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Abstract

Sea surface temperature (SST) is one of many important parameters that influence the

climate system of the earth. Modelling of and prediction from the SST data are challenging

due to the fact that gaps in the data lead to incomplete information over time. Generalized

additive models by boosting with location scale and shape (gamboostLSS) can be applied

to overcome this problem. Moreover, they also deal with sparsity, irregular peaks, and

autocorrelation in the data.

We propose in this thesis extended gamboostLSS models by considering time auto-

correlation. In our experiments, we initially used 1231 daily observations in the period

between November 2006 and September 2012. The data is then further extended from three

different moored buoys. The data consisting of the SST as the response from buoys in the

Indian Ocean and the air temperature (in Celsius), humidity (in percentage) and rainfall

(in millimetre) covariates are considered from land stations in Sumatra Island.

Removing autocorrelation with an AR(1) model has a large impact on global and lo-

cal model fitting. GamboostLSS-AR(1) models are an advanced technique for removing

autocorrelation. We also computed marginal prediction interval with autocorrelation (MPI-

AR(1)) of the model. MPI-AR(1) of the gamboostLSS-AR(1) model can be used to predict

the missing data in various gaps and to obtain a prediction interval of submodels. The

MPI-AR(1) that is applied to different buoys indicated that gamboostLSS-AR(1) model fit-

ting is better than MPI by gamboostLSS model with and without transformation of rainfall.

The MPI-AR(1) is more flexible to follow the pattern of the SST data fitting. Our proposed

gamboostLSS-AR(1) models are more flexible, interpretable and capable to handle missing

data, as well as to deal with high dimensional data and capture complex data structures.
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gamboostLSS: generalized additive model for Location, Scale, and Shape by boosting

gamboostLSS-AR(1):generalized additive model for Location, Scale, and Shape by

boosting with consider Autocorrelation Lag 1

gMDL : generalized Minimum Description Length

MPI : marginal prediction interval
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Chapter 1

Introduction

The increase in global temperature has a significant impact on the earth’s climate. The

earth’s climate system is influenced by a large number of parameters. Sea Surface Tem-

perature (SST) is one of them. It affects the regional climate that influences the global and

local climate variability, specifically in the tropical Indian Ocean [1, 2]. There is no unique

definitions of SST, due to its dependence on many factors, such as measurements of SST,

instruments, at depth level positions and heterogeneous parameters related to SST data,

such as depth of currents and currents velocity, ocean turbulence, salinity, short-long waves

radiation, air-sea fluxes of heat, conductivity, moisture, rainfall, relative humidity, winds

velocity, sea level pressure, and air temperature. A model fitting of SST dataset can be used

to identify the effect of potential relationships among these many variables over time.

SST data is very useful in getting an indication of the earth’s climate and its variability,

such as the tropical climate variability [1, 3–5]. The SST data prediction can be used as an

indicator for the detection of many phenomena in the ocean, such as Indian Ocean Dipole

(IOD) Mode, monsoon, and El Nino-Southern Oscillation (ENSO) which consist of El Nino

1
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and La Nina. In [5] stated that El Nino phenomenon is close to the equator position,

including eastern equatorial Indian Ocean. IOD associates with climate condition in the

Indian Ocean (the third largest ocean, about 28 million square miles) and ENSO represents

climate condition in the equatorial Pacific Ocean (the largest ocean, about 64 million square

miles) where the SST anomalies differentiate between the eastern and western hemisphere.

These phenomena can be captured by complex models, having variability and interactions

among covariates with a large number of unknown parameters. However, the final model

selection of global fitting and variable selection of local fitting are issues of the main concern

in overall model fitting over time.

1.1 Characteristics of Sea Surface Temperature Data

The real-time measurements of SST data is usually obtained from different buoys and

locations in the sea, as illustrated by moored buoy depicted in Figure 1.1. This data

contains missing observations and has a complex structure.

The ocean-atmosphere plays an important role in the climate system. SSTs is a special

parameter, it has a key role in circulating climate and its variability [4]. Global warming

interacts with SST patterns [6]. Recently in 2012, [7] proposed a climate model to investigate

the effects of solar radiation and the greenhouse effect on global warming. Their analysis is

based on the data from land stations only and does not consider the relationship between

sea and land data, where the surface of the earth consists of 70.9% water. In our study, the

SST data is used to reveal the relationship of variables in both. The variables have different

measurement scales. The SST data obtained from sea buoys and other climate data from



1.1. Characteristics of Sea Surface Temperature Data 3

land station in the Sumatra Island are utilized for modelling and prediction.

(a) (b)

Figure 1.1: A moored buoy (a), Measurements of SST data of the buoy (b),www.pmel.noaa.gov/tao/.

The island is considered as climate region B in the regionalization related to Sea Surface

Temperature and rainfall variability [8]. This location is influenced by monsoon effects and

sensitivity relationship with ENSO [9]. The influence of ENSO over the Indonesian rainfall

variability is around 50%, whereas the impact of SST variability over the Indian ocean is

around 10-15% [8–10]. Several studies stated that the influence of ENSO in the Indian

Ocean [11–13] is not significant (independent). In [11] suggested that the SST variability in

this location is influenced by IOD Mode with contribution around 12%. Nevertheless, we

can see that there is interaction between SST in the Indian and the Pacific oceans, such as

the relationship between SST with period of annual and seasonal effects [14].

The real-time daily SST data used in the preliminary research comes from the Trop-

ical Atmosphere Ocean (TAO) moored ocean buoy positioned at 40N900E, depth 1 m,

from the period between 16 November 2006 to 26 September 2012 which is found in:

www.pmel.noaa.gov/tao/. Figure 1.2 shows the SST data which was not observed due to

long-term malfunction over the period of 23 July 2008 to 3 July 2010 and several days in
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2007, 2011 and 2012.

Figure 1.2: The Sea Surface Temperature (SST) observations in degree celcius (2006 - 2012)

The complete SST dataset is comprised of 1231 daily observations with a response

variable of SST (in 0C) at 00.00 to 12.00 pm in GMT time records, and given covariates, i.e.

air temperature (in 0C), relative humidity (in %), both covariates have average with the

same time records at 07.00 am, 13.00 pm and 18.00 pm, rainfall (in mm) over three-hours

period, seasonal and annual factors. Then in our study, the SST dataset is extended by

including ocean data from two other buoys. The data was collected at two locations, in the

Indian Ocean and Meulaboh land station, during the period of 2006 to 2012. Figures 1.3

(a), (b), and (c) show the irregular patterns of the SST data during the periods of 2006-2015.

Figure 1.3 (d) illustrates several buoys position in the Indian Ocean and land stations in

Sumatra island. We marked 3 particular buoys with blue circles to clearly understand their

positions. Buoy 1 is at the position 4N90E, and buoys 2 and 3 are at positions 1.5N90E

and 8N90E, respectively. The observed ranges are; SST (27-31 0C), air temperature (23-29

0C), relative humidity (70-100 %) and rainfall (0-400 mm). The SST data for the first part of

the study comes from one buoy at the Indian Ocean in position 1.5N90E for the period of

2006-2012 with 2263 daily observation. Three climate features have several missing values,
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i.e. 4.1 percent of air temperature, 0.044 percent of humidity and 4.286 percent of rainfall

covariate.

(a) (b)

(c) (d)
Figure 1.3: The Sea Surface Temperature (SST) data in degrees Celcius (2006 - 2015) from the three buoys
at position 1.5N90E (a), 4N90E (b), and 8N90E (c) in the Indian Ocean. The buoys positions in the Indian
Ocean and Meulaboh land station are used in gamboostLSS-AR(1) experiment, in blue circles.

Missing observations of buoys 1, 2, 3 are as follows: 0.3177 percent (711 observations),

0.0374 percent (88 observations), and 0.1089 percent (244 observations) respectively in the

study period.
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1.2 Flexible Framework of Additive Models

Generalized Additive Models (GAMs) as semiparametric approaches are considered to

model the impact of covariates on response and are capable to capture many effects of

covariates. GAM for Location, Scale and Shape (GAMLSS) is introduced by [15–17]. Boost-

ing is one of the most important techniques for fitting regression models with improved

accuracy. The boosting technique can be used to improve GAMs. The gamboost model

is proposed in [18, 19], that is initially applied to predictions in binary outcome problems.

The GAMLSS approach is extended by incorporating boosting, hence gamboostLSS, which

is used for variable selection and to deal with high dimensional datasets in [20, 21].

The core issues of the SST data modelling and prediction are the presence of data gaps

(or called missing data), sparsity, irregular peaks, and autocorrelation of the available

data. Furthermore, we propose modified gamboostLSS models using basis functions to

overcome these problems in model fitting and prediction of SST data. In our suggested

model the autocorrelation is explicitly considered. The gamboostLSS model considering

autocorrelation effect provides many useful insights. The hyper-parameters such as Loca-

tion, Scale, and Shape (LSS) allow a more detailed interaction. The proposed models have

similar properties as the gamboostLSS models, such as flexible structure, smoothness that

incorporates many effects of covariates, interpretable, and efficient.

1.3 Structure of this Study

This thesis consists of seven chapters in total. Chapter 1 introduces the background of Sea

Surface Temperature data. It also explains the characteristics of SST data, flexible frame-
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work of additive models and structure of this study. Chapter 2 provides a methodology

and detailed description of the SST data from buoys. In addition, we also given advantages

and disadvantages of each model fitting.

In Chapter 3, we focus on these issues and provides a detailed discussion of the additive

model concept to deal with the nonlinear influence of covariates. To obtain appropriate

model fitting with a basis function, a flexible and precise model is needed. Hence, the

additive model can be used to explore information through functional, distributional, and

structural terms within the location, scale, and shape (LSS) functions.

In Chapter 4, we presents the model fitting of the SST data. We applied linear models

in order to identify the effects of covariates on the SST data. The results indicate significant

effects of the annual and seasonal patterns of time covariates on the model. These models

are simple to apply, however, they cannot handle Location, Scale, and Shape (LSS) infor-

mation of covariates and reveal of the SST data phenomena in detail. In this chapter we

apply gamboostLSS models, GAM, GAMLSS, and gamboost models to the SST data. All

the models result in the smallest error and overcome the fitting problems that are caused

by a long gap in observations, sparsity, and nonlinearity. However, gamboostLSS provides

more detailed information of the data and can handle complex data better compared to the

other three models.

Chapter 5 introduces the gamboost and gamboostLSS models by allowing autocorrela-

tion AR(1) of one buoy. The experimental comparisons show that the gamboostLSS-AR(1)

models result in a better fitting. GamboostLSS-AR(1) models can be applied to different

datasets collected from several buoys in the Indian Ocean and stations on Sumatra Island.

In this chapter, the propose models that are applied to three data sets from different buoys.
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Several statistical aspects of model fitting for exploring the data are analyzed and discussed

in this chapter.

In Chapter 6, we provides general discussion of the whole results of our experiment and

to provide some study insights about the properties of the model fitting related to another

methods of machine learning for regression. Finally, Chapter 7 presents the conclusion and

a summary of the overall findings, and possible future research using gamboostLSS-AR(1)

to model SST data.



Chapter 2

Structure of Statistical Modelling

In this chapter, we present an overview of data description of SST dataset, methodology

of model fitting, and objectives of our main applications, firstly, we construct a model

using SST data from a buoy and secondly, using SST data from three buoys. In addition,

we implement the fitting process from linear models to structured additive models and

generalized additive models for location, scale, and shape by boosting with autocorrelation

for sea surface temperature data as depicted in Figure 2.2.

2.1 Description of SST Dataset of A Buoy

We use performance on real-time SST data in our study to obtain realistic phenomena and

data updating. Besides it is given several statistical characteristics. In this section, firstly,

we provide SST dataset to fit linear models and additive models of one buoy as in Chapters

4 and 5. Secondly, we provide SST dataset to fit gamboost-AR(1) and gamboostLSS-AR(1)

models of different buoys as in Chapter 6. The patterns of the data, with respect to the

9
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three continuous covariates; air temperature, relative humidity, and rainfall, are displayed

in Figure 2.1.

Figure 2.1: The climate data for the complete case analysis: air temperature, few values over 290C; relative
humidity tends relatively close to 100 percent and few values under 75 percentages; rainfall, few values over
200 millimeter.

The bivariate relationship of the covariates are shown in the scatterplot matrix (Figure

2.2). This figure reveals that the relationship between SST and three covariates and within

covariates have various degrees of correlation, i.e. the Pearson correlation between the SST

and air temperature is 0.27; the SST and relative humidity is 0.02; the SST and rainfall is

-0.05, the air temperature and relative humidity is -0.48; the air temperature and rainfall is

-0.21; and the relative humidity and rainfall is 0.25.

We observe that the univariate distributions of the variables have one mode. The
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variables have different measurement scales. The observed ranges are; SST (27-31 0C), air

temperature (23-29 0C), relative humidity (70-100 %) and rainfall (0-400 mm).

Figure 2.2: The scatterplot matrix of daily SST, air temperature, humidity and rainfall observations. The
relationship between SST response and each covariate shows characteristic changes in direction and transient
trends, i.e. the SST with air temperature and the SST with relative humidity. Both patterns have data in the
centre scale. The rainfall data has few extreme values. Red color represents smooth lines between a pair of
variables.

Table 2.1: Univariate description of SST dataset

Variable Min Q1 Median Mean Q3 Max
SST 27.90 28.78 29.09 29.13 29.44 30.87
Temp 22.90 25.80 26.30 26.24 26.80 29.40
Humd 71.00 85.00 87.00 87.45 90.00 99.00
Rain 0.00 0.00 0.80 11.75 10.05 414.00

Table 2.1 displays an overview of the numerical SST climate features with summary

statistics. By comparing the temperature at sea and land, the minimum value difference is

50C. However, the difference at maximum point is smaller than minimum value difference.

By looking at the central tendency of SST data in the Table one can see that the mean and
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median of all the covariates are almost similar, except for the rainfall covariate. SST dataset

have various dispersion, i.e. SST (2.970C), air temperature (6.50C), relative humidity (28%),

and rainfall (414 mm).

2.2 SST Dataset of Different Buoys

We consider data from three buoys positions in the Indian ocean in the same period of

time as depicted in Figure 1.3. We summarized all of the SST data of three buoys above

mentioned in the following table.

Table 2.2: Univariate description of SST data set of different buoys during the period of 2006-2012

Buoy Variable Min Q1 Median Mean Q3 Max
1 SST 27.98 28.83 29.21 29.26 29.67 30.87

Temp 23.35 25.90 26.43 26.48 27.00 30.95
Humd 71.00 85.00 88.00 88.12 91.00 102.23
Rain 0.00 0.00 0.70 11.28 10.00 414.00

2 SST 27.90 28.78 29.09 29.13 29.42 30.87
Temp 23.57 25.90 26.47 26.45 27.00 30.95
Humd 74.00 86.00 89.00 89.15 92.27 102.23
Rain 0.00 0.00 0.90 12.18 11.00 414.00

3 SST 27.41 28.49 28.77 28.90 29.23 31.01
Temp 22.90 25.87 26.40 26.41 26.95 30.95
Humd 74.00 86.00 89.00 88.97 92.00 102.23
Rain 0.00 0.00 0.95 11.91 11.50 414.00

Table 2.2 displays the statistical description of SST climate features from three different

buoys. The central tendency of SST data in the above table shows almost similar value,

except for rainfall covariate. The dispersion of SST data are as follows: SST (2.89oC, 2.97oC,

and 3.6oC), air temperature (7.6oC, 7.38oC, and 8.05oC), relative humidity (31.23%, and

28.23%), and rainfall (414mm) for buoys 1, 2, and 3, respectively. We also capture the

autocorrelation of the above figures 1.3 as follows.
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Figure 2.3: The ACF of the SST data from three buoys using linear models show the similar patterns of buoys
1 and 2. In general, ACF of buoy 3 is bigger than ACF of buoys 1 and 2. For lag=1, ACF model of buoys 1,
2, and 3 is 0.8835944, 0.8477007, 0.9466932, respectively.

Figure 2.3 shows positive and negative sign values alternately. More specifically, Fig-

ures 2.3(a), 2.3(b), and 2.3(c) are the autocorrelations of figures 1.3(a), 1.3(b), and 1.3(c),

respectively. The ACF plot can be used to detect the pattern of autocorrelation errors of the

SST data. The three figures show a high autocorrelation at lag 1. The change of pattern in

peaks and magnitudes is also displayed in various period. All the figures show that ACF

tends to zero at the end of the lags.
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2.3 Methodology

As can be seen in Figure 2.2, we begin with an investigation of the effects of time covariates

using simple to complex models. Simple linear models can be utilized to get a statistical

representation of the SST data.

A. Linear Models

Linear Regression Model (LRM) follows two steps, pre-fitting and fitting SST data.

A.1 Pre-fitting SST data using LRM models are the following:

(1.1) Identification of pattern for each variable by scatterplot data.

(1.2) Identification of the relationship between variables by scatterplot matrix.

(1.3) Determination of assumption for the response distribution.

(1.4) Specification of the structure of the model.

(1.5) Determination of assumption for the expectations of response variables.

A.2 Fitting SST data by a Linear Regression Model (LRM) are:

(2.1) Initially we applied a LRM to the SST data in order to study the effect of time

covariates in the model as in Chapter 4. The LRM is an approach to model the

conditional function of a continuous variable Y, denoted as response variable,

depending on further variables or covariates X.

(2.2) Determination of scenario of model fitting.

We applied LRM in two scenarios. Firstly, we applied the model without con-

sidering the time covariates. Secondly, we applied LRM while considering time

covariates along with the other covariates. From these experiments, we observed
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that there is a significant effect of time variability on the SST data. In the SST data

modelling, time covariates are crucially important to be included in the model.

(2.3) Identification of the effects of the covariates in the model

We initially identify the effects of covariates on the SST data. We then propose

two models that have the capability to capture these patterns. First sections of

the chapter describe the SST data used in detail, and in the latter sections LRMs

are applied to the SST data. We visualize and interpret model to analyze effects

and patterns of time covariates. Further the diagnostic analysis of the models

are reported.

(2.4) While considering time covariates, we investigated the best model for LRM

based on the order of covariates in the model with forward selection, backward

elimination, and both methods in stepwise regression.

(2.5) Furthermore, we used LRM fitting with and without transformed covariate and

also we analyze of variance for both models. Note that rainfall transformation

is used for Rain = log(RAIN + 0.01).

Advantages of linear model fitting are simple, easy to apply model fitting, can used

without specific pre-fitting process, such as centering and/or scaling data, and capable

to detect patterns of submodels included in time covariates. The model provides

convenient way to estimate response with given covariates in the dataset and sum up

contribution of each covariate with one coefficient. In addition, transformation effect

of rainfall covariate in M1 model fitting is decreased by 0.03% and no effect on the

time covariates pattern. Linear model fitting of the SST data has the applicability to
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identify the data and, therefore, represents an important array of statistical diagnostic

tools. However, they have many disadvantages, such as it only provides one pattern

of the model, non-smooth curve, large bias, low R2, and limited linearity.

B. An Overview of Additive Model Fitting

Power of additive modelling does not interpret ”additive” in covariates context but

concerns with a linear combination of functions (or the estimators are arranged addi-

tively) [19,22,23], where this linearity has flexible structure, so that it can be extended

to add many functions, LSS functions, boosting, combination of LSS and boosting, etc.

Hereafter, we describe four model classes which we perceive as being closely related

to additive models for SST data fitting. We introduce GAM, gamboost, GAMLSS,

and gamboostLSS models with P-spline basis as in Chapter 3.

C. Applied Additive Models Fitting

Furthermore, we apply the following additive models: GAM, gamboost, GAMLSS,

and gamboostLSS with P-spline basis for SST data in Chapter 4. The following

sub-sections provide explanation and experiments of additive models.

(1) Experimental Setup of GAM Models

Pre-fitting SST data using GAM models are as follows:

(1a) Data Identification

In our experiments we considered data collected over six years, 2006 to

2012. The data for 2009 is missing and we only have complete data for 2007

and 2011. The remaining four years contain incomplete data with missing

observations.
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(1b) Implement R-package with extended GAM models

We use the R-package mcgv, for GAM models proposed by Wood [24, 25]

in the experiments. This package use Likelihood approach and includes

several setups to extend the GAM models.

(1c) Determine measurement of the models by using AIC

We use the Akaike Information Criteria (AIC) as the performance measure

for evaluation and comparison of the models.

(1d) Determine assumption of distribution function

In GAM models, as will be discussed in details in Chapter 3, the conditional

mean µi = E(yi) is linked to the additive covariates ηi where µi = h(ηi) with

h as the response function is assumed to follow Gaussian distribution.

(1e) Specification of the relationship between response and covariates in the

model

We consider the SST data observation as (y, xT), where y is the response

and xT is the vector of covariates. The types of covariates are different:

continuous and categorical for example. In Chapter 4, we model the relations

of the response to the covariates in the recall equation 3.4 as in:

η(x) = β0 + f1(x1) + f2(x2) + f3(x3) + f4(Nrdays) + f5(Doy), (2.1)

where x1 is the air temperature, x2 is the relative humidity, x3 is the rainfall,

Nrdays is the number of days and Doy is the day of the year.
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Further by fiting GAM models with P-splines basis to the SST data we can

consider the following criteria:

1) Choosing the structure of each covariate in model fitting of the SST data. This

includes choice of basis function and consideration of covarites interactions

or lack thereof.

2) Choosing the functional term of the covariates and distributional term of

the model.

3) Checking the maximum degree or the order of P-spline in the GAM models.

It is useful to control the effective degrees of freedom edf of each covariate

in order to avoid model misfitting.

4) Dividing GAM models with and without transformed covariate, and with

and without time covariates in the model fitting by Algorithm 3.

5) The degree of penalization is selected during the model fitting by using the

AIC.

6) Trade-off among the AIC, edf, and the marginal model in the model fitting.

In GAM models fitting, we fitted SST data in two scenarios, i.e. by using the models

without and with transformed rainfall covariate as described in Tables 4.11 and 4.15.

The effect of various compositions of the degrees of freedom df for covariates and for

model on the AIC without transformation of rainfall covariate is shown in Table 4.11,

whereas for with transformation of rainfall covariate is shown in Table 4.15.

Excess of GAM model fitting are flexible model, sophisticated and easy to be applied,

without specific pre-fitting process as well, such as centering and/or scaling data,
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and capable to detect nonlinearity patterns of submodels included in time covariates.

GAM model fitting of the SST data have capability to identify the data better than

LRM models and, therefore, represent an important array of statistical modelling.

However, they have several shortages, such as the smallest AIC values as model

measurement does not guarantee optimal fitting of the data, as well as difficult to

control wiggliness in the gaps and limited to achieve irregular peaks.

(2) Experimental Setup of Gamboost Models

Following pre-fitting of SST data by gamboost models are centering of the continuous

covariates. The model fitting by gamboost models are as follows:

(2a) In a stage-wise additive modelling by boosting, we use the gamboost model for

model fitting, with an mboost package proposed by Buhlmann and Hothorn, et

al. [19, 26, 27] for our experiments.

(2b) The SST data is modelled through the gamboost model in two setups, the data

with its original setup and data with the transformation of rainfall covariate.

The general model for gamboost is given in Model 2.3 as follows,

Model < −gamboost(SST ∼ bols(int, intercept = FALSE)+

bols(Temperature, intercept = FALSE)+
bols(Humidity, intercept = FALSE)+
bols(Rain f all, intercept = FALSE)+
bbs(Temperature, center = TRUE, knots = 20, d f = 1, degree = 3, di f f erences = 2)+
bbs(Humidity, center = TRUE, knots = 20, d f = 1, degree = 3, di f f erences = 2)+
bbs(Rain f all, center = TRUE, knots = 20, d f = 1, degree = 3, di f f erences = 2)+
bbs(Nrdays, d f = 2.5, di f f erences = 2, knots = 100)+
bbs(Dayo f year, d f = 1.5, cyclic = TRUE, boundary.knots = c(1, 365)),
f amily = Gaussian(),
control = boostcontrol(mstop = 1000,nu = 0.1, trace = TRUE), data = databr)

(2c) Determine assumption of family distribution.
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(2d) The value of the step-length of factor νsl f = 0.1 in the updated step to avoid model

misfitting whereas the number of boosting iterations mstop is selected by cross

validation. We take the νsl f value at 0.1 in order to obtain an appropriate value

for mstop and to avoid computational time cost [28].

(2e) Evaluate measurement of the models with and without transformation of co-

variate by using Akaike Information Criteria (GAIC).

Pros of gamboost models fitting of the SST data are pre-fitting process, specification

of base-learner for each covariate, faster than GAM model, handle nonlinearity curve,

more flexible, and smooth. Whereas cons of the models are trade-off among hyper-

parameters such as degrees of freedom, number of knots, stopping iteration, and

step-length of factor, which sometimes trade-off for hyper-parameters are not easy

practically. In fact, the model fitting have difficulty to achieve peak data. In addition,

the smallest AIC value of gamboost model fitting doest not guarantee optimal fitting

of the SST data.

(3) Experimental Setup of GAMLSS Models

Pre-fitting SST data by GAMLSS models consists of several steps:

(3a) We considered GAMLSS with 85 combinations of degree of P-spline as a starting

point in fitting process (initial condition).

(3b) The GAMLSS is an extended form of the work given in R-package GAMLSS for

GAMLSS models, proposed by Rigby and Stasinopoulos et al., [16, 29–32].

(3c) Scenario in the algorithm of models fitting with and without transformation of

covariate, we use eight as the maximum degree of P-splines smoothing and its
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algorithm 4 is given in Appendix.

(3d) Determine assumption of family distribution and LSS function.

(3e) Specification of each covariate based on the initial condition.

For fitting SST data by GAMLSS models consists of:

(3f) Model fitting can be obtained in detail as composition of hyper-parameters,

given pre-fitting steps.

(3g) Assess measurement of the models by using Generalized Akaike Information

Criteria (GAIC) are reported.

Superiority of GAMLSS model fitting of the SST data provides detail information of

the model via LSS functions and significantly decrease AIC, high degrees of freedom,

without pre-fitting process such as centering, and interpretability for continuous co-

variates. Shortcomings of this model fitting include singularity issue, computational

time cost in fitting process when determining composition of hyper-parameters for

each covariate automatically as in algorithm 4, and difficult to achieve interpretable

submodels especially for time covariates.

(4) Experimental Setup of GamboostLSS Models

Pre-fitting SST data by using gamboostLSS models:

(4a) We use the R-package gamboostLSS models proposed by Mayr, A. et al. [20, 33]

in our experiments.

(4b) The setup in our research is arranged as in the following steps. Firstly, the Nrdays

covariate with dominant parameter is observed. Secondly, the Doy covariate
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with dominant parameter by linear and smooth base-learners is investigated.

(4c) In addition, centering of the covariates improves the prediction performance of

the model. We scaled the continuous covariates, rainfall, relative humidity and

air temperature by centering the data. Moreover, this centering of the covariates

as a preprocessing step leads to more smooth model fitting.

(4d) When fitting the gamboostLSS models to the SST data we consider nine base-

learners in each model. The setup for model G20 is given in Model 2.3:

G20 = gamboostLSS(SST ∼ bols(int, intercept = FALSE)+

bols(Temperature, intercept = FALSE)+
bols(Humidity, intercept = FALSE)+
bols(Rain f all, intercept = FALSE)+
bbs(Temperature, center = TRUE, knots = 20, d f = 1, degree = 3, di f f erences = 2)+
bbs(Humidity, center = TRUE, knots = 20, d f = 1, degree = 3, di f f erences = 2)+
bbs(Rain f all, center = TRUE, knots = 20, d f = 1, degree = 3, di f f erences = 2)+
bbs(Dayo f year, d f = 1.5, cyclic = TRUE, boundary.knots = c(1, 365))+
bbs(Nrdays, d f = 2.5, degree = 2, knots = 100),
f amilies = GaussianLSS(),
control = boostcontrol(mstop = 1000,nu = 0.1, trace = TRUE), data = databr)

Note that all continuous covariates are used as smooth base-learners with true

centers, knots= 20, degree= 3, and difference= 2 are fixed.

(4e) Determine assumption of family distribution for location, scale, and shape.

(4f) The value for the hyper-parameter gamboostLSS model is selected through CV-

risk.

(4g) Scenario of model fitting by gamboostLSS without and with transformation

setup is carried out with different values of the parameters.

Furthermore, we get the general procedure of fitting the SST data by using gamboost-

LSS models is given as follows:
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1. We construct base-learners through P-splines basis for covariates according to

their structures, such as linear, nonlinear, and smooth functions.

2. The continuous covariates with nonlinear base-learners should be centralized

(with mean), before the fitting process, then centered to guarantee identifiability

[34].

3. For a continuous covariate in smooth function the degrees of freedom (df ) used

starts from one. A small value of df produces a minimum final risk. Selection

bias of base-learners can be reduced by considering a small value for df.

4. Furthermore, continuous covariate can be modeled by smooth function of base-

learner and centering by linear function without interception.

5. A time covariate can be modeled using smooth and linear function base-learners.

6. The appropriate number of knots and degrees of freedom should be considered

at time covariates with gap observation.

7. Tuning parameters of control boosting (mstop or νsl f ) can be selected by evaluating

the model for these parameters in different values. The chosen parameter is from

coarse to finer values (scale sizes). Initial mstop begins from small to large values.

Moderate value of iterations mstop and νsl f should be considered, where default

νsl f is 0.1.

8. In order to assess the appropriate number of boosting iterations, we can use a

default value of out of sample empirical risk (ER).

9. ER for the hyper-parameters selection is used to Cross Validation (CV) estima-

tions.
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10. The precise parameter setting in base-learners specification and control boosting

is essential in order to obtain precise model fitting and model prediction. Both

of these aspects can be used to avoid misspecified models in the fitting and

prediction.

11. The above mentioned steps can be implemented in the gamboostLSS models

selection. These steps lead to an appropriate model fitting and prediction, effi-

ciency in the model design and computational time.

12. In addition, checking for model fitting and model meaning (plausible inter-

pretable) is an important step in obtaining the validation of an appropriate

model for analysing the results and conclusion.

The major advantages of gamboostLSS models fitting of the SST data are much

faster computationally than previous models, interpretability for continuous and

time covariates, stable for the Doy covariate in µ and σ parameters, and also the

Nrdays covariate stable in σ parameter. In addition, gamboostLSS models fitting

via LSS function and boosting technique have reduced the stopping iteration (mstop)

values about 50% to fit SST data compared with gamboost models with the same

specification of covariates. Whereas the disadvantages of the models fitting are for

the Nrdays covariate slightly unstable after the gaps in µ parameter, computational

cost in CV-risk when high mstop, and still not an optimal global model fitting.

(5) Experimental Setup Gamboost-AR(1) Models

The following steps capture pre-fitting data using the gamboost-AR(1) model for a

buoy as in Chapter 5. They are:
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1) Determine Auto-Correlation Function (ACF) of the SST data at lag 1.

2) Setup the centering of the continuous covariates.

3) Determine assumption of family distribution of the model fitting.

4) Specify the hyper-parameters of continuous and time covariates in base-learners.

5) Apply the single autocorrelation coefficient of ρ of step 1) in gamboost-AR(1)

model.

6) Setup scenario of model fitting with and without transformation by carrying out

different values of the hyper-parameters.

The steps of gamboost-AR(1) model fitting are as follows:

1) Decide the acceptable fitting for gamboost-AR(1) model to obtain the appropri-

ate global model fitting. The global model is related to data response, while

submodel, which is called local fitting, is related to the covariates. By tuning

hyper-parameters we can fit the time covariates in the model to obtain appro-

priate global and local models fitting.

2) Model choice to obtain the optimal models fitting by cross-validation of the final

risk (CV-risk).

Superiority of gamboost-AR(1) models fitting of the SST data are faster in fitting

process and more appropriate model fitting than gamboost models especially for

global fitting. Gamboost-AR(1) models fitting produce more stable time covariates

than GAM and gamboost models fitting. There are shortcoming of the models fitting,

such as trade-off between global and local fitting is not easy to implement and less
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number of submodels than gamboost models.

(6) Experimental Setup GamboostLSS-AR(1) Models

To apply gamboostLSS model fitting in autocorrelation model for the data, we use

autocorrelation of AR(1) model. Then, we proposed the gamboostLSS-AR(1) model

fitting for the SST dataset as in Chapter 5. Suppose a response variable and a set of

covariates in (yi, x
′

i), i = 1, ...,n, then a procedure to find coefficient of autocorrelation

ρ, when ρ is unknown, as follows;

1) Initialize dataset for the response and covariates in n observation and relation-

ship between the variables x and y by using the Linear Model (called the LM) as

in Chapter 4.

2) Construct and find the LM 1 and residual of the LM1 model, called e1.

3) Initialize dataset for the response and covariates in a subset n-1 observation.

4) Construct and find the LM 2 and residual of the LM 2 model, called e2.

5) Investigate autocorrelation AR(1) between residuals of the LM 1 model and

residuals of the LM 2 model. Then find the coefficient of autocorrelation AR(1),

called ρ1. The slope in this model will be an estimator ρ̂1 of ρ1.

6) Use the differencing method to produce a new dataset with transformed vari-

ables. Then construct and find LM with a new dataset, as the LM 3 model.

7) Produce parameter values by using the coefficient of autocorrelation AR(1) based

on linear model of step 6 and estimation for initial response y in n.

8) Construct a residual matrix and find the residual from initial estimation y in n

and y in n-1.
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9) Develop autocorrelation AR(1) of residual of initial estimation y in n and y in

n-1.

10) Find coefficient of autocorrelation AR(1), ρ2 and a new dataset of the step 8.

11) Repeat steps 8 to 10 in order to obtain the next ρ and new dataset.

(7) Application of GamboostLSS-AR(1) Models for Different Buoys

In Chapter 5, we apply gamboostLSS-AR(1) model into two different ways. One has

the similar specifications as the three buoys, while the other is different. The idea

of generating single model is for the efficiency terms, which means that we save

computational time. On the other hand, we build multi models of each buoy in case

the data is heterogeneous.

The procedure of fitting SST data initially starts from the pre-fitting procedure which

has been explained in the previous section. This procedure includes generating

the scatterplot, identifying the statistical description of the data, and calculating

the ACF of the SST data by using generalized least squares techniques of detecting

autocorrelated errors. We can also use the residual of linear model for this purpose.

The procedure of gamboostLSS-AR(1) model fitting are as follows:

a). Determine the parameter ρ’s by using generalized differencing method of AR(1)

model. These values of ρ’s are important to achieve the minimal residual and

optimal submodel of the model fitting.

b). Determine assumption of family distribution.

c). Specify the parameters of continuous and time covariates.
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d). Apply the rainfall covariate with and without transformation data.

e). Apply the single autocorrelation coefficient of ρ in gamboostLSS-AR(1) model

fitting.

f). Determine the suitable fitting for gamboostLSS-AR(1) model to obtain the ap-

propriate global model fitting, which produces submodels. The global model is

related to data response, while submodel, which is called local fitting, is related

to the covariates. By tuning hyper-parameters we can fit the time covariates in

the model to obtain appropriate global model fitting.

g). Select the appropriate model fitting to obtain the optimal global and local models

fitting by cross-validation of the final risk (CV-risk).

The gamboostLSS-AR(1) model fitting for SST data are more robust in with and without

transformation of rainfall covariate covariate, sophisticated and faster in fitting process,

have flexibility and pre-fitting process, and capable to detect nonlinearity patterns of sub-

models, it does not change patterns and trends of time covariates in with and without

transformation of rainfall. However, the model fitting are still not an optimal fitting per-

formance as indicated by low number of submodels and yet to achieve all irregular peaks.

2.4 Summary

In this chapter, we described the sea surface temperature (SST) dataset from one buoy and

different buoys in the Indian Ocean. We also presented methodology of models fitting in

our experiment, as well as pros and cons of each model approach from linear regression

model (LRM), generalized additive model (GAM), generalized additive model by boosting
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(gamboost), generalized additive model for location, scale, and shape (GAMLSS), general-

ized additive model for location, scale, and shape by boosting (gamboostLSS), generalized

additive model by boosting with time-autocorrelation (gamboost-AR(1)), and general-

ized additive model for location, scale, and shape by boosting with time-autocorrelation

(gamboostLSS-AR(1)).



Chapter 3

Additive Model Fitting

3.1 Introduction

So far, we have fitted SST data using linear models with different variants of the time covari-

ates by various criteria (details are given in Chapter 4). We have observed that including

time covariates in the model results in an increase in the coefficient of determination, i.e.

R2, F-test values, degrees of freedom, and decrease in residual. The SST model fitting

can further be improved by increasing SSModel, adjusting time-group, and reducing (SSE),

through P-spline base functions. There are several reasons for using P-spline basis in our

study: this basis can be used to fit short term scale of seasonal effect and long term scale of

annual effect with many fluctuations in various gaps. Besides, this basis can control wig-

gliness of both fluctuation effects, and in addition, the P-spline fit is capable to interpolate

and extrapolate SST data fitting in discrete series (e.g. daily observations), periodic, and

multi-dimensional smoothing.

We assumed that the domain in Rp is p-dimensional Euclidean, so that various co-

31
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variates can be accommodated in the model fitting. Linear models are relatively simple

in application and interpretation. However, these models have limitations, such as only

being concerned with linear relationships, at the mean of the response (or dependent vari-

ables), sensitive for outliers, and independency of data. By using linear models (M0 and

M1) it shows that there is a nonlinear trend and the extreme values of the covariate (e.g.

rainfall) with several outliers. Due to the nonlinearity assumption in annual and seasonal

effects, discrepancy could occur in model fitting. To analyze this further we apply a more

sophisticated smooth modelling approach in additive models.

Furthermore, there are several advantages to using linear combination in additive

models with P-spline basis, including: flexibility fashion for sparseness and irregular

peaks, interpretability in high dimensional cases, and trade-off in the specification of basis

components, such as degree of freedom, penalty, and knots. Several reasons why these

three components are used: the degree of freedom is very important parameter due to

related with the number of parameters and smooth estimates directly in model fitting;

the penalty can contribute in smoothness supplementary and continuous control in fitting

process; and the knots can be used to cover many gaps with equally-spaced grid of the

number of knots in model smoothing. Various gaps can be interpolated and extrapolated

automatically in smoothing with given the number of knots is proportional. An equally-

spaced grid of knots and proportional number of knots have affects in computational speed.

For detail we can see in Chapter 6 for general discussion.

Therefore, to avoid misfitting of the SST data, different model types of the P-spline basis

can be used. Over-fitting can happen if the number of knots is chosen large so that giving

an outcome many fluctuations or otherwise under-fitting. Moreover, the P-spline basis can
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be used to capture changes over time of the SST dataset and describes complex effects.

To select an appropriate model fitting with P-spline basis we used various assessment

measures, such as the Akaike Information Criteria (AIC), Generalized AIC (GAIC), gen-

eralized Minimum Description Length (gMDL) and Cross Validation of empirical risk

(CV-risk).

We proposed fitting additive models with P-splines basis mainly to address the issues

of nonlinearity, sparsity in the SST data, missing observations (gaps) and autocorrelation.

This approach fitting has flexibility to deal with nonlinearity by smoothing models, while

sparse matrix design can cover sparsity in the SST data. In addition, the approach has

stable basis for large scale spline [35], the properties can accommodate various gaps in

the SST data, whereas autocorrelation can handle interpolate fitting in discrete series. For

the selection of models we also considered modelling issues, such as variable selection,

efficiency in terms of low error and low computational time. We used these selected

models for prediction.

The proposed models are GAM, gamboost, GAMLSS, and gamboostLSS with P-spline

basis. The chapter is organized as follows: in Section 3.2 GAMs are described in detail, while

introduction to basis function with penalized splines is given in Section 3.3, subsection

3.3.1 deals with grouped effect by base-learners, boosting for GAM and GAMLSS models

is discussed in the next Section 3.4. In section 3.5, we presents functional gradient-based

boosting, and then the formulation of gamboostLSS by considering time covariates in

Section 3.6. The chapter closes with the summary.
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3.2 Generalized Additive Models

If the Y and X are random variables representing response (output) and covariates (input)

respectively, then the conditional relationship of covariates and response can be written as

Y = E[Y|X1, ...,Xp] + ε, where E[Y|X1, ...,Xp] = β0 +

p∑
j=1

f j(X j). (3.1)

An additive model is defined as:

Yi = β0 +

p∑
j=1

f j(Xi j) + εi, i = 1, ...,n, (3.2)

where β0 is an intercept, the f j are types of models, such as linear, nonlinear, smooth

functions, spatial, interaction, etc., incorporating the effects of covariates. The errors ε are

independent of the X j, E[εi] = 0, and var(εi) = σ2, cov(ε) = σ2In.

A GAM is the extension of linear models and Generalized Linear Models (GLM) through

a link function g(.) with the assumption that the response variable follows some exponential

family distribution. The general GAM structure is given as:

g(µ) = g(E(Y|X1,X2, ...,Xp)), (3.3)

where g(.) is a known as a link function. In other words, from equation 3.2 it is,

f ∗(X) = β0 +

p∑
j=1

f j(Xj). (3.4)

where f ∗ is the expectation of the response by an interpretable additive function.
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3.3 Basis Functions

To construct model fitting by structural terms, f j can be used through a basis function with

penalized splines regression based on the basis of the beta spline (B-spline) as discussed

by Eilers and Marx [36,37] and by Schmid and Hothorn [27]. In the following definition of

B-splines is

Bi(x, k) =
x − πi

πi+k − πi
Bi(x, k − 1) +

πi+k+1 − x
πi+k+1 − πi+1

Bi−1(x, k − 1),

where

Bi(x, 0) =


1, if x ∈ [πi, πi+1);

0, if otherwise.

as the ith B-spline basis of degree k recursively, [35,38,39]. B-splines are easier implementing

than fitting polynomial regression, e.g. quadratic or cubic polynomial and cubic spline

interpolation. Although both fitting techniques mentioned it can used to fit the data in

generated functions, in more erratic functions, and able to correlate data which doesn’t

follow any specific patterns. These techniques have limitation properties, such as it is

better for small data sets, high degree affects some distance away, sparse data with various

missing observations, and less many control points. Whereas P-splines can corporate with

large basis, for example, a smooth curve can be produced by a combination linear with

third or fourth degree B-splines. Hereinafter, consider the sum of squares of error (SSE) for

any function f is defined as:

SSE =

n∑
i=1

(yi − f (xi))2,

minimizing SSE in model fitting of training data leads to infinitely many solutions, as with

any function f̂ via training data (xi, yi) is a solution. This issue becomes complex, where
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y over time has various gap observations (missing values), for instance, SST data. To

overcome this issue, we can reduce the residual as a penalized residual sum of squares

given by minimizing

PSSE( f , λ) =

n∑
i=1

(yi − f (xi)
2 + λ

∫
f ”(x)

2
dx = SSE( f )︸ ︷︷ ︸

loss term

+ λW( f )︸ ︷︷ ︸
penalty term

(3.5)

where λ > 0 is a smoothing (tuning) parameter, λ = 0 means no penalty (unpenalized

estimator) and if λ = ∞ then the smoothest curve estimation, a straight line. There is

variability in f smoothing, so that trade-off between loss and penalty terms is weighted by

λ. λ can be used to control the bias-variance trade-off of the smoothing spline.

Moreover, the smoothing spline has parameters and degrees of freedom (df ). Whereas,

the n parameters are constrained and tend to shrink down in smoothing spline. Effective

degrees of freedom (edf ) become important to keep balancing smoothness via the lower-

bias and higher-variance of the wiggliness effect. Furthermore, the penalized smoothness

with penalty W( f ) can be used to overcome the fitting problem (wiggliness),

W( f ) =

∫
f ”(x)2dx =

∫
(D2β)TD2βdx = βTPβ, (3.6)

where P = DT
2 D2 with

D2 =



1 −2 1 0 0 ...

0 1 −2 1 0 ...

0 0 1 −2 1 ...

.... ... ... ... ... ...

... ... ... 1 −2 1


.
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In basis functions, local basis functions such as P-splines are the most complete for fitting

regression models and smoothing techniques. They are also useful for slope (trend) estima-

tion, density smoothing, and mixed models [36, 37]. This approach can be used for fitting

polynomial function, density smoothing, give flexible interpolation and extrapolation re-

lated to the SST data. In [36] stated low rank smoother, equispaced knots, and a difference

penalty can control wiggliness in P-splines basis with a high flexibility on order penalties.

This basis has strictly local and benefit range with effective degrees of freedom [40], these

properties give excess in various gaps with small aggregate or solitary data like SST.

Thus, P-splines is a standard technique to estimate GAM models and capable to handle

hyper-parameters [27]. As in equation 3.5, to obtain smoothness of model fitting, it can use

the negative gradient vector u by penalized least squares regression method,

PLS(β) = (u − Bβ)T(u − Bβ) + λW(β,m), (3.7)

where W(β,m) = βTPβ = βTDT
mDmβ as in equation 3.6 where vector β = (β1, β2, ..., βp)T and

m is the order value of the difference penalty. The response u can be defined by the negative

gradient. Consider an estimate of function f of equation 3.4 and related to equation 3.7 is

f̂ j(x) = Xβ̂ = X(XTX + λH)−1XTu, (3.8)

where β̂ = X(XTX + λH)−1XTu is as a penalized estimate of the coefficient vector β.

Consider penalized beta regression splines where E(y) = µ = Bβ, and B are the values

B j(x; m) at x of the jth B-spline for degree m, it gives equal grid as knots k. In other

words, a B-spline is a special polynomial function as defined in [36] and strictly local basis
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functions [41]. The (m+1)th order spline can be written as

f (x) =

k∑
i=1

Bm
i (x)βi, (3.9)

where βis are unknown parameters and Bi(x) are known B-spline basis functions, which

are defined recursively. Choosing the proper value of k is important in that it may cause

misfitting. This basis is very stable for scale spline interpolation [42].

A smooth function produces smooth curves for time covariates in calender time [41].

The choice of knots is of crucial importance in smooth functions as small number of knots

can be inflexible to cover the variability of data and a large number of knot can over-fit

the data [43]. It also effects the coefficients of covariates in the model. The model becomes

more complex because nonlinear effects, random effects, spatial effects, and time effects are

involved.

3.3.1 Grouped Effects by Base-Learners

The structural terms of a boosting model for various types of effects of covariates can

be specified and identified by base-learner terms. These terms can be obtained for all

types of boosting models, for example, gamboost and GAMLSS model by boosting. In

gamboostLSS model fitting selection of base-learners for each covariate is essential, as

each base-learner represents a type of effect of the covariates. There are several types of

base-learners construction for covariates [44,45], such as, linear, ridge penalized, penalized

ordinal, P-spline, bivariate P-spline or B-spline, radial basis function, constrain, etc. Details

of three of these types are given here.

1. Base-learners with linear effects:
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Base-learners with linear effects can be written as, f j,linear(x j) = x jβ j. These type of

effects can be used to represent linear effects for groups of covariates, interaction

between covariates, and a factor covariate. This can also be used with or without

intercept in the model. For a continuous covariate x, then a design matrix X of

autocorrelation by differencing approach is

Xi−1 = (1, xi − ρxi−1), i = 2, ...,n.

In a group of continuous covariate within one base-learner, i.e.,

xi−1 = (x(1)
i − ρx(1)

i−1, x
(2)
i − ρx(2)

i−1, ..., x
(q)
i − ρx(q)

i−1)T,

where q is the number of covariates. The ith row of continuous covariate with

intercept is

Xi−1 = (1, xT
i − ρxT

i−1).

2. Base-learners with categorical effects:

These Base-learners are represented as, f j,cat(x j) = zTβ, where z are categorical effects

of covariates x js. A categorical type covariate can have ordinal or nominal scale.

Through basis function Bi, we can categorize a continuous variable [36, 37, 46],

Ik(x) =


1, if x = k;

0, if x , k;

where k = 1, ...,K are ordered levels. In this case, the basis function is used to
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count discrete data with measurements assumption on nominal scale. The base-

learners with categorical effects are to specify time-shifts, such as a shift in the level

of response and a shift in the process of the submodel. For a categorical covariate X

with p categories (e.g. time covariate) in autocorrelation is,

Xi−1 = (1, x(2)
i − ρx(2)

i−1, x
(3)
i − ρx(3)

i−1, ..., x
(pcat)
i − ρxpcat

i−1) where i = 2, ...,n.

3. Base-learners of smooth effects:

The general formula for base-learners of several smooth effects, such as smoothing

spline (S-spline) [47], P-spline, kernel estimation, and local-polynomial regression is

given as: f j(x j) = f j,smooth(x j), where x j is one of the continuous covariates. This type

can be used for bivariate smooth effects like spatial terms, cyclic or periodic terms,

varying coefficients or interaction terms, etc.

Model fitting by base-learners involves several components of base-learners that effects the

model smoothing process. For example, the selection of the appropriate number of knots,

df, penalty and degree of spline are essential in model smoothing [37].

The df is an indicator of the complexity of model fitting, and can be written as

d f (ŷ) =
1
σ2

n∑
i=1

Cov(ŷi, yi).

It can also be approximated through effective number of parameters [34]. Furthermore, the

effective degree of freedom (edf ) for solution of equation 3.5 of a model fitting is

d f f it = trace(H) = number of fitted parameters,
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where H = X(XTX)−1XT is a prediction matrix (or hat matrix) of observation y. The relation-

ship between effective degree of freedom (edf ) of the fit and smoother matrix in penalized

spline is

d fλ, f it = trace(Hλ),

with m + 1 < d f f it < m + 1 + k, where k is a knot and m is the degree of spline. Thus df is

the degree of the smoother that corresponding to the smoothing parameter λ. The trace of

H tends to the order of penalty if λ increases. As in equation 3.8, let S = X(XTX + λH)−1XT

be smoother matrix of X [45], then the effective degree of freedom (edf ) in penalized model

can be defined as,

d fλ, f it = tr(2S − STS).

There are several approaches in automatic smoothing, such as likelihood to efficiency

time, accuracy, balancing the goodness of fit and parsimony aspect for using smoothing

parameter λ, the number and position of knots k and the degree of the function basis m as

in equation 3.5. The empirical risk (ER) of classical linear model related to smoothing of

equation 3.9, is defined as

SSE(λ) =

n∑
i=1

(yi − f̂ (xi, λ))2, (3.10)

where λ is the smoothing parameter. The AIC [48] is used for model selection given as

AIC(λ) ≡ log(SSE(λ)) +
2df f it(λ)

n
=

n
2

log(SSE(λ)) + df f it(λ).

In term of the likelihood function, AIC can be formulated as

AIC = 2[−log(L) + p], (3.11)
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where L is the likelihood, p (or df ) are the number of parameters and the degrees of

freedom respectively, in the model. Cross Validation-risk (CV-risk) is needed to obtain an

optimal stopping criterion (mstop) of model fitting, where flexibility of regression P-splines

smoothing can explain a large amount of candidate models fitting. We consider the model

with a good trade-off between error and goodness of fit of the model. Leave-one-out

cross-validation [22, 49] is defined as

CVn =
1
n

n∑
i=1

MSEi =
1
n

n∑
i=1

(yi − ŷi)2,

We compute CV-risk for the leverage of observation by using

CVn =
1
n

n∑
i=1

{
yi − ŷi

1 − li

}2

,

where li is the leverage statistic

li =
1
n

+
(xi − x)2∑n

i′=1(xi′ − x)2
.

The CV-risk for d-fold cross-validation with d < n is computed as

CVd =
1
d

d∑
i=1

MSEi.

The general model fitting problems would be controlling df, stability (e.g., transformation),

and knots [50], but the flexibility of the model is attractive [51]. As alluded to in the previous

CV-risk and AIC criteria for model selection, the generalized Minimum Description Length
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(gMDL) criterion [52, 53] is defined as

gMDL =


k log(SSE/(n − p)) +

d f
2 log(F) + log(n), R2

≥
p
n ;

k log( y
′
y

n ) + 1
2 log(n), otherwise,

where n = number of observations, df = vector of degrees of freedom, k = n/2, F is the

F-ratio for testing the hypothesis. The length of df is the same as the length of SSE and R2

is the squared multiple correlation coefficient.

3.4 Boosting for GAM and GAMLSS Models

The relationships between the response and covariates, in the SST data, in complex situa-

tions may not be fully determined by classical linear regression models. GAMs are more

capable to capture the patterns in the SST data. However, GAM models have the limita-

tion of assuming an exponential family distribution for the response variables. GAMLSS,

proposed by [30], are semi-parametric modelling approaches to overcome this limitation

of GAM models. In contrast to GAM, GAMLSS relax the family distribution assumption

of the response variable.

Moreover, GAMLSS regresses at every distributional parameter, for example, location,

scale and shape, to a set of covariates in addition to the expected mean of the model.

GAMLSS method is used to estimate the distributions of the parameters corresponding

to the covariates (i.e. with additive predictor model that depending upon the covariates

additively) or its own predictor [20] by a link function. To fit GAMLSS, based on covariate

vector x, the algorithm minimize the risk function to achieve an optimized prediction model
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f ∗(x) [54, 55]. GAMLSS are designed for the univariate response, possess the flexibility in

applying various basis types, covered variety of covariates in functional terms, and a variety

of distribution can be handled (over 80 distributions), which are discrete, continuous, and

mixed. However, the LSS estimation for a large number of covariates with high dimension

can be used in variable selection of model fitting. The traditional fitting procedures for

GAMLSSs are inconvenient in case of high dimensional data setup, it requires variable

selection based on some information criteria, for example AIC.

Boosting is an ensemble technique used to improve prediction accuracy of an algorithm

[41]. It has the capacity to handle various risk functions, simultaneous process between

model fitting and variable selection, and addresses multi-collinearity issues. It can be used

to improve fitting and prediction of additive models [56–59]. This technique not only

estimates the mean, but also the distribution of additive parameters, i.e. location, scale,

and shape. To address the issue of variable selection in GAMLSS a boosting technique

gamboostLSS is proposed [20]. There are many merits of fitting the model by boosting

algorithms, such as efficiency in computational time, capable for GLM, GAM, and complex

prediction models with high dimensional data phenomena [19,44]; gamboostLSS [20], etc.

3.5 Functional Gradient-Based Boosting

Gradient boosting is usually used in the boosting process to minimize risk function with

respect to the prediction function f ∗(x). To minimize the risk function, P-splines can be

used in boosting fit for additive models, one of such approach is proposed by Schmid and

Hothorn [27]. [27] used boosting to improve estimates of parameters that are based on
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Functional Gradient Descent (FGD).

Gradient estimation through several statistical models is known as component-wise

gradient boosting (or boosting) [47, 60, 61]. One of the advantages of boosting by FGD is

that the feature selection is done during the process of model fitting by adding the base-

learners, there are no separate stages for model fitting and feature selection. This leads to

a reduces ER. Boosting models is referred as ”stagewise additive modeling” by Friedman

et al. [62], where the term additive means that boosting is an additive combination of

estimators (functions). In their work they applied boosting to GAM models.

Later this approach is extended to GAMLSS by Mayr et al. [20], where they observed

that fitting GAMLSS by boosting, has a direct effect on the FGD in the form of an additive

term. Further they investigated that this approach can be used for each base-learner to fit

the covariates component-wise in high dimensional scenarios. In [47] another approach it

is proposed that using a boosting algorithm at each step, where in the structural mechanism

for each covariate is fitted by the gradient vector, and it is updated only the best of the

base-learners performance. We used gradient based boosting in the experiments to increase

predictive accuracy of the SST data in high dimensional case. We used squared error as a

measure of the risk function to obtain the loss function for model fitting and prediction.

From equation (2), we assume that Y response is univariate and continuous and the loss

function ρ is assumed to be differentiable with respect to f ∗(X) [27, 61, 63]. To estimate the

function f ∗(.) minimizing the expected loss function ρ(.), such that

f̂ ∗(.) = argmin f (.)EY,X[ρ(Yi, f ∗(Xi))], (3.12)
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based on training data (yi, xi), i = 1, ...,n. Also suppose that f ∗(X, β) is an approximate

function with a set of parameters β ∈ Rp. Due to the expectation in f̂ ∗(.) being unknown,

so we minimize the expectation by the gradient boosting algorithm. Whereas, FGD can

be implemented in the boosting algorithm [47], the loss function ρ(Y, f ∗(X, β)), under these

assumptions can provide a gradient method. The loss function is used to evaluate the neg-

ative gradient for each boosting iteration. Furthermore, the function f (.) can be estimated

through a constraint or objective minimization of the empirical risk (ER)

ER =
1
n

n∑
i=1

ρ(Yi, f ∗(Xi)) (3.13)

which is implemented by FGD [47]. In other words, to minimize ρ with respect to f

function, instead minimize ER with respect to f using component-wise gradient boosting,

f̂ ∗(.) = argmin f (.)ER. (3.14)

In statistical boosting, the objective is to obtain the function f̂ ∗(.). The steepest descent

algorithm [47], can be used to minimize ER through fitting the negative gradient of the

loss function. Gradient boosting is one approach to approximate f̂ ∗M of f ∗ as a sum of M+1

base-learners developed by M boosting iterations,

f̂ ∗M =

M∑
m=0

f ∗m.

By gradient boosting for m = 0 as starting iteration is f̂ ∗0 and iteratively of steepest descent
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implementing gives the negative gradient in order to minimize the loss function ρ is

hm,i = ∇ f ∗m−1
ρ(Yi, f ∗m−1(Xi)), 1 ≤ i ≤ N,

where f̂ ∗m = f̂ ∗m−1 − γmhm,

γm = argminγρ( f̂ ∗m−1 − γhm).

As we know that f̂ ∗0 = f ∗0 and f ∗m = −γmhm, m > 0, a solution cannot be directly found

for hm,i. Furthermore, training base-learners (say ûm), to fit the gradient by a training set

(Xi, hm,i), where 1 ≤ i ≤ N so that,

f ∗m = −γmûm, m > 0 and f̂ ∗m = f̂ ∗m−1 − γmûm,

γm = argminγρ( f̂ ∗m−1 − γûm).

There are properties to control boosting that can be represented as,

f̂ ∗m = f̂ ∗m−1 + νsl f ûm−1,

where 0 < νsl f ≤ 1 as step-length of factor (regularization parameter) and the final of control

boosting estimate can be represented as,

f̂ ∗mstop
= f̂ ∗0 + νsl f û0 + ... + νsl f ûmstop−1 , f̂ mstop

j =

mstop∑
m=1

νsl f ûm
j ,

where m = mstop stopping iteration parameter. Similarly, the parameter estimates of the jth
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base-learners in the mstopth iteration is,

β̂
mstop

j =

mstop∑
m=1

νsl f β̂
m
j,u,

where β̂m
j,u as in equation 3.8. Considering the flexibility of boosting, the combination of

loss functions and base-learners are different and both can form a new model [64, 65].

Figure 3.1: Illustration of Functional Gradient Descent (FGD) for z = x2 + 2y2.

A standard of FGD algorithm in [20, 27, 64, 66] for training the dataset is as follows:
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Algorithm 1 FGD (Boosting)

a) Initially setup the covariates in the function f̂ ∗[0]
≡ offset values with default value f̂ ∗[0]

≡ Y and setup
m = 0 in the function f̂ [0]

j ≡ 0. In case SST data set, for time covariates can be represented as numeric.
b) Increase m by 1, account the negative gradients (residuals):

ui = −∇ f ∗ρ(Yi, f ∗(Xi))| fi= f̂ m−1(xi).

Compute at f̂ [m−1](xi), i = 1, ...,n. The negative gradient vector

u[m−1] = u[m−1]
i |i=1,...,n = −∇ f ∗ρ(Yi, f ∗)|Y=Yi, f= f̂ [m−1](xi).

(Boosting): evaluate the residuals ui = Yi − f̂ [m−1](xi), i = 1, ...,n
c) Fit the negative gradients vector become residuals vector u = (u1, ...,un)T as base-learners ĥm(.). The vector

u is as response and fitted with covariate x; (xi,ui), where i = 1, ...,n gives the estimate function ĥ[m].
d) Select the best fitting base-learners by using argmin with minimum SSE:

j∗ = argmin
n∑

i=1

(ui − ûi j)2.

e) Updating the prediction function with using the size length factor (slf ) 0 < νsl f ≤ 1,

f̂ [m] = f̂ [m−1] + νsl f ĥ[m].

f) Repeat iteration step b to e until m = mstop iteration.

3.6 GamboostLSS by considering Time Covariates

To observe the functional and distributional effects in construction of model with time

covariates, consider GAMLSS model without random effects

gd(φd) = β0φd +

pd∑
j=1

f jφd(xdj) = ηφd , d = 1, 2, 3, 4 (3.15)

The above model consists of two terms i.e.

β0φd , where d = 1 represents index for mean µ, 2 represents index for variance σ, 3

represents index for skweness ν, and 4 represents index for shape τ. β0φd are the

intercept term of the four submodels; and

∑pd
j=1 f jφd(xdj) = Xdβd as a parametric term;
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f jφd are the type of effect the covariate j on the distribution parameter φd;

φd and ηφd are vectors,

βT
d = (β1d, ..., βpd′d) is a parameter vector of length pd′ ;

Xd is a known design matrix of order n x pd′ ;

For instance, f jηd(xdj) is linear effect, smooth effect, categorical effect, and other effects

depending on the characteristic of the covariates [20, 33]. Each distribution has a fitting

function. Through the link-function like in equation 3.3, precision can be achieved in

fitting process [32]. From above GAMLSS equation, we know that gd(.) is a monotonic link

function that is related to distribution parameter φd with function ηφd given by

g1(µ) = ηµ = β0µ +

p∑
j=1

f jµ(x j) = X1β1 (3.16)

g2(σ) = ησ = β0σ +

p∑
j=1

f jσ(x j) = X2β2 (3.17)

g3(ν) = ην = β0ν +

p∑
j=1

f jν(x j) = X3β3 (3.18)

g4(τ) = ητ = β0τ +

p∑
j=1

f jτ(x j) = X4β4. (3.19)

GAMLSS distributional term from equation 3.15, which represented by independent ob-

servations (yi, xi
T) for i = 1, 2, ...,n where yi is response and xi = (xi1, ..., xip)T is a set of the

covariates vector. The conditional density function (cd f ) fY(yi|φi), depends on

φi = (µi, σi, νi, τi) (3.20)
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where a vector of four distribution parameters, i.e. µi is location parameter, σi is scale

parameter, νi is skewness parameter, and τi is kurtosis parameter of observation ith respec-

tively [16, 17, 20, 33]. In general, each distribution parameter is modelled through its own

additive covariate ηφd and depend on additively on covariates effects, such as nonlinear,

smooth, interaction, etc [32,33]. Location parameter of distribution refers to as the measure-

ment of the center, such as mean, median and mode or modus; scale of distribution refers

to the variance or dispersion, such as quantile, percentile, longitude-latitude and levels or

layers; shape parameter of distribution refers to skewness and kurtosis. The optimization

of the distribution parameters of cd f in equation 3.20 for gamboostLSS models are:

(µ̂, σ̂, ν̂, τ̂) = argminηµ,ησ,ην,ητEY,X[ρ(Yi, ηµ(X), ησ(X), ην(X), ητ(X))], (3.21)

with loss function ρ = −L the negative log-likelihood of the response distribution and

based on training data (Y,X). By equation 3.13, gradient boosting approach to minimize

the ER is used,

ER =
1
n

n∑
i=1

ρ(Yi, ηφd). (3.22)

Similar equation 3.11, GAIC (or BIC) criteria in variable selection can be written as,

AIC(m) = −2[logL( f̂ m) + d f (m)],

GAIC(p) = −2
n∑

i=1

log[ f (yi | φ̂i)] + p d f ,

where m is iteration, p is a fixed penalty factor, [20, 45]. Mayr et al. [20] stated several

limitations of this criteria, such as a potentially large variance and becoming unstable,

a large number of noninformative covariates, and that it tends to be biased. Moreover,
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if potentially covariates become candidate GAMLSS fits are very large, then GAIC can

cause computational cost or almost impossible for high dimensional data. To overcome

this limitation, [20] proposed to use a resampling scheme model fitting. By using this

approach, we account for a gamboostLSS model fitting by using gradient boosting.

3.7 Summary

In this chapter, we provided a detailed discussion on additive models. The four models,

generalized additive models (GAM), generalized additive models by boosting (gamboost),

generalized additive models for location, scale, and shape (GAMLSS), and generalized

additive models for location, scale, and shape by boosting (gamboostLSS) are introduced.

We focused on the SST data fitting and prediction in case of a large number of missing

observations (called gap). GamboostLSS model can deal with continuous, discrete and

categorical variables. GamboostLSS also can handle the distribution of conditional location,

scale and shape parameters.



Chapter 4

Linear to gamboostLSS Models Fitting

for Sea Surface Temperature

4.1 Introduction

In this Chapter we presented linear regression model (LRM) and several additive models,

i.e. GAM, gamboost, GAMLSS and gamboostLSS models to fit SST data from one buoy.

We applied the same dataset that was used in this Chapter to observe seasonal and annual

effects in model fitting. We used methodology of the models as displayed in Chapter 2

and discussed the generalised additive model for location, scale, and shape by boosting

(gamboostLSS) for SST data fitting. Then, we compared our propose model with usual

GAM, gamboost, and GAMLSS models.

The chapter is further organised as follows. In section 4.2 LRM models to identify the

effects of covariates on the SST dataset with and without transformation. Section 4.5 GAM

models with P-spline for fitting SST data are discussed. In section 4.6 gamboost models

53
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with P-splines for fitting SST data are presented. Section 4.7 provides a detailed description

of the GAMLSS models fitting for SST data. Section 4.8 gamboostLSS models fitting for

SST data are given. Finally, in section 4.9 summary of the chapter is reported.

4.2 Fitting of the SST Data by Linear Regression Models

The SST data can be modelled as a linear combination of three climate parameters. These

parameters are: air temperature, relative humidity, and rainfall in monthly and yearly

effects. The complexity of the relationship between the response and covariates becomes

challenging in a dynamic model. In the preliminary SST data observations (days) mod-

elling, we consider the linear assumption of the training data D = (xi, yi), i = 1, 2, ...,n where

the xis are covariates and yi represents the response variable. The relationship between the

variables X and Y can be written as a linear model in the matrix form as:

Y = Xβ + ε, (4.1)

where Y = (y1, ..., yn)T
∈ Rn are the response variables, β = (β0, ..., βp)T

∈ Rp+1 are unknown

parameters, X ∈ Rn×(p+1) is a matrix of n rows and p + 1 columns of a set of p covariates

X0,X1, ...,Xp of length n including an intercept and the elements of ε are assumed indepen-

dent and identically distributed (i.i.d), i.e. normal random variables ε ∈ N(0n, σ2In), where

ε = (ε1, · · · , εn)T and In is in the identity matrix. Covariates can be assigned quantitative

values, transformations, interaction between covariates, and variable representing nomi-

nal factors [41, 48, 67–69]. The conditional expectation illustrates the linear or functional
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relationship of the parameters of the model

E[Y|X] =

p∑
j=0

β jX j, (4.2)

or

µi = E[Y|Xi] = f (Xi) i = 1, ...,n. (4.3)

To demonstrate the importance of the time covariates in the LRM models we use two

models. The first model of the function f (.) represented by M0 is a LRM with three

continuous covariates and the second model M1 is a LRM with three continuous covariates

and two time covariates, i.e. month and year. We assume that the three continuous

covariates are linearly related to the SST, i.e. the relationship will be the same for all levels

of the time covariates and without interaction between covariates is as follows,

SSTi = β0 + β1Tempi + β2Humdi + β3Raini + ηkMonthi + γlYeari + εi, (4.4)

for k = 1, .., 12, l = 1, 2, ..., 6, and i = 1, ...,n, where η and γ are parameters vector of time

covariates for month and year, respectively.

Table 4.1: Analysis of variance for M0 regression model

Predictor d f SumSq MeanSq F-value Pr(> F)
Temp 1 22.368 22.368 100.768 < 2.2e − 16
Humd 1 9.477 9.477 42.694 9.36e − 11
Rain 1 0.243 0.243 1.095 0.296
Residuals 1227 272.368 0.222

Analysis of variance of M0 model is given in Table 4.1. The table shows that the rainfall

covariate is less significant than the other two covariates. The measures of R-squared and

adjusted R-squared is 10.54% and 10.32% respectively for the model (not given in the table).
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These two measures provide that the model does not fit the data well.

Table 4.2: Coefficients of M0 regression model

Coefficients Estimate Std.Error t-value Pr(>| t |)
Intercept 21.085 0.714 29.511 < 2e − 16
Effect of Temp 0.222 0.019 11.775 < 2e − 16
Effect of Humd 0.026 0.004 6.617 5.47e − 11
Effect of Rain −0.0005 0.0005 −1.047 0.296

Table 4.2 shows negative effect of rainfall covariate (-0.0005) and positive effects of

temperature and humidity covariates. The results reveal that the temperature and humidity

have a significant effect as compared to the other covariates in the model.

Table 4.3: Analysis of variance for the M0 model

Source SS d f MS F Pr(>F)
Regression 32.0898 3 7.0224 31.6357 < 2.2e-16
Residuals 272.3672 1227 0.2220
Total 304.4570 1230

M0 is a restricted model and M1 is an unrestricted model, where in the M0 model

the seasonal effect ηm and the annual effect γl are restricted to 0. We evaluated several

models with different order of including time covariates in the model. In order to reach

an appropriate model we carried out experiments by using possible 25 = 32 models with

time covariates as ordered, and possible 32 models with time covariates as factor. We

investigated the order of covariates in the model with forward selection, backward elim-

ination, and both methods in stepwise regression. The results of the selected model M1

are displayed in Table 4.4. The results from the table demonstrate that all the covariates

are statistically significant except the rainfall covariate. It can be seen from the table that

the mean squared for the temperature is higher as compared to the humidity and rainfall
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covariates. Whereas, in time covariates mean squared deviations of month is higher than

year. By comparing the Table 4.3 and Table 4.4 it can be seen that the residual mean squares

are reduced from 0.2220 to 0.1026 by including the time covariates in the model.

Table 4.4: Analysis of variance for M1 regression model

Predictor d f SumSq MeanSq F-value Pr(> F)
Temp 1 22.368 22.3683 218.1163 < 2.2e − 16
Month 11 144.063 13.0966 127.7065 < 2.2e − 16
Year 5 12.612 2.5223 24.5953 < 2.2e − 16
Humd 1 0.850 0.8501 8.2894 0.004058
Rain 1 0.373 0.3735 3.6416 0.056589
Residuals 1211 124.191 0.1026

For a more detailed analysis we categorise the covariates in the model in three categories,

continuous, seasonal and annual. The results are reported in Table 4.5. We kept January

as the base-line for the monthly effects and 2006 as the base-line for the annual effects. In

addition, both informations might be useful to determine the SST onset or offset in calendar

time. The results from the table show that all the covariates are highly significant except

for the rainfall covariate. For seasonal effects the results from the table reveal that the

effects for all months are highly significant, except for July. From the month coefficients,

February to July show the positive magnitudes (positive estimated effect) and August to

January show the nonpositive magnitudes (nonpositive estimated effect). This illustration

provides seasonal patterns for dry and wet seasons, i.e. positive estimated effect for the

first six months and nonpositive estimated effect for the second six months, as can be seen

in the Table 4.5. The months effects are displayed in the Figure 4.1. The graph shows that

there is a slight increase in the month effects from January to February and then a rapid

increase from February to April. Then the direction is downwards to August.
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Table 4.5: Coefficients of M1 model

Coefficients Estimate Std.Error t-value Pr(>| t |)
Intercept 26.3835 0.5715 46.164 < 2e − 16
Effect of Temp 0.0843 0.0144 5.866 5.74e − 09
Effect of Humd 0.0097 0.0030 3.184 0.0015
Effect of Rain −0.0007 0.0003 −1.908 0.0566
Effect of Feb 0.0905 0.0426 2.122 0.0341
Effect of Mar 0.4639 0.0417 11.114 < 2e − 16
Effect of Apr 0.7945 0.0431 18.440 < 2e − 16
Effect of May 0.5439 0.0446 12.192 < 2e − 16
Effect of June 0.2560 0.0462 5.540 3.70e − 08
Effect of July 0.0095 0.0441 0.216 0.8292
Effect of Aug −0.2212 0.0479 −4.618 4.30e − 06
Effect of Sept −0.2245 0.0481 −4.670 3.34e − 06
Effect of Oct −0.3180 0.0484 −6.572 7.35e − 11
Effect of Nov −0.2624 0.0479 −5.483 5.10e − 08
Effect of Dec −0.3134 0.0485 −6.458 1.53e − 10
Effect of 2007 −0.3861 0.0564 −6.840 1.25e − 11
Effect of 2008 −0.5128 0.0622 −8.247 4.18e − 16
Effect of 2010 −0.4877 0.0574 −8.498 < 2e − 16
Effect of 2011 −0.3283 0.0568 −5.781 9.43e − 09
Effect of 2012 −0.3485 0.0662 −5.263 1.67e − 07

Figure 4.1: The month pattern and standard error (SE) of seasonal effects

There is a similar slope change from April to August, but different levels (in magnitudes)

from July to August with the base line as January. Interestingly, on July shows statistically

insignificant effects at p =0.1. We can see that from February to June shown positive effects

significantly and then from August to December shown nonpositive effects significantly.
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Thereby, we can stated that July is transition period of seasonal effects.

Figure 4.2: The year pattern and standard error (SE) of annual effects

The trend of annual effects in the six years is depicted in Figure 4.2. The graph shows

a decrease in the trend from 2006 to 2008, there are no observations (gaps) from 2008-2010,

then an increase from 2010 to 2011 and almost stable from 2011-2012. In general, overall

years have highly significant effects at p < 0.001. An effect in the M1 model fitting can

produce a change in level or in slope or both for coefficient estimates of parameters in

the case of gaps in the data. Level and slope changes can be detected by the sign of the

magnitude and direction respectively.

From M0 model the explained variability R2 is 10.54% and from M1 the R2 is increased

to 59.21% by including the time covariates in the M1 model. The M1 model has adjusted

R-squared 58.57%.
Table 4.6: Analysis of variance for the M1 model

Source SS d f MS F Pr(>F)
Adjust time-groups 148.1792 16 9.2612 90.309 < 2.2e-16
Res-within 124.1880 1211 0.1025
Res-total 272.3672 1227

The results from the Table 4.6 show that time covariates give significant effects in the

M1 model. Addition of the time covariates in the model leads to a reduction in the amount
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of unexplained variances in the residuals from 272.37 to 124.19 and also degree of freedom

from 1227 to 1211.

4.3 Model Diagnostic

Model M1 is assessed for the nonlinearity of the response - covariates relationship, nor-

mality, variance of the error, outliers, and high-leverage points. The plot of the residual for

linear fit can be used to detect patterns in the residual against the fitted SST data.

 
 (a)                                                                                                                         (b) 

 
                                                                      (c)                                                                                                                                  (d)                                                                  

Figure 4.3: For identifying non-linearity, the model checking for M1: Residual vs Fitted M1 model can be
used to identify a trend(a); Normal QQ-plot of M1 model (b); Scale-Location of M1 model (c); Residual vs
Leverage of M1 model can be used to identify outliers (d).
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The Figure 4.3 (a) shows a non-linear trend of the residuals of M1 model. From QQ-plot

in Figure 4.3 (b) the residual can be assumed to be normally distributed. The M1 model

has several outliers, in the upper tail, i.e. 131, 132, 135, and 136 in the SST data. The M1

curve indicates residual skewness in the upper tail, so transformation of the SST response

is suggested. In addition, changes or extended modification in the M1 model can be done.

Figure 4.3 (c) shows almost the similar trend, non-linear, for the residual as in Figure4.3 (a).

The M1 model also has more potential influential observations. The scale-location of the

M1 model shows that the standardized residual squared root magnitudes with constant

variance. The figure shows that there is no clear evidence of heteroscedasticity. From the

Figure4.3 (d) the leverage measure shows that the outliers in the continuous covariates and

time covariates have influenced the M1 model fitting. The 442th observation has a very

high impact on the M1 diagnostic result. Several observations on the leverage effect the

M1 model fitting, for example the 131 and 132th observations.

4.4 Linear Model Fitting with Transformed Covariate

In the SST data the rainfall covariate has a large number of 0 values. Therefore, we

transformed the rainfall covariate as, log(Rain + 0.01) and investigated the effect of this

transformation on the M0 and M1 model.

Table 4.7: Analysis of variance for M0 regression model with transformed covariate

Predictor d f SumSq MeanSq F-value Pr(> F)
Temp 1 22.368 22.3683 101.0923 < 2.2e − 16
Humd 1 9.477 9.4771 42.8314 8.745e − 11
log(Rain + 0.01) 1 1.117 1.1175 5.0504 0.0248
Residuals 1227 271.494 0.2213
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The results for the M0 model from Table 4.7 shows that the rainfall covariate is signifi-

cant at p < 0.05 and the other two covariates highly significant at p < 0.001. The measures

of R-squared and adjusted R-squared is 10.83% and 10.61% respectively for the model (not

given in the table). These two measures indicate that the model still does not fit the data

appropriately. Transformation effect of rainfall covariate with respect to R-squared and

adjusted R-squared in M0 model is increased by 0.31% as compared to pre-transformation.

Table 4.8: Coefficients of M0 regression model with transformed covariate

Coefficients Estimate Std.Error t-value Pr(>| t |)
(Intercept) 21.2417 0.7167 29.638 < 2e-16
Effect of Temp 0.2284 0.0188 12.135 < 2e-16
Effect of Humd 0.0218 0.0040 5.426 6.95e-08
Effect of log(Rain + 0.01) 0.0095 0.0042 2.247 0.0248

Table 4.8 shows positive effect of the rainfall covariate in the M0 model as compared

to without transformed covariate in Table 4.2. The effect of the other covariates are almost

similar. The results of transformation for M1 model are reported in the Table 4.9.

Table 4.9: Anova for M1 model with transformed covariate

Predictor d f SumSq MeanSq F-value Pr(> F)
Temp 1 22.3680 22.3683 217.9602 < 2.2e-16
Month 11 144.0630 13.0966 127.6151 < 2.2e-16
Year 5 12.612 2.5223 24.5777 < 2.2e-16
Humd 1 0.850 0.8501 8.2835 0.004071
log(Rain + 0.01) 1 0.285 0.2845 2.7727 0.096144
Residuals 1211 124.280 0.1026

The results reveal that the rainfall is significant as compared to pre-transformation in

the Table 4.4. The measures of R-squared and adjusted R-squared are 59.18% and 58.54%

respectively for the M1 model (not given in the table). The transformation effect of rainfall

with respect to R-squared and adjusted R-squared M1 model is decreased by 0.03%.



4.4. Linear Model Fitting with Transformed Covariate 63

Table 4.10: Coefficients of M1 model with transformed covariate
Coefficients Estimate Std.Error t-value Pr(>| t |)
(Intercept) 26.5204 0.5752 46.106 < 2e − 16
Effect of Temp 0.0879 0.0144 6.115 1.30e − 09
Effect of Humd 0.0069 0.0032 2.165 0.0306
Effect of log(Rain + 0.01) 0.0049 0.0029 1.665 0.0961
Effect of Feb 0.0922 0.0427 2.161 0.0309
Effect of Mar 0.4610 0.0418 11.027 < 2e − 16
Effect of Apr 0.7869 0.0432 18.231 < 2e − 16
Effect of May 0.5501 0.0446 12.332 < 2e − 16
Effect of June 0.2563 0.0462 5.546 3.59e − 08
Effect of July 0.0150 0.0441 0.339 0.7345
Effect of Aug −0.2250 0.0479 −4.694 2.99e − 06
Effect of Sept −0.2300 0.0481 −4.779 1.98e − 06
Effect of Oct −0.3206 0.0484 −6.621 5.34e − 11
Effect of Nov −0.2600 0.0479 −5.432 6.73e − 08
Effect of Dec −0.3020 0.0486 −6.220 6.85e − 10
Effect of 2007 −0.3722 0.0566 −6.576 7.16e − 11
Effect of 2008 −0.5038 0.0623 −8.092 1.42e − 15
Effect of 2010 −0.4762 0.0575 −8.277 3.29e − 16
Effect of 2011 −0.3142 0.0569 −5.521 4.12e − 08
Effect of 2012 −0.3258 0.0664 −4.907 1.05e − 06

Figure 4.4: For identifying non-linearity, the model checking for M1 with transformed covariate: Residual
vs Fitted M1 model can be used to identify a trend(a); Normal QQ-plot of M1 model (b); Scale-Location of
M1 model (c); Residual vs Leverage of M1 model can be used to identify outliers (d).
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Table 4.10 shows temperature highly significance at p < 0.001, humidity significance

at p < 0.05 and rainfall significance at p < 0.1 with log(Rain + 0.01). Transformation of

rainfall has a little or no change in seasonal and annual effects of the M1 model. The

leverage measure from the Figure 4.4(d) shows that the M1 model fitting is not effected by

the outliers in the continuous covariates and time covariates.

4.5 GAM Models with P-splines for Fitting SST Data

One of the most significant components in the model fitting of SST data is time effect, which

is discussed in detail in Section 4.2. Therefore, in order to get a model we incorporated this

into the fitting of additive models. Initially, we used three continuous covariates prior to

the model fitting as in Section 4.2. We considered two time covariates, i.e. days of the year

(Doy) and the number of days (Nrdays) before and after the gap.

In this section, we applied GAM models with P-splines basis to fit the SST data. We use

this model to obtain smoothness on the SST data fitting.

4.5.1 Results and Discussion

In this section, firstly, we present the AIC values of the SST data by GAM models fitting

without and with time covariates, i.e. 1580.344 and 465.8042 respectively. Whereas for the

same scenario and with transformation of rainfall in models fitting obtainable AICs are

1582.886 and 458.8409. The transformation shows that drastically decrease of model fitting

with time covariates and slightly increase without time covariates.

Secondly, we show the smallest value of the AIC by adjusting degree of freedom, which
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AIC does not guarantee an optimal fitting of the SST data using GAM models with P-

spline basis. The results of our experiment are depicted in Table 4.11. From Table 4.11

it is presented that the model GM19pre has the smallest AIC, however, it does not fit the

data appropriately as seen in Figure A.7 in Appendix A. Models GM6pre to GM9pre and

GM17pre have relatively smaller AICs than other models, but higher than for the model

GM19. However, these models give appropriate marginal model fitting in time covariates.

It means that appropriateness in marginal (local) fitting does not guarantee appropriateness

in global model fitting.

Therefore, to avoid choosing arbitrary smoothing parameter then checking the max-

imum degree or the order of P-spline in the GAM models are one important role. The

estimated df are the trace of the smoother matrix as df = trace(S)-1, where S is the smoother

matrix. If df = 1 implying a linear fit, we suggested to obtain df greater than 1. In our

experiment we get the maximum df of 8 for the Doy covariate where the Doy covariate has

the largest significant effect in the model as in detail see Chapter 2. The second significant

effect is the Nrdays covariate. Thus, we select the degrees of freedom df of the Nrdays

covariate around the df of the Doy covariate which can be lower or higher than 8. The

results are summarized in Table 4.11.

For the SST data we took the Doy covariate by assuming that there are 365 days in each

year. There is almost a similar pattern in the Doy covariate when changing its df, whereas

the Nrdays shows different patterns for the different values of its df. The details are given in

Appendix A in Figures A.1 and A.2. In Figure A.1 the Nrdays covariate shows variability

pattern of long-term trends (annual effects), which are over than 6 edf of the pattern have an

upward trend (multimodal) and under than 6 edf then the pattern of annual effect shows a
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Table 4.11: AIC for GAM models fitting in P-spline without transformation.
Model d fTemp d fHumd d fRain d fNrdays d fDoy d fModel AIC

GM1pre 6 7 8 4 7 22.7035 620.2200
GM2pre 6 5 4 3 8 21.7301 618.1856
GM3pre 6 5 4 4 8 22.6621 611.5720
GM4pre 6 5 4 5 8 22.9347 612.2723
GM5pre 6 5 4 6 8 23.0704 612.6442
GM6pre 6 5 4 7 8 25.8842 484.8851
GM7pre 6 5 4 8 8 26.8492 486.8411
GM8pre 6 5 4 9 8 27.3706 488.2070
GM9pre 6 5 4 10 8 28.5576 474.1265
GM10pre 8 5 5 4 7 22.8973 618.1874
GM11pre 8 5 5 4 8 23.9244 608.5816
GM12pre 8 5 5 4 9 24.6136 605.5126
GM13pre 8 5 5 3 10 24.3512 606.9454
GM14pre 8 5 5 6 10 25.7254 601.1109
GM15pre 8 5 5 5 10 25.5661 600.8135
GM16pre 8 5 5 4 10 25.2827 600.2266
GM17pre 8 5 5 7 8 26.9152 482.8112
GM18pre 8 5 5 10 10 31.2117 463.8921
GM19pre 8 5 5 10 18 38.1784 413.7819

downward trend like as parabola. The day of year (or seasonal effects) has relative similar

trend for GM1pre to GM9pre models. There are mainly four types of time patterns as

shown in the mentioned figures. It is indicated from the experimental results where the

choice of effective degrees of freedom for Nrdays has a significant impact on model fitting.

A good trade-off between edf of the time covariates and the AIC is important in order to

build an appropriate model. A very small value of df results in very high AIC (for example,

model GM1pre in Table 4.11), whereas a very large value of df leads to a smaller AIC gives

an inappropriate model fitting (seen in Figure A.7 for GM19pre). Therefore, a moderate

value of df is recommended.

We tested the models for different values of df for the time covariate, however, for con-

tinuous covariates we take fixed values for the df. This is due to the continuous covariates

having little impact on the response. This is elaborated experimentally in Table 4.12, where

zero default values of continuous covariates (air temperature, humidity, rainfall), fixed

values of the Doy, and changing the df for Nrdays (in the 2nd column of the table), the AIC

decreases and explained deviances increase.
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Table 4.12: AICs for SST data in the GAM models fitting by considering time covariates.

Model d f composition of covariates d fModel AIC DevianceExplainedpercent
d fTemp d fHumd d fRain d fNrdays d fDoy

Mod1 0 0 0 4 4 20.4668 686.8576 60.1
Mod2 0 0 0 5 4 20.6835 687.5068 60.1
Mod3 0 0 0 6 4 20.8644 687.6264 60.1
Mod4 0 0 0 7 4 23.5443 603.3747 62.9
Mod5 0 0 0 8 4 24.5116 605.0482 62.9
Mod6 0 0 0 9 4 25.0177 601.4369 63.0
Mod7 0 0 0 10 4 25.8602 599.0413 63.1
Mod8 3 3 3 7 4 15.6160 631.8499 61.5
Mod9 3 3 3 7 5 16.5987 620.9519 61.9
Mod10 3 3 3 7 7 18.7251 520.4324 65.0
Mod11 3 3 3 8 4 16.5474 633.6768 61.5
Mod12 3 3 3 8 5 17.5334 622.7275 61.9
Mod13 3 3 3 8 7 19.6890 522.2987 65.0

For example, the model Mod5 (0,0,0,8,4) in Table 4.12 means that the df for air temper-

ature, humidity, and rainfall are default, and the df for Nrdays and Doy covariates are eight

and four respectively. The model has AIC 605.0482 and d f 24.5116, however, the AIC and

d f are not the smallest and biggest. Table 4.12 shows the smallest AIC and biggest deviance

for model Mod7 on (0,0,0,10,4) compared to model Mod1 on (0,0,0,4,4). Similarly, model

Mod8 is compared to model Mod10 changing the df for Doy shows that increasing the df

of Doy increases the df of the model and explains the deviances and decrease of the AIC.

Figure 4.5: Illustration of Model3 fitting with deviance explained 66.4% (left). The marginal model fitting
has optimum composition d f of the covariates (right).
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The continuous covariates included in the Model3 fitting, and the results can be seen in

Figure 4.5 as an optimum df 30.3113 with optimum AIC 492.5577 by optimum composition

df of covariates (10, 12, 5, 8, 12) for temperature, humidity, rainfall, Nrdays and Doy respec-

tively. The significance of time covariates in model fitting rather than continuous covariate

types as displayed in Figure A.3, Appendix. Figure A.3 shows that the models have used

P-spline smoothing by GAM model and without continuous covariates. Although both

models fitting show similar pattern, it has different specification. Model (0,0,0,5,7) has

df 10.04543, AIC 679.4852 and 59.6% deviance explained, whereas model (0,0,0,8,7) has df

13.8944, AIC 569.8349 and deviance explained 63.3%.

Statistical references of the continuous covariates and the time covariates for Model3

is reported in Table 4.13. These covariates have significance at p-values. The results from

the table show that the time covariate has the smallest p-value compared to temperature,

humidity and rainfall. Moreover, Table 4.13 presents that the time covariate has larger edf

compared to that of the continuous covariate.

Table 4.13: The Approximate significance of smooth terms of Model3 fitting.

edf Ref.df F p-value
s(Temp) 5.231 5.970 3.918 0.000721
s(Humd) 4.189 5.094 5.347 6.58e-05
s(Rain) 3.842 3.978 2.481 0.042673
s(Nrdays) 6.956 6.999 41.587 < 2e − 16
s(Doy) 8.092 8.654 119.378 < 2e − 16

We applied the models, with the same df composition of covariate as in Table 4.11, with

transformed rainfall covariate. The results are displayed in Table 4.14. From the table we

can see that the AIC for GM6post-GM9post and GM17post is decreased, compared to that

shown on Table 4.11. Moreover, there is an overall decrease in the AIC of all the models
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observed. A similar explanation in Table 4.14 as in Table 4.11 that a moderate value of df is

recommended.

Table 4.14: AIC for the SST data by using GAM models with transformed rainfall covariate.

Model d fTemp d fHumd d fRain d fNrdays d fDoy d fModel AIC

GM1post 6 7 8 4 7 22.7392 614.3369
GM2post 6 5 4 3 8 21.4319 611.3645
GM3post 6 5 4 4 8 22.3830 603.7943
GM4post 6 5 4 5 8 22.6661 604.5278
GM5post 6 5 4 6 8 22.8226 604.7997
GM6post 6 5 4 7 8 25.2958 477.2821
GM7post 6 5 4 8 8 26.2597 479.2460
GM8post 6 5 4 9 8 26.7899 480.6029
GM9post 6 5 4 10 8 28.0764 465.6658
GM10post 8 5 5 4 7 22.2375 612.9076
GM11post 8 5 5 4 8 23.2057 603.2837
GM12post 8 5 5 4 9 23.7185 599.8643
GM13post 8 5 5 3 10 23.4239 602.7797
GM14post 8 5 5 6 10 24.7946 596.0260
GM15post 8 5 5 5 10 24.6207 595.8440
GM16post 8 5 5 4 10 24.3318 595.1687
GM17post 8 5 8 7 8 25.8784 476.3791
GM18post 8 5 5 10 10 30.0778 457.8599
GM19post 8 5 5 10 18 36.8927 409.6393

Further, we extended the experiments with the transformed rainfall by imposing the

initial condition on the df of covariates in Algorithm 3. The results given in Table 4.15

show that the df for continuous covariates are the same, whereas for the time covariates are

different in the model with and without transformation setups. From the results presented

in Tables 4.14 and 4.15, it can be concluded that a decrease in AIC can be achieved with

transformed rainfall covariate.

Table 4.15: The smallest AIC of the SST data by using GAM models with and without transformed rainfall.
Model d f composition d fModel AIC
GMpre 2, 4, 5, 2, 4 32.5858 444.5725
GMpost 2, 4, 5, 5, 3 32.5856 276.2160

In the SST model fitting, the variability of annual effect of the Nrdays covariate has

various trends on the gap. These trends on the gap can be estimated by the information

gathered from the patterns of previous and proceeding years. We observed a high variabil-

ity of a long gap (high number of missing observations) in the SST model fitting as shown
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in Figures A.1 and A.2 in Appendix A. The pattern model fitting of one gap of 1231 the

SST dataset can be estimated through the smoothing P-spline basis with specifying several

parameters. Furthermore, we use trade-off among AIC, df, marginal (local) model, and the

global model fitting to get an appropriate model as in Figures 4.5 - A.3 and A.4 - A.7 in

Appendix A. Estimating a good trade-off among hyper-parameters in model fitting is an

important stage in model fitting.

Therefore, the SST model with a low AIC and the highest degree of freedom is preferred.

The results from Tables 4.11 - 4.14 show that the models fitted with seasonal and annual

effects have a small AIC and large df for GMpost than GMpre models.

The time covariates have a significant impact on model fitting compared to the contin-

uous covariates, especially for the Doy covariate. This means that the seasonal and annual

effects largely contributed in model fitting for the SST data. A high df of Nrdays covariate

has a tendency to wobble in the gap, whereas with transformation reduces the AIC value

compared to without transformation in model fitting, but they have a similar df of the

model. In the same way, the range values for the covariates of with transformation is

smaller than without transformation as in Figure A.4, Appendix A. In this range, the shape

of rainfall pattern changes drastically with transformation. The changing in the shape of

rainfall covariate are relative with respect to change the range value of its covariate in

without and with transformation as shown in Figure A.5 for example. Transformation

effect in the GAM model fitting can cause change in the shape of its covariates and also

change the range value.

Generally, in investigating the SST data observation by using GAM models without

and with transformation, we recommended that ten models can be used to fit the SST data
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which are GM6pre to GM9pre and GM17pre and GM6post to GM9post and GM17post

models as shown in Tables 4.11 and 4.14. The trade-off in model fitting for the SST data

makes no unique solution to the GAM models, and there are nonsmooth model fitting

using GAM models for the SST data. Therefore, extending the SST model fitting with a

gradient boosting algorithm can be applied by gamboost models.

4.6 Gamboost Model Fitting for SST Data

We applied gamboost to the same SST data as an attempt to achieve improvement in

the model fitting of the SST data. Generally boosting can be used to achieve improved

prediction accuracy of any learning algorithm [19,41,61,70,71]. We use the AIC and CV-risk

as performance measures for evaluation and comparison of the models.

4.6.1 Results and Discussion

In this subsection, we provide SST data fitting by gamboost models without and with

time covariates, i.e. AICs -0.5468 and -1.3019 respectively. We use the mstop = 1000 and

νsl f = 0.1 in this experiment. In the models fitting for the same scenario previously and

with transformed rainfall obtainable AICs are -0.5496 and -1.3100. The gamboost models

fitting with transformation also show that AIC decreases with time covariates and slightly

decreases without time covariates.

The results of the gamboost model without transformation are reported in Table 4.17.

We applied gamboost models without transformation setup in a total of 30 models. The

results for the other models as given in Tables 4.16 and 4.17 of Appendix A show a positive
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effect of temperature and humidity on the SST data, and surprisingly the impact of rainfall

is not shown in this model (i.e. it was not selected in the model fitting by boosting).

The smooth effect of time covariates in the model is presented in Figure 4.6. We can see

that Table 4.16 consists of appropriate models on global and local fitting for GMboost1pre

to GMboost8pre models; and appropriate models on global but not on local fitting for

GMboost9pre-30pre models. We recommended to select GMboost1pre-8pre models to fit

SST data.

Table 4.16: AIC of gamboost models using P-spline without transformed rainfall covariate.

Model d fpre AICpre d fpre AICCorrectedpre d fpre AICgMDLpre

GMboost1pre 9.3089 -1.3017 9.338745 -1.301853 9.30893 -2.205584
GMboost2pre 10.5491 -1.3177 10.54914 -1.317729 10.44939 -2.209858
GMboost3pre 11.6330 -1.3271 11.66759 -1.327309 10.80661 -2.210004
GMboost4pre 9.4497 -1.3025 9.449651 -1.302488 9.44965 -2.205022
GMboost5pre 10.4844 -1.3083 10.55927 -1.308948 10.55927 -2.200746
GMboost6pre 11.7950 -1.3330 12.19130 -1.340700 11.79500 -2.212791
GMboost7pre 10.5275 -1.3087 10.52746 -1.308735 10.52460 -2.200840
GMboost8pre 11.8235 -1.3341 11.82346 -1.334129 11.82346 -2.213628
GMboost9pre 12.7090 -1.3557 12.71496 -1.355875 12.63459 -2.227052
GMboost10pre 12.6693 -1.3569 12.66926 -1.356847 12.66926 -2.228090
GMboost11pre 13.3432 -1.3753 13.37355 -1.376459 13.37355 -2.240832
GMboost12pre 13.9807 -1.3908 13.98068 -1.390821 13.98068 -2.249306
GMboost13pre 14.7529 -1.4152 17.79670 -1.405573 17.79670 -2.228286
GMboost14pre 17.7638 -1.4038 17.33268 -1.395749 17.33268 -2.222891
GMboost15pre 18.5127 -1.4250 18.12795 -1.410517 18.12795 -2.230102
GMboost16pre 18.3934 -1.4209 18.39338 -1.420847 18.39338 -2.237830
GMboost17pre 19.1982 -1.4321 19.15235 -1.431123 19.14144 -2.240964
GMboost18pre 19.9486 -1.4419 19.94858 -1.441847 19.92359 -2.244290
GMboost19pre 21.0751 -1.5109 21.07413 -1.510549 21.04796 -2.301479
GMboost20pre 23.6138 -1.6094 23.61375 -1.609431 23.61375 -2.375225
GMboost21pre 23.7061 -1.6114 23.71177 -1.611529 23.68673 -2.376484
GMboost22pre 23.8549 -1.6150 23.85486 -1.614946 23.84172 -2.378452
GMboost23pre 23.9202 -1.6167 23.96291 -1.618232 23.96291 -2.380657
GMboost24pre 27.5526 -1.6863 27.55260 -1.686320 27.55260 -2.414544
GMboost25pre 27.5565 -1.6863 27.60688 -1.687338 27.57214 -2.415097
GMboost26pre 28.3812 -1.6951 28.38123 -1.695113 28.36581 -2.415674
GMboost27pre 26.0375 -1.7135 26.02261 -1.713153 26.01316 -2.454800
GMboost28pre 26.9929 -1.7225 26.99293 -1.722481 26.82299 -2.455157
GMboost29pre 27.7710 -1.7303 27.75518 -1.730107 27.75518 -2.455501
GMboost30pre 28.5321 -1.7370 28.53208 -1.736964 27.95038 -2.455680

The Figure 4.6 shows that the gamboost model with P-spline smoothing for the days of

the year portrays a long-term effect, from 2006 to 2012. The seasonal effect for the SST data

over a year is also depicted in Figure 4.6, where we used cyclic and boundary constraints.

In Figure 4.6 it can be seen that the cyclic seasonal effect has a peak in around 100 days
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Figure 4.6: The GMboost1-4 models shows decreasing trends of annual effects before the gap and increasing
trends after the gap, whereas seasonal effects show stable patterns.

or in April, and annual effect (long-term trend over the years) shows decreasing pattern

before gap (16 Nov 2006 to 22 July 2008) and increasing pattern after gap (4 July 2010 to 13

May 2012). Both effects indicate a temporal pattern, particularly of the periodical effect for

the SST data.

We checked the variability of the gamboost model with P-spline smoothing using differ-

ent values of the stopping iteration and regularization factor. This variability of the model

is also tested for tuning the parameters with different values.

Figure 4.7 shows the pattern of the model with different values of hyper-parameters;

stopping iteration (mstop= 1500-2000), the size-length of factor (νsl f = 0.1) and varying values

of df, knots of Nrdays covariates, we considered here are the values of df=2.5-3.5 and knots=

100-140. As in Figure 4.6, a slightly changed pattern of the Nrdays covariate is observed in

GMboost7-8 models.

In general, Figures 4.6 and 4.7 show trade-off in hyper-parameters of the gamboost

model fitting, such as an increase in the number of knots in model fitting can be a result

of variations effects, mainly for Nrdays covariate in the gap. Fluctuation of annual effect
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Figure 4.7: The GMboost5-6 models show decreasing trends of annual effects before the gap and increasing
trends after the gap. A slightly changed pattern is observed in GMboost7 and GMboost8 models mainly for
annual effect after the gap.

becomes high if we increase the degrees of freedom of the Nrdays covariate as well. These

figures describe smoothing P-spline fitting based on the varying number of knots and

degrees of freedom mainly at time covariate of the gamboost model. The impact of both

parameters being increased leads to wiggling at the Nrdays covariate and over smoothing

at the Doy covariate. The larger number of knots results in smaller equidistant knots at the

Nrdays covariate, which is presented as a fluctuation or wiggliness curve. Conversely, a

cyclic pattern at the Doy covariate leads to over smooth approximate or a flat curve. For

this case, the relationship between the wiggliness of curve is caused by varying values of

smoothing parameters using P-splines, such as the degrees of freedom and the number of

knots which can be referred to [72].

Furthermore, we provide some further details performance of appropriate fitting using

gamboost model. For example, Figure 4.8 describes the GMboost3 model as one of an

appropriate model fitting for the SST dataset with reported intercept at 29.13273 and air

temperature, humidity and rainfall in the linear effects. The coefficient values for the
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linear effect of air temperature, humidity, and rainfall are 0.06549, 0.00138, and -0.00017

respectively. Air temperature and humidity are also shown having smooth effect as the

unimodal curve. For time covariates, the annual effect shows a decrease before the gap

and an increase after the gap in fluctuation, whereas the seasonal effect shows a smooth

pattern.

Figure 4.8: The GMboost3 model fitting in global and local model fitting for the SST data with mstop= 2000.
The global fitting shows appropriate model (left) and local fitting with 9 submodels (right).

Interestingly, Figure 4.8 shows the rainfall covariate with majority zero in smooth term

with mstop= 2000 in fitted model. Increasing mstop= 12000 leads to changes in the rainfall

covariate from smooth term to polynomial with three outliers as seen in Figure 4.9 clearly.

Figures 4.8 and 4.9 show that the solution of the SST data fitting by using gamboost models

with 1231 data observation in the gap without transformation is not unique. However, we

recommended to select the GMboost model fitting with mstop=12000 better than mstop=2000.

Furthermore, as can be seen that the GMboost26-29 models have the appropriate model

on global fitting, but the models show inappropriate model on local fitting mainly for the
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Figure 4.9: The GMboost model fitting in global and local model fitting for the SST data with mstop= 12000.
The global fitting shows appropriate model (left) and local fitting with 9 submodels (right).

Nrdays covariate as visualization in Figure B.1, Appendix. They have large values of final

risk (between 75-92) and CV-risk (between 30-33).

Figure 4.10: The patterns of time covarites of GMboost26 to GMboost29 models fitting show fluctuation on
the Nrdays, cyclic and smooth terms on the Doy covariate.

The Nrdays submodel shows inappropriate of GMboost26-29 models and disappear for
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the Doy submodel of GMboost27-29 models on local fitting as seen in Figure 4.10. The

disappearing of the Doy covariate from cyclic term to smooth term because over-fitting

model when large value of knots. Therefore, reducing error can be carried out in the

gamboost models by transformation of rainfall.

We now investigate model fitting by using the gamboost model with transformation

of rainfall to find a better model fitting. The variability of the model is tested for tuning

parameters with different values of the covariate specification and control boosting.

Figure 4.11: The GMboost1post-GMboost4post show similar decreasing trends of thr Nrdays effect before
gap and increasing trends after the gap, whereas the dayo f year effect is stable for all models.

Figure 4.11 shows the pattern of the model with different values of stopping iteration

(mstop= 1000-2000) and the size-length of factor (νsl f = 0.1), with fixed value for difference,

and varying values of df and knots of Nrdays covariate. We consider the df= 2.5-3.5 and

knots= 100-140 in the Nrdays specification. Similarly, Table 4.17 shows that the AIC can

also be decreased with transformed rainfall as compared to without transformation. The

transformation of rainfall covariate in the model fitting influences the degree of freedom
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and thus provides low AIC. The higher value of the df lowers AIC.

Figure 4.12: The GMboost5post-GMboost8post show similar decreasing trends of the Nrdays effect before gap
and increasing trends after the gap. A slightly changed pattern is observed in GMboost6post-GMboost8post
models for the Nrdays covariate, whereas the Doy covariate shows similar patterns for all models.

As shown in Figure 4.12, a slightly changed pattern is observed in GMboost6post and

GMboost8post models with control boosting (mstop= 1500,νsl f = 0.1), Nrdays (df= 3.5, diff= 2,

knots= 120-140), Doy (d f= 1.5, cyclic, boundary.knots= c(1, 365)), and all base-learners bbs

with df= 1 for continuous covariates.

Figure 4.13 shows the pattern of the model with different values of stopping iteration

(mstop are between 3500-6000) and the size-length factor (νsl f = 0.1), with fixed value diff= 2,

and varying values of high knots and df of Nrdays covariate, the values of knots are between

220-300, and the values of df are between 6.5-8.5. As shown in Figure 4.13, GMboost25post

and GMboost26post models are similar with slight variation in the pattern. The pattern of

Nrdays effect is inappropriately fitted in the models with varying control boosting. Further

experiments are carried out with different values of mstop= 5500-6500 and the νsl f = 0.1, with

fixed value for diff= 2, and varying values of high knots and df of Nrdays covariate, the
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Table 4.17: AIC of gamboost models with P-spline in the transformed rainfall covariate.
Model d fpost AICpost d fCorrectedpost AICCorrectedpost d fgMDLpost AICgMDLpost

GMboost1post 9.7842 -1.3098 9.80371 -1.309985 9.79830 -2.209054
GMboost2post 10.7005 -1.3260 10.70047 -1.326044 10.70047 -2.216341
GMboost3post 11.7627 -1.3353 11.79642 -1.335506 10.86389 -2.216479
GMboost4post 9.9151 -1.3107 9.91510 -1.310664 9.91510 -2.208640
GMboost5post 11.0509 -1.3162 11.14360 -1.316890 11.14360 -2.203028
GMboost6post 12.1913 -1.3407 12.19133 -1.340694 12.19133 -2.216633
GMboost7post 11.1182 -1.3167 11.12205 -1.316739 11.12205 -2.203085
GMboost8post 12.2405 -1.3418 12.24054 -1.341835 12.24054 -2.217296
GMboost9post 12.9918 -1.3632 12.99758 -1.363347 12.99758 -2.231414
GMboost10post 13.0179 -1.3642 13.01790 -1.364234 13.01790 -2.232099
GMboost11post 13.5949 -1.3824 13.62506 -1.383602 13.61468 -2.245559
GMboost12post 14.2083 -1.3978 14.20833 -1.397762 14.20833 -2.254025
GMboost13post 17.5087 -1.4244 17.17688 -1.410117 17.14203 -2.238638
GMboost14post 17.1416 -1.4084 17.14159 -1.408371 17.10516 -2.237208
GMboost15post 17.8076 -1.4294 17.46496 -1.414999 17.46496 -2.240645
GMboost16post 17.6889 -1.4253 17.68888 -1.425292 17.68888 -2.248719
GMboost17post 18.4357 -1.4364 18.40567 -1.435378 18.40567 -2.252031
GMboost18post 19.0960 -1.4460 19.09595 -1.446026 19.07392 -2.256289
GMboost19post 20.3290 -1.5148 20.31938 -1.514400 20.31938 -2.312161
GMboost20post 23.3514 -1.6118 23.35143 -1.611836 23.21076 -2.380273
GMboost21post 23.4714 -1.6137 23.47726 -1.613903 23.05995 -2.381427
GMboost22post 23.6319 -1.6173 23.6319 -1.617285 23.36884 -2.383001
GMboost23post 23.7123 -1.6190 23.83097 -1.620357 23.43696 -2.384373
GMboost24post 27.9570 -1.6872 27.95703 -1.687221 24.74635 -2.414100
GMboost25post 27.9610 -1.6872 28.01864 -1.688210 25.04738 -2.414629
GMboost26post 28.9616 -1.6957 27.96100 -1.687220 24.75312 -2.414090
GMboost27post 26.2430 -1.7168 26.22806 -1.716641 26.22806 -2.456301
GMboost28post 27.1326 -1.7261 27.13264 -1.726082 27.03282 -2.457406
GMboost29post 27.9021 -1.7339 27.90213 -1.733907 27.90213 -2.457873
GMboost30post 28.6276 -1.7407 28.62755 -1.740647 28.45557 -2.458011

Figure 4.13: Similar patterns for seasonal effects on models GMboost25post and GMboost26post; The Nrdays
effects are not appropriate for models GMboost25post to GMboost28post.

values of knots are between 240-300, and the values of df are between 8.5-9.5.

The results of our experiment gamboost model fitting with transformation are displayed
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in Figure B.2, Appendix B. The figure shows that the models provide a better global fitting

of the SST data. However, the models are not appropriate on local fitting as shown

for the Nrdays covariate as captured in Figure 4.13. The results of GMboost25post to

GMboost28post models with the range FR: 79.85 - 76.21 and CV-risk: 30.78 - 29.83. The

SST data fitting is represented as in Figure B.2, Appendix B for GMboost25-28 models. The

models show similar smoothing pattern at the beginning smoothing in before the gap and

the last smoothing. The appropriate global fitting is not guaranteed appropriate on local

fitting.

Figure 4.14: The GMboost3 model fitting in global and local model fitting for the SST data with transformed
rainfall covariate and mstop= 2500.

Figures 4.14 and 4.15 show appropriate gamboost model fitting with transformed rain-

fall, which using a different specification of the hyper-parameters and mstop. The specifica-

tion of hyper-parameters and high value mstop can reveal submodel on local fitting.

In general, Table 4.17 has similar composition with Table 4.16, which GMboost1post to

GMboost8post are appropriate model fitting (global and local fits) and GMboost9post to

GMboost30post are inappropriate model fitting (only global fit). Transformation of rainfall



4.6. Gamboost Model Fitting for SST Data 81

Figure 4.15: The GMboost model fitting in global and local model fitting for the SST data with transformed
rainfall covariate and mstop= 19000.

can increase degrees of freedom (df ) and decrease AICs on model fitting. Transformation

of rainfall can improve model fitting and does not change pattern of rainfall in base-learner

for linear models. However, the transformation of rainfall changes pattern in base-learner

for smooth model. We can see as comparison this change in Figures 4.8 and 4.9 before

transformation and 4.14 and 4.15 after transformation.

Appropriate fitting of the data by the models depends on several factors, for example

the base-learner specification for covariates and control boosting. We have two main

observations from these experiments. First, the SST model fitting is not unique as different

linear combinations of base-learners give several similar curves that precise fittings for

the SST data. Second, the basis function with transformation of rainfall allows faster

smoothness in model fitting of the SST data as compared to without transformation. The

models display simple to complex trends for time covariates effects, mainly for Nrdays

covariate. Several patterns of covariates effects can be observed through different values of

control boosting parameters, i.e. the stopping iteration and regularization factor, and also
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by the tuning parameter with various values for base-learner specification.

Variability in the covariates effects can also be affected by their range (in scale unit) and

also by specifications of the hyper-parameters, such as the number and position of the knots,

the degree of P-spline basis that are used in GAM models, changes in relationship between

covariate and response and unit of the scales of the measurements for the covariates [21,73].

This indication can be seen from the previous results for appropriate model fitting of

the SST data. The model fitting is influenced by the variability of the time covariate in an

additive manner. In model fitting by GAM and gamboost models, we found that in the

peak seasons there was a stable pattern. However, the relative seasonal amplitudes (or

a range size of seasonal effect) change over time covariates (Nrdays and Doy) and control

boosting specification. We also noticed that the seasonal patterns were more prominent

than the annual patterns.

The solution of the SST model fitting by using 1231 observations with one long gap in

with transformation is also not a unique model. An illustration for model interpretability

is obtainable as shown in Figures B.1 and B.2, Appendix B. Model fitting by gamboost for

the SST data, although the model global fitting have similar values for FR and CV-risk,

does not guarantee appropriate model local fitting in visualization. Model interpretability

becomes essential in the determination of rejecting or accepting appropriate model fitting

for SST data.

The presence of a long gap can affect the fluctuation of the annual effect of the Nrdays

covariate. Gamboost models capture the SST data phenomena better than the simple linear

models and GAM in the model fitting. Further there are several aspects to observe seasonal

and annual variations by P-spline smoothing in modulation (i.e. cyclic or periodic trend),
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such as difference penalties [74]. In this case, the smoothness is tuned using degrees of

freedom and number of knots with difference penalties, we fixed this to 2 penalties in

Nrdays for all the covariates in order to observe seasonal effects. We can conclude, on the

basis of our investigations so far, that gamboost models with P-spline for SST data still

need to be improved mainly on local fitting. This can potentially be done by using LSS

function in GAMLSS and gamboostLSS models.

4.7 GAMLSS Models Fitting for SST Data

In this section, we applied GAMLSS models with P-splines basis to the same SST data. We

use this model to reveal location, scale, and shape (LSS) of time covariates of the SST data.

4.7.1 Results and Discussion

Initially we present GAMLSS models fitting without and with time covariates for SST

data, i.e. AICs 1580.013 and 697.222 respectively. Whereas for the same scenario and with

transformed rainfall in models fitting obtainable AICs are 1582.756 and 691.8568. It means

that the models fitting with transformation show drastically decrease in AIC with time

covariates and slightly increase without time covariates.

The results of GAMLSS without transformation are displayed in Table 4.19. The experi-

ments that were carried out show that this algorithm can handle large number of covariates.

However, it is more time-consuming and takes several days to run the program to evaluate

the smallest AIC of GAMLSS models with P-spline as base-learners. The SST data can be

fitted by GAMLSS models using P-spline basis function considering several aspects. First,
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we consider the model fitting based on degrees of freedom aspect. Second, we observe

it based on degrees of freedom and degrees composition of basis for covariates. Third,

we investigate the model fitting based on penalized spline (ps) interval, and fourth, we

consider the model fitting based on similarity with the second aspect added LSS (location,

scale, and shape), as can be seen in Table 4.18. Note that ps.intervals is the number of knots

in default 20 [16, 29–32].

In the first stage we used these aspects without transformation, and in the second stage

we applied model fitting with transformation covariate. Model fitting of the SST data by

GAMLSS models given in Table 4.18 shows that the GM120pre model gives the smallest

AIC with the degrees composition 5, 3, 3, 8, 8 for air temperature, relative humidity,

rainfall, Nrdays and Doy covariates, respectively. The GM121post model gives the smallest

AIC 423.1292 (or less than 6 points rather than the GM120pre model).

Table 4.18: AIC of GAMLSS models in P-spline with initial condition.
Model Temp Humd Rain Nrdays doy d f AIC Remarks
GM120pre 5 3 3 8 8 34.00002 429.0574 d f
GM121post 5 3 3 8 8 33.99996 423.1292 d f
GM122pre 2 2 2 8 8 47.22123 234.6547 d f and LSS
GM123post 2 2 2 8 8 47.21247 231.4993 d f and LSS

There are several aspects to observe the changes in the AIC using the GAMLSS models

with P-spline basis function for fitting model of the SST data. For pre-transformation,

GAMLSS0pre to GAMLSS3pre models have very low df and the high AIC values as shown

in Table 4.19. By P-spline basis function, GAMLSS4pre to GAMLSS7pre models show

an increased df and decreased AIC and this is significant in the models. Furthermore,

GAMLSS8pre to GAMLSS11pre models show that AIC based on degrees of freedom aspect

in fitting models increase df and lower AIC than previous treatments.
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We observed that model fitting by GAMLSS models for SST data provides improvement

in terms of the smallest AIC with similar degrees of freedom. Table 4.18 reported the results

of GAMLSS models applied for SST data fitting. By using the value of initial condition

of 8 as in Algorithm 4 for all covariates with corresponding df, we obtained the same

composition df values of covariates for without and with transformation, as shown in

GM120pre and GM121post models, i.e. 5, 3, 3, 8, 8 for Temp, Humd, Rain, Nrdays and Doy,

respectively. The models have the same df, i.e. 34. However, both models have different

AIC values. Transformation of rainfall covariate can decrease the AIC of the model fitting,

i.e. AIC of 429.0574 for without transformation becomes 423.1292 for with transformation.

In the model fitting based on df and LSS function, we get the same composition of df

values of covariates and relatively similar AIC values for without and with transformation.

The LSS function results in decreasing df for continuous covariates, but it does not change

the df for time covariates. Likewise, the LSS function can reduce AIC values, as shown in

GM122pre and GM123post models, if we compare both previous models in Table 4.20. The

trade-off in SST model fitting by this setup is based on the df and the LSS function which

can decrease the AIC and increase information by df, as in Table 4.20.

Figure C.1 in Appendix C using GAMLSS model is similar pattern as in Figure 4.5 by

GAM model fitting. The difference by the GAMLSS model fitting is that the AIC values can

reach a smaller AIC than by the GAM model. However, the hyper-parameter specification

in the GAMLSS15pre and GAMLSS16pre models is insufficient to obtain an appropriate

model fitting of the SST data.
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Similarly in GAMLSS model fitting without transformation, we investigated hyper-

parameter specification of the covariates to find an appropriate model fitting for the SST

data based on LSS function by using GAMLSS model in transformation of rainfall as

captured in Table 4.20. For GAMLSS0post to GAMLSS3post models have very low df

and high AIC values as seen in Table 4.20. By P-spline basis function, GAMLSS4post to

GAMLSS7post models show increased df and decreased AIC, this change is approximately

more than 50%.

Furthermore, GAMLSS8post to GAMLSS11post models show that AIC based on de-

grees of freedom aspect in fitting models give an increased df and lower AIC than previous

treatments. In general, several aspects need to be considered in order to observe the changes

in the AIC from the GAMLSS models by P-spline basis function, such as AIC based on df

aspect, AIC based on df and degree of P-spline basis function, and AIC is based on similar

values to the AIC based on df with added LSS parameters, i.e. µ, σ, ν, and τ parameters for

LSS aspects. It should also be noted that LSS is exploring the distributional term of GAM

models. It can be seen in detail in the Tables 4.19 to 4.20.

Here, we conclude that model fitting using P-spline by setup GAMLSS models for the

SST data significantly decreases AIC if the LSS function is incorporated and time covariate

is used with varying degrees of freedom. However, in order to get an appropriate model

interpretability of the Nrdays and the Doy it takes time in composition of hyper-parameters.

The singularity of GAMLSS models is caused by rainfall covariate with many zero values

of the SST dataset. An alternative to reduce the singularity issue is by transformation of

rainfall, whereas by using the gradient boosting technique the computational time will be

reduced.
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4.8 GamboostLSS Models Fitting for SST Data

In this section, we used GaussianLSS families distribution to fit SST data by using GAMLSS

models with a boosting technique. The boosting technique is used to optimize the general

risk function. Base-learners specifications are used as a framework to select an appropriate

model.

4.8.1 Results and Discussion

We observed from our results that the degrees of freedom (df ), knots, and mstop of hyper-

parameters specification in base-learners for the time covariates have improved the model

fitting. The result of gamboostLSS with various specification for base-learners and for

control boosting used without and with transformation are given in tables and figures.

4.8.1.1 Effect of the Degrees of Freedom on GamboostLSS

One of the important parameters in the model is the degrees of freedom df. It contributes

to the smoothing of model fitting. To get appropriate base-learners we checked for several

values of the df. We started from the small value for df for each base-learner to avoid

misfitting as suggested by Hofner [75], mainly for continuous covariates. Hereinafter, we

consider values of df of the Nrdays covariate from 2.01 to 3.05, difference of penalty = 2 and

knots = 40. The control boosting mstop is 1000 and the size length factor νsl f is 0.1. The values

of df give more effects on the Nrdays than the Doy covariate as can be seen from Figure

4.16. The increasing df in model fitting causes more fluctuation in the Nrdays covariate

(as annual effects), however, the pattern of the Doy covariate is stable within the µ and σ
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paramaters.

Figure 4.16: Illustrating different degrees of freedom and fixed mstop= 1000 with respect to time covariates
in the SST model fitting using gamboostLSS models.

We observed that a larger value of degrees of freedom df tends to an inappropriate

model fitting, as seen in Figure 4.16 for degrees of freedom df= 3.01 and 3.05 which shows

fluctuation after the gap of the Nrdays covariate. The effect of changing the value of df

shows that the model fitting without transformation is more appropriate for df= 2.01-2.05

with 15 submodels compared to df= 3.01 and 3.05 with 14 submodels. The results of the

models show similar pattern and nonsmooth global fitting, however, we do not present it.
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4.8.1.2 Effect of the Stopping Iteration on GamboostLSS models

Selection of an appropriate number of boosting iteration, mstop, is important to avoid misfit-

ting and computational time. We start in model fitting by using the stopping iteration: 500

to 1500 with step 500. Fixed parameters are given for smooth function of the Nrdays covari-

ate, where the number of knots is 30, and the degree of freedom df is 2.01 and difference of

penalty is 2.

Figure 4.17: Local model fitting for time covariates by using different mstop= 500-1500 shows similar patterns
in µ and σ parameters by using gamboostLSS models.

The effect of changing the value of mstop (500 to 1500) is more visible on Nrdays covariate

in local model fitting as captured in Figure 4.17. It can be seen that there is a significant

change in the pattern before and after the gap in local model fitting. At the same time, Doy

covariate is more stable in µ and σ parameters. However, the effect of the mstop for global
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model fitting has a relatively similar pattern. Further we consider 3000-5000 values of

mstop for gamboostLSS models, which results are depicted in Figure D.1, Appendix D. The

graphs show that there is a slight change in the pattern of the Nrdays at µ and σ parameters.

However, there are similar patterns for Doy covariate for all mstop.

Furthermore, we observed range values of mstop= 2000-5000 and νsl f = 0.01 for gam-

boostLSS models. The results are described in Figure D.2, Appendix D. The graphs show

that there is a slight change in the pattern of the Nrdays at the µ and σ parameters. This

shows there are stable patterns for Doy covariate for all the four values of the mstop.

If we compare both groups of the stopping iteration, then model fitting by using mstop=

2000-3000 is better than mstop= 4000-5000 in the local model fitting. We can see that the

large mstop values causes a slight change in the annual effects and a similar change in the

seasonal effects. For mstop= 4000-5000 it gives 15 submodels larger than mstop= 2000-3000,

i.e. 11 and 12 submodels respectively.

4.8.1.3 Effect of the Knots on GamboostLSS Models

We consider 40 to 60 knots with 10 steps in model fitting by using gamboostLSS models. The

increasing knots gradually changes the patterns of the time covariates, especially for annual

effects, whereas the seasonal effects show a stable pattern within the µ and σ parameters.

Time covariates effects of gamboostLSS models show similar patterns for location (µ) of

annual effects and for scale (σ) of seasonal effects. In addition, annual effects before and

after gap each increase knots show similar trends. Effects of the different number of knots

for local model fitting does not change the seasonal pattern and model fitting pattern. The

knots effect with respect to the model fit has a similar pattern due to dominance of stability
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of the seasonal patterns in the model fitting.

Figure 4.18: Time covariates effects of gamboostLSS models show similar patterns for location and for scale
for annual and seasonal effects. For annual effects before and after the gap, it shows similar trends for each
step of knots.

4.8.1.4 Effect of the df GamboostLSS with Transformation

Similarly, without transformation we consider the degrees of freedom df of the Nrdays

covariate from 2.01 to 3.5. The control boosting that used is stopping iteration (mstop= 1000)

and the size length factor (νsl f = 0.1). Increasing degrees of freedom df in the model fitting

causes the increase of fluctuation on the Nrdays covariate (as annual effects) and it does not

change patterns of the Doy covariate (as seasonal effects), as seen in Figure D.3, Appendix

D. Transformation of rainfall in model fitting does not change patterns of time covariates

as in without transformation as captured in Figure 4.19.
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Figure 4.19: Illustration of local model fitting with different degrees of freedom for time covariates of the SST
data fitting with transformation of rainfall covariate.

This figure shows appropriate local fitting of time covariates by using gamboostLSS

models with considering df, mstop and transformation. The same pattern of the Doy covariate

in the µ and σ parameters. The similar pattern of the Nrdays in the σ parameter, whereas

a slightly changed pattern after the gap in the µ parameter. Different df in model fitting

shows changed after the gap of the Nrdays covariate. The increasing df (over specific

values) can affect fluctuation of the Nrdays mainly after the gap.

Illustration of D.3 in Appendix D shows inappropriate gamboostLSS model on local

fitting mainly at the Nrdays covariate. The increasing of df from 2.5 to 3.5 with fixed mstop=

1000 displays fluctuation at the Nrdays after the gap in the µ parameter.

We investigated SST model fitting by using different degrees of freedom with transfor-
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mation. The effect of changing the value of df shows that the model fitting with trans-

formation is more appropriate on df = 2.01-2.1 (Figure 4.19) compared to df = 2.5 to 3.5

in Figure D.3, Appendix D). However, the results of the global fitting is nonsmooth, we

do not present in graphs. The increasing of df in model fitting also causes increasing the

number of submodels if we compared to without transformation.

Generally, SST model fitting with transformation gives a similar pattern such model

fitting without transformation. In other words, transformation of rainfall does not affect

the SST model fitting. The transformation of rainfall has an impact on the same covariate

of marginal model fitting (i.e. the submodel rainfall itself), but it does not on global model

fitting.

4.8.1.5 Effect of the mstop on GamboostLSS with Transformation

In the transformation, we investigated model fitting by using the stopping iteration similar

to without transformation by the same model. The changing parameter is focused on the

Nrdays covariate with number of the knots= 40, df= 2.01 and difference of penalty= 2.

The stopping iteration gives impact for marginal model fitting, mainly for the Nrdays

covariate, which is slightly changed after the gap. Similarities on the annual effects occur

each 500 increases of the mstop. For Doy, the covariate is more stable in µ and σ parameters.

In addition, increasing the mstop values does not influence fluctuation of seasonal effects,

but has a slight effect on the fluctuation of annual effects in the model fitting as seen in

Figure 4.20.

Figure 4.20 shows the effect of increasing mstop for model fitting which shows a similar

pattern in µ and σ parameters. We can see a slight change for Nrdays covariate with knots=



4.8. GamboostLSS Models Fitting for SST Data 96

40 and mstop= 1500 after the gap in the µ parameter.

Figure 4.20: Local model fitting for time covariates with different mstop = 500-1500 and transformation of
rainfall gives similar patterns.

4.8.1.6 Effect of the Knots on GamboostLSS with Transformation

In transformation of rainfall, we consider from 40 to 60 knots with 10 steps in model

fitting by using the same GMb5 gamboostLSS model. In general the effect of the knots in

the model fitting for without transformation has similar patterns with transformation of

rainfall. These similar patterns are in µ parameter from 40 to 50 knots, but at the 60 knots

there are differences of patterns in µ and σ parameters as seen in Figure D.4, Appendix D.

Overall, the effect of the number of the knots for local model fitting is unchanged in the

patterns of seasonal effects in µ and σ parameters. The knots effect with respect to model

fitting has a similar pattern due to dominance of stability of seasonal effects in model fitting.
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Hence, the different knots in the Nrdays has not impacted significantly on the model fitting

for the SST data.

4.8.1.7 Effect of the df at the Doy covariate on GamboostLSS with Transformation

We investigated the df parameter in the Doy covariate is df= 1.1 to 1.5. We fixed parameters

in the Nrdays covariate are df= 2.01, difference= 2, knots= 40, and in the control boosting

parameters: mstop= 1000 and νsl f = 0.1. The result of this particular investigation is depicted

in Figure D.5, Appendix D.

The figure provides various patterns of df of the time covariates, regarding fixed mstop=

1000. Similar pattern of annual effects at Nrdays covariate inµ and σ, exclude atµparameter

after the gap with df is 1.2 to 1.5 shows inappropriate local fitting. In general the same

pattern displayed for seasonal effects in µ and σ parameters.

4.8.1.8 Effect of the mstop with respect to the Doy covariate on GamboostLSS with Trans-

formation

We observed the mstop parameter on gamboostLSS model with transformation. We fixed

parameters in the Nrdays covariate: df= 2.01, difference= 2, knots= 40, and in the control

boosting parameters: mstop= 500, 1000, and 1500; νsl f = 0.1. The result of this particular

observation is displayed in Figure 4.21.

Figure 4.21 describes analog results by using the mstop= 500-1000 with the same spec-

ification. Whereas mstop =1500 shows changed after the gap of the Nrdays covariate. The

increasing mstop (over specific values) can affect fluctuation of the Nrdays mainly after the

gap. We recommend for the Doy covariate using df= 1.1 and mstop until it reaches 1000 in
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gamboostLSS model fitting. Therefore, we used the df= 1.1 at the Doy covariate for next

investigation of the SST data fitting with considering mstop values. The mstop can be used as

threshold point to determine whether model fitting in the gap is appropriate or not.

Figure 4.21: Local fitting of time covariates with different d f and mstop = 500-1500 using gamboostLSS
model for the SST data.

Transformation of rainfall covariate can change the type of effect for each covariate on

corresponding distribution parameters. We observed from the results that transformation

decreases the AIC, but the transformation does not necessarily improve the model fitting.

The SST model fitting by gamboostLSS models depends on the optimal choice of the

parameters on base-learners and control boosting.
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4.9 Summary

In this chapter, for linear model fitting we proposed two models M0 and M1 to investigate

the effects of time covariates in the SST data modelling. Two time covariates seasonal and

annual along with three continuous covariates are included in the M1 model and the M0

model consists of three continuous covariates. We observed that the time covariates have

large influence in the model fitting of SST data. Meanwhile, transformation of rainfall in

the M0 and M1 models improved the fit of both models. Our experimental comparisons of

M0 and M1 model reveal that an increase in R-squared, F-value and a reduction in residuals

can be achieved by inclusion of the time covariates in the model.

The preliminary statistical evidences of the linear models indicate that the proposed M1

model fitting for SST data need further improvement. A more flexible structured model is

required to capture the complexity of SST data.

Further we have proposed gamboostLSS models for SST data fitting by incorporating

the time covariates in the model. We compared our proposed method with GAM, gamboost

and GAMLSS models for SST data fitting. Boosting technique is implemented in gamboost

and gamboostLSS models that leads to an increase in the degree of basis composition,

minimizes computational time, and improve the fitting process of the SST data. The

AIC measure is used for selection of hyper-parameters in the first three models. For the

gamboostLSS models, CV-risk is used to choose optimal values for the parameter mstop.

The wiggliness in the gap is potentially changed based on both of the mentioned factors.

Our experimental results show that a good trade-off between hyper-parameters and

model fitting is essential in model selection for SST data. The experimental comparisons
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reveal that GAM models provide appropriate model fitting with a comparatively smaller

number of hyper-parameters (only three hyper-parameters), however, these models are

expensive in terms of computational time. This issue is dealt with by gamboost models

where the boosting technique is applied to GAM models. Although, the gamboost models

are faster than GAM models, however, the limitation of these models is that sometimes the

time covariates are not covered by the models. The results on GAMLSS models reveal that

the smaller AIC can be achieved by these models when incorporated with time covariates.

However, it takes considerable computational time.

The experimental results on our proposed gamboostLSS models demonstrate that these

models are more flexible in terms of smoothing function as compared to other three models.

These models are also comparatively faster than the other models. In addition, model fitting

by gamboostLSS can handle long gap observations, which is very common in the SST

dataset. By implementing gamboostLSS models to the SST data, a good trade-off between

computational time and CV-risk can be achieved. Moreover, we carried out experiments

on transformed data. The transformation is done on the rainfall. The results of the models

reveal that the transformation of rainfall leads to a reduction in final risk.



Chapter 5

GamboostLSS in Autocorrelation Models

and Applications for Different Buoys

5.1 Introduction

The SST data derived from the buoys has gaps, sparsity, and irregular patterns. The auto-

correlation or serial correlation errors in it can affect the response over time. It is collected

from different locations and therefore has different variability. Additionally it possesses

two types of autocorrelation, i.e. spatial (or spatio-temporal) and time autocorrelation. The

earlier can be from the sources of region in latitude and longitude as a smooth function,

interaction terms, and longitude shift. The latter can be derived from periodical time units,

such as daily, monthly, seasonal, and annual basis.

In this chapter, we propose the filtering of covariates by generalizing the differencing

approach in gamboost and gamboostLSS models to deal with the issue of time autocor-

relation in the SST data. The proposed model fitting is dependent on the specification of

101
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base-learners, boosting-control, and family based distribution of the SST data. Neverthe-

less, to approximate hyper-parameter values of the model, controlled fitting processes are

required. These include appropriate model fitting and optimal number of submodels.

The chapter is further organised in two part as follows, Firstly, we presented gamboost-

LSS models in autocorrelation for one buoy, and secondly, application for gamboostLSS-

AR(1) models for different buoys.

In first part, section 5.2 autocorrelation is discussed. In the subsequent section 5.3

gamboostLSS using generalized differencing for AR(1) model is presented. We used ex-

perimental setup with gamboost-AR(1) and gamboostLSS-AR(1) models as in sections 2.3

and 2.3 Chapter 2. In section 5.4 results and discussion are given that have been conducted

previously.

In second part, we presented application of gamboostLSS and gamboostLSS-AR(1)

models 5.5. Section 5.6 we provide results and discussion for different buoys. In section

5.7 we presented marginal prediction interval of gamboostLSS models in autocorrelation.

Finally, in section 5.8 the summary of the chapter is reported.

5.2 Autocorrelation

Autocorrelation is a pattern of a sequential relationship between the same types of objects

with a lag. For example, autocorrelation between errors εt and εt−k, response yt and yt−k

and covariate xt and xt−k at k lag, respectively. The term autocorrelation is used when

there is a serial correlation of the residuals in a period as well. In this chapter, we focus on

equation 3.2 where we assume that εt’s have a zero-mean and are autocorrelated. Generally,
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autocorrelation occurs due to the heteroscedasticity or serially correlated problems when

there are possible violations of assumptions,

(a). E[εtε
′

t|X] = σ2In (b). E[εt, εt−1] = 0,

Autocorrelation can also be caused by other factors, such as missing important covariates,

the misspecification of the model or disturbance terms, systematic errors in measurement

of data, spatial ordering, and event inertia. In the SST data the measurements are based on

daily observations and therefore autocorrelation arises in the time factor. Several techniques

are used to investigate the autocorrelation in the model. Considering autocorrelation of

the residual is one way of diagnostic checking and can lead to an effective model fitting.

Recall that in Chapter 2, equation 4.1, where E(ε) = 0 and Var(ε) = Vσ2, and Vnxn is a

matrix of autocorrelations in the errors, then

V−1/2Y = V−1/2Xβ + V−1/2ε,

and suppose Y∗ = Zβ + δ, where Y∗ = V−1/2Y, Z = V−1/2X, and δ = V−1/2ε, then

β̂ = (Z′Z)−1Z′Y∗ = (X′V−1X)−1X′V−1Y, (5.1)

where V has the particular correlation errors vi j = corr(εi, ε j) = ρ|i− j|.

Furthermore, from equation 3.7 in Chapter 3 the P-spline with autocorrelation errors is:

PLS(β) = (u − Bβ)TV−1(u − Bβ) + λW(β,m) (5.2)

where the correlation matrix V = [vi j] as suggested in [76].
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5.3 GamboostLSS using Generalized Differencing for AR(1)

We suggested that a model auto regressive (AR(1)), where generalizing differencing ap-

proach is used to investigate autocorrelation in the data by incorporating an autoregressive

process. Referring to equation 3.2, we use the AR(1) model in a formulation in our experi-

ments which is,

εt = ρεt−1 + ut, t = 1, 2, ...,n (5.3)

If we assume that the ut’s are uncorrelated random errors with zero mean and constant

variances, then,

E(ut) = 0,Var(ut) = σ2
u and Cov(ut,us) = 0, t , s, (5.4)

and let us assume that εt ∼ N(0, σ2Λ), where Λ is a correlation matrix defined through an

AR(1) with autocorrelation parameter ρ can be implemented in the SST data. Lillard and

Willis [77] proposed a model where the error structure is considered, and it generalizes

differencing approach which can applied to reduce the error autocorrelation. In equation

5.3, if
∣∣∣ρ∣∣∣ < 1, then εt is stable in AR(1) model [78]. When ρ = 0, then it is called the

white noise error [78–81]. If ρ tends to 1 then AR(1) model becomes a random walk RW(1)

model [42].

AR(1) is used to deal with low-order autocorrelation. The ρ in the model is a robust

estimator because it represents the sequential (serial correlation) effect of εt which depends

on εt−1. Subsequently, εt−2 control the previous effect of εt−1, [79, 82]. However, in seasonal

or quarterly autocorrelation and spatial autocorrelation effects, this approach cannot be

applied. In this case each pattern of autocorrelation is not easily adjusted and it is more

complex to combine both effects. Furthermore, if the monthly SST data is considered, then

the autocorrelation of the residual lag should be checked at lag 12. When autocorrelation
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is not significant at lag 12, then it can be assumed that the errors are independent [48].

Specifically, the autocorrelation coefficient of ρl in discrete types of covariate x at l =

0,±1,±2,±3, ... is the covariance among pairs of covariates at time lags (or a distance in

spatial lags) l that is normalized by discretizing the continuous process,

ρl =
π(||l||)
σ2

x
, l = 0,±1,±2,±3, ..., (5.5)

whereas the autocorrelation ρl in continuous types of covariate x at l is,

ρl =
π(l)
σx(n)2 , (5.6)

whereπ(l) = cov(xn, xn+l) = E[(xn−µ)(xn+l−µ)], and varianceσx(n)2 = E[(x(n)−µ(n)2], [83,84].

In general, to calculate the lth lag sample autocorrelation errors ρ̂, it can be formulated as

ρ̂l =
cov(εt, εt−l)

σ2
ε

(5.7)

In seasonal data, using the model AR(1) the autocorrelation is εt = ρiεt−3i+wt, for i = 1, 2, 3, 4

per season, where wt refers 5.4. Thus ρ for all the seasons can be formulated as,

εt = (ρ1εt−3 + ρ2εt−6 + ρ3εt−9 + ρ4εt−12) + wt.

Afterwards, to calculate ρ̂ in equation 5.7 and then to transform a covariate x and response

y in x∗ = xt − ρ̂xt−1 and y∗ = yt − ρ̂yt−1, we use relationship formula between covariates and

response as follows y∗ = β0 + β1x∗.
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Consider an additive model y = f + ε where,

Yi = β0 +

p∑
j=1

f j(Xi j) + εi, i = 1, ...,n, (5.8)

then errors εt and εt−1 are: εt = yt − ft and εt−1 = yt−1 − ft−1. We can say that equation 5.8 is

a static additive model.

Boyce et al. and Anderson [84, 85] suggested that if the response is an observation

over time, i.e. periodic process, then the harmonic regression oscillation approach can be

utilised in model fitting. Furthermore, we start with the 1231 daily observations in the SST

data. To apply the data we use generalized differencing for AR(1) model is translated as:

Yt = β0 + β1X1t + ... + β3tX3t + γlIlt + ηmDmt + ρεt−1 + ut, (5.9)

ρYt−1 = ρβ0 + ρβ1X1t−1 + ... + ρβ3tX3t−1 + ργlIlt + ρηmDmt + ρ2εt−2 + ρut−1, (5.10)

Yt − ρYt−1 = β0(1 − ρ) + β1(X1t − ρX1t−1) + ... + β3t(X3t − ρX3t−1), (5.11)

+ γl(Ilt − ρIlt−1) + ηm(Dmt − ρDmt−1) + ut, (5.12)

where,

Yt and Yt−1 are the SST at t and t − 1 times (in day unit),

X1t and X1t−1 are air temperature; X2t and X2t−1 are relative humidity,

X3t and X3t−1 are rainfall, Ilt and Ilt−1 are Nrdays; Dmt and Dmt−1 are the Doy covariates,

and ρεt−1 − ρ2εt−2 + ut − ρut−1 = εt − ρεt−1, given ut = εt − ρεt−1 and

εt and εt−1 are errors at t and t− 1 time, respectively. To simplify the model above we

get,
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Y∗t = β∗0 + β1X∗1t + ... + β3X∗3t + γlI∗lt + ηmD∗mt + ut

where Y∗t = Yt − ρYt−1; β∗0 = β0(1 − ρ); X∗1t = X1t − ρX1t−1; ... ; X∗3t = X3t − ρX3t−1;

I∗l = Ilt − ρIlt−1; D∗m = Dmt − ρDmt−1; and ut = εt − ρεt−1. By using differencing approach,

the additive model (as in Chapter 3, equation 3.3) is:

Y∗t = β∗0 +

p∑
j=1

fj(X∗jt) + f (γ∗l ) + f (η∗m) + ut. (5.13)

Further, we suggest that equation 5.13 is a dynamic additive model with the AR(1) model

errors. Another way to express additive models in autocorrelation AR(1) errors of linear

models is,

Yt = (βTxt + γIt + ηDt) + ρyt−1 − ρ(βTxt−1 + γIt−1 + ηDt−1) + ut

Additive models in autocorrelation AR(1) errors are translated as,

Yt = (
p∑

j=1

f j(xt) + f (It) + f (Dt)) + f (yt−1) − (
p∑

j=1

f (xt−1) + f (It−1) + f (Dt−1)) + ut

There are two ways to approximate ρ in equation 5.9. First, if ρ is known then the esti-

mated Ordinary Least Squares (OLS) regression can be used to obtain a BLUE (Best Linear

Unbiased Estimator). This procedure can be implemented to the base-learners approach,

such as linear (bols) and smooth (bbs) functions in the gamboost and gamboostLSS models.

Second, if ρ is unknown then it can be estimated by samples of n data observations.
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5.4 Results and Discussion of Gamboost and GamboostLSS

in Autocorrelation

The results of gamboostLSS in autocorrelation models are displayed as follows: in subsec-

tion 5.4.1 provides tuning parameters for autocorrelation errors AR(1) model. In subsec-

tion 5.4.2 discussed autocorrelation of the gamboost models. Subsection 5.4.3 gamboost-

AR(1) models with transformation are given. In subsection 5.4.4 autocorrelation of the

gamboostLSS-AR(1) models are reported. In subsection 5.4.5 gamboostLSS-AR(1) models

with transformation are discussed in detail. Finally, restriction errors of autocorrelation

AR(1) models are reported 5.4.6.

5.4.1 Tuning Parameters for Autocorrelation Errors AR(1)

In this section, we have applied linear models to observe autocorrelation in the SST data

as shown in Figure 5.1.

(a) (b)
Figure 5.1: The autocorrelation pattern in the SST data using the M1 linear model.

Figure 5.1 displays the autocorrelation as a mixture of waves between sinusoidal and ex-

ponential functions, where the damped sinusoidal and exponential decaying (left), which

shows autocorrelation errors as an autoregressive model. The model is showing the peri-
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odic terms in the SST data, where one period shows an upward trend and the other reveals

a downward trend. We can see from the Figures that there are two patterns with step 1

a long downward periods at the lag around 100-300 and 500-700. The graph shows the

autocorrelation function having degree 1 at the time lag 0 and tends to 0 at the time lag over

1200. We also checked this pattern for local observations of 100 samples as a partial ACF.

Figure 5.1 (right) displays the partial autocorrelation with a significant peak at lag 1 and

the wiggly trend after lag 1 around 0. This means that all the higher-order autocorrelations

are effectively explained by the AR(1).

We applied M1 (detail is given in Chapter 2) model to find the value for the coefficient

of autocorrelation, i.e. ρ̂ =0.8566652, in equation 5.7. In Chapter 4, we have observed that

the time covariates have a large influence in the additive model fitting for the SST data. It is

important to know the dynamics of the errors in the model and also to detect specifications

of the covariates in the model fitting process. The aim is to investigate the effect of the

covariates on the stability of the model for a large data set. Minimizing the autocorrelation

using generalizing differencing method can lead to an appropriate model.

5.4.2 Autocorrelation of the Gamboost Models

Assessment of the data for autocorrelation is necessary before model fitting. The mean

residuals for daily observation of the SST data is described as first-order serial correlation

at lag 1. In this case, the Auto-Correlation Function (ACF) is described in Figure 5.1. We

observe a high autocorelation with ρ = 0.85666 in the data. To mitigate the effect of this

high autocorrelation we apply the differencing method to the data. Then we implement

gamboost models for the data by considering the autocorrelation effect in the model fitting
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as captured in Table 5.1. The results are depicted in Table 5.2.

Table 5.1: Gamboost-AR(1) models specification using P-spline for with and without transformation.

Model d fNrdays knotsNrdays d fDoy mstop

GMboost1-AR(1) 2.5 100 1.5 1000
GMboost2-AR(1) 2.5 100 1.5 1500
GMboost3-AR(1) 2.5 100 1.5 2000
GMboost4-AR(1) 2.5 120 1.5 1000
GMboost5-AR(1) 3.5 120 1.5 1000
GMboost6-AR(1) 3.5 120 1.5 1500
GMboost7-AR(1) 3.5 140 1.5 1000
GMboost8-AR(1) 3.5 140 1.5 1500

Table 5.2: AIC of gamboost-AR(1) models using P-spline without transformed rainfall.

Model d fCorrected AICCorrected d fgMDL AICgMDL Final Risk
GMboost1pre-AR(1) 8.42453 -1.265255 8.42453 -2.177940 125.7202
GMboost2pre-AR(1) 9.79728 -1.283225 9.71272 -2.183098 123.2010
GMboost3pre-AR(1) 10.75285 -1.294201 10.74375 -2.184230 121.6633
GMboost4pre-AR(1) 8.49151 -1.265940 8.49151 -2.177968 125.6202
GMboost5pre-AR(1) 9.48281 -1.274146 9.48281 -2.176505 124.3587
GMboost6pre-AR(1) 10.8415 -1.299299 10.82986 -2.188418 121.0269
GMboost7pre-AR(1) 9.50973 -1.274359 9.49769 -2.176519 124.3574
GMboost8pre-AR(1) 10.85447 -1.299759 10.74683 -2.189285 120.9687

Table 5.2 shows that GMboost1pre-AR(1) to GMboost8pre-AR(1) models have slightly

similar df, AIC, gMDL and final risk values. It means that performance of GMboost1pre-

AR(1) to GMboost8pre-AR(1) models fitting of the SST data have the similar pattern.

As interpretability we can see the models as displayed in Figures E.1 and E.2, Appendix

E. The figures show similar patterns of global fitting using gamboost-AR(1) models of

the SST data. These results can be compared with the same specification of gamboost

models in Table 4.16. It can be seen from the figure that gamboost-AR(1) model gives

more appropriate global fitting than gamboost models. However, in local fitting using the

gamboost-AR(1) models produce less number of submodels than in gamboost models. For

example, the GMb1 to GMb8 of gamboost model gives more submodels than GMb1-AR(1)

to GMb8-AR(2) of gamboost-AR(1) models.
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There are effects when removing autocorrelation in the model fitting by using gamboost

models as we can see in Figure 5.2. Gamboost-AR(1) model fitting has more flexibility than

gamboost models, where we can use the low values of df and knots specification in the

Nrdays covariate as representing annual effects. Likewise, boosting iteration of gamboost-

AR(1) model fitting can reach a high value of the stopping iteration in reducing empirical

risk so that it makes it easy to obtain an appropriate model fitting with many solutions as

seen in Figure 5.3.

(a) (b)
Figure 5.2: The SST data fitting by GMboost3-AR(1) model (left) and submodels (right) with mstop=2000.

Figure 5.2 displays global fitting by GMboost3-AR(1) model with the same specification

as in the GMboost3 model (in Chapter 4). Removing autocorrelation in the GMboost3-

AR(1) model gives flexibility to improve global model fitting, as can be seen in Figures 5.2

(a) and 4.9 (a) as a comparison on global fitting. In addition, GMboost3 model without

autocorrelation produces nine submodels with two smooth submodels and seven linear

submodels as seen in Figure 4.9 (b), whereas GMboost3-AR(1) model gives nine submodels

with four smooth submodels and five linear submodels as seen in Figure 5.2 (b).
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Further we also tested the model by considering flexible specification for stopping

iteration (mstop), as displayed in Figures 5.3 and 5.4.

Figure 5.3: The GMboost-AR(1) model fitting in global and local model of the SST data (mstop= 12000).

Figure 5.4: The GMboost-AR(1) model fitting in global and local model of the SST data (mstop= 35000).

The higher mstop= 12000 produces a precise global model fitting (left), whereas the local

model fitting (right) leads to appropriate fitting. The rainfall covariate from smooth curve

in the GMboost3-AR(1) model to polynomial curve in the GMboost-AR(1) model. The
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higher mstop gives a precise global model fitting (left), while the local model fitting (right)

leads to inappropriate fitting as displayed in Figure 5.4. There is a fluctuation in the pattern

of annual effects, mainly after the gap. In local fitting, we can see similar patterns between

the low mstop and high mstop where the linear effect increases for humidity and rainfall. A

polynomial curve in the patterns for temperature and rainfall is shown by the figure.

The finding reveals that pattern of the Doy covariate in gamboost-AR(1) is more stable

than GAM and gamboost models fitting of the SST data. Furthermore, we observe patterns

of time covariate on local model fitting in the µ parameter.

Figure 5.5: The GMboost1-AR(1) to GMboost8-AR(1) models in local fitting of the SST data, to see in detail
refer to Tables 5.1 and 5.2.
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Figure 5.5 shows appropriate local fitting on time covariates of the GMboost1-AR(1) to

GMboost8-AR(1) models as in Table 5.2. However, GMb6-AR(1) and GMb7-AR(1) models

show a slight change in the pattern of the Nrdays covariate after the gap. The slight change

due to effect of the mstop= 1500 in the GMb6-AR(1) model and effect of knots= 140 in the

GMb7-AR(1) model, in detail see Table 5.1. Therefore, trade-off between mstop and knots is

important role to obtain appropriate local and global models fitting.

We presented gamboost-AR(1) models fitting without transformation, where the models

have inappropriate in local fitting but it has appropriate in global fitting.

Figure 5.6: The GMboost9-AR(1) to GMboost30-AR(1) models in local model fitting for the SST data.
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Figure 5.6 shows inappropriate local fitting on time covariates of gamboost-AR(1) mod-

els. The inappropriate local fitting on time covariates can be caused by several factors

such as; a large value of the df, large number of the knots, and large values of the stopping

iteration. Effects of these factors fluctuate on the Nrdays covariate before and after the gap

and in smooth term of the Doy covariate. However, if the local fitting is not appropriate,

then the global fitting is not always automatically inappropriate as well, as captured in

Figure E.3, Appendix E.

5.4.3 Gamboost-AR(1) Models with Transformation

The results of the gamboost-AR(1) models with transformation of rainfall are reported in

Table 5.3. We applied the models setup in a total of 30 models (GMboost9post-AR(1) to

GMboost30post-AR(1) are not given in the table).

Table 5.3: AIC of gamboost-AR(1) models using P-spline with transformed rainfall.

Model d fCorrected AICCorrected d fgMDL AICgMDL Final Risk
GMboost1post-AR(1) 10.90136 -1.266204 10.82829 -2.155453 125.0868
GMboost2post-AR(1) 13.02548 -1.283337 11.33569 -2.155538 122.5287
GMboost3post-AR(1) 14.82441 -1.293389 11.33569 -2.155538 120.9398
GMboost4post-AR(1) 10.96797 -1.266898 10.88812 -2.155425 124.9863
GMboost5post-AR(1) 11.68876 -1.275210 11.65217 -2.156604 123.7954
GMboost6post-AR(1) 13.24488 -1.300302 13.24488 -2.166611 120.4235
GMboost7post-AR(1) 11.69417 -1.275476 11.69417 -2.156674 123.7694
GMboost8post-AR(1) 13.22743 -1.300812 13.22743 -2.167279 120.3656

Table 5.3 shows that GMboost1post-AR(1) to GMboost8post-AR(1) models have slightly

similar df, AIC, gMDL and final risk values. We select these models based on appropriate

model fit in time-covariates.
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Figure 5.7: The time-covariates in local fitting for the SST data by gamboost-AR(1) models with transfor-
mation of rainfall, to see in detail refer to Tables 5.1 and 5.3.

Figure 5.7 shows appropriate local fitting on the Nrdays and the Doy covariates of the

GMboost1post-AR(1) to GMboost8post-AR(1) models with transformed rainfall covariate

as shown in Table 5.3. The models have a similar pattern with the gamboost-AR(1) models

without transformation as displayed in Figure 5.5. It means that time covariates do not

change by with or without transformation of rainfall in the gamboost-AR(1) models.

Figure E.8 in Appendix E shows that GMboost1-AR(1) to GMboost4-AR(1) models with

transformation of rainfall have similar pattern on global fitting of the SST data. Different
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specification of the hyper-parameters on the Nrdays and Doy covariates does not change

pattern of the global fitting, in detail specification see Table 5.1.

We can see patterns of global fitting by using gamboost-AR(1) models without trans-

formation as presented in Figures E.1 and E.2, Appendix E. The patterns are similar with

gamboost-AR(1) models with transformation as in Figure E.8, Appendix E. It means that

transformation of rainfall does not change appropriate global fitting by using gamboost-

AR(1) models.

Figure 5.8: The GMboost9-AR(1) to GMboost30-AR(1) models with transformation in local model fitting
for the SST data.
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Figure 5.8 shows inappropriate local fitting on time covariates of gamboost-AR(1) mod-

els with transformation. These figures have similar pattern as fitting by using gamboost-

AR(1) models without transformation as in Figure 5.6. Nevertheless, inappropriate local

fitting is not always followed by gobal model fitting. We presented gamboost-AR(1) mod-

els fitting with transformation, where the models have inappropriate in local fitting but it

has appropriate in global fitting.

For example, we can see that GMboost3-AR(1) model without transformation has sim-

ilar pattern on global fitting. However, the model without transformation on local fitting

produces 5 linear submodels and 4 smooth submodels as in Figure 5.2. For the same model

with transformation on local fitting produces 6 linear submodels and 3 smooth submodels

as depicted in Figure 5.2. We can compare the presence of one submodel in GMboost3-

AR(1) model fitting as transformation effect, where the rainfall is a polynomial curve in

local fitting as captured in Figure 5.9 but it is as smooth term as displayed in Figure 5.2.

(a) (b)
Figure 5.9: The SST data fitting by GMboost3-AR(1) model with transformation (left) and submodels (right)
mstop = 2000.
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(a) (b)
Figure 5.10: The SST data fitting by GMboost-AR(1) model with transformation (left) and submodels (right)
mstop = 12000.

(a) (b)
Figure 5.11: The SST data fitting by GMboost-AR(1) model with transformation (left) and submodels (right)
mstop = 35000.

The increase of mstop from 2000 to 12000 and from 1200 to 35000 is not sufficient to reveal

linearity pattern of the temperature and humidity covariates as captured in Figures 5.9,
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5.10, and 5.11. The different phenomena between gamboost and gamboost-AR(1) models

are the stopping iteration tend to extract range of the data values and differencing in AR(1)

tend to insert range of the data values. We can see different mstop in gamboost-AR(1)

with transformation as displayed in Figures 5.10 and 5.11. Increasing mstop in gamboost-

AR(1) with transformation in model fitting is improving the global fitting, whereas on

local fitting increasing mstop does change covariate in transformed rainfall and covariate in

the gap. The rainfall and Nrdays covariates with mstop= 35000 are more fluctuation if we

compared to mstop= 12000, the Nrdays covariate is more fluctuation after the gap. Trade-off

mstop is also required to obtain appropriate model fitting. Therefore, in this case mstop=

12000 is appropriate model fitting (in global and local fitting) better than mstop= 35000 only

appropriate on global fitting using gamboost-AR(1) model.

Our experimental results reveal that time covariates, particularly Doy covariate, has

a significant effect in the model fitting (the details are also given in Chapters 2 and 4).

There are several effects when removing autocorrelation in the model fitting by using

gamboost-AR(1) models with transformation as follows:

a) Effect transformation of gamboost-AR(1) model fitting is increasing df and decreasing

AIC, gMDL, and the final risk values as in Table 5.3.

b) Reducing optimal number of boosting iterations, for example, GMb1-AR(1) model

with mstop = 1000 to be 993, GMb2-AR(1) and GMb3-AR(1) models with mstop =1500,

2000 to be 1108 in gMDL method.

c) Transformation can accelerate in the fitting process.

d) Transformation can change the number of linear or smooth models in local fitting.
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For example, GMb3-AR(1) model with transformation as captured in Figure 5.9 and

without transformation as seen in Figure 5.2.

e) The model is also assessed for the transformation effect of rainfall. The results from

figures show a similar pattern of the model fitting with and without transformation.

However, transformation of rainfall results in a reduced final risk. In addition, the

transformation also gives a larger number of submodels in the local model fitting

than the non-transformed data for rainfall.

5.4.4 Autocorrelation of the GamboostLSS-AR(1) Models

In our experiment for the SST data fitting by using gamboostLSS-AR(1) models, we consider

the degrees of freedom (df ), knots, stopping iteration (mstop) and the step of length factor

(νsl f ) parameters in the model specification. We use fixed autocorrelation coefficient ρ=

0.8566652 in the gamboostLSS-AR(1) models. The result of the gamboostLSS-AR(1) models

have various specification for base-learners and for control boosting used in with and

without transformation.

5.4.4.1 Effect of the Degrees of Freedom on GamboostLSS-AR(1) Models

We observed the effect of the degrees of freedom on gamboostLSS-AR(1) models. We chose

the degrees of freedom df= 2.1 - 2.5 and 2.01 - 2.05, differences= 2, and knots= 40 of the Nrdays

and the df= 1.1 and 1.5 of the Doy covariates specification. The results are displayed as in

Figures 5.12, E.4 and E.5, Appendix E.
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Figure 5.12: The patterns of time covariates in local fitting using gamboostLSS-AR(1) models. The patterns
show a decrease before the gap and an increase after the gap for the Nrdays effect and the same pattern for the
Doy effect.

Figure 5.12 shows local fitting with the same mstop= 500 and different df= 2.1 - 2.5

produces the similar pattern of time covariates. Further we can see local fitting with similar

specification mstop= 1000 and different df= 2.1 - 2.5 as depicted in Figure E.4, Appendix E.

We can see from Figure E.4 in Appendix E that gamboostLSS-AR(1) models with stop-

ping iteration mstop= 1000 for time covariates at the degrees of freedom df= 2.4 and 2.5 show

inappropriate model fitting. GamboostLSS-AR(1) models with stopping iteration mstop=

1500 for time covariates at the degrees of freedom df= 2.3 to 2.5 show inappropriate model

fitting as well as seen in Figure E.5, Appendix E.

Increasing stopping iteration mstop with the different degrees of freedom df tend to

change after the gap of the Nrdays covariate, whereas the Doy covariate shows stable
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pattern in gamboostLSS-AR(1) model fitting. Detecting inappropriate time covariate as

submodels in local fitting is an important role to avoid misfitting on global fitting of the

SST data. Therefore, trade-off degrees of freedom on time covariates are essential role in

the SST data fitting by using gamboostLSS-AR(1) models.

5.4.4.2 Effect of the Stopping Iteration on GamboostLSS-AR(1)

Here, we investigated effect of the stopping iteration on gamboostLSS-AR(1) model. We

consider the stopping iterations from mstop= 500 to 1500 with step 500 on gamboostLSS-

AR(1) models fitting. The results are depicted in Figures E.18, E.19, Appendix E and

5.13.

Figure E.18 in Appendix E shows similar patterns of time covariates with slightly

different of df ’s and the stopping iteration, whereas Figure E.19 in Appendix E shows that

gamboostLSS-AR(1) model fitting with fixed mstop= 500 and df= 1.5 of the Doy and different

df of the Nrdays have similar pattern of time covariates. The df= 1.5 of the Doy has more

impact on smoothing than does the df= 1.1, mainly at the Nrdays after the gap. In addition

to a larger value the df tends to nonsmooth the model fitting.

Figure 5.13 shows that gamboostLSS-AR(1) models fitting with fixed mstop= 1000 and

df= 1.5 of the Doy covariate and different df of the Nrdays covariate have similar pattern of

seasonal effects. The annual effects are slightly similar for df= 2.1 and 2.2, whereas df= 2.3

to 2.5 tends to change after the gap. In general, gamboostLSS-AR(1) model fitting with fixed

df= 1.1 of the Doy and the same class of the stopping iteration mstop of the Nrdays have the

similar pattern of time covariates. We suggest to use df= 2.1 and 2.2 in gamboostLSS-AR(1)

model fitting of the SST data.
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Figure 5.13: Local fitting of time covariate using gamboostLSS-AR(1) models with different df=2.1-2.5 at
the Nrdays covariate and the same mstop=1000.

5.4.4.3 Effect of the Knots on GamboostLSS-AR(1) Models

We investigated the effect of the knots on gamboostLSS-AR(1) models of the SST data fitting.

We consider the degrees of freedom df= 1.1 and 1.5 at the Doy and different knots= 30-60

with each step 10 and df= 2.01, 2.1 at the Nrdays covariate. We use the control boosting

parameters: mstop= 500 - 1500 and νsl f = 0.1. The results are summarized as in Tables 5.4 and

5.5.

Table 5.4 shows that the effect of knots from 30 to 60 with df= 2.1 is more stable than

with the df= 2.01, mainly for mstop= 1500, whereas Table 5.5 shows that increasing df= 1.5

at the Doy lead to various the number of submodels. Further we observed the local fitting

for time covariates with mstop= 1000 at the composition of the df= 2.01 and 1.1; df= 2.01 and
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1.5; df= 2.1 and 1.1; and the df= 2.1 and 1.5 at the Doy and Nrdays covariates as displayed

in Figures 5.14 to E.7, Appendix E.

Table 5.4: Knots Effects in the GamboostLSS-AR(1) model with df = 1.1 at the Doy for SST data fitting.

Boosting knots d f=2.1 d f=2.01
mstop Final Risk Submodels Final Risk Submodels
500 30 307.0386 10 309.4764 10

40 304.5867 10 306.2531 10
50 302.2614 10 303.6320 10
60 300.1213 10 301.3761 10

1000 30 280.0081 13 283.2150 13
40 276.4000 13 278.8379 13
50 272.6298 13 274.8928 13
60 268.8476 13 271.0861 13

1500 30 262.8653 13 266.3752 13
40 258.2544 13 261.4013 14
50 253.3687 13 256.1880 13
60 248.5729 13 251.3355 13

Table 5.5: Knots Effects in the GamboostLSS-AR(1) model with df= 1.5 at the Doy for SST data fitting.

Boosting knots d f=2.1 d f=2.01
mstop Final Risk Submodels Final Risk Submodels
500 30 255.3522 10 257.4524 10

40 252.7441 10 254.5191 10
50 250.4077 10 251.7720 10
60 248.1843 11 249.4940 10

1000 30 230.3242 12 232.8218 12
40 227.1549 12 229.2931 12
50 223.6701 12 225.7913 13
60 219.7801 13 222.1147 12

1500 30 217.8403 14 280.8349 14
40 213.1461 14 216.3165 14
50 208.0611 14 211.0960 14
60 202.8360 14 205.9028 14
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Figure 5.14: The patterns of time covariate in gamboostLSS-AR(1) models fitting with fixed df= 2.01 and
different knots=30-60 of the Nrdays covariate and fixed df= 1.1 and 1.5 at the Doy covariate.

We can see that fitting at the time covariates with df= 1.1 is smoother than using df=

1.5 at the Doy as captured in Figure 5.14, mainly for the Nrdays covariate after the gap. If

we compare fitting at the time covariates with df= 1.1, as seen in Figure E.6 Appendix E,

it is smoother than using df= 1.5 at the Doy covariate as captured in Figure E.7 Appendix

E, mainly for the Nrdays covariate after the gap. We can select degrees of freedom df= 1.1

instead of df= 1.5 at the Doy covariate with df= 2.01 or 2.1 at the Nrdays in the gamboostLSS-

AR(1) model fitting for the SST data.
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5.4.4.4 Effect of the Size-Length Factor on GamboostLSS-AR(1) Models

We observed the size-length factor νsl f = 0.1-0.4 with step 0.1, and 0.01-0.05 each step 0.01

in gamboostLSS-AR(1) model fitting. The results of observation are displayed in Table 5.6.

Table 5.6: The Size-Length Factor Effects in the GamboostLSS-AR(1) model with df= 1.1 at the Doy.

Size-Length Factor Final Risk Submodels
0.1 278.8379 13
0.2 247.9946 13
0.3 227.4881 14
0.4 358.2745 10
0.01 521.3064 4
0.02 377.1072 6
0.03 333.2335 9
0.04 316.1602 10
0.05 306.4167 10

The similar patterns of global fitting using gamboostLSS-AR(1) model can be achieved

with d f= 1.1 at the Doy covariate and (νsl f )=0.1-0.4 as seen in Table 5.6. However, the size

of length factor (νsl f ) in the gamboostLSS-AR(1) model gives impact fitting of smoothness,

which the larger values of the νsl f tends to nonsmooth global fitting. Nevertheless, the size

of length factor νsl f = 0.1 and 0.2 produces the same number of submodels, i.e. 13 on the

local fitting. The largest number of submodels (i.e. 14) with νsl f = 0.3 gives lowest final risk

and then smallest number of submodels (i.e. 10) with νsl f = 0.4 produces highest final risk

for class νsl f = 0.1-0.4.

Further we observed the size of length factor effect (νsl f )= 0.01-0.05 with d f= 1.1 at the

Doy covariate in global fitting as displayed in Figure 5.15.
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(a) (b)

(c) (d)

(e)

Figure 5.15: The SST data fitting by gamboostLSS-AR(1) models with the same mstop = 1000 and different
νsl f = 0.01 to 0.05 for (a)-(e) respectively.

The νsl f values increase from νsl f = 0.01 to 0.05 lead to the growth of fitting process, as

depicted in Figure 5.15. Furthermore, gamboostLSS-AR(1) model fitting with νsl f = 0.01

produces smallest submodels and it is not optimal in local fitting. The νsl f = 0.02 value

in gamboostLSS-AR(1) model fitting gives six submodels and the νsl f = 0.03 value gives
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a larger number of submodels. However, this model shows slightly nonsmooth global

fitting, whereas the νsl f = 0.04 and 0.05 values produce the same number of submodels, i.e.

10 in gamboostLSS-AR(1) model fitting.

As the class νsl f = 0.01 to 0.05 give impacts in global and local fitting, then we recommend

to select νsl f = 0.01 and 0.02 with using higher mstop in the gamboostLSS-AR(1) models for

SST data fitting. For example, we applied mstop= 2000-3000 with νsl f = 0.01 and 0.02 to fit

SST data by using gamboostLSS-AR(1) model as depicted in Figure 5.16.

(a) (b)

(c) (d)
Figure 5.16: The SST data fitting by gamboostLSS-AR(1) models with different mstop and νsl f with the
models as follows:(a) 2000, νsl f =0.01, (b) 3000, νsl f =0.01, (c) 2000, νsl f =0.02, and (d) 3000, νsl f =0.02.

The increase of mstop values in model fitting gives a larger number of submodels on

local fitting and improves on global fitting as depicted in Figure 5.16. Figure 5.16 (a) shows
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global fitting with νsl f = 0.01 produces 6 submodels and (b) global fitting with 9 submodels.

In the same figure, graph (c) with νsl f = 0.02 produces 10 submodels and graph (d) with

νsl f = 0.03 produces 12 submodels. Increasing mstop values in the gamboostLSS model also

gives impact to global and local model fitting, by comparing the results in Figures 5.15 and

5.16. However, trade-off the mstop values are needed to avoid over-fitting or under-fitting

on global and local fitting.

5.4.5 GamboostLSS-AR(1) Models with Transformation

We observed the gamboostLSS-AR(1) models with transformation of rainfall covariate.

We use specification of the Nrdays covariate: knots= 20-70, diff= 2, df= 2.01-2.2 and mstop=

1000-3000 with ρ= 0.8566652. The results of our experiment are reported in Table 5.8.

We applied the models setup in a total of 30 models in which the GMbLSS13tr-AR(1) to

GMbLSS30tr-AR(1) are not given in the table.

Table 5.7: Specification of GamboostLSS-AR(1) models with transformation.

Model d fNrdays knotsNrdays d fDoy mstop

GMbLSS1post-AR(1) 2.1 40 1.47 1000
GMbLSS2post-AR(1) 2.1 70 1.20 1500
GMbLSS3post-AR(1) 2.1 60 1.15 2000
GMbLSS4post-AR(1) 2.1 60 1.40 1000
GMbLSS5post-AR(1) 2.2 50 1.40 1000
GMbLSS6post-AR(1) 2.2 60 1.18 1500
GMbLSS7post-AR(1) 2.2 65 1.35 1000
GMbLSS8post-AR(1) 2.2 30 1.20 1500
GMbLSS9post-AR(1) 2.2 40 1.12 2000
GMbLSS10post-AR(1) 2.2 70 1.11 2000
GMbLSS11post-AR(1) 2.1 20 1.11 2500
GMbLSS12post-AR(1) 2.01 30 1.08 3000

Table 5.8 shows that GMbLSS1post-AR(1) to GMbLSS12post-AR(1) models have a sim-

ilar pattern on global fitting and the same number of submodels. The following pattern of
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Table 5.8: GamboostLSS-AR(1) models fitting using P-spline with transformed rainfall.

Model Submodel Final Risk Model Submodel Final Risk
GMbLSS1post-AR(1) 8 323.5800 GMbLSS7post-AR(1) 8 326.4281
GMbLSS2post-AR(1) 8 331.5986 GMbLSS8post-AR(1) 8 338.6751
GMbLSS3post-AR(1) 8 330.2864 GMbLSS9post-AR(1) 8 349.0427
GMbLSS4post-AR(1) 8 322.8192 GMbLSS10post-AR(1) 8 351.8073
GMbLSS5post-AR(1) 8 323.3653 GMbLSS11post-AR(1) 8 359.8472
GMbLSS6post-AR(1) 8 338.7529 GMbLSS12post-AR(1) 8 356.8358

time covariates of these models can be seen in Figure E.9, Appendix E. The pattern of time

covariates in gamboostLSS-AR(1) models with transformation is more stable for the Doy

covariate and is slightly changed for the Nrdays covariate after the gap.

Transformation effects on global fitting by gamboostLSS-AR(1) models is shown as

depicted in Figures E.16 and E.17, Appendix E. We suggest using the νsl f = 0.01 or 0.02

for gamboostLSS-AR(1) models with transformation. Improving the model fitting by

transformation of rainfall gives significant effect in the gamboostLSS-AR(1) models. We

can see the similar patterns of the model in local fitting and global fitting as displayed in

Figures E.9, E.16, and E.17, in Appendix E.

5.4.5.1 Effect of the Degrees of Freedom on GamboostLSS-AR(1) Models with Trans-

formation

We observed the effect of the degrees of freedom on gamboostLSS-AR(1) models with

transformation. We choose the degrees of freedom df= 2.1 - 2.5 and 2.01 - 2.05, differences=

2, and knots= 40 of the Nrdays and the df= 1.1 and 1.5 of the Doy covariates specification.

The result of this observation is displayed as in Figures E.10, E.11, and E.12, Appendix E.

We can see increase stopping iteration from mstop= 500 to 1500 and transformation do

not change patterns of the Nrdays and Doy covariates drastically in the µ and σ parameters.
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A slight changes pattern of the Nrdays covariate with df= 2.1 and the Doy covariate with

increase df from 1.2 to 1.5 and mstop= 1500 after the gap in the µ parameter, and also, in the

beginning fitting for the Doy covariate with df from 1.2 to 1.5 in the σ parameter. Generally

the effect of degrees of freedom on gamboostLSS-AR(1) models with transformation occurs

at the Doy covariate with increase df from 1.2 to 1.5 in σ parameter for mstop= 500-1500.

5.4.5.2 Effect of the Stopping Iteration on GamboostLSS-AR(1) Models with Transfor-

mation

We observed the effect of the stopping iteration on gamboostLSS-AR(1) models with trans-

formation. We choose the degrees of freedom df= 2.1 - 2.5 and 2.01 - 2.05, differences= 2,

and knots= 40 of the Nrdays and the df= 1.1 and 1.5 of the Doy covariates specification. The

result of this observation is displayed as in Figures E.13 to E.15, Appendix E.

Figure E.13 in Appendix reveals that the pattern of time effects in theµ and σ parameters

is almost the same, except after the gap of the Nrdays effect with mstop= 500. Similarly, Figure

E.14 and E.15 in Appendix E show almost the same patterns of time effects, except after

the gap of the Nrdays effect with mstop= 1000 and 1500. We can see that the effect of increase

stopping iteration from mstop= 500 to 1500 and transformation do not change patterns of

the Nrdays and Doy covariates drastically in the µ and σ parameters. However, a slight

changes pattern of the Nrdays covariate with df= 2.2-2.5 and mstop= 1500 after the gap in the

µ parameter.

Generally the effect of stopping iteration on gamboostLSS-AR(1) models fitting with

transformation of 1231 SST data occurs at the Nrdays covariate with increase df from 2.2 to

2.5 in µ parameter for mstop= 1500.
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5.4.5.3 Effect of the Knots on GamboostLSS-AR(1) Models with Transformation

We investigated the effect of the knots on gamboostLSS-AR(1) models with transformation.

The degree of freedom df= 1.1 at the Doy and different knots= 30-60 with each step 10 and

df= 2.01, 2.1 at the Nrdays covariate is considered. We use the boosting parameters: mstop=

1500-3000 and νsl f = 0.01. The results of our experiment are summarized as in Table 5.9.

Table 5.9: Knots Effects in the GamboostLSS-AR(1) model with transformation and df=1.1 at the Doy.

Boosting mstop d f=2.1 d f=2.01
knots Final Risk Submodels Final Risk Submodels
30 1500 422.0076 4 444.5972 4

2000 372.0361 7 389.0417 6
2500 345.3396 8 357.3865 8
3000 329.5268 9 338.1158 9

40 1500 431.8036 4 428.5862 4
2000 378.9423 7 376.6308 7
2500 349.9913 8 348.3310 8
3000 332.7192 9 331.5514 9

50 1500 415.1589 4 419.1801 4
2000 367.6151 7 370.1872 7
2500 342.5344 8 344.1315 8
3000 327.6831 9 328.7482 9

60 1500 410.3917 5 413.1963 4
2000 364.7553 7 366.4300 7
2500 340.8095 8 341.7845 8
3000 326.4176 9 327.1607 9

Table 5.9 shows that increasing knots with slight different degrees of freedom df does

not change the number of submodels in the gamboostLSS-AR(1) models fitting with trans-

formation. Interestingly, the number of submodels 4 at the mstop= 1500 show the patterns

of time covariates in the µ and σ parameters. For knots= 60 with stopping iteration mstop=

1500 reveals that the patterns for a linear submodel of the rainfall covariate and four sub-

models of time covariates, whereas knots= 30 with stopping iteration mstop= 2000 shows

that the patterns for the linear submodels of the rainfall and humidity covariates and four

submodels of time covariates.
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5.4.5.4 Effect of the Size-Length Factor on GamboostLSS-AR(1) with Transformation

We investigated the size-length factor νsl f = 0.01-0.05 each step 0.01, mstop= 1500 in the

gamboostLSS-AR(1) model fitting with transformation. The visualization gamboostLSS-

AR(1) models with different νsl f is displayed in Figures E.20, Appendix E and 5.17.

Figure E.20 in Appendix E shows almost the same pattern of time covariates in the µ

and σ parameters. Each pattern has specification as follows: the Nrdays and Doy covariates

with df= 2.1, df= 1.3, ν= 0.01 gives 8 submodels; df= 2.01, df= 1.3, ν= 0.01 produces 8

submodels; df= 2.1, df= 1.1, ν= 0.02 gives 9 submodels; and df= 2.01, df= 1.1, ν= 0.02

produces 9 submodels. The effect of increasing size-length factor from 0.01 to 0.02 with the

same class specification gives the same number of submodels.

Figure 5.17: Local fitting using gamboostLSS-AR(1) models with transformation of time covariates, where
the time shows almost the same pattern for the Nrdays and Doy effects.
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Figure 5.17 shows that almost the same pattern of time covariates in the µ and σ

parameters where each pattern has specification as follows: the Nrdays and Doy covariates

with df= 2.1, df= 1.1, ν= 0.03 gives 10 submodels; df= 2.1, df= 1.1, ν= 0.04 produces 11

submodels; and df= 2.1, df= 1.1, ν= 0.05 gives 12 submodels. The effect of increasing size-

length factor from 0.03 to 0.05 with the same specification tends to increase the number of

submodels.

Furthermore, we present the best model fitting of appropriate gamboostLSS, gamboost-

LSS -AR(1), and gamboostLSS-AR(1) models with transformation of the SST data. There are

appropriate gamboostLSS model fitting class with considering autocorrelation as follows:

1) Appropriate model in global fitting but inappropriate model in local fitting.

2) Appropriate model in global fitting but low the number of submodels in appropriate

local fitting.

3) Appropriate model in global fitting but not optimal number of submodels in appro-

priate local fitting.

4) Appropriate model in global fitting and appropriate in local fitting.

5) Appropriate model in global fitting and optimal number of submodels in appropriate

local fitting.
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(a) (b)

(c) (d)

(e) (f)
Figure 5.18: The similar patterns in global fitting by appropriate gamboostLSS-AR(1) models for the
Nrdays covariate with df=2.1 fixed, and for thr Doy covariate with (a). df=1.1, mstop=1500; (b). df=1.2,
mstop=1500;(c). df=1.3, mstop=1000;(d). df=1.3, mstop=1500;(e). df=1.4, mstop=500; and (f). df=1.4,
mstop=1000.

Figure 5.18 shows that appropriate gamboostLSS-AR(1) models in global fitting have

low the number of submodels in appropriate local fitting as captured in graphics (a) and

(e) with 4 submodels, whereas no optimal number of submodels in appropriate local fitting
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as depicted in graphics (b), (c), (d) and (f) with 7, 6, 8, and 6 submodels respectively.

(a) (b)

(c) (d)
Figure 5.19: The similar patterns in global fitting by appropriate gamboostLSS-AR(1) models for the
Nrdays covariate with df=2.1 fixed, and for the Doy covariate with (a). df=1.4, mstop=1500; (b). df=1.5,
mstop=500;(c). df=1.5, mstop=1000; and (d). df=1.5, mstop=1500.

Figure 5.19 shows that appropriate gamboostLSS-AR(1) models in global fitting have

low the number of submodels in appropriate local fitting as displayed in graphics (a) with

4 submodels, whereas no optimal number of submodels in appropriate local fitting as seen

in graphics (b) and (c), both with 8 submodels. Further we use appropriate model in global

fitting and appropriate in local fitting class to visualize the best gamboostLSS model fitting

of the SST data as captured in Figure 5.20 with submodels as displayed in Figure 5.21.
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Figure 5.20: An illustration of 1231 SST data fitting by using gamboostLSS model without transformation,
with boosting parameters mstop= 300, ν= 0.1.

Figure 5.21: Local fitting of the gamboostLSS model fitting for 1231 SST data produces 13 submodels. It is
shown that temperature and humidity have similar trends in µ and σ parameters, but show opposite trends
with rainfall in both parameters. Humidity has a polynomial curve in the µ and σ parameters, whereas
temperature has a downward curve in the σ parameter. The Nrdays covariate have similar trends before and
after the gap in both parameters, whereas the Doy covariate has a sinusoidal curve in both parameters as well.
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Figure 5.22: GamboostLSS model fitting with transformation for 1231 SST data, mstop= 250, ν= 0.1.

Figure 5.23: Local fitting of the gamboostLSS model fitting with transformation for 1231 SST data gives 13
submodels. The submodels show the similar patterns and trends for all covariates, excluding rainfall if we
compared with local fitting without transformation.
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Figure 5.24: The SST data fitting using gamboostLSS-AR(1) model without transformation, with mstop =
1000.

Figure 5.25: Local fitting in the gamboostLSS-AR(1) model without transformation for 1231 SST data gives
13 submodels. Autocorrelation effect does not change patterns and trends of time covariates, Nrdays and Doy
in µ and σ parameters.
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Figure 5.26: The gamboostLSS-AR(1) model fitting with transformation of 1231 SST data, mstop=2250.

Figure 5.27: Local fitting of 1231 SST data using the gamboostLSS-AR(1) model fitting with transformation
produces 8 submodels. Autocorrelation and transformation effects do not change patterns and trends of time
covariates in both parameters, but it has large effects in global and local fitting, such as the best smoothing on
global fitting can be achieved.

There are advantages of the gamboostLSS-AR(1) model fitting with transformation as

follows:

a) It provides a more stable in fitting process in global and local fitting.

b) It is more robust to fit SST data.
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c) It gives improved fitting in the SST data.

The gamboostLSS-AR(1) models have smoothing terms by P-spline and filtering terms

by the AR(1) process. The smoothing terms of gamboostLSS-AR(1) can be expressed as

global and local model fitting. Extensions to filters of continuous covariates and time

covariates expressed in generalized differencing can handle autocorrelation issues.

5.4.6 Restriction Errors of Autocorrelation AR(1) Models

In this section, we provide the analysis of the restriction errors of the AR(1) models.

Pseudo code for removing autocorrelation error is reported in Algorithm 2. The results of

implementation of AR(1) model for removing autocorrelation, as seen in Figure 5.28, show

that the autocorrelation tends to zero. The lag here can be referred to as the observations

of the SST data, in this case it is in daily units. The common autocorrelation function is

usually a lag with the length n-1, where n is the number of observations.

Plots (a), (c), (d), and (e) in Figure 5.28 have a similar pattern. The error has a cyclic

trend at the starting lag. This cyclic pattern at the time lag 200 is shown in plot (b).

Plot (f) and (h) have similar pattern as well. There is no cyclic pattern of error at any

lag and has a fluctuation at the end lag. In general, the autocorrelation of AR(1) models

has characteristic patterns. For example, a cyclical pattern at beginning time lag, several

fluctuations autocorrelation ρ at the middle time lag, i.e. 600, 800-1000 and the last time

lag is dependent on restriction subset of errors. It means that there is a relation between

behaviour time covariates (i.e., Nrdays and Doy) in the model fitting and pattern of errors

in the modelling errors with AR(1) model. The following is algorithm and visualization of

autocorrelation AR(1) model as captured in Algorithm 2 and Figure 5.28.
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Algorithm 2 Autocorrelation AR(1) model
Main Program:
1) Construct linear model with a subset data n as model 1 (LM1).
2) Construct linear model with a subset data n-1 as model 2 (LM2).
3) Construct linear model of residual LM1 and LM2 as a coefficient autocorrelation Rho 1.
4) To obtain Rho 2 by using iteration as follows:

for (i in 2:niter)
rhoproc = out1Rho
xproc = out1x
yproc = out1y
out1 = FRho(rhoproc, xproc, yproc)
Rho[i]=out1Rho

Pseudo Program:
1) To develop function

FRho = function(Rho, x, y)
n = length(y)
u1= abs(y[2:n] - (Rho * y[1:n-1]))
v1= abs(x[2:n,1] -(Rho* x[1:n-1,1]))
v2= abs(x[2:n,2] -(Rho* x[1:n-1,2]))
v3= abs(x[2:n,3] -(Rho* x[1:n-1,3]))

2) Setting autocorrelation model of time covariates
Nr = NULL
doy = NULL
for (j in 2:n)
Nr[j-1]= x[j,4]- (Rho*x[j-1,4])

Submodel doy
Classic Pattern doy[j-1]= (x[j,5]- (Rho*x[j-1,5]))

3) Transformation covariates:
newx = as.matrix(cbind(v1, v2, v3, Nr, doy))
B = lm(u1 ∼ newx)
beta0 = Bcoe f [1]/(1 − Rho)
beta1 = Bcoe f [2]/(1 − Rho)
beta2 = Bcoe f [3]/(1 − Rho)
beta3 = Bcoe f [4]/(1 − Rho)
beta4 = Bcoe f [5]/(1 − Rho)
beta5 = Bcoe f [6]/(1 − Rho)

4) Construct a new dataset by LRM in a subset n.
Y2hat = beta0 + beta1*x[2:n,1] + beta2*x[2:n,2] + beta3*x[2:n,3] + beta4*x[2:n,4] + beta5*x[2:n,5]
e2 = y[2:n]- Y2hat

5) Construct a new dataset by LRM in a subset n-1.
Y3hat = beta0 + beta1*x[1:n-1,1] + beta2*x[1:n-1,2] + beta3*x[1:n-1,3] + beta4*x[1:n-1,4] + beta5*x[1:n-1,5]
e3 = y[1:n-1] - Y3hat
R2 = lm(e2[2 : n] ∼ e3[1 : n − 1])
NewRho = R2coe f [2]
out1=list(Rho = NewRho, x = newx, y = u1)
return(out1)
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     (a)                                                                                          (b) 

 
     (c)                                                                                          (d) 

 
     (e)                                                                                          (f) 

 

 
                   (g) 

Figure 5.28: An illustration of restriction errors of the autocorrelation AR(1) model.

Figure 5.28 shows a cyclical behaviour of the Doy covariate that represents seasonal

effects indicates an appropriate model or not in the model fitting by gamboost-AR(1)

and gamboostLSS-AR(1) models. This indication can also be seen as a cyclical pattern of

autocorrelation errors within the AR(1) model.
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5.5 Applications for Different Buoys

In this Section, the SST data are extended by including ocean data from two other buoys.

The data were collected at two locations, in the Indian Ocean and Meulaboh land station,

during the period of 2006 to 2012. In addition, the covariates of the day of the year (Doy)

and the number of days (Nrdays) are also included in the model as time covariates.

The emphasis of this Section is to fit the SST data, we used statistical inferences which

were based on gamboostLSS-AR(1) models beforehand in Section 5.1 to 5.4. The results

show that there are several procedures in the fitting data by using gamboostLSS-AR(1)

models for different buoys. Our approach begins with statistical description, scatterplot

in time period, and ACF plot of the SST data. We emphasize on using this approach to

understand performance of SST data in magnitudes, measurements, positions, gaps, and

patterns that potentially have the plausible climate features for appropriate data fitting.

Previously, we have investigated that the proposed gamboostLSS-AR(1) model shows

better results in five different applications (see Chapter 4). Firstly, we used the proposed

model for linear regression model. Secondly, we also used the model for additive model

class, such as GAM, gamboost, GAMLSS, and gamboostLSS models. The results are as-

sessed by other models using AIC, gDML, Global Deviance, and CVrisk as the performance

of the fitting. Graphically, the improvement of the fitting of the proposed model has been

demonstrated using SST data from one buoy. In this investigation, we experimented the

gamboostLSS-AR(1) model fitting with and without transformation. The optimal number

of submodels, fitting time covariate in both local and global model fitting performances,

were conducted in the experiment. The result showed that it gives better fitting perfor-
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mance than other models.

In the previous work, we have investigated by considering time covariates, our exper-

iment is useful in improving the local and global fitting. This improvement is implicitly

remove autocorrelation and thus decrease or keep it the same number of submodels. This

condition also is depend on the complexity of data structure. The results showed that

the hyper-parameters (the degrees of freedom (df ), knots, stopping iteration (mstop) and the

step of length factor (νsl f ) parameters), play important roles in obtaining the appropriate

model specification of the SST data fitting. In addition, controlling boosting parameters are

also important for achieving appropriate model fitting with and without transformation of

rainfall.

The transformation can increase the number of submodels in gamboostLSS-AR(1) model

fitting. There are many potential benefits by combining the two approaches, which are

removal autocorrelation and transformation. The benefits include more stable in fitting

process, more robust to fit SST data, and more improved than other models mentioned

above. The first differencing AR(1) model reduces autocorrelation of the SST data, whereas

transformation of rainfall can reduce scale of outlier consequent.

In general, we applied ρ to implement the gamboostLSS-AR(1) models. First of all, we

tune the hyper-parameters in model specification and autocorrelation coefficients ρ of the

SST data for each buoy. We then fit SST data by using ρ. Next, we apply the value of

ρ for SST data fitting from three buoys. Finally, we determine the time covariate fitting

of submodels to get the appropriate model fitting. In this section, we will look at the

use of ρ’s in gamboostLSS-AR(1) model fitting and marginal prediction interval (MPI),

and we will consider time-autocorrelation at lag 1 (so called MPI-AR(1)) for the SST data.
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Moreover, we investigate considerable achievement in the fitting performance for SST data

in the gamboostLSS and gamboostLSS-AR(1) models with and without transformation.

We compare time effects in the µ and σ parameters of the SST data. Also, MPI-AR(1) can

be applied to the SST data from three buoys.

The section is further organized as follows. As in section 2.2 Chapter 2, we provide

the data and experimental setup. Section 5.6 discusses the results and the application of

the gamboostLSS-AR(1) models for three buoys. In subsections 5.6.1, 5.6.2, and 5.6.3 we

describe gamboostLSS models fitting at buoys 1, 2, and 3 without transformation, respec-

tively. Subsection 5.6.4 we describe similarities time effects by gamboostLSS model fitting

at three buoys. In subsection 5.6.5 we apply gamboostLSS-AR(1) model fitting with auto-

correlation coefficient ρ. Subsections 5.6.6, 5.6.7, and 5.6.8 we present gamboostLSS-AR(1)

models fitting at buoys 1, 2, and 3 without transformation, respectively. Subsection 5.6.9

we describe similarities time effects by gamboostLSS-AR(1) model fitting at three buoys.

Then we present marginal prediction interval of gamboostLSS models in autocorrelation

as in section 5.7. Finally, we summarize this chapter in section 5.8.

5.6 Results and Discussion for Different Buoys

In this section, we present the numerical results of the gamboostLSS-AR(1) model fitting

with and without transformation of the SST data set. These results are compared with the

gamboostLSS model to fit the same data which was previously discussed in Chapter 5. The

results are recorded in tables and capture the global and local model fitting graphically.
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5.6.1 The Results of GamboostLSS Fitting Model at Buoy 1

We present the gamboostLSS fitting at buoy 1 where the number of observation are the

smallest, i.e. 1460 data. We also capture the local and global models as seen in Figures 5.29,

5.30, and 5.31, respectively.

5.6.1.1 The GamboostLSS Fitting Model at Buoy 1 without Transformation

We experimented the different control boosting parameters. We consider the size-length

factor νsl f from 0.01 to 0.05 with steps 0.01 and 0.1. We also consider the different stopping

iterations mstop for each gamboostLSS model fitting of the SST data at buoy 1. We imple-

mented mstop to obtain optimal submodels and appropriate local and global fitting. The

result of this particular experiment is displayed in Table 5.10.

Table 5.10: The control boosting effects on the gamboostLSS model fitting of the SST data at buoy 1.

Parameter mstop Submodel Final Risk Parameter mstop Submodel Final Risk
νsl f = 0.01 1000 8 806.474 νsl f = 0.04 1000 11 627.540

2000 9 739.374 2000 13 493.515
3000 10 679.754 3000 15 437.867
4000 11 627.565
5000 12 583.155

10000 14 459.199
15000 15 416.604

νsl f = 0.02 1000 9 1230.757 νsl f = 0.05 1000 12 583.501
2000 11 627.552 2000 15 460.083
3000 12 546.656
4000 12 493.286
5000 15 459.457

νsl f = 0.03 1000 9 679.513 νsl f = 0.1 1000 14 460.504
2000 12 547.051 2000 15 419.963
3000 13 474.766
4000 15 437.935
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Figure 5.29: Local fitting by gamboostLSS models without transformation of the SST data produces 15
submodels.

Figure 5.29 illustrates the local fitting of gamboostLSS models at the buoy 1, as repre-

sented from global fitting as seen in Figure 5.31 (left). The figure consists of 15 submodels,

each of which presents the climate features and time covariates. It can be seen that for the

climate features in the µ parameters of temperature and humidity have a similar trend,

however, the σ parameters of temperature and humidity have an opposite trend, regard-

ing to the linear base-learner. The rainfall has an opposite trend of the temperature and
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humidity in the µ parameter but it has similar trend to temperature in the parameter σ .

When we used the smooth base-learner, the µ parameters of temperature and rainfall have

a quadratic curve and an opposite trend. The humidity has the similar patterns in the µ

and σ parameters, whereas the temperature has a downward curve in µ and σ parameters.

Furthermore, for the time covariate of the annual effects, the parameters µ and σ de-

creased before the gap, and increased after the gap. On the other hand, for the seasonal

effects, parameters µ and σ show a sinusoidal pattern with one peak season.

5.6.1.2 The GamboostLSS Fitting Model at Buoy 1 with Transformation

Here, similar approach is applied to fit the SST data with transformation of rainfall. The

results are recorded in Tables 5.11 and 5.12. The later table is obtained by the first table

by considering the first 15 submodels. It illustrates the comparison of submodels with

transformations and without transformations. Transformed rainfall in the gamboostLSS

models does change the pattern of rainfall covariate from an upward curve to downward

curve in the µ and σ parameters as captured in Figures 5.29 and 5.30 but it does not change

other covariates in both parameters.

Furthermore, our experiment shows that time covariates between with and without

transformation in the µ and σ parameters shows similar effects of different values of νsl f

which are from 0.01 to 0.03, and different values of mstop which are 15000, 5000, and 4000,

respectively. Transformation of rainfall also does not change time covariates pattern in this

control boosting.

Selection of boosting parameter is essential to reveal information from submodel in

local model fitting. Also, to get appropriate global fitting of the SST data, we propose an
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Table 5.11: The control boosting effects on the gamboostLSS model fitting with transformation of the SST
data at buoy 1.

Parameter mstop Submodel Final Risk Parameter mstop Submodel Final Risk
νsl f = 0.01 1000 9 800.4935 νsl f = 0.04 1000 11 618.2469

2000 10 732.1456 2000 13 484.2205
3000 10 671.3646 3000 15 430.1754
4000 11 618.2059 4000 15 405.8644
6000 13 536.4907 6000 16 379.4355

10000 14 450.3402
11000 15 438.8946
20000 15 391.2930
30000 16 363.6534

νsl f = 0.02 1000 10 731.8544 νsl f = 0.05 1000 11 573.8829
2000 11 618.2797 2000 13 451.1741
3000 13 536.9263 3000 15 410.5813
4000 14 483.8639 4000 15 391.3832
5000 14 450.6098 5000 16 376.6471
6000 15 429.9423

10000 15 391.3462
11000 16 385.2203

νsl f = 0.03 1000 10 670.9519 νsl f = 0.1 1000 13 451.2929
2000 13 536.3975 1500 15 410.3765
3000 14 464.8827 2000 16 391.1545
4000 15 429.7095
8000 16 379.3055

Table 5.12: The change of the boosting effects on the gamboostLSS model fitting with and without transfor-
mation of the SST data at buoy 1.

νsl f mstop Submodel without transformation Submodel with transformation Effect
0.01 20000 15 15 equal
0.02 5000 15 14 decrease
0.03 4000 15 15 equal
0.04 3000 15 15 equal
0.05 2000 15 13 decrease
0.1 2000 15 16 increase

approach to model based on assessment of time covariates (annual and seasonal effects).

Considering time covariates in the model can be found in Chapter 3 and technically ap-

proach in the Chapter 4, whereas regarding time-autocorrelation is provided in detail in

Chapter 5. A cyclic trend represents to seasonal effect while a non periodic long term trend

represents annual effect. We can see clearly both trends at buoys 1, 2 and 3 with or without
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transformation of rainfall in the gamboostLSS and gamboostLSS-AR(1) models fitting as

seen in local model fitting.

Further transformation of rainfall in the gamboostLSS model does not affect on smooth-

ing of global fitting of the SST data as seen in Figure 5.30. However, the transformation

gives effect to increase the number of submodel and decrease mstop as depicted in Figures

5.29 and 5.31.

Figure 5.30: GamboostLSS model fitting without transformation in boosting parameters, νsl f = 0.01 and
mstop = 15000 (left), and with transformed rainfall in the ν = 0.01 and mstop = 11000 of the SST data at buoy
1 (right).

Figure 5.30 illustrates the global fitting of gamboostLSS model with different control

boosting at the buoy 1 in detail as seen in Table 5.10, it mainly produces 15 submodels. It

is clearly visible that the curve has a long gap from 2008 to 2010. This illustrates SST data

with regular pattern on 2006 to 2007 period and irregular pattern on 2010 to 2012 period.

The other results which can be seen in Figure 5.30, show similar pattern and non smooth

of the global fitting. It means that the transformation of rainfall covariate does not affect in

gamboosLSS model fitting.
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Figure 5.31: Local fitting by gamboostLSS models with transformation of the SST data at buoy 1 gives 16
submodels.

In Figure 5.31, we can refer in detail of explanation as captured in Figure 5.29. Fur-

thermore, there are some advantages of transformed rainfall covariate in the gamboostLSS

model fitting. They are as follows:
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a) it can reduce the final risk value;

b) it sometime reduces number of submodels, however, it sometimes increases the

submodels, depending the complexity of the data structure;

c) it can change the patterns of rainfall covariate itself (see Figures 5.29 and 5.30) and it

does not change the pattern of another covariates, includes time covariates.

d) it can accelerate the fitting process;

e) it gives many combinations between νsl f and mstop on the control boosting parameters

which provides many solutions of the model fitting, (see Tables 5.10 and 5.11).

f) it can accelerate to reach optimal submodel in model fitting (see Figures 5.29 and

5.30).

5.6.2 The Results of GamboostLSS Fitting Model at Buoy 2

Here, we specifically present the gamboostLSS fitting at buoy 2 where the numbers of data

observations are the largest, i.e 2066, this position is explained in the previous section. The

global and local model are captured differently. Figures 5.32, 5.33, and 5.34 illustrate the

local and global models fitting of SST data at buoy 2.

5.6.2.1 The GamboostLSS Fitting Model at Buoy 2 without Transformation

We observed gamboostLSS model fitting with different size of length factor νsl f = 0.01-0.05,

0.1 and different values of stopping iteration mstop for SST data at buoy 2. The result of this
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experiment is recorded and we selected the optimal number of submodels based on the

appropriate local and global fitting.

The large value of mstop to reach the optimal number of submodels 16, mainly for the

size of length factor νsl f = 0.01; 0.02; 0.03; 0.04; 0.05; 0.1, is the stopping iteration mstop=

90000; 50000; 30000; 25000; 20000; and 8000 respectively.

It is clearly visible that the pattern appears regularly from 2006 to 2007 and from 2009

to 2010, whereas the pattern appears otherwise from 2008 to 2009 and from 2011 and 2012.

In addition, the results display a short gap between the end of 2010 and the beginning of

2011. Although the values of control boosting νsl f and mstop are different, the similar pattern

of global fitting by using gamboostLSS models of the SST data at buoy 2 can be achieved.

This is clearly visualized in Figure 5.34.

Figure 5.32 illustrates the patterns and the trends of 15 submodels of local fitting. It is

shown that temperature and humidity have the similar trends in parameter µ but opposite

trends with rainfall in the same parameters. In addition, the rainfall shows three outliers in

both parameters, linear and smooth base-learners. Humidity has opposite curve in µ and σ

parameters, an upward and downward curves respectively, whereas temperature has the

similar curve between both parameters. Furthermore, the Nrdays covariate in parameter

µ shows the increasing trend that occurs before the gap, while the opposite trends occur

after the gap. Differently, for parameter σ, the increasing trend happens after the gap. In

the Doy covariate, furthermore, the µ parameter has a cyclic curve with a seasonal peak,

whereas σ parameter has the different trend.
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Figure 5.32: Local fitting of the gamboostLSS model without transformation of the SST data at buoy 2
produces 15 submodels.

5.6.2.2 The GamboostLSS Fitting Model at Buoy 2 with Transformation

As in the previous section, we used transformation to obtain the optimal submodels of the

gamboostLSS model and the appropriate local fitting at buoy 2. The optimum numbers of

submodels with transformed rainfall can be reached with lower values of mstop.

The following result describes the control boosting effects on gamboostLSS model with

transformation and without autocorrelation of the SST data at buoy 2. The model with
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transformation shows that the appropriate model fitting gives 16 optimal submodels. These

can be obtained by mstop values of 50000, 25000, 15000, 15000, 10000 and 5000 with νsl f = 0.01

to 0.05 and 0.1 respectively.

Figure 5.33: Local fitting of the gamboostLSS models with transformation of rainfall of the SST data at buoy
2 produces 16 submodels.
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Figure 5.33 presents the local model fitting of the SST data set at buoy 2. In general, it

consists of some figures which present the climate features such as temperature, humidity,

and rainfall, each of which represents submodel of gamboostLSS model. It can be seen that

the µ and σ parameters of humidity, temperature, and rainfall show similar curves which

are linear, regarding linear base-learner.

Interestingly, the µ and σ parameters of temperature have similar curves which are in-

crease trend in linear base-learner and unique with unimodal curve in smooth base-learner

respectively, whereas theµ and σparameters of humidity and rainfall have different curves.

The rainfall has the similar trend on the µ and σ curves. However, the transformation of

rainfall changes direction in both parameters of linear base-learner. On the other hand, it

has the downward curve in both parameters of smooth base-learner.

In this figure, we also captured the Nrdays and Doy covariates to determine the annual

and seasonal effects, respectively, of fitting model of the SST data. For Nrdays curve, the

µ parameter shows decrease and increase trends before the gap, then decrease after the

gap. It also has a peak before the gap. For the Doy covariate, the µ parameter shows

a unimodal curve, whereas the σ parameter has a sinusoidal curve. This curve is as an

implication of alteration difference penalty with entering a sinus term in P-splines as cyclic

penalties [36, 37, 45, 74]. It can be seen here that the transformation of rainfall reduced the

final risk as well as of mstop values (see Tables 5.13 and 5.14). This also affects the number

of submodels that are achieved.

Figure 5.34 shows the similar pattern of global fitting by gamboostLSS with and without

transformation. However, transformation of rainfall in the model does not have effects in

the global fitting of the SST data at buoy 2. The fitting also shows nonsmooth pattern.
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Table 5.13: The change of the boosting effects on final risk of the gamboostLSS model fitting with and without
transformation of the SST data at buoy 2.

νsl f mstop Submodel Final Risk Submodel Final Risk
without transformation with transformation

0.01 10000 13 1243.098 13 1240.930
0.02 10000 14 1096.310 15 1093.304
0.03 5000 13 1153.353 13 1150.646
0.04 5000 14 1096.191 15 1093.203
0.05 5000 14 1057.276 16 1054.233
0.1 3000 14 1027.071 16 1023.841

Table 5.14: The change of the boosting effects on mstop of the gamboostLSS model fitting with and without
transformation of the SST data at buoy 2.

νsl f mstop Submodel mstop Submodel
without transformation with transformation

0.01 40000 15 17000 15
0.02 20000 15 9000 15
0.03 20000 15 6000 15
0.04 10000 15 5000 15
0.05 10000 15 4000 15
0.1 4000 15 2000 15

Figure 5.34: GamboostLSS models without transformation in boosting parameters (νsl f = 0.01 and mstop =
90000) (left), and with transformed rainfall (νsl f = 0.01 and mstop = 50000) (right) for the SST data from
buoy 2.

5.6.3 The Results of GamboostLSS Fitting Model at Buoy 3

Lastly, we present the gamboostLSS fitting at buoy 3 where the number of data observations

are 1606.
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5.6.3.1 The GamboostLSS Fitting Model at Buoy 3 without Transformation

We observe different νsl f and mstop of control boosting parameters on the gamboostLSS

model fitting without ρ of the SST data at buoy 3. We summarize the results in the

following: the νsl f = 0.01 to 0.05, 0.1 with mstop= 30000, 20000, 10000, 10000, 10000, and

3000 respectively gives 15 submodels. The different size of length factor νsl f is used in

gamboostLSS models without transformation and the model achieved optimal submodels

with different mstop for the SST data fitting. However, the model includes inappropriate

model fitting, therefore we need to select the gamboostLSS models fitting.

Figure 5.35 describes the local fitting of gamboostLSS model at buoy 3. As can be

seen here, the µ parameters of temperature and humidity have similar trends. Similarly,

the σ parameters of temperature, humidity, and rainfall have the same curves which are

linear, regarding the linear base-learner. In contrast, the σ parameters of temperature and

humidity have opposite curves. The rainfall covariate in the µ and σ parameters for linear

and smooth base-learners show increase trend and downward curve with three outliers.

The µ and σ parameters of gamboostLSS model show that temperature, humidity, and

rainfall have similar trends. Temperature and rainfall have similar curves onµ andσ curves,

whereas humidity has opposite curves on both curves. The annual effects increase before

and after the gap, and the peak occurs at seasonal term on µ parameter. Temperature and

humidity have similar smooth curves on µ, but different patterns on σ curve for humidity.

In Nrdays covariate, increasing trend is clearly visible for the µ parameter, whereas for σ

parameter, the curve forms a sinusoidal wave. For Doy covariate as well as the µ parameter,

the curve forms a bimodal.
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Figure 5.35: Local gamboostLSS model fitting of the SST data from the buoy 3 displays 16 submodels in
boosting parameters (νsl f = 0.1 and mstop = 3000).

In our investigation, time effects in gamboostLSS model fitting with transformation

shows the similar pattern. The annual and seasonal effects have the similar pattern in gam-

boostLSS models fitting without transformation. It means that the pattern of time effects

and global fitting by different control boosting parameters does not change in gamboostLSS

models fitting without transformation. The result shows that time effects in local model
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fitting can be fitted by using fixed size of length factor and different stopping iteration.

5.6.3.2 The GamboostLSS Fitting Model at Buoy 3 with Transformation

Similarly, we consider the size of length factor and different stopping iteration parameters

to observe control boosting effects with respect to gamboostLSS model fitting for the SST

data at buoy 3. The result of this experiment is as follows: the νsl f = 0.01 to 0.05, 0.1 with

mstop= 30000, 20000, 10000, 10000, 10000, and 3000 respectively for 15 submodels.

Figure 5.36: Local fitting by gamboostLSS model of the SST data from buoy 3 displays 15 submodels.
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Transformation of rainfall covariate in the µ and σ parameters for linear and smooth

base-learners show increase trend and downward parabolic curve as seen in Figure 5.36.

Transformation of rainfall in the gamboostLSS model by using the same parameters νsl f

and mstop, gives smaller number of submodels and final risk values compared to the one

without transformation.

Figure 5.37: GamboostLSS model fitting without transformation in boosting parameters: νsl f = 0.1 and
mstop = 3000 (left) and with transformation of the SST data from buoy 3 (νsl f = 0.1 and mstop = 3000) (right).

The global model fitting as captured in Figure 5.37 shows similar patterns. Both models

have the same boosting parameters and different approaches (with and without transfor-

mation). The effect of control boosting in gamboostLSS model fitting with transformation

shows that the optimal number of submodels can be achieved with lower mstop compared

to before transformation.

5.6.4 Similarities Time Effects by GamboostLSS Model Fitting at Buoys

Here, we investigated the similarity of the time of µ and σ parameters as the effect of

techniques with and without using transformation of rainfall at buoys 1, 2, and 3.
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5.6.4.1 Similarities Time Effects by GamboostLSS Model Fitting at Buoys 1, 2, and 3

Without Transformation

We present the results of time similarities without using transformation of rainfall in

gamboostLSS model fitting.

Figure 5.38: The annual and seasonal patterns of the µ and σ parameters at buoys 1, 2, and 3 without
transformation using the same specification gamboostLSS model.

Figure 5.38 illustrates the cyclic curves and unimodal of the seasonal patterns. The

seasonal effects of the σ parameter for all buoys show a similar curve. The annual effects

of the µ and σ parameters of the smooth base-learner are vary. However, it shows the

increasing trend at buoy 3 before and after the gap on the µ parameter.
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Figure 5.39: The annual and seasonal patterns of the µ and σ parameters at buoys 1, 2, and 3 without
transformation using the different specification gamboostLSS model.

Figure 5.39 describes annual and seasonal patterns. On the µ and σ curves, it shows the

different pattern for annual effects and similar pattern for seasonal effects, such as bimodal

curve in µ parameter for buoys 2 and 3 and as letter ”V” in σ parameter for all buoys.

5.6.4.2 Similarities Time Effects by GamboostLSS Model Fitting at Buoys with Trans-

formation

In this section, we discuss the results of time effects similarity by using transformation in

gamboostLSS model fitting. We recorded them graphically as seen in Figure 5.40. Here,

we displayed the results as two parts, the similarities of the seasonal patterns at buoys 2

and 3 on the µ parameter, and the ones at buoys 1 and 2 on the σ parameter.
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Figure 5.40: The annual and seasonal patterns of the µ and σ parameters at buoys 1, 2, and 3 with
transformation using the same specification gamboostLSS model.

For µ parameter, the seasonal pattern forms the unimodal curve and it has one peak.

On the other hand, for σ parameter, it has a slightly different trend at beginning of the

seasons.

We conclude that the seasonal pattern of the same specification of the gamboostLSS

models, has a unimodal form and unique pattern for annual effects on the µ and σ parame-

ters. This is different from the seasonal pattern of different specification of the gamboostLSS

models as can be seen in Figure 5.41. In this figure, the seasonal patterns at buoys 2 and 3

show a bimodal curve on the µ parameter. On σ parameter, it does not form such a curve,

however, it only has similar patterns. In addition, the annual seasons of buoys 2 and 3

are vary smoothing, The similarity of the seasonal effects, however, occurs only on param-
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Figure 5.41: The annual and seasonal patterns ofµ and σ parameters at buoys 1, 2, and 3 with transformation
using different specifications gamboostLSS models.

eter σ for buoys 1, 2, and 3. For further works, we suggest to use different specification

gamboostLSS model fitting with transformation when the SST data have different patterns.

5.6.5 Application of GamboostLSS-AR(1) Model Fitting with Autocor-

relation Coefficient ρ

In this subsection, we investigate the application of gamboostLSS-AR(1) to the global model

fitting of the three data sets which are given in Model 5.6.5. In our experiments, we used

the different values of autocorrelation coefficient, ρbuoy−1 = 0.8477007, ρbuoy−2 = 0.8835944,

and ρbuoy−3 = 0.9466932, for each data set of the buoys. The results are depicted in Tables
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and Figures in this subsection. The figures show that gamboostLSS-AR(1) model fitting is

achieved for these values of ρ’s.

Model = gamboostLSS(SST ∼ bols(int, intercept = FALSE)+

bols(Temperature, intercept = FALSE)+
bols(Humidity, intercept = FALSE)+
bols(Rain f all, intercept = FALSE)+
bbs(Temperature, center = TRUE, knots = 20, d f = 1, degree = 3, di f f erences = 2)+
bbs(Humidity, center = TRUE, knots = 20, d f = 1, degree = 3, di f f erences = 2)+
bbs(Rain f all, center = TRUE, knots = 20, d f = 1, degree = 3, di f f erences = 2)+
bbs(Dayo f year, d f = 1.01, cyclic = TRUE, boundary.knots = c(1, 365))+
bbs(Nrdays, d f = 2.1, degree = 2, knots = 40),
f amilies = GaussianLSS(),
control = boostcontrol(mstop = 1000,nu = 0.1, trace = TRUE), data = databr)

5.6.6 The Results of GamboostLSS-AR(1) Fitting Model at Buoy 1

We present the gamboostLSS-AR(1) fitting model with and without transformation of

rainfall of the SST data at buoy 1.

5.6.6.1 The GamboostLSS-AR(1) Fitting Model without Transformation at Buoy 1

We consider different values of the size of length factor νsl f = 0.1, and from νsl f = 0.01 to

0.05 with step 0.01. We also consider different values of the stopping iteration mstop of the

control boosting parameters in the gamboostLSS-AR(1) models fitting for the SST data at

buoy 1. The result of this experiment is summarized in the following: fixed νsl f = 0.01 to

0.05, 0.1 with different mstop = 30000, 15000, 10000, 6000, 5000, and 3000 respectively. In this

result, we choose 13 submodels to obtain the appropriate model in global and local fitting.

This selection is for all of ν parameters with different mstop. The result of particular size of

length factor νsl f = 0.01 in global fitting can be seen clearly in Figure 5.44.
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Figure 5.42: Illustration of 13 submodels of the gamboostLSS-AR(1) model fitting without transformation
for the SST data at buoy 1.

In Figure 5.42, the rainfall forms unimodal curve smoothly and linearly, while humidity

and temperatures have a variety of curves. More specifically, the µ and σ parameters of

gamboostLSS-AR(1) model show that the humidity and rainfall have opposite trends. The

humidity and rainfall shows a downward curve and the temperature shows an upward

curve on the σparameter. The temperature and humidity have the similar downward curve

on the σparameter. The interpretation of this figure is that the annual effects decrease before

the gap and increase after the gap on the parameters µ and σ. The seasonal effects show a

sinusoidal wave on µ and σ parameters.
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5.6.6.2 The GamboostLSS-AR(1) Fitting Model with Transformation at Buoy 1

We present gamboostLSS-AR(1) model fitting with transformation of the SST data at buoy

1, firstly, we used the νsl f = 0.01 to 0.05, 0.1 with different mstop= 25000, 15000, 10000, 7000,

5000, and 3000 respectively. Secondly, we apply this result to get the global and local fitting

which are visualized in Figures 5.43 and 5.44. Thirdly, we summarized as in Table 5.15.

The interesting one of this table is that we can clearly see the appropriate model based on

the 13 submodels.

Table 5.15: The change of the boosting effects on mstop of the gamboostLSS-AR(1) model fitting with and
without transformation of the SST data at buoy 1.

νsl f mstop Submodel Final Risk mstop Submodel Final Risk
without transformation with transformation

0.01 30000 13 411.1054 25000 13 418.8557
0.02 15000 13 411.0993 15000 13 405.3620
0.03 10000 13 411.0888 9000 13 413.2136
0.04 6000 13 427.2254 7000 13 410.5385
0.05 5000 13 424.3410 5000 13 418.8191
0.1 3000 13 410.9750 3000 13 405.3114

Figure 5.43 shows the local fitting of gamboostLSS-AR(1) model fitting with transforma-

tion. The humidity and rainfall have similar trends in the µ parameter but it has different

trends in the σ parameter. The rainfall has a bimodal curve in the µ parameter. It reaches

a peak and off seasons in the σ parameter as the seasonal effects in the µ parameter for

smooth base-learner. In the σ parameter, the humidity and rainfall have opposite trend

for linear base-learner. For annual effects show decrease before the gap and increase after

the gap in both parameters, whereas the seasonal effects show a sinusoidal wave in the σ

parameter. Differently, in Figure 5.43, on µ parameter, the rainfall forms bimodal curve,

while on σ parameter, the rainfall forms a sinusoidal curve. It is obvious that the time

covariate does not change for both with and without transformation.
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Figure 5.43: Illustration of 13 submodels of gamboostLSS-AR(1) model fitting with transformation of rainfall
for the SST data at buoy 1.

Figure 5.44: Global fitting for the SST data from buoy 1 shows similar patterns of the gamboostLSS-
AR(1) models without transformation (ν=0.01 and mstop=30000) (left) and with transformation (ν=0.01 and
mstop=25000)(right).
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Different mstop and fixed νsl f parameters in the gamboostLSS-AR(1) model do not change

pattern of the global fitting as captured in Figure 5.44.

5.6.7 The Results of the GamboostLSS-AR(1) Fitting Model at Buoy 2

In this subsection, we present the gamboostLSS-AR(1) model fitting with and without

transformation of the SST data at buoy 2.

5.6.7.1 The GamboostLSS-AR(1) Fitting Model without Transformation at Buoy 2

We observed different values of the νsl f = 0.1, 0.01 to 0.05 and mstop parameters of the control

boosting in the gamboostLSS-AR(1) models fitting for the SST data at buoy 2. In the results

of observation, we recorded that the optimal number of submodels reach 16 where the νsl f =

0.01 to 0.05, 0.1 with mstop= 110000, 60000, 40000, 30000, 25000, and 15000 respectively.

Figure 5.45 displays the parameters µ and σ of the gamboostLSS-AR(1) model showing

that temperature and rainfall have a similar trend. The temperature and humidity have

opposite linear effects in the µ and σ parameters. The peak of annual effects occur around

the gap and decrease after the gap in the µ parameter. The temperature has a similar curve

such seasonal effects of the (Doy) covariate in the µ parameter. Decreasing of annual effects

occur before the gap and steeply increase after the gap in the σ parameter. The peak effects

occur at the seasonal term in the µ parameter and decrease in the σ parameter.
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Figure 5.45: Local fitting using gamboostLSS-AR(1) model for the SST data at buoy 2 displays 12 submodels.

5.6.7.2 The GamboostLSS-AR(1) Fitting Model with Transformation at Buoy 2

We reported gamboostLSS-AR(1) model fitting with transformation of the SST data at buoy

2 reach optimal number of submodels as follows: the fixed νsl f = 0.01 to 0.05, 0.1 and dif-

ferent mstop = 80000, 40000, 25000, 20000, 15000, and 7000 respectively. If we compare to

without transformation in the same νsl f , then gamboostLSS-AR(1) model fitting with trans-

formation can significantly reduce the mstop values to obtain optimal number of submodels

and appropriate model fitting. We used this report to get the global and local fitting which

are displayed in Figures 5.46 to 5.47.
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Figure 5.46: Local model fitting of the SST data at buoy 2 using gamboostLSS-AR(1) model and transformed
rainfall describes the optimal number of submodels.

Figure 5.47: An illustration of the gamboostLSS-AR(1) model fitting without transformation (left) and the
model with transformed rainfall of the SST data at buoy 2 (both models in the ν = 0.01 and mstop = 60000
parameters) (right).

Figure 5.47 shows appropriate global fitting of the SST data at buoy 2 using gamboostLSS-
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AR(1) model. The global model fitting describes the pattern with two year intermittent

and a seasonal peak.

Removing time-autocorrelation and transformation in the gamboostLSS-AR(1) models

fitting gives smooth annual and seasonal effects. These effects have the similar patterns

given fixed νsl f and different mstop values in the control boosting parameters.

5.6.8 The Results of the GamboostLSS-AR(1) Fitting Model at Buoy 3

In this subsection, we specifically present the gamboostLSS-AR(1) model fitting with and

without transformation of rainfall at buoy 3. The global and local model are captured

differently.

5.6.8.1 The GamboostLSS-AR(1) Fitting Model without Transformation at Buoy 3

To assure fitting process comparability, we set the νsl f = 0.1, 0.01 to 0.05 and selected mstop

parameters of the control boosting in gamboostLSS-AR(1) models fitting for SST data at

buoy 3. The results are depicted as follows: the νsl f = 0.01 to 0.05, 0.1 with mstop= 90000,

50000, 30000, 22000, 18000, and 9000 respectively.

Figure 5.48 shows annual and seasonal patterns in the µ and σ parameters of the

gamboostLSS-AR(1) model with transformation of rainfall. Different stopping iteration

mstop values and fixed the size of length factor νsl f in the gamboostLSS-AR(1) model fitting

produces the similar patterns of time covariates. We suggest to use this specification to

obtain appropriate model fitting for the SST data from buoy 3.
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Figure 5.48: Local model fitting with transformation for the SST data at buoy 3 gives 15 submodels in
boosting parameters, νsl f = 0.01 and mstop = 90000.

5.6.8.2 The GamboostLSS-AR(1) Fitting Model with Transformation at Buoy 3

Similar approach is implemented to fit the SST data with transformation. We also mod-

elled each size of length factor νsl f = 0.01 to 0.05, 0.1 with different mstop= 50000, 25000,

20000, 15000, 10000, and 5000 respectively. We consider the first 15 submodels to obtain

appropriate local and global fitting.

In Figure 5.49, the gamboostLSS-AR(1) model fitting shows that the humidity and rain-
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Figure 5.49: Local model fitting with transformation for the SST data at buoy 3 displays 15 submodels (νsl f
= 0.01 and mstop = 90000).

fall have opposite trends in the µ and σ parameters for linear base-learner. The temperature

and humidity have similar smooth curve in the parameters µ and σ. The different pattern

of the rainfall is an upward curve in the σ and a wave curve in the µ parameters. A trend

of annual effects was stable before the gap and increases after the gap in the parameter

µ, whereas in the parameter σ it shows decrease and increase before the gap and slightly

decrease and increase after the gap. The seasonal effects shows a bimodal curve for µ

parameter and seen as letter ”V” for σ parameter.
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Figure 5.50: GamboostLSS-AR(1) model without transformation (left) and with transformation (right), both
models show similar patterns of global fitting for the SST data at buoy 3 (νsl f = 0.01 and mstop = 90000).

Transformation effect of rainfall in the gamboostLSS-AR(1) model fitting of the SST data

increased the number of submodels. Figure 5.50 describes the appropriate global fitting

using gamboostLSS-AR(1) for both models.

5.6.9 Similarities Time Effects of GamboostLSS-AR(1) Model Fitting

In this subsection, we present the similarity of the time effects in the µ and σ parameters as

the effect of with and without transformation of the SST data at buoys 1, 2, and 3.

5.6.9.1 Similarities Time Effects by GamboostLSS-AR(1) Model Fitting at Three Buoys

without Transformations

We investigated time covariates based on different specification of the gamboostLSS-AR(1)

models fitting without transformation for buoys 1, 2, and 3. The results are recorded in

Figure 5.51. In this Figure 5.51, we applied different values of the size of length factor νsl f

and the stopping iteration mstop parameters to obtain appropriate local fitting. We can see

that the similar pattern of seasonal effect in the σ parameter is for all buoys, whereas the
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Figure 5.51: The annual and seasonal patterns using gamboostLSS-AR(1) models in the µ and σ parameters
at buoys 1, 2, and 3 without transformation of rainfall.

similar pattern of seasonal effect in the µ parameter is for buoys 2 and 3. In addition, to

remove autocorrelation and transformation of rainfall do not change the patterns of time

covariates.

5.6.9.2 Similarities Time Effects of GamboostLSS-AR(1) Model Fitting at Three Buoys

with Transformation

Here, we experimented time covariates over different specification of the gamboostLSS-

AR(1) models with transformation for buoys 1, 2, and 3. The results are recorded in Figures

5.51 and 5.52. In both figures, the annual and seasonal patterns do not change for both

with and without transformations in the µ and σ parameters.
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Figure 5.52: The annual and seasonal patterns using gamboostLSS-AR(1) models in the µ and σ parameters
at buoys 1, 2, and 3 with transformation of rainfall.

5.7 Marginal Prediction Interval of GamboostLSS-AR(1)

In the previous section, we have discussed the annual and seasonal patterns in local fitting.

The results explained on Section 5.6 need be to investigated further, particularly to predict

the interval of time respect to SST. Therefore, a tool such as marginal prediction interval

(MPI) is needed for this aim. In subsections 5.7.1 and 5.7.2, we presented MPI of the

gamboostLSS models and subsections 5.7.3 and 5.7.4 for MPI of the gamboostLSS-AR(1),

both models without and with transformation.

5.7.1 MPI of the GamboostLSS Models without Transformation

MPI was investigated in [20,86], for GAMLSS without considering autocorrelation in model

fitting.
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Here, we investigated MPI with autocorrelation at lag 1 of gamboostLSS-AR(1) model

fitting. We particularly consider the median prediction to determine MPI. We applied

gamboostLSS-AR(1) model in SST data using similar approach as explained in Algorithm

5.6.5. In this section, we investigate MPI of gamboostLSS models for both with and without

transformations at all buoys. We used the fixed values of νsl f and mstop parameters. All

results are presented graphically, whereas they numerically are not shown. It can be seen in

the figures that the resulted models, which have different values of the step of length factor

νsl f and the stopping iteration mstop, have the similar MPI patterns. Further we can see these

similarities with step of length factor νsl f = 0.01 to 0.05, 0.1 and different stopping iteration

mstop. This is interesting because the different values of control boosting parameters do not

change MPI patterns. However, we do not present plots of the MPI patterns because they

are structurally similar to those obtained from the gamboostLSS model fitting. Further

in our investigation, we consider 80% and 95% of confidence intervals for the MPI of the

SST data for all buoys. The results show that the prediction of interval for the seasonal

effects are appropriate fitting. It means that most of the data are covered in the range of

the interval. This can be seen in Figure 5.53. The curves of MPI show the pattern of change

over time (annual and seasonal effects) of the SST data. The MPI with 80% and 95% of

confidence intervals gives insight that makes it possible to predict the level (in Celcius) of

the SST data of annual and seasonal times ahead and to put realistic confidence bounds

interval around those predicted. In order for the pattern of change around median of

annual effects using gamboostLSS models from highest are SST data at buoys 2, 1, and 3,

whereas the pattern of change around median of seasonal effects from highest are SST data

at buoys 3, 2, and 1.
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(a) (b)

(c) (d)

(e) (f)
Figure 5.53: MPI of the SST data fitting at buoys 1, 2, and 3 shows a similar pattern for seasonal effects
using gamboostLSS models without transformation in the size of length factor νsl f = 0.01.
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Figures 5.53 show the highest of the seasonal peak on buoy 3 (figure f) as seasonal effect,

however, the lowest has annual effect is shown at buoy 3 (closer to median line), (figure

e). It means that buoy 3 has low effect in annual scale (long term) but not for the seasonal

scale (short term). Moreover, the lowest seasonal effect is shown at buoy 1, whereas the

highest annual effect is shown at buoy 2. In general, three buoys show the similar seasonal

patterns with peak season around April and the second peak around October. All of these

are interpreted as prediction interval over time in the gamboostLSS without transformation

and without removing autocorrelation.

We discuss MPI of gamboostLSS models for both with and without transformations,

particularly at all buoys. Similarly, 80% and 95% of confidence intervals for the MPI of

the SST data at all buoys are as captured in Figures 5.53. The behavior of these figures

are similar to the ones which are in the previous section. The annual effect and seasonal

effect, for instance, have similar pattern although νsl f values are different. Interestingly, the

seasonal effect curves forms bimodal and the fit of the annual effect seems to be shifted

upwards. The MPI of annual effect at buoy 2 higher than MPI of annual effect at buoys 1

and 3.

Here, besides the figures have the same behavior as mentioned in the previous section,

the seasonal effect curves in this particular buoy, have bimodal curve which are higher

than the ones which are in buoy 2. Visibly, they covered more data than the previous one.

It means that MPI in buoy 3 is more precisely fitting than in both buoys 1 and 2.

We conclude here that MPI using gamboostLSS models for the annual and seasonal

effects of the SST data at buoy 2 is wider than MPI at both buoys 1 and 3. This is seen

graphically, that the annual curves at buoys 1 and 3 have longer gap than the ones at buoy
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2. In addition, the number of observations at buoy 2 is larger than those in buoys 1 and 3.

5.7.2 MPI of the GamboostLSS with Transformation

In this section, we observed MPI of gamboostLSS models with transformation for buoys

1, 2, and 3. The results of all buoys are captured in Figures 5.54. The results of MPI of the

gamboostLSS models with transformation of the SST data at buoy 1, as seen in Figures 5.54

(a) and (b), show similar pattern with MPI of the same models without transformation as

captured in Figures 5.53. In this section, we also observed MPI of the gamboostLSS models

fitting with transformation of the SST data at buoy 2. The results of the MPI are captured

in Figures 5.54 (c) and (d).

The results of MPI of the gamboostLSS models fitting with transformation of the SST

data at buoy 3 are displayed in Figures 5.54 (e) and (f). The annual effect seems smooth

fitting and to be shifted upwards, whereas the seasonal effect seems a bimodal form.

In general, the curves of annual and seasonal effects, as a result of applying MPI

in gamboostLSS models with transformation, show slightly wider than the one without

transformation. Transformation effect in MPI can enhance wider prediction interval of the

annual and seasonal effects. This is more clearly seen in Figures 5.54 (e) and (f) which are

the results at buoy 3. We do not explain in detail for each figure here. We suggest to refer

to the previous section for the explanation. We conclude here that MPI of gamboostLSS

with transformation is better than MPI of gamboostLSS without transformation in terms

of the prediction of interval.
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(a) (b)

(c) (d)

(e) (f)
Figure 5.54: MPI of the SST data fitting at buoys 1, 2, 3 shows a similar pattern of seasonal effects using
gamboostLSS models with transformation in the size of length factor νsl f = 0.01.
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5.7.3 MPI-AR(1) of the GamboostLSS-AR(1) Models without Transfor-

mation

We investigated MPI of gamboostLSS-AR(1) which aim to remove autocorrelation in SST

data. This approach is called MPI-AR(1). Similar to the previous section, we discuss MPI-

AR(1) with and without transformation to compare the prediction of the interval. We also

discuss MPI-AR(1) at buoys 1, 2, and 3. We compute the results of MPI-AR(1) for the SST

data at three buoys, using autocorrelation coefficient ρ’s which are found in Section 5.6.5.

We use step of length factor νsl f = 0.01 to 0.05, 0.1 and different stopping iteration mstop

to obtain MPI-AR(1) for each buoy. It can be seen in the figures that the resulted models

have different values of the νsl f and mstop, have the similar MPI-AR(1) patterns. This is

also interesting because the different values of control boosting parameters do not change

MPI-AR(1) patterns. However, we do not present plots of the MPI-AR(1) patterns because

they are structurally similar to those obtained from the gamboostLSS-AR(1) model fitting.

Furthermore, the results are presented using the size of length factor νsl f = 0.01 as

depicted in Figures 5.55. As can be seen from the Figures that the annual effects curves (see

Figures 5.55, (a), (c), (e)) seem wider when the data are available. In other words, the curves

of the missing data (gap) are closer to each other. The seasonal effects, on the other hand,

remains the same as in MPI without AR(1). MPI-AR(1) of the seasonal effects at buoys 2

and 3 show a bimodal curve. In addition, Figures 5.55 (e) showing the unique patterns are

seen in between the gap. The results of MPI-AR(1) without transformation of the SST data

at buoy 1, 2, 3 are depicted in Figures 5.55 (a)-(b); (c)-(d); and (e)-(f) respectively. Removing

autocorrelation effect on MPI-AR(1) without transformation shows significant effects.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.55: MPI-AR(1) of the SST data fitting at buoys 1, 2, and 3 using gamboostLSS-AR(1) models
without transformation, in the size of length factor νsl f = 0.01.
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5.7.4 MPI-AR(1) of the GamboostLSS-AR(1) with Transformation

To determine smoother curves of MPI-AR(1), we need to transform the rainfall data. In

this experiment, we used the same autocorrelation coefficient ρ’s at buoys 1, 2, and 3. We

used the fixed size of length factor νsl f and different stopping iteration mstop values. We

compute the results of MPI-AR(1) with transformation for the SST data at three buoys, 1,

2, and 3, using autocorrelation coefficient ρ’s which are found in Section 5.6.5.

As can be seen in the Figures, the annual effects curves (see Figures 5.56, (a), (c), (e))

seem wider when the data are available. In other words, the curves of the missing data

(gap) are closer each other. In addition, Figures 5.56 (a), (c), (e), show that the unique

patterns are seen in between the gap for annual effects, whereas for the same figures (b),

(d) and (f) show MPI-AR(1) with transformation cover of the available SST data.

The results of MPI-AR(1) at buoy 1 are displayed in Figures 5.56 (a) and (b). The

results show similar curves as those of MPI-AR(1) without transformation. The results

of MPI-AR(1) at buoy 2 are presented in Figures 5.56 (c) and (d), and the ones at buoy 3

are presented in Figures 5.56 (e) and (f). They also have the same patterns as MPI-AR(1)

without transformation at the same buoy.

We conclude that the transformation of rainfall can reduce the stopping iteration (mstop)

values more significantly, compared to the one without transformation. Reduce stopping

iteration can affect in decrease empirical risk. We also conclude that the investigation of

MPI-AR(1) at buoy 3 is more visible in terms of the model fitting results, compared with

buoys 1 and 2. However, the seasonal effects do not seem to be better since the curve did

not follow the pattern of data. Particularly, the curve did not reach the peaks of the data.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.56: MPI-AR(1) of the SST data fitting at buoys 1, 2, and 3 using gamboostLSS-AR(1) models with
transformation, in the size of length factor νsl f = 0.01.
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5.8 Summary

The purpose of this chapter is to present gamboostLSS-AR(1) models for the SST data

fitting. The proposed models take into consideration the autocorrelation in the SST data.

We applied generalized differencing technique to reduce time autocorrelation in the SST

data. The gamboostLSS-AR(1) and gamboost-AR(1) models are presented for the SST data

fitting. Our experimental results demonstrate that gamboostLSS-AR(1) models provide

more appropriate data fitting with a larger number of submodels than gamboost-AR(1)

models with or without transformation.

From our experimental results, it can be concluded that by removing autocorrelation

from the data, an appropriate model fitting can be achieved with reduced CV-risk. This

can be done by using generalized differencing and/or transformation covariate of the SST

dataset. Application of the gamboostLSS-AR(1) models for the SST data fitting has a

similar pattern between with and without transformation. The results of transformation

of rainfall in the gamboostLSS-AR(1) model show a reduced final risk. In addition, the

transformation also gives a larger number of submodels in the local model fitting than the

non-transformed data for rainfall.

In general, the autocorrelation leads to misfitting of the data, particularly in sparse data.

The model fitting process becomes more complex in the presence of autocorrelation in the

data. Moreover, the fitting process becomes bias due to time sequence in correlated data.

Optimized cut-offs can be one way to reduce bias in the fitting process. Local fitting can

also be considered to gain information for global model fitting. Removing autocorrelation

contributes to reducing bias in the model. This evidence shows that gamboostLSS model
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fitting by AR(1) approach can help to obtain an appropriate SST model.

Furthermore, we observed that removing autocorrelation errors with an AR(1) model

has a large impact on global and local model fitting and also on modelling the error, es-

pecially derived from time covariates. The gamboostLSS-AR(1) models have powerful

procedure to distinguish between plausible alternative solution in model fitting. There-

fore, our suggested gamboostLSS-AR(1) models are an advanced technique for removal

autocorrelation. The proposed model can also be applied to the other complex data sets. It

is especially useful in situation where the data have various gaps, sparsity, irregular peaks

and autocorrelation.

Furthermore, we proposed gamboostLSS-AR(1) models. We applied the model into

the SST data from three buoys of various positions. We compared the gamboostLSS-AR(1)

model with the existing gamboostLSS model at the buoys. The results show that the

gamboostLSS-AR(1) gives smoother model fitting than gamboostLSS models fitting of the

SST data.

We also investigated the application of MPI in both gamboostLSS and gamboostLSS-

AR(1), with and without transformations. In general, the 80% and 95% of confidence

interval for the MPI and MPI-AR(1) of the SST data for each buoy reveals similar patterns

of the annual and seasonal effects. The results show that transformation affects the range

of the MPI and MPI-AR(1) by using gamboostLSS and gamboostLSS-AR(1) models fitting.

The results of MPI-AR(1) are better than MPI in gamboostLSS model fitting for the SST

data. The fitting of MPI-AR(1) model can follow the pattern of the SST data smoother than

the fitting of MPI. From our investigation of MPI-AR(1) at buoy 3 is more visible in annual

compared with buoys 1 and 2. The seasonal effects, however, do not seem better since the
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curve did not follow the pattern of data, particularly, the curve did not reach the peaks of

the data. Therefore, we suggest to adjust the hyper-parameters to make the fitting better.

MPI-AR(1) can be reached by transformation and removing autocorrelation to estimate the

optimal prediction interval. For further work, we suggest to use MPI-AR(1) to determine

marginal prediction interval of time covariate in gamboostLSS model fitting by considering

autocorrelation.



Chapter 6

General Discussion

6.1 Introduction

In this chapter, we started our general discussion of some findings of specific methods for

linear to gamboostLSS-AR(1) models fitting of the sea surface temperature data. Although

assumption of these methods is different in structural term for the unknown regression

function, but they have the same assumption for Gaussian distribution in our experiment.

We presented seven related methods: linear regression models (LRM), generalized additive

models (GAM), GAMLSS, gamboost, gamboost-AR(1), gamboostLSS, and gamboostLSS-

AR(1) models as in Chapters 4 and 5.

From the experiment results, we are trying to delve into gamboostLSS-AR(1) models

fitting for SST data by considering autocorrelation through fitting performance. Typically,

the model fitting of the SST data will be appropriate when there is high appropriate time

effects in submodels (called local fitting). Although the model is not yet overall an optimal

model fitting, we have several interesting results associated with our experiment.

193
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6.2 Linear and Additive Models Fitting

In our experiment, we started by experimenting a simple model and small set of SST data.

M1 model is useful for preliminary identification of patterns and trends in the SST data

such as seasonal and annual effects as in Chapter 4 (see Figure 4.1 and 4.2) by using linear

regression model fitting. Further by fitting GAM (see Figure 4.5), gamboost (see Figures

4.6, 4.7, 4.11, and 4.12), gamboostLSS (see Figure 4.17), gamboost-AR(1) (see Figures 5.5,

5.7) and gamboostLSS-AR(1) models (see Figures 5.12 and 5.17) of the SST data at buoy 1

shows that seasonal effects demonstrates strong similarity pattern and trend as depicted

in (Figure 3 in [87]). This statistical evidence shows that different periods and positions,

between 1961-1990 and 2006-2012, and at 5oS-5oN, 150o-90oW in the Nino3 region in the

Pacific Ocean and at 4N90E in the Indian Ocean respectively can produce the same pattern

and trend of the SST data. Although our model is focused to obtain pattern and trend

of seasonal effects with respect to SST variability, whereas the model that represented in

Figure 3 in [87] is the same concern for seasonal effects but it related to magnitude of SST

data.

Therefore, we can use our model fitting albeit in small datasets, limited area and short

time period but the model can reveal annual cycle or seasonal effects, strong condition dry

and wet episodes with large data sets, long time period, and the larger area. Different scope

data from small to large can be used to gain models fitting with sophisticated method as

discussed (see Breiman [88]). The pattern and trend also shows that there is relationship

between condition of sea surface temperature in the Pacific and the Indian oceans. Although

it is a different time period and region (or called time-spatial), it has similarities and cyclic
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phenomena properties. In addition our model is more aesthetically smooth than the model

fitting as in (Figure 3 in [87]).

6.2.1 P-splines basis in various gaps

P-splines has 14 pros compared to similar class smoother (e.g. polynomial, cubic spline)

and handle fitting to semiparametric models [36]. This basis is adaptable to fit SST data with

our models used in the experiment, mainly in gamboost-AR(1) and gamboostLSS-AR(1)

models fitting. We assumed that hyper-parameters specification in continuous covariates

fixed, i.e., degrees of freedom is 1, the number of knots is 20 (default), degree is 3, and

differences is 2 (see Algorithm 5.6.5). We used this assumption to investigate practical

selection of hyper-parameters and also to easily observe patterns and trends of seasonal

and annual effects in the model fitting.

For base-learners with smooth functions we used the 2nd order differences, where

it is used as a penalty for continuous covariates that related to 2nd derivative of the

spline. Whereas degree of the regression P-splines is 3. The gamboostLSS-AR(1) model

can dampen nonsmoothness of the fit and interpolate the data in various gaps, where the

model used P-splines basis although we need efforts to reach the peaks of the SST data.

The results of this specification can capture time effects in local model fitting. However,

to obtain optimal performance in global model fitting then another setting for continuous

covariates is required.
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6.2.2 The Degrees of Freedom

Degrees of freedom is one of the hyper-parameters rapidly changing smoothness in

gamboostLSS-AR(1) model fitting. Each term of the additive model uses the degree of

freedom (df ) that correspondence to the number of parameters, where it associated with

trace of hat matrices. In [48] related to residuals stated that RSS is not adequate to become

a selector of the model, so that we used cross-validation risk to compute residuals, where

we also used in the hat matrix (see Section 3.3 Chapter 3, as refer in [45]).

We can see the number of df that used in GAM models fitting with and without trans-

formation (see Tables 4.11 and 4.14 in Chapter 4) is larger than gamboost models fitting (see

algorithm 2.3). Then the df values used in gamboost models is similar gamboost-AR(1)

models fitting (see Table 5.1 in Chapter 5) in the same scenario (with and without) trans-

formation. Whereas the df values used in gamboost-AR(1) models fitting is larger than in

gamboostLSS models (see sections 4.8.1.1 and 4.8.1.4 in Chapter 4). Similarly, the df values

used in gamboostLSS-AR(1) models fitting (see sections 5.4.4.1 and 5.4.5 in Chapter 5) is

smaller than in gamboostLSS models. Low df in the gamboostLSS-AR(1) models gives

less wigglines in the model, especially the df of time covariates before and after the gaps

reduces variance in the model.

6.2.3 The Knots

As our experiments cannot directly obtain the number of knots in gamboostLSS-AR(1)

model fitting with the use of P-splines basis, when the position of the knots are selected,

we use adjustment method. Previously we are not using knots in GAM model fitting due
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to longer computational time needed to get the df composition in the model. In addition,

the composition of df ’s already represents, the patterns and trends of time effects in the

GAM model fitting (see Section 4.5). Hence, in GAM model fitting we do not use knots

immediately.

Initially, we use 100 knots in gamboost models for Nrdays covariate. Then we increase

the number of knots about 20 till 140 in with and without transformation (see Section 4.6).

Similarly for GAMLSS and GAM models fitting, they have computational time problem.

We start by using knots (or called ps.interval) 20 for each covariate in the GAMLSS model

without transformation. Increasing knots 100 in the Nrdays covariate is to accommodate

the gaps of the global model fitting. This number of knots is also used in the location,

scale, and shape (LSS) functions. By increasing knots we can obtain changing positions

of the knots effects with respect to SST data fitting. Unfortunately, the model is still not

revealed to visualize submodels of time covariates. However, the experiment shows very

significant results to raise df and reduce AIC values (see Tables 4.19 and 4.20 as in Chapter

4).

Interestingly, the number of knots that were used in gamboostLSS model fitting is

lower than in gamboost and GAMLSS models fitting. In addition to low knots (40-60) in

the model fitting, effects of the knots in the model with and without transformation does

not change patterns and trends of time covariates in the µ and σ parameters (see Figures

4.18 in Chapter 4 and Appendix D.4). In addition, the number of knots (40-60) guaranties

flexibility of gamboostLSS-AR(1) models. The structure of the knot locations for SST data

consists of 40-60 equidistant grids points. Therefore, this specific range of knot values can

be used to obtain basis construction for appropriate model fitting of the SST data.
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6.2.4 Transformation and Stability

Transformation of the response can be used to stabilize the variance of the regression model

fitting [69,89]. Our study shows that stability of variance comes from transformation of the

rainfall covariate. Although our model shows that model diagnostic in Chapter 4 section

4.3 transformation of the response is suggested, in this experiment we are more focused to

explore covariates effects (i.e., time effects and rainfall covariate) with respect to sea surface

temperature variability. There are reasons to choose rainfall covariate to be transformed,

such as large of range value, leverages of the rainfall covariate, and large number of the

data are zero.

In other words, transformation effect gives stability in gamboostLSS-AR(1) models

fitting. Although, the experiment results show that global model fitting of SST data does

not reach the peaks fully. Transformation of rainfall can prevent outliers so that it is not

affecting SST model fitting. Transformation does change pattern and trend of rainfall itself

and it does not change another submodels in model fitting, for example, transformation

effects see Figures 5.29 and 5.31 in Chapter 5 from buoy 1. Therefore, temporary removal of

outliers is needed in addition to transformation before model fitting. Now we have three

scenarios related to outliers in model fitting of the SST data, i.e. transformation of rainfall,

temporary removal of outliers, and combination of both.

Further we need to localize or impute outliers whether they gives affects to global

and/or local models fitting. So that we can obtain structure of residual autocorrelation

AR(1) before and after localized outliers.

For P-splines base-learners in the continuous covariates we use degree of the regres-

sion spline 3, where the cubic model has bias from estimate an additional parameter, its
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prediction has slightly random variation so that less precise compared to fitting from the

quadratic model with degree of the regression spline 2.

6.2.5 Different Measurements

In observational experiment like SST data we found many different measurements on the

response and/or covariates (see Sections 1.1, 2.1 and 2.2 in Chapters 1 and 2 respectively).

Different measurements can be related to times, positions, tools, magnitudes, instruments,

scenarios, types and sizes of data, scales, and so on. These measurements are giving

variability effects to the data structure. Therefore, there is distribution of the response in

covariates effects.

Regarding variability effects we can reveal the data in the form of location (µ), scale (σ),

and shape (τ) parameters with and without transformation as seen in figures in Sections

5.4.4 and 5.6.5, Chapter 5. Therefore, there are variability in pre-fitting from the data

and in fitting process from hyper-parameters specification in the model. Consequently,

a procedure for pre-fitting of the data and current fitting is essential steps of the model

fitting process, see Section 2.3 in Chapter 2. GamboostLSS-AR(1) model can accommodate

various effects due to these differences.

6.3 Robustness of GamboostLSS-AR(1) Models

Autocorrelation AR(1) process in the gamboostLSS-AR(1) model fitting makes the model

more robust over time. Here, robust is in the context of structure best fitting in the majority

of the SST data. Outliers can affect the gamboostLSS-AR(1) model when anomalous data of
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rainfall covariate has large difference between minimum and maximum values for a large

number of observations. The evidence shows that this residual outlier is very small or has

insignificant effect on the LRM model (see Chapter 2, section 2.5 and 2.6), where by [90]

these outliers are include X- and Y-outliers, i.e. leverages and residuals respectively.

One of the advantages of AR(1) type in the gamboostLSS-AR(1) model fitting is con-

tributed in the development of robust model. Tables 5.8 and 5.15 (see Sections 5.4.5) and

5.6.6 in Chapter 5) show the same number of submodels with similar pattern on global

fitting, thus indicating that there is a constant conditional variance supported by the data

fitting via autocorrelation AR(1) model. Tables 5.8 and 5.15 in Chapter 5 show that there is

8 submodels of 1231 complete dataset and 13 submodels of 1460 complete dataset. Robust-

ness of gamboostLSS-AR(1) models depends on the number of submodels, autocorrelation

coefficients, hyper-parameters in the models and its complex data structure.

6.3.1 Boosting and Autocorrelation Effects

In addition to boosting and autocorrelation approaches, we use function estimation by time

effects approach in gamboost-AR(1) and gamboostLSS-AR(1) models fitting. The time ef-

fects is important variables in both models, but also the functional form of the dependence

on these variables. The implementation of this methodology provides a very broad investi-

gation into the properties of this approach in the context of extended gamboostLSS models

with autocorrelation.

Our research shows that presence of autocorrelation errors like AR(1) process through

gamboostLSS-AR(1) models fitting can reveal the annual and seasonal effects of the SST

variability. In this model, additive does mean that the model fitting is formed by an additive
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combination of base-learners with considering location, scale, and shape functions and also

autocorrelation AR(1). In [89] stated that standard deviation decreases when we consider

AR(1) to be computed in model fitting. In contrast, although the gamboostLSS-AR(1)

model is using several approaches, we can see that the SST data fitting physically is not

optimal fitting. Model fitting does not reach the irregular peaks, which implies indicator

of the model is not an optimal fitting performance.

We have coined these terms (gamboost-AR(1) and gamboostLSS-AR(1) models) because

our results apply to a group of estimation problems for autocorrelated data. While our

initial motivation for introducing the gaps were to achieve an optimal fitting, we found

that this framework also allows us to improve in reaching peaks in irregular data of the

associated methodology like with interaction among covariates and transformation of the

response. Note that to develop interaction function we suggested to avoid the effect

modifier for time covariates as highlihted in our experiment related to autocorrelation

errors AR(1) model.

6.4 Balance in GamboostLSS-AR(1) Model Fitting

The results obtained here suggest that the interaction among covariates are needed to

increase R-square in linear models fitting or deviance explained and decrease AIC in

additive models. There are several reasons to interact components, firstly, each additional

coefficient parameter estimated adds to the variance of the LRM model. Secondly, in

additive models, additional linear combination of estimators adds to the variance of the

model. By adding one or more functions via the interaction, it can increase deviance
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explained or decrease AIC values of the model. While the proportion of the variation in

the response variable can also be explained by the covariates. Interaction components can

be constructed by relationship between continuous covariates and/or between continuous

and time covariates. However, it does not guarantee that an additivity model provides the

best fit of the data [89].

Initially, we assume that climate data have relationship with each other and mutually

dependent, including sea surface temperature (see Chapter 1). In addition, there are similar

properties among climate features, for example, humidity and rainfall, where humid and

rain are related to dew and liquid of precipitation, respectively. Therefore, interaction

among climate features of SST data can be added in gamboostLSS-AR(1) models fitting, so

that they are given joint and individual effects in fitting process.

A balance between goodness of fit and parsimony of the gamboostLSS-AR(1) model is

needed. Although better fits data can be achieved by adding more functions (or parame-

ters), but simplicity and interpretability in detail also lead to more precise model fitting and

prediction. Moreover, in the model fitting, submodels selection are also needed to vari-

ance reduction and simplicity without less accuracy fitting. However, it leads to increased

bias. Boosting and AR(1) techniques can be used to fit, predict, and select of variables

simultaneously.

There are evidence to understand SST variability over time in the Indian Ocean by using

gamboostLSS-AR(1) models fitting. Although our experiments using small dataset and

limited period time, we obtain a benchmark model to deal with large dataset and longer

time period with complex data structure and high dimensional data. SST observation

shows that irregularity with various gaps of missing data can be dealt with fitting complex
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models such as neural networks as suggested in [91], yet this model cannot reveal LSS of

the data.

With the extension to identify pattern of time covariates in model fitting as in Section 4.2

Chapter 4, we can construct a regression tree instead of the stepwise regression. The reason

to construct the model is to handle large number of observation and high dimensional data

in finding the best composition of regression models, for instance, by 2p submodels where p

is the number of parameters in the stepwise regression and 2p− 1 sweeps in the regression

trees [92].

6.5 Seasonal and Annual Effects in GamboostLSS-AR(1)

Model Fitting from Different Buoys

For seasonality by SVM and NN have reported in [93], also both methods related to sea

surface temperature anomaly (SSTA) [94]. However, both methods only show smooth

curve fitting and not do consider location, scale and shape parameters.

As depicted in Figures 5.51 and 5.52 in Chapter 5 with and without transformation,

seasonal effects as shown at buoy 1 for µ and σ parameters where the sinusoidal curve

of sine function. Whereas at buoys 2 and 3 in µ parameter show first and second peak

seasons. This approach has pros not only to follow the pure sinusoidal curve but also it can

be constructed to follow data structure and complex nature. Flexibility of GAMLSS using

gradient boosting and P-splines basis with cyclic function can capture cyclic phenomena

like seasonal effects [20, 33, 36, 37, 45] as depicted in the mentioned parameters and prove

that gamboostLSS-AR(1) by considering autocorrelation is flexible model as well.
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From three different buoys position where the parameter µ of the seasonal effects show

that the highest peak season in the Indian Ocean for 2006 to 2012 period is around 100

days (on April) and the second lower peak season is at 300 days (on September). For

annual effects, the figures show similar increase after the gap at buoys 1 and 3 in µ and

σ parameters. In general, three buoys give information that the patterns and trends of

seasonal and annual effects of sea surface temperature, with and without transformation

of rainfall scenario by gamboostLSS-AR(1) model fitting do not change the patterns and

trends in LSS parameters. The variability of sea surface temperature of different buoys

represent that various positions and local weather between land and sea have similar

condition in seasonal and annual effects.

We found that by association ENSO phenomena via oceanic nino index (ONI) in the

Pacific Ocean (PO) as depicted in the Table from ggweather.com/enso/oni.htm is not inter-

pretable. However, when we association ENSO with variability of sea surface temperature

using annual effects via gamboostLSS-AR(1) models fitting is more interpretable. For ex-

ample, SST data from using buoy 1 in the Indian Ocean (IO) from 2006 to 2007 is weak El

Nino in the PO, 2007 to 2008 is moderate La Nina in the PO, previously similar of 2010 to

2011, and weak La Nina in the PO (see Figures 4.2 for linear model and 5.51 in µ and σ

parameters for gamboostLSS-AR(1) model). The 2007 to 2008 period has similar situation

with 2010 to 2011 period but it has different trends and directions. By visualizing the

variability of phenomena as represented with annual effects, they are more interpretable

than with the Table. Nevertheless, we still need more buoys to interpret this phenomena

via LSS parameters. Therefore, MPI-AR(1) models fitting can be used to predict future

levels of the SST data over time, albeit with various gaps, sparsity, irregular peaks, and
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autocorrelation.

6.6 The GamboostLSS-AR(1) as a Benchmark Model Fitting

The results of the previous section indicate that the gamboostLSS-AR(1) models can be a

benchmark model fitting by location, scale and shape (LSS) considering autocorrelation.

The LSS functions do not only reveal information behind the available SST data but also

deal with the gaps, so that the model requires more complex fitting and prediction methods.

However, in its application this approach encounters some challenges to produce optimal

fitting performance. There are several reasons for our experiment to use these approaches

as complimentary to our model, such as:

(a) Support Vector Machine (SVM) for regression (SVM-R):

SVM (or called support vector network, SVN) is one of the supervised machines

learning, where the large number of experiment is applied to climate data. SVM-R

has a structural form as additive model with some constraints. It can be constructed

to semiparametric models by using hyperplane base. The model can deal with sparse

data, error models, gaps between clusters [95], incorporate penalization technique,

large datasets and class [41, 96–98], and also large optimization task, handling large

scale of linear and nonlinearity. There are similar properties between gamboostLSS-

AR(1) model and SVM, such as SVM is constructed to minimize empirical risk (ER) in

loss function and overall risk (OR). It also is robust, does not take computational cost,

handling high nonlinearity relationship, flexible, and capable in predictive accuracy.

It also is robust noise due to SVM able to compress outliers [99].
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As we consider autocorrelation in gamboostLSS-AR(1) models, SVM with autocorre-

lation is represented to least squares-SVM (LS-SVM) [100], where it accommodated

by linear AR-AR(X) and nonlinear autocorrelation NAR-AR(X). For instance, neural

network (NN) considers autocorrelation in applying the global climate model (GCM)

via artificial neural network (ANN) and (ARIMA) models [101].

(b) Random Forests for regression (RF-R):

Random forest for regression (also called RF or regression forest) is a machine learn-

ing technique that contain a set with elements of individual regression trees (see

subsection 6.6 (c)), [102]. The model has several excess, such as conditional variable

importance as in gradient-boosted, variable selection for parsimonious prediction

model, complex interaction, deal with outliers, handle n < p where n is the number

of observation and p is the number of parameter, less misfitting, accuracy to detect

bias and noise, capable to prediction point, and so on [41, 103, 104].

A method for regression based on the combination of tree covariates as a classi-

fier with independent identical distribution (i.i.d) random vector. Two strengths of

random forest are that each individual tree is a classifier, and there is relationship

between them (correlation) in the forest. Pros for random forest, such as it relatively

robust for outliers and noise detection, computationally efficient than bagging or

boosting on large data, can be parallelized, combine trees, data prediction, partial

and multidimensional scaling plots, and has several measurement of error, strength,

correlation and variable importance.

RF-R can deal with large decision trees, estimating missing data, and comparable to
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boosting in error rate. It is also related to nonlinear classifiers, such as SVM-R and

artificial neural nets (ANNs) and has trees level so that it can be avoid misfitting to

training dataset. RF-R is potential to interpret data by exploring them graphically [95].

(c) Regression trees:

Regression trees has similar structure form as additive models, where the model

can easily deal with missing data via partition trees and estimate the best linear

combination by splitting technique with different variables and produce tree classifier.

The model can be incorporated into gradient boosting technique [41, 69, 95].

GamboostLSS-AR(1) model can accommodate trees effects of covariates, as inherited

from gamboostLSS model as in [105]. The model can also potentially cover various

types of covariates, gaps (missing data), nonlinear and interaction relationships.

Whereas boosting is the cleverest mean of trees compared to random forest, there

are weaknesses with regression trees, such as large trees are difficult to interpret and

predict feasible performance results [67, 106].

(d) Neural networks for regression (NN-R):

Neural networks have similar structure with regression trees but it has multi-layer

perceptrons (MLP) as base. They are models with pros as follows: able to handle

nonlinear relationships in highly interconnected setting (weighted connections), in-

teractions among variables, simulated via neurons for inputs, outputs, and feedbacks.

This model is better to deal with complex structure of model, multitask, and mul-

tisystem networks. Neural networks have also similarly to our model as additive

models. The model can deal with large class and hidden layers, where it can also be
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incorporated with boosting technique [41,69]. Among the cons of neural networks is

that it can be adjusted with weights for each input to optimize output at each neuron,

complex computationally, and sometimes need parallel computing.

(e) Decision trees for regression (DT-R):

This model is very common to be applied in climate data with large attributes.

Decision trees and RF-R have structure relationship (see subsection 6.6 (b)), where

each of the decision develops the forest. Decision trees in regression context are

the process of predictive outcome which allow both qualitative and quantitative

simultaneously, aimed to obtain optimal decision trees of a dataset. This approach

has similarities with our model where it can handle SST data properties, but it tends

to weak for interactions (mixed models), sensitive for noise and irrelevant attributes,

and handle nonlinearity in various types of data [41, 107, 108].

There are steps to make decision trees, such as growing, splitting, pruning, and tree

selection. These steps growth with many decision inducers, e.g. ID3, C4.5, M5,

RETIS, CART, CHAID, QUEST, CAL5, FACT, LMDT, T1, PUBLIC, MARS, FDT, SDT,

etc, where several inducers can capture issues of SST data. For example, decision tree

by using C4.5 technique has been used to sea surface temperature regarding tropical

cyclone construction with several attributes of climate data [109]. We expected that

decision trees can handle large attributes and datasets that commonly used in climate

data (e.g. sea surface temperature) as our experiment context.

(f) Fourier transform:

To represent cyclic phenomena and errors pattern, we can use fourier transforms with
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splines expression as seen in [110]. In [74, 111] modulation model with P-splines is

used to represent seasonal patterns via exponential, sine and cosine functions. These

functions can be incorporated to additive models. Advantages by this approach

can be controlled by convergence, error bands, efficient, flexible smoothing, and

computing AIC. It can also detect trends, frequency, phase, and amplitudes of seasonal

model via trigonometric functions.

In model fitting, one of the requirements to model SST data smoothing is specification of

the basis function that is used to construct smoothness curve. The curve can come from

non periodic and periodic data structures. In [112] state that basis functions with non

periodic curves can use splines basis and periodic curves with Fourier series. While in our

experiment, to construct periodic model such seasonal factor as P-splines basis is used as

cyclic penalties [36,37,45,74]. The model applicable to reveal variability of seasonal effects

is depicted in Chapters 4 and 5.

6.7 Summary

The analysis of gamboostLSS-AR(1) model fitting with respect to sea surface tempera-

ture data from different buoys in the Indian Ocean and climate data from stations in the

Sumatra island shows that it is still not an optimal fitting performance. However, the

model is capable to describe the phenomena of sea surface temperature variability in

seasonal and annual effects via location, scale and shape parameters. The model shows

using low hyper-parameters for degrees of freedom and knots. There are advanced of

the gamboostLSS-AR(1) model fitting, such as transformation and stability, robustness,
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boosting and autocorrelation effects, and balance in the model.

Two points of the model have not yet reached peak values of the SST data, first, structure

of the model is using configuration without interaction among covariates. This situation

automatically given a construction of the model is also without interaction in functional

term. Second, the model is sparsely complicated by missing data (the gaps) due to infor-

mative dropout in time period. Whereas measurement times are regular grid points of

sea surface temperature observation. This condition can be affected by span of P-spline

smoothing curve such as influences with respect to intercepts and slopes of model fitting.

In the general finding we obtain a benchmark model fitting (called gamboostLSS-AR(1))

that reveals phenomena which caused by sea surface temperature variability over time

(i.e. seasonal and annual effects) with focused on estimating location, scale and shape

parameters. The finding of marginal prediction interval with respect to autocorrelation is

also given contribution to predict interval data for each covariate in local model fitting.

The popular methods for regression, such as SVM, random forest, regression trees,

neural networks, decision trees and fourier transform are not specific to LSS functions si-

multaneous as in gamboostLSS-AR(1) models. Throughout this discussion, our emphasis

has been on the practical aspects of LSS function in gamboostLSS-AR(1) with autocorrela-

tion context. Finally, we mention some modifications and extensions that have been applied

to the gamboostLSS-AR(1) algorithm and discuss the aspect of optimal fitting performance

and estimate the gaps from a LSS point of view.



Chapter 7

Conclusion

7.1 Conclusion

In this thesis we have given a detailed study of the various factors that are influencing

sea surface temperature (SST) thus indirectly affecting earth’s climate variability over time.

Several statistical models have been used to correctly identify the patterns of features

involved in the sea surface temperature data. These factors are represented by five features

(air temperature, relative humidity, rainfall and two time covariates) that are considered in

this work. The main issues faced while analysing the data were the incomplete nature of

the data, sparsity, irregular peaks, autocorrelation and periodicity. A step by step review

of the work done throughout the thesis is summarised in the following lines.

We started with identification and analysing the effect of time covariates on the SST

dataset by simple linear models. To this end we investigated seasonal and annual effects

of time covariates on the response (SST). Initially we used linear regression models (LRM)

to identify the basic effects of the covariates on the response. From this we observed that

211
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both the seasonal and annual effects are significant. However, statistically the seasonal

effects are much higher than the annual effect. The LRM models could only give us

information about a single pattern corresponding to each of the covariates. In the case

of seasonal effects, the fits revealed that SST is high in some months (March-June) while

low in the others. Sea surface temperature was seen in increasing pattern from December

to April (with peak value) and decreasing pattern onwards until August. After August

the decrease in the pattern is very low. Therefore, there is a large variability of seasonal

effects in December to April (increase), in April to August (decrease), and little variability

in August to December. The measures of R-squared and adjusted R-squared is 59.18% and

58.54% respectively for the LRM model fitting. Similarly in the case of annual effects, both

increasing and decreasing patterns are seen, however, due to the incomplete nature of the

data, strong statistical arguments can not be established.

To fix the issue of incomplete data, we moved on to other sophisticated statistical models

to model the data that could cater for incomplete structure of the data. Along with using

penalised splines (P-splines), we used generalised additive models (GAM) to fit the data.

Our experiments reveal that better fits were obtained as compared to LRM by covering

linear and smooth effects of the covariates by smoothing splines. However, it is hard

to correctly identify the patterns of annual effects using GAM models. Other problems

related to fitting the GAM models with P-spline functions we faced were pertaining to AIC

(indirectly affecting the fitting) and computational cost in case of having higher degrees of

freedom in determining degree composition of covariates. In addition, fits obtained were

wiggly and had a large amount of fluctuations in the patterns for long gap observation,

especially in those of time covariates. Our experimental results using GAM model fitting
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show an increase in explained deviance to 65.5% from 59.18% and df 18.9732 and a decrease

in AIC 505.3375.

For time efficiency we used generalised additive models by boosting (gamboost) to fit

SST data. The fits obtained by this model somehow cured the fluctuations in the seasonal

effects (not fully cured, in some cases seasonal effects were not shown clearly by the model).

However, the annual effects were still hard to be identified correctly due to wiggle on the

long gap, mainly after the gap of the SST data. We also considered transformation of

the rainfall covariate in gamboost models. The result reveal a reduction in final risk and

CV-risk by the transformation. The final risk is reduced to 67-79 and CV-risk 28-30 from

75-78 and 29-31. A reduction in AIC from -1.68 to -1.82 and increase in df from 28 to 44 is

also achieved by the transformation. Our next step was using generalised additive models

for location scale and shape (GAMLSS) in the quest of getting a better fit. This model was

useful in getting reduced values of AIC implying a better fit and getting higher degrees

of freedom. However, the involvement of computational cost with this approach makes

it inefficient, especially if the degrees of freedom for smoothing is enlarged and several

specification of parameters for each covariate and LSS function, such as the degrees of

freedom, the number of knots, and the degree of penalty are used. We used transformation

of rainfall covariate, which by applying transformation, a reduction in the AIC is achieved,

and we increase in the df is also observed. Moreover, further reduction in the AIC and an

increase in df is achieved by using optimal values for the parameters df and knots.

After these attempts, we ultimately proposed generalised additive models by boosting

for location scale and shape (gamboostLSS) considering the assumption of having a Gaus-

sian distribution for location scale and shape (GaussianLSS). We incorporated penalised



7.1. Conclusion 214

splines for smoothing. The use of LSS function was aimed at getting a clear visualisation of

the covariates effects. This led us to having much better fits than all the models considered

before. The main focus in the SST data fitting process was to obtain crystalised patterns

for the time covariates. Investigation of the marginal gamboostLSS model fitting reveals

that the seasonal effects and the continuous covariates have similar patterns. Therefore,

the annual and seasonal effects can be used as an indicator to obtain an appropriate model

fitting by using gamboostLSS models.

We utilized P-splines smoothing and gradient boosting to investigate the underlying

variability structure of time covariates in modelling the SST data. We carried out exper-

iments by considering different specifications for the gamboostLSS model. By SST data

experiment with and without transformation of rainfall, we obtain how P-splines smooth-

ing property and gradient boosting can help to discover an underlying variability structure

of time covariates.

One of the issues in SST data is the presence of autocorrelation in the data. Therefore,

we proposed gamboostLSS-AR(1) model to deal with this issue. We applied generalized

differencing technique to reduce the time autocorrelation of the SST data in fitting process.

Removing autocorrelation with AR(1) model has a large impact on global and local model

fitting. By tuning hyper-parameters, which are flexible and interpretable estimation of

a long-scale (annual) and a medium-scale (seasonal) trends in climate features, we can

achieve the appropriate gamboostLSS-AR(1) models. The proposed model can be used

in further investigation of the effects of the time covariates in location, scale and shape

parameters. We carried out experiments by considering various values of the size length

of factor νsl f and different stopping iteration mstop in the model fitting. We observed one
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small value of νsl f ’s from 0.01 to 0.05 and νsl f = 0.1 and with different value of mstop to obtain

appropriate global and local model fitting of the SST data.

We also computed marginal prediction interval with autocorrelation (MPI-AR(1)) of the

model. MPI-AR(1) of the gamboostLSS-AR(1) model can be used to predict the missing

data on the various gaps and to obtain performance prediction interval of submodels. The

results of MPI-AR(1) at buoy 3, particularly, is more visible annually compared to buoys

1 and 2. However, for seasonal effect in this case, the model does not seem to follow the

pattern of data.

7.2 Future Research

A number of issues are found in this study:

(1) GamboostLSS-AR(1) models with P-splines basis for the SST data fitting show that it

has not been optimal properties on fitting performance. Therefore, the model fitting

to reach irregular peaks can be applied, most probably by the simple interaction

among covariates to complex interactions via additive mixed models with variety of

settings, and/or estimated the gaps by the mimic functions to get the best performance

of model fitting and prediction.

(2) Due to derivation of gamboostLSS models then the gamboostLSS-AR(1) models have

inherent properties, so that it can also extend to spatial (longitude, latitude, layer)

study in the context of autocorrelation AR(1) model. Time and spatial-autocorrelation

are related to missing data in 1-dimensional and 2-dimensional grid points as refer

in [7].
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(3) Furthermore, we construct the gamboostLSS-AR(1) models to distinguish noise in

the data, where it comes from time and spatial-autocorrelation effects in additive

noise model. Perhaps both autocorrelation effects can be computed by measurement

errors. Therefore, we can avoid loss information and bias from misfitting model

so that we obtain accuracy fitting and statistical inferences. Further we need to

diagnostic autocorrelation of SST data to avoid underestimated standard errors.

(4) So far, we have seen that gamboostLSS-AR(1) models can reveal a univarite dis-

tribution of SST data with one of depth level. Further we extend to multivariate

distribution in the model fitting for one and multi-levels of depth SST data in multi-

ple scenario of low to high dimensions and with and without transformation. This

extension refers to a situation in the Indian Ocean is not a single phenomenon.

(5) Extending points (1) to (3) are major concern for the gamboostLSS-AR(1) models to

be dynamic modelling, where this model has flexibility in visualizing results with

updated time automatically. Dynamic model can be used not only in global fitting

but also in local fitting, as dynamic model fitting in computational system.

(6) Underlying extension of the gamboostLSS-AR(1) models by using strengths of each

mentioned method in the general discussion (see Chapter 6) we can build an advanced

model with multi tasks, multi interpretable, multi predictable, effective, efficient via

automatic smoothers and high performance computing.
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Appendix A

Generalized Additive Models

Algorithm 3 : GAM models with P-splines basis for fitting SST data
maxi← 8
maxj← 8
maxk← 8
maxl← 8
maxm← 8
rownum← maxi ∗maxj ∗maxk ∗maxl ∗maxm
minAIC← matrix(, rownum, 6)
o← 1

for i = 2→ maxi do
for j = 2→ maxj do

for k = 2→ maxk do
for l = 2→ maxl do

for m = 2→ maxm do
G = gam(SST ∼ s(Temp, d f = i) + s(Humd, d f = j) + s(Rain, d f = k) + s(Nrdays, d f = l) + s(Doy, d f = m), data)
minAIC[o, 1]← i
minAIC[o, 2]← j
minAIC[o, 3]← k
minAIC[o, 4]← l
minAIC[o, 5]← m
minAIC[o, 6]← AIC(G)
o← o + 1

end for
end for

end for
end for

end for
Select the Best GAM Models by minimum AIC
idx← which.min(minAIC[, 6])
return (minim← minAIC[idx, ])

print(minim)
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                                                 GM0pre (24553pre)                                                                     GM1pre (67847pre) 

  
                                                  GM2pre (65438pre)                                                                GM3pre (65448pre) 

 

  
                                          GM4pre (65458pre)                                                                      GM5pre (65468pre) 
 

  
                                            GM6pre (65478pre)                                                                    GM7pre (65488pre) 

  
                                    GM8pre (65498pre)                                                                                  GM9pre (654108pre)                                                                

Figure A.1: The smoothing spline for time covariates pre-transformation rainfall of the SST data by various
degree compositions of GAM models. The pattern of time variability as shown in the models GM0pre to
GM9pre.
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                                          GM10pre (85547pre)                                                                         GM11pre (85548pre)                                                                          
  

   
                                         GM12pre (85549pre)                                                                      GM13pre (855310pre) 

  
                                 GM14pre (855410pre)                                                                        GM15pre (855510pre) 

 

  
                                      GM16pre (855610pre)                                                                      GM17pre (85878pre) 

 

  
                                     GM18pre (8551010pre)                                                                           GM19pre (8551018pre) 
 Figure A.2: The pattern of time variability as shown in the models GM10pre to GM19pre. A gap obser-

vation has many patterns depending on the chosen ed f values in the structure GAM models, i.e., degree of
compositions of its covariates which is mainly for time covariates.

Figure A.3: Model fitting with time covariate effects, where the model (0,0,0,5,7) is with 5 and 7 d f ’s (left),
and model (0,0,0,8,7) with 8 and 7 d f ’s (right).



Appendix A. Generalized Additive Models 234

Fi
gu

re
A

.4
:T

he
fig

ur
es

of
G

M
1p

re
-6

78
47

an
d

G
M

1p
os

t-
67

84
7

m
od

el
s.

Fi
gu

re
A

.5
:T

he
fig

ur
es

of
G

M
6p

re
-6

54
78

an
d

G
M

6p
os

t-
65

47
8

m
od

el
s.



Appendix A. Generalized Additive Models 235

Fi
gu

re
A

.6
:T

he
fig

ur
es

of
G

M
18

pr
e-

85
51

01
0

an
d

G
M

18
po

st
-8

55
10

10
m

od
el

s.

Fi
gu

re
A

.7
:T

he
fig

ur
es

of
G

M
19

pr
e-

85
51

01
8

an
d

G
M

19
po

st
-8

55
10

18
m

od
el

s.



Appendix B

Gamboost Models

(a) (b)

(c) (d)
Figure B.1: Illustration of the SST data fitting by GMboost26 to GMboost29 models for (a) to (d) respectively.
The plots show the appropriate models on global fitting with similar patterns, which can be seen in detail in
Table 4.16.

236



Appendix B. Gamboost Models 237

(a) (b)

(c) (d)
Figure B.2: Illustration of the SST model fitting for GMboost25post to GMboost28post models with trans-
formed rainfall covariate, (a) to (d) respectively. The models have different d f and AIC, see Table 4.17.



Appendix C

GAMLSS Models
Algorithm 4 GAMLSS by P-splines code for minimum AIC
maxi← 10
maxj← 10
maxk← 10
maxl← 10
maxm← 10
rownum← maxi ∗maxj ∗maxk ∗maxl ∗maxm
minAIC← matrix(, rownum, 6)
o← 1

for i = 2→ maxi do
for j = 2→ maxj do

for k = 2→ maxk do
for l = 2→ maxl do

for m = 2→ maxm do
G = gamlss(SST ∼ ps(Temp, d f = i) + ps(Humd, d f = j) + ps(Rain, d f = k) + ps(Nrdays, d f = l) + ps(Doy, d f = m), data)
minAIC[o, 1]← i
minAIC[o, 2]← j
minAIC[o, 3]← k
minAIC[o, 4]← l
minAIC[o, 5]← m
minAIC[o, 6]← GAIC(G)
o← o + 1

end for
end for

end for
end for

end forSelect the Best GAMLSS Models by minimum AIC
idx← which.min(minAIC[, 6])
return (minim← minAIC[idx, ])

Figure C.1: SST data fitting by using GAMLSSpre15 and GAMLSSpre16 models, both models have similar
patterns in global fitting. However, the specification of Nrdays covariate of both models are different, to see
in detail refer to Tables 4.19 and 4.20.
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GamboostLSS Models

Figure D.1: Time covariates effects of gamboostLSS models show similar patterns for location and scale of
annual and seasonal effects. For annual effects before and after the gap shows similar trends for each step of
mstop= 3000-5000.
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Figure D.2: Local fitting of gamboostLSS models with different mstop= 2000-5000 and fixed knots= 40 for
time covariates.



Appendix D. GamboostLSS Models 241

Figure D.3: Illustration of local fitting with different degrees of freedom d f = 2.5-3.5 for time covariates of
the SST data fitting with transformation of rainfall.
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Figure D.4: Time covariates effects of gamboostLSS models (40 to 60 knots) show similar patterns for location
(µ) of annual effects and for scale (σ) of seasonal effects. For the annual effects before and after the gap shows
a slight change for each increase in every 10 knots.
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Figure D.5: Local fitting of time covariates with different degrees of freedom d f using the gamboostLSS
model of the SST data. The local fitting produces the similar patterns of time covariates.
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GamboostLSS-AR(1) Models

E.1 Autocorrelation of the Gamboost Models

(a) (b)

(c) (d)
Figure E.1: An illustration of the appropriate gamboost-AR(1) models fitting of the SST data: GMb1-AR(1)
to GMb4-AR(1) models for (a) to (d) respectively, with fixed df=2.5 for Nrdays and df=1.5 for Doy covariates,
to see in detail refer to Tables 5.1 and 5.2.
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(a) (b)

(c) (d)
Figure E.2: An illustration of the appropriate gamboost-AR(1) models: GMb5-AR(1) to GMb8-AR(1)
models for (a) to (d) respectively, with df=3.5 for Nrdays and df=1.5 for Doy, to see in detail refer to Tables
5.1 and 5.2.

(a) (b)

(c) (d)
Figure E.3: The SST data fitting by GMboost20-AR(1) to GMboost30-AR(1) models with (a) to (d) respec-
tively. The models show similar patterns of global fitting.
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Figure E.4: Local fitting of time covariate using gamboostLSS-AR(1) models with mstop = 1000 and different
df. In local fitting it shows similar patterns, excluding slight changes after the gap for df= 2.5.

Figure E.5: The patterns of time covariates in gamboostLSS-AR(1) models fitting with mstop= 1500 and
different df. The patterns show a decrease before the gap and an increase after the gap for Nrdays effect and
the same pattern for Doy effect, excluding slight changes after the gap for df= 2.4 and 2.5.
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Figure E.6: Local fitting of time covariates using gamboostLSS-AR(1) models with df= 2.1 and different
knots of the Nrdays covariate and df= 1.1 at the Doy covariate show similar patterns.

Figure E.7: GamboostLSS-AR(1) models fitting with fixed df = 2.1 and different knots of the Nrdays covariate
and df= 1.5 at the Doy covariate show the similar patterns.
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E.2 Gamboost-AR(1) Models with Transformation

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure E.8: The SST data fitting by GMboost1-AR(1) to GMboost8-AR(1) models with transformation of
rainfall. The models show similar patterns, to see in detail refer to Tables 5.1 and 5.3.
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E.3 GamboostLSS-AR(1) Models with Transformation

Figure E.9: The similar patterns of time-covariates on local fitting for the SST data by gamboostLSS-AR(1)
models with transformation of rainfall, to see in detail refer to Table 5.8.
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Figure E.10: The patterns of time covariates in local fitting use gamboostLSS-AR(1) models with transfor-
mation. The patterns show a decrease before the gap and an increase after the gap for the Nrdays effect and a
similar pattern for the Doy effect. However, in the beginning fitting for the Doy covariate, it shows a slight
difference for df= 1.2 - 1.5 with fixed mstop= 500.



E.3. GamboostLSS-AR(1) Models with Transformation 251

Figure E.11: The patterns of time covariates in local fitting using gamboostLSS-AR(1) models with trans-
formation. The patterns show a decrease before the gap and an increase after the gap for the Nrdays effect and
a similar pattern for the Doy effect. However, in the beginning fitting for the Doy covariate, it shows a slight
difference for df= 1.2 - 1.5 with fixed mstop= 1000.
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Figure E.12: The patterns of time covariates in local fitting using gamboostLSS-AR(1) models with trans-
formation. The patterns show a decrease before the gap and an increase after the gap for the Nrdays effect and
a similar pattern for the Doy effect. However, in the beginning fitting for the Doy covariate, it shows a slight
difference for df= 1.2 - 1.5 with fixed mstop= 1500.
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Figure E.13: The patterns of time covariates in local fitting using gamboostLSS-AR(1) models with trans-
formation. The patterns show a decrease before the gap and an increase after the gap for the Nrdays effect and
a similar pattern for the Doy effect.
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Figure E.14: The patterns of time covariates in local fitting using gamboostLSS-AR(1) models with trans-
formation. The patterns show a decrease before the gap and an increase after the gap for the Nrdays effect
and a similar pattern for the Doy effect. However, after the gap for the Nrdays covariate, it shows a slight
difference for df= 2.2 - 2.5 with fixed mstop= 1000.
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Figure E.15: The patterns of time covariates in local fitting using gamboostLSS-AR(1) models with trans-
formation. The patterns show a decrease before the gap and an increase after the gap for annual effect and a
similar pattern for the Doy effect. However, after the gap for the Nrdays covariate, it shows a slight fluctuation
for df= 2.2 - 2.5 with fixed mstop= 1500.
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(a) (b)

(c) (d)

(e) (f)

Figure E.16: The SST data fitting by GMbLSS1post-AR(1) - GMbLSS6post-AR(1) models with different
knots, df and mstop. Although the models have different hyper-parameters specifications, they will all have
similar patterns in the global fitting, to see in further detail refer to Table 5.8.
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(a) (b)

(c) (d)

(e) (f)

Figure E.17: The SST data fitting by GMbLSS7post-AR(1) - GMbLSS12post-AR(1) models with different
hyper-parameters specifications. The models have similar patterns in the global fitting, to see in detail refer
to Table 5.8.
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Figure E.18: Local fitting of time covariates using gamboostLSS-AR(1) models with different mstop and d f .
In local fitting, it shows a slight difference of d f ’s unchanged patterns of time covariates.

Figure E.19: GamboostLSS-AR(1) models fitting with different d f = 2.1-2.5 and fixed mstop= 500 for the
Nrdays and Doy covariates.
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Figure E.20: The patterns of time covariates in local fitting use gamboostLSS-AR(1) models with transfor-
mation. The patterns show a decrease before the gap and an increase after the gap for the Nrdays effect and
almost the same pattern for the Doy effect.
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