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Abstract—We describe a Smart City, self-powered, water 

monitoring solution that uses low-cost water turbines. These can 

generate up to ~ 4 W electrical power whilst reporting flow rates 

at UK domestic water pressure levels.  This permits the novel use 

of stand-alone, remote Apache Spark Streaming as a distributed 

alternative to the conventional hierarchical Smart Grid.  A future 

Smart City will have innovative features such as high-frequency 

monitoring of water flows, automated leak detection and 

shutdown with no requirement for utility electrical power.   
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I.  INTRODUCTION 

Smart City schemes often feature sensors, ‘big data’ and 

advanced computing [e.g. 1]. At the city utility level, 

management of increasingly scarce resources is emerging as a 

key element [e.g. 2]. Here we focus on the energy–neutral 

acquisition of water consumption data. This latter information 

is already collected on a large scale by “dumb” and “smart” 

water meters [e.g. 3].In this paper, we describe a scheme 

which not only measures water consumption on a per-second 

basis but which generates  sufficient electrical   power  (~4 W) 

to run an Apache  Spark-based data aggregation network.  All 

the components are modular and commercial-off-the-shelf 

(COTS) and U.K. Water Regulations Advisory Scheme 

(WRAS,[4]) approved. Consequently, installation within 

domestic and commercial   buildings across a wide range of 

flow rates/heads   should be reasonably straightforward.  

  Subsequently, this paper is organized as follows. Section II is 

a brief theoretical discussion of available water power and 

outlines the performance obtained from a prototype domestic-

environment, hydro-generator. In section IIII, the Apache 

Spark provision is described, with section IV offering some 

conclusions and proposals for further work.  

II. AVAILABLE HYDRO-POWER

A. Standard  Newtonian  power calculation 

The power available from water flows, both horizontal and 
vertical, is well-understood [5].  For convenience, the basic 
Newtonian mechanical equations are reviewed here. The 

power P in watts obtained from a fluid (density  kg/m
3
) flow 

F (m
3
/sec) with head h (metres ), gravitational  acceleration g 

(m/sec
2
) and turbine efficiency    10  ) is given  by :

  ghFWP   (1) 

As an example, in the case of water ( ~10
3
 kg/m

3)
 with 1 bar 

head (a guideline U.K.  minimum domestic pressure = 10.3 m 
head),  F = 3.9 x 10

-4
 m

3
/sec  (a typical  U.K. 15 mm pipe flow 

rate) and =1, then  P = 30.3 W. In practice, the available 
output will be much reduced but the generation of several 
watts electrical output power with realistic heads and flow-
rates appears realistic.  

B. Practical Domestic hydro-power  set-up and optimization 

Figures 1a,b below show two examples of readily-
available micro-hydro generators.  In both case, the device has 
magnetic protection against excessive flow rates. The first 
innovation  

            

Figure 1. Micro-hydros (a) ~15V, 1 watt. (b) ~80V, 2 
watts. 

introduced during this study was to run turbines in 
series/parallel. Appropriate combinations can then be 
optimized for a wide range of flow rates and heads.   

a b 
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Figure 2.  Optimum 2 x 2 configuration 

Figure 2 shows the optimum 2 x2 configurations   for a U. K 
domestic supply delivered through a 15 mm pipe.  Other 
implementations, f or example 4 x 2 can be realized for larger 
flow rates /higher pressures.  

   As might be expected, the turbine or combination of 
turbines has an optimum resistive load value. Figure 3 

Figure 3.  Optimum load investigation. 

shows the results of  a basic experiment designed  to extract 
the exact  matched load. The second-order fit shown in 

  184.20133.0100027.2 25   RRxRP           (2) 

equation 1 above was obtained where P(R) is in watts and R is 
the load  resistance in ohms. Eqn.  2 can be differentiated as in  

 
00133.02100027.2 5   Rxx

R

RP




           (3) 

Hence Ropt = 328 ohm which corresponds to Vout = 37 V when 
Popt =4.2 W.  

C. Demonstrator 

Four hydro-generators were incorporated in a complete 
domestic flow demonstrator as shown in figure 4 below.   

Figure 4.  Complete hydro-power demonstrator 

The unit was designed to emulate U.K. domestic water 
pressures, flow rates and demand patterns.  A standard DC-DC 
converter (TRACO  TMR 6-4813WI)  was used to power a 
flow meter at 15 V and to be further down-converted to 

provide a 5V USB supply  at up to  800mA output current. 
Figure 5 shows the set-up. 

Figure  5. Power and flow-rate measurement system. 

III. DATA PROCESSING 

A. Functionality  Description 

   Processing of the data from the sensors can be done using a 

simple development board such as the Arduino for prototyping 

and a microcontroller similar to Intel 8052 or one of the four 

bit versions in production volumes. 

   Arduino is an open-source prototyping platform based on 

easy-to-use hardware and software. Arduino boards are able to 

read multi-format inputs:  light on a sensor; a finger on a 

button; or a Twitter message and turn it into an output. This 

could be: activating a motor; turning on an LED; publishing 

online, etc. All these procedures are defined by a set of 

instructions programmed through the Arduino Software (IDE). 

[6]. Backhaul from the sensor can be performed using a small 

cell radio communication to a fibre riser in a high rise building 

or to a low rise building's fibre termination.  Blanket coverage 

of all new and existing build in cities can be expected to be 

Fibre to the Home or Fibre to the Kerb. 

A block diagram of the arrangement is shown in figure 6. 

Figure 6.  Simplified layout of the Processing Unit 

Load resistance R (ohm)  



The watchdog circuit assures a reliable reset within 50 

milliseconds of the voltage reaching the desired level with 

subsequent triggering disabled by the processor.  For each 

second that water is flowing, the microcontroller sends a 

message to an Apache Kafka Node via the RF unit for further 

distribution.  When the water stops flowing, the power supply 

dies away and can either trigger a last gasp message or simply 

die.  Absence of messages for more than a few seconds means 

water flow has ceased.  A capacitive element can retain charge 

long enough to smooth out voltage fluctuations due to 

intermittent water flow. 

  A suitable transmission protocol might be Twitter [7] which 

is simple and readily available.  Twitter addresses are 

preceded by an @ sign and messages can be directed to either 

single or multiple destinations.  The extent of addresses is 

limited only by the number of characters available and with 

140 characters available in a Twitter message, an address 

space of many thousands of millions (36
24

 for an address 

length of 24 alphanumeric characters = 2.24 x 10
37

) of unique 

addresses is available for originating addresses.  

  The message set can be very limited as for example: 

 Unit powered up

 Flow measured in one second

 Final Flow measured (last gasp message).

These messages may be aggregated at any chosen level from 

building, street, or city district for control and management. 

   As the value of individual messages about small water flows 

is low we think that there is no need for encryption of the 

messages which report flows. The use of machine learning 

techniques described below will identify anomalies such as 

failed sensors, leaks and attempts at theft of services.  

   Messages which are passed to actuators, valves and taps in 

the network do however need to be encrypted and transmitted 

securely using the usual techniques.  The marginal cost of 

adding processing power to these high value items is low. 

B. Message processing and direction 

  Apache Kafka [8] is a distributed publish-subscribe 

messaging system developed by Linkedin.  It has been created 

with performance, availability and scalability in mind and is 

used as the messaging backbone at Linkedin.  In combination 

with Apache Zookeeper it allows all the flows in a city to be 

managed across a distributed architecture. 

   Apache Spark [9] is a distributed processing environment 

that is designed to be used to process large volumes of data 

reliably using distributed clusters.  It is supplanting the use of 

Hadoop in production environments because of its extra speed 

and  

capabilities. 

Figure 7. Spark and its components 

   The components of Spark are shown in figure 2 above. It 

consists of a Core processing element with a Dataframes API 

that allows access to distributed datasets.  Spark divides data 

up into Resilient Distributed Data sets that are distributed 

across portions in clusters .It then has five components that 

allow processing of SQL Queries across the data sets, 

processing of streaming data by dividing the streams up into 

time slices and processing the resulting RDDs as static, a 

Machine Learning library and a Graph Processing suite. 

Spark applications may be programmed in Scala, Java, Python 

and has an R interface.  

C. Streaming processing of messages 

   Spark Streaming allows data to be ingested from Kafka, 

Flume, HDFS, or a raw TCP stream, and it permits users to 

create a stream out of RDDs. Spark can then this as a Stream 

of RDDs. The creation of an individual receiver is also 

possible. 

   Fault tolerance is the capability of a system to overcome 

failure. Fault tolerance in Spark Streaming is similar to fault 

tolerance in Spark. As with RDD partitions, streams data is 

recomputed in case of a failure. The raw input is replicated in 

memory across the cluster. In case of a node failure, the data 

can be reproduced using the lineage. The system can recover 

from a failure in less than one second.  

   Spark Streaming is able to process 100,000-500,000 

records/node/sec.[10] If information about water consumption 

can be processed at one second granularity, a number of 

interesting options open up.  Machine Learning techniques 

exist in Spark [11] to capture the daily behaviour of a 

building, street or city district.  A sudden departure from the 

model will indicate a rupture of a water main or the tripping of 

sprinklers.  The Spark Graph Processing facility will identify 

the location of leaks by means of a graph traverse [12]. 

Discrepancies between the sum of branch flows and the flow 

in water mains will indicate a slow leak or an unmonitored 

branch. 

D. Individual building processing units 

Typically the Datacentre required to support city size 

processing will be large and will require a substantial solar 

farm and very large batteries to support 24x7 operation.  Both 



Spark and Kafka are designed to be run on distributed 

processing environments.  A cluster may be constructed from 

low-cost single board computers and networked using a 

ubiquitous optical fibre network.  Examples include Joshua 

Kiepert's Raspberry Pi-based cluster [13] although the boards 

offered by Parallella [14] may have far better energy 

performance that the notoriously energy hungry Raspberry Pi -

based solution. The rising water main will have enough flow 

in general to keep their clusters powered. Again, the option of 

battery backup exists to store power to keep the building 

systems supplied when no water is flowing.  These batteries 

can be recharged when major water flows resume. 

IV. CONCLUSIONS AND FURTHER WORK 

This paper has outlined the main features of a Smart City 

solution to water management. All the components are COTS 

and are priced for the mass market.   Full functionality of the 

hydro-generation scheme has been demonstrated with power 

of ~4 W and self-powered flow rate monitoring available in 

the domestic scenario.  Further work will be concerned with 

developing a realistic model of a tower block as well as 

programming the associated Arduino unit.  A sizing exercise 

is needed to identify an ideal address length.  The Kafka and 

Spark elements will then be incorporated into the prototype 

once these have been built and suitable load generators used to 

simulate a city. Finally, measurement of the power 

consumption of the Raspberry Pi Cluster can be compared 

with an equivalent Parallella cluster running the same 

algorithm to identify the ideal configuration. 
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