in China have been driven by increases in consumption of
four factors of production: fertilizers, pesticides, fuel and water (Table 3). At the same time,

Table 1. Changes in net and per capita agricultural production (%, 1990–2012).

Changes in net production (%)
1990–2012

Changes in per capita production (%)
1990–2012

China +150 +109
North America +35 +7
Europe 216 212
Africa +103 +14
World +65 +22

Source: FAO (2015).

Table 2. Changes in per capita meat consumption (kg, 1990–2011).

1990 (kg) 2011 (kg) % change

China 24.8 57.5 +131.9
USA 112.7 117.6 +4.3
UK 72.0 82.5 +14.6
Brazil 49.4 93.0 +88.3
India 4.1 4.2 +2.4
World 33.4 93.0 +178.4

Source: FAO (2015).
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the efficiency of these resources has declined: only the water use efficiency (WUE) for grain pro-
duction has increased (Figure 1). Some of the required increases in food production could come
from further increases in use efficiency of these factors of production, but with a declining mar-
ginal efficiency, costs to farmers and the wider economy will rise (Norse & Ju, 2015). Concur-
rently, Chinese arable land area is slightly changed and limited in supply: over 2009–2013 the
arable land area changed from 135.38 Mha to 135.16 Mha (MOLR, 2010–2014). Further
increases in land area for grain cropping are not a viable option. Further development would
move into less favourable arable land and cause a loss of ecosystem services from the conversion
of valuable habitats and natural systems. At the same time, arable land is being lost to urban
encroachment (Su, Jiang, Zhang, & Zhang, 2011).

A further cost arises from direct negative impacts of some agricultural practices on natural
capital and human health. China is now the largest consumer of pesticides worldwide, more
than tripling use since 1990 to 1.81 billion kg of the current world annual total of 3.5 billion
kg (FAO, 2015 AQ3

¶
; NBS, 2013). Evidence from integrated pest management (IPM) projects in

Asia and Africa shows that at least 50% of pesticides applied (by weight) are overused, resulting
in each kg of active ingredient imposing US$4–$19 of external costs to the environment and
human health (Norse, Li, Jin, & Zhang, 2001; Pretty & Bharucha, 2015). Fertilizer use in
China has increased by 227% to 58 Mt annually (Table 3), yet not all applied nutrients are
taken up by plants or microbial communities and thus escape and contribute to the costly eutro-
phication of aquatic ecosystems (Norse et al., 2001) and nitrous oxide emissions (Yu, Zhao, & Jia,
2015). Soil degradation affects agriculture’s ability to continue to be productive as well as
adversely impacting ecosystems. In China, a total of 295 Mha of land is prone to accelerated
soil erosion (MOEP, 2014), and in some principal rivers, annual soil sediment losses are normally
over 300 Mt (Table 4). For arable lands, topsoil rich in organic matter and nutrients is usually the
first to be eroded, thus resulting in considerable flux of carbon to the atmosphere and negative
impacts on soil productivity (Wang, Oenema, Hoogmoed, Perdok, & Cai, 2006).

The challenge is substantial: China must produce 30–50% more food during the next 25–35
years, yet it must also find ways to adopt agricultural innovations that improve natural capital and
ecosystem services. Sustainable intensification (SI) is defined as a process or system where yields
are increased without adverse environmental impact and without the cultivation of more land. The
concept is thus relatively open, in that it does not articulate or privilege any particular vision of
agricultural production (Conway, 1997; Garnett et al., 2013). It emphasises ends rather than
means, and does not predetermine technologies, species mix or particular components of agroe-
cological or agronomic design.

Thus, SI can be distinguished from earlier conceptions of ‘agricultural intensification’ as a
result of its explicit emphasis on wider environmental and health outcomes. It is often achieved
from shifts in the factors of agricultural production (e.g. from use of fertilizers to nitrogen-fixing
legumes; from pesticides to emphasis on natural enemies and on creating disease-suppressive
soils with favourable micro-biota (Mendes et al., 2011); from ploughing to no-till or NT)

Table 3. Changes in four factors of production, China.

Current annual use Increase over period (%) Years

Fertilizers 58.4 Mt +227 1990–2012
Pesticides 1.806 billion kg +236 1990–2012
Fuel 36.5 Mt +64 2000–2013
Water 392 Mt +4 2000–2013

Sources: MOA (2000–2014) and NBS (2014).

International Journal of Agricultural Sustainability 3

95

100

105

110

115

120

125

130

135

Original Text
Deleted Text
The reference &quot;FAO, 2015b&quot; is cited in the text but is not listed in the references list. Please either delete in-text citation or provide full reference details following journal style.



rather than simply intensifying the use of existing inputs. A number of approaches have been
identified for the SI of agro-ecosystems, including crop variety improvements, IPM, management
intensive rotational grazing systems, integrated nutrient management (INM), CA and agroforestry
systems (Barzman et al., 2014; Ellis and Wang, 1997 AQ4

¶
; Pretty & Bharucha, 2014, 2015; Shi, 2002;

Smith, 2013). Here, we analyse the practice and potential of changes in soil tillage derived from
plot experiments across China to deliver scale benefits in China.

3. Conservation agriculture in China

CA comprises management that minimises or eliminates soil tillage, maintains year-round soil
cover and includes cover crops in rotations, and uses INM (Lal, 2015a, 2015b; MOA, 2000–
2014). The aim is to maintain an optimum environment in the root zone in terms of water avail-
ability, soil structure and biotic activity (He et al., 2012; Kassam, Friedrich, Shaxson, & Pretty,
2009; Lal, 2014). CA practices evolved in part as a response to the severe soil erosion that dev-
astated the US Midwest in the 1930s; now CA systems are practised across a range of agroeco-
logical conditions, soil types and farm sizes, and covered 155 Mha globally in 2014 (Kassam
et al., 2014). Adoption varies by region: CA covers 69% of arable cropland in Australia and
New Zealand, 57% in South America, 15% in North America, but only 1% in Europe.
The area under CA in China has grown rapidly from 0.5 Mha to 8.4 Mha over 2000–2014

Figure 1. Efficiency of grain production for different factors, China (1990–2013).
Notes: Pesticides include all herbicides, insecticides and fungicides; grains include all major and minor
grains.
Sources: calculated from MOA (2000–2014); NBS (2013, 2014).

Table 4. Annual soil sediment losses from the principal rivers in China.

River

Annual average

1950–1995 2013
Total amount of erosion (Mt) Total amount of erosion (Mt)

Yangtze River 23870 550
Yellow River 16000 830
Zhujiang River 2200 670
Songhuajiang River 190 320
Liaohe River 1530 340
Talimu River 1300 1040

Source: MOWR (2013).
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(Figure 2), driven in part by policy recognition in the 2005 No 1 Document that advocated reform
of traditional farming practices and the promotion of CA, formally recognising that CA can reduce
soil erosion, restore degraded soils and improve productivity in a range of cropping systems.

In comparison with conventional tillage systems, CA practices can produce yield increases
ranging from 10% to 120% (Kassam et al., 2014; Lal, Griffin, Apt, Lave, & Morgan, 2004). One
meta-analysis of 120 crops in 63 countries, however, showed that no-till (NT) systems largely
resulted in yield declines, and concluded that performance was highly context dependent (Pittelkow
et al., 2015b) and often dependent on nitrogen application or fixation (Lundy, Pittelkow, Linquist,
Liang, & van Groenigen, 2015); another found yield increases in China of the order of 4.6% (MOA,
2000–2014). Beneficial impacts in terms of resource efficiency include reduced need for fertilizer
over time, lower runoff and increased resilience to pests and diseases. These changes can result in
cost savings to farmers, which combined with yield increases, may translate to significant financial
benefits relative to conventional ploughing. Comparisons between conventional tillage and
reduced or NT systems have found higher soil organic carbon (SOC) concentration, lower emis-
sions and improved soil quality (He, Kuhn, Zhang, Zhang, & Li, 2009; Li et al., 2007; Zhang,
Lal, Zhao, Xue, & Chen, 2014). Nonetheless, scientific debate highlights a number of challenges,
centring on the need for site-specific adaptation of CA packages (Kirkegaard, Conyers, Hunt,
Kirkby, & Watt, 2014), the applicability of CA to some smallholder systems (Giller, Corbeels, Nya-
mangara, Triomphe, & Affholder, 2011), and the trade-offs involved in scaling to large numbers of
farmers (Pittelkow et al., 2015a; Powlson et al., 2014).

We now analyse the evidence on the impacts of CA in China on crop productivity and
environmental services, focusing on (i) agricultural productivity; (ii) erosion control, moisture
conservation and WUE; (iii) carbon sequestration in soils.

3.1. Methodology

3.1.1. Meta-analysis of CA’s effects on crop yields

Data collection: No tillage and reduced tillage form a component of a suite of practices termed
conservation agriculture (CA), comprising retention of crop residues on the soil surface and

Figure 2. Agricultural area under conservation agriculture, China (Mha).
Note: data are annually reported.
Source: MOA (2014).
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diversification of cropping systems based on use of cover crops in addition to no tillage or reduced
tillage. In our analysis, NTSR refers to no tillage with straw retention. If published papers did not
clearly indicate whether straw was covered or removed, we have used the term no tillage (NT):
CA thus includes NT and NTSR. We comprehensively searched the peer-reviewed literature for
publications investigating the effects of CA on crop yields from the Science Citation Index of the
Institute for Scientific Information and Chinese Journal Net full-text database (CJFD). Search
terms included ‘tillage’, ‘no till’, ‘zero till’, or ‘conservation agriculture’ in the article title and
‘yield’ in the article title, abstract, or keywords. This search was screened on the basis of the fol-
lowing criteria: (i) studies had to represent field experiments containing side-by-side comparisons
of CA (NT, NTSR) and traditional tillage practices in China; (ii) the crops are wheat, maize and
rice, and crop yields were reported; (iii) location of the experiment was stated; (iv) the field exper-
iments had an experimental duration of at least 2 years. In total, 60 published papers were
included, consisting of 75 paired trials and 395 observations.

Data analysis: In research domains where the outcome is measured on a physical scale and is
unlikely to be zero, the ratio of the means in the two groups (the response ratio R) might serve as
the effect size index. The effect size (Mi) was calculated as the natural logarithm of the response
ratio (R), which is the crop yield under CA practices (NT and NTSR) divided by that under CT.
Studies lasting several years or seasons were represented by several observations as annual and
seasonal yield, respectively, in the dataset. Studies were weighted by observation numbers: Wi

¼ n, where Wi is the weight for the effect size from the ith paired trial and n is the number of
observations. Mean effect sizes were estimated as S(Mi × Wi)/SWi, with Li denoting the effect
size from the ith paired trial, and Wi as defined above. The data were analysed using MetaWin
2.1 software. Bias-corrected 95% confidence intervals (CIs) were calculated for each mean
effect size by a bootstrapping procedure (4999 iterations). To ease interpretation, the results in
ln R were back-transformed and reported as percentage changes under CA relative to CT ([R
– 1] × 100). Means were considered to be significantly different from one another if their
95% CIs did not overlap, and were significantly different from zero if the 95% CIs did not
contain zero. Positive mean effect sizes indicate an increase in crop yield caused by CA,
whereas negative values indicate a decrease.

The percentage increase (%) of CA when compared to TT was calculated based on above
method. The absolute increase (kg ha21) of CA when compared to TT was the mean of CA’s
absolute increase in each paired observation (total 395 paired observations: for crops-210 for
wheat, 100 maize and 85 for rice; for annual precipitation – 127 for ,500 mm, 136 for 500–
800 mm, and 132 for .800 mm; for experimental durations – 107 for 2–4 years, 194 for 5–9
years, and 94 for ≥10 years; here, we did not analyse the factor of crop rotation due to the
data limitation of current published papers) (see Supplementary material).

3.1.2. Relationship between changes in yield and SOC under CA

We used the same published data as used for the meta-analysis to compare data on yields and
SOC. Here, only these papers which investigated the effects of CA on crops yields and soil
organic matter/carbon were used; so we identified 22 papers with 34 datasets. The durations of
the experiments described in these selected papers range from 2 to 17 years. Data at the end of
the experiment were used to calculate the changes of SOC and crops yields in CA when compared
with TT.

Soil organic matter (SOM) data were converted to SOC by the following equation:

SOC = SOM/2.
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Changes to SOC and Yield were calculated by

ChangeSOC= SOCCA –SO CTT,

ChangeYield= YieldCA − YieldTT.

The full methodology and references are contained in the Supplementary materials file.

3.2. Impacts of CA in China

3.2.1. Agricultural productivity

It has been observed that the potential contribution of NT (the original and central concept of CA)
to productivity is limited (Pittelkow et al., 2015a, 2015b), though 60% of the plot observations in
these studies were from USA and Canada. In contrast, both long-term studies and data from the
field research in China show that cereal productivity can increase with CA. For example, in North
China, 15-year mean winter wheat yield under CA was 18.8% higher at 3.61 t ha21 compared
with 3.04 t ha21 for traditional tillage (Li et al., 2007), and yield increases of 9% for wheat (to
4.8 t ha21) and 9% for summer maize (to 10.1 t ha21) were observed (He et al., 2011).

We have conducted a meta-analysis of published research on CA in China (papers in both
Chinese and English). The dataset of 60 papers included 75 paired trials and 395 observations,
and allowed disaggregation of effects by crop (wheat, maize and rice), annual precipitation
(,500 mm, 500–800 mm, .800 mm) and experimental duration (2–4, 5–9, ≥10 years)
(Figure 3).

Our analysis shows that the greatest yield increases occurred in maize and in dryland zones,
with yield increases the greatest in the longest duration studies. The mean increase in yields by
.4.8% is observed for all zones and durations (4.5% or 263 kg ha21wheat, 8.3% or 424 kg ha21

maize, 1.7% or 250 kg ha21 rice) and the difference between any two categories was not signifi-
cant. The mean increase in yields for all crops with CA practised for ≥10 years is .7.0%
(394 kg ha21), indicating that productivity continues to increase as the natural capital of the
system is enhanced over time.

Figure 3. Effect size of CA on crop yields in China (three durations: 2–4 years, 5–9 years and ≥10 years).
Notes: The corresponding value of the rhombus to the vertical axis is the rate of change in relative yield; bars
show 95% bias confidence intervals; numbers of observations and experiments are indicated in parentheses.
Articles in Chinese were collected from the Chinese Journal Net full-text database (CJFD), and those in
English were from the Science Citation Index of the Institute for Scientific Information. In total, 60 published
papers were included, consisting of 75 paired trials and 395 observations.
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Based on these findings, we conclude that the long-term use of CA in China could
increase agronomic yields by 2–8% compared with that of traditional tillage. In conjunction
with a reduction in the use of machinery and labour, CA could increase mean profit margins
by .US $ 140 ha21 yr21. We find that application of CA on 60% (based on CA’s adoption
area in the main countries, such as Australia, Canada, Brazil, which have developed CA
systems) of wheat–maize system in China could increase annual production by 4.0 Mt of
wheat, 4.9 Mt of maize, with an annual economic benefit of over US$5.0 billion, resulting
in an important contribution to domestic food security.

3.2.2. Erosion control, moisture conservation and WUE

The area of land prone to accelerated soil erosion in China is estimated to be 165 Mha by
water and 191 Mha by wind. The most severe erosion occurs in the 7.8 Mha of the
Yellow River Basin, where annual soil erosion rates are 50–300 t ha21 (MOWR, 2002). Con-
version to CA could reduce the transport of wind-blown sediment and wind erosion by
.30% compared with that from ploughed land (Table 5). Adoption of CA in North China
(on approximately 60 Mha arable land) could reduce annual wind-blown sediment by
�50% from 6.7 Gt (including 0.09 Gt of organic matter, 6.7 Mt N and 1.0 Mt P) to 3.5
Gt (Li, Gao, Feng, Wang, & Du, 2005). Adoption of CA could also reduce water runoff
and erosion by .40% (Table 5), with attendant reduction in sediment and sediment-borne
contaminants producing beneficial reductions in surface water eutrophication (Le et al.,
2010).

By reducing losses through runoff and evaporation, conversion to CA increases soil moisture
holding capacity and enhances WUE. In comparison with traditional tillage, CA can increase soil
water-holding capacity by .3% and WUE by .10% for most crops and agro-ecoregions (Table
5). Owing to high evaporation losses under tillage, farmers must rely on rainfall or supplemental
irrigation to obtain satisfactory yields. CA can also reduce water requirements, increase stream
flow and also recharge the groundwater; during years of serious drought, CA conserves soil moist-
ure and sustains production (Li et al., 2007).

Table 5. Impact of CA on erosion control and moisture conservation, China.

North China

South
China

Northeast
China

North China
Plain

Northwest
China

Erosion reduction
Wind 237 to 99% 234to 37% nd nd
Water 271 to 98% 240% nd 2�60%
Water-holding capacity

improvement
+3% to 12.6% nd 2�3% nd

Water use efficiency increase
Maize +24.3 to 28.5% +9% +7.3% nd
Wheat nd +10.4–17.4% +5.9–17.5% nd
Oats nd +16.7% nd nd
Peas nd +13.3% nd

Notes: Data are changes from conservation agriculture compared with traditional tillage; nd ¼ no data.
Sources: Blanchart et al. (2004), He et al. (2008, 2009, 2010), Huang et al. (2008), Jiang, Han, Zou, and Yang (2012), Li,
(2009), Li et al. (2007), Wang et al. (2008, 2011, 2014), Yan, Xue, and Zhu (2009), Yu and Zhang (2007), and Zhang, Wu,
Zhao, Zhang, and Cheng (2011a, 2011b).
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3.2.3. Soil carbon

Adotion of CA is also important for the restoration of soil quality by reducing the loss of SOC
stock and improving soil microbial biomass carbon. Continuous use of CA in China has increased
SOM in the surface layer at the rate of 0.01% per year (Barzman et al., 2004; He et al., 2011; Li
et al., 2007). Such an increase is often observed after long-term (.10 years) application of CA,
with the magnitude of increase as much as .2.0 g.kg21 in the 0–10 cm layer (He et al., 2009,
2011; Li et al., 2007). Increase in SOC concentration and biotic activity reduces soil bulk
density, improves pore size distribution and increases soil fertility (He et al., 2009, 2012; Li
et al., 2007, 2014). Improvement in soil structure under CA mitigates soil degradation and
reduces the loss of cropland, decreases emissions of methane, and creates a positive soil C
budget particularly, in highly erodible soils (Pan et al., 2009).

We used the same published data as used for the meta-analysis to compare paired data on
yields and SOC concentration (0–20 cm soil depth) (Figure 4). In 34 datasets, 26 (76.5%)
showed that CA increased both yields and SOC (CY quadrant in Figure 4) when compared to tra-
ditional tillage, and there were no cases of both reductions in yield and SOC. In all the datasets,
CA showed increased SOC, and particularly in 0–10 cm soil depth, the mean increase could be
.3 gkg21.

We estimate that the SOC sink capacity of China’s farmland could be increased by 70–
250 kg C ha21 yr21 through conversion to CA systems (Table 6). Combined with reductions in
fossil-fuel consumption associated with reduced ploughing, increases of SOC in CA are equival-
ent to 89–269 kg C ha21yr21, amounting to an annual increase of 7.2–21.8 Mt C (0.02–0.07 Gt
CO2e) from 60% of China’s farmland (Table 6). Adoption of CA would thus produce a contri-
bution to climate change mitigation, though not as much as had been proposed in the UNEP Emis-
sion Gap report (UNEP, 2014). Our estimate here of the CO2 emission reduction through adoption
of CA (0.04–0.13 Gt CO2e yr21) would amount to between 1% and 6% of total global emissions

Figure 4. Relationship between changes in yield and soil organic carbon under conservation agriculture,
China.
Notes: CY – top right: both organic carbon and yields increase; Cy – bottom right: organic carbon increases
but yields decline; cy – bottom left: both organic carbon and yields fall; cY – top left: organic carbon
declines, but yields increase. Soil organic carbon (0–20 cm soil depth) and crop yields were measured at
the end of each experiment.
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from adoption of CA. This would contribute to the COP-21 recommendation regarding the
societal value of carbon and the need for targets for carbon sequestration in soils (Lal 2014 AQ5

¶
).

4. Policy priorities for CA in China

Our findings show that CA can make a contribution to both food and environmental security in
China. The greatest yield increases are for maize, followed by wheat and then rice. Yet, only
5% of total cultivated area in China is managed under CA. The potential food and environ-
mental benefits of CA are not yet fully comprehended by most farmers, land managers and
policy-makers. CA on its own, though, does not result in sufficiently great increases in
yields to meet increased food requirements by mid-century. A wider SI of agro-ecosystems
could bring synergistic benefits, particularly with attention paid to IPM, agroforestry
systems, cover cropping, rotational grazing and crop/livestock improvements (Pretty & Bhar-
ucha, 2014). With current trends, we expect CA to continue to be adopted, though not fast
enough to provide national benefits to environmental services and agricultural outputs. We
propose four national priorities.

4.1. National policy and financial support

A number of policy changes have recently been adopted that may lead to increases in adoption of
SI and particularly CA in China. The government’s 2013 No 1 Document underlined national
food and nutritional security as its primary task, and set out a plan to promote the agro-
environment. In 2014, the China Ministry of Agriculture issued a Pesticide and Fertilizer Use
Zero Increase Action Plan. Further opportunities are contained in The Work Plan for Greenhouse
Gases Emission Control During the 12th Five-Year Plan Period in which the main objectives for
control of GHG emissions are outlined. Although the total financial support available from gov-
ernment to promote CA is some 30M Yuan yr21, most is spent on infrastructure development
rather than research and extension. In the long term, China should adopt a policy of payments
to farmers for provisioning of ecosystem services: an appropriate compensation to farmers and
land managers would be the societal value of soil carbon at �US$120 per tonne of carbon seques-
tered (Pan et al., 2009).

4.2. Better coordination across agencies

Many agencies are involved in the research, demonstration and extension of CA in China. The
Ministry of Agriculture spearheads the demonstration and implementation of CA, the Ministry
of Science and Technology supports research, and the assessment of CA benefits is under the

Table 6. The effect of CA on soil carbon improvement in China relative to conventional practices.

Factor
Impact on carbon balance

(conservative annual values)

Fossil-fuel use reduction (20 kg ha21) �18.8 kg C-e/ha
Soil C sequestration 70–250 kg C/ha
Total 88.8–268.8 kg C/ha

Notes: Assuming 60% (based on CA’s adoption area in the main countries, such as Australia, Canada, Brazil, which have
developed CA systems) Chinese farmland (total 135 Mha in 2013) is converted to CA, the estimate of the total potential of
C sequestration in China cropland can be increased by 7.2–21.8 Mt C (0.02–0.07 Gt CO2-e)/year.
Sources: DAMM (2012); Dong, Hu, Chen, and Zhang (2009); Liu et al. (2014).
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auspices of the Ministry of Environmental Protection (MEP). We propose that a special CA
coordination office be established across agencies (central and local) and sectors (e.g. agriculture,
engineering and environmental protection) to promote adoption of CA in China. Competitive
grant funds should be earmarked with financial support from Central, Provincial, civic organiz-
ations and the private sector (industry) for pursuing site-specific and long-term (.5 yr) research
and outreach on CA.

4.3. Locally applicable scientific research

Several constraints to adoption of CA (e.g. lack of high-performance NT seeders, low agronomic
yields in some situations) will have to be alleviated for large-scale implementation. Site-specific
technical modes for typical cropping regions must be developed. Establishing national and local
research institutions and interdisciplinary teams (including engineers, agronomists, enterprise and
extension specialists), organized by the government and funded by the specific research projects
through the special CA coordination office, is essential to developing site-specific CA packages
(Zhang et al., 2014).

4.4. Better extension and training for farmers

CA can appear counter-intuitive to some farmers: it is founded on the principle of removal of the
long tradition of ploughing. CA has already been adopted across the entire Beijing rural area since
2008 through the joint effort of extension, training and incentivizing mechanisms. Some farmers
who recognise erosion problems and climate/weather threats will be ready to adopt CA. Many,
though, will need sustained support (Derpsch, Lange, Birbaumer, & Moriya, 2015). National/
local CA advisory centres and CA monitoring sites (for the assessment of CA’s short/long-
term benefits or hindrances) should be established for training and technical support. In addition
to training technicians and farmers, technical support should be provided through established
national/local CA advisory centres and CA monitoring sites, while seeking to establish ways
to reward farmers through payments for ecosystem services. In 2014, the China central govern-
ment launched a 17 billion Yuan incentive programme for the purchase of agricultural machinery:
we suggest 10–15% of the budget be used for research (as an investment in a scientific project)
and farmers’ purchase (as a subsidy) of CA equipment.

5. Conclusions

CA systems have been adopted in many agro-ecosystems worldwide, bringing benefits to
farmers and ecosystems. In China, compared with traditional tillage, long-term use of CA
could increase WUE by 5–10%, reduce wind and water erosion by .30%, and enhance
SOC by .3 gkg21 (0–10 cm soil depth). Growth in China has been encouraging in recent
years, but there remains a great potential for substantial benefits to be delivered at national
scale. On its own, CA would not deliver the required increase in food production by
2040–2050: we estimate between 2% and 8% yield increases over that period. There will
thus need to be additional and complementary adoption of other approaches to the SI of agri-
culture. China has made important policy and practice reforms that support the expansion of
CA, but priorities for financial, technical and institutional support remain in research, exten-
sion and training. The positive effects of CA have been demonstrated, and now the primary
agricultural goal is to increase productivity whilst improving both natural capital and ecosys-
tem services.
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