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Abstract— This paper presents a wearable sensor approach to
motion measurements of human lower limbs, in which subjects
perform specified walking trials at self-administered speeds so
that their level walking and stair ascent capacity can be effectively
evaluated. After an initial sensor alignment with the reduced
error, quaternion is used to represent 3-D orientation and an
optimized gradient descent algorithm is deployed to calculate
the quaternion derivative. Sensors on the shank offer additional
information to accurately determine the instances of both swing
and stance phases. The Denavit–Hartenberg convention is used to
set up the kinematic chains when the foot stays stationary on the
ground, producing state constraints to minimize the estimation
error of knee position. The reliability of this system, from the
measurement point of view, has been validated by means of
the results obtained from a commercial motion tracking system,
namely, Vicon, on healthy subjects. The step size error and the
position estimation accuracy change are studied. The experi-
mental results demonstrated that the extensively existed sensor
misplacement and sensor drift problems can be well solved. The
proposed self-contained and environment-independent system is
capable of providing consistent tracking of human lower limbs
without significant drift.

Index Terms— Denavit–Hartenberg (DH) convention, foot
kinematics, motion tracking, wearable sensors, zero velocity
updates (ZUPTs).

I. INTRODUCTION

HUMAN lower limb motion analysis involves
qualitative analysis or quantitative evaluation of

the human walking, running, and climbing. It is based on
kinematic concepts and human anatomy and physiology
and widely deployed in medical rehabilitation, augmented
virtual reality, foot navigation, and so on. Arnold et al. [1]
proposed a lower limb model for human movement analysis
based on the muscle architecture and strength parameters.
Hornung et al. [2] presented a self-calibrating visual-based
system for reconstruction and tracking of arbitrary articulated
objects in real time. These existing evaluation methods have
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some obvious drawbacks. For instance, electromyography-
based methods require dedicated medical apparatus, working
space, and professional medical staff. Visual-based methods
have the highest accuracy and no drift but require costly
optical signal processing equipment. Moreover, a clean
background is normally required since any reflective objects
can reduce the measurement accuracy.

Due to the advantages of ultrasmall size and low cost,
miniature low-power inertial sensors can be mounted directly
on the human body for movement monitoring without the need
for the specified test environment [3]. In previous studies,
Yun et al. [4] and Wang et al. [5] adopted the foot-attached
inertial sensor in walking distance calculation. Bebek et al. [6]
and Bamberg et al. [7] adopted a pressure sensor array and
inertial measurement unit (IMU) for gait measurement. The
estimation of arm motion by wearable inertial sensors were
demonstrated [8], [9]. The inertial navigation techniques are
integrated with active radio-frequency identification (RFID)
technology in [10] to locate persons indoors, which obtained
accurate results but introduced additional complexity to the
system.

There still exist two ubiquitous challenges when wearable
sensors are applied to human movement tracking, i.e., initial
errors due to sensor misplacement and sensor drift errors,
especially in a long period of time. To tackle the problem,
Jiang et al. [11] developed a rotation matrix method and
obtained good performance when dealing with large sensor
misplacement. Similar methods are widely used, but the
error correction is less effective when the misplacement is
unremarkable.

In this paper, three wearable magnetic angular rate and
gravity (MARG) sensors are deployed to calculate instanta-
neous orientation, velocity, and position of the human lower
limbs. To tackle the aforementioned challenges, an initial
alignment procedure is conducted to eliminate sensor misdis-
placement at the beginning of each trial. A gradient descent
method is used to fuse different types of sensor data and zero
velocity update (ZUPT) [12] is implemented to cope with
sensor drift errors when the foot is at rest on the ground.
ZUPT is based on the fact that the foot swings to stance
phase periodically during human locomotion and the foot is
stationary in stance phase [13]. In this case, the knowledge
of when the foot has zero velocity is used to calibrate the
accumulated errors since the last ZUPT. Three sensor nodes
are separately placed on different parts of lower limbs to
form constrained states with the complementary geometric
relation, which offer us a way for the error correction of knee



TABLE I

MARG DATA PERFORMANCE SPECIFICATIONS

position estimation. Finally, the lower limb position and ori-
entation during walking trials could be obtained and validated
by the Vicon system (made by Oxford Metrics Limited
Company), which is a leading optical motion capture product
with a positioning accuracy of 1 mm.

The rest of this paper is organized as follows. Section II
describes the system configuration and calibration procedure.
Subsequently, we demonstrate the methodology for the lower
limb motion analysis in Section III. Then, the experimental
results and the algorithm validation by a mark-based Vicon
motion tracking system are given in Section IV. Section V
presents a discussion about the causes of the estimation error
and the criterion of methods selection. Finally, concluding
remarks and future research targets are given in Section VI.

II. SYSTEM OVERVIEW AND CALIBRATION

A. Experimental Scenario and Platform

In this paper, the research is focused on the estimation
of lower limb motions in daily activities such as walking
and stair ascent. The MARG sensors are fixed on thigh,
shank, and foot, respectively, and the motion estimation results
were validated by a Vicon system. An off-the-shelf motion
tracking system MTx (made by Xsens Company) is adopted
in this research, which consists of a network of wearable
sensors. Each wearable sensor has a 3-D accelerometer,
a 3-D gyroscope, and a 3-D magnetometer. Table I shows
their specifications. Raw sensor data are logged to the digital
data box (XBus) placed on the waist at a sampling frequency
of 100 Hz and then transmitted to a host computer via
Bluetooth. The wearable sensors are fitted with a stretchable
hook-and-loop fastener for comfortable use.

Fig. 1 shows the sensor placement and the Vicon motion
tracking system, in which two of the eight Vicon cameras are
visible. The sensor attachment, the Vicon marker model, and
its structure are shown in the bottom right of Fig. 1. In this
case, we could obtain 3-D reference position information and
orientation details of the three attached sensor nodes.

Four subjects (two males and two females) have taken
part in a preliminary study in the robot laboratory at Essex.
They have a mean age of 30 ± 5 years, a mean weight
65 ± 10 kg, and a mean height of 1.70 ± 0.12 m. None
of them has a history of lower limb pathologic conditions.
Experiments were carried out in two scenarios. One is in an
indoor structured environment, i.e., the Essex Robot Arena.
The subjects were asked to perform level walking trials from

Fig. 1. Overview of the lower limb motion measurement system.

Algorithm 1 Align Vicon Frame and Ground Frame
Require: Vicon frame and ground frame are identical
Ensure: Vicon positoning as [0, 0, 0] when subjects stand at

the origin
1: locate the reference model at the origin of Vicon, run Vicon

Nexus software
2: if extracted Vicon markers number N = 9 then
3: run “vmAdjuster” software and load the built model
4: else
5: adjust the properties of Vicon Cameras
6: end if
7: while N = 9 do
8: use “TestClient” to record current position [X A,YA, Z A]
9: let the subject stand at the origin of Vicon and record

this new position [X B,YB , Z B ] via “TestClient”
10: [X O ,YO , Z O ] = [X A,YA, Z A] − [X B,YB , Z B ]
11: input [X O ,YO , Z O ] in “vmAdjuster”
12: restart Nexus and create a new model
13: end while

the default origin position and then along the grid lines within
the rectangular zone (5 × 4 m), which can be effectively moni-
tored by the Vicon system. The second scenario is the staircase
in the Network Centre Building. No Vicon is available in this
scenario.

There are four coordinate systems involved in our lower
limb motion measurement system: 1) the ground frame (G);
2) the MARG sensor frame (S); 3) the body frame (B); and
4) the Vicon frame (V). In operation, we use a reference model
with four markers to align V with G. The pseudocodes of the
alignment procedure are presented in Algorithm 1. In this way,
Vicon would output the position as [0, 0, 0] at the beginning
of each trial even though the subjects do not start from the
specified origin accurately.

B. Initial State Estimation and Sensor Alignment

Initial orientations were commonly calculated relative to the
ground frame defined by the gravity and local magnetic field.



Fig. 2. Initial alignment of the sensor frame.

Noted that the absolute leveled initial position is not common
in practical applications, the determination of initial yaw angle
requires implicitly the knowledge of the initial roll and pitch
angle, which are commonly done by sensing the gravity vector
at rest using accelerometers.

We can estimate the initial roll angle φroll
ini , pitch angle θpitch

ini ,
and yaw angle ψyaw

ini , as shown in
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

φroll
ini = arctan(ay, az)

θ
pitch
ini = arctan

( − ax , ay ∗ sφroll
n + az ∗ cφroll

n

)

ψ
yaw
ini = arctan

(
my ∗ cφroll

n + mx ∗ sφroll
n ∗ sθpitch

n

− mz ∗ sφroll
n ∗ cθpitch

n ,mx ∗ cθpitch
n

− mz ∗ sθpitch
n

)

(1)

where c and s denote cosine and sine functions, respectively.
ax , ay , and az represent accelerometer measurements, and mx ,
my , and mz are magnetometer measurements.

It should be noted that magnetometers are susceptible to
local disturbances in the earth magnetic field caused by nearby
magnetic objects, which occurs occasionally in routine use.
It is necessary to constantly compute the attitude of the
sensor in order to correct the measured magnetic values,
and a scheme proposed by Fang et al. [14] was adopted in
this paper. As discussed above, in order to deal with sensor
misplacement, an alignment method similar to bore sighting
was used, which is shown in Fig. 2. The implementation is to
calculate the initial rotation matrix Rtrans, which performs the
initial transformation of the sensor frame

Rtrans = Rψ Rθ Rφ

=
⎡

⎣
cψ −sψ 0
sψ cψ 0
0 0 1

⎤

⎦

⎡

⎣
cθ 0 sθ
0 1 0

−sθ 0 cθ

⎤

⎦

⎡

⎣
1 0 0
0 cφ −sφ
0 sφ cφ

⎤

⎦

=
⎡

⎣
cθcψ sφsθcψ − cφsψ cφsθcψ + sφsψ
cθsψ sφsθsψ + cφcψ cφsθsψ − sφcψ
−sθ sφcθ cφcθ

⎤

⎦. (2)

As defined here, Rtrans updates the initial sensor frame system
to ensure that all three sensor frames are in alignment. After
the initial alignment, the new x-axis in the ground frame is
chosen by the forward direction of the subject, while keeping
the z-axis pointing upward. y-axis can be obtained according
to the rule of the right-handed Cartesian coordinate system as

Y = −(X × Z)/‖((X × Z))‖. (3)

III. METHODOLOGY

A. Orientation Optimization by the Gradient
Descent Algorithm

Quaternion representation is deployed in this research to
describe the 3-D orientations of lower limbs. Quaternion
requires less calculation time than rotation matrices and is not
subject to the existed singularity problem associated with an
Euler angle representation. The quaternion is represented as
follows:

q = (q0, q1i, q2 j, q3k) (4)

where i, j , and k denote the standard orthonormal basis for
3-D space according to the right-handed Cartesian coordinate
system. q0 is the scalar part of the quaternion, which represents
the rotation angle; and q1, q2, and q3 are the vector part that
describes the rotation axis in the 3-D space.

There are no singularity and only two trigonometric
functions involved. In this paper, leading superscripts and
subscripts are used to identify which coordinate system a
quantity is written in. For instance, qG

S rotates a vector xS in
the sensor frame (S) to xG in the ground reference coordinate
system (G)

xG = qG
S xSqG−

S (5)

where qG−
S is the complex conjugate of qG

S .
The orientation of a rigid body in space is determined when

the axis orientation of a coordinate frame attached to the rigid
body is specified with respect to the ground frame. The rigid
body angular motion obeys the vector differential equation

�q =
[
ω

‖ω‖ sin
‖ω‖τ

2
, cos

‖ω‖τ
2

]T

(6)

with regard to the discrete-time system, and we can draw

q(t) = q̂(t − 1)⊗�q (7)

where quaternion product notation ⊗ is used to define
compound orientations; the ˆ accent denotes a normalized
vector with unit length; τ represents the sample interval (0.01 s
in this paper); and ωx , ωy , and ωz are functions of time, which
describe the angular velocities of the three axes.

In terms of physical significance, the orientation change of
a rotating frame can be regarded as a rotation about a specific
axis with unit vector and scaled by the speed of rotation. In this
way, the relationship between the angular rate and quaternion
is established. There are many sensor fusion algorithms; the
most popular ones are Kalman filters [15], complementary
filters [16], and particle filters [17]. Researchers have been
committed to the development of simpler methods, which
reduce the computational load and parameter tuning burdens
associated with the aforementioned algorithms. This part is
related to the previous research to make alternative methods
of the frequently used extended Kalman filter in applications
that require inertial sensing of human motion [18].

The quaternion representation requires a unique q̂G
S to be

found. This can be achieved by solving an optimization prob-
lem. The sensor orientation q̂G

S is determined by transforming



the initial direction of the field in the ground frame p̂G to the
sensor frame p̂S

f
(
q̂G

S , p̂G , p̂S) = q̂G∗
S ⊗ p̂G ⊗ q̂G

S − p̂S → 0. (8)

Formula (9) calculates the error direction on the solution
surface defined by the objective function (8) and the corre-
sponding Jacobian J. While formula (10) presents the gradient
descent algorithm for n iterations, which obtains an orientation
estimation of q̂G

S deduced from the initial orientation q̂G
S (0)

and a step size ζ . Each new orientation and corresponding
sensor measurement are accessible by multiple iterations of
formula (10)

�f
(
q̂G

S , p̂G, p̂S) = JT (
q̂G

S , p̂G)
f
(
q̂G

S , p̂G , p̂S)
(9)

qG
S (t) = q̂G

S (t − 1)− ζ
�f

(
q̂G

S , p̂G , p̂S
)

∥
∥ � f

(
q̂G

S , p̂G , p̂S
)∥
∥

t = 0, 1, 2, . . . , n. (10)

B. Position Estimation With Continuous-Time Sensor Model

The outputs of calibrated 3-D linear acceleration, rate of
turn, and magnetic field data are in the sensor frame (S).
It is common to project the acceleration signal
aS(t) = (aS x, aS y, aSz) obtained from S into a single
optimal estimate of orientation, i.e., the ground frame of
reference (G). The physical sensor model is listed in

⎧
⎪⎪⎨

⎪⎪⎩

aS = kaq S
G(aG + g)q S−

G + Ba + Na

ωωωS = kωq S
GωωωGq S−

G + Bω + Nω

mS = kmq S
GmGq S−

G + Bm + Nm

(11)

where aS represents the acceleration vector in the sensor
frame, ωS represents the angular velocity vector in the sensor
frame, mS represents the magnetic field intensity vector in the
sensor frame, and similarly, aG , ωG and mG are corresponding
vectors expressed in ground frame. g represents the gravity
vector; ka , kω, and km are the scale factor matrices;
Ba , Bω, and Bm are the bias vectors; and Na , Nω , and Nm

are uncorrelated white Gaussian measurement noise with zero
mean.

In order to obtain accurate data, each sensor node must
be properly calibrated to determine sensor nulls and scale
factors. The three physical sensors inside each MTx wearable
sensor are all calibrated according to physical model of the
response of the sensors to various physical quantities, includ-
ing temperature and misalignment. The basic model is linear
and according to

p = K −1
W (v − bT ) (12)

where KW represents the weight matrix as shown in (13),
v represents the sampled digital voltage, and bT represents
the bias vector.

Since the MTx offers the unsigned integer digital voltage
outputs from a 16-b A/D, the calibration data are used to

relate the sampled digital voltages v from the sensors to the
respective physical quantity p

KW =
⎡

⎣
W1 0 0
0 W2 0
0 0 W3

⎤

⎦

⎡

⎣
m1,x m1,y m1,z
m2,y m2,y m2,y
m3,z m3,z m3,z

⎤

⎦ + o (13)

where Wn represents the weight coefficient of each axis and
mn represents the misalignment, which specifies the direction
of the sensitive axes with respect to the ribs of the sensor-fixed
coordinate system (S) shell. The three sensitive directions are
used to form the misalignment matrix. And o represents higher
order models and temperature modeling used for thermal
data correction when the environmental temperature changes.
In this paper, the cross-axis sensitivity and cross coupling are
not taken into account.

The 3-D position and orientation can be calculated by
integrating the accelerometer and gyroscope output, respec-
tively, from initial state determined by the accelerometer and
magnetometer. The orientation measurements are made in
reference to the ground frame of roll, pitch, and yaw (heading).
The integration errors of gyroscope tend to grow unbounded
because of time-varying biases and wideband measurement
noise superimposed onto the gyroscope output [19]. On the
other hand, the accelerometer provides drift-free inclination
estimates by sensing the gravity field and eliminates drift
by continuous correction of the orientation obtained using
gyroscope data.

The accelerometers measure all accelerations, including
the acceleration due to gravity. The gravity component
(g = [0, 0, 9.81]T m/s2) is naturally subtracted from the accel-
eration signal if one wishes to estimate the displacement by
accelerometer. The remaining acceleration is integrated once
to calculate liner velocity and twice to obtain displacement.
The calculative process is shown in

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

aG(t) = qG
S (t)[aS(t)− g]qG−

S (t)

vG(t) = vG(0)+
∫ t

0
aG(t)dt

dG(t) = dG(0)+
∫ t

0
vG(t)dt

(14)

where vG(0) and dG(0) represent the initial liner velocity and
the displacement of the subject (both set to zero in this paper),
respectively.

Considering that we can only obtain discrete samples from
wearable sensors, actually linear velocity and displacement are
calculated in the discrete-time domain as shown in

⎧
⎪⎨

⎪⎩

vG(t) = vG(t − τ )+ 1

2
[aG(t − τ )+ aG(t)] ∗ τ

dG(t) = dG(t − τ )+ 1

2
[vG(t − τ )+ vG(t)] ∗ τ.

(15)

The validity of above formulas is subject to the assump-
tion that the change of angular velocity is linear in the
interval [t − τ, t].
C. Segmentation of Gait Cycle

Previously researchers have defined a gait cycle as a period
of time between any two identical kinematic events in the



Fig. 3. Typical gait phase in a gait cycle.

Fig. 4. Segmentation of gait phase using sensor data.

walking cycle, and any event could be selected as the onset of
a gait cycle [20]. The heel strike (HS) is commonly selected
as the beginning of a stride. In general, there are two ways of
dividing a gait cycle.

1) The gait cycle is divided into four different phases in
some research work, namely, HS, foot flat (FF), heel
off (HO), and swing (SW).

2) In other research, each gait cycle is divided into two
phases, i.e., the stance phase when the foot is on the
ground and the SW phase when the same foot is in the
air [4], [21]. In this division, the stance phase begins
with HS and ends with HO, constituting roughly 60%
of the gait cycle, while the SW phase constituting the
remaining 40%.

Since our MARG system provides both linear and angular
velocities of lower limbs of a subject, we adopt four phases in
this paper, as shown in Fig. 3. Note that each individual has a
unique gait pattern, and thus the percentage of gait cycle that
corresponds to each phase slightly varies between literature
sources. The ZUPT interval is deemed sufficient to correct the
error growth in the motion estimation step by step.

The gait cycle is characterized by the following features, as
shown in Fig. 4, in which three gait cycles are observed.

1) The HS phase starts with a peak of angular veloc-
ity follow the SW phase of the previous gait cycle
and is accompanied by a spike of acceleration, which
contributes to define the boundary between successive
strides.

2) The FF phase is the significant phase during which
angular velocity becomes near zero and the acceleration

Fig. 5. False stance detection using a single threshold. (a) False stance
detection during the SW phase. (b) False SW detection during the stance
phase.

value remains essentially constant with one unit of
gravitational acceleration. This is the phase during which
ZUPT can be applied.

3) The HO phase begins with the end of the adjacent FF
and ends with a peak of angular velocity; meanwhile,
another spike of acceleration is presented.

4) The SW phase features a spacing between two peaks of
angular velocity and ends with the start of the following
HS phase, and the acceleration changes sharply during
this phase.

Compared with the acceleration measurements, the angular
velocity measurements by a gyroscope provide more promi-
nent features for gait phase segmentation. In this case, the
gait cycle can be divided into the aforementioned four phases
by the key peaks of angular velocity in conjunction with the
criteria of ZUPT, which are detailed as follows.

The periodicity of walking allowing us to repeat this cycle
step by step without accumulating significant errors. To ensure
the effectiveness of ZUPT, it is critical to identify exactly when
the user’s foot is at rest on the ground. In [21], stance phase
detection methods normally rely on the magnitude or short-
term statistics of acceleration, angular rate, or the combination
of two factors, and compare these to predefined thresholds
to identify the stance phase. In practical terms, there are a
number of small measurement values in short term during
the SW phase, and the detection method may detect false
stance phase when the foot is actually in the air, as shown
in Fig. 5(a). On the other hand, since there are a number
of measurement fluctuations during the stance phase, the
detection method may interrupt the true stance phase by the



false SW phase when the foot is actually on the ground, as
shown in Fig. 5(b). Thus, to avoid incorrect detection of the
stance phase, Yun et al. [4] introduced a sample count γ to
filter out momentary dips and sudden spikes in the gyroscope
measurement. The parameter was incremented until a specified
number of samples had satisfied the minimum count condition.
This approach is useful, but has its limitation. It assumes a
roughly consistent gait pattern during walking. However, the
subject may change his/her pace significantly, or even come to
a halt in random walk. Therefore, it is not practical to select
the optimal minimum count number.

In this paper, two criterions are deployed to distinguish
stance phase accurately, then the foot position measurement is
updated each step using ZUPT under the assumption that when
the subject stands steady on the ground (usually 0.2∼0.4 s),
the foot attached sensor should be presumed to be in the
stationary state. In order to prevent the current drift error
propagating to the next step, we calculate the stationary state
by taking the squared Euclidean norm of acceleration

A =
√

(accx/‖g‖)2 + (accy/‖g‖)2 + (accz/‖g‖)2 (16)

where accx , accy , and accz represent the triaxial acceleration
measurement.

Due to the measurements of accelerometers are constant
under stationary state and the magnitude of composed accel-
eration vector is equal to local gravity, the acceleration moving
variance is denoted by the first criterion

Var2
A( j) = 1

M

i= j∑

i= j−M

((Ai − ĀM)
2 < λacc (17)

where ĀM is the mean of Ai over M samples and λacc is the
empirically predefined threshold.

Meanwhile, angular rate energy Eω is adopted as a second
criterion (18). The second origin moment rather than second
central moment is used to detect the stance phase. The
detection method provides a preferable alternative form of the
statistics estimator, which is defined in the following energy
detector [12]:

Eωj = 1

σ 2
ωN

j+N−1∑

i= j

‖ωi‖2 < λgyro (18)

where N is the window size selected according to the sensor’s
sampling rate, ωi = [ωx,i , ωy,i , ωz,i ]T is the triaxial angular
velocity vector at the instant of data acquisition time, and
σ 2
ω is the gyroscope noise variance. λgyro is the predefined

threshold that is configured to the same value as λacc. We con-
tinually find the interval when ZUPT is valid and update
the corresponding vG(t) as [0, 0, 0]T base on the above two
criterions. In general, the stance phases are first detected by
formula (17) and formula (18), and then the rest gait phases
are automatically determined by gyroscope data, which have
distinct peak values in every single gait cycle.

D. Forward Kinematic Model

It should be noted that ZUPT method is valid only when
zero velocity assumption is satisfied. Therefore, ZUPT is

invalid for knee position estimation because there is no static
moment for the knee during walking. Likewise, distortion
could happen toward the motion tracking of other parts
of human body other than feet. The skeleton structure of
human lower limbs makes it applicable to set up geometrical
constraints [22], which is based on the concept of forward
kinematics from the robot domain.

The classic Denavit–Hartenberg (D-H) convention provides
an effective way to demonstrate the lower limb kinematics.
The sensor on the shank offers additional information to
determine the instances of the stance phase, which is based
on the assumption that the foot must be in the stance phase
when the accelerometer on the shank senses the minimum
forward acceleration after HS. And at this time, the shank
is assumed to be vertical to the ground. Since human lower
limbs can be treated as a model of inverted pendulum and the
geopotential energy reaches the maximum at the minimum of
kinetic energy (the vertical moment), which is the start time
of the implementation of D-H convention.

Knee position estimation is evaluated by combining the
accurate position information of the foot and the D-H conven-
tion. Lower limbs are divided into three links, i.e., thigh, shank
and foot. Whatever motion the limb executes, the coordinates
of each point on link i are constant when expressed in the i th
coordinate frame. Furthermore, when joint i is actuated, link i
and its attached frame oi xi yi zi experience a resulting motion.
The frame o0x0 y0z0, which is attached to the limb base (foot
in this paper), is referred to as the initial frame.

In this paper, lower limb joints are considered as the revolute
joint rather than prismatic owning of the biological feature.
In this convention, each homogeneous transformation
Ai shown in formula (19) is represented as a product of three
basic transformations. Ai is a function of only a single joint
variable, namely, θi

A = Roty,θi Transx,ai Rotx,αi

=

⎡

⎢
⎢
⎣

cθi −sθi 0 0
sθi cθi 0 0
0 0 1 0
0 0 0 1

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

1 0 0 Li

0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥
⎥
⎦

×

⎡

⎢
⎢
⎣

1 0 0 0
0 cαi −sαi 0
0 sαi cαi 0
0 0 0 1

⎤

⎥
⎥
⎦

=

⎡

⎢
⎢
⎣

cθi −sθi cαi sθi cαi Li cθi

sθi cθi cαi −cθi sαi Li sθi

0 sαi cαi 0
0 0 0 1

⎤

⎥
⎥
⎦ (19)

where c and s denote cosine and sine functions, respectively.
The three quantities associated with link i and joint i , namely,
θi , αi , and Li , are generally joint angle, link twist, and link
length, respectively.

It is by nature that Li is constant for a given link,
and θi and αi for a revolute joint are the variables. While the
matrix Ai for the knee joint is a function of a single variable θi

because there are 2 DOF at the knee joint, the knee joint can be



Fig. 6. Sagittal plane sketch of the human lower limbs. (a) Sensor attachment.
(b) D-H model.

assumed as a modified bicondylar hinge joint with only 1 DOF
when the according foot is under the stance phase.

Fig. 6 shows the profile pattern of the human foot, shank,
and thigh. A conventional link-segment model is used to
represent the anatomical human lower limbs. Each segment
is represented by a rigid body segment with segmental infor-
mation of linear acceleration and angular velocity. The link-
segment model characterizes physiological joints as hinge
points. L1 is the distance between the centers of the ankle joint
and the knee joint. L2 is the distance between the knee joint
and the hip joint. It can be measured using an anthropometry,
i.e., a device designed to measure the dimensions of the human
body.

The forward kinematics assign the Cartesian position and
orientation of the sensor frame attached to the human lower
limbs relative to the ground reference frame. The mathematic
model is given by multiplying a series of matrices parameter-
ized by joint angles, where θ1 and θ2 are rotating angles in
local frames originated at the hip and knee joints, respectively,
with the initial ankle joint angle θ1 equal to 90° and the joint
angle θ2 with the calculated value by the MARG sensor at
the shank vertical moment. The coordinate frames and their
transformation are shown in Fig. 6(a) to associate different
frames.

Since there are three joints to be located in this study,
three MTx sensors are placed on the thigh, shank, and foot,
respectively. Based on the D-H convention, we can propose
link transformations from the ankle joint to the hip joint.
This is based on the fact that we can use ZUPT method [12]
to prevent error from accumulating step by step. The foot-
attached sensor is relatively more authentic than the estimation
from sensors on the shank and thigh. Position correction can
be performed during each stance period.

Suppose that all the sensors were kept still before the
sampling starts and the displacement of each sensor is relevant
to its original position. Let [xG

h , yG
h , zG

h ]T be the displacement
vector of the hip joint computed from the angular variations of
the thigh, [xG

k , yG
k , zG

k ]T the displacement vector of the knee
joint based on the rotation of the shank, and [xG

a , yG
a , zG

a ]T

the displacement vector of the ankle joint using the acceler-
ations from the sensor placed on the foot. We then have two
constraint states

∫ t

0

∫ t

0
aG

k dt = [
x G

k , yG
k , zG

k

]T + [
x G

h , yG
h , zG

h

]T
(20)

∫ t

0

∫ t

0
aG

a dt =
∫ t

0

∫ t

0
aG

k dt + [
x G

a , yG
a , zG

a

]T
. (21)

In this case, we need to integrate the angular rate near the knee
joint so as to locate the knee joint. Suppose that ϕ, φ, and ψ
are Euler angles around the x-, y-, and z-axis, corresponding
to the ankle. Then, we have (22), as shown at the bottom of
this page, where c and s denote cosine and sine functions,
respectively.

In this way, we could substantially reduce drifts
in [xG

k , yG
k , zG

k ]T estimation using the constraint
equations (20) and (21). If necessary, [xG

h , yG
h , zG

h ]T position
can be obtained using a similar method. The flowchart of the
proposed approach is shown in Fig. 7.

IV. EXPERIMENTAL RESULTS AND

ALGORITHM VALIDATION

A. System Calibration and Initialization

After installation of the sensors, the subjects were instructed
to stand still for 5 s in order to estimate and make adjustments
for the tilt of the sensors by measuring the acceleration due
to gravity and the geomagnetic field. The relation among the
three fixed frames, i.e., thigh (T), shank (S), and foot (F),
can be defined during this period. Then the proposed initial
alignment procedure guaranteed that all three sensors share
the same initial state. In order to test the uniformity among
multiple sensors, a uniformity test was carried out. The subject
was requested to perform three actions in succession: 1) lift
leg to the right; 2) kick forward; and 3) externally rotate the
foot. Each action repeated twice followed by the next one.

During this process, lower limbs should be kept straight to
ensure that different sensors sense the same rate of change at
the same time. Gyroscope data from thigh- and shank-attached
sensors were used to calculate roll, pitch, and yaw, as shown
in Fig. 8(a). After initial alignment, the blue curve (thigh)
is almost coincided with that of the red curve (shank). The
difference between three axes is shown in Fig. 8(b). The cor-
responding errors in the three axes between sensors attached

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x G
k = L1 ± L1

√
1 − [1 + (cϕcφcψ)2][1 − c2ψ + c2φc2ψ − (cϕcφcψ)2]

1 + (cϕcφcψ)2

yG
k =

√

L2
1 − zG

k sψ

zG
k =

√

L2
1 − x G

k sϕ

(22)



Fig. 7. Flowchart of the motion measurement system.

Fig. 8. Alignment test of multiple sensors. (a) Orientation variation with
respect to three test actions. (b) Orientation computational error between
two sensors.

to the thigh and the shank reduce to less than 2°, establishing
the base of subsequent computations.

Similarly, in order to ensure that the measurements of
orientation and position in the Vicon camera coordinate frame
are comparable with the estimation algorithm in the ground
frame, an initial calibration procedure was performed where
a five-marker mini calibration frame was used. This step
is required as the cameras may shift over time. When the
calibration was done, each marker can be seen by at least six
cameras, which is enough for the system evaluation.

B. Orientation and Position Estimation

Table II shows the elements of the quaternion for the first
six samples. The practical position of the sensors after the

TABLE II

QUATERNION CONVERGENCE

TABLE III

GAIT PHASE SEGMENTATION

Fig. 9. Foot trajectory of figure-of-eight walking for two laps.

initial alignment is represented by the quaternion (1, 0, 0, 0)
in the reference frame. The quaternion estimation converged
to the practical position in a couple of iterations.

Note that walking cadence is more stable in straight line
walking without turning, which is an advantage for gait cycle
segmentation. In this case, four subjects completed the level
walking trials along the straight line. The mean value and
standard deviation of their gait parameters, including stride
length (SL), stride time, and the durations of HS, FF, HO, and
SW, are presented in Table III.

The experimental results show that men perform larger steps
and longer SL than women. There is a positive correlation
between stature and SL. By calculating the percentage of each
walking phase in the whole gait cycle, the average values
are as follows: HS (10.1%), FF (32.05%), HO (18.85%), and
SW (39.25%). From the statistical data of the four subjects, the
proportion of each gait phase in a gait cycle has been shown
to be dependent on walking cadence, which is consistent
with [23] and [24].

One of the subject’s walking trajectory in the first scenario
is shown in Fig. 9, with a profile similar to figure-of-eight.
The subject was instructed to walk along the predefined path,
from the origin (x = 0, y = 0, z = 0) and initial orientation



Fig. 10. 3-D foot orientation estimation of figure-of-eight level walking for
two laps.

(roll = 0, pitch = 0, yaw = 0), which is presented by Vicon.
It is hard to maintain the same ending position for different
trials. The dominant foot that the sensor was attached to is
located at the origin. The subject walked forward (x-axis)
from the origin and then along the clockwise direction of
the rectangular grid line for two laps, ending up
at (x = −0.125, y = −0.038, z = 0.011) with a reverse yaw
angle (roll = 0.43°, pitch = 1.96°, yaw = −176.69°) with
respect to the initial state. The blue arrows in Fig. 9 show the
vertical direction (z-axis) of the foot with the attached sensor
and the green arrows represent the left direction (y-axis) with
respect to the forward direction, which is not shown in the
figure in view of legibility.

Similarly, 3-D orientations are shown in Fig. 10. Due to
the singularity problem of Euler method, there are some trip
points when the yaw is close to 180°, which means the value
would jump from −180° to 180°. In this experiment, the
subject followed the clockwise and turned right nine times,
i.e., the yaw angle changed 9 × (−90°) in the ground frame.
According to the definition of yaw angle, the value should be
in the range −180° to 180°. In this case, we adjusted the sign
of yaw angle whenever the subject was walking at the reverse
direction relative to the initial direction, as shown by black
ellipses in Fig. 10, ensuring that the yaw angle always fall in
the standard range.

Although the distance error was the main concern
in [4], [6], and [25], it is worth researching how the step size
error shifts over time in the course of experiments. In this
paper, SL is defined as the distance between the adjacent
foot landing locations, which is one of the most essential gait
parameters that determine the walking speed. With regard to
level walking trials, the SL L can be calculated by

Li =
√

(xi − xi−1)2 + (yi − yi−1)2 (23)

where Li represents the step length of i th step. xi and yi

denote the X and Y coordinates in the ground frame,
respectively.

Fig. 11 presents the quantitative SL estimation throughout
the walking experiment in a rectangular route with 28 detected
steps. Each SL is represented by blue bars calculated by the
proposed method and green bars given by Vicon, respectively.
The step size error is represented by the red bar. The overall

Fig. 11. SL estimation and step size error of walking along the rectangular
route for one lap.

Fig. 12. Error distribution in the form of frequency histogram, kernel density
estimation, and normal distribution fitting.

estimation error by our method is slightly larger (0.41%) than
that of Vicon, which is regarded as ground truth. Specifically,
the measured results are less than the real value for five
steps and larger than the real value as to the remaining
23 steps. Maximum error appears in the sixth step with
0.006 m (1.14%), and μ and σ are 0.472% and 0.436%,
respectively.

As we can see from the bar graph, step size error does
not grow with the increase in step number, though the errors
are relatively larger when the subject changes the walking
direction, i.e., the steps to make the turning at each corner.
To get a more clear understanding of the error distribution,
Fig. 12 indicates the corresponding frequency histogram,
kernel density estimation, and normal distribution fitting. The
corresponding mean and standard deviation are μ = 0.0051
and σ = 0.0046. From the statistical analysis, we can draw
that the level walking position estimation is effective and the
estimation errors are well controlled.

Stair ascent capacity has perioperative prognostic medical
importance [26]. It may predict postoperative recovery and
complications for stroke rehabilitation. Moreover, the z-axis
displacement component is more distinct than the level walk-
ing trial. The Vicon system does not work in staircase, so
we measured the layer height (0.16 m) and width (0.3 m).
Meanwhile, we marked the origin and ending point with
marking pen at each trial. Therefore, we can still obtain ground
truth in stair ascent experiments. A subject was asked to
climb two flights of stairs, where each flight consisted of ten
steps. The trajectory of staircase ascent is shown in Fig. 13
and the 3-D position ends at (−0.016,−0.945, 3.308). It is



Fig. 13. Foot trajectory of stair ascent.

Fig. 14. Foot trajectory during level walking along the rectangular route.
(a) Estimation by the proposed method and Vicon, respectively. (b) Horizontal
position error (�XY ) between the two results: the calculated value minus the
real value.

acceptable compared with the available ground truth. The
obtained orientation and position information can be useful
for the evaluation of stair ascent capacity.

To verify the effectiveness of the wearable-sensor-based
estimation algorithm, a comparison was made between the
trajectory estimation by the proposed method and the mea-
surements of Vicon, as shown in Fig. 14. The subject was
asked to perform the rectangular route level walking for one

Fig. 15. Absolute horizontal knee trajectory. (a) Estimation by the MARG
algorithm and Vicon, respectively. (b) Estimation by the MARG algorithm
combined with D-H convention and Vicon, respectively.

TABLE IV

EXPERIMENTAL PERFORMANCE OF POSITION ESTIMATION

lap in clockwise direction. As shown in Fig. 14(b), there exist
some significant errors especially when the subject made the
five turnings, which may be due to the signal delay of the
wearable sensors. However, the horizontal position estimation
error (�XY ) is less than 0.02 m. The comparative results are
satisfactory on the whole.

Knee position estimation was evaluated to validate the
proposed D-H convention method. In the first case, we imple-
mented the algorithm merely by means of data from the
MARG sensor attached to the knee. Obviously, there exist
large errors, as shown in Fig. 15, due to the absence of
ZUPT. This is because the error in the previous step was
introduced to the next step inevitably. Fig. 15(b) shows that the
knee trajectory estimation has been greatly improved by the
introduction of D-H convention even though there still exist
visible errors. In this experiment, the values of L1 and L2 of
the specified subject are 0.43 and 0.52 m, respectively.

Table IV presents six trials that consist of one-straight-line
level walking, four-rectangular-route level walking, and one-
stair ascent walking of two floors. Step numbers, % error of
walking distance, and the step size % error of SL are summa-
rized. The results indicate that all steps in different trials are
detected correctly. Without addition sensors for stance phase
detection, the proposed self-contained measurement system
achieved an average distance error of 0.26% for level walking
and 0.74% for stair ascent trials within the indoor environment.
What is more, the average step size error is less than 0.2%.
It is unconvincing to directly compare the results with those



of other researches, since the system performance is closely
associated with several elements, including system configura-
tion, sensor attachment, and road condition. Our experimental
results are comparable or better than some good performance
in the literature: the position accuracy of 0.3% reported in [21],
the �XY radial distance error of 0.82% and the distance
error of 0.27% reported in [4], and the position error of 0.4%
presented in [25].

V. DISCUSSION

It can be concluded from the experimental results that the
estimation results by the proposed method are quite similar
to the results of the Vicon system on the whole, and the
estimation errors are quite small. It means that the proposed
method has the ability to track the lower limb motion with
high accuracy. Via modeling the human lower limb skeleton
structure as a three-link model, it can solve the knee joint
position estimation drift problem effectively and correct the
drift errors that are summarized as follows.

1) One source of the overall motion estimation errors
is due to the wearable sensors attached to nonrigid
bodies. In contrast, Vicon measures the movements of
the surface of lower limbs where markers are attached,
while the D-H convention in our method estimates the
movement of the segments of the lower limbs. Therefore,
the knee position estimation is worse than the foot
position estimation.

2) The other source for the estimation error is the
misalignment of coordinate frames. Despite trying
our best, the Vicon coordinate frame was not
completely aligned with the ground frame, which
could introduce estimation difference between these
two systems.

In general, wearable sensors suffer obvious drifts after a few
minutes of operation. The solution of reducing or correcting
drift error for human motion tracking generally fall into
three categories: hybrid systems, absolute positioning systems,
and specific domain assumptions. Hybrid systems using IMU
signals together with signals from additional sensors including
force sensor [12], RFID [10], optical sensor [27] or other
fore-mentioned sensor system. Some merely use two separate
sensors and choose an optimal estimation at a particular time
instant [28], and others just apply one method for sensing
orientation changes and another for sensing position. With
respect to hybrid systems, multidisciplinary fusion remains
a big challenge. Absolute positioning systems such as GPS
can maintain drift-free position estimation, but unsuitable for
indoor applications and high-accuracy applications such as
human motion estimation.

In some cases, it is possible to make domain-specific
assumptions about the body movement by exploiting con-
straints, which are confirmable to apply to subject movement
tracking. Such assumptions can be adopted to minimize drift
effectively. A typical example is ZUPT applied to the situation
in which foot-attached sensors are used to track walking
trajectory, which is adopted in this paper.

Kinematic chains can be an effective tool when multiple
wearable sensors are used to track human limb motions. Due to

the physical attributes, human lower limbs can be represented
by the rigid body model. If the length of each segment is
definite, the D-H convention can be adopted to set up the
kinematic chains, which produces state constraints so that the
drift error can be minimized. The main drawback of domain
specific assumptions is that the assumptions must be valid.
Note that D-H convention would not work in stair ascent trials
because lower limbs cannot be considered as inverted pendu-
lum when the subject climbs stairs. Therefore, we merely use
the data from the foot-attached sensor and just evaluate the
foot motion measurement performance accordingly.

VI. CONCLUSION

The combination of distributed wearable sensors with
the D-H convention proposed in this paper resulted in a
promising tool for tracking lower limb movements. The exper-
imental results have been presented to show that drift errors
were well controlled by the sensor fusion algorithm. The
proposed method has been evaluated with the experimental
data collected from multiple subjects at self-selected walking
speeds. The method developed for lower limb motion measure-
ment in this paper has potential applications for augmented
and virtual reality, rehabilitation, emergency responders, and
so on. In conclusion, the main contributions of this paper are
as follows.

1) The algorithm presented in this paper employs processes
similar to others but combine the information of wear-
able sensors, domain-specific assumptions, and the kine-
matic chain.

2) Ensure the successful implementation of the ZUPT
algorithm and expand the scope of the ZUPT algorithm
to the lower limbs other than the foot.

3) The footstep of each stride can be correctly detected,
thus avoiding significant drift and providing more satis-
factory positioning accuracy for different experimental
scenarios.

However, due to the limitation of experimental scene and
limited subjects, the experiments are not sufficient to set up
a gait analysis database. The estimation method is offline,
so it is not feasible to give real-time feedback. Future work
is underway to address these problems and further evaluate
both healthy and pathological subjects at a wider movement
range.
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