
Smart City Solutions to Water Management using
Self-Powered, Low-Cost, Water Sensors and Apache

Spark Data Aggregation
W. Frank Domoney, Naseem Ramli, Salma Alarefi and Stuart D. Walker

School of Computer Science and Electronic Engineering
University of Essex, Colchester, United Kingdom
{wfdomo, nramlia, sasala,stuwal}@essex.ac.uk

Abstract—We describe a Smart City, self-powered, water

monitoring solution that uses low-cost water turbines. These can

generate up to ~ 4 W electrical power whilst reporting flow rates

at UK domestic water pressure levels. This permits the novel use

of stand-alone, remote Apache Spark Streaming as a distributed

alternative to the conventional hierarchical Smart Grid. A future

Smart City will have innovative features such as high-frequency

monitoring of water flows, automated leak detection and

shutdown with no requirement for utility electrical power.

Keywords—Smart City; water; turbine, Spark, Kafka

I. INTRODUCTION

Smart City schemes often feature sensors, ‘big data’ and

advanced computing [e.g. 1]. At the city utility level,

management of increasingly scarce resources is emerging as a

key element [e.g. 2]. Here we focus on the energy–neutral

acquisition of water consumption data. This latter information

is already collected on a large scale by “dumb” and “smart”

water meters [e.g. 3].In this paper, we describe a scheme

which not only measures water consumption on a per-second

basis but which generates sufficient electrical power (~4 W)

to run an Apache Spark-based data aggregation network. All

the components are modular and commercial-off-the-shelf

(COTS) and U.K. Water Regulations Advisory Scheme

(WRAS,[4]) approved. Consequently, installation within

domestic and commercial buildings across a wide range of

flow rates/heads should be reasonably straightforward.

 Subsequently, this paper is organized as follows. Section II is

a brief theoretical discussion of available water power and

outlines the performance obtained from a prototype domestic-

environment, hydro-generator. In section IIII, the Apache

Spark provision is described, with section IV offering some

conclusions and proposals for further work.

II. AVAILABLE HYDRO-POWER

A. Standard Newtonian power calculation

The power available from water flows, both horizontal and
vertical, is well-understood [5]. For convenience, the basic
Newtonian mechanical equations are reviewed here. The

power P in watts obtained from a fluid (density  kg/m
3
) flow

F (m
3
/sec) with head h (metres), gravitational acceleration g

(m/sec
2
) and turbine efficiency  10 ) is given by :

  ghFWP  (1)

As an example, in the case of water ( ~10
3
 kg/m

3)
 with 1 bar

head (a guideline U.K. minimum domestic pressure = 10.3 m
head), F = 3.9 x 10

-4
 m

3
/sec (a typical U.K. 15 mm pipe flow

rate) and =1, then P = 30.3 W. In practice, the available
output will be much reduced but the generation of several
watts electrical output power with realistic heads and flow-
rates appears realistic.

B. Practical Domestic hydro-power set-up and optimization

Figures 1a,b below show two examples of readily-
available micro-hydro generators. In both case, the device has
magnetic protection against excessive flow rates. The first
innovation

Figure 1. Micro-hydros (a) ~15V, 1 watt. (b) ~80V, 2
watts.

introduced during this study was to run turbines in
series/parallel. Appropriate combinations can then be
optimized for a wide range of flow rates and heads.

a b

978-1-4673-7894-9/15/$31.00 ©2015 Crown

Figure 2. Optimum 2 x 2 configuration

Figure 2 shows the optimum 2 x2 configurations for a U. K
domestic supply delivered through a 15 mm pipe. Other
implementations, f or example 4 x 2 can be realized for larger
flow rates /higher pressures.

 As might be expected, the turbine or combination of
turbines has an optimum resistive load value. Figure 3

Figure 3. Optimum load investigation.

shows the results of a basic experiment designed to extract
the exact matched load. The second-order fit shown in

  184.20133.0100027.2 25   RRxRP (2)

equation 1 above was obtained where P(R) is in watts and R is
the load resistance in ohms. Eqn. 2 can be differentiated as in

 
00133.02100027.2 5   Rxx

R

RP




 (3)

Hence Ropt = 328 ohm which corresponds to Vout = 37 V when
Popt =4.2 W.

C. Demonstrator

Four hydro-generators were incorporated in a complete
domestic flow demonstrator as shown in figure 4 below.

Figure 4. Complete hydro-power demonstrator

The unit was designed to emulate U.K. domestic water
pressures, flow rates and demand patterns. A standard DC-DC
converter (TRACO TMR 6-4813WI) was used to power a
flow meter at 15 V and to be further down-converted to

provide a 5V USB supply at up to 800mA output current.
Figure 5 shows the set-up.

Figure 5. Power and flow-rate measurement system.

III. DATA PROCESSING

A. Functionality Description

 Processing of the data from the sensors can be done using a

simple development board such as the Arduino for prototyping

and a microcontroller similar to Intel 8052 or one of the four

bit versions in production volumes.

 Arduino is an open-source prototyping platform based on

easy-to-use hardware and software. Arduino boards are able to

read multi-format inputs: light on a sensor; a finger on a

button; or a Twitter message and turn it into an output. This

could be: activating a motor; turning on an LED; publishing

online, etc. All these procedures are defined by a set of

instructions programmed through the Arduino Software (IDE).

[6]. Backhaul from the sensor can be performed using a small

cell radio communication to a fibre riser in a high rise building

or to a low rise building's fibre termination. Blanket coverage

of all new and existing build in cities can be expected to be

Fibre to the Home or Fibre to the Kerb.

A block diagram of the arrangement is shown in figure 6.

Figure 6. Simplified layout of the Processing Unit

Load resistance R (ohm)

The watchdog circuit assures a reliable reset within 50

milliseconds of the voltage reaching the desired level with

subsequent triggering disabled by the processor. For each

second that water is flowing, the microcontroller sends a

message to an Apache Kafka Node via the RF unit for further

distribution. When the water stops flowing, the power supply

dies away and can either trigger a last gasp message or simply

die. Absence of messages for more than a few seconds means

water flow has ceased. A capacitive element can retain charge

long enough to smooth out voltage fluctuations due to

intermittent water flow.

 A suitable transmission protocol might be Twitter [7] which

is simple and readily available. Twitter addresses are

preceded by an @ sign and messages can be directed to either

single or multiple destinations. The extent of addresses is

limited only by the number of characters available and with

140 characters available in a Twitter message, an address

space of many thousands of millions (36
24

 for an address

length of 24 alphanumeric characters = 2.24 x 10
37

) of unique

addresses is available for originating addresses.

 The message set can be very limited as for example:

 Unit powered up

 Flow measured in one second

 Final Flow measured (last gasp message).

These messages may be aggregated at any chosen level from

building, street, or city district for control and management.

 As the value of individual messages about small water flows

is low we think that there is no need for encryption of the

messages which report flows. The use of machine learning

techniques described below will identify anomalies such as

failed sensors, leaks and attempts at theft of services.

 Messages which are passed to actuators, valves and taps in

the network do however need to be encrypted and transmitted

securely using the usual techniques. The marginal cost of

adding processing power to these high value items is low.

B. Message processing and direction

 Apache Kafka [8] is a distributed publish-subscribe

messaging system developed by Linkedin. It has been created

with performance, availability and scalability in mind and is

used as the messaging backbone at Linkedin. In combination

with Apache Zookeeper it allows all the flows in a city to be

managed across a distributed architecture.

 Apache Spark [9] is a distributed processing environment

that is designed to be used to process large volumes of data

reliably using distributed clusters. It is supplanting the use of

Hadoop in production environments because of its extra speed

and

capabilities.

Figure 7. Spark and its components

 The components of Spark are shown in figure 2 above. It

consists of a Core processing element with a Dataframes API

that allows access to distributed datasets. Spark divides data

up into Resilient Distributed Data sets that are distributed

across portions in clusters .It then has five components that

allow processing of SQL Queries across the data sets,

processing of streaming data by dividing the streams up into

time slices and processing the resulting RDDs as static, a

Machine Learning library and a Graph Processing suite.

Spark applications may be programmed in Scala, Java, Python

and has an R interface.

C. Streaming processing of messages

 Spark Streaming allows data to be ingested from Kafka,

Flume, HDFS, or a raw TCP stream, and it permits users to

create a stream out of RDDs. Spark can then this as a Stream

of RDDs. The creation of an individual receiver is also

possible.

 Fault tolerance is the capability of a system to overcome

failure. Fault tolerance in Spark Streaming is similar to fault

tolerance in Spark. As with RDD partitions, streams data is

recomputed in case of a failure. The raw input is replicated in

memory across the cluster. In case of a node failure, the data

can be reproduced using the lineage. The system can recover

from a failure in less than one second.

 Spark Streaming is able to process 100,000-500,000

records/node/sec.[10] If information about water consumption

can be processed at one second granularity, a number of

interesting options open up. Machine Learning techniques

exist in Spark [11] to capture the daily behaviour of a

building, street or city district. A sudden departure from the

model will indicate a rupture of a water main or the tripping of

sprinklers. The Spark Graph Processing facility will identify

the location of leaks by means of a graph traverse [12].

Discrepancies between the sum of branch flows and the flow

in water mains will indicate a slow leak or an unmonitored

branch.

D. Individual building processing units

Typically the Datacentre required to support city size

processing will be large and will require a substantial solar

farm and very large batteries to support 24x7 operation. Both

Spark and Kafka are designed to be run on distributed

processing environments. A cluster may be constructed from

low-cost single board computers and networked using a

ubiquitous optical fibre network. Examples include Joshua

Kiepert's Raspberry Pi-based cluster [13] although the boards

offered by Parallella [14] may have far better energy

performance that the notoriously energy hungry Raspberry Pi -

based solution. The rising water main will have enough flow

in general to keep their clusters powered. Again, the option of

battery backup exists to store power to keep the building

systems supplied when no water is flowing. These batteries

can be recharged when major water flows resume.

IV. CONCLUSIONS AND FURTHER WORK

This paper has outlined the main features of a Smart City

solution to water management. All the components are COTS

and are priced for the mass market. Full functionality of the

hydro-generation scheme has been demonstrated with power

of ~4 W and self-powered flow rate monitoring available in

the domestic scenario. Further work will be concerned with

developing a realistic model of a tower block as well as

programming the associated Arduino unit. A sizing exercise

is needed to identify an ideal address length. The Kafka and

Spark elements will then be incorporated into the prototype

once these have been built and suitable load generators used to

simulate a city. Finally, measurement of the power

consumption of the Raspberry Pi Cluster can be compared

with an equivalent Parallella cluster running the same

algorithm to identify the ideal configuration.

References

[1] A. Caragliu, C. Del Bo and P. Nijkamp, “Smart cities in Europe”
Journal of Urban Technology, vol.18, issue 2,pp.65-82, 2011.

[2] R. A. Stewart, R. Willis, D. Giurco, K. Panuwatwanich and Guillermo
Capati,”Web-based management system: linking smart metering to the
futre of urban water planning” Australian Planner,vol.47, issue 2, pp.66-
74, 2010.

[3] S.C. Hsia, S.W.Hsu. and Y.J. Chang, “Remote monitoring and smart
sensing for water meter system and leakage detection” IET Wirel. Sens.
Syst., vol. 2, issue . 4, pp. 402–408, 2012

[4] Water Regulations Advisory Scheme (2015) [Online]. Available:
https://www.wras.co.uk/approvals/what_is_a_wras_approval/

[5] A. Harvey, Micro-Hydro Design Manual: a guide to small-scale water
power schemes. Intermediate Technology Publications,London,1993.

[6] Arduino LLC (2014) [Online]. Available:
https://www.arduino.cc/en/Guide/Introduction

[7] A Prescott. (2012) Twitter format(7) man page [Online]. Available:
http://aprescott.github.io/twitter-format/twitter-format.7

[8] M. Kjetland (2013, 13 March) Booster conference, Bergen, Norway.
[Online]. Available: https://vimeo.com/62298867

[9] Korau, Kowinski Wendell and Zaharia (2015 February) " Learning
Spark" O'Reilly Media

[10] A Kharbanda (2015, 23 April) [Online]. Available:
http://opensource.com/business/15/4/guide-to-apache-spark-streaming

[11] Apache Foundation Spark (2015 July 15) [Online]. Available:
http://spark.apache.org/docs/latest/mllib-guide.html .

[12] Apache Foundation Spark (2015 July 15) [Online]. Available:
https://spark.apache.org/docs/latest/graphx-programming-guide.html

[13] J. Kiepert (2013, May 22) [Online]. Available:
http://coen.boisestate.edu/ece/files/2013/05/Creating.a.Raspberry.Pi-
Based.Beowulf.Cluster_v2.pdf

[14] Parallella Inc: (2014) The Board. [Online]. Available:
https://www.parallella.org/board/

